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Preface

This volume contains the papers presented at the 26th International European Con-
ference on Parallel and Distributed Computing (Euro-Par 2020), planned for August
24–28, 2020, in Warsaw, Poland. Due to the coronavirus pandemic, Euro-Par was
organized this year as a virtual conference.

For over 25 years, Euro-Par has consistently brought together researchers in parallel
and distributed computing. Founded by pioneers as a merger of the three thematically
related European conference series PARLE and CONPAR-VAPP, Euro-Par started
with the aim to create the main annual scientific event on parallel processing in Europe
and to be the primary choice of professionals for the presentation of the latest results.

Since its inception, Euro-Par has been covering all aspects of parallel and distributed
computing, ranging from theory to practice, from the smallest to the largest parallel and
distributed systems and infrastructures, from fundamental computational problems to
full-fledged applications, from architecture, compiler, language, and interface design
and implementation to tools, support infrastructures, and application performance.
Euro-Par’s unique organization into topics provides an excellent forum for focused
technical discussion as well as interaction with a large, broad, and diverse audience
who are researchers in academic institutions, public and private laboratories, or com-
mercial stakeholders. Euro-Par’s topics were always oriented towards novel research
issues and the current state of the art. Most topics became constant entries, while new
themes emerged and were included in the conference. Euro-Par has a tradition of
selecting new organizers and chairs for every edition, leading to fresh ideas and
variations while staying true to the tradition. Organizers and chairs of previous editions
support their successors. In this sense, Euro-Par also promotes networking across
national borders, leading to the unique spirit of Euro-Par.

Previous conferences took place in Stockholm, Lyon, Passau, Southampton, Tou-
louse, Munich, Manchester, Paderborn, Klagenfurt, Pisa, Lisbon, Dresden, Rennes, Las
Palmas, Delft, Ischia, Bordeaux, Rhodes, Aachen, Porto, Vienna, Grenoble, Santiago
de Compostela, Turin, and Göttingen.

Thus, Euro-Par in Poland followed the well-established format of its predecessors.
The 26th edition of Euro-Par was organized with the support of the University of
Warsaw, Faculty of Mathematics, Informatics and Mechanics (MIM UW) and AGH
University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Department of Computer Science in Krakow. MIM UW is a
renowned place for research in mathematics and theoretical computer science, while
AGH hosts the largest supercomputer in Poland in its Academic Computer Centre
Cyfronet.

The topics of Euro-Par 2020 were organized into 11 tracks, namely:

– Support Tools and Environments
– Performance and Power Modeling, Prediction and Evaluation
– Scheduling and Load Balancing



– High Performance Architectures and Compilers
– Data Management, Analytics and Machine Learning
– Cluster, Cloud and Edge Computing
– Theory and Algorithms for Parallel and Distributed Processing
– Parallel and Distributed Programming, Interfaces, and Languages
– Multicore and Manycore Parallelism
– Parallel Numerical Methods and Applications
– Accelerator Computing

Overall, 158 papers were submitted from 33 countries. The number of submitted
papers, the wide topic coverage, and the aim of obtaining high-quality reviews resulted
in a difficult selection process involving a large number of experts. As the joint effort
of the members of the Program Committee and of the 169 external reviewers, a total of
256 reviewers from 29 countries wrote 632 reviews: 17 papers received three reviews,
129 received four reviews, and 14 received 5 or more, that is, on average, 4 reviews per
paper. There were more than 218,000 words in all the reviews. The accepted papers
were chosen after offline discussions in our reviewing system followed by a lively
discussion during the paper selection meeting which took place via a video conference
on April 21, 2020. As a result, 39 papers were selected to be presented at the con-
ference and published in these proceedings, resulting in a 24.6% acceptance rate.

The Technical Program Committee distinguished one best paper: “Maximizing I/O
Bandwidth for Reverse Time Migration on Heterogeneous Large-Scale Systems” by
Tariq Alturkestani, Hatem Ltaief, and David Keyes.

To increase reproducibility of the research, Euro-Par encourages authors to submit
artifacts, such as source code, datasets, and reproducibility instructions. Along with
notification of acceptance, authors of accepted papers were encouraged to submit
artifacts. Artifacts for 13 papers were submitted (a third of the accepted papers). These
artifacts were then evaluated by the Artifact Evaluation Committee (AEC). The com-
mittee managed to successfully reproduce results of all the 13 papers. These papers are
marked in the proceedings by a special stamp, and the artifacts are available online in
the Figshare repository.

In addition to the technical program, we had the pleasure of hosting three keynotes
held by:

– Ewa Deelman, University of Southern California, USA
– Geoffrey Fox, Indiana University, USA
– Piotr Sankowski, University of Warsaw, Poland

Euro-Par 2020, though a virtual event this year, encouraged interaction and online
discussions, in order to make it a successful and friendly meeting.

The conference program started with two days of workshops on specialized topics.
Dora Blanco Heras and Bartosz Baliś ensured coordination and organization of this
pre-conference event as workshop co-chairs. After the conference, a selection of the
papers presented at the workshops will be published in a separate proceedings volume.

We would like to thank the authors, chairs, Program Committee members, and
reviewers for contributing to the success of Euro-Par 2020. Similarly, we would like to
extend our appreciation to the Euro-Par Steering Committee for its support. Our
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mentor, Luc Bougé, devoted countless hours to this edition, making sure we were on
time and on track with all the (many) key elements of the conference. Our virtual task
force – Emmanuel Jeannot, Paul Kelly, Francisco Rivera, and Denis Trystram – pro-
vided invaluable feedback on translating various aspects of a physical conference to the
cyberspace. Last but not least, we would like to express our gratitude to the teams and
volunteers at UW and AGH, whose relentless enthusiasm and effort made this event
possible.

August 2020 Maciej Malawski
Krzysztof Rzadca
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Automating Science Workflows: Challenges
and Opportunities

Ewa Deelman

Information Sciences Institute, University of Southern California, USA
deelman@isi.edu

Science workflows help define the processes needed to understand our past, explain our
world today, and predict how our planet will evolve tomorrow. They help to logically
move from a hypothesis to its testing via appropriate methods, to the generation of
findings and their publication. As in other areas of our lives, automation is increasing
scientific productivity and is enabling researchers to analyze vast amounts of data (from
remote sensors, instruments, etc.) and to conduct large-scale simulations of underlying
physical phenomena. These applications comprise thousands of computational tasks
and process large, heterogeneous datasets, which are often distributed across the globe.
Computational workflows have emerged as a flexible representation to declaratively
express the complexity of such applications with data and control dependencies.
Automation technologies have enabled the execution of these workflows in an efficient
and robust fashion. Up to now automation was based on a variety of algorithms and
heuristics that transformed the workflows to optimize their performance and improve
their fault tolerance. However, with the recent increased use of AI for automation, new
solutions for workflow management systems can be explored. This talk describes some
of the unsolved problems in workflow management and considers potential application
of AI to address these challenges.



Advancing Science with Deep Learning, HPC,
Data Benchmarks and Data Engineering

Geoffrey Fox

Indiana University, USA
gcf@indiana.edu

– We describe how High-Performance Computing (HPC) can be used to enhance Big
Data and Machine Learning (ML) systems (HPC for ML) but also how machine
learning can be used to enhance system execution (ML for HPC) with promising
deep learning surrogates.

– We review the different aspects of data engineering needed to process large scale
data and how it is implemented in the Cylon and Twister2 systems to support deep
learning and Python notebooks. https://cylondata.github.io/cylon/ and https://
twister2.org/.

– We give application examples from COVID-19 daily data, solutions of ordinary
differential equations, and earthquakes.

– We show how by working with the industry consortium MLPerf, we may be able to
establish a collection of science data benchmarks demonstrating best practices and
motivating the next generation cyberinfrastructure.

https://cylondata.github.io/cylon/
https://twister2.org/
https://twister2.org/


Breaking the PRAM O log nð Þ Complexity
Bounds on MPC

Piotr Sankowski

Institute of Informatics, University of Warsaw, Poland
P.Sankowski@mimuw.edu.pl

For over a decade now we have been witnessing the success of massive parallel
computation (MPC) frameworks, such as MapReduce, Hadoop, Dryad, or Spark. One
of the reasons for their success is the fact that these frameworks are able to accurately
capture the nature of large-scale computation. In particular, compared to the classic
distributed algorithms or PRAM models, these frameworks allow for much more local
computation. The fundamental question that arises in this context though is: can we
leverage this additional power to obtain even faster parallel algorithms? In particular,
graph connectivity seems to require O(logn) rounds under the 2 Cycle Conjecture. It is
thus entirely possible that in this regime, which captures, in particular, the case of
sparse graph computations, the best MPC round complexity matches what one can
already get in the PRAM model, without the need to take advantage of the extra local
computation power.

In this talk, I will summarize our work on refuting that perplexing possibility. In
particular, I will introduce the following MPC results that improve upon O log nð Þ time
algorithms implied by PRAM results:

– an 2þ eð Þ – approximation to maximum matching, for any fixed constant e[ 0, in
O log2 log n
� �

rounds in the case of slightly sublinear memory per machine regime
[1],

– an 1þ eð Þ – approximation to PageRank in O log2 log nþ log21=e
� �

rounds [2].

Based on joint work with Artur Czumaj, Jakub Lacki, Aleksander Madry, Slobodan
Mitrovic, and Krzysztof Onak.

References

1. Czumaj, A., Łącki, J., Madry, A., Mitrović, S., Onak, K., Sankowski, P.: Round compression
for parallel matching algorithms. In: Proceedings of the 50th Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2018, pp. 471–484. Association for Computing
Machinery, New York (2018). https://doi.org/10.1145/3188745.3188764

2. Łącki, J., Mitrović, S., Onak, K., Sankowski, P.: Walking randomly, massively, and effi-
ciently. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, pp. 364–377. Association for Computing Machinery, New York
(2020). https://doi.org/10.1145/3357713.3384303

https://doi.org/10.1145/3188745.3188764
https://doi.org/10.1145/3357713.3384303
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Topic 1: Support Tools and Environments

Michael Gerndt and Mariusz Sterzel

Despite an impressive body of research, parallel and distributed programming remains
a complex task prone to subtle software issues that can affect both the correctness and
the performance of the application. This topic focused on tools and techniques to help
tackle that complexity. The topic attracted contributions on tools and environments that
address any of the many challenges of parallel and distributed programming related to
programmability, portability, correctness, reliability, scalability, efficiency, perfor-
mance, and energy consumption.

The papers submitted for this track represent the community of tool designers,
developers, and users to share their concerns, ideas, solutions, and products for a wide
range of parallel platforms. Of particular value were contributions with solid theoretical
foundations and with strong experimental validations on production-level parallel and
distributed systems that address the expected complexity of exascale.

The track received eight submissions, which were thoroughly reviewed by the
members of the track Program Committee. Out of all the submissions and after a
careful and detailed discussion among committee members, we finally decided to
accept two papers, resulting in a per-topic acceptance ratio of 25%. The paper of
Nicolas Morew et al. on “Skipping Non-essential Instructions Makes Data-dependence
Profiling Faster” proposes an optimization of dynamic data dependence analysis based
on a previous static analysis. Memory references that can be statically evaluated need
not be analyzed at runtime thus reducing the analysis overhead. The second paper by
Simone Economo et al. on “A toolchain to verify the parallelization of OmpSs-2
applications” discusses a toolchain to detect potential correctness and performance
issues in OmpSs applications. This tool chain also combines static and dynamic
information to improve the precision and reduce the runtime overhead.

We would like to thank all the authors who submitted papers for their contribution
to the success of this track, as well as all the external reviewers for their high-quality
reviews and their valuable feedback.



Topic 2: Performance and Power Modeling,
Prediction and Evaluation

Arnaud Legrand and Ariel Oleksiak

In recent years, a range of novel methods and tools have been developed for the
evaluation, design, and modeling of parallel and distributed systems and applications.
At the same time, the term ‘performance’ has broadened to also include scalability and
energy efficiency, and touching reliability and robustness in addition to the classic
resource-oriented notions.

The papers submitted to this track represent researchers working on different
aspects of performance modeling, evaluation, and prediction, be it for systems or for
applications running on the whole range of parallel and distributed systems (multicore
and heterogeneous architectures, HPC systems, grid and cloud contexts, etc.). The
accepted papers present novel research in all areas of performance modeling, predic-
tion, and evaluation, and to help bring together current theory and practice.

The topic received 17 submissions, which were thoroughly reviewed by the
7 members of the track Program Committee and external reviewers. Out of all the
submissions and after a careful and detailed discussion among committee members, we
finally decided to accept 5 papers, resulting in a per-topic acceptance ratio of 29%.

We would like to thank the authors for their submissions, the Euro-Par 2020
Organizing Committee for their help throughout all the process, and the Program
Committee members and the reviewers for providing timely and detailed reviews as
well as for participating in the discussion we carried on after the reviews were received.



Topic 3: Scheduling and Load Balancing

Sascha Hunold and Joanna Berlińska

New computing systems offer the opportunity to reduce the response times and the
energy consumption of the applications by exploiting the levels of parallelism. Modern
computer architectures are often composed of heterogeneous compute resources and
exploiting them efficiently is a complex and challenging task. Scheduling and load
balancing techniques are key instruments to achieve higher performance, lower energy
consumption, reduced resource usage, and real-time properties of applications.

This topic attracts papers on all aspects related to scheduling and load balancing on
parallel and distributed machines, from theoretical foundations for modeling and
designing efficient and robust scheduling policies to experimental studies, applications,
and practical tools and solutions. It applies to multi-/many-core processors, embedded
systems, servers, heterogeneous and accelerated systems, HPC clusters, as well as
distributed systems such as clouds and global computing platforms.

A total of 17 submissions were received in this track, each of which received at
least 4 reviews. Following a thorough discussion of the reviews among the Seven
Program Committee members, four submissions were accepted, giving an acceptance
rate of 24%.

The chairs would like to sincerely thank all the authors for their submissions, the
Euro-Par 2020 Organizing Committee for all their valuable help, and the reviewers for
their excellent work. They all have contributed to making this topic and Euro-Par an
excellent forum to discuss scheduling and load balancing challenges.



Topic 4: High Performance Architectures
and Compilers

Leonel Sousa and Paweł Czarnul

This topic deals with architecture design, languages, and compilation for parallel high
performance systems. The areas of interest range from microprocessors to large-scale
parallel machines (including multi/manycore, possibly heterogeneous, architectures);
from general-purpose to specialized hardware platforms (e.g., graphic coprocessors,
low-power embedded systems); and from architecture to compiler and programming
language design.

On the compilation side, topics of interest include programmer productivity issues,
concurrent and/or sequential language aspects, vectorization, program analysis, pro-
gram transformation, automatic discovery and/or management of parallelism at all
levels, auto tuning and feedback directed compilation, and the interaction between the
compiler and the system at large. On the architecture side, the scope spans system
architectures, processor micro-architecture, memory hierarchy, and multi-threading,
architectural support for parallelism, and the impact of emerging hardware
technologies.

The topic received five submissions, which were thoroughly reviewed by the six
members of the track Program Committee and external reviewers. Out of all the
submissions and after a careful and detailed discussion among committee members, we
finally decided to accept two papers, resulting in a per-topic acceptance ratio of 40%.
One of the papers is focused on modeling efficient interconnection networks (consid-
ering numbers of servers, routers, and links) applicable to high-end supercomputers and
datacenters, while the other optimizes memory movements for heterogeneous com-
puting systems demonstrating benefits for benchmarks implemented with OpenMP
offloading constructs.

The chairs express their gratitude to all the authors for their submissions, the
Euro-Par 2020 Organizing Committee for all their valuable help, and the reviewers for
their excellent work.



Topic 5: Data Management, Analytics
and Machine Learning

Morris Riedel and Jacek Sroka

Many areas of science, industry, and commerce are producing extreme-scale data that
must be processed – stored, managed, analyzed – in order to extract useful knowledge.
This topic seeks papers in all aspects of distributed and parallel data management and
data analysis. For example, cloud and grid data-intensive processing, parallel and
distributed machine learning, HPC in situ data analytics, parallel storage systems,
scalable data processing workflows, and distributed stream processing were all in the
scope of this topic.

This year, the topic received 11 submissions, which were thoroughly reviewed by
the 10 members of the track Program Committee and external reviewers. Out of all the
submissions, and after a careful and detailed discussion among committee members,
we finally decided to accept four papers, resulting in a per-topic acceptance ratio of
36%. One paper was nominated for distinction and received the Best Paper Award.

We would like to express our thanks to the authors for their submissions, the
Euro-Par 2020 Organizing Committee for their help throughout the process, and the
Program Committee members and the reviewers for providing timely and detailed
reviews as well as for participating in the discussion we carried on after the reviews
were received.



Topic 6: Cluster, Cloud and Edge Computing

María S. Pérez and Lukasz Dutka

While the term Cluster Computing is hardware oriented and determines the organi-
zation of large computer systems at one location, the term Cloud Computing usually
focuses on the use of these large computer systems. Cluster and Cloud Computing
compliment each other; there exist many interdependencies between both fields. In this
topic of EuroPar, we particularly address these interdependencies, although also cov-
ering issues belonging to only one of these areas.

In both Cluster and Cloud Computing, many relevant research works focus on
performance, reliability, and energy efficiency as well as the impact of novel processor
architectures. Since Cloud Computing tries to hide hardware and system software
details from the users, research issues include various forms of virtualization and their
impact on performance, resource management, and business models that address sys-
tem owner and user interests.

In the last years, and specially due to the increasing number of IoT applications, the
combination of local resources together with Cloud Computing, also referred to as
“Fog/Edge” Computing, has received growing interest. This concept has led to many
research questions, like an appropriate distribution of subtasks to the available systems
under the consideration of various constraints.

This year, a total of 22 submissions were submitted to this track, each of which
received at least 4 reviews, from the 14 Program Committee members. Following the
thorough discussion of the reviews, three submissions were accepted, giving the
acceptance rate of 14%. Two of them are related to Edge Computing and the third one
is related to virtualization.

The chairs would like to thank the authors for their submissions, the Euro-Par 2020
Organizing Committee for their help throughout all the process, and the Program
Committee members and the reviewers for providing timely and detailed reviews as
well as and for participating in the discussions.



Topic 7: Theory and Algorithms for Parallel
and Distributed Processing

Benjamin Moseley and Marek Klonowski

Distributed and parallel data processing is ubiquitous. Parallel cores are available on
smartphones, laptops, servers, and supercomputing nodes. Many devices cooperate in
fully distributed and heterogeneous systems to provide even basic services. Despite
astonishing progress in recent years, many challenges remain. We urgently need better
specific solutions for scalability, load balancing, or efficient communication in
increasingly complex systems. Additionally, robust algorithms need to be developed to
cope with failures, malicious, or selfish behavior. Such algorithms are needed now in
practice, and a theoretical foundation is required to guide the development of improved
methods.

This year, a total of 21 submissions were received in this track, each of which
received at least four reviews, from the nine Program Committee members. Following
the thorough discussion of the reviews, five high-quality, original papers were accepted
to this general topic of the theory of parallel and distributed algorithms, with an
acceptance rate of 24%.

We would like to thank the authors for their excellent submissions, the Euro-Par
2020 Organizing Committee for their help throughout all the process, and the Program
Committee members and the reviewers for providing timely and detailed reviews as
well as for participating in the discussions that helped reach the final decision.



Topic 8: Parallel and Distributed
Programming, Interfaces, and Languages

Phil Trinder and Wojciech Turek

Parallel and distributed applications require appropriate programming abstractions and
models, efficient design tools, and parallelization techniques and practices. This topic
attracted papers presenting new results and practical experience in this domain: Effi-
cient and effective parallel languages, interfaces, libraries, and frameworks, as well as
solid practical and experimental validation.

The accepted papers emphasize research on high-performance, correct, portable,
and scalable parallel programs via appropriate parallel and distributed programming
models, interfaces, and language support. Contributions that assess programming
abstractions for usability, performance prediction, scalability, self-adaptation, rapid
prototypings, or fault-tolerancewere valued. As were abstractions for dynamic or
heterogeneous parallel or distributed infrastructures.

This year, the topic received 15 submissions, which were thoroughly reviewed by
the 9 members of the track Program Committee and external reviewers. After careful
and detailed discussion among committee members, we decided to accept four of the
submissions, giving a per-topic acceptance ratio of 27%.

The topic chairs would like to thank all the authors who submitted papers for their
contribution to the success of this track, the Euro-Par 2020 Committee for their support,
and the external reviewers for their high-quality reviews and valuable feedback.



Topic 9: Multicore and Manycore Parallelism

Arturo Gonzalez-Escribano and Witold Rudnicki

Modern homogeneous and heterogeneous multicore and manycore architectures are
now part of the high-end, embedded, and mainstream computing scene and can offer
impressive performance for many applications. This architecture trend has been driven
by the need to reduce power consumption, increase processor utilization, and deal with
the memory-processor speed gap. However, the complexity of these new architectures
has created several programming challenges, and achieving performance on these
systems is often a difficult task. This topic seeks to explore productive programming of
multi- and manycore systems, as well as stand-alone systems with large numbers of
cores and various types of accelerators; this can also include hybrid and heterogeneous
systems with different types of multicore processors. It focuses on novel research and
solutions in the form of programming models, frameworks, and languages; compiler
optimizations and techniques; lock-free algorithms and data structures; transactional
memory advances; performance and power trade-offs and scalability; libraries and
runtime systems; innovative applications and case studies; techniques and tools for
discovering, analyzing, understanding, and managing multicore parallelism; and in
general, tools and techniques to increase the programmability of multicore, manycore,
and heterogeneous systems, in the context of general-purpose, high-performance, and
embedded parallel computing.

This year 15 papers covering some of these issues were submitted. Each of them
was reviewed by four reviewers. Finally, three regular papers were selected. They
discuss topics related to the use of prediction-based policies to optimize resource
management in the context of a task-based programming models; the application of
parallelism techniques to optimize and improve a graph clustering algorithm with
applications in machine learning; and how to combine non-volatile memory with
transactional memory when both hardware and software approaches can be chosen.

We would like to express our gratitude to all the authors for submitting their work.
We want also thank the all the reviewers for their great job and useful comments.
Finally, we would like to thank the Euro-Par Organization and Steering Committees for
their continuous help, and for producing a nice working environment to smooth the
process.



Topic 10: Parallel Numerical Methods
and Applications

Hatem Ltaief and Erin Carson

The need for high-performance computing is driven by the need for large-scale sim-
ulation and data analysis in science and engineering, finance, life sciences, etc. This
requires the design of highly scalable numerical methods and algorithms that are able to
efficiently exploit modern computer architectures. The scalability of these algorithms
and methods and their ability to effectively utilize high-performance heterogeneous
resources is critical to improving the performance of computational and data science
applications.

This conference topic provides a forum for presenting and discussing recent
developments in parallel numerical algorithms and their implementation on current
parallel architectures, including manycore and hybrid architectures. The submitted
papers address algorithmic design, implementation details, performance analysis, as
well as integration of parallel numerical methods in large-scale applications.

This year, the topic received 18 submissions, which were thoroughly reviewed by
the 13 members of the track Program Committee and external reviewers. Each sub-
mission received four reviews. After careful and constructive discussions among
committee members, we decided to accept four papers, resulting in a per-topic
acceptance ratio of 22%.

We would like to sincerely thank all the authors for their submissions, the Euro-Par
2020 Organizing Committee for all their valuable help, and the reviewers for their
excellent work. They all have contributed to making this topic and Euro-Par an
excellent forum to discuss parallel numerical methods and applications.



Topic 11: Accelerator Computing

Alba Cristina Melo and Łukasz Szustak

Hardware accelerators of various kinds offer a potential for achieving massive per-
formance in applications that can leverage their high degree of parallelism and cus-
tomization. Examples include graphics processors (GPUs), manycore co-processors, as
well as more customizable devices, such as FPGA-based systems and streaming
data-flow architectures.

The research challenge for this topic was to explore new directions for actually
realizing this potential. The submitted papers cover the areas related to accelerators:
architectures, algorithms, languages, compilers, libraries, runtime systems, coordina-
tion of accelerators and CPU, and debugging and profiling tools. We also accepted
application-related submissions that contribute new insights into fundamental problems
or solution approaches in this domain, including big data, data analytics, machine
learning, and computational science/engineering.

The topic received nine submissions, which were thoroughly reviewed by the six
members of the track Program Committee and external reviewers. Out of all the
submissions and after a careful and detailed discussion among committee members, we
finally decided to accept three papers, resulting in a per-topic acceptance ratio of 33%.

The topic chairs would like to thank all the authors who submitted papers for their
contribution to the success of this track, the Euro-Par 2020 Committee for their support,
as well as all the external reviewers for their high-quality reviews and their valuable
feedback.
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Skipping Non-essential Instructions
Makes Data-Dependence Profiling Faster

Nicolas Morew1, Mohammad Norouzi1(B), Ali Jannesari2, and Felix Wolf1
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Abstract. Data-dependence profiling is a dynamic program-analysis
technique to discover potential parallelism in sequential programs. Unlike
purely static analysis, which may overestimate the number of depen-
dences because it does not know many pointers values and array indices
at compile time, profiling has the advantage of recording data depen-
dences that actually occur at runtime. But it has the disadvantage of
significantly slowing down program execution, often by a factor of 100.
In our earlier work, we lowered the overhead of data-dependence profil-
ing by excluding polyhedral loops, which can be handled statically using
certain compilers. However, neither does every program contain polyhe-
dral loops, nor are statically identifiable dependences restricted to such
loops. In this paper, we introduce an orthogonal approach, focusing on
data dependences between accesses to scalar variables - across the entire
program, inside and outside loops. We first analyze the program stat-
ically and identify memory-access instructions that create data depen-
dences that would appear in any execution of these instructions. Then,
we exclude these instructions from instrumentation, allowing the profiler
to skip them at runtime and avoid the associated overhead. We eval-
uate our approach with 49 benchmarks from three benchmark suites.
We improved the profiling time of all programs by at least 38%, with
a median reduction of 61% across all the benchmarks.

Keywords: Data dependences · Parallelism discovery · Profiling
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Data-dependence analysis is an essential step in the parallelization of sequen-
tial programs. Auto-parallelizing compilers [3,10,16] perform the analysis purely
statically. They may overestimate the amount of data dependences because crit-
ical information such as the value of pointers and array indices are unknown at
compile time. This is why auto-parallelization based on purely static analysis has
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not gained much success beyond the parallelization of loops that satisfy certain
constraints.

Another group of tools [5–7,14,18] avoid the limitations of purely static anal-
ysis using a dynamic method. They detect parallelization opportunities based
on data dependences captured at runtime. Running the program with several
representative inputs, they counter the inherent input sensitivity of dynamic
data-dependence analysis, also exploiting that data dependences in frequently
executed code regions that are subject to parallelization do not change signif-
icantly with respect to different inputs [5,6,14]. These tools provide weaker
correctness guarantees, although their suggestions more than often reproduce
manual parallelization strategies.

Nonetheless, the tools have a high runtime overhead which is caused by pro-
filing every memory access in the program. Many optimizations such as paral-
lelizing the data-dependence profiler itself [6,9] and skipping repeatedly executed
memory operations [8] have been proposed to lower the overhead. In addition,
taking a fundamentally different route, we recently introduced a hybrid app-
roach [13] to data-dependence analysis. The approach exploited static analysis
tools to extract data dependences in loops that follow the constraints of the
polyhedral model [2] and profiled only memory accesses outside those loops.
This reduced the profiling overhead significantly, but only for programs contain-
ing such loops.

However, only few loops are polyhedral. The strict conditions they have to
satisfy make it hard for programmers to write a loop in the polyhedral form.
More importantly, many data dependences that can be identified statically do
not belong to such loops. In this paper, we introduce a method that is orthogonal
to our earlier work. Now, we concentrate on static data dependences between
accesses to scalar variables—across the entire source code, inside and outside
loops. We first identify the memory instructions that belong to these depen-
dences. Then, we run our dependence profiler, but without instrumenting these
instructions, allowing the profiler to skip them at runtime and avoid their asso-
ciated overhead. Eliminating instructions that can belong to all types of loops
(e.g., polyhedral, canonical, or non-canonical) or functions (e.g., recursive or
non-recursive), our approach is able to reduce the profiling overhead for a wide
range of programs. Finally, we merge data dependences extracted statically or
dynamically into one output. Here, our goal is to decrease the profiling overhead.
Finding parallelization opportunities based on the identified data dependences
is described in related work [5–7,14] and outside the scope of this paper. In
summary, we make the following specific contributions:

– A hybrid technique to data-dependence analysis that combines the advan-
tages of static and dynamic techniques. Contrary to our earlier work that
excluded polyhedral loops from profiling, we now skip instructions that cre-
ate statically-identifiable data dependences for scalar variables in all types
of loops and functions, reducing the profiling overhead for a wider range of
programs.
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– An implementation as an extension of the data-dependence profiler of Dis-
coPoP [7], although our approach is generic enough to be implemented in any
data-dependence profiler.

– An evaluation with 49 programs from three benchmark suites, reducing the
profiling time by at least 38%, with a median improvement of 61%.

The remainder of the paper is organized as follows. We discuss related work
in Sect. 2. Section 3 presents our approach, followed by an evaluation in Sect. 4.
Finally, we review our achievements in Sect. 5.

2 Related Work

A great deal of research has been made in the field of data-dependence analysis [3,
5–7,10,14,16,18]. Most approaches focus on either static or dynamic analysis
techniques, with only a few attempting to combine them.

autoPar [10] is a static analysis tool which can parallelize array-based
loops [11]. Applying a set of loop transformations such as fusion, fission, inter-
change, unrolling, and blocking, autoPar checks whether or not a data depen-
dence in a loop can be eliminated. If all dependences in the loop are elimi-
nated, it suggests parallelizing the loop. Contrary to autoPar, which finds data
dependences only in specific loops, our method identifies data dependences in
all types of loops and functions. PLUTO [3], is another auto-parallelizing com-
piler which detects data dependences in polyhedral loops [2]. TaskMiner [16] is
a static analysis tool which translates programs containing recursive functions
into their parallel versions. It exploits LLVM data-dependence analysis to iden-
tify dependences. Like TaskMiner, our approach uses LLVM and its features
to identify data dependences involving scalar variables. Contrary to TaskMiner,
which extracts data dependences only in recursive functions, we identify data
dependences in any functions and in loops. In general, static analysis techniques
may overestimate the number of dependences because they lack critical runtime
information at compile time such as the values of pointers and array indices.

Avoiding the limitations of purely static analysis, many tools [5–7,14] cap-
ture data dependences during program execution. They profile memory accesses,
which imposes huge runtime overhead. SD3 [6] is a data-dependence profiler
which decreases the overhead by parallelizing the profiler itself. DiscoPoP [7] is
a parallelism discovery tool that contains a data-dependence profiler [9]. The
profiler is based on LLVM and transforms the program into its LLVM-IR rep-
resentation. It instruments all memory-access instructions with runtime library
calls that track memory accesses at runtime. It skips repeatedly executed mem-
ory operations and, like SD3, runs multiple threads to reduce the overhead.
Nonetheless, dependence profiling significantly slows down program execution,
sometimes by more than a factor of 100.

Recently, we introduced a hybrid technique [13] for data-dependence analy-
sis. The technique is called DiscoPoP+ and uses the profiler of DiscoPoP as the
basis of its implementation. It first runs PLUTO to statically identify data depen-
dences in polyhedral loops. Then, it excludes the loops from instrumentation,
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profiling only data dependences outside the loops. At the end, it merges static
and dynamic dependences. It reduces the profiling overhead significantly, but
only for programs containing polyhedral loops. Our approach, however, accel-
erates the profiling of all types of loops and functions. Based on the control
flow graph of the program, it statically identifies data dependences of scalar
variables, not including passed-by-reference parameters and pointers. It then
identifies memory instructions that create the dependences and excludes them
from instrumentation. Skipping such instructions, which may appear inside and
outside loops, our method allows the reduction of the profiling overhead for a
wide range of programs.

Another hybrid-analysis framework was proposed by Sampaio et al. [17].
Their goal is providing theoretical and practical foundations to apply aggressive
loop transformations. They apply static alias and dependence analysis and pro-
vide their results to an optimizer. The optimizer, instead of filtering out invalid
transformations, performs transformations believed to reduce the execution time.
It then generates fast and precise tests to validate at runtime whether the trans-
formations can be taken. In contrast to their work, our contribution happens
at a lower level, where we obtain dependences with the aim to accelerate data-
dependence profiling.

3 Approach

Below, we explain our hybrid method to the identification of data dependences.
Figure 1 shows the basic workflow. Dark boxes highlight our contribution in

Fig. 1. The workflow of our hybrid data-dependence analysis. Dark boxes show our
contributions.
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relation to DiscoPoP+, our earlier hybrid approach, PLUTO, a static analyzer,
and DiscoPoP, a dynamic data-dependence profiler.

DiscoPoP+ relies on PLUTO to extract data dependences statically. Unlike
DiscoPoP+, which statically identifies data dependences only in polyhedral
loops, we detect the dependences for scalar variables, excluding aliases, in the
entire source code. In addition, we find memory-access instructions that create
the dependences and exclude them from instrumentation. Below, in Sect. 3.1, we
present the details of our method. The dynamic data-dependence analysis will
then skip these instructions during the profiling process. Finally, we merge all
dependences we have found—whether of static or dynamic origin—into a sin-
gle output file. Before we proceed to the evaluation in Sect. 4, we also discuss
the relation between the set of dependences extracted by our approach and the
purely dynamic technique in Sect. 3.2.

3.1 Data-Dependence Detection and Instruction Identification

We eliminate a memory-access instruction from profiling under certain condi-
tions. They guarantee that the instruction creates only statically-identifiable
data dependences and thus, we can safely omit it, without missing any data
dependences that a purely dynamic analysis may capture at runtime.

The first condition is that the target address of a memory instruction must
be predictable statically. We use Algorithm 1 to detect memory addresses that
comply with the condition. Figure 2 serves as an illustrating example.

Fig. 2. A program containing only aliased variables.

The static analysis we conduct in this paper does not cross function bound-
aries. This is why we continue profiling memory instructions of variables that
create data dependences whose sink and source appear in different functions.
Nevertheless, we will investigate the analysis of dependences between functions
in the future. According to our algorithm, we first look for memory allocation
instructions in a function. We retrieve the symbolic address from an allocation
instruction and add it to the set of statically-predictable addresses. In Fig. 2, the
set includes initially the address of variables x, y, and p. Then, we look for call
and store instructions. We exclude the addresses that are passed by reference
to functions; they may create data dependences that cannot be identified stati-
cally. In the figure, a reference to variable x is passed to function bar at line 5.
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Algorithm 1. Finding memory addresses that are statically predictable.
staticAddrs = {}
for each instruction I ∈ function F do

if I.isAlloca() then
addr = I.getMemAddr()
staticAddrs.insert(addr)

for each instruction I ∈ function F do
if I.isCall() then

params = I.getParams()
for each param p ∈ params do

if p.isPassedByReference() then
addr = p.getMemAddr()
staticAddrs.remove(addr)

else if I.isStore() then
var = I.storedV ar()
if var.isMemAddr() then

pointeeV ar = I.getPointee()
staticAddrs.remove(var)
staticAddrs.remove(pointeeV ar)

It means that we cannot exclude memory-access instructions of variable x from
profiling and, thus, we remove the symbolic address of x from the set of static
addresses. In addition, pointer variables create data dependences which may not
be identified statically. According to Algorithm1, we detect a pointer variable
if a store instruction assigns the address of a variable to another variable. We
remove the symbolic address of a pointee from the set of static addresses. In the
figure, the address of variable y is assigned to variable p by the implicit store
instruction at line 3. All memory instructions of variable y should be profiled
and, therefore, we discard them from further analysis.

In Fig. 2, most variables are aliased via pointers or references. In practice,
we rarely find programs that contain only aliased variables. Figure 3a shows
function fib from BOTS [4]. There, we can skip profiling memory instructions
of all variables, namely, i, j, n, and an implicit variable retval, which saves the
return value because we can identify data dependences between their accesses
statically. Figures 3b to 3d demonstrate the analyses that we perform to extract
data dependences statically, using function fib as an example.

First, we convert the program into its LLVM-IR representation and generate
the control flow graph (CFG) of the program. The CFG of function fib is shown
in Fig. 3b. The CFG contains many instructions that are irrelevant to the data-
dependence analysis. We generate a memory-access CFG (MCFG) which has
the same structure as the CFG but contains only memory-access instructions.
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Fig. 3. How we obtain data dependences statically.
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Algorithm 2. Traversing the graph of a function to extract data depen-
dences.
Input: I: Return node in the memory-access graph of a function
Function findDepsFor(node I):

if I.isEntry()||I.isV isited() then
return;

for each node J directly preceding I do
checkDepsBetween(I,J);
findDepsFor(J);

Function checkDepsBetween(node I, node J):
if J.isEntry() then

return;

if J.getMemAddr() == I.getMemAddr() then
if J.isStore()||I.isStore() then

addDataDeps(I, J);
return;

else
checkForRARDep();

for each node K directly preceding J do
if !K.isV isited() then

K.isV isited = true
checkDepsBetween(I,K);

Henceforth, we briefly refer to MCFG as memory-access graph or simply as graph
if the context allows it. Figure 3c shows the memory-access graph of function fib.

We traverse the graph to extract data dependences statically. Algorithm2
shows how. Figure 3d illustrates the dependences that we extract from the
memory-access graph of fib. According to the algorithm, we use two recursive
functions to traverse the graph of each function in the source code. First, we pass
the return node in the graph to function findDepsFor. The function recursively
iterates over all nodes preceding the return node and calls function checkDepsBe-
tween to look for dependences between the return node and its preceding nodes.
It performs the same process for all other nodes until it has found dependences
for all nodes. Function checkDepsBetween checks the memory addresses of the
two nodes that it receives and, if they are equal and one of them is a store opera-
tion, creates a data dependence edge between the nodes. Considering the control
flow, we determine the type of an identified data dependence, that is, whether
it must be classified as read-after-write (RAW), write-after-read (WAR), and
write-after-write (WAW). In Fig. 3c, the value of variable i is read in node 8.
The value was previously stored in node 5. Figure 3d shows the data dependence
that our approach adds between the nodes. The type of the dependence is RAW
because the value of i is read after it is written.
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We do not report read-after-read (RAR) dependences, although we iden-
tify them. This dependence type is irrelevant to the parallelization and, strictly
speaking, does not even constitute a dependence. Most data-dependence profilers
do not report them either. However, instrumenting memory-access instructions
relevant to RAR dependences adds to the profiling overhead. If we prove during
the static analysis that an instruction is only involved in RAR dependences, we
can safely omit the instruction from profiling, without violating the complete-
ness of data dependences captured by purely dynamic analysis. In Algorithm2,
function checkForRARDep determines whether a memory address is only read
in a function. In function fib in Fig. 3a, variable n creates only RAR depen-
dences after its memory initialization. We skip profiling all of its memory-access
instructions and do not report its RAR data dependences.

We check the dependences between a node and all other nodes preceding it
in the memory-access graph of a function. We repeat the process for all func-
tions in a program. The worst-case complexity of our analysis O(f · n2), where
f is the number of functions and n is the maximum number of memory instruc-
tions in a function. However, given that during execution many instructions
are executed many times, the overhead of the static pre-analysis, which usually
takes in the order of minutes, is small in comparison to the profiling overhead
the affected instructions would cause. Moreover, our analysis excludes memory-
access instructions that can be safely removed during the static analysis. In the
worst case, if there are no such instructions in a program, all instructions are
instrumented and our approach falls back to the purely dynamic technique. In
this case, we cannot reduce the profiling overhead.

In the end, we merge all the data dependences that we have identified using
our portfolio of static and dynamic methods into a joint ASCII file. Furthermore,
we compact the dependence data, combining all dependences with the same sink
into a single line. The result can be used by parallelism discovery tools to find
parallelization opportunities.

3.2 Transitive Data Dependences

Transitive data dependences are the only difference that we came across while
comparing the sets of dependences extracted by a purely dynamic profiler and
our approach. Consider two memory-access instructions S1 and S2 in a program.
If S1 precedes S2 in execution and both either read from or write to the same
memory location M, we say that S2 is data dependent on S1. Now consider an
additional statement S3 that accesses M, too. We say that there is a transitive
data dependence between S1 and S3 if S1 depends on S2 and S2 depends on S3.
Transitive data dependences can be derived based on other data dependences
that we identify. In Fig. 4, the value of variable x is read in node 2. Nodes 1
and 3 store values in variable x. Our approach identifies a RAW dependence
between nodes 1 and 2, and a WAR dependence between nodes 3 and 2. There
is a transitive data dependence between nodes 3 and 1. The type of the depen-
dence is WAW. We can identify the transitive data dependence and its type by
following the chain of the identified dependences, starting from node 3 to node 2
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and further to node 1. Note that transitive data dependences only provide addi-
tional information and are not important for parallelization, as long as the chain
of dependences that create a transitive data dependence are extracted. Since
our method identifies the dependences that constitute transitive dependences,
we do not generate and report transitive dependences to keep the set of data
dependences concise.

Fig. 4. A transitive data dependence.

4 Evaluation

We performed a range of experiments to evaluate the effectiveness of our app-
roach. We used the following benchmarks: NAS Parallel Benchmarks 3.3.1 [1]
(NPB), a collection of programs derived from real-world computational fluid-
dynamics applications, Polybench 3.2 [15], a set of benchmarks including poly-
hedral loops mainly, and the Barcelona OpenMP Task Suite (BOTS) 1.1.2 [4],
a suite that all the benchmarks contain recursive functions. Since Polybench has
been designed as a test suite for polyhedral compilers, it is well suited for compar-
ison with DiscoPoP+ [13]. Also, the NBP benchmarks contain many polyhedral
loops. In addition, we used BOTS to measure the usefulness of our method for
recursive functions.

We compiled the benchmarks using clang 8.0.1, which is also used by the data-
dependence profiler of DiscoPoP. We ran the benchmarks on an Intel(R) Xeon(R)
Gold 6126 CPU @ 2.60 GHz with 64 Gb of main memory, running Ubuntu 14.04
(64-bit edition). We profiled the benchmarks using the inputs packaged with the
programs. Our evaluation criteria are the completeness of the data dependences
in relation to purely dynamic profiling and the profiling time. We compared the
sets of data dependences extracted by the DiscoPoP profiler with and without
our technique. Transitive data dependences were the only difference between
the two sets. We identified all the dependences that created the transitive data
dependences and thus, the set of dependences detected by our method can be
used further to parallelize the programs.

To measure the improvements in the profiling time, we executed the bench-
marks with the vanilla version of the DiscoPoP profiler. We executed each bench-
mark five times in isolation, calculated the median of the execution times, and
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used it as our baseline. Then, we profiled the benchmarks using our method.
Again, we ran each benchmark fives times in isolation and recorded its median
execution time, which we then compared with the baseline. We repeated the
process to obtain the median execution times for DiscoPoP+. We used the same
input to execute the benchmarks with each approach. Table 1 shows the relative
slowdown of each approach for the three benchmark suites. Figure 5 presents the
relative reduction of the profiling overhead for each benchmark.

Whether we can reduce the profiling time of a benchmark depends on its
memory access pattern. In theory, the more memory accesses that occur without
using pointers and aliases, the more effective our method will be. If the variables
in a program are mostly pointers or passed by reference to functions, we fail
to reduce the profiling overhead significantly. Notably, our method lowered the
profiling time in all test cases.

Fig. 5. Profiling-time reduction relative to the standard DiscoPoP profiler.

For Polybench, our hybrid technique reduced the profiling overhead to a lesser
degree than DiscoPoP+ because these benchmarks contain polyhedral loops.
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Table 1. Relative slowdown caused by standard DiscoPoP vs. DiscoPoP+ vs. our
hybrid approach.

Benchmark suites Standard DiscoPoP DiscoPoP+ Hybrid approach

Min Max Median Min Max Median Min Max Median

BOTS 29 124 80 29 124 80 6 55 28

Polybench 70 200 121 17 70 37 24 85 43

NPB 25 116 88 22 113 53 7 71 36

DiscoPoP+ eliminates these loops from profiling, whereas our approach skips
only a subset of the memory instructions within those loops. This is why the
median improvement of the profiling time is 70% with DiscoPoP+, but only 61%
with our hybrid method.

BOTS does not contain any polyhedral loops, which is why DiscoPoP+ did
not improve the profiling time at all. In contrast, the median improvement of
the profiling time by our method across all BOTS benchmarks was 64%. In Fib,
we reduced the profiling time even by 84%.

In NPB, we found polyhedral loops in all benchmarks. Nevertheless, because
these loops did not consume a major fraction of the execution time, excluding
them did not make the profiling significantly better. DiscoPoP+ obtained only
a median reduction of 35% for these benchmarks. Our approach, on the other
hand, identified many variables in time-consuming loops. It skipped profiling the
memory-access instructions related to those variables and improved the profiling
time by a median percentage of 57% across all benchmarks in the suite.

Fig. 6. The workflow of our future hybrid data-dependence analysis. Dark boxes show
the contributions of our future work.
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Overall, compared to the vanilla version of DiscoPoP, we reduced the profiling
time of all programs by at least 38%, with a median reduction of 61% across all
the three benchmark suites.

5 Conclusion

Our hybrid approach to data-dependence analysis allows the profiler to skip the
memory instructions of scalar variables whose dependences can be extracted
statically. However, we still instrument memory operations of aliased variables
to capture their data dependences at runtime, avoiding the loss of any data
dependence that a purely dynamic method would extract. We implemented our
approach as an extension of an advanced data-dependence profiler and decreased
the profiling time by at least 38%, with a median reduction of 61% across 49
programs from three benchmark suites, making it far more practical than before.
Having a faster profiler, DiscoPoP tool is able to identify parallelism opportu-
nities in larger and longer-running programs. However, our method is generic
enough to be implemented in any data-dependence profiler.

Our objective for the future work is to reduce the profiling overhead fur-
ther and for a wider range of programs. Figure 6 shows the workflow of our
future hybrid data-dependence analysis. First, we will aim to exploit LLVM
alias analysis to statically detect data dependences for aliased scalar variables
and eliminate their memory accesses from profiling. Then, we will investigate
the inclusion of other promising tools such as autoPar, which statically identifies
data dependences for array variables. Finally, we will combine them with Dis-
coPoP+ and our approach from this paper, creating a superior tool for hybrid
data-dependence analysis.
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Abstract. Programming models for task-based parallelization based on
compile-time directives are very effective at uncovering the parallelism
available in HPC applications. Despite that, the process of correctly
annotating complex applications is error-prone and may hinder the gen-
eral adoption of these models. In this paper, we target the OmpSs-2
programming model and present a novel toolchain able to detect paral-
lelization errors coming from non-compliant OmpSs-2 applications. Our
toolchain verifies the compliance with the OmpSs-2 programming model
using local task analysis to deal with each task separately, and struc-
tural induction to extend the analysis to the whole program. To improve
the effectiveness of our tools, we also introduce some ad-hoc verifica-
tion annotations, which can be used manually or automatically to dis-
able the analysis of specific code regions. Experiments run on a sample
of representative kernels and applications show that our toolchain can
be successfully used to verify the parallelization of complex real-world
applications.

Keywords: Synchronization · Software testing and debugging ·
Parallel programming

1 Introduction

In the last twenty years, the conceptual hardware organization of computing
systems has changed significantly. Complex multi-core and heterogeneous archi-
tectures are ubiquitous nowadays and represent a cost-effective way to support
the high degree of parallelism of many High-Performance Computing (HPC)
applications. Several new ideas have been put into the software in terms of par-
allel programming supports to adapt to this paradigm shift [17]. In order to
implement parallelization via these supports, applications need to be redesigned
or ported to a different programming language with parallelization constructs.
In some cases, the user is also responsible for how the parallelism is imple-
mented. A direct consequence of this is that the effort of maintaining the source
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code increases, and tasks like debugging or testing become quite tricky. Parallel
programming models based on compiler directives such as OpenMP [2] are an
alternative to the approaches mentioned above. These models allow the program-
mer to disclose parallelism within programs through source-code annotations,
which are interpreted by the compiler as commands to perform transformations
that parallelize the code. The annotation-based approach is very effective as
it allows users to parallelize applications incrementally without sacrificing the
programmability and portability of code. Starting from the sequential version
of the application, the user can add more and more annotations to specify the
parallelism of different parts of the application. Despite the high potential of
annotation-based models, the parallelization process remains manual and prone
to errors by the user. Incorrect usage of annotations can lead to performance
and correctness issues and many hours of bug-hunting, thus forcing developers
to debug their programs in conventional (and typically ineffective) ways to try
to get to the root cause of the problem.

In this article, we focus on the OmpSs-2 task-based programming model.
OmpSs is a shared-memory multiprocessing API developed at the Barcelona
Supercomputing Center (BSC) for C, C++, and Fortran programs. OmpSs takes
from OpenMP its idea of providing a way to, starting from a sequential program,
produce a parallel version through pragma annotations in the source code. Paral-
lelization is achieved by annotating certain code regions as tasks that can execute
independently on the available threads, and synchronization constraints between
them. OmpSs has also been a forerunner for many of the task-based features later
introduced in OpenMP. The second version of OmpSs, called OmpSs-2, features
a fine-grained data-flow execution model for tasks that has been recently pro-
posed for integration into OpenMP [16]. The OmpSs programming model is
interesting because it has clear rules when it comes to specifying tasks and syn-
chronization constraints. For this reason, it is possible to verify that applications
comply with it in a programmatic manner. Applications that are compliant to
the OmpSs programming model are less likely to be affected by parallelization
errors that undermine the performance and correctness of the program. There-
fore, proving that an application complies with the rules of OmpSs eliminates
some of the errors that can be introduced upon parallelizing the code of an
application, thus potentially saving many hours of tedious debugging.

In this work, we illustrate a programmatic approach to checking paralleliza-
tion errors in OmpSs-2 based on local task analysis to verify task-level compli-
ance, and structural induction to verify application-level compliance. We also
propose a novel toolchain that implements this analysis for real-world OmpSs-2
applications. The toolchain is based on a framework that involves three pieces:
compile-time analysis to check the compliance of code before execution, run-time
analysis to verify code that could not be checked at compile-time, and verifica-
tion annotations to mark code that should not be explicitly analyzed by our
toolchain. Our experiments suggest that our toolchain’s hybrid nature is key
to making our programmatic approach viable for checking the compliance of
real-world applications.
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2 Task-Based Parallelization in OmpSs-2

In this section, we describe the parallelization annotations available in the
OmpSs-2 task-based programming model, and the rules that must be respected
to comply with it. Failing to do so is a compliance error, denoted with the ‘E’
prefix, which may impact both the performance and the correctness of the par-
allelized application. We describe these errors in detail in the rest of this section.

2.1 Tasks and Dependencies

OmpSs-2 allows expressing parallelism through tasks, independent pieces of code
that can be executed by the computing resources at runtime. Whenever the
program flow reaches a section of code declared as a task, the system creates
an instance of that task and delegates its execution to the OmpSs-2 runtime
system. Tasks are created via the task directive. Any directive that defines a
task can also appear within the definition of a task, thus naturally supporting
task nesting. Note that, in OmpSs-2, everything is a task. The user program
runs in the context of an implicit task region, called the initial task. This makes
all user-defined tasks to be nested tasks to that initial region.

OmpSs-2 tasks commonly require to access data to do meaningful computa-
tion. These data references can be declared via the in, out, or inout clauses1.
The set of all data references constitutes the dataset of a task. Each time a new
task is created, its dataset is matched against those of previously-created tasks
to produce execution-order constraints between them. We call these constraints
dependencies. This process creates a task dependency graph at runtime that
guarantees a correct order of execution for the application, i.e., an order which
respects the dependencies between tasks. Tasks aren’t considered for execution
until all their predecessors in the graph, if any, have finished.

Whether the task actually uses data in the declared way is the responsibility
of the programmer. In Listing 1.1 it is an error (E1) to access a from inside T1,
because a is not in the dataset of T1 and thus doesn’t generate any dependency.
If there is another task T2 accessing the same variable, the two tasks can’t
synchronize their accesses. Another error (E2) is declaring an element in the
dataset that is not accessed. For example, if T2 declares to access d when the
variable is not accessed, there may be undesired synchronization between T2
and another task T3 accessing the same variable.

2.2 Dependency Domains

The OmpSs-2 model states that dependencies between any two tasks can be
established if those tasks share the same dependency domain. By default, a task t
can only have dependencies with its sibling tasks, i.e., tasks that share with t

1 For a thorough explanation of the admitted syntax for data references, see the official
OmpSs-2 specification: https://pm.bsc.es/ftp/ompss-2/doc/spec/.

https://pm.bsc.es/ftp/ompss-2/doc/spec/
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1 int a, b;
2 long c[N];
3
4 #pragma oss task in(b) out(c[i:j]) label(T1)
5 {
6 a = 5; // Error E1: No matching dependency for ’a’
7 }
8 #pragma oss task inout(a, b, d) label(T2)
9 {

10 a += b; // OK
11 // Error E2: No matching access for ’d’
12 }
13 #pragma oss task in(d) label(T3)
14 {
15 int x = d; // OK
16 }
17

Listing 1.1. Definition of tasks and dependencies.

1 #pragma oss task in(a) weakout(b) label(T1)
2 {
3 int x = a; // OK
4 #pragma oss task out(b, c) label(T1.1)
5 { ... }
6 // Error E3: No matching ’c’ dependency in T1
7 }
8 #pragma oss task in(b) weakout(d) label(T2)
9 {

10 int y = b; // OK
11 // Error E4: No matching ’d’ dependency in T2.1
12 #pragma oss task out(b) label(T2.1)
13 { ... }
14 }
15

Listing 1.2. Connecting tasks via weak dependencies.

the same parent task. To connect two tasks that are not siblings, the depen-
dency model in OmpSs-2 supports weak dependencies. These are created via the
weakin, weakout, and weakinout clauses, but are not real dependencies. Their
sole purpose is to inform the runtime that some descendant of a task is access-
ing the data elements specified in the weak variant. To connect the dependency
domains of two arbitrary tasks t1 and t2, we must propagate the dataset of both
t1 and t2 upwards, using the weak prefix, until we find a common ancestor ta
(which can coincide with t1 or t2). By doing this, the runtime will merge the
dependency domain of all tasks from t1 to ta, and from t2 to ta, thus being able
to establish a dependency between t1 and t2.

The mechanism of synchronization via weak dependencies can be unintu-
itive at times. In Listing 1.2, failing to weakly pass the reference to c from T1.1
upwards is an error (E3) because the model states that if dependency domains
are not properly connected, accesses to the same object in different domains
cannot be synchronized. Another error (E4) is to declare an object in the weak
dataset of T2, when no descendant task is accessing it. Even if the runtime
doesn’t perform any actions on T2 that require the enforcement of those depen-
dencies, it may suggest an error elsewhere, e.g., a missing out reference to d in
task T2.1.
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1 #pragma oss task label(T1)
2 {
3 int x = 0, y = 2;
4 #pragma oss task inout(x) label(T1.1)
5 { ... }
6 #pragma oss task in(x) inout(y) label(T1.2)
7 { ... }
8 #pragma oss taskwait in(x)
9 assert(x == 1); // OK

10 // Error E5: No ’taskwait ’ or ’taskwait in(x, y)’ before the assertion
11 assert(x == y);
12 }
13

Listing 1.3. Synchronization via the taskwait construct.

2.3 Taskwait Synchronization

By design in OmpSs-2, to synchronize the code of task t with any of its descen-
dants t′ we need to use the taskwait directive. Taskwait synchronization means
that the runtime waits until the previously-created descendant tasks (including
the non-direct children tasks) complete their execution. The set of sibling tasks
targeted by a taskwait depends on the data references added to the taskwait
directive. If no data references are specified, the taskwait blocks the task waiting
for the completion of all previous descendant tasks.

Appropriately placing taskwaits in task code is a process prone to mistakes
in OmpSs-2 applications. In Listing 1.3, failing to place a taskwait before the
last assert is an error (E5) because the parent task is allowed to execute the
statement without waiting for its children (which access both x and y) to finish.

3 Programmatically Checking Compliance

Our programmatic approach verifies application-level compliance through task-
level compliance analysis and inductive reasoning on the recursive structure of
OmpSs-2 applications. The former is used to verify the absence of errors in each
task separately; the second is used to verify increasing portions of the program
until we reach the initial entry point. These two techniques rely respectively
on two aspects of the OmpSs-2 model: (1) compliance errors in a task t can
be verified without having to look at the internal code of other tasks, nor at
the datasets of tasks at nesting levels that cannot be directly reached from t;
(2) the code of the program can be represented as a hierarchy of tasks, with
the initial task wrapping the initial entry point. Any task-based programming
model satisfying these properties admits a programmatic approach for checking
compliance like the one described in this section.

3.1 Task-Level Compliance

Table 1 provides a compact list of the errors that were discussed in Sect. 2. To
check that a task is free of these errors, OmpSs-2 states that we only look at
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Table 1. Compliance errors in OmpSs-2

E Description

E1 No matching dependency for an access

E2 No matching access for a dependency

E3 No matching dependency in the parent task

E4 No matching dependency in the child task

E5 No taskwait between an access and previous tasks

what happens (i) within the code of the task itself, (ii) in the dataset annotations
of its parent (if any), and (iii) in the dataset annotations of its children (if any).
This fact is exploited in our tools to analyze each task separately. We call local
task analysis (LTA) the kind of processing we carry out to check that a single
task is compliant with the OmpSs-2 model. It is local because such analysis
does not need to reason globally, i.e., at the level of the whole program. To
understand how local task analysis works, let’s consider a task t in the program.
Let tp be its parent task, and tc be a child task. Let d(t,i) be the i-th dataset
element of t, defined as a tuple 〈m, clk, r〉, where m ∈ {read,write} is the access
mode, clk is the time at which the corresponding task was created, and r is the
memory range of that entry. Let a(t,j) be the j-th memory access performed by
t, defined as a tuple 〈m, clk, r〉 with m being once again the access mode, clk
being the time at which the access was performed, and r the memory range of
the access. Let Dt be the set of all dependencies of t. Let At be the sequence
of all accesses of t (also called the access-set of t). Finally, let Wt be the set
of taskwaits dependencies inside task t. Each entry w(t,k) is a tuple 〈m, clk, r〉,
where clk is the time at which the corresponding taskwait was created, and m
and r are defined like their counterparts in d(t,i). In the following, we show a
conceptual description of LTA, focusing on the errors E1, E3, and E5 for the
sake of simplicity. LTA for the remaining cases can be defined likewise.

Condition 1 (E1 detection). Verify if there is at least one access performed
by t that does not have a corresponding dataset entry. Formally speaking, check
if, for each a(t,j) ∈ At, there is no d(t,i) ∈ Dt for which:

– a(t,j).r ⊆ d(t,i).r, and
– d(t,i).m = a(t,j).m

If there is any a(t,j) for which it is true, then t is affected by E1.

Condition 2 (E3 detection). Verify if there is at least one dataset entry of
t (weak or not) that does not have a corresponding dataset entry in its parent
(at least weak). Formally speaking, check if, for each d(t,i) ∈ Dt, there is no
d(tp,ip) ∈ Dtp for which:

– d(t,i).r ⊆ d(tp,ip).r, and
– d(t,i).m = d(tp,ip).m

If there is any d(t,i) for which it is true, then t is affected by E3.
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Condition 3 (E5 detection). Verify if there is at least one access performed
by t such that: (i) the access has a corresponding dataset entry in one of the
previously-created child tasks; (ii) at least one amongst the access and the dataset
entry is a write; (iii) the access is not guarded by a taskwait that blocks until the
termination of the conflicting child task. Formally speaking, check if, for each
a(t,j) ∈ At, there is at least one d(tc,ic) ∈ ⋃

tc
Dtc for which:

– a(t,j).r ⊆ d(tc,ic).r, and
– a(t,j).m = write, or d(tc,ic).m = write, or both, and
– a(t,j).clk > d(tc,ic).clk, and
– there is no w(t,k) ∈ Wt for which:

• w(t,k).clk < a(t,j).clk, and
• w(t,k).clk > d(tc,ic).clk, and
• w(t,k).r ∩ d(tc,ic).r �= ∅, and
• w(t,k).m = write, or d(tc,ic).m = write, or both.

If there is any a(t,j) for which it is true, then t is affected by E5.

Conditions 1 to 3 give us a way to detect the errors in Table 1. However,
to make these conditions operational, we need to convert them into an algo-
rithm, and the mathematical structures on which such conditions rely must be
turned into concrete data structures. Section 4 briefly describes an experimental
implementation of LTA based on compile-time and run-time analysis.

3.2 Application-Level Compliance

Local task analysis is used in our approach to check that a task is free of compli-
ance errors. However, we need a way to prove that the entire application is also
free of these errors. To do this, we reason inductively on the task-nested structure
of OmpSs-2 applications. The OmpSs-2 model represents a program as a hier-
archy of tasks. It states that no parts of the program can be executed outside of
a task. The recursive nature of tasks can be exploited to prove application-level
compliance using structural induction, which is a generalization of the induc-
tive proof technique over natural numbers. The property that we wish to prove
inductively is OmpSs-2 compliance, defined as follows:

Definition (OmpSs-2 compliance). A task t is OmpSs-2 compliant if and
only if the following condition holds: (1) the task is not affected by any of the
errors in Table 1, and (2) for every task t′ that is a child of t, t′ is also OmpSs-2
compliant.

By using LTA and structural induction on the nested task structure of an
OmpSs-2 application, it is possible to prove its compliance in an incremental
manner. According to the definition of OmpSs-2 compliance, if the initial task
is OmpSs-2 compliant, then the whole application is compliant.
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3.3 Capabilities of the Programmatic Approach

In Sect. 2, we introduced the notion of compliance error and explained that it
might affect the parallelization of an application in an undesired way. Gener-
ally speaking, we call parallelization error any error that was introduced upon
parallelizing the original sequential program, and that affects the parallelized
program’s behavior in an unintended way. In this article, we are concerned with
two main types of parallelization errors: performance and correctness errors.
Performance errors can create additional synchronization constraints that defer
the execution of a task unnecessarily. Correctness errors are typically caused
by an unintended lack of synchronization between tasks that alters the original
sequential program’ semantics. Parallelization errors can be hard to spot and
to debug. Usually, they don’t manifest predictably, as it depends on the rela-
tive timing between the interfering tasks. Nevertheless, it can be shown that the
absence of compliance errors is a sufficient condition for the absence of specific
parallelization errors [7], such as those described in this article. However, it is
worth observing that not all compliance errors produce parallelization errors.
There are cases in which the application doesn’t comply with the model, but
the synchronization between tasks doesn’t produce correctness or performance
errors at run-time. Viceversa, not all parallelization errors that may negatively
affect the application are compliance errors that can be detected with this app-
roach. Some parallelization errors are semantics errors, i.e., errors that require
a knowledge of the semantics of the application to be detected programmati-
cally. These errors are out of the scope of this work. Lastly, limitations coming
from concrete LTA implementations (such as those mentioned in Sect. 4) may
too affect the accuracy of the analysis.

4 An OmpSs-2 Verification Toolchain

This section describes our novel toolchain for checking the compliance of
OmpSs-2 applications2. It is made of three key elements: (1) a static source-
code analyzer that works at compile-time (also called the compile-time tool); (2)
a dynamic binary-code analyzer that works at run-time (aka the run-time tool);
(3) a set of pragma directives and clauses (also called verification annotations)
that can be used as an interface between the user, the compile-time tool, and the
run-time tool. The reason behind this hybrid architecture is to overcome some
limitations of both compile-time and run-time analysis that might undermine
the effectiveness of the programmatic approach described in Sect. 3.

2 Compared to the reference description in Sect. 2, our tools support additional
OmpSs-2 features: commutative and concurrent dependencies (treated like inout),
explicit release of dependencies, final and if clauses. Primitives for task reduc-
tions, atomic operations, and critical regions are currently unsupported. Additional
information, included the instructions on how to install and use the toolchain, can
be found here: https://github.com/bsc-pm/ompss-2-linter.

https://github.com/bsc-pm/ompss-2-linter
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4.1 Manual User Pass

Initially, users can annotate portions of code that must be ignored by our
toolchain. To this extent, we have introduced support for ad-hoc verification
annotations into the Mercurium source-to-source compiler [9]. They instruct the
compile-time and run-time tools to pause the analysis inside the wrapped code
region. The verification annotations we introduced in OmpSs-2 are: (1) the lint
directive, followed by optional in, out, or inout data-references; and (2) the
verified clause, optional in the task construct.

The lint directive can be used to ignore code inside tasks. To extend its
applicability, users can also declare which accesses to shared-memory (if any)
performed within the ignored region are relevant for LTA. For the compile-time
tool, the directive is especially useful to mark calls to inaccessible code. In the
first example of Listing 1.4, the MPI Send and MPI Recv functions are not avail-
able for analysis, but their semantics is clear: they respectively read/write N
bytes from/to memory. For the run-time tool, marking code is useful to pre-
vent tracing memory accesses that, albeit executed inside tasks, don’t relate to
the application business logic. This scenario includes, amongst many, accesses
performed in libraries to shared-memory variables that are not visible to the
application, as well as accesses to shared-memory objects that are synchronized
independently of OmpSs-2 (e.g., spinlocks). In the MPI example, the imple-
mentation of MPI Send and MPI Recv may perform accesses to some internal
variables used for synchronization purposes, hence not relevant for LTA.

1 #pragma oss lint in(sendbuf [0: size]) out(recvbuf [0: size])
2 {
3 MPI_Send(sendbuf , size , MPI_BYTE , dst , block_id +10, MPI_COMM_WORLD );
4 MPI_Recv(recvbuf , size , MPI_BYTE , src , block_id +10, MPI_COMM_WORLD ,
5 MPI_STATUS_IGNORE );
6 }
7
8 double A[N/TS][M/TS][TS][TS];
9 #pragma oss lint out (A[i][j])

10 for (long ii = 0; ii < TS; ii++)
11 for (long jj = 0; jj < TS; jj++)
12 A[i][j][ii][jj] = value ;
13
14 for (int i = 0; i < N; ++i) {
15 #pragma oss task verified(i != 0 && i != N-1 && i % M != 0)
16 { ... }
17 }
18

Listing 1.4. Examples of the lint directive and the verified clause.

The verified clause works at the level of whole tasks. It is used to tell both
tools that the task is OmpSs-2 compliant, and that no LTA is needed. It accepts
an optional boolean expression to decide, at run-time, whether that particular
task instance has to be verified. This expression can be used to conditionally
evaluate task instances that are more likely to be subject to programming errors
(e.g., tasks related to boundary loop iterations). It can also be used to imple-
ment task-level sampling and reduce the overall memory tracing overhead of
the application (e.g., instrument a fraction of all task instances at run-time). In
the third example of Listing 1.4, we only instrument a subset of the tasks that
represent distinct loop iterations: the first task, the last task, and one every M
of the remaining ones.
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4.2 Compile-Time Pass

The compile-time tool aims at two main goals. The first goal is to anticipate
errors that are independent of the input of the application and may later appear
at run-time. To this extent, we have extended Mercurium and its built-in infras-
tructure for static analysis with an LTA implementation, evaluating task-level
compliance for every task definition in the source code. Notice that compile-time
LTA cannot always derive the full program state at every point in the code. Addi-
tionally, it cannot analyze code that is unavailable at compile-time (e.g., code
coming from other compilation units, or code that is dynamically loaded). When
lacking information, it doesn’t state anything about OmpSs-2 compliance and
leaves task-level analysis to the run-time tool. The run-time tool circumvents
these limitations, but only for specific input and while introducing overhead
during the execution of the application. For this reason, to ease the burden of
the run-time tool, the second goal of the compile-time tool is to mark those sec-
tions of code that have been verified by the compiler and therefore do not need
to be instrumented at run-time. In the second example of Listing 1.4, a nested
loop structure is used to perform a linear array walk. The compile-time tool can
detect this scenario and can mark it with a verification annotation. The TS2

accesses performed within the loop are ignored by the run-time tool, but an
equivalent representation of these accesses is placed in the annotation so as to
be considered at run-time.

The algorithm to place verification annotations around portions of code,
or whole task definitions, performs a bottom-up/inside-out traversal over the
Parallel Control Flow Graph (PCFG) [18]. It uses induction variables and scalar
evolution analysis in an attempt to wrap adjacent statements incrementally until
a terminating condition is encountered (e.g., a call to a function whose code is
not reachable). The compile-time tool also makes use of the manually-placed
verification annotations to try to extend their scopes to more extensive code
regions. At the end of this pass, any detected error is reported to the user before
execution. The parts of the code that could be verified statically are marked using
verification annotations, while the others are left for run-time instrumentation.

4.3 Run-Time Pass

The run-time tool is invoked to complement the compile-time analysis and to
provide complete coverage of the code, but only for a given input. Run-time
analysis can observe the actual program execution state at any moment in time,
so it doesn’t need to be conservative. However, it has other limitations. It cannot
always distinguish memory accesses that are relevant for LTA (e.g., accesses
to shared-memory variables visible to the application) from non-relevant ones
(e.g., access to shared-memory variables private to a library and synchronized
separately). Additionally, the instrumentation introduced at run-time for the
sake of tracing can alter the timing of some events, thus leading to observe
artificial and slower application executions.
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In order to circumvent such accuracy and overhead issues, run-time analysis
exploits verification annotations placed by the user or by the compile-time tool,
and only runs LTA for code that lacks such annotations. The tool operates at two
different levels of abstraction: (1) the abstraction provided by the OmpSs-2 pro-
gramming model to deal with tasks and dependencies, as explained in Sect. 2;
(2) the abstraction provided by the target Instruction Set Architecture (ISA)
to recognize accesses to memory, which in our case is AMD643. Our run-time
instrumentation tool is based on Intel Pin [13] and is composed of three main
components: the Pin Virtual Machine (VM) to perform dynamic binary instru-
mentation, and two modules that perform memory access tracing on the binary
executable. The frontend module (or trace generator) is devoted to intercept-
ing the accesses performed by the application at run-time, as well as generating
the actual traces. The backend module (or trace processor) is responsible for
the processing of traces and the generation of the final report for the user. At
the end of this pass, the tool generates a report of the encountered errors for
that specific application execution, thus complementing the report produced at
compile-time.

5 Experimental Assessment

In this section we provide an experimental evaluation of the analysis overhead4

of our toolchain on a set of nine different benchmarks, made of five execution ker-
nels (matmul, dot-product, multisaxpy, mergesort, and cholesky) and four proxy
application (nqueens, nbody, heat, and HPCCG). These benchmarks are repre-
sentative of real-world scientific applications and use popular HPC libraries for
advanced mathematical operation (such as Intel MKL) as well as well-known
APIs for coarse-grained parallelism (i.e., MPI). Our objective is to demonstrate
that our toolchain can be effectively used to evaluate the task-based paralleliza-
tion of these applications.

All the experiments have been conducted on the MareNostrum4 supercom-
puter. Each compute node is equipped with two 24-core Intel Xeon Platinum
8160 CPUs, totaling 48 cores per node, and 96 GB of main memory. The inter-
connection network is based on 100 Gbit/s Intel OmniPath HFI technology. The
MPI benchmarks (nbody, heat, and HPCCG) are run on four different nodes,
while the other benchmarks are run on a single node. Figure 1 shows the slow-
down (y-axis) and the absolute execution time (numbers on top of bars, in
seconds) for running the selected benchmarks through the run-time tool. Each
bar represents a different benchmark and a different set of experiments. The
lint suffix represents the case of running the benchmark without the aid of
the compile-time tool, but using the lint directive to manually annotate calls
to third-party libraries. The autolint suffix represents the case of running the
3 Although our tool targets the AMD64 instruction set, this does not limit the scope

of our work as it can be easily ported to other ISA and processor models.
4 A comprehensive evaluation of the accuracy of our toolchain will be provided in a

subsequent study.
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Fig. 1. Slowdown (y-axis) and absolute execution time (numbers on top of bars, in
seconds) for the selected benchmarks.

benchmark with the aid of the compile-time tool, which places additional lint
directives (if possible) around regions of verified code. The absence of a suf-
fix means that the benchmark is run without the aid of the compile-time tool
or lint directives. For each bar, we also report a breakdown of the slowdown,
split into three different contributions: (a) the instrumentation cost to run the
application using Pin (the base label in the legend); (b) the instrumentation
cost to actually instrument memory instructions, without processing them (the
instr label); (c) the full instrumentation + processing cost (the full label in
the legend).

As we can see from the figure, the slowdown for the pure runtime instrumen-
tation case (no suffix) can be quite high for some benchmarks (e.g., dot-product
or mergesort). In the case of cholesky, the overhead is considerably high due to
the heavy use it makes of Intel’s MKL library. It is reported with a truncated
bar and no number on top because it exceeded the maximum time allocation
for a single job (two days). We conducted an extended analysis of these cases
and detected the major source of overhead to be the insertion of accesses in
an ad-hoc interval tree, used to aggregate contiguous accesses coming from the
same instruction over time and compare them with task dependencies. Although
we intend to develop a more efficient implementation for this data structure, we
are still bound to pay the instrumentation cost depicted in the base and instr
cases. Nevertheless, we think that the observed slowdown doesn’t limit the effec-
tiveness of our tools. Except for cholesky, we note that the absolute execution
time of all the instrumented benchmarks is in the order of minutes, thus not
undermining the toolchain’s usability. Moreover, using larger input sizes is often
unnecessary. In many task-based HPC applications (which are well-represented
by the benchmarks we use), a change in the input size typically has a consider-
able impact on how many tasks are executed, rather than which types of tasks.
Even when it substantially modifies the control flow at run-time (e.g., by acti-
vating different tasks, or code paths inside tasks), these variations could have
been stimulated already with smaller input sizes.
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In all those cases in which it is necessary to test an application with large
or production-level inputs, we can exploit the lint and verified annotations
to focus the analysis only on the specific code activated by those inputs. This
approach makes our toolchain more effective because it allows us to spare the
tracing overhead on the parts that could be tested with smaller inputs. In our
experiments, the improvements in terms of the slowdown in the lint case were
often significant. By appropriately marking calls to external libraries with verifi-
cation annotations, the run-time instrumentation tool only intercepts a number
of accesses that are proportional to the number of data-references specified in the
in, out, or inout parameters of the pragma itself. This aspect is critical for the
case of cholesky, as each task only performs a single call to a function in the MKL
library, but those calls internally perform a huge number of accesses to memory
that are the main source of overhead. Improvements can also be observed for the
case of MPI benchmarks, which use the Intel MPI library, although the impact
tends to be smaller than that observed in the previous benchmarks. For example,
while heat is communication-intensive and so protecting calls to MPI is highly
effective, nbody and HPCCG are computation-intensive. Therefore, the use of
pragmas doesn’t improve the execution overhead by much.

The autolint case brings the most evident benefits, as it can be seen for
matmul, dot-product, and multisaxpy. In this case, the compile-time tool can
automatically wrap whole for-loop cycles into pragmas, or even mark whole
tasks within loops as verified. In all these cases, the performance improve-
ments are drastic because the instrumentation tool can disable tracing during
most of the application’s execution time. We note that these improvements are
not uncommon for real-world scenarios, as many kernels have a regular loop
structure, which can be easily analyzed using techniques like those mentioned
in Sect. 4.2. The case of nqueens is peculiar because it internally uses recur-
sion. In this case, the compile-tool is unable to recognize this execution pattern
and ends up marking each memory-accessing statement independently. The net
effect of this is a deterioration of the run-time overhead, compared to when the
compile-time tool is disabled. Similar considerations can be made for the MPI
benchmarks and especially for HPCCG, where the main kernel performing an
MKL-like dgemm operation couldn’t be annotated at all because a sparse matrix
representation is internally used. As for cholesky, we observe that each task only
performs a single call to an MKL library function. Thus, the compile-time tool
can successfully promote the manual lint directives to verified clauses at the
level of tasks. However, this brings little additional benefits compared to the
lint case.

Overall, our experimental evaluation suggests that the absolute execution
cost of running the selected applications against the toolchain is affordable. Fur-
thermore, the synergistic exploitation of compile-time analysis and verification
annotations can drastically reduce this cost.



A Toolchain to Verify the Parallelization of OmpSs-2 Applications 31

6 Related Work

The strategies for verifying the parallelization of applications can be classified in
static tools, which analyze the code at compile-time, and dynamic tools, which
analyze the code at run-time. As for the fork-join part of OpenMP, there are
static solutions focused on the polyhedral model to detect errors in OpenMP par-
allel loops [5], or on symbolic analysis and Satisfiability Modulo Theories (SMT)
to detect data races and deadlocks [14]. A more general solution is provided by
Lin [12], who described a control flow graph and a region tree to statically detect
non-concurrent blocks of code and race conditions in OpenMP2.5 programs with
the Sun Studio 9 Fortran compiler. Techniques to detect synchronization issues
in task-based OpenMP programs also exist and are focused on race conditions
that may produce non-deterministic output and run-time failures [18]. In concur-
rent models based on tasking such as Ada, there have been efforts to introduce
model checking techniques at compile-time [1]. However, although these tech-
niques are very mature, their usefulness depends on contracts that are written
by programmers, hence are liable to have errors. For the dynamic detection of
parallelization errors, most of the literature is focused on tools that check for
data and determinacy races, using the Happens-Before (HB) relation to detect
if two memory accesses are concurrent [11,19]. Archer [3] adapts ThreadSani-
tizer, which can detect data races in unstructured parallel programs, to the case
of basic OpenMP tasking with no dependencies. It employs a static phase to
discard all sequential code, and a dynamic phase to check for data races in the
remaining concurrent parts. Sword [4] is a tool that is capable of detecting all and
only data races in OpenMP programs comprised of nested fork-join parallelism
(i.e., parallel constructs). TaskSanitizer [15] is a tool that detects determinacy
races in task-parallel OpenMP programs by computing the HB relation on tasks.
ROMP is another tool targeting OpenMP with tasking [10]. It uses an approach
close to Sword to build the HB relation for nested fork-join parallelism parts,
and one similar to TaskSanitizer for the HB relation of tasks with dependen-
cies. StarSscheck [6] is a run-time tool to detect parallelization errors commonly
occurring in StarSs applications (task dependencies without nesting).

Our approach significantly differs from the ones adopted by the above works.
First of all, we don’t explicitly check for correctness errors. Our tools look for
compliance errors, which may affect both correctness and performance. The
detection of such errors is based on a programmatic approach that is compatible
with the OmpSs-2 programming model, but that can be ported to all task-based
programming models satisfying the properties in Sect. 3. To this extent, our
analysis is also different. Being always local to a task, it only compares accesses
and data references of a task with other data references. In comparison, algo-
rithms built around the HB relation directly compare accesses from a task with
accesses from another task, thus having to perform a number of comparisons
that, in principle, can be quite higher than LTA. Lastly, to improve the overall
accuracy and overhead of detection, our toolchain combines the best of static
and dynamic techniques with the proposal of verification annotations, which are
used as an abstract interface between the user, the compile-time tool, and the
run-time tool.
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7 Conclusions and Future Work

We have presented a toolchain to detect parallelization errors in applications
using OmpSs-2, a task-based parallel programming model. Our toolchain is com-
posed of a compile-time tool that analyzes source code, and a run-time tool that
analyzes binary code. The outcome of our toolchain is a report which informs the
user about compliance errors of OmpSs-2 applications. Our tools only perform
local task analysis of code, i.e., independently for each task. Because of the way
the OmpSs-2 programming model is defined, we can evaluate the compliance
with the model for each task and then infer it for the whole program. We have
also introduced verification annotations to mark specific code regions as verified.
Our compile-time and run-time analysis tools can safely ignore the code inside
these regions. At the same time, they can also be informed about any relevant
access performed within verified code regions. Thanks to these annotations, we
can improve both the performance and accuracy of the analysis. Experiments
run on a series of benchmarks varying from simple execution kernels to real-
world applications suggest that our tools can effectively analyze a wide range of
applications with acceptable overhead. Future work is aimed at improving our
analysis to detect inefficient parallelization constructs and suggesting the use of
more efficient ones.
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Abstract. Supercomputers stand as a fundamental tool for developing
our understanding of the universe. State-of-the-art scientific simulations,
big data analyses, and machine learning executions require high per-
formance computing platforms. Such infrastructures have been growing
lately with the addition of thousands of newly designed components,
calling their resiliency into question. It is crucial to solidify our knowl-
edge on the way supercomputers fail. Other recent studies have high-
lighted the importance of characterizing failures on supercomputers. This
paper aims at modelling component failures of a supercomputer based on
Mixed Weibull distributions. The model is built using a real-life multi-
year failure record from a leadership-class supercomputer. Using several
key observations from the data, we designed an analytical model that is
robust enough to represent each of the main components of supercom-
puters, yet it is flexible enough to alter the composition of the machine
and be able to predict resilience of future or hypothetical systems.
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1 Introduction

Large-scale machines provide a valuable tool to push the envelope in many sci-
entific disciplines. From unveiling the mysteries of the universe formation to
making sense of the myriad data in the global economy, supercomputers are
indispensable. Getting more powerful every year, supercomputers barely keep
up with the insatiable need for computing in scientific simulations and data
analysis. To maintain the required growth in computing power, hardware engi-
neers have employed increasingly complex and heterogeneous designs. Modern
supercomputers assemble an immense amount of processors, accelerators, mem-
ory modules, and more parts. The inevitable consequence of such arrangement
is a threateningly high failure rate [21,22]. Therefore, it is mandatory to under-
stand the reliability of supercomputers to sustain the rate of scientific discovery.

The last decade has seen several meetings, studies, and reports about super-
computer reliability [3,21,22]. An inter-agency report [21] found that one high
priority area was fault characterization. As technologies become more complex
to provide high scalability, reliability becomes more difficult. Therefore, it is
crucial to describe failure types along with their frequency and impact. A meet-
ing on failures at exascale level computing [22] also highlighted the importance
of such characterization, but insisted on building strong statistical models for
failure analysis and the development of fault tolerant algorithms. Finally, other
study [3] recommended exploring future failure characterization paradigms to
guide the selection of hardware components for future machines. This paper
addresses the concerns of the community by providing a reliability model for
supercomputers based on the failure characterization of hardware components.

Fig. 1. Features in recent supercomputers. The top 20 supercomputers from the last
15 years show the number of processor sockets has stagnated, but accelerators and
memory size per socket continues to increase.

We focus our model on the study of failure rates of three components: proces-
sors, accelerators, and memory. Figure 1 shows a historical view of the integration
of these components on the top 20 machines of the Top 500 list [25] for the last
15 years. The left part shows the number of processor sockets in each machine.
That number increased initially, but stagnated at around 100,000 sockets. How-
ever, the number of accelerators per socket has been on the rise, as depicted by
the middle figure. The memory size per socket has swelled at a faster pace.
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Here then is a list of the contributions of this paper:

• A collection of insights on a five-year failure record of a leadership-class super-
computer is provided in Sect. 2. One of these findings include the trends or
epochs in the failure data, automatically detected by an algorithm.

• A whole-system failure model using Mixed Weibull distributions in Sect. 3.
Our model outperforms the traditional Weibull distribution and allows the
representation of different configurations according to the prominence of a
component in the machine: processors, accelerators, or memory.

• Failure rate predictions for different hypothetical exascale machine configu-
rations in Sect. 3.2. Such projections are correlated with power consumption
of each configuration to understand the trade-offs between performance and
energy.

1.1 Related Work

Several studies have analyzed the behavior of failures in large-scale systems [3–
5,11,12,16,18,19,29], including studies that analyzed failures of specific super-
computer components such as GPU [15,23,24] or memory [1,10,20]. This paper
also analyzes large-scale system failures, but with the distinctive focus on build-
ing a reliability model to understand and project system behavior.

The literature contains studies of modelling the reliability of large-scale sys-
tems. In [9], the authors used modelling to examine the impact of failure dis-
tributions on application performance. They used the flexible checkpoint model
(FCM) to determine the application execution time and the optimal checkpoint
interval. In [27], the authors developed performance models to predict the appli-
cation completion time under system failures. Another modelling study [14] ana-
lyzed failure traces from five large multi-site infrastructures to model failures and
generate failure scenarios. Other researchers modelled the failure behavior using
signal analysis theory [6]. They characterized each signal and proposed corre-
sponding models, merging all the information to offer an overview of the whole
system. In [7,28], the failure correlation in time and space was analyzed. The
time-varying behavior of failures was modelled focused on peak failure periods.
The authors characterized the duration of peaks, the peak inter-arrival time, and
the duration of failures during peaks. Regarding the space-correlated failures, the
model considered groups of failures that occur within a short time interval. With
modelling, they found that space correlated failures are dominant in terms of
resource downtime in seven of the analyzed systems.

Similar to this paper, all those previous studies have concentrated on mod-
elling failures in large-scale systems. Modelling was used for the following pur-
poses: analyze correlations, predict execution times, compute optimal checkpoint
intervals, and analyze performance optimizations. In this paper, we analyze and
classify the system failures by component. Based on that, we model failures based
on the Mixed Weibull distribution to finally make reliability projections using
different system configurations. This paper differs both in the approach and the
purpose of modelling. Almost all studies used small datasets with under 1.5 years
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or hypothetical extreme-scale systems [9]. We base our results on real-life data
from a 5-year failure record from a leadership-class supercomputer.

Another study on modelling failures was described in [8]. They analyzed
five years of system logs to model hardware failures of multiple heterogeneous
components. They modelled each component and developed integrated failure
models given the component usage. They divided the event data into epochs due
to missing data in the event log. Before the modelling stage, a statistical analysis
of failures was performed. That modelling study differs from our work in multiple
dimensions: we analyzed a failure dataset of five consecutive years of a modern
hybrid supercomputer, we automatically determined epochs using a time series
analysis algorithm, the reliability model was implemented using Mixed Weibull
distributions, and we presented a series of failure projections based on different
hardware configurations.

In our previous work [13,17], we developed the process to ingest the raw
failure data and derive human understandable information from the Titan fail-
ure set. In this work, we introduce an analysis that reveals distinctive epochs
of failure rates; we delve into these epochs and uncover a number of interesting
observations peculiar to each; and, most importantly, we introduce a new math-
ematical model that is shown to categorize failures more accurately than other
proposed models as determined by the Kolmogorov-Smirnov goodness of fit test.

2 Insights from a Real-Life Hybrid Supercomputer

2.1 Failure Dataset

We analyzed failure events from Titan supercomputer. Titan was a Cray XK7
system located at the Oak Ridge Leadership Computing Facility (OLCF) and
was one of the earliest supercomputers that used a hybrid architecture (CPU
and GPU). It had 18,688 nodes and each node had an AMD 16-core Opteron
CPU (299,008 cores in the whole system), an NVIDIA Tesla K20 GPU and 32
GB of main memory. Titan had a peak performance of 17.59 petaFLOPs and
by the time it was decommissioned, it was in the ninth position according to
the Top500 ranking [25]. Every abnormal incident on Titan was automatically
registered into a failure database. The database was automatically constructed
by a program designed by the system administrators that used the SEC (simple
event correlator) program [26]. Using correlation rules, SEC analyzes output
streams from each node and merges multiple reports of the same incident into a
single database entry.

In this work, we analyzed five full years of failure events on Titan from 2014
to 2018. In this five-year span, the total number of events in the failure database
was 2,663,512. After a filtering stage, the number of events in the failure database
was dramatically reduced by 99.78%. The remaining 0.22% of events correspond
to what we describe as 5654 unique failures, distributed as 565, 649, 1824, 1291,
and 1325 events for years 2014–2018, respectively. This massive reduction in
the event database is due to the presence of multiple redundant messages and
warnings for the same failure.
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(a) Failure propagation.

(b) Stages of the methodology.

(c) Algorithm to detect trends in time series.

Fig. 2. Data analysis methodology.

Figure 2a shows this redundancy as the cause-effect dependency of events
on the database. These are potential dependencies because in some cases an
event can occur in isolation without the occurrence of the preceding event in
the graph. For instance, a GPU DBE (double bit error) failure may generate
a GPU DPR (double page retirement) failure and then a GPU XID failure (a
general software GPU error). In that case, the filtering process only considers the
failure with the highest priority (i.e. GPU DBE) and discards the other derived
failures. Nevertheless, in some cases, the GPU XID or GPU DPR failures can
be generated in isolation. Relevant data on discarded failures is attached to the
highest priority failure, to avoid losing information. Figure 2a shows three types
of hardware components (GPU, CPU, and memory) and how these components
might be affected by system failures.

2.2 Methodology

Figure 2b summarizes the stages of the methodology, implemented as a collection
of Python scripts and available at https://github.com/elvinrz/FailureAnalysis.

https://github.com/elvinrz/FailureAnalysis


42 E. Rojas et al.

The first stage, Data cleaning and Preprocessing (DCP), prepares all input files
in a consistent format. The second stage, Failure Filtering, takes the prepro-
cessed data and performs a series of tasks to filter redundant data. The priority
filtering task is used to remove redundant data with less priority or that depends
on other events. The others two tasks were used to remove non-significant events,
such as heartbeat faults, which are considered as warnings by system administra-
tors. This paper focuses on system failures only. Consequently, user failures were
discarded. The total number of user failures removed was 816,826, representing
30% of the total number of events from 2014 to 2018.

The third stage, Failure Analysis, uses the filtered data and performs a series
of analysis to model the behavior of failure events in the system. We performed
data fitting with three distributions (Weibull, Exponential and Lognormal) and
we used the Kolmogorov-Smirnov Goodness of Fit Test to determine how close
the data fits a statistical distributions. Algorithm2c presents an adjusted pro-
cedure to model the time series trends. The algorithm performs an exponential
moving average (EMA) and it uses a least squares polynomial fit to calculate
the trend segments. The algorithm outputs trends of failures event segments
throughout the years. Therefore, we are able to automatically detect epochs in
the data.

The Reliability Analysis stage is used to describe the background of the statis-
tical model that was used in this study. We implemented the Mixed Weibull dis-
tribution to analyze real and synthetic failure data. In addition, Mixed Weibull
distributions were used to perform a series of projections when changing the pro-
portion of the system components (CPU, GPU and memory) to determine the
reliability and the power consumption of exascale machines. The Visualization
stage displays the results of the previous analyses. We plot all necessary visual-
izations to show categorizations, correlations, and probability distributions.

2.3 Insights

Observation #1 : Most system failures in Titan are processor, accelerator, or
memory related. Table 1 shows the failure distribution of hardware components
according to failure classification on Fig. 2a. The failures related to processor,
accelerator, and memory represent 92.45% of all failures.

Table 1. Failure count by category and epochs.

Category Type E1 E2 E3 E4 %

GPU XID, DBE, BUS, DPR, SXM P. Off 933 834 1291 1508 80.87

CPU Machine Check Excep. (Bank 0, 2, 6) 33 9 5 14 1.11

Memory Machine Check Excep. (Bank 4, MCE) 214 80 124 173 10.49

Total 92.45
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Observation #2 : GPU failures are dominant, particularly those associated to
GPU memory. Table 1 shows that 80.87% of all failures are related to GPU. The
share of GPU memory failures (DBE, DPR) from the total amount is 52.08%.

Observation #3 : The time series of GPU failures can be divided into four
distinctive epochs. Figure 3 shows the result of using Algorithm 2c on the failure
time series of three hardware components. The GPU time series presents four
epochs: three blue segments representing a trend to increase failure rate and a
single orange segment representing the decrease of failure events. This result is a
refinement of a previous composition manually made by experts using the same
data [17].

Observation #4 : The time series of processor and memory failures have a
single epoch. The result of applying Algorithm 2c to the CPU and memory failure
time series reveals only one epoch for each. Figure 3 depicts this result.

Observation #5 : Epochs 2 and 3 on GPU failure time series reflect abnormal
behavior of hardware components. Table 1 reports the number of GPU failures
in each epoch. Epochs 2 and 3 together are composed of 63 weeks (24.23% of
total weeks) and contain 46.53% of the GPU failures. In contrast, Epoch 1 is
composed of 42% of total weeks and only has 20.4% of GPU failures. Epoch 4
has a similar behavior as Epoch 1. According to the system administrators of
Titan, epochs 2 and 3 represent abnormal behavior due to a massive failure of
GPU components (Epoch 2) and the replacement of those parts (Epoch 3).

Fig. 3. Failure time series 2014–2018 for the three main hardware components.

Observation #6 : Hardware component failures are statistically independent.
We tested the possible dependence between failures of different hardware com-
ponents. Figure 2a shows the failure categorization by component. Using a time
window of 300 s, we counted if there was a couple of events from different compo-
nents in the same time window. This analysis was performed before the filtering
process to take into account all events of interest (heartbeat faults and user fail-
ures were excluded). The results show the total number of correlated failures is
25 out of 5218 total failures. Such a minute portion statistically rules out any
correlation and, as a consequence, any dependence.

Observation #7 : Time between failures of processor and memory components
follows a Weibull distribution. We studied the Cumulative Distribution Function
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(a) CPU failures. (b) Memory failures. (c) GPU failures.

Fig. 4. Cumulative distribution function for CPU, memory, and GPU failures.

(CDF) of the MTBF data. Three different distributions were tested (exponential,
lognormal and Weibull). We used the Kolmogorov-Smirnov Goodness of Fit Test
(KST) to determine which distribution better models the MTBF data. For CPU
and memory components, we used the four epochs to perform the distribution
analysis because the failures of these two components were significantly less than
the GPU failures. Figure 4 shows the CDF of the three components, and we see
that the Weibull distribution fits better the MTBF data than LogNormal and
Exponential distributions. Low D values resulting from the KST represent a
better fit. In all cases the KST of the Weibull distribution was the smallest with
values of D equals to 0.096 for the CPU, and 0.053 for the memory. We do not
reject the null hypothesis (the data comes from a specific distribution) because
the computed D values were lower than the critical values.

Observation #8 : Time between GPU failures follows a Weibull distribution.
For the GPU time series, the four epochs were analyzed and in all epochs the
Weibull distribution was the best fit. The KST test resulted in D = 0.067 for
the GPU at Epoch 1. In light of Observation #5, for the rest of the paper, we
use only Epoch 1 data for modelling.

3 Modelling Reliability of Hybrid Supercomputers

3.1 Analytical Model

The theory of reliability provides a rich framework to study, analyze, and model
failure data from supercomputers. In the literature, the mean-time-between-
failures (MTBF) is a popular metric to describe the reliability of large-scale
machines [3,21,22]. To find such value, it is necessary to develop a model. The
reliability function is the most frequently used function to perform life data
analysis. It provides the probability of a component functioning with no failure
for an amount of time. It is a function of time and a flexible way to derive the
MTBF of a system. A key element to build a precise reliability function for
a system is to find an appropriate distribution function for life data analysis.
For instance, finding a distribution function for the probability of a component
failing at time t. Let us call f(x) this distribution function. Using f(x), we
compute U(t) =

∫ t

0
f(s)ds as the probability of a component failing by time t.
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Function U(t) is called the unreliability function and it is basically the cumulative
distribution function of f(x). Finally, the reliability function R(t) can be derived
using U(t) + R(t) = 1. In the rest of the paper, we concentrate on finding a
function f(x) that best fits the data and provides a precise reliability function
for the system. The literature shows that Weibull distribution is a good fit for
supercomputer reliability data on time between failures [17,19,24]. The Weibull
probability distribution function is given by f(x;α, β) = αxα−1

βα e−( x
β )α

, where α
is the shape parameter and β is the scale parameter. A value of α < 1 points to
a decreasing failure rate, α = 1 means the failure rate is constant (in which case
the Weibull distribution equals an Exponential distribution), and α > 1 indicates
an increasing failure rate. The scale parameter β represents how spread out the
distribution is.

Although a Weibull distribution may adequately capture the failure data of
all components in a supercomputer, it may fall short for modelling scenarios
where the behavior of the components differ from one another. For instance,
Sect. 2 presented a case where several components show different failure profiles.
For those cases, we may resort to a refined probability function, called a Mixed
Weibull (or Mixture Weibull) function and defined as:

f(x) = w1f1(x) + w2f2(x) + ... + wnfn(x) (1)

with wi > 0 and
∑n

i=1 wi = 1. Each fi is a Weibull distribution function and rep-
resents an independent population. Consequently, Eq. 1 models a system where
failures come from different, independent families and it becomes an appropriate
framework to represent failures of components in a supercomputer, given Obser-
vation #6 from Sect. 2. Mixed Weibull models are a better fit for the failure
data of supercomputers. Figure 5 shows a comparison of a single Weibull func-
tion versus a Mixed Weibull function in fitting the failure data from Epoch 1
of all components of Titan. Figure 5a presents how well the two alternatives fit
the failure data using the KST test. The Mixed Weibull models performs better
than the single Weibull function, which can be seen in the probability plot of
Fig. 5b. We propose using a Mixed Weibull distribution function to model the
failures in a supercomputer:

f(x) = wGPUfGPU(x) + wCPUfCPU(x) + wMEMfMEM(x) (2)

with wGPU + wCPU + wMEM = 1. Values for wi in Eq. 2 will depend on the actual
proportion of failure of each component in the supercomputer. To validate our
premises, Table 2 presents the results of an algorithm that automatically finds
components of a Mixed Weibull distribution on a collection of data assuming
there are 3 independent sources of failures. We can see how closely such results
match the real proportions of the components.
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Table 2. Mixed Weibull and 2P Weibull.

Distribution Component Shape Scale MTBF
(Hours)

Estimate
proportion

Real
proportion

3 Mixture Weibull 1 0.871 1208 15.66 0.208 0.181

2 0.934 59666 0.7544 0.791

3 2.778 289484 0.0376 0.028

Weibull 2P cpu, gpu, mem 0.62 40634.57 16.33

3.2 Extreme-Scale Projections

We use Eq. 2 to estimate MTBF values of exascale systems and contrast those
values with their corresponding power consumption. We developed different
supercomputer configurations taking into account three components: processor,
accelerator, and memory. The proportion of these components was varied to
reach exascale performance.

(a) Mixture and 2P Weibull CDF. (b) Mixture and 2P Weibull probability plot.

Fig. 5. Epoch 1 statistical analysis. We chose Epoch 1 for modelling failures of Titan
supercomputer, since Epoch 1 represents an expected failure behavior according to
the system administrator. However, the same analysis could have been done using any
other epoch.

Assumptions. The previous model analysis of this paper was made with failure
data of Titan supercomputer (Epoch 1). The failure data was generated from an
AMD 16-core Opteron CPU, an NVIDIA Tesla K20 GPU, and 32 GB of main
memory. Nevertheless, to make realistic projections, we updated the CPU and
GPU components to the actual time. We used the specifications of the AMD
Epyc 7742 and the NVIDIA V100 that have 2.3 TFlops of performance, 225 W
TDP and 7.8 TFlops of performance and 250 W TDP respectively. Regarding
memory, we only multiply the amount of RAM by a factor depending on the
projection.

To project the power consumption of an exascale machine, we considered the
power draw of processors and accelerators. These components and the memory
determine the maximum power required by a subsystem. Currently, the maxi-
mum power consumption of a supercomputer or HPC system is determined by
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the sum of the power of its subsystems [2]. Nevertheless, we did not take into
consideration the memory power in the projections for its relatively low power
consumption. Also, cooling, network, and storage power consumption was left
out of the power projections.

Size and Failure Data . All the projections were made based on failure data
of Epoch 1 (from January 2014 to February 2016) produced by the CPU (32
failures), GPU(930 failures) and memory (213 failures) components. The failure
data of Epoch 1 was the result of the execution of 18,688 nodes with a proportion
of 1:1:1(1 GPU:1 CPU:32 GB RAM). For that reason, if we wanted to model
a different component proportion we needed to generate synthetic data. The
synthetic data was randomly generated for each component, but based on the
Weibull shape and scale of the real data to ensure the same failure behavior. To
determine the total number of failures (φ) required to perform the projections
we used the following equation φ =

∑K
i=1(πi ∗ δi ∗ s ∗ 1

N ), where K is the total
number of hardware components, πi is the proportion of component i, δi is the
number of failures of component i and N is the total number of nodes on a real
HPC system. Note that inside the equation the number of sockets s of the new
projected system is calculated as 1 exaflop

∑K
j=1(τj∗πj)

, where τj is the number of teraflops

of component j.

Reliability Measure. We used the MTBF as a metric to measure the system
reliability. The system MTBF was calculated based on the mean Weibull and the
proportion of the total failure data of each component population. The MTBF
values were calculated as the mean of performing 100 times each experiment.
Systems with low MTBF are less reliable.

Projections. We developed a series of exascale supercomputer projections vary-
ing the component proportions. Tables 3 and 4 show two experiments. One exper-
iment only shows the change of the GPU proportion and the other shows the
result of changing the proportion of the three components. We see in Table 3
that when increasing the number of GPUs the MTBF decreases. This is a nor-
mal behavior considering that we were increasing the component with the highest
failure rate. Titan supercomputer in Epoch 1 had an MTBF of 42.3 h with the
proportion 1:1:1 and the same proportion of an exascale machine has 9.98 h.
Nevertheless, Titan only had 0.027 exaflops relative to the projected exascale
machine. Regarding the power consumption, we see that the simplest propor-
tion (1:1:1) has the highest power consumption because to reach exascale per-
formance it is necessary to use 99,010 sockets. Also, note that with the increase
of GPUs the power decreases. Comparing the projection (3:1:1) with real life,
we can use Summit supercomputer that has the same component proportion
(6 GPUs and 2 CPUs). At this time Summit is the fastest supercomputer in
the world according to the Top500 list [25], and has a power consumption of 10
KW with 200 petaFLOPs of performance. We can assume that Summit could
reach exascale performance with a size five times larger and this could increase
the power consumption to 50 KW that is 24% more than the projected power
consumption. Finally, it is important to remark that each of the proportions cor-
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responds to real supercomputers: Titan (1:1:1), ABCI (2:1:1), Summit (3:1:1)
and Lassen (4:1:1). All those supercomputers are listed on the records of the
Top500 list [25].

Table 3. Projections changing the GPU proportion.

Proportion

(gpu:cpu:mem)

Sockets Data proportion

(gpu:cpu:mem)

Total

failures

MTBF

(Hours)

CPU TDP

(KW)

GPU TDP

(KW)

System TDP

(KW)

1:1:1 99010 5.3:5.3:5.3 6228 9.98 22277 24753 47030

2:1:1 55866 6:3:3 6315 9.52 12570 27933 40503

3:1:1 38911 6.3:2.1:2.1 6373 9.36 8755 29183 37938

4:1:1 29851 6.4:1.6:1.6 6344 8.97 6716 29851 36567

Table 4 shows other possible configurations. Although this study was focused
on hybrid supercomputers, we also made one projection without GPU with the
proportion 0:1:1. This proportion corresponds to Tianhe-2A supercomputer that
has only Intel Xeon E5 CPUs. This projection needed 77% more sockets regard-
ing the projection with one GPU (1:1:1), 52% more power consumption and the
system reliability decrease with an MTBF of 8.06. This projection can give us
an idea of how beneficial could be to implement supercomputers with at least
one GPU per CPU. With projections 1:2:1 and 3:1:2 we see how the system can
be with more CPUs and memory, respectively. Note that with the proportion
with more CPUs the best obtained MTBF value was 12.06. The worst MTBF
value was obtained with many GPUs (8:1:1). Such configuration also brings the
best power consumption. Also, the memory size increase decreases the system
reliability.

As a result of the projections we can conclude that hybrid supercomputers are
a good solution to reach exascale performance. Hybrid supercomputers need less
hardware and the power consumption is remarkably less than supercomputers
without GPUs. Nevertheless, it is necessary to take into consideration that the
system reliability could be affected by the increase in the GPU proportion.

Table 4. Projections changing multiple component proportions.

Proportion

(gpu:cpu:mem)

Sockets Data proportion

(gpu:cpu:mem)

Total

failures

MTBF

(Hours)

CPU TDP

(KW)

GPU TDP

(KW)

System TDP

(KW)

0:1:1 434783 0:23.2:23.2 5684 8.06 97826 0 97826

1:2:1 80646 4.3:8.6:4.3 5191 12.06 36291 20162 56452

3:1:2 38911 6.3:2.1:4.2 6821 8.7 8755 29183 37938

8:1:1 15456 6.64:0.83:0.83 6378 7.94 3478 30912 34390

4 Final Remarks

This paper presented the Mixed Weibull distribution function as a more appro-
priate model for failure characterization and prediction in hybrid exascale super-
computers. Starting from a collection of insights on a five-year failure record of
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a leadership-class supercomputer, we built a whole-system failure model using
Mixed Weibull distributions. These models allow the failure prediction of differ-
ent configurations according to the prominence of a component in the machine:
processor, accelerator, or memory. In the future, we plan on exploring two
avenues of research. First, we will evaluate the Mixed Gamma distribution for
modelling failures on supercomputers. Second, we will extend the power con-
sumption model to include missing hardware components (storage, network,
cooling, memory) and application characteristics during execution.
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Abstract. Data processing pipelines are made of various software com-
ponents with complex interactions and a large number of configuration
settings. Identifying when a pipeline has reached its maximum perfor-
mance capacity is generally a non-trivial task. Metrics exported at the
software and at the hardware levels can provide insightful information
about the current state of the system, but it can be difficult to interpret
the value of a metric, or even to know which metrics to focus on. Con-
sidering a popular pipeline composed of Kafka, Spark Streaming, and
Cassandra, this paper proposes a learning-based approach to automati-
cally infer the state of such a pipeline solely by analyzing metrics. Our
results show that we are able to achieve a high prediction accuracy when
predicting on new configurations and when the number of data sources
changes. Furthermore, our analysis demonstrates that the best prediction
results are obtained when metrics of different types are combined.

Keywords: Performance bottleneck · Data processing pipeline ·
Machine learning

1 Introduction

Applications deployed in distributed environments are composed of a variety of
software components. These components provide different functionalities e.g.,
publish-subscribe messaging, real-time analysis of streaming data, and storage.
To achieve scalability, each component can be divided into a number of parti-
tions spread on separate machines for parallel processing. Additionally, for fault
tolerance, each component or partition of a component typically has a number
of replicas. These components (and their internal replicas and partitions) have
many interactions, involving both control messages and data. With such a com-
plex and diverse architecture, it is generally difficult to understand the overall
behavior of the system and how its performance can be improved.

Data processing pipelines are an important class of applications that allow
running real-time analysis on data streams [12]. Similarly to other ubiquitous
applications such as Web stacks [13], such pipelines are typically based on a
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multi-tier architecture, where components are organized in layers. Although sim-
pler to analyze that applications based on a large number of micro-services [14],
determining if such an application has reached its maximum capacity in a given
configuration can still be challenging [24]. Being able to answer this question
is important because it is the first necessary step to take decisions about the
reconfiguration of the system, for instance regarding resource provisioning [26].
Answering this question is difficult because the throughput of the system can be
impacted by many factors, including the hardware and software configurations,
the application logic, and the workload. Also, the system may exhibit a very dif-
ferent bottleneck depending on the situation. Hence, in a given configuration of
the system, it can be challenging to determine whether the throughput is limited
by the clients (data sources) injecting data in the pipeline or by the components
processing the data.

Monitoring data can provide information about the current state of the sys-
tem. However, analyzing these data to draw accurate conclusions is challeng-
ing. Significant opportunities remain to be discovered [25]. Some research efforts
focus on analyzing distributed systems logs [6]. However, while detailed logs from
realistic systems contain valuable details, they tend to be so huge that they are
overwhelming to performance engineers, who as a result can not directly ben-
efit from them. An alternative is to leverage metrics that can transparently
be exported at the system and at the application level, to conclude about the
state of the application. But analyzing metrics can also be arduous. While there
exists a large number of methodologies and tools for analyzing the performance
of distributed systems [17], there is no consensus on which technique(s) to use
in a given situation. Different saturated configuration typically exhibit different
symptoms (e.g., resource saturation versus idle time). Moreover, the number of
potential metrics to be considered is often very large.

We posit that to simplify the work of the programmers and users of multi-tier
architectures, it would be ideal to identify a small set of key metrics that can
provide valuable information about the performance currently achieved by the
system. Building a tool that can automatically conclude about the state of the
system based on the analysis of these metrics would be very helpful. This paper
presents a learning-based approach that allows achieving such goals for the case
of data processing pipelines.

Our study consider a data processing pipeline composed of widely used soft-
ware components, namely Kafka [19], Spark Streaming [29] and Cassandra [20].
This stack is nowadays a de facto standard in production for data analytics [12].
To run our analysis, we export more than 70 metrics at the hardware and at the
software levels. Using classic machine learning classification algorithms (Deci-
sions Trees, Random Forests, etc.), we demonstrate that it is possible to build a
model that can accurately determine whether the pipeline has reached its max-
imum capacity based on the analysis of metrics. We show the generalization
capabilities of the model by testing with various software configurations (e.g.,
changing the number of Kafka partition or the number of Spark executors), with
different workloads (a simple WordCount, a Twitter sentiment analysis, and a
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machine-learning-based Flight delay prediction application), and with different
numbers of clients. Also, to understand what kinds of metrics provide useful
information about the state of the system, our analysis compares the results
obtained when using different subsets of metrics. Our results show that we are
able to achieve a prediction accuracy close to 80% when predicting whether the
data processing pipeline has reached its maximum capacity for a new configu-
ration, for a new number of clients or for a new workload. It also shows that,
contrary the approach that is often adopted to solve such a problem [15], it is
better to build models that combines information from different kinds of met-
rics rather than focusing on a single kind of metrics (e.g., resource consumption
metrics).

The remainder of the paper is organized as follows. We discuss the state of
the art in Sect. 2. The methodology is presented in Sect. 3. We present and study
the results in Sect. 4. Concluding remarks are given in Sect. 5.

2 Related Work

Many works have used machine learning techniques to identify performance
issues in distributed systems [14,17], and several of these studies focus on multi-
tier applications [18,21,22,24]. The results obtained in these works show the
efficiency of machine learning techniques to solve such a problem. However, the
objective of these works is often different from the one studied in this paper.
Related studies mostly focus on achieving a pre-defined service-level objective
(SLO) [18,22]. On the other hand, our works aims at determining whether a data
processing pipeline has reached its maximum capacity in terms of throughput
in a given configuration. Trying to ensure a pre-defined SLO is a different prob-
lem for two major reasons. On one hand, it might be easier to relate the value
of a metric to a specified SLO, than to try to determine whether the system
could achieve a higher throughput if more data were injected, because many fac-
tors (software configuration, workload, etc.) can affect the maximum achievable
throughput. On the other hand, it might be a more difficult problem because the
required SLO might be far below the maximum capacity that the system can
achieve which in its turn can influence the analysis of the metrics that are used
to build prediction models. The work by Rao et al. [24] is the one that shares the
most similarities with ours since it applies machine learning techniques to deter-
mine when a multi-tier Web stack has reached its maximum capacity. However,
their approach relies on the analysis of hardware performance counters and we
will show that hardware metrics are often of little help to conclude about the
state of a data processing pipeline. Note that to the best of our knowledge, our
study is the first evaluation of learning-based approaches to automatically infer
the capacity of a data processing pipeline using metrics.

Different kinds of metrics have been considered to analyze the performance
of distributed applications. Resource consumption metrics are often seen as an
important source of information on this matter [14,15,21,24]. Metrics related
to the response time [22] or to the time spent by requests waiting to be pro-
cessed [18,30] have also been studied. Our study integrates metrics of these
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kinds, as well as other kinds of metrics, and shows that combining metrics of
different types is often the solution that allows to make the best predictions.

In their work, Malkowski et al. [21] show that an analysis of the general trend
of the evolution of metrics (e.g., metric reaching a plateau when a bottleneck
appears) can be used to identify metrics that can provide valuable information
about the state of the system. We evaluate this approach in our study through
a set of metrics called the recommended metrics, as described in Sect. 3.3.

3 Description of the Study

This section starts by a general overview of our approach. Then we provide all
the details about our study.

3.1 Identifying the Limiting Component in a Multi-tier System

Our work evaluates the use of machine learning approaches for analyzing metrics
to determine the status of a data processing pipeline. Here the status refers to
whether the pipeline has reached its maximum capacity, or if the throughput
could increase if more clients were sending data to be processed. Through our
evaluation, we want to assess: i) to which extend predictions can be made with
such an approach; ii) what kind of metrics allow making the best predictions.

For this study, we consider a popular data processing pipeline composed
of the Apache software Kafka [19], Spark Streaming [29], and Cassandra [20].
To better assess the validity of the results, and to observe the impact of having
multiple components interacting in a pipeline, our evaluation also presents results
for a simpler case where a Kafka cluster is receiving messages from clients and
storing them in partitions1.

Our study evaluates whether general-enough models can be built to make
accurate predictions even in executions that are very different. To this end, we
consider various configurations for the components of the pipeline and different
workloads as described in the following. These changes imply that the maximum
throughput that can be reached by the pipeline is different from one experiment
to another (depending on the configuration and the workload, the maximum
throughput that can be achieved in our experiments ranges from 677 K msg/s
to 3650 K msg/s for the full pipeline) and that the number of clients required
to reach this throughput also changes.

To make our prediction, we use metrics that can be transparently exported
during the execution of the pipeline. These metrics include system-level metrics
that represent hardware resource consumption on the nodes running the pipeline,
and software-level metrics that are provided by each component of the pipeline.
To build our models out of these metrics, we use classic machine learning classi-
fiers (Decision Tree, Random Forest, etc.). To understand what kind of metrics
should be used to make predictions, we compare the results of models built using
different subsets of exported metrics.
1

We also studied the case of a 2-tier pipeline composed of Kafka and Spark Streaming but we
do not include these results in the paper due to the lack of space. In any case, the results were
confirming the main conclusions drawn from the two other cases.
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3.2 The Data Processing Pipeline

Description of the Components. In the following, we briefly describe the
components of the considered data processing pipeline.

Kafka is a publish/subscribe messaging system. Publish/subscribe messaging
is a pattern that is characterized by the sender (publisher) of a piece of data
(message) not specifically directing it to receiver. Instead, the publisher clas-
sifies the messages somehow, and receivers (subscribers) subscribe to receive
certain classes of messages. In addition to the publisher and the subscriber,
Kafka has a broker, a central point where messages are published, to facili-
tate classifying and receiving messages. Apache Kafka uses Zookeeper [16] to
store metadata about the Kafka cluster, as well as consumer client details.
Essentially, ZooKeeper is a centralized service for maintaining configuration
information, naming, and providing distributed synchronization.

Spark is a unified analytics engine for big data processing. Spark has stream-
processing capabilities, which makes it able to handle real-time data. Spark
uses micro-batching2 for real-time streaming.

Cassandra is a distributed NoSQL database management system, designed to
handle extremely large amounts of data and to provide high availability.

Description of the Configurations. To evaluate the robustness of our predic-
tions with respect to changes in the configurations of the pipeline components,
we run evaluations considering the following changes. For Kafka, the changes
in settings are about the number of partitions (evaluated cases: 1, 3, 12, and
24 partitions), the size of messages (evaluated cases: 100, 500, 1000, and 10000
bytes), the compression algorithm (evaluated cases: no compression and Snappy
compression algorithm3), and the acknowledgment policy, that defines the num-
ber of replicas that should deliver a message for it to be considered as received
(evaluated cases: 1 and all). For Spark, the changes are about the number of
executors (evaluated cases: 3 and 12 executors). For Cassandra, the changes are
about the consistency level that defines the number of replicas that should be
contacted to complete an operation (evaluated cases: 1 and all). In all cases, the
replication factor for both Kafka and Cassandra is set to 3.

For the full pipeline, we evaluated 10 different combinations of settings. For
the Kafka cluster case, 12 different combinations of settings are evaluated.

The last settings that we make vary during the experiments is the number
of clients sending data to the pipeline. For each configuration, we run experi-
ments with different number of clients, starting from 2 clients until reaching 32
clients with a step of 2. For each number of clients, we measure the through-
put observed after 15 min of execution and we collect all required metrics as
described in Sect. 3.3. As we are interested in determining when the system
reaches its maximum capacity, all clients always try to send messages at their
maximum rate.
2

Micro-batching allows a process/task to treat a stream of data as a sequence of small batches.
3 https://cwiki.apache.org/confluence/display/KAFKA/Compression.

https://cwiki.apache.org/confluence/display/KAFKA/Compression
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The Workloads. Three workloads with different characteristics ranging from
simple transformation of data to machine learning algorithms are used:

Wordcount (WC) is a standard micro-benchmark for big data [11]. We use a
randomly generated corpus of English words as dataset.

Twitter Sentiments Analysis (TSA) monitors people’s opinion on different
topics. We use the SentiWordNet [5] dictionary for opinion mining and as a
dataset, we use recent tweets in English crawled through the Twitter API4.

Flight Delays Prediction (FDP) uses machine learning (with a logistic
regression classification algorithm) to predict the delays of airline flights. We
use input data from the U.S. Department of Transportation’s (DOT) Bureau
of Transportation Statistics (BTS)5.

For all workloads, the data are received by Kafka, then transmitted to Spark
to be processed, and finally Spark stores the results in Cassandra. In the case
of the Kafka cluster, we use the same dataset as with the WC application as
workload, and received data are simply saved on disk.

3.3 The Studied Metrics

In the following, we present the metrics collected during the experiments. We
also present the subsets that we consider for training models.

Collected Metrics. During each run, we collect the value of some software-level
and system-level metrics. At the system level, we collect metrics that represent
the CPU utilization on each node, and the bandwidth consumption regarding
accesses to memory, to the storage and to the network. At the software level, each
component in the pipeline can export an enormous number of metrics. However
not all of them related to the performance of the system. We keep only the met-
rics providing operational information while discarding metrics that reflect the
health of the software component with respect to failures. At the end, we obtain
68 different metrics at the software level (36 for Kafka, 10 for Spark, and 22
for Cassandra). Examples of the exported metrics are: network threads usage
exported by Kafka (this metric represents the usage, in percent, of network han-
dler threads which are responsible for reading and writing data to the clients
across the network), processing time exported by Spark (this metric repre-
sents the time (in sec) spent to complete all the streaming jobs of a batch), and
pending tasks exported by Cassandra (this metric represents the total number
compaction tasks in queue). Note that no metrics are collected on the client side.

To better describe the collected metrics, we use the classification presented in
Table 1 that groups metrics based on the kind of information they provide. For
example, we consider that a metric that shows the size of a queue of pending
requests belongs to the Queue Size type. All categories described in Table 1

4 https://archive.org/details/twitterstream.
5 http://stat-computing.org/dataexpo/2009/the-data.html.

https://archive.org/details/twitterstream
http://stat-computing.org/dataexpo/2009/the-data.html
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are represented in the collected metrics. The last column is the table gives the
number of metrics included in each group.

As metrics are collected over several instances, partitions and/or replicas of
a component, it should be mentioned that the values we use as input for our
models are the average values over all instances of a component. We do not
lose information by using the average as in general the metrics values do not
significantly vary between the instances of a component.

The data related to resource consumption are obtained via psutil (python
system and process utilities)6. The data on the software component level are
obtained via Java Management Extensions (JMX)7.

Table 1. Representative types of exported metrics.

Metric type Description Total number

Resource Consumption (RC) Represents the average percentage of resource utilization. We

collect 6 metrics per each component of the pipeline

18

Idle Threads (ITD) Represents the average percentage of threads that are idle

(i.e., threads that wait for an incoming request to process or

wait for a reply from other threads)

3

Error Rate (ER) Represents the average number of messages sent per second

that resulted in errors

11

Queue Waiting Time (QWT)Represents the average request waiting time (in ms) in the

queue before it has been served by the server. As an example,

in the Kafka cluster use case, requests wait in a queue, after

they have been received by Network threads, to be served by

Handler threads

6

Queue Size (QS) Represents the size of a queue in terms of pending

requests/responses. Such a queue can be for incoming

requests that have been received from the client but not yet

served by the server. It can also be for outgoing responses

that have not been sent back to the requesting clients

6

Latency (LY) Represents the average amount of time that a system needs

to process a message/request and send back a reply to the

client. More generally, latency means the time for any

operation to complete

16

Processing Time (PT) Represents the average amount of time it takes to process a

client request. For example, this type includes the processing

time that a stream processing engine (i.e., Spark Streaming)

needs to process one batch of data within the streaming batch

interval

2

In/Out Data (IOD) Represents the average number of requests/responses

received/sent per time unit e.g., the number of requests that

a Kafka producer is able to send per second

14

Uncategorized (UC) Represents the set of metrics that do not fall in any of the

previous categories e.g., a metric that represents the rate of

closed client connections events is put in this category

10

Selections of Metrics. In the following, we present the different selections
of metrics that are given as input to a classification algorithms to build the
predictive models. These selections are:
6 https://psutil.readthedocs.io.
7 https://en.wikipedia.org/wiki/JMX.

https://psutil.readthedocs.io
https://en.wikipedia.org/wiki/JMX
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All (AL): It includes all metrics exported during our evaluations.
Software-level (SW): It includes all software-level metrics, i.e., resource con-

sumption metrics are excluded.
Hardware-level (HW): It includes only resource consumption metrics.
Response time (RT): It only includes metrics belonging to the Latency type,

as defined in Table 1. This selection is representative of the kinds of metrics
used in some related work [18,28].

Waiting time (WT): It only includes metrics belonging to the Queue Waiting
Time type, as defined in Table 1. This selection is representative of the kinds
of metrics used in some related work [30].

Recommended (RM): This is selection of software metrics that a simple man-
ual analysis allows identifying as useful for determining the status of the
system. Resorting to the ideas proposed in [21], two kinds of metrics are
excluded from this set compared to SW: (i) Metrics for which the behavior
never changes no matter the number of clients (e.g., the value of a metric is
always the same or is always proportional to the number of clients); (ii) Mis-
leading metrics where an important change can be observed but which does
not correspond to the point where the system reaches its maximum capac-
ity [3]. By excluding these metrics, we obtain a combination of metrics from
the following types: ITD, QWT, QS, and PT (see Table 1).

3.4 The Learning Approach

In this last part, we describe the solutions that we use to build classification
models, as well as, the methodology to train and evaluate models.

The Classifiers. To build models, we study 5 different classifiers including Deci-
sion Tree (DT) [9], Random Forest (RF) [8], Support Vector machines (SVM) [2],
Logistic Regression (LR) [7], and Gradient Boosting Tree (GBT)8. We consider
multiple classifiers to ensure that our conclusions are not simply due to a bad
choice of classifier. We decide not to consider classifiers like Neural Networks
because these solutions usually required huge amounts of training data and
require a dedicated expertise to be properly tuned. We use the classifiers as
black boxes i.e., we use the default classification functions without tuning their
hyperparameters [27]. We make this choice because our goal is to demonstrate the
feasibility of the approach and not to find the most optimal classification algo-
rithm for our problem. Furthermore, using default classification functions show
that one can apply our methodology without having a high degree of expertise
in machine learning. Before being provided as input to the classifiers, a classical
standardization preprocessing step is applied to the data9.

8 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoos
tingClassifier.html.

9 https://scikit-learn.org/stable/modules/preprocessing.html.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/preprocessing.html
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Data Labeling. Data used for our study are labeled into two classes: (i) server:
this class represents the data points where the system has reached its maximum
capacity; (i) client: this class represents the data points where adding more
clients would improve the throughput of the system.

Defining the border between these two classes is not always simple. There are
situations where adding one more client only leads to a small improvement in
the throughput. To identify data points that belong to the server class, we run,
for each configuration, experiments where we allocate more hardware resources
to the processing pipeline. If the throughput improves when allocating more
resources, we consider that the corresponding data belong to the server class.

Training and Testing Models. To deal with the limited number of samples
included in our dataset, we use the Leave-p-out cross-validation schema [4] to
train and test models. This schema involves using p observations as the test set
and the remaining observations as the training set. The experiment is repeated
until all subsets observations have been considered as part of the p observation
in the test set [10]. In all experiments we consider p = 210.

To illustrate the use of this validation scheme, we consider the case of the gen-
eralization to new setups of the pipeline. Other evaluations presented in Sect. 4.2
follow the same methodology. For the case of the generalization to new setups,
the method involves removing all runs of two configuration setups from the
training set, training the model on all setups but the two removed ones (i.e., the
training set), and then performing a prediction on the removed setups (i.e., the
test set). This training process is repeated for all setups pairs, and the average
performance on predictions for all setups is reported.

4 Evaluation

This section presents the results of our evaluation. It studies the ability of models
to identify when the data processing pipeline has reached its maximum capacity.
Before detailing the results, we describe the experimental setup.

4.1 Experimental Setup

All runs of the data processing pipeline are executed on a cluster of nodes
equipped with 2 8-core Intel Xeon E5-2620 v4 CPUs with 2 hyperthreads per
core, 64 GB of RAM, a 600 GB HDD, and a 10 Gbps Ethernet interface. We use
9 nodes to deploy the full data processing pipeline: 3 nodes for the Kafka cluster,
3 nodes for the Spark Streaming cluster, and 3 nodes for the Cassandra cluster.
Zookeeper instances are deployed on the same nodes as Kafka instances. For the
Kafka cluster application, 3 nodes are used. Each client is run on a separate node
and 32 threads, one per hyperthread, are used for each client.

10
Using p = 1 could lead to erroneous conclusions due to overfitting.
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All experiments use Debian 8 with a 3.16.0 Linux kernel, OpenJDK version
1.8.0 131, Scala 2.11, ZooKeeper 3.4.10, Kafka 0.11, Spark Streaming 2.1.0, and
Cassandra 3.0.9. To build machine learning models, we use Scikit-learn [23], an
open-source machine learning library for the Python programming language.

For each considered configuration and each number of clients, 5 15-min-long
runs are executed. Each run is included in the dataset. Thus, the size of the
dataset is represented by: number of setups × number of runs × run duration ×
number of exported metrics. Thus, for the full pipeline, the dataset size is: 10×
5× 15× 86 = 64500 rows.

4.2 Results

The study compares the relative performance of models based on the metrics
selections described in Sect. 3.3. We check the robustness of these models when
generalizing to: new setups, new numbers of clients, and new setups with new
numbers of clients. We also evaluate models that predict for a new workload. For
each model, the training and testing process is executed 5 times using the leave-
p-out scheme described in Sect. 3.4. Presented results are the average accuracy
over these 5 runs with the standard deviation presented as error bars. For all
experiments, a baseline corresponding to always predicting the majority class
(server for the Kafka cluster and client for the full pipeline) is represented
using a dashed line.

Generalizing to New Setups. Figure 1 shows the average accuracy for dif-
ferent metrics selections with different classifiers for the Kafka cluster and the
full pipeline use cases when predicating on new setups. The X-axis represents
the different metrics selections models with the different classifiers. The Y-axis
represents the average model accuracy in predicting whether the system has
reached its maximum capacity.

Fig. 1. Average accuracy when predicting on a new setup.
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Results show that for both cases, most models manage to improve the predic-
tions compared with the baseline. We also observe that the selections including
combination of software-level metrics perform better (i.e., All, Software, and Rec-
ommended) compared to models built with a single type of metrics (i.e., Hard-
ware, Response time, and Waiting time). Models based on the Recommended
selection of metrics achieve the best accuracy (up to 85% for the Kafka cluster
and 78% for the full pipeline). Models based on Hardware metrics achieve low
accuracy especially on the full pipeline case.

We analyzed the results to understand why wrong predictions were occur-
ring. We observed that some setups are more prone to wrong predictions, and
that these setups correspond to cases where the pipeline reaches its maximum
capacity with a very low number of clients. In these cases, we further observed
that the value of some metrics were harder to interpret as several of them where
having a significant change in their values for numbers of clients that did not
correspond to the point where the system reached its maximum capacity.

For the resource consumption metrics, we noticed that in general the evo-
lution of their values when increasing the number of clients was not correlated
with the evolution of the throughput. Very often, the values were always remain-
ing low. This explains why models based on these metrics tend to achieve a low
accuracy. It illustrates the fact that complex interactions between the compo-
nents of such processing pipelines make it difficult to identify a clear resource
bottleneck in the system.

Generalizing to New Numbers of Clients. Figure 2 presents results for
models that try to make predictions for number of clients that never appear in
the training set. In this experiment, the tested setups also appear in the training
set but with runs involving different numbers of clients. The same observations
as in Fig. 1 can be made. Models based on a combination of different types of
metrics perform better that models based on a single type. In this case, models
based on a single kind of metrics barely manage to be as good as the baseline
for predictions on the full pipeline. Best results are still achieved with models
based on recommended metrics: up to 88% of accuracy for the Kafka cluster and
77% for the full pipeline.

Generalizing to New Numbers of Clients and New Setups. Figure 3
presents predictions results for a hard case where we test with a number of
clients and a setup that never appear in the training set. For example, we have
executions for a number of clients equals to 10 for a setup Z in the test set and
the training set neither contains information about the setup Z nor runs with 10
clients for other setups. The conclusions of the previous experiments still apply
in this case. Furthermore, we observe that for the full pipeline, models based on
a single kind of metrics achieve an accuracy lower than the baseline. The best
accuracy, achieved with models based on recommended metrics, is 83% for the
Kafka cluster and 75% for the full pipeline.
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Fig. 2. Average accuracy when predicting on new numbers of clients.

Fig. 3. Average accuracy when predicting on new numbers of clients and new setups.

Generalizing to a New Workload. In this experiment, we check the robust-
ness of the built models when generalizing to new workload application, i.e.,
WordCount (WC), Twitter Sentiments Analysis (TSA), and Flight Delays Pre-
diction (FDP) for the full pipeline. The test set contains executions of one work-
load while the training data contains executions of the two left workloads. To
avoid clutter, for this test we only present results with the GBT classifier, as
this classifier was always a good one in the previous experiments.

Results presented in Fig. 4 show that models are able to predict results for
very different workloads. This is especially true with the models based on the
recommended metrics that achieve the best results in average. A lower accuracy
is in general obtained when predicting for the WC application. This can be
explained by the fact that this application is very different from the two other
ones, as processing the data only involves a few simple operations.

Discussion. The results of our evaluations show that models built based on a
combination of software metrics of different kinds are able to make accurate pre-
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Fig. 4. Average accuracy when predicting on a new workload.

dictions and to generalize in different cases. On the other hand, in general, mod-
els based on the selection of all metrics achieve a lower accuracy compared with
models based on the selection of recommended metrics. This might be explained
by the fact that the recommended selection does not contain misleading metrics
while the all selection does. Still, depending on the case, the percentage of errors
vary between (i) false positive predication that represents the error prediction
where models predict that the system has reached its maximum capacity while it
has not (i.e., models predict the server class while it should predict the client
class), and (ii) false negative predication that represents the error prediction
where models predict that the system has not reached its maximum capacity
while it has (i.e., models predict the client class while it should predict the
server class).

Analyzing the error predication for models based on the recommended selec-
tion for all classifiers, we observe that a significant part of the errors are made
for points that correspond to the gray zone (between 30% and 45% of the total
number of errors). Part of these errors are explained by the fact that, as we
discussed in Sect. 3.4, there are runs where it is not always clear whether the
pipeline has actually reached its maximum capacity: provisioning more resources
to the pipeline improves the throughput but adding more clients also improves a
bit the performance. In our evaluation, we considered the runs in this gray zone,
as runs where the pipeline had reached its maximum capacity (server class),
but predicting the client class for these runs would not be a major error. Apart
from these minor errors, between 25% and 34% of the errors are false positives
and between 28% and 39% of the errors are false negatives.

Results also show that in general models achieve a better accuracy for the
Kafka use case than for the full pipeline. The reason is that in the case of the full
pipeline, the components and their internal replicas have many complex inter-
actions, involving both control messages and data. These various and complex
interactions make it difficult to find metrics that provide valuable information
about the status of the system in a large number of different configurations and
workloads. This also explains why models based on a single kind of metrics are
generally bad when making predictions for the full pipeline. Evaluations with a
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pipeline composed of Kafka and Spark Streaming also show that the obtained
models are less accurate than for the simple case of the Kafka cluster.

To understand whether the results presented in this paper are specific to the
case of our data processing pipeline or if they are more generally applicable to
multi-tier systems, we ran the same analysis using a LAMP Web stack com-
prising an Apache server that executes PHP code and interacts with a MySQL
database. Due to space limitations we do not include these results but the main
conclusions of our study also apply in this case: i) models robust to changes
in the configuration and the workload can be built based on machine learning
classifiers applied to metrics, to determine when the system has reached its max-
imum capacity; ii) models that achieve the best accuracy rely on a combination
of software metrics of different types.

5 Conclusion

This paper studies the use of a learning-based approach to automatically deter-
mine whether a data processing pipeline has reached its maximum capacity solely
based on metrics. The considered pipeline is composed of the ubiquitous software
components Kafka, Spark Streaming, and Cassandra. Our results show that we
are able to build models that are robust to changes in the configuration of the
components, in the number of connected clients, and in the application logic.
For the different tested cases, best models achieve an accuracy in the predic-
tions between 75% and 88%. Furthermore, an important part of the mistakes
is done for runs where it is not fully clear that the maximum capacity of the
pipeline as actually been reached. Finally, comparing the results obtained when
building models based on different selections of metrics shows that a combination
of software metrics of different types is necessary to obtain a good prediction
accuracy. In the future, we plan to study how to leverage these predictions to
apply automatic scaling strategies for such data processing pipelines.
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Abstract. Once the peak power draw of a large-scale high-performance-
computing (HPC) cluster exceeds the capacity of its surrounding infras-
tructures, the cluster’s power consumption needs to be capped to avoid
hardware damage. However, power capping often causes a computational
performance loss because the underlying processors are clocked down. In
this work, we developed an operation-aware management strategy, called
OAPM, to mitigate the performance loss. OAPM manages performance
under a power cap dynamically at runtime by modifying the core and
uncore clock rate. Using this approach, the limited power budget can
be shifted effectively and optimally among components within a pro-
cessor. The components with high computational activities are powered
up while the others are throttled. The overall execution performance is
improved. Employing the OAPM on diverse HPC benchmarks and real-
world applications, we observed that the hardware settings adjusted by
OAPM have near-optimal results compared to the optimal setting of a
static approach. The achieved speedup in our work amounts to up to
6.3%.

Keywords: Power capping · Performance optimization · Dynamic
resource management · RAPL · DVFS · UFS · Performance deviation

1 Introduction

The power draw of high-performance computing (HPC) clusters has been
increasing consistently. Nowadays, the peak draw of a cluster may exceed the
power capacity of surrounding infrastructures. In this case, the power draw needs
to be enforced to remain under a certain limitation to avoid hardware damage,
which is called power capping.

On the other hand, power capping causes a reduction on computational per-
formance since the underlying hardware has to be clocked down. To mitigate this
performance throttling, we develop in this work a fine-grained and dynamic strat-
egy, called operation-aware power management (OAPM ). OAPM improves the
system-default power-capping implementation, such as runtime average power
limitation (RAPL) of Intel [7], in terms of accelerating computation on main-
stream processors.

Instead of a complete reimplementation of the power capping feature, OAPM
relies on the available RAPL interface which limits the power draw reliably
c© Springer Nature Switzerland AG 2020
M. Malawski and K. Rzadca (Eds.): Euro-Par 2020, LNCS 12247, pp. 68–82, 2020.
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and accurately [12,13,15,28,36]. At the same time, OAPM utilizes advanced
features of main-stream processors to optimize power consumption and execution
performance. The advanced features allow to control the power supply separetly
of distinct components within a processor, such as cores and uncore [5] where
diverse devices are located, including integrated memory controller (IMC), L3
cache boxes, and QPI agent.

Applying OAPM on diverse HPC benchmarks and real-world applications,
the hardware settings adjusted are having near to the optimal results of a static-
setting approach where possible settings are explored one by one. The achieved
speedup amounts to up to 6.3%, compared to with the system-default hardware
settings.

This paper is organized as follows. Section 2 introduces related work about
power capping. Section 3 describes the investigation environment and prelim-
inary observations. Section 4 presents the OAPM design and implementation.
Section 5 illustrates and discusses results of applying OAPM on benchmarks
and real-world applications. The last section concludes this work.

2 Related Work

Since the cluster’s peak power draw belonged to the first order concerns at
constructing a large-scale HPC cluster, enforcement of a power cap challenges
all aspects of the cluster. Authors of [3,9,21,24,27,31] proposed approaches to
enforce a power cap for a whole cluster where they maximized the cluster’s
throughput at the same time. Authors of [6,29,30] recognized power-efficiency
variations among processors and employed frequency scaling to minimize the
execution time of a power-capped application.

A cluster- and job-level power capping require possibilities to enforce a power
limitation on each compute node. Lefurgy et al. [23] proposed a closed-loop
approach. Isci et al. [19] developed a per-core DVFS power-budgeting approach.
Results of the work [7] made RAPL is introduced into product processors.

The exciting power management approaches does not always promise opti-
mal results on state-of-the-art processors, regarding performance and energy
consumption, since processors are getting more and more complicated. A
modern processor contain components which can be managed individually.
Hackenberg et al. [13] explores the possibilities of separate power management,
for core and uncore. They figured out the optimal frequency setting through
traverse the whole configuration space. Some works [1,18] employed core DVFS
to reduce energy consumption of a whole cluster while Sundriyal et al. [29,30]
and Bekele et al. [2] rely on UFS management to reduce energy consumption of
applications. Instead of energy reduction, Gholkar et al. [10] presents a solution
to optimize the compute performance of power-capped processor based on UFS.
Similarly, authors of [37] explored and adjusted a wide range of runtime parame-
ters, including the number of active cores and frequency to improve performance
under power capping.
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OAPM is made based on previous contributions. It optimizes performance
of power-capped processors which helps to reduce the execution time of power-
capped applications. Instead of a new implementation to enforce a power cap,
it relies on the accurate and reliable RAPL. It employs advanced hardware fea-
tures of modern processors, including core DVFS and UFS to realize effective
optimization.

3 Default Hardware Management Under Power Capping

In this section, we introduce briefly the employed hardware and software at
first. The hardware is instrumented with several features to manage power
draw, including power capping. Sub-sequentially, we explore the behaviors of
the power-capped processors and applications.

3.1 Hardware and Applications

The employed hardware platform in following sections is a compute node of the
RWTH CLAIX16 cluster.1 It possesses two Intel Xeon E5-2650 V4 processors.
Each processor has 12 cores where hyper-threading is disabled according to the
cluster’s default setting. The cores can be clocked up to 2.9 GHz in turbo-boost
mode. The maximum frequency can be limited either through DVFS or a power
limit. The peak power draw of each processor amounts to 105 W while the min-
imum hardware-specific power cap amounts to 53 W.

In this work, we focus on the performance of a power-capped processor
and we employ diverse single-node benchmarks and applications. The simply
FLOPS and TRIAD micro-benchmarks are programmed in assembly to rep-
resent computing-intensive and memory-intensive workloads respectively.2 The
well-known NASA parallel benchmarks (OpenMP version) are mainly used at
preliminary investigations. Two real-world applications, SWIM and BWAVES,
are employed for final evaluations. SWIM makes weather prediction through
solving finite-difference approximation of the shallow-water equations [17,26].
BWAVES simulates blast waves in three dimensional transonic transient lami-
nar viscous flow [22]. Both are parallelized using OpenMP.

Since most HPC applications perform simulations iterativelly until results
converge, as the applications and benchmarks mentioned above, and iterations
execute similar operations, we explore these features to implement the OAPM.

3.2 Power Management Tools

The power draw of main-stream processors can be managed in different ways.
The well-explored dynamic voltage and frequency scaling (DVFS) manages the

1 https://doc.itc.rwth-aachen.de/display/CC/Home.
2 The FLOPS benchmark has a cycles per instructions (CPI) of 0.8 while the CPI of

the TRIAD benchmark amounts to 15.3 on our platform with 12 threads.

https://doc.itc.rwth-aachen.de/display/CC/Home
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clock rate of a processor and the power draw indirectly. The uncore frequency
scaling (UFS) is an implementation of DVFS for the uncore area since the
Haswell micro-architecture [16]. UFS was investigated by [13] for accuracy and
employed in works [6,29,30] to save energy to solution. Dynamic duty cycle man-
agement [4,35] is another interface which controls in- and active clock cycles and
power.

Compared to all the interfaces mentioned above which manage the power
draw indirectly, RAPL [7] allows a direct power management where a user can
read current power draw and set a power cap. RAPL manages the power of
domains individually where a domain is a group of components. For instance,
the employed platform E5-2650 V4 has two meaningful domains, the PKG and
DRAM domain3. The PKG domain contains the cores and uncore while the
DRAM domain covers the memory system.

In this work, we does not change any setting for the DRAM domain like
many other works [9,11,25] since the memory system has a relatively low peak
power draw and a lower performance compared to the PKG domain.

To limit the power draw employing RAPL, a user needs to set the param-
eters power cap (PC) and time window (TW). TW determines a time interval
calculating average power. For instance, setting PC = 100 W and TW = 0.01 s,
RAPL ensures that the total power consumption every 0.01 s does not exceed
100 ∗ 0.01 = 1 joule through DVFS [7,36]. In the following sections TW is fixed
to 0.01 s, since a low TW causes serious performance fluctuation and a high TS
may lead to a short but very high peak power draw which may still threaten the
cluster-level power cap.

RAPL does not distinguish between power draws of the core and uncore areas.
However, they can be clocked independently through core DVFS and UFS. On
the introduced platform, the clock rate can be adjusted through manipulating
the address 0x620 and 0x199 of the module specific registers (MSRs).

RAPL, DVFS and UFS can be employed independently and simultaneously
to manage the power draw. The most restrictive setting determines the hardware
state: with a low power limitation, the processor’s components are clocked down
regardless of the current frequency setting, and vice versa.

3.3 Frequency Scaling Under Power Capping

To meet a power cap, RAPL scales the clock rate of different components dynam-
ically. Figure 1 illustrates measured average frequency under distinct power caps.
Setting the cap to 105 W, the clock rate of the core fc and uncore func amounts
to 2.5 GHz and 2.7 GHz for both FLOPS and TRIAD benchmarks, since their
peak power draw is much lower than 105 W. Decreasing the cap step by step,
the clock rates drop. For both benchmarks, the func is dropped at first until
func is equal to fc. Then fc and func are lowered similarly.
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Fig. 1. Average clock rate under distinct power caps (Color figure online)

3.4 Suboptimal Execution Performance of Power-Capped
Applications

Power capping causes clock-rate throttling and performance loss when executing
applications. Since RAPL scales the fc and func identically as illustrated by
Fig. 1, the provoked performance loss can be higher than necessary. Figure 2
illustrates execution-time heatmaps running NPB BT, CG and MG benchmarks
capped to 53 W where fc and func are statically fixed at each measurement. The
execution time in seconds is color-scaled where red shows higher run-time and
blue lower run-time. The system default clock-rate setting is fc = 2.9 GHz and
func = 2.7 GHz. Figure 2 illustrates that the BT, CG, and MG benchmarks
have distinct optimal settings. For the BT benchmark, an appropriately low
func shortens the execution time where for the CG benchmark a proper higher
func is preferred. For the MG benchmark, a lower fc with a higher func lead
to a short execution. The individual optimal settings are determined by the
given characters of each benchmark. Table 1 illustrates the measured hardware
utilization of the three benchmarks. BT has a low CPI, a low L3M and a low MB.
Its execution time is sensitive to a low fc, but robust against a low func. CG has
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a very high CPI and L3M, with relatively low memory bandwidth compared to
MG. CG is bound to memory access latency while MG is bound to the memory
bandwidth. The execution of CG is sensitive both to fc and func. The execution
of MG is robust again a manipulation of fc.

Table 1. Execution characteristics: CPI for cycles per instruction, L3M for L3 cache
misses per 1000 instrunctions, MB for DRAM access bandwidth

Power(W) CPI L3M MB(GB/s)

BT 87.3 0.47 2.4 17.30

CG 84.1 2.65 229.7 26.80

MG 89.5 0.93 5 58.07

In most cases, the system default setting does not promise the best execution
time. Especially, the optimal clock rate setting does not only differ among execu-
tions of different applications, but also through a single application’s execution
time, since the application may perform distinct operations from time to time.

Besides, power capping introduces deviations in terms of execution time.
Figure 3 illustrates normalized time of repeatedly-executed regions of the BT
CG, and MG benchmarks. The time deviation under power capping is much
stronger than the deviation without a power cap(at 105 W). The lower the power
limitation, the higher the deviation. That is because RAPL manages power bud-
get based on average power draw over multiple time slots [37].
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Fig. 3. Performance deviation of five hotspot parallel regions of the BT, CG and MG
benchmarks under distinct power caps. Each region was executed in around 200 itera-
tions.

For repeated executions of a same region, the management differs depending
on when RAPL starts to work. For instance, the RAPL time window TW is set
to 1 s, consisting of 2 time slots each with 0.5 s, and the power cap PC is set to
50 W. For a region consisting of 4 time slots, each with a peak power draw of 40,
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60, 60, and 40 W, two possible RAPL managements may occur, as illustrated by
Fig. 4a and Fig. 4a. Starting the first TW on the first slot (Fig. 4a), the average
power draw of each TW is equal to the set PC. Power capping will not affect
the performance. However, starting the first TW on the slot 1 (Fig. 4b), power
draw of slot 1 and slot 2 need to be cut where the computation performance will
be impaired.

slot 0

40 w
slot 1

60 w
slot 2

60 w
slot 3

40 w

window 0 window 1

(a) Time window starts at slot 0

slot 0

40 w
slot 1

60 w
slot 2

60 w
slot 3

40 w

window 0

(b) Time window starts at slot 1

Fig. 4. Power management of RAPL started on a random slot

4 Operation-Aware Management on Power-Capped
Hardware

Assuming HPC applications simulate in iterations and iterations have similar
operations, we construct the OAPM approach. OAPM controls the fc and func
dynamically at runtime under a certain power cap, according to executed oper-
ations. Therefore, a method is required to recognize the operational pattern.

4.1 Recognition of Operation Patterns

Effective and accurate recognition of operation patterns is vital for a determi-
nation of the optimal setting. The pattern recognition of OAPM is driven from
the top-down analysis from Intel [34], the roofline model [33] as well as the ECM
model [14].

Figure 5 illustrates the micro-architecture of typical main-stream processors.
Basically, a processor consists of two parts, a front-end and a back-end. The front-
end fetches, decodes and schedules instructions while the back-end performs
instructions and fetches data if any is missing. In an ideal case, the front-end
fetches instructions as much as the back-end can process.

However, the processor can be stalled, i.e. cycle without instruction retired.
The causes can be analyzed either on the front-end or on the back-end. If the
scheduler (as an instruction depository) is full, the stall occurs due to back-
end whose components need to be investigated. If the instructions are waiting
for data, the memory control is the performance bottleneck since fetching data
from a low-level memory hierarchy is inefficient compared to executing on the
computation ports.

Each component in the micro-architecture is instrumented with multiple
hardware-performance counters, in order to monitor performance events, like
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Fig. 5. Micro-architecture of main-stream processors [20].

retired instruction, prefetching etc. In this work, we focus on the state counters
which count cycles in certain states, like stalled or unstalled.

Stall cycles can be caused by the front-end or the back-end, especially by
data missing in memory control. We split the stall cycles into two sub-categories
with or without data missing.

In an unstall state, memory control can still have data missing, since the
instructions are executed by the back-end in an out-of-order fashion. That means
an instruction can retire even if data required by other instructions is missing.
We split the unstalled state into two sub-categories, pure unstalled state and an
unstalled state with pending data.

Considering an execution interval T , it consists of four sub-intervals with

T = Tsm + Tsf + Tup + Tum (1)

where Tsm indicates time in a stalled state with data missing, Tsf time in a
stalled state with other reasons, Tup time in an unstalled state without data
pending, and Tum time in an unstalled state with data missing respectively.

Tsm, Tsf , Tup, and Tum can be measured and calculated through MSRs. We
employ the Linux Perf application programming interface (API) to program the
corresponding MSRs as well as read out values. The introduced measurement
overheads are in tens of microseconds [32]. The overheads are negligible compared
to T whose minimum is set to 0.01 s (see Sect. 4.2).

We define an execution to be memory-bound if Tsm > Tup, i.e. more time
spent for waiting data than computation, and otherwise compute-bound. In a
memory-bound case, the func determines the execution performance where fc is
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irrelevant and can be scaled down. In a compute-bound case, the fc determines
the execution performance where func is irrelevant and can be scaled down.

4.2 Online Resource Management

For an iterative executions of regions, OAPM manages fc and func at runtime,
as illustrated by Fig. 6. At the beginning of the region, frequency is set if there
are any indications. Then hardware information is collected during the execution
of the region. At the end new frequency will be calculated for the next iteration.

Fig. 6. OAPM process

To reduce the management overheads, OAPM switches off the management,
after a consistent setting is determined. The region enters a stable state. Besides,
a region also enters a stable state, if either minimum fc or minimum func is
reached. Same for a short executed region, no frequency management occurs
where the overheads exceed potential benefits. In this work, we set the lower
bound tMIN of an execution to 0.01 s which is equal to the TW. A higher tMIN

excludes most regions of an application for management. The entire management
process is illustrated by Fig. 7a.

The collected hardware information is handed over to the calculate frequency
function which determines new settings, as illustrated by Fig. 7b. If the measured
execution time tcur is shorter than a predefined tMIN , the region is noticed as
short. If tcur is longer than a previous execution tpre, the current setting is
over-steered. Previous settings need to be rolled back. Otherwise, frequencies
are recalculated according to the operational pattern introduced in Sect. 4.1.

In this work, we define a region as the codes surrounded by a OpenMP
directive, namely #pragma omp parallel. We implement a tool based on OMPT
[8] to collect runtime information, including regions’ IDs, hardware utilization
and execution time. OMPT is an API to support construction of performance
tools. It provides a distinct ID for each OpenMP parallel region of the source
code. With this kind of IDs we recognize repeated executions of a region.

The implementation available on https://git.rwth-aachen.de/wang/arapl/-/
settings/repository.

5 Evaluation

In this section, we firstly investigate the control effectiveness of OAPM. Subse-
quently, we investigate statistic parameters to solve measured deviation issues.
Then, we evaluate OAPM on real-world applications.

https://git.rwth-aachen.de/wang/arapl/-/settings/repository
https://git.rwth-aachen.de/wang/arapl/-/settings/repository
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5.1 Illusion of Frequency Management

Setting the power cap to 53 W, Fig. 8 illustrates the measured power draw and
clock rate of the BT benchmark with active OAPM. The measured power draw
exceed rarely the power cap. Most of the time, the measured power draw remains
under the power cap, but with 11 exceptions out of 118 samples. The measured
maximum power amounts to 53.34 W which is 0.6% over the cap.
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Fig. 8. Measured power draw and clock rate capped to 53W
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The clock rates fluctuate. At the beginning, parallel regions are registered
and no limitation on frequency is specified. The measured fc and func have
similar values. From around the 1.5th second, previously-registered regions are
recognized, fc and func are being adjusted individually. Normally, a high fc is
coupled with a low func, or vice versa. After the 4th second, the frequencies fluc-
tuate with a similar pattern. Each parallel region reaches its optimal frequency
settings and enters the stable state. No further recalculation occurs.

5.2 Selection of OAPM Control Parameters

OAPM achieves a maximal performance improvement only if the frequencies
converge to optimal values quickly and accurately. However, performance devi-
ation introduced by Fig. 3 impedes an efficient convergence. In this section, we
conducted a robustness study to figure out the optimal settings.

The proposed method collects multiple executions of a region, employs
medium or medium values to determine new fc and func setting for the next
iteration. Figure 9 illustrates execution time of benchmarks with different sta-
tistical settings. Each benchmark with a specific setting was measured 7 times.
The values are normalized to average execution time of each benchmark with
the system-default setting, namely with maximum fc and func. In the figure,
static opts indicates executions with optimal frequency setting which were fig-
ured out through repeated measurements each time with fixed fc and func.

The distinct parameter settings, i.e. with different number of iterations and
with medium or medium, does not cause a huge difference on execution per-
formance in average. The setting with 3 iterations and medium are robust and
provide the overall best execution time.
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Fig. 9. OAPM static parameter tuning. The power cap was set to 53W.

5.3 Evaluation on Real-World Benchmarks

With the runtime setting “#iterations=3” and medium, we evaluate OAPM on
two real-world applications, SWIM and BWAVE.
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We power capped the applications each time to 53, 63, 73, 83, 93 and 105 W
and measured the execution time. The results are illustrated by Fig. 10.
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Fig. 10. Execution time under power capping

For both applications, OAPM succeed in improving their execution speed. At
53 W, the achieved speedup amounts to 6.3% for SWIM and 4.6% for BWAVE
compared to Default where fc and func are consistently set to their maximum
values respectively. With increasing power budget, OAPM still provide improve-
ments, however with declining effects, until the power budget exceeds the peak
power draw of the applications.

5.4 Discussions

As illustrated by Figs. 9 and 10, OAPM provides performance improvements in
most cases, compared to executions with system-default settings. Especially, the
achieved run-times is close to the optimal values even better for LU benchmark.
However, it does not work well for IS and MG. For IS the system-default set-
tings are almost optimal. An improvement potential is invisible. In contrast,
MG has a high improvement potential. However, its execution cannot be accel-
erated by OAPM since MG possesses an increasing executions which is a given
property. The execution of a region in current iteration takes longer than the
execution in a previous iteration. OAPM resets the frequency to system default.
No improvement can be made.

6 Conclusion

Large-scale HPC clusters need to be power capped if their power draw exceeds
the capacity of the surrounding infrastructures where each computing node needs
to be capped.
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Under power capping, applications suffer from performance loss, since the
hardware is clocked down. The OAPM strategy is developed in this work to min-
imize this performance loss. OAPM works for HPC applications with repeating
workloads under the assumption that operations through iterations are consis-
tent. OAPM scales core and uncore clock rates dynamically to improve compu-
tation performance.

OAPM was applied on diverse benchmarks and applications where the execu-
tion speed was accelerated up to 6.3% without a power cap exceed. The achieved
speedup is near to the optimal values with statically-determined setting, even
better.

During measurements, we realized some inconsistent executions among iter-
ations as the MG benchmark presented. Besides, an activation of the hyper-
threading may effect the improvement of OAPM. We will explore such issues in
future work.
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Abstract. OpenMP implementations must exploit current and upcom-
ing hardware for performance. Overhead must be controlled and kept to
a minimum to avoid low performance at scale. Previous work has shown
that overheads do not scale favourably in commonly used OpenMP
implementations. Focusing on synchronization overhead, this work anal-
yses the overhead of core OpenMP runtime library components for GNU
and LLVM compilers, reflecting on the implementation’s source code
and algorithms. In addition, this work investigates the implementation’s
capability to handle current CPU-internal NUMA structure observed in
recent Intel CPUs. Using a custom benchmark designed to expose syn-
chronization overhead of OpenMP regardless of user code, substantial
differences between both implementations are observed. In summary, the
LLVM implementation can be considered more scalable than the GNU
implementation, but the GNU implementation yields lower overhead for
lower threadcounts in some occasions. Neither implementation reacts to
the system architecture, although the effects of the internal NUMA struc-
ture on the overhead can be observed.

Keywords: OpenMp · Scalability · Synchronization · Performance

1 Introduction

OpenMP is currently a de facto standard for intra-node parallelism and fre-
quently used in current HPC codes. Moving towards exascale, new systems offer
not only a much higher degree of parallelism in terms of the number of nodes,
but also provide more cores per node. Therefore, efficient OpenMP implemen-
tations are necessary in order to exploit the intra node parallelism to the best
possible extent.

In order to achieve an efficient parallelization, it is important to keep the
parallelization overhead as low as possible. For OpenMP runtime implementa-
tions, the parallelization overhead occurs in two conceptional ways: On the one
hand, overhead occurs from the need for data transfer or data duplication as
c© Springer Nature Switzerland AG 2020
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implicitly required by the OpenMP standard or explicitly requested by the user.
An example for this is observable, when different threads operate on separate
copies of the data without interfering. On the other hand, overhead arises from
the need of synchronization, again implicitly and explicitly. An example for this
is the coordination effort to ensure that no data races occur and the computed
results are identical to a serial version of the program.

In this work, we focus on the synchronization overhead of selected OpenMP
runtime libraries and deliberately exclude any effects originating from the user
side of the code, such as workload specific load balancing effects. We investi-
gate any synchronization either originating form explicit OpenMP constructs,
such as from explicit barriers, or implicitly implemented by an OpenMP run-
time library, such as a synchronization that is required for task scheduling, or
a synchronization to access the internal state of a parallel loop.

Although there are well established OpenMP benchmarks [4,5], most com-
parisons evaluate an OpenMP parallelized code with an implementation using
alternative parallelization methods; examples for such comparisons are works by
[13–16]. While this provides a perspective on the ability of OpenMP to deliver
performance in a day-to-day usage scenario, this approach relies substantially on
the parallelization and programming skills of the implementing person and their
knowledge of the different parallelization methods involved. Therefore such app-
roach provides no insight in issues and challenges of an OpenMP implementation
itself.

Previous work investigating the performance of the OpenMP implementa-
tions is often specialized, i.e. these works analyse the performance in regards to
a very specific hardware platform, such as Intel Xeon Phi [24], or target specific
features, such as the offloading mechanisms for accelerators [7]. Our work does
not focus on any special type of accelerator hardware or construct, as we aim to
look at the algorithms used in OpenMP runtime libraries and their performance
on standard CPUs used for intra-node parallelism.

For this we draw inspiration on works that investigate different MPI imple-
mentations in regards to the effects of different implementation choices [3,18]
and [8].

In previous work [11] we discovered that there are scalability issues in the
OpenMP runtimes of GNU and LLVM/Intel implementations. A troublesome
aspect was, in particular, overheads with a growth-complexity of higher than
logarithmic in regards to the number of threads used. However, we did not
further investigate the reason for the observered overhead-behaviour. Therefore
we will compare and analyse the different implementation choices and algorithms
used for implementing an OpenMP runtime library (RTL) in this work.

Beyond the algorithmic aspects, we will investigate the additional synchro-
nization overhead originating from the internal structure of modern CPUs, such
as the Intel Xeon processor E5-2680 v3 deployed at TU Darmstadt. Here, CPUs
come with a number of cores that is not a power of two and exhibit a non-
uniform, somewhat “asymetric”, internal CPU structure. An example is illus-
trated in Fig. 1. As one can see, the second ring within the CPU is asymetrically
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Fig. 1. Schematic of an Intel Xeon E5 v4 series CPU in a medium core count (MCC)
(12-14 cores) configuration (src.: https://en.wikichip.org/w/images/f/f6/E5 v4 MCC.
png).

populated. This may have an impact on the performance or scalability of a
software relying on the lowest latencies to achieve performance.

As both aspects have the potential to severely impact the scalability of
OpenMP implementation on current and future systems, this work investigates
the overheads from both the software side, comprised of the algorithm and its
implementation, as well as the hardware side the RTL is run on. As access to the
source-code is mandatory for this endeavour, we consider the two most frequently
used open-source compilers and their OpenMP RTL: the libgomp [17] used by
the GNU compilers and libomp [19] used by the LLVM projects compilers. Using
the benchmarks previously developed in [11], we evaluate the overall synchro-
nization overhead of the respective OpenMP-RTLs and correlate our findings
with the source code and algorithms used, highlighting aspects impacting the
scalability and comparing both implementations.

The remainder of this paper is organized as follows: Next, we describe our
experimental setup, our evaluation policy, the hardware used and our selection
of OpenMP constructs and RTL components. This is followed by the results and
analysis of performance and scalability of both OpenMP implementations for
each construct/component. Lastly we summarize our results.

2 Experimental Setup

We performed our experiments on the Lichtenberg high performance computer
system at TU Darmstadt. The nodes used for our experiments are equipped with
two Intel Xeon E5-2680 v3 CPUs running at 2.5 GHz. This leads to four NUMA
domains consisting of six cores each. The nodes are each equipped with 64 GB
of main memory, although our benchmarks do not directly rely on the amount of
memory used. We use the OMP PROC BIND environment variable to place threads
in either a close or spread configuration and used OMP PLACES = “threads′′ in
order to control the thread pinning.

https://en.wikichip.org/w/images/f/f6/E5_v4_MCC.png
https://en.wikichip.org/w/images/f/f6/E5_v4_MCC.png
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To measure the overhead of OpenMP constructs, we decided against using
the popular EPCC benchmarks [4,5]: While the EPCC benchmarks are well-
designed to capture the overhead of copying data environments, we want to focus
on capturing the overhead incurred by individual synchronization constructs.
This is, in our oppinion, not possible in the unaltered EPCC benchmarks. To
measure the costs of one OpenMP construct in isolation, we used the benchmarks
developed in our previous work [11].

These benchmarks create detailed timing measurement for individual RTL
operations from an OpenMP implementation with individual timing informa-
tion for the OpenMP construct calls. Here, before the timing information for a
construct is obtained, all threads compute their clock offset with respect to the
master thread. This allows accurate measurements, even if the high-precision
timer used have slight differences. The clock offsets are calculated in a simi-
lar way to the NTP protocol [20], using the cache coherency mechanisms as
communication medium. Once the clock differences are known, all the threads
synchronize using the mechanism proposed in [11], which is similar to the win-
dow based synchronization mechanism for MPI collective operations [10] - i.e. all
threads wait until they reached an agreed-upon future point in time.

After the threads have synchronized, each thread takes a time stamp before
and after the target OpenMP construct, or within the construct if necessary, as,
for example, in a OpenMP parallel clause. With these time stamps, we derive
several metrics, such as the minimum cost (first out - last in) or the average cost
among all threads (average of end times - last in).

In order to eliminate obvious measurement outliers and to obtain reliable
values for the overhead incurred by the different OpenMP constructs, we filter
the top 10% of the gathered time measurements, while selecting the sample size
such that at least a thousand measurements remain for each case. By discarding
the top 10%, we in particular discard those cases, where the process is interrupted
for some reason, e.g. by some background task running on the OS1. We imply,
that we do not have to filter for outliers at the lower bound which is the hardwares
performance limit.

3 Results

In this section, we provide an analysis of the scaling behaviour of different
OpenMP implementations for the most important OpenMP constructs. As we
want to draw attention to the synchronization overhead, we choose those con-
structs that implicitly or explicitly require synchonization among the threads.
Therefore, we consider barrier and critical as the most important synchro-
nization directives. Furthermore, we consider the for loop and task constructs
for worksharing and we take a look at the fork and join of parallel regions, as
here it is likely that “costly” thread-management occurs.

On our system, the Intel implementation performed very similar to the LLVM
implementation, which is not a surprise considering that the Intel and LLVM
1 For example each node has to respond to the SLURM controller from time to time.
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implementations are of the same origin. Therefore and because we want to inves-
tigate and correlate our findings with the source code, which is not directly avail-
able for the Intel compiler, we omit the Intel implementation for the remainder
of this paper and focus on the comparison of GNU with LLVM RTL implemen-
tations.

All figures in this section are structured as follows: Each figure shows the over-
head of the selected OpenMP construct for both the LLVM and GNU OpenMP
runtime implementations. The figures show the distribution of at least a thou-
sand measurements per measurement point with a violin plot. We slightly offset
the violins for easier readability. The X axis depicts the number of threads used
as input to the measurement. For an easier comparison, most figures share the
same X axis scaling with the exception of the figures in Sect. 3.3 and Fig. 12.

The Y axis depicts the resulting time at least one of the threads is not avail-
able for execution of the user code, i.e. it is occupied performing the OpenMP
runtime operations. A detailed explanation follows in the analysis section below.

3.1 Single

Fig. 2. Overhead of the single con-
struct (with nowait clause) for all
threads that do not execute the single
region with close thread binding

Fig. 3. Overhead of the single con-
struct (with nowait clause) for all
threads that do not execute the single
region with spread thread binding

An example for OpenMP inducing an implicit synchronization overhead is the
single construct. Apart from the implicit barrier, some additional synchroniza-
tion is needed, even if a nowait clause is specified, in order to determine which
thread should execute the user code in the single region. This overhead is shown
in Figs. 2 and 3. We define the overhead as the time that the threads that do not
process the single region, spend within the single region (although a nowait
clause is specified), as these threads may continue with other useful work. When
considering the single construct without a nowait clause, the overhead consists
of the time to enter the single region, which is the same time that threads need
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to skip that region (as shown in Figs. 2 and 3) and the overhead of the implicit
barrier, which is discussed later in Sect. 3.2.

Comparing both results (Fig. 2 and 3), we observe that the scaling behaviour
is quite the same, regardless whether we choose a close thread configuration (see
Fig. 2) or a spread configuration (see Fig. 3). Please note, that influence of the
system architecture, i.e. asymetry, can be seen with the close configuration. In
particular for the GNU implementation overhead grows when using the next
core from another NUMA node (at 6, 12 and 18 threads), be it CPU internal or
across sockets. As these subtle details cannot be observed in the spread binding,
we will focus on the close binding from now on. We observe, that the LLVM
implementation leads to less overhead than GNU’s implementation. The over-
head and variance grows for the GNU implementation, while staying about the
same in the LLVM implementation.

Source analysis shows that GNUs’s implementation relies on more atomic
compare and swap operations being executed, which leads to more blocking
between the threads. This explains the increased overhead and variance, as some
threads have to wait while others can do the atomic operation without waiting
for other threads. In both implementations, a counter is used that counts the
number of single regions encountered. At each single region, only one thread
is allowed to increment this counter using an atomic compare and swap opera-
tion. The thread that successfully incremented the counter will continue process-
ing the single region, while other threads will skip it. The general difference of
the implementations is that LLVM’s implementation first checks with a normal
if statement (not atomically) if the counter already has been incremented by
another thread. Only if a thread sees an opportunity to increment the counter,
the LLVM implementation has to apply the more expensive atomic operation
properly. Otherwise the thread will just skip the single region without the need
for an atomic operation. This leads to less overhead overall, as only a few threads
issue an atomic operation that could cause congestion. Altering the GNU imple-
mentation accordingly results in a similar overhead comparable to the LLVM
implementation that does not grow significantly with the amount of threads.

3.2 Barrier

Figures 4 and 5 show the overhead incurred by performing a barrier. We mea-
sure the overhead as the time that passes from the time the last thread arrives
at the barrier upto the time the last thread leaves the barrier (“last in last
out”). This metric measures the time that at least one thread is performing
the barrier construct and not doing other useful work. As the semantic of
the barrier forbids that one thread leaves a barrier before all threads have
arrived, considering a “first in, last out” rather than a “last in last out” time-
frame does not yield much information about the actual overhead incurred, as
the time spent waiting for other threads to arrive is not specific to the OpenMP
implementation itself. Rather it depends on the application using the barrier.

In Fig. 5, the threads enter the barrier synchronized with only minimal
difference in timing. In contrast, Fig. 4 shows the case when the threads enter
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Fig. 4. Overhead of the barrier con-
struct, when threads enter the barrier

at random points in time

Fig. 5. Overhead of the barrier con-
struct, when threads enter the barrier

at the same time

the barrier construct at random points in time during a given timeframe. This
means that each thread independently considers a timeframe of two times the
number of threads microseconds and picks a timepoint uniformly at random at
which he enters the barrier construct. We think that threads randomly entering
a barrier should better resemble a real world application, as the barrier is a
synchronization construct and when all threads enter a barrier synchronous,
there is no need to use a barrier for synchronization in this case.

Comparing Fig. 4 and Fig. 5 one can, perhaps surprisingly, observe more over-
head when the threads enter the barrier construct in a synchronous fashion.

This is due to the implementational aspect of the barrier. For both GNU
and LLVM the barrier is implemented in two phases: The first phase gathers
which threads have reached the barrier. In the second phase all the threads
are released from the barrier. Some of the work necessary for the gathering is
deliberately not represented in our overhead metric, although captured in the
raw measurement data. As the semantics of the barrier imply, that a thread
have to wait for the other threads to arrive, we attribute this overhead to the
application domain. Therefore a barrier without a workload imbalance may
exhibit a higher overhead as the applications work imbalance cannot “shadow”
parts of the overhead of this initial synchronization phase.

Comparing the different implementations, the LLVM implementation incurs
more overhead when the threads enter the barrier construct in a random order,
compared to the GNU implementation. We experimented with different entry
patterns, such as random thread order, ascending thread order or descending
thread order. As one usually can not predict the order in which the threads will
enter a barrier construct in a complex application, we choose to only show our
measurements for the random order here. Nevertheless our comparison between
LLVM and GNU hold for all tested entry patterns and the important distinction
is between a synchronized entry compared to a non-synchronous entry into the
barrier. The differences between different orderings of a non-synchronous entry
are much smaller, although observable in some cases.
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Based on our measurements, it seems that the GNU implementation vastly
outperforms the LLVM implementation, as long as the threads do not enter the
barrier in mostly synchronized fashion at the same time. To test the limits,
we increased the thread count up to 60 on one of our bigger nodes, a 4 socket
system, and observed that the GNU implementation incurs more overhead than
the LLVM one when using more than 30 threads.

The reason for this is, that LLVM’s implementation utilizes a tree alike
scheme to collect which threads have reached the barrier. In contrast, the GNU
implementation increments a single shared counter. This much simpler imple-
mentation of the GNU OpenMP runtime leads to less overhead, as long as the
threads do not arrive in a synchronized fasion. It therefore follows, that only the
time to increment a counter and signaling all other threads to leave the barrier
is required for the last thread to release the barrier. In LLVMs implementation of
the OpenMP runtime this is more complex. Here the last thread arriving at the
barrier has to traverse the full tree in order to validate that all other threads also
have arrived at the barrier and to release the barrier. Therefore the cost of GNUs
implementation is preferable at a lower thread-count. But with a larger number
of threads, the logarithmic complexity of LLVM’s implementation results in less
overhead than the linear complexity of GNU’s implementation, which makes it
preferable for large thread counts.

In addition, the performance of the barrier is indeed tightly coupled to the
system layout. When looking at the overhead of LLVM’s implementation in
Fig. 4, one can see that the overhead of the barrier increases whenever a new
tree layer is introduced at 1, 4, 8, and 16 threads. An additional increase can be
observed whenever the next thread is placed on a “new” group of CPU cores,
here at 6, 12, and 18 threads in Fig. 4. In the case of the GNU implementation,
this characteristic of the system has less of an impact. We can observe that the
variance of the overhead grows with the number of threads. This is explained by
the fact that the cache line where the shared counter is stored must move between
caches. Here the specific thread sequence factors in, as the order the threads are
calling the barrier influences the locality of the cache line. Timing variance
also increases with the number of threads for the LLVM implementation, as the
overhead also depends on the exact order the threads enter the barrier.

3.3 OpenMP Tasks

OpenMP tasks are a popular feature for worksharing. We compare the over-
head introduced by the task scheduling for two different cases: either a single
OpenMP thread creates all tasks, or each OpenMP thread creates an equal share
of the tasks (see Figs. 6, 7 and 8, 9 respectively). The total amount of tasks cre-
ated is the same in both cases. Figures 6 and 8 show the time needed to create
one task, whereas Figs. 7 and 9 show the time, needed by one thread to change
between tasks. The scheduling overhead is the time from the end of one task
until the start of the next one, i.e. the time a thread does not process any task.
We observe that GNU’s implementation results in a much higher overhead. This
is a result of GNU’s implementation maintaining a more complex priority queue
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for storing the tasks to be scheduled. Dequeuing from this priority queue needs
to be protected via a lock to prevent two threads from executing the same task.
Therefore, this lock induces overhead. This also explains the higher variance with
higher thread counts: the probability of the lock being occupied is higher than in
low-thread scenarios, leading to more congestion. In contrast, LLVM’s implemen-
tation maintains multiple queues, one for each thread, with task-stealing when a
thread runs out of work. In general this results in less conflicts when dequeueing
the next task to work on. But this depends on the workload-balance of the appli-
cation. With an imbalanced workload the additional overhead associated with
stealing tasks from another threads queue may outweigh the benefit of using
multiple task queues.

We observe less overall overhead, when tasks are created by all threads
compared to a distributed fashion, where each thread creates some proportion
of the tasks. When each thread creates a part of the tasks, there is a probability
for better locality, as each thread can execute the tasks created by himself with
no need for cache transfers of the administrative data for the task2. We do not
observe a different behavior when one thread creates the tasks from within a
single or a master section. This, however, will be most likely offset by data-
locality that we factored out in our analysis, as for our benchmark each task
only consists of time measurement mechanism. As it is a common pattern to
create tasks within a single or master construct, we think that it might be
useful to develop a specialized implementation for this use-case.

3.4 Opening and Closing of Parallel Regions

Looking at the start-up and shut-down of an parallel region, we observe
another overhead difference between the GNU and LLVM implementation of
the OpenMP runtime library.

Fig. 6. Overhead of task creation,
when all tasks are created by the mas-
ter thread

Fig. 7. Overhead incurred between the
processing of two tasks, when all tasks
are created by the master thread

2 Such as which function this task should call or the pointers to the shared variables.
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Fig. 8. Overhead of task creation,
when all threads create some propor-
tion of the tasks

Fig. 9. Overhead incurred between the
processing of two tasks, when all
threads create some proportion of the
tasks

We define the start-up overhead as the time-difference from the master
thread arriving at the beginning of the parallel region until the last thread
begins processing the parallel region. This measures the time until all threads
are up and running the user code. Figure 10 shows the overhead of starting a
parallel region. One can see that the GNU implementation exhibits a linear
scaling behaviour while LLVM’s implementation shows a logarithmic growth of
the overhead.

Fig. 10. Overhead of creating a
parallel region

Fig. 11. Overhead of ending a
parallel region with the reduction

clause

In the GNU implementation, the master thread creates all required threads
with pthread create(), every time a parallel region begins. In contrast, the
LLVM implementation utilizes a threadpool, so that no new threads need to
be created when a parallel region begins. On our machine, the overhead for
activating these threads is lower than creating new threads. In case of LLVM, the
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overhead only consists of a barrier, as discussed in Sect. 3.2, where all inactive
threads are waiting for a signal by the master thread providing the OpenMP
region they should execute next.

The overhead when ending a parallel region with a reduction clause nis
shown in Fig. 11. As with the overhead of opening a parallel region, the GNU
implementation shows a linear growth, while the LLVM implementation shows a
logarithmic growth of the overhead based on the number of threads used. LLVM
implements the reduction in a tree once the threads arrive at the join barrier. In
the GNU implementation all threads write their local values to an array. After
the join barrier, the master thread iterates over this array and performs the
reduction. As one can see in Fig. 11, the reduction performed on the master
is better for as long as there is no need to transfer a cache line, which is the case
up to 6 threads on our system. With more threads the logarithmic complexity
of the LLVM implementation is more performant than GNU’s linear complexity
implementation.

Nevertheless, the LLVM implementation does not seem to be aware of our
systems organization into 4 NUMA nodes with 6 cores each. One would expect
that an implementation of the reduction operation should exploit the system
architecture: First reducing the values for each NUMA node, e.g. 6 cores at our
system, and then minimizing the inter-thread communication by only exchanging
4 values between the NUMA nodes. But we did not see such an implementation
in our study. To strengthen this claim, we simulated the amount of cache misses
in such a scenario using valgrind’s cachegrind tool [23]. The results are shown
in Fig. 12; the Y-axis denotes the amount of cache misses and the X-axis the
amount of threads used. Please note that the values for LLVM’s and GNU’s
implementation are not directly comparable in this figure, as the cache misses
for the creation of threads and the join barrier are also included. Although
our simulation is not ideal, it shows that the number of cache misses increases
significantly once more than six threads are used. But there is no significant
increase at 12 or 18 threads, as one might expect. At this point we have not been
able to identify if a NUMA-aware implementation leads to better performance
or not.

This behaviour of the implementations for the reduction clause is not dif-
ferent if the reduction clause is used from within a parallel region, e.g. with
a for loop worksharing construct.

3.5 For and Critical

For: When investigating the for pragma, no significant difference of the scaling
behaviour of GNU’s and LLVM’s OpenMP implementations can be seen. There-
fore, we ommited the plots for brevity. When comparing the different scheduling
strategies, i.e. static with a dynamic schedule, we observe larger overheads and
variance for the dynamic schedule. This higher variance is explained by the
algorithm used that, depending on the implementation, has to manage a coordi-
nated todo-list of remaining iterations. For the static schedule, as expected, the
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Fig. 12. Cache misses of the reduction operation. Note, that the values of LLVM and
GNU are not directly comparable, as the cache misses for the creation of threads and
the join barrier are also included.

time between two iterations does not depend on the threadcount nor is there a
significant variance.

For this experiment, we used the standard chunksize. As the amount of
scheduling overhead introduced strongly depends on number of scheduling deci-
sions, it is lower with a larger chunksize. Therefore we often see a tradeoff between
the scheduling overhead introduced with lower chunksize and load balancing
which is often better with lower chunksizes.

Critical: For the critical pragma, we do not find any differences between
both implementations as well. As the scaling behaviour also does not show any
unexpected behaviour, we omit the visualization here as well. The time needed
to perform a critical pragma is essentially the time needed to acquire the
lock guarding it. Increasing the thread-count directly increases the congestion
at the critical pragma. Hence, the mean time of acquiring the lock grows as
well as the variance, i.e. how long one thread has to wait. With more and more
threads, a critical section might become more and more congested. Therefore,
we advise to use them as sparingly as possible. But as this is an aspect of the
application, it cannot be directly addressed inside an OpenMP runtime.

4 Conclusion

In this paper we compared the LLVM and GNU OpenMP runtime libraries
in regards to the synchronization overhead incurred for the most important
synchronization directives and runtime library components. Using a dedicated
benchmark for exposing synchronization overheads regardless of the parallelized
workload, we discovered that for higher threadcounts the implementation of the
LLVM compiler exhibits overall better performance on our test system. However,
for a low number of threads, 6 on our system, the OpenMP implementation of
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GNU provides better performance for the barrier construct or the reduction
operation. Our goal is not to provide advise on which compiler to choose to
compile an OpenMP application, as this decision will be influenced by many
more factors (such as the compilers ability to optimize complex loops). This
work rather highlights implementation differences in order to point out room for
further improvement.

Especially for the GNU implementation, we observed that a workload bal-
anced application may incur an increased overhead than an imbalanced one at
a barrier, as none of the barrier overhead is “shadowed” by the workload
imbalance.

For task constructs we observe less overall overhead in our tests, when tasks
are created by all threads compared to a distributed fashion, where each thread
creates some proportion of the tasks. Choosing the most efficient task scheduling
algorithm and implementation based on the systems NUMA architecture and the
application workload is a research area by itself, e. g. covered by [6,21,25]. Our
findings confirm that there is still room for improvement in this area, especially
for the GNU implementation.

Please note, that, although previous work [1,2,9,22,24] proposed the devel-
opment of implementations that adopt their behaviour depending on the number
of threads and the system layout, this has not yet been implemented in the run-
time libraries of current GNU or LLVM compilers. As such, neither the GNU
nor the LLVM compilers offer the best possible implementation for all different
thread counts. In our opinion a good OpenMP implementation would adapt its
behaviour in regards to the number of threads used, e.g. using a combination of
GNU’s linear behaviour with low overhead for low thread counts and LLVM’s
logarithmic implementation for higher thread counts. We also did not observe
that the GNU nor LLVM implementation adapt their algorithms to systems with
multiple different NUMA nodes, although the effects of this organization are
observable. Especially for tree-like schemes, as used by LLVM, a better perfor-
mance may be possible if the tree were to be aligned with the NUMA domains of
the system used. We will investigate this and potential solutions in future work.
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Abstract. In this paper we evaluate the efficacy of the Arm Scalable
Vector Extension (SVE) instruction set for HPC workloads using a set
of established mini-apps. Exploiting the vector capabilities of SVE will
be a key factor in achieving high performance on upcoming generations
of Arm-based processors. SVE is a flexible instruction set, but its design
is fundamentally different from other contemporary SIMD extensions,
such as AVX or NEON, which could present a challenge to its adoption.
We use a selection of mini-apps which covers a wide range of scientific
application classes to investigate SVE, using a combination of static and
dynamic analysis. We inspect how SVE capabilities are used in the mini-
apps’ kernels, as generated by all SVE compilers available at the time
of writing, for both arithmetic and memory operations. We compare our
findings against similar data gathered on currently available processors.
Although the extent to which vector code is generated varies by mini-app,
all compilers tested successfully utilise SVE to vectorise more code than
they are able to when targeting NEON, Arm’s previous-generation SIMD
instruction set. For most mini-apps, we expect performance improve-
ments as SVE width is increased.

Keywords: Instruction sets · SVE · Vectorisation · SIMD · Data
parallelism

1 Introduction

Modern processors rely on SIMD hardware to provide high performance for
scientific applications. Vector hardware is not a new concept, with its origins
reaching back to the CRAY-1 in 1975, but taking advantage of such capabilities
has become increasingly important over the past few years.

Current x86-based processors offer SIMD capabilities through the 256-bit
AVX2 and 512-bit AVX-512 instruction sets. Arm-based alternatives, however,
have so far only offered 128-bit vectors through the instruction set previously
known as NEON, which is now part of the ARMv8 Advanced SIMD (ASIMD)
instruction group. The relatively short width of ASIMD vectors, combined with
the reduced flexibility of this instruction set originally designed for media and
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signal processing, has limited the performance of Arm-based processors on a
number of scientific applications [13].

The next generations of high-performance Arm processors will use the Scal-
able Vector Extension (SVE) to provide more powerful vector operations [20].
Unlike current SIMD implementations, SVE is a vector-length-agnostic (VLA)
instruction set, allowing each implementation to choose a vector width between
128 and 2048 bits, in increments of 128 bits, with SVE binaries being portable
between implementations. The first SVE-capable hardware will become available
in 2020 [22], but a number of tools that enable SVE experiments through either
emulation or simulation are already available. In this paper, we use these SVE
tools to assess the efficacy of the new vector instruction set across a range of
common HPC problem classes.

This paper makes several contributions:

– A comparison of the vectorisation efficiency of several HPC mini-apps on
contemporary vector platforms from Arm and Intel;

– An analysis of SVE usage on the mini-apps, inspecting executed vector code
and memory access patterns and their relation to SVE vector widths;

– An evaluation of the state of currently available SVE compilers and perfor-
mance analysis tools.

2 Background

Initially vital in many-core devices such as GPUs [3] and the Intel Xeon Phi [16],
vector code is now important in all high-performance processors. Utilising the
wide vector units in the latest generations of x86 processors is the only way to
approach peak performance [5].

Vector code is generally produced by optimising compilers, but compiler-
backed auto-vectorisation cannot be assumed to be optimal [7,18]. Therefore, it is
important to evaluate its effectiveness on new hardware platforms. Furthermore,
differences in instruction sets and their implementation in hardware can cause
different behaviour on two distinct processors, even when the same benchmark
and toolchain are used.

On x86 processors there are many variants of AVX available, and the optimal
code for each variant may be significantly different [24], but with the Arm SVE
instruction set, the generated machine code does not depend on a fixed vector
width. Instead, executables automatically exploit the widest vector size avail-
able at run-time, using an approach similar to that of the very first vector com-
puters [21]. This is particularly attractive for benchmarks based on real-world
scientific applications, as they tend to steer clear of platform- or vendor-specific
optimisations and instead opt for portable code.

Mini-apps are benchmarks built by reducing full-size scientific applications
to the smallest implementation that preserves its performance characteristics,
while eliminating non-critical features such as input/output [2]. The main com-
putation kernels in mini-apps are closely similar sometimes identical to those
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in their parent applications. Mini-apps are also lightweight in terms of depen-
dencies, not requiring specialised libraries to run, which often contrasts with
large-scale scientific applications. The mini-apps used in this paper have pre-
viously been used as part of a comprehensive benchmarking suite for studying
the performance of a new supercomputer, Isambard, the first production-ready
system based on ARMv8 processors [13,14]; McIntosh-Smith et al. also present
an extensive overview of the current status of Arm in HPC.

SVE will be implemented in upcoming generations of Arm-based HPC pro-
cessors, including the Fujitsu A64FX [23] and the Marvell ThunderX4 [19].
Because SVE supports vector widths between 128 and 2048 bits, chip designers
need to select the vector width to be used in their implementation. It is, thus,
important to estimate how this choice will affect the performance of applica-
tions run on such future processors, and experiments are already being run to
determine the impact of SVE width on scientific kernels [6].

3 Methodology

In this paper, we study the efficacy of SVE over a number of mini-apps, each
representative of a different class of scientific problems. The applications use
only OpenMP or MPI, require no external libraries, and rely on automatic
vectorisation by the compiler, i. e. no platform-specific intrinsics are used. The
mini-apps studied are: STREAM, the established memory bandwidth bench-
mark [11]; BUDE, a molecular docking application developed at the University
of Bristol [15]; TeaLeaf, a heat-diffusion mini-app [10]; CloverLeaf, a hydro-
dynamics code that solves Euler’s equations of compressible fluid dynamics [8];
MegaSweep, a STREAM-style benchmark that uses the main kernel from SNAP,
a deterministic discrete ordinates transport proxy application [4]; Neutral, a
Monte-Carlo neutral particle transport mini-app [9]; and MiniFMM, a Fast Mul-
tipole Method mini-app that uses OpenMP tasks for parallelisation [1].

We performed the experiments described in this paper using a combination
of static and dynamic analysis tools. The compilers used were the latest ver-
sions of the three main SVE toolchains available at the time of writing: Arm
HPC Compiler 19.2, GCC 8.2, and Cray Compiler (CCE) 9.0; for SVE, a pre-
release version of the Cray Compiler, 9.0a, was used. We enabled most compiler
optimisation with the flags -O3 -ffast-math -mcpu=thunderx2t99+sve; full
reproducibility details can be found in Sect. 8. In all experiments, we used a sin-
gle OpenMP thread and MPI process (where applicable), and the inputs were
chosen such that the non-instrumented run time is below 5 seconds on a single
core of a ThunderX2 processor. We used compiler optimisation listings and anno-
tated source code to count vectorised loops in each mini-app, and we confirmed
that vector instructions are run using hardware counters.

Because no SVE-equipped hardware is available today, we ran the SVE ver-
sions of the mini-apps using the Arm Instruction Emulator (ArmIE)1. ArmIE
1 https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instr

uction-emulator.

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator
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runs base AArch64 instructions natively on the host, and switches to emulation
when encountering SVE instructions. It also allows user-defined instrumenta-
tion code, known as instrumentation clients, to be run over both the native and
emulated parts of the application. We used custom instrumentation clients to
record data about the instructions executed and the memory accesses performed
by the programs. We limited instrumentation to the core computation kernels
in the mini-apps, such that data is not collected for the initialisation and shut-
down stages of the applications, because these are generally not important when
measuring real-world performance. Recording data outside the kernels can skew
the results by showing a misleadingly high number of scalar instructions if these
sections are not optimised for vectorisation. To define the regions where data
was collected, we inserted special instructions to start and stop instrumenta-
tion, which are invalid AArch64 instructions but are recognised and honoured
by our ArmIE client.

We classified dynamically recorded instructions into several categories: scalar
AArch64 (A64), vector AArch64 (i.e. Advanced SIMD/NEON), SVE arithmetic,
SVE memory loads, SVE memory stores, SVE moves, and SVE control flow. We
used the memory access trace data to describe each operation as 〈load/store,
contiguous/non-contiguous, some/all vector lanes active〉. The SVE vector width
was set by stepping through the powers of two between 128 and 2048.

4 Results

4.1 Compiler Vectorisation Efficiency

We analysed the static vectorisation efficiency of SVE compared to AVX by
looking at certain loops in the kernels of each mini-app. We selected loops to
cover the majority of the mini-apps’ run times, as reported by a profiled run on
a real ThunderX2 processor. For targeting Arm, both with SVE and NEON, we
used the three main HPC compilers: Arm’s HPC compiler, GCC, and the Cray
Compiler; for x86, we used the same versions of GCC and Cray, but we used the
Intel Compiler 19.0 instead of the Arm HPC Compiler.

Table 1 shows, for each application, the number of loops considered, the per-
centage of run time that they represent, and the number of loops vectorised
by each compiler on each platform. We show TeaLeaf twice once using a CG
solver, once using a PPCG solver because the two runs cover very different code
paths, and both are representative of real workloads. There are no MiniFMM
results with the Cray Compiler because the application’s build system does not
currently support the Cray Compiler.

Aggregating the results across mini-apps, we observed that the compilers
which can generate code for all the instructions sets vectorised the highest num-
ber of loops on SVE.

We then studied the factors influencing vectorisation on each mini-app indi-
vidually. TeaLeaf with the PPCG solver was fully vectorised on all the plat-
forms, by all compilers. TeaLeaf with CG and BUDE achieved 80% or more
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Table 1. Number of loops vectorised by each compiler on the top loop-nests, selected
by percentage of total run time on a ThunderX2 processor, in the mini-apps studied.
The results for AVX2 and AVX-512 were identical; here they share the AVX label.

Application
% Time

(Total Loops)

SVE NEON AVX

Arm Cray GCC Arm Cray GCC Intel Cray GCC

STREAM 92.4 (4) 4 4 4 4 4 4 4 4 4

BUDE 98.6 (4) 4 3 3 3 4 3 4 4 3

TeaLeaf (cg) 87.2 (8) 5 6 8 5 6 8 8 6 6

TeaLeaf (ppcg) 91.2 (6) 6 6 6 6 6 6 6 6 6

CloverLeaf 62.5 (10) 9 10 6 8 9 6 10 9 8

MegaSweep 70.3 (4) 1 4 0 1 1 0 4 1 0

Neutral 85.8 (2) 0 0 0 0 0 0 0 0 0

MiniFMM 98.1 (8) 7 — 5 3 — 5 7 — 5

Total (46) 36 32 32 30 30 32 43 28 32

vectorisation with all compilers; it should be possible to achieve full vectorisa-
tion, as shown by the Intel compiler on AVX and GCC on Arm. CloverLeaf and
MiniFMM showed all loops except one vectorised with Arm, Cray, and Intel,
but only about half with GCC; GCC reports that further vectorisation is not
beneficial according to its cost model, on all platforms, due to indirect access.
MegaSweep was not vectorised by GCC on any platform, but fully vectorised by
Cray on SVE and Intel on x86, which suggests vectorisation is possible, but not
all compilers understand the loops’ structure. Neutral was not vectorised at all,
on any platform, due to the deeply nested branching in its algorithm.

When targeting x86, all compilers vectorised the same number of loops on
both AVX2, e. g. for Broadwell, and AVX-512, e. g. for Skylake.

4.2 Dynamic Instruction Analysis

After we obtained vectorised code for the mini-apps, we recorded dynamic
instruction execution traces at each power-of-two SVE vector length between
128 and 2048 bits. We added a NEON-only and a non-vectorised (scalar) run
for each application, to serve as baselines against which to compare the SVE
results. The traces allowed us to identify the types of SVE instructions executed
and how their dynamic count varies with the chosen vector length.

Figure 1 shows the dynamic instruction count analysis for the STREAM
benchmark, where instructions are grouped by type: scalar AArch64, NEON
(AArch64 ASIMD), and several groups of SVE operations; a lower number of
instructions executed is generally better. In the scalar and NEON-only cases,
the Arm and Cray Compiler showed similar behaviour, but the GCC version
ran more than twice as many instructions because it did not make use of
load/store pair instructions, an operation in which two 64-bit values can be
read from/written to memory in a single instruction. When targeting SVE, all
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Fig. 1. Dynamic instruction count and grouping for STREAM. Lower is generally
better. A64 refers to scalar instructions; NEON refers to base-AArch64 ASIMD vector
instructions; the remaining groups are all SVE instructions.

three compilers performed similarly, and we saw a decrease in the total instruc-
tion count as we increased vector length, since each instruction had increasingly
more active lanes. No compiler generated load/store pairs for SVE, so the instruc-
tion count at 128 bits the same vector length that NEON uses is close to that
observed for GCC when targeting NEON. The Arm and Cray compilers, but not
GCC, chose to use scalar A64 instructions for loop control flow, which resulted
in the the scalar instruction count also varying with SVE width.

BUDE, a heavily compute-bound application, ran vector code almost exclu-
sively, which results in a clear inverse relation between the dynamic instruction
count and the vector length. All compilers performed very similarly for this
application. The results are shown in Fig. 2.

TeaLeaf and CloverLeaf exhibited similar behaviour: the code was only
partially vectorised, leading to a mixture of SVE and scalar instructions. As the
SVE length was increased, the number of executed SVE instructions decreased,
but the number of scalar instructions executed stayed constant. The non-SVE
part comes largely from outer-loop code, since in these cases only the inner-
most loop is vectorised by the compilers. Figure 3 shows the CloverLeaf results;
TeaLeaf follows an almost-identical profile.

MegaSweep was only vectorised by the Cray Compiler. As with STREAM,
CCE performed control flow using scalar instructions, so the instruction counts
followed a similar profile here. Because the GCC- and Arm-compiled versions
were not vectorised, all instructions run were scalar A64 and their execution
count did not change with SVE width.
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Fig. 2. Dynamic instruction count and grouping for BUDE. Lower is generally bet-
ter. A64 refers to scalar instructions; NEON refers to base-AArch64 ASIMD vector
instructions; the remaining groups are all SVE instructions.

Fig. 3. Dynamic instruction count and grouping for CloverLeaf.
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Figure 4 shows the dynamic instruction analysis for MiniFMM. This appli-
cation’s build system does not currently support the Cray Compiler, so results
are only shown for GCC and Arm. Even though the application was (partially)
vectorised, the instruction count did not decrease significantly when increasing
the SVE vector width over 512 bits, in contrast to the applications presented
previously. Due to an interaction between the way MiniFMM vectorises over
particles and the small scale of the problem run, not all the lanes in SVE reg-
isters were being utilised at high vector lengths; since the vectors were partially
empty, the total instruction count did not decrease linearly.

Fig. 4. Dynamic instruction count and grouping for MiniFMM.

Neutral is excluded from this analysis because it was not vectorised at all.

4.3 SVE Vector Lane Utilisation

Because SVE instructions employ per-lane predication, observing that SVE
instructions are being executed is not enough to conclude that the application is
using vector operations efficiently it is possible that a large portion of the ele-
ments, potentially all but one, are masked out. This means that vector register
can be underpopulated, almost empty. To investigate this, we looked at per-lane
utilisation of SVE registers when running the mini-apps.

For applications with a high degree of vectorisation, e. g. BUDE, TeaLeaf, or
CloverLeaf, vector operations were performed using all the lanes, i. e. at maxi-
mum utilisation. For MiniFMM, however, the number of active lanes varied: at
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512-bit-wide SVE and below, most instructions used 80% or more of the lanes
available, but when increasing the SVE length further, vector register utilisation
peaked between 512 and 768 bits. Vector utilisation was virtually identical across
both compilers tested, Arm and GCC.

Figure 5 shows a histogram of the number of active bits in SVE operations,
grouped in 128-bit-wide bins. Increasing the SVE width past 512 bits brings
little benefit for MiniFMM, as only a minority of the operations performed use
more than 512 bits. When the vector width is set to 1024 bits, less than 5% of
the instructions use the full available width, and further increasing the width to
2048 bits produces no change in vector utilisation.

In contrast, Fig. 6 shows how BUDE, a mini-app that vectorises efficiently,
was able to fully utilise vectors in all operations, even at the highest widths
allowed by SVE. The other mini-apps investigated in this paper showed the
same perfect vector utilisation efficiency as BUDE. These results cover both 32-
and 64-bit floating-point data types: BUDE uses 32-bit data (float), and the
other mini-apps use 64-bit types (double).

Fig. 5. Histogram showing the number of active bits in the SVE operations performed
by MiniFMM. The application cannot saturate the full widths of the vectors when the
SVE length is 512 bits or higher.

4.4 SVE Memory Operations

Finally, we looked at how the mini-apps are able to take advantage of SVE for
memory operations. Since all SVE instructions are predicated per-lane, including
contiguous and strided memory operations, every SVE memory instruction can
differ in the number of bytes transferred.

We found that SVE usage for memory operations varied greatly between
applications. Mini-apps with lower degrees of vectorisation, such as MegaSweep,
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Fig. 6. Histogram showing the number of active bits in the SVE operations performed
by BUDE. Vectorisation is perfectly efficient at all SVE widths.

used little SVE for memory accesses, but even applications with a higher degree
of vectorisation showed a mixture of SVE and non-SVE memory operations. In
BUDE, about three quarters of the memory instructions were SVE instructions;
in CloverLeaf, TeaLeaf, and MiniFMM, between a quarter and a third of the
memory operations were SVE. In MiniFMM, of the SVE operations, about a
third were gathers, while there were no scatters; the other applications utilised
contiguous accesses almost exclusively. All applications utilised all the SVE lanes
in their memory operations, except for MiniFMM, where about half the SVE
memory operations, including all the gathers, were only partially filled.

Figures 7 and 8 show the distributions of memory accesses in BUDE and
MiniFMM, respectively. These two mini-apps form the most contrasting pair
in the set of mini-apps evaluated. The observations here are consistent with
Sects. 4.2 and 4.3: BUDE vectorises very efficiently, and MiniFMM utilises some
SVE-specific features but does not always utilise all vector lanes available.

These results are collected from the version of the applications compiled
with the Arm Compiler 19.2 and run on 512-bit SVE, which is the vector length
utilised in the upcoming Fujitsu A64FX processor. The absolute numbers of
vector operations varies between the versions built with different compilers and
when adjusting the SVE width, but the same important characteristics can be
seen in all cases, and the conclusions drawn are similar.
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5 SVE Usage Discussion

The STREAM benchmark runs simple, predictable memory operations. All
the compilers tested were able to successfully use SVE at all vector lengths to
vectorise this code, and at run-time the vectors were fully utilised. This is the
expected behaviour for the benchmark.

BUDE is a heavily compute-bound benchmark, and thus complementary
to STREAM. This application shows very efficient utilisation of SVE: the main
kernels all execute vectorised operations, which scale with the chosen SVE length.
At 128 bits, the amount of code run both vector and scalar is almost identical to
the established NEON version, which indicates that good code is generated by
all the compilers. Increasing the vector length by 2× reduces by half the number
of instructions run up to 1024 bits; at 2048 bits, the total number of executed
vector instructions becomes smaller than the number of scalar instructions.

Even though more than half of the main loops in TeaLeaf are vectorised
by all the compilers, only relatively few vector instructions are executed at run-

Fig. 7. Relative counts, by number of instructions, of memory operations in BUDE.
All memory accesses are contiguous and most are performed through SVE instructions.

Fig. 8. Relative counts, by number of instructions, of memory operations in MiniFMM.
This applications shows a mixture of SVE and non-SVE operations, and the SVE ones
show a further split between contiguous and non-contiguous accesses. Not all lanes are
always used in SVE operations for MiniFMM.



Evaluating the Effectiveness of a Vector-Length-Agnostic Instruction Set 109

time: for 128-bit SVE, these represent less than a third of the total instructions
run for the Arm and GCC versions. Increasing the vector length decreases the
count, but only with around 50% efficiency and up to 1024 bits; there is virtually
no change going to 2048 bits. The Arm-compiled executable runs comparatively
more instructions than the GCC version, by 35–40%, depending on the chosen
vector length. With the Cray executable, less than 10% of the instructions run
are vector operations, even though the compiler vectorised the same loops as
Arm and GCC; at 1024 and 2048 bits, the vector code run is NEON, and not
SVE, which we suspect is due to a compiler bug.

The CloverLeaf benchmark shows characteristics similar to TeaLeaf, but
with more vector instruction utilisation. In all three versions, vector instructions
account for between a third and half of the total instruction count at 128 bits;
all three compilers produce a similar total dynamic instruction count. The SVE
instruction count scales as expected up to the largest vector width possible,
2048 bits. The Cray-compiled version initially runs the highest number of total
instructions, but it decreases sharply at 256 and 512 bits; at 512 bits more
than two thirds of the code executed is SVE, and at 2048 bits the total count
constitutes 22% of those of the Arm and GCC versions, suggesting that the Cray
compiler optimises better for higher vector lengths.

This also hints at the importance of the loop chosen for vectorisation: if a
compiler is able to vectorise the outer loop, as CCE is, and perhaps also to
collapse the inner loop when doing so, the reduction in instruction count at
high vector lengths can be considerable. On the other hand, the same strategy
may not be desirable at smaller vector lengths, where vectorising the inner-most
loop may be optimal. This would imply that, for optimal code generation, the
compiler either needs to know the hardware vector width at compile-time, or it
needs to generate several code paths and dynamically choose the optimal one
when the vector length information becomes available at run-time.

A related issue is that the compilers tested in the study use a generic cost
model for SVE, which may not accurately reflect any real implementation. With
access to the cost model of a real SVE processor, the compilers may generate
different code to take advantage of the implementation’s strengths.

In CloverLeaf, SVE memory accesses represent about half the total memory
operations performed, both when reading and writing, and the vast majority of
those are contiguous operations.

Of the mini-apps included in this study, MegaSweep shows the most notable
difference between the three compilers: Cray is the only one that successfully
vectorises the code, both on NEON and SVE. The binary it produces runs 2.5×
fewer total instructions than Arm and GCC at 128 bits, and the amount of SVE
instructions executed scales almost perfectly up to 2048 bits, although the 1024-
bit binary highlights a compiler issue where some of the code run is NEON, not
SVE, which reduces the scaling efficiency in this particular case. At 2048 bits,
the Cray version runs 10.5× fewer instructions than the GCC alternative. The
Cray version also successfully utilises SVE for memory access, all of which are
contiguous and are able to exploit the full lengths of the vectors.
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Neutral does not vectorise with any of the compilers, so no SVE is being
run. Due to the nature of the Monte-Carlo algorithm, there is little structure in
the access patterns in the kernels. As Martineau and McIntosh-Smith explained,
it is possible to force vector code generation, but it will be comprised almost
entirely of indirect, variable-stride accesses that do not improve performance [9];
the compilers make the right choice to generate scalar instructions in this case.

In general it is desirable to utilise as much of the available vectors as possible,
but partial utilisation does not always signal a problem. The MiniFMM result
exhibits the flexibility of SVE: even though the parallelisation strategy in the
application cannot fill the vectors above 512 bits, the hardware can still efficiently
utilise its resources by executing partially masked operations. These operations
should not be any more expensive than regular operations with full vectors, and
so are more efficient than falling back to scalar code.

6 Relevance of SVE for HPC

The results presented in Sects. 4 and 5 show that SVE is a viable, competitive
vector instruction set for HPC applications. For HPC workloads, it represents a
noticeable improvement over NEON, bringing high-performance Arm processors
in line with current-generation x86 processors, both in terms of the available
vector length and the flexibility of the operations.

Even though no SVE hardware is currently available, we have found the SVE
toolchains to be mature already. Generating SVE code only required enabling
the SVE extension in the target architecture flag, and the compilers were suc-
cessful in utilising SVE where expected. Compared to NEON, more loops were
vectorised with SVE by all compilers, and the Arm and Cray compilers achieved
a similar or higher degree of vectorisation on SVE compared to AVX-512.

One of the main advantages of SVE arose from its per-lane predication, which
allowed loops with heavy control flow to be vectorised without additional cost.
This additional flexibility meant it was sometimes beneficial to vectorise loops
on SVE even when it was not on other instructions sets.

In the wider context, these results suggest that many HPC applications
should be able to utilise SVE and benefit from doing so. The flexibility of SVE
allows a wide range of loops to be turned into vector code, including cases where
vectorisation is not possible with NEON or AVX, e. g. with irregular and unpre-
dictable access patterns. Compute-bound applications can exploit high vector
widths, bringing the number of instructions required significantly lower than on
(128-bit) NEON. Partially filled operations allow vector instructions to be gen-
erated and executed even when the application cannot fill whole vector registers,
a more efficient alternative than falling back to scalar code.

While in this study we have shown that SVE HPC applications behave well
in an emulated environment, we cannot make any claims regarding their perfor-
mance on real hardware. Implementations of SVE are likely to come with caveats
and performance characteristics which cannot be determined a priori, and so it
is impossible to predict which types of operations will be fast and which will
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bring little improvement over scalar code. There are currently no widely avail-
able tools to generate and run SVE code tuned for a specific microarchitecture
definition, without which such a study is infeasible.

7 Future Work

The analysis presented in this study covers the three main SVE compilers avail-
able at the time of writing. However, Fujitsu A64FX systems are expected to
be available in the near future, and Fujitsu will supply a proprietary compiler
to accompany their processor. Optimisations applied by this compiler may be
key in extracting high performance from the A64FX, so analysing the binaries
it produces should prove a valuable research direction.

Further work will be enabled when the compilers are able to generate tuned
binaries. The early versions used in this study only use a generic model of an
SVE processor, because neither the compilers nor ArmIE currently allow the
user to specify microarchitectural details, except the SVE width. Once a tuned
binary can be generated, running it on its target platform will enable quantifying
of the tuning benefit, and an even wider range of experiments is possible if these
tuning parameters can be adjusted dynamically. This class of experiments for
microarchitectural design-space exploration with arbitrary hypothetical proces-
sor configurations is one of the main goals of the upcoming SimEng simulator
developed at the University of Bristol [12].

Finally, evaluation of full-size HPC applications on real inputs is intractable
with the currently available emulation tools. The overhead incurred by ArmIE
increases by several orders of magnitude when the instrumented application
needs to use system calls, dynamically linked libraries, and file operations. For
such experiments, benchmarking real hardware remains the only viable option.

8 Reproducibility

All mini-apps used in this study are open-source software and can be downloaded
from their respective homepages. Detailed build and run instructions for each
application, the custom ArmIE instrumentation clients used for this paper, and
scripts to aggregate and plot the collected data can be found at https://github.
com/UoB-HPC/sve-analysis-tools/tree/euro-par-2020.

9 Conclusion

In this work, we have presented an analysis of SVE usage across a number of mini-
apps that span several common HPC problem classes. We have looked at how
currently available compilers are able to utilise SVE to automatically vectorise
the mini-apps’ code, how much of the executed code is SVE, the efficiency of the
executed SVE vector instructions, and whether new ways of accessing memory
introduced with SVE are utilised in these mini-apps.

https://github.com/UoB-HPC/sve-analysis-tools/tree/euro-par-2020
https://github.com/UoB-HPC/sve-analysis-tools/tree/euro-par-2020
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We found that SVE was generally well targetted by the compilers: in most
cases, compilers were able to utilise SVE at least as well as AVX and NEON, and
often better. The available compilers for SVE were only surpassed by the Intel
compiler targetting AVX on select few occasions. Most SVE binaries used wide
vectors efficiently, with all lanes being active for the vast majority of the run time;
MiniFMM was the only exception, where SVE efficiency varied depending on the
SVE width utilised. In terms of memory accesses, vectorised mini-apps were able
to use SVE instructions to efficiently load and store data, and MiniFMM also
made use of gather operations, either fully or only partially filled. We saw little
use of SVE scatter instructions, but this is expected given the optimised memory
access patterns on the mini-apps studied.

We conclude that SVE is a promising instruction set, and HPC applications
and toolchains appear ready to take advantage of it to deliver performant code
running on upcoming generation of Arm-based high-performance processors.

Data Availability Statement. The datasets and code generated during and/or anal-

ysed during the current study are available in the Figshare repository: https://doi.org/

10.6084/m9.figshare.12608042 [17].
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Abstract. Workloads with precedence constraints due to data depen-
dencies are common in various applications. These workloads can be rep-
resented as directed acyclic graphs (DAG), and are often data-intensive,
meaning that data loading cost is the dominant factor and thus cache
misses should be minimized. We address the problem of parallel schedul-
ing of a DAG of data-intensive tasks to minimize makespan. To do so,
we propose greedy online scheduling algorithms that take load balancing,
data dependencies, and data locality into account. Simulations and an
experimental evaluation using an Apache Spark cluster demonstrate the
advantages of our solutions.

Keywords: Parallel scheduling · Data-intensive tasks · Caching

1 Introduction

In the era of big data, many computational tasks are data-intensive: their data
loading cost is higher than the subsequent computation cost. These tasks usually
have precedence constraints due to data dependencies, represented as a directed
acyclic graph (DAG). Examples include scientific workflows, continuous queries
in streaming and publish-subscribe systems, and Extract-Transform-Load (ETL)
pipelines in relational databases. Here, the DAG of tasks is periodically executed
on a batch of new data. It is critical to finish these tasks as soon as possible (i.e.,
minimize the makespan) to accommodate the next batch of data. Otherwise,
we will fall behind or will have to increase the batch size, thus increasing data
latency, which is not desirable in real-time analytics. Sequencing data-intensive
tasks then becomes a significant problem because some sequences may incur
more cache misses than others, leading to a longer makespan1.

Scheduling algorithms often assume that the execution times (or estimates)
of tasks are known. However, the cold versus hot (with data already in mem-
ory/cache) runtimes of data-intensive tasks may be very different, by an order
of magnitude or more. Furthermore, predicting the contents of the cache at any

1 We assume a storage hierarchy with significant speed gaps between different levels,
and use the term cache more generally, referring to SRAM cache memory, RAM
memory, or distributed memory in a platform such as Spark, as appropriate.
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point in time is difficult in modern data processing environments with multiple
tenants, virtualization, and shared resources.

There has been previous work on a problem we call Serial Data-Intensive
Scheduling (SDIS): given a DAG of tasks with data dependencies, SDIS finds an
ordering of the tasks that obeys the precedence constraints given by the DAG
and aims to minimize the likelihood of cache misses [6]. Knowing the contents
of the cache at any time is not required; the only assumption was that the cache
uses an LRU-based strategy, where the longer the wait, the slimmer the chance
of unused data remaining in the cache.

However, this problem remains unsolved in distributed and parallel settings,
such as a Spark [16] cluster or a multi-core database management system. That
is the problem we address in this paper – the Multi-Processor Data-Intensive
Scheduling (MPDIS) problem to minimize the makespan of a DAG of data-
intensive tasks. The additional complexity of MPDIS over SDIS comes from two
factors: 1) a larger search space of possible schedules and 2) a load balancing
requirement missing from serial scheduling. Thus, a solution to the MPDIS prob-
lem must simultaneously ensure load balancing and data locality. We make the
following contributions towards solving this problem:

1. We define the MPDIS problem of scheduling a DAG of data-intensive tasks
on multiple processors, assuming a shared LRU cache, but without knowing
the contents of the cache at any point in time.

2. We propose three greedy online algorithms to solve the MPDIS problem using
cache metrics from the Programming Language and Compiler literature.

3. Using simulations and a Spark cluster, we experimentally show the effective-
ness of our algorithms against existing techniques on real-world based DAGs.

The remainder of this paper is organized as follows. In Sect. 2, we review
related work. We formulate our scheduling problem in Sect. 3 and propose solu-
tions in Sect. 4. We present experimental results in Sect. 5 and we conclude in
Sect. 6.

Example 1: Consider the DAG of tasks in Fig. 1, with edges showing data
dependencies (e.g, the data output of task zero is the data input to task 3).
Assume each task produces an output of unit size. Suppose for each of the six
tasks, the computation cost (hot runtime) is one time unit while the loading
cost of one data unit is ten time units. Assume the cache can hold up to two
data items at the same time. Figure 2 shows two schedules, labelled S1 and S2,
for two processing units, labelled PU1 and PU2. The task runtimes are coloured
blue and plotted on a time axis. The figure also shows the contents of the cache
at various points in time; e.g., “01” indicates that the cache currently holds the
outputs of tasks zero and one.

For both schedules, there will be cache misses for items 0 and 1 since the
cache is initially empty. This means that tasks 0 and 1 run cold, for a total
of 11 time units (10 time units to load the data plus one time unit for the
computation). For the first schedule, S1, at time 11, tasks 0 and 1 finish, and
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Fig. 1. Example DAG of data-intensive tasks.

Fig. 2. Two schedules for example DAG from Fig. 1 on two processors.

both of their outputs are in the cache. Task 2 is started on processor 2. Task 3
waits for task 2 to finish because its input is the output of task 2. Task 3 takes
one time unit because the data needed for task 2, namely the data output of
task 1, is in the cache. At time 12, when task 2 is finished, task 3 and task 5
are started. The output of task 2 is in the cache, evicting the output of task 0
according to the LRU policy. Thus, now the cache holds the outputs of tasks 1
and 2. This means that task 3 causes a cache miss for item 0, and finishes at
time 23, while task 5 finishes earlier at time 13 (because its input, which was the
output of task 2, was in the cache). At this time, the cache holds the outputs of
tasks 0 and 2. Thus, task 4 causes a cache miss for item 1, and therefore finishes
at time 34.

In schedule S2, when tasks 0 and 1 terminate, tasks 2 and 4 run hot because
their input (the output of task 1) is in the cache. When tasks 2 and 4 are done,
the cache now contains the output of task 2 (which evicts the output of 0) and
the output of task 1 (note that task 4 does not produce any output for use by
subsequent tasks). This means that task 5 runs hot, but task 3 incurs a cache
miss because it requires the output of task 0. Note that schedule S2 incurs fewer
cache misses and has a shorter makespan, highlighting the need for a scheduling
strategy for data-intensive workloads.

2 Related Work

Scheduling DAGs of tasks on multiple processors to minimize makespan is an
NP-Complete problem with only a few exceptions [10]. Therefore, many heuris-
tics have been proposed; however, data-intensive tasks were not considered. In
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particular, [7] compared these heuristics empirically and found that Heteroge-
neous Earliest Finish Time (or HEFT) is among the best for multiprocessor
DAG scheduling. We will use a modified HEFT as a baseline in our experimen-
tal comparison (Sect. 5).

In terms of data-intensive scheduling, there has been work on the SDIS prob-
lem [6] mentioned earlier. A solution was given that minimizes the distance in
a serial schedule (in terms of the number of tasks) between the first and the
last access of every data item. Heuristics were given to solve this minimization
problem. However, the MPDIS problem, which is the focus of our work, was not
considered.

We also point out related work on minimizing the (peak or total) memory
footprint of parallel schedules; see, e.g., [5,11]. However, to the best of our knowl-
edge, these methods do not consider data-intensive tasks; they schedule tasks to
optimize memory usage but do not optimize the sequence in which data items
are inserted into memory in order to avoid cache misses.

Scheduling with setup times is another related topic, in which there are differ-
ent types of tasks, and scheduling a task of a different type than the previous task
requires some setup time; in general, the execution time of a task may include a
setup time that is dependent on the tasks that have been executed up to now [4].
However, the MPDIS problem is more complex because the sequence of tasks
executed up to now may not be sufficient to determine the contents of the cache.

Since Spark [16] is one target system for our solutions, we briefly discuss data-
intensive scheduling in Spark. The work on memory caching in Spark (e.g., [9,14,
15]) does not consider data dependencies among tasks, as we do. Furthermore, in
a system such as Spark, there is a shared cache, but also local memory and disk.
There has been work on the problem of reducer placement to schedule reducers
(of a given task) on nodes that have much of the required data already in local
memory [12]. MPDIS is an orthogonal problem of sequencing tasks, and reducer
placement solutions may be applied independently to assign the reducers of a
given task to the available machines, and further improve performance.

3 Problem Definition and Assumptions

We consider data-intensive (as defined earlier), non-preemptible tasks, with
precedence constraints corresponding to data dependencies. Precedence con-
straints are expressed as a directed acyclic graph (DAG) G = (V,E), where
each node v ∈ V represents a task and each directed edge e = (u, v) ∈ E repre-
sents a precedence constraint. An edge in the DAG denotes that the data output
of one task is the data input to another. Thus, an edge (u, v) requires that task
u has to be completed before task v starts. Optional input may include the size
the data output of each task, represented as an edge weight in the DAG. Tasks
are scheduled on n homogeneous processing units that share a fast storage layer
with an LRU-based replacement policy (which, as explained earlier, may be an
SRAM cache, RAM memory, or distributed memory). However, we assume that
the contents of the fast storage layer cannot be reliably predicted at any point
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in time, as motivated earlier. This means that we cannot know with certainty
whether a task will run cold or hot.

A precedence constraint (u, v) indicates that the output of u is the input
to v. The intuition behind our scheduling objective is to schedule v as soon
as possible after u. The longer we wait, the more likely it is that other tasks
will be scheduled, which may require other data inputs. Thus, the longer we
wait, the more likely it is that the output of u will be evicted from an LRU
cache, causing a cache miss when v runs. To formalize this intuition, we use the
following data locality metrics from prior work (our solutions are independent
of the data locality metric, and we will experiment with both of these metrics
in Sect. 5):

– Stack Distance (SD) [8] is a metric from the programming languages and
compiler literature. The stack distance between two accesses of a data item
counts the distinct number of other data items that were accessed in between.
The more data items accessed in between, the more likely it is that the original
data item is no longer in the cache when it is accessed again2. We compute
the stack distance of a schedule as the sum of the stack distances between
every pair of consecutive references to the same data item, with “reference”
denoting producing the item as output or consuming the item as input. If
a task references more than one output, then we sequence these accesses in
lexicographic order for computation (e.g., in Fig. 1, task 3 first accesses the
output of task 0 and then the output of task 2).

– Total Maximum Bandwidth (TMB) was proposed in prior work on the SDIS
problem [6]. TMB considers the first and the last access of a data item, and
counts the distinct number of other data items that were accessed in between.
(SD measures the same quantity, but for each pair of consecutive accesses of
a data item.)

Example 2: Consider two data items, A and B. Suppose they are accessed
in the following sequence: A,B,A,B,A. The stack distance of this sequence is
three: one distinct item (B) is accessed between the first and the second access
of A; B is again accessed between the second and the third access of A; plus,
one distinct item (A) is accessed between the two accesses of B. The TMB of
this sequence is two: one distinct item (B) is accessed between the first and the
last access of A (not including A itself); plus, one distinct item (A) is accessed
between the first and the last access of B.

Example 3: Recall the DAG in Fig. 1 and assume the following schedule: [0, 1,
2, 3, 4, 5]. That is, the tasks are sequenced as shown in the figure. The output
of task 1 becomes the input to tasks 2 and 4. Thus, the output of task 1 is
referenced three times: by task 1 at creation time, by task 2, and by task 4. The
stack distance between the first and second reference is zero: no other tasks ran

2 Reference Distance (RD) is a related metric that counts the total number of data
accesses in between, not the distinct data accesses. SD was shown to be more accurate
than RD in quantifying data locality [8], so we will not consider RD any further.
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in between. The stack distance between the second and the third reference is
two: task 3 ran in between and it accessed the outputs of task 0 and 2. Thus, it
is more likely that the output of task 1 was evicted from the cache before it is
needed by task 4. In total, we have:

– task 0 produces output that is referenced once by task 3. In between, task 1
produced output referenced by task 2, giving a stack distance of one.

– task 1 produces output that is referenced twice (becomes the input to two
downstream tasks), giving stack distances of zero and two, respectively.

– task 2 also produces output that is referenced twice, with the corresponding
stack distances of zero (nothing runs between tasks 2 and 3), and two (task
3 additionally references the output of task 0 and task 4 requires the output
of task 1).

This gives a stack distance of 1 + 0 + 2 + 0 + 2 = 5 for the entire schedule.
We now reiterate the two data-intensive scheduling problems mentioned ear-

lier.

Problem 1: Serial Data-Intensive Scheduling (SDIS). Given a DAG of
tasks with precedence constraints, produce a serial schedule that obeys the prece-
dence constraints with the smallest SD or TMB.

A version of SDIS that minimized TMB was studied in [6]. In this paper, we
solve the following problem:

Problem 2: Multi-Processor Data-Intensive Scheduling (MPDIS).
Given a DAG of tasks with precedence constraints and n processing units shar-
ing a fast memory layer, produce a parallel schedule across the n processors that
obeys the precedence constraints, with the smallest SD or TMB over a serialized
representation of the parallel schedule according to task start times (we compute
stack distance over this serialized representation since all processing units access
the same cache).

Example 4: We compute SD for the complete schedules in Fig. 2 below. S1 [0,
1, 2, 3, 5, 4] costs 1 + 2 + 1 = 4 and S2 [0, 1, 4, 2, 3, 5] costs 1 + 0 + 1 = 2. Note
that S2 has a smaller stack distance and a shorter completion time.

We remark that there exists a weighted version of Problem 2, where instead
of counting the number of other data items accessed between two references
of some data item, we count the total size of the other data items accessed.
Similarly, TMB can be extended to its weighted version, abbreviated WTMB
[6]. Data item sizes can be given as edge weights in the precedence DAG.

4 Solutions

We present three solutions to the MPDIS problem in this section. Our solutions
are online, meaning that tasks are scheduled on-the-fly rather than being stat-
ically assigned to processing units in a pre-defined order. We do not consider
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offline algorithms that assemble a complete schedule apriori. Given our assump-
tions, even if we enumerated the possible schedules, we could not compute their
makespans since task runtimes may be cold or hot, depending on the contents
of the cache, which we cannot predict in advance.

4.1 Parallel SDIS (PS)

The first solution, Parallel SDIS, is an extension of the SDIS solution from
[6] that produces a serial schedule to minimize TMB (and can be modified to
minimize SD instead). First, we generate a single-threaded schedule S using
the existing SDIS solution. Then, whenever a processing unit is available, we
schedule the next task from S, call it t, on this processing unit. Note that if
t is not schedulable at this time (i.e., all the tasks it depends on have not yet
terminated), then the processing unit is idle until t becomes schedulable.

Example 5: Fig. 3 shows an example of Parallel SDIS on two processing units
(PU1 and PU2) using the DAG from Fig. 1, assuming the computation and
loading times listed in Table 1, and assuming the cache can hold two data items.
Assume we use SD as the data locality metric instead of TMB. Here, an optimal
SDIS schedule using SD is [0, 1, 4, 2, 3, 5]. Given this SDIS schedule, our Parallel
SDIS algorithm proceeds as follows. First, task 0 is scheduled on PU1 and runs
cold for 51 time units. At the same time, task 1 is scheduled on PU2 and runs cold
for 11 time units. When task 1 terminates, the next task in the SDIS schedule
is task 4, which is now scheduled on PU2. Task 4 is now schedulable (because
it only relies on task 1, which just terminated), and runs hot until time 12. At
this time, the cache holds the outputs of task 1. Next in the SDIS schedule is
task 2, which is scheduled on PU2 and runs hot until time 13. At this time, the
cache holds the output of tasks 1 and 2. Next, task 3 is scheduled on PU2, but
it must wait until task 0 terminates. Thus, task 3 begins running only at time
51 and terminates at time 52. When task 0 terminates at time 51, the last task
is task 5, which is now scheduled on PU1. Task 5 runs hot for 10 time units,
terminating at time 61. The makespan is thus 61.

Time Complexity: The complexity of PS depends on the complexity of the
underlying SDIS solution. For example, the heuristic solution from [6] has a
complexity of O(|E||V |2 + |V |3 log |V |), where |E| and |V | is the number of
edges and vertices, respectively, in the DAG. After generating such a solution,
we insert the serial schedule into a queue and pop the next schedulable task from
the queue whenever a processing unit becomes available. Checking whether a
task t is schedulable has a complexity of O(|E|) (assume we have a hash map of
completed tasks; then it suffices to find the edges incident on t and check if the
predecessors of t all exist in the set of completed tasks), and this is done for all
|V | tasks.
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Fig. 3. Schedule for example DAG generated by Algorithm PS.

Table 1. Data loading and computation runtimes of tasks for example DAG from
Fig. 1.

Task Loading (time units) Computation (time units)

0 50 1

1 10 1

2 10 1

3 60 1

4 10 1

5 10 10

4.2 Online Greedy (OG)

Notice a potential problem with the Parallel SDIS algorithm: since it uses a
single-threaded sequencing as a seed, the next task in the schedule may not yet
be schedulable in parallel with another task that is currently running. This causes
some processing units to be idle (e.g., PU2 in Fig. 3 is idle from time 13 to time
51). To address this problem, we propose an Online Greedy (OG) algorithm.
OG does not compute a single-threaded schedule beforehand. Instead, whenever
a processor becomes available, OG chooses the next schedulable task that yields
the smallest SD or TMB when added to the current partial schedule (with ties
broken arbitrarily). Thus, OG does not stall as long as there is at least one
schedulable task.

Fig. 4. Schedule for example DAG generated by Algorithm OG.
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Example 6: Fig. 4 shows an example of OG on two processing units, again
using the DAG from Fig. 1, the parameters listed in Table 1, and assuming the
cache can hold two data items. Assume again that we use SD as the data locality
metric. At the beginning, the only schedulable tasks are 0 and 1. Breaking ties
randomly, we assign task 0 to PU1 and task 1 to PU2, and both tasks run cold.
When task 1 finishes at time 11 and PU2 becomes free, there are two schedulable
tasks: task 2 and task 4. To decide which task to schedule on PU2, we compute
the SD of the following partial schedules and choose the task that gives the
partial schedule with the lowest SD: [0, 1, 2] and [0, 1, 4]. Both are zero, so we
break ties randomly. Let task 2 run on PU2.

Next, task 2 terminates at time 12 (it ran hot because the output of task 1 is
in the cache). At this time, tasks 4 and 5 are schedulable. To decide which one to
schedule next, we compute the SD of the following partial schedules and again
choose the task that gives the partial schedule with the lowest SD: [0, 1, 2, 4]
and [0, 1, 2, 5]. Both are again zero, so we break ties randomly. Let task 4 run
on PU2 (it runs hot because the output of task 2 is in the cache), finishing at
time 13. Now, task 0 is still running on PU1, so the only schedulable task is task
5. Thus, we run task 5 on PU2. It runs hot because the output of task 2 is in
the cache, terminating at time 23. At this time, there are no schedulable tasks,
so PU2 is idle. When task 0 terminates at time 51, the only remaining task is
task 3, which runs hot until time 52. Note that the OG schedule terminates nine
time units earlier than the PS schedule described in Example 6 (52 vs. 61).

Time Complexity: Computing the SD or TMB of a (partial) schedule requires
O(|E|) time: we loop over all the outgoing edges of the tasks already in the sched-
ule, which gives O(|E|). When making a scheduling decision, we compute the SD
or TMB for O(|V |) tasks that may be scheduled next, giving O(|V ||E|). The total
number of scheduling decisions is O(|V |), giving a complexity of O(|V |2|E|).

4.3 Greedy Complete Schedule (GCS)

At any point in time, algorithm OG greedily chooses a task whose addition to
the current partial schedule yields the lowest total SD or TMB. We now observe
that, in contrast to other on-line scheduling settings, we know the workload
in advance: it is given in the form of a DAG. To leverage this observation,
we propose a Greedy Complete Schedule (GCS) algorithm. The intuition is as
follows: when a processing unit becomes available, we choose a schedulable task
that leads to a complete schedule with the lowest SD or TMB. When deciding
which task to schedule next, we “simulate” a complete schedule by greedily
and repeatedly adding the next task that minimizes SD or TMB, until all the
remaining tasks have been scheduled.

Example 7: Consider again the DAG from Fig. 1 and the task runtimes from
Table 1. Assume again that there are two processing units, PU1 and PU2, and
that we want to minimize SD. First, we schedule task 0 on PU1 and task 1 on
PU2. At time 11, task 1 finishes and PU2 frees up. There are now two schedulable
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tasks: 2 and 4. GCS now performs the following steps. If we were to schedule task
2 next, the partial schedule would be [0, 1, 2]. To simulate a complete schedule,
we greedily keep adding tasks that minimize the SD of the partial schedule. Thus,
we first compute the SD of the following schedules: [0, 1, 2, 3] (with SD = 5),
[0, 1, 2, 4] (with SD = 1), and [0, 1, 2, 5] (with SD = 2). Since adding task 4
leads to the lowest SD, the simulated schedule now becomes [0, 1, 2, 4]. Next, we
consider adding tasks 3 and 5 to the simulated schedule, i.e., we compute the
SD of [0, 1, 2, 4, 3] and [0, 1, 2, 4, 5]. It turns out that [0, 1, 2, 4, 5] has a lower SD.
This gives a complete simulated schedule of [0, 1, 2, 4, 5, 3]. Similarly, returning
to the initial partial schedule of [0, 1], if we were to schedule task 4 next instead
of task 2, the partial schedule would be [0, 1, 4], and we simulate a complete
schedule starting with this prefix. Finally, to decide between task 2 and task 4,
we choose the task whose complete simulated schedule has a lower SD.

There is a potential problem with the above method: when simulating a
greedy complete schedule, we need to know the set of schedulable tasks at every
step. However, for this, we need to know which tasks have already terminated
at any point in time, yet we do not know the task runtimes (because we do not
know whether the tasks will run hot or cold). The simplest assumption to make
is that tasks terminate in first-in-first-out (FIFO) order. For example, assuming
a partial schedule [0, 1, 2, 4] and two processing units, the FIFO assumption
means that the next scheduling decision happens when task 0 terminates, and
we update the set of schedulable tasks accordingly. However, in practice, task
1, task 2 or even task 4 could terminate before task 0, leading to a different set
of schedulable tasks at this point in time. To sum up the challenge that must
be addressed in our setting: while we know the workload in advance, we do not
know the order in which tasks will terminate. As a result, we cannot predict the
complete schedule throughout the execution of a workload, even if we assume a
deterministic greedy heuristic at every scheduling step.

In algorithm GCS, we mitigate the above problem as follows. Instead of
generating only one complete schedule assuming FIFO task termination order,
we generate multiple possible complete schedules for each candidate task under
consideration. One of these possible complete schedules assumes FIFO order.
For the other schedules, we iterate through the partial schedule, and swap the
completion order of every pair of consecutive tasks already started but not yet
completed. For example, if the current partial schedule is [0, 1, 2] and all three of
these tasks are still running, we would consider completing the following swapped
partial schedules: [1, 0, 2], [0, 2, 1]. For each of these partial schedules, we generate
a complete schedule as discussed above, and compute its SD. Finally, for each
candidate task to be scheduled next, we record the lowest SD of any of its
simulated complete schedules, and we select the task with the lowest SD of the
best simulated schedule (we also experimented with choosing the task with the
lowest average SD of all of its simulated full schedules, and obtained similar
results).

Time Complexity: Algorithm GCS incurs an extra O(|V |3) factor compared
to OG, for a complexity of O(|V |5|E|). This is because it no longer suffices to
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compute the SD of the partial schedule of each schedulable task when making
a scheduling decision. Instead, it takes O(|V |2|E|) time to assemble a complete
schedule (specifically, O(|V ||E|) time to decide on the next task to add to the
schedule, and there are O(|V |) remaining tasks). Furthermore, there are O(|V |)
complete schedules to test, resulting from swapping the completion order of the
tasks in the current partial schedule.

5 Experimental Evaluation

In this section, we present experimental results comparing our solutions (PS,
OG, and GCS) with two baselines: B1 and B2. B1 is random scheduling, which
chooses a random schedulable task whenever a processor is available. B2 is the
HEFT algorithm, where the idea is to prioritize tasks based on the runtimes
of the tasks depending on them. Since we do not know the actual runtimes,
which can be cold or hot, we use the sum of the sizes of the data inputs of the
dependent tasks (effectively assuming cold runtimes). We start with simulation
results (Sect. 5.1) and then present results using a Spark cluster (Sect. 5.2).

5.1 Scheduling Simulation

We identified three DAGs used in real applications and concatenated them to
create our first workload, referred to as DAG1 and illustrated in Fig. 5. The DAGs
correspond to a network monitoring workflow [6], an image stitching workflow
called Montage [1], and an earthquake analysis workflow called CyberShake [1].
Note that there are no dependencies across tasks from the three concatenated
DAGs. In other words, DAG1 corresponds to a multi-tenant workload with three
independent DAGs of tasks.

Fig. 5. DAG1 based on three real workloads.

In addition to DAG1, we created several larger versions of it, referred to as
DAG1 v2 through DAG1 v6 (illustrations omitted due to space constraints).
DAG1 v2 horizontally duplicates DAG1; DAG1 v3 vertically “grows” DAG1 by
duplicating each level of tasks; DAG1 is similar to DAG1 v3 but adds more data
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dependencies among the tasks; DAG1 v5 combines horizontal and vertical dupli-
cation; and DAG1 v6 adds more data dependencies to DAG1 v5. The number
of tasks and edges in each DAG, as well as the average number of schedulable
tasks at any point in the schedule (abbreviated |SS|), are presented in Table 2.
Increasing the size and the complexity of the DAG correspondingly increases
the number of schedulable tasks at any point in time. On the other hand, small
DAGs may limit parallelism opportunities.

Table 2. Number of tasks, edges (precedence constraints), and the average size of the
schedulable task set (|SS|) for each DAG.

DAG DAG1 v2 v3 v4 v5 v6

|V | 63 113 113 113 145 145

|E| 96 192 205 240 224 237

|SS| 7.2 12.4 11.6 11.2 16.1 15.2

Our simulation environment, implemented in Python, has two components:
cache simulation and schedule simulation. For cache simulation, we used PyLRU
[2]. By keeping the key of a data item in the LRU cache through a dictionary data
structure, we simulate the cache contents at any given time. Schedule simulation
uses a scheduler module, in which we implemented various scheduling algorithms
for comparison. The input parameters include the DAG, with edge weights cor-
responding to data sizes (to compute weighted SD and weighted TMB), the cold
and hot runtimes (defined as functions of the input data size), the cache size, and
the number of cores/processing units. The simulator then schedules the tasks as
prescribed by the given scheduling algorithm, and keeps track of statistics such
as the simulated I/O, processor idle percentage, and makespan.

We consider different cache pressure points in our simulations. To do so, we
set the cache size to 20 GB and we vary the input size to each task. Tasks at the
first level of the DAG are set to be ten times slower than other tasks (i.e., they
consume ten times more data) to simulate workloads that compute smaller data
products over large raw data.

We start by setting the total data size in the simulation to 120 GB, which is
the sum of the inputs to each task in the DAG. This gives a data to cache ratio of
6:1. In Table 3, we report the performance gap (in terms of makespan) between
B1 and OG for different numbers of threads ranging from one to 8. We used
weighted SD as the data locality metric for these initial experiments. We notice
that increasing the level of parallelism does not lead to a bigger performance
improvement of OG over B1. Therefore, for more cache pressure, we increase
the size of the data from 120 GB to 240 GB, 480 GB, 600 GB, and 840 GB. This
gives data to cache ratios between 6:1 and 42:1.

Figure 6 shows the results, with makespan on the y-axis (in seconds) and
data size on the x-axis. The figure contains five sets of bars, one for each data
size, as labelled. Each set contains seven bars, corresponding to the different
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Table 3. Performance gap between B1 and OG in terms of makespan (120 GB data
size).

Number of threads 1 2 4 8

Performance gap (B1/OG) 1.95x 1.83x 1.84x 1.72x

scheduling algorithms and locality metrics we test, from right to left: B1, B2,
PS using weighted SD, PS using weighted TMB (WTMB), OG using weighted
SD, OG using WTMB, and GCS3.

Additionally, for the largest, 840 GB, data size, we show I/O volume and the
percentage of processing unit idle time for each scheduling algorithm in Table 4.
Note that some idle time may be due to the workload: if there are only two
tasks that can initially be scheduled, then regardless of the sequencing, only two
processing units will initially be busy. Additionally, processing units may be idle
if they are assigned a task that is currently not yet schedulable; this may happen
in PS, but we designed OG and GCS to avoid these situations.

We make the following observations based on the simulation results:

Table 4. I/O transfer and CPU idle time percentage for DAG1 (840 GB data size).

Method I/O (GB)

B1 1741

B2 1597

PS(SD) 1207

PS(WTMB) 1210

OG(SD) 921

OG(WTMB) 940

GCS 930

Method CPU idle %

B1 12.5

B2 13.7

PS(SD) 12.8

PS(WTMB) 12.9

OG(SD) 7.9

OG(WTMB) 8.2

GCS 8.0

Observation 1: (weighted) SD gave schedules with smaller makespans than
(weighted) TMB by up to 15%.

Observation 2: Both baselines, B1 and B2, give schedules with similar
makespans.

Observation 3: For DAG1, as cache pressure (data size) increases, the
improvement of OG and GCS over the baselines stabilizes at around 2.3x (as
shown in Fig. 6). For DAG1-v2, the gap stabilizes at 3.1x; For DAG1-v3, the
gap is at 2.9x; for DAG1-v4, the gap stabilizes around 3.2x (similar to v2);

3 We only report GCS results using weighted SD; results using WTMB were worse
and are omitted from the figures.
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Fig. 6. DAG1 experiments (x-axis: data size; y-axis: makespan).

DAG1-v5 significantly increases the gap to 4.5x; and DAG1-v6 stabilizes at 4.3x
(figures omitted due to space constraints). Thus, the more complex the DAG, the
more potential for improvement over the baselines. The I/O volumes reported
in Table 4 show a similar trend, helping to explain the reason for the improved
workload runtimes due to our scheduling methods.

Observation 4: From the reported CPU idle times in Table 4, PS causes more
CPU idle times than OG than GCS. This, along with the drop in I/O volumes
also reported in Table 4, explains the trend shown in the figures: while PS out-
performs the baselines in terms of the makespan of the workload, OG and GCS
further outperform PS by a factor of two in many cases (especially for larger
data sizes).

Observation 5: GCS rarely outperformed OG on the tested workloads and
sometimes produced worse schedules. This suggests that simulating complete
schedules without knowing the completion order of the tasks is not an effective
strategy, even after allowing for some swaps as we do in GCS. Instead, a simple
online greedy heuristic such as OG can work well in practice.

5.2 Data-Intensive Scheduling in Spark

For Spark experiments, we used a private cluster of 8 nodes (and a subset of 4
nodes from this cluster) running Ubuntu Linux 18.10. Each node is equipped
with four Intel Xeon E5-2620 2.10 GHz 6-core CPUs, 64 GB of DDR3 RAM and
2.7 TB of local storage. The cluster runs Apache Spark 2.3.1 and Apache Hadoop
2.6 for HDFS.

We use the TPC-DS benchmark as the dataset generator [13], with scale
factor 200. We again use the DAG from Fig. 5, with the tasks corresponding to
data-intensive queries from the TPC-DS benchmark that were identified as such
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by [6]. We use Spark standalone mode to simplify the setup and to avoid the
impact of cluster managers such as YARN [3].

We use a default Spark configuration, and each executor is given all the cores
available on a worker by default. We let Spark control its distributed memory
cache using the default LRU strategy. We experimented with two setups. In
the 4-node setup, we use four nodes in the cluster and we limit the number of
concurrent tasks to 4. In the 8-node setup, we use all 8 nodes and we limit the
number of concurrent tasks to 8.

To isolate the impact of task sequencing, we do not perform any dynamic
resource allocation (e.g., giving some tasks more resources if some cores are
idle). Additionally, since we focus on data-intensive tasks, data I/O is the bot-
tleneck, not processing time. Thus, resource reallocation would be expected to
have a limited impact on makespan. We implemented the workload as a pack-
aged application, and included the scheduling algorithms as callable routines in
the code.

We compared our algorithms, PS, OG and GCS, with the baselines, and the
results are presented in Fig. 7, with makespan on the left and the number of
cache misses on the right. We show results for both setups: 4 nodes with up to 4
concurrent tasks and 8 nodes with up to 8 concurrent tasks. We only use weighted
SD in this experiment since previous experiments showed that weighted TMB
produces worse schedules. We also monitor the total cache misses when running
different schedules (we were unable to reliably compute the total I/O volume in
Spark). To measure this, we collect the cache misses using Linux tools on each
server first, and then we aggregate the statistics for a final total cache misses of
the system.

Fig. 7. Spark tests: makespan using 4 and 8 nodes (left figure; x-axis: algorithm; y-axis:
runtime), and number of cache misses (right figure; x-axis: algorithm; y-axis: number
of misses).

Observation 6: Increasing the available resources while at the same time
increasing the maximum parallelism level leads to a decrease in schedule
makespans.
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Observation 7: In terms of makespan, PS outperforms the baselines by about
30%. OG further outperforms PS by about 20%, and the performance of OG and
GCS was nearly identical. Figure 7 shows similar trends in terms of cache misses,
suggesting a reason for the improved performance of our solutions compared to
the baselines. However, the performance improvement of OG/GCS over PS is
not as high as in the simulations, likely because Spark jobs incur some overhead
regardless of sequencing.

6 Conclusions

We defined the MPDIS problem of scheduling a DAG of data-intensive tasks
(with precedence constraints due to data dependencies) on multiple processing
units. To measure data locality, we considered two cache metrics proposed in
prior work: stack distance and total maximum bandwidth. We proposed online
scheduling algorithms: Parallel SDIS (PS), a straightforward extension of serial
scheduling of data-intensive tasks to a parallel setting; Online Greedy (OG),
which addresses a problem with PS, namely the fact that it may leave some
processing units idle while ensuring data locality; and Greedy Complete Schedule
(GCS), which is based on OG but leverages the knowledge of the workload
provided in the DAG. Experimental results showed that PS reduces makespan
and I/O volume compared to the baselines, and OG further improves upon PS.
GCS did not perform better than OG, showing that knowing the workload may
not be sufficient in our setting as we do not know the completion order of tasks
(and therefore cannot infer the set of schedulable tasks at any particular point
in the future).

We assumed an architecture in which multiple processing units share a cache.
In future work, we will study new versions of the MPDIS problem for shared-
nothing settings. One version is to partition the workload across multiple shared-
nothing clusters, and optimize the stack distance of the schedules within each
partition. The additional complexity of this new problem is due to the interaction
between partitioning and data locality of the partitioned schedules.

In this work, we assumed that once a processor finishes a task and becomes
idle, it obtains a single new task. To reduce the scheduling overhead, we can
instead schedule a batch of ready tasks at every scheduling round. In future
work, we will evaluate the impact of such batch scheduling on data locality.
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Abstract. Due to the advent of multicore architectures and mas-
sive parallelism, the tiled Cholesky factorization algorithm has recently
received plenty of attention and is often referenced by practitioners as a
case study. However, we note that a theoretical study of the parallelism
of this algorithm is currently lacking. In this paper, we present new the-
oretical results about the tiled Cholesky factorization in the context of a
parallel homogeneous model without communication costs. By a careful
analysis on the number of tasks of each type that run simultaneously in
the ALAP (As Late As Possible) schedule without resource limitation,
we are able to determine precisely an upper bound on the number of busy
processors at any time (as degree 2 polynomials). We then use this infor-
mation to find a closed form formula for a lower bound on the minimum
time to schedule a tiled Cholesky factorization of size n on P processors.
We show that this lower bound outperforms (is larger than) classical
lower bounds from the literature. We also demonstrate that ALAP(P ),
an ALAP-based schedule where the number of resources is limited to P ,
has a makespan extremely close to the lower bound, thus establishing
both the effectiveness of ALAP(P ) schedule and of our new lower bound
on the makespan.

Keywords: Scheduling · Cholesky factorization · CPU · GPU · Lower
bounds

1 Introduction

A large fraction of time-consuming tasks performed on supercomputers are linear
algebra operations. With the advent of multicore architectures and massive par-
allelism, it is therefore of particular interest to optimize and understand their
parallel behavior. In this paper, we consider the problem of the dense tiled
Cholesky factorization. The algorithm first splits the initial matrix into square
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sub-matrices, or tiles of the same size. The tile size is chosen so as to achieve a
good efficiency on the target architecture.

The tiled Cholesky factorization algorithm has recently received plenty of
attention, either as an algorithm in itself [16,19] or as a case study for task-
based schedulers [1,2,5,12,20,23]. Examples of task-based schedulers which
have considered the scheduling of tiled Cholesky factorization are DAGuE [9],
StarPU [4,13], SMPSs [21], and SuperMatrix [22]. Let us also note that OpenMP
since 3.1 supports task-based parallelism. The tiled Cholesky factorization algo-
rithm is also used in practice and is implemented in Dense Linear Algebra state
of the art libraries, for example DPLASMA [8], FLAME [15], and PLASMA [10].
Recently, the practical design of good static schedule for heterogeneous resources
has been considered in [3] and extensions to incomplete factorization [18], sparse
matrices [17] have also been proposed.

One of our main goals in this paper is to obtain a tight theoretical lower
bound on the parallel time to achieve a Cholesky factorization, based on the
individual costs of the different kernels on a homogeneous architecture without
communication cost. Trivial lower bounds can be derived from general bounds
of the literature on scheduling. Specifically, the time to process Cholesky factor-
ization is trivially bounded both by the length of the critical path (the longest
path in the task graph from the source node to the sink node) and by the overall
work divided by P , the number of available resources. To our best knowledge,
no theoretical study on the execution time of any schedule for the tiled Cholesky
factorization have been determined beyond these trivial bounds. Therefore, in
many situations, it is impossible to assess the efficiency of a given schedule or
implementation, because of the low quality of available lower bounds. This moti-
vates this paper.

In this paper, we assume homogeneous processing units. While the hetero-
geneous setting is more general, establishing theoretical bounds in the heteroge-
neous case is much more difficult (see [6] for a recent survey in the case of two
types of resources). We also make the assumption that communication cost is
zero. We justify this assumption (no communication cost) in two ways. First, if
the tile size is large enough, it is possible to overlap communications and com-
putations. Indeed, if the dimension of the tile is s × s, the tile (memory) size
is s2 while all kernels involved in Cholesky factorization have a complexity s3.
It has been shown experimentally using task-based schedulers [1,2,5,12,20] that
it is possible to almost completely overlap communications and computations.
Secondly, we note that the lower bound on the execution time also holds true in
the case when communication costs are taken into account, so that any practical
implementations will execute slower than this model. The lower bounds that
we exhibit are not trivial and are relevant for practical applications, as demon-
strated in Sect. 5. Another technical assumption is that we are assuming that the
time to perform the SYRK operation is not larger than the time to perform the
GEMM operation. This is a mild assumption. It is very likely to be true. One
reason being that, if not, one can replace the SYRK kernels by GEMM kernels.
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We can relate our work to the recent work of Agullo et al. [2] where the
authors provide lower bound as well. The authors consider a more compli-
cated model (heterogeneous) but rely on the linear programming formulation
to find the schedule. We consider a simpler model (homogeneous) but we pro-
vide closed-form solutions and a tighter analysis. We are considering comparing
both approaches as future work. We can also relate our work to the work of
Cosnard, Marrakchi, Robert, and Trystram [14]. In this work, the authors study
the scheduling of Gaussian elimination. A minor difference is that they work on
LU while we work on Cholesky. The main difference is that they concentrate
on an algorithm that works on the columns of the matrix, while our algorithm
works on tiles.

In addition, it is of great interest to better understand how to efficiently
schedule the parallel execution of the tiled Cholesky factorization algorithm.
Indeed, even if a dynamic runtime scheduler is used, its behavior can be guided by
priorities corresponding to a good static schedule in order to efficiently perform
the parallel factorization, as shown in [3] in the context of StarPU. A contribution
of our paper is to advocate the use of the ALAP (As Late As Possible) schedule
where tasks are scheduled from the end as opposed from the start. We show
that this simple heuristic turns out to provide results that are very close to the
lower bound, therefore proving that it can be used in practice, for instance to
fix priorities in a task based runtime scheduler.

The rest of the paper is organized as follows. In Sect. 2, tiled Cholesky fac-
torization is presented. More specifically, we consider two different settings that
correspond to different relative costs of the different kernels involved in tiled
Cholesky factorization. We prove that these two cases are enough to cover all
possible settings and typically correspond to the CPU and GPU settings and
we provide the analysis of the critical path for each task. Then, in the case of
the CPU case (Sect. 3.1) and to the GPU case (Sect. 3.2), we carefully analyze
the number of tasks for every kernel at any instant of the factorization, when
assuming an infinite number of processing resources. In turn, in Sect. 4, we prove
that in the case of P processors, this analysis can be used to design a tight lower
bound. In Sect. 5, we show using simulations that the makespan (the length) of
the ALAP schedule with P processors is close to the theoretical bound, even for
a small number of tiles, this demonstrates that the ALAP schedule is efficient
and that the bound is tight. Concluding remarks and perspectives are finally
proposed in Sect. 6.

2 Cholesky Factorization

2.1 Cholesky Algorithm

Given a Symmetric Positive Definite (SPD) matrix A, the Cholesky factorization
computes a (lower) triangular matrix L such that A = LLT . It is a core operation
to solve linear systems in the case of SPD matrices as it allows to solve systems
of the form Ax = b by reducing it to computing solutions of Ly = b, and then
LTx = y. In order to compute the Cholesky factorization when using many
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processing units, the matrix A is split into n × n square tiles of size s, where s
is chosen so as to perform kernels efficiently (as it improves data locality) and
to allow to overlap communications and computations. Algorithm1 depicts tiled
Cholesky factorization.

Algorithm 1. Tiled Cholesky Factorization
for k = 0 to n − 1 do

Ak,k ← POTRF (Ak,k) {POTRFk}
for i = k + 1 to n − 1 do

Ai,k ← TRSM(Ak,k, Ai,k) {TRSMi,k}
end for
for j = k + 1 to n − 1 do

Aj,j ← SY RK(Aj,k, Aj,j) {SYRKj,k}
for i = j + 1 to n − 1 do

Ai, j ← GEMM(Ai,k, Aj,k) {GEMMi,j,k}
end for

end for
end for

In Algorithm 1 and in the remainder of this paper, the tasks corresponding
to POTRF kernels will be denoted as POTRFi with 1 ≤ i ≤ n and correspond
themselves to the Cholesky factorization of a real symmetric positive definite
block of the matrix. The tasks corresponding to TRSM kernels will be denoted
as TRSMi,j with 1 ≤ j < i ≤ n and correspond to the resolution of a triangular
linear system of size s. The tasks corresponding to SYRK kernels will be denoted
as SYRKi,j with 1 ≤ j < i ≤ n and correspond to a matrix multiplication with
symmetric matrices, whereas the tasks corresponding to GEMM kernels, denoted
as GEMMi,j,k with 1 ≤ k < j < i ≤ n correspond to general matrix product.
Therefore, since we can always replace SYRK by GEMM, we will assume in
the rest of the paper that the time to perform SYRK is at most the time to
perform GEMM. The dependencies between the tasks are given by

– POTRFj → TRSMi,j , j < i ≤ n;
– TRSMi,j → SYRKi,j , j < i ≤ n; TRSMi,j → GEMMi,k,j , j < k < i ≤ n;
– TRSMi,j → GEMMk,i,j , j < i < k ≤ n;
– SYRKi,j → SYRKi,j+1, j+1 < i ≤ n; SYRKi,i−1 → POTRFi, 1 < i ≤ n;
– GEMMi,j,j−1 → TRSMi,j , 1 < j < i ≤ n;
– GEMMi,j,k → GEMMi,j,k+1, k + 1 < j < i ≤ n.

Table 1. Number of tasks of each type

Type of task POTRF SYRK TRSM GEMM

Number of tasks n n(n−1)
2

n(n−1)
2

n(n−1)(n−2)
6
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Fig. 1. DAG of a 6 × 6 Cholesky factorization

Fig. 2. ALAP schedule without resource limitation on 8×8 tiles with 1, 3, 3, 6 weights

Table 2. Kernel Performance (absolute and relative)

POTRF SYRK TRSM GEMM

GPU 11.55 1.277 3.420 1.733

CPU 11.27 47.76 44.02 87.60

POTRF SYRK TRSM GEMM

GPU 1.00 0.11 0.30 0.15

CPU 1.00 4.24 3.91 7.77

time in ms ratio wrt POTRF

Figure 1 depicts the Directed Acyclic Graph (DAG) of the dependencies
between the tasks of a 6 × 6 tiled Cholesky Factorization and the number of
tasks for each kernel is given in the Table 1.

2.2 Kernel Performance

Table 2 (left part) describes the duration of individual tasks when s = 960 on
an Intel Xeon E5-2680 (CPU) and an Nvidia GK110BGL GPU unit (GPU). All
measurements were performed using Chameleon library [11], version 0.9.1.
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We can observe that, with respect to CPU, GPUs are typically very fast
for GEMM (an improvement of 50 with respect to CPU), fast for SYRK and
TRSM (a respective improvement of 37 and 13) but relatively slow for POTRF

(a slight slowdown). In Table 2 (right part), we give the relative duration of
POTRF,TRSM, SYRK and GEMM with respect to POTRF. Note that
throughout the paper, the results are stated in general terms and expressed
as C, T, S and G respectively and we stress that our theoretical analysis below is
valid for any values of (C,S, T,G). Nevertheless, by analyzing the critical paths
as in Sects. 2.3 and 2.4, we can observe (with the additional trivial assumption
S ≤ G discussed above) that there are only two different situations, depending
on the respective values of S +C and G. These two cases will be analyzed sepa-
rately in the following. For convenience, we will denote them as CPU case (when
S+C ≤ G) and GPU case (when S+C > G) because each of these cases is quite
emblematic of what can be encountered on a core or on an accelerator. In the
same way, for convenience, for numerical illustrations, we will use (1, 3, 3, 6) for
(C, T, S,G) as emblematic values for a CPU and (12, 3, 1, 2) for a GPU. These
values are close to our experimental values and have also been used in the lit-
erature. Typically, (1, 3, 3, 6) corresponds exactly to the ratios of the number of
floating point operations for the different cores.

2.3 Critical Paths in the CPU Case, S + C ≤ G

Based on the above described dependencies, we can compute the critical path for
each task involved in the Cholesky factorization, i.e. the longest path from this
node (itself included) to the end of the last task of the graph, i.e. POTRF(n) if
n×n is the size of the matrix (expressed in number of tiles). Let us assume that
S +C ≤ G, this is the CPU case. In this case, in particular S +C + T ≤ G+ T ,
so that the edges SYRK(i + 1, i) → POTRF(i + 1) are not part of the critical
paths (except those starting at SYRK(i+ 1, i) nodes). Due to lack of space, we
refer the reader to the companion research report [7] for the proofs and only
detail the case of POTRF tasks in the CPU case.

– Case of POTRF(i), 1 ≤ i ≤ n node: the critical path from POTRF(i), i < n
is given by POTRF(i) → (TRSM(i, n) → GEMM(i + 1, n, i)) → . . . →
(TRSM(n − 2, n) → GEMM(n − 1, n, n − 2)) → TRSM(n − 1, n) →
SYRK(n, n− 1) → POTRF(n). Its length is given by L(C, i) = C +(n− i−
1)(T + G) + T + S + C. Therefore, the overall Critical Path CP is given by
CP = 2C + T + S + (n − 2)(T + G) and L(C, i) = CP − (i − 1)(T + G).

– Case of TRSM(i, j), 1 ≤ i < j ≤ n: L(T, i, j) = CP − C − (i − 1)(T + G).
– Case of SYRK(i, j), 1 ≤ j < i < n: L(S, i, j) = CP−(i−1)(T +G)+(i−j)S.
– Case of SYRK(n, j), 1 ≤ j < n: L(S, n, j) = (n − j)S + C.
– Case of GEMM(i, j, k), 1 ≤ k < i < j ≤ n:

L(G, i, j, k) = CP − C + G + T − iT − kG.
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2.4 Critical Paths in the GPU Case, S + C ≥ G

Let us now consider the case when C + S ≥ G, which corresponds to GPU
situation. In this case, in particular S+C+T ≥ G+T , so that SYRK(i+1, i) →
POTRF(i + 1) are now used in critical paths.

– Case of POTRF(i), 1 ≤ i < n:
L(C, i) = C+(n− i)(T +S+C). In particular, CP = C+(n−1)(T +S+C).

– Case of TRSM(i, j), 1 ≤ i < j ≤ n:
L(T, i, j) = (j − i − 1)(T + G) + (n − j + 1)(T + S + C).

– Case of SYRK(i, j), 1 ≤ j < i ≤ n:
L(S, i, j) = (i − j)S + C + (n − i)(T + S + C).

– Case of GEMM(i, j, k), 1 ≤ k < i < j ≤ n:
L(G, i, j, k) = (i − k)G + (j − i − 1)(T + G) + (n − j + 1)(T + S + C).

2.5 ALAP Schedule

Let us now define the ALAP schedule for the n× n tiled Cholesky factorization
without resource limitation (the case with resource limitation will be considered
in Sect. 5). In the ALAP schedule without resource limitation, we consider the
Cholesky graph from the end, i.e. we reverse the task graph depicted in Fig. 1
and we schedule tasks in this order as soon as they are available. Therefore,
ALAP on the original graph is simply the inverse of the ASAP schedule on the
reversed graph. A first observation that can be made is that using the ALAP
schedule without resource limitation, then every task starts its execution at a
instant that differs from the makespan by exactly its critical path (as defined in
Sects. 2.3 and 2.4) to the end of the schedule. We will denote in what follows the
difference between the starting time of a task and the makespan as the distance
of this task. Therefore, the ALAP schedule is optimal with an infinite number of
processing resources and more specifically as soon as the number of processors is
larger than a given threshold. Indeed, without resource limitation, the distance
of the initial task is by construction the critical path of the Cholesky graph.
In Sects. 3.1 (CPU case) and 3.2 (GPU case), we precisely evaluate the number
of tasks of each type running at any instant of the ALAP schedule without
resource limitation, and then we use these bounds to compute a lower bound
on the execution time of any schedule in Sect. 4. Figure 2 depicts the execution
of an ALAP schedule (without resource limitation) on a 8 × 8 tiled Cholesky
factorization, with the time on the x-axis.

3 ALAP Schedule Analysis Without Resource Limitation

3.1 Case S + C ≤ G

In the ALAP Schedule without resource limitation, each task T starts at time
CP − tT , where CP denotes the Critical Path of Cholesky factorization and tT
denotes the critical path from task T . In what follows, given an instant CP− d,
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our goal is to determine an upper bound on the number of tasks of each type
and an upper bound on the work performed by the tasks of each type and whose
execution terminates after the instant CP − d.

We will denote respectively by

– #GEMM(d),#TRSM(d),#SYRK(d) and #POTRF(d) as upper bounds
on the number of tasks of each type that are being processed at this instant
CP − d using the ALAP schedule

– WGEMM(d),WTRSM(d),WSYRK(d) and WPOTRF(d) as upper bounds on the
work performed by tasks of each type whose execution terminates after the
instant CP − d

Both the number of tasks and the overall work will be used later in Theorem1
to prove a lower bound. Due to the length of derivations, we refer the interested
reader to [7] for complete formulas (in terms of n,C, S, T,G) and proofs. In
the present paper, we provide the detailed analysis for #GEMM(d). For the
other cases, whose proofs are based on the same techniques, we only provide the
explicit the explicit formulas.

Case of GEMM Tasks. Let us now establish the result for GEMM tasks.
GEMM(i, j, k) runs at all instants such that CP−C+T − iT −kG ≤ d ≤ CP−
C+T−iT−kG+G, so that in particular CP−d−C+T−iT

G ≤ k ≤ CP−d−C+T−iT
G +1

so that at most one value of k is possible, for a fixed pair (i, d), where k =⌈
CP−d−C+T

G − iT
G

⌉
.

In order to determine how many triplets (i, j, k) correspond to a tasks
GEMM(i, j, k) running at time CP − d, we need to check to consider the con-
straints on (i, j, k) valid triplets, i.e. 1 ≤ k < i < j ≤ n.

– The first constraint states that k ≥ 1. Using the above defined value for k,
we can rewrite the condition

k ≥ 1 ⇔ CP − d − C + T

G
≥ iT

G
⇔ i ≤ CP − d − C + T

T
.

This constraint can be rewritten as i ≤ n + nG+C+S−2G−d
T . Note that in

particular, when d is small enough, i.e. d ≤ nG+C+S−2G, then above con-
straint becomes trivial and can be replaced by i ≤ n. Otherwise, if d ≥ nG+
C+S−2G, then the constraint becomes i ≤ n−�d − (nG + C + S − 2G)/T � .

– The second constraint states that

k < i ⇔ CP − d − C + T

G
− iT

G
≤ (i− 1) ⇔ CP− d−C +T +G ≤ i(G+T ).

This constraint can be rewritten as

(n−i−2)(T+G) ≤ d−(C+G+S+2T ) ⇔ i ≥ n−�d − (C + S + T )/T + G� .
Due to these constraints, we will obtain different formulas for the number of
GEMMs, depending on the value of d.
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– If d ≤ (n − 2)G + C + S + T = dG, then the only constraints are i ≥
n − �d−(C+S+T )

T+G � and i < j ≤ n so that

#GEMM(d) =

� d−(C+S+T )
T+G

�∑

l=1

l = (�d − (C + S + T )

T + G
�)(�d − (C + S + T )

T + G
� + 1)/2,

#GEMM(d) ≤ BGEMM

1 d2 + CGEMM

1 d + DGEMM

1 ,

where BGEMM

1 = 1
2(G+T )2 , CGEMM

1 = (3G+T−2C−2S)
2(G+T )2 and DGEMM

1 =
(G−C−S)(2G+T−C−S)

2(G+T )2 .
In order to estimate WGEMM(d), we rely on the integral of #GEMM(t)
between 0 and d so that WGEMM(d) ≤ AGEMM,W

1 d3 + BGEMM,W
1 d2 +

CGEMM,W
1 d, where AGEMM,W

1 = BGEMM

1
3 , BGEMM,W

1 = CGEMM

1
2 and CGEMM,W

1 =
DGEMM

1 .
– If d ≥ CP − C − T , then there is no GEMM task to perform (only TRSMs

and one POTRF remain) and in this case, #GEMM(d) = 0.
– If dG = (n − 2)G + C + S + T ≤ d ≤ CP − C − T , then the constraints are
n − �d−(C+S+T )

T+G � ≤ i ≤ n − �d−(nG+C+S−2G)
T � and i < j ≤ n, so that

#GEMM(d) ≤ (BGEMM

2 d2 + CGEMM

2 d + DGEMM

2 ),

where BGEMM

2 = 1
2(G+T )2 − 1

2T 2 , CGEMM

2 = 1
2(T+G) + 1

2T − C+S−G
(T+G)2 +

(n−2)G+C+S
T 2 and DGEMM

2 = 1 − C+S+T
2(T+G) − (n−2)G+C+S

2T + (C+S−G)2

2(T+G)2 −
((n−2)G+C+S)2

2T 2

In order to estimate WGEMM(d), we rely on the integral of #GEMM(t)
between dG and d plus WGEMM(dG) so that

WGEMM(d) ≤ AGEMM,W
2 d3 + BGEMM,W

2 d2 + CGEMM,W
2 d + DGEMM,W

2 ,

where AGEMM,W
2 = BGEMM

2
3 , BGEMM,W

2 = CGEMM

2
2 , CGEMM,W

2 = DGEMM

2 and
DGEMM,W

2 = (AGEMM,W
1 − AGEMM,W

2 )d3G + (BGEMM,W
1 − BGEMM,W

2 )d2G +
(CGEMM,W

1 − CGEMM,W
2 )dG.

Case of POTRF Tasks. Clearly, at any instant, at most one POTRF task can
be running since there is a dependency path POTRF(i) −→ TRSM(i, i+1) −→
SYRK(i + 1, i) −→ POTRF(i + 1), therefore ∀d ≥ 0, #POTRF(d) ≤ 1
and the total amount of work done after CP − d is defined by ∀d ≥ 0,
WPOTRF(d) ≤ CPOTRF,W d + DPOTRF,W , where CPOTRF,W = C

T+G and

DPOTRF,W = C(2G+T−S−C)
T+G .

Case of TRSM Tasks. TRSM(i, j) runs at all instants such that CP − C −
(i− 1)(T +G) − T ≤ d ≤ CP−C − (i− 1)(T +G). From above inequalities, we
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can prove [7] that the amount of the TRSM tasks running at the time CP − d

is either 0 or #TRSM(d) =
⌈
d−S−C+G

T+G

⌉
≤ CTRSMd+DTRSM, where CTRSM =

1
T+G and DTRSM = 2G−S−C+T

T+G . and WTRSM(d) ≤ BTRSM,W d2 + CTRSM,W d +

DTRSM,W , where BTRSM,W = T
2(T+G)2 , CTRSM,W = T (3T+3G−2S−2C)

2(T+G)2 and

DTRSM,W = T (T+G−S−C)(2T+2G−S−C)
2(T+G)2 .

Case of SYRK Tasks. Clearly, at any instant, at most one SYRK(n, j) task
can be running since there is a dependency path SYRK(n, j) −→ SYRK(n, j +
1), so that ∀d ≥ 0, #SYRK(n, j, d) ≤ 1.

Let us now consider the case of tasks SYRK(i, j) for 1 ≤ j < i < n.
SYRK(i, j) runs at all instants such that CP+(T +G)−i(T +G−S)−jS−S ≤
d ≤ CP+(T +G)− i(T +G−S)− jS From above inequalities, we can prove [7]
that

– If d ≤ (n− 1)S + 2C +T = dS , then #SYRK(d) ≤ CSYRK

1 d+DSYRK

1 , where
CSYRK

1 = 1
T+G and DSYRK

1 = G−2C−S
T+G . Similarly, we obtain that WSYRK(d) ≤

BSYRK,W
1 d2 + CSYRK,W

1 d + DSYRK,W
1 , where BSYRK,W

1 = CSYRK

1
2 , CSYRK,W

1 =
DSYRK

1 + 1 and DSYRK,W
1 = −C.

– If d > (n − 1)S + 2C + T = dS , then ∀d > nS + 2C − G,#SYRK(d) ≤
CSYRK

2 d + DSYRK

2 , where CSYRK

2 = −S
(T+G)(T+G−S) and DSYRK

2 = 1 +
S((n−1)(T+G)−G+2C+S)

(T+G)(T+G−S) . Similarly, WSYRK(d) ≤ BSYRK,W
2 d2 + CSYRK,W

2 d +

DSYRK,W
2 , where BSYRK,W

2 = CSYRK

2
2 , CSYRK,W

2 = DSYRK

2 and DSYRK,W
2 =

(BSYRK,W
1 − BSYRK,W

2 )d2S + (CSYRK,W
1 − CSYRK,W

2 )dS + (n − 1)S.

3.2 Case S + C ≥ G

We can establish the same results in the GPU case, using the same type of
proof techniques than in the case of GEMM tasks when S + C ≤ G. We refer
the interested reader to [7], where all detailed proofs are presented, and we just
summarize results below.

Case of POTRF Tasks. ∀d ≥ 0, #POTRF(d) ≤ 1. and ∀d ≥ 0,
WPOTRF(d) ≤ CPOTRF,W d + DPOTRF,W , where CPOTRF,W = C

T+S+C and
DPOTRF,W = C.

Case of TRSM Tasks. Let dT ≤ (n − 1)(T + G) + C + S − G. Then

– When d ≤ dT , then #TRSM(d) =
⌊
d+G−C−S
C+S+T

⌋
+ 1 ≤ d+G+T

C+S+T = CTRSM

1 d +

DTRSM

1 where CTRSM

1 = 1
C+S+T and DTRSM

1 = G+T
C+S+T and WTRSM(d) ≤

CTRSM

1
2 d2 + DTRSM

1 d.
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– When d ≥ dT , then #TRSM(d) =≤ CTRSM

2 d + DTRSM

2 where CTRSM

2 =
− T+G

(C+S−G)(C+S+T ) and DTRSM

2 = 2+ (n−1)(T+G)
C+S−G − C+S−G

C+S+T and WTRSM(d) ≤
BTRSM,W d2 +CTRSM,W d+DTRSM,W where BTRSM,W = CTRSM

2
2 , CTRSM,W =

DTRSM

2 and DTRSM,W = CTRSM

1 −CTRSM

2
2 d2T + (DTRSM

1 − DTRSM

2 )dT .

Case of SYRK Tasks. ∀d ≥ 0, #SYRK(d) ≤ CSYRKd + DSYRK,

where CSYRK = −S
(C+S+T )(C+T ) and DSYRK = 1 + (n−1)S

(C+T ) + CS
(C+S+T )(C+T ) and

WSYRK ≤ CSYRK

2 d2 + CSYRKd.

Case of GEMM Tasks. Let dG ≤ nG + S + C − 2G. Then

– When d ≥ dG, then #GEMM(d) ≤ BGEMM

1 d2 + CGEMM

1 + DGEMM

1 , and
WGEMM ≤ BGEMM

1
3 d3 + CGEMM

1
2 d2 +DGEMM

1 d, where BGEMM

1 = 1
2(G+S+T )(T+G) ,

CGEMM

1 = 3T+4G+S
2(G+S+T )(T+G) and DGEMM

1 = 1
– When dG ≤ d ≤ n(G + T ) + S + C − 2G, then #GEMM(d) ≤
BGEMM

2 d2 + CGEMM

2 + DGEMM

2 , where BGEMM

2 = 1
2(G+S+T )(T+G) −

1
2(T+S+C−G)(T ) , C

GEMM

2 = 3T+4G+S
2(G+S+T )(T+G) − nG

2(T+S+C−G)(T ) and DGEMM

2 =

1 − n2G2

2(T+S+C−G)(T ) and WGEMM ≤ BGEMM

2
3 (d3 − d31) + CGEMM

2
2 (d2 − d21) +

DGEMM

2 (d − d1) + BGEMM

1
3 d31 + CGEMM

1
2 d21 + DGEMM

1 d1, where d1 = nG + S +
C − 2G.

4 Lower Bound for Cholesky with P Resources

4.1 CPU Case, S + C ≤ G

Using the above bounds on the number of tasks, we can bound, for any distance
d to CP the number of tasks that would be processed simultaneously using the
ALAP schedule without resource limitation. The upper bound on the overall
number of tasks f#(t) processed at any instant t, 0 ≤ t ≤ CP is therefore given
as a degree 2 polynomial, whose coefficients depend on whether t ≤ CP − dG,
CP − dG < t ≤ CP − dS and t > CP − dS (where dG and dS are defined in
Sect. 3.1). Similarly, let us denote by fW (t) the upper bound on the work per-
formed by ALAP schedule after instant t. fW (t) is given as a degree 3 polynomial,
whose coefficients depend on whether t ≤ CP − dG, CP − dG < t ≤ CP − dS
and t > CP − dS .

Figure 3 displays the upper bound on the overall number of tasks processed
at any instant t, 0 ≤ t ≤ CP, and the same information for each type of
task, GEMM, TRSM, SYRK. All plots correspond to the case where G = 6,
T = S = 3 and C = 1, that corresponds to our sample model for a CPU
node. Due to lack of space, we refer the interested reader to companion research
report [7] to find the counterparts of Fig. 3 in the GPU case.
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Fig. 3. Evolution of the number of tasks of each type with d, n = 20, CPU case, for
all instants between 0 and 170 (the length of the critical path). Subfigures depict the
overall number of tasks (left, up), GEMM tasks (right, up), TRSM tasks (left, down)
and SYRK tasks (right, down)

4.2 Lower Bounds

Let us define tP as the largest instant such that f#(t) ≤ P for any t ≥ tP ,
or tP = CP if the number of resources is large enough. This instant can be
determined easily by studying f#(t), which is described as a degree 2 polynomial
on several intervals. As we have seen above, both f#(t) and the set of intervals
to be considered depend only whether S + C ≤ G (CPU case) or S + C ≥ G
(GPU case).

Lemma 1. Let us denote by S any valid schedule with P processors.
Then, S cannot perform more work between Makespan(S) − (CP − tP ) and
Makespan(S) than ALAP(P ) and this amount of work is upper bounded by
fW (tP ).

Proof. Intuitively, no schedule can perform more tasks during the last CP − tP
instants. Indeed, during these instants, all the tasks whose critical path is less
than tP are processed using ALAP. Moreover, no other task can start as close
to the CP in any schedule. f#(t) (resp. fW (t)) and is an upper bound on the
number of tasks (resp. the overall work) processed simultaneously at time t by
ALAP schedule without resource limitation. Moreover CP − tP is the largest
instant where the ALAP schedule without resource limitation and with at most
P processors coincide, so that we can upper bound the work performed by any
schedule (by optimality of ALAP after CP − tP ) by fW (tP ). This finishes the
proof of the lemma. 	
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Theorem 1. A makespan lower bound for any schedule is (CP − tP ) +
W−fW (tP )

P .

Proof. The overall work W to perform for Cholesky factorization is given by
W = nC + n(n−1)

2 (S + T ) + n(n−1)(n−2)
6 G. In any schedule S, we have proved

in Lemma 1 that an upper bound for the amount of work Wend that can be
processed during the last CP−tP time units is fW (tP ). Similarly, a trivial upper
bound for the amount of work Wbegin processed during the first Makespan(S)−
(CP − Tp) time units is P (Makespan(S) − (CP − Tp)), so that W = nC +
n(n − 1)/2 ∗ (S + T ) + n(n − 1)(n − 2)/6 ∗ G = Wbegin + Wend ≤ fW (tP ) +
P (Makespan(S) − (CP − Tp)) and

Makespan(S) ≤ W − fW (tP )
P

+ (CP − Tp) 	


	


5 Simulation Results

In the above sections, we have established a theoretical lower bound on the
time necessary to achieve a Cholesky factorization on an homogeneous platform
consisting of P GPUs or P CPUs. This lower bound was established using a
detailed analysis of the ALAP schedule and we expect this bound to be close to
the makespan achieved by ALAP. Our goal in this section is to establish through
simulation our intuition.

We performed simulations with different problem sizes (n = 30 or 40 and two
different configurations of tasks lengths corresponding either to the CPU case
(G = 6, C = 1, S = T = 3) or to the GPU case (G = 2, C = 12, S = 1 and
T = 3) in Fig. 4. In this simulation, we plot the speedup achieved by the different
heuristics against theoretical bounds. The first theoretical (trivial) bound on the
achievable speedup on P processors is min(P,W/CP ) (red). The second bound
is the one established in Sect. 4, based on a detailed analysis of ALAP schedule
for Cholesky factorization (green).

We consider the following heuristics:

– ALAP (blue) is the heuristic that we described in Sect. 2.5 when there is no
resource limitation. In the presence of resource limitations, when at a given
moment, the number of available tasks is greater than the number of available
resources, we define the highest priority task as the one that maximizes the
length of the longest path between POTRF(1) and this task.

– ASAP (yellow) As Soon As Possible, is the dual heuristic with respect to
ALAP. Tasks are processed as soon as they become ready when there is no
resource limitation. In the presence of resource limitations, when at a given
moment, the number of available tasks is greater than the number of available
resources, we define the highest priority task as the one that maximizes the
length of the longest path between this task and POTRF(n).
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– LAPACK (purple) corresponds to the Cholesky factorization implemented
in the LAPACK library. It consists in n bulk-synchronized steps. During step
i, POTRF(i) is first performed, then all TRSM(i, j) tasks and finally all
SYRK(j, i) tasks and all GEMM(j, k, i) tasks can be interleaved and can be
executed concurrently if enough resources are available.

n = 30, CPU n = 40, CPU

n = 30, GPU n = 40, GPU

Fig. 4. Evolution of speedup with the number of processors P with CPU weights:
(C = 1, S = 3, T = 3, G = 6) on the top, and GPU weights: (C = 12, S = 1, T = 3,
G = 2) on the bottom. (Color figure online)

We note that, since we plot speedup, our lower bounds on the makespan
become upper bounds on the speedup. We see that our new upper bound on the
speedup (green) is lower than the trivial bound (red). Another observation is that
the length of the ALAP schedule (blue) and our new lower bound (green) are
always extremely close. This confirms the tightness of our analysis and the excel-
lent performance of the ALAP schedule. In the companion research report [7],
the reader will find more results (n = 20 in particular) and also an asymptotic
analysis which suggests that ALAP is uniformly asymptotically optimal as the
problem size becomes larger. In other words, as n increases, the maximum ratio
over all P between the ALAP schedule makespan and our lower bound uni-
formly tends to 1. For example, we can observe that, using either our model
GPU weights or our model CPU weights as soon as n gets larger than 40, for
any processor count P , ALAP is at least 5% optimal. And, as n increases, ALAP
approaches optimality (for any processor count P ).
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6 Conclusion and Perspectives

In this paper, we have studied in detail the makespan of Cholesky’s factorization
on a homogeneous platform. For example, this platform can be made of GPUs
only, or CPUs only, or anything really. We have obtained a sharp lower bound
on the completion time of the factorization, regardless of the scheduling used,
which is based on a detailed study of the ALAP schedule. In particular, this
bound requires determining the number of simultaneous tasks of each type at
any instant in the ALAP schedule.

This lower bound allows us to make several observations. First of all, ALAP
scheduling behaves remarkably well in the case of CPUs as in the case of GPUs,
always significantly better than the LAPACK schedule and better than ASAP
scheduling in the case of CPUs. The proximity between the ALAP completion
time and the lower bound, in all the scenarios, allows us to accurately estimate
the time required for Cholesky factorization. Indeed, the ALAP completion time
provides an upper bound on the time needed whereas the theoretical lower bound
provides a lower bound. The proximity between the two thus guarantees both the
quality of the approximation of the time needed to perform the factorization, the
quality of the theoretical lower bound and the quality of the ALAP scheduling
which provides the upper bound.

This work opens many perspectives. From a theoretical point of view, the
generalization of the technique used in the case of Cholesky factorization to other
types of task graphs, in linear algebra and elsewhere, is open. The techniques
used in this paper are highly computational and the results are technically quite
complex, but generalization and automation may be envisaged. Another inter-
esting issue is the possibility to extend these results to heterogeneous platforms.
Indeed, it has been observed using dynamic runtime schedulers, typically on
Cholesky factorization, that heterogeneity allows an “optimal” use of resources,
by executing tasks on the most suitable type of resources. Unfortunately, in the
heterogeneous case, the known lower bounds are extremely coarse and do not
allow to assess the closeness to optimality of a schedule. This raises the question
on whether our approach can help.
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Abstract. Training Deep Neural Networks is known to be an expensive
operation, both in terms of computational cost and memory load. Indeed,
during training, all intermediate layer outputs (called activations) com-
puted during the forward phase must be stored until the correspond-
ing gradient has been computed in the backward phase. These memory
requirements sometimes prevent to consider larger batch sizes and deeper
networks, so that they can limit both convergence speed and accuracy.
Recent works have proposed to offload some of the computed forward
activations from the device memory to the main memory and requires to
determine which activations should be offloaded and when these trans-
fers should take place. We prove that this problem is NP-complete in the
strong sense, and propose two heuristics based on relaxations of the prob-
lem. We then conduct a thorough experimental evaluation of standard
deep neural networks.

Keywords: Memory management · Deep Neural Network · Dynamic
programming · Scheduling

1 Introduction

Training for Deep Learning Networks (DNNs) has become a major compute
intensive application [9,10], typically performed on GPU clusters. The training
phase involves two traversals of the graph representing the DNN, one in direct
order which is called forward propagation and one in reverse order called back-
ward propagation. This incurs high memory usage: the tensors computed during
the forward phase, called forward activations, must be kept in memory until the
associated backward operation is performed, since they are required to compute
the gradients and to update the weights. Therefore, memory issues become cru-
cial when performing training in DNNs, and the memory limitation of current
hardware often prevents data scientists from considering larger models, larger
image sizes or larger batch sizes [15,18].

For instance, when using ResNet101 with relatively small images of size 224×
224 and a batch size of 32, the resulting size during training is around 5GB. For
applications which require to detect small objects in the images [4], the image
c© Springer Nature Switzerland AG 2020
M. Malawski and K. Rzadca (Eds.): Euro-Par 2020, LNCS 12247, pp. 151–166, 2020.
https://doi.org/10.1007/978-3-030-57675-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57675-2_10&domain=pdf
http://orcid.org/0000-0003-2741-6228
http://orcid.org/0000-0003-2475-3309
http://orcid.org/0000-0002-1795-8421
https://doi.org/10.1007/978-3-030-57675-2_10


152 O. Beaumont et al.

resolution must be increased, and the memory required for storing activations
increases quadratically with the image resolution. The situation is even worse
when moving to 3D object recognition [6] or video based DNNs such as 3D-
Resnet [8] or CDC [19].

Many approaches have been proposed in the literature in order to circum-
vent this memory issue. In this paper, we focus on an offloading approach
(also called memory swapping), which consists in reducing memory usage on
the GPU (device memory) by transferring some activations to the CPU (main
memory), which is expected to be at least one order of magnitude larger. The
corresponding algorithmic question is to determine which activations should be
offloaded and when, and also when offloaded activations should be brought back
(prefetched) from the main memory to the device memory. This approach has
been recently considered in [1,13,14,16,20,21], where the authors advocate the
general idea and propose several static heuristics to decide which activations
should be offloaded. In this paper, we provide a deeper analysis of this problem.
More specifically, we prove that the general problem, even for sequential mod-
els, is strongly NP-complete where only fully integral data transfers are possible
and we analyze two relaxations of the problem for which we can derive opti-
mal algorithms. These algorithms can then be used as heuristics for the general
problem.

The rest of the paper is organized as follows. In Sect. 2, we discuss previ-
ous works regarding offloading, as well as other techniques to reduce memory
usage during the training phase. In Sect. 3, we present the model and notations
used throughout the paper, and assess the complexity of the problem. In Sect. 4,
we propose a first relaxation where activations can be partially or completely
offloaded into the main memory, and derive an optimal strategy. In Sect. 5, we
consider the case where partial offloading is not possible, but where communi-
cations can be interrupted, and we present a dynamic programming algorithm
to find the optimal schedule. In Sect. 6, we provide experimental results and we
assess the efficiency of our heuristics against the previous approach [1,13,21],
before presenting conclusions and perspectives in Sect. 7.

2 Related Work

In order to reduce the memory usage of storing the forward activations on a
processing device, we can identify two kinds of approaches: checkpointing or
offloading.

Checkpointing techniques consist selecting only a few activations that are
kept in memory, and then to dynamically recompute the others at runtime. This
allows to explore a tradeoff between memory usage and computational cost. The
use of checkpointing strategies has recently been advocated for DNN in several
papers [5,7,11], where it is referred as gradient checkpointing or rematerializa-
tion.

Offloading is a potentially complementary approach first proposed in [16].
In [16], the authors propose a simple and effective mechanism of memory virtu-
alization, that nevertheless introduces unnecessary idle time by enforcing some
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synchronization between data transfers and computations of later forward acti-
vations. This approach has been later improved in [1]. Nevertheless, in both
papers, the algorithmic strategies to decide which activations to offload into the
main memory are relatively straightforward. Proposed strategies consist in try-
ing to offload either all activations or only those that correspond to convolutional
layers (either all convolutions or every second one). Indeed, convolutional layers
are known to induce a large computational time with respect to their input size,
which make them good candidates to overlap offloading and processing.

Several follow-up works offer improvements over this first attempt. In order to
reduce the overhead incurred by the communications, some authors [17] recom-
mend to add compression to decrease the communication time, while others [12]
design a memory-centric architecture to help with data transfers. In [13,14],
the authors implement memory virtualization by manipulating the computa-
tional graphs and inserting special operations called swap in and swap out that
send the activations in and out of the device memory. Such an approach can
be applied to any arbitrary Computation Graph that represent neural network
training graphs. The authors of [13] improve the candidate selection and prefetch-
ing mechanisms by introducing thresholds to filter out different possibilities.
Moreover, some works try to combine offloading with other memory optimizing
techniques. Memory swapping and memory pooling are implemented together
in [21], where candidates for swapping are found by assigning priority scores
to all activations. Finally, gradient checkpointing is combined with the simple
offloading approach from [16] in [20].

As a complement to these practical approaches, in this paper we perform
the first theoretical analysis of the underlying optimization problem and present
both a complexity proof and optimal solutions to two of its relaxations.

3 Model and Complexity

3.1 Computation Model

We consider the training phase of sequential DNNs, as depicted on Fig. 1. This
training phase consists of two types of computations: forward propagations
(Fi)1≤i≤L and backward propagations (Bi)1≤i≤L. The forward step Fi requires
xi as input, and computes xi+1. The backward step Bi requires xi+1, xi and
yi+1 as inputs, and computes yi. The objective of the elementary training phase

F0 F1 · · · FL−2 FL−1 FL

B0 B1 B2 · · · BL−1 BL

x0 x1 x2 xL−2 xL−1 xL xL+1

yL+1 = 1yLyL−1y3y2y1y0

x0 x1 x2 xL−1 xLx1 x2 x3 xL−1 xL xL+1

Fig. 1. Data dependencies induced the training phase of Sequential Deep Neural Net-
works.
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is to perform the whole computation and to obtain y0 in the smallest possible
time. This computation is performed on a processing device (typically a GPU
or TPU) with limited memory MGPU. We denote uFi

the time to process Fi,
and uBi

the time to process Bi. As mentioned before, the training phase is very
memory intensive: since they will be needed for the backward phase, all xi values
must be stored during the forward phase, and they can only be freed once their
corresponding Bi operation has been performed.

We will use the following memory model. Each data (xi and yi) has a given
memory usage, denoted respectively by |xi| and |yi|. To perform an operation
(either Fi or Bi), it is necessary to have all inputs stored into memory, to reserve
the memory space to store the output, and to reserve space for the temporary
memory usage of the operation, denoted with exF

i for Fi and exB
i for Bi. For

example, running the Fi operation requires to have at least |xi| + |xi+1| + exF
i

memory available.
In order to decrease memory usage, we assume that it is possible to offload

some of the forward data to another memory storage (typically the main memory
of the machine). The size of this memory is assumed to be large enough to store
all the results and thus is not a constraint; but the speed of data transfers is
limited by bandwidth β. The offloaded data can then be prefetched during the
backward phase, so that it is available when needed to perform the corresponding
backward operation. Such memory hierarchy has been considered by [1,16] as
well, i.e. there are one GPU with limited memory and one CPU with large enough
memory to store all activations of some arbitrary neural network and both are
connected with the network with the bandwidth β, which we assume is fully used
for any communications. More complicated cases such as multiple GPU and one
CPU are out of scope of this paper and they will be left for the future work.
Additionally, we assume that transfers and computations could be overlapped
while only one transfer at a time is possible. Let us point out that generally xi

needs to be stored in memory in its entirety throughout the transfer: during the
offloading, the memory is only released after the complete transfer, and during
the prefetching, the memory is reserved as soon as the transfer begins.

We can state the decision problem associated to offloading.

Problem 1 (Offloading). Consider a training phase with L operations, with pro-
cessing times uFi

and uBi
, data sizes |xi| and |yi|, temporary memory usage exF

i

and exB
i , where 0 ≤ i ≤ L. Is it possible to perform this computation on a pro-

cessing device with memory MGPU and bandwidth β between processing device
and main memory, with an execution time at most T?

3.2 Preliminary Results and Lower Bound

Proposition 1. For fixed decisions of which data to offload, and in which order
transfers should be performed, the best schedule is obtained with a no-wait policy,
where each action (computation and data transfers) is performed as early as
possible, as soon as data is available and there is enough memory.
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Given the activation sizes and the temporary memory usage, it is easy to
compute the total amount of used memory (both on the computing device and
in the additional memory) during the execution of each operation. We denote by
mFi

or mBi
the amount of data required to be stored on both devices to perform

Fi or Bi respectively. Let us additionally denote as Mpeak the maximum of these
values: mFi

= exF
i +

∑
j≤i+1 |xj |, mBi

= exB
i + |yi| + |yi+1| +

∑
j≤i+1 |xj |, i.e.

Mpeak = max (max0≤i≤L mBi
,max0≤i≤L mFi

) .
Since any valid schedule must process the operation which achieves the mem-

ory peak while using at most MGPU memory on the computing device, the fol-
lowing result holds.

Proposition 2. The amount of data offloaded by any valid schedule is at least
Mpeak − MGPU.

Since any valid schedule must perform all computations, and must transfer
at least this amount of data twice (for offloading and prefetching), the following
lower bound on the optimal makespan holds true.

Proposition 3. The value LB = max(
∑

i uFi
+ uBi

, 2Mpeak−MGPU

β ) is a lower
bound on the optimal makespan.

3.3 Complexity Results

Theorem 1. Problem 1 is strongly NP-complete.

Proof. Problem 1 clearly belongs to NP: given the start time of all forward and
backward operations, and the set of offloaded data with the corresponding start
time of transfers, checking that the schedule satisfies all constraints can be done
in linear time.

We prove that this problem is strongly NP-hard and therefore strongly NP-
complete by a reduction from the 3-partition problem: given a set of integers
{u0, u2, . . . , u3m−1} such that

∑
i ui = mV , is it possible to partition it into m

parts {S1, . . . , Sm} so that for any j ≤ m, |Sj | = 3 and
∑

i∈Sj
ui = V . This

problem is known to be NP-complete in the strong sense. Given an instance
of 3-partition, we consider the following instance of Problem1, depicted on the
Figure below:

– L = 5m, β = V , MGPU = mV , T = 2m;
– uFi

= 0 and |xi| = ui for 1 ≤ i < 3m;
– uFi

= 1 and |xi| = 0 for i = 3m + 2k, 0 ≤ k < m;
– uFi

= 0 and |xi| = V for i = 3m + 2k + 1, 0 ≤ k < m;
– uBi

= 0 and |yi| = 0 for all i, except uB3m = m.

F0 F1 · · ·
F3m−1

1

F3m F3m+1

· · · 1

F5m−2 F5m−1

B0 B1

· · ·
B3m−1

m

B3m

B3m+1

· · ·
B5m−2 B5m−1

u1 u2 u3 u3m 0 0 V 0 V 0

0000000000

u1 u2 u3 u3m
0 0 V 0 Vu2 u3 0 0 V V 0
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We claim that this instance can be scheduled in time T = 2m if and only if
the 3-partition instance is positive.

Let us first assume that there exists a solution to the 3-partition instance,
i.e. sets (Sj)1≤j≤m such that

∑
i∈Sj

ui = V . We can build a schedule which
starts F3m+2k at time k for 0 ≤ k < m, and executes B3m from time m to
time 2m. At time 0, before the execution of F3m, the memory usage is exactly
mV =

∑
i ui. During the execution of F3m+2k, activations xi for i ∈ Sk are

transferred. Since β = V , this takes time exactly 1. The memory used at the end
of F3m+2k is thus (m − 1)V , which allows to immediately start F3m+2k+1. At
the end of the forward phase, the memory is filled with m activations of size V .
At the beginning of B3m, the memory is empty: all activations of size ui can be
prefetched during the execution of B3m, allowing to finish the backward phase.
This schedule induces no idle time, and finishes in time exactly T = 2m.

Let us now assume that there exists a valid schedule of duration T = 2m,
i.e. without any idle time on the processing device. For j < m, let us define
the set Sj as the indices of the activations whose transfers are included in the
execution of F3m+2j . Since F3m+1 starts immediately after the end of F3m, and
since memory is only released once the transfer has been completed, the amount
of data sent during F3m is at least V . Since β = V and uF3m = 1, the amount of
data is exactly V , thus

∑
i∈S0

ui = V . The same argument applies for all j < m,
which shows that the sets Sj are a valid solution for the 3-partition instance,
and completes the proof. ��

From the proof of Theorem 1 follows that even when we know which activa-
tions should be offloaded, it is difficult to decide the order in which the transfers
should be done. Indeed, it is clear in the instances used in the proof that the first
3m activations need to be offloaded, but finding the optimal ordering is hard.
Because of this negative complexity result, we study two different relaxations of
Problem 1 in the next sections, by relaxing the constraints stating that activa-
tions must be sent in entirety before the corresponding memory can be released.
In such scenarios, all activations can be sent as soon as they are computed, i.e.
in increasing order of their indices. This allows to compute optimal solutions
in reasonable time, and the resulting algorithms can then be used as heuristic
solutions for Problem1.

4 Fractional Relaxation

In a first relaxation, let us consider that it is possible to perform partial offload-
ing: any communication can be stopped at any time, and the data that has been
transferred up to that time can be released from memory, even if the rest of the
activation is still present on the computing device. With this model, it is possi-
ble to compute an optimal solution with a greedy algorithm. Let us first prove
results about the structure of optimal solutions, and then use that structure to
design an optimal greedy algorithm.
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Structure of Optimal Solutions. In this section, let us analyze special
eager schedules. A schedule is said eager if it offloads the first k activations
x0, x1, . . . , xk (where the last one can be partially offloaded). A schedule is said
ordered if the data is offloaded in order of increasing indices, and prefetched in
order of decreasing indices.

Lemma 1. Any valid solution S can be transformed into a eager and ordered
solution S ′ with the same makespan.

Proof. Let us denote by Moff the amount of activation data offloaded by the
schedule S, and let us consider in S the time intervals Ioff spent offloading data,
and the time intervals Ifetch spent prefetching data. Let us consider the schedule
S ′ in which all operations and data transfers are performed at the same instants
as in S, only changing which data is transferred. The first intervals of Ioff are
used to transfer x0 (since it is possible to stop any communication at any time,
using several intervals to transfer x0 is not a problem), the next ones are used
to offload x1, and so on, until the amount Moff is reached, and similarly for the
prefetched data, in reverse order. Clearly S ′ is eager and ordered.

Since the xi values become available in the forward phase by order of increas-
ing indices, and are consumed in the backward phase by order of decreasing
indices, it is clear that transfers in S ′ are valid: an activation is offloaded
only after having been produced, and in the backward phase an activation is
prefetched before being used. Furthermore, since transfers occur at the same
instants and at the same speed as in S, the memory usage of S ′ is exactly the
same as the memory usage of S at any instant. The modified S ′ schedule is thus
valid. ��

Greedy Algorithm. According to this result, we consider only eager and
ordered schedules. It is thus sufficient to find the amount of offloaded data which
results in the smallest makespan. The next result shows that it is best to offload
the least possible amount of data. The complete proof of this result can be found
in the companion paper [3].

Lemma 2. Let S and S ′ be no-wait, ordered and eager schedules which offload
a quantity of data Q and Q′ respectively, with Q < Q′. Then the makespan of S
is not larger than the makespan of S ′.

With Lemma 1 and 2, since Mpeak − MGPU is a lower bound on the amount
of data that any schedule has to offload, we can characterize an optimal schedule
for this relaxed problem.

Theorem 2. For a given instance, the no-wait, eager, ordered schedule which
offloads a quantity Mpeak − MGPU of data is optimal.

By rounding up the number of offloaded activations, this result provides a
heuristic for the original integral problem, that we call Greedy. The Greedy

heuristic returns the no-wait, eager, ordered schedule which offloads (entirely)
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the first k activations, where k is the smallest index such that
∑

i≤k |xi| ≥
Mpeak − MGPU.

However, it may happen that this Greedy schedule offloads too much data
because of the rounding procedure. In the next section, we thus analyze a more
sophisticated relaxation in order to obtain a more precise algorithm.

5 Fractional Communications

Let now consider another formulation of Problem1, in which an activation must
be either entirely offloaded or not offloaded at all. However, it is still allowed to
stop a communication at any time and resume it later. In this section, we first
prove that this problem is NP-complete in the weak sense, and then propose a
pseudo-polynomial optimal algorithm based on Dynamic Programming.

5.1 Complexity

Problem 2 (Offloading with interruptions). Consider a training phase with L
operations, with processing times uFi

and uBi
, data sizes |xi| and |yi|, tempo-

rary memory usage exF
i and exB

i , where 0 ≤ i ≤ L. Is it possible to perform
this computation on a processing device with memory MGPU and bandwidth β
between the processing device and the main memory, with an execution time at
most T , if communications can be interrupted and partial?

Let us first note that Proposition 1 also holds for this problem (it is always
better to schedule with a no-wait policy). We can also state a result similar to
the one of the fully fractional case.

Lemma 3. Any valid solution S can be transformed into an ordered solution S ′

with the same makespan.

The proof is the same as the one of Lemma 1: transforming S using the
correct order provides a valid schedule. The result is weaker, because an eager
schedule which offloads the same data might not be valid for Problem2 (the last
activation might not be fully offloaded).

The next theorem shows that Problem 2 is less difficult than Problem1. Its
proof is omitted here and can be found in the companion report [3].

Theorem 3. Problem 2 is NP-complete in the weak sense.

5.2 Structure of Optimal Solutions

According to Lemma 3, our objective is now to find the best ordered schedule.
In this section, we derive properties of all ordered and no-wait schedules, which
will allow to obtain a dynamic programming algorithm in the next section.
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Forward and Backward Phases. Let us consider any ordered, no-wait sched-
ule S. Let MFi

denote the device memory occupied at the end of Fi−1 (it should
contain all data not offloaded at this instant, plus xi which is the output of Fi−1).
Let ΔFi

denote the amount of data from x0, . . . , xi−1 that S offloads after the
end of Fi−1. If this amount is zero, let us denote by AvF the time between the
end of the last offload and the end of Fi−1, and let ΔFi

= −AvF · β. Moreover,
let us set Δ+

Fi
= max{0,ΔFi

}. We aim to characterize the delay εF
i between the

end of Fi−1 and the start of Fi.
Let us first remark that since S is a valid schedule, there is enough memory

to process Fi at some point, which means that Δ+
Fi

needs to be large enough,
MFi

− Δ+
Fi

+ exF
i + |xi+1| ≤ MGPU

If MFi
+ exF

i + |xi+1| ≤ MGPU, then Fi can start immediately after the end
of Fi−1, and since S is no-wait, then εF

i = 0. Otherwise, processing Fi can start
as soon as enough memory has been released by offloading data at rate β. This
yields εF

i = MFi
+exF

i +|xi+1|−MGPU

β . In summary,

εF
i = max

(

0,
MFi

+ exF
i + |xi+1| − MGPU

β

)

(1)

Let us now derive recursive equations to obtain MFi+1 and ΔFi+1 from MFi

and ΔFi
. These equations depend on whether xi is offloaded in S.

If xi is offloaded, then the amount of data ready to be offloaded at the end of
Fi−1 is Δ+

Fi
+ |xi|. Until the end of Fi, the amount of data that can be offloaded

is at most (εF
i + uFi

)β. Hence we obtain

ΔFi+1 = Δ+
Fi

+ |xi| − (εF
i + uFi

)β (2)

MFi+1 = MFi
+ |xi+1| − min

(
Δ+

Fi
+ |xi|, (εF

i + uFi
)β

)
. (3)

If xi is not offloaded, we can write similar equations, except that |xi| is not
added to the amount of data to be offloaded. This yields

ΔFi+1 = ΔFi
− (εF

i + uFi
)β (4)

MFi+1 = MFi
+ |xi+1| − min

(
Δ+

Fi
, (εF

i + uFi
)β

)
(5)

Let us now derive similar results about the backward phase. We first modify
S to process all backward operations and perform all prefetching operations as
late as possible without changing the makespan of the schedule. We then define
MBi

as the device memory occupied right before processing Bi−1 (thus it does
not take into account the output of Bi−1, which is yi−1). Let us also define ΔBi

as the amount of data from xL, xL−1, . . . , xi) that S prefetches before starting
Bi−1, and if this amount is zero, then ΔBi

= −AvB · β, where AvB is the time
between the start of Bi−1 and the start of the first prefetch operation. Finally,
let εB

i denote the delay between the end of Bi and the start of Bi−1.
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With the same reasoning as above, we obtain

εB
i = max

(

0,
MBi

+ exF
i + |xi+1| + |yi+1| − MGPU

β

)

(6)

ΔBi+1 = |xi| + max
(
0,ΔBi

− (εB
i + uBi

)β
)

if xi is offloaded (7)

ΔBi+1 = ΔBi
− (εB

i + uBi
)β otherwise (8)

Computing MBi+1 is not necessary, as one can notice that for all i,
MBi

− Δ+
Bi

= |yi| + |xi| +
∑

j<i,j not offloaded |xj |, and MFi
− Δ+

Fi
= |xi|+∑

j<i,j not offloaded |xj |. Thus, MBi
− Δ+

Bi
= |yi| + MFi

− Δ+
Fi

, which allows to
compute MBi

once all three other values are known.

Idle Time Between Phases. The connection between forward phase and
backward phase is defined through Lemma4 that shows how to compute the
idle time between them. The proof of this result is provided in [3].

Lemma 4. The idle time between phases are given in Eq. (9):

εG = max

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0,
ΔFL+1+ΔBL+1

β ,

max{j≤L| ∑L
i=j+1 βuBi

<−ΔBL+1}
RB

j +MFL+1−MGPU

β − ∑L
i=j+1 uBi

,

max{j≤L| ∑L
i=j+1 βuFi

<−ΔFL+1}
RF

j +MBL+1−MGPU

β − ∑L
i=j+1 uFi

,

(9)

where RB
j = exB

j + |yj | + |yj−1| − ∑
i>j+1 |xi| and RF

j = exF
j − ∑

i>j+1 |xi|.

5.3 Resulting Algorithm

To formalize the dynamic programming algorithm, let us define Idle(i,m,
dF , dB) as the smallest possible sum of idle times between (i) the start of the
schedule and the end of Fi−1 and (ii) the start of Bi−1 and the end of the
schedule, for all schedules S such that MFi

= m, ΔFi
= dF , ΔBi

= dB .
Any schedule starts with a memory occupation of |x0|, and no idle time,

so we can define Idle(0, |x0|, 0, 0) = 0, and Idle(0,m, dF , dB) = ∞ for all
other values of m, dF , dB . In order to compute Idle(i,m, dF , dB) for all i
and all relevant values of m, dF , dB , we use hash tables Idlei indexed with
(m, dF , dB), with the understanding that if (m, dF , dB) is not stored in Idlei,
then Idle(i,m, dF , dB) = ∞. This leads to Algorithm 1, where Idlei values are
used to update Idlei+1 values, with two possible cases, either with a schedule
that offloads xi, or with a schedule that does not.
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Algorithm 1. Dynamic Programming Algorithm for Fractional Communica-
tions

Idlei ← HashTable() for 0 ≤ i ≤ L
Idle0(|x0|, 0, 0) = 0
for i ∈ {0, . . . , L} do

for MFi
, ΔFi

, ΔBi
∈ Idlei do

MBi
← |yi| + Δ+

Bi
+ MFi

− Δ+
Fi

if |xi+1| + max(MFi
+ exF

i − ΔFi
, MBi

+ exB
i + |yi+1| − ΔBi

) ≤ MGPU then

Compute εFi , εBi from equations (1) and (6)
Compute MF , ΔF , ΔB if xi is offloaded (equations (2), (3) and (7))

Idlei+1(MF , ΔF , ΔB) ← min
(
Idlei+1(MF , ΔF , ΔB), Idlei(MFi

, ΔFi
, ΔBi

) + εFi + εBi

)

Compute M ′
F , Δ′

F , Δ′
B if xi is not offloaded (equations (4), (5) and (8))

Idlei+1(M
′
F , Δ′

F , Δ′
B) ← min

(
Idlei+1(M

′
F , Δ′

F , Δ′
B), Idlei(MFi

, ΔFi
, ΔBi

) + εFi + εBi

)

for MF , ΔF , ΔB ∈ IdleL+1 do
Compute εG according to equation (9)
TotalIdle(MF , ΔF , ΔB ) ← IdleL+1(MF , ΔF , ΔB ) + εG

Get M∗
F , Δ∗

F , Δ∗
B which minimizes TotalIdle(MF , ΔF , ΔB )

Backtrack in IdleL+1, . . . , Idle0 to obtain optimal offload decisions

Once IdleL+1 is computed, TotalIdle can be found by adding the cor-
responding idle time εG between the forward and backward phases. Then, the
smallest value in TotalIdle is the smallest possible idle time for any ordered,
no-wait schedule. Finally, we can identify which offload decisions have led to this
idle time, and then obtain the description of the corresponding schedule.

The number of values kept in the hash table can be bounded in the following
way: MF is between 0 and MGPU, ΔF and ΔB are between −∑

i(uFi
)β and

MGPU. The number of possible values is thus O(MGPU(MGPU + uFi
β)2), and

the complexity of Algorithm 1 is O(LMGPU(MGPU + uFi
β)2), which is indeed

pseudo-polynomial.
This optimal algorithm for the fractional communications model can be

turned into heuristic DynProg for the original problem. DynProg computes
the optimal set of activations for the relaxed model with Algorithm1, and out-
puts the no-wait, ordered schedule which offloads exactly these activations.

Practical Considerations. The integration of offloading in Deep Learning
frameworks is generally not completely trivial. A first solution is the one adopted
by Vdnn

1 and consists in implementing an ad-hoc system to do the training by
directly managing computation operations and data transfer operations between
the main memory and the device memory. It is possible to use a solution of this
type, by directly integrating our algorithms in addition to the heuristics pro-
posed in [1]. This solution allows great flexibility and low-level management of
all data movements and allocations, but it limits the possible adoption by not
relying on classical Deep Learning frameworks. TFLMS [13] is directly built on
top of TensorFlow. The principle consists in modifying the task graph by explic-
itly integrating swap tasks (between the device memory and the main memory).
This approach is very interesting because it has a high level of integration with
1 https://github.com/shriramsb/vdnn-plus-plus/.

https://github.com/shriramsb/vdnn-plus-plus/
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TensorFlow, but on the other hand, it is only possible to specify the relative order
of the transfer tasks with respect to the computation tasks and not to perform
them at specific dates. As the scheduling of tasks is controlled by TensorFlow
itself, it is therefore not possible a priori to make just-in-time communications
and allow for a perfect overlap of computations and communications. The situa-
tion with PyTorch is also complex, because implementing an offloading solution
requires to transfer not only easily accessible tensors, but also the complete data
structure that are necessary for executing backward operations. Manipulating
this requires operating on PyTorch internals and is out of the scope of this
paper. Therefore, we rely on simulations to compare algorithms and scheduling,
and we postpone their implementation in Deep Learning frameworks until there
is an easier and more explicit support of data exchange.

As mentioned above, the dynamic program algorithm has a pseudo-
polynomial complexity, and its running time can get large for deep networks.
To keep the running time reasonable, we implement a rounding procedure (the
details are given in the research report [3]). This allows to keep all running times
below 25 s. Since this computation is performed only once for the whole training
phase, such an execution time is completely acceptable.

6 Experimental Analysis

Experimental Setting. This section presents experimental results obtained
on three different kinds of networks: ResNet, DenseNet, and Inception v3. We
have slightly modified these networks to represent them as linear chains, by
grouping each non-linear part of the graph in a virtual layer. We have obtained
the values of uF , uB , exF , exB , and the sizes of xi and yi by performing measures
on sample data on a node equipped with a Nvidia Tesla V100-PCIE GPU card
with 15.75 GB of memory. We also measured the bandwidth β to transfer data
using PyTorch from the GPU to the RAM, and obtained around 12.5 GB/s.

We use all available depths for ResNet (18, 34, 50, 101, 152) and DenseNet
(121, 161, 169 and 201). We use three different image sizes: small images of
shape 224 × 224, medium images of shape 500 × 500, and large images of shape
1000 × 1000. During the training phase, for higher efficiency, it is classical to
process images in batches, where several images are processed independently.
For each model and image size, we consider different batch sizes that are powers
of 2, starting from the smallest batch size that ensures a reasonable throughput.
For each case, we compute schedules with five different algorithms: Greedy

(Sect. 4), DynProg (based on Algorithm 1, see Sect. 5.3), AutoSwap, TFLMS

and Vdnn, where the last three approaches are based on the state-of-the-art
methods used in the previous works. AutoSwap [21] is a score-based heuristic
which uses a weighted average of 4 priority scores to decide which activations
should be offloaded in priority. The best weight combination is obtained with
Bayesian Optimization. TFLMS [13] is a heuristic designed for general graphs
(not necessarily sequential) in high bandwidth settings, but it does not use any
profiling information and thus cannot adapt to the available memory. TFLMS
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Fig. 2. Experimental results for image size 224 and batch size 32.

is parameterized with the number of tensors to be offloaded and how many lay-
ers in advance the data should be prefetched, and we present the performance
achieved by the best configurations. In VDNN++ [1], the authors identify con-
volutional layers as having a much longer computation latency. Their approach
is to offload the input of either all convolutional layers, or of half of them. In
our implementation of Vdnn, we identify as candidates the layers for which the
ratio uFi

|xi| is above a given threshold. For all possible thresholds, we compute the
no-wait, ordered schedule which offloads all these candidates, and the one which
offloads half of them. Vdnn outputs the best schedule out of all these choices.

Representative Results. A representative selection of achieved results is
depicted in Fig. 2, where different types of network of different length are consid-
ered with a given image and batch size. For each network, we run all algorithms
with a memory limit varying from the minimum amount of memory required to
run the network, to Mpeak which allows to process the network with no offloading.
In each case, we also compute the lower bound LB (Proposition 3), and the plots
show the ratio of the makespan achieved by each algorithm to the lower bound,
thus points where the ratio is 1 correspond to optimal solutions. We observe
that both Greedy and DynProg outperform the Vdnn heuristic in all cases,
especially in low memory scenarios. Once correctly parameterized, TFLMS is
able to obtain optimal makespan for the highest memory limit values. But it is
unable to delay forward computations until enough memory is available, and thus
can not adapt to low memory settings when bandwidth is scarce. AutoSwap

often produces the same solution as the Greedy algorithm (for a much higher
computational cost), but its performance depends on the random procedure of
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Bayesian Optimization and is thus very inconsistent. The DynProg approach
obtains significantly better performance than Greedy. The difference is small
in many cases, except for the DenseNet networks where DynProg is able to
consistently obtain almost optimal solutions. The spike that can be observed
on these graphs for Greedy and Vdnn correspond to the memory limit MGPU

for which both terms of the lower bound LB are almost equal (i.e., the total
execution time is very close to the time to transfer Mpeak − MGPU). Such cases
are more difficult to solve because both criteria need to be optimized carefully.

Overall, DynProg obtains much more stable performance than Vdnn and
AutoSwap, and produces solutions over a much wider range than TFLMS.
Furthermore, DynProg is able to consistently achieve a ratio below 1.2, which
means that its throughput is at least 83% of the highest possible throughput.

Fig. 3. Comparison to rematerialization for image size 224 and batch size 32, for various
bandwidth values.

Comparison to Rematerialization. An alternative to offloading is remate-
rialization [7], in which memory savings are achieved by discarding activations
and recomputing them later. In Fig. 3, we compare the throughput (in terms of
processed images per second) obtained by the offloading algorithms and by an
optimal rematerialization strategy [2]. We observe that for the bandwidth mea-
sured on our hardware, the rematerialization is significantly more interesting,
except for the higher memory limits. However, if the bandwidth is two or three
times larger, the interest of offloading becomes significant, allowing to perform
at optimal throughput over a wide range of memory limits.

More results are available in the companion paper [3].
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7 Conclusions

In this paper, we address the problem of memory usage during the training
phase of Deep Neural Networks. Previous works [1,13,14,16,20,21] advocated to
offload some of the data onto the main memory, and to prefetch them back when
needed. We propose a formal algorithmic model of the corresponding scheduling
problem, where the goal is to identify which activations should be offloaded
so as to minimize the total execution time. We prove that this problem is NP-
Complete in the strong sense, and we propose two heuristics based on relaxations
of the problem. The Greedy heuristic always offloads the first activations in
the network. This very simple technique nevertheless achieves good results in
our experimental evaluation. The DynProg algorithm is a more sophisticated
approach which takes into account the fact that activations cannot be partially
transferred which allowed to obtain mostly better solutions. In any case, both
algorithms provide significant improvements over the previous approaches.

A promising research direction is the validation through real experiments,
that would allow to confirm the relevance of the assumptions made in the model.
Since our theoretical analysis shows that being able to offload activations par-
tially makes the problem much easier, it could be very interesting to assess in
which cases this could be technically feasible. Finally, this offloading technique
is complementary of the checkpointing approach: some activations can be trans-
ferred to the main memory while others can be recomputed. Solving the mixed
checkpointing and offloading corresponding algorithmic problem might be chal-
lenging, but would certainly yield a significant improvement for training large
and deep models.
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Abstract. In order to express parallelism, parallel sparse direct solvers
take advantage of the elimination tree to exhibit tree-shaped task graphs,
where nodes represent computational tasks and edges represent data
dependencies. One of the pre-processing stages of sparse direct solvers
consists of mapping computational resources (processors) to these tasks.
The objective is to minimize the factorization time by exhibiting good
data locality and load balancing. The proportional mapping technique
is a widely used approach to solve this resource-allocation problem. It
achieves good data locality by assigning the same processors to large
parts of the elimination tree. However, it may limit load balancing in
some cases. In this paper, we propose a dynamic mapping algorithm
based on proportional mapping. This new approach, named Steal,
relaxes the data locality criterion to improve load balancing. In order
to validate the newly introduced method, we perform extensive exper-
iments on the PaStiX sparse direct solver. It demonstrates that our
algorithm enables better static scheduling of the numerical factorization
while keeping good data locality.

Keywords: Processor mapping · Load balancing · Data locality ·
Sparse direct solvers

1 Introduction

For the solution of large sparse linear systems, we design numerical schemes and
software packages for direct parallel solvers. Sparse direct solvers are manda-
tory when the linear system is very ill-conditioned for example [5]. Therefore,
to obtain an industrial software tool that must be robust and versatile, high-
performance sparse direct solvers are mandatory, and parallelism is then neces-
sary for reasons of memory capability and acceptable solution time. Moreover,
in order to solve efficiently 3D problems with several million unknowns, which is
c© Springer Nature Switzerland AG 2020
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now a reachable challenge with modern supercomputers, we must achieve good
scalability in time and control memory overhead. Solving a sparse linear system
by a direct method is generally a highly irregular problem that provides some
challenging algorithmic problems and requires a sophisticated implementation
scheme in order to fully exploit the capabilities of modern supercomputers.

There are two main approaches in direct solvers: the multifrontal app-
roach [2,7], and the supernodal one [11,18]. Both can be described by a com-
putational tree whose nodes represent computations and whose edges represent
transfer of data. In the case of the multifrontal method, at each node, some steps
of Gaussian elimination are performed on a dense frontal matrix and the remain-
ing Schur complement, or contribution block, is passed to the parent node for
assembly. In the case of the supernodal method, the distributed memory version
uses a right-looking formulation which, having computed the factorization of a
supernode corresponding to a node of the tree, then immediately sends the data
to update the supernodes corresponding to ancestors in the tree. In a parallel
context, we can locally aggregate contributions to the same block before sending
the contributions. This can significantly reduce the number of messages. Inde-
pendently of these different methods, a static or dynamic scheduling of block
computations can be used. For homogeneous parallel architectures, it is useful
to find an efficient static scheduling.

In order to achieve efficient parallel sparse factorization, we perform the three
sequential preprocessing phases:

1. The ordering step, which computes a symmetric permutation of the initial
matrix such that the factorization process will exhibit as much concurrency
as possible while incurring low fill-in.

2. The block symbolic factorization step, which determines the block data struc-
ture of the factorized matrix associated with the partition resulting from the
ordering phase. From this block structure, one can deduce the weighted elimi-
nation quotient graph that describes all dependencies between column-blocks,
as well as the supernodal elimination tree.

3. The block scheduling/mapping step, which consists in mapping the resulting
blocks onto the processors. During this mapping phase, a static optimized
scheduling of the computational and communication tasks, according to mod-
els calibrated for the target machine, can be computed.

When these preprocessing phases are done, the computation on the actual data,
that is the numerical factorization, can start.

The optimization problem that needs to be solved at the scheduling/mapping
stage is known to be NP-hard, and is usually solved using a proportional map-
ping heuristic [16]. This mono-constraint heuristic induces idle times during the
numerical factorization. In this paper, we extend the proportional mapping and
scheduling heuristic to reduce these idle times. We first detail in Sect. 2 propor-
tional mapping heuristic with its issues and related work, before describing the
original application in the context of the PaStiX solver [12] in Sect. 3. Then, in
Sect. 4, we explain the introduced solution before studying its impact on a large
set of test cases in Sect. 5. Conclusion and future work directions are presented
in Sect. 6.
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2 Problem Statement and Related Work

Among different mapping strategies that are used by both supernodal and mul-
tifrontal sparse direct solvers, the subtree to subcube mapping [8] and the pro-
portional mapping [16] are the most popular. These approaches consist of tree
partitioning techniques, where the set of resources mapped on a node of the tree
are split among disjoint subsets, each mapped to a child subtree.

The proportional mapping method performs a top-down traversal of the elim-
ination tree, during which each node is assigned a set of computational resources.
All the resources are assigned to the root node, which performs the last task.
Then, the resources are split recursively following a balancing criterion. The set
of resources dedicated to a node are split among its children, proportionally to
their weight or any other balancing criterion. This recursive process ends at the
leaves of the tree, or when entire subtrees are mapped onto a single resource.

The original version of the proportional mapping [16] computes the splitting
of resources depending on the workload of each subtree, but more sophisticated
metrics can also be used. In [17], a scheduling strategy was proposed for tree-
shaped task graphs. The time for computing a parallel task (for instance at the
root node of the elimination tree) is considered as proportional to the length
of the task and to a given parallel efficiency. This method was proven efficient
in [3] for a multifrontal solver. The proportional mapping technique is widely
used because it helps reducing the volume of data transfers due to its data
locality. In addition, it allows us to exhibit both tree and node parallelism.

Note that alternative solutions to the proportional mapping have been pro-
posed, such as the 2D block-cyclic distribution of SuperLU [14], or the 1D
cyclic distribution of symPACK [13]. In the latter, the non load-balanced solu-
tion is compensated by a complex and advanced communication scheme that
balances the computations in the nodes to get good performance results out of
this mapping strategy.

As stated earlier, sparse direct solvers commonly use the proportional map-
ping heuristic to distribute supernodes (a full set of columns, i.e., 1D distribution
that share the same row pattern) onto the processors. Note that each supern-
ode can be split into smaller nodes to increase the level of parallelism, which
modifies the original supernodes tree structure as shown in Fig. 2. This heuris-
tic provides a set of candidate processors for each supernode, which is then
refined dynamically when going up the tree, as in MUMPS [1] or PaStiX [12],
with a simulation stage that affects a single processor among the candidates,
while providing a static optimized scheduling. The proportional mapping stage,
by its construction, may however introduce idle time in the scheduling. This is
illustrated on Fig. 1. The ten candidate processors of the root supernode are dis-
tributed among the two sons of weight respectively 4 and 6. The Gantt diagram
points out the issue of considering a single criterion heuristic to set the mapping:
no work is given to processor p9 due to the low level of parallelism of the right
supernode, whereas it could benefit to the left supernode.

A naive way to handle this issue is to avoid the proportional mapping stage,
and consider only the scheduling stage with all processors as candidates for each
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(b) Gantt diagram

Fig. 1. Illustration of proportional mapping: elimination tree on the left, and Gantt
diagram on the right.

node of the tree. The drawback of this method is that 1) it does not preserve
the data locality, and 2) it drastically increases the complexity of the scheduling
step. This solution has been implemented in the PaStiX solver for comparison,
and it is referred to as All2All, since all processors are candidates to all nodes.

3 Description of the Application

At a coarse-grain level, the computation can be viewed as a tree T whose nodes
(or vertices) represent supernodes of the matrix, and where the dependencies are
directed towards the root of the tree. Because sparse matrices usually represent
physical constraints and thanks to the nested dissection used to order the matrix,
supernodes at the bottom of the tree are usually small and supernodes at the
top are much larger. Each supernode is itself a small DAG (Directed Acyclic
Graph) of tasks as illustrated on Fig. 2. A more refined view shows that the
dependencies between two supernodes consist of dependencies between tasks of
these supernodes. Another way to put it is that the computation is described
as a DAG of tasks, tasks are partitioned into supernodes, and the quotient
graph of supernodes is the tree T (with some transitivity edges). Note that
with 1D distribution, as targetted here, the DAG within can also be seen as a
tree with dependencies toward the roots. Thus, in this paper, we will use either
nodes or supernodes to denote the vertices of the tree T as they can be used
interchangeably.

This structure in two levels allows us to both reduce the cost of the anal-
ysis stage by considering only the first level (supernodes), while increasing the
parallelism level (nodes) during the numerical factorization with finer grain com-
putations.

We denote by root(T ) the node at the root of tree T , and by wi the computa-
tional weight of the node i, for 1 ≤ i ≤ n: this is the total number of operations
of all tasks within node i. Also, parent(i) is the parent of node i in the tree
(except for the root), and child(i) are the children nodes of i in the tree. Given a
subtree Ti of T (rooted in root(Ti)), Wi =

∑
j∈Ti

wj is the computational weight
of this subtree.
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Fig. 2. Structure of the computation: tree of supernodes, each supernodes being made
of several tasks.

As stated above, each node i of the tree is itself made of ni ≥ 1 tasks
i1, . . . , ini

, whose dependencies follow a directed acyclic graph (DAG). Each of
these tasks is a linear algebra kernel (such as matrix factorization, triangular
solve or matrix product) on block matrices. Hence, given a node i and its par-
ent j = parent(i) in the tree, only some of the tasks of i need to be completed
before j is started, which allows some pipelining in the processing of the tree.

When running on a parallel platform with a set P of p processors, nodes and
tasks are distributed among available processing resources (processors) in order
to ensure a good load-balancing. If node i is executed on alloc[i] = k processors,
its execution time is fi(k); this time depends on wi and on the structure of the
DAG of tasks.

Following the structure of the application, the mapping is done in two phases:
the first phase, detailed in Sect. 3.1, consists in using the Proportional Mapping
algorithm [16] to compute a mapping of nodes to subsets of processors. The
second phase, detailed in Sect. 3.2, refines this mapping by allocating each task
of a node i to a single processor of the subset allocated to i in the first step.

3.1 Coarse-Grain Load Balancing Using Proportional Mapping

The proportional mapping process follows the sketch of Algorithm1. First, all
processors are allocated to the root of the tree. Then, we compute the total
weight of its subtrees (i.e., the sum of the weight of their nodes), and allocate
processors to subtrees so that the load is balanced. Then, we recursively apply
the same procedure on each subtree.

Algorithm 1. Proportional mapping with integer number of processors
function PropMapInt(tree T, set P of processors):
Allocate all processors in P to the root of tree T
For each subtree Ti of T , compute its total weight Wi

Find subsets of processors Pi such that max(Wi/|Pi|) is minimal and
∑ |Pi| = |P |

For each subtree Ti of T , call PropMapInt(Ti, Pi)
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Apart from balancing the load among branches of the tree, the proportional
mapping is known for its good data locality: a processor is allocated to nodes of
a single path from a leaf to the root node, and only to nodes on this path. Thus,
the data produced by a node and used by its parents mostly stay on a single
processor, and no data transfer is made except for the necessary redistribution of
data in the upper levels of the tree. This is particularly interesting in a distributed
context, where communications among processors are costly.

We can wonder if Algorithm 1 really optimizes load-balancing, as subtrees
with similar total weight Wi may exhibit different levels of parallelism, and thus
end up with a different completion time, as illustrated with the example of Fig. 1.
The formula Wi/|Pi| correctly computes the duration of the subtree processing
only for perfect parallelism. We propose here another mapping algorithm that
optimizes the total computation time, under the constraint of perfect data local-
ity. It iteratively adds processors to the root, and recursively to the subtree
with the largest completion time (see Algorithm 2). In this mapping algorithm,
alloc[i] represents the number of processors allocated to node i, and endTime[i]
represents the completion time of task i. We assume that the function fi(k),
that gives the duration of node i on k processors, is non-increasing with k and
is known to the algorithm.

Algorithm 2. Greedy mapping with integer number of processors
function GreedyMappingInt(tree T, number of processors p):
alloc[1, 2, ..., n] = [0, ..., 0]
endTime[1, 2, ..., n] = [∞, ...,∞]
for k = 1, . . . , p do

Call AddOneProcessor(root(T ))
end for

function AddOneProcessor(task i):
alloc[i] ← alloc[i] + 1
if i is a leaf then

endTime[i] ← fi(alloc[i]) (duration of node i on alloc[i] processors)
else

Let j be the child of i with largest endTime[j]
AddOneProcessor(j)
endTime[i] ← maxj∈child(i)(endTime[j]) + fi(alloc[i])

end if

Theorem 1. The GreedyMappingInt algorithm (Algorithm2) computes an allo-
cation with minimum total completion time under the constraint that each pro-
cessor is only allocated to nodes on a path from a leaf to the root.

Note that this result, proven in the companion research report [9], does not
require a particular speed function for tasks: it is valid when the processing time
of a task does not increase with the number of processors allocated to the task.



Improving Mapping for Sparse Direct Solvers 173

Algorithm 3. Proportional mapping with shared processors among subtrees
function ProportionalMappingShared(tree T,number of processors p):
for each processor k = 1, . . . , p do

avail time[k] =
∑

i∈T wi/p
end for
Call PropMapSharedRec(T, 1, p)

function PropMapSharedRec(subtree T, indices first proc, last proc):
if last proc = first proc then

Map all nodes in subtree T to processor first proc
avail time[first proc] = avail time[first proc] − ∑

i∈T wi

else
Map node r = root(T ) to all processors in first proc, . . . , last proc
for each k = first proc, . . . , last proc do

avail time[k] = avail time[k] − wr/(last proc − first proc)
end for
next proc ← first proc
Sort the subtrees of T by non-increasing total weight
for each subtree Ti in this order do

cumul time ← 0
wsubtree ← ∑

j∈Ti
wj

first proc for subtree ← next proc
while cumul time < wsubtree do

new time share ← min(wsubtree − cumul time, avail time[next proc])
cumul time ← cumul time + new time share
avail time[next proc] ← avail time[next proc] − new time share
if avail time[next proc] = 0 then next proc ← next proc + 1

end while
PropMapSharedRec(Ti,first proc for subtree,next proc)

end for
end if

However, both previous mapping algorithms suffer a major problem when
used in a practical context, because they forbid allocating processors to more
than one child of a node. First, some nodes, especially leaves, have very small
weight and several of them should be mapped on the same processor. Second,
allocating integer numbers of processors to nodes creates unbalanced workloads,
for example, when three processors have to be allocated to two identical subtrees.
All implementations of the proportional mapping tackle this problem (includ-
ing the first one in [16]). For example, the actual implementation in PaStiX,
as sketched in Algorithm 3, allows “border processors” to be shared among
branches, and keeps track of the occupation of each processor to ensure load-
balancing. It first computes the total time needed to process the whole tree, and
sets the initial availability time of each processor to an equal share of this total
time. Whenever some (fraction of a) node is allocated to a processor, its avail-
ability time is reduced. Hence, if a processor is shared on two subtrees T1, T2,
the work allocated by T1 is taken into account when allocating resources for T2.
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Note also that during the recursive allocation process, the subtrees are sorted
by non-increasing total weights before being mapped to processors. This allows
us to group small subtrees together in order to map them on a single processor,
and to avoid unnecessary splitting of processors.

3.2 Refined Mapping

After allocating nodes of the tree to subsets of processors, a precise mapping of
each task to a processor has to be computed. In PaStiX, this is done by simulat-
ing the actual factorization, based on the prediction of both the running times of
tasks and of the time needed for data transfers. The refined mapping process is
detailed in Algorithm4. Thanks to the previous phase, we know that each task
can run on a subset of processors (the subset associated to the node it belongs
to), called candidate processors for this task. We associate to each processor a
ready queue, containing tasks whose predecessors have already completed, and
a waiting queue, with tasks that still have some unfinished predecessor. At the
beginning of the simulation, each task is put in the waiting queue of all its
candidate processors (except tasks without predecessors, which are put in the
ready task queue of their candidate processors). Queues are sorted by decreasing
depth of the tasks in the graph (tasks without predecessors are ordered first).
The depth considered here is an estimation of the critical path length from the
task to the root of the tree T .

A ready time is associated both to tasks and processors:

– The ready time RP [k] of processor k is the completion time of the current
task being processed by k (initialized with 0).

– The ready time RT [i] of task i is the earliest time when i can be started,
given its input dependencies. This is at least equal to the completion time of
each of its predecessors, but also takes into account the time needed for data
movement, in case a predecessor of i is not mapped on the same processor
as i. The ready time of tasks with non-started predecessor is set to +∞.

4 Proposed Mapping Refinement

Our objective is to correct the potential load imbalance (and thus idle times)
created by the proportional mapping, as outlined in Sect. 2, but without impact-
ing too much the data locality. We propose a heuristic based on work stealing [4]
that extends the refined mapping phase (see Algorithm4) using simulation (see
Algorithm 5). Intuitively, we propose that if the simulation predicts that a pro-
cessor will be idle, this processor tries to steal some tasks from its neighbors.
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Algorithm 4. Precise scheduling and mapping using simulation
for all task i do

If i is a leaf, put i in the ready queue of every processor in candidate(i), otherwise
put it in the waiting queue.

end for
while all tasks have not been mapped do

For each processor k, consider the triplet 〈i, k, t〉 where i is the first task in
the ready queue of processor k and t is the starting time of i on k (t =
max(RT [i], RP [k]))
Consider F , the set of all such triplets
Select the triplet 〈i, k, t〉 in F with the smallest t (if ties, choose the one with
largest depth)
Schedule task i on processor k at time t
Update the ready times of processor k and of the successors of i on all their
candidate processors
Update the ready queue and waiting queue of processor k, as well as of candidates
processors of successors of i

end while

In the proposed refinement, we replace the update of the ready and waiting
queues of the last line in Algorithm 4 by a call to UpdateQueuesWithStealing
(Algorithm 5). For each processor k, we first detect if k will have some idle time,
and we compute the duration d of this idle slot. This happens in particular
when the ready time of the first task in its waiting queue is strictly larger than
the ready time of the processor (RT [i] > RP [k]) and ready queue is empty.
Whenever both queues are empty, the processor will be idle forever, and thus
d is set to a large value. Then, if an idle time is detected (the ready queue is
empty and d is a positive value), a task is stolen from a neighbor processor using
function StealTask . Otherwise, the ready and waiting queues are updated as
previously: the tasks of the waiting queue that will be freed before the processor
becomes available are moved to the ready queue.

When stealing tasks, we distinguish between two cases, depending whether
we use shared or distributed memory. In shared memory, the two possible victims
of the task stealing operation are the two neighbors of processor k, considering
that processors are arranged in a ring. In the case of distributed memory, we
first try to steal from two neighbor processors within the same cluster, that is,
within the set of processors that share the same memory. Stealing to a distant
processor is considered only when clusters are reduced to a single element. Once
steal victims are identified (set S), we consider the first task of their ready queues
and select the one that can start as soon as possible. If the task is able to start
during the idle slot of processor k (and thus reduce its idle time), it is then
copied into its ready queue.
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Algorithm 5. Update ready and waiting queues with task stealing
function UpdateQueuesWithStealing(nb. of proc. p, switch IsSharedMem):
for k = 1 to p do

if waiting queuek �= ∅ then
Let i be the first task in waiting queuek

d ← RT [i] − RP [k]
else

d ← +∞
end if
if ready queuek = ∅ and d > 0 then

StealTask(k, p, d, IsSharedMem)
else

Let i be the first task in waiting queuek

while RT [i] ≤ RP [k] do
Move task i from waiting queuek to ready queuek

Let i be the first task in waiting queuek

end while
end if

end for

function StealTask(proc. k, proc. nb. p, idle time d, switch IsSharedMem):
set S ← ∅
if IsSharedMem = false then

set Sk ← {k − 1, k + 1, k − 2, k + 2}
for j = 1 to 4 do

if Sk[j] ≥ 0, Sk[j] < p, Sk[j] is in the same cluster as k and |S| < 3 then
add Sk[j] to S

end if
end for

end if
if IsSharedMem = true or S is empty then

set S ← {k − 1 (mod p), k + 1 (mod p)}
end if
Build the set O with the first element of each ready queue of processors in S
Let o be the task of O with minimum RT [o]
if RT [o] < RP [k] + d, then insert o into ready queuek

5 Experimental Results

Experiments were conducted on the Plafrim1 supercomputer, and more precisely
on the miriel cluster. Each node is equipped with two Intel Xeon E5-2680v3

12-cores running at 2.50 GHz and 128 GB of memory. The Intel MKL 2019
library is used for sequential BLAS kernels. Another shared memory experiment
was performed on the crunch cluster from the LIP2, where a node is equipped
with four Intel Xeon E5-4620 8-cores running at 2.20 GHz and 378 GB of

1 https://www.plafrim.fr.
2 http://www.ens-lyon.fr/LIP/.

https://www.plafrim.fr
http://www.ens-lyon.fr/LIP/


Improving Mapping for Sparse Direct Solvers 177

memory. On this platform, the Intel MKL 2018 library is used for sequential
BLAS kernels. The PaStiX version used for our experiments is based on the
public git repository3 version at the tag 6.1.0.

In the following, the different methods used to compute the mapping are com-
pared. All to All, referred to as All2All, and Proportional mapping, referred
to as PropMap, are available in the PaStiX library, and the newly introduced
method is referred to as Steal. When the option to limit stealing tasks into the
same MPI is enabled, we refer to it as StealLocal. In all the following experi-
ments, we compare these versions with respect to the All2All strategy, which
provides the most flexibility to the scheduling algorithm to perform load balance,
but does not consider data locality. The multi-threaded variant is referred to as
SharedMem, while for the distributed settings, pMt stands for p MPI nodes with
t threads each. All distributed settings fit within a single node.

In order to make a fair comparison between the methods, we use a set of
34 matrices issued from the SuiteSparse Matrix collection [6]. The matrix sizes
range from 72K to 3M of unknowns. The number of floating point operations
required to perform the LLt, LDLt, or LU factorization ranges from 111 GFlops
to 356 TFlops, and the problems are issued from various application fields.
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Fig. 3. MPI communication number (left) and volume (right) for the three methods:
PropMap, Steal, and StealLocal, with respect to All2All.

Communications. We first report the relative results in terms of communi-
cations among processors in different clusters (MPI nodes), which are of great
importance for the distributed memory version. The number and the volume
of communications normalized to All2All are depicted in Fig. 3a and Fig. 3b
respectively. One can observe that all three strategies largely outperform the
All2All heuristic, which does not take communications into account. The num-
ber of communications especially explodes with All2All as it mainly moves
around leaves of the elimination tree. This creates many more communications
with a small volume. This confirms the need for a proportional-mapping-based
strategy to minimize the number of communications. Both numbers and volumes
3 https://gitlab.inria.fr/solverstack/pastix.

https://gitlab.inria.fr/solverstack/pastix
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of communications also confirm the need for the local stealing algorithm to keep
it as low as possible. Indeed, Steal generates 6.19 times more communications
on average than PropMap, while StealLocal is as good as PropMap. Note
the exception of the 24M1 case where Steal and StealLocal are identical. No
local task can be stolen. These conclusions are similar when looking at the volume
of communication with a ratio reduced to 1.92 between Steal and PropMap.

The distribution of the results is shown by boxplot. It shows five summary
statistics (median, two hinges and two whiskers), and all “outlying” points indi-
vidually. The lower and upper hinges correspond to the first and third quartiles.
The upper whisker extends from the hinge to the largest value no further than
1.5× IQR from the hinge (where IQR is the inter-quartile range, or distance
between the first and third quartiles). The lower whisker extends from the hinge
to the smallest value at most 1.5× IQR of the hinge. Data beyond the end of
the whiskers are called “outlying” points and are plotted individually [15].

Data Movements. Figure 4 depicts the number and volume of data movements
normalized to All2All and summed over all the MPI nodes with different MPI
settings. The data movements are defined as a write operation on the remote
memory region of other cores of the same MPI node. Note that accumulations
in local buffers before send, also called fan-in in sparse direct solvers, are always
considered as remote write. This explains why all MPI configurations have equiv-
alent number of data movements. As expected, proportional mapping heuristics
outperform All2All by a large factor on both number and volume, which can
have an important impact on NUMA architectures. Compared to PropMap,
Steal and StealLocal are equivalent and have respectively 1.38×, and 1.32×,
larger number of data movements on average respectively, which translates into
9%, and 8% of volume increase. Note that in the shared memory case, Steal-
Local behaves as Steal as there is only one MPI node.
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Fig. 4. Shared memory data movements number (left) and volume (right) within MPI
nodes for PropMap, Steal, and StealLocal, with respect to All2All.

Simulation Cost. Figure 5 shows the simulation cost in seconds (duration of the
refined mapping via simulation) on the left, and that of PropMap, Steal and
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StealLocal with respect to All2All on the right. Figure 6 shows the origi-
nal simulated factorization time obtained with these heuristics and a normalized
version. Note that, for the sake of clarity, some large outliers are removed from
Fig. 6a. As stated in Sect. 2, the All2All strategy allows for more flexibility in
the scheduling, hence it results in a better simulated time for the factorization in
average. However, its cost is already 4x larger for this relatively small number of
cores. Figure 5a shows that the proposed heuristics have similar simulation cost to
the original PropMap, while Fig. 6 shows that the simulated factorization time
gets closer to All2All, and can even outperform it in extreme cases. Indeed, in
the 24M1 case, Steal outperforms All2All due to bad decisions taken by the
latter at the beginning of the scheduling. The bad mapping of the leaves is then
never recovered and induces extra communications that explain this difference.
In conclusion, the proposed heuristic, StealLocal, manages to generate better
schedules with a better load-balance than the original PropMap heuristic, while
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Fig. 5. Final simulation cost in second (left) and simulation cost of PropMap, Steal
and StealLocal, normalized to All2All (right).

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

0

100

200

300

400

500

sharedM
2M12

4M6
6M4

12M2
24M1

MPI

Es
tim

at
ed

 fa
ct

or
iz

at
io

n 
tim

e 
in

 s
ec

on
d

A2A PropMap Steal StealLocal

(a) Estimated factorization time

●

●

●

●

●

●

0.9

1.0

1.1

1.2

sharedM
2M12

4M6
6M4

12M2
24M1

MPI

Es
tim

at
ed

 fa
ct

or
iz

at
io

n 
tim

e
 n

or
m

al
iz

ed
 to

 A
2A

PropMap Steal StealLocal

(b) Normalized estimated factorization
time

Fig. 6. Estimated factorization time (left), and that of PropMap, Steal, and Steal-
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generating small or no overhead on the mapping algorithm. This strategy is also
able to limit the volume of communications and data movements as expected.

Factorization Time for Shared Memory. Figure 7 presents factorization
time and its normalized version in a shared memory environment, on both
miriel and crunch machines. Note that we present only the results for Steal,
as StealLocal and Steal behave similarly in shared memory environment.
For the sake of clarity, some large outliers are removed from Fig. 7a. On miriel,
with a smaller number of cores and less NUMA effects, all these algorithms have
almost similar factorization time, and present variations of a few tens of GFlop/s
over 500GFlop/s in average. Steal slightly outperforms PropMap, and both
are slower than All2All respectively by 1% and 2% in average. On crunch,
with more cores and more NUMA effects, the difference between Steal and
PropMap increases in favor of Steal. Both remain slightly behind All2All,
respectively by 2% and 4%; indeed, All2All outperforms them since it has the
greatest flexibility, and communications have less impact in a shared memory
environment.
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Fig. 7. Factorization time (left), and that of PropMap and Steal, normalized to
All2All (right), on miriel and crunch. White diamonds represent mean values.

6 Conclusion

In this paper, we revisit the classical mapping and scheduling strategies for sparse
direct solvers. The goal is to efficiently schedule the task graph corresponding
to an elimination tree, so that the factorization time can be minimized. Thus,
we aim at finding a trade-off between data locality (focus of the traditional
PropMap strategy) and load balancing (focus of the All2All strategy). First,
we improve upon PropMap by proposing a refined (and optimal) mapping
strategy with an integer number of processors. Next, we design a new heuristic,
Steal, together with a variant StealLocal, which predicts processor idle times
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in PropMap and assigns tasks to idle processors. This leads to a limited loss of
locality, but improves the load balance of PropMap.

Extensive experimental and simulation results, both on shared memory and
distributed memory settings, demonstrate that the Steal approach generates
almost the same number of data movements than PropMap, hence the loss in
locality is not significant, while it leads to better simulated factorization times,
very close to that of All2All, hence improving the load balance of the schedule.

PaStiX has only recently been extended to work on distributed settings,
and hence we plan to perform further experiments on distributed platforms,
in order to assess the performance of Steal on the numerical factorization in
distributed environments. Future working directions may also include the design
of novel strategies to further improve performance of sparse direct solvers.
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Abstract. Fat-trees (FTs) are widely known topologies that, among
other advantages, provide full bisection bandwidth. However, many
implementations of FTs are made slimmed to cheapen the infrastructure,
since most applications do not make use of this full bisection bandwidth.
In this paper Extended Generalized Random Folded Clos (XGRFC)
interconnection networks are introduced as cost-efficient alternatives to
Extended Generalized Fat Trees (XGFT), which is a widely used topo-
logical description for slimmed FTs. This is proved both by obtaining a
theoretical model of the performance and evaluating it using simulation.
Among the results, it is shown that a XGRFC is able to connect 20k
servers with 27% less routers than the corresponding XGFT and still
providing the same performance under uniform traffic.

Keywords: Folded Clos · Extended Generalized Fat-Tree · Random
topologies

1 Introduction

Nowadays, high-end supercomputers and datacenters are becoming extremely
big, connecting hundreds of thousands servers. In consequence, the interconnec-
tion networks employed in these systems are becoming more costly and impor-
tant. With such large sizes, the network cost can be a significant fraction of the
total system cost. Deployment network cost includes NICs, routers and wires.
The cost of large networks tends to be dominated by the cost of the required
wires, but for raw comparisons, the number of network routers can be employed,
as the number of wires linearly depends on it.

Fat-trees [1] (FTs), a popular instance of the folded Clos network [5], have
been utilized in many high-end systems. The use of FTs entails important ben-
efits. In theory, they can manage any admissible traffic at full rate; they are
equipped with a very simple deadlock free routing; they are robust; and, their

c© Springer Nature Switzerland AG 2020
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partitioning is easier than in other networks. Nevertheless, the high cost of FTs
becomes prohibitive in very large deployments. In addition, depending of the
application, the nature of its communications can be quite different. There is an
important class of classic number-crunching applications showing a high degree
of communication locality for which FTs reveal overprovisioned [8,9]. Having
in mind these applications, and in order to reduce the high cost of FTs, many
deployed big systems have used different slimmed versions of them. Most of
slimmed fat-trees can be studied under the model of Extended Generalized Fat
Trees (XGFT) introduced in [11]. But nowadays, there is another important set
of applications as those coming from big data and analytics that employ global
communications and really require the capacity and redundancy of a FT; many
of them require all-to-all (uniform) traffic. Moreover, other HPC applications,
such as spectral codes perform a 3D Fast Fourier Transform, utilizing large all-
to-all communications [12].

In [3] and [2] randomized versions of folded Clos networks were introduced.
These topologies are more scalable, allow for easy upgrades of the system and
entail less cost. Therefore, it has sense to consider the slimmed variants of such
topologies, which are introduced in this paper and denoted as Extended Gen-
eralized Random Folded Clos (XGRFC). We compare XGRFCs and XGFTs
both in their topological merits and performance. We will show that XGRFCs
inherit the scalability among other properties of random folded Clos, thus pro-
viding cost gains respect to slimmed fat-trees. Corresponding performance, we
will firstly make a theoretical model that relates the communication pattern of
the application, the fitness ratio of the slimmed topology and the performance.
For illustrating it, we select a synthetic traffic pattern as to resemble applications
needing global communications. This approach is validated using experimental
simulation. As it will be shown, just randomizing the stages of slimmed FTs pro-
vides similar performance (throughput and fairness) but at smaller cost. In fact,
there are outstanding cases such as uniform traffic, in which XGRFCs provide
38% more throughput than its XGFT counterpart.

This paper is organized as follows. In Sect. 2 folded Clos interconnection
networks are summarized and Extended Generalized Fat-trees are revisited. In
Sect. 3 Extended Generalized Random Folded Clos are introduced. In Sect. 4 a
wide experimentation is presented to prove our results. Finally, in Sect. 5 the
main achievements of the paper are summarized.

2 Folded Clos Networks

Folded Clos interconnection networks are widely considered for datacenters [5].
These interconnection networks are indirect, since there are two different kind
of routers: those which are connected to servers, and the ones that are only
connected to other routers. The routers are arranged into levels such that the
links that join two different levels constitute a stage. Typically, the first level or
Level 1 is the one that contains the routers directly connected to servers, known
as leaf routers. We will consider that in the last level the spine routers have all
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their links in the last stage, that is, the network is folded. If an indirect network
has l levels of routers it is said to have height h = l − 1. A common example of
folded Clos networks are FTs [1]. In Table 1 the notation used along the paper
is summarized and a example illustrating it is graphically represented in Fig. 1.

Table 1. Notation

Symbol Meaning

R Router radix

M Servers per leaf router

S Total number of servers

γ Average injection rate per server

ni Number of routers at level i

mi Number of links from level i + 1 to i in each router

wi Number of links from level i to i + 1 in each router

ei Total number of links connecting routers of levels i and i + 1

R = mh

mh

...

h + 1 (top) level router

R = mi−1 + wi

mi−1

...

wi

...
2 ≤ i ≤ h (middle) level router

R = M + w1

M

...

w1

...
1 (bottom) level router

S = Mn1 servers

he
ig
ht

h
=

2
st
ag

es

Fig. 1. Graphical representation of the notation using XGFT(2; 4, 7; 3, 3).

Folded Clos networks are typically considered being up/down connected that
is, for every pair of leaves, there is a path beginning with some up-links followed
by the same number of down-links. Then, a simple deadlock-free routing can be
made following these paths, which is one of the main advantages of Clos networks
over other kind of networks. All networks considered in the paper are up/down
connected (with very high probability when probabilistic).
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Let us denote by wi the number of links from each router in level i to routers
in level i+1 and mi the number of links from each router in level i+1 to routers
in level i. Let us denote by ni the number of routers in level i. Then, the number
of links ei that constitute stage i can be calculated as

ei = niwi = ni+1mi, 1 ≤ i ≤ h. (1)

It follows that any ni can be calculated from n1:

ni+1

n1
=

i∏

k=1

wk

mk
. (2)

Our study will be restricted to those networks that are built with identical
routers, that is, the following Regularity Eq. 3 are fulfilled:

R = mi + wi+1, 1 ≤ i ≤ h − 1,

R = mh,

R = w1 + M,

(3)

where M denotes the number of servers per leaf router.
A further assumption that can be made is to have, in all non-top levels,

the same ratio of up-links. Note that the top level does not have up-links, so
it cannot be included. Although from a theoretical point of view this Constant
Radix Ratio Property seems very natural, it is not necessarily the best choice.
In fact, later we consider some examples that fulfill it and others that do not.
This assumption is formally stated as

mi

wi+1
=

M

w1
, 1 ≤ i ≤ h − 1. (4)

This ratio is called fitness ratio in [8] and contention factor in [7], making
both references the constant ratio assumption. Another notation for the same
concept is blocking ratio in [13]. This assumption can be rewritten using the
Regularity Eq. 3 as

mi = M, 1 ≤ i ≤ h − 1,

wi = R − M, 1 ≤ i ≤ h.
(5)

Additionally, since S
eh

= M
w1

∏h−1
i=1

mi

wi+1
, for topologies with constant radix

ratio the amount gmr = h
√

S/eh is the fitness ratio. And for all topologies,
regardless of fulfilling the constant ratio property, gmr is the geometric mean of
those ratios.

Remark 1. Note that for our convenience, n1 denotes the number of leaf routers
and S = Mn1 is the total number of servers, although in [11] the authors directly
use n1 as the number of servers.
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Most of the folded Clos in the industry roughly fit into the Extended Gener-
alized Fat Tree (XGFT) network topology [11]. This definition allows to consider
alternative topologies based on fat-tres but with less cost, what in some publi-
cations are named as slimmed fat-trees [7], fit-trees [8], tapered fat-trees [9] and
other variations. The original definition in [11] was recursive. Next, in Defini-
tion 1 a new definition avoiding recursion is given, which simplifies the analysis
of the topology.

Definition 1. The Extended Generalized Fat Tree XGFT(h;m1, . . . ,mh;w1,
. . . , wh) topology of height h consists on nk routers in level k, with k ranging
from 1 to h + 1, where nk is computed as

nk =
k−1∏

i=1

wi

h∏

i=k

mi, 1 ≤ k ≤ h + 1. (6)

Routers are connected to contiguous levels such that, the router at position x
of level k, 1 ≤ k ≤ h is connected with the routers at position y of level k + 1 if
and only if there are integer numbers q, r, t, and u satisfying

x = (qmk + r)g + u, 0 ≤ r < mk, 0 ≤ u < g,

y = (qg + u)wk + t, 0 ≤ t < wk, 0 ≤ q <

h∏

i=k+1

mi,
(7)

where g =
∏k−1

i=1 wi.

Note that both Eq. 1 and Eq. 6 are not independent. If the system of equa-
tions is reduced, then it is obtained that it is equivalent to Eq. 1 with the
restrictions corresponding to Level 1:

n1 =
h∏

i=1

mi.

Example 1. Let us consider router radix R = 36, very commonly used by indus-
try, which will be used henceforward in the paper. Then, XGFT(2; 18, 36; 18, 18)
is the FT for this router radix and 3 levels. In the remainder of the paper
XGFT(2; 22, 36; 14, 14) and XGFT(2; 26, 36; 10, 10) will be also considered. Note
that these topologies are slimmed variants of the FT, with respective fitness
ratios 22

14 = 1.57 and 26
10 = 2.6, which will imply different performance. Their

topological properties, together other topologies that will later introduced in
the paper, are summarized in Table 2.

The high cost of a non-blocking FT interconnection network is better
exploited when the application packets reach the routers in the h + 1 level.
However, scientific applications constitute particular communication patterns.
In fact, by means a thorough study, in [8] the authors demonstrated that a sig-
nificant percentage of scientific applications send most traffic to near neighbours.



190 C. Camarero et al.

Table 2. Topologies evaluated and their topological parameters.

Scenario Topology Servers Routers e1 e2 gmr

A XGFT(2; 18, 36; 18, 18) 11664 1620 11664 11664 1

B XGFT(2; 22, 36; 14, 14) 17424 1492 11088 7056 1.57

B XGRFC(2; 22, 36; 14, 14; 792, 504, 196) 17424 1492 11088 7056 1.57

B XGRFC(2; 18, 36; 11, 18; 684, 418, 209) 17100 1311 7524 7524 1.51

C XGFT(2; 26, 36; 10, 10) 24336 1396 9360 3600 2.60

C XGRFC(2; 26, 36; 10, 10; 936, 360, 100) 24336 1396 9360 3600 2.60

C XGRFC(2; 18, 36; 5, 18; 720, 200, 100) 22320 1020 3600 3600 2.51

Thus, it may be worth to dimension the topology for these applications, which
would allow to reduce costs. In the following it is established a relation between
links in the different stages and the injection rate per server.

Let γ be the average injection rate per server. Thus, there is a total of γS
phits (packet units) that are being created on each cycle. Let pi be the fraction of
packets which reach some router at level i, potentially going further up. Clearly,
it is hold that, 1 = p1 ≥ p2 ≥ · · · ≥ ph+1 ≥ 0. Then γSpi is the total rate of
packets reaching the routers in level i, giving the following immediate bound on
the injection rate

γSpi+1 ≤ ei. (8)

In the case of using the constant ratio in Eq. 5, we have the following nice
expression:

γpi+1 ≤
(

R − M

M

)i

, 1 ≤ i ≤ h. (9)

Example 2. As an example of the previous bound we consider an extreme sce-
nario in which all packets reach level 3, that is, p3 = 1. Then, the maximum
throughput is (w/M)2, which is represented in Fig. 2 for router radix R = 36.
In this figure, it can be seen that the throughput is maximum when half of the
ports go upward (R = 2w) and it decreases acutely (in fact hyperbolically) with
reductions on w. Thus, it is clear that reducing the cost of a folded Clos by
reducing the wi terms has great impact on performance; at least for applications
that have relatively many global communications. Note that the three points A,
B and C in the figure correspond to the interconnection networks summarized
in Table 2.

In an XGFT, for any given leaf router, there are exactly m1 · · · mt leaf routers
at distance at most 2t, including itself. From this, it follows that, in a uniform
traffic pattern the probability that a packet reaches level i is, in the XGFT,
pi = 1 − ∏h

k=i−1 m−1
k . For the particular case of radix R = 36 we get that

ph+1 = 35/36 = 0.972, which is very close to 1. This means that the traffic
pattern considered in Example 2 in fact closely resembles the uniform traffic
pattern in the XGFT, but this does not hold for an arbitrary folded Clos. In
the general case, assuming that there are not multiple links between any pair of
routers we get 1 − m1w1

n1
≤ p3 ≤ 1 − m1

n1
for uniform traffic. If m1 = 22, w1 = 14

and n1 = 792, then we obtain 0.611 ≤ p3 ≤ 0.972.
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Fig. 2. Theoretical maximum throughput with constant ratio of w up-links from the
36 total links when all packets reach level 3. Labels A, B, and C denote topologies in
Table 2.
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Fig. 3. Achieved throughput under heavy load and global communication pattern.
Labels A, B, and C denote topologies in Table 2.

The formulas in Eq. 9 can be validated by experimental simulation. We use
parameters as in Example 1 and Example 2, and the predicted throughput is
shown in Fig. 2. For each of the points A, B, and C we compare the bound with
the simulation values of the corresponding XGFT and the simulation values
of a random analogue topology. These random topologies, called XGRFCs, are
folded Clos with the links in each stage wired randomly; they are detailed in
the next section. We have performed the simulations with a synthetic traffic
pattern designed to reproduce the p3 = 1 assumption. Therefore, all the packets
reach the last level routers, so links in the last stage are widely used. Specifically,
each time a packet is generated, a server at maximum distance is selected in a
random uniform way as the destination of the packet. As it can be seen in Fig. 3,
where both the simulation results and the values predicted are represented, the
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theoretical model accurately estimates the achieved throughput. In a more deep
analysis, it has to be noticed that XGFT is always at the same relative distance
to the upper bound provided by the theoretical model. However, the greater the
fitness ratio, the tighter the difference between the simulated throughput and
its theoretical bound in XGRFCs.

3 Extended Generalized Random Folded Clos

Random Folded Clos (RFC) networks were introduced in [3] as an alternative
to FTs that increases scalability, facilitates graceful expansion and reduces cost.
These interconnection networks can be roughly described as folded Clos networks
in which each level is randomly interconnected. Next, a generalization of these
networks, in the same flavour that XGFTs, is presented.

Definition 2. Let us define a Extended Generalized Random Folded Clos, and
denote it by XGRFC(h;m1, . . . ,mh;w1, . . . , wh;n1, . . . , nh+1), a random multi-
stage interconnection network selected among all the possible with the given
parameters chosen near-uniformly. The parameters need to satisfy Eqs. 1 and
3 like any other multistage network.

An implementation of almost uniform random bipartite graphs was presented
in [3]. This algorithm was used to construct RFCs, and equivalently it can be
used to build XGRFCs.

Although XGFTs are always up/down connected, in the case of XGRFCs this
fact has to be verified. In [3], the conditions under a RFC is up/down connected
were proved. Using the same techniques it might be proved that XGRFCs tend
to be up/down connected with probability e−e−x

for

x = n−1
h+1

h∏

i=1

w2
i − ln

(
n1

2

)
.

Proving this result is out of the scope of this paper, both because its mathemat-
ical complexity and because it is possible to compute the up/down condition
directly. The up/down distances can be quickly computed with a slight mod-
ification of the Breadth First Search, which shows if the network is actually
up/down connected. Although in the networks used in our examples such prob-
ability is so close to 1 that the check is not necessary, the computation is going
to be performed anyway to populate the routing tables. In cases closer to the
threshold, i.e., with the x in the probabilistic formulae close to 0, checking the
up/down connectivity would be necessary. If the check fails, then we have just
to generate again a different network with another seed for the random number
regenerator.

Example 3. Let us consider R = 36 and the topologies XGRFC(2; 18, 36; 11, 18; )
684,418,209 and XGRFC(2; 18, 36; 5, 18; 720, 200, 100). Their topological proper-
ties are summarized in Table 2. As it can be seen, XGRFC(2; 18, 36; 11, 18; )
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684,418,209 connects 2% less servers but with 12% less routers of the cor-
responding XGFT. In the case of XGRFC(2; 18, 36; 5, 18; 720, 200, 100), cost
gain is more important, since 27% less routers are needed to connect 8%
less servers. When applying the probabilistic formulae we get values x ≥ 80,
which means that the probability of being up/down-connected is greater than
1−10−x/ ln(10) ≥ 1−10−34, which is almost 1. Therefore, it is practically impos-
sible to generate a XGRFC up/down disconnected with these parameters. How-
ever, once the XGRFC is generated, its up/down connectivity is verified, and in
the case it is not fulfilled, it is just a matter of generating another one.

Example 4. For large networks, sometimes it is possible to find an up/down
XGRFC connecting the same amount of servers than a XGFT with the same
radix and fitness ratio, but having one less level. The size of the network for
which this is possible grows with the fitness ratio. The topologies and their
properties in this example are summarized in Table 3. To illustrate a 4 to 3 level
reduction, we can consider the XGFT(3; 54, 54, 92; 38, 38, 38) of radix 92 that
connects 1.4M servers. Then, the XGRFC(2; 54, 92; 38, 38; 268272, 188784, 77976)
is a random analogue with one less level that is up/down connected with a
probability around 0.92. As an example of a 5 to 4 level reduction, we can con-
sider the XGFT(4; 10, 10, 10, 16; 6, 6, 6, 6) of radix 16 that connects 160 K servers.
Then, the XGRFC(3; 10, 10, 16; 6, 6, 6; 16000, 9600, 5760, 2160) is a random ana-
logue with one less level that is up/down connected with a probability around
0.95. These cases suppose an improvement in latency from the lesser height in
addition to the cost reduction by having less routers and cables.

Table 3. Topological Parameters of Topologies in Example 4.

Levels Topology Radix Servers Routers links gmr

4 XGFT(3; 54, 54, 92; 38, 38, 38) 92 1.45M 644K 22.4M 1.42

3 XGRFC(2; 54, 92; 38, 38; 268272, 188784, 77976) 92 1.45M 535K 17.4M 1.42

5 XGFT(4; 10, 10, 10, 16; 6, 6, 6, 6) 16 160K 36.1K 208K 1.67

4 XGRFC(3; 10, 10, 16; 6, 6, 6; 16000, 9600, 5760, 2160) 16 160K 33.5K 188K 1.67

Another property that XGRFCs inherit from the RFCs is the expandability.
In a fully populated XGFT, that is with all the Mn1 servers, expanding the
system implies making drastic changes, such as increasing the height, changing
the fitness ratio or replacing the routers with others with greater radix. On the
contrary, in a XGRFC this is possible by just adding some routers in each level
and randomly rewiring some of the links in each stage. Note that the number
of routers added in the first level must be a multiple of

∏h
k=1

mk

gcd(wk,mk)
in

accordance with Eq. 1. Otherwise, some routers would have unwired ports. This
provides a simple way to gradually increment the capacities of a system based
on a XGRFC.
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4 Evaluation

To conclude the study, this section is devoted to the experimental evaluation.
In Subsect. 4.1 the experimental set up is described, including topologies evalu-
ated, simulator, traffic patterns, etc. In Subsect. 4.2 experimental results for the
simulated topologies are shown.

4.1 Experimental Set Up

Next, different topologies are evaluated by simulation. The experiments have
been done using the functional simulator in [10]. The simulations have been
performed considering a router with 4 virtual channels, input buffers of length 4
packets and virtual cut-through as flow control. Every packet has 16 phits. Both
link latency and router arbitration take 1 cycle.

For the experiments, we use the topologies summarized in Table 2. As
asserted before, most of the folded Clos in the industry are XGFTs, thus we
compare XGRFCs and XGFTs. Firstly, we evaluate the family B with smallest
fitness ratio (other than 1). Later, we compare the results with the ones denoted
by C. In both cases, one XGFT and two different XGRFCs are compared. The
first XGRFC is always done using the same resources as the XGFT, that is, the
same number of servers, routers and cables. On the contrary, the second one
has been selected to provide lower cost and the same performance under global
traffic patterns. This has been done by enforcing the same number of links in
the last level and reducing the ones in the first level to the minimum possible.

All these topologies are compared in terms throughput, average latency and
Jain’s fairness index [6]. The throughput and average latency are common mea-
sures, with throughput being the injection rate from the servers and the average
latency being the average number of cycles required to consume the packet.
Jain’s fairness index is a function of the coefficient of variation on the injection
across the servers. A value of this index of k

S is compatible with having k servers
generating the same amount of traffic and the S−k remaining servers generating
no traffic at all. Some compatible scenarios with a 8

10 index would be to have
S = 130 servers from which either only 104 are working or 81 are working with
rate 16 and the remaining 49 with the lower rate 9. Thus, a bad Jain index may
mean that a few servers have important issues or that many servers have a poor
performance, both being inadmissible.

The experiments have been done using three synthetic traffic patterns, that
have been slightly adapted from [4]. These traffic patterns have been selected to
represent typical application behaviour, which are:

– Uniform: each generated packet has as destination a random compute node
selected uniformly.

– Random-pairing: the set of switches is initially divided into pairs in a random
uniform way. Each compute node generates packets with destination any of
the compute nodes in the switch paired to its switch. This traffics pattern is
a case of a random permutation of the switches, which is more adversarial
than a permutation of the compute nodes.
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– Fixed-random: at the beginning, each switch selects a different switch in a ran-
dom uniform way. During the simulation each node generate packets towards
the selected compute node. It is not a permutation since some compute nodes
in different switches can have selected the same destination.

An up/down route is constructed as follows: first taking up links till a com-
mon ancestor is reached, and then going down. Only up/down routes are con-
sidered, and when various routes exist, one is selected randomly. Unlike what
happens in XGFTs, in XGRFCs for some pairs of leaf routers, there are up/down
routes of different lengths, as illustrated in Fig. 4. In this schematic example, we
have tried to show a situation that it is common in XGRFCs. Two routers (in
the leaf level) can communicate using different routes. The one in solid red is
minimum, that is, it provides distance 2. However, at least two more routes are
possible in this example, those depicted in dashed blue and dotted green, but
in this case with longer length, providing distance 4. Thus, in these topologies
it is possible to use two different routing algorithms: minimal routing, in which
only minimum up/down routes are considered, and all paths routing, using all
possible up/down routes. In the next sections, when illustrative, both routings
are used for XGRFCs.

Fig. 4. Up/down paths of different lengths: one of length 2 and two of length 4 (Color
figure online).

4.2 Experimental Results

First, let us consider the results of the simulations for the topologies with a
smaller fitness ratio, that is, scenario B. In Fig. 5, the results for both through-
put and latency of the different interconnection networks under uniform traffic
pattern are shown. In these graphs, random topologies have been evaluated using
minimal routing and all paths routing. As it can be seen, random networks ben-
efit from minimal routing under uniform traffic pattern. In this case, the XGRFC
with the same resources as the XGFT provides 38% more throughput. However,
as it will be seen later, in XGRFCs all the up/down routes should be used under
other non-uniform traffic patterns. With all paths routing, all the topologies
provide almost the same throughput. Note that the latency graph perfectly cor-
responds with the one being expected from the observed throughput. Since this
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happens across all experiments, latency graphs are no longer shown in favour of
showing Jain’s fairness results.

Concerning the random pairing traffic pattern, the results of the experiments
can be seen in Fig. 6. As mentioned before, in random topologies, restricting
to minimal routes not only constitutes a disadvantage for throughput but also
has harmful consequences on fairness. Considering the throughput results for
all paths routing, the XGFT provides the best performance. For the correspond-
ing XGRFC with the same resources, this performance falls a 5%. The cheaper
XGRFC with 12% less routers provides 27% less throughput.

Finally, the results for the fixed random traffic pattern are shown in Fig. 7. In
this case only the evaluation with all the routes is shown, since restricting only to
minimal routes has the same problems that has already been observed in random
pairing traffic. It can be seen that XGRFC provides 20% more throughput than
XGFT when it uses the same resources. However, the cheaper version provides
7% less performance than XGFT. Nevertheless, when analyzing fairness, it can
be observed that both random topologies have an excellent behaviour, and XGFT
exhibits an important problem.

Now, let us analyze what happens for a greater fitness ratio, that is, sce-
nario C. In this case, only the results for uniform traffic are shown in Fig. 8,
since the other traffic patterns provide similar outcomes. As it can be observed,
the behaviour is almost the same as the one shown in Fig. 5. The only difference
that can be highlighted is that the discrepancy between throughput measured for
both minimal routing and all paths routing, has been decreased with respect to
the topologies denoted by B. Note that this happens because more fitness ratio
implies less routers in the top level, thus providing less path diversity.
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Fig. 5. Uniform traffic: average accepted load and average latency. Scenario B.
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5 Conclusions

It has been proved that the performance of a slimmed folded Clos, both stan-
dard or with random interconnection, can be estimated in terms of the nature
of communications of the application. Although other cases can be considered,
we have selected an application with a totally global traffic pattern, in which all
its communications use the links at the last stage. This global traffic is almost
uniform traffic in the considered topologies. We have measured the impact of
different fitness ratios on the performance, both with a theoretical model and
corroborated by simulation. We have shown that the information provided by
the model would be of great interest for systems designers to make a better usage
of their procurement budget. Moreover, random topologies provide greater cost
savings, since it is possible to build them with fewer resources, in exchange for
an assumable degradation of the performance and an improvement in fairness.
Furthermore, extended random folded Clos topologies provide higher scalability,
great expansion and better fault tolerances than the extended fat trees counter-
parts do.
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Abstract. The fast development of acceleration architectures and
applications has made heterogeneous computing the norm for high-
performance computing. The cost of high volume data movement to
the accelerators is an important bottleneck both in terms of application
performance and developer productivity. Memory management is still a
manual task performed tediously by expert programmers. In this paper,
we develop a compiler analysis to automate memory management for
heterogeneous computing. We propose an optimization framework that
casts the problem of detection and removal of redundant data move-
ments into a partial redundancy elimination (PRE) problem and applies
the lazy code motion technique to optimize these data movements. We
chose OpenMP as the underlying parallel programming model and imple-
mented our optimization framework in the LLVM toolchain. We evalu-
ated it with ten benchmarks and obtained a geometric speedup of 2.3×,
and reduced on average 50% of the total bytes transferred between the
host and GPU.

Keywords: Compiler optimization · GPUs · OpenMP · Memory
management

1 Introduction

As high-performance computing enters an era of extreme heterogeneity, there
is an increasing proliferation of general and special purpose accelerators as well
as a concerted effort by higher-level parallel programming models to support
heterogeneous computing, e.g., OpenMP, OpenACC, X10, Chapel, Julia. Data
movement between the host and accelerators is a fundamental operation in het-
erogeneous computing, and parallel programming models vary in supporting
data movement either explicitly or implicitly. Data movement is also a signifi-
cant source of overhead, both in execution time and energy. Thus, minimizing
data movement while maintaining the correctness of a program is one of the
most important optimizations that compilers and application developers focus
on [1,6,7,11,17].

We propose a program analysis framework to enable the compiler to auto-
matically detect and remove redundant memory copies. We use OpenMP 4.51 as
1 www.openmp.org/wp-content/uploads/openmp-4.5.pdf.
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an example parallel programming model to demonstrate our optimization frame-
work. We can offload a region of code to accelerators like GPUs using OpenMP.
An application developer can specify several different kinds and combinations of
OpenMP directives to extract optimal performance from specific hardware. But
the developer also needs to ensure the correctness and absence of data races while
manually optimizing the application. Given the complexity of OpenMP specifi-
cations, this is a nontrivial task and requires time-consuming efforts from expert
programmers. Tools like OmpSan [4] help developers debug incorrect usage of
OpenMP memory mapping directives. Our objective is to investigate how the
compiler can optimize the memory management operations, while the user only
needs to specify synchronization operations needed for correctness.
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Fig. 1. Compute time vs memory copy

Figure 1 shows the significance of
the data movement overhead for 10
OpenMP GPU applications discussed
later in Sect. 5. In this experiment,
the kernels don’t use any explicit
memory mapping and rely on the
default behavior, which is to copy
data from a host to the GPU before
launching the kernel and back to the
host after it executes. It compares
the % time spent on computing vs.
data transfer operations. The experi-
ment illustrates the inefficiency of the
default mapping since except for the

compute-intensive mm mpy and saxpy kernels, over 70% of the time is spent
on memory transfer operations in the remaining benchmarks. In this paper, we
formalize the data movement optimization problem and define an intermediate
representation suitable for the analysis of memory accesses and data movements
in heterogeneous computing. Then, we introduce our optimization framework
hat uses the intermediate representation to perform lazy code motion and par-
tial redundancy elimination on data movement operations.

The main contributions of this paper include:

1. We introduce a general optimization framework to apply partial redundancy
elimination, that uses dataflow analysis to identify redundancies in data move-
ment, and a code transformation to eliminate such redundancies.

2. We extend past work on Heap SSA [9] to a new Location-Aware heap SSA
(LASSA) to consider heterogeneous memory spaces. We implement construc-
tion of LASSA, and its associated optimizations, in the LLVM tool chain.

3. We evaluate our approach using real-world heterogeneous computing appli-
cations.
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2 Background

2.1 OpenMP Execution Model

In this section, we briefly discuss the OpenMP programming model. We use
the term device to refer to a computing resource. The host device is the CPU
that begins executing the program. There are optional accelerators like a GPU
that are called target devices. An OpenMP program begins as a single thread of
sequential execution, called the master thread, which runs on the host device.
The OpenMP target directive specifies a block of code to offload to the device.
One or more target devices can be available to the host for offloading code and
data. The target directive generates a new target task, which may execute on a
target device. The target task starts with an initial thread, and teams of threads
can be optionally created depending on the usage of team/parallel constructs.

An important aspect of the memory model2 [10] is that the tasks running on
the host and tasks running on the target devices have separate states that are
not shared. Each host device and target device has at least one attached storage
resource(s) that is private to them. This is called a memory space in OpenMP
terminology. When the host and target task need to communicate, they do so by
explicitly copying data from one memory space to another. The memory space
is a persistent resource, e.g., the target memory space retains all data allocated
in its space unless it is explicitly deleted.

2.2 Heap SSA Form

Heap SSA [9] is an intermediate representation that extends Array SSA form [14]
to capture reads and writes to heap-allocated data. Heap SSA models each access
of a disjoint memory space as a distinct logical “heap array”. Heap SSA employs
use:uφ and definition:dφ operators to chain memory load and store operations,
respectively. It was designed for strongly typed languages like Java, but it is also
applicable to weakly typed languages by introducing a uniform heap array that
captures element-level dataflow information for heap data structures [21].

3 Motivation

Figure 2 shows some typical cases of redundant memory copies that programmers
need to detect and optimize manually. Here, memcpy host2device copies an
array from host to device, while memcpy device2host copies it back from the
device to host. It shows a dummy CFG in which the dotted line represents an
arbitrary sequence of code, which respects the condition mentioned alongside it.

Redundancy Pattern 1. Figure 2a is the simplest use case; if a kernel launched
on the device does not update an array, then there is no need to copy the array
back to the host. The default behavior of OpenMP target constructs is to copy
in and out every array.
2 www.openmp.org/wp-content/uploads/openmp-4.5.pdf.

www.openmp.org/wp-content/uploads/openmp-4.5.pdf
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(a) Redundant Copy-out
from device

(b) Redundant Copy-in
to device

(c) Redundant copies
within loop

Fig. 2. Common patterns of redundancy

1 int A[10];
2 #pragma omp target map(A)
3 {
4 for (i = 0 ; i < 10; i++)
5 A[i] = i;
6 }
7 print(A)
8 #pragma omp target map(A)
9 {

10 for (i = 0 ; i < 10; i++)
11 A[i] + = i;
12 }
13 print(A)

(a) Default memory map

1 int A[10];
2 #pragma omp target data map(tofrom:A)
3 {
4 #pragma omp target map(alloc:A)
5 {
6 for (i = 0 ; i < 10; i++)
7 A[i] = i;
8 }
9 #prargma omp target update from(A)

10 print(A)
11 #pragma omp target map(alloc:A)
12 {
13 for (i = 0 ; i < 10; i++)
14 A[i] + = i;
15 }
16 }
17 print(A)

(b) Explicitly specify data copies

Fig. 3. Redundancy Pattern 2

Redundancy Pattern 2. Figure 2b shows the second pattern, when a host-
to-device copy is redundant since the array is already the latest version on the
device because of the persistent device storage. After executing a kernel on the
device, we copy the array back from device-to-host. Figure 3a shows this coding
pattern using OpenMP target offloading constructs. Line 2 launches a kernel on
the device that updates the array A. Then the kernel launched on line 8 reads
and updates the array A in the device memory. The print statement on line 7 is
executed on the host. It only reads the array, and it is not updated on the host
before launching the second kernel. The device already has the latest version of
the array on line 8, and thus the copy is redundant. Figure 3b shows the usage
of target data map clause on line 2 to handle such redundancies. We explicitly
leave the array on the device’s persistent memory for later use.
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1 int A[10];
2 for (t = 0 ; t < 100; t++) {
3 #pragma omp target map(A)
4 {
5 for (i = 0 ; i < 10; i++)
6 A[i] += i;
7 }
8 }
9 print(A)

(a) Kernel Launch within loop

1 int A[10];
2 #pragma omp target data map(tofrom:A)
3 {
4 for (t = 0 ; t < 100; t++) {
5 #pragma omp target map(alloc:A)
6 {
7 for (i = 0 ; i < 10; i++)
8 A[i] += i;
9 }

10 }
11 }
12 print(A)

(b) Explicit memory copies

Fig. 4. Redundant copies within loop, Pattern 3

This example motivates our claim that optimizing even simple memory copy
redundancies requires nontrivial understanding of OpenMP spec and the knowl-
edge of all the available directives and their possible usage.

Redundancy Pattern 3. Figure 2c shows another pattern where a host loop
launches a kernel on the device iteratively. This host loop does a host-to-device
copy before launching the kernel and again device-to-host copy after it finishes.
Both these copies are redundant since the host does not access the copied mem-
ory inside the loop. Figure 4a shows the OpenMP example for the third case,
the target construct on line 3 executes host-to-device copy before launching the
kernel on the device and then device-to-host copy after the kernel returns. But,
since the outer loop of line 2, executing on the host does not access the array,
both the copies are loop-invariant. In this case, it is legal to move the host-
to-device memory copy before the loop, and the device-to-host memory copy
after the outer loop. Figure 4b shows the usage of memory map environments to
remove the redundancy.

In this section, we presented three simple examples of redundant memory
copies to motivate our work. But these patterns can be generalized to complex
real-world use cases. The dotted line of the CFG can denote arbitrarily complex
source code. Hence the redundant memory copies can even occur across different
function calls and source files. This makes manual detection of redundant mem-
ory copies and its optimization much more complicated and error-prone. Several
OpenMP application developers have provided similar feedback regarding these
issues related to manual optimization of memory management. The common
uses cases are usually scientific applications with large legacy codebases, that
are being ported to GPUs using the OpenMP target offloading feature launched
in version 4.5. The nontrivial effort required for manual memory management is
our motivation to develop a compiler optimization to automate removal of such
redundant memory copies.
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3.1 Challenges

To address the problem introduced above, we need to address the following
challenges:

– Representation of concurrent memory accesses to the same array elements;
– Reasoning about the definition-use (def-use) relationships among array

accesses across different memory spaces;
– Whole program analysis that infers optimal program points for inserting

memory copy operations, and detects redundant data movements.

4 Our Approach

Problem Statement. Based on the programming-model, first, the compiler needs
to identify where to insert the memory copy operations to ensure correctness.
Then an analysis is required to determine partially and fully redundant memory
copies. Finally, a code transformation is needed to remove all the redundancies.

Proposed Solution. We design an intermediate representation to express the
memory model of the programming paradigm and develop an analysis based
on that representation, to optimize redundant memory copies between different
memory spaces. We make the following basic assumptions

– We assume that pointer analysis can disambiguate named arrays. If the alias
analysis fails to identify each array uniquely, our optimization fails.

– To keep the analysis simple, any element-level access is conservatively
assumed to access the entire array. This constraint can be removed by per-
forming an index range analysis for each array access.

4.1 Location Aware Heap SSA

The heterogeneous computing patterns mainly deal with array-based data struc-
tures over one or more memory spaces of different devices. In this section, we
introduce the Location-Aware Heap SSA (LASSA) IR, which extends Heap
SSA [9] to take into account the memory space in which each array resides.
To uniquely identify each array access in a LASSA program, we create a new
version of the array for every corresponding access to it. We define LASSA oper-
ators that map an array version in one memory space to another array version in
the same or different memory space. We call these array versions as a definition.

We use the notation, Dr
i , to denote the ith definition in memory space r.

Definition 1. We define the following operators in LASSA for an array A:

1. Ar
i = dφ(Ar

j) creates a new definition. such that, Ar
j is the prevailing defini-

tion of A just prior to Ar
i in the memory space r.

2. Ar
k = cφ(Ar

i , A
r
j), creates a control merge of the definitions {Ar

i , A
r
j}.

3. Ar
i = uφ(Ar

j), denotes the read of A.
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(a) LASSA example 1

(b) LASSA example 2
(c) LASSA example 3

Fig. 5. Example LASSA operators, shaded blocks are executed on device

4. Ar
i = mcpyφ(Ap

j ), creates a new definition of A, due to a copy from memory
space p to memory space r, this is a new operator that was not present in
Heap SSA.

The semantics of the dφ and uφ operators are associated with the respective
memory write and read operations. The uφ operator also generates a dummy
definition, for array reads. The main purpose of the uφ operator is to remove
redundant copy statements. The control merge operator cφ merges the reaching
definitions from two incoming paths and creates a new definition. The uφ, dφ and
cφ are the same operators as in Heap SSA [9]. A mcpyφ is associated with a pro-
gram point where the memory from source memory space data is flushed/written
out to the destination memory space. This guarantees the copied data is visible
to any subsequent memory operations. We can use mcpyφ for both synchronous
or asynchronous memory copy. But, the placement of the operator depends only
on when the actual write is visible, as defined by the memory concurrency model.
For an array A and device memories dev1, dev2, We use the notation Adev1,dev2

to denote that both the memory spaces dev1 and dev2 have exactly the same
copy of array A. We now discuss some example LASSA representations.

Case 1. Figure 5a shows an example LASSA IR for case 1. Basic Block B1 copies
data back from the device to the host, assuming there is some preceding kernel
that executes on the device not shown here. Assuming Adevice

1 is the most recent
version of the array on the device, the copy creates Ahost

1 , a new version of the
array on the host represented by Ahost

1 = mcpyφ(Adevice
1 ). Next, B2 reads a

location of the array on the host, represented by the uφ operator. Finally, B3
uses the mcpyφ operator to denote the host-to-device memory copy.
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Case 2. Figure 5b shows the LASSA IR for case 2. B2 is a kernel executed on
device, denoted by the shaded block in the figure. B1 denotes the host-to-device
memory copy with the mcpyφ operator, and it updates the version of the array
on device to Adevice

2 . After the copy, Adevice
1 is the updated version of the array

on the device read by the uφ operator of B2. B3 copies the array back to the
host after B2 finishes execution on the device.

Case 3. In Figure 5c, B4 is a kernel launched on device, which is executed inside
a loop. This represents the loop invariant case. B3 copies the array from the host-
to-device, and B5 copies the array back from the device-to-host. B2 is the entry
block of the loop, it merges the control from the back edge. Assuming Ahost

0 is the
last version of array on the host before entry to loop, the Ahost

1 = cφ(Ahost
0 , Ahost

2 )
merges the Ahost

2 from loop body to create a new version Ahost
1 . B4 updates the

array on device, denoted by the dφ operator which creates the version Adevice
2 ,

that is copied back to the host at B5.

4.2 Redundancy

We will use the data flow analysis defined in Chapter 10 of the compiler textbook
[20] for partial redundancy elimination [8,15] of memory copies across different
memory spaces. In this section, we define the data flow properties in terms of
the mcpyφ LASSA operator.

Definition 2 Availability: An mcpyφ of A is said to be available between two
memory spaces m and p, at a basic block B, if any memory copy of A between
m and p is redundant at B since both memory spaces have the same version of
the array after the last copy. This is a forward analysis.

Availability implies, after the last copy: Dm
i = mcpyφ(A,Dp

j ), Dm
i is still the

most recent version of the array A on memory space m, and Dp
j is the most

recent version of array A on memory space p. It is computed using a forward
analysis. Given a basic block B, AvailOut(B) denotes the availability at the exit
of B. DEExpr(B) and UEExpr(B) is the set of downward and upward exposed
mcpyφ operators respectively. They are defined in Table 1. ExprKill(B) denotes
the memory copies that are killed due to an update. We use the same definition
of AvailOut from [20],

AvailOut(n) =
⋂

m∈preds(n)

(DEExpr(m) ∪ (AvailOut(m) ∩ ExprKill(m)))

AvailOut(inputBlock) = φ, and for all other blocks AvailOut(B) = All Copies,

Definition 3 Anticipability: An mcpyφ of A is anticipable (very busy)
between memory spaces m and p, on exit of a basic block B, if every path that
leaves B, executes a memory copy of A between m and p, and it is legal to hoist
it to the end of B.
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Table 1. Transfer functions for the basic block local properties

LASSA
operators

Downward exposed Upward exposed Killed copy

Explanation if A{p,q} ∈ DEExpr(B)
then, the version of A
on p and q are same at
the end of B

if A{p,q} ∈ UEExpr(B)
then, copy from p to q
can be hoisted up at the
head of B

Killed Copy

Initialization DEExpr(B) = {} UEExpr(B) = {} ExprKill(B) =
{}

Analysis
direction

Forward Backward Forward

Dr
i =

dφ(A, Dr
i )

DEExpr(B) \ A{r,x}∀x UEExpr(B) \ A{r,x}∀x ExprKill(B) ∪
A{r,x}∀x

Dr
i =

uφ(A, Dr
j )

DEExpr(B) UEExpr(B) ExprKill(B)

Dr
i =

mcpyφ(A, Dq
j )

DEExpr(B) ∪ A{q,r} UEExpr(B) ∪ A{q,r} ExprKill(B)

Table 2. Computing availability and anticipability

Available out

Figure 5a B1 A{host,device}

Figure 5a B2 A{host,device}

Figure 5b B1 A{host,device}

Figure 5b B2 A{host,device}

(a) Redundancy

Available out Anticipable in

B1 φ A{host,device}

B2 φ A{host,device}

B3 A{host,device} A{host,device}

B4 φ φ

B5 A{host,device} A{host,device}

B6 A{host,device} φ

B7 A{host,device} φ

(b) Partial redundancy

Anticipability is computed by a backward analysis using the following equations,

AntIn(m) = UEExpr(m) ∪ (AntOut(m) ∩ ExprKill(m))

AntOut(n) =
⋂

m∈succ(n)

AntIn(m), m �= Exit Block

AntOut(Exit Block) = φ, and for all other blocks AntOut(n) = All Copies
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To compute the availability and anticipability, we define a lattice over the
mcpyφ of array variables. We use A{src,dst} to denote that the memory copy of
A between src and dst is redundant, that is both memory spaces have exactly
the same copy of A. Our analysis is based on the “lazy code motion” data-flow-
equations from [8]. Table 1 defines the local properties used to compute the avail-
ability and anticipability.

Definition 4 Redundancy: A copy statement between memory spaces m and
p for a particular array A is redundant, if both the memory spaces already have
the same version of A.

A memory copy, Dp
i = mcpyφ(A,Dm

j ) is redundant if A{m,p} ∈ AvailOut(Dm
j )

Example of Redundancy. Consider Fig. 5a and Fig. 5b, in both these cases B1
and B3 have an mcpyφ operator, and there is no write to the array between this
pair of mcpyφ statements. Thus, as Table 2a shows, A{host,device} is available at
the entry to basic block B3 which means the host and device memory space
have the same copy of the array and any further copy is redundant. Thus we can
remove the memory copy from the B3 in the first two cases.

Definition 5 Partial Redundancy: A copy statement between memory spaces
m and p for a particular array A, constitutes a partial redundancy, if both the
memory spaces already have an updated copy on some but not all paths reaching
the copy statement.

Example of Partial Redundancy. Consider the loop invariant case in Fig. 5c. As
Table 2b shows, The memory copy of B3 is anticipable at the entry of both B1
and B2, that is to the entry block of the loop. But the device definition in B4
makes sure that the B5 copy is not redundant. Now, the copy of B5 is available
at the exit of B5 and also till the loop exit block B7. Consider the two edges of
B1−B2 and B6−B2, A{host,device} is available only on the back edge B6−B2,
but not on the entry to the loop. Hence it is partially redundant at B2.

4.3 Lazy Code Motion

Partial redundancy elimination (PRE) [15] eliminates redundant computation
of expressions in programs by moving invariant computations out of loops and
also eliminating identical computations that are performed more than once on
any execution path. In this paper, we use the formulation from [20] and [8]. Our
customized PRE algorithm for data movements has the following steps:

1. Basic block local properties: compute the local properties of upward-exposed
and downward-exposed mcpyφ operators using the transfer functions defined
over LASSA operators in Table 1.

2. Solve the data flow equations: compute available and anticipable copy opera-
tions according to Definition 2 and Definition 3.
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3. Determine Earliest and Latest placement : given the solutions of availability
and anticipability, we can determine the earliest point in the program at
which it is safe to hoist the copy statement. It is profitable to insert a copy
statement at a basic block B, if it makes other copy statements redundant.
Again we use the original data flow equations [20], to solve for earliest and
later placement.

4. Redundant copies: this translates to identifying redundant memory copy
statements according to Definition 4.

5. Code rewrite: identify the program point to insert the memory copy, and the
set of redundant memory copies that can be deleted.

Note that dataflow analysis on the LASSA IR ensures that the transformed
program produces the same output as the original output. The semantics of the
mcpyφ IR ensures the legality of the optimization.

(a) Framework LLVM implementation
(b) Speedup compared to default map
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(c) Improvement in Memory Copy
Time
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(d) Improvement in Total Bytes Copied

Fig. 6. Experimental framework and results
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5 Evaluation

Implementation. We implemented our analysis in the LLVM 9.0.1 compiler
framework3. Figure 6a shows an overview of our analysis and the optimiza-
tion framework. We used Clang to emit LLVM IR using the target-independent
“libomptarget” OpenMP offloading library. The analysis pass then analyzes the
API calls and their arguments to infer the offload pragmas specified by the user.
We implemented an Andersen like flow-insensitive alias analysis, and also used
two LLVM built-in analyses: scalar evolution for array index analysis and mem-
ory SSA4 for chaining memory access and data copy operations.

For optimal memory copy insertion, we developed our analysis pass Omp-
MemOpt. It performs an inter-procedural analysis to detect redundant memory
copies. Based on the analysis results, we infer the optimal places to insert the
OpenMP memory copy constructs. Finally, we developed a Perl script to insert
the appropriate memory mapping directives into the input source files. Thus,
given an OpenMP target offloading application with no explicit memory man-
agement, our tool analyzes the program and finally generates the modified source
files after adding the optimal set of OpenMP memory map directives.

Experimental Setup. We use the OpenMP benchmarks from SPEC ACCEL v1.2
to evaluate our analysis and optimizations. We exclude Fortran applications from
our evaluation, since they are not supported by our current tool chain; we also
exclude benchmarks that do not use target offloading. We show results for the 6
SPEC benchmarks, and also include 4 other applications: saxpy, Cardoid ,Matrix
Multiply and Matrix Transpose.

Our experimental results were obtained from a Linux (Ubuntu 18.04.3)
workstation, Intel Core i5-7600 CPU (3.50GHz), 16GB memory and an Nvidia
“TITAN Xp” GPU with 12GB memory and CUDA 10.1.

Experimental Result and Discussion. We removed all the explicit memory map-
ping constructs specified in the benchmarks to obtain our baseline. The host
performs host-to-device copy in the baseline version before launching every ker-
nel on the device and device-to-host copy after the kernel finishes execution.

After running our optimization on the benchmark, we have three versions of
each application: the baseline, OmpMemOpt optimized version, and the original
hand-optimized benchmark. We compare the performance of these three ver-
sions to evaluate our framework. We measure the efficiency on such metrics: the
improvement of execution time, the reducing of data volumes and time consumed
on data movement.

3 http://llvm.org/.
4 https://llvm.org/docs/MemorySSA.html.

http://llvm.org/
https://llvm.org/docs/MemorySSA.html
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Table 3. Comparison of our achieved speedup with manually opti-
mized speedup

Benchmark In putMemory copy timeTotal timeManual speedupOur speedup

503.postencil ref 954491.4 983668.3 33.5 1.0

503.postencil test 3108.6 3205.2 25.6 1.0

503.postencil train 3116.8 3211.5 25.5 1.0

504.polbm ref 497859.3 553697.4 9.5 9.5

504.polbm test 2014.5 2243.0 7.0 7.0

504.polbm train 30222.4 33615.8 9.4 9.3

552.pep ref 563182.7 671546.9 5.7 1.0

552.pep test 469.8 653.9 3.6 1.0

552.pep train 35889.8 42726.6 5.8 1.0

554.pcg ref 807757.1 1040824.3 4.5 3.9

554.pcg test 24129.3 31056.1 4.4 4.0

554.pcg train 88261.0 113651.9 4.5 4.0

557.pcsp ref 1204141.9 1308006.4 2.0 1.5

557.pcsp test 20098.1 20229.1 1.5 1.5

557.pcsp train 464849.7 475782.2 2.0 1.5

570.pbt ref 3750608.5 4221773.7 3.7 3.7

570.pbt test 1321807.1 1339861.0 2.6 2.6

570.pbt train 2563893.7 2728456.2 3.6 3.6

Cardoid 838.5 1163.8 3.17 3.17

mm mpy 750.8 54555 1.02 1.02

mtx transpose 16.66 17.7 2.8 2.8

Saxpy 154.7 315.9 1.09 1.09

We did the
following study
for the compari-
son with baseline
code. Figure 6b
shows the overall
speedup obtai-
ned by our app-
roach compared
to the naive data
mapping baseline.
As we can see
except 503 and
552, all the bench-
marks show a
speedup ranging
from 1.02× to
almost 10×. The
503 and 552 bench-
marks did not
get a chance to be optimized due to limitations in the precision of the alias
analysis used—flow-insensitive pointer analysis could not disambiguate the array
references in those two benchmarks.

Figure 6c explains the reason for the speedup, by showing the improvement
factor of memory copy time, compared to the baseline. A significant point to
note here is that the performance gain is mostly dependent on the problem size
(i.e., input data size). This also implies that the efficiency depends on the data
volume reduced for transfer.

Finally, Fig. 6d gives a quantization study of the data volume transferred
between the host and the device. It shows the reduction in total bytes copied.
As is evident, there is a correlation between the factor by which total bytes are
reduced and the obtained speedup. The speedup also depends on the pattern of
computation. As the Matrix Multiplication example shows, even though there is
a 1.5× reduction of memory-copy-time, it does not result in a speedup since the
application is compute-intensive. In the benchmark Cardoid, there is an outer
loop which iterates for 100 iterations, and launches an inner loop on the target
device. The default semantics of the target construct would perform host-to-
device and device-to-host copy in each iteration. But, since there is no host
access, there is no need to copy the data back and forth every time. This is
why almost 100% of the memory copies are eliminated after our optimization.
Benchmark Saxpy is similar to Cardoid, there is an outer loop that launches the
target task every iteration, and redundantly copies the data in every iteration.

Table 3 shows the comparison of speedup obtained from our approach with
the manually optimized version. The manually optimized version is the original
source released as the SPEC ACCEL benchmarks. The 3rd and 4th columns give
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the memory copy time and total execution time for baseline code (i.e. naive mem-
ory mapping version). The 5th column shows the speedup obtained by compar-
ing user manually optimized code against baseline. And the last column shows
the speedup got from our approach. In general, the user manually optimized
version gives the better improvement by comparing the last two columns, and
our approach (i.e. compiler optimization) got similar performance on 504.polbm
and 570.pbt. As mentioned above, there is no improvement from 503.postencil
and 552.pep due to the precision issues from pointer alias analysis. This study
shows the compiler’s potential to automatically generate as efficient code as a
programmer’s manually optimized version.

6 Related Work

The problem of code generation and communication optimization for distributed
memory machines is a classical problem, studied for a long time. Amarasinghe
and Lam [1] introduced a data flow analysis framework to generate remote mes-
sage read/write code, and then detect and remove redundancies in homoge-
neous distributed computing. Chavarria and Mellor-Crummey [6] proposed a
communication coalescing optimization to reduce redundant data transfer for
high-performance Fortran applications. Dathathri et al. [7] introduced a poly-
hedral model to enable static analysis and automatically generate efficient data
movement code for non-shared address spaces.

Load elimination and partial code motion are the classic optimizations for
eliminating redundant memory loads in a sequential program. In [5], Bodik
et al. phrased the load-reuse problem as a path-sensitive analysis problem on
the dataflow graph. Their algorithm can detect the reuse pattern for both
scalar variable and pointer-based memory load operations. Recently, GPU based
heterogeneous computing is becoming the mainstream configuration of high-
performance computing. Several compiler optimizations and runtime techniques
have been developed for reducing the communication overhead. In [12], Jablin et
al. introduced a CPU-GPU Communication Manager (CGCM), which employs
a static analysis with a runtime library to optimize CPU-GPU communication.
Ramashekar and Bondhugula introduced BBMM [19] for communication opti-
mizations on a multi-GPU system. They applied communication optimization
for the tiled loop nest and generated the OpenCL code that uses BBMM runtime
API to perform buffer management and data communication.

Ashcraft et al. built a compilation technique [3] that performs whole-program
analysis to make the optimal placement of data transfer operations. Their app-
roach is based on a liveness analysis to identify the preliminary scheduling loca-
tions for the data transfer and then use the dominator tree to optimize the loca-
tions. In [16], Mendonca et al. developed an automatic annotation mechanism
for enabling GPU based data parallelism from the source code and eliminate the
redundant CPU-GPU data copies.

There are also several runtime based communication optimization techniques
for eliminating the CPU-GPU redundant memory copies. Asai et al. [2] discussed
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a runtime based approach using data dependence analysis for reducing the mem-
ory copy operations in a GPU-enabled version of the Apache Spark framework.
Kim et al. developed a runtime communication optimization: Unnecessary Data
Transfer Elimination (UDTE) [13], which uses a page-fault mechanism to avoid
redundant CPU-GPU memory copies.

Compared with past work, our approach introduced a general compiler opti-
mization framework that optimizes data movement across different memory
spaces in heterogeneous computing. The related work mentioned above addressed
this problem using runtime based mechanisms. Our framework reduces data
movement overheads, and is applicable to parallel programming models that
support heterogeneous computation.

7 Conclusion

In this work, we addressed the problem of optimizing data movement across
different computation devices in a heterogeneous computing application. Given
that many parallel programming language models (e.g., OpenMP, OpenACC)
support offloading of computations and data to different accelerators, automatic
elimination of redundant memory copies to improve performance, while still
ensuring correctness, is an important challenge for compilers. To address this
problem, we developed an optimization framework to identify redundant data
movements and perform code transformations to eliminate those redundancies.
We first extended Heap SSA to a Location-Aware heap SSA form (LASSA), an
intermediate representation that can track host-to-device memory copies across
multiple devices. Then, we performed a partial redundancy elimination dataflow
analysis on LASSA to address the problem of removing redundant data transfers.
We evaluated our technique on 10 benchmarks written in OpenMP 4.5 with tar-
get offloading constructs. Our approach demonstrated a geometric mean speedup
of 2.3× and saved a geometric mean of 3.48 GB in redundant data transfers. For
one of our future work directions, we plan to explore the use of immutability
information [18] to further reduce the data transfers performed.
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Abstract. Accelerating the deep learning inference is very important
for real-time applications. In this paper, we propose a novel method to
fuse the layers of convolutional neural networks (CNNs) on Graphics
Processing Units (GPUs), which applies data reuse analysis and access
optimization in different levels of the memory hierarchy. To achieve the
balance between computation and memory access, we explore the fusion
opportunities in the CNN computation graph and propose three fusion
modes of convolutional neural networks: straight, merge and split. Then,
an approach for generating efficient fused code is designed, which goes
deeper in multi-level memory usage for cross-layer data reuse. The effec-
tiveness of our method is evaluated with the network layers from state-
of-the-art CNNs on two different GPU platforms, NVIDIA TITAN Xp
and Tesla P4. The experiments show that the average speedup is 2.02 ×
on representative structures of CNNs, and 1.57× on end-to-end inference
of SqueezeNet.

Keywords: Deep learning · Layer fusion · Performance optimization

1 Introduction

Convolutional neural networks (CNNs) have become more and more popular
in deep learning applications, including image classification and video recogni-
tion. For modern heterogeneous parallel computing platforms such as Graphics
Processing Units (GPUs), there has been a rising interest in efficient implementa-
tion of deep learning systems. There are several kinds of operators in deep neural
networks, such as convolution, batch normalization, and activation. Generally,
GPU-based deep learning systems launch kernels for a single operation many
times, which may cause extra data transmission overheads. Complex computa-
tion tasks are usually bounded by arithmetic bandwidth and large-scale data
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transmission are bounded with memory bandwidth. The bottleneck of executing
kernel varies depending on the applications and GPU devices. For pooling, acti-
vation and some kind of convolution operations with small size, the workloads
are limited by the transmission speed of memory access.

CNN architectures are going deeper and have become too complicated to
infer in real-time systems. The increasing size of deep CNNs demands more on
computing systems and GPUs provide the primary computation for CNN appli-
cations. However, the performance of CNN inference is subject to computation
and memory bandwidth constraints. There is an increasing gap between memory
bandwidth and computing performance on emerging GPUs.

Meanwhile, CNNs are tending to be very deep, such as GoogLeNet [16],
and usually consist of dozens or hundreds of layers. Some novel architectures,
such as inception and residual connections, resulting in deeper and wider neural
networks. For accelerating the inference, some light-weight and efficient CNNs
are proposed, such as SqueezeNet [9] and MobileNet [8].

The inference systems are usually parallel and have hierarchical memory and
the memory access bandwidth is the potential bottleneck for accelerating neural
networks. In the architectural design of the GPU, the latency of global memory is
much higher than shared memory. New GPU architectures are emerging, Volta,
Turing and Ampere. However, the new hardware architectures are focused on the
single layer execution time rather than the data reuse across layers in different
memory level.

As such, reusing shared memory data can achieve much more performance
improvement besides the benefits of hardware upgrades. Inspired by kernel
fusion [6,14,17,19], we propose a cross-layer data reuse approach by fusing ker-
nels to increase the data locality and reuse efficiency cross the layers.

Fig. 1. Workflow of our cross-layer data reuse method

Unfortunately, few works have addressed the issue of how to formally describe
and fuse deep CNNs across layers in detail. In particular, the performance of our
method can catch up with the existing acceleration library. Our goal is to develop
a strategy for generating high performance code of deep CNN applications by
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exploring the cross-layer data reuse. We design a cross-layer data reuse optimiza-
tion method, which inputs the compute graph of CNN layers and generates the
source code for GPUs (Fig. 1). The fusion strategies include analyzing the input
graph for fusion, tiling the data and parallelism on devices and optimizing the
memory usage on multi-level memory hierarchy.

The main contributions of this paper are:

– To find more optimization opportunities for subsequent fusing, we charac-
terize the computational procedure in CNNs and summarized three fusion
modes (straight, merge and split) formally.

– We propose a fusion method that can reuse on-chip memory by making full
use of multi-layer memory on GPUs. Based on the method, we build a code
generator, which can automatically generate a high-performance fused kernel
according to determined fusion mode.

– We conduct experiments on representative networks and analyze the results.
The experimental results show that the performance of our method outper-
forms the GPU-accelerated deep neural network library, cuDNN [4].

2 Hierarchy of Modern GPUs

In this section, we first introduce the memory hierarchy for modern GPU archi-
tectures, which is the basis for CNN application optimization. Then, we give
a motivating example and describe the data reuse methodology in convolution
applications.

2.1 Hierarchy of GPUs and CUDA

Compute Unified Device Architecture (CUDA) is a parallel computing platform
and programming model for GPUs [13], which exposes programmers to the con-
cepts of memory hierarchy and threads hierarchy [3]. Accelerating deep learning
performance on complex memory hierarchy needs to make full use of memory
units and compute units.

As shown in Fig. 2, there are many programmable memories at different levels
of GPU devices. GPU memory units vary from access pattern to management.
Modern GPUs contain a lot of Stream Multiprocessors (SMs) which are parallel
executed on the board. Each SM has its shared memory, which can be accessed by
threads in the same block. Multiple blocks can be launched on the SM, but each
block can only access its private shared memory. Registers and local memory can
only be visited by a single thread. If the size of the required resisters is larger than
the size each thread allocated, local memory will be used. Constant memory,
texture memory, and global memory can be visited by all threads. Constant
memory is a kind of read-only memory, which needs to be transferred to GPU
device memory from CPU memory before launching the kernel. Texture memory
is read-only and optimized for 2D access. Generally, data will be prepared by
copying memory data from host memory to global memory before the kernel
launched.
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Fig. 2. GPU memory hierarchy

On-chip memory is fast and close to chips while off-chip memory is slow and
far away from chips. Different types of memory have different access patterns.
Registers and local memory are both private to each thread. But registers are
on-chip and have low latency and local memory is off-chip and has high latency.
Shared memory is organized by equal-sized banks. Accessing data in the same
bank simultaneously will cause shared memory bank conflict and get higher
latency. The global memory is off-chip and large memory capacity, but also has
high access latency. The average latency is about 7000× higher than register
latency and 5× higher than shared memory latency [5].

GPUs have become the most popular accelerator with high computational
throughput. Large and deep neural networks require substantial computing and
memory throughput and existing methods do not make good use of this multi-
level memory hierarchy for the complex architecture of GPUs.

2.2 Motivating Example

Convolution operation is the most time-consuming part of the whole neural net-
work. Convolution, pooling, activation, element-wise concatenation and addition
are basic operations and layers in recent neural networks. Although the deep con-
volutional operations are compute-bound, the pooling, activation, element-wise
operation and convolution layers with small input channels are memory-bound.
This requires a mechanism to achieve a balance between computation and mem-
ory access.

The benefit of cross-layer data reuse on two CNN layers is the difference
in latency and throughput between shared memory and global memory. The
original and fused main kernel structures are shown in Fig. 3. LD.G and ST.G
illustrate global memory data load and store instructions. LD.S and ST.S are
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(a) Original (b) Fused

Fig. 3. CNN motivating example

the load and store instructions, which read and write on shared memory. CONV1
and CONV2 are the computation of the first and the second convolution layers.
Figure 3a depicts the original kernels, which individually compute two convo-
lutional operators. Each kernel loads the input data from global memory and
stores the result to global memory, which implies twice execution of LD.G and
ST.G. As shown in the Fig. 3b, one fused convolutional kernel only contain once
LD.G and ST.G, and use the ST.S and LD.S to buffer the intermediate data.

Each layer may fetch data from off-chip memory, compute in on-chip memory
and store to off-chip memory. But fused convolution layers can reduce the off-
chip global memory read/store transactions between two layers. We load data
from shared memory and store data in shared memory, which means converts
the global memory load/store to the shared memory load/store.

3 Method

In this section, the method of fusing convolutional layers on GPUs is depicted in
detail. First, we analyze the fusion optimization opportunities of diverse convolu-
tion neural networks and sum up three typical fusion modes. In the second step,
we use the data dependency to determines the size of the redundant data on each
SM and the size of the tile, which takes the relationship between the input CNN
layer and the sequence layer into consideration. Finally, the use of multi-level
memory on the device is optimized during the parallel code generation phase.

3.1 Fusion Mode Formulation

The neural network architecture is constantly changing and it is necessary to
formalize some common architectures for neural network fusion, similar to the
hierarchical representations [11] in Neural Architectural Search.

Subject to the capacity of shared memory and high latency caused by bank
conflict, the cross-layer data can not be stored in on-chip memory and reused on
more than two layers. Using too much shared memory resources will cause the
high access latency for shared memory bank conflict, which may cause perfor-
mance decrease.
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(a) Straight (b) Split (c) Merge

Fig. 4. Different fusion mode

To conclude the common layer architectures in the convolutional neural net-
works, we propose three basic fusion modes. As described in Fig. 4, the cross-
layer relationships are summarized to three fusion modes. Figure 4a describes the
straight fusion mode, which makes the output data of Layer1 reuse for Layer2.
Figure 4b gives a split mode, which Layer1 can be the input of both Layer2
and Layer3. Figure 4c is a merge mode that has two layers as the input of the
third layer, which suggests that Layer3 needs the correct computation results
of Layer1 and Layer2.

These three basic modes can be widely found in most deep neural networks.
For example, neural networks with sequential layers (rather than residual and
inception structures) are ubiquitous, which can be divide into mode (a) Straight.
Residual module and inception connection make the network wider, deeper and
more complicated. There are a variety of mixed fusion modes in such neural
network architectures, which brings challenge to cross-layer data reuse analysis.

(a) Inception (b) Residual

Fig. 5. Fusion example for inception and residual neural networks

Figure 5 abstracts the convolution layers in the network (some other opera-
tions, such as ReLU and pool, are omitted). In this figure, the boxes represent
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layers, arrows represent the dataflow dependency, dotted boxes represent fusion
blocks and the letter upon the dotted box represents fusion mode.

In Fig. 5a, the inception module for fusion strategy is depicted, which includes
two modes, mode a and mode b. In the mode b block, the output data of Conv1
can reuse and input the Conv2 and Conv3. As shown in Fig. 5b, the residual
connection is divided into three fusion blocks. The block who belongs to mode
a contains Conv1 and Conv2, that the result of Conv1 will be reuse. The block
which is mode c means the Add operations can reuse the results of Conv3 and
Conv4 on-chip.

3.2 Tiling and Parallelism

Unifying CNN layers into a single kernel is a challenge for layer fusion because of
the different data size and filter shape diversity. Tiling is an important parallel
strategy on GPU programming. The fundamental problem for layer fusion is
how to tile the data on the parallel system with multi-level memory hierarchy,
which called hierarchy overlapped tiling [20].

Fig. 6. Tiling and parallelism example

Our tiling strategy is to tile each output images and feature maps into
small tiles on the dimension height and width, and implement implicit Gen-
eral Matrix Multiplication (GEMM) convolution algorithm. Each single output
pixel depends on all input pixels through all channels within the window of fil-
ter, and the convolution operations whose filter height and width are larger than
1 × 1 need redundant computation and data storage. There is no need to pay
additional attention to element-wise operations because of data independency.

Considering data reuse across layers, the parallel model for the fused layers
is restricted by the CNN layer parameters. The filter with large size, which is
larger than 1, will cause redundant computing for data dependence. Figure 6
shows a tiling example for two fused neural network layers computation on 4
SMs. The SMs are parallel on GPUs, and shared memory of each block is isolate
and private, which means that redundant data storage is necessary for on-chip
data reuse. The center data replicates in each SM and the border data around
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the center in Layer1 are redundant in adjacent SM, which makes it be available
for the subsequent Layer2. The tiling size will greatly affect the performance,
too large or too small will cause performance degradation. The small tiling size
will result in too much data redundant computation and reduce the earning of
data reuse. As shown in Fig. 6, tiling size of 3 × 3 will make 36 elements stored
on the GPUs while the input size is 25 if the convolution filter size is 3. The
tiling size of one will not cause any redundant data, which also means that the
convolutional filter size will influence the tiling strategy.

However, the larger tiling size is not always better. There is a tradeoff between
choosing large size and small size. The large tiling size will occupy more comput-
ing resources, which reduces the degree of parallelism of the computation. As the
intermediate data storage location, shared memory is an important bottleneck
resource for the cross-layer data reuse. More shared memory are allocated by
each thread block, fewer thread blocks can be processed simultaneously by an
SM. If shared memory or register is unavailable to process at least one block
on each SM, the kernel will fail for resource limitation. In the worst case, the
number of parallel blocks on an SM is reduced to 1 and the latency cannot be
hidden. Therefore, it is recommended to use less than 1/3 shared memory to
achieve high performance [3].

To this end, we design a simple tunning tool to find a relatively optimal
tiling size. The tunning tool only searches for the combination of the common
factors of the output layer. For example, the combination (4,3) means 4×4 tiling
size and (3,3) grid size. For the output size (12,12), the tunning search space
will be {(4,3), (2,6), (3,4), (6,2)}. If output height and width are prime, the
size larger than the number will be chosen as the basis for tuning. We allocate
each thread one point computation, and if the tiling size is larger than the block
size limitation, there will be for loops inside thread across the width and height
dimension.

3.3 Memory Optimization

Memory bandwidth, compute resources, instruction and memory latency are
three common limiters to performance for a kernel. For CPU programming, it
can be safe to ignore the cache line size or the number of registers. But for GPUs,
a runtime error occurs when the size of the programmable memory requested
exceeds the computing resources. Improper memory usage will cause drastic
performance degradation. For this, the memory strategy needs to be carefully
considered while programming on GPUs.

Shared Memory Usage. For the optimization of shared memory, reduce bank
conflict with memory padding and use synchronization statements to guarantee
the correctness of data in memory.

When a warp accessing different words with the address in the same bank, a
32-way bank conflict will occur. To avoid the shared memory bank conflict, our
method generates code with memory padding. Extra unused shared memory is
paid to allocate a redundant column and row for padding, which is effective in
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reducing bank conflict. Memory padding strategy will work after only padding on
either row or column in most situation, which will not cause too much resource
waste than padding both row and column.

To guarantee the correctness of the data in shared memory, explicit barrier
and memory fences are necessary. syncthreads() is intra-block synchroniza-
tion in CUDA, which is used in each thread block to ensure that all threads
writing partial results to shared memory have completed before any threads
read the final results. Threads in a block will wait for all threads to execute
this instruction, which maintains correctness of data in memory with less per-
formance loss.

Read-only Data Optimization. Constant memory and read-only cache are opti-
mized for read-only data accessing, which can speed up the data load efficiently.
Constant memory has restricted size, which usually is 64 KB, and read-only
cache is 48KB. The unified L1/texture cache is read-only cache, which is an
alternative to L2 cache when accessing read-only data in global memory.

The input data of the first layer and the filter weight of the convolution layers
are read-only and do not need to write back during computation. The strategy
for our layer fusion cases are using global memory with read-only cache for input
data and using constant memory for filter and bias data. If the size of filter and
bias data exceeds the constant memory restriction, global memory with read
only cache will be used.

Padding Strategy. Obviously, these convolution layers are not aligned, especially
when padding and stride operations exist. There are two alternatives for padding
operations, using branch statement or fill in extra data to the margin. Because
there are no branch prediction mechanisms on GPUs, flow control constructs,
such as if and else clause, will cause great penalty performance. Extra data
movement will lead to memory bandwidth bottleneck.

Padding operation widely exists in CNNs, for keeping the output size consis-
tent with the input size. For layer fusion, we need to conduct padding operation
on shared memory within a kernel execution. After the first layer computation,
we preprocess the data with padding so that there is no padding operation in
next layer.

4 Experiments

In this section, experimental setup and performance results are given. The caffe
prototxt files are used as the input in the experiments, and the neural network
structures are extracted from the deep neural network compute graph.

4.1 Experimental Setup

When developing applications on the GPU, the correctness needs to be paid
attention to first, and then the performance of the code is improved. To verify



228 X. Wang et al.

the correctness and compare the performance, we use cuDNN [4], one of the most
popular deep learning accelerator libraries on GPUs, as a baseline. The cuDNN
is a deep learning library, which is closed-source and NVIDIA hardware limited.
Most of the deep learning frameworks use cuDNN as computational back-ends.
To eliminate the effect of the algorithm, we use the latest and best-performing
version, cuDNNv7, as the baseline and a tool to check the correctness of results.
The routine cudnnConvolutionBiasActivationForward() applies a bias and
then an activation to the convolutions, which combines these operations into
one kernel. For a fair comparison, we choose the same convolutional algorithm
to compare the performance between cuDNN library and our method. We set
IMPLICIT GEMM as a convolution algorithm instead of other specially optimized
algorithms, which implicitly performs GEMM without actually form the matrix
that holds the data.

Three basic modes for fusing convolution layers are shown in Fig. 4, which
is concluded from the mainstream neural networks. Compute graphs extracted
from different neural networks are used to perform our fusion optimization
method. We extract 4 different convolution neural network layers from state-
of-the-art networks, GoogleNet [16], MobileNet [8], SqueezeNet [9] and ResNet
[7]. As shown in Table 1, the ID represents the fusion mode and the test case
number. Input and output are clarified with the size information, each with
shape [Channel, Height, Width]. The batch size of input data is set to 1. Fil-
ter size is depicted by [Output Channel, Input Channel, Filter Height, Filter
Width]/padding, stride, group.

Table 1. Convolutional neural network layers in the fusion experiment

ID Input Filter1 Size Filter2 Size Filter3 Size Output
a.1 [192,28,28] [16,192,1,1]/0,1,1 [32,16,5,5]/2,1,1 - [32,28,28]
a.2 [16,80,80] [16,1,3,3]/1,1,16 [16,1,1,1]/0,1,1 - [16,80,80]
b.1 [64,56,56] [16,64,1,1]/0,1,1 [64,16,1,1]/0,1,1 [64,16,3,3]/1,1,1 [128,56,56]
c.1 [64,56,56] [256,64,1,1]/0,1,1 [256,64,1,1]/0,1,1 [64,256,1,1]/0,1,1 [64,56,56]

We evaluate the experimental results on two different GPU devices, NVIDIA
TITAN Xp and Tesla P4. TITAN Xp GPU achieves a peak throughput of 12.15
TeraFLOPS, 6074 GB/s shared memory bandwidth and 547.7 GB/s global mem-
ory bandwidth with 30 SMs. P4 GPU is Pascal architecture and has a 5.5 Ter-
aFLOPS single-precision peak performance, 2721 GB/s shared memory band-
width, 192 GB/s global memory bandwidth with 20 SMs.

The code was compiled using the NVIDIA CUDA compiler (version 10) with
flags ‘-O3’. We execute each kernel over 5 times for run-to-run variation counting
and report the average time. GPU timers are used to collect the time information
of the applications.
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4.2 Performance Results and Analysis

The performance of different applications is often strongly influenced by paral-
lel strategies and memory access performance. We implement our layer fusion
method with four different neural network architectures and demonstrate the
performance on two different GPU devices. To clarify the effectiveness of the
whole neural network with our method, we conduct the fusion method on the
SqueezeNet [9]. The profiling analysis is conducted on the kernels to find out the
relationship between our method and cuDNN on memory and computation.

Fig. 7. The Experiment result of convolutional neural network fusion

In Fig. 7, we show the speedup of four test cases on TITAN Xp and P4 GPUs.
The left bar of each group is the execution time of fused layers and the right bar
is the sum of the execution time of each cuDNN kernels. The fusion test cases
achieve 1.8×, 9.8×, 1.6× and 1.62× speedup. The average speedup on TITAN
Xp is 2.29× and P4 is 1.91×. The experiment a.2 comes from MobileNets and
contains depth-wise convolution operations, which called ‘group convolution’ in
cuDNN library. It calls corresponding grouped convolutional kernels multiple
times, which causes performance degradation and 10.33× speedup on P4 GPU.

We also evaluate our fusion method on the light-weight convolutional neural
network, SqueezeNet [9]. There are 8 mode b blocks that we can apply our
fusion method in this neural networks. In Fig. 8, we show the execution time of
our fused kernels and cuDNN kernels. The speedup of the whole SqueezeNet on
TITAN Xp is 1.57×, and the speedup of the fused blocks to original layers is
1.34×. The last convolutional layer in the neural network consumes too much
more time than the smaller size layers, which is an unusual situation. For this,
we conduct the tiling and parallel strategy of our method on this layers and
achieves 4.64× speedup on this single layer.
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Fig. 8. The Experiment result of SqueezeNet

Table 2. Profiling metrics on memory

Executed Load/Store Instructions Global Memory Store Transactions
Ours* cuDNN Ratio Ours* cuDNN Ratio

a.1 927472 129690 7.14:1 6272 18816 1:3
a.2 129600 514998 1:3.97 25600 102400 1:4
b.1 1903552 433542 4.39:1 100352 225792 1:2.25
c.1 2654720 1588384 1.67:1 34008 91296 1:2.68

In Table 2, the GPU profiling metrics about memory operations are com-
pared between the fused kernels and cuDNN kernels. The ldst executed metric
counts the total executed load/store instructions and gst transactions gains
additional insight into the number of the global memory store transactions. The
global memory store transactions metric reports the number of coalesced global
memory store transactions, which implies the quantity of global memory access
and evaluates the global write operations saved by our methods. The reason why
we use the global memory store metric rather than the global memory store met-
ric is that texture memory is utilized as data storage, which will be not counted
in the global memory load metrics. All data need be stored in global memory
finally and global memory store transactions metric is much more objective to
describe the quantity of global memory transactions.

Our method will introduce redundant computation and also increase the
number of load/store instructions but still get an acceleration ratio. The test
case a.2 is group convolution from MobileNet, which is abnormal for executing
the same kernel 17 times. In addition to this structure, we catch 4.4x more load-
/store instructions execution on devices. The global memory store transactions
ratio between our layer fusion method and the baseline is 1:2.98 on average,
while we have much more load/store instructions. Our method will introduce
redundant computation and also load/store instruction but still get a satisfac-
tory acceleration ratio.
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5 Related Work

To the best of our knowledge, our work is the first about how to generate high
performance code by fusing two or more convolutional layers on GPUs, which
can achieve competitive performance with the cuDNN library.

Much effort has been made to optimize CNN applications. Li et al. [10]
transpose the data and apply different data layouts on different operations to
explore the impact of data layouts on the performance of convolutional layers
and memory-bound pooling layers. Data reuse has been explored on fusing CNN
layers. Alwani et al. [1] proposed pyramid-shaped multi-layer sliding window to
handle the input feature maps and verified on FPGA.

Besides the direct code optimization strategy and algorithm, inference frame-
work and DSL are the two main code optimization ways for different paral-
lel devices. CNN inference framework [12] generates Vulkan code and achieve
reasonable performance on different platforms. Halide [15] is a domain specific
language for image processing applications, which introduces the principle of
increasing the producer-consumer locality and adopts the loop fusion optimiza-
tion strategy. TVM [2] is a compiler to generate portable code for deep learning
applications across diverse hardware platforms. The source code generated by
our method is easy to understand and modify, which is also portable among
different GPU platforms.

Kernel fusion is also a hot research point in GPU kernel optimization. Wu
et.al [19] introduce the benefits of kernel fusion in data warehousing applications.
Wahib et.al [17] optimize the code with kernel fusion and utilize a heuristic
search algorithm for choosing a near-optimal fusion configuration. The source-
to-source compiler [6] explores the automatic kernel fusion algorithm for basic
linear algebra subprograms routines on GPUs. Recently, the work of Qiao, B
et.al [14] depicts kernel fusion problem as finding some cut set of kernels to fuse
in DAG-graph. Vertices in the graph represent kernels and edges represent the
relationship between kernels. They provide an algorithm about how to choose
kernels while our method provides a method about how to fuse kernels better.

6 Conclusion

Considering the characteristics of deep convolution neural networks and under-
lying GPU architectures, we proposed a cross-layer data reuse method. The
experiments of real-world CNNs show that our method achieves competitive
performance and supports the possibility to generate inference code for deep
learning applications.

The effectiveness of layer fusion method is evaluated on different test cases
and the end-to-end neural network and we get 2.02x and 1.57x speedup on GPUs
even with more instructions executed. We hope that the result of our method will
support future research and application about the layer fusion and our method
will be widely used and accelerate inference stage for deep learning applications
on GPUs.
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Abstract. Short-term traffic speed prediction has been an important
research topic in the past decade, and many approaches have been intro-
duced. However, providing fine-grained, accurate, and efficient traffic-
speed prediction for large-scale transportation networks where numerous
traffic detectors are deployed has not been well studied. In this paper,
we propose DistPre, which is a distributed fine-grained traffic speed pre-
diction scheme for large-scale transportation networks. To achieve fine-
grained and accurate traffic-speed prediction, DistPre customizes a Long
Short-Term Memory (LSTM) model with an appropriate hyperparame-
ter configuration for a detector. To make such a customization process
efficient and applicable for large-scale transportation networks, DistPre
conducts LSTM customization on a cluster of computation nodes and
allows any trained LSTM model to be shared between different detec-
tors. If a detector observes a similar traffic pattern to another one, Dist-
Pre directly shares the existing LSTM model between the two detec-
tors rather than customizing an LSTM model per detector. Experiments
based on traffic data collected from freeway I5-N in California are con-
ducted to evaluate the performance of DistPre. The results demonstrate
that DistPre provides time-efficient LSTM customization and accurate
fine-grained traffic-speed prediction for large-scale transportation net-
works.

Keywords: Hyperparameter tuning · Lightweight LSTM · Large-scale
transportation networks · Traffic speed prediction · Distributed and
parallel processing · The Nelder-Mead method

1 Introduction

Accurate traffic-speed prediction is crucial to achieve efficient proactive traffic
management and control for large-scale transportation networks. During the past
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decade, many approaches and methods have been introduced for short-term traf-
fic speed prediction. They can be classified into two main categories: parametric
approaches and nonparametric approaches. The former category of approaches
simplifies the mapping function to a known form, i.e., these approaches require
a pre-defined model. A typical example is the autoregressive integrated mov-
ing average approach (ARIMA) [1]. On the other hand, the nonparametric
approaches make no assumptions about the form of the mapping function,
i.e., they require no pre-defined model structure. The k-nearest neighbors (k-
NN) method [3,6], artificial neural network (ANN) [5], recurrent neural network
(RNN) [15], etc., all belong to this category. As a special type of RNN, long short-
term memory [8], abbreviated as LSTM, is superior in time series prediction with
long temporal dependencies. Prior studies such as [17,26,27] have shown that
LSTM provides better prediction accuracy than many other approaches and
neural networks. Therefore, LSTM is chosen as a building block for traffic speed
prediction in this paper.

Fig. 1. The traffic speed collected by five randomly-chosen detectors on freeway I5-N
in California between 4 a.m. and 10 a.m. in a typical weekday.

However, several issues still need to be addressed to achieve fine-grained,
accurate, and efficient traffic speed prediction for large-scale transportation net-
works. For example, in large-scale transportation networks, numerous detectors,
such as loop detectors or traffic cameras, are deployed in different places to collect
traffic data. Depending on the density of nearby population and other factors,
the traffic observed/collected by detectors at different locations may have diverse
patterns. For instance, Fig. 1 shows that five detectors deployed on freeway I5-N
in California [23] observe completely different traffic patterns between 6 a.m. and
10 a.m. in a typical weekday. In order to provide fine-grained traffic-speed pre-
diction for achieving better transportation services and management, we suggest
that each detector should have its own LSTM model to predict the traffic speed
of its coverage. However, such an approach would be expensive, time consuming,
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and impractical because we might need to manually configure LSTM hyperpa-
rameters and train the corresponding LSTM model for each individual detector
several times before we find an LSTM model that is able to accurately make
predictions. Note that LSTM hyperparameters are parameters whose values are
set before the training process of an LSTM starts.

To address the above issue, we propose DistPre, which is a distributed fine-
grained traffic speed prediction scheme for large-scale transportation networks.
DistPre customizes an LSTM model for a detector by automatically determin-
ing LSTM hyperparameter values and training the corresponding LSTM model
based on the Nelder-Mead method [19], which is a commonly applied method
used to find the minimum or maximum of an objective function in a multi-
dimensional space. To make the above customization process time-efficient for
large-scale transportation networks, we propose that detectors should share the
same LSTM model if they observe similar traffic patterns. More specifically,
DistPre works in an incremental, distributed, and parallel manner. Whenever
DistPre encounters an unprocessed detector i, it checks if the traffic-speed pat-
tern observed by detector i is similar to the one observed by any other detector
that previously has been processed by DistPre. If the answer is negative, Dist-
Pre requests an available compute node from a computer cluster to customize
an LSTM model for detector i. However, if the traffic-speed pattern observed by
detector i is similar to the one observed by a detector j, DistPre directly shares
the LSTM of detector j with detector i without requiring to customize a new
LSTM model for detector i.

To demonstrate the performance of DistPre, we conducted experiments on an
Apache Hadoop YARN cluster using real-world traffic data collected by detec-
tors on freeway I5-N in California. The results confirm that DistPre is able to
provide fine-grained and accurate traffic speed prediction for large-scale trans-
portation networks due to the LSTM customization. In addition, DistPre is
scalable, efficient, and cost-effective since the number of LSTM models needed
does not proportionally increase with the number of detectors, due to the LSTM
sharing feature of DistPre.

The rest of the paper is organized as follows: Sect. 2 briefly introduce LSTM,
LSTM hyperparameters, and the Nelder-Mead method. Section 3 presents
related work, while Sect. 4 introduces the details of DistPre. In Sect. 5, we eval-
uate the performance of DistPre. Section 6 concludes this paper and outlines
future work.

2 LSTM, LSTM Hyperparameters, and the Nelder-Mead
Method

In this section, we introduce LSTM, LSTM hyperparameters, and the Nelder-
Mead method.

LSTM and LSTM Hyperparameters: LSTM [8] is designed to learn long-
term dependencies and model temporal sequences. The architecture of LSTM is
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similar to that of RNN except that the nonlinear units in the hidden layers are
memory blocks. Each block contains memory cells, an input gate, an output gate,
and a forget gate. The input gate decides whether the input should be stored in
the memory cells or not. The output gate determines if current memory contents
should be output. The forget gate decides if current memory contents should be
erased. These features enable LSTM to preserve information over long time lags,
thus addressing the vanishing gradient problem [7].

It is well-known that the prediction performance of LSTM highly depends
on choosing appropriate values for the following hyperparameters:

– Learning rate (denoted by RLearn)
– The number of hidden layers (denoted by NLayer)
– The number of hidden units (denoted by NUnit)
– Epochs (denoted by ep)

The learning rate controls how much the weights of LSTM are adjusted
with respect to the loss gradient. The lower the value, the less is the chance to
miss any local minima, but it prolongs the training process. A hidden layer
is a layer between the input layer of LSTM and the output layer of LSTM.
The more complex the training dataset is, the more hidden layers are required
to learn the training dataset. A hidden unit is a neuron in a hidden layer.
It is responsible for taking in a set of weighted inputs and produce an output
through an activation function. Too many hidden units may result in overfitting,
while too few hidden units might cause underfitting. An epoch is defined as one
forward pass and one backward pass of all the training data. Too many epochs
might overfit the training data, whereas too few epochs may underfit the training
data.

Due to the importance of the above-mentioned hyperparameters to the learn-
ing performance and computational efficiency of LSTM, this paper takes all of
them into consideration. One of this paper’s goals is to automatically deter-
mine appropriate values for these hyperparameters such that the resulting LSTM
model is able to achieve high prediction accuracy and that human effort can be
greatly reduced.

The Nelder-Mead Method (NMM): NMM [19] is a popular optimization
method for non-linear functions. In this paper, we use it to automatically find
appropriate values for the above-mentioned LSTM hyperparameters. NMM min-
imizes the target objective function by generating an initial simplex based on a
predefined vertex and then performing a function evaluation at each vertex of
the simplex. Note that a simplex has n+1 vertices in Rn where n is the number
of dimensions of the parameter space. A sequence of transformations is then
performed iteratively on the simplex, aiming to decrease the function values at
its vertices. Possible transformations include reflection, expansion, contraction,
and shrinking. We refer readers to the original paper [21] for more details about
these transformations. The above process terminates when the sample standard
deviation of the function values of the current simplex fall below a predefined
threshold.
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In our context, the initial simplex has five vertices. Each vertex consists of
four values assigned to the four LSTM hyperparameters. One of the five vertices
is the so called predefined vertex, and it consists of four default values separately
assigned to the four LSTM hyperparameters. The remaining four vertices are
automatically determined by NMM in a deterministic way. In other words, NMM
always produces the same four vertices given a predefined vertex. Note that the
terms vertex and hyperparameter setting are interchangeable. In this paper, the
function evaluation is to derive the prediction error introduced by an LSTM
model trained with a certain dataset under a specific hyperparameter setting. If
the prediction error of an LSTM model is no larger than a predefined threshold,
NMM terminates the search.

3 Related Work

Traffic prediction approaches introduced in the past two decades can be classi-
fied into two categories: parametric approaches and nonparametric approaches.
In parametric approaches, a model structure needs to be determined before-
hand based on some theoretical assumptions. The ARIMA model is a typi-
cal and widely used parametric approach [2]. ARIMA is designed to fit time
series data so as to predict future data points in the time series. Many ARIMA-
based approaches were also introduced to improve prediction accuracy, includ-
ing [13,24,25].

Different from parametric approaches, nonparametric approaches do not
require a predefined model structure. There is no need to make assumptions
about the mapping function. Typical examples include k-NN, ANN, RNN, hybrid
approaches, etc. Le et al. [10] addressed traffic speed prediction using big traffic
data obtained from static sensors and proposed local Gaussian Processes to learn
and make predictions for correlated subsets of data. Jiang and Fei [9] introduced
a data-driven vehicle speed prediction method based on Hidden Markov mod-
els. However, these two approaches focus on predicting traffic on a road section
or a small region. They might be difficult to use in large-scale transportation
networks.

Ma et al. [18] used deep learning theory to predict traffic congestion evolution
in large-scale transportation networks. Furthermore, Ma et al. [16] predicted traf-
fic speed in large-scale transportation networks by representing traffic as images
and employing convolutional neural networks to make prediction. However, both
of these methods require the scale of the target transportation network to be
fixed and specified in advance. Lee et al. introduced DALC [11] to predict traffic
speed at each individual detector in large-scale transportation networks based
on LSTM. However, DALC only focuses on auto-tuning two LSTM hyperparam-
eters, i.e., the number of hidden layers and epochs for each detector of the target
transportation network.

Different from these methods, DistPre proposed in this paper is designed in
an incremental manner. DistPre can handle an increasing number of detectors
on the fly without pre-fixing the scale of the target transportation network, and
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it is able to automatically tune more LSTM hyperparameters for each detec-
tor if needed. These practical features make DistPre a much better solution for
providing fine-grained traffic speed prediction for large-scale and growing trans-
portation networks.

4 The Details of DistPre

The architecture of DistPre consists of a master node and a set of worker nodes.
The master node decides when it is necessary to customize an LSTM model for
each detector in the target transportation networks. Each worker node waits
for an instruction from the master node and conducts the required LSTM cus-
tomization process for a given detector upon request.

Figure 2 illustrates the algorithm of DistPre running on the master node. Let
G = {D1,D2, ...,Dx} be a list of detectors that already have their own LSTMs
customized by DistPre. It is clear that G is empty before DistPre is employed
and launched. Whenever DistPre encounters an unprocessed detector (denoted
by Ui) in the target transportation network, the master node first normalizes
Li, which is a list of traffic-speed values previously observed by Ui. Note that
Li = {vi,1, vi,2, ..., vi,T } where vi,t is the traffic-speed value observed by Ui at
time point t, t = 1, 2, . . . , T . The normalization is to divide vi,t by f where f
is a predefined fixed value (e.g., 70 to represent the speed limit in mph). The
normalized Li, denoted by Ni, will be {ni,1, ni,2, ..., ni,T } where ni,t = vi,t/f .

Fig. 2. The LSTM auto-tuning and sharing algorithm performed by the master node.

The master node decides whether to customize an LSTM model for Ui or not
by sequentially comparing Ui with every detector (denoted by Dj , j=1,2, ...,x)
in G in terms of their normalized traffic-speed pattern based on the following
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equation:

AARDi.j =
1
T

T∑

i=1

| ni,t − nj,t |
ni,t

(1)

where AARDi.j is the average absolute relative difference between the traffic-
speed patterns collected by Ui and Dj , and nj,t is the normalized traffic-speed
value collected by Dj at time point t, implying that nj,t = vj,t/f . If AARDi,j is
less than a predefined threshold thdAARD (implying that Ui and Dj observe a
similar traffic-speed pattern), the master node directly shares the LSTM of Dj

with Ui (see lines 7 to 10 of Fig. 2).
However, if the master node is unable to find any detector that has observed a

similar traffic-speed pattern with Ui (i.e., line 11 holds), the master node requests
an available worker node from the cluster to customize an LSTM model for Ui,
and then appends Ui to the end of G to indicate that Ui will have its own LSTM
model customized by DistPre. Based on how each detector is appended to G,
it is clear that every detector in G must have observed a distinct traffic-speed
pattern.

On the other hand, whenever a worker node receives an LSTM customization
request for Ui from the master node, it utilizes NMM to automatically find
appropriate values for the four abovementioned hyperparameters by using the
following initial hyperparameter setting as the predefined vertex:

RLearn = 0.01,NLayer = 1,NUnit = 2, ep = 100

Note that the predefined vertex consists of four low hyperparameter values. The
goal is to enable NMM to start with a simple LSTM model since such a model
introduces less computational cost than a more complex LSTM model.

When the worker node finds a hyperparameter setting which enables the
corresponding LSTM to reach the required prediction accuracy for Ui (i.e., the
corresponding AARE value calculated based on Eq. 2 is lower than or equal to
a predefined threshold thdAARE , the worker node terminates the customization
process and outputs the LSTM model to be the LSTM model of Ui.

AARE =
1
W

W∑

w=1

| sw − ŝw |
sw

(2)

Note that, in Eq. 2, W is the total number of data points considered for com-
parison, w is the index of a data point, sw is the actual traffic-speed value at w,
and ŝw is the forecast traffic-speed value at w.

5 Performance Evaluation

To evaluate DistPre, we chose freeway I5-N as our target transportation network.
I5-N is a major route from the Mexico-United States border to Oregon with a
total length of 796.432 miles. In our experiments, DistPre incrementally provides
its LSTM customization and sharing service until the 110 detectors that are
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Table 1. Four LSTM hyperparameters and their domains used by DistPre.

Hyperparameter Domain Description

RLearn [0.01, 0.2] Discrete with step = 0.01

NLayer [1, 10] Discrete with step = 1

NUnit [2, 40] Discrete with step = 2

ep [100, 1000] Discrete with step = 20

deployed on I5-N are completely covered. Note that the distance between two
consecutive detectors is around 5 miles. We crawled the traffic data collected by
each of these 110 detectors for six continuous working days from the Caltrans
performance measurement system [4], which is a database of traffic data collected
by detectors placed on state highways throughout California. The traffic data of
each detector was then split into a training dataset (the first 5 days) and a testing
dataset (the last day). Due to the fact that all the traffic data is aggregated at
5-min intervals, DistPre follows the same interval for prediction.

In this experiment, DistPre was deployed on a cluster running Apache
Hadoop YARN 2.2.0 [22]. The cluster consists of one master node and 30 worker
nodes. Each node runs Ubuntu 12.04.1 LTS with 2 CPU cores, 2 GB of RAM,
and 100 GB of storage. As mentioned earlier, four LSTM hyperparameters were
considered to be auto-tuned by DistPre. Table 1 lists the domain of these LSTM
hyperparameters. For each hyperparameter, we chose a range of values for NMM
to conduct its search process. Note that the maximum value for each hyperpa-
rameter was determined according to our previous experience [11].

The goal of this experiment is to study the impact of the LSTM sharing
function and the number of worker nodes on the performance of DistPre. To
this aim, the four cases listed in Table 2 were designed. In Case 1, we allowed
only one worker node of the cluster to support the operation of DistPre. In
addition, we disabled the LSTM sharing function of DistPre. In other words, each
detector always gets its own LSTM model, and all the LSTM customizations are
sequentially performed by a single worker node. In Case 2, we still limited a single
worker node to support DistPre, but we enabled the LSTM sharing function.
Therefore, detectors were able to share an LSTM model if they observed similar
traffic patterns. In Case 3 and Case 4, we increased the number of worker nodes

Table 2. The details of the four cases.

Case No Number of worker nodes involved The LSTM sharing function

1 1 Disabled

2 1 Enabled

3 30 Disabled

4 30 Enabled
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to 30, while we disabled and enabled the LSTM sharing function in Case 3 and
Case 4, respectively.

Note that thdAARD = 0.1 and thdAARE = 0.05 in all the cases. If two detec-
tors have 90% similarity in their monitored traffic-speed patterns, we consider
that they have similar patterns. This is why we set thdAARD to be 0.1. The same
reason for thdAARE : We consider that it is satisfactory if a detector is able to
provide 95% prediction accuracy. This is why we set thdAARE to be 0.05. Note
that these two thresholds are configurable if one wants to change the degree of
similarity or achieve a different level of prediction accuracy. The following five
performance metrics are chosen in this experiment:

1. Total LSTM customization duration (TLCD). This is the time period starting
when DistPre is launched and ending when all the 110 detectors have obtained
their LSTM models. Apparently, if TLCD is short, it means that DistPre is
time efficient.

2. The total number of LSTMs generated by DistPre over time.
3. Average AARE, calculated as below:

Average AARE =
∑Z

r=1 AAREr

Z
(3)

where AAREr is the AARE value associated with the LSTM model of detector
r, where r=1,2, ...,Z, and Z is the total number of the detectors in the target
transportation network. Note that AAREr is calculated based on Eq. 2, and
that Z equals 110 in this experiment.

4. Average AAE, calculated as below:

Average AAE =
∑Z

r=1 AAEr

Z
(4)

where AAEr is the average absolute error (AAE) value associated with the
LSTM model of detector r, and AAEr is defined as

1
W

W∑

w=1

| sr,w − ŝr,w | (5)

A low AAE value implies that the forecast values are close to the actual
values.

5. Average RMSE, calculated as below:

Average RMSE =
∑Z

r=1 RMSEr

Z
(6)

where RMSEr is the root mean square error associated with the LSTM model
of detector r, and RMSEr is defined as

√√√√ 1
W

W∑

w=1

(sr,w − ŝr,w)2 (7)
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Fig. 3. The number of LSTM models customized by DistPre versus with the number
of detectors processed by DistPre.

A low RMSE value suggests that the forecast values are close to the actual
values.

Figure 3 shows the TLCD results of DistPre in the four cases. Case 1 leads to
the longest TLCD, which is around 3144 min. This is because only one worker
node was employed to customize an LSTM model for each individual detec-
tor in Case 1, and there is no sharing of LSTM models among detectors. We
can see that TLCD is significantly reduced in Case 2. The required TLCD is
reduced by 81.46% (=(3144-583)/3144) from Case 1 to Case 2, implying that
enabling detectors to share their LSTM models greatly reduces the number of
times LSTM models need to be customized, even though there is only one worker
node supporting the operation of DistPre.

When 30 worker nodes are used by DistPre and the sharing function is dis-
abled, i.e., Case 3, the required TLCD is reduced to 224 min, meaning that the
distributed and parallel processing further improves the performance of Dist-
Pre, even when compared to Case 2 (single worker node, LSTM model sharing
enabled). By further enabling the sharing function, i.e., Case 4, the total time
duration drops to only 56 min. The reduction is around 75% (=(224−56)/224)
compared with Case 3, and 98% (=(3144−56)/3144) compared with Case 1.
This great performance improvement is mainly due to two factors. Firstly, by
means of DistPre, only 31 out of the 110 detectors require a customized LSTM.
Secondly, the work of LSTM customization is distributed to 30 worker nodes.

Altogether, the above results demonstrate that DistPre is able to provide
the LSTM customization service in a time-efficient and scalable way for detec-
tors in large-scale transportation networks. This feature is very important since
large-scale transportation networks usually contain numerous detectors and the
amount may keep increasing. Furthermore, note that the number of worker nodes
could be increased even further to handle even larger transportation networks
when needed.

Figure 4 illustrates the number of LSTM models customized by DistPre over
time, i.e., as new detectors are processed. We can see that Case 1 and Case 3



244 M.-C. Lee et al.

Fig. 4. The number of LSTM models customized by DistPre versus with the number
of detectors processed by DistPre.

have identical results: Whenever DistPre processed a new unknown detector, one
more LSTM model is customized. The reason is that the LSTM sharing func-
tion is disabled in both cases, so every detector always gets its own customized
LSTM model from DistPre. On the other hand, in Case 2 and Case 4, there
is no one-to-one relationship between the number of LSTM models customized
and the number of detectors processed by DistPre. When DistPre processed a
new unknown detector, the number of customized LSTM models did not always
increase due to the LSTM sharing function. In fact, when all the 110 detectors
were processed by DistPre, only 31 LSTM models were generated and customized
by DistPre. This also explains why DistPre in Case 2 and Case 4 have shorter
TLCD than DistPre in Case 1 and Case 3, respectively.

From the perspective of prediction performance, both Case 1 and Case 3 have
the same results when it comes to average AARE, average AAE, and average
RMSE as shown in Fig. 5, 6, and 7, respectively.

Fig. 5. The average AARE results in four cases
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Fig. 6. The average AAE results in four cases

Fig. 7. The average RMSE results in four cases

The main reason is that the algorithm of NMM is deterministic. No matter
which worker node executes NMM for a given detector, the result is always the
same. Due to the same reason, the prediction accuracy results in Case 2 and
Case 4 are identical, but they are both lower than those in Case 1 and Case 3.
This is because not all the detectors in Case 2 and Case 4 have customized
LSTMs that perfectly fit their training data. Nevertheless, the average AARE
values in Case 2 and Case 4 still satisfy our requirement since they are both
lower than the predefined thdAARE (i.e., 0.05).

6 Conclusion and Future Work

In this paper, we have introduced DistPre, a distributed scheme to achieve fine-
grained, accurate, and efficient traffic speed prediction for a large amount of detec-
tors deployed in large-scale transportation networks. DistPre automatically cus-
tomizes an LSTM models with an appropriate hyperparameter setting for a detec-
tor based on NMM. By enabling any trained LSTM model to be shared between
different detectors that all observe similar traffic-speed patterns, DistPre enables
fine-grained and time-efficient traffic speed prediction in large-scale transporta-
tion networks. The required LSTM customization time does not proportionally
increase when the number of detectors handled by DistPre increases. Our experi-
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ments based on real traffic data, collected by the Caltrans performance measure-
ment system, demonstrate the great performance of DistPre in both prediction
accuracy and time efficiency.

As future work, we plan to extend DistPre and improve its performance by
taking continuous monitoring and LSTM re-customization into account such
that any detector is able to keep providing high prediction accuracy under any
circumstances. In addition, we would like to investigate how DistPre can take
advantage of a heterogeneous HPC cluster like the eX3 infrastructure [20] to fur-
ther improve the performance of DistPre by investigating appropriate scheduling
approaches such as [12,14].
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of Norway under contract 270053 and the scholarship under project number 80430060
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Abstract. Convolutional Neural Networks (CNNs) are widely applied
in various machine learning applications and very time-consuming. Most
of CNNs’ execution time is consumed by convolutional layers. A common
approach to implementing convolutions is the FFT-based one, which can
reduce the arithmetic complexity of convolutions without losing too much
precision. As the performance of ARMv8 multi-core CPUs improves,
they can also be utilized to perform CNNs like Intel X86 CPUs. In this
paper, we present a new parallel FFT-based convolution implementa-
tion on ARMv8 multi-core CPUs. The implementation makes efficient
use of ARMv8 multi-core CPUs through a series of computation and
memory optimizations. The experiment results on two ARMv8 multi-
core CPUs demonstrate that our new implementation gives much better
performance than two existing approaches in most cases.

Keywords: CNNs · Convolution · FFT · ARMv8 · Parallel algorithm.

1 Introduction

Convolutional Neural Networks (CNNs) are widely found in various machine
learning applications such as computer vision [4,10]. In some specific tasks,
such as image classification [6], their performance even exceeds human capa-
bilities. The main reason is the application of large-scale training data sets and
deep convolutional neural network structures. As a result, they are often very
time-consuming. There are usually convolutional, pooling, activation, and fully-
connected layers in CNNs. Most of CNNs’ execution time is spent on the convolu-
tional layers. Therefore, it is particularly important to improve the performance
of the convolutional layers.
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Some of the most common approaches to performing convolutions include
matrix multiplication-based, Winograd-based and Fast Fourier Transform
(FFT)-based approaches [7,9,16–18]. The matrix multiplication-based approach
directly transforms a convolution into matrix multiplications, which are carried
out via general matrix multiplication routines (GEMM) in the Basic Linear Alge-
bra Subprograms (BLAS) library, and then is also labeled as a GEMM-based
approach. Its main disadvantage is the explosion of memory requirements and
the suboptimal performance of BLAS library on the produced matrices. The
Winograd-based approach can reduce the arithmetic complexity of convolutions
by means of Winograd minimial filtering algorithms. However, it maybe intro-
duces non-negligible loss of accuracy and is mainly applicable to convolutional
layers with small filters. The FFT-based approach converts convolutions in the
time domain into multiplications in the frequency domain, so the computation
requirement of convolutions is also reduced and its accuracy loss is negligible.
In the performance, the FFT-based implementations generally outperform the
Winograd-based ones [19]. Thus, the FFT-based approach is suitable for more
convolutional layers than the Wingorad-based one. To further improve perfor-
mance of convolutions, it is very interesting to study efficient parallelization of
the FFT-based approach on parallel hardware resources.

Currently, many efforts have focused on efficient implementations of FFT-
based convolutions on various hardware platforms. Mathieu and Vasilache et
al. [11,15] first examined the performance of different implementations of FFT-
based convolutions on GPUs. Zlateski et al. [19–21] mainly studied high perfor-
mance implementations of FFT-based convolutions on Intel many-core CPUs.
However, there is relatively little work about the optimization of FFT-based
convolutions on ARMv8 multi-core CPUs.

Along with the performance enhancement of ARMv8 multi-core CPUs
[12,13], they can also be utilized to perform deep neural networks like Intel X86
CPUs. However, there is absence of high-performance convolution primitives
for the ARMv8 architecture. In this paper, we propose a parallel FFT-based
convolution implementation on ARMv8 multi-core CPUs. Our implementation
consists of four stages: FFT transforms of input feature maps and filters, com-
plex matrix multiplications, and IFFT transforms of output feature maps. All
four stages are vectorized and thread-level parallelized. The transformed data of
input feature maps and filters is stored back to memory according to the access
order in the optimized implementation of complex matrix multiplications, so
that the unnecessary data movement is avoided. The custom data layouts for
internal tensors are proposed to support the optimization above efficiently. Our
implementation is tested on Phytium FT-1500A [12] and FT-2000plus [13]. The
convolutional layers from Alexnet and VGG are used to test the performance
of an existing FFT-based implementation in NNAPCK, a GEMM-based one
used in Caffe and our new one. Compared with the GEMM-based implementa-
tion, our implementation gets speedups of 1.48–16.19 and 3.86–78.08 times on
two CPUs above, respectively. Our optimization is better than the FFT-based
implementation of NNPACK in most cases on FT-1500A, and superior to the
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latter in all test cases on FT-2000plus. The corresponding maximum speedups
are 2.16 and 7.04 times, respectively.

The structure of this paper is as follows. Section 2 introduces the detailed
definition and one naive FFT-based implementation of convolutions. Section 3
describes our algorithm and optimizations on ARMv8 multi-core CPUs. The
performance results are analyzed in Sect. 4. Finally, Sect. 5 concludes this paper
and gives our future work.

2 Background

2.1 Convolution

A convolution takes input feature maps I and filters F as input and produces
output feature maps O. In C code style, input and output feature maps with
BCHW (batch, channel, height, width) layout are written as I[B][C][Hi][Wi]
and O[B][C ′][Ho][Wo], and the corresponding filters are F [C ′][C][Hf ][Wf ]. The
convolution in deep learning networks is expressed as

Ob,c′,h′,w′ =
C−1∑

c=0

Hf−1∑

hf=0

Wf−1∑

wf=0

(Ib,c,h′×s+hf,w′×s+wf

×Fc′,c,hf,wf ),

(1)

where b ∈ [0, B), c′ ∈ [0, C ′), h′ ∈ [0,Ho), w′ ∈ [0,Wo), c ∈ [0, C), B is the mini-
batch size, C and C ′ denote the number of input and output channels, Hi/o/f

and Wi/o/f represent spatial dimensions of different tensors, and s is the stride
size. In the following, we only consider the case where the stride size is 1.

2.2 FFT-Based Convolution

The convolution theorem shows that a convolution in the time domain can be
transformed into element-wise multiplications in the frequency domain. Applied
to the field of deep learning, it makes the Eq. 1 become:

Ob,c′ =
C−1∑

c=0

IFFT (FFT (Ib,c) � FFT ∗(Fc′,c)), (2)

where FFT and IFFT are 2D Fast Fourier Transforms and Inverse Fast Fourier
Transforms respectively, � denotes element-wise complex multiplication, and ∗
represents complex conjugation.

In FFT and IFFT, the discrete Fourier basis is chosen to be the largest among
the spatial dimensions of three tensors [15]. When the spatial dimensions of some
tensors are smaller than the Fourier basis, they are zero-padded to be the same
size. However, the spatial dimensions of F are often much smaller than those of
the feature maps tensors, so that the overhead of padding is non-trivial. Thus,
the tile-based approach is often used to reduce the overhead. At the same time,
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the linearity of the Fourier transforms allows that the sum in Eq. 2 is performed
before IFFT. So, the Eq. 2 is transformed to:

Ob,c′,α,β = IFFT (
C−1∑

c=0

(FFT (Ib,c,α,β) � FFT ∗(Fc′,c))), (3)

where α and β denote the spatial coordinates of each tile.
Each component of the element-wise complex multiplication is labeled as

(ϕ, γ). The sum and the element-wise complex multiplication can be merged
into complex matrix multiplications as follows:

Z(ϕ,γ) = G(ϕ,γ)D(ϕ,γ), (4)

where D
(ϕ,γ)
c,b,α,β = FFT (Ib,c′,α,β)(ϕ,γ) and G

(ϕ,γ)
c′,c = FFT ∗(Fc′,c)(ϕ,γ). Thus, the

original implementation of a FFT-based convolution is listed in Algorithm 1. It
mainly consists of four procedures: FFT transforms of input feature maps and
filters, complex matrix multiplications, and IFFT transforms of output feature
maps.

Algorithm 1: Native FFT-based Convolution Algorithm.
input: I, F
output: O

1 δ × δ is the tile size.
2 X × Δ is the number of tiles in each feature map.
3 for c′ = 0: 1: C′ do
4 for c = 0: 1: C do

5 g = FFT ∗(Fc′,c) ∈ C
δ×δ

6 Scatter g to matrices G: G
(ϕ,γ)

c′,c = gϕ,γ

7 for b = 0: 1: B do
8 for c = 0: 1: C do
9 for α = 0: 1: X do

10 for β = 0: 1: Δ do

11 d = FFT (Ib,c,α,β) ∈ C
δ×δ

12 Scatter d to matrices D: D
(ϕ,γ)
c,b,α,β = dϕ,γ

13 for ϕ = 0: 1: δ do
14 for γ = 0: 1: δ do

15 Z(ϕ,γ) = G(ϕ,γ)D(ϕ,γ)

16 for b = 0: 1: B do
17 for c′ = 0: 1: C′ do
18 for α = 0: 1: X do
19 for β = 0: 1: Δ do

20 Gather z from matrices Z: zϕ,γ = Z
(ϕ,γ)

c′,b,α,β

21 Fb,c′,α,β = IFFT (z)



252 Q. Wang et al.

3 Algorithm and Optimizations

This section gives an overview of our FFT-based convolution algorithm, and
presents our optimizations.

3.1 Algorithm Overview

FFT and IFFT operations in FFT-based convolution only involve the Fourier
transformation between real and complex numbers. For the Fourier transfor-
mation of real numbers, the Hermitian symmetry shows that only half of the
complex numbers need to be stored and the remaining can be acquired by com-
plex conjugation [15]. Thus, we can apply the symmetry to reduce the memory
space requirement and computation of complex matrix multiplications.

In order to call the complex general matrix multiplication (CGEMM) rou-
tines, elements of the FFT results should be scattered to non-adjacent storage
locations. There are packing operations in the CGEMM routines, which reorga-
nize the data in the order of access. Both the scattering and packing operations
are often expensive. Thus, we can combine these two data movement operations
above to further reduce memory overhead. In other words, the results of FFT
can be directly scattered in the order of access in complex matrix multiplication
implementations.

Algorithm 2 shows the overview of our parallel FFT-based convolution imple-
mentation, which still consists of four stages: FFT transforms of input feature
maps and filters, complex matrix multiplications, and IFFT transforms of out-
put feature maps. All four stages are vectorized and parallelized by multiple
threads. The FFT results of input feature maps and filters are carefully stored
in accordance with the order of access in complex matrix multiplications, so that
the efficiency of memory access is greatly improved.

3.2 Data Layout

In this paper, we mainly focus on BCHW data layout. Therefore, the input
and output data layout in our implementation is consistent with that in Algo-
rithm 1, and we only need to consider how internal tensors in our implementa-
tion are stored in memory. There are mainly three internal tensors for storing
the results of two Fourier transformations and one complex matrix multiplica-
tion, marked as transformed inputs D, transformed filters G, and transformed
outputs Z. The data layout is influenced by two primary factors. The one is
the loading order of elements in the complex matrix multiplications. The other
is that the space range of memory access should be minimized to get better
space locality. Under the two constraints above, we store three internal tensors
as D[δ2/S][C/Cl1][B/Br][X × Δ][Cl1][Br][S], G[δ2/S][C/Cl1][C ′/C ′

r][Cl1][C ′
r][S],

and Z[C ′/C ′
r][B/Br][X × Δ][δ2/S][Br][C′

r][S], where S is the granularity of scat-
tering and gathering operations, and Cl1, C ′

r and Br are the block sizes in the
complex matrix multiplications, which will be explained in Sect. 3.4.
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Algorithm 2: Parallel FFT-based Convolution Algorithm.
input: I, F
output: O

1 δ × δ is the tile size.
2 X × Δ is the number of tiles in each feature map.
3 S is the granularity of scattering and gathering operations.
4 L is the vector register width, given a specific datatype.
5 Br, C′

r, Cl1 and C′
l2 are the block sizes in complex matrix multiplications.

6 z′, g′ and d′ are the sub-tensors of the tensors Z, G and D.
7 for cs′ = 0: C′

r : C′ do in parallel
8 for cs = 0: L : C do in parallel
9 for cofs = 0: 1: L do

10 for cofs′ = 0: 1: C′
r do

11 c′ = cs′ + cofs′, c = cs + cofs
12 g = FFT ∗(Fc′,c)
13 Scatter g to matrices G;

14 for bs = 0: Br : B do in parallel
15 for cs = 0: L : C do in parallel
16 for μ = 0: 1: X × Δ do
17 for cofs = 0: 1: L do
18 for bofs = 0: 1: Br do
19 b = bs + bofs, c = cs + cofs
20 d = FFT (Ib,c,μ)
21 Scatter d to matrices D

22 for ϕ = 0: 1: δ2/S do
23 for cs = 0: Cl1 : C do
24 for cs′ = 0: C′

l2 : C′ do in parallel
25 for bs = 0: Br : B do in parallel
26 for μ = 0: 1: X × Δ do in parallel
27 for cofs′ = 0: C′

r : C′
l2 do

// Micro-kernel

28 z′[Br][C
′
r][S]+ =

∑cs+Cl1
c=cs g′

c[C
′
r][S] × d′

c[Br][S]
29 store z′ back to matrices Z

30 for cs′ = 0: C′
r : C′ do in parallel

31 for bs = 0: Br : B do in parallel
32 for α = 0: 1: X do
33 for β = 0: 1: Δ do
34 for bofs = 0: 1: Br do
35 for cofs′ = 0: 1: C′

r do
36 c′ = cs′ + cofs′,b = bs + bofs
37 Gather z from matrices Z
38 Ob,c′,α,β = IFFT (z)

3.3 Fourier Transformations

In FFT transforms, D and G are calculated from input feature maps I and fil-
ters F . The spatial dimensions of input feature maps are subdivided into 2D
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tiles of size δ × δ, each of which has δ2 elements. There are a total of X × Δ
tiles per feature map. The discrete Fourier basis is set to be δ. The Radix-2
Cooley-Tukey algorithm [2] is applied to implement FFT transform of each 2D
tile, and δ is chosen to be a power of 2. When the width and height of some tiles
are not powers of 2, zeros are padded to their boundaries. As the padding and
transformation overhead increase with the size of zero padding [9], δ can not be
set much larger than the spatial dimensions Hf and Wf of F , which are often
small. As a result, FFT transform of each tile cannot provide sufficient paral-
lelism for thread-level parallelism. In Algorithm 2, we deal with FFT transform
of each tile by vectorization and apply multiple threads to perform FFT trans-
form of different tiles in parallel. For the transformation of I, the thread-level
parallelization is performed on the dimensions of the mini-batch size and input
channels. For the transformation of F , the thread-level parallelization is carried
out on the dimensions of the input and output channels.

Given a specific datatype, the vector register width in ARMv8 CPUs is
labeled as L. In the detailed implementation of 2D FFTs, δ-point 1D FFTs
of every L columns are first carried out in parallel by means of vector units in
ARMv8 CPUs. Due to the Hermitian symmetry, only δ/2 − 1 complex numbers
and 2 real numbers need to be saved for the δ-point 1D FFT of each column,
and then δ-point 1D FFTs of only δ/2 rows need to be done. In order to avoid
matrix transpose operation, the vectorization is directly applied to δ-point 1D
FFT of each row. Finally, only δ2/2 − 2 complex numbers and 4 real numbers
are required to be stored. As δ is small, the number of twiddle factors is also
small, and their values are encoded into the implementation.

In IFFT transforms, output feature maps O are computed from the result
Z of complex matrix multiplications. 2D IFFTs are applied to the tiles, each of
which is gathered from Z and includes δ2/2 − 2 complex numbers and 4 real
numbers, and produce the tiles of δ × δ real numbers, which are stored back
to the corresponding locations of O. For the data layout of Z, the purpose of
setting the dimension δ2/S to be the inner dimension of X × Δ, rather than the
outer dimension of C ′/C ′

r, is to reduce the overhead of gather operations above.
Like the implementations of FFTs, we only exploit vector-level parallelism in 2D
IFFT of each tile, and enforce thread-level task parallelization on the dimensions
of the mini-batch size and output channels.

3.4 Complex Matrix Multiplications

As the transforms of input feature maps and filters have stored their outputs
in the order of access in complex matrix multiplications, there is no packing in
this implementation. The mini-batch size and the number of output channels
are often small, so vector units are used to compute multiple complex matrix
multiplications and the blocking in δ2 is used to provide vector-level parallelism.
In this way, the scattering and gathering overhead in the transforms can be
reduced by a factor of the block size S/2.

The ARMv8 architecture often has the on-chip memory hierarchy of at least
three levels: register, level-1 (L1) cache and level-2 (L2) cache. It is essential
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to improve data reuse in every level by means of blocking techniques [5]. The
matrices G, D and Z are subdivided into sub-matrices of size Cl1 × C ′

r × S,
Cl1 × Br × S and Br × C ′

r × S, respectively. In one case, S elements of the
innermost dimension include four real numbers and S/2 − 2 complex numbers.
In all the left cases, they only consist of S/2 complex numbers. Each sub-matrix
z′ is computed as follows:

z′
i,j [S]+ =

∑cs′+Cl1

c=cs′ g′
c,j [S] × d′

c,i[S] (5)

where i ∈ [0, Br) and j ∈ [0, C ′
r). In register level, the sub-matrix z′ can be

reused Cl1 times. There are C ′
r × S/L registers for g′, B′

r × S/L registers for
d′ and B′

r × C ′
r × S/L registers for z′, so that the block sizes C ′

r, Br and S
are dependent on the number of available vector registers Υ in the ARMv8
architecture as follows:

C ′
r × S

L
+

Br × S

L
+

Br × C ′
r × S

L
≤ Υ (6)

At the same time, all the three sub-matrices above should be filled into L1
cache so that the block size Cl1 is restricted by the size of L1 cache. In most
cases, the ratio Ψ between computation and memory access [5] can be obtained
via

Ψ =
4 × C ′

r × Cl1 × Br

C ′
r × Cl1 + (2 × C ′

r + Cl1) × Br
. (7)

Then, the ratio should be as high as possible, under the constraints above. The
computation of each sub-matrix z′ is called a micro-kernel of the complex matrix
multiplications. The outer loops of the micro-kernels are arranged in an order
that maximizes data reuse in L1 and L2 Cache. As shown at lines 22–29 in
Algorithm 2, we choose to reuse G and D in L1 and L2 cache, respectively. The
block size Cl2 determines how many times sub-matrices g′ are reused in L1 Cache
and is also limited by the size of L2 Cache. The time locality of D in L2 Cache
is dependent on the size of B/Br × X × Δ.

There are thirty-two vector registers in the ARMv8 architecture. Each vec-
tor register can keep four single-precision floating-point numbers. For the micro-
kernels, we set S, Br, and C ′

r to be 8, 2 and 4, respectively. All the micro-kernels
are implemented in assembly. When the sub-matrices g′ and d′ includes real
numbers, the data movement operations among vector registers are minimized
via zeroing some registers in advance. Cache prefetch instructions are interleaved
with FMA instructions to request data ahead of time. The thread-level paral-
lelism is extracted from the three loops at lines 24–26 in Algorithm 2, which
usually can provide sufficient parallelism.

4 Experimental Results

This section describes the experimental comparisons between our FFT-based
convolution implementation and two existing implementations on two ARMv8-
based multi-core CPUs.
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4.1 Experimental Setup

The experiments are carried out on Phytium FT-1500A [1,12] and FT-
2000plus [13] processors. The detailed parameters of these two CPUs are listed
in Table 1.

Our FFT-based convolution implementation is compared with two existing
implementations. The one is a GEMM-based approach used in Caffe [7], which
converts convolution operation of B samples in the mini-batch iteration into
B matrix multiplications. Therefore, the approach calls the GEMM routine B
times, which is provided by the OpenBLAS library optimized for Phytium FT-
1500A and FT-2000plus in the experiment. The other is one FFT-based convo-
lution implementation provided by NNPACK [3]. In the following, our imple-
mentation and these two existing implementations are labeled as PFFT-conv,
Caffe-conv and NNPACK, respectively. Two tile sizes, 8 × 8 and 16 × 16, are
involved in PFFT-conv and NNPACK.

Table 1. Specifications of the experiment platforms

Phytium FT-1500A Phytium FT-2000plus

Architecture ARMv8 ARMv8

Frequency 1.5 GHz 2.3 GHz

Cores 16 8 Panels, 8 cores/Panel

L1 Data Cache 32 KB/core 32KB/core

L2 Cache 2 MB/4 cores 2MB/4 cores

L3 Cache 8 MB/16 cores

We adopt 13 unique convolutional layers with unit stride from Alexnet [8]
and VGG [14] in the tests. The configurations of all convolutional layers are
listed in Table 2. The convolutional layers from Alexnet start with the letter A,
while the ones from VGG are labeled with the letter V. The mini-batch size for
all convolutional layers is 128. In addition, all the tests are iterated ten times
and the median run-time is token as the performance of a test.

4.2 Results on FT-1500A

The relative performance of our parallel FFT-based convolution implementation
based on Caffe-conv and NNPACK implementations on Phytium FT-1500A is
shown in Fig. 1 and Fig. 2. In the comparison, all three implementations are
parallelized on all 16 cores of FT-1500A. The column bars at different horizontal
coordinates represent speedups on different convolutional layers from Alexnet
and VGG.

Compared with Caffe-conv, our approach with the tiles of sizes 16 × 16 and
8×8 achieves the speedups of 1.87–16.19 and 1.48–13.34 times, respectively. The
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Table 2. Specifications of tested convolutonal layers

Conv layers B C C′ Hi × Wi Hf × Wf

Aconv2 128 48 128 27 × 27 5 × 5

Aconv3 128 256 384 13 × 13 3 × 3

Aconv4 128 192 192 13 × 13 3 × 3

Aconv5 128 192 128 13 × 13 3 × 3

Vconv1.1 128 3 64 224 × 224 3 × 3

Vconv1.2 128 64 64 224 × 224 3 × 3

Vconv2.1 128 64 128 112 × 112 3 × 3

Vconv2.2 128 128 128 112 × 112 3 × 3

Vconv3.1 128 128 256 56 × 56 3 × 3

Vconv3.2 128 256 256 56 × 56 3 × 3

Vconv4.1 128 256 512 28 × 28 3 × 3

Vconv4.1 128 512 512 28 × 28 3 × 3

Vconv5.1 128 512 512 14 × 14 3 × 3

minimum speedups of both two tile sizes are observed on the first convolutional
layer of VGG (Vconv1.1) owing to the smallest number of input channels. Except
for Vconv1.1, our approach gets the speedup of at least 2.78 times. For all the
tested convolutional layers, our implementation with 16×16 tile exceeds the one
with 8 × 8 tile.

Based on the FFT-based implementation with the 16 × 16 and 8 × 8 tiles
in NNPACK, our implementation with the tiles of the same sizes obtains the
speedups of 1.36–1.95 and 1.00–2.16 times, respectively. For the same 16 × 16
tile, our implementation surpasses the FFT-based one in NNPACK on all the
layers. Except for the second convolutional layer of Alexnet, our approach with
the tile of size 8 × 8 gets higher performance than the implementation with the
same tile size in NNPACK.

4.3 Results on FT-2000plus

The performance comparison between our parallel FFT-based implementation
and two existing implementations (Caffe-conv and NNPACK) on Phytium FT-
2000plus is shown in Fig. 3 and 4, respectively. FT-2000plus is a Non-Uniform
Memory Access (NUMA) system, and includes eight panels, each of which has
eight cores. In the comparison, all the tests are parallelized on all 64 cores of FT-
2000plus, and the linux tool numactl is applied to interleave memory allocation
on all eight panels automatically.
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Fig. 1. Speedup of our parallel FFT-based convolution implementation (PFFT-conv)
based on GEMM-based implementation (Caffe-conv) on all 16 cores of Phytium FT-
1500A.

Fig. 2. Speedup of our parallel FFT-based convolution algorithm (PFFT-conv) based
on FFT-based implementation in NNPACK (NNAPCK) on all 16 cores of Phytium
FT-1500A.
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For all the convolutional layers, our implementation is much better than
Caffe-conv, as shown in Fig. 3. Against Caffe-conv, our implementation with two
tile sizes gets the speedups of 5.35–50.88 and 3.86–78.08 times, which are caused
by two main factors. The one is that the matrices produced by Caffe-conv are
too small to provide sufficient parallelism for all 64 cores of FT-2000plus and
the GEMM routines are not optimized for those matrices. The other is that the
memory access of Caffe-conv is not efficient enough [17] and its efficiency further
deteriorates on the NUMA structure of FT-2000plus. Due to the influence of the
NUMA structure, our implementation with 16 × 16 tile works worse than the
one with 8 × 8 tile on most convolutional layers.

Fig. 3. Speedup of our parallel FFT-based convolution implementation (PFFT-conv)
based on SGEMM-based implementation (Caffe-conv) on all 64 cores of Phytium FT-
2000plus.

As shown in Fig. 3, our implementation with two tile sizes gets the maximum
speedups of 5.91 and 7.04 times based on NNPACK with the same tile sizes,
respectively. In addition, our approach is better than NNPACK on all the tested
convolutional layers.
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Fig. 4. Speedup of our parallel FFT-based convolution algorithm (PFFT-conv) based
on FFT-based implementation in NNPACK (NNAPCK) on all 64 cores of Phytium
FT-2000plus.

5 Conclusion and Future Work

In this paper, we have presented a parallel FFT-based convolution implementa-
tion on ARMv8 multi-core CPUs, which targets unit-stride convolutional layers
with BCHW data layout. Our implementation does not rely on any external
computing libraries and consists of four stages: FFT transforms of input fea-
ture maps and filters, complex matrix multiplications, and IFFT transforms of
output feature maps. Each of all four stages above is vectorized and partitioned
to multiple cores in ARMv8 multi-core CPUs. A part of data movement opera-
tions in four stages are merged so that the efficiency of memory access is greatly
improved. Our implementation now supports two tiles of sizes 16×16 and 8×8,
and is verified on Phytium FT-1500A and FT-2000plus processors. For all the
tested convolutional layers on two processors, our approach is much better than
the GEMM-based one used in Caffe. On FT-1500A, our implementation sur-
passes the FFT-based one of NNPACK in most cases. On FT-2000plus, our
approach is much better than the FFT-based one of NNPACK in all test cases.

In the future, we will focus on the implementation that supports more tile
sizes and can automatically determine the optimal tile size.
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Abstract. Reverse Time Migration (RTM) is an important scientific
application for oil and gas exploration. The 3D RTM simulation gener-
ates terabytes of intermediate data that does not fit in main memory. In
particular, RTM has two successive computational phases, i.e., the for-
ward modeling and the backward propagation, that necessitate to write
and then to read the state of the computed solution grid at specific time
steps of the time integration. Advances in memory architecture have
made it feasible and affordable to integrate hierarchical storage media
on large-scale systems, starting from the traditional Parallel File Sys-
tems (PFS) to intermediate fast disk technologies (e.g., node-local and
remote-shared Burst Buffer) and up to CPU main memory. To address
the trend of heterogeneous HPC systems deployment, we introduce an
extension to our Multilayer Buffer System (MLBS) framework to further
maximize RTM I/O bandwidth in presence of GPU hardware accelera-
tors. The main idea is to leverage the GPU’s High Bandwidth Memory
(HBM) as an additional storage media layer. The objective of MLBS is
ultimately to hide the application’s I/O overhead by enabling a buffer-
ing mechanism operating across all the hierarchical storage media layers.
MLBS is therefore able to sustain the I/O bandwidth at each storage
media layer. By asynchronously performing expensive I/O operations
and creating opportunities for overlapping data motion with computa-
tions, MLBS may transform the original I/O bound behavior of the RTM
application into a compute-bound regime. In fact, the prefetching strat-
egy of MLBS allows the RTM application to believe that it has access to
a larger memory capacity on the GPU, while transparently performing
the necessary housekeeping across the storage layers. We demonstrate
the effectiveness of MLBS on the Summit supercomputer using 2048
compute nodes equipped with a total of 12288 GPUs by achieving up to
1.4X performance speedup compared to the reference PFS-based RTM
implementation for large 3D solution grid.
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1 Introduction

The execution rate of floating-point operations has typically increased by an
order of magnitude every 4 years during the last 30 years of modern comput-
ing [4]. This exponential growth in terms of computational power has benefited
from processor technology scaling. However, memory and storage systems have
not maintained the same rate of technology scaling. Scientific applications that
are traditionally compute-bound have undergone a paradigm shift toward an
I/O-bound regime. This has been further exacerbated by the limited on-node
memory capacity, where I/O operations become a major bottleneck for scaling
up critical simulations.

Performing I/O operations is usually necessary for post-processing tasks
(e.g., visualization [12]) or for checkpointing the entire application’s state (e.g.,
resilience [16]). For seismic depth imaging simulations in the context of oil and
gas exploration, I/O operations play a pivotal role and one that is increasing with
the technology scaling gap. The challenge with Reverse Time Migration (RTM),
the de facto method for subsurface imaging, resides in continuously intertwining
computational phases with I/O operations during the time integration.

Based on an adjoint-state formulation, the RTM relies on a finite difference
stencil time integration explicit solver to simulate the forward and backward 3D
wave propagations. RTM requires combining at regular time steps a forward-
propagated source wavefield with a backward-propagated receiver wavefield. This
process involves thus a first phase where the 3D domain solutions, or snapshots,
of the source wavefield are computed and stored at predetermined imaging time
steps. Then, in a second phase, the field data are injected at the receiver loca-
tions to compute the receiver wavefield. At each imaging time step, the source
snapshots are retrieved from storage, brought in to main memory, and corre-
lated with the receiver snapshots. The combination of the correlated snapshots
results in the final image. RTM runs typically for thousands of time steps in
production and thus requires out-of-core computations [27] since not all subse-
quent snapshots can be kept in main memory. To give the proper perspective,
we profile representative test cases from a seismic imaging campaign: the I/O
time spent during the two aforementioned phases account for about 70% of the
entire execution time. The overall RTM performance may therefore be mostly
driven by I/O storage subsystem bandwidth. Nor is this I/O dominance special
to RTM. As described in [21], in monitoring over 17, 000 executions of an earth
science code on a DOE petascale system, more than half of the wall-clock time
was spent on I/O.

Previously deployed large-scale systems include several layers of hardware
storage media, from Dynamic Random Access Memory (DRAM) to node-local
/remote-shared Burst Buffer [11,19] to traditional Parallel File Systems (PFS),
and all the way down to storage disks. More recently, especially with the advent
of AI workloads, GPU-based supercomputers have been considered as one of the
main sources of horsepower for the Exascale quest. In this paper, we propose to
extend the Multilayered Buffer Storage (MLBS) software library [6] to support
I/O operations involved in GPU application workloads. The objective of Multi-
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layer Buffer System (MLBS) is to maximize the bandwidth utilization of multiple
hardware storage media layers, while prefetching the I/O operations for possible
overlap with computations. The main idea herein consists of including the High
Bandwidth Memories (HBMs) as an additional storage media layer to MLBS. In
the context of the RTM application, this means the write (i.e., modeling phase)
and read (i.e., propagation phase) operations may potentially be overlapped with
the stencil computation kernels running on the GPU devices. In fact, the ultimate
goal of the MLBS approach is to ensure that the data is always GPU-resident
whenever the RTM needs it in order to mitigate the overhead of out-of-core
computations. Our lightweight, non-intrusive MLBS framework provides simple
APIs that enable the RTM application to decouple these I/O operations from its
critical path, while eagerly pursuing its forward and backward time integration.

We demonstrate the performance superiority of the RTM application with
MLBS using 2048 compute nodes, i.e., a total of 12288 NVIDIA V100 GPUs,
on the Summit supercomputer. By using the GPU’s HMBs as an additional
storage media layer, we report up to 1.4X performance speedup compared to
the reference Parallel File System (PFS)-based RTM implementation for large
3D solution grid, respectively. Last but not least, we provide an online autotuner
for MLBS to select at runtime the optimal storage media layers to maximize the
overall I/O throughput.

The remainder of the paper is as follows. Section 2 discusses background on
high performance storage media and related work. Section 3 states our main con-
tributions. Section 4 gives details on the RTM application. Section 5 highlights
the design and implementation of the MLBS GPU support. Section 6 analyzes
the performance results of the MLBS-enabled RTM application on homogeneous
and heterogeneous systems, i.e., Shaheen-2 and Summit systems, respectively.
Section 7 summarizes the paper and describes future work.

2 Background and Related Work

Burst Buffers and High Bandwidth Memory. Due to the importance of
closing the gap between I/O and compute throughput, several production super-
computers are currently equipped with high bandwidth intermediate memory
and storage subsystems, e.g., High Bandwidth Memory (HBM), DRAM and
Burst Buffer (BB) [20]. In particular, many supercomputers are now composed
of heterogeneous compute nodes that host multiple Central Processing Units
(CPUs) equipped with General Processor Units (GPUs), as seen in Fig. 1.
While most of the parallel storage systems in supercomputers are built with
cost-effective, low-bandwidth, high-capacity spinning Hard Disk Drives (HDDs),
Burst Buffers are built with more expensive but high-bandwidth, low-capacity
Solid State Drive (SSD) or Non-Volatile Memory (NVMe) [2]. The two most
common types of Burst Buffers are node-local and remote-shared. In the design
of the former, as shown in Fig. 1(a), each node is equipped with a local SSDs or
NVMe with limited capacity. In the design of the latter, as pictured in Fig. 1(b),
arrays of SSDs or NVMe are grouped in separate Burst Buffer nodes. These
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Fig. 1. Designs of (a) Remote-Shared and (b) Node-Local Burst Buffer (c) Heteroge-
neous compute node similar to Summit system.

Burst Buffer nodes are located on the interconnect fabric and compute nodes
can access them through the network. For instance, on Summit supercomputer,
each compute node has 6 NVIDIA V100 GPUs with a local 1.6 TiB NVMe, as
highlighted in Fig. 1(c). On Shaheen-2 supercomputer, all compute nodes share
1.5 PiT of distributed high bandwidth SSDs located on the remote Burst Buffer
nodes.

Fig. 2. Observed compute and I/O traces for a master iteration of RTM using Shaheen-
2 supercomputer with Lustre Parallel file system. Red and pink are forward and back-
ward computation, respectively. Blue and green show the write and read I/O opera-
tions, respectively. (Color figure onlie)

Runtime Opportunities for Compute and I/O Overlap. In Fig. 2, we
provide a typical execution trace of the RTM application, which alternates each
compute and I/O phase. In the forward phase, the application computes several
iterations before triggering the I/O library to dump the grid solution. The library
then conducts the actual writes to the closest storage media (e.g., HBM) before
falling back to the next closest storage media (e.g., DRAM) in case the current
storage media is full. Once the forward phase is over, in the backward simulation
and imaging phase, the application reads back previously written grids in Last
In, First Out (LIFO) order and computes the so-called imaging condition at the
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same time step during the forward phase. Red and pink colored bars represent
compute times for forward and backward phases, and blue and green represent
write and read, respectively. We can clearly observe how the backward phase
reads may be faster in the beginning since the latest snapshots may already be
cached. But then, they eventually become slower due to snapshot cache misses.
The objective is to overlap the red and pink bars with the blue and green bars
to speed up the overall time to solution.

Current Solutions. There are many system-level and hardware-level solutions
to reduce the widening performance gap between I/O and compute operations.
Many HPC centers have adopted multiple storage layers in their systems. Rang-
ing from HBM to node-local and remote-shared NVMes and SSDs, these layers
are helping to reduce the performance gap between I/O and compute opera-
tions. Systems such as BurstFS and BurstMem [33,34] propose to redirect I/O
calls from PFS to local NVMes and SSDs. Burst Buffer caching systems such
as DDN IME [1], DataWarp [15], and Data Elevator [13] accelerate applications
writes by redirecting writes from PFS to remote-shared Burst Buffers. GPUDi-
rect Storage [29] is a recently proposed system that moves data between GPUs
and a specific local or remote storage without involving the CPU’s memory,
thereby removing the need for extra data copies. Other systems such as SSDal-
loc, NVMalloc [9,31] extend the virtual memory space from DRAM only to a
wider range of fast memory such as fast SSD and NVMe. Systems in [17,25] have
been proposed to show the benefit providing hints for read prefetchers in I/O
libraries. GPUfs [28] is a file system that extends traditional file systems and
enables asynchronous date swaps between GPUs memory and their internal I/O
buffers. More recent works such as Hermes [18], UniviStor [32] and ARCHIE [14]
provide buffering solution across all stages of storage layers. They use dedicated
processes to perform the caching and prefetching. TB-RTM [5] is an approach
that relies on StarPU [8] to taskify and overlap all routines of RTM applica-
tions, including I/O operations. Since it is application-oblivious, it does not take
advantage of the First In, First Out (FIFO) and LIFO patterns seen in the RTM
application.

In contrast to previous work, MLBS is a software-level library solution that
consists in overlapping I/O and compute for out-of-core simulations. MLBS pro-
vide a holistic solution to enhance the time-to-solution of real multi-threaded
distributed-memory GPU-based scientific applications such as RTM using both
write behind [7] and prefetching mechanisms. These optimizations permit to
stream data across several stacked memory/storage layers (i.e., HBM/DRAM
/Burst Buffer (BB)/PFS), while maximizing the throughput at each encountered
hardware layer. MLBS is able to properly balance the I/O and compute loads,
with minimal and controlled impact on the application computation phases.

3 Contributions

The main contributions of this paper are as follows:
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– We introduce the GPU support in MLBS for caching and prefetching I/O
operations, in the context of the RTM application.

– We add support for HMBs as a new storage media layer, in addition to the
CPU main memory and various BB layers, i.e., node-local and remote-shared,
and evaluate its performance impact.

– We evaluate the MLBS scalability on homogeneous Shaheen-2 and heteroge-
neous Summit systems using up to 2048 compute nodes.

– We deploy an online autotuner into MLBS that monitors and reorders the
different storage layers based on their sustained I/O bandwidth.

4 Seismic Depth Imaging Application

High resolution depth images of the subsurface are critical for successful oil and
gas exploration. Wave equation-based depth seismic migration techniques such
as Reverse Time Migration (RTM) are often employed to meet the oil indus-
try imaging objectives, particularly in complex geological environments such as
subsalt exploration. Given a model of the subsurface and seismic data recorded
at known receiver locations, an image of the subsurface is formed by combining
with an imaging condition, a forward propagated source wavefield with a back-
ward propagated receiver wavefield. Reviews of seismic migration techniques and
imaging conditions can be found in [10,26]. The source and receiver wavefields are
computed by solving the wave equation using time or frequency domain solvers.
Time domain finite differences solvers are commonly used due to their simplicity
and computational efficiency. Second to fourth order stencils are usually con-
sidered to compute time derivatives and spatial derivatives are computed using
up to sixteenth order stencils. The RTM image is formed by cross-correlating
the forward simulated source wavefield with an adjoint (i.e., reverse-time) simu-
lation from receivers. In a first phase, the source wavefield is reversed in time by
storing at predetermined imaging time steps (snapshots) the propagation his-
tory. Due to the huge volume represented by the snapshots, they are usually
offloaded to disks. In a second phase, when the backward receiver propagation
reaches one of the imaging time steps, the corresponding source snapshots are
read back from disk, and correlated with the receiver snapshots to incrementally
calculate the image condition, until the final image is eventually obtained. RTM
usually suffers from I/O performance bottlenecks due to unnecessary system
synchronizations, which prevent overlapping with computations. The main idea
then consists in creating two swim lanes by decoupling the I/O operations from
the computational kernels. The final image is formed by combining the image
contribution from several seismic gathers which are simultaneously simulated in
an embarrassingly parallel fashion.

5 Design and Implementation of a Multilayered Buffer
System

MLBS handles all I/O requests for the RTM application while maintaining the
following goals: 1) lightweight Application Program Interface (API), 2) over-
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lapping I/O and compute phases using asynchronous executions, 3) prefetching
across multi storage layers with minimal impact on the computation kernels.
The design of MLBS relies on two components: an API, memory and storage
interfaces, and a helper thread engine. MLBS is written in C++ and CUDA and
is deployed as a light-wight library.

Application Interface. The main objectives of the MLBS APIs are ease-of-use,
non-intrusiveness and high throughput copy from application space to the fastest
layer allocation in MLBS space. MLBS uses a simple API that mimics C/C++’s
write() and read() interfaces. Therefore, with minimal code changes, applica-
tion developers can easily integrate MLBS into their codes. The API requires
two inputs from the application at the initialization stage: 1) the size of each
data file, and 2) the number of write and read requests, Once the parameters are
set, the helper engines are spawned and start their tasks, as detailed in Algo-
rithm 2. Higher throughput for write() requests is achieved with a parallel copy
of the targeted data using all hardware threads whether the data were located
on a CPU or a GPU (see write method for GPU based kernel in Algorithm 1).
On the other hand, read() requests depend heavily on the prefetching strategy
employed by the helper engines, the MLBS first layer allocation and the rate of
consumption (compute kernel speed) of prefetched data. Ideally, from the appli-
cation’s point of view, a read() operation is as fast as a memory pointer swap
(see read method in Algorithm 1).

Algorithm 1: MLBS API functions: Init, Write and Read
1 Function Init( datasize, ioOps)
2 spawnEngine(MLBSEngine, datasize, ioOps))

3 Function inGPUParallelCopy( src, dest, len)
4 idx = threadIdx.x + blockIdx.x * blockDim.x;
5 if idx <len then
6 dest[i] = src[i]

7 Function Write(filename, data, datasize):
8 dest ← FindEmptySlotInHBM() // blocking call

// GPU based parallel memory to memory copy. Similar method is used on CPUs
9 inGPUCopy<<<dimGrid,dimBlock>>>(data, dest, datasize)

10 Function Read(filename, data, datasize):
11 while file is not yet loaded in MLBS HBM // blocking busy loop
12 do
13 wait( )

14 src ← getFilePointer(filename)
15 swap(src, data)

Helper Threads. The objective of the helpers is to handle all I/O operations: 1)
moving the data between the application space and MLBS space, 2) conducting
the actual push and pull operations on all available memory and storage layers,
3) moving data across storage layers such as HBM, DRAM and PFS from fastest
to slowest, and 4) caching in and out data based on RTM grids (i.e. snapshots)
access pattern. Algorithm 2 details how MLBS overlaps compute and I/O with
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Algorithm 2: MLBS Helper Engine for RTM on Summit System
Data: Size of grids, number of I/O writes and reads

1 begin
2 layers ←− MLBSAuto() // At run time, survey all available memory and storage

// layers and create a list ranked from fastest to slowest
3 GridsInLayers ←− ... // calculate the number of grids to keep in each layer

// based on grid size and available space
4 while numPushedGrids < numGridsToPush do
5 push grid to first layer
6 if HBM layer (1st layer) is full then
7 select oldest grid in HBM layer and push to DRAM layer
8 if DRAM layer (2nd layer) is full then
9 select oldest grid in DRAM layer and push to node-local BB layer

10 if node-local BB layer (3rd layer) is full then
11 select oldest grid in node-local BB layer and push to IBM Spectrum

Scale (4th) layer // Depending on MLBS Auto survey 3rd
// and 4th layers could in the opposite order

12 numPushedGrids ← numPushedGrids + 1

// Switching to read mode
13 numPulledGrids ←− 0
14 while numPulledGrids �= numPushedGrids do
15 if first layer is not full // Read operation in the application space frees up

first layer buffers
16 then
17 for i ← 1; i < numOfLeyers do
18 pull newest grid from (i + 1)th layer to ith layer

19 numPulledGrids ← numPulledGrids + 1

LIFO data access pattern, which matches the I/O pattern of the RTM applica-
tion. From the application developer’s inputs, such as the total number of grids
and the size of each grid, the number of write and read operations, MLBS helper
can then manage the data traffic in the background, while the application carries
on its computation. In particular, MLBS helper engine consists of three phases.
In the first phase, the engine surveys all available memory and storage layers and
creates a list of layers ranked from fastest to slowest (line 2). For example, on
Summit system the order of BB and PFS (line 11) could be exchanged depending
of the runtime sustained throughput as seen in the evaluation in Sect. 6. In the
2nd phase, the engine loops over the 1st layer of MLBS, and evicts oldest data
to the next layer of MLBS, e.g., BB or PFS (line 7). It may further push down
the oldest files from 2nd layer to the 3rd layer, and repeat to the last layer. In
the 3rd phase, i.e., the read phase, the helper engine wait for the application to
consume the data that are still in the MLBS 1st layer. As soon as a buffer slot
is empty in the 1st layer, the engine fills up the buffer slot with the newest data
file from the 2nd layer (line 16). It will also pop up the newest data file from
the 3rd layer to the 2nd layer and repeat the same routine for all layers. MLBS
maintains a full pipeline across storage layers, while maximizing I/O bandwidth
and occupancy.

MLBS Integration. The RTM application presented in this work has two
computation kernel engines, GPU and CPU based kernels that rely on CUDA
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Algorithm 3: Integrating MLBS into RTM Code on Summit
Data: size of grids, number of I/O ops

1 Function main()
2 MLBSHandler ← MLBSInit(datasize, ioOps)

// setup all RTM related parameterscopy necessary RTM initial data to GPU memory
// start forward modeling

3 for i = 0 → numOfSnaps do
4 inGpuComputeFWD<<<dimGrid,dimBlock>>>(data, datasize)
5 if (i mod snapRatio)== 0 then
6 MLBSHandler.write(i, data, datasize)

// start backward propagation
7 finalImage ← emptyDataArray(datasize)
8 for i = numOfSnaps → 0 do
9 inGpuComputeBKW<<<dimGrid,dimBlock>>>(data, datasize)

10 if (i mod snapRatio) == 0 then
11 MLBSHandler.read(i, datafwd, datasize)
12 finalImage ← correlate(finalImage, data, datafwd)

cores and OpenMP programming models for the parallel computational ker-
nel implementation, i.e., the stencil computation kernel. MLBS uses a Pthread-
based implementation for flexibility purposes. To ensure the CPU based kernel
OpenMP threads and MLBS Pthreads properly coexist, the total number of
threads should match the number of physical cores, which prevents oversubscrip-
tion overheads. Only the single-threaded MLBS implementation is demonstrated
in this paper to avoid performance slowdown on the compute kernel side, since
it is part of the critical path. However, the MLBS Pthread-based implementa-
tion can support more threads. Ultimately, the makespan of the RTM should be
minimized by balancing compute and I/O workloads accordingly through MLBS.
Algorithm 3 presents the pseudo-code of the RTM application with MLBS API
integration. This pseudo-code assumes a single shot simulation performed on a
shared-memory node, without loss of generality, since multiple shots are pro-
cessed in an embarrassingly parallel fashion. One observes the possible overlap-
ping between lines 4 and 6 as well as between lines 9 and 11 during the forward
and the backward integration, respectively. The final image is then generated
thanks to the image condition, as shown in line 12.

Given these generic components, MLBS components may be further extended
to support various applications, beyond the herein studied RTM application.
Thanks to the helper threads, its API permits application developers to instru-
ment the I/O accesses with the flexible memory interface, while customizing the
helper engine to match the I/O patterns.

6 Performance Results

6.1 Hardware Settings

We have used the homogeneous Cray XC40 Shaheen-2 and the heterogeneous
IBM-built Summit supercomputers as our experimental platforms.
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Shaheen-2 is a 6174-node system, each with a dual-socket 16-core Intel
Haswell E5-2698 V3 CPU and 128 GB DRAM. Shaheen-2 operates two PFSs,
a 1.5 PiB remote-shared SSD-based DataWarp BB and a 17.6 PiB Hard Disk
Drive (HDD)-based Lustre [22] . The sustained bandwidth of DRAM based on
the Stream benchmark [24] is 105.9 GiB/s. The I/O bandwidth measured with
the IOR benchmark [3] is 1.5 TiB/s and 500 GiB/s, for the DataWarp and
Lustre, respectively.

Summit is a 4356-node system, each with a dual-socket 22-core IBM Power
9 CPU, 6 NIVIDA Volta V100 GPUs, and 512 GB DRAM. Summit operates two,
parallel file systems, a 7.4 PiB node-local SSD-based BB and a 250 PiB HDD-
based IBM Spectrum Scale file system. The sustained bandwidth of DRAM is
reported to be 272.9 GiB/s [30]. The I/O bandwidth is 9.7 TiB/s and 2.5 TiB/s,
for the BB and IBM Spectrum Scale, respectively.

6.2 RTM Application Setup

We evaluate MLBS performance impact on a realistic RTM code that we have
developed. The code is written in C++/CUDA and uses MPI to assign each
shot to a rank. The computation kernels in this research code use single-precision
arithmetic and run on CPUs and/or GPUs. In this evaluation, we set the number
of time steps to 2000 and we performed I/O write (in the forward phase) or
read (in the backward phase) operations at every 10 time steps. We report only
the I/O throughput, since the CPU and GPU kernels are not touched. Each
measurement is repeated three times and the average is reported.

On Shaheen-2, each node works on one shot and we set the grid size of each
shot to 800 × 800× 800. We then increase the number of nodes from 1 to 2048.
With a total of 200 snapshots per shot, each node writes to storage 368 GiB
of intermediate data in order to produce the desired seismic image. When 2048
shots are dispatched a total of 772.52 TiB is written to storage.

On Summit, each node works on 6 shots simultaneously and we set the grid
size of each shot to 700 × 700× 700. We then increase the number of node from
1 to 2048. With a total of 200 snapshots per shot, each node writes to storage 2.3
TiB of intermediate data in order to produce the desired seismic image. When
12, 288 shots are dispatched a total of 2.6 PiB is written to storage.

Additionally on Summit system, using one compute node and one GPU,
we evaluate the performance of caching and prefetching using the HBM layer
with two small grids, 256 × 256 × 64 and 512 × 512 × 128. This configuration
is particularly of interest for domain decomposition when running in strong
scaling mode of operation. The number of times steps is increased to 3, 500
and we perform I/O at every 10 time steps. The former grid generates 10 GiB
of intermediate snapshots, which can fit entirely on the HBM, while the latter
generates 87 GiB, that need to be caching in and out through the different layers
of MLBS (i.e., DRAM and PFS). We report the corresponding I/O throughput
and the compute times.
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Fig. 3. Per-node write (top) and read (bottom) throughput in GiB/s for the RTM
app on Shaheen-2. Every node executes one shot with grid size 800 × 800 × 800 and
I/O at every 10th iteration. Burst Buffer is remote-shared.

6.3 RTM on Shaheen-2 and Summit

We measure the aggregate and per-node I/O throughput of the RTM application
on Shaheen-2 ’s PFSs, i.e., Lustre and DataWarp. All solution grids are written
or read directly to/from the file system. We run the RTM application on Summit
and collect I/O throughput as well. We then integrate the Pthread-based MLBS
implementation into each rank of the RTM application on Shaheen-2 and Sum-
mit. We remove one thread from the RTM pool of OpenMP threads and give it
to MLBS engine as a helper thread. This does not affect the performance of the
computational kernel on Shaheen-2, since the stencil kernel is memory-bound,
while fully utilizing the vector units for SIMD. On Summit, the CPU is only in
charge of launching the CUDA stencil kernel. MLBS can therefore use all IBM
Power9 CPUs available in the hosts to improve the performance of the mem-
ory copies. We test the I/O throughput impact when we allocate 70% of the
physical DRAM capacity for MLBS. In our benchmark campaign, we present
the HDD-based PFS as the main storage. Then we repeat the experiments with
SSD-based BB. Finally, we let MLBS helper engine select the storage media at
runtime using its internal autotuner, based on the per-node I/O throughput.

Figure 3 (top) shows per-node write throughput of the RTM application
on Shaheen-2. We observe that the throughput, as seen by the application, is
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Fig. 4. Per-node write (top) and read (bottom) throughput in GiB/s for the RTM app
on Summit. Every node executes six shots, one shot/GPU with grid size 700× 700× 700
and I/O at every 10th iteration. Burst Buffer is node-local. MLBS uses HMB and
DRAM as the first two layers.

higher when MLBS uses the BB instead of Lustre. We also observe that the
performance of write using MLBS with Lustre is almost identical to using the
BB without MLBS. On the backward phase, as seen in Fig. 3 (bottom), MLBS
helper engines succeed in prefetching the snapshots into memory all the times.
The RTM in the backward phase shifts truly from IO-bound application to
memory-bound (i.e., the kernel speed). Figure 4 (top) and (bottom) show the
aggregate and per-node write and read throughput of the RTM application on
Summit. Unlike on Shaheen-2, the PFS brings a higher throughput to the appli-
cation. However, as we increase the number of nodes to 2048, the node-local BB
performs better. MLBS autotuner configuration is able to switch, at runtime, for
the write I/O operations between the SSD-based and the HDD-based file systems
at 2048 nodes. The similar switch happens for the read I/O operations during
the backward phase. However, the switch for read I/O operations would better
benefit if the switch would have happened starting from 64 nodes. The MLBS
autotuner eventually reveals that the RTM application should use different hier-
archical storage media layers during the forward (i.e., write I/O) and backward
(i.e., read I/O) wave propagation. As it is shown in Fig. 4 (bottom), when the
number of nodes is 2048, MLBS autotuner read throughput outperforms the ref-
erence IBM Spectrum Scale based PFS by 18 times. Since the storage media for
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Fig. 5. Computation and I/O time breakdown of (a) small grid of size 256 × 256 × 64
where all intermediate snapshot fit in HMB and (b) a larger 512 × 512 × 128 grid
where intermediate snapshots are cached and prefetched on HBM, DRAM and PFS

the write and the read I/O operations are currently coupled, MLBS autotuner
is not able to change the storage media layer at runtime. We believe this is a
reasonable extension to support online storage media switch in a future work,
which would further maximize the obtained overall performance.

Figure 5 (a) and (b) show the forward and backward computation times in
addition to write and read times in seconds. In Fig. 5(a), we use a small grid
with 350 snapshots that can fit entirely in the HBM while in Fig. 5(b), only
64 snapshots can be held at one instance. Therefore, continuous caching and
prefetching has to take place which is translated into 20% of time to solution.
MLBS can achieve up to 3X and 2.5X performance speedup compared to the
reference PFS-based RTM implementation for the small and large 3D solution
grids, respectively. Although this experiment is done on a single node, since
RTM is embarrassingly parallel, one can attain similar improvement factors when
running on several Summit nodes.

7 Summary and Future Work

We have introduced a GPU extension to our Multilayered Buffer System (MLBS)
that further create opportunities to overlap expensive I/O operations with GPU
computations in the context of the Reverse Time Migration (RTM) for seismic
imaging. MLBS leverages the RTM I/O access patterns and asynchronously
pushes and pulls solution grids across hardware stacked storage layers, such as
GPU high bandwidth memory/CPU main memory/Burst Buffer/Parallel File
Systems. The resulting up and down pipelining of grids between storage layers
overlaps with the main RTM computational kernel. It permits the application to
carry on as if it does not require out-of-core computations, while achieving up to
2.5X and 1.4X throughput increase, on Shaheen-2 and Summit, respectively. In
cases where all intermediate data can fit in a GPU’s HBM, which is a realistic
case for domain decomposition and strong scaling mode of operations, we show
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that the computation can proceed as if there is no I/O at all. MLBS prefetching
strategy for the read operations makes the RTM application behave as if the data
resides in the CPU/GPU main memory, on both systems. MLBS has shown how
hierarchical caching of intermediate data can close the gap between I/O and
compute for iterative and data intensive applications such as Vector Particle-In-
Cell (VPIC), Hardware Accelerated Cosmology Code (HACC) and RTM [6]. We
plan to extend MLBS support for topology-aware data motion on heterogeneous
systems to further maximize on-node bandwidth [23]. We also intend to further
extend our newly proposed MLBS autotuner routine and enable it to switch
between memory and storage layers at runtime during both write and read I/O
operations.
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Abstract. The rapid growth in edge computing devices as part of Inter-
net of Things (IoT) allows real-time access to time-series data from 1000’s
of sensors. Such observations are often queried to optimize the health
of the infrastructure. Recently, edge storage systems allow us to retain
data on the edge rather than moving them centrally to the cloud. How-
ever, such systems do not support flexible querying over the data spread
across 10–100’s of devices. There is also a lack of distributed time-series
databases that can run on the edge devices. Here, we propose TorqueDB,
a distributed query engine over time-series data that operates on edge
and fog resources. TorqueDB leverages our prior work on ElfStore, a
distributed edge-local file store, and InfluxDB, a time-series database,
to enable temporal queries to be decomposed and executed across mul-
tiple fog and edge devices. Interestingly, we move data into InfluxDB
on-demand while retaining the durable data within ElfStore for use by
other applications. We also design a cost model that maximizes paral-
lel movement and execution of the queries across resources, and utilizes
caching. Our experiments on a real edge, fog and cloud deployment show
that TorqueDB performs comparable to InfluxDB on a cloud VM for a
smart city query workload, but without the associated monetary costs.

Keywords: Edge storage · Time-series database · Distributed
querying · Internet of Things · Cloud computing

1 Introduction

Internet of Things (IoT) domains leverage the availability of affordable sensing
and computing devices, along with pervasive communications and advances in
analytics, to observe and manage cyber-physical systems to enhance their effi-
ciency and resiliency. IoT domains span physical infrastructure such as Smart
Cities, Smart Transportation and Industrial IoT, to consumer devices such as
smart watches and smart appliances. A key characteristic of IoT applications is
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their closed-loop cycle where data about the system is analyzed and decisions
are made, typically within seconds, to control the system [11,15]. E.g., in a man-
ufacturing facility, sensors may monitor the temperature and pollution levels to
ensure it is safe for the workers, and if not initiate cooling, scrubbing or other
safety measures.

Edge devices comparable to Raspberry Pi and Arduino are widely deployed as
part of such IoT applications to help gather and transmit observations from the
sensors, and also to enact control decision onto their co-located actuators [14].
Traditionally, data collected from the field are sent to the Cloud for storage and
analytics, and the control signals are sent back to the field. This introduces high
network round-trip latency from the edge to the cloud, and additional network,
compute and storage costs at the cloud data center.

Edge computing has gained prominence to make use of the captive computing
and storage on edge devices, as well as to reduce the network latency between
the edge and the cloud for decision making. Besides running tasks and analytics
on such devices [2,3,11], recent works also propose their use for distributed
data storage by offering file and block-based semantics for data update and
access [5,9,10]. They also use workstation-class fog resources located near the
edge devices, which help with management and as a gateway to the Internet [13].

Motivation. IoT data tends to be time-series in nature since sensors continu-
ously generate timestamped data. As a result, time-series querying and analytics
is a key requirement for IoT applications [8,15]. These operate on data collected
over time to check if recent observations exceed historic averages, identify min-
imum and maximum outliers within time-windows, and to query and visualize
data from specific sensor types and time ranges. This complements and is more
flexible than Complex Event Processing (CEP) and publish-subscribe systems
that operate on streaming data and limit the queries possible [3,7,12]. Time-
series databases (TSDB) like InfluxDB and Apache Druid are popular for hosting
of such IoT data and performing temporal queries, centrally on the cloud [8].

However, both the sensor data producers and the consuming applications
for such TSDBs tend to reside on edge devices. Edge applications require sub-
second query latency when responding to dynamic situations. Moving data from
the edge to a TSDB on the cloud, and querying it back from the edge causes
unreliable performance due to WAN variability. It also introduces additional
network and VM costs, and privacy concerns when data is moved out of the
private network to public clouds. There is also a lost opportunity cost in not
utilizing the captive compute, storage and network capacity available on edge
and fog resources.

Requirements and Gaps. A natural progression is to host such time-series
databases on edge and fog devices, co-locating the query clients near the data
storage and also leveraging the available local compute and storage capacity on
them [1]. However, individual edge or fog resources may not have the capacity to
scale to workloads from many edge clients. This requires the use of a distributed
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TSDB operating across multiple edge and fog devices. However, existing systems
are either proprietary, do not support distributed execution, or are not light
enough to be hosted on edge and fog resources. Further, not all time-series data
collected over time will be actively used all the time. Given the overheads of
managing distributed databases, only recent or actively used data should be
stored in such TSDBs. Lastly, data stored in the TSDB will need to complement
storing the data durably as files on the edge. This may required to support time-
series analytics or machine learning models that operate outside the database
and directly on files hosted on the edge devices [15]. We address these gaps.

Contributions. We propose TorqueDB (Temporal querying from edge stor-
age Database) which leverages the ElfStore distributed edge-local storage [9]
along with InfluxDB TSDB to offer a distributed execution model for time-series
queries over edge and fog devices. Here, ElfStore retains the persistent time-
series data generated by sensors on the edge devices while InfluxDB instances
running on the fog are used to host subsets of this data, on-demand, to support
user queries. TorqueDB accepts queries defined using the Flux language used
by InfluxDB, uses the basic search capabilities of ElfStore to identify blocks of
interest, inserts and caches them into one or more local InfluxDB instances on
the fog, executes subsets of the user query on each fog in parallel, and aggre-
gates the results for returning to the user. This effectively offers a distributed
TSDB with an edge-local backing store, and is the first of its kind system to
offer distributed time-series querying on edge and fog devices.

Next, in Sect. 2 we discuss background on ElfStore and InfluxDB, and related
work on edge computing and querying; we introduce the TorqueDB design and
query execution model in Sect. 3; we present detailed performance results on a
real-world edge and fog deployment in Sect. 4; and lastly offer our conclusions
in Sect. 5.

2 Background and Related Work

2.1 ElfStore Distributed Edge-Local Federated Storage

ElfStore [9] is a block-centric distributed storage system on edge and fog
resources, for files that grow over time. Edges are connected to a parent fog
that is present in their local network, and together form a fog partition. Many
such fog partitions can exist, with fogs being able to talk directly to each other.
These all form a peer-to-peer (P2P) network overlay, with edges serving as peers
and fogs as super-peers, and its associated scaling characteristics to 1000’s of
devices.

Edges host data and metadata for a block. Fogs maintain a mapping from the
block ID to the edge(s), and indexes over the block metadata, for blocks in their
local partition. This allows fogs to perform basic value-based searching for blocks
based on their metadata properties, and lookups of block replica locations using
their block ID. Fogs also use Bloom Filters to maintain approximate indexes
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about contents in other fogs partitions to allow forwarding of metadata search
and block retrieval requests across the overlay, within no more than 3 hops.

Since edge devices can have asymmetric reliability, ElfStore uses a block-
specific replication level based on the required block reliability and the reliability
of the edges chosen for placement. Statistics exchanged between the fogs about
the reliability levels and storage capacities of edges in their partitions are used
by the replication logic to guarantee a minimum resilience and load balancing of
storage. It also recovers from failures by re-replicating blocks from failed edges.

2.2 Influx DB Time-Series Database

InfluxDB is an open-source TSDB optimized for high read and write throughput.
It stores data in buckets (databases) that contain measurements (tables). Each
row in a table has a timestamp and columns that are either tags, which are
indefaxed, or fields, which can be aggregated on. It has a native Flux query
language that allows SQL-like queries over time-series data, with support for
Select, Project, Aggregate, Window-aggregates and Joins. Besides network APIs
provided for data insertion and querying, data can also be bulk-loaded into an
InfluxDB table using a line-protocol CSV format.

2.3 Querying over Edge Devices

There have been recent works that examine the use of edge computing for query
processing over event streams, though they do not support distributed time-series
queries over a database or use an external edge-storage as the backend.

StreamSight [2] provides a declarative query model for matching complex
patterns on data streams. The system compiles these queries into stream pro-
cessing jobs for continuous execution on engines running on edge devices. The
query plan is dynamically updated so that intermediate results are reused and
not recomputed. It also supports approximate answers with error-bounds for
latency-sensitive execution.

Periodic querying is essential in Industrial IoT. Here, contiguous queries can
have overlapping input regions, and the sensor data retrieved by recent queries
may be reused for answering the upcoming queries. Zhou et al. [16] proposed
a popularity-based caching strategy to leverage these patterns. They show sig-
nificant reduction in the communication cost, when the number of queries is
relatively large. Such caching strategies can also be incorporated into TorqueDB.

HERMES [7] enables query evaluation over data streams across cloud and fog
nodes. They use reservoir sampling of incoming observational streams to reduce
communication and memory consumption on fog nodes in resource-constrained
environments. Similarly, our prior work [3] examines distributed analytics over
event streams on edge and cloud using a CEP engine, rather than query over past
data that we address in TorqueDB. Their key objective is to schedule a dataflow
graph of dependent CEP queries on edge and cloud resources while minimizing
the latency and conserving energy. Individual queries are not decomposed unlike
TorqueDB does, and we use only edge and fog rather than the cloud.
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Others have examined query rewriting in other contexts. Schultz et al. [12]
design a CEP system with operator placement decisions based on cost functions,
and greedily selects a distributed deployment plan over machines in a cluster.
They use query rewriting to increase the efficiency of operations by reusing com-
mon operators. TorqueDB’s execution model operates on queries independently
as these are one-off rather than standing CEP queries.

Grunert et al. [4] use query rewriting and containment techniques from
databases for efficient and privacy-aware processing of queries in an edge-cloud
setup. The input query is split into “fragment” and “remainder” queries. Frag-
ment queries operates on resource constrained edge devices to filter and pre-
aggregate data, while remainder queries execute the complex part of the query
on fog devices. We do similar rewriting across different levels on fog devices.

There are other edge and fog storage systems that have been proposed as well,
besides ElfStore. DataFog [5] is a data management platform at the edge on top of
Apache Cassandra, for a geo-distributed and heterogeneous edge computing envi-
ronment. They provided a locality aware distributed indexing mechanism and a
replica placement approach to provide spatial proximity. Finally, they employed
a TTL based data eviction policy to accommodate the constrained storage capac-
ity at the edge. These can serve as alternative backends for TorqueDB.

3 TorqueDB Architecture

The architecture for TorqueDB is shown in Fig. 1. The system model contains
edge and fog resources. Each edge is associated with one parent fog, which serves
as a network gateway to other fogs and the Internet. All edges with the same
parent fog form a fog partition, and devices in a partition are part of the same
private network, with high bandwidth and low latency connectivity. All fogs can
communicate with each other directly, either on the same private network or
through the Internet. The network link between fogs may be slower than with
the edge devices in their partition. We expect edge devices to have resources
comparable to a Raspberry Pi with a 4-core low-power CPU, 1–2 GB RAM and
128 GB SD card storage, while the fog resources are comparable to a workstation
or low-end server with 4–8-core CPU, 8–16 GB RAM and 500 GB–4 TB HDD.

Edge devices host the input data accumulated from sensors in blocks managed
by ElfStore. Each block contains rows of time-series data, typically from one
or more sensors and for a specific time range. New blocks are added over time.
Each block is identified by a unique block ID. ElfStore allows application-specific
metadata properties to be stored for these blocks and searched upon. These
contain details such as the table name, sensor ID, sensor types, units, time
range, location, etc. A subset of these properties match specific columns present
in the time-series data, e.g., the location and the sensor ID column values may
be common to all rows in the block, which are surfaced as a property for that
block, while the minimum and maximum timestamps for the rows in the block
will form the time-range property for that block. As an additional optimization,
we also compute aggregates over the content in these blocks, such as the number
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Fig. 1. Architecture and query execution sequence of TorqueDB

of rows, minimum and maximum values for specific columns like temperature
and humidity, etc. and store them as metadata properties for the block. ElfStore
natively creates replicas of a block data and metadata, identified using the same
block ID, on multiple edge devices to meet the reliability requirements specified.

Fog resources run ElfStore services to manage the edge devices, replication
and block placement, as well as maintain indexes on the metadata for blocks
stored in their partition. For TorqueDB, we also host an InfluxDB instance on
each fog resource to execute Flux queries. The InfluxDB instance is primarily
used as a query engine rather than for data management. It is a transient store
(and optionally cache) for the time-series data on which complex Flux queries
are executed, with the durable storage being the blocks in ElfStore.

This layered design, reusing ElfStore and InfluxDB, has several benefits over
designing a distributed TSDB from the ground up. It avoids the complexity of
distributed management and resilience of different instances of a TSDB, while
leveraging the data reliability guarantees offered by ElfStore. It also allows edge
applications that directly operate on the data blocks to be supported by ElfS-
tore [15] while the queries are offloaded to TorqueDB. Lastly, it eliminates the
need for redundant copies of data on both the edge-local file storage and the
TSDB, instead using the TSDB just as a transient cache.

At this time, we limit our design to executing the Flux queries on InfluxDB
instances running on the fog resources. This leverages their higher resource
capacity relative to constrained edge devices and limits the coordination over-
heads. As future work, we propose to examine designs where the InfluxDB is
hosted directly on the edge devices themselves to enhance the parallelism and
limit data movement.

3.1 Query Lifecycle and Distributed Execution

TorqueDB supports a subset of the Flux query language, as illustrated in Fig. 2.
Specifically, we support range queries over time-stamps (e.g., time BETWEEN
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SELECT UV FROM Shanghai

WHERE UV > 64 AND time BETWEEN 2015-03-12 00:00 AND 2015-03-23 23:59

SUM dust FROM Geneva

WHERE dust > 1000 AND time BETWEEN 2015-07-15 11:00 AND 2015-07-17 23:59

WIN(SUM, every hour) ON temperature FROM Boston

WHERE time BETWEEN 201616-6-01101-23 00:00 AND 2016-01-26 23:59
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Search on Time-
Chunks, Table Name
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Run Flux Sub-query

Aggregate Results L1

L2

L3

L4

Fig. 2. Sample flux queries and execution levels in TorqueDB

start AND end), filter queries over column values (e.g., dust > 1000), aggregation
functions such as sum, average, minimum and maximum over columns values
(e.g., SUM dust), aggregation windows over time (e.g., WIN(SUM, every hour)),
and projection of columns (e.g., SELECT UV ) to the output. Support for join
queries and complex nested queries is planned for future.

Users submit their Flux query to a TorqueDB service, which run on all fog
resources. The fog receiving the query is called the coordinator for this query
(Fig. 1 1©). The distributed execution plan for the query is decomposed into a
query tree, with execution happening at four levels (Fig. 2). At level 4 (L4),
the coordinator attempts to identify the ElfStore blocks that contain the time-
series data on which the query depends. For this, it extracts those parts of the
query predicates that can be pushed down as a native ElfStore search over the
block metadata index ( 2©). Specifically, ElfStore can search for blocks with a
given property value, and compose Boolean predicates using AND and OR. These
include matching properties such as the table name, location, sensor ID, etc.
which require a direct value comparison in the input query.

But ElfStore does not support range queries which are important for time-
series data. To address this, we discretize the time-range for rows in a block into
granular time-chunk numbers relative to an epoch, e.g., in 12-hour increments
starting from 2020-01-01 00:00, and include the chunks numbers that the rows
of a block overlap with in its metadata property. A similar discretization is done
on the input time-range query into one or more chunk numbers, and composed as
an OR on the time-chunk metadata matching any of these chunks numbers. E.g.,
if the user query has a time-range predicate from 2020-02-14 07:35 to 2020-02-
14 20:15, these overlap with the time-chunks 89 and 90. We search ElfStore for
blocks that have time-chunk property with values of 89 or 90. Likewise, when
storing blocks, we calculate the chunk numbers for their time-ranges, and store
these as a multi-valued property for the time-chunk metadata.

The output of the L4 query is a filtered set of block IDs having the minimal
data necessary for further query processing. These are passed as input to level
3 (L3), where the coordinator optionally fetches the actual block metadata to
further refine the search space (Fig. 1 3©). In particular, when we have value
comparisons over non-timestamp columns present in the data, like “dust” and
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“UV”, we use the minimum and maximum aggregate metadata values for these
columns to decide if the block contains the relevant data or not for further
querying. E.g., if the input query has a predicate that only retains rows with
dust ≥ 1000 ppm, then we fetch and use the block metadata to eliminate those
whose maximum dust is less than 1000. L3 is done only if value comparison
predicates are present in the input query.

The output of L3 is again a set of block IDs that are a subset of the block IDs
from L4. Now, the coordinator assigns these blocks to the available fog resources
to load the block contents into their local InfluxDB instance and execute the
Flux query on it. The mapping of blocks to fogs is done by the Query Planner
discussed in Sect. 3.2 (Fig. 1 4©). The coordinator decomposes and rewrites the
input query into sub-queries relevant to the blocks assigned to each fog, and
sends them these block IDs and sub-query for execution in level 2 (L2) ( 5©).

In L2, each fog receiving a sub-query and a list of blocks fetches the block
contents from ElfStore, and inserts them into the local InfluxDB instance. We
use a thread-pool for the fetch and insert of each block in parallel (Fig. 1 6©).
All blocks are inserted into a single table, even across queries. This helps with
caching, as we discuss later. During insertion, we add the block ID as a column
in each row inserted into InfluxDB. These block IDs are also included as a value
predicate in the sub-queries. This ensures that a sub-query only targets blocks
relevant to the current query being executed on the fog and not other blocks
inserted by previous or concurrent queries. This avoids duplicates results. E.g.,
if L3 returns block IDs 〈3, 5, 9〉 for processing at L2, and 〈3, 5〉 are assigned to
Fog A and 〈9〉 to Fog B. Say Fog B already had a copy of block 5 present in it.
If we run the two sub-queries on Fog A and Fog B, we should not get duplicates
for matching rows for the block 5 present both in Fog A and B. So the sub-query
for Fog A will have a filter to limit the rows to those with the Block ID field as
3 or 5, while the sub-query for Fog B filters in only rows with Block ID 9.

Once all blocks assigned to a fog are inserted into the local InfluxDB, the
sub-query is executed on the TSDB and the results returned to the coordinator
(Fig. 1 7©). Multiple fogs having block assignments will operate in parallel.
When the coordinator receives the L2 results from all fogs, in the absence of
an aggregation operator, it just appends all the results and returns them to the
client in level 1 (L1) ( 8©, 9©). However, if an aggregation function over a column
is present, then the L2 query result from each fog will have the aggregation
over the subset of rows in that fog. Here, we further aggregate across all these
results to return a single result to the user. This aggregation is done inside
the coordinator by code specific to each aggregation function. For functions like
mean, L2 returns the sum and the count, which are used to compute the global
mean.

3.2 Query Planning

In L2, we perform block fetch from ElfStore, insertion into the local InfluxDB
and query execution, on one or more fogs. This is the most time-consuming level
since it involves fetching the block from SD card on the edge and a network data
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transfer. The time taken to ingest data into InfluxDB is also significant. So we
ensure the parallelism offered by multiple fog and edge devices is fully exploited.
Given a set of blocks from L3, the edges (and parent fogs) that their replicas are
present in and the available fogs, the goal of query planning is to partition these
blocks to the fogs to reduce the execution time for L2. We propose two query
planning strategies, partition-local (QP1) and load-balancing (QP2).

The block transfer time is constrained by the I/O speed of the edge device
(≈100 Mbps seen for a Class 1 SD card), the network bandwidth from the edge
to parent fog and from fog to fog (≈100 Mbps–1 Gbps), and the cumulative
bandwidth into a fog (≈1 Gbps). In both strategies, we first try and maximize the
cumulative disk and network bandwidth from different edge devices in parallel.
From the available set of blocks, we maintain a load count for each edge, which
is the number of blocks selected for reading from this edge and set to 0 at the
start. We then sort the blocks in ascending order of the number of edges they
are present on (replica count). For each block, in this order, we select one of
its edge replicas such that this edge has the least load count among the replica
edges, and increment the load count for that edge. This achieves load balancing
of the block-reads from among the edges hosting the block replicas.

Next, in the partition-local strategy (QP1), we simply assign a block replica
to the parent fog for its edge. The intuition is that the bandwidth from the edge
to its parent fog is high and one-hop, and the block is kept within this partition.

In the load-balancing strategy (QP2), we prioritize balancing the number of
blocks assigned to each fog. This maximizes the parallelism for the data inserts
into InfluxDB and the query execution on the fogs. Here, we maintain a count
of blocks assigned to a fog, initialized to 0. For each block replica, if the parent
fog for the edge is the least loaded among all fogs, the block is assigned to this
fog; if not, the block is assigned to the least loaded fog. The fog’s load count is
incremented, and this repeats for the next block replica.

3.3 Block Caching

Much time in L2 is spent in fetching and inserting the blocks. We propose a
caching mechanism where the coordinator maintains a local mapping from block
IDs to the fog that has inserted that block into its local InfluxDB. This mapping
is updated after the L2 of each query, and lazily propagated across all fogs. The
query planner uses this knowledge to assign a block to the fog that it is cached
in, and only triggers the QP2 mapping algorithm for blocks that are not cached.

The caching strategy will retain all blocks used in any query within the local
InfluxDB of one of the fog resources. This ensures that blocks that are used once
are available immediately on a fog for future queries, but unused blocks are not
copied from ElfStore. In future, this can be combined with a cache replacement
like least recently used (LRU) to more efficiently utilize the disk space, and may
also load-balance the cached-block distribution across fogs.
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4 Experiment Results

4.1 Setup

Our experiments use a 15-node IoT cluster with 12 Raspberry Pi 4B edge
devices (ARMv8 4-core@1.5 GHz, 2 GB RAM, 64 GB UHS-1 SD card) and 3 fog
resources (Intel Core i5 6-cores@2.1 GHz 8 GB RAM and 500 GB HDD). These
15-nodes form 3 fog partitions with 1 fog and 4 edges each, connected over hier-
archical 1 Gbps switches with an average latency of 0.6 ms. As a baseline, we use
a Microsoft Azure Standard D4 v3 VM (Central India) running Intel Xeon E5
4-cores@2.3 GHz, 16 GB RAM and 500 GB HDD. Its performance is comparable
to the fog resource based on query benchmarks.

ElfStore runs on the 15-node cluster with uniform replication factor of 3 and
no edge failures. TorqueDB is implemented in Java v1.8 and runs on the fogs
alongside InfluxDB v1.7.91, which is hosted in container. By default, caching is
disabled on TorqueDB and we use QP2.

We use data from Sense your City in our workload2, which has ambient
monitoring devices from 84 locations in 7 cities worldwide that sense dust, tem-
perature, humidity, UV, etc. The devices report an observation every 3 mins over
a 16 month period, to give ≈19.35 million rows of time-series data. Each 1 MB
block in ElfStore holds 1 day of data per city with 5760 rows of data.

We use a query workload with 6 predicate patterns : Project+1 Value
Filter (PF); Project+2 Value Filters (PFF); Filter+Simple Aggregate like
sum/count/min/max (FSA); Filter+Complex (mean) Aggregate (FCA); 2 Value
Filters+Simple Aggregate (FFSA); and 1 Value Filter+Window Aggregate (FW).
These queries are inspired by a prior IoT query benchmarking work [6]. They
are also designed to cover the common query operators such as projection of
specific columns from a tuple into the result set, filters defined on field values,
simple and complex aggregation over field values, and moving windows over the
time-series tuples. There is also a time-range filter in all cases, with a small range
being over 3 days and large range being 12 days. We permute different values and
time ranges to generate 30 instances of each pattern and range for a total of 360
queries. All queries are run from a client that is in the same local network as the
fogs.

4.2 Analysis

Figures 3a and 3b show the stack bar plots for the different components of the
total execution times for one median query from each type for TorqueDB and
for centralized InfluxDB on a cloud VM, for small and large time-range queries.

Performance of TorqueDB. All query types, except PF with a large time-
range, complete in under 600 ms, with smaller queries running under 400 ms.

1 https://www.influxdata.com/products/influxdb-overview/.
2 http://datacanvas.org/sense-your-city/.

https://www.influxdata.com/products/influxdb-overview/
http://datacanvas.org/sense-your-city/
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(a) Small time-range queries (b) Large time-range queries

Fig. 3. Stacked bar plot for median query on TorqueDB (QP2) vs. Cloud InfluxDB

For the small time-range queries, the major fractions of the total execution time
spent by TorqueDB are: 39% in inserting data into the InfluxDB in L2, 28% in
the query execution at L2, and 14% in data transfer from ElfStore to L2. For the
larger queries, the largest fractions are: 36% in inserting rows into InfluxDB in
L2, 16% in query execution in L2, and ≈14% in L4 for locating matching blocks
in ElfStore and the same in transferring results from L2 to L1. These L2 costs
are due to on-demand copying and insertion of the relevant blocks from the edge
to the InfluxDB on the fog, and these dominate the overall execution time. As
we see later, it can be mitigated by caching.

We also see that the block search, data transfer and insertion times are
uniform 170–190 ms for all small time-range queries since the number of blocks
transfered and rows inserted are the same at 3 blocks; and likewise the large
time-range with 12 blocks inserted take 265–285 ms. The only exception is query
type PFF where some blocks are filtered out at L3 and hence the data transfer
and insertion costs are smaller.

The variability in the execution times across different query types arise from
the actual query execution in L2. Among the query types, PF is the second
slowest due to the large result set size returned by the query, though the query
itself is not complex. The time spent in transferring data from L2 and L1, and
returning the results to the user is higher. PFF is the fastest as its additional
filter reduces this result set size substantially. FSA and FFSA perform an extra
simple aggregation at L1, besides one and two filters. They are the fourth or third
fastest depending on the small or large query range, though their aggregated
result set size is only 1 row. FCA performs a complex aggregation for finding the
mean by running two aggregation queries for sum and count, and hence is twice
as slow as FSA; it is the slowest among all queries. Lastly, FW does a window
aggregation within InfluxDB to return 10’s of results and is the third slowest.
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(a) Small time-range queries (b) Large time-range queries

Fig. 4. Violin plot of query latencies on TorqueDB (QP2) and Cloud InfluxDB

TorqueDB vs. Centralized InfluxDB on the Cloud. Figures 4a and 4b
further show the violin plots for the total execution times for different query
types and time-ranges, for TorqueDB and centralized InfluxDB on the cloud.

For the small time-range queries, the performance of TorqueDB and InfluxDB
on the Cloud are similar, while for the larger time-range, the latter is mostly
faster. These differences can be attributed to the query execution times, and to
the other overheads. TorqueDB leverages parallel query execution across local
InfluxDBs on the fog, and this causes it to have a lower query execution time
than the cloud for PF and PPF. But the cloud VM’s CPU is faster in performing
the aggregation operations, by 19%–147%, for FSA, FCA, FFSA and FW.

Besides this query execution, differences arise from the other components.
Specifically, the network latency between the edge client and the cloud dominates
for the small time-range queries on InfluxDB cloud, which have smaller query
execution times. These overheads of ≈211 ms take 64% of the total query time.
But this absolute latency is about the same at ≈255 ms but relatively smaller,
at 57% of the total time, for the large time-range queries having longer query
execution times. In addition, PF returns a large result set and this incurs costs
to return the results to the client. However, for TorqueDB, the larger queries
require more block fetches and insertions, and this increases its overall time.

In addition to these, the InfluxDB on the cloud took ≈18 mins to transfer
3.28 GB of data for the 7 cities from the edge to the cloud. This is amortized over
a period of time in a real-world scenario. The WAN link between the edge and
the cloud also shows more variability, ranging from 27.1–1048 ms latency and
21.2–536 Mbps bandwidth, over a 24 h period. In summary, while TorqueDB is
slightly slower than queries on the cloud, the latter will have less deterministic
execution times, and also incur additional VM and network costs.

Benefits of Query Planning. The QP1 and QP2 query planning strategies in
L2 pick the same set of edges to get the block replicas from, but select different
fogs to assign them to; the former reduces cross-partition data transfers and
the latter balances the load per fog. In our experiments, we report that QP2
is 0.2–7.6% faster than QP1, on average for the different query types. This is
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Fig. 5. Gantt plot of latency for a FFSA large query on TorqueDB using QP1 vs QP2

because the edge–fog and fog–fog bandwidths are comparable in our IoT cluster
and hence the benefits of QP1 are not apparent.

However, the load balancing in QP2 does have benefits, in particular where
many blocks are fetched and inserted in L2. Figures 5 show the Gantt time-
line plot for different time components of a FFSA query with large time-range,
running on different fogs, when using QP1 and QP2. The Y axis indicates threads
in the 3 fogs and X axis is a relative time-line, in seconds. This fetches 12 blocks
in L2. QP1 assigns 5 blocks to Fog 1, 3 blocks to Fog 2 and 4 blocks to Fog 3,
since these are the parent fogs for the block replicas chosen. QP2 instead load-
balances and assigns 4 blocks to each fog, even though they may cross partition
boundaries and cause 2-hops for block transfer. As a result, QP2 achieves an
≈200 ms reduction in the L2 block fetch and InfluxDB insert.

Benefits of Caching. Finally, we evaluate the benefits of caching in TorqueDB.
Here, we use query workloads having a mix of 20 queries from each of the 6
types, to give 120 queries for the small and 120 queries for the large time-ranges.
This has no (0%) overlaps in the query mix, i.e., all queries are unique. We use
these to create two more workloads where 20% of the queries overlap, i.e., are
duplicated, and 50% overlap. These 6 query workloads are run on TorqueDB,
with and without caching enabled. Figure 6 shows the total execution time for
these workloads, and the total numbers of blocks fetched and inserted in L2.
These are averaged over 3 runs.

For 0% overlap workload with small time-range, the total number of blocks
fetched is the same at 359, both with and without caching. On the other hand,
in the large time-range 0% workload, caching results in 17% fewer block fetches
than without caching. This is because cached blocks can be reused across queries
even without an exact duplication of the queries. Further, the number of blocks
fetched proportionally reduces as the number of explicit query overlaps increase
to 20% and 50%. However, the impact on the total latency is muted. Since we
use four parallel threads per fog in L2, even having one block transfered in L2
can reduce the benefits of caching as that becomes the critical path.
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(a) Small time-range workload (b) Large time-range workload

Fig. 6. Total workload latency and # of L2 blocks transfered, on TorqueDB with and
without caching

5 Conclusions

In this paper, we have proposed TorqueDB, a novel platform for distributed
execution of time-series queries on edge and fog devices, avoiding the need to
keep a central TSDB in the cloud. This reduces monetary costs, keeps the data
within the private network if needed, and also avoids the latency variability
across a WAN to the cloud for edge applications. TorqueDB also leverages the
persistence capabilities of ElfStore which allows non-query applications to use
the same master data without creating duplicates within a TSDB. We also use
the native TSDB querying of InfluxDB with its Flux query language, that is
popular in IoT domains. Our optimizations on the query planning and caching
show benefits, and mitigate the costs of on-demand block transfers in TorqueDB
to give performance comparable to a central cloud VM.

As future work, we plan to extend the InfluxDB instances to run on the edge,
besides the fog. This will avoid the data transfer penalty in L2, and also expose
more parallelism for query execution. Support for joins and nested Flux queries
is planned as well. It is also worthwhile to examine integrating TorqueDB with
other distributed edge storage platforms, besides ElfStore, that may emerge over
time. This is conceptually possible as we are only loosely-coupled with ElfStore,
using just its public storage and lookup APIs which are likely to be offered by
other systems as well. Larger scale experiments on 100’s of devices with more
heterogeneous compute and network capabilities will validate the scalability and
performance further. Examining the impact of device unreliability on the query
performance will also be examined, and contrasted against cloud TSDB.
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Abstract. In the last few years, we have seen a significant increase
both in the number and capabilities of mobile devices, as well as in
the number of applications that need more and more computing and
storage resources. Currently, in order to deal with this growing need
for resources, applications make use of cloud services. This raises some
problems, namely high latency, considerable use of energy and band-
width, and the unavailability of connectivity infrastructures. Given this
context, for some applications it makes sense to do part, or all, of the
computations locally on the mobile devices themselves. In this paper
we present Oregano, a framework for distributed computing on mobile
devices, capable of processing batches or streams of data generated on
mobile device networks, without requiring centralized services. Contrary
to current state-of-the-art, where computations and data are sent to
worker mobile devices, Oregano performs computations where the data
is located, significantly reducing the amount of exchanged data.

Keywords: Mobile devices · Distributed computing · Edge computing

1 Introduction

Smart mobile devices, such as smartphones and tablets, are ubiquitous in our
society [1]. Nowadays, people increasingly use these devices for performing the
most diverse tasks in their daily lives, from work to leisure. Due to this trend,
the volume of data generated by these devices is growing rapidly, and new appli-
cations appear that are more and more resource-demanding (e.g., augmented
reality apps). Accompanying this increasing demand for performance and better
user experience, devices’ capabilities have also been improving year after year [5].

Traditionally, in order to meet these needs, mobile applications resort to cloud
services [8]. Data generated by the mobile devices is transferred to the cloud,
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where it is processed, and the output is replied back. However, in some situations
and for some classes of applications [3], this approach may raise some problems.
It requires (stable) network connectivity, yet network infrastructures may not
exist, may be overloaded, or even destroyed. Furthermore, even assuming infras-
tructure availability, transferring large amounts of data to and from the cloud
can lead to network congestion, increased latency, devices’ battery depletion,
and possible monetary costs. Also, mobile devices are known to often experience
poor or intermittent connectivity, leading to availability issues if applications’
logic and data are fully delegated to a remote infrastructure. Additionally, there
are the non-negligible costs associated with the service setup and maintenance.

All these problems, along with the ever increasing devices’ capabilities, make
it pertinent to use the resources available at the network edge, i.e., in the mobile
devices, and (partially or fully) process data closer to where it is generated and
consumed. This alternative approach appears with the concept of edge com-
puting [12] and has the potential to lessen many of the problems mentioned
before. The edge computing paradigm pushed computations and storage beyond
the data center, closer to end-user devices, enabling the execution of certain
components of edge-enabled systems directly and cooperatively on edge devices.
By processing data near its source, applications can be more responsive, while
relieving some of the load from both cloud and network infrastructures.

In this paper we present Oregano, a framework for data-centric distributed
computing for networks formed exclusively by co-located mobile devices, without
needing cloud services, and even being able to work without access to network
infrastructures. Oregano is capable of processing batches and streams of data
generated, and stored, on the devices themselves. It presents a programming and
execution model based on the manipulation of sets of data called Mobile Dynamic
Datasets (MDDs) (see Sect. 3.2), following the proposal in [9]. MDDs are logical
entities that comprise data items of a given type, characterized by a topic (such
as a hash tag used on social networks). They are stored in a reactive storage and
dissemination system with topic-based publish/subscribe functionalities, called
Thyme [13], and processed by a data-centric batch/stream computing model.

A possible use case for our proposal is a children birthday party, where par-
ticipants take photos and share them, so that others may collect the ones they
have interest on. Initially all photos may be shared with a single tag, #Par-
tyEmily, hence defining one MDD. As the party evolves, participants may ask
for the photos of a specific child, by supplying a photo of the child as a query.
The resulting set of photos will define a new MDD that may be downloadable
and made accessible to all through a new tag, e.g. #EmilyResult.

The current state-of-the-art proposals allow mobile devices to distribute com-
putations and data among a set of mobile devices, as if they were nodes in a
computing cluster. Thus, data needs to be moved to where it is needed, i.e.,
where the computations are being executed. On the contrary, Oregano is con-
ceptually different from these, as it allows computations to be executed where
the data is located, thus reducing data transfers.
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The main contributions of this paper are: i) Oregano, a framework for data-
centric distributed computing on networks of mobile devices, capable of process-
ing batches and streams of data generated by the devices, without requiring
access to network or cloud infrastructures (Sect. 3); and ii) Oregano’s evalua-
tion in both real world and simulation experiments (Sect. 4).

2 Related Work

Serendipity [11] is a system that enables mobile devices to use computational
resources from other mobile devices in the neighborhood. This system is tailored
to work in scenarios of intermittent connectivity between mobile devices.

Service-Oriented Heterogeneous Resource Sharing (SOHRS) [7] describes an
architecture and a mathematical framework for heterogeneous resource sharing
between mobile devices, through service-oriented utility functions.

FemtoClouds [4] allows mobile devices to form computational clouds. It is
based on the idea of Cloudlets [10], but all computing/processing is performed
by the mobile devices that form the cloud. Task distribution is ensured by a
fixed device and the system relies on infrastructure for control and coordination.

MClouds [6] is a system where mobile devices can send computations to
neighboring mobile devices or to a fixed cloud, when a given task cannot be
completed on the source device due to lack of resources. This system follows a
master/slave architecture.

Honeybee [2] is a system where interconnected mobile devices cooperate to
execute computations. It uses a master node with a job queue, from which several
worker nodes take work following the work stealing scheduling strategy.

P3-Mobile [14] is a parallel computing system, based on another P3 point-to-
point parallel system, which has been adapted to work in a mobile environment.
It is a system that allows the dynamic division of tasks.

Compared to Oregano, only SOHRS and P3-Mobile support different types
of communication protocols. Our framework still shares several similarities with
some of the other solutions with respect to computing distribution approaches,
in that it follows an approach of assigning work, instead of looking for work,
something that is made on P3-Mobile and Honeybee. Also, the ability to handle
the entry and exit of devices on the network, is a common aspect to all solutions,
including ours. Yet, there are aspects that distinguish our solution from the oth-
ers. Our framework follows a peer-to-peer architecture, rather than master/slave.
The programming model followed by our solution also differs from the others, in
that it is a data-centric model, in contrast to task-based models—programmers
apply processing functions over data sets rather creating computing tasks. Simi-
larly to the other solutions, Oregano supports the processing of bounded data
sets, i.e., batches. However, Oregano also supports the processing of unbounded
data sets, i.e., streams, something that none of the other solutions do.
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3 Oregano

Oregano is a framework for distributed computing on a network of mobile
devices. It provides for the processing of bounded and unbounded data sets
generated by, and residing on, those same devices. A data set contains all items
published under the same topic/tag, being the items themselves stored in the
publishing device’s memory (and possibly replicated by others). The distributed
nature of the data sets is abstracted by the concept of Mobile Dynamic Dataset
(MDD), the system’s unit of work.

Besides generating data, an Oregano device may also offer computational
services. These services are announced, but, in general, they should be an integral
part of the application. Meaning that an application that allows users to publish
photos and find photos with a given face, should incorporate both the client and
server counterparts of the interaction.

Building from the concepts of MDD and Service, Oregano offers APIs to:
a) develop and make available services to process MDDs; and b) publish data
and submit queries through a Publish/Subscribe (P/S) mechanism that grows
from Thyme [13]—a reactive storage system that combines a storage interface
with a P/S abstraction (which we will briefly present in Sect. 3.1).

Concerning its architecture, Oregano is a symmetric distributed system sus-
tained by a set of interconnected mobile devices, which communicate through
wireless technologies, such as Wi-Fi, Bluetooth or WiFi-Direct [15]. All devices
run the same software stack and have no specific functions permanently assigned.
However, at a given instant a device may play one, or more, of the three fol-
lowing roles (which will be detailed in Sect. 3.4): client – that emits computa-
tional service requests upon an MDD; scheduler – that receives service requests
and distributes the required computational tasks among the devices hosting the
MDD’s data; and computing node – that executes computational tasks over
one or more of the MDD’s elements residing in its memory. Lastly, Oregano
does not impose any mobility restrictions on the devices, meaning that these
may enter or leave the system at any time.

3.1 Thyme in a Nutshell

Thyme is a time-aware data storage and dissemination system that follows a
data-centric approach, and uses a key-value substrate built on top of a cell-
based Distributed Hash Table (DHT). Nodes are clustered into cells, being that
messages addressed to a cell are delivered to all nodes within that cell. The use
of the cell-based DHT is two-fold: 1) cells are used to store all system data; and
2) cells are exploited to match subscriptions against published content, i.e., cells
act as virtual P/S brokers. The work reported in [13] addresses ad-hoc networks,
being cells defined by the geographic location of the devices. In infrastructure-
based solutions, the distribution of the devices across cells is merely logical,
bound to the amount of devices and data being published.

In Thyme, a data item has some associated metadata, provided at publish
time. Among others, it includes a small description and a set of tags related with
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Fig. 1. Publish and subscribe operations in Thyme. The tags’ hashing determines the
cells responsible for managing the metadata (cells 2 and 5) and the subscription (cell 2).
Photo taken from Pexels.com (Author: Samaraagenstvo Feeria).

the content (and the system adds the publication time). Metadata is indexed by
all its tags, i.e., the cells resultant from hashing each tag replicate the meta-
data (as in Fig. 1). If desired, the actual content may be replicated in the nodes
of the publisher’s cell (at the moment of the publication). Figure 1 illustrates
the publish and subscribe operations of a photo with tags “Birthday” and “Par-
tyEmily”. A subscription comprises, among others, the query defining which tags
are relevant, and timestamps defining when the subscription’s time frame starts
and expires. Regarding this feature, we consider bounded data sets to be the
ones whose expiration time is in the past, i.e., all data is known in advance, and
unbounded data sets, the ones that have expiration time in the future.

Hashing each of the query’s literal (i.e., tags) determines the cells where
to send that part of the query. These cells become (virtual) brokers for the
subscription, and are responsible for checking if published content matches the
subscription, notifying the subscribers, if needed be. By inspecting the item’s
description (e.g., a photo thumbnail), a notified subscriber may then decide to
download the item from the list of received locations, or not.

Additionally, Thyme supports multiple tag namespaces across applications
or even within a single application, e.g., to support multiple data sets (like
photo galleries, or shared folders). Lastly, it assumes that the nodes’ clocks are
synchronized (with a negligible skew).

3.2 Mobile Dynamic Dataset (MDD)

An MDD is an abstraction for a data set distributed among several devices. The
concept is similar to the Resilient Distributed Data Sets presented in [16], but
applied to the reality of mobile distributed computing. As previously stated, an
MDD is identified by a tag (a Thyme tag in our case). So, every data item
published with a given tag becomes part of the same MDD.

The data resides in the devices, and hence MDDs are likely to be partitioned
into multiple partitions, that we refer to as MDD partitions (MDDps). Moreover,
given that Thyme supports replication—both active and passive—there might
be multiple locations for each MDD element. Thus, the number of partitions of
an MDD also depends on the locations selected for each element. This allows
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to balance the load of the computational tasks, as we will discuss in Sect. 3.6.
Figure 2 illustrates an MDD with three partitions.

A B C D

MDDp

E F A

MDDp

G A B F

MDDp

MDD

Fig. 2. MDD partitioned across three devices. Red dots depict replicas of the items.

3.3 Oregano Service

In Oregano, a service processes an input MDD and generates a new one. The
output may be simply transient, just to provide a way for the client to obtain the
result, or be persisted for future computations. To process an MDD, a service
must implement the process operation:

MDDStream<Output> process(MMDStream<PPInput>, [List<Args>])

that defines the computation to be applied to an MDDp. The input partition is
received as a Java stream, whose processing produces a new stream of results
that will become a partition of the new MDD. There is no obligatory 1-to-1
relationship between the number of items received and produced. The process
operation may also receive a list of arguments that are part of the service’s
request. An example is the data representing the face to search in a photo MDD.

A service may also implement the preProcess operation to extract from the
data items the information needed by the process operation:

PPInput preProcess(Input, [List<Args>])

This mechanism allows for process to execute over data that is not explicitly
contained in the input MDD. Once again, using the photo application example:
the process operation may work upon features extracted from the photos, rather
than on the photos themselves. The extraction of the features is then defined
as a pre-processing function—computed by the preProcess operation—that is
mapped to all the elements of the input MDDp. The output is a new MDDp of
elements of type PPInput that becomes the input of the process operation.

The pre-processing operation is a 1-to-1 mapping function that may be
eagerly or lazily applied. In the first case, it is applied when the data item
is published, whilst, in the second case, it is only applied the first time the data
item is to be processed by the service. As will be discussed in Sect. 4.1, this
choice entails a trade-off between latency and energy consumption.
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Service Request. In Oregano, services are requested via a novel kind of
subscription, called Subscription with Computation (SubC), which adds (to
Thyme’s subscription) the identifier of the computational service to be trig-
gered when a match to the query is found. A SubC is thus defined by a tuple
〈sid, q, tss, tse, nid, cid, args, hdl〉 where sid is the subscription identifier; q is the
query that defines the target MDD; tss and tse are the timestamps defining the
time interval when the subscription is active; nid is the subscriber’s node iden-
tifier; cid is the computational service identifier; args is the list of arguments to
be passed to the service (including the tag for the result MDD); and hdl is a
result handler. To provide control over service requests that target big MDDs,
the contents of the latter are processed in batches of configurable size. The hdl
handler is triggered whenever a notification of new results arrive or a failure is
detected. Upon the notification of new results, the requester is informed of how
many items are yet to be processed, and may ask for the execution of the next
batch.

3.4 Execution Model

The Oregano design is centered on the premise that, in almost every scenario,
the computation must be restricted to data residing on the devices’ memory. This
approach ensures that the computational services do not place a heavy burden
of communications in the network. A service request is a control operation that
triggers the execution of computational tasks on one, or more, devices, which
subsequently notify the requester of data that matches the query. If the result is
small enough (with a configurable threshold) it may replace the item’s descrip-
tion in the notification message. Otherwise, the notification messages only carry
the result’s description, and the locations from which it may be subsequently
downloaded (via Thyme).

Figure 3 depicts a coarse-grained representation of the steps involved in the
processing of a service request. SubCs are emitted by Oregano clients to the
schedulers (step 1 ), which schedule the necessary computational tasks among
the devices (computing nodes) that host a partition of the target MDD (step 2 ).
Then, these computing nodes process their partition. Once concluded and when
results are produced, the computing nodes notify the client that issued the
request: either by publishing the results in Thyme (step 3 ), or by sending
the notification directly to the client. At the same time, they inform the sched-
uler that their task is completed (step 4 ). Next, we further detail the roles each
Oregano node may assume.

Client. Oregano clients are able to manage the availability of the services they
offer to the system, publish data items (with eager pre-processing, if desired),
and issue and manage the execution of SubCs. A SubC triggers two Thyme
subscriptions: one on the tags specified on the request, and another on a result
tag that identifies the result MDD. This result tag may be explicitly supplied by
the application, when the result is to be persisted (with such tag), or be internally
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Sched.
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4. Result notification confirmation
5. Result notification

1

2

4

3

5

2

2

2
4

4

4

3

3

3

Fig. 3. General execution model.

Handled as batch of data

Handled as data stream

New DataItem published

Continue

Fig. 4. Scheduling a computation request :
in blue, a batch; in red, items in a sched-
uled task. (Color figure online)

generated by the framework, when it is simply to be used as a mechanism to
deliver the results to the requester.

As mentioned in Sect. 3.3, SubCs are processed in batches. The triggering of
the execution of a new batch is of the requester’s responsibility, and may only be
done after receiving the notification that the previous batch has been processed.
This iterative mechanism avoids processing items that the client may not want
to receive, due to lack of memory, time, or interest, among others. When asking
for a new batch, clients must send the desired batch number, as the scheduler is
stateless with regards to client requests.

Scheduler. A scheduler is responsible for scheduling and managing a SubC.
Virtually, it is the Thyme cell responsible for managing the MDD’s tag. In
practice, a random device is chosen from the ones that compose such cell. Thyme
guarantees (through active replication) that all the devices in a cell replicate the
metadata regarding a given tag/MDD.

From this metadata, the scheduler is able to select the next batch of items to
process, and from the multiple replicas of each item, select the devices on which
to execute the desired service. If the MDD is bounded and there are no more
items to process, the corresponding reply is sent back to the requesting client,
and the procedure is concluded. Conversely, if the MDD is unbounded and the
batch is not complete, the data is treated like a stream, and new tasks will be
scheduled as new data items are published to the MDD (Fig. 4).

The execution of a scheduled task may fail, for instance, if the device respon-
sible for the work leaves the network. Such event is detected by the scheduler,
via a heartbeat mechanism, causing the task to be rescheduled to another device
from the ones that replicate the data items to process.
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Computing Node. Upon the reception of a task execution request, a device
assumes the computing node role and executes the following workflow: 1) create
an MDDp from the data items to process (locally stored in Thyme); 2) for
services that require pre-processing, check if every MDD item has already been
pre-processed and, if not, pre-process it by calling the pre-process operation on
the target service; 3) obtain a stream for the MDDp and pass it as argument to a
call of process on the requested service; and 4) deliver the results according to a
pluggable strategy. For infrastructure-based scenarios, the default strategy is: if a
tag for the new MDD was explicitly supplied, then publish every element of the
result MDDp with such tag. Otherwise, contact the service requester directly. If
the latter cannot be found, the contact is postponed a given number of times
until it is dropped.

3.5 Handling Churn

Churn may interfere with Oregano at different levels. We have already
addressed the issue of computing nodes gone missing, but the same may happen
with schedulers and clients. If, in a computing-scheduler interaction, a particular
scheduler cannot be reached, a new one is randomly selected from the same cell.
In order for the new node to have the necessary data, scheduling information is
also actively replicated within cells. This solution also provides the framework
for handling churn in client-scheduler interactions.

Lastly, we have the case of missing clients on the computing-client interac-
tion. The result delivery strategy described in the previous section, discards result
notifications to absent clients. A more conservative approach can, always, pub-
lish the results, even if these were directed to a particular client, i.e., the result
tag was automatically generated. Naturally, every publish operation generates
metadata and, hence, there is a trade-off between persisting all the results on
Thyme and, the storage space and network communication required to provide
such availability.

3.6 Load Balancing

In Oregano, devices that publish more data items are likely to be the ones that
execute more computational tasks. However, this can be mitigated by activating
Thyme’s active replication, and making all nodes of the publisher’s cell to con-
tribute on this enterprise. The load then becomes managed at cell- rather that
node-level. Nonetheless, there may still be cells that have more load than others.
To overcome this load imbalance, we resort to Thyme’s passive replication.

As devices that download a data item become replicas of such item, several
replicas will pop on the network. Moreover, the more popular items are, the
more replicas they will have. The scheduler leverages this property and uses an
uniform distribution to spread the service requests among all replicas (of a given
data item) it knows.

Although the scheduling process is not computation-intensive, the scheduler
cells can also create sources of load imbalance, since some tags may be more
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popular than others (and in Thyme each tag is managed by a single cell). These
cannot be solved via passive replication, because there is no passive replication
of metadata. In infrastructure-based scenarios, this imbalance can be mitigated
by a dynamic management of the cells’ membership, which is ongoing work.

4 Evaluation

Here, we present an evaluation of our framework, both through real world and
simulation experiments. With this, we intend to address the following aspects:
1) what is the framework’s behavior regarding latency and scalability; 2) which
are the energy costs of the operations offered by the framework; and 3) what is
the impact of churn in the framework.

4.1 Real World Experiments

For the experiments with real devices, we used Oregano in a facial recognition
Android application. The app allows users to publish photos with associated
tags, and subscribe with computation to specific tags. We defined an Oregano
service capable of applying facial recognition to images by using the Java inter-
face for OpenCV. As arguments, the service receives a similarity threshold, and
the (features of the) faces to search for. The preProcess operation performs face
detection and feature extraction over a published photo. The process operation
goes through the input stream (of pre-processed data items) and applies the
facial recognition algorithm to every element, returning an output stream with
all the photos having faces matching the ones given in the service arguments.

We tested our application using a network composed by six mobile
devices (three Motorola Moto G 2nd gen. and three Motorola Nexus 6), con-
nected through a Wi-Fi hot-spot offered by a laptop.

Latency and Scalability. First, we study the impact of the number of avail-
able computing devices in the latency of the SubC operation. In the experiment,
a single device issues a SubC operation to a specific tag, bound to an MDD
containing 30 photos (of equal size), published with pre-processing. Figures 5
and 6 report the operation’s latency when varying the number of devices stor-
ing the MDD. In both figures, we divide the total latency in two: the request
latency corresponds to the time taken to manage the operation itself, and the
service latency corresponds to the time taken by the (facial recognition) service
to process the photos.

In Fig. 5, we can observe the request latency is independent of the number of
devices, being around six seconds. However, the error bar displaying the stan-
dard deviation, reveals a slight variation in the results. This is justified by the
heterogeneous device hardware and by the roles each device plays in the experi-
ments. Different devices playing different roles will provide different overall per-
formances, thus affecting the measured latency. To this variation also contributes
the fact that the whole process of submitting a service request and scheduling
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Fig. 5. SubC latency, hetero-hardware. Fig. 6. SubC latency, homo-hardware.

tasks is communication-, rather than, computation-bound. Hence, the additional
interactions required to conclude a service request, as the number of computing
nodes increases, have a clear impact on the measured latency—noticeable for
the six device setup.

Concerning the service latency, it is directly proportional to the number of
devices, since the workload is equally divided among all of them. Additionally,
the error bar shows a high variability in the results, also due to the heteroge-
neous hardware. The facial recognition service is computationally intensive, and
so, the processing time is highly dependent on the devices’ hardware. In our set-
ting, Nexus 6 devices perform the same work more than three times faster than
Moto Gs. To remove this entropy factor from our results, hereafter, all reported
experiments only make use of Nexus 6 devices.

Figure 6 reports the SubC latency when using this homogeneous setup. The
depicted standard deviation confirms the low variability of the results claim. We
may also observe that the service latency decreases with the number of devices,
showing an almost linear behavior. With three devices, the latency of the whole
operation is less than half than when using a single device.

Eager Versus Lazy Pre-processing. Figure 7 depicts the impact of the
pre-processing mechanism on SubC’s latency. The experiment measures service
latency when varying the pre-processing strategy (lazy or eager) and the number
of photos that each computing node has to process (10, 15 or 30).

In the lazy setting, the pre-process operation is deferred to when the local
MDDps are processed for the first time, and thus, the service latency values
accumulate both the pre-processing and the processing time. Conversely, in the
eager setting, the service latency only accounts for the MDD’s processing time,
as all the items were already pre-processed.

In our app case-study, the pre-processing stage takes longer than the process-
ing itself, by a factor of roughly three. As a result, the choice between lazy or
eager pre-processing has a considerable impact. By ensuring that only items that
are effectively processed by a given node are pre-processed in that node, the lazy
approach is more energy friendly, hence allowing for devices to participle in the
system for longer periods of time. On the other hand, the eager approach can be
an alternative if faster response times are desired from the start. This denotes
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Fig. 7. Service latency: eager and lazy pre-processing.

a trade-off between service latency and wasted resources/energy consumption.
Recall that the lazy alternative only impacts on the first time the items are pro-
cessed by a given service (on a given node). For instance, in our birthday party
scenario, photos that are lazily pre-processed for matching against a face, e.g.,
Emily’s, will not have to be pre-processed again to handle a subsequent query
for another face, e.g., George’s.

Energy Consumption. Oregano executes on mobile devices, which have
known energy limitations. Thus, it is important to measure the impact of the
systems’ execution on a device’s battery. To that end, we measured the consumed
energy (in the Nexus 6 devices) by reading the instantaneous current and voltage
every second, from the devices’ Android API.

Figure 8 displays the amount of energy spent to execute the entire workflow
of operations publication with eager pre-process (Pub pp) and SubC, when exe-
cuted individually. The measurements include the energy spent by the device
issuing the operation (the client), as well as the energy implicitly spent by the
remainder devices involved in the workflows, denoted by M Pub, and M Sub.

Pub pp is the operation that consumes more energy, around 6.64 J. This is
mostly due to computationally intensive pre-processing operation for extract-
ing the faces of an image. The management of the publication is delegated on
Thyme, and it is only displayed here to present a complete view of Pub pp’s
energy cost (M Pub on the chart).

Regarding the SubC operation and its management, as expected, most of the
energy consumption is not at the client, but in the scheduling of the tasks and
on the execution of the service.

To provide more insightful information, we analyze how much energy is spent
when a device executes the following operations continuously over one minute:
publication (Pub), publication with pre-process (Pub pp), subscription with
computation (SubC), scheduling tasks (Sched), and processing MDDps (Proc).
We began by measuring the amount of energy spent by a Nexus 6 when in stand
by, only connected to a WiFi hot-spot for one minute, which yielded roughly 40 J.
Next, we launched our application and left it in stand by (exchanging only the
messages required by Thyme to maintain the network), with spent approxi-
mately 20 J more: totaling ≈ 60 J. The additional energy required by the oper-
ations under analysis is reported in Fig. 9.
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Fig. 8. Energy for a single operation. Fig. 9. Energy for one minute of operations.

SubCs operations spent around 38 J (totaling 98 J), which we consider to be
a reasonable amount of energy spent, given that we submitted 15 SubCs and
that 98 J correspond to about 0.22% of a Nexus 6’s battery. Sched required 47 J,
totaling 107 J that corresponds to 0.24% of the battery. Proc yielded the second
highest total battery cost, 194 J, to apply the facial recognition algorithm to 75
photos. This corresponds to approximately 0.44% of the Nexus 6’s battery, which
is also a rather good energy-to-result ratio. Pub pp spent 157 J to publish 40
photos, totaling 220 J that corresponds to about 0.5% of the battery. When the
operation is expensive, as in this case study, it must be used wisely.

On Oregano, a mobile device can play three different roles. Although we
presented each of the three battery costs separately, executing the entire work-
flow of a SubC, on three different devices, spent a total of 400 J. In a scenario on
which a mobile device is used for two and a half hours, constantly being used as
a client, scheduler or computing node, an average of 133 J (0.3% of a Nexus 6’s
battery) is potentially spent per minute, which, after 150min, corresponds to
approximately 45% of a Nexus 6’s battery. This value is quite reasonable, con-
sidering the type and duration of this intensive usage.

4.2 Simulation Experiments

For the simulated environment we implemented a less computationally inten-
sive Oregano service. It is a text pattern matching service that returns texts
that contain a specified textual pattern, such as a word. To simulate the mobile
devices, we used the simulator available for Thyme that simulates a large num-
ber of devices running a Thyme-based Android software stack. The simulator
handles all inter-device communication, allowing for the insertion of delays and
faults, and also provides functionalities for nodes to leave and enter the network
at any time. The behavior of each node is defined in a trace file.

Impact of Churn When Scheduling Tasks. To evaluate the impact of
churn in the scheduling of tasks, we devised a test where nodes from an MDD’s
scheduling cell, leave such cell. The nodes’ absence may make it impossible to
continue (asking for the next batch of) a previous computation request, hence



Data-Centric Distributed Computing on Networks of Mobile Devices 309

Fig. 10. Scheduler cell churn. Fig. 11. Computing cell churn.

disrupting the operation. The experiment consisted of trying to perform 20 con-
tinue operations on a SubC, while observing the number of retries done before
the operations executed successfully. A retry occurs whenever the scheduler fails
to acknowledge a request, leading the client to resend it—if the previously con-
tacted node has left, Thyme should detect it, remove it from the cell’s member-
ship and, thus, direct the new request to a new node. We used four cells and a
total of 16 nodes: one cell with one client, another with a node for handling the
result tag, a scheduler cell with 10 nodes, and a computing cell with four nodes.

Figure 10 depicts the results. No retries were necessary when 10% of the nodes
left the cell, and only one retry was needed to perform 20 continue operations in
up to 90% of absent nodes. This shows that Oregano is able to mitigate churn
in client-scheduler interactions, with low impact.

Impact of Churn When Executing Tasks. Additionally, we removed devices
performing computing tasks, in order to asses Oregano’s tolerance to churn in
scheduler-computing interactions. The experiment consisted in performing 50
SubCs operations and observing the number of retries performed by scheduler
nodes, while scheduling tasks. A total of 16 nodes were divided in four cells:
one cell with one client, another with one node for handling the result tag, the
scheduler cell with four nodes, and the computing cell with 10 nodes.

Figure 11 shows that an average of 2.8 retries were performed when 10% of
the computing nodes were missing, having increased as more nodes were removed
from the network, to around of 7.2 retries for 90% of absent nodes. Although
Thyme is able to detect which nodes left the network, it does not proactively
updates the metadata of the items that were published and replicated by such
nodes. This means that when Oregano, specifically the scheduler, retrieves
metadata of schedule tasks, the contained replica list may be outdated. To avoid
rescheduling tasks to devices that were not available, every scheduler contin-
uously updates this information. However, the mechanism is purely local and
not shared with the remainder members of the cell. Nonetheless, all operations
completed with success, assessing Oregano’s ability to deal with churn in sched-
uler-computing interactions. Also, observing that going from 10 to 90% of churn
only increased the number of retires in four operations, we may conclude that
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Oregano is not highly affected by churn, being able to recover from failures
without exchanging an excessive amount of messages.

Limitations. In both churn experiments, the values observed were positive and
met our expectations. It is, however, important to point out that our framework
is still negatively impacted by churn, specifically in the experienced latency and
in the number of messages exchanged. Regarding latency, Oregano detects
failures whenever an expected acknowledge or heartbeat message is not received
in a given time window. This is naturally only detected after pre-defined timeouts
have expired, significantly increasing the latency of a computation request. We
allow for the dynamic configuration of these timeouts, providing the foundations
for the implementation of dynamic adaptive policies dependent on the execution
environment.

5 Conclusion

We presented Oregano, a peer-to-peer framework for data-centric distributed
computing on networks of mobile devices. Oregano offers a novel data-centric
mobile-computing-aware way of processing batches or streams of data that are
generated by co-located mobile devices, without requiring cloud infrastructures.

Our experiments allowed us to conclude that Oregano is able to adequately
schedule tasks among many devices and that the increase of simultaneous SubC
operations does not necessarily means an increase in the latency of individual
service requests. Lastly, we showed that the energy consumption of Oregano
is suitable for usage in mobile devices, and that Oregano is able to tolerate
churn of scheduling and computing nodes, and thus is suitable for use in mobile
computing networks.

As future work we plan to improve the load balance of computational work
between cells, taking the devices battery and CPU power in consideration; and
make system timeouts adaptive.
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Abstract. Using virtualization, cloud environments satisfy dynamically
the computational resource necessities of the user. The dynamic use of
the resources determines the demand for working hosts. Through vir-
tual machine (VM) migrations, datacenters perform load balancing to
optimize the resource usage and solve saturation. In this work, a pol-
icy, named WPSP (Weighted Pearson Selection Policy), is implemented
to choose which virtual machines are more suitable to be migrated. For
each VM, the policy evaluates both the CPU load and the Network traf-
fic influence on the assigned host. The corresponding Pearson correlation
coefficients are calculated for each of the VMs and then weighted in order
to provide a relationship between the values and the host behavior. The
main goal is to clearly identify and then migrate the VMs that are respon-
sible of the Host saturation but also considering their communications.
Using the CloudSim simulator, the policy is compared with the rest of
heuristic techniques in the literature, resulting in a reduction of 89% in
the number of migrations, and thus reducing the use of bandwidth (5%),
network saturation (20%) and over-saturated hosts (51%). Additionally,
an improved VM allocation technique to reduce the distance the VMs
must travel in order to be migrated is presented, obtaining an average
reduction of 87% in the quantity of migrated data.

Keywords: Cloud Computing · Planning · Virtual machines ·
Migrations · Pearson correlation coefficient · Load balancing ·
CloudSim

1 Introduction

Cloud Computing has become an effective alternative to local servers for many
users, whether to allocate the resources of companies or to compute scientific
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programs in research centers. It provides dynamic and scalable virtualization
resources through a network service and forms a virtual computing resource
pool allocated to a classic data center. Thus, it is possible to combine the hosts’
capacity on an on-demand pay-per-cycle basis, guaranteeing the defined Service
Level Agreement (SLA) to the users.

However, variability in the request-rate from the cloud service consumers at
any given time can seriously affect not only the Quality of Service (QoS) but also
the SLA. The applications, and particularly the network-intensive ones, often
need to communicate frequently, and the network I/O performance would affect
the overall VM performance notably. In this situation, hosts become overloaded
and unable to resolve all the requests, negatively impacting the SLA.

In the literature, there are many methods to avoid overloading hosts in data
centers. Some of these are based on load balancing strategies that facilitate
the distribution of the workload equally over the available resources [8]. Other
proposals apply VM migration to provide the required resources to the VMs
responsible for the host overload. However, the migration process can produce
unexpected network latency or congestion that becomes critical for achieving and
maintaining the performance of the application. That is why the migration pro-
cess requires correctly identifying a candidate migratable VM that ensures not
only the host load reduction but also keeps use of the inter-VMs communication
links contained, thus avoiding an SLA violation.

In the present paper, we propose the use of the Pearson correlation factor
to correctly identify those VMs that are seriously affecting the host overload,
taking into account both the computational and communication resource usage.
The proposed method not only tackles the current host state, but also evalu-
ates the previous states captured during the host execution timeline. When the
VM is identified, the migration process moves it to another host, releasing the
corresponding resources and effectively reducing the host overload. Moreover,
our proposal incorporates a weighting factor that provides a much closer rela-
tionship between VM correlation and Host behaviour. To avoid unnecessary VM
migrations, our proposal attempts to find the balance between the quantity of
CPU released by a VM and the communication affinity with the rest of the VMs
within the host.

The experimental results have been compared with the most well-known
heuristic methods from the literature, and demonstrate that our proposal
improves the host usage avoiding the overload and also reducing the global num-
ber of VM migrations.

The rest of the work is organized as follows: in Sect. 2, the state of the art
used for the present work is described. Section 3 presents the VM selection policy.
Section 4 contains the experimental study, and finally, the conclusions and future
work are discussed in Sect. 5.

2 State of the Art

In the literature, there are many works related to the virtual machine migra-
tion process. Raja et al. in [2] present a survey of VM migration and server
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consolidation. They evaluated multiple migration schemes and they took into
account different parameters to compare them. Their conclusions pointed to the
fact that unnecessary and uncontrolled migrations are the main reason for SLA
violation. Most of the proposed solutions to initiate the migration process were
based on processing discrete data-captures to evaluate the QoS while others were
based on applying machine learning-based adaptive thresholds. In the present
paper, we propose an effective correlation-based method with data obtained from
tracking the host execution time-line taking snapshots periodically.

The correlation between two sets of data is a statistical measure that calcu-
lates the strength of the relationship between the relative values of two variables.
There are many studies in the literature applied to different fields of knowledge
that demonstrate the importance of correlation between multiple parameters for
taking correct decisions. Douglas et al. in [4] and Winter et al. in [15] compared
some correlation factors and their quality. In the current paper, given the contin-
uous nature of the variables (CPU and network load values) and the sensitivity
to variations in the differences between the sample values, we decided to focus
on the well-known Pearson correlation coefficient.

There are different works using correlation coefficients applied to Cloud Com-
puting. Choudhary et al. in [6] was based on Spearman’s Rank Correlation Coeffi-
cient to select the optimal VM according to the present workload and datacenter
resources availability to reduce the energy consumption. The results obtained,
compared with the VM Random Selection, demonstrated lower energy consump-
tion while maintained the required SLA. Moghaddam et al. in [9] proposed a VM
selection algorithm focused on energy reduction and also considering the SLA
parameter. The algorithm was based on the Pearson correlation coefficient and
was used to determine both VMs’ CPU utilization and the correlation with
their co-hosted VM. Their proposal was evaluated through simulation in the
CloudSim environment, using two different real Cloud data sets by the CoMon
project (PlanetLab) and Google. The results show that the correlation improves
the VM identification as migratable and reduces the energy consumption. Sun et
al. in [13] addressed the problem of online migration of multiple correlated VMs
among multiple datacenters. This work was focused on the optimization of migra-
tion performance. The authors treated both bandwidth and routing required for
the VM migration process and use the correlation to determine those VMs that
must be migrated all together. The results reduced the remapping cost and the
average migration time and downtime of the VMs.

Our proposal differs mainly from previous works in the fact that we use the
correlation coefficients to determine the influence of the VM on the resource
usage of the allocated host. We evaluate periodically both computing and com-
munication load for each allocated VM. When an overloaded host has been
identified, our method determines the VM candidate to be migrated. Applying
our proposal, the overall migrations were reduced, thus reducing the network
saturation, increasing the host utilization and without compromising the SLA.

In [1], Abdelsamea et al. presented a host saturation algorithm based
on multiple regressions (CPU, RAM and Bandwidth), decreasing the energy
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consumption and SLA. Additionally, they combined Local Regression (LR) with
Loess’ method to develop a hybrid version of their algorithm. The results show
that the implemented algorithms have better results for energy but obtains worse
SLA violation results due to being inversely correlated to energy. Ali [7] et al.
presented a Weighted Linear Regression algorithm for resource prediction, CPU,
RAM and network bandwidth. The algorithm was compared with other detec-
tion techniques in the literature. It shows a decrease in the energy consumption
while providing a high level of commitment to the SLA, maintaining a similar
level of migrations.

In the present paper, we evaluated not only the similarity in behavior between
VMs and Hosts, represented by the correlation factor, but also the influence
that these VMs had on generating this behavior. Thus, we propose the use of
a weighting factor applied to the correlation factors that allows to identify the
most suitable VM to be migrated. Our proposal is also combined with a new
assignment method with the main aim of decreasing the distance to be crossed
in the migration process and then reducing the network utilization.

3 Problem Statement

The policy presented in this paper, hereinafter referred to as Weighted Pearson
Selection Policy (WPSP), is based on three main ideas: (1) evaluating the host
execution in the time-line to determine the resource usage behavior of each one
and detect the overload situations, (2) evaluating the use of both computing
(in terms of CPU usage) and communication (in terms of data transfer volume
within the host) VM resource usage to correctly identify the VMs closely related
to the host overload, and (3), applying a weighting process to the volume of CPU
and network used by the VMs in relation of their host to adjust the obtained
correlations, finally defining which VMs are provoking host saturations. Our
first goal is to obtain knowledge of the host load during their execution. This
information is acquired from snapshots taken of the system periodically. These
snapshots contain information about the resources required by VMs and the
resources really assigned by the hosts.

The second core element of our proposal is to determine the VM that has the
greatest influence on the overloaded hosts’ resource usage. Each host allocates
multiple VMs and each with different resource requirements. It must be taken
into account that some of these VMs can be related to the same service so that
migrating any VM does not ensure the reduction of overload as the external host
communication can increase due to the new VM allocation. For this, we propose
to consider both computation and communication resource usage to identify
their influence on the host overload and determine the relationship between the
VMs inside the host.

The idea behind the use of the Pearson correlation is to determine the simi-
larities of the CPU and network resources usage between the host and each VM,
with the aim of identifying the VMs with a wider impact on the host resource
usage. Knowing which VMs are the most influential, we can migrate those caus-
ing the biggest impact on the release of resources but triggering a smaller number
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of migration. The correlation coefficients assume n samples of two variables, x
(host) and y (VM). The Pearson correlation coefficient is calculated by Eq. 1,
where x̄ and ȳ represent the arithmetic mean of x and y, respectively. In addition,
each pair of values corresponding to the same point in time cannot be altered
so as to maintain the consistency of the coefficient obtained.

r =
∑n

i=1(xi − x̄)(yi − ȳ)
√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(1)

The correlation coefficient between two ordered sets of values measures the
strength of the relationship between the relative movements of the two variables.
The values range is [-1, 1]. A positive correlation means that if one variable
increases, the other variable also tends to increase. A negative correlation means
that if one variable increases, the other variable tends to diminish. The weakest
linear relationship is indicated by a correlation coefficient equal to 0.

In this paper, rcpu measures the relationship between the Host CPU usage
(x) and a VM’s CPU usage (y), in the same way rnet measures the relationship
between the Host internal communications (x) and a VM’s data transfers to
other VMs inside the same Host (y), both calculated by Eq. 1. The main aim of
the WPSP Policy is to identify the candidate VMs to be migrated to eliminate
the host saturation with the minimum VM migrations. In order to meet these
objectives, we consider that the VM with the highest positive rcpu is the best
candidate to be migrated with the aim of reducing host saturation. However, in
the case that this VM also has a high positive rnet, the migration of the VM
will produce an increase in data transfers through the external communication
channels, thus fostering the saturation of these channels and producing a negative
impact on global performance. To prevent this occurring, we should consider the
migration of VMs with a high positive CPU correlation rcpu � 1, but with a
weak network correlation rnet. While there is the possibility of migrating a group
of VMs highly correlated with internal communications, this option substantially
increases the number of migrations and their cost.

Normalization is the process through which a set of values V , ranging from
[min(V ), max(V )] are scaled to [0, 1]. In our policy, the CPU and BW usage of
each VM is normalized in this sense. These are essential values (ncpu and nnet)
for evaluating the role of each VM inside the host, and in collaboration with
the correlation value, we can figure which VMs are the most influential in terms
of volume and oscillations over time. Equation 2 shows how the ncpu and nnet
values are calculated, where x is the value (CPU or network) of the VM, xmax

the highest value among the VMs of the same host and xmin, the minimum.

n =
x − xmin

xmax − xmin
(2)

With the aim of considering the VMs’ consumption of both CPU and com-
munication resources, we propose a heuristic function computed by Eq. 3. This
provides each VM with a value based on the magnitude of both the rcpu and
rnet correlation coefficients and the ncpu and nnet ponderation values.
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hval =
1 − (w ∗ rcpu ∗ ncpu)

(1 + (w ∗ rcpu ∗ ncpu) − (w ∗ rnet ∗ nnet))
(3)

The heuristic function allows the relationship between both correlation coef-
ficients and weighted values to be modelled providing a mechanism to compare
the VMs within a Host. The resulting value hval defines the migration prior-
ity for each VM, the lowest value being the best option. Additionally, after a
specific threshold, hval th, the VMs are not allowed to be migrated, as can be
seen in Fig. 1. The w variable defines the slope of the hval function, and thus
controls the hval value scale. With a value of w = 1, the hval function tends
to 0 irrespective of the values used. On the contrary, with w = 0 the resulting
values tend to 1. The tuning of the w variable can be useful in exceptional cases
with the values located in a bunch. However, with w = 0.5, the resulting values
are bounded in a smooth curve that allows diversity.

By way of example, Table 1 shows the corresponding hval value for a set of
VMs with different combinations of rcpu, rnet, ncpu and nnet values. Figure 1
shows the hval value for each VM and their location on the plane. It shows
the contour lines projected by the hval function on the plane formed by rcpu,
rnet, ncpu and nnet values. We established the premise about which are good
candidates VMs to be migrated. Firstly, the VMs that are directly related to the
CPU usage of its host, and secondly, the ones that have a high weight, provided
that they are also weakly correlated to the internal network communication.

Table 1. Example. hval results for
rcpu and rnet correlation classes

Label rcpu rnet ncpu nnet hval

VM0 0.9 0.9 0.9 0.8 0.57

VM1 −0.9 −0.6 0.2 0.3 1.09

VM2 −0.3 0.9 0.0 1.0 1.82

VM3 0.5 0.5 0.8 0.5 0.74

VM4 0.7 0.2 1.0 0.0 0.48

Fig. 1. hval function representation and exam-
ple results

We can observe this is the case for VM4, obtaining the minimum hval value.
It has notable CPU values, with a CPU correlation of 0.7 and big CPU usage
with a weight of 1, on the contrary, the network usage is small. VM0 has more
CPU correlation than VM4, but also presents higher network load, so it obtains
a bigger hval value. By counterpart, VMs 1, 2 and 3 have no chances to be
migrated. The reason for VM1 is that it shows low weights. About VM2, its
network usage is too much valuable than the CPU load, that is too low. Finally,
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VM3 is near the threshold, however CPU usage should be higher. These results
show that the hval function is suitable to prioritise the candidate VMs to be
migrated.

3.1 Weighted Pearson Selection Policy

The WPSP policy proposed in this paper is represented by Algorithm1. The
WPSP policy is executed when the saturation of one of the hosts is detected.
The algorithm is executed until the saturation is solved or until no more VMs
are selected for migration. First, the VMs able to be migrated are obtained
(line 2). Then, the Pearson correlation coefficients are obtained for each VM, in
relation to the CPU (rcpu) and network (rnet) usage in the host H (lines 4–
5). In the case of the rnet correlation coefficient, only communications between
virtual machines within the same host are taken into account. In lines 6–7, the
weighting values ncpu and nnet are obtained. Next, we obtain the heuristic
value hval for each VM (line 8). Finally, the VMs with the minimum hval are
selected for migration until the saturation problem is solved or no more VMs
are eligible (hval values exceed the WPSP decision threshold hval th). When
no VMs meet this criterion, a null value is returned. Algorithm1 is executed for
each over-saturated host in increasing order by their number id. The complexity
of Algorithm 1 is O(MV M), where MV M is the number of migratable VMs in
the host.

3.2 Minimum Distance Group VM Allocation Policy

To complement our selection policy, WPSP, being focused on the reduction of
migrations, we are interested in an allocation policy that helps it to succeed
on this task. We propose an improvement based on the distance the VMs must
travel across the network. The “CloudSim most efficient host” allocation tech-
nique is improved by applying the Minimum Distance Group, MDG, that is,
instead of selecting the most efficient suitable host from the whole datacenter,
the hosts are grouped and ordered by number of jumps inside the network, try-
ing to migrate the VM to the nearest group. If this is not possible, the next
nearest group is tested each time until it can be allocated, as can be observed
in Algorithm 2. If the VM does not fit any host, that is, trying to allocate it at
the current CPU usage, the migration is not performed. In general, any crite-
ria for the selection function can be implemented. For this experimentation, the
getPowerAfterAllocation function provided by CloudSim was selected. This
returns the host with the lowest increment in its energy consumption after the
VM is located.

4 Experimentation and Results

This section describes the configuration of the experimental environment, mainly
based on the CloudSim simulator [5] and the results obtained.
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Algorithm 1. Weighted Pearson Selection Policy - VM selection algorithm
Require: H: Overloaded host, VMH: set of VMs ∈ H
Ensure: SVM: Selected migratable VMs
1: declare MVM: migratable VMs, rcpu: current cpu correlation values, rnet: cur-

rent network correlation values, ncpu: current cpu weighted value, nnet: current
network weighted value, Hval: heuristic values for each vm ∈ MVM, hval th:
WPSP decision threshold

2: MVM← getMigratableVMs(VMH)
3: for each vm ∈ MVM calculate
4: rcpu ← calculate cpu correlation(H, vm)
5: rnet ← calculate net correlation(H, vm)
6: ncpu ← calculate cpu weight(MVM, vm)
7: nnet ← calculate net weight(MVM, vm)
8: Hvalvm ← calculate hval(rcpu, rnet, ncpu, nnet)
9: end for

10: while isSaturated(H) do
11: vm ← Select vm ∈ MVM with min(Hval) | Hval ≤ hval th
12: if vm is NULL then
13: break
14: end if
15: MVM ← MVM − vm
16: SVM ← SVM ∪ vm
17: end while
18: return SVM

Algorithm 2. MDG - VM allocation algorithm
Require: H: Overloaded host, VM: VM to be migrated, SH: Set of Hosts - {H}
1: bestHost = hi ∈ SH min(distance(H, hi)) ∩ min(getPowerAfterAlloc(VM, hi))
2: return bestHost

4.1 Experimental Setup

The CPU load traces used are part of the PlanetLab environment. They are
obtained with the CoMon monitoring system [11]. There is a set of traces corre-
sponding to 10 days of execution with around 1000 virtual machines. The first
400 files of the trace 20110303 are the ones used for the experimental study.
Each contains 288 values corresponding to a day of performing. The PlanetLab
traces are updated every 5 min. This determines the snapshots ratio in which
VMs and Hosts data is obtained in order to evaluate the correlation coefficients.

Table 2 shows the virtual machine configuration. Each VM contains one
cloudlet acting as endless tasks, whose percentage of CPU load being defined
by the PlanetLab traces. Table 3 shows the main characteristics of the hosts
used based on those present by default in CloudSim. The interconnection topol-
ogy, where central nodes are switches, the leaf nodes being hosts, is shown in
Fig. 2.

An interaction is defined as the communication between two VMs through-
out the simulation. The network traces, which represent the VM interactions,
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Table 2. Virtual machine characteristics

Type # CPUs MIPS BW (Mbps) RAM (MB) Quantity

Tiny 1 750 100 870 100

Small 1 1500 100 1740 100

Medium 1 3000 100 1740 100

Large 1 3750 100 613 100

Table 3. Host characteristics

Type Model # CPUs MIPS BW (Mbps) Quantity

Small HP ML110 G4 2 1860 1000 21

Large HP ML110 G5 2 2660 1000 15

were generated using the FNSS tool [12], obtaining sin cyclo-stationary traf-
fic (σ = 0.8, logψ = −0.33) according to [10]. This traffic has an equivalent
behaviour to the Sprint Europe network [14]. We assume a limit of 3 Mbps for
the bandwidth use for each one. Throughout the simulation, the values of the
interactions are updated using the network traces. We defined three different
types of interaction: low, with an occurrence of 50% and ranged between 0 and
0.6 Mbps; medium, 30% of occurrences, ranged between 0.6 and 1.8 Mbps; and
high, with an occurrence of 20%, ranged between 1.8 and 2.85 Mbps.

When the VMs are located to the hosts, the interactions between them are
configured. From all the possible interactions inside a host, they are created the
15% of them. Then, from the total interactions between a VM and the rest of
VMs from other hosts, the 0, 05% of them become real interactions. In order to
test the VM preservation capabilities of our policy, and after balancing CPU and
network resources, we determined that an initial 15% of internal communications
offers enough traffic to maintain the VMs in the same hosts but with opportu-
nities to leave them depending on the CPU load. During the simulation, and

Fig. 2. Topology
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Table 4. Configuration parameters of CloudSim

Parameter Value Parameter Value

CPU trace PL 20110303 BW between Host-VM 100Mbps

% Internal interactions 15% BW between Host-Switch 1000Mbps

% External interactions 0.05% CPU Saturation limit 70%

# of switches 16 Simulation time 86400 s

# of hosts 36 # of experiments per technique 30

# of virtual machines 400 Host saturation detection technique CloudSim IQR

Window size 6 VM allocation technique MDG

Max. BW of the interactions 3Mbps Underutilised host shutdowns Disabled

due to migrations, these percentages varied, increasing the number of external
communications and reducing the internal ones.

Table 4 shows a summary of the most important CloudSim configuration
parameters used during the experimentation. For each technique, 30 experiments
were carried out varying the initial placement of VMs in the hosts, which affected
the number and typology of the interactions among the VMs. The metrics anal-
ysed in the present work are presented in Table 5.

The WPSP threshold, hval th, was set at 0.65 after analysing which value
obtains the lowest ratio of unsatisfied/satisfied MIPS. Due to space reasons, this
analysis is not presented.

4.2 Virtual Machine Selection Policies

The selection policy selects the VM candidate to be migrated. CloudSim’s default
techniques were used with the aim of compare them with the policy proposed in
the present work. The techniques [3] used in the comparison are the following:

– Random Search (RS): Among the candidate VMs to be migrated, one is
chosen randomly.

– Minimum Migration Time (MMT): Chooses the VM that requires the least
RAM memory.

– Minimum Utilisation (MU): Chooses the VM which requested fewest MIPS
during the simulation.

– Maximum Correlation (MC): A linear regression is generated transposing a
matrix with the percentage of use of the last 12 instants for each VM, choosing
the VM with the highest CPU usage correlation in relation to the rest of the
VMs.

4.3 Default Allocation Vs. MDG

In order to investigate the effects of applying the improved version of the Default
VM Allocation Algorithm implemented by CloudSim, a comparison with the
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Table 5. Metrics for experimentation

Metric Description

Traffic Sum of the topology links traffic (MB)

Unsatisfied Traffic Traffic (MB) that surpassed the
available BW

Migration distances Average number of jumps that a VM
must do to be migrated

Number Migrations Sum of all the migrations done at each
snapshot

Unsatisfied VMs VMs not providing the required MIPS
due host over-saturation

Saturated hosts Hosts that exceed 70% of CPU but can
meet the CPU demand

Unsatisfied hosts Hosts exceeding 100% of CPU,
unsatisfying the CPU demand

% Unsatisfied MIPS Percentage of MIPS not executed due
to host over-saturation

Migrated RAM Sum of all the sizes (MB) of the
migrated VMs

RAM in BW (MB) RAM moved across the network

Time Migrating Sum of the time (s) the migrated VMs
spent moving

different tested VM selection policies is presented, all of them using the VM
allocation policy IQR. The metrics analyzed in the present work are shown in
Table 5. The median and standard deviation for all of these metrics are shown
in Table 6, which summarizes the complete experimentation. Bold values show
the best values in DA vs. MDG comparison.

The main objective of the policy is to improve the BW used and the distance
the migrated VMs must travel across the network, reducing the distance between
the origin and destination hosts. Observing RAM in BW values (Table 6-10) is
it clear the objective is achieved, reducing the quantity of MB moved across the
network by an average of 40%. In a similar way, the number of jumps (Table 6-3)
done by migrated VMs is reduced by 25% for WPSP and an average of 45.24%
for the rest of the techniques. Moreover, the fact the VMs are migrated to nearby
hosts does not affect the rest of the metrics negatively. On the contrary, except
for the average ratio of unsatisfied MIPS (Table 6-4), which shows dispersed
values from -7% (WPSP) to 3.3% (MC), the rest of the metrics are improved.
There is a reason for the improvement in migration jumps being higher in the
other metrics. WPSP starts migrating influential VMs, and, hence, VMs with
higher CPU demand, which means that not all the VMs fit other hosts, thus
limiting the migrations to a few hosts that could be distant. On the contrary, the
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other techniques migrate all kinds of VM, facilitating nearby hosts for VMs with
low CPU demands. The number of Unsatisfied Hosts (Table 6-8) is especially
reduced, with an average improvement of 12.76% being obtained. Other metrics
like Number of Migrations (Table 6-5) or Unsatisfied Traffic (Table 6-2)
obtain little upturns, around 5% on average, but the policy is almost guaranteed
not to harm these.

4.4 VM Selection Policies Comparison

The next experiment was conducted to know the degree of improvement in both
WPSP and MDG policies against the VM selection policies and the default
VM allocation policy provided by CloudSim. Table 6 shows the obtained results.
Underline values reveal which is the best value in the entire comparison for each
metric.

A high number of saturated hosts produces a huge number of migrations.
Nevertheless, the effects of some of those migrations can be negligible on the
Unsatisfied Hosts metric. Thus, the correct migratable VM selection is crucial
for reducing all these metrics and obtaining better performance. To this end, it
is vitally important to identify those VMs which are really responsible for the
saturation.

The results for both the Saturated and Unsatisfied Hosts metrics show
great differences with regard to the policies tested in the literature. Observ-
ing host saturation, there is an average improvement of 10%, with a 9.56%
improvement compared to the second best policy, MMT. Regarding Fig. 5, the
Unsatisfied Hosts, there is a big average improvement of 51% on average, with
a 52% improvement over the next technique, RS. Not only is it important to
observe how many times the hosts were working over their capacities, but all the
MIPS that did not perform during these periods. It can be perceived in Table 6-
4, % of UnsatisfiedMIPS, that WPSP achieves an improvement of 10% for
RS and MC, and a big upturn of 32% for MU. These results are even more
impressive considering that our proposal achieves them while performing con-
siderably fewer migrations than the other policies, 86.3% reduction in migrations
compared with the policy with fewer migrations (MC) (188.5 vs 1300.5).

Observing the Number of Migrations, in Fig. 3, all other methods show a
huge number of VM migrations. Our proposal is able to reduce the overall num-
ber of migrations by an average of up to 89%. The lower number of migrations
provides greater availability of the communication links and this is obtained
without any prejudice on the host loads.

Furthermore, analyzing the interconnection links, from the point of view of
the used Traffic, Table 6-1, and the Unsatisfied Traffic, Fig. 4, shows values
of up to −5% and −20% respectively. The VMs that were migrated were those
that do not interfere in the network links, thus maintaining locally the VMs
with inner communications. During the migration process, the VMs must cross
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Table 6. DA-MDG VM allocation policies comparison showing median values and
standard deviation

Index Metric WPSP MC MMT MU RS

DA MDG DA MDG DA MDG DA MDG DA MDG

1 Traffic 1560913 1561781 1646162 1610919 1637468 1602595 1646674 1616205 1652648 1611330

±18853 ±18858 ±10219 ±20517 ±13270 ±18263 ±10818 ±19536 ±18118 ±20487

2 Unsat. Traffic 229150 228607 277088 263239 273139 261452 317057 300819 281150 264989

±7341 ±6894 ±7658 ±8779 ±7179 ±8371 ±8992 ±10526 ±7786 ±8888

3 Migration Distances 5.18 4.10 5.17 2.90 5.17 2.76 5.18 2.77 5.18 2.90

±0.1 ±0.2 ±0.0 ±0.1 ±0.0 ±0.1 ±0.0 ±0.1 ±0.0 ±0.1

4 Unsat. MIPS 2.41 2.24 2.48 2.57 2.12 2.15 3.29 3.14 2.49 2.51

±0.6 ±0.6 ±0.6 ±0.5 ±0.5 ±0.5 ±0.7 ±0.7 ±0.5 ±0.6

5 # of Migrations 200.0 188.5 1373.0 1300.5 1637.5 1571.0 4455.0 4144.5 1407.0 1409.0

±17.6 ±16.8 ±165.7 ±144.3 ±163.2 ±187.6 ±606.3 ±573.4 ±157.8 ±159.8

6 Unsat. VMs 7444.5 7039.5 8281.5 7933.0 7624.5 7202.0 15712.5 14022.0 8525.5 8183.5

±1299 ±1161 ±1215 ±1146 ±967 ±1034 ±2446 ±2121 ±1082 ±1193

7 Overloaded Hosts 3739 3618.5 3979 3882 4001 3872.5 4105.50 3992 3979.5 3819.5

±281 ±309 ±310 ±315 ±249 ±295 ±280 ±309 ±310 ±320

8 Unsat. Hosts 1441 1382 2799 2382.5 2293 1956 3565 3014 2904.5 2478.5

±233 ±210 ±287 ±322 ±236 ±273 ±256 ±344 ±237 ±310

9 Migrated RAM 254040 241346 1679898 1630029 1163570 1129352 5547126 5185030 1763130 1757446

±25818 ±23223 ±202785 ±182689 ±118837 ±135084 ±736097 ±700099 ±193847 ±195479

10 RAM in BW 1304229 987856 8735037 4705944 6027358 3210863 28758469 14255744 9133906 5092168

±136889 ±98238 ±1042251 ±661415 ±618632 ±433983 ±3820960 ±2621023 ±1009010 ±777004

11 Time migrating 4065 3862 26878 26080 18617 18070 88754 82960 28210 28119

±413 ±372 ±3245 ±2923 ±1901 ±2161 ±11778 ±11202 ±3102 ±3128

the network to reach their host destination. The traffic generated by these VMs
could significantly exceed the data interchanged by default. Even if a method
(MDG) is implemented to reduce this issue, the Number of Migrations is a
determining factor. In Fig. 6, RAM in BW , and Table 6-11, Time Migrating,
our technique has an average improvement of 89.5% and 86.7% over the other
techniques. The results are consistent with the average improvement in the
Number of Migrations (89%).

Fig. 3. Number of migrations Fig. 4. Unsatisfied Traffic
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Fig. 5. Over-saturated hosts Fig. 6. RAM across network

5 Conclusions

In this paper, the authors defined a VM selection policy that applies the Pearson
correlation coefficient with weighting values to evaluate the influence of the VM
CPU and Network utilization on the Host. This allows the correct migratable
VMs to be determined that are able to reduce the Hosts overload by up to 10%
compared with other methods from the literature, with an improvement of 51%
in the number of unsatisfied hosts. The use of our proposal also results in a
reduction of up to 5% in the bandwidth used and reduced the data traffic by
up to 20%.

Additionally, an improvement, MDG, in the default VM allocation policy
provided by CloudSim is implemented. This reduces the distance the migrated
VMs must travel across the network. The technique is able to reduce the quantity
of data moved by the migrated VMs by 89.5%.

Furthermore, the number of migrations was reduced by up to 89%, which
provides better resource usage and load balance. The results show the importance
of taking network traffic into consideration in the migration decision process.

In the future, the authors are interested in taking into account the way
in which migratable VMs can affect the possible assigned Hosts prior to the
migration process. Thus, the assignment process would be much more consistent
in the future Host behavior, reducing the final number of migrations and the
network utilization. Finally, it could be interesting to discover the limits of WPSP
policy in terms of the CPU and network VM stability and ranges.
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Abstract. When lexicographically sorting strings, it is not always nec-
essary to inspect all symbols. For example, the lexicographical rank of
europar amongst the strings eureka, eurasia, and excells only depends
on its so called relevant prefix euro. The distinguishing prefix size D of a
set of strings is the number of symbols that actually need to be inspected
to establish the lexicographical ordering of all strings. Efficient string
sorters should be D-aware, i.e. their complexity should depend on D
rather than on the total number N of all symbols in all strings. While
there are many D-aware sorters in the sequential setting, there appear to
be no such results in the PRAM model. We propose a framework yielding
a D-aware modification of any existing PRAM string sorter. The derived
algorithms are work-optimal with respect to their original counterpart: If
the original algorithm requires O(w(N)) work, the derived one requires
O(w(D)) work. The execution time increases only by a small factor that
is logarithmic in the length of the longest relevant prefix. Our frame-
work universally works for deterministic and randomized algorithms in
all variations of the PRAM model, such that future improvements in
(D-unaware) parallel string sorting will directly result in improvements
in D-aware parallel string sorting.

Keywords: String sorting · Lexicographical sorting · Parallel ·
PRAM · Distinguishing prefix · Longest common prefix · LCP ·
Karp-Rabin fingerprints

1 Introduction

The problem of string sorting is defined as follows: Given k strings s1, . . . , sk of
total length N =

∑ |si| stored in RAM, and an array S of k pointers to the
strings (S[i] points to the memory location of si), compute a permutation S′

of S such that S′ lists the strings in lexicographical order (S′[i] points to the
lexicographically i-th smallest string). It is commonly known that establishing
the lexicographical order on the strings does not necessarily require inspecting
all N symbols. In fact, the rank of a string si only depends on its shortest
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prefix si[1..�i] that is not a prefix of any another string. The distinguishing prefix
size of the k strings is defined as D =

∑k
i=1 �i. In simple words, an algorithm

that sorts the strings only needs to inspect the D symbols that are part of the
distinguishing prefix, while all other symbols are irrelevant for the lexicographical
ordering. In this paper, we present parallel D-aware string sorting solutions.
That is, the time and work complexity of the algorithms depends only on k, D,
and possibly σ, but not on N . We present algorithms in the PRAM model and
consider the following variations of the model (ordered from the weakest to the
strongest): EREW, CREW, Common-CRCW, and Arbitrary-CRCW. Observe
that algorithms designed for the weaker models can run on the stronger models
within the same complexity measures.

1.1 Related Work

There is a variety of algorithms that aim to efficiently solve the problem of
string sorting, most of which belong to one of two classes: The ones that are
based on comparison sorting and generally allow arbitrary alphabets, and the
ones that use (ideas from) integer sorting and are usually limited to alphabets
of polynomial size σ = NO(1).

If comparison sorting is the underlying technique, the well-known
information-theoretical lower bound of Ω(k lg k) comparisons applies, such that
the fastest possible sequential algorithm cannot take fewer than Ω(k lg k + D)
operations. Ternary quicksort [2] runs in O(k lg k + D) time, and thus matches
this lower bound. In the Common-CRCW model, JáJá et al. [14] achieve
O(k lg k + N) work and O(lg2 k/ lg lg k) time, and also provide a randomized
algorithm that requires the same amount of work and O(lg k) time with high
probability. However, a D-aware modification of the algorithm cannot easily be
derived.

In terms of alphabet-dependent sequential algorithms, we can use radix-sort-
like approaches to achieve either O(N + σ) time [1, Algorithm 3.2], or even
O(D + σ) time [16], where σ is the number of different characters. Hagerup [11]
presents an Arbitrary-CRCW algorithm that achieves O(N lg lg N) work and
O(lg N/ lg lg N) time, assuming that the alphabet is polynomial in N . Alterna-
tively, it can be implemented to run in O(N

√
lg N) work and O(lg3/2 N

√
lg lg N)

time in the CREW model, or O(N
√

lg N lg lg N) work and the same time in
the EREW model. Note that Hagerup’s algorithm is based on an algorithm by
Vaidyanathan et al. [17] that reduces each string to a single integer by repeat-
edly merging adjacent symbols. Due to the nature of the reduction technique,
it always inspects all N symbols, and a D-aware modification cannot easily be
derived.

There are practical parallel algorithms that exploit the distinguishing prefix
and are fast in practice [4–6]; however, we are not aware of any algorithms with
D-aware complexity bounds in the PRAM model.
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1.2 Our Contributions

We present a theoretical framework that yields a D-aware version of any existing
string sorting algorithm. Particularly, we derive D-aware versions of the algo-
rithms by JáJá et al. and Hagerup that are work optimal with respect to their
original counterparts: If the original algorithm requires w(k,N, σ) work, then
our modification requires O(w(k,D, σ)) work. Additionally, in case of Hagerup’s
algorithm, we are no longer limited to polynomial alphabets. Generally, the
new algorithms are only by a (lg d)-factor slower than the original ones, where
d = max{�i | 1 ≤ i ≤ k} denotes the length of the longest relevant prefix.

Our framework is based on the idea of approximating the distinguishing
prefix. It yields a 2-approximation of the relevant prefix lengths: For each string
si, we determine a value L[i] ∈ [�i, 2�i). In the Arbitrary-CRCW model, this takes
expected optimal O(D) work and O(lg d · (lg d + lg k)) time with high probability

In the weaker EREW model, we achieve O(k
√

lg k lg lg k + D) work and
O(lg d · (lg d + lg k) + lg3/2 k · lg lg k) time with high probability. An overview
of our results is provided in Table 1.

The rest of the paper is structured as follows: In Sect. 2 we introduce the basic
notation and definitions regarding the PRAM model and string processing. In
Sect. 3 we explain our approximation scheme for the distinguishing prefix, which
we use in Sect. 4 to derive deterministic D-aware string sorters. By using Karp-
Rabin fingerprinting, we can also derive randomized string sorters, and achieve
better complexity bounds for our approximation scheme (Sect. 5). We summarize
our results in Sect. 6.

2 Preliminaries

Throughout this paper, we write lg x to denote the binary logarithm log2 x, and
[x, y] to denote the discrete interval {x, x+1, . . . , y}. Our research is situated in
the PRAM model of computation, where multiple processors work on a shared
memory. In each processing cycle, each processor may read from a memory cell,
write to a memory cell, or perform a simple local operation (logical shifts, basic
arithmetic operations etc). We consider the following variations of the PRAM
model: EREW (each memory location can be read and written by at most one
processor in each time step), CREW (each memory location can be read by
multiple processors in each time step, and written by a single processor in each
time step), and CRCW (each memory location can be read and written by
multiple processors in each time step). For the CRCW model, we consider two
variants: In the Common-CRCW model, multiple processors are allowed to write
to the same memory location in the same time step only if all of them write the
same value. In the Arbitrary-CRCW model, multiple processors are allowed to
write different values to the same memory location in the same time step, and
an arbitrary processor succeeds. However, the designer of an algorithm for this
model may not make any assumptions as to which one it is. The time required
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Table 1. New results on D-aware parallel string sorting. The original (D-unaware)
results are written in gray. Whenever the model is annotated with w.h.p., the respective
algorithms are successful with high probability 1 − O(k−c) for an arbitrarily large
constant c. We write Ô(x) to denote expected complexity bounds.

a.) Results based on the sorter by Hagerup [11]:

Model Work Time Theorem

Arbitrary

CRCW
O(D lg lgmax(D, σ))) lg d ·O(lgD/ lg lgD + lg lg σ) Theorem2

O(N lg lgN) O(lgN/ lg lgN) [11] Theorem 4.4

CREW
O(D

√
lgD) lg d ·O(lg3/2 D

√
lg lgD) Theorem 2

O(N
√
lgN) O(lg3/2 N

√
lg lgN) [11] Theorem 4.5

EREW
O(D

√
lgD lg lgD) lg d ·O(lg3/2 D

√
lg lgD) Theorem2

O(N
√
lgN lg lgN) O(lg3/2 N

√
lg lgN) [11] Theorem 4.5

b.) Results based on the sorter by JáJá et al. [14]:

Model Work Time Theorem

Common
CRCW

O(k lg k + D) lg d ·O(lg2 k/ lg lg k) Theorem3

O(k lg k + N) O(lg2 k/ lg lg k) [14] Theorem 3.1

Common
CRCW
w.h.p.

O(k lg k + D) lg d ·O(lg k + lg d) Theorem 4

O(k lg k + N) O(lg k) [14] Theorem 5.1

c.) General results that hold for any parallel string sorter:

Model Work Time Lemma

Arbitrary

CRCW
w.h.p.

Ô(D) + w(k, 2D, σ) lg d ·O(lg k + lg d) + t(k, 2D, σ) Lemma 6

w(k, N, σ) t(k, N, σ) –

EREW
w.h.p.

O(k
√
lg k lg lg k + D) lg d ·O(lg k + lg d) + O(lg3/2 k · lg lg k)

Lemma 7
+ w(k, 2D, σ) + t(k, 2D, σ)

w(k, N, σ) t(k, N, σ) –

by a PRAM algorithm is the total number of processing cycles. The work of
a PRAM algorithm is defined as the total number of primitive operations that
are performed by all processors, or (equivalently) as the running time of the
algorithm when using only a single processor. One of the most fundamental
operations in the PRAM model is the all-prefix-operation, and its specialization,
the all-prefix-sums-operation:

Lemma 1 (All-Prefix-Operation, e.g. [7]). Let a1, . . . , an be n integers, and
let ⊕ be a binary associative operator that can be evaluated in constant time.
The sequence a1, (a1 ⊕ a2), (a1 ⊕ a2 ⊕ a3), . . . , (a1 ⊕ · · ·⊕ an) can be computed in
the EREW model in O(n) work, O(n) space and O(lg n) time.
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Lemma 2 (All-Prefix-Sums, [9]). The all-prefix-operation with addition as
associative operator can be computed in the Common-CRCW model in O(n)
work, O(n) space and O(lg n/ lg lg n) time.

Next, we introduce basic string processing notations. A string over the alpha-
bet Σ is a finite sequence of symbols from the set Σ = {1, . . . , σ}. We write |s| to
denote the length of a string s. The x-th symbol of a string is s[x], while the sub-
string from the x-th to the y-th symbol is denoted as s[x..y] = s[x]s[x+1] . . . s[y].
The substring s[1..y] is called length-y prefix of s.

Given k strings s1, . . . , sk, the length of the longest common prefix of two
strings si, sj is defined as lcp(si, sj) = max{ � | si[1..�] = sj [1..�] }. Let
� = lcp(si, sj). We say that si is lexicographically not larger than sj and write
si � sj , iff either � = |si|, or � < min(|si| , |sj |) and si[� + 1] < sj [� + 1]. The
strings are in lexicographical order iff we have s1 � s2 � . . . � sk. The relevant
prefix length of si is �i = min(|si| , 1 + max{ lcp(si, sj) | 1 ≤ j ≤ k ∧ j �= i }). The
maximum number of characters that need to be inspected for a single string-to-
string comparison is d = max{ �i | 1 ≤ i ≤ k }. Finally, the distinguishing prefix
size of the strings is defined as D =

∑k
i=1 �i, which is the minimum number

of characters that need to be inspected in order to lexicographically sort the
strings.

Given k strings of total length N over the alphabet [1, σ], let f(k,N, σ) be a
function indicating the resources (e.g. the time or space) needed by an algorithm
to perform some task on the strings. We say that f is resilient in N iff multiplying
N by a constant factor increases f by at most a constant factor, i.e.,

∀c1 : ∃c2 : ∀k,N, σ : f(k, c1 · N,σ) ≤ c2 · f(k,N, σ) (1)

(where all variables are from N
+). This property will be useful when deter-

mining the worst-case complexity bounds of our algorithms. Note that the equa-
tion holds in the practical case where f is composed of a constant number of
polynomial and polylogarithmic terms.

3 Approximating the Distinguishing Prefix

In this section, we introduce our framework for D-aware parallel string sorting.
The general approach is to approximate the distinguishing prefix, resulting in
an array L of size k with L[i] ∈ [�i, 2�i), i.e. we obtain a 2-approximation of
the relevant prefix lengths. Afterwards, we can safely prune each string si to its
prefix s′

i = si[1..L[i]]. Clearly, the total length of the strings s′
1, . . . s

′
k is less than

2D, and for any two strings we have si ≺ sj ⇔ s′
i ≺ s′

j . Therefore, we can then
use any (not D-aware) string sorting algorithm to sort the strings in time and
work depending solely on k, D, and σ.

Broadly speaking, the approximation scheme performs lg d� + 1 rounds,
where in round r we identify and discard the strings si with �i ∈ (2r−1, 2r] (start-
ing with round r = 0). More precisely, amongst all not yet discarded strings, we
determine the ones whose length-2r prefix is unique. Since any such string has
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not been discarded in the previous rounds, we have �i > 2r−1, while the unique-
ness of the length-2r prefix guarantees �i ≤ 2r. By assigning L[i] ← min(|si| , 2r),
we obtain the desired 2-approximation of �i. The algorithm terminates as soon
as all strings have been discarded (and thus all relevant prefix approximations
have been found).

Ir = [i1, i2, i3, i4, i5]

si1 si2 si3 si4 si5 si2 si5 si4 si1 si3

2r
{

2r
{

semisorting

Ir+1 = [i5, i1, i3]

too
short

unique
prefix

compaction

L[i2] ← |si2 | L[i4] ← 2r

Fig. 1. Round r of our approximation scheme. Equal colors identify equal prefixes (best
viewed in color).

Let us look at a single round in technical detail. Let Ir be the set of strings
(or more precisely their indices) that survived until round r, and whose length
is at least 2r, i.e. Ir = {i ∈ [1, k] | �i > 2r−1 ∧ |si| ≥ 2r}. Initially, before round
r = 0, we have I0 = {1, . . . , k}. From now on, let kr = |Ir| denote the number of
strings that survived until round r. Before starting the round, we assume that
Ir is given as a compact array of kr words. Each round consists of two phases,
which we explain in the following. The description is supported by Fig. 1.

Semisorting Phase. We semisort Ir using the length-2r prefixes of the corre-
sponding strings as keys (i.e. entry Ir[j] = i is represented by the key si[1..2r]).
Semisorting is a relaxation of sorting that reorders the entries such that equal
keys are contiguous, but different keys do not necessarily have to appear in
correct order. In the upcoming sections, we propose different approaches for
this phase.

Compaction Phase. Let Ir be semisorted as described above, and let i =
Ir[j] be any entry. Furthermore, let i− = Ir[j − 1] and i+ = Ir[j + 1] be
the neighboring entries of Ir[j]. Due to the semisorting, the length-2r prefix
of si is unique iff si− [1..2r] �= si[1..2r] �= si+ [1..2r]. We trivially check this
condition for all entries simultaneously in O(kr · 2r) work and O(1) time in
the Common-CRCW model, or in the same work and O(lg 2r) = O(r) time in
the EREW model (which can be easily achieved using Lemma 1). If the prefix
of si is unique, we assign L[i] ← 2r and Ir[j] ← 0 (where Ir[j] = 0 indicates
that we no longer need to consider si in upcoming rounds). Otherwise, we
check if si is too short to be considered in the next round: If |si| ≤ 2r+1

holds, we assign L[i] ← |si| and Ir[j] ← 0. Finally, we obtain Ir+1 by moving
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the non-zero entries of Ir to the front of the array. This requires a single
all-prefix-sums-operation [18, Section 3.1], and thus O(kr) work and O(lg kr)
time in the EREW model, or the same work and O(lg kr/ lg lg kr) time in the
Common-CRCW model ((Lemmas 1 and 2).

Complexity. Before discussing different approaches for the semisorting phase, we
already give general bounds for the work and time complexity of our approxi-
mation scheme. For this purpose we only consider the compaction phase, which
takes O(kr · 2r) work in round r (regardless of the PRAM model) and thus
O(

∑∞
r=0 kr · 2r) work in total. This is asymptotically optimal:

�lg d�∑

r=0

kr ·2r =
�lg d�∑

r=0

∑

i∈Ir

2r ≤
k∑

i=1

�lg �i�∑

r=0

2r <

k∑

i=1

2�lg �i�+1 ≤
k∑

i=1

4�i = 4D (2)

Next, we focus on the execution time in the EREW model. The com-
paction phase of round r takes O(r + lg kr) ⊆ O(lg d + lg k) time, resulting in
O(lg d · (lg d + lg k)) time for all rounds. In the Common-CRCW model, we have
O(lg kr/ lg lg kr) ⊆ O(lg k/ lg lg k) time for round r, and thus O(lg d · lg k/ lg lg k)
time in total.

4 Deriving Deterministic D-aware String Sorters

The perhaps easiest solution for the semisorting phase is to use an existing string
sorter as a subroutine, e.g. one of the algorithms that we discussed in Sect. 1.1.
Then, after finishing the last round of our approximation scheme, we reduce the
strings to their length-L[i] prefixes and sort them with the same algorithm that
we already used during the semisorting phase. This naturally results in a new
D-aware string sorter, as visualized in Fig. 2.

We obtain a general result for an important class of sorters: The ones that
do not rely on comparison sorting and typically require N · w(k,N, σ) work
and t(k,N, σ) time for some functions w and t that are resilient in N and non-
decreasing in k and N (e.g. Hagerup’s algorithm [11]). Using such an algorithm,
the semisorting phase of round r takes (kr · 2r) · w(kr, kr · 2r, σ) work. Summing
up all rounds, the total work for semisorting is O(D · w(k,D, σ)):

�lg d�∑

r=0

(kr ·2r)·w(kr, kr ·2r, σ) ≤
�lg d�∑

r=0

(kr ·2r)·w(k, 2D,σ) < 4D·w(k, 2D,σ) (3)

The first inequality holds because w is non-decreasing in k and N , while the
second one holds due to Eq. (2). We have w(k, 2D,σ) = O(w(k,D, σ)) because
w is resilient in N . For the same reason, the time for the semisorting phase
of round r is t(kr, kr · 2r, σ) ≤ t(k, 2D,σ) = O(t(k,D, σ)). Combined with the
bounds from Sect. 3 we have:
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strings
s1, . . . , sk

approximation
scheme

array L with
L[i] ∈ [�i, 2�i)

length-L[i] prefixes
of s1, . . . , sk

existing
string sorter

lex. ordering
of s1, . . . , sk

semisorting

Fig. 2. Deriving D-aware string sorters from existing D-unaware solutions.

Theorem 1. Let N · w(k,N, σ) and t(k,N, σ) be the work and time needed
by some algorithm to sort k strings of total length N over the alphabet [1, σ]
(for arbitrarily large σ), with w and t resilient in N and non-decreasing in k
and N . Let D be the distinguishing prefix size. Then we can sort the strings in
O(D · w(k,D, σ)) work and O(lg d · (lg d + lg k + t(k,D, σ))) time. The PRAM
model matches the one of the string sorter. If the model is at least as strong as the
Common-CRCW model, the time decreases to O(lg d · (lg k/ lg lg k + t(k,D, σ))).

Note that the theorem requires a string sorter that allows arbitrary alpha-
bets. This is due to the fact that (even after the first round) the number kr of
remaining strings can become arbitrarily small. Consequently, the alphabet size
might become arbitrarily large compared to the total length kr ·2r of the strings
that we have to semisort in round r.

Dealing with Large Alphabets. In theory, Theorem 1 directly implies new
D-aware string sorters. However, while the theorem applies to sorters for arbi-
trary alphabets, many of the existing string sorting algorithms are restricted to
polynomial alphabets (i.e. σ = NO(1)). In the remainder of this section, we show
that even such alphabet restricted sorters work with Theorem1, if we equip them
with an additional preprocessing routine. We demonstrate the technique using
Hagerup’s algorithm [11] as an example. It will be easy to see that it would just
as well work with any other string sorter. Recall Hagerup’s original result:

Lemma 3 (Hagerup [11], Theorems 4.4 and 4.5). A set of strings of
total length N over the alphabet [1, NO(1)] can be sorted in O(lg N/ lg lg N)
time and O(N lg lg N) work in the CRCW model, or in O(N

√
lg N) work and

O(lg3/2 N
√

lg lg N) time in the CREW model, or in O(N
√

lg N lg lg N) work
and O(lg3/2 N

√
lg lg N) time in the EREW model.

Remark: Hagerup does not explicitly state which variant of the CRCW model is
used. However, the algorithm relies on a padded integer sorting subroutine that
requires the Arbitrary-CRCW model [12]. It appears that all other operations
performed by the algorithm require at most the Arbitrary-CRCW model as well.

In order to generalize Lemma 3 to arbitrary alphabets [1, σ] with σ /∈ NO(1),
we perform a preprocessing that reduces the alphabet to [1, N ] in an order pre-
serving manner. The general idea is to use an integer sorter to sort the symbols
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that actually occur in any of the strings. Then, we can simply replace each sym-
bol with its rank amongst the sorted symbols. A similar reduction technique has
previously been used by Hagerup [11, p. 389] (but for a different purpose). For
now, we only consider the Arbitrary-CRCW model.

First, we create N tuples of the form 〈i, j, c〉, where c is the j-th symbol
of si. Initially, the tuples are ordered by their first and second component, i.e.
〈1, 1, · 〉 . . . 〈1, |s1| , · 〉 〈2, 1, · 〉 . . . 〈2, |s2| , · 〉 . . . 〈k, 1, · 〉 . . . 〈k, |sk| , · 〉. In order to
store this sequence in a consecutive memory area, we have to determine the
position of each tuple within the sequence. Using the all-prefix-sums-operation,
we can trivially realize this step in O(N) work and O(lg N/ lg lg N) time due
to Lemma 2. Then, we use the integer sorting algorithm by Bhatt et al. [3]
to sort the tuples by their third component, which takes O(N lg lg σ) work
and O(lg N/ lg lg N + lg lg σ) time. Let 〈i1, j1, c1〉 . . . 〈iN , jN , cN 〉 be the sorted
sequence of tuples. In an array A ∈ {0, 1}N , we mark the (in terms of the
sequence) leftmost occurrence of each character, i.e. ∀h ∈ [2, N ] : ch−1 �= ch ⇔
A[h] = 1. Next, we replace A with its prefix-sums, once again taking O(N) work
and O(lg N/ lg lg N) time due to Lemma 2. Now each entry A[h] contains exactly
the rank of the symbol ch amongst all symbols. Finally, for each h ∈ [1, N ], we
replace the jh-th symbol of the ih-th string with A[h]+ 1. Since this reduces the
alphabet to (a subset of) [1, N ] in an order preserving manner, we can sort the
strings using Lemma 3.

In the weaker CREW and EREW models we use the same technique, but
replace the algorithm by Bhatt et al. with Han and Shen’s integer sorter in the
EREW model [13, Theorem 4.1], which sorts the N tuples in O(N

√
lg N) work

and O(lg3/2 N) time. We have shown:

Corollary 1. A set of strings of total length N over the alphabet [1, σ] can be
sorted in O(lg N/ lg lg N + lg lg σ) time and O(N lg lg N + N lg lg σ) work in the
Arbitrary-CRCW model, or in O(N

√
lg N) work and O(lg3/2 N

√
lg lg N) time in

the CREW model, or in O(N
√

lg N lg lg N) work and O(lg3/2 N
√

lg lg N) time
in the EREW model.

Theorem 2. A set of k strings over the alphabet [1, σ] with distinguishing prefix
size D and longest relevant prefix of length d can be sorted in the work and time
stated in Table 1(a).

The theorem follows from Corollary 1 and Theorem 1. Note that the work and
time in the Arbitrary-CRCW model are O(D lg lg D) and O(lg d · lg D/ lg lg D),
respectively, if the alphabet is quasipolynomial in the distinguishing prefix size,
i.e. σ = D(lgO(1) D).

4.1 Deriving Comparison-Based Sorters

As mentioned earlier, any comparison-based string sorter requires Ω(k lg k + D)
work. In this section, we take the O(k lg k + N) work algorithm by JáJá et al.
[14], and derive an O(k lg k + D) work modification, thus matching the lower
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bound. Assuming that we use the O(k lg k + N) work algorithm to realize the
semisorting phase of our approximation scheme, the work for semisorting in
round r becomes O(kr lg kr + kr · 2r). After the lg lg k�-th round, the kr · 2r

term dominates the kr lg kr term. Therefore, the total work for semisorting is:

O
⎛

⎝
�lg d�∑

r=0

kr lg kr + kr · 2r

⎞

⎠ = O
⎛

⎝
�lg lg k�−1∑

r=0

kr lg kr +
�lg d�∑

r=0

kr · 2r

⎞

⎠ (4)

Following Eq. (2), the second sum on the right-hand side of the equation is
bounded by O(D). Unfortunately, there appears to be no such upper bound for
the first sum. Therefore, we relax our approximation scheme by simply skipping
the initial lg lg k� rounds. This way, the first round that we actually perform is
round r = lg lg k�, during which we consider prefixes of length 2�lg lg k� < 2 lg k.
Note that consequently we may overestimate the length of relevant prefixes by
2 lg k additional symbols, i.e. we obtain L′[i] ∈ [�i, 2 · max(lg k, �i)). Thus, when
truncating each string to its prefix si[1..L′[i]], the total length of the strings is

D′ :=
k∑

i=1

L′[i] < 2
k∑

i=1

(lg k + �i) = 2k lg k + 2D. (5)

Therefore, after computing L′, we can use the algorithm by JáJá et al. once
more to sort the truncated strings in optimal O(k lg k + D′) ⊆ O(k lg k + D)
work. The semisorting in round r takes O(lg2 kr/ lg lg kr) ⊆ O(lg2 k/ lg lg k)
time, and there are lg d�−lg lg k� = O(lg d) rounds. Together with the bounds
from Sect. 3 we have:

Theorem 3. A set of k strings with distinguishing prefix size D and longest
relevant prefix of length d can be sorted in the Common-CRCW model in
O(k lg k + D) work and O(lg d · lg2 k/ lg lg k) time.

Note that we cannot trivially use our approximation scheme to derive a D-
aware modification of the randomized string sorter by JáJá et al. [14], which
sorts k strings of total length N in O(k lg k + N) work and O(lg k) time with
high probability, i.e. with probability 1 − (1/k)c for any constant c > 0. If
we were using this algorithm for the semisorting phase, then the probability
of successfully sorting the remaining strings in round r would be 1 − (1/kr)c.
However, even after the first round, kr can become arbitrarily small, resulting
in a low probability of success. The randomized string semisorters from the next
section will allow us to circumvent this problem.

5 Randomized String Semisorting

In this section, we equip our approximation scheme with randomized string
semisorters that are based on Karp-Rabin fingerprints [15]. The goal of these
fingerprints is to hash substrings to small integers, which allows fast equality
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testing. Consider the semisorting phase of round r, during which we have to
semisort kr string prefixes of length 2r each. Instead of directly semisorting the
prefixes, we first compute a fingerprint as a representative for each prefix, and
then semisort the fingerprints. This way, we can use less complex integer sorting
algorithms as a subroutine. Before going into detail, we show how to efficiently
compute fingerprints in the EREW model.

In order to define Karp-Rabin fingerprints, we use a prime number q = Θ(N c)
for some constant c > 1, and a value b ∈ [q, 2q) chosen uniformly at random. The
Karp-Rabin fingerprint φi(x, y) of the substring si[x..y] is defined as follows:

φi(x, y) =
y∑

z=x

si[z] · by−z mod q (6)

Observe that equal substrings have equal fingerprints, i.e. for every integer
n ≥ 0 it holds si[x..x+n] = sj [y..y +n] =⇒ φi(x, x+n) = φj(y, y +n). On the
other hand, if two substrings are not equal, their fingerprints will be different with
high probability. In particular, if si[x..x+n] �= sj [y..y+n] then Prob[φi(x, x+n) =
φj(y, y+n)] ≤ n+1

q = O(N1−c). Thus, by choosing a large enough constant c > 1,
we can control the probability of false positives when comparing fingerprints
instead of substrings. Using the all-prefix-operation, Karp-Rabin fingerprints
can be computed efficiently in parallel:

Lemma 4. For every �-character substring si[x..x + � − 1], the Karp-Rabin fin-
gerprint φi(x, x + � − 1) can be computed in O(�) work, O(�) space, and O(lg �)
time in the EREW model.

Proof. First, we compute the sequence of exponents b0, b1, . . . , b�−1 (mod q)
using the all-prefix-operation with multiplication over Zq as the associative
operator. Then, we simultaneously compute all values f0, . . . , f�−1 with fj =
si[x + j] · b�−j−1 (mod q) in constant time. Finally, the Karp-Rabin fingerprint
φi(x, x+�−1) is the sum of all the fj over Zq, which can be computed via another
all-prefix-operation. The stated complexity bounds follow from Lemma1. ��

During round r of our approximation scheme, we can simultaneously com-
pute the fingerprints of all length-2r prefixes, which takes O(kr · 2r) work and
O(r) ⊆ O(lg d) time. It remains to be shown how to semisort the fingerprints.
For now, similarly to Sect. 4.1, we skip the first lg lg k� rounds. In the remaining
rounds, we use Cole’s parallel merge sort [8], which sorts the kr fingerprints in
round r in O(kr lg kr) ⊆ O(kr · 2r) work and O(lg kr) time. This results in the
following complexity bounds:

Lemma 5. For any constant c > 0, the array L′ with L′[i] ∈ [�i, 2 ·max(lg k, �i))
can be computed in the EREW model in O(D) work and O(lg d · (lg d + lg k))
time w.h.p. 1 − (1/N)c.

Now we can already derive a D-aware modification of the randomized string
sorter by JáJá et al. [14]. Just as in Sect. 4.1, we simply compute L′ (using
Lemma 5), and then run the original string sorter. It follows:
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Theorem 4. For any constant c > 0, a set of k strings with distinguishing prefix
size D and longest relevant prefix of length d can be sorted in the Common-
CRCW model in O(k lg k + D) work and O(lg d · (lg d + lg k)) time w.h.p. 1 −
(1/k)c.

5.1 Handling the Initial �lg lg k� Rounds

Finally, we show how to (semi-)sort the fingerprints in the first lg lg k� rounds.
Ideally, we would like to use the randomized semisorter by Gu et al. [10], which
sorts kr fingerprints in the Arbitrary-CRCW model in expected optimal O(kr)
work and O(lg kr) time with high probability 1 − (1/kr)c. However, as in the
previous section, kr and thus the probability of success can become arbitrarily
small. Therefore, we only use the semisorter by Gu et al. in rounds when kr >
k/ lg2 k (resulting in O(kr) work), and Cole’s mergesort, otherwise (resulting in
O(k/ lg k) work). This way, in every round the expected work for semisorting
fingerprints is O(kr + k/ lg k), the time is O(lg k), and the probability of success
is at least 1 − (lg2 k/k)c > 1 − (1/k)(c/2). Summing up the expected work for
semisorting during the first lg lg k� rounds, we have:

�lg lg k�∑

r=1

kr +
�lg lg k�∑

r=1

k/ lg k =
�lg lg k�∑

r=1

kr + o(k) = O(D).

Together with the bounds for computing fingerprints (see Sect. 5) and for the
compaction phase (see Sect. 3), we get:

Lemma 6. For any constant c > 0, the array L with L[i] ∈ [�i, 2�i) can be
computed in the Arbitrary-CRCW model in expected optimal O(D) work and
O(lg d · (lg d + lg k)) time w.h.p. 1 − (1/k)c.

In the weaker EREW model, we can replace the semisorter by Gu et al. with
the deterministic integer sorter by Han and Shen [13] that we already used in
the proof of Corollary 1. This results in the following bounds:

Lemma 7. For any constant c > 0, the array L with L[i] ∈ [�i, 2�i) can be
computed in the EREW model in O(k

√
lg k lg lg k + D) work and O(lg d · (lg d +

lg k) + lg3/2 k · lg lg k) time w.h.p. 1 − (1/N)c.

Note that the probability of success is 1 − (1/N)c (rather than 1 − (1/k)c as
in Lemma 6) because we no longer use a probabilistic semisorter, and errors can
only occur due to fingerprint collisions.

Lemmas 6 and 7 directly imply the results stated in Table 1(c).

6 Conclusion and Open Questions

We presented a theoretical framework that approximates the distinguishing pre-
fix, resulting in the first D-aware string sorters in the PRAM model. It remains
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an open question, if the lg d time factor can be avoided without increasing the
work. Generally, it is unknown if a constant approximation of the distinguishing
prefix can be computed deterministically in optimal O(D) work and reasonable
time.
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Abstract. In the distributed model Amoebot of programmable matter,
the computational entities, called particles, are anonymous finite-state
machines that operate and move on a hexagonal tessellation of the plane.
In this paper we show how a constant number of such weak particles can
simulate a powerful Turing-complete entity that is able to move on the
plane while computing. We then show an application of our tool to the
classical Shape-Formation problem, providing a new and much more gen-
eral distributed solution. Indeed, while the existing algorithms allow to
form only shapes made of arrangements of segments and triangles, our
algorithm allows the particles to form also more abstract and general con-
nected shapes, including circles and spirals, as well as fractal objects of
non-integer dimension. In lieu of the existing impossibility results based
on the symmetry of the initial configuration of the particles, our result
provides a complete characterization of the connected shapes that can
be formed by an initially simply connected set of particles. Furthermore,
in the case of non-connected target shapes, we give almost-matching
necessary and sufficient conditions for their formability.

Keywords: Distributed algorithms · Programmable matter ·
Amoebot · Shape formation · Turing-computable shapes · RAM
simulation

1 Introduction

Several parallel and distributed computing models have been devoted to for-
malizing computations within the interdisciplinary field of Programmable Mat-
ter (PM): see [8,10,11,13]. The PM field envisions a myriad of very small
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(micro/nano-sized) entities that are nevertheless able to move and coordinate
themselves with the final purpose of solving a specific tasks [15]. Prototypes
that will lead to future hardware platforms for PM are being designed and engi-
neered. Examples are the M-blocks: cubes that are able to rearrange themselves
by rotations [12], and the Kilobots: small robots that move by vibrations [14].
At the same time, the algorithmic community is formalizing abstract and gen-
eral models, enabling the development of provably correct algorithms and the
feasibility analysis of problems.

In this paper, we consider the popular geometric Amoebot model, introduced
in [5]. In the Amoebot model, a set of computationally limited identical entities,
called particles, operate and move on a hexagonal tessellation of the plane (i.e.,
a triangular grid). Each particle has constant-size memory (i.e., constant with
respect to the total number of particles), is anonymous (i.e., it has no ID), is
able to communicate only with its direct neighbors on the grid, and it moves
by repeating an expansion action (in which the particle expands to occupy two
neighboring nodes of the grid) and a contraction action (in which an expanded
particle contracts to a single node of the grid). Research using this model is
being carried out within the parallel, distributed, and natural computing fields
[2–7]; for a recent survey, see [1]. The main goal of these research efforts is to
gain an understanding of the nature and limits of this distributed computational
universe.

In this paper, we move one step forward in this quest by providing a con-
struction that simulates a moving Random-Access Machine (mRAM) using four
particles. Such a construction transforms a set of these weak particles into a
powerful Turing-complete entity, able to move on the grid while computing.

We prove the usefulness of our construction by applying it to the well-studied
Shape-Formation (or Pattern-Formation) problem. In this problem, the particles,
initially arranged in an arbitrary connected shape, have to form a given target
shape. More precisely, each particle starts with a representation of the target
shape in its memory, and coordinates with the other particles to form a suitably
scaled-up copy of the shape that includes all particles in the system (this could
mean that some particles have to be in the expanded state in the final shape).
Usually, the total number of particles n is unknown: as a matter of fact, n cannot
be stored in the constant-size memory of a single particle.

Increasingly refined and complex techniques and algorithms have been
designed [2,3,5,6], each enlarging the class of shapes that can be formed starting
from a simply connected configuration. To date, however, this class includes only
target shapes defined as an arrangement of segments and triangles.

Our second contribution is the development, using our mRAM simulation, of
a general and universal solution for the Shape-Formation problem: starting from
a simply connected shape (i.e., a shape without holes), our algorithm allows the
particles to form any feasible connected shape for which a “drawing algorithm”
exists (i.e., the shape is Turing-computable), including circles and spirals, or
more complex fractal objects of non-integer dimension, such as the Sierpinski
triangle or the Koch snowflake (see Fig. 1).
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Fig. 1. Sierpinski triangle at various scales, approximated by a system of particles

The aforementioned drawing algorithm is a RAM algorithm that takes as
input the number of particles n, and outputs (a representation of) the shape that
has to be formed by the n particles. Note that, since the number of instructions of
such a drawing algorithm is obviously constant with respect to n,1 the algorithm
itself can fit in the constant-size memory of a single particle, regardless of the
number of particles in the system. (By comparison, previous works assumed that
each particle has in memory a representation of the target shape expressed as a
constant number of segments and triangles [2,3,6].)

With our technique, we can form almost all “feasible” non-connected target
shapes, and are excluded from our result only very sparse pathological shapes.
With regards to the feasibility (or not) of a shape, it is known that, depending on
the symmetry of the initial configuration, some shapes are not formable regard-
less of the amount of memory [6]. The negative result of [6] and the positive
results of our paper give an almost complete characterization of shapes that are
formable starting from a simply connected configuration. Interestingly, in the
case of connected shapes, the characterization is complete.

Our distributed algorithm is deterministic, and it works even if the schedule of
activations is fair but adversarial. More precisely, in each stage, upon activation,
a particle exchanges messages with its neighbors, executes some computation,
and possibly moves; there is however no restriction on the number of particles
that can be concurrently active in the same stage. Moreover, our algorithm works
also when the particles do not have chirality (i.e., there is no common notion of
a clockwise direction on the plane among the particles).

For space reasons, some details have been omitted; the full version is available
at https://arxiv.org/abs/2002.03384.

1 By contrast, the running time of the drawing algorithm may be any function of n.

https://arxiv.org/abs/2002.03384
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2 Model and Problem

2.1 Particles

In the Amoebot model, a particle is a computational entity that lives in an infi-
nite regular triangular grid G embedded in the Euclidean plane R

2 (observe that
a regular triangular grid corresponds to a hexagonal tessellation of the plane). A
particle may occupy either one vertex of G or two adjacent vertices: in the first
case, the particle is said to be contracted ; otherwise, it is expanded. When it is
expanded, one of the vertices it occupies is called its head, and the other vertex
is its tail. A particle may move through G by repeatedly expanding toward a
neighboring vertex of G and contracting into its head. (The traditional Amoebot
model also includes a special type of coordinated move called “handover”, but
we will not need it in this paper.)

No vertex of G can ever be occupied by more than one particle at a time.
So, a contracted particle cannot expand into a vertex that is already occupied
by another particle. Also, if two or more particles attempt to expand toward the
same (unoccupied) vertex at the same time, only one of them succeeds, chosen
arbitrarily by an adversary.

At each stage, some particles in the system are active, and they perform
a look-compute-move cycle, and the other particles are inactive. An adversar-
ial scheduler arbitrarily and unpredictably decides which particles are active at
each stage. The only restriction on the scheduler is that it cannot keep a parti-
cle inactive forever, but it must activate every particle infinitely often. When a
particle is activated for a certain stage, it “looks” at the vertices of G adjacent
to its head, discovering if they are currently unoccupied, or if they are head or
tail vertices of some particle. All particles are anonymous (i.e., they are indis-
tinguishable). Each active particle may then decide to expand, contract, or stay
still for that stage. When the next stage starts, a new set of active particles is
selected, which observe their surroundings and move, and so on.

Each particle has an internal state that it can modify every time it is acti-
vated. The internal state of any particle is from a finite set: particles have an
amount of “memory” whose size is constant with respect to the size of the sys-
tem, n.

Two particles can also communicate by sending messages to one another.
Each message is taken from a finite set of predefined messages. An active particle
can send a message to another particle provided that their heads are adjacent
vertices of G. A particle reads the incoming messages from all its neighbors as
soon as it is activated.

Each particle labels its six incident edges with port numbers, going from 0 to
5. Each particle uses a consistent numbering that is invariant under translation
on G. However, different particles may disagree on which of the edges has port
number 0 and whether the numbering should follow the clockwise or counter-
clockwise order: this is called the particles’ handedness. So, the handedness of a
particle does not change as the particle moves, but different particles may have
different handedness.
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At each stage, each active particle determines which neighboring vertices
are occupied, and it reads the incoming messages. Based on these and on its
internal state, the particle executes a deterministic algorithm that computes a
new internal state, the messages to be sent to the neighbors, and whether the
particle should expand to some adjacent vertex, contract, or stay still.

2.2 Shapes

A set S of nodes of G is formable by n particles if there exists a configuration
of exactly n particles (contracted or expanded) that collectively occupy exactly
the nodes in S.

A shape is a function mapping a positive integer n to a set Sn of nodes of G
that is formable by n particles: this set Sn is called the nth level of the shape. If
such a function is Turing-computable, then the shape is said to be computable.
If every level of a shape is a connected set, the shape is said to be connected.

A shape is formable (under condition C) if there exists a distributed algorithm
that, for every n, makes any system of n particles (whose initial configuration
satisfies condition C) eventually form a copy of the nth level of the shape, possibly
translated, rotated by a multiple of 60◦, and reflected. The algorithm should
succeed regardless of the port numbers of each particle and the choices of the
adversarial scheduler, and guarantee that the system remains still after forming
the shape.

2.3 Unbreakable Symmetries

A configuration of particles is said to be unbreakably k-symmetric, for some inte-
ger k > 1, if it has a center of k-fold rotational symmetry that does not coincide
with any node of G [6]. Observe that unbreakably k-symmetric configurations
exist only for k = 2 and k = 3.

We can extend this notion to a level of a shape in a natural way: the nth
level of a shape is k unbreakably symmetric if it is formable by an unbreakably
k-symmetric configuration of n particles. Intuitively, the absence of a central
node (and therefore of a central particle) and the fact that the configuration is
initially symmetric makes it impossible to break the symmetry. Hence, we have
a necessary condition C for the formability of a shape:

Proposition 1. [6] A shape is formable only under the condition that, if its nth
level is not unbreakably k-symmetric, then the initial configuration of a system
of n particles seeking to form the shape should not be unbreakably k-symmetric,
either.

Note that, when k = 1 the shape is not unbreakably k-symmetric in such a
case, as we will show in next sections, the symmetry of the target shape is irrel-
evant. In Sect. 5 we will give a strong sufficient condition for the formability
of a shape, which, together with Proposition 1, almost characterizes the set of
computable shapes that can be formed from a simply connected initial configu-
ration of particles (in the case of connected computable shapes, it yields a full
characterization).
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3 Simulating Random-Access Machines

3.1 Random-Access Machines: Definition

A Random-Access Machine (RAM) is a model of computation consisting of a
finite set of registers, each of which can store a non-negative integer, and a
program consisting of a finite ordered sequence of instructions. Each instruction
is of one of two types:

– Inc(r): increment by 1 the value stored in the register r. Then, proceed to
the next instruction of the program.

– TestDec(r, i): if the register r is holding the value 0, jump to the ith instruc-
tion of the program. Otherwise, decrement r by 1 and proceed to the next
instruction.

The registers initially contain the input of the RAM, and then the program
is executed starting from the first instruction. We can reserve a register rt to
represent a “termination flag”, whose value is initially 0. When rt is incremented,
the value of the other registers is taken as the RAM’s output. Hence, a RAM is
a device that can compute integer functions.

3.2 Simulating Turing Machines by RAMs

In [9, Chapter 11], Minsky shows how RAMs can simulate Turing Machines.
Specifically, there is a (small) constant c such that, given any Turing Machine
T that computes a function fT , there exists a RAM QT with exactly c registers
that computes fT .

Then, in [9, Chapter 14], he shows that any RAM R can be simulated by a
RAM Q′

R having only two registers. This is done by encoding the set of values
stored in R’s registers as a single integer, which is stored in the first register of
Q′

R (the second register of Q′
R is only used for intermediate computations). The

code is based on Gödel numbers: for instance, the sequence (a1, a2, a3, a4, a5) is
encoded as the single integer 2a1 ·3a2 ·5a3 ·7a4 ·11a5 . In general, the ith integer in
the sequence becomes the exponent of the ith prime factor of the code. By the
unique-factorization theorem, this encoding is injective and thus non-ambiguous.

The program of Q′
R can be constructed by locally replacing each instruction

of R with a small program that simulates it. For instance, it is possible to
increment the ith register of R by multiplying the first register of Q′

R by the
ith prime number, which in turn can be done in Q′

R by using the two standard
instructions and the auxiliary register. Testing if the ith register of R is non-0
amounts to testing if the first register of Q′

R holds a multiple of the ith prime
number, etc. In this paradigm, we can stipulate that Q′

R terminates when its
second register holds a 0 and the value of its first register is a multiple of the
prime number corresponding to the termination flag of R.

As an immediate consequence of the above, we have that the RAMs with
only two registers can simulate all Turing Machines, and can therefore compute
any computable function.



Mobile RAM and Shape Formation by Programmable Particles 349

3.3 Simulating RAMs by Particles

Our goal in this section is to simulate a RAM with two registers by a set of four
particles. The layout of our simulator is shown in Fig. 2: the four particles always
remain collinear throughout the simulation, and they always maintain their order
along the line: first the pivot P , then the marker of the second register M2, then
the leader L, and finally the marker or the first register M1. The number of
empty locations between P and M2 (i.e., their distance minus 1) represents
the value stored in the second register of the RAM, and the number of empty
locations between M2 and M1 (i.e., their distance minus 2) represents the value
stored in the first register of the RAM.

At all times during the simulation of the RAM’s program, L will remember
the index of the instruction that is currently being simulated: since the program
of a RAM is constant L only needs a constant amount of memory to do so. Now
we have to show that such a system can simulate every possible instruction of
the RAM. This is done by letting L move between M2 and M1: we assume that
L knows in which direction it has to move to find each of these two particles,
and for convenience we call these directions “left” and “right”, respectively, to
match Fig. 2.

L
Register 2 Register 1

3 7
P M2 M1

Fig. 2. A RAM simulator with the first register holding the value 7 and the second
register holding the value 3

When L reaches the relevant particle, it communicates with it and causes it
to move according to the current instruction of the program. P , on the other
hand, always remains still. Each instruction is simulated as follows:

– Inc(Register 1): L moves toward M1 until it finds it. Then it gives M1 the
order to move one step to the right, and waits until M1 has moved.

– TestDec(Register 1, i): if L neighbors both M2 and M1, it does nothing (and
updates the index of the current instruction to i). Otherwise, it reaches M1

and orders it to move one step to the left. Then L itself moves one step to
the left and waits until M1 has moved.

– Inc(Register 2): L reaches M1 and orders it to move one step to the right.
When M1 has moved, L reaches M2 and orders it to move one step to the
right. Then L itself moves one step to the right and waits for M2.

– TestDec(Register 2, i): L reaches M2 and asks it if it has a neighbor on the
opposite side (i.e., P ). If M2 answers affirmatively, L does nothing (and
updates the index of the current instruction to i). Otherwise, it orders M2 to
move one step to the left and waits until it has moved; then it reaches M1

and orders it to move one step to the left; finally, L itself moves one step to
the left and waits until M1 has moved.
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3.4 Adding Control Registers for Mobility

In our Shape-Formation algorithm, we need the RAM simulator to be able to
move and to perform actions depending on the shape to be formed. In this section
we outline the mechanism that our RAM we will use to move, and the specific
actions needed for the Shape-Formation algorithm.

Recall that, in order to simulate a generic Turing Machine T , the RAM QT

needs only a constant number c of registers. We can augment QT by adding a
fixed number c′ of “flag registers”, which are set to 1 when the system has to
perform certain special operations. Specifically, assume that T is an algorith-
mic description of a shape, whose output is a sequence of plotting operations of
the form “move forward”, “move right”, “draw a point”, etc. Our mobile RAM
(mRAM) UT simulates T exactly like QT , with one exception: whenever T out-
puts a plotting operation, UT sets and then immediately resets the flag register
corresponding to that type of operation (the reason will be explained shortly).

Now, we let the mRAM Q′
UT

simulate UT using only two registers. In Q′
UT

,
the state of each of the c′ flag registers of UT can be checked by verifying, at
the end of a simulated instruction, if the value stored in the first register is a
multiple of the prime number associated with the flag register.

As our four-particle system simulates Q′
UT

, it can also test the c′ flag registers
of UT at the end of every simulated instruction. Indeed, the leader particle L
can test if the value stored in the first register is a multiple of a given prime p. It
can do so by first moving next to M1, and then counting modulo p the number
of steps it takes to move all the way to M2 (counting modulo p requires only p
states). Since c + c′ is a finite constant, L only ever needs to test a constant set
of primes to determine the states of all the flag registers, which in turn takes a
finite amount of memory and time.

When L determines that one of the c′ flags is set, it executes the correspond-
ing plotting operation of T . This translates into a “movement operation”, which
moves the whole system in some direction or orders a specific particle to remain
still forever, marking a point of the shape. The exact nature of these movement
operations and the details of their implementation will be described in next
sections.

4 Basic Shape-Formation Algorithm

The first part of our Shape-Formation algorithm is taken from the “basic algo-
rithm” of [6], while the second part is entirely different, and will be described in
Sect. 5.

An assumption of the basic algorithm, is that the initial configuration of the
particles is simply connected ; another assumption is that the initial configuration
and the shape to be formed satisfy the necessary condition of Proposition 1.

As we pointed out in Sect. 2, the basic algorithm only deals with shapes that
are made of full triangles and segments, but this assumption is not used in the
parts of the basic algorithm that we are going to borrow here. The relevant
“phases” of the basic algorithm are as follows:
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– Handedness agreement : all the particles assume the same handedness (by sim-
ply setting an internal flag whose meaning is either “my original handedness
is correct” or “my original handedness is incorrect”).

– Leader election: the particles attempt to elect a single leader. If the initial
configuration is unbreakably k-symmetric, they may fail to do so, and elect
exactly k leaders instead.

– Straightening : the particles arrange themselves in k straight line segments,
each with a leader located at an endpoint. If k > 1, all the leaders are pairwise
adjacent (recall that the only possibilities are k = 2 and k = 3), and the
configuration is unbreakably k-symmetric (hence the k line segments have
the same length and form angles of 2π/k).

In the next section we are going to show how to proceed from here: we have
a configuration consisting of k straight lines and k leaders, where all particles
have the same handedness, and we want to reach an arbitrary configuration (i.e.,
a level of a computable shape) that is unbreakably k-symmetric if k > 1.

5 Forming Turing-Computable Shapes

5.1 Starting Configuration

Recall from Sect. 4 that, starting from a simply connected configuration, all
the particles in the system can agree on a common handedness and rearrange
themselves to form a configuration C0 consisting of k equal line segments (with
k ∈ {1, 2, 3}) each containing a leader particle. Moreover, if k > 1, then C0 is
unbreakably k-symmetric, and we may assume that also the shape’s level to be
formed is unbreakably k-symmetric. In this case, each leader is assigned an equal
portion of the shape, corresponding to a sector of plane spanned by an angle of
2π/k. These k sectors are called principal sectors of the plane, and the k rays
separating them are the principal rays: Fig. 3 shows an example for k = 3.

As a preliminary move, each leader will reach the far end of the line segment
on which it is located. This is done by repeatedly “transferring the leadership”
to a neighboring particle. In turn, this amounts to sending a special message to
that neighbor, whose meaning is “you are now the leader, and I am a regular
particle”. So, no particle will actually move in this phase.

When a leader has reached the far end of the segment, it starts the next
phase, which consists in building and initializing a mRAM simulator that will
eventually form the portion of shape that falls into that principal sector. From
this time on, the k leaders will act independently of each other, never meeting
again and never interacting.

5.2 From a Shape-Generation Algorithm to a Tracing mRAM

As stated in Sect. 2, we assume that the shape to be formed is computable, i.e.,
there exists an algorithm A that generates its nth level Sn given the number
n as input. By this we mean that A outputs the coordinates of all the points
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L

L L

Fig. 3. The final configuration of the basic algorithm, which is the starting point C0

of our new algorithm. Each leader is assigned a trail of followers, and will guide them
in the formation of the part of shape that falls into its principal sector.

of Sn, in an arbitrary order and in some arbitrary coordinate system, and then
terminates. Recall that, by definition of shape, there exists a configuration Cf

of n particles, expanded or contracted, which collectively form Sn. Additionally,
due to Proposition 1, if k > 1, then Sn must be unbreakably k-symmetric,
and therefore we may take Cf to be an unbreakably k-symmetric configuration
of particles. As such, Cf can be translated and rearranged so that its center
coincides with the center of C0. Also, Cf can be decomposed into k equal subsets,
called principal subsets, each of which entirely lies in a principal sector of C0,
with one exception: some expanded particles of Cf may be crossing a principal
ray, and therefore have the head in a principal sector and the tail in another.
These will be called trespassing particles. Now, from A we can easily produce a
modified algorithm A′ that only outputs the points that are occupied by one of
the principal subsets of Cf , say, C ′

f .
Furthermore, given A′, we can construct another algorithm A′′ that “traces”

C ′
f . That is, A′′ output the points of C ′

f in a specific order: it starts generating
the points of C ′

f that lie next to a principal ray, from the closest to the principal
ray’s endpoint to the farthest, and then proceeds to the next ray parallel to
the principal ray, and so on (each of these rays is called a scanline). This is
done by taking every point p on every scanline, in order, and executing A′. If
A′ generates p, then p is generated by A′′. If A′ generates points that appear
on the same scanline but after p, then A′′ proceeds along the scanline by one
step and executes A′ again, etc. Otherwise, A′′ moves to the first point of the
next scanline, etc. As soon as A′ generates only points that lie on already-visited
scanlines, A′′ terminates. Hence, A′′ is a procedure that terminates in a finite
amount of time.
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As A′′ executes A′, it can also detect if each location p it generates should be
occupied by a single particle or by an expanded particle (indeed, this information
is part of the description of C ′

f ). If it is an expanded particle, and the other
location p′ occupied by the same particle is on the next scanline, A′′ does not
generate p: it will generate only p′ as soon as it scans it. Along with p′, A′′ will
also generate a “direction of expansion”, which goes from p′ to p. This is called
the delayed-deployment rule, and its purpose will be explained later.

An improvement we can make on A′′ is that it not only generates the locations
of the particles of C ′

f , but it also generates the “movements” it makes through
the plane to generate them (we introduced these movement operations in Sect. 3).
Specifically, the possible movement operations are: (1) advance by one step along
the current scanline; (2) move to the next scanline; (3) go back by one step along
the current scanline; (4) deploy a contracted particle; (5) deploy a particle that
will expand in direction d; (6) terminate.

The third type of operation is repeatedly used right after moving to the next
scanline, in order to reach its endpoint e and then resume scanning. The only
caveat is that, if e should be occupied by a trespassing particle belonging to
Cf \ C ′

f , it is skipped by A′′, and the scan will not be resumed from e but from
the location right before it. This type of behavior is called trespasser-avoidance
rule, and is illustrated in Fig. 4.

Since we have an algorithm A′′, there exists a Turing Machine T that com-
putes the same function: it takes an integer n as input, and it outputs a sequence
of movement operations that trace (a sector of) Sn. From Sect. 3 we know that
there is a RAM QT with c registers that produces the same output when the
number n is initially stored in its first register. We can then construct the mobile
mRAM UT , with c′ = 6 flag registers, each of which corresponds to one of the
movement operations above, and is set and reset whenever the corresponding
operation has to be performed.

Finally, we can construct the mRAM Q′
UT

, which simulates UT using only two
registers, provided that the value 2n is initially stored in its first register. This
mRAM will be simulated by each leader in the system and its trail of particles.
In the rest of this section we will show how the RAM simulator of Sect. 3 can
be expanded to implement the movement operations above and therefore yield
a Shape-Formation algorithm.

5.3 Initializing the Machine

Let us focus on a single leader particle L and its trail of n/k particles. Recall that
the leader L is now located at the endpoint of its trail of particles that is farthest
from the center of C0. We want the last four particles on the trail, including L,
to start executing the simulator of Q′

UT
as described in Sect. 3. First, however, it

is necessary to initialize the simulator by storing the value 2n in its first register,
which amounts to placing particle M1 at a distance of 2n + 2 steps away from
particle M2 (refer to Fig. 2).
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Fig. 4. A configuration forming the nth level of a shape, subdivided into its three
principal subsets, each having two trespassing particles. The dashed lines represent the
order in which the principal subsets are traced by the algorithm A′′. The dark particles
represent the last dots of their respective principal subsets.

At first L switches states with its only neighbor, which now becomes the new
leader L. The two neighbors of L become M1 and M2, and then M2 sends a
message to its other neighbor, which becomes the pivot P .

Then, L has to “push” M1 exactly 2n times in order to create the input to
the simulator. By “push” we mean that L reaches M1, orders it to move forward
by one step, and waits until M1 has expanded and then contracted again.

In order to repeat this action the right number of times, the entire trail counts
in binary from 0 to 2n − 1: this is done by letting each particle hold k binary
digits, initially all set to 0. After each push, M1 adds 1 to the binary number
formed by its k digits. L reaches M1 and takes the carry bit of the addition from
M1. If the carry bit is 1, L adds 1 to its own k digits. If the carry bit of this
addition is 1, L moves all the way to M2 and orders it to increment its k bits
by 1, etc. As soon as a carry bit is 0, a message is sent back to L and forwarded
by the trail’s particles. When the message reaches L, it proceeds with the next
push operation, etc.

When the last particle in the trail gets a carry bit of 1, it knows that M1

has been pushed exactly 2n times, and it forwards this information to L, which
therefore stops pushing and proceeds with the simulation.

5.4 Tracing the Shape

Let the last particle in the trail be called the rear particle. The leader will
coordinate the simulation of the mRAM that traces the shape pretending that
the “pen” is held by the rear particle. That is, the simulator will go on with the
computation until a movement operation is reached. If such operation is of type 4
or 5 (i.e., the deployment of a particle), then the rear particle is “dropped”, which
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corresponds to drawing a point of the shape.As explained in Sect. 3, L knows
if a movement operation has to be performed by checking, at the end of every
simulated instruction of the mRAM, if the value of the first register is a multiple
of some prime number and the value of the second register is 0. This implies,
in particular, that when a movement operation is executed, the particles P and
M2 are next to each other.

In the following we will explain in greater detail how the system behaves to
implement the six possible movement operations.

1. Advancing by one step means that the four-particle mRAM simulator, as
well as the whole trail of particles up to the rear particle, has to move by
one step along the current scanline. First, L moves next to M1 and orders
it to advance by one step, waiting until it has moved. Then it goes next to
M2 and gives it the same order. L then moves away from M2 by one step
and waits for it. In the meantime, M2 gives the same order to P and then
advances toward L. P does the same as M2, and so on. When the rear particle
is reached by the message, it advances and sends an “all done” message to
its predecessor, which forwards it to L. Then, L knows that it may proceed
with the simulation.

2. Moving to the next scanline means that the entire trail and four-particle
mRAM simulator must move “sideways” by one step, in order to relocate
themselves on the next scanline s. The structure of this operation is similar
to the previous one. L moves to M1 and orders it to move sideways onto s.
There can be no misunderstanding on the direction of movement, since we are
assuming that all particles have already reached an agreement on a common
handedness. L waits until M1 has moved, and then goes to M2 and gives it
the same order. M2 forwards the order to P , which forwards it to the next
particles, etc. When the message reaches the rear particle, it forwards an “all
done” message to L, and then moves onto s. When any particle receives the
“all done” message, it waits until its predecessor has moved onto s, then it
forwards it to its successor and moves onto s. When L has finally moved onto
s, the procedure is over.

3. To go back along the current scanline, the operations of item 1 are executed
in reverse order. That is, L moves to M2 and forwards a message to the rear
particle, which then moves backwards, and all other particles up to L follow
one by one. Then L goes to M1 and orders it to move backwards.

4. Deploying a contracted particle means that the rear particle has to stop where
it is and remain there forever. This is simple to accomplish: L goes to M2

and forwards a message to the rear particle. When the rear particle gets the
message, it orders its predecessor to become the new rear particle and forward
an “all done” message to L. From this point on, the old rear particle will stop
following the trail, and no other particle will ever communicate with it again.

5. The deployment of a particle that will expand in direction d is similar to
the previous item. The only difference is that, after the rear particle has
transferred its role to its predecessor, it also expands in direction d. The
direction is encoded by taking the forward direction of the trail as 0 and
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numbering all other directions from 1 to 5 in clockwise order. There can be
no misunderstanding, since we are assuming that all particles have already
reached an agreement on a common handedness.

6. When the termination operation is reached, the simulation is over, and a
dismantling procedure has to be executed, which will be described next.

5.5 Dismantling the Machine

There is one last problem to solve: when the pivot P has been deployed, only
three particles are left to deploy: L, M1, and M2. Since three particles are too
few to simulate a tracing RAM, they have no way to reach their final locations
without “losing the way”. It is impossible to adapt our algorithm without making
an extra assumption on the shape to be formed.

Recall that the algorithm A′′ generates all the movement operations that are
necessary to draw the principal subset C ′

f of the configuration Cf , by tracing it
one scanline at a time. The last point plotted by A′′ on the last scanline visited
is said to be the last dot of C ′

f (see Fig. 4). A subset of the grid graph G is called
a neighborhood of point p with radius r if it contains precisely all the vertices of
G that have distance at most r from p.

Assumption 1. For each level Sn of the shape, there exists a configuration Cf

of n particles that forms Sn (such that Cf is unbreakably k-symmetric if Sn has
to be formed from an unbreakably k-symmetric initial configuration, cf. Proposi-
tion 1) and, for each principal subset C ′

f , there exists a neighborhood of the last
dot, with radius independent of n, that contains at least four particles of C ′

f .

If we make Assumption 1 on the shape to be formed, we can complete our
algorithm with a dismantling procedure, which makes L, M1, M2, and P reach
their final positions without getting lost in the attempt. To this end, we must
first modify the tracing algorithm A′′ that we previously designed, and produce
a new tracing algorithm A′′′. Let p1 be the particle occupying the last dot of
C ′

f , and let p2, p3, p4 be the three particles of C ′
f closest to p1 (other than p1

itself). Ties are broken arbitrarily. The new algorithm A′′′ proceeds exactly like
A′′, except that it skips the deployment operations (i.e., the operations of type 4
or 5) for p1, p2, p3, p4, and terminates when the “pen” reaches p1.

Then we construct another algorithm F that, with input n, generates the
paths that three particles have to take from p1 to reach the locations of p2, p3,
p4, making sure to avoid the locations of the other particles of Cf (this is possible
because we chose p2, p3, p4 to be closest to p1). Additionally, if some of the pis
are expanded, F outputs this information, as well as the direction of expansion.
It is clear that F is computable and terminates in a finite amount of time.

As before, we observe that there is a Turing machine T that executes A′′′,
and a RAM QT that simulates T . However, this time we add an extra register
to QT , which will store the input value n and will never erase it: this value will
be passed as input to F . Again, the mobile mRAM UT is constructed, which is
simulated by a 2-register RAM Q′

UT
, which in turn is simulated by particles L,
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M1, M2, and P . When these four particles are done executing A′′′, they erase all
registers except the one containing n, and execute a simulation of F (again, by
simulating a 2-register RAM that executes F ). Whenever F outputs a step in a
path from p1 to p2, p3, or p4, this step is memorized by the leader L. At the end
of the simulation, L has the three complete paths stored in its memory. Note
that this is possible even if the memory of L is of constant size: by Assumption 1,
the three paths are contained in a neighborhood of p1 with radius independent
of n, and therefore their length is bounded by a constant.

When the simulation of F is terminated, L starts moving toward P , and
orders M1 and M2 to do the same. When M1, L, M2, and P are in four con-
secutive locations, L communicates the three paths to the others. At this point,
each of the four particles knows what to do to reach its final position, and they
all do so in an orderly fashion.

5.6 Conclusion

Our Shape-Formation algorithm demonstrates the following:

Theorem 2. Under Assumption 1, any computable shape is formable from any
simply connected initial configuration.

The proof of correctness is straightforward, and it relies on two basic facts:

– A four-particle simulator and its trail of particles will never get in the way of
other four-particle simulators. This is because each of them stays in its own
principal sector; the only exceptions are the trespassers, which are actually
not an obstacle due to the trespasser-avoidance rule.

– The particles that have already been deployed will not get in the way of the
four-particle simulator that deployed them. This is because the movement
operations always make the simulator travel through locations where no par-
ticle has been deployed, yet. In particular, the delayed-deployment rule serves
this purpose: a deployed particle will always expand toward a location that
will never be traversed by the simulator again.

Note that Assumption 1 only excludes shapes whose levels are very sparse
around the last dots of their principal subsets. In particular, connected shapes
abundantly satisfy the assumption, which in this case reduces to the necessary
condition of Proposition 1. Therefore, we have the following characterization of
formable connected computable shapes:

Corollary 1. A necessary and sufficient condition for a connected computable
shape to be formable from a simply connected initial configuration is that, if
the initial configuration is unbreakably k-symmetric, then also the corresponding
level of the shape is unbreakably k-symmetric.

Our results open several interesting questions. In particular: what happens
when the starting configuration is not simply connected? To what other problems
can our mobile RAM be applied?
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Abstract. This article deals with the issue of guaranteeing properties in
Distributed Virtual Environments (DVEs) without a server. This issue
is particularly relevant in the case of online games, that operate in a
fully distributed framework and for which network resources such as
bandwidth are the critical resources. Players typically need to know the
distance between their character and other characters, at least approx-
imately. They all share the same position estimation algorithm but, in
general, do not know the current positions of others. We provide a syn-
chronized distributed algorithm Alc to guarantee, at any time, that the
estimated distance dest between any pair of characters A and B is always
a 1 + ε approximation of the current distance dact, regardless of move-
ment pattern, and then prove that if characters move randomly on a
d-dimensional grid, or follow a random continuous movement on up to
three dimensions, the number of messages of Alc is optimal up to a con-
stant factor. In a more practical setting, we also show that the number
of messages of Alc for actual game traces is much less than the standard
algorithm sending actual positions at a given frequency.

Keywords: Distributed virtual environments · Online games ·
Random walks · Distributed approximation algorithms · Peer-to-peer
algorithms

1 Introduction

1.1 Context

The term Distributed Virtual Environment (DVE) refers to systems where geo-
graphically distant users, or players, participate in a highly interactive virtual
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world. The main examples of DVEs are online games, where players control char-
acters that interact with each other, and may modify the shared environment.
Usually, interactions between characters and/or objects of the environment are
enabled when they are sufficiently close in the virtual world. For simplicity, in the
rest of the paper, we will use player to denote both the player and the character.

The main difference between a DVE and a classical distributed system like
a database, is that the states of objects in the virtual environment evolve even
without changes issued by the users [14] since non-player characters go about
their programmed activities, and objects must respect the physics of the game.
Moreover, the amount of inputs per time unit is generally high, as players interact
a lot with the environment.

DVE participants need to know the state of the virtual world, in order to dis-
play it correctly and to be able to interact with it. The two central aspects that
need to be optimized in a DVE are consistency and responsiveness. Inconsisten-
cies arise when two users see different versions of the virtual world. On the other
hand, responsiveness, the time interval between when a user executes an action
and when the effects of this action is perceived by the player is unsatisfactory
when this time delay is noticeable.

One difficulty is related to the number of exchanged messages. In general,
increasing the number of communications between players contributes both to
responsiveness (changes are transmitted earlier) and consistency (more messages
allow a more accurate knowledge of the game’s state). On the other hand, it
has been shown in [13] that too many messages degrade network performance,
leading to inconsistencies.

In practice, many games rely on a simple strategy, where players send updates
at a regular rate to other players. The main flaw of this technique is a poor scal-
ability in terms of bandwidth, as the number of messages increases quadratically
with the number of players. Scalability is a concern for DVEs: some games are
intended to be played by a large number of participants at the same time (e.g.
MMORPGs). In addition, many online games are based on a client-server archi-
tecture. This has many disadvantages, as maintaining a server is often expensive,
and exposes a single point of failure [16]. This leads to the incentive to study
peer-to-peer solutions, where players share the role of the server among them-
selves, but in this context, bandwidth becomes crucial, as the network capacities
of peers are usually lower than those of powerful servers. This article focuses
on reducing bandwidth usage by limiting the number of exchanged messages.
Several versatile techniques have been proposed to achieve this goal.

Data compression regroups techniques that can reduce bandwidth usage, but
that are dependent on the application. For example Delta encoding [16], is an
implementation trick where only differences between states are sent.

Dead-reckoning is a widely used tool, standardized in the Appendix E of
[3]. Each player predicts the positions of the other players, extrapolating their
movements after each update, typically based on their speed and acceleration.

Error induced by dead-reckoning can be measured by different means [4,17],
but Dead-reckoning aims at bounding the additive error on the players positions.
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The players know their own actual positions at any time, and for the other play-
ers, they only know estimated positions. Since all the players share the same
estimation algorithm, each player is able to detect if the error on his/her own
position as seen by another player is above a given threshold. When this hap-
pens, the player sends a message to this player to correct the outdated estimated
position. Research on dead-reckoning improved bandwidth usage mainly in two
ways : get the best prediction possible [10], or improve the update policies (a
survey on different update policies is given in [15]).

Interest Management consists in filtering updates in order to send them only
to players who might be interested. Different types of interest management are
identified in [7,12]. Some application-specific approaches may also use the fact
that human attention is limited, as in [6], where a set of five interesting players
is defined at any given time, in order to send frequent updates to those players,
but much less to other players.

Combinations of all these techniques can be used. For example in [8], interest
management is used to modify the Dead-reckoning threshold.

In the context of interest management, estimating distances between players
is very useful, as a player is rarely interested in knowing the exact state of far
away objects. In addition, in some application-specific cases, distance may be
important, for example when implementing a spell that heals all allies within
a certain range. To the best of our knowledge, no distributed algorithm has
been proposed to solve the problem of estimating the distance between users of
a DVE. The objective of this paper is to provide a solution allowing players to
estimate the distances between them, with a condition on the relative error, while
guaranteeing that the use of bandwidth is as small as possible. In particular, it has
to be bounded against an ideal algorithm that would send a minimum number
of messages, based on a perfect knowledge of the game’s state.

We identify two main articles related to this objective.
In [14], two techniques are proposed. First, local-lag reduces short-term incon-

sistencies, at the cost of less responsiveness: a delay between the time an oper-
ation is issued and the time when the operation becomes effective is added.
Secondly, timewarp is proposed, an algorithm to ensure consistency. In this algo-
rithm, each player remembers all previous operations and the time at which they
were issued. If an operation is received by a player too late, the player rewinds the
state of the world, immediately recomputing the current state, using all needed
operations. These operations are user initiated, thus, the number of messages is
proportional to the number of players, and to the length of time.

In [11], Dead-Reckoning is used to compensate for latencies and message
losses on the network. TATSI, the average spatial error on players’ positions
over a time interval, is estimated with no latency or loss of message. Then,
under the assumption of a constant acceleration, latencies and message losses
are added to the model, and it is shown that the same TATSI can be obtained
by lowering the dead-reckoning threshold (thus making DVE nodes send more
messages than without latency and message losses).
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To summarize, solutions from the literature are very consuming in term of
messages and/or target an additive bound on the error. By contrast, this paper
focuses on bounding the relative error on distances and keeping the number of
message exchanges low.

1.2 Contribution

In terms of optimality in number of messages, Dead-reckoning is optimal for
position estimation. Indeed, when using Dead-reckoning, players know where
other players see them. Thus, a player sends updates if and only if the tolerated
error between his/her actual position and his/her estimated position is exceeded,
making it an optimal bandwidth strategy. On the other hand, since no two
players know the actual distance between them, none of them can determine
the exact error over the estimated distance, making distance estimation a much
harder problem.

We consider deterministic algorithms that allow each player to estimate, at
any time, the distances between him/her and the other players, while having a
guarantee on the errors. Initially, each player knows the exact position of every
other player. The metric we use is the relative error given in Eq. 1, where, at each
instant t, dact(t) denotes the actual distance between two players, and dest(t)
denotes their estimated distance,

relative error = |dact(t) − dest(t)|/dest(t). (1)

We make sure this error measurement never exceeds ε, the maximum tol-
erated relative error for any pair of players, while minimizing the number of
exchanged messages.

That is, Eq. 2 must always hold, for every pair of players,

(1 − ε)dest(t) < dact(t) < (1 + ε)dest(t). (2)

We propose an algorithm, called local change and denoted by Alc. It relies
on the same underlying principle as Dead-reckoning, where position estimations
are deterministic and each player computes his/her own position as seen by
other players, using the same deterministic algorithm. In Alc, player Bob sends
his actual position pB to another player Alice as soon as the estimate p̃B of the
position of Bob as seen by Alice deviates too much from his actual position, more
precisely as soon as Eq. 3 is violated, where d denotes the distance between two
points. In addition, Alice will immediately respond to Bob by also sending her
actual position.

d (pB(t), p̃B(t)) < dest(t) × ε/2. (3)

To quantify the performance of our algorithm, we compare the number of
messages against an oracle with a full knowledge of the current state of the
game, called ideal algorithm and denoted by Aid. In Aid, an exchange of messages
happens only when, and as soon as Eq. 2 is violated.
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Our results are threefold. First, without any assumption on how players move,
we prove that with Alc, when there is no latency, the maximal error is never
overcome: Eq. 2 is always satisfied (Theorem 1, Sect. 2).

Secondly, in the case where movement is limited to the random part based
on players’ actions, which cannot be anticipated by the deterministic prediction
algorithm, we prove that, given a fixed ε, Alc is optimal in terms of number of
message exchanges up to a constant factor. Theorem 2 and Theorem 3, respec-
tively in Sect. 3 and Sect. 4, use two different movement patterns, both of which
consisting, at each instant t ∈ N, in chosing a new position at a distance at most
1 from the last position.

Finally, this theoretical analysis is complemented by experiments in Sect. 5.
We first perform experiments on synthetic traces. Then, we use actual traces
from Heroes of Newerth [1], to compare Alc with a fixed frequency algorithm,
denoted by Aff . Aff is commonly used in practice in online games, and sends
updates periodically, by waiting w time units between updates. We show that
overall, Alc behaves better while never exceeding the maximum tolerated error.

In summary, the performance (without latency) of Aid, Alc, Aff and
timewarp [14] are shown in the following table:

Number of messages Maximal error Number of violations

Aid mid ≤ Tn(n − 1) ≤ ε 0

Alc O(mid) ≤ ε 0

Aff
T
w

n(n − 1) 0 if w = 1 Θ(Tn2)

unbounded otherwise

timewarp O(Tn2) 0 0

T denotes the duration of the experiment, and n the number of participants in
the DVE. We consider as a reference mid, the (perfect knowledge based) number
of messages sent by Aid. In the worst case, Aid would make players send one
message each instant (if there is no restriction on movement, players may move
each turn in such a way that the distance between players increases or decreases
too much with respect to Eq. 2 at each instant). Thus we have mid ≤ Tn(n−1).
Note that timewarp functions slightly differently than the others: it is intended
to ensure strict consistency. The number of violations counts, over T time units,
the number of distance pairs for which the error is above ε.

2 Model and Algorithms

2.1 Model

Let us first assume that ε ∈�0; 1�. Indeed, ε = 0 means that no error is tolerated,
while ε = 1 would accept any estimate on the distance, provided it is larger than
half the actual distance, which is not very informative. Since Alc must enforce
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that Eq. 3 holds true for any pair of players, we focus on two players Alice and
Bob. We assume that the communication channel connecting them is without
message loss nor latency, that local computations do not take time and that
all players share a synchronized clock. At any instant t ∈ N, let us denote
the positions of both players as pA(t) and pB(t). A position is a vector whose
dimension depends on the virtual world (for example, for a 3D world, a position
is described by a vector in N

3, or R
3 in the case of continuous moves). Each

player knows his/her own actual position, but may not know exactly where the
other player is. These positions can change unpredictably, through the actions
of users.

×pA

©p̃A

× pB

© p̃B

Fig. 1. Knowledge of Alice (dashed blue lines) and Bob (continuous red lines) (color
figure online)

In Sects. 3 and 4, analyses are for two types of movement patterns. As these
movements are random, the best possible estimation of the position of other
players is to assume they remain still, so that a player will estimate that the
other players are at their last known position.

Random Walk is a discrete movement taking place on a d-dimensional
grid. Thus, positions can be represented as values from Z

d. If at instant t ∈ N, a
player following such movement is at position p = (p1, p2, . . . , pd) he/she has 2d
neighbors: (p1 − 1, p2, . . . , pd), (p1 + 1, p2, . . . , pd), (p1, p2 − 1, . . . , pd), etc. The
movement consists, at each instant, to choose one of the neighbors, each one
having probability 1

2d to be chosen.
Continuous Movement consists at each instant, to select a value smaller

than one, and to add a vector of norm equal to this value, and with a direction
randomly chosen. In 1D, a moving player adds at each instant, a random number
following a uniform distribution on �−1, 1� to their position. In 2D, at each
instant t, a moving player X chooses ρt and θt following uniform distributions
respectively on �0, 1� and �0, 2π�, so that pX(t + 1) = pX(t) + (ρt, θt), where
(ρt, θt) is the vector with polar coordinates ρt and θt. In 3D, at each instant t, a
moving player chooses ρt, θt, and ϕt following uniform distributions respectively
on �0, 1�, �0, 2π� and �0, π�, to add as spherical coordinates.

2.2 Algorithm

As explained in Sect. 1.2, players will estimate their distance to each other. To
do this, each player will compute a deterministic estimation of the other player’s
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Algorithm 1. Local change (Alc), from the point of view of Alice
1: pA ← Alice’s initial position � Actual position of Alice. This is a read-only input

to the algorithm
2: p̃A ← Alice’s initial position � Position of Alice, as estimated by Bob, the other

player
3: p̃B ← Bob’s initial position � Estimated position of Bob
4: dest ← d(p̃A, p̃B) � Estimated distance. Will always be equal to d(p̃A, p̃B)
5: procedure check for update � to be called at each t ∈ N, after movement
6: if d(pA , p̃A) ≥ ε

2
dest then

7: p̃A ← pA

8: dest ← d(p̃A, p̃B)
9: send message (pA , begin update) to Bob

10: end if
11: procedure receive message(position, type) from Bob � to be called when

receiving a message
12: p̃B ← position
13: dest ← d(p̃A, p̃B)
14: if type = begin update then � type distinction is to avoid infinite messages
15: send message (pA , update reply) to Bob
16: end if

position, in order to get dest(t), i.e. Bob computes p̃A(t), the estimate of the
position of Alice, and Alice computes p̃B(t). As they use the same deterministic
algorithm, these computations can be replicated, and p̃A(t) and p̃B(t) become
a shared knowledge, as seen on Fig. 1 (even without communication). Thus, we
will use the distance between those two (estimated but shared) positions as dis-
tance estimate, dest(t). In practice, p̃A(t) is generally based on an extrapolation
of Alice’s position, speed and acceleration, from the time of the last message
exchanged between Alice and Bob.

In Theorem 1, we prove that Alc satisfies Eq. 2, provided that Alc sends an
update of the actual position as soon as Eq. 3 is not satisfied, as depicted in
Algorithm 1. Thus, the correctness of Alc is established.

Theorem 1. Using Alc, Eq. 2 holds true at any instant (regardless of move-
ment).

Proof. The following inequalities hold true:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

dact(t) − dest(t) ≤ d
(

pA(t), p̃A(t)
)

+ d
(

pB(t), p̃B(t)
)

&(triangle inequality)
dest(t) − dact(t) ≤ d

(

pA(t), p̃A(t)
)

+ d
(

pB(t), p̃B(t)
)

&(triangle inequality)
d(pB(t), p̃B(t)) < ε

2dest(t)&(by construction)
d(pA(t), p̃A(t)) < ε

2dest(t)&(by construction)

so that |dact(t) − dest(t)| < εdest(t), which is equivalent to Eq. 2.
��
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3 Random Walk

The performance of Alc is measured by M , the number of message exchanges (a
message and its response counting as one) between two players using Alc, before
the first message sent with Aid. Our result that Alc is optimal is formally stated
in Theorem 2 by an upper bound on the expectation of M :

Theorem 2. Let Δr =
⌈

log(1+ε)−log(1−ε)
log(1+ ε

2 )

⌉

, with ε ∈�0; 1�. For any two players

following a random walk on Z
d (with d ≤ 3), E�M� ≤ Δr × (

2d+1
)Δr . More-

over, if only one of the players moves on Z, with Δl =
⌈

log(1−ε)−log(1+ε)
log(1− ε

2 )

⌉

, then

E�M� ≤ min
(

Δl × 2Δl ;
⌈

4
π Δl

2
⌉ × 8

)

.

Due to space limitations, only the 2D-case with two players moving will be
proved in this Section. 1D and 3D cases can be found in [5].

For our analysis, we will use the L1 distance (Manhattan distance), that
is, for two positions p = (p1, p2) and p′ = (p′

1, p
′
2), the distance is d(p, p′) =

|p1 − p′
1| + |p2 − p′

2|.
Let us denote by dest and p̃ the estimates for Alc. As seen in Sect. 1.2, Algo-

rithm Aid generates a message exchange as soon as Eq. 2 becomes false (this is
the definition of Aid). Equivalently, Aid generates a message exchange as soon
as dact leaves Iid, where Iid is defined by Iid = �d0 (1 − ε) ; d0 (1 + ε)�, with
d0 = dact(0).

Let us consider ti (with i ≥ 1), defined as the instant at which the i-th round
trip of the messages is sent with Alc. With topt = min{t : dact(t) /∈ Iid}, the
instant of the first message sent by Aid, we have M = max{i, ti ≤ topt}. We
may then define the auxiliary random variable M ′ : min{i, dest(ti) /∈ Iid}. M ′

represents the index i of the first message of Alc so that dest(ti) is outside Iid. As
at this instant ti, there was an exchange of messages, we have dest(ti) = dact(ti),
thus, by construction, Aid already sent a message, so that M ′ ≥ M .

Let us call BA(t) (resp. BB(t)) the L1-ball of radius
⌈

dest(t) ε
2

⌉

, and of center
p̃A(t) (resp. p̃B(t)). Thus, BA(t) is the set of positions that are at a distance
from p̃A(t) less than or equal to

⌈

dest(t) ε
2

⌉

(this is the lower square on Fig. 2a).
Note that, as we supposed that the estimated positions do not evolve between

two message exchanges, the same goes for the estimated distance, as well as for
BA and BB . That is, for all t and t′ in �ti; ti+1�, dest(t) = dest(t′), BA(t) = BA(t′),
and BB(t) = BB(t′).

Let us assume without loss of generality, that Bob is the player that triggers
the (i + 1)-th message. Additionally, as we are interested only in the positions
of Alice and Bob relatively to each other, we can always put the center of the
coordinates on p̃A; thus, at each instant, p̃A(t) = 0.

Remark 1. With Alc, the (i + 1)-th message is sent when Bob is on the border
of BB(ti).
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Proof. With Alc, the (i + 1)-th message is sent when Bob gets at a position
that is at a distance at least ε

2dest(ti) from p̃B(ti). As movement is on integer
positions, the first positions satisfying this are all on the border of BB(ti).

��
Each instant ti+1 where Bob gets out of BB(ti), the estimated distance

changes from dest(ti) to dest(ti+1). Before being able to identify the effect a
message has on the estimated distance (Lemma 3), we analyze how far away
from Alice the new estimated position of Bob can get (Lemma 1).

The border of BB(ti) has 4 faces. As shown on Fig. 2b, we may draw cones
over each of these faces, with p̃B(ti) as the apex: if we draw two lines intersecting
on p̃B(ti), one horizontal and one vertical, we divide the plane in four cones. All
points of the space will be in only one of the cones, except for points on the
borders (on Fig. 2b, the borders of the cones are the dashed lines). In the case
where p̃A(ti) is not on one of the borders, let us call R the face of the border of
BB(ti) that is included in the cone opposing the cone containing p̃A(ti). In the
case where p̃A(ti) is on one of the borders (this happens when p̃B(ti) is on one
of the axes), than any of the two opposing faces can be taken as R.

Lemma 1. If p̃B(ti) �= p̃A(ti), P
(

d
(

p̃A(ti), p̃B(ti+1)
) ≥ ⌈

dest(ti)
(

1 + ε
2

)⌉) ≥ 1
4 .

Proof. All points of R are at distance
⌈

dest(ti)
(

1 + ε
2

)⌉

of p̃A(ti) (to see this,
consider one of the endpoints of the face, like α on Fig. 2b, for which one coor-
dinate is the same as for p̃B(ti), and the absolute value of the other coordinate
is larger by

⌈

ε
2dest(ti)

⌉

).
As the random walk is symmetric, and by Remark 1, we have a probability

of at least 1
4 that Bob sends the (i + 1)-th message by going on face R.

��
Note that the case where p̃B(ti) = p̃A(ti) has not to be treated, as it means

that both players shared the same position at instant ti. If Alice and Bob start
on the same position, M = 1; if Alice and Bob start on different positions, it is
impossible for Bob to move to Alice’s position without Aid sending a message.

In Lemma 1, the movement of Alice is not taken into account. Let us call Π
the line parallel to R and containing p̃A(ti) (see Fig. 2a).

Remark 2. As Π contains p̃A(ti), the center of BA(ti), Π divides BA(ti) into two
halves of same area.

Lemma 2. At least half of the positions p ∈ BA(ti) satisfy

d
(

p, p̃B(ti+1)
) ≥ d

(

p̃A(ti), p̃B(ti+1)
)

.

Proof. By definition of the L1-norm, and because Π is parallel to R, if we draw,
on Π, the points γ and δ that are the projections of p̃B(ti+1) parallel to the
two axes (see Fig. 2a), then all points on the line segment �γδ� are at the same
distance to p̃B(ti+1). Also, by definition of R, p̃A(ti) ∈ �γδ�. Thus, all points of
�γδ� are at a distance to p̃B(ti+1) equal to d(p̃A(ti), p̃B(ti+1)).
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Fig. 2. Random walk, two-dimensional situation

If we draw the L1-ball of center p̃B(ti+1) and of radius d(p̃A(ti), p̃B(ti+1)),
then �γδ� is one of the faces of the ball. By Remark 2, we have that at least
half of the points from BA(ti) are outside this ball, with a distance to p̃B(ti+1)
higher than the radius.

��
This allows us to finally look at the change in estimated distance.

Lemma 3. As long as p̃B(ti) �= p̃A(ti), P
(

dest(ti+1) ≥ ⌈

dest(ti)
(

1 + ε
2

)⌉) ≥ 1
8 .

Proof. As Alice does not get out of BA(ti), we know that p̃A(ti+1) ∈ BA(ti).
By Lemma 2, and by symmetry of the random walk, d(p̃A(ti+1), p̃B(ti+1)) ≥
d(p̃A(ti), p̃B(ti+1)) with probability 1

2 . Combined with Lemma 1, we get the
result.

��
Let rrw : x �→ ⌈

x
(

1 + ε
2

)⌉

. We can now prove Lemma 4 which states that,
if there are enough successive messages so that dest(ti+1) ≥ rrw(dest(ti)), then
Bob will get out of Iid, whatever his initial position in the interval Iid.

Lemma 4. For all x ∈ Iid, rrw
Δr (x) ≥ d0(1 + ε).

Proof. x ∈ Iid ⇒ x ≥ d0(1 − ε) ⇒ rrw
Δr(x) ≥ rrw

Δr (d0(1 − ε)) since rrw is
increasing, implying that rrw

Δr (x) ≥ d0(1 − ε)
(

1 + ε
2

)Δr since ∀x, rrw(x) ≥
x

(

1 + ε
2

)

. Moreover, since, Δr ≥ log(1+ε)−log(1−ε)

log(1+ ε
2 )

, then (1 − ε)
(

1 + ε
2

)Δl ≥
(1 + ε) and x ∈ Iid ⇒ rrw

Δr (x) ≥ d0(1 + ε).
��
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Proof (Proof of Theorem 2, 2D case). Let us split the sequence of all the instants
ti into phases of length Δr and let us denote by j the index of the phase con-
taining instants from t(j−1)Δr

to tjΔr−1. Let us consider the following possible
events (i) Sj : there is at least one i ∈ �(j − 1)Δr; jΔr� such that dest(ti) /∈ Iid

and (ii) S ′
j : for all i ∈ �(j − 1)Δr; jΔr − 1�, dest(ti+1) ≥ rrw(dest(ti)). In turn,

these events can be used to define useful random variables: (i) Xj = 1 if Sj is
true, 0 otherwise (ii) X ′

j = 1 if S ′
j is true, 0 otherwise, (iii) Y = j if Xj = 1 and

Xk = 0 for every k < j and (iv) Y ′ = j if X ′
j = 1 and X ′

k = 0 for every k < j.
Thus, Y denotes the index of the first phase during which Aid sends a message.

If S ′
j is true, then dest(tjΔr

) ≥ rrw
Δr (dest(t(j−1)Δr

)) (as rrw is increasing).
Thus, by Lemma 4, S ′

j ⇒ Sj , so that X ′
j = 1 ⇒ Xj = 1. Therefore Y ′ = j ⇒

X ′
j = 1 ⇒ Xj = 1 ⇒ Y ≤ j and finally

E�Y � ≤ E�Y ′� . (4)

We may then note that Y ′ follows a geometric distribution with parameter
P(S ′

j). Moreover, as P(S ′
j) ≥ 1

8Δr

(

because by Lemma 3, there is at least a

probability 1
8 that dest(ti+1) ≥ rrw

(

dest(ti)
)

)

, we have E�Y ′� ≤ 8Δr . Thus, by

Eq. 4, we have E�Y � ≤ 8Δr . Since Y denotes the index of the first phase during
which dact gets out of Iid, M ′ ∈ �(Y − 1)Δr;Y Δr�. In particular, M ′ ≤ Y Δr

and E�M ′� ≤ Δr × 8Δr . Finally, as M ′ > M , we have E�M� ≤ Δr × 8Δr .
��

4 Continuous Movement

As in the previous section, we present bounds on M for continuous movements
(Theorem 3), but prove only the 2D-case.

Theorem 3. With Δl =
⌈

log(1−ε)−log(1+ε)
log(1− ε

2 )

⌉

, and with two players following

a random continuous movement in 1D, then E�M� ≤ Δl × 4Δl . Let Γ =
2 log(1+ε)−log(1−ε)

log
(
1+ ε√

2
+ ε2

4

) . If two players follow a random continuous movement in 2D,

then E�M� ≤ Γ × 8Γ . With moves in 3D, then E�M� ≤ Γ × 14Γ .

In this section, players follow the 2D continuous movement described in
Sect. 2.1. Theorem 3 can be proved following the same general principle as with
Theorem 2, but with slightly different lemmas. In particular, instead of rrw, we

have to use another function, rcm : x �→ x

√

(

1 + ε2

4 + ε√
2

)

.

Once again, Bob is the player who gets out the first of his set of authorized
positions with Alc, meaning that Bob is the player to initiate communication
at instant ti+1. In this setting, we will use the euclidean distance, thus BB(ti)
takes the form of a disk of center p̃B(ti) and of radius ε

2dest. In order to identify
messages that make a sufficient increase on the estimated distance, we will look at
the annulus of inner circle BB(ti), and with an outer circle of radius ε

2dest+1. We
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will call R the portion of this annulus on the opposing side of p̃A(ti), (represented
as a red hatched zone on Fig. 3a), that deviates not more than π

4 from the straight
line between p̃A(ti) and p̃B(ti). More formally, with t the intersection between
BB and the line

(

p̃A(ti)p̃B(ti)
)

, on the opposite side of p̃A(ti), and with �sp̃B(ti)t
the measure of the angle formed by the points s, p̃B(ti), and t, then

R =
{

s,�sp̃B(ti)t ∈
�
−π

4
,
π

4

�
and d(s, p̃B(ti)) ∈

�ε

2
dest(ti),

ε

2
dest(ti) + 1

�}

.

Fig. 3. Continuous movement, two-dimensional situation

First, we get, in Lemma 5, the probability that p̃B(ti+1) lands in R.

Lemma 5. In two dimensions, P
(

p̃B(ti+1) ∈ R)

= 1
4 .

Proof. As Bob does not move more than one distance unit per time unit, the first
instant where he is outside of BB(ti), on p̃B(ti+1), he will be in the annulus. R
represents one fourth of the total area of the annulus, and movement is symmetric
with respect to the center of the annulus, thus we have probability one fourth
that p̃B(ti+1) ∈ R.

��
We may then see, in Lemma 6, that when p̃B(ti+1) lands in R, there is a

high probability that the message i + 1 leads to a significant increases of dest

(where “significant” is represented by rcm).

Lemma 6. With two players moving, P
(

dest(ti+1) ≥ rcm

(

dest(ti)
) | p̃B(ti+1) ∈

R
)

≥ 1
2 .
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Proof. Let us assume p̃B(ti+1) ∈ R. The two points of R that are closest to
p̃A(ti) are the rightmost and leftmost points that are both on R and the border
of BB(ti) (α and β on Fig. 3a). Thus, if we call d′ the distance between p̃A(ti)
and α, we have d(p̃A(ti), p̃B(ti+1)) ≥ d′. As can be seen on Fig. 3b, the value of
d′ can be resolved by the law of cosines, relatively to the value of dest(ti):

d′ =

√

dest(ti)2 +
ε2

4
dest(ti)2 − dest(ti)2ε cos

(

3π

4

)

= dest(ti)

√

(

1 +
ε2

4
+

ε√
2

)

.

Thus d′ = rcm

(

dest(ti)
)

, so that P

(

d
(

p̃A(ti), p̃B(ti+1)
) ≥ rcm

(

dest(ti)
)

| p̃B(ti+1) ∈ R
)

= 1. We may then notice that, by symmetry of Alice’s move-
ment, the probability that p̃A(ti+1) is further away from p̃B(ti+1) than p̃A(ti) is
at least one half. This ends the proof.

��
Finally, we get in Lemma 7 a similar result to Lemma 3, identifying the

probability that with an exchange of messages, there is a significant increase in
the estimated distance.

Lemma 7. With two players moving, P
(

dest(ti+1) ≥ rcm

(

dest(ti)
)

)

≥ 1
8 .

Proof. The result is immediate with Lemmas 5 and 6, and the law of total
probability. ��

The last needed property, similarly to Lemma 4, is that successively applying
rcm to the estimated distance will make Aid send a message:

Lemma 8. With Γ = log(1+ε)−log(1−ε)

log
(√

1+ ε2
4 + ε√

2

) , for all x ∈ Iid, rcm
Γ (x) ≥ d0(1 + ε).

Proof. x ∈ Iid ⇒ x ≥ d0(1 − ε) ⇒ rcm
Γ (x) ≥ rcm

Γ (d0(1 − ε)) since rcm

is increasing, so that rcm
Γ (x) ≥ d0(1 − ε)

(

1 + ε2/4 + ε/
√

2
)Γ/2

. Moreover, by
definition of Γ ,
(1 − ε)

(

1 + ε2/4 + ε/
√

2
)Γ/2 ≥ (1 + ε), so that finally x ∈ Iid ⇒ rcm

Γ (x) ≥
d0(1 + ε).

��
Proof (Proof of Theorem 3 , 2D case). It turns out the proof for the 2D case of
Theorem 3 is exactly the same as the 2D case of Theorem 2, but using Lemma 7
and Lemma 8 instead of Lemma 3 and Lemma 4, and replacing Δr with Γ , and
rrw with rcm.

��

5 Experiments

In order to analyze in practice the performance of Alc with respects to Aid and
Aff , we propose simulation results of two types: with synthetic and with real
traces.
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5.1 Synthetic Traces

Fig. 4. Two players following a random walk in 2D: values of M

The first set of simulations corresponds to random walks and continuous move-
ments. We execute both Alc and Aid with the same set of random movements
(of one or two players) and we display M , the number of message exchanges
induced by Alc at the time the first message is induced by Aid. Everywhere,
we repeat the experiments 500 times to account for the stochastic nature of the
movements, which are represented with boxplots (with first and ninth decile and
first ans third quartile). Blue lines indicate the average value of M .

In the case of a two-dimensional random walk, with two players moving,
the evolution of M with the initial distance is depicted in Fig. 4a. As expected,
we observe that M remains bounded and does not depend much on the ini-
tial distance (except when the distance is very small with respect to movement
amplitudes). We also plot the evolution of M with the given maximal tolerated
error, ε in Fig. 4b. We observe that M increases when ε gets close to 1, which
suggests that dependency on ε in our theoretical bounds is unavoidable. The
same set of experiments with random walks and continuous movements in 1D,
2D, and 3D were also performed, and very similar results were obtained (see the
companion technical report [5]).

5.2 Actual Traces

Comparison of Alc with Fixed Frequency Strategies. We compare Alc to
a fixed frequency strategy, denote by Aff , that is used in practice in actual games
[2]. This algorithm does not take a maximal error as parameter, but a fixed wait
time w between message exchange of any pair of players. In [9], traces containing
the time-stamped positions of players in 98 games of Heroes of Newerth [1] are
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Table 1. Comparison of Alc and Aff , without Dead-reckoning (with Dead-
reckoning)

Aid Alc Aff

ε msg/time unit messages per time unit violations w msg/time unit violations

0.1 3.26 (2.23) 10.44 (4.71) 0.0 9 (19) 10.00 (4.73) 2.9% (5.13%)

0.2 1.49 (1.24) 5.41 (3.02) 0.0 17 (30) 5.30 (3.00) 2.74% (4.66%)

0.3 0.91 (0.84) 3.60 (2.26) 0.0 25 (40) 3.60 (2.25) 2.6% (4.26%)

0.4 0.63 (0.62) 2.65 (1.81) 0.0 34 (50) 2.65 (1.80) 2.53% (3.88%)

0.5 0.46 (0.46) 2.07 (1.50) 0.0 43 (60) 2.09 (1.50) 2.42% (3.51%)

used.1 There are 10 players, therefore, a wait time of w induces an average of 9∗10
w

messages per time unit. Even if a smaller w makes information more accurate,
Aff comes without guarantee on maximal error violations, contrarily to Alc. To
evaluate the performance of Aff in terms of accuracy in our simulations, we
counted the number of violations per time unit, that is, the number of distance
estimates among the players that violate Eq. 2. As there are ten players, and each
one has an estimate for all nine others, the number of violations has a maximum
of 90 for one time unit.

In order to perform a fair comparison between Alc and Aff , we used the fol-
lowing protocol. First, we ran Alc for several values of ε, and measured the result-
ing average number of messages per time unit. Then, we plugged the obtained
value as w in Aff , so as to compare both algorithms in terms of accuracy (to
estimate approximated distance) while they use the same average message fre-
quency. The average proportion of violations is shown in bold font in Table 1,
along with the optimal number of messages, that is, Aid, for different values of ε.
We can observe that Alc is far better than Aff for satisfying Eq. 2. For instance,
it sends only 10.44 messages per time unit for ε = 0.1. With Aff , the only way
to ensure Eq. 2 is by having w = 1. This would lead to 90 messages per time
unit with w = 1, that is, about ten times more than Alc.
Influence of Better Prediction Strategies. As mentioned in Sect. 1.1, Dead-
reckoning is a popular method for reducing the error on positions of elements of
an online game. This is why we added Dead-reckoning to our simulations to assess
its benefits. To do this, we rely on a speed based position prediction algorithm,
where speed is calculated according to the two last known positions, and is used
to extrapolate the previous known position. The results of the same experiment
as above, with this prediction algorithm, are shown on Table 1, within paren-
thesis. We can observe that the number of message exchanged in Alc decreases
more significantly than Aid. Moreover, Dead-reckoning seems more beneficial to
Alc than to Aff , as the decrease in message number is not compensated for in
terms of violations by the improved prediction precision.

1 The traces are available at https://doi.org/10.5281/zenodo.583600.

https://doi.org/10.5281/zenodo.583600
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6 Conclusion and Future Work

In this paper, we propose a distributed algorithm Alc, for each player to estimate
the distance separating them from each other player, with a relative condition
on the error. This type of property is desirable in DVE such as online games.
We prove that (in a restricted setting), this algorithm is optimal in terms of
number of message exchanges up a to a constant factor. We also show through
simulations, based on actual game traces, that Alc performs significantly less
communications than the fixed frequency algorithm which is commonly used in
online game, while bounding the error.

A summary of our bounds can be found in the following table:

Random walk Continuous movement

1D case min
(

Δl × 2Δl ;
⌈

4
π
Δl

2
⌉ × 8

)

Δl × 4Δl

2D case Δr × 8Δr Γ × 8Γ

3D case Δr × 16Δr Γ × 14Γ

This work opens several perspectives. The first one is to extend the theoretical
results proved in this paper, either by improving the constants or by increasing
the scope of the results and to consider more sophisticated prediction algorithms.
Another longer term perspective is to extend the set of properties that can be
maintained in DVEs at the price of re-computations and a (constant) increase
in exchanged messages. It was known in the literature that maintaining the
positions was possible with no increase in the number of messages and the present
paper shows that a constant increase is enough to maintain relative distances.
Extending the class of such properties is highly desirable, both in theory and
practice.
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Abstract. This paper investigates the power of randomization in gen-
eral distributed algorithms in dynamic networks where the network’s
topology may evolve over time, as determined by some adaptive adver-
sary. In such a context, randomization may help algorithms to better
deal with i) “bad” inputs to the algorithm, and ii) evolving topologies
generated by “bad” adaptive adversaries. We prove that randomness
offers limited power to better deal with “bad” adaptive adversary. We
define a simple notion of prophetic adversary for determining the evolving
topologies. Such an adversary accurately predicts all randomness in the
algorithm beforehand, and hence the randomness will be useless against
“bad” prophetic adversaries. Given a randomized algorithm P whose
time complexity satisfies some mild conditions, we prove that P can
always be converted to a new algorithm Q with comparable time com-
plexity, even when Q runs against prophetic adversaries. This implies
that the benefit of P using randomness for dealing with the adaptive
adversaries is limited.

Keywords: Dynamic networks · Power of randomization · Adversaries

1 Introduction

Background. Understanding the power of randomization has long been a key
goal in algorithms research. Over the years, researchers have obtained many
interesting results on the power of randomization, such as in centralized algo-
rithms (e.g., [25]), in parallel algorithms (e.g., [21]), and in algorithms in static
networks (e.g., [7,8,10,11,22]). This paper aims to gain deeper insights into
the power of randomization in general distributed algorithms in dynamic net-
works with adaptive adversaries. Dynamic networks [4,6,19,23] model commu-
nication networks whose topologies may change over time, and has been a grow-
ing research topic in distributed computing. While randomization has been used
extensively to solve various specific problems in dynamic networks (e.g., [17,19]),
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prior works have not focused on the power of randomization in general dis-
tributed algorithms in dynamic networks (i.e., to what extent randomized algo-
rithms can outperform deterministic ones).
Our Setting. We consider a synchronous dynamic network with a fixed set
of n nodes. The network topology in each round is some arbitrary connected
and undirected graph as determined by an adaptive adversary, and we adopt
the following commonly-used model [16,18,26]: The adaptive adversary decides
the round-r topology based on the algorithm’s coin flip outcomes so far (i.e.,
up to and including round r). The adaptive adversary does not see the coin flip
outcomes in round r+1 or later. We follow the communication model in [14,26]:
In each round, a node may choose to either send an O(log n) size message (i.e.,
the broadcast CONGEST model [24]) or to receive. A message sent is received,
by the end of that round, by all the receiving neighbors of the sender in that
round. Each node has some input of arbitrary size and a unique id between 0
and n− 1. We consider general distributed computing problems modeled as some
arbitrary function of the n input values (as an input vector). The output of the
function is also a vector of length n, and node i should output the (i+1)-th entry
of that vector. There is no constraint on the output size. An algorithm in this
paper always refers to some algorithm for solving some distributed computing
problem as modeled in the above way. Note that many problems that are not
typically defined as functions, such as computing a unique minimum spanning
tree (of some input graph) and token dissemination [9,17], can nevertheless be
modeled as a function. The time complexity is defined to be the number of rounds
needed for all nodes to output. An algorithm P ’s time complexity, denoted as
tcP (n, d), corresponds to its time complexity under the worst-case scenario. Here
the worst-case scenario consists of i) the worst-case input (vector), and ii) the
worst-case adaptive adversary for generating dynamic networks with at most n
nodes and at most d dynamic diameter. The dynamic diameter [18] of a dynamic
network, intuitively, is the minimum number of rounds needed for a node u to
causally influence another node v, when considering the worst-case u and v in
the dynamic network. Section 2 gives a full description of the model.

Randomness in Dynamic Networks. For any given deterministic algorithm,
informally, let us call its corresponding worst-case scenario as a “bad” scenario.
A “bad” scenario for one deterministic algorithm may very well not be a “bad”
scenario for other deterministic algorithms. Since a randomized algorithm is a
distribution of deterministic algorithms, intuitively, randomization potentially
helps to better deal with all those “bad” scenarios. For algorithms in dynamic
networks, a “bad” scenario consists of a “bad” input and a “bad” adaptive
adversary.

For dealing with “bad” inputs in dynamic networks, it is not hard to see that
randomization can help to reduce the time complexity exponentially. For exam-
ple, consider the two-party communication complexity (CC) problem Equal-

ity [20]. Let m be the size of the input, then Equality has a randomized CC
of O(log m) bits, and a deterministic CC of Ω(m) bits [20]. Under our setting of
dynamic networks with congestion, this exponential gap in the CC of Equality
directly translates to an exponential gap in the time complexity.
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A Quick Conjecture? For dealing with “bad” adaptive adversaries, on the
other hand, one may quickly conjecture that randomness has limited power: On
the surface, since the randomness in round r is already visible to the adaptive
adversary when it chooses the round-r topology, such randomness offers no help
for better dealing with the round-r topology. But a deeper look shows that the
randomness in round r could potentially help the algorithm to better deal with
round-r′ (1 ≤ r′ < r) topologies: Consider an example algorithm that uses the
first r − 1 rounds to flood a certain token in the network, where r − 1 can be
smaller than the network’s dynamic diameter d. Let S be the set of nodes that
have received the token by the end of round r − 1. In round r and later, the
algorithm may want to estimate the size of S (e.g., to estimate whether the
token has reached some constant fraction of the nodes). The adaptive adversary
can influence S, by manipulating the topologies in the first r − 1 rounds. But
by the end of round r − 1, the set S will be fixed—effectively, the adaptive
adversary has now committed to S. The algorithm’s randomness in round r and
later is independent of S. Thus for the remainder of the algorithm’s execution
(i.e., the part starting from round r), S can be viewed as a “midway input”. The
randomness in the remainder of the algorithm’s execution can potentially help
to better deal with such “midway inputs”, and hence help indirectly to better
deal with the adaptive adversary’s “bad” behavior in the first r − 1 rounds.

Given such possibility, it is unclear whether the earlier quick conjecture holds
or whether it may even be wrong. Resolving this will be our goal.

Our Results for LV Algorithms. As our main novel result, we prove that
the earlier conjecture does hold, subject to some mild conditions on the algo-
rithm’s time complexity. (We will fully specify these mild conditions later.) As
one will see later, proving this conjecture is far from trivial. We first need to
expose the power of randomization for dealing with adaptive adversaries, and in
particular, to properly isolate such power from the power of randomization for
dealing with inputs. It is not immediately obvious how to do this since the same
randomness may be used for dealing with both inputs and adaptive adversaries.
To this end, we define a simple notion of prophetic adversary for determining
the dynamic network. A prophetic adversary first sees (accurately predicts) all
coin flip outcomes of a randomized algorithm in all rounds, and then decides
the dynamic network (i.e., topologies in each round). This enables a prophetic
adversary to always choose the worst-case dynamic network for the given coin
flip outcomes. Hence the randomness in the algorithm can never help to better
deal with dynamic networks generated by “bad” prophetic adversaries.

Now let us consider adaptive adversaries that generate dynamic networks
with at most n nodes and at most d dynamic diameter. Let P be any Las
Vegas (LV) algorithm whose time complexity (under the worst-case among all
such adaptive adversaries) is tcP (n, d) = Θ(f(n) · g(d)), for some f(n) and
g(d) where there exists some constant a such that Ω(1) ≤ f(n) ≤ O(na) and
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Ω(d) ≤ g(d) ≤ O(da).1,2 We prove (Theorem 1 and 2) that P can always be
converted into another LV algorithm Q whose time complexity under worst-case
prophetic adversaries is O(polylog(n)) · tcP (n, d). This means that even when
the adversary accurately predicts all randomness in Q, Q’s time complexity is
still only O(polylog(n)) · tcP (n, d). In turn, the benefit of randomization (in P )
for dealing with the adaptive adversaries is at most to reduce the complexity by
a O(polylog(n)) factor. This proves the earlier conjecture affirmatively (under
the previous mild conditions).

The more general version (Theorem 2) of our results actually hold for P as
long as P ’s time complexity is upper bounded by some polynomial — namely,
as long as there exists some constant a such that Ω(1) ≤ tcP (n, n) ≤ O(na), and
without any other constraints on tcP (n, d). Here for any given LV algorithm P ,
we can construct another LV algorithm Q whose time complexity under prophetic
adversaries is O((d log3 n) × tcP (n, a′ log n)) for some constant a′. Hence in this
more general case, our results imply that the power of randomization (in P ) for
dealing with adaptive adversaries is at most a O(d log3 n) multiplicative factor
when d ≥ a′ log n.

Finally, the above shows that for dealing with adaptive adversaries, the power
of randomization is inherently limited. This suggests that if an algorithm is
not using randomness for better dealing with the inputs, we should be able to
derandomize it efficiently. The full version [13] of this paper shows how this can
be done for LV algorithms.

Our Results for MC Algorithms. We have also obtained similar results for
Monte Carlo (MC) algorithms. We defer the details to the full version [13] of
this paper, and provide a summary here. Consider any constant ε ∈ (0, 1 − δ)
and any δ-error Monte Carlo (MC) algorithm P such that tcP (n, d) = Θ(f(n) ·
g(d)), where there exists some constant a such that Ω(n) ≤ f(n) ≤ O(na) and
Ω(d) ≤ g(d) ≤ O(da). Then we can always construct another (δ + ε)-error MC
algorithm Q for solving the same problem and whose time complexity under
worst-case prophetic adversaries is O(polylog(n)) · tcP (n, d). A more general
version of this result holds for P as long as there exists some constant a such
that Ω(1) ≤ tcP (n, n) ≤ O(na), and without any other constraints on tcP (n, d).
In this more general version, our algorithm Q will have a time complexity of
O((d log3 n) × tcP (n, a′ log n) + n log2 n).

Our Techniques. To obtain Q from P , we essentially need to “derandomize” the
part of P ’s randomness used to deal with the adaptive adversaries. It turns out
that such randomness is less amenable to typical derandomization methods such
as pairwise independence, conditional expectation, or network decomposition.
This motivated us to take a rather different route from prior derandomization
efforts [5,7,8,10,11,21,22,25].
1 Throughout this paper, Ω(h1(x)) ≤ h2(x) ≤ O(h3(x)) means h2(x) = Ω(h1(x)) and

h2(x) = O(h3(x)).
2 Some quick examples of tcP (n, d) satisfying such a condition include Θ(d log n),

Θ(dn log d), and Θ(d1.1n1.5). On the other hand, tcP (n, d) = Θ(d2 +
√

n) does not
satisfy the condition.
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Specifically, we will have Q simulate the execution of P against some adap-
tive adversary αε,t that we construct. (Namely, Q simulates both P and αε,t.)
To work against prophetic adversaries, Q will perform the simulation by only
doing simple floodings. We will carefully design αε,t so that: i) Q can efficiently
simulate the execution of P against αε,t via simple floodings, ii) the dynamic
networks generated by αε,t will have O(log n) dynamic diameter with at least
1 − ε probability, and iii) there are some sufficient conditions, which can be effi-
ciently checked in a distributed fashion, for guaranteeing the O(log n) dynamic
diameter. Next, a central difficulty in the simulation is that Q does not know
the dynamic diameter of the dynamic network over which it runs, which will
cause various problems in the floodings. While Q can naturally use the standard
doubling-trick to guess the dynamic diameter, the challenge is that Q cannot
easily tell whether the guess is correct. As a result, we will carefully reason
about the properties of the simulation when the guess is wrong, and design Q
correspondingly.

Other Types of Adversaries. The adaptive adversaries in this paper (also
called strongly adaptive adversaries [2,9,16,18]) are not the only type of adver-
saries in dynamic networks. A more general notion is z-oblivious adversaries [1],
which can see all randomness up to and including round r − z when deciding
the round-r topology. Prophetic adversaries and strongly adaptive adversaries
correspond to z-oblivious adversaries with z = −∞ and z = 0, respectively.
Researchers have also considered 1-oblivious adversaries (also called weakly adap-
tive adversaries [9,12]) and ∞-oblivious adversaries (also called oblivious adver-
saries [2,3,12]). The results in this paper are only for 0-oblivious adversaries,
but our proofs are already non-trivial. The power of the algorithm’s randomiza-
tion will likely increase as z increases. On the other hand, we suspect that our
conjecture could potentially be extended to 1-oblivious adversaries — we leave
this to future work.

Related Work. Randomization has been extensively used for solving various
specific problems in dynamic networks (e.g., [17,19]). However, prior works have
not focused on the power of randomization in general distributed algorithms in
dynamic networks. On the other hand, there have been many works on the power
of randomization in other settings, and we discuss the most relevant ones in the
following.

In centralized setting, an online algorithm processes a sequence of requests,
one by one. In this context, an adaptive adversary generates the i-th request after
seeing the algorithm’s behavior (and coin flips) on request 1 through i − 1. It is
well-known [5] that randomized online algorithms against adaptive adversaries
can always be effectively derandomized. However, the measure of goodness for
online algorithms is competitive ratio, and hence the derandomized algorithm
can afford to have exponential computational complexity. In our distributed
setting, adopting the techniques from [5] would require us to collect all the n
input values to one node, which would result in unbounded time complexity
(i.e., number of rounds) since the sizes of our inputs are not constrained. Due to
these fundamental differences, our results and techniques are all quite different
from [5].
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More recently, there have been a series of breakthrough results on derandom-
izing distributed algorithms in static networks [7,8,10,11,15,22]. These deran-
domization results are all for local algorithms, where the output (or the correct-
ness of the output) of a node only depends on its small neighborhood instead of
on the entire network. In fact, many of them consider algorithms with O(1) time
complexity. Such a notion of local algorithms is perhaps no longer well-defined in
dynamic networks, where a node’s neighborhood changes over time. In compari-
son to these works, this paper considers i) general distributed algorithms that are
not necessarily local, and ii) dynamic networks instead of static networks. Also
because of this, our results and techniques are all quite different. For example,
some of the key methods used in [7,8,10,11,15,22] include network decomposi-
tion and conditional expectations, while we mainly rely on a novel simulation
against a novel adaptive adversary.

2 Model

Dynamic Network and Adversary. We consider a synchronous network with
a fixed set of n nodes, where the nodes proceed in lock-step rounds. Throughout
this paper, we assume that n is publicly known and that n ≥ 2. All nodes
start execution, simultaneously, from round 1. The nodes have unique ids from
0 through n − 1. Each node has some input value, and there is no constraint
on the size of each input value. We will view the n input values as an input
vector of length n. We consider general distributed computing problems where
the n nodes aim to compute a certain function of the input vector. The output
of the function is a vector of length n, where node i should output the (i+1)-th
entry in that vector. There is no constraint on the size of each output entry. An
algorithm in this paper always refers to some algorithm for solving some problem
that can be modeled as the above way.

The topology among the n nodes may change from round to round. Following
[16,18,26], we assume that the topology is determined by some adaptive adver-
sary. An adaptive adversary τ is an infinite sequence of functions τr(P, I, C[1:r])
for r ≥ 1. Here τr takes as parameters the randomized algorithm P , the input
vector I, and P ’s coin flip outcomes C[1:r] in round 1 (inclusive) to round r
(inclusive). The function τr then outputs some connected and undirected graph
with n nodes, as the topology of the network in round r. There is no other con-
straint on the graph. We also call this infinite sequence of graphs (starting from
round 1) as a dynamic network, and say that τ is an adaptive adversary with n
nodes. With a slight abuse of notation, we use τ(P, I, C) to denote the dynamic
network produced by τ , under algorithm P , input vector I, and P ’s coin flip
outcomes C across all rounds. (This is a slight abuse since τ is not a function.)
For any given dynamic network G = G1G2 . . . where Gr is the round-r topology
of G, we define the special adaptive adversary γG to be γG

r (P, I, C[1:r]) = Gr for
all r, P , I, and C[1:r]. A prophetic adversary ψ is a function mapping the tuple
(P , I, C) to a dynamic network H = ψ(P, I, C). Since ψ is a single function
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(instead of a sequence of functions), ψ can see all coin flip outcomes of P in all
rounds (i.e., C), before deciding the topology in each round.

We follow the communication model in [14,26]: In each round, a node may
choose to either send an O(log n) size message (i.e., the broadcast CONGEST
model [24]) or to receive, as determined by the algorithm running on that node.
A message sent in round r is received, by the end of round r, by all the receiving
neighbors of the sender in round r.

Diameter. We adopt the standard notion of dynamic diameter [18] (or diameter
in short) for dynamic networks. Formally, we define (u, r) → (v, r + 1) if either
u = v or v is u’s neighbor in round r. Let the relation “�” be the transitive
closure of “→”. The diameter is defined as the smallest d such that (u, r) �
(v, r + d) holds for all u, v, and r ≥ 1. Trivially, the diameter of a dynamic
network with n nodes is at most n − 1. Since the diameter is controlled by
the adversary, it is not known to the algorithm beforehand. The diameter of
an adaptive adversary τ (prophetic adversary ψ) is the smallest d where the
diameter of τ(P, I, C) (ψ(P, I, C)) is at most d for all P , I, and C.

Time Complexity and Error. For the time complexity of an execution, we
define the function tc(P, I, τ, C) to be the number of rounds needed for all nodes
to output in P , when algorithm P runs with input vector I, adaptive adversary
τ , and coin flip outcomes C. For the error of an execution, we define the binary
function err(P, I, τ, C) to be 1 iff P ’s output is wrong (on any node), when P
runs with I, τ , and C.

In the following, maxτ will be taken over all adaptive adversaries τ with
at most n nodes and at most d diameter. Unless otherwise specified, an algo-
rithm in this paper can be either a Las Vegas (LV) algorithm or a Monte Carlo
(MC) algorithm. We define a randomized algorithm P ’s time complexity against
adaptive adversaries as tcP (n, d) = maxI maxτ EC [tc(P, I, τ, C)] if P is an LV
algorithm, or tcP (n, d) = maxI maxτ maxC tc(P, I, τ, C) if P is an MC algo-
rithm. We define an MC algorithm P ’s error against adaptive adversaries as
errP (n) = maxI maxd maxτ EC [err(P, I, τ, C)].

We will need to reason about the properties of algorithm Q run-
ning against prophetic adversaries. Given Q’s coin flip outcomes C in all
rounds, since prophetic adversaries always see C beforehand, the worst-case
prophetic adversary can always choose the worst-case dynamic network H
for such C. Hence if Q is an LV algorithm, we define its time complexity
against prophetic adversaries to be tc∗

Q(n, d) = maxI EC [maxH tc(Q, I, γH , C)].
Note that here maxH is taken after C is given, and is taken over all
dynamic networks with at most n nodes and at most d diameter. If Q is
an MC algorithm, then its time complexity/error against prophetic adver-
saries will be tc∗

Q(n, d) = maxI maxC maxH tc(Q, I, γH , C) and err∗
Q(n) =

maxI EC [maxd maxH err(Q, I, γH , C)], respectively.

Conventions. All logarithms in this paper are base 2. We sometimes consider
round 0 for convenience, where the algorithm does nothing and all nodes are
receiving.
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3 Adaptive Adversary Simulated by Q

As mentioned in Sect. 1, given some arbitrary randomized algorithm P , we want
to construct algorithm Q that simulates the execution of P against some novel
adaptive adversary αε,t. We want αε,t to have small diameter so that P ’s time
complexity (when running against αε,t) is small. Let H be the dynamic net-
work over which Q runs. We further need Q to have good complexity and error
guarantees, even if H is constructed by prophetic adversaries.

3.1 Intuition

Starting Point. Recall that in any given round r, an adaptive adversary knows
whether each node in P will be sending or receiving in that round (since the
adaptive adversary sees Cr), before the adversary decides the topology in that
round. Let us consider the following trivial topology as a starting point. In this
topology, all nodes that are sending in the round form a clique, and all nodes
that are receiving in the round form a clique. Some of the sending nodes will be
chosen as centers for that round. A center will be connected to all other nodes
(including all other centers) directly. To simulate P for one round over such a
topology, we only need to deliver the message sent by each center to each of the
receiving nodes. To do so, for each center, Q will flood the message (sent by the
center) in the dynamic network H. Such flooding will obviously still work even
if H is generated by a prophetic adversary. It takes total d ·x rounds to simulate
one round of P , where x is the number of centers and d is the diameter of H.

But there are several issues. Since only sending nodes can be centers and
since a node may not always be sending in all rounds, we may be forced to keep
switching the centers from round to round. This may then cause the (dynamic)
diameter of the dynamic network to be large, despite the topology in each round
having a small static diameter. One naive way to avoid this problem is to choose
all sending nodes as centers. But doing so would result in too many centers,
rendering the simulation inefficient. The following explains how we overcome
these issues.

Choosing the Centers. Our design of αε,t uses only a logarithmic number of
centers in each round. To obtain some intuition, consider any two consecutive
rounds r − 1 and r, where r ≥ 3. We define ARS

r = {u | u receives (hence
the superscript “R”) in round r − 1 and sends (hence the superscript “S”) in
round r}. Here “sends”/“receives” refers to u sending/receiving in the execution
of P against αε,t. We similarly define the remaining three sets ASS

r , ASR
r , and

ARR
r . We hope to choose the centers in such a way that for some small d (e.g.,

O(log n)), we have (u, r − 1) � (v, r + d − 1) for all u and v. We will soon see
that it will be convenient to consider u’s in the 4 sets seperately.

For round r, we will first pick some (arbitrary) node w ∈ ARS
r as a center.

Such a center will ensure that for all u ∈ ARS
r and all v, we have (u, r − 1) →

(w, r) → (v, r + 1). Similarly, we will pick some (arbitrary) node w ∈ ASS
r as

another center, to take care of u ∈ ASS
r . Next, for any u ∈ ASR

r , note that u must
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be in either ARS
r−1 or ASS

r−1. If we chose the centers in round r − 1 also according
to the earlier rules, then such a u has already been taken care of as well.

The Trickier Case. The case for u ∈ ARR
r is trickier. In fact, to get some

intuition, consider a node u that continuously receives in round 1 through round
d. We want to ensure that (u, 1) � (v, d + 1) for all v. Let Sr be the set of
nodes that are sending in round r and let Wr be the set of centers in round
r, for 1 ≤ r ≤ d. For all v ∈ ∪rWr, we clearly have (u, 1) � (v, d + 1). For
all v /∈ ∩rSr, v must be receiving in some round i ∈ [1, d], and hence we have
(u, i) → (v, i + 1) and we are done.

The case for v ∈ (∩rSr) \ (∪rWr) is more complicated. Such a v has always
been sending, but is never chosen as a center. Now consider such a v, and observe
that if some center w in round r sends (again) in some round i where r+1 ≤ i ≤ d,
then we must have (u, 1) � (w, r) � (w, i) → (v, i + 1) � (v, d + 1). Based on
this observation, we will want to choose Wr from Sr such that some node in Wr

will send in some round i ≥ r + 1. But whether a node sends in future rounds
may depend on future coin flip outcomes of P , as well as the incoming messages
in those rounds. An adaptive adversary (for P ) does not have the incoming
messages in future rounds. It is not supposed to see future coin flip outcomes
either.

Our next observation is that the adaptive adversary in round r, before decid-
ing the round-r topology, can actually determine the probability that a node u
will be sending (again) in round r + 1, if the node u is currently already sending
in round r. The reason is that u will not receive any incoming messages in round
r, no matter what the topology is. Hence the probability is uniquely determined
by u’s state at the beginning of round r. Now given such probabilities for all
the nodes in Sr, when choosing the centers, we will choose those nodes from Sr

whose probabilities (of sending in round r + 1) are at least 0.5, and we call such
nodes as promising nodes. If we include logarithmic number of promising nodes
in Wr, then with good probability, there will exist some w ∈ Wr that sends in
round r+1. Due to some technicality, the number of promising nodes in Wr will
actually need to increase with r, so that we can eventually take a union bound
across even infinite number of rounds.

Finally, it is possible that we never have a sufficient number (i.e., logarithmic
number) of promising nodes. In such a case, we will show that (∩rSr) \ (∪rWr)
will be empty with good probability.

3.2 Our Novel Adaptive Adversary αε,t

We now formally define αε,t for 0 < ε < 1 and t ≥ 1. The adaptive adversary αε,t

always generates a clique as the topology for round r when r > t. If r ≤ t, then
consider the given algorithm P , input vector I, and coin flip outcomes C[1:r].
Based on Cr and the state of P at the beginning of round r, αε,t can infer which
nodes will be sending in round r, and which nodes are promising nodes. For all
pairs of nodes u and v where either they are both sending in round r or they are
both receiving in round r, the adversary αε,t adds an undirected edge between
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Algorithm 1 LV-P-Converted-To-Q().
/* This algorithm Q simulates P ’s execution against αε,t. For clarity, the pseudo-code

does not explicitly include the input to Q (which is relayed to P ). Without loss of

generality, P ’s output on a node (when viewed as a numerical value) is assumed to be

always non-negative. A node outputs only once in this algorithm. A node will suppress

output if it previously has already outputted. */

1: ε ← 0.1; k ← 2;
2: repeat forever
3: forall integers d′ ≥ 1 and t ≥ 2 where i) d′ and t are both powers of 2, ii)

d′t log t ≤ k, and iii) SimulateP() has not been previously executed for such d′ and
t in Step 5 do

4: Cd′,t ← fresh coin flips, for all rounds in P ;
5: return v ← SimulateP(ε, d′, t, Cd′,t);
6: /* See Algorithm 2 for pseudo-code of SimulateP(). */
7: if (return v ≥ 0) then output return v;
8: endforall
9: k ← 2k;

them. Next αε,t chooses up to (2 log 2r
ε + 3) nodes as centers for round r. For

every center w and every node v, αε,t adds an edge between w and v, if there is
not already such an edge.

The centers are chosen in the following way. First, among all the nodes that
were receiving in round r−1 and are sending in round r, if there are such nodes,
choose the one with the smallest id as a center. Second, among all the nodes
that were sending in round r − 1 and are again sending in round r, if there are
such nodes, choose the one with the smallest id as a center. Third, among all
the nodes that were centers in round r − 1 and are sending in round r, if there
are such nodes, choose the one with the smallest id as a center. Finally, rank all
the promising nodes in round r, by their ids from smallest to largest. Choose the
first 2 log 2r

ε nodes from this sequence as centers. If the sequence contains less
than 2 log 2r

ε nodes, choose all of them. Since these 4 criteria are not necessarily
exclusive, a node may be chosen as a center multiple times.

One can easily verify that the topology generate by αε,t in each round is
always connected. We will be able to eventually prove (see proof in the full
version [13] of this paper) that with probability at least 1 − ε, the dynamic
network generated by the adversary αε,t has a diameter of at most 8 log 8tn

ε .

4 Conversion from LV Algorithm P to LV Algorithm Q

4.1 Pseudo-code and Intuition

Overview. Given any LV algorithm P , our algorithm Q (pseudo-code in Algo-
rithm1) will simulate the execution of P against αε,t. (Effectively, Q will be
simulating both P and the adversary αε,t.) We will ensure that Q works even
against prophetic adversaries. In the following, a simulated round refers to one
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Algorithm 2 SimulateP(ε, d′, t, Cd′,t).
/* This subroutine simulates P ’s execution against αε,t for t simulated rounds, while

feeding coin flip outcomes Cd′,t into P , and while using d′ as the guess for the diameter

of the dynamic network over which Q runs. Without loss of generality, P ’s output (if

viewed as a numerical value) is assumed to be non-negative. A node, once flagged, will

do nothing in all steps except Step 19 and 23, but the node will still spend the same

number of rounds to go through each step as other nodes. When the pseudo-code says a

node u “floods” something for d′ rounds, it means that the flooding originates from u,

and all nodes in the system will spend exactly d′ rounds participating in this flooding.

*/

1: flagged ← false; return v ← −1;
2: for (r ← 1; r ≤ t; r ← r + 1) do
3: if I will send in the simulated round r of P then
4: simulate P ’s execution in round r using Cd′,t

r ;
5: msg ← message sent by me in P ;
6: else
7: msg ← m bad;
8: endif
9: S ← ∅; center[] ← GetCenters(ε, r, d′); /* GetCenters() takes Θ(d′ log r

ε
log n)

rounds and returns a list of 2 log 2r
ε

+ 3 centers. See Algorithm 3 for pseudo-code.
*/

10: for each j where 1 ≤ j ≤ 2 log 2r
ε

+ 3 do
11: node 0 floods its center[j] for d′ rounds;
12: if (I do not receive anything in the flooding at Step 11) or (my center[j]

is different from what I received) then flagged ← true;
13: // At this point, the value of center[j] must be the same on all non-flagged

nodes.
14: if (center[j] �= ⊥) then the node corresponding to center[j] floods its msg

for d′ rounds; else spend d′ rounds doing nothing;
15: if (center[j] �= ⊥) and (I receive some message in the flooding at Step 14)

and (the message received is not m bad) then S ← S ∪ {message received};
16: if (center[j] �= ⊥) and (I receive either the message m bad or no message

in the flooding at Step 14) then flagged ← true;
17: endfor
18: if I will receive in the simulated round r of P then simulate P ’s execution in

round r using Cd′,t
r , with S being the set of received messages;

19: if (flagged) then send m flag; else receive for 1 round;
20: if m flag received then flagged ← true;
21: if P has output in simulated round r then return v ← P ’s output;
22: endfor
23: if (flagged) then return −2; else return return v;
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Algorithm 3 GetCenters(ε, r, d′).
/* This subroutine returns an array of 2 log 2r

ε
+3 centers, some of which can be ⊥. The

centers are chosen according to the construction of αε,t in Section 3.2. The subroutine
does a binary search to find out the value for each entry in the array. It uses d′ as the
guess for the diameter of the dynamic network, and takes total d′(2 log 2r

ε
+3) log(n+1)

rounds. */

1: let center[] be an array of size 2 log 2r
ε

+ 3;
2: if (I was receiving in simulated round (r − 1) of P ) and (I am sending in simulated

round r of P ) then z ← my id; else z ← n;
3: center[1] ← FindMin(z, d′); /* See Algorithm 4 for pseudo-code of FindMin(). */
4: if (I was sending in simulated round (r − 1) of P ) and (I am sending in simulated

round r of P ) then z ← my id; else z ← n;
5: center[2] ← FindMin(z, d′);
6: if (I was a center in simulated round (r − 1) of P ) and (I am sending in simulated

round r of P ) then z ← my id; else z ← n;
7: center[3] ← FindMin(z, d′);
8: for (i = 4; i ≤ 2 log 2r

ε
+ 3; i ← i + 1) do

9: if (I am a promising node in simulated round r of P ) and (center[j] �= my id
for all 4 ≤ j ≤ i − 1) then z ← my id; else z ← n;

10: center[i] ← FindMin(z, d′);
11: endfor
12: for all 1 ≤ i ≤ 2 log 2r

ε
+ 3 if center[i] = n then center[i] ← ⊥;

13: return center[];

Algorithm 4 FindMin(z, d′).
/* The input parameter z is an integer in [0, n]. This subroutine tries to use a binary
search to find out the minimum input value among all nodes. It uses d′ as the guess
for the diameter of the dynamic network, and takes total d′ log(n + 1) rounds. */

1: let z’s binary form be b1b2 . . . blog(n+1), with b1 being the most significant bit;
2: for (s = 1; s ≤ log(n + 1); s ← s + 1) do
3: x ← ExistValue(bs, 0, d′); // See Algorithm 5 for pseudo-code of ExistValue().
4: if (x) and (bs �= 0) then bs′ ← 1 for all s′ ≥ s + 1 and bs ← 0;
5: endfor
6: return b1b2 . . . blog(n+1) as an integer;

Algorithm 5 ExistValue(z, x, d′).
/* This subroutine tries to check whether any node in the dynamic network has invoked
this subroutine with z = x. It uses d′ as the guess for the diameter of the dynamic
network, and takes total d′ rounds. */

1: if (z = x) then exist ← true; else exist ← false;
2: repeat d′ rounds
3: if (exist) then send m exist; else receive for 1 round;
4: if I receive m exist then exist ← true;
5: return exist;
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round of P in its simulated execution. Recall that in each simulated round,
αε,t chooses O(log r

ε ) centers. For each center, Q will do a binary search (via
logarithmic number of sequential floodings) to find the id of that center. For
example, for the first center, Q will use a binary search to find the node with the
smallest id, among all nodes that were receiving in the previous simulated round
and are sending in the current simulated round. Next, for each center (which
must be sending in P for the current simulated round), Q will determine the
message it should send in P . Q will then flood this message, and then feed this
message into all nodes that are receiving in P for the current simulated round.

Challenges and Our Solutions. A key difficulty in the above simulation is
that Q does not know the diameter d of the dynamic network over which it
runs. This means that Q does not know how long it takes for each flooding
to complete. Of course, Q can naturally use the standard doubling-trick and
maintains a guess d′ for d. Recall that Q uses flooding i) for finding the centers
via binary searches, and ii) for disseminating the messages of the centers. When
d′ < d, obviously both steps can be incorrect. We need to design Q so that it
can deal with such incorrect behavior.

As a starting point, for each binary search, we have a designated node (node
0) flood for d′ rounds its result of the binary search. If a node does not see such
flooding from node 0, or if its binary search result is different, it knows that
something is wrong and flags itself. Next for each center in this list, if it is not
flagged, it will flood the message (that it should send in P ) for d′ rounds. Again,
whoever not seeing this flooding will flag itself. In our design, once a node gets
flagged, it will not participate in any of the flooding or binary search any more
(for the current d′ value), but will nevertheless spend the corresponding number
of rounds doing nothing, so that it remains “in sync” with the non-flagged nodes.

At this point, we have three possibilities: i) d′ ≥ d and no node gets flagged,
ii) d′ < d and no node gets flagged, iii) d′ < d and some nodes get flagged. For
the second case, because d′ < d, it is not immediately clear what guarantees
the simulation can offer — for example, whether the binary search still finds
the smallest id. Fortunately, we will be able to prove that as long as no node
gets flagged, the simulation is still “correct”. Specifically, for disseminating the
centers’ messages, it is obvious that if no node gets flagged, then all nodes must
have received those messages, regardless of whether d′ < d. For the binary search
part, we will be able to prove the following strong property: As long as the binary
search returns the same value on all nodes (which is a necessary condition for
no nodes being flagged), the result of the binary search must be correct, even if
d′ < d. Putting these together, this means that the second case still corresponds
to a proper execution of P against αε,t.

The third case (i.e., d′ < d and some nodes get flagged) is trickier. The
challenge is that the non-flagged nodes may think everything is fine and then
happily generate a potentially wrong output. To deal with this, our design first
lets the flagged nodes send a special message — whoever receives this message
will get flagged as well. For each simulated round of P , our algorithm Q will
allocate exactly one dedicated round in Q to do this.
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Next, as a key technical step, we will be able to prove that with such a mech-
anism, somewhat interestingly, those non-flagged nodes actually still constitute
part of a valid execution of P against some prophetic adversary ψ (but not a valid
execution of P against αε,t). Our proof will explicitly construct this prophetic
adversary ψ. Let G be the dynamic network generated by ψ. We will prove that
G’s topology is always connected in every round, while leveraging the fact that
the topology of the dynamic network H (over which Q runs) is always connected.
It is important to note that here we need to use a prophetic adversary (instead
of an adaptive adversary) to generate G, since G depends on H, and since H is
generated by some prophetic adversary.

To quickly summarize, we effectively have that i) if no node gets flagged,
then Q must have properly simulated P ’s execution against αε,t, and ii) if some
nodes get flagged, then Q (on the non-flagged nodes) must have properly simu-
lated P ’s execution against some prophetic adversary ψ. Now since P is an LV
algorithm, it will never have any error when running over any G, even if G is
generated by a prophetic adversary. The reason is that G could also be gener-
ated by some adaptive adversary (e.g., by the adaptive adversary that always
outputs G, regardless of P ’s inputs and P ’s coin flip outcomes), and P promises
zero error under all adaptive adversaries. Thus the outputs of those non-flagged
nodes will never be wrong, and can always be safely used. Of course, P ’s time
complexity guarantee will no longer hold when running against ψ. But this will
not cause any problem—if P takes too long to output, Q will increase d′ and
retry.

Using Fresh Coins. Finally, since we are using the doubling-trick to guess d
already, we will use the same trick to guess the number of rounds needed for
P to output. This will make our proof on Q a constructive proof, instead of an
existential proof. It is worth mentioning that for each d′ (the guess on d) and t
(the guess on the number of simulated rounds needed for P to output), Q will
simulate P using a fresh set of random coins. This is necessary because for a
given set of coin flip outcomes, the adversary αε,t may happen to have large
diameter, causing P to take too many rounds to output. Finally, for each pair
of d′ and t values, the simulation of P takes about d′t log t rounds. To make the
guessing process efficient, we maintain a budget k that keeps doubling. For a
given budget k, we simulate P for all (d′, t) pairs where d′t log t ≤ k and that
are constant factors apart from each other.

4.2 Final Results

Theorem 1 next states that Q’s output will never be wrong. Its proof (in the full
version [13] of this paper) mainly relies on the intuition in the previous section.
The proof is involved, because it is not sufficient to just consider whether a node
is flagged at a certain time point in each simulated round — we actually consider
two separate time points in each simulated round.

Theorem 1. For any LV algorithm P , the output of Q (Algorithm1) will never
be wrong.
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Theorem 2 next (see [13] for the proof) is our final result on Q’s time complexity,
when Q runs against a prophetic adversary.

Theorem 2. Let Q be Algorithm1, and let P be any LV algorithm where Ω(1) ≤
tcP (n, n) ≤ O(na1) for some constant a1.

– There exists constant a′ (independent of n) such that for all d, we have
tc∗

Q(n, d) = maxI EC [maxH tc(Q, I, γH , C)] = d · O(log3 n × tcP (n, a′ log n)),
where maxH is taken over all dynamic networks H with at most n nodes and
at most d diameter.

– If tcP (n, d) = Θ(f(n) · g(d)) for some f(n) and g(d) where there exists some
constant a2 such that Ω(1) ≤ f(n) ≤ O(na2) and Ω(d) ≤ g(d) ≤ O(da2), then
we have tc∗

Q(n, d) = O(polylog(n)) · tcP (n, d).
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Abstract. In this paper, we propose a novel fault-tolerant parallel
matrix multiplication algorithm called 3D Coded SUMMA that achieves
higher failure-tolerance than replication-based schemes for the same
amount of redundancy. This work bridges the gap between recent devel-
opments in coded computing and fault-tolerance in high-performance
computing (HPC). The core idea of coded computing is the same as
algorithm-based fault-tolerance (ABFT), which is weaving redundancy in
the computation using error-correcting codes. In particular, we show that
MatDot codes, an innovative code construction for parallel matrix mul-
tiplications, can be integrated into three-dimensional SUMMA (Scalable
Universal Matrix Multiplication Algorithm [30]) in a communication-
avoiding manner. To tolerate any two node failures, the proposed 3D
Coded SUMMA requires ∼50% less redundancy than replication, while
the overhead in execution time is only about 5–10%.

Keywords: Parallel matrix multiplication · Fault-tolerant
algorithms · Algorithm-based fault tolerance · Coded computing ·
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the Fugaku system that is now being built to be available in 2021. The Fugaku
system will have 150,000 physical nodes with a total of 8 million cores [22]. To
build a system with mean-time-between-failure (MTBF) of 24–48 h, the MTBF
of each node must be 411–822 years. This can create a huge burden on com-
ponent manufacturers and the system vendor as it leaves little-to-no room for
unexpected reliability issues that have been experienced in the past, such as bad
solder, dirty power, unexpected early wear-out, and so on [16].

The most widely used method for fault tolerance in high-performance com-
puting (HPC) is checkpoint-restart, which saves the state of computation at
specific intervals and can recover from detected faults by rolling back to a check-
pointed state. While the checkpoint-restart approach is universal, it generates a
significant amount of I/O overhead and its efficiency decreases with the increas-
ing system size. The deployment of node-local nonvolatile memory, such as solid
state disks, has eased the I/O pressure for checkpoint/restart, but it will not be
sufficient in the long run. Another method considered is replication, where the
application is executed either in parallel or sequentially multiple times such as
triple modular redundancy (TMR) [14,15,23]. Despite the high resource over-
head of replication, it has been shown that process replication strategies can
outperform traditional checkpoint-restart approaches for a certain range of sys-
tem parameters [3].

In this paper, we study a different approach called coded computing [12,21,
33], more widely known as algorithm-based fault-tolerance (ABFT) [10,11] in the
HPC community. This approach reduces the overhead of checkpointing or repli-
cation by sacrificing universality and designing the redundancy tailored to a spe-
cific numerical algorithm. For designing low-overhead redundancy, both ABFT
and coded computing utilize error-correcting codes (in short, coding or codes),
a tool extensively used in communication or storage systems. While ABFT uses
off-the-shelf classical codes and adapts them to practical problems in HPC, coded
computing literature studies devising a new code tailor-made for computation
by assuming a simple theoretical computing model. These endeavors in coded
computing have shown remarkable improvements in the failure tolerance versus
memory/computation trade-off, improving over classical codes designed for com-
munication or storage systems. However, due to the simplified models in coded
computing that can be unrealistic in practical HPC systems, it is unclear if the
new code constructions can be applied in the HPC context. This paper bridges
this gap and demonstrates that the new advances in coded computing can be
mapped to HPC systems with careful integration.

We propose a novel algorithm for robust and communication-efficient
parallel matrix multiplication called 3D Coded SUMMA. In 3D Coded
SUMMA, we incorporate MatDot codes (storage-optimal matrix-multiplication
codes) [12] with 3D SUMMA (communication-efficient matrix multiplication
algorithm) [27]. Applying ABFT to a three-dimensional matrix multiplication
algorithm was studied before [24]. Their goal was to apply ABFT within each
node to detect/correct soft errors locally. On the other hand, our aim is to con-
struct a coding strategy that can be applied across distributed nodes to recover



394 H. Jeong et al.

from node failures, where we cannot recover any partial result from the failed
node. We show that MatDot codes can be integrated into 3D SUMMA seamlessly
with small communication overhead. The amount of redundancy required in 3D
Coded SUMMA is considerably smaller than replication for cases where more
than one failure, or where node corruptions (nodes affected by soft errors) are
to be tolerated. For instance, to provide resilience against any two node failures,
or against a single corruption, 3D Coded SUMMA requires ∼50% fewer nodes
than the baseline replication strategy. To provide resilience against any two node
corruptions, 3D Coded SUMMA requires ∼100% fewer nodes compared to repli-
cation. Finally, we show through theoretical and experimental analysis that 3D
Coded SUMMA achieves higher failure resilience with small overhead in execu-
tion time: 5–7% more execution time compared to replication on an 8 × 8 × 4
grid of nodes.

2 Background

2.1 3D SUMMA

We introduce a 3-dimensional matrix multiplication algorithm, 3D SUMMA.
Three-dimensional algorithms for matrix multiplication in which nodes are
placed on a 3D grid were proposed [1,25,27] and proved to achieve the optimal
communication time in scaling sense [27] under some constraints. 3D SUMMA
we present here is an adaptation of 2.5D matrix multiplication algorithm [27]:
instead of using Cannon’s algorithm on each layer as in [27], we use 2D SUMMA
on each layer. In this work, for simplicity, we assume that nodes are placed on
layers of square grids, i.e., on a n × n × m grid where m is the number of layers
and n is the layer size. The goal is to compute matrix product:

C = AB. (1)

We assume matrices A,B,C all have dimension N × N .1 We use P (i, j, l) to
denote the node on the (i, j, l)-th coordinate on the 3D grid.

We summarize the algorithm of 3D SUMMA below.

1. Matrix product in (1) is split into outer-products as follows:

A =
[
A1 · · · Am

]
,B =

⎡

⎢
⎣

B1

...
Bm

⎤

⎥
⎦ ,C = A1B1 + · · · + AmBm, (2)

where Ai’s and Bi’s (i = 1, . . . ,m) are N × N/m and N/m × N dimensional
submatrices, respectively.

1 Throughout the paper, we will assume that m and n divide N for simplicity. In
practice, when N is not divisible by m, n, the matrix can be zero-padded to make
N divisible by m and n. Also, the assumption that they are square matrices is only
for simplicity, and the algorithm can be used for rectangular matrices as well.
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2. Initially, all Ai’s and Bi’s are stored at the nodes on the first layer of the 3D
grid. The first layer scatters Ai and Bi to the i-th layer.

3. Each layer performs 2D SUMMA2 to compute Ci = AiBi in parallel.
4. All layers reduce to the first layer and the first layer obtains:

C = C1 + · · · + Cm.

2.2 MatDot Codes

MatDot codes [12] are one of the latest advances in coded computing and proven
to be optimal in terms of recovery threshold3 for parallel matrix multiplication
under certain constraints [33]. Classical error-correcting codes such as Reed-
Solomon codes encode data through polynomial evaluations where the coeffi-
cients of the polynomial are the raw data. These algorithms use polynomial
interpolation for decoding to recover the polynomial coefficients, i.e., the raw
data, when the number of evaluations that survive after failures is larger than
the degree of the polynomial. The construction of MatDot codes is inspired by
this approach, but the polynomials are carefully constructed so that the matrix
product can be extracted from the polynomial coefficients at the end of com-
putation. A main innovation is the construction of encoding polynomials pA(x)
and pB(x) that exploit the sum of outer-product structure in (2):

pA(x) =
m∑

i=1

Aix
i−1, pB(x) =

m∑

j=1

Bjx
m−j . (3)

Note that the co-efficients are placed in reverse order in pB(x). Then, in 3D
SUMMA, the i-th layer will receive encoded versions of matrices:

Ãi = pA(αi) = A1 + αiA2 + · · · + αm−1
i Am,

B̃i = pB(αi) = Bm + αiBm−1 + · · · + αm−1
i B1,

and then compute matrix multiplication on the encoded matrices:

C̃i = ÃiB̃i = pA(αi)pB(αi) = pC(αi).

The polynomial pC(x) has degree 2m − 2 and has the following form:

pC(x) =
m∑

i=1

m∑

j=1

AiBjx
m−1+(i−j). (4)

Because of our judicious choice of pA(x) and pB(x), the coefficient of xm−1

in pC(x) is C =
∑m

i=1 AiBi. Since pC(x) is a polynomial of degree 2m − 2, its

2 For more details on 2D SUMMA, please see [30].
3 Recovery threshold is one metric to measure the performance of a code, which is the

minimum number of workers required to recover the computation output.



396 H. Jeong et al.

coefficients can be recovered as long as we have evaluations of pC(x) at any 2m−1
distinct points. Hence the recovery threshold is K = 2m − 1. In the context of
3D SUMMA, we need m layers for the uncoded strategy. The recovery threshold
K = 2m − 1 implies that when we have M = 2m − 1 + r layers, it is guaranteed
to tolerate any r failed layers. On the other hand, to tolerate any r failures with
replication, we need M = rm layers. This will be further discussed in Sect. 4.1.

Systematic MatDot Codes: A code is called systematic if, for the first m
layers, the output of the r-th layer is the product ArBr. We refer to the first
m layers as systematic layers. Systematic codes are useful because if all the
systematic layers complete their computation successfully, there is no need for
decoding. Systematic MatDot codes are achieved by using Lagrange polynomials
for encoding. Let

pA(x) =
m∑

i=1

AiLi(x), pB(x) =
m∑

i=1

BiLi(x), (5)

where Li(x) is defined as: Li(x) =
∏

j∈{1,...,m}\{i}

x − xj

xi − xj
for i ∈ {1, . . . , m}.

Using these polynomials, the worst-case recovery threshold remains the same as
non-systematic MatDot codes [12].

2.3 Related Work in ABFT

Algorithm-based fault tolerance (ABFT) was first proposed by Huang and Abra-
ham to detect and correct errors on circuits during linear algebra operations.
Recently, Chen and Dongarra discovered that a similar technique could be used
for parallel matrix algorithms for HPC systems [10]. A follow-up work [6] exper-
imentally showed that the overhead of ABFT is less than 12% with respect to
the fastest failure-free implementation of PDGEMM (Parallel General Matrix
Multiplication). Numerical stability of the ABFT technique was also examined
in [8] and applied to soft error detection [9]. The ABFT technique is extended
to matrix factorization algorithms such as Cholesky factorization [17] and LU
factorization [11,32].

Our work goes beyond existing works in ABFT for HPC as we employ the
novel MatDot codes which go beyond traditional error-correcting codes. MatDot
codes are designed specifically for distributed matrix multiplication where the
matrix product is split into the sum of outer products.

3 3D Coded SUMMA

We propose a failure-resilient and communication-efficient parallel-matrix mul-
tiplication algorithm, 3D Coded SUMMA, by integrating MatDot codes into 3D
SUMMA. Since 3D SUMMA partitions matrix multiplication into outer prod-
ucts across layers, we can weave MatDot codes into the third dimension (the
l-axis) of the algorithm.
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Recall that the recovery threshold of MatDot codes is K = 2m−1. This means
that if we have any K successful (non-failed) nodes, we can recover the matrix
product C, and thus to tolerate one failure, we need K + 1 = 2m nodes. For
failure resilience, we need at least m redundant layers and use a total of M ≥ 2m
layers. This redundancy is the same as replication for a single failure. A thorough
comparison between 3D Coded SUMMA and replication for an arbitrary number
of failures will be provided in the next section. In this section, we focus on the
algorithm design of 3D Coded SUMMA and demonstrate a simple example of
(n = 2,m = 2,M = 4). The full algorithm is given in Algorithm 1.

Example 1 (3D Coded SUMMA for (n = 4,m = 2,M = 4) ).
Initial Data Distribution: The node P (i, j, 1) initially has Ai,j and Bi,j

for i, j = 1 · · · 4 where Ai,j ’S and Bi,j ’s are N/m × N/m sub-blocks as follows:

A =

⎡

⎢
⎣

A1,1 · · · A1,4

...
. . .

...
A4,1 · · · A4,4

⎤

⎥
⎦ ,B =

⎡

⎢
⎣

B1,1 · · · B1,4

...
. . .

...
B4,1 · · · B4,4

⎤

⎥
⎦ (6)

Encoding: To encode MatDot codes, we begin with splitting Ai,j into two
equal-sized column blocks and Bi,j into two equal-sized row blocks as follows:

Ai,j =
[
A(1)

i,j A(2)
i,j

]
,Bi,j =

[
B(1)

i,j

B(2)
i,j

]

. (7)

Then, the node P (i, j, 1) locally computes four encoded column-blocks and row-
blocks as follows:

Ãi,j,1 = A(1)
i,j + α1A

(2)
i,j , B̃i,j,1 = α1B

(1)
i,j + B(2)

i,j ,

Ãi,j,2 = A(1)
i,j + α2A

(2)
i,j , B̃i,j,2 = α2B

(1)
i,j + B(2)

i,j ,

Ãi,j,3 = A(1)
i,j + α3A

(2)
i,j , B̃i,j,3 = α3B

(1)
i,j + B(2)

i,j ,

Ãi,j,4 = A(1)
i,j + α4A

(2)
i,j , B̃i,j,4 = α4B

(1)
i,j + B(2)

i,j ,

where α1, · · · , α4 are four distinct real numbers.4 Then P (i, j, 1) sends Ai,j,k to
P (i, j, k) for k = 2, 3, 4 using MPI Scatter operation.

After MatDot encoding step, the node P (i, j, k) will have Ai,j,k and Bi,j,k

for all i, j, k = 1, . . . , 4.
Computation: Perform 2D SUMMA [30] on each layer in parallel.
Decoding: Any K = 2m − 1 = 3 layers out of M = 4 layers are sufficient to

decode the final output. Instead of performing MPI Reduce on the raw output,
each node will scale their output with the decoding coefficients and then per-
form MPI Reduce. E.g., if P (i, j, 4) fails, P (i, j, 1), P (i, j, 2), P (i, j, 3) will send

4 We can also use systematic MatDot codes where Ai,j,1 = A
(1)
i,j and Ai,j,2 = A

(2)
i,j

by using the polynomials given in (5). However, for simplicity, we only discuss the
non-systematic formulation.
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Algorithm 1. 3D Coded SUMMA
1: Initial Data Distribution: P (i, j, 1) has Ai,j and Bi,j .
2: /* Encoding A, B and Scattering encoded data */
3: for i = 1 to n do
4: for j = 1 to n do
5: for l = 1 to M do
6: P (i, j, 1) computes: /* All P (i, j, 1) in parallel */

˜Ai,j,l = A
(1)
i,j + αlA

(2)
i,j + · · · + αm−1

l A
(m)
i,j (8)

˜Bi,j,l = αm−1
l B

(1)
i,j + αm−2

l B
(2)
i,j + · · · + B

(m)
i,j (9)

7: end for
8: P (i, j, 1) scatters ˜Ai,j,l and ˜Bi,j,l to P (i, j, l)’s (l = 1, . . . , M)
9: end for

10: end for
11: /* 2D SUMMA Computation */
12: for l = 1 to m do
13: All l-th layers in parallel, perform 2D SUMMA to compute: ˜Acol

l · ˜Brow
l .

14: end for
15: /* Decoding and Reduce to recover C */
16: for i = 1 to n do
17: for j = 1 to n do
18: for l = 1 to M do
19: /* All i, j, l in parallel */
20: P (i, j, l) knows which nodes failed among P (i, j, k)’s (k = 1, . . . , M).

21: P (i, j, l) computes dl
˜Ci,j,l and reduce to P (i, j, 1)

22: end for
23: end for
24: end for

d1C̃i,j,1, d2C̃i,j,2, and d3C̃i,j,3, then the first layer will have the final output
Ci,j = d1C̃i,j,1 + d2C̃i,j,2 + d3C̃i,j,3.5 �

Notice that the encoding of MatDot codes does not require any communi-
cation as encoding computation is performed at each local node. There is no
additional communication required for MatDot decoding either as the decod-
ing process is embedded in the final reduce step. The only communication cost
increase comes from the initial MPI Scatter and the final MPI Reduce with the
bigger size, i.e., scatter/reduce over 4 layers instead of 2.

We want to make a remark that we can apply the ABFT technique [10,18]
(rediscovered as Product codes in [21]) at each layer of 2D SUMMA for fault
tolerance. Although in terms of additional nodes required, ABFT can be more
efficient than MatDot codes, for higher failure tolerance, MatDot codes are a
more communication-efficient solution. In the encoding of the ABFT strategy,

5 The decoding coefficients, d1, . . . , d4 are determined by the choice of α1, . . . , α4. For
more information on how to compute d1, . . . , d4, see [12].
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Fig. 1. (a) Summary of 3D Coded SUMMA algorithm. (b) Number of redundant nodes
required to be resilient to f failures in the node/layer failure scenario for n = 16, m = 4.

one has to compute linear combinations of the column (row) blocks of A (B),
which requires column (row) shuffling, or multiple reduce operations to parity
nodes. Furthermore, for decoding, for recovering from more than one failure,
nodes have to perform peeling decoding (see [21]) which can potentially require
many rounds of communication. However, depending on which resource (com-
munication delay or the number of compute nodes) is more expensive in the
system, one can choose between ABFT on each layer and MatDot codes across
layers as proposed in the first version of this work [20].

4 Performance Analysis

In this section, we will show how 3D Coded SUMMA can provide higher resilience
for the same number of nodes compared to replication. Then, we analyze the
overhead of the MatDot-coded strategy in terms of communication and computa-
tion time, and prove that the total overhead is negligible when m = o(n). Finally,
we demonstrate through experimental evaluations that the total execution time
of 3D Coded SUMMA is only about 5–7% more compared to replication.

4.1 Node Overhead vs. Failure Resilience

To analyze the failure resilience, we will consider three different failure scenarios:

1. Node failure: This corresponds to a fail-stop error where a node fails and the
entire data or intermediate result on the failed node is lost.

2. Layer failure: All nodes on one layer fail at once. This can be relevant when
one layer is placed under the same rack and a rack failure occurs.

3. Node corruption: A node is corrupted by a soft error (a bit flip), and an arbi-
trary amount of data is affected beyond the capability of correction/detection
at the local node. This can be due to error propagation during computation.
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We say that a strategy is resilient to f failures in a certain failure scenario if
we can recover the entire output C as long as the number of failures is at most
f . We now compare replication and 3D Coded SUMMA for each failure scenario.
To be resilient to any f failures in the node failure or the layer failure scenario,
the total number of nodes required are the following:

– Replication: p = (f + 1) · mn2.
– 3D Coded SUMMA: p = (2m − 1 + f) · n2.

To be resilient to any s failures (i.e., corrupted nodes) in the node corruption
scenario, the total number of nodes required are6:

– Replication: p = (2s + 1) · mn2.
– 3D Coded SUMMA: p = (2m − 1 + 2s) · n2.

Let us make this more concrete by considering an example of n = 16 and m = 4.
To be resilient to any single failure, both replication and 3D Coded SUMMA
require 2048 nodes, which is twice more than the uncoded algorithm without any
resilience. To be resilient to any two node failures (or any one node corruption),
replication requires 3072 nodes while 3D Coded SUMMA requires 2304 nodes.
To be resilient to any two node corruptions, replication requires 5120 nodes
while 3D Coded SUMMA requires 2816 nodes. Because the recovery threshold
of MatDot codes is K = 2m − 1, there is an upfront cost of 2x node redundancy
in 3D Coded SUMMA. However, increasing resilience from one failure to more
failures only requires incremental overhead compared to the replication strategy
(Fig. 1b).

4.2 Execution Time Analysis

We now analyze the overhead of MatDot coding in terms of its execution time:
communication + computation. For communication time, we use the simple α-β
model [7]:

Tcomm = C1α + C2β, (10)

where C1 is the number of communication rounds and C2 is the number of bytes
communicated on the critical path. The α term is latency cost and the β term
is per-byte bandwidth cost. For computation time, we count number of floating-
point operations (flops). For 3D Coded SUMMA that encodes an n×n×m grid
into an n × n × M grid using MatDot codes and computes a matrix product of
dimension N ×N , the communication overhead of MatDot coding is summarized
in the following theorem.

Theorem 1. Suppose we use a MatDot code with a constant rate, i.e., M =
Θ(m). Then, the total communication time of 3D Coded SUMMA is:

T total
comm =

[

αΘ (log n) + βΘ
(

N2/n2)] · n

m
, (11)

6 Using the recently proposed collaborative decoding [28] might further reduce the
number of nodes required for 3D Coded SUMMA, but we use a conservative estimate.
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and the communication time overhead of MatDot encoding and decoding is:

TMatDot
comm = αΘ(log n) + βΘ(N2/n2). (12)

The theorem implies that both the latency and the bandwidth of MatDot encod-
ing/decoding is negligible if m = o(n). Note that this is the same condition for
the 3D SUMMA to outperform the 2D version of SUMMA [27].

Proof (Proof of Theorem 1). We will analyze the time complexity of each step.

Encoding MatDot Codes and Scattering the Encoded Matrices: The
first layer has n × n nodes. Each node has a square matrix of size N2/n2. Each
local square matrix is partitioned into m small blocks and encoded into M blocks.
The M encoded blocks are scattered to M layers (across the l-axis). Both A and
B need encoding and scattering.

– Local encoding cost: Cenc = 2N2/n2 · M .
– Communication cost (scatter using recursive-halving [29]): Tscatter =

2α log M + 2β N2

n2 · M
m .

Matrix Multiplication with 2D SUMMA: The data on each layer is gath-
ered into n2/m nodes, i.e., the nodes in each row and column are partitioned
into groups of size m and a local data gathering is carried out. Then, SUMMA
proceeds in n/m rounds. In each round, one node in each row broadcasts data of
size N2

n2m · m = N2

n2 to the entire row, and similarly for each column. Then, local
computation is carried out, which multiplies two matrices of size N/n × N/n.

– Local gathering using recursive-doubling [29]: Tgather = 2α log m + 2N2

n2 β.
– Broadcast in SUMMA (scatter using recursive-halving followed by all-gather

using recursive-doubling): Tbcast = (4α log n + 4N2

n2 β) · (n/m).
– Local matrix-matrix multiplication: CMxM = (N3/n3) · (n/m) = N3

n2m .

Decoding and Reduction: The decoding of MatDot codes only requires a
reduce across layers. The data size at each node in the reduction phase is still
N2/n2, and the number of layers required in the reduce is 2m − 1 (for MatDot
codes).

– Decoding MatDot codes (reduce using recursive-halving followed by tree-
gather [29]): Treduce = 2α log(2m − 1) + (2N2/n2)β.

Note that this communication cost analysis is the worst-case analysis because
if we use systematic codes, we only need to reduce the first m systematic layers.

Putting this altogether, we obtain the total communication time as follows:

T total
comm =Tscatter + Tgather + Tbcast + Treduce

=2α log M + 2β
N2

n2
· M

m
+ 2α log m +

2N2

n2
β

+ (4α log n +
4N2

n2
β) · (n/m) + 2α log(2m − 1) + (2N2/n2)β

(a)
=

[

αΘ (log n) + βΘ
(

N2/n2)] · n

M
,
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where in step (a), we use the fact that M = Θ(m), i.e., the code has a constant
rate. Finally, total communication overhead of using MatDot codes only come
from the increased size of gather and reduce operations:

TMatDot
comm =Tscatter + Treduce

=2α log m +
2N2

n2
β + 2α log(2m − 1) + (2N2/n2)β

=αΘ(log M) + βΘ(N2/n2).

Computation time overhead of MatDot coding is summarized below.

Theorem 2. Suppose we use a MatDot code with a constant rate, i.e., M =
Θ(m). Then,

T total
comp = Θ

(
N3

n2m

)
+ Θ

(
mN2

n2

)
+ Θ

(
m2

)
, (13)

TMatDot
comp = Θ

(
mN2

n2

)
+ Θ

(
m2

)
. (14)

Notice that the computation time overhead of MatDot coding is negligible
when m = o(

√
N), which is often the case since the matrix dimension N is orders

of magnitude bigger than the number of layers m.

Proof (Proof of Theorem 2). The number of flops required at each local node for
each step is given below:

– MatDot encoding: Each node generates M encoded blocks of dimension N/n×
N/mn (or N/mn × N/n), each of which is a linear combinations of m small
sub-blocks of the same dimension. Hence,

Tenc = 2M · m · N2

mn2
= Θ

(

mN2

n2

)

.

– Matrix multiplication: TMxM = Θ
(

N3

n2m

)

– MatDot decoding: Each node has to obtain decoding coefficient depending on
which nodes have failed through polynomial interpolation, which has compu-
tation complexity of at most Θ(m2). Then, it scales its output matrix by the
decoding coefficient. Thus,

Tdec = Θ(m2) + Θ(N2/n2).

��

4.3 Experimental Evaluation

In this section, we evaluate the performance of 3D Coded SUMMA through
experiments. In our experimental setup, we used a cluster with 40 compute
nodes, each of which has two 12-Core AMD Opteron (tm) Processor 6164 HE,
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64 GB DRAM, and 500 GB hard disk. Nodes are connected through Gigabit
Ethernet under a single switch. We used each core as one MPI process, i.e., one
core was one logical node P (i, j, l). To ensure that there is no MPI communi-
cation within the same compute node, we used cyclic distribution of compute
nodes. We injected a layer failure by artificially ignoring the result from one
layer in the reduce phase. We assumed that the information about the failed
node will be made available at all surviving nodes. We recorded execution time
of: memory allocation, MatDot Encoding (line 6 in Algorithm 1), MPI Scatter
(line 8 in Algorithm 1), 2D SUMMA (line 12–14 in Algorithm 1), and Decoding
+ MPI Reduce (line 16–24 in Algorithm 1).

Table 1. Execution time comparison of (n = 8, m = 2, M = 4) 3D Coded SUMMA
and replication. We used systematic MatDot codes and 8 cores per node.

N Strategy Memory
Allocation
(s)

Encoding
(s)

Scatter
(s)

2D
SUMMA
(s)

Decoding +
Reduce (s)

Total (s)

10000 Replication 0.1 0 1.505 19.583 0.926 22.245

MatDot 0.105 0.124 2.25 18.621 1.384 22.486

20000 Replication 0.369 0 6.574 87.792 3.626 98.681

MatDot 0.362 0.402 9.075 88.371 5.502 103.357

30000 Replication 0.75 0 14.993 214.798 7.859 239.035

MatDot 0.752 0.864 19.773 224.232 12.316 257.883

40000 Replication 1.317 0 25.613 438.356 13.941 480.464

MatDot 1.325 1.418 39.496 440.872 21.853 505.41

Fig. 2. Comparison of the total execution time between uncoded 3D SUMMA (no
resilience), replication, and 3D Coded SUMMA for (n = 8, m = 2, M = 2). We used
16 cores per node.
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Fig. 3. (a) Comparison of decoding+reduce time using Systematic MatDot codes.
When the failed node is a parity node, systematic code is ∼3x faster. (b) Comparison
of total execution time for using non-systematic MatDot codes and systematic Mat-
Dot codes. For systematic failures, non-systematic and systematic codes share similar
performance. For parity failures, systematic codes show a clear advantage.

Since the cluster we used for experiments had total of 960 cores, the most
extensive experiments were run on an 8 × 8 × 4 grid with total of 256 cores.7

We first compare our proposed MatDot-coded approach and replication. Exe-
cution time comparison of the two is summarized in Table 1. First notice that
almost 90% of the total execution time is used in 2D SUMMA operations. Then,
the next significant portion of the execution time is MPI Scatter and Reduce.
Computation time for MatDot encoding and decoding makes up less than 1%
of the total time. When we compare the total execution time, the overhead of
MatDot coding is about 5–7% compared to replication. This is mainly due to
the increased communication cost in the scatter and reduce communication as
predicted in the previous section. We further compare the total execution time of
replication and MatDot against the uncoded counterpart that does not provide
any resilience (See Fig. 2). Compared to the uncoded strategy, the execution time
of replication is 5–9% higher and 3D Coded SUMMA is about 10–18% higher.

Figure 3 shows the difference between using systematic and non-systematic
codes. In Fig. 3a, systematic failure means a node failure in a systematic layer
(the first m layers with the original data) and parity failure means a node failure
in a parity layer (the last m layers with encoded data). The biggest benefit of
using systematic codes is that when there is no failure in systematic nodes,
there is no need for decoding, and the final steps would be no different from
the uncoded strategy. The results in Fig. 3a show that this is indeed true in
experiments and the last reduce step (including decoding) is about 3x times
faster when we have only parity failures, and no systematic failure. Because of
this effect, we can see that using systematic codes is about 3–5% faster than
non-systematic codes when there is no systematic failure in Fig. 3b.

7 Bigger grids with the dimensions of non-power-of-two numbers are not included as
they showed worse performance.
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5 Discussion and Future Work

In this paper, we examined a new fault-tolerant parallel matrix multiplication
algorithm that integrates MatDot codes and 3D SUMMA. In our experiments,
we assumed that failure information would be provided to every node. Although
the current MPI implementation does not provide such functionality, there have
been various research works to incorporate fault mitigation into MPI library [2,5]
which include failure reporting and rearranging MPI communicator after the
failure. Implementing 3D Coded SUMMA on these prototype fault-tolerant MPI
libraries would be interesting future work.

Our work is a first step towards introducing coded computing to HPC appli-
cations and showing the feasibility through experiments. We believe that there is
an abundance of possibilities in developing practical fault-tolerant algorithms by
marrying new developments in coding theory and systems research (see [13] for
the recent review in this direction). For instance, our work focuses only on dense
matrix multiplication. Extending it to sparse matrix multiplication (e.g., sparse
SUMMA) is not a straightforward question since the encoding process would
reduce the sparsity of matrices. For linear system solving or eigendecomposition
problems, one can consider using the substitute decoding technique for sparse
matrices [31].
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Abstract. Current scientific workflows are large and complex. They
normally perform thousands of simulations whose results combined with
searching and data analytics algorithms, in order to infer new knowl-
edge, generate a very large amount of data. To this end, workflows com-
prise many tasks and some of them may fail. Most of the work done
about failure management in workflow managers and runtimes focuses
on recovering from failures caused by resources (retrying or resubmit-
ting the failed computation in other resources, etc.) However, some of
these failures can be caused by the application itself (corrupted data,
algorithms which are not converging for certain conditions, etc.), and
these fault tolerance mechanisms are not sufficient to perform a success-
ful workflow execution. In these cases, developers have to add some code
in their applications to prevent and manage the possible failures. In this
paper, we propose a simple interface and a set of transparent runtime
mechanisms to simplify how scientists deal with application-based fail-
ures in task-based parallel workflows. We have validated our proposal
with use-cases from e-science and machine learning to show the bene-
fits of the proposed interface and mechanisms in terms of programming
productivity and performance.

Keywords: Failure management · Scientific workflows · Parallel
programming · Distributed computing
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1 Introduction

E-science has evolved very fast during last few decades. At the beginning, small
computations were performed in a single machine, while nowadays, large complex
scientific workflows are executed in large distributed computing platforms. These
workflows combine the execution of thousands of simulations with searching and
data analytic algorithms to infer new knowledge from a large amount of data.
Due to the nature of the infrastructure and the algorithms used on the workflow,
some components of the computation can fail or become blocked. This can be
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due to resource failures, data corruption, or just because the initial conditions of
a simulation do not converge into a valid solution. These failures can make the
whole workflow execution fail or hang without generating the expected results.

Most workflow managers, such as Galaxy [1] or Pegasus [5], have some fault
tolerance mechanisms, but they are mainly focused on resource failures, and they
do not deal with application failures or exceptions. In these cases, the responsi-
ble to deal with failures is the developer, who has to include some code in the
application in order to implement custom mechanisms to make the whole work-
flow reliable. In a sequential application, this customized management inside the
code requires additional software development efforts which can be managed with
traditional error handling mechanisms provided by the programming languages,
such as managing exceptions or inspecting the return values to decide how to
adapt the code in case of failure. However, tasks in parallel and distributed work-
flows are asynchronously executed in remote resources, so implementing similar
defensive codes for these workflows are more complex and can produce perfor-
mance losses due to the unnecessary synchronizations and transfers to inspect
task results.

This paper proposes a simple user interface to allow developers to easily
indicate how to manage application failures. This interface extends the task def-
inition in order to allow developers to provide hints about how the runtime has
to react in case of a failure occurs during the task execution. Based on this
developer hint, the runtime transparently implements a set of mechanisms to
efficiently handle these failures, reducing the development efforts because devel-
opers do not need to add defensive code as explained above, and without affecting
application performance, because the failure management is concurrently per-
formed with the application execution.

A prototype of this proposal has been implemented in COMPSs [3], a task-
based parallel programming model to easily implement parallel workflows for
distributed computing environments, and it has been validated through two real
applications from e-Science and Machine Learning areas. We have evaluated
the productivity and performance of this solution compared to a user-developed
alternative. The results of this evaluation demonstrate that the proposed solu-
tion reduces the code complexity and achieves better performance than a user-
managed approach.

The rest of the paper is organized as follows: Sect. 2 presents the related work;
Sect. 3 introduces the proposed mechanisms and Sect. 4 describes how they have
been implemented in COMPSs. Then, Sect. 5 presents the evaluation; Finally,
Sect. 6 draws the conclusions.

2 Related Work

Failures in the execution of workflows are frequent, especially when executed in
distributed computing platforms. For this reason, several workflow management
systems provide some way of tolerating failures and its management.

For example, Galaxy [1] provides automatic job re-submission (e.g., on job
failure due to a temporary cluster error). Also, in order to make Galaxy more
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robust in a production environment, technologies to enhance Galaxy’s porta-
bility, security, reliability, and scalability have been adopted. Galaxy utilizes
uWSGI1 as its default web application server. It has several advantages, includ-
ing improved fault tolerance, and the possibility of restarting Galaxy uninter-
ruptedly. The mechanisms supported by Taverna [15] are similar, with retries at
service and workflow level. Several retry types are supported, such as exponential
back-off of retry times.

Kepler [12] proposes three complementary mechanisms for fault tolerance: a)
a forward recovery mechanism that offers retries and alternative versions at the
workflow level; b) a checkpointing mechanism, also at the workflow layer, that
resumes the execution in case of a failure at the last saved good state; and c) an
error-state and failure handling mechanism to address issues that occur outside
the scope of the workflow layer.

Cylc [13] is a workflow management system proposed by the Earth Science
community. It provides checkpointing, which keeps a list of completed tasks, and
if the scheduler does not respond properly, the user can restart the experiment,
from the last checkpoint. Users can also define retries for the different experiment
jobs.

Pegasus [5] provides some failure management features as well. In case of
transient infrastructure failures, such as a node being temporarily down in a
cluster, Pegasus will automatically retry jobs. After a given number of retries
(usually once), a hard failure occurs, because of which the workflow will even-
tually fail. In most of the cases, these errors are correctable (either the resource
comes back online or application errors are fixed). Once the errors are fixed, the
Pegasus workflow can be restarted from the point of failure. While executing a
workflow, Pegasus creates the rescue workflow, which contains the description
of the work that remains to be done.

Nextflow [6] provides several failure management mechanisms. First, it pro-
vides continuous checkpointing: all the intermediate results produced during the
pipeline execution are automatically tracked. This allows to resume the execu-
tion from the last successfully executed step. Nextflow also provides a mechanism
that allows tasks to be automatically re-executed when a command terminates
with an error exit status. In Nextflow, it is also possible to define the errorStrat-
egy directive in a dynamic manner for a given task. This is useful to re-execute
failed jobs only if a certain condition is verified.

What is presented in this paper differs from previous approaches since what
we propose is an individual and tailored management policy for each task type.
The last approach described above (Nextflow) is the one closer to what it is
presented in this paper, but it differs since it does not support all the possi-
ble policies for task failure management proposed in this paper. The proposed
errorStrategy does not allow to indicate what to do with the non generated data
or what to do with tasks which depend on the failed tasks. Moreover, Nextflow
provides their own scripting language, and they do not offer the possibility of
managing task exceptions as well as managing tasks which enter a hang state.

1 http://projects.unbit.it/uwsgi.

http://projects.unbit.it/uwsgi
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3 Application Failure Management

As raised in the introduction, developers are responsible to make applications
reliable, predicting what could be the possible failures in each part of the appli-
cation and implementing a code to recover the execution from these failures.
In sequential programming, developers use return values, which are inspected
in the main code to decide what to do in case the function returns a prob-
lem. However, in distributed parallel workflows, this management is not efficient
because workflow tasks are executed in an asynchronous remote way, so wait-
ing for a result to decide what to do next, requires unnecessary synchronization
points and data movements to transfer results back and inspect them. The next
subsections present common workflow task failures, their implications and the
mechanisms that we propose to easily and efficiently manage them.

3.1 Common Workflow Task Failures and Implications

Workflow failures can be classified in the types enumerated below. Each of these
types has different implications, which are described in the next paragraphs.

– Tasks which stop their execution before completion. They can be
produced by an invalid input or errors returned by simulators. The main
consequence of these failures is that task results are not completely generated
and all the successor tasks could also fail or their results be invalid.

– Task execution blocked or lasting more than expected. These failures
can be produced by tasks which are running algorithms that, depending on
the input, can enter in a deadlock or never converge.

– Tasks throwing exceptions. These failures are similar to the first type but
they can affect not only the dependent tasks but also others which are in the
group or block.

3.2 Failure Management Mechanisms

To allow workflow developers to easily manage the different type of failures, we
propose to extend the task definition and the runtime mechanism to implement
the following features:

– Failure reaction policy: It allows developers to indicate to the runtime
what to do when a task fails. This policy is described in the task definition
interface and it is applied by the runtime to decide what to do with the
successor tasks and what to do with the expected task results.

– Automatic cancellation after timeout: This feature is also activated by
including the timeout property in the tasks definition. It allows users to define
a maximum duration per task to avoid tasks running forever. Tasks cancelled
because of exceeding the timeout are considered failures. Therefore, this fea-
ture can be combined with the failure reaction policy to decide what to do
with the rest of the workflow.
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– Parallel distributed exception: It allows developers to create “try/catch”
blocks in task-based parallel workflows for distributed environments. With
this functionality, the developer can implement a try code block using the
programming model syntax, where tasks invoked inside this block will belong
to the same task group. If one of these remote tasks throws an exception the
runtime will catch it and the current and pending tasks of this group will be
cancelled as it is done in try/catch blocks provided by some programming
languages.

4 Implementation

This section provides more details about how the proposed mechanisms are
implemented in COMPSs, by extending the COMPSs syntax to allow developers
to specify a failure reaction policy, a timeout per task type and to define a
try/catch block in parallel workflows, and by implementing the management of
these extensions in the COMPSs runtime.

4.1 COMPSs Overview

COMP Superscalar (COMPSs) is a task-based parallel programming for dis-
tributed computing. Based on sequential programming, application developers,
by means of code annotations, select a set of methods whose invocations are
considered tasks and indicate the direction of their parameters.

COMPSs runtime [10] orchestrates the execution of applications and its tasks
on the underlying infrastructure. For this purpose, for each invocation to a task
it analyses the data dependencies with previous ones according to the parameter
annotations. With this information, COMPSs runtime builds a Directed Acyclic
Graph (DAG) where nodes represent tasks and edges represent data dependen-
cies between them. COMPSs runtime is able to infer the task-level parallelism
from this graph, and schedules and submits tasks for execution. The runtime also
takes care of all required data transfers. If a partial failure raises during a task
execution, the master node handles it with job resubmission and rescheduling
techniques. However, after a maximum number of retries, the whole workflow is
considered as failed and the whole execution is stopped.

COMPSs provides Java as native programming language and it also provides
bindings for Python (PyCOMPSs [2]) and C/C++ [8]. Figure 1 shows an exam-
ple of a task annotation and COMPSs main program. The first line contains the
task annotation in the form of a Python decorator, while the rest of the code is
a regular Python method. The parameter f_res is of type INOUT (the data is
read and written by the method), and the parameter p_res is set to the default
type IN (the data is only read by the method). These directionality clauses are
used at execution time to derive the data dependencies between tasks and are
applied at object level, taking into account its references to identify when two
tasks access the same object, and can also be applied at file level when parame-
ters are files. A tiny synchronisation API completes the PyCOMPSs syntax. For
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1 @task()
2 def word_count(block):
3 ...
4 return res
5

6 @task(f_res=INOUT)
7 def merge_count(f_res, p_res):
8 ...

(a) Task annotation example

1 for block in data:
2 p_result = word_count(block)
3 reduce_count(result, p_result)
4 result = compss_wait_on(result)

(b) Main code example

Fig. 1. PyCOMPSs application example.

instance, as shown in Listing 1.b, the compss_wait_on waits until all the tasks
modifying the result’s value have finished and brings the value to the node
which executes the main program (line 4). Once the value is retrieved, the exe-
cution of the main program code is resumed. Given that PyCOMPSs is mostly
used in distributed environments, synchronising may imply a data transfer from
remote storage or memory space to the node executing the main program.

4.2 Failure Reaction Policy

As introduced above, the failure reaction action policy provides a hint to the
runtime about what to do if a task fails. This hint is provided in the task defi-
nition as indicated in Fig. 2 and it will apply to all the instances of this type of
task. It consists of adding the on failure property to the task decorator, and the
default value property to the task parameter description. For the first case, the
user can choose one of the following options:

– FAIL: If a task with this option fails, the whole application is stopped recov-
ering the computed data until the moment of the failure.

– RETRY (Default): If a task with this option fails, the runtime re-executes
it in the same node and, if the failure persists, resubmits it to a different one.
If the task after these retries still fails, it applies the FAIL procedure.

– IGNORE: If a task with this option fails, the failure is ignored, the data
not generated (return or with direction OUT) is set as indicated in the
default value property, and successor tasks are executed using these values.

– CANCEL SUCCESSORS: If a task with this option fails, the runtime
ignores the failure, recursively cancels its successors, and deletes all the data
and versions which are not going to be generated by the failed task and its
successors in order to keep the data coherence of the rest of the workflow.

– IGNORE AFTER RETRY: If a task with this option fails, the runtime
first applies the RETRY procedure to try to recover from temporary resource
failures. If the failure persists, it applies the IGNORE procedure.

– CANCEL SUCCESSORS AFTER RETRY: As in the previous option,
if a task with this option fails, the runtime applies the RETRY procedure
and, if the failure persists, it applies the CANCEL SUCCESSORS procedure.
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1 @task(output_file={type:FILE, direction=OUT, default_value="EMPTY"}, on_failure="IGNORE")
2 def task_example(output_file):
3 ...

Fig. 2. Task definition with failure reaction policy and default value.

As we have seen before, an important issue when ignoring a failure is the
value of data that has not been generated by the failed task. This value can be
indicated by setting one of the following options in the default value property:

– EMPTY (Default): The runtime will create an empty file or an empty object
(an object created with the default constructor) depending on the parameter
type.

– NONE: It will set the object or the file path as None (null in Java).
– [Path/to/file]: The parameter will be set as the content of a file indicated

by a path (it can also be a serialized object).

The diagram depicted in Fig. 3, summarises how the COMPSs runtime man-
ages task failures. First, it captures task failures at worker processes. These
failures are notified to the master, which applies the procedures defined in the
policies, resubmitting or cancelling tasks, as well as doing the proper data man-
agement (e.g.setting default values, version rollback, data deletion) to keep the
application execution consistency.

4.3 Timeout Task Cancellation

Sometimes, the execution of a task may freeze due to a resource failure or it
may never end (e.g., an optimization algorithm not converging to a solution).
In these situations, workflow engines require a mechanism to avoid that the
whole application gets blocked due to a single task. In our case, we propose to
use a timeout mechanism combined with the failure reaction policies described
above. As in the previous case, this mechanism will be also indicated in the task

Fig. 3. Task failure management at runtime.
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definition with the time out property as shown in Fig. 4. The time out property
indicates the maximum duration (in seconds) for a task before being considered
failed.

The defined timeout for a task is passed to the runtime worker when it is sub-
mitted. The worker sets up a timer according to the specified timeout duration
which will send a signal when the timeout is reached. To manage the timeout,
a custom signal handler is defined which will throw an exception interrupting
the task execution and producing a failure in the task execution. The failure is
managed according to the failure reaction policy as indicated above.

1 @task(time_out=50, on_failure="CANCEL_SUCCESSORS")
2 def task_timeout_example():
3 ...

Fig. 4. Task definition with timeout.

4.4 Exceptions in Parallel Distributed Workflows

Another mechanism to treat application failures is the exception. This is sup-
ported by most modern programming languages, however supporting this mech-
anism on parallel workflows executed in distributed environments is not trivial.
In the next paragraphs, we will describe how the exception mechanism is imple-
mented in COMPSs. Typically, exceptions are used in the following way: a user
defines a try code block where some of the statements in the block can throw
an exception; if an exception is thrown, the rest of the block execution is can-
celled; and if a catch or except block (depending on the language) is defined, it
is executed after catching the exception.

We propose to apply the same concept in parallel distributed workflows as
shown in Fig. 5a. In this case, we create a task group block (line 9) where some of
the tasks invoked in this block can throw a COMPSsException during its remote
asynchronous execution; this special exception type is defined to differentiate
from other exceptions which just produce a task failure. At runtime, during the
task group execution, the worker detects when a task throws a COMPSsExcep-
tion and sends it back to the master, which cancels the rest of the non-finished
tasks of the group and continues the application execution by running the except
block. Note that the task group definition has an implicit barrier at the end of
the code block in order to wait until all the tasks of this block are finished. How-
ever, this implicit barrier could limit the maximum parallelism achieved by the
application. For instance, if we want to run two independent task groups in a
loop, the COMPSs runtime will execute the group of the first iteration and once
all the tasks of this group are finished, it will execute the group of the second
iteration.

To allow both blocks to run concurrently, developers can follow the approach
described in Fig. 5b. The implicit barrier can be disabled when defining the task
group block (line 8), and an explicit barrier can be set by adding a call of the
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1 @task()
2 def task_exception():
3 ...
4 raise COMPSsException()
5 ...
6 if __name__ == '__main__':
7 ...
8 try:
9 with TaskGroup("group_name"):

10 task_A()
11 task_exception()
12 task_B()
13 except COMPSsException:
14 task_C()
15 ...

(a) Exception management with
implicit synchronization

1 @task()
2 def task_exception():
3 ...
4 raise COMPSsException()
5 ...
6 if __name__ == '__main__':
7 ...
8 with TaskGroup("group_name", false):
9 task_A()

10 task_exception()
11 task_B()
12 ...
13 try:
14 compss_barrier_group("group_name")
15 except COMPSsException:
16 task_C()
17 ...

(b) Exception management with explicit
synchronization

Fig. 5. Code examples for remote exception management in parallel workflows.

compss barrier group (line 14). In both cases, tasks of the group will be canceled
once the exception is thrown. However, the code area where the exception is
thrown to the main code differs depending on the case. For the implicit syn-
chronization case, the try/except block is set after the task group block, while
in the explicit case, the exception is thrown in the compss barrier group, so the
try/except block must be set at this point of the code.

5 Evaluation

To validate our proposal, we have applied the failure management mechanism in
the following use cases where we have performed several experiments to evaluate
the benefits of our approach in terms of productivity and performance.

5.1 BioExcel Biobb: Model Protein Mutants Workflow

BioExcel2 is the European Centre of Excellence for provisioning support to
academic and industrial researchers in the use of high-performance comput-
ing (HPC) and high-throughput computing (HTC) in biomolecular research.
The BioExcel was established to provide the necessary solutions for long-term
support of the biomolecular research communities: fast and scalable software,
user-friendly automation workflows and a support base of expert core devel-
opers. In the framework of this project, BSC is developing together with the
Institute for Research in Biomedicine (IRB) the biobb. The biobb is a library of
Python wrappers offering a layer of compatibility and interoperability over the
BioExcel computational biomolecular tools, such as GROMACS [14]. The biobb
is enabled by PyCOMPSs for its executions in large scale systems. The Model

2 https://bioexcel.eu.

https://bioexcel.eu
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Protein Mutants workflow has been developed on top of the biobb (and runs on
top of PyCOMPSs). This workflow can be described as an automated protocol to
generate structures for protein variants detected from genomics data. The work-
flow combines multiple data transformations with invocations to GROMACS.

1 @task(structure=FILE_OUT)
2 def fix_side_chain(structure):
3 # task code
4 if __name__ == '__main__':
5 fix_side_chain("init_struct.pdb")
6 for n in range(num_mut):
7 mutate(n, "init_struct.pdb", "mutate.pdb")
8 pdb2gmx(n, "mutate.pdb", "pdb2gmx.gro", "pdb2gmx.zip")
9 editconf(n, "pdb2gmx.gro", "editconf.gro")

10 solvate(n, "editconf.gro","pdb2gmx.zip", "solvate.gro",
"solvate.zip")↪→

11 grompp(n, "solvate.gro", "solvate.zip", "gppion.tpr")
12 genion(n, "gppion.tpr", "pdb2gmx.zip", "genion.gro", "genion.zip")
13 grompp(n, "genion.gro", "genion.zip", "gppmin.tpr")
14 mdrun(n, "gppmin.tpr", "min.gro")
15 grompp(n, "min.gro", "genion_top.zip", "gppnvt.tpr")
16 mdrun_cpt(n, "gppnvt.tpr", "nvt.gro", "nvt.cpt")
17 grompp_cpt(n, "nvt.gro", "nvt.cpt", "genion.zip", "gppnpt.tpr")
18 mdrun_cpt(n, "gppnpt.tpr", "npt.gro", "npt.cpt")
19 grompp_cpt(n, "npt.gro", "npt.cpt", "genion.zip", "gppmd.tpr")
20 mdrun_cpt(n, "gppmd.tpr", "md"+str(n)+".gro", "md"+str(n)+".cpt")
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Fig. 6. Protein Mutants workflow code and generated DAG for 2 mutations

The first experiment to validate our failure management approach consists
of making the protein mutants workflow reliable to application failures. In this
experiment, we evaluate the productivity comparing the implementation using
our proposed approach with the alternative of coding this feature directly in the
application code. Figure 6 shows the main code of the protein mutants workflow
and the task dependency graph generated when executing it with two mutations.
As we can see, this application is composed of different independent chains of
tasks. Therefore, a failure in one of the tasks of the chain invalidates the results
of the whole chain. So, the most suitable mechanism for this application pattern
is setting the on failure property to CANCEL SUCCESSORS in all tasks. In
contrast to this, if we want to observe the same behaviour in this application
when it is not supported by COMPSs, developers should modify the application
in the way shown in Fig. 7, where we have to capture the failure in the task code,
and return this as well as modify the main workflow to continue the workflow
execution depending on its result. This implementation required to add 87 lines
of code and the cyclomatic complexity [11] of the code increased from 2 to 41
(measured with Radon3) due to the split of the main loop and the different if
paths.

3 https://pypi.org/project/radon/.

https://pypi.org/project/radon/
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1 #task code
2 @task(input_file=FILE_IN, output_file=FILE_OUT)
3 def mutate_pc(input_file, out_file):
4 try:
5 # original task_code where a failure generated an exception
6 return 0
7 except :
8 return 1
9 #main workflow

10 if __name__ == '__main__':
11 ...
12 for n in range(num_mut):
13 result[n] = mutate_pc(n, "init_struct.pdb", "mutate.pdb")
14 #The folowing pattern is repeated for invoking next tasks
15 for n in range(num_mut):
16 result[n] = compss_wait_on(result[n])
17 if (result[n] == 0 ):
18 result[n] == pdb2gmx_pc(n, "mutate.pdb", "pdb2gmx.gro")
19 ...

Fig. 7. Cancel successor code alternative.

Apart from the failure reaction policy, some of the GROMACS calls imple-
ment optimization algorithms which, depending on the input, might not con-
verge. So, we have set the time out property in mdrun and mdrun cpt task
definitions. Implementing the same feature in the task codes can be done as
shown in Fig. 8b and required adding 18 lines of code.

1 @task
2 def task_example(out_file):
3 try:
4 #original task_code
5 except :
6 import os
7 if not os.path.exists(out_file):
8 with open('/tmp/test', 'w'):
9 pass

(a) Failure Ignore code alternative

1 #Timeout exception
2 class TimeOutError(BaseException):
3 pass
4 #SIGALRM handler
5 def task_timed_out(signum, frame):
6 raise TimeOutError
7 #task implementation
8 @task(...)
9 def task_example(..., time_out):

10 import signal
11 signal.signal(signal.SIGALRM,

task_timed_out)↪→
12 signal.alarm(time_out)
13 try:
14 #original_code
15 signal.alarm(0)
16 except TimeOutError :
17 ...

(b) Time out code alternative

Fig. 8. Failure detection code alternatives.

Another variant of this workflow is done by adding a final task which merges
the results in a single graph. In this variant, the CANCEL SUCCESSORS policy
is not suitable since a failure will also cancel the merge task. To avoid this, we
can change the on failure policy to IGNORE, which by default will generate an
empty file per failed result which can be ignored by the merge task. In case the
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developers have to code this feature in the application, they have to add the
code of the figure for each output parameter. In the case of study, it required
adding 108 lines of code.

Fig. 9. Mutations workflow execution trace comparison. Each trace shows a timeline
of task executions in the different computing resources. Horizontal color lines indicate
the different tasks executions (Colors are the same as in Fig. 6b). Vertical yellow lines
indicate transfers between computing nodes.

Besides the productivity aspects, the proposed contribution also has a per-
formance impact. Figure 9 shows the execution traces of the protein mutants
workflow evaluating 30 mutations, where three of them produce failures. One
failure is due to an incorrect mutation, another is due to an incorrect GRO-
MACS configuration, and the last one produces a long execution time in the
simulation. The upper trace shows the execution with the proposed failure man-
agement implemented in COMPSs and the lower traces show the execution with
the coding alternative as explained above. The light blue dots show the points
in time where the failures have occurred and we can observe that the succes-
sors of these tasks have not been executed. Yellow lines in the traces show data
transfers. We can see that the execution with the new approach performs better
since it does not require synchronizations and requires less data transfers.

5.2 Machine Learning Algorithms

Another area of application of the new features presented in this paper has
been the dislib library4 [4], a distributed computing machine learning library
4 https://dislib.bsc.es.

https://dislib.bsc.es
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parallelized with PyCOMPSs. Some machine learning algorithms are iterative,
where convergence is checked at every iteration step to decide whether the next
iteration is necessary. Examples of this iterative behaviour are the K-means and
Gaussian Mixture clustering algorithms, and Cascade Support Vector Machines
(C-SVM) classification algorithm [9].

When implementing these algorithms in PyCOMPSs, it required a data syn-
chronization in the main code to evaluate its convergence criterion and decide if
a new iteration is required. Adding this data synchronization in the main loop
implies a task barrier, where the main code waits for all tasks to finish. When
running a single algorithm individually, this is not that critical, but when run-
ning several at the same time, this synchronization serializes all the executions.
Cases where we would like to run multiple algorithms at a time occur in hyper-
parameter optimization algorithms, like Grid Search or Randomized Search.

In this paper, we have modified dislib’s Cascade Support Vector Machine
algorithm (C-SVM) in such a way that the evaluation of the convergence crite-
rion is performed in a task. This task raises a COMPSsException whenever the
convergence criterion is met. This has been combined with the Grid Search algo-
rithm, that fits multiple models with multiple parameters. The objective is to
be able to run the multiple models in parallel, which before was not possible due
to the synchronization required to check the convergence criterion. Grid Search
has been also modified to cancel non executed tasks when a COMPSsException
is raised during the fitting process of one of the models.

Fig. 10. Execution time of Grid Search with C-SVM using the exceptions mechanism
(Except.), without the exceptions mechanism (Synch.), and without checking the con-
vergence (Max it.).

Figure 10 shows the execution time of Grid Search in three scenarios. The
first scenario (Except.) corresponds to using the exception mechanism presented
in this paper to avoid synchronizations in the fitting of C-SVM. The second
scenario (Synch.) corresponds to not using exceptions and synchronizing after
every iteration. The third scenario (Max it.) corresponds to running C-SVM for
a fixed number of iterations (10) instead of checking the convergence criteria. In
all cases, the Grid Search algorithm fits 10 models in total.

We see that although the number of fitted models is low, Grid Search
greatly benefits from avoiding convergence checks. Using the exception mech-
anism achieves 7x speedup over the scenario with synchronizations, and 2.7x
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speedup over running the models for a fixed number of iterations. In the first
case, the improvement is because Grid Search can overlap the fitting of the
different models. In the second case, the improvement is due to some models
converging in less than 10 iterations. We expect this improvement in execution
time to increase further if more than 10 models are trained simultaneously.

6 Conclusion

This paper presents a set of mechanisms to easily manage common applica-
tion failures in task-based parallel workflows executed in distributed computing
environments. We have proposed an extension to the task definition to enable
developers to define how the runtime should react if a task of this type is failing
or lasting a certain duration (timeout). We have also proposed different policies
that are suitable for different types of failures and application patterns. Finally,
we have also proposed mechanisms to support the exceptions management in
parallel workflows where tasks are asynchronously executed in remote resources.

The proposed mechanisms have been validated with a bioinformatic workflow
and a machine learning application where we have seen how the different policies
are applied to real workflows and we have compared them with the alternative
of coding these features inside the application code. We have observed that these
features allow users to add failure management mechanisms without requiring to
increase the amount of lines and complexity of the application codes. Moreover,
as these mechanisms are automatically managed at runtime concurrently with
the application execution, they avoid unnecessary synchronizations and transfers
with their corresponding gain in performance.
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B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 452–460. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13818-8 31

13. Oliver, H.J.: Cylc (the cylc suite engine). Technical report (2016), http://cylc.
github.io/cylc/

14. Pronk, S., et al.: Gromacs 4.5: A high-throughput and highly parallel open source
molecular simulation toolkit. Bioinformatics 29(7), 845–854 (2013). https://doi.
org/10.1093/bioinformatics/btt055

15. Wolstencroft, K., et al.: The taverna workflow suite: Designing and executing work-
flows of web services on the desktop, web or in the cloud. Nucleic Acids Res.
41(W1), W557–W561 (2013). https://doi.org/10.1093/nar/gkt328

https://doi.org/10.1016/j.softx.2015.10.004
https://doi.org/10.1109/eScience.2019.00018
https://doi.org/10.1109/eScience.2019.00018
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1038/nbt.3820
https://doi.org/10.6084/m9.figshare.12556445
https://springernature.figshare.com/articles/software Artifact_to_reproduce_the_experiments_of_Europar_2020_Paper_Managing_Failures_in_Task-based_Parallel_Workflows_in_Distributed_Computing_Environments_/12556445/1
https://springernature.figshare.com/articles/software Artifact_to_reproduce_the_experiments_of_Europar_2020_Paper_Managing_Failures_in_Task-based_Parallel_Workflows_in_Distributed_Computing_Environments_/12556445/1
https://springernature.figshare.com/articles/software Artifact_to_reproduce_the_experiments_of_Europar_2020_Paper_Managing_Failures_in_Task-based_Parallel_Workflows_in_Distributed_Computing_Environments_/12556445/1
https://springernature.figshare.com/articles/software Artifact_to_reproduce_the_experiments_of_Europar_2020_Paper_Managing_Failures_in_Task-based_Parallel_Workflows_in_Distributed_Computing_Environments_/12556445/1
https://doi.org/10.1177/1094342019845438
https://doi.org/10.1007/s10723-013-9272-5
https://doi.org/10.1007/s10723-013-9272-5
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1007/978-3-642-13818-8_31
http://cylc.github.io/cylc/
http://cylc.github.io/cylc/
https://doi.org/10.1093/bioinformatics/btt055
https://doi.org/10.1093/bioinformatics/btt055
https://doi.org/10.1093/nar/gkt328


Accelerating Nested Data Parallelism:
Preserving Regularity

Lars B. van den Haak1,2(B) , Trevor L. McDonell2 , Gabriele K. Keller2 ,
and Ivo Gabe de Wolff2

1 Eindhoven University of Technology, Eindhoven,
The Netherlands

l.b.v.d.haak@tue.nl
2 Utrecht University, Utrecht, The Netherlands

{t.l.mcdonell,g.k.keller,i.g.dewolff}@uu.nl

Abstract. Irregular nested data-parallelism is a powerful programming
model which enables the expression of a large class of parallel algorithms.
However, it is notoriously difficult to compile such programs to efficient
code for modern parallel architectures. Regular data-parallelism, on the
other hand, is much easier to compile to efficient code, but too restricted
to express some problems conveniently or in a manner to exploit the full
parallelism. We extend the regular data-parallel programming model to
allow for the parallel execution of array-level conditionals and iterations
over irregular nested structures, and present two novel static analyses to
optimise the code generated for these programs which reduces the costs
of this more powerful irregular model. We present benchmarks to support
our claim that these extensions are effective as well as feasible, as they
enable to exploit the full parallelism of an important class of algorithms,
and together with our optimisations lead to an improvement in absolute
performance over an implementation limited to exploiting only regular
parallelism.

Keywords: Arrays · GPGPU · Nested data parallelism · Parallel
functional programming
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The collection-oriented approach to data-parallel programming, where compu-
tations are expressed in terms of higher-order functions—such as maps, folds,
and scans—over (multi-dimensional) arrays provides a powerful and convenient
programming model. By allowing programmers to identify the parallelism of an
algorithm explicitly, yet in an abstract, architecture-independent way, languages
such as Futhark [7,12–14], Manticore [9], Lift [23], and Accelerate [3,6,17,18]
have demonstrated that it is possible to achieve performance comparable to
hand-optimised, low-level code on a range of concrete hardware architectures,
such as GPUs and multi-core CPUs.
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These languages are typically restricted to regular data-parallelism: they
support executing nested loops in parallel only if the inner loop bounds are
independent of the indices of the outer loops, thereby limiting the kinds of par-
allel algorithms which can be conveniently expressed. While it is possible to
transform any irregular data-parallel computation into one containing only reg-
ular data-parallelism [2], doing so efficiently in practice has still, in general, not
been achieved. Instead, techniques to add limited support for irregular computa-
tions to regular data-parallel languages—without compromising performance—
are used [6,7]. This work is a further step in this direction. We discuss our
approach in the context of the language Accelerate [3], but it applies to any
similarly structured language. The main contributions of the paper are:

1. An extension of the regular data-parallel programming model to allow for
the parallel execution of array-level conditionals and iterations over irregular
nested structures, enabling a larger class of problems using irregular nested
parallelism to be executed efficiently (Sect. 3)

2. A shape analysis to detect at compile time when shapes of nested arrays are
equal (Sect. 4)

3. A program analysis to identify the regular subcomputations of an irregular
program (Sect. 4)

4. Benchmarks demonstrating the effect of the optimisations enabled by the
shape equality and regularity detection analyses (Sect. 5)

We defer the discussion of related work to Sect. 6.

2 Background

In this section, we give an overview of Accelerate as a representative of the
collection-oriented programming model. We discuss the difference between reg-
ular and irregular data parallelism, and why the expressiveness of the latter
significantly complicates the mapping of the high-level operations to efficient
code.

2.1 Accelerate’s Programming Model

The collective operations with which we express parallel computations in Accel-
erate are based on the scan-vector model [4,22], and consist of multi-dimensional
array variants of familiar Haskell list operations such as map and fold, as well
as array-specific operations such as index permutations. In this paper we use
a slightly simplified syntax for Accelerate programs for the sake of readability:
Accelerate is deeply embedded in Haskell, so the types of expressions are wrapped
in a type constructor, which we omit here, as we do with class constraints. For
example, to compute the dot product of two arrays, we write:

dotp :: Array DIMn+1 Float → Array DIMn+1 Float → Array DIMn Float
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)
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Accelerate is rank-polymorphic, meaning that operations work on arrays of arbi-
trary rank, or dimensionality. The rank of an array is encoded in the type,
denoted by a subscript in our example code. The function dotp consumes two
multidimensional arrays of rank n+1 and produces an array of rank n as output,
by folding along the innermost dimension. The type of fold is:

fold :: (a → a → a) → a → Array DIMn+1 a → Array DIMn a

There are two sources of parallelism here: the actual reduction can be done in
parallel in log n steps using a tree fold, and for arrays of rank two and higher,
we can do all the tree folds in parallel. In Accelerate, both sources of paral-
lelism are exploited. This is a limited form of nested parallelism—regular nested
parallelism—where the size of the inner parallel loop is the same for all iterations.

The generate operation is a parallel loop construct which takes as input a
shape descriptor of type DIMn specifying the extent of the resulting array, and a
function that will be applied to each index of that shape to compute the value at
that index. In the regular data-parallel model, the operation passed to generate
is restricted to a sequential function returning a single scalar value:

generate :: DIMn → (DIMn → a) → Array DIMn a

All parallel operations so far have the property that the extent of the output
array is independent of the values of the array elements. Unfortunately, there
are useful operations for which this is not the case. For example, consider the
function filter, which removes elements of an array which do not satisfy a given
predicate. A rank-polymorphic filter, where the output array has the same
nesting depth as the input array, requires that the shape of the innermost nesting
level is ragged. We use the type IArray DIMn DIMm a for an array of nesting depth
n+m, where the outermost n dimensions are guaranteed to be regular, and the
inner m are potentially irregular. The type of the filter operation becomes:

filter :: (e → Bool) → Array DIMn+1 e → IArray DIMn DIM1 e

We also have segmented versions of parallel operations, which take irregular
arrays as input. For example, the segmented fold calculates the sum of each of
the innermost segments of an irregular array in parallel, and has the type:

foldSeg :: (a → a → a) → a → IArray DIMn DIMm+1 a → IArray DIMn DIMm a

Apart from collection-oriented operations, we have an array-level conditional
operator cond c es1 es2, and an iteration construct while pf bf es, which itera-
tively applies the function bf to initial array es as long pf applied to the current
iteration value is True. For example, assume bubble is a (potentially) parallel
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implementation of the inner loop of Bubblesort, and notSorted a function which
check whether an array is sorted, then we can write:

bubbleSort :: Array DIM1 Float → Array DIM1 Float
bubbleSort xs = while notSorted bubble xs

In this example, the size of the resulting array is the same as the size of the input
array, independent of the number of iterations, as bubble should not change the
size of its input. In general, however, this is not the case. Similarly, the two
branches of a conditional do not need to evaluate to arrays of the same shape.

We extend the regular data-parallel programming model by allowing both
cond and while to occur inside of regular nested parallel loops. This generali-
sation introduces the possibility for this previously regular operation to intro-
duce irregular nested parallelism, but affords the programmer more flexibility to
express a larger range of applications. The techniques we present in this paper
are aimed at minimising the costs of irregular parallelism arising from these
constructs.

Continuing our previous example, if we want to apply the parallel bubble
sort program in parallel to a collection of arrays, we can now write:

bubbleSortAll :: IArray DIMn DIM1 Float → IArray DIMn DIM1 Float
bubbleSortAll xss = generate (extent xss) (λi → bubbleSort (xss ! i))

where extent returns the outer regular shape of an array, which in this exam-
ple is the number of inner arrays n. Since we know that bubbleSort leaves
the size of its input unchanged, we also know that bubbleSortAll will return
an array with the same shape as its input. In particular, if the input array
happens to be regular, then the output array will also be regular. The aim of
our shape analysis (Sect. 4.2) is exactly to check whether shapes stay the same.
Our regularity detection (Sect. 4.3) can then use this information to find regular
subcomputations.

3 Preserving Regularity

Flat arrays of primitive type are, for the majority of parallel architectures, the
most efficient representations, and in case of GPUs, actually the only structure
which is supported. Therefore, we need to represent the nested arrays of our
source language by flat data arrays with the shape information stored separately.

For regular nested arrays of rank n, that is not a problem as they can be
represented efficiently by storing the elements in a flat data vector in row-major
order, and we can store the size of each dimension as an array of integer values
of length n. For example, consider the two arrays xss and yss in Fig. 1. The
former is regular, and the shape can be represented compactly, whereas we have
to store the size of each segment for the latter, which can incur a significant
memory overhead, especially if there are many small or even empty segments.
Operations like indexing into the array are also more expensive for irregular
representations. To index into the third subarray in Fig. 1, we have to calculate
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the sum of the sizes of all the preceding subarrays in the irregular case, whereas
for the regular, calculating the offset is just a simple multiplication.

Fig. 1. Representation and indexing for regular and irregular arrays

Programs manipulating irregular arrays are therefore more expensive, both
in terms of the additional memory required to store the size of each segment on
every level, as well as the extra processing required to maintain and manipulate
the segment descriptor. This is exactly why we want to use the regular array
representation whenever possible.

3.1 Statically Determining Regularity

Clifton-Everest [6] added irregular arrays to Accelerate with support for a single
level of nested parallelism. In that formulation, the regularity of an expression
is evident from the type of the operators used; for example, the map operation
preserves the regularity of its input and fold removes the innermost dimension
while preserving the regularity of the outer n − 1 dimensions.

We extend that work by adding support for regularity preservation in the
presence of nested control-flow operators, cond and while.

Let us go back to our bubbleSortAll example (see Fig. 2), and replace the
function bubble with the function double, which returns an array twice the
size of the input array. If we don’t know how many iterations the while-loop
performs on each subarray, we can’t ensure that the resulting nested array is
regular. However, if we know that the number of iterations depends only on the
size of the input array, then we again know that regularity is preserved as the
termination condition function returns the same value for each row of a regular
array, even if we do not statically know its exact shape.



Accelerating Nested Data Parallelism: Preserving Regularity 431

Fig. 2. The parallel while function preserves regularity if (1) the iteration is applied
the same number of times to all subarrays or (2) the iteration function does not alter
the shape of its input.

The parallel application of the cond operation preserves regularity, for exam-
ple when either all conditionals take the same branch, or the subarrays of the
true and false branch have the same shape. In the first case we will end up with
one of the two regular branches, thus will stay regular. In the second case, sub-
computations may take different branches, but the output shape has the same
shape as the two branches and therefore remains regular.

Both parallel while-loops and conditionals occur in many applications, so it
is worthwhile to detect the cases where their use preserves the regularity of their
inputs, and use regular code and array representations in these cases. The next
section formalises the analyses we use to detect patterns such as those mentioned
above, where regularity is preserved.

4 Program Analyses

The goal of our two program analyses is to identify, at compile time, the regu-
lar (sub-)computations of the program, so that the more efficient regular data-
parallel operations and array representation can be used for those computations.
Our analysis consists of two parts: regularity detection generalises vectorisation
avoidance [16] and identifies sub-expressions that are independent of their sur-
rounding parallel context, using information from our shape analysis that deter-
mines equivalence of array shapes. We discuss these analyses in the following
section in the context of a small nested data-parallel core language.

4.1 Core Language

Listing 1 gives the grammar of the core language which we use to describe
our analyses. This language is a generalisation of the core language of Clifton-
Everest [6], allowing for arbitrary nesting depth and with the addition of control
flow constructs cond and while.
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t ::= Int | Bool | (t, . . . , t)

| Array DIMl t

l ::= 0 | 1 | . . .

b ::= True | False
c ::= l | b | [c, . . . ](l,...,l)

p ::= (+) | (∗) | (−) | . . .

e ::= v | c | e ! e | p e e | (e, . . . , e) | πl(e)

| let v = e in e | extent e

| generate e (λv → e)

| fold (λv v → e) e e

| cond e e e

| while (λv → e) (λv → e) e

Listing 1. Grammar of the nested data-parallel core language.

Expressions e consist of variables v; scalar and array constants c (subscript
(l,...,l) indicates the exact dimensions); array indexing !; application of primitive
operators p; let-expressions; as well as tuples and projections from tuples πl,
where l is the index of an element in the tuple. The operator extent returns
the outer regular shape of an array; generate constructs an array of the given
regular shape by applying the function to every index of that shape in data-
parallel; fold performs a parallel tree-reduction over the inner-most dimension
of an array using the supplied binary function and initial element; cond and
while are conditional and iteration constructs as described in Sect. 2.1. Irregular
nested arrays are introduced as array constants, or constructed via generate,
which—in contrast to Accelerate—does not limit the result type of the generator
function to scalar values.

4.2 Shape Analysis

Before we formalise our shape analysis, first consider the following example,
which illustrates a common pattern we wish to detect:

This term uses nested applications of generate to add one to every element of
the array xss :: Array DIMN (Array DIMM Int). The goal of the analysis is to
determine that the shape of xss and yss are, in fact, identical.

We use the shape analysis in Sect. 4.3 to identify regular subcomputations,
but it can be used to enable other optimisations, such as preventing redundant
recomputation of segment descriptors, array recycling, and identifying opportu-
nities to use destructive updates.

Formalisation. Our shape analysis proceeds by first building an abstract shape
descriptor for every array in the program, and then simplifying these descriptors
so that they can be compared for equivalence. We write ns1 � ns2 to denote
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v : (ns, i) ∈ Σj

Σj � v :S ns
[Var]

e has a scalar type

Σj � e :S S
[Scalar]

Σj � c :S ns

Σj � [ c ]l :S 〈Σj ; ( l )〉 � ns
[Const-Shape]

Σj � e :S ns

Σj � e ! eix :S Inner ns 〈Σ; eix〉 [Index]

Σj � e :S ns

Σj � ( e ) :S (ns)
[Tuple]

Σj � e :S ns

Σj � πl(e) :S πl(ns)
[Project]

Σj � e1 :S ns1 Σj , v : (ns1, ∅) � e2 :S ns2

Σj � let v = e1 in e2 :S ns2
[Let]

Σj+1, v : (S, j) � e2 :S ns

Σj � generate e1 (λv → e2) :S 〈Σj ; e1〉 � ns
[Generate]

Σj � e3 :S ns ns′ = Folded (Outer ns) � S

Σj � fold (λ v0 v1 → e1) e2 e3 :S ns′ [Fold]

Σj � e2 :S ns2 Σj � e3 :S ns3 ns2 � ns3

Σj � cond e1 e2 e3 :S ns2
[Cond-shape]

Σj � e3 :S ns3 Σj , v : (ns3, ∅) � e2 :S ns2 ns2 � ns3

Σj � while (λ v. e1) (λ v. e2) e3 :S ns3
[While-shape]

l is a fresh label
Σj � e :S ul

[Fallback]

Listing 2. Inference rules of shape analysis.

the shape equivalence. Note that this comparison is not exact; since we do not
have all information available to us at compile time, the equivalence test is
necessarily conservative: if two shape descriptors are found to be equal, their
associated arrays will definitely have the same shape at runtime, but the reverse
is not necessarily true.

Our shape descriptors are constructed using the following grammar:

s ::= 〈Σj ; e〉 | Folded s | Outer ns

ns ::= S | s � ns | (ns, . . . , ns) | πl(ns) | Inner ns 〈Σj ; e〉 | ul

A shape s is either an expression e of type DIMN, which may contain free variables
bound in environment Σj ; Folded s, which drops the innermost dimension of s;
or Outer ns, the outermost shape of the nested shape ns. Nested shapes ns are
S-terminated lists of s; tuples of nested shapes; the result of projections; or the
result of indexing into a shape list with an expression e of type Int, thus taking
the Inner shape. Complex (irregular) shapes or shapes for which we don’t have
any static information are represented by a unique label ul.

The judgement Σj � e :S ns denotes the derivation of shape descriptor ns
for the expression e under environment Σj according to the rules in Listing 2.
The environment maps every variable v to its shape descriptor (ns) and nesting
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level (i) of the generate whose function bound v. Variables not introduced via
a generate function—that is, are not a potential source of nested parallelism—
have nesting level ∅. The environment is annotated with an index j, denoting the
number of generate calls we entered. This index is used as the nesting level of
the variable introduced by the next generate combinator and we thus increment
the index when entering its body.

Returning to our initial example, assuming environment Σ = [xss : (u0, ∅)]
containing only the array xss, about which we have no static information, we
can then deduce:

Σ0 � xss :S u0

Σ0 � yss :S (〈Σ0; extent xss〉 � 〈Σ1, sh : (S, 0); extent (xss!sh)〉 � S

where we apply the [Generate] rule twice and subsequently the [Scalar] rule.
Although the two shape descriptors for xss and yss are equivalent, they

are not syntactically equal. We thus introduce shape equivalence, denoted by
ns1 � ns2, which compares shape descriptors after partially evaluating the
shape descriptors, for example by applying projections to tuples. Furthermore
we simplify certain patterns which we found to occur frequently. Note that other
domain-specific simplification rules may also be possible. The following steps can
always be applied to a single shape descriptor:

S1. 〈Σj ; extent e〉: we apply shape analysis on e, Σj � e :S ns, and take the
outer shape as a result, Outer ns. This is exactly the semantics of extent.

S2. Outer ns � S: if ns is not nested, which can be determined from type
information, it simplifies to ns.

S3. Outer (s � ns) simplifies to s.
S4. Outer ns1 � Inner ns2 〈Σj ; v〉: this pattern arises from nested generates,

e.g. generate (extent xss) (λv → generate (xss ! v) e). If ns1 � ns2 and
v’s nesting level matches the nesting depth of the shape, the shape descriptor
simplifies to ns1. The nesting depth of the shape denotes how many � are
in front of the shape in the �-separated list. For instance, in s′ � s � ns,
the whole shape has a nesting depth of 0, s � ns has depth 1, and ns has 2.

After the simplification, when two shapes are compared, we check on syntactical
equivalence. However, when comparing shape expressions we have a few more
equivalence rules:

E1. 〈Σ; e〉: any variables inside e that were introduced by a generate only have
to match by their nesting level. This is stored in the shape environment Σj .

E2. 〈Σj ; e〉: when we encounter extent e1 (as a subexpression) in e, we apply
shape analysis on e1.

Using these simplification rules, the shape descriptor yss can be rewritten to be
equal to the shape descriptor of xss in the following steps:

= Outer u0 � Outer (Inner u0 〈Σ, sh : (S, 0); sh〉) � S (S1, S1)

= Outer u0 � Inner u0 〈Σ, sh : (S, 0); sh〉 (S2)

= u0 (S4)
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The shape analysis can be parameterised by which simplification rules to
apply; it depends on the application context of the shape analysis which rules
are worthwhile. One additional rule which we do use is inlining of all let-bound
variables in expressions, for which we have another environment containing the
definitions for all variables which are in scope.

4.3 Regularity Detection

Regularity detection identifies (sub-)expressions which are either constant or
produce regular parallelism with respect to the surrounding parallel context.
For example, if we map the function λx → x+(6*7) over an array in parallel,
then the value of x depends on the parallel context, but the expression 6*7 is
constant with respect to that context.

Keller [16] provide an algorithm to identify these subexpressions in the pres-
ence of arbitrarily nested contexts, however that work does not take regularity
information into account, and therefore misses important optimisation opportu-
nities. Take for example the term λsh → extent (xss ! sh); if xss is a regular
nested structure this function returns the same result for all values sh, so the
term as a whole is constant even though it depends on the parallel context. In
the remainder of the section we formalise our generalisation of the vectorisation
avoidance [16] algorithm to take this information into account.

Formalisation. Listing 3a presents the grammar for the analysis, where regu-
larity information is stored as a triple d, with i denoting whether the full term is
totally independent (�) or not (⊥); n records for each nesting level whether it is
regular (R) or irregular (Ir); and k tracks the nesting level of the variables intro-
duced by generate (only generate can introduce nested computations which
are dependent on the parallel context). Merging of regularity information is
done via the operator ∧ given in Listing 3c. The analysis uses the results of
shape analysis and thus passes around a shape environment Σj besides the reg-
ularity environment Γ , mapping variables to their regularity. The judgement
Γ ;Σj � e :R d denotes that expression e has regularity d under environments Σj

and Γ . We present the rules of regularity detection in Listings 4 and 5, where we
use Γ ;Σj � e : (d, ns) to denote the results of both analyses:

Γ ;Σj � e :R d Σj � e :S ns

Γ ;Σj � e : (d, ns) (1)

The rules for cond and while must check whether the shapes are respectively
fixed (rules [...-Shape]), independent ([...-Indep]), or whether we must assume
that they may be irregular ([...-Irr]). Rule [Extent-Regular] checks whether
the argument array is regular, in which case it always returns the same extent and
is therefore independent. We have three rules for generate, rule [Generate-1]
checks whether the nesting level k of the function is greater than or equal to
the current level; if so the function is independent of any outer generate oper-
ations. Rule [Generate-2] checks whether the outer shape of the generate is
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d ::= 〈n, i, k〉 | (d, . . . , d)

n ::= S | r � n

r ::= R | Ir

i ::= � | ⊥
k ::= ∞ | l

(a) Grammar

ir(〈n, i, l〉) = 〈irn(n), i, k〉
ir(d1, . . . , dn) = (ir(d1), . . . , ir(dn))

irn( � n) = Ir � irn(n)

irn(S) = S

(b) The ir helper function

� ∧ � = �
∧ = ⊥

r1 � n1 ∧ r2 � n2 = r1 ∧ r2 � n1 ∧ n2

S ∧ n = n

n ∧ S = n

R ∧ R = R

∧ = Ir

〈n1, i1, l1〉 ∧ 〈n2, i2, l2〉 = 〈n1 ∧ n2, i1 ∧ i2,

min(l1, l2)〉
(d1, . . . , dn) ∧ (d′

1, . . . , d
′
n) = (d1 ∧ d′

1, . . . , dn ∧ d′
n)

(d1, . . . , dn) ∧ d = (d1 ∧ d, . . . , dn ∧ d)

d ∧ (d1, . . . , dn) = (d1 ∧ d, . . . , dn ∧ d)

(c) Lattice definitions

Listing 3. The annotation used for regularity detection.

independent, meaning the operation as a whole is regular, and [Generate-3] is
the fallback case.

We want to conclude with a more interesting example, we modified our pre-
vious example from Sect. 4.2 to contain a conditional.

The shape analysis can detect that yss has the same shape as xss, but it will
also show that t and e have the same shape. Suppose we know that xss is a
regular nested array. We show that the regularity detection detects that the sub-
computations stay regular. Formally, we now have the environment Γ ;Σ = [xss :
〈R � R � S,�,∞〉, sh : 〈S,⊥, 0〉]; [xss : (u0, ∅), sh : (S, 0)], where we added the
variable sh introduced by the outer generate. Let us inspect the result of c, t
and e, which we need for cond c t e.

Γ ;Σ1 � c :R 〈S,⊥, 0〉
Γ, c : ...;Σ1, c : ... � t :R 〈R � S,⊥, 0〉

Γ, c : ..., t : ...;Σ1, c : ..., t : ... � e :R 〈R � S,⊥, 0〉
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Γ ;Σj � l :R 〈S, �, ∞〉 [Literal]

Γ ;Σj � b :R 〈S, �, ∞〉 [Bool]

Γ ;Σj � e :R d

Γ ;Σj � ( e ) :R ( d )
[Tuple]

Γ ;Σj � e1 : (d1, ns1)

Γ, v : d1;Σj , v : (ns1, ∅) � e2 :R d2

Γ ;Σj � let v = e1 in e2 :R d2
[Let]

Γ ;Σj � e :R (d1, . . . , dl, . . . , dn)

Γ ;Σj � πl(e) :R dl
[Project]

Γ ;Σj � e :R 〈 � n, i, k〉
Γ ;Σj � eix :R d

Γ ;Σj � e ! eix :R 〈n, i, k〉 ∧ d
[Index]

Γ ;Σj � e1 :R d1 Γ ;Σj � e2 :R d2

Γ ;Σj � p e1 e2 :R d1 ∧ d2
[Op]

v : d ∈ Γ

Γ ;Σj � v :R d
[Var]

Γ ;Σj � c : (〈n, �, ∞〉, ns)

Γ ;Σj � [ c ]l :R 〈R � n, �, ∞〉 [Const-Regular]

Γ ;Σj � c :R d 〈n, �, ∞〉 = ∧
d

Γ ;Σj � [ c ]l :R 〈R � ir(n), �, ∞〉 [Const-Irr]

Γ ;Σj � e :R 〈R � , , 〉
Γ ;Σj � extent e :R 〈S, �, ∞〉 [Extent-Regular]

Γ ;Σj � e :R 〈Ir � , i, k〉
Γ ;Σj � extent e :R 〈S, i, k〉 [Extent-Irr]

Γ ;Σj � e1 :R d1 Γ ;Σj � e2 : (d2, ns2)

ns2 � ns3 Γ ;Σj � e3 : (d3, ns3)

Γ ;Σj � cond e1 e2 e3 :R d1 ∧ d2 ∧ d3
[Cond-Shape]

Γ ;Σj � e1 :R 〈S, �, k〉 Γ ;Σj � e2 :R d2

d = d2 ∧ d3 Γ ;Σj � e3 :R d3

Γ ;Σj � cond e1 e2 e3 :R 〈S, �, k〉 ∧ d
[Cond-Indep]

Γ ;Σj � e1 :R d1

Γ ;Σj � e2 :R d2 Γ ;Σj � e3 :R d3

Γ ;Σj � cond e1 e2 e3 :R d1 ∧ ir(d2 ∧ d3)
[Cond-Irr]

Γ ;Σj � e3 : (d3, ns3) Γ, v : d3;Σj , v : (ns3, ∅) � e2 : (d2, ns2)

ns2 � ns3 Γ, v : (d2 ∧ d3);Σj , v : (ns3, ∅) � e1 :R d1

Γ ;Σj � while (λ v. e1) (λ v. e2) e3 :R d1 ∧ d2 ∧ d3
[While-Shape]

Γ, v : d3;Σj , v : (ns3, ∅) � e2 : (d2, ns2) Γ ;Σj � e3 : (d3, ns3)

Γ, v : (d2 ∧ d3);Σj , v : (ns2, ∅) � e1 :R 〈S, �, k〉
Γ ;Σj � while (λ v. e1) (λ v. e2) e3 :R 〈S, �, k〉 ∧ d2 ∧ d3

[While-Indep]

Γ, v : d3;Σj , v : (ns3, ∅) � e2 : (d2, ns2) Γ ;Σj � e3 : (d3, ns3)

Γ, v : (d2 ∧ d3);Σj , v : (ns3, ∅) � e1 :R d1

Γ ;Σj � while (λ v. e1) (λ v. e2) e3 :R d1 ∧ ir(d2 ∧ d3)
[While-Irr]

Listing 4. First set of inference rules for regularity detection. (1/2)

The results of c and t are a simple application of a combination of the [Index],
[Op], [Var] and [Literal] rules and you can view them as a scalar and a regular
array respectively. Both are also dependent (⊥) on the outer generate (0). The
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Γ ; Σj 	 e1 :R 〈 , �, k1〉
Γ, v : 〈S, ⊥, j〉; Σj+1, v : (S, j) 	 e2 :R 〈n, , k2〉 k2 � j

Γ ; Σj 	 generate e1 (λv → e2) :R 〈R � n, �, min(k1, k2)〉 [Generate-1]

Γ ; Σj 	 e1 :R 〈 , �, k1〉 Γ, v : 〈S, ⊥, j〉; Σj+1, v : (S, j) 	 e2 :R 〈n, i, k2〉
Γ ; Σj 	 generate e1 (λv → e2) :R 〈R � n, i, min(k1, k2)〉 [Generate-2]

Γ ; Σj 	 e1 :R 〈 , ⊥, k1〉 Γ, v : 〈S, ⊥, j〉; Σj+1, v : (S, j) 	 e2 :R 〈n, , k2〉
Γ ; Σj 	 generate e1 (λv → e2) :R 〈Ir � n, ⊥, min(k1, k2)〉 [Generate-3]

Γ ; Σj 	 e2 :R d2 Γ ; Σj 	 e3 :R d3

d = d2 ∧ d3 Γ, v0 : d, v1 : d; Σj , v0 : (S, ∅), v1 : (S, ∅) 	 e1 :R d1

Γ ; Σj 	 fold (λ v0 v1 → e1) e2 e3 :R d1 ∧ d3

[Fold]

Listing 5. Second set of inference rules for regularity detection. (2/2)

result of e is the same as t, but the [Extent-Regular] [Generate-2] rules
are used.

With the above results and the fact that t and e have the same shape, we
use the [Cond-Shape] rule to get:

Γ, ...;Σ1, ... � cond c t e :R 〈R � S,⊥, 0〉

Thus the body of the generate has sub-computations that are dependent, but
regular. Finally, using [Generate-1] on the outer generate, gets us that yss is
a nested regular array that is independent of any other parallel context.

5 Evaluation

The objective of this work is to extend the data-parallel programming model to
efficiently execute array-level conditionals and iterations over irregularly nested
structures. In this section we evaluate the effectiveness of our work through a
number of benchmarks. Our benchmarks are conducted using a GeForce RTX
2080 Ti (compute capability 7.0, 68 multiprocessors = 4352 cores at 1.65 GHz,
11 GB GDDR6) backed by a 16-core Threadripper 2950X (1.9 GHz, 64 GB RAM,
hyperthreading is enabled) running GNU/Linux (Ubuntu 19.10). We used GHC-
8.6.3, LLVM-9, and CUDA-10.1.

Our implementation in the deeply embedded language Accelerate means that
the analyses presented here, as well as all other compiler stages such as optimisa-
tion and code generation, occur during the runtime of the host language program.
In order to focus on the effectiveness of the optimisations presented in this paper,
which are generally applicable and not related to our specific implementation,
we report total kernel execution time on the GPU including memory transfer
overhead rather than overall application runtime.
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Fig. 3. Weak scaling of benchmark programs. The results of this work are shown in
purple (Accelerate, Regular), compared to unoptimised Accelerate programs in green
(Accelerate). (Color figure online)

5.1 Quicksort

To evaluate the overhead of irregularity we use a loop-based implementation of
the Quicksort [15] algorithm,1 which is representative of irregular divide-and-
conquer algorithms that require both the intra- and inter-routine parallelism to
achieve optimal parallel work complexity. This benchmark is chosen because it
has minimal computation: the runtime of the algorithm is entirely dominated by
data movement, so the cost of managing segment descriptors for irregular arrays
cannot be hidden.

The benchmark sorts each row of an n×m matrix in parallel, so each row of
the matrix iterates a different number of times over its subarray. Our analysis
detects that the iteration leaves the shapes of the subarrays unchanged so can be
optimised as regular nested parallelism. The results are shown in Fig. 3, showing
that our optimised version is 6 to 13 times faster than the unoptimised Accelerate
program.

Futhark uses a different method to support nested parallelism [14]. For small
arrays the GPU is not fully utilised, but for larger arrays their approach has
1 https://github.com/AccelerateHS/accelerate-examples/tree/master/examples/

quicksort.

https://github.com/AccelerateHS/accelerate-examples/tree/master/examples/quicksort
https://github.com/AccelerateHS/accelerate-examples/tree/master/examples/quicksort
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lower overhead and overtakes our implementation. The incremental flattening
approach of Futhark is orthogonal to this work, so it would be possible to utilise
both approaches simultaneously.

5.2 Fast Fourier Transform (FFT)

We benchmark three versions of the Split-Radix FFT algorithm in Accelerate:
normal, where we do not exploit the nested parallelism; regular with nested par-
allelism and optimisations switched on; and irregular, a nested parallel imple-
mentation without optimisation. The Split-Radix FFT algorithm consists of an
outer while loop which operates over successively smaller arrays. Futhark does
not support irregular nested parallelism and their algorithm can not detect that
the computation is regular, so their compiler is unable to compile this program.
We instead benchmark the Stockham algorithm in Futhark, which it is able to
compile.

Figure 3 shows the results of execution a number of 32×32 Fourier transforms.
As a baseline we also compare against the highly optimised cuFFT library, which
we call via Accelerate’s foreign function interface [5]. The unoptimised irregular
code is more than an order of magnitude slower than our optimised regular
implementation. The program normal is unable to execute multiple FFTs in
parallel and thus performs poorly at large array sizes—even compared to the
unoptimised irregular implementation—as it does not expose enough parallelism
to properly utilise the GPU.

6 Related Work

Languages like NESL [2] and Data Parallel Haskell [19] support fully irregu-
lar nested data parallelism, but they struggle to achieve good performance.
Nessie [21] is ongoing work on a NESL compiler which targets GPUs. Manti-
core [9] also supports irregular nested data parallel computations on CPU mul-
ticores by flattening the data structures [1], but not the parallel computations.

To control excessive parallelism due to regular nested parallelism, incremental
flattening [14] executes the inner parallelism sequentially of a nested computa-
tion in some circumstances, which allows for better use of shared memory in
GPUs. More recently Futhark added more support for a certain kind of irreg-
ular nested parallelism [7], but this has not been integrated into the backend
yet [8]. Futhark also performs shape analysis [12] to symbolically determine the
exact shape of arrays if possible but switches to dynamic handling if necessary.
Our analysis aims to compare shapes, not determine them exactly, so it can be
done completely statically. We can capture some irregular structures of arrays,
whereas Futhark only works with regular structures.

Other data parallel languages, like Halide [20], Obsidian [24], Lift [23] and
SaC [10] all aim at producing high performing code for CPUs and/or GPUs. We
believe they could benefit from the work presented here, in the implementation
of irregular nested data parallelism or to allow more programs which expose
regular subcomputations.



Accelerating Nested Data Parallelism: Preserving Regularity 441

7 Conclusion

We presented two analyses for irregular nested parallel array languages, and
demonstrated how this analyses can be used to identify and specialise code for
regular sub-computations within nested irregular computations. We extended
the Accelerate language with two constructs to enable expressing a limited
form of irregular nested parallelism, together with our regularity optimisations,
and provide benchmarks demonstrating the effect of these optimisations. Our
work is open source and available at https://github.com/sakehl/accelerate/tree/
feature/sequences.
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Abstract. Task-based runtimes have emerged in the HPC world to take
benefit from the computation power of heterogeneous supercomputers
and to achieve scalability. One of the main bottlenecks for scalability
is the communication layer. Some task-based algorithms need to send
the same data to multiple nodes. To optimize this communication pat-
tern, libraries propose dedicated routines, such as MPI Bcast. However,
MPI Bcast requirements do not fit well with the constraints of task-based
runtime systems: it must be performed simultaneously by all involved
nodes, and these must know each other, which is not possible when each
node runs a task scheduler not synchronized with others. In this paper,
we propose a new approach, called dynamic broadcasts to overcome these
constraints. The broadcast communication pattern required by the task-
based algorithm is detected automatically, then the broadcasting algo-
rithm relies on active messages and source routing, so that participating
nodes do not need to know each other and do not need to synchronize.
Receiver receives data the same way as it receives point-to-point com-
munication, without having to know it arrives through a broadcast. We
have implemented the algorithm in the StarPU runtime system using
the NewMadeleine communication library. We performed benchmarks
using the Cholesky factorization that is known to use broadcasts and
observed up to 30% improvement of its total execution time.

Keywords: Task-based runtime systems · Communications ·
Collective · Broadcast

1 Introduction

Scalability of applications over clusters is limited, among other things, by syn-
chronizations, an extreme example being Bulk Synchronized Parallelism (BSP).
To increase performance, task-based runtime systems try to avoid any synchro-
nization through asynchronicity in the way they schedule tasks on nodes. To
follow this scheduling model in order to ensure scalability, communications have
also to support asynchronicity.
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For communications, task-based runtime systems often rely on MPI. How-
ever, MPI libraries and the MPI interface are not designed with such use in mind.
A problem arises when a piece of data produced by one task is a dependency
for several other tasks on several nodes. A natural way to send the same data to
multiple nodes would be to use the MPI Bcast or MPI Ibcast primitives. How-
ever, this approach assumes all nodes know in advance that this data will arrive
through a broadcast instead of a point-to-point operation, and that they know
each other. This assumption is not met in the case of a dynamic task-based run-
time system, where nodes ignore the state of the task scheduler on other nodes,
and thus they typically use a naive broadcast algorithm with linear complexity.

In this paper, we propose an algorithm for a dynamic broadcast, where only
the root knows the list of all recipients, and recipients do not have to know in
advance whether data will arrive through a broadcast or a point-to-point opera-
tion, while still being able to leverage optimized tree-based broadcast algorithms.

In short, this paper makes the following contributions: we propose a dynamic
broadcast algorithm, suitable for use by task-based runtime systems; we imple-
mented the mechanism in our NewMadeleine [5] communication library, and
modified StarPU [4] to take benefit from it; we performed benchmarks to show
the performance improvement.

The rest of this paper is organized as follows. Section 2 details why broad-
casts using MPI Bcast are not suitable for task-based runtime systems. Section 3
introduces our algorithm for dynamic broadcasts. Section 4 presents its imple-
mentation in NewMadeleine and StarPU. In Sect. 5, we evaluate our solu-
tion using micro-benchmarks and a Cholesky factorization kernel. In Sect. 6
we present related works, and Sect. 7 concludes.

2 Broadcasts in Dynamic Task-Based Runtime Systems

With task-based runtime systems, the application programmer writes applica-
tions decomposed into several tasks with dependencies. Each task is a subpart
of the main algorithm. All tasks with their dependencies form a DAG (Direct
Acyclic Graph); tasks are vertices, and edges represent a data dependency
between two tasks: the child task needs data produced by its predecessor(s). In
order to get task-based runtime systems to work on distributed systems, tasks
are distributed among available nodes. When dependent tasks are not located
on the same node, an edge spans across two different nodes and the runtime
system automatically handles the data transfer.

A given piece of data may be a dependency for multiple tasks (a vertex with
several outgoing edges). If the receiving tasks are located on different nodes, the
same data will have to be sent to multiple nodes. This communication pattern
is generally known as a multicast, or a broadcast in MPI speaking, which is a
kind of collective communication.

The naive way to perform a broadcast is to send data from the root to each
node using independent point-to-point transfers. With such an implementation,
the duration of a broadcast is linear with the number of nodes. MPI libraries
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usually implement much better algorithms [12,13,15] for MPI Bcast, such as
binary trees, binomial trees, pipelined trees, or 2-trees, which exhibit a logarith-
mic complexity with the number of nodes. It is thus strongly advised to use
MPI Bcast to broadcast data when possible.

However, for task-based runtime systems that dynamically build the DAG
(such as StarPU [3] or Quark [9]), nodes do not have a global view of data loca-
tion and do not synchronize their scheduling. This makes the use of MPI Bcast
or MPI Ibcast difficult and inefficient, for several reasons:

detection – all the information the runtime system knows about data transfers
is the DAG. A broadcast appears as a task whose result is needed by multiple
other tasks. However, in general the whole DAG is not known statically but
generated while the application is running. Therefore, the runtime system
cannot know whether the list of recipient is complete or if another recipient
will be added later.

explicit – function MPI Bcast has to be called explicitly by the sender and
the receivers. Therefore, each receiver node have to know in advance whether
a given piece of data will arrive through an MPI Bcast or a point-to-point
MPI Recv. Application programmer cannot give any hint, since communica-
tions are driven by the DAG, and thus depends on where tasks are mapped
during the execution.

communicator – function MPI Bcast works on a communicator, a structure
containing all nodes taking part in the broadcast (sender node and recipients).
The construction of a communicator is also a collective operation: to build
it, each node participating in a communicator must know the list of all nodes
in the communicator. Thus, if we build a communicator containing a specific
list of nodes for a given broadcast operation, all nodes have to know the list
of all nodes participating in the broadcast.
Yet, the runtime system on a node only has a local view of the task graph:
receiver nodes know which node will send them the data, but they do not
know all other nodes which will also receive the same data. Hence, building
an MPI communicator is impossible without first sending the list of nodes to
all nodes, but that would mean we need a broadcast before being able to do
a broadcast!

synchronization – even if we use a non-blocking MPI Ibcast instead of a block-
ing MPI Bcast, it works on a communicator. The creation of a communicator
with the precise set of nodes is a blocking operation and has to be performed
by all nodes at the same time. This constraint is somewhat alleviated by the
non-blocking flavor of communicator creation in the future MPI 4.0 version.
Nonetheless, a single communicator creation may take place at the same time.
This means broadcasts, and their associated communicator creation, must
nonetheless be executed in the same order by all nodes, which implies some
kind of synchronization to agree on broadcast scheduling, thus hindering one
of the most important feature of distributed task-based runtime system: its
ability to scale by avoiding unnecessary synchronization.
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As a consequence, the mechanisms needed to actually use an MPI Bcast to
broadcast data in a task-based runtime system are likely to cost more than the
benefit brought by the use of an optimized broadcast. The general problem is
being able to use desynchronized and optimized broadcasting algorithms, with-
out all nodes of the broadcast know each other. We present in this paper the
solution we developed to achieve this goal.

3 Our Solution: Dynamic Broadcasts

3.1 Detection of Collectives

As explained in Sect. 2, the detection of broadcast patterns is not straightforward
since the DAG is dynamic.

From the dependency graph view, a broadcast is a set of outgoing edges
from the same vertex and going to tasks executed on different nodes. During
task graph submission, the runtime system creates a send request for each of
these edges, even before the data to send is available. When the data becomes
available, the requests are actually submitted to the communication library.

The detection of broadcast consists in noticing on creating a send request that
one already exists for the same data, and aggregating them into a single request
with a list of recipients. When the data becomes available, if the list contains
more than one recipient, a broadcast is submitted to the communication library.

This method may miss some send requests if they are posted after the data
became ready, i.e. if a task is submitted after the completion of the task that
produces the data it depends on. This happens if the task graph submission
takes longer than the task graph execution (which is not supposed to happen
in general), or if the application delays submission of parts of the task graph
for its own reasons, in which case the runtime system did not need to send this
data sooner anyway. Code instrumentation showed that 98 % of broadcasts were
detected with the correct number of recipients for the Cholesky decomposition
described in Sect. 5. These missed broadcasts correspond only to communications
performed during the very beginning of the algorithm, when the application has
only started submitting the task graph, and thus task execution has indeed
caught up quickly and made some data available before the application could
submit all inter-node edges for them. Quickly enough, tasks submission proceeds
largely ahead of tasks execution, and all broadcasts are detected.

To avoid redundant transfers of the same data between two nodes, a cache
mechanism is used [3]. If two tasks scheduled on the same node need a piece of
data from another node, only one communication will be executed. Hence, the
recipient list does not contain duplicates.

3.2 Dynamic Broadcast Algorithm

We propose here a broadcast algorithm, that we call dynamic broadcast, that
fulfills the requirements to be used by task-based runtime systems, namely: use
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optimized broadcast algorithms; all recipients of the broadcast do not have to
know each other; have a seamless integration for the receiver who is expecting a
point-to-point communication.

Optimized Broadcast Algorithm. Several optimized algorithms for broad-
cast exist [16]. The main idea of all these optimized algorithms is that after a
node received data, it sends this data to other recipients, so that the root node
has less communications to execute, which shortens the global execution time.
For most algorithms, routing is organized as a tree: the source node sends to a
set of nodes, each of these nodes then sends to a set of other nodes, and then
recursively until all recipients get the data. Tree-based algorithms have usually
a logarithmic complexity in the number of nodes. The choice of a broadcast
algorithm depends mainly on the number of recipients and the size of data to
transmit.

We choose to implement binomial trees because this broadcast algorithm is
the best trade-off for a single all-purpose algorithm to get good performance on a
wide range of data sizes and numbers of nodes. Other optimized algorithms [12,
13,15] could be used in our dynamic broadcast, following the same approach.

In the binomial tree algorithm, each node receiving data contributes to the
diffusion by sending data to next nodes, and keep sending data to other recipients
until all nodes received the data. The Fig. 1 illustrates a broadcast to 6 recipients:
node 0 starts by sending to node 4, then 0 sends to 2 and at the same time 4
sends to 6 and finally while 0 is sending to 1, 2 is sending to 3 and 4 is sending
to 5. The binomial tree has a logarithmic complexity in the number of nodes.
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Fig. 1. Example of binomial tree with six recipients. Levels in the tree are steps in the
algorithm.

Self-contained Messages. Since nodes do not know in advance whether they
will be participating in a broadcast, our algorithm is based on self-contained
messages. They are active messages, processed outside of the application flow,
without requiring the application to call specific primitives in the communication
library. The message contains all the information needed to unroll the collective
algorithm.
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Only the root of the broadcast knows the complete list of recipients. Recip-
ients themselves only need to know to which nodes they will need to forward
the data, i.e. the sub-tree below them. We send this list of nodes together with
data, in the header of the active message. When a node forwards data to other
nodes, it trims the list of nodes so as to include only the nodes contained in the
relevant sub-tree.

In the case depicted in Fig. 1, the list of nodes sent by node 0 to 4 is {5, 6},
the list sent to 2 is {3} and the list sent to 1 is empty.

The runtime system sets a priority level for each communication request,
depending on task priorities, defined by the application (during the submission
of tasks, the user can define the priority of each task, by specifying an integer).
This information may be used by a communication library that is able to sched-
ule packets by priority like NewMadeleine. We reorder the list of nodes of
broadcasts so that higher-priority requests are closer to the root of the tree, for
them to get data earlier. Moreover, in addition to the list of nodes, we transmit
the list of priorities. This way, when inner nodes of the tree have to forward
messages, they get inserted in their local packet flow with the right priority.

The general idea behind this mechanism is that routing information are
transmitted with the data itself, and are not assumed to be prior knowledge,
as MPI Bcast would otherwise require.

Transparent Receive. When a request which is part of a broadcast is received,
the data is forwarded to nodes contained in the list, following the binomial tree
algorithm, and data is delivered locally. Since nodes cannot predict whether
data will arrive through point-to-point communication or through a broadcast,
on the receiver side our algorithm injects data received by a broadcast in the
path of point-to-point receive. The runtime system posts a regular point-to-
point receive request, and when data arrives through a dynamic broadcast, it is
actually received by this point-to-point request for a seamless integration.

We called our algorithm dynamic broadcast because nodes realize they take
part in a broadcast in a dynamic fashion, on the fly at the same time when data
arrives.

4 Implementation

Our implementation was made within the StarPU task-based runtime and the
NewMadeleine communication library. This Section introduces both libraries
and presents implementation details of our dynamic broadcast algorithm.

4.1 StarPU

StarPU [4] is a task-based parallel and distributed runtime system. In its single-
node form, StarPU lets HPC applications submit a sequential flow of tasks, it
infers data dependencies between tasks from that flow, and it schedules tasks
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concurrently while enforcing these dependency constraints. The distributed ver-
sion of StarPU [3] extends the Sequential Task Flow model. The application
gives an initial distribution of data on the participating nodes, and every node
submits the same flow of tasks to its local StarPU instance. Each StarPU

instance then infers whether to execute a task or not from the piece of data
the task writes to. The instance that owns the piece of data written to, exe-
cutes the task. Moreover, each StarPU instance infers locally when to generate
send and receive communications to serve inter-instance data dependencies. This
distributed execution model does not involve any master node or synchroniza-
tion. Instead, all instances are implicitly coordinated by running the same state
machine from the sequential task flow.

Two back-ends are implemented in the distributed version of StarPU. One
relies on MPI standard and has to be used with an MPI implementation (such as
OpenMPI). The other one uses NewMadeleine routines to take benefit from
its specific features beyond the MPI interface.

4.2 NewMadeleine

NewMadeleine [5] is a communication library which exhibits its own native
interface in addition to a thin MPI layer called MadMPI. The work described
in this paper is located in the NewMadeleine native interface. The original-
ity of NewMadeleine compared to other communication libraries and MPI
implementations is that it decouples the network activity from the calls to the
API by the user. In the interface presented to the end-user, primitives send
and receive messages. NewMadeleine applies an optimizing strategy so as to
form packets ready to be sent to the network. A packet may contain multiple
messages (aggregation), a message may be split across multiple packets (multi-
rail), and messages may be actually sent on the wire out-of-order depending on
packet scheduler decision and priorities. NewMadeleine core activity is trig-
gered by the network. When the network is busy, messages to be sent are simply
enqueued; when the network becomes ready, an optimization strategy is called
to form a new packet from the pending messages. A receive is always posted to
the driver, and all the activity is made of up-calls (event notifiers) triggered from
the lowest layer when the receive is completed, which make active messages a
natural paradigm for NewMadeleine.

4.3 Dynamic Collectives Implementation

Dynamic broadcasts were implemented as a new interface of NewMadeleine,
and the NewMadeleine backend of StarPU was adapted to exploit this new
interface.

The detection of broadcasts is implemented in StarPU. When the applica-
tion submits a task B which depends on data produced by a task A mapped
on a different node, an inter-node communication request is issued. If a pre-
vious request or collective was already detected for this data, the new request
is merged in to get a bigger collective. Most often, task submission proceeds
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quickly, and thus the submission front is largely ahead of the execution front. As
a consequence, when task B is submitted, task A will probably not have been
executed yet, and similarly for all tasks which depend on A. This is why our
approach catches most potential for broadcasts. Once task A is completed and
thus the data available for sending, the whole collective request is handed to
NewMadeleine.

The dynamic broadcast itself is implemented in NewMadeleine, using its
non-blocking rpc interface for active messages. They use a dedicated communi-
cation channel that is separate from the channel used for point-to-point commu-
nications. Thus, the library distinguishes broadcasts, which needs special pro-
cessing, from regular point-to-point messages. The library is always listening for
rpc requests and is thus able to always process dynamic broadcasts for all tags
and from all nodes.

To manage seamless receive of a broadcast by a point-to-point request, point-
to-point requests are registered by the dynamic broadcast subsystem. Conversely,
if the data for a receive comes by the point-to-point way, the request is removed
from the table in the dynamic broadcast subsystem.

When a broadcast is received, the matching point-to-point receive is searched
and data is received in-place in the buffer of the point-to-point request, forwarded
to nodes in sub-trees, and the point-to-point request is notified completion. If
the matching point-to-point receive was not posted yet, the broadcast request is
locally postponed until the matching point-to-point receive is posted. To be able
to match a message arriving through a broadcast with a point-to-point request,
the original source node (root of the broadcast) is also sent together with data,
the list of nodes, and their associated priority.

5 Evaluation

In this section, we present the performance results we obtain for mechanisms
presented in this paper. We executed micro-benchmarks to ensure the broad-
cast performances are as expected and then we evaluated the impact on a real
computing kernel, the Cholesky factorization.

The benchmarks were carried out on two different clusters: inti from CEA
and plafrim. inti nodes are dual Xeon E5-2680 at 2.7 GHz, with 16 cores
and 64 GB RAM, and equipped with Connect-IB InfiniBand QDR (MT27600).
Default MPI on the machine is OpenMPI 2.0; since this version is ancient, we
compiled the latest OpenMPI 4.0. plafrim nodes are dual Xeon Gold 6240 at
2.6 GHz with 36 cores and 192 GB RAM, and equipped with Intel Omni-Path 100
series network. Default MPI on plafrim are OpenMPI 3.0 and OpenMPI 4.0.

5.1 Micro-benchmarks

To be sure our algorithm and its implementation have the expected perfor-
mances, we conducted micro-benchmarks of the dynamic broadcast and com-
pared its performance against MPI Bcast and MPI Ibcast of MadMPI, and a
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Fig. 2. NewMadeleine micro-benchmark on cluster inti on 100 nodes (1600 cores),
comparing broadcast algorithms

naive broadcast (a loop of point-to-point requests to the recipient nodes). The
duration of the broadcast is defined as the time difference between the start on
the root node and the last received data on the last node.

The result of this micro-benchmark on 100 nodes of the inti cluster is
depicted in Fig. 2 for 8 MB of data. As expected, naive broadcast exhibits a
linear complexity with the number of recipients and both dynamic and regular
broadcasts have a logarithmic complexity. The performance difference between
dynamic broadcast and regular MPI broadcast is insignificant, which shows that
the additional routing data and the treatment when receiving data is negligible.

5.2 Cholesky Factorization

To evaluate the gain brought by dynamic broadcast, we have evaluated its per-
formance on a Cholesky factorization.

Description. In Algorithm 1, we depict the tiled version of the Cholesky

Factorization algorithm. For a given symmetric positive definite matrix A, the
Cholesky algorithm computes a lower triangular matrix L such that A = LLT .
In the tiled version used here, the matrix is decomposed in T × T square tiles
where A[i][j] is the tile of row i and column j. At each step k it performs a
Cholesky factorization of the tile on the diagonal of panel k (POTRF kernel)
then it updates the remaining of the tiles of the panel using triangular solve
(TRSM kernel). The trailing sub-matrix is updated using the SYRK kernel for tiles
on the diagonal and matrix multiply (GEMM kernel) for the remaining tiles.
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Algorithm 1: Tiled version of the Cholesky factorization.
1 for k = 0...T − 1 do
2 A[k][k] ← POTRF(A[k][k])
3 for m = k + 1...T − 1 do
4 A[m][k] ← TRSM(A[k][k], A[m][k])

5 for n = k + 1...T − 1 do
6 A[n][n] ← SYRK(A[n][k], A[n][n])
7 for m = n + 1...T − 1 do
8 A[m][n] ← GEMM(A[m][k], A[n][k], A[m][n])

POTRF

SYRK

TRSM

GEMM

(0,0)

(4,4)

(3,3)

(2,2)

(1,1)

(4,0)

(3,0)

(2,0)

(1,0)

(4,1) (4,2) (4,3)

(3,1) (3,2)

(2,1)

Fig. 3. The 2 different types of broadcasts for the Cholesky factorization for T = 5
and k = 0. Blue arrows : from 1 POTRF to T − k − 1 = 4 TRSM. Green and black arrows
from 1 TRSM to T − k − 2 = 3 GEMM and red arrows to 1 SYRK. (Color figure online)

This algorithm is a good use-case for the dynamic broadcast problem. Indeed,
as shown in Fig. 3, the A[k][k] tile computed by the POTRF kernel is broadcasted
to the T − k − 1 TRSM kernels of the same panel (blue arrows). Moreover, each
A[m][k] (m > k) tile generated by the TRSM kernels (line 4), is used by one SYRK
kernel (to update the tile A[m][m], red arrows) and T − k − 2 GEMM kernels (to
update the tiles A[m][n] (k < n < m), black arrows ; and the tiles A[m][n] (m <
n < T ), green arrows). As seen in Sect. 3, in StarPU, all the communication and
especially the collective communication are inferred at runtime by the system
based on the dependencies that are described in the task graph generated from
the program. Furthermore, since for both cases, the same tile is broadcasted
to all the kernels and several kernels are executed by a same node, the runtime
system is able to factorize the communication by giving the list of compute nodes
that require the considered tile. In practice, as nodes are layout using squared 2D
Block-cyclic distribution, the maximum number of nodes involved in a broadcast
is O(

√
P ) where P is the total number of nodes.
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We used the Cholesky factorization from the Chameleon library [2], which
can use StarPU as task-based runtime system.

Fig. 4. Chameleon Cholesky factorization performance on cluster plafrim on 16
nodes (512 cores)

Fig. 5. Chameleon Cholesky factorization performance on cluster inti: on left, on
64 nodes (1024 cores); on right, on 100 nodes (1600 cores)

Results. Results of the Cholesky benchmark on cluster plafrim on 16 nodes
is depicted in Fig. 4. Results for machine inti on 64 and 100 nodes is shown
in Fig. 5. There is one MPI process per node and each point on graphs is the
average of two runs. We compare the baseline NewMadeleine version with-
out dynamic broadcast against NewMadeleine with dynamic broadcast. Addi-
tionally we represent the performance we obtain with MPI as a reference. The
performance difference between NewMadeleine and MPI is explained [8] by
other mechanisms beyond the scope of this paper.
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On all 3 cases, dynamic broadcasts improve performances1 of the Cholesky

factorization, mainly on small matrices. On plafrim on 16 nodes (Fig. 4), the
best performance improvement is 25 %. On inti (see Fig. 5) on 64 nodes the
improvements is up to 20 % and on 100 nodes up to 30 %. Since the number of
nodes in broadcasts increases with the total number of nodes, the more nodes
are used, the more the broadcast takes time, thus dynamic broadcasts improve
overall scalability with the number of nodes. For larger matrices, communications
have less impact since there are always enough ready tasks to execute before
having to wait for data coming from the network, hence it is not surprising to
observe the best performance improvement for small matrices.

The impact of using dynamic broadcasts in Cholesky execution needs to be
more studied and requires a deep analysis of runtime system and communication
library internal behaviours. Since this analysis is not straightforward, we consider
it as out of the scope of this paper.

6 Related Works

Broadcasting algorithms have already been discussed a lot [12,13,15,16], but are
an orthogonal problem to work described in this paper which can rely on any
tree-based algorithm.

The idea to optimize collective communications by sending only one message
per receiving node when multiple tasks with the same input share the same
node has been proposed in early task-based runtime systems [10]. However, in
this work, no optimization was performed in the way the data was broadcasted
to the different nodes.

Parsec [7] is a task-based runtime system, based on a Parameterized Task
Graph (PTG), an algebraic representation of the dependency graph. Such kind of
graph can be entirely stored in the memory of each node since the memory used
for its representation is linear in the number of task types, and not in the number
of tasks. Since all nodes know the full task graph, they can easily know all nodes
involved in a broadcast and the entire graph being known at the beginning of the
execution, explicit call to broadcast routines can be made. In practice, Parsec
uses binomial or chained trees, on the top of MPI point-to-point requests. Broad-
casts are identified directly from the algebraic representation of the task graph,
which the application programmer thus has to provide, while our approach can
be introduced in most task-based runtime systems, which use a dynamic task
submission API.

ClusterSs [14] is a task-based runtime system built with a master-slave
model: only a master node knows the whole task graph and distributes tasks
to slave nodes. Thus the master node can easily detect broadcasts and tells to
slave nodes how to handle them. However, no information is published about
the optimization of broadcasts.

1 It is important to note that the improvement is measured on the total performance
and not on the communication part only.
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Charm++ [1] is a parallel programming model relying on tasks called chares.
It comes with the TRAM subsystem for collective communications, but it is
supposed to be used explicitly by the application, which makes its constraints
different from our use case.

Legion [6] is a task-based runtime system focused on data locality. Its default
scheduling policy is work-stealing, even to another node. No detail is given about
a potential communication optimization, but with work-stealing there is not
synchronization between different nodes that request the same data.

HPX [11] is a runtime system which executes task on remote nodes via active
messages. Its API contains routines to explicitly invoke a broadcast involving
several nodes.

All in all, other task-based runtime systems either do not optimize broad-
casts, or have an API or a DAG representation that allows for explicit use of
broadcasts, which are different constraints than dynamic task submission.

7 Conclusion and Future Works

Task-based runtime systems are used to program heterogeneous supercomput-
ers in a scalable fashion. In their DAG, a situation may appear where a given
piece of data needs to be sent to multiple nodes. The use of an optimized broad-
cast algorithm is desirable for scalability. However, the constraints of relaxed
synchronization and asynchronous schedulers on nodes make it difficult to use
MPI Bcast.

In this paper, we have introduced a dynamic broadcast mechanism which
makes it possible to use an optimized tree-based broadcast algorithm without
needing all the participating nodes know all the other nodes, and without even
needing them know they are involved in a broadcast at all. The integration is
seamless and nodes receive data with a regular point-to-point receive API. We
have implemented the algorithm in NewMadeleine, used it in StarPU, and
evaluated its performance on a Cholesky factorization. Results show that our
dynamic broadcast may improve overall performance up to 30 % and that it
improves scalability.

In the future, we will work on integrating different broadcast algorithms
(binary trees, pipelined trees) to get the best performance for all message
sizes. We study the implementation of similar algorithm using a generic MPI
library, by emulating active messages with a communication thread. Finally, the
biggest remaining challenge consists in analyzing finely the global performance
of StarPU with regard to networking.
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Abstract. Lock-free implementation techniques are known to improve
the overall throughput of concurrent data structures. A hash map is
an important data structure used to organize information that must
be accessed frequently. A key role of a hash map is the ability to bal-
ance workloads by dynamically adjusting its internal data structures in
order to provide the fastest possible access to the information. This work
extends a previous lock-free hash map design to also support lock-free
compression. The main goal is to significantly reduce the depth of the
internal hash levels within the hash map, in order to minimize cache
misses and increase the overall throughput. To materialize our design, we
redesigned the existent search, insert, remove and expand operations in
order to maintain the lock-freedom property of the whole design. Exper-
imental results show that lock-free compression effectively improves the
search operation and, in doing so, it outperforms the previous design,
which was already quite competitive when compared against the concur-
rent hash map design supported by Intel.
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1 Introduction

Hash maps are a very common and efficient data structure used to map keys to
values, where the mapping between the unique key K and the associated value
V is given by a hash function. Hash tries (or hash array mapped tries) are a trie-
based data structure with nearly ideal characteristics for the implementation of
hash maps [3]. An essential property of the trie data structure is that common
prefixes are stored only once [6], which in the context of hash maps allows us to
efficiently solve the problems of setting the size of the initial hash table and of
dynamically resizing it in order to deal with hash collisions.
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However, trie-based hash maps are prone to generate higher cache misses
than traditional hash maps, thus they tend to perform worse as the depth of
the trie increases. Fortunately, tries are widely used in different domains and
literature shows a significant amount of effort in studying their properties and
implementations [9] and, in particular, for cache-based architectures, in study-
ing how to mitigate cache effects to achieve better performance [1]. Recently,
Li et al. studied the throughput of several kinds of hash map designs and pre-
sented a high-throughput and memory-efficient concurrent cuckoo-based hashing
technique that supports multiple readers and writers [10].

Lock-freedom is an important concurrency technique that is known to
improve the overall throughput of concurrent data structures. Lock-freedom
allows individual threads to starve but guarantees system-wide throughput. In
particular, lock-free trie-based hash maps offer a viable alternative to memory-
efficient hash-mapping [2,15]. However, the cache misses problem was also
observed by Prokopec et al. when they compared the CTries data structure [14],
a lock-free trie-based hash map, against other state-of-the-art hash map designs.

Arguably, a well-know workaround to improve the performance of a trie-
based data structure is to apply some sort of compression technique [7,11] as
a way to reduce the average depth of the trie data structure. Compression can
be done at shallow or deeper trie levels, but a key advantage is that it can
be done concurrently with the other operations. Two good examples are: (i)
the B*-tree proposal [17], which supports a compression procedure that runs
concurrently with regular operations, such as searches, insertions and removals,
to merge nodes that are underfull; and (ii) the relaxed B-slack trees proposal [4]
that supports a similar concurrent absorb operation that reduces the number of
levels in the data structure.

In this work, we focus on extending a sophisticated implementation of a lock-
free trie-based hash map, named Lock-Free Hash Map (LFHT) [12], to support
lock-free compression. The original LFHT implements a hierarchy of hash levels
whose branching factor is given by a fixed (and pre-defined) number of bucket
entries per hash level. Traversing the hash levels in the LFHT data structure is
O(logB K), where B represents the fixed number of bucket entries in a hash level
and K is the overall number of keys inserted in the hash map. Our compress
operation will be working on adjusting B to significantly reduce the average
depth of the internal hash levels within the hash map, i.e., instead of a fixed
number of bucket entries per hash level, we now support hash levels of different
sizes. Compression is done incrementally, affecting well-defined clusters of hash
levels, in order to meet varying (local) workloads. Since the number of levels to
be traversed is expected to be lower, this reduces cache misses and increases the
overall throughput. Experimental results show that lock-free compression effec-
tively improves the search operation and, in doing so, it outperforms the pre-
vious design [12], which was already quite competitive, when compared against
the concurrent hash map design in Intel’s TBB library [16]. To materialize our
design, we redesigned the existent search, insert, remove and expand operations
in order to maintain the lock-freedom property of the whole design.
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The remainder of the paper is organized as follows. First, we introduce some
background regarding the LFHT design. Next, we discuss the main aspects of our
design by example. Then, we describe implementation details and present the key
algorithms required to easily reproduce our implementation by others. Finally,
we show experimental results and end by outlining conclusions and further work.

2 Lock-Free Hash Tries

The LFHT data structure has two kinds of nodes: hash nodes and leaf nodes.
The leaf nodes store key/value pairs and the hash nodes implement a hierarchy
of hash levels of fixed size 2w. To map a key/value pair (k,v) into this hierarchy,
we compute the hash value h for k and then use chunks of w bits from h to index
the appropriate hash node, i.e., for each hash level Hi, we use the ith group of
w bits of h to index the entry in the appropriate bucket array of Hi. To deal
with collisions, the leaf nodes form a linked list in the respective bucket entry
until a threshold is met and, in such case, an expansion operation updates the
nodes in the linked list to a new hash level Hi+1, i.e., instead of growing a single
monolithic hash table, the hash trie settles for a hierarchy of small hash tables of
fixed size 2w. Figure 1 shows how the insertion of nodes is done in a hash level.

Fig. 1. Insertion of nodes in a hash level

Fig. 1(a) shows the initial configuration of a hash level Hi. A hash level is
formed by: (i) a hash node, which includes a header where control information
is stored and a bucket array of 2w entries; and by (ii) the corresponding chain
of leaf nodes per bucket entry. Initially, all bucket entries are empty. In Fig. 1,
Bk represents a particular bucket entry of Hi. A bucket entry stores either a
reference to a hash node (initially the current hash node) or a reference to a
separate chain of leaf nodes, corresponding to the hash collisions for that entry.
Figure 1(b) shows the configuration after the insertion of node K1 on Bk and
Fig. 1(c) shows the configuration after the insertion of nodes K2 and K3. The
insertion of nodes is done at the end of the chain and a new inserted node closes
the chain by referencing back the current hash level. A leaf node holds both
a reference to a next-on-chain node and a flag with the condition of the node,
which can be valid (V ) or invalid (I). The initial condition of a node is valid
and turns invalid when the node is marked for removal.

When the number of valid nodes in a chain reaches a given threshold, the next
insertion causes the corresponding bucket entry to be expanded to a new hash
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level (in what follows, we consider a threshold value of three). Figure 2 shows
how nodes are remapped in the new level. The expansion operation starts by
inserting a new hash node Hi+1 at the end of the chain with all its bucket entries
referencing Hi+1 (as shown in Fig. 2(a)). From this point on, new insertions will
be done on the new level Hi+1 and the chain of leaf nodes on Bk will be moved,
one at a time, to Hi+1. Figure 2(b) and Fig. 2(c) show how node K3 is first
remapped in Hi+1 (bucket Bn) and then moved from Hi (bucket Bk). When the
last node is moved, the bucket entry Bk in Hi is made to refer to the new hash
node Hi+1 (Fig. 2(d)).

Fig. 2. Expansion of nodes in a hash level

In what follows, we base our work on the LFHT implementation [12] which
supports the search, insert, remove and expand operations concurrently in a lock-
free fashion and where threads collaborate to finish the undergoing expansions in
a path before inserting new nodes. This implementation also supports a memory
reclamation design, named HHL (Hazard Hash and Level), that uses hazard
pairs to define well-defined regions of memory to be protected from reclamation,
which explores the characteristics of the LFHT data structure in order to achieve
efficient memory reclamation with low and well-defined memory bounds.

3 Our Design by Example

In this section, we present our design by example. Our design takes advantage
of the fine-grained and fully synchronized atomic CAS operation, which is at the
heart of many lock-free data structures [8].

In a nutshell, the key idea of our design is to apply lock-free compression to
clusters of hash nodes in order to reduce the average depth of hash levels needed
to be traversed within the hash map. To activate compression on a cluster,
the condition is to have a hash node (called the head node of the cluster of
hash nodes) with all its bucket entries referring other hash nodes. A second
condition is that the head node does not belong to a second cluster where another



462 P. Moreno et al.

compression is undergoing. If two or more compressions intersect, then priority
is given to the compression whose head node has the lowest depth (i.e., near to
the root of the hash map). Non-priority compressions are postponed (or aborted)
until the top priority one completes. At the end of a compression, the cluster of
hash nodes is replaced by a single hash node representing the cluster and the
depth of any path traversing the cluster is reduced in one level.

Figure 3 shows an example of applying lock-free compression to a cluster of
hash levels. For the sake of simplicity of illustration, we consider that hash nodes
are initially allocated with two bucket entries and that R1 to R6 represent refer-
ences to arbitrary hash or leaf nodes. Figure 3(a) shows the initial configuration
where one can observe the existence of two clusters of hash nodes: cluster C1

with head node Hi and including Hk and Hl; and cluster C2 with head node Hk

and including Hm and Hn. Since Hk, the head node of C2, also belongs to C1,
priority is given to the compression of cluster C1. Figure 3(b) shows the config-
uration after the compression of cluster C1 where one can observe that Hi, Hk

and Hl were replaced by a single new hash node Hx that has twice the size of
bucket entries (four bucket entries in this case).

Fig. 3. Compression of a cluster of hash levels

Consider a thread traversing the configuration in Fig. 3 looking for reference
R3. Without compression (Fig. 3(a)), the thread begins by visiting Hi, then
follows the reference in the first bucket to access Hk, next the reference in the
second bucket to access Hn, and finally the reference in the first bucket to reach
R3. In the worst case, if the header and the corresponding bucket entry for
each hash node do not fit inside the same cache line, reaching R3 will require
six memory accesses (two times the number of hash levels). After compression
(Fig. 3(b)), the thread begins by visiting Hx and reaching R3 requires one less
hash level, corresponding to four memory accesses, in the worst case.

Let us consider now that lock-free compression is first triggered and success-
fully applied to C2 and only then Hl is concurrently added to the hash map
data structure to form cluster C1. Figure 4(a) shows the resulting configuration,
where one can observe that Hk, Hm and Hn were replaced by a single new hash
node Hz with four bucket entries. As before, the access to references R1, R2,
R3 and R4 were all reduced by one level, but the access to R5 and R6 remains
unchanged and still requires traversing two hash levels. This illustrates one of
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the advantages of prioritizing the compressions near the root of the hash map. A
second advantage is that the application of compressions following the priority
order of being near the root of the hash map converges to a canonical structure,
while any other order of application can lead to different configurations at the
end. A key motivation of lock-free compression is that regardless of which cluster
is compressed first, the hash hierarchy will converge to a canonical structure. We
next discuss how this is done in our design.

Fig. 4. Splitting of previously compressed hash levels

Starting from the configuration in Fig. 4(a), we now have a cluster C1 formed
by the head node Hi and including Hz and Hl. The problem is that, due to
the fact that Hz already represents two hash levels as a result of a previous
compression, Hz and Hl have a different number of bucket entries (4 and 2
entries, respectively) and, therefore, we cannot replace cluster C1 by a single
new hash node, as done previously. Figure 4(b) and Fig. 4(c) show two alternative
approaches for compressing C1 in this case.

The approach illustrated in Fig. 4(b) tries to preserve previous compressions.
A new hash node Hx is introduced to represent C1 (thus replacing Hi and Hl)
but Hz is maintained. As intended, this approach succeeds in reducing the access
to R5 and R6 in one level. However, since Hz represents two hash levels, the first
two bucket entries of Hx are made to refer to Hz. This violates an invariant of the
LFHT design, which requires not having more than one bucket entry referencing
the same hash node, and makes it impossible to swap references to hash nodes
with just a single word CAS operation.

The approach illustrated in Fig. 4(c) tries to preserve the canonical struc-
ture. Since Hz represents a less priority compression, it proceeds by undoing the
previous compression and, for that, it splits Hz in two hash levels (Hv and Hw

in Fig. 4(c)), each with half the bucket entries. Then, a new hash node Hx is still
introduced to represent C1, thus replacing Hi, Hl and part of Hz. As before,
this approach succeeds in reducing the access to all references in one level, but
now each bucket entry in Hx holds a reference to different hash nodes. One can
observe that this configuration is similar to the one presented in Fig. 3(b), which
represents the canonical form. This example shows that, regardless of the order
of cluster compression, the hash hierarchy will converge to a canonical structure
although, as in this situation, the compress operation would require extra steps.
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4 Implementation Details

Starting from the high-level description of the previous section, we now discuss
in more detail how lock-free compression is implemented on top of the LFHT
data structure. Such detail is important since we want to show that lock-free
compression is implemented by following a well-defined sequence of CAS opera-
tions. To implement lock-free compression, the following extensions were made
to the LFHT data structure: (i) bucket entries now include a freeze flag that,
when set, indicates that further updates cannot be made to the corresponding
bucket entry; and (ii) the header of the hash nodes now includes a compression
representative field, which refers to the new hash node representing the cluster
being compressed, and a compression count field, which counts the number of
bucket entries referring to hash nodes (and is used to trigger compression).

Figure 5 details the sequence of steps involved in the compression of a stan-
dard cluster of hash nodes, i.e., without splitting. For that, it considers a bucket
entry Bk referring to a cluster with head node Hi and including Hk and Hl. As
before, R1, R2, R3 and R4 represent references to arbitrary hash or leaf nodes.

Fig. 5. A step by step compression operation without splitting

Figure 5(a) shows the first step of the compression procedure, where CAS
operations are used to set the freeze flag of each bucket entry in the head node Hi

(in what follows, frozen entries are marked gray). Remember that a frozen entry
remains unchanged for the remaining lifetime. This freezing process is important
because it implements the strategy where priority is given to the compression
whose head node has the lowest depth. For example, if a less priority compression
is being done on cluster with head node Hk, it will be aborted because it cannot
update the corresponding first (frozen) bucket entry of Hi.

Next, Fig. 5(b) shows the second step of the compression procedure, where a
new hash node Hx is first allocated and then initialized by copying the references
from the bucket entries in Hi. In this case, since Hk and Hl are default sized
(non-compressed) hash nodes, the size of Hx corresponds to doubling the size of
Hi, and each pair of bucket entries in Hx is initialized to match the corresponding
Hi’s entry. For example, the first two bucket entries of Hx are set to Hk, which is
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the reference in Hi’s first entry, whereas the second two bucket entries of Hx are
set to Hl, which is the reference in Hi’s second entry. After this initialization,
Hx is ready to be inserted in the LFHT data structure and, for that, a CAS
operation is applied to Bk trying to replace Hi with Hx. Figure 5(c) shows the
resulting configuration. It is important to notice that lock-freedom requires that,
at any moment of the compression procedure, no thread can be blocked from
traversing and accessing the available hash and leaf nodes. Figure 5(c) show us
that, even in a scenario where a thread T is preempted in Hi, T is still able to
traverse forward to the deeper levels Hk and Hl.

At this point, it is also important to notice that the configuration in Fig. 5(c)
violates the invariant of not having more than one bucket entry referencing the
same hash node. However, here, this is not a problem because the bucket entries
in Hx are not yet the synchronization points for further updates on the cluster,
since they are still referring to Hk and Hl. Thus, the next steps involve copying
R1 to R4 from the bucket entries of Hk and Hl to the bucket entries of Hx.
Figure 5(d) to Fig. 5(f) show how this is done for reference R1. The same process
applies to the remaining references (not shown here to simplify the illustration).

The next step is to set the new compression representative (header) fields
of Hk and Hl to refer to Hx. Figure 5(d) shows the configuration after setting
the compression representative field of Hk. The same process applies to Hl (not
shown here to simplify the illustration). Note that copying the references R1 and
R2 to Hx, will turn Hk invalid. The compression representative field implements
a kind of reconnection path for invalid hash nodes. For example, in a scenario
where a thread T is preempted in Hk and Hk turns invalid, the compression
representative field allows T to recover to Hx.

The final steps involve freezing the first bucket entry of Hk, meaning that
no further updates can be done there, and applying a CAS to the corresponding
bucket entry in Hx in order to update it to R1. Figure 5(e) shows the configura-
tion after the freezing and Fig. 5(f) shows the configuration after the updating of
R1 in Hx. The same process is applied afterwards to the remaining bucket entries
in Hx, adjusting R2, R3 and R4, to finish the compression procedure. Note that
these final steps do not violate the lock-freedom property of a search, insert,
remove or expand operation being done concurrently, since the synchronization
point in Hk is being moved to the corresponding bucket entry in Hx. In other
words, an operation that would require updating the frozen bucket entry in Hk,
will now follow the compression representative field to reach Hx and change the
corresponding bucket entry there.

We conclude this section by describing a second compression situation, but
now for a scenario leading to the splitting of previously compressed hash levels,
as illustrated in Fig. 4. Figure 6 details the sequence of steps involved in the
compression of a cluster with head node Hi and including Hz and Hl, where Hz

is already the result of a previous compression.
As before, Fig. 6(a) shows the first step of the compression procedure, where

CAS operations are used to set the freeze flag of each bucket entry in the head
node Hi. Then, Fig. 6(b) shows the second step of the compression procedure,
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Fig. 6. A step by step compression operation with splitting

where new hash nodes Hx, Hv and Hw are first allocated (Hv and Hw represent-
ing the splitting of Hz in two hash levels, each with half the bucket entries) and
then initialized by copying the references from the bucket entries in Hi. Next,
Fig. 6(c) shows the configuration after updating the compression representative
field of Hz to refer to Hx. The same process applies to Hl (not shown here to
simplify the illustration). Note that Hv and Hw are not set as representative as,
in general, this would require not a single representative field but an array of
representatives (equal to the number of bucket entries per hash node). Finally,
Fig. 6(d) shows the configuration after freezing the first bucket entry of Hz and
after applying a CAS to the corresponding bucket entry in Hv in order to update
it to R1. The same process is then applied to the remaining bucket entries in Hv

and Hw, adjusting references R2 to R6, to finish the compression procedure.

5 Algorithms

This section presents the key algorithms required to easily reproduce our imple-
mentation.1 We begin with Algorithm 1 to show the pseudo-code for the lock-free
compression procedure for a given head node Hi.

Algorithm 1. Compression(hash node Hi)
1: FreezeBucketEntries(Hi)

2: Hx ← CompressionInit(Hi)
3: if CompressionCommit(Hi, Hx) then
4: CompressionReps(Hx)

5: CompressionRefs(Hx)

FreezeBucketEntries() starts by implementing the first step of the compres-
sion procedure, as shown in Fig. 5(a) and Fig. 6(a). Then, CompressionInit()
1 Available from https://gitlab.com/pedromoreno/lfht-hhl/.

https://gitlab.com/pedromoreno/lfht-hhl/
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implements the second step, as shown in Fig. 5(b) and Fig. 6(b). Next, the
conditional call to CompressionCommit() implements the step where Hi is
replaced by Hx, as shown in Fig. 5(c). If it fails, meaning that there is an over-
lapping high priority compression being done, then Hx is simply deallocated.
Otherwise, CompressionReps() sets the compression representative fields, as
shown in Fig. 5(d) and Fig. 6(c), and CompressionRefs() updates the refer-
ences in the bucket entries of the new hash nodes, as shown in Fig. 5(e–f)
and Fig. 6(d). Pseudo-code for CompressionInit(), CompressionReps() and
CompressionRefs() is presented in more detail in Algorithms 2, 3 and 4,
respectively.

Algorithm 2. CompressionInit(hash node Hi)
1: Hx ← AllocHashNode(HashSize(Hi) × HS)
2: for i ← 0 to HashSize(Hi) do
3: Hj ← Hi.bucket[i]

4: if HashSize(Hj) = HS then

5: for j ← 0 to HS do

6: Hx.bucket[i × HS + j] ← Hj

7: else {splitting case}
8: for j ← 0 to HS do

9: Hv ← AllocHashNode(HashSize(Hj) ÷ HS)
10: Hx.bucket[i × HS + j] ← Hv

11: for v ← 0 to HashSize(Hv) do
12: Hv .bucket[v] ← Hj

13: return Hx

Algorithm 3. CompressionReps(hash node Hx)
1: i ← 0
2: while i < HashSize(Hx) do

3: Hk ← Hx.bucket[i]
4: if HashLevel(Hk) �= HashLevel(Hx) then {splitting case}
5: Hk ← Hk.bucket[0]

6: Hk.compr representative ← Hx

7: i ← i+HS

In these algorithms, HS is the default number of bucket entries for a standard
hash node, HashSize() returns the number of bucket entries in a hash node,
and HashLevel() returns the initial depth of a hash node. In Algorithm4, the
compr count field counts the number of bucket entries in a hash node referring
to deeper hash nodes and is used to trigger lock-free compression when all bucket
entries are referring to deeper hash nodes (lines 18–21 in Algorithm4).
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Algorithm 4. CompressionRefs(hash node Hx)
1: xCount ← 0

2: for x ← 0 to HashSize(Hx) do
3: Hk ← Hx.bucket[x]
4: if GetLevel(Hk) = GetLevel(Hx) then
5: R ← FreezeBucketEntry(&(Hk.bucket[x mod HS]))
6: CAS(&(Hx.bucket[x]), Hk, R)
7: if IsHash(R) then
8: xCount ← xCount+ 1

9: else
10: xCount ← xCount+ 1

11: kCount ← 0
12: for k ← 0 to HashSize(Hk) do

13: Hz ← Hk.bucket[k]

14: R ← FreezeBucketEntry(&(Hz .bucket[(x mod HS) × HashSize(Hk) + k]))

15: CAS(&(Hk.bucket[k]), Hz , R)

16: if IsHash(R) then
17: kCount ← kCount+ 1
18: if AtomicAdd(Hk.compr count, kCount = HashSize(Hk) then

19: Compression(Hk)

20: if AtomicAdd(Hx.compr count, xCount) = HashSize(Hx) then

21: Compression(Hx)

6 Performance Analysis

The environment for our experiments was a SMP system based in a NUMA
architecture with two Intel Xeon X5650, each having 6 cores (12 hyperthreads)
at 2.66 GHz, 12 MB Intel Smart Cache, 96 GB of main memory, and running the
Linux kernel 4.15.0-72. To measure execution time, all programs were compiled
with GCC 9.2.0 with -O3 and using the jemalloc memory allocator 5.0 [5]. We
ran each benchmark 5 times and took the mean of those runs.

6.1 Compression Benefits

Compression benefits heavily rely on the memory environment where we are
running our benchmarks. Factors like cache sizes, placement policies, prefetching
optimizations can have a significant impact on the overall performance of the
LFHT design. To put our results in perspective, first we ran a specific benchmark
designed to address the potential gains that one would expect to have when
using compression. For that, we used a static version of the LFHT design that
implements fixed predefined configurations of hash levels, with a different number
of bucket entries on each hash node, and we measured the execution time for
one thread performing only search operations on those configurations.

Starting from a maximal configuration of 24 uncompressed hash levels, all
with the same minimal size of 21 bucket entries, we studied the effect of apply-
ing two different types of compression operations: (i) by reducing the number of
hash levels from the root hash node to the leaf hash nodes; and (ii) by reduc-
ing the number of hash levels from the leafs to the root. Figure 7 shows the
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execution time, in seconds, for executing 224 search operations with one thread
when reducing the number of hash levels in both directions (Fig. 7(a) for the
root to leafs compression and Fig. 7(b) for the leafs to root compression) until
reaching the configuration with just a single hash node with 224 bucket entries.
The x-axis represents the number of hash levels compressed in a configuration.
In both figures, the x-axis value of 1 represents the maximal configuration of 24
uncompressed hash levels and the x-axis value of 24 represents the single fully
compressed hash node with 224 bucket entries. The other x-axis values represent
intermediate configurations. For example, the x-axis value of 10, in Fig. 7(a)
represents the configuration whose first hash node includes 210 bucket entries
followed by 14 uncompressed hash levels, and in Fig. 7(b) represents the config-
uration with 14 initial uncompressed hash levels followed by a final hash node
with 210 bucket entries.

Fig. 7. LFHT’s compression effects for 224 search operations with one thread

In Fig. 7(a), one can observe that, for root hash nodes with less than 214

bucket entries, the benefits are small, but then, for higher compression ratios, the
results show a significant impact on reducing the execution time. This happens
because most of the execution time is spent on waiting for swaps between the
different levels of memory and because the hash nodes closest to the root tend to
remain in cache. Consequently, compressing the first 14 levels only reduces the
amount of cache accesses, which results in a poor impact on the total executing
time. On the other hand, further compression is able to reduce effectively the
number of memory accesses and memory swaps.

In Fig. 7(b), one can observe that compressions up to a size of about 210 are
quite effective in reducing the execution time, whereas after that size they are
not as much. This can be explained by the fact that, after a certain size, the
benefits of compression are absorbed by the caching effects.

As a result of this study, in what follows, we have chosen to set the root hash
node of the LFHT design with 216 bucket entries, thus ensuring that compres-
sions would have an impact in the execution time. This will create a memory
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overhead, which can be considered negligible, since it amounts to just 512 KB. All
the other hash nodes, allocated during execution, begin with 24 bucket entries,
which is the minimum size allowed by the original LFHT design.

6.2 Performance Results

In this subsection, we analyze the performance of our compression design in three
different scenarios: (i) Search Only, where threads search for N keys in a hash
map with the N keys inserted; (ii) Insert Only, where threads insert N keys in an
empty hash map; and (iii) Remove Only, where threads remove N keys in a hash
map with N random keys.2 On each scenario, we used two sets of N random
keys, namely 108 and 109 keys. To support concurrent randomicity on each
thread, we used glibc PRNG (Pseudo Random Number Generator), such that,
for insertions we just insert random keys by giving each thread a different seed,
and for search and remove, we reuse the seeds used for insertion, ensuring that
we search or remove each key only once. Although these scenarios are not real-
world applications, they do provide a strong insight about the expected behavior
of the design. Note that, since hash-maps use hash functions to disperse keys
among the internal data structures, we argue that real-world applications should
provide similar results to the ones that we present next.

Figure 8 shows throughput results (higher is better) comparing our com-
pressed design (LFHT-Compress) against the original design (LFHT-Original),
and the Concurrent Hash Map design (CHM) of Intel-TBB library [16], when
running a number of threads from 1 to 24 with 108 and 109 keys in the three
previously mentioned scenarios.

Figure 8(a) and Fig. 8(b) show throughput results for the Search Only sce-
nario. Comparing the two LFHT designs, one can observe that LFHT-Compress
obtains improvements against LFHT-Original of around 50% with 108 keys and
around 100% with 109 keys. When comparing against CHM, LFHT-Compress
has almost always the best results, with CHM very close. This can be explained
by the fact that the final configuration of both designs is quite similar, since
CHM also uses only a root hash level to do the initial scatter of keys.

Figure 8(c) and Fig. 8(d) show throughput results for the Insert Only sce-
nario. Comparing the two LFHT designs, one can observe that both achieve
similar results for 108 keys but LFHT-Compress is clearly better for 109 keys.
Even though LFHT-Compress is doing more work by compressing hash levels,
it is able to improve the overall throughput. This happens because the cost of
doing extra work on compression is compensated by the shorter paths leading to
the insertion points. When comparing with CHM, LFHT-Compress has almost
always the best results, however in this scenario the difference is more signif-
icant as we increase the number of threads. One reason that can explain this

2 We have also tested other scenarios that mix the search, remove and insert opera-
tions, but have not obtained relevant results. This can be explained by the fact that
the interference between different types of operations is rare enough to not impact
performance.
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Fig. 8. Throughput for the Search Only, Insert Only and Remove Only scenarios

difference is the fact that, since CHM is lock-based, it seems unable to scatter
the concurrency spots as we increase the number of threads, since each lock is
being used to block a large portion of paths within the hash map. On the other
hand, since LFHT-Compress is lock-free, it is able to control the concurrency
spots with the fine grain given by the CAS operation.
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Finally, Fig. 8(e) and Fig. 8(f) show throughput results for the Remove Only
scenario. Comparing the two LFHT designs, one can observe that LFHT-
Compress is again better than LFHT-Original and that the difference increases
as we increase the number of threads. This can be explained by the gains
observed for LFHT-Compress on the search operation. When comparing with
CHM, LFHT-Compress is again better by far than CHM in the 108 scenario,
with the difference increasing as the number of threads increases, whereas in the
109 scenario the difference is almost constant. This can be explained by the same
reasons mentioned before for the Insert Only scenario (lock-based vs lock-free).

7 Conclusions and Further Work

We have presented a novel lock-free compression design for a lock-free trie-based
hash map, named LFHT, that is able to significantly reduce the depth of the
internal hash levels within the hash map structure. By doing so, our design is
able to minimize cache misses and increase the overall throughput of the default
search, insert and remove operations. To materialize our design, we redesigned
the LFHT data structure in order to maintain the lock-freedom property of the
existent search, insert, remove and expand operations.

Experimental results show that lock-free compression effectively improves
the default operations and, in doing so, it outperforms the previous design,
which was already quite competitive when compared against the concurrent
hash map design in Intel’s TBB library. We argue that our experimental results
are very interesting and show the potential of our design since it was able to
achieve better throughput ratios than CHM, in almost all scenarios, and, for
some thread launches, the difference between the two is very significant. This
is quite an accomplishment if we consider that both the CHM design and the
hardware architecture are implemented by Intel.

As further work, we plan to extend our design to implement a scheme that
allows lock-free compression to be split into several subtasks that can be executed
concurrently by different threads, instead of just a single thread as it is now, and
compare its performance in different hardware architectures using real-world
applications.

Data Availability Statement. The datasets and code generated during and/or anal-

ysed during the current study are available in the Figshare repository: https://doi.org/

10.6084/m9.figshare.12560228 [13].
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Abstract. Non-Volatile Memory (NVM) is an emerging memory tech-
nology aimed to eliminate the gap between main memory and stable stor-
age. Nevertheless, today’s programs will not readily benefit from NVM
because crash failures may render the program in an unrecoverable and
inconsistent state. In this context, durable transactions have been pro-
posed as a mechanism to ease the adoption of NVM by simplifying the task
of programming NVM systems. Existing systems employ either hardware
(HW) or software (SW) transactions with different performance trade-
offs. Although SW transactions are flexible and unbounded, they may sig-
nificantly hurt the performance of short-lived transactions. On the other
hand, HW transactional memories provide low-overhead but are resource-
constrained. In this paper we present NV-PhTM, a transactional system
for NVM that delivers the best out of both HW and SW transactions by
dynamically selecting the best execution mode according to the applica-
tion’s characteristics. NV-PhTM is comprised of a set of heuristics to guide
online phase transition while retaining persistency in case of crashes dur-
ing migration. To the best of our knowledge, NV-PhTM is the first phase-
based system to provide durable transactions. Experimental results with
the STAMP benchmark show that the proposed heuristics are efficient in
guiding phase transitions with low overhead.

Keywords: Transactions · Transactional memory · Persistent memory

1 Introduction

Recent Non-Volatile Memory (NVM) technologies can provide persistency, fast
access time and a byte-addressable interface. As NVM’s access latency is
approaching those of current DRAM technology, its content can be directly read
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or written by the CPU, thus avoiding the overhead involved in block-oriented
systems. However, it is challenging to write code for NVM because a system
crash may render the program in an unrecoverable state. Durable transactions
have been suggested as an appropriate way of programming these systems given
their consolidated strong semantics and ease-of-use idiom [4,15].

Most of early works focused on providing durable transactions by care-
fully extending software transactional memory (STM) libraries with logging
and recovery mechanisms [9,21,24,25]. Nevertheless, although flexible and
unbounded, software approaches may display a considerable overhead for appli-
cations with short-lived transactions. With the availability of microprocessors
with hardware transaction extensions (HTM) [16,18], researchers have proposed
using this mechanism as a way of speeding up the performance of applications
running on durable transactional systems. The key idea of recent HTM-enabled
solutions [8,14,20] is to separate the execution of a durable transaction into two
parts. In the first one, transactions are executed using the hardware support and
construct a volatile redo log. The second stage consists of a transaction persisting
its log and ensuring that the order is consistent with some serial execution. One
important drawback of hardware-based solutions, however, is that most micro-
processors only provide best-effort transactions, meaning that transactions are
not guaranteed to always commit in hardware.

Although each approach (HW or SW) has distinct virtues, the decision about
which one to use is usually left to programmers. However, making the right choice
requires an intricate understanding of workload and system-specific character-
istics, and is often dynamic (i.e., the optimal approach changes throughout an
application’s execution). This work is motivated by the observation that this
decision is a fundamental gap that affects the effectiveness of the current state
of the art on (SW and HW) durable transactions. In order to fill that gap, we
propose NV-PhTM: a Non-Volatile Phased Transactional Memory system that
delivers the best out of both HW and SW transactions by dynamically selecting
the best execution mode according to the application’s characteristics. A key
decision in designing NV-PhTM concerns how to handle the concurrent execu-
tion of HW/SW transactions.

Before the emergence of NVM, the goal of combining SW and HW transac-
tions had already received plenty of attention in the context of non-durable trans-
actional memory [15]. Historically, the first approaches allowed both HW and SW
transactions to concurrently execute in the same application, which is commonly
designated as Hybrid Transactional Memory (HyTM). More recently, different
studies have shown that HyTM has inherent scalability issues [1,7]. In parallel,
the alternative approach of Phase-based Transactional Memory (PTM) was pro-
posed as a pragmatic way of avoiding the fundamental pitfalls of HyTM [6,19]
through a simplistic design where SW and HW transactions no longer run con-
currently; instead, the execution is split into all-SW and all-HW phases. PTM
systems have to deal with challenges such as when to transition the execution to
different phases, accomplished through heuristics, and how to efficiently perform
the transition.
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To the best of our knowledge, NV-PhTM is the first system to apply the
principles of PTM in the context of durable transactions. As we discuss later
on, directly applying existing non-durable PTM systems to this new context is
sub-optimal as it neglects new phenomena and trade-offs that durability brings
about. NV-PhTM provides insights regarding the construction of new heuristics
and phase transition in a NVM context. In particular, this paper makes the
following contributions:

– It proposes NV-PhTM and new heuristics with the aim of allowing phase-
based execution of durable transactions (see Sects. 3.1 and 3.2);

– It devises a new strategy to allow the migration between HW and SW trans-
actions while maintaining consistency and persistency (see Sect. 3.3);

– It provides experimental results, based on the STAMP benchmark [22], show-
ing that NV-PhTM is efficient and can provide the best of both HW and SW
transactions (see Sect. 4).

The rest of the paper is organized as follows. Section 2 presents the main
concepts used in this work. Section 3 gives a detailed description of the NV-
PhTM design, whereas Sect. 4 presents its evaluation, comparing it against other
state-of-the-art approaches. Section 5 provides an overview of related works and,
finally, Sect. 6 concludes the work.

2 Background

This section briefly describes two representative HW and SW systems which
provide durable transactions, namely NV-HTM and PSTM. These systems serve
as the base in which NV-PhTM is built upon.

NV-HTM [8] is one of the first systems to provide durable transactions over
commodity transaction-enabled hardware. Its commit stage is split into non-
durable and durable stages. When a hardware transaction executes, it also stores
its updates into a redo log (a per-thread structure). Upon a commit, the hard-
ware makes the updates visible to other concurrent threads but does not nec-
essarily persist them. This is the so-called non-durable commit. After that, the
transaction’s redo log is persisted via software (it might have to wait for the logs
of transactions it depends on to be persisted as well), completing the durable
commit stage. NV-HTM requires instrumenting the procedures to start/commit
a transaction and the write operation (to construct the redo log), but read oper-
ations can proceed without any instrumentation overhead. A timestamp mech-
anism is used to enforce consistency: when a transaction is durably committed,
all transactions serialized before it by the HTM system are already durably com-
mitted. A concurrent checkpointing process is used to persist the snapshot in
NVM of all durably committed transactions, as well as pruning the redo logs. In
case transactions cannot proceed in hardware, NV-HTM acquires a single global
lock and serializes the execution (software transactions are not provided).

The acronym PSTM (Persistent Software Transactional Memory) usually
refers to a class of implementations based on the mechanism that Mnemosyne [25]
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originally introduced to support durable memory transactions. It is composed
of a transaction system and a transaction log. The original proposal described
by Mnemosyne is based on TinySTM [13], providing lazy versioning with redo
logging and eager conflict detection with encounter-time locking. With lazy ver-
sioning, data written by a transaction is stored locally in a buffer (volatile mem-
ory) and also added to a log (along with the corresponding addresses). During
commit, the log is flushed to NVM and the data is persisted. Notice that lazy
versioning requires, for each read operation, checking whether the required data
is already present in the local buffer, in which case it contains the most recent
value. In order to avoid that, some PSTM systems prefer to adopt undo logs
and in-place updates instead [3,8]. Upon each write, the corresponding log entry
is flushed to NVM before the data is modified in-place. During commit, the
changes are flushed to NVM and a commit marker is added to the log. The cost
of durable transactions is two writes to NVM with every update: one for the log
entry and another for the data itself.

3 NV-PhTM Design

NV-PhTM allows the execution of HW/SW transactions in phases. It provides
the following features in the context of NVM: i) new heuristics to guide tran-
sitions among hardware (HW), software (SW) and serialized (GLOCK) phases;
ii) a consolidation strategy to enforce system consistency and persistency when
transitioning between different phases. This section discusses NV-PhTM general
system architecture, transition heuristics and state consolidation strategies.

3.1 System Architecture

The two main building blocks of NV-PhTM are NV-HTM (for HW transactions)
and PSTM (for SW transactions), described previously. A general overview of
the architecture is presented in Fig. 1. The first step performed by the system
is to map the memory region (e.g., by using mmap) to the application address
space, creating a Working Snapshot (WS) 1©. As soon as the transaction performs
the first access to a page mapped on the PS, the operating system automatically
uses copy-on-write (CoW) to create a volatile copy in DRAM. Hence, during
execution, the load and store instructions emitted by transactions operate on
DRAM-mapped pages of the WS 2©. When a hardware transaction completes,
two actions take place. First, the HTM system non-durably commits the transac-
tion data (volatile memory). Second, the system flushes the redo log to NVM 3©,
in which case the transaction is durably committed. A Checkpoint Process (CP)
is responsible for applying the updates stored in the logs 4© into a consistent
Persistent Snapshot (PS) 5©, as well as pruning the redo logs so that they do
not grow beyond a given threshold. The application can also invoke the CP 6©
to perform memory consolidation, an operation that drains all the durable logs
to the PS and discards every page that has been cloned in DRAM. It is used to
consolidate the updates to the PS before migrating to SW mode.
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Fig. 1. NV-PhTM system architecture.

For the software part (PSTM), NV-PhTM extends the NOrec transactional
system [10] with non-volatile semantics. Differently from the HW component,
each transaction here is responsible for persisting its log as well as flushing the
updates to PS. During transaction processing, values are initially accessed from
the PS 7© and stored locally (DRAM) in the transaction’s write set. For each
memory update performed during the execution of a transaction, its correspond-
ing log entry is flushed to NVM 8©; when a transaction finally commits, it appends
a commit marker to the log and persist all updates to PS 9©. The sequence lock
of NOrec is used to order the commit events in the log. Notice that the CP
component is not used while in SW mode, since the transactions themselves are
responsible for consolidating the updates to PS. Another design option would
be to use the idea of splitting the commit operation into stages and let the CP
module perform consolidation, similarly to what is done in DudeTM [20]. How-
ever, in this initial investigation on phase-based durable transactions we opted
for a more traditional design, leaving commit splitting for future work.

3.2 Transition Heuristics

Transition heuristics specify in what conditions and to which phase the sys-
tem should migrate. NV-PhTM behavior is better understood by its transi-
tion automaton, showed in Fig. 2a. The system initially starts in HW mode.
A HW→SW transition is triggered when two consecutive aborts occur due to
capacity issues and the abort rate is above a given threshold A©. These condi-
tions represent situations where transactions are very unlikely to make the most
out of current HW transactions, thus execution falls back to SW mode. How-
ever, when the length of transactions (measured in cycles) is relatively small,
the system may return to HW mode since short-running transactions tend to
cause high overhead in SW mode. The SW→HW transition only completes once
all deferred transactions (those that caused the HW→SW migration) are com-
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Fig. 2. Design of the NV-PhTM heuristics. (Color figure online)

mitted and no other transaction is active. Internally, this is identified by the
two variables, deferredCount and undeferredCount, being equal to zero B©.
The variable deferredCount keeps track of how many transactions invoked the
HW→SW transition. These are the transactions that should complete in SW
before the system considers returning to HW. As for undeferredCount, it counts
the transactions that are actively running in SW, but are only doing so because
other transaction(s) invoked the switch.

The execution is serialized C© if: i) most of the aborts are not caused by capac-
ity issues (therefore they are very likely caused by conflicts among transactions),
ii) the abort rate is not high enough, and iii) the number of retries reached a
given threshold, In this situation it is pointless to migrate to SW mode and thus
serializing the execution may be more beneficial – as entering and leaving the
GLOCK mode is much faster compared to the SW mode. When the serialized
transaction is completed, the system returns to HW mode D©.

So far, the described heuristics take care of avoiding capacity and contention
issues, but they do not address problems caused by NVM. For instance, a par-
ticular source of efficiency loss when running in HW mode is the persistent log
structure that is used to store the updates of the transactions. Recall that the
CP is responsible for pruning this log and consolidating the changes into the PS
(steps 4© and 5© in Fig. 1). If the number of writes to the log is high, the log will
probably fill up before the CP is able to free some space, stalling the execution.
We named this scenario as log-induced stagnation, since transactions are unable
to proceed until there is enough space in the log. Therefore, a new heuristic was
added to NV-PhTM in order to force a HW→SW transition when stagnation is
problematic (above an empirically determined threshold) E©. Recall that PSTM
does not use the CP and, as a consequence, the log-induced scenario cannot
happen while in SW mode.

We observed that, for some applications running solely in HW mode, the
stagnation issue tends to dissipate over time. If that happens, then running in
HW mode might yield better performance. But if the system migrated to SW due
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to heuristic E©, it has no direct way of knowing if the stagnation level would be
low and whether returning to HW is a good idea. In order to have an insight into
the new SW→HW heuristic that addresses this point, please refer to Fig. 2b.
It shows the average transaction length (left Y axis), for both HW (red) and
SW (blue) transactions, as well as the average write-set size (right Y axis, green
dots), as time goes on (X axis). The plot is for the Intruder application from
the STAMP benchmark running with 12 threads (see Sect. 4 for details on the
experimental settings). The key point here is to notice that there is a relationship
between the reduction in the write-set size (green dots) and SW transaction
length (blue dots) with the stagnation level, as it is possible to observe that
HW transactions become faster (red dots) when that happens (around 2 million
cycles in the figure). The new SW→HW heuristic developed for NV-PhTM uses
this reduction in the write-set size and length of SW transactions to force a
transition when the threshold RD THRSD is met F©.

3.3 Consolidation Strategies

If a crash occurs while executing in either HW or SW mode it is possible to
recover the state by replaying the logs. However, inconsistencies might occur
due to the transitions between modes. Phase transitions are handled by a shared
modeIndicator variable, which is always read by HW transactions when they
start. When the condition for HW→SW is met, the transaction that triggers
the transition atomically changes modeIndicator to SW, which aborts all run-
ning hardware transitions. Upon restart, these transactions will notice the mode
change and will run in SW mode. Notice that this behavior would allow SW
transactions to start executing (and change the logs) while the CP might still be
executing. Therefore, NV-PhTM requires a barrier when switching modes. An
extra bit of modeIndicator is used to act as a permission flag. When the mode
is changed, the flag is atomically set (using a CAS operation); the transactions
that detect the HW→SW transition wait for the permission flag before entering
SW mode. Meanwhile, the transaction that triggered the migration invokes and
waits for the CP to perform a system consolidation procedure before resetting
the permission flag. At this point all transactions will start in SW mode and the
PS will be correctly updated. Handling SW→HW transition is similar, but does
not require waiting for the CP since it is not used in SW mode.

4 Experimental Evaluation

This section presents a thorough quantitative evaluation of NV-PhTM by show-
ing the effectiveness of the new heuristics and speedup numbers against state-
of-the-art systems.

4.1 Setup

The experimental evaluation considers the following systems:
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NV-HTM: an implementation of the work in Castro et al. [8] using a
threshold of 9 consecutive retries for serialization, 10000 log entries per thread,
and a log occupancy threshold of 50% (used to activate log pruning);

PSTM: based on NOrec STM [10] with redo log and lazy versioning similar
to Mnemosyne [25]. As in NV-HTM, a log of 10000 entries is also used for each
thread;

PhTM*: an implementation of NV-PhTM without heuristics E© and F©. It
is considered here so that the effectiveness of the new NVM-aware heuristics can
be assessed;

NV-PhTM: the newly proposed phase-based transactional system with
durable transactions described in this paper. It uses the same core parameters
of PSTM and NV-HTM, an abort threshold (ABORT THRSD) of 75%, transac-
tion length threshold (SIZE THRSD) of 30000 cycles, and stagnation threshold
(STAG THRSD) of 45%. The implementation is very lightweight and based on
the rdtscp instruction for collecting timing information. The time spent by
transactions waiting for the log (stagnation time) and total time are measured
and the ratio is computed. The SW→HW transition is triggered when a 15%
reduction (RD THRSD) over time of the write-set size and transaction length
is detected. Measurements are collected every 1000 committed transactions. See
Sect. 4.4 for a brief discussion on how these parameters were selected.

The systems are evaluated using the STAMP (Stanford Transactional Appli-
cations for Multi-Processing) benchmark suite [22]. Speedup is calculated by
using a NVM-aware sequential version of the applications without any concur-
rency control as the baseline. The experiments are performed on an 18-core
Intel Xeon Gold 5220 machine (with TSX support) clocked at 2.20 GHz, 192 GB
physical DRAM, and x86-64 Linux kernel 3.10. The applications were compiled
using GCC 7.3.1. The reported results represent the average of 30 runs; a 95%
confidence interval bar is also shown. In order to avoid some performance issues
induced by the memory allocator [5,11], the TCMalloc allocator with the changes
suggested by Nakaike et al. [23] is used. Finally, like previous works [8,9,20],
NVM is emulated using DRAM. In particular, slow writes to NVM are modeled
by adding a delay of 500ns.

4.2 SSCA2 and Intruder

This section provides a detailed discussion for two of the most representative
applications of STAMP: SSCA2 and Intruder. The speedup (Y axis) as the
number of threads increases (X axis) is shown in Fig. 3. In order to better
understand the behavior of the systems, Table 1 presents the percentage of
time spent in the different modes for NV-HTM, PhTM*, and NV-PhTM: HW
for hardware, SW for software, and GL for GLOCK (their sum should add to
100% of the total execution time). Table 1 also shows the average percentage of
the total time consumed by log-induced stagnation (LIS), that is, the fraction
of the total time that threads need to wait for enough log space.
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Fig. 3. Speedup numbers evaluating the effectiveness of the proposed heuristics.

Table 1. Fraction of time (%) spent in each mode (HW, SW, GL) and Log-Induced
Stagnation (LIS).

App #t
NV-HTM PhTM* NV-PhTM

HW GL LIS HW SW GL LIS HW SW GL LIS

SSCA2

1 100.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00

2 99.99 0.01 0.26 99.99 0.00 0.01 0.21 99.99 0.00 0.01 0.20

4 99.99 0.01 19.80 99.99 0.00 0.01 19.78 96.71 3.28 0.01 18.76

6 99.99 0.01 31.30 99.99 0.00 0.01 30.98 22.83 77.17 0.00 7.83

8 99.99 0.01 36.68 99.99 0.00 0.01 36.99 14.76 85.23 0.00 6.79

10 99.98 0.02 37.09 99.99 0.00 0.01 36.97 8.62 91.37 0.00 3.38

12 99.98 0.02 39.66 99.98 0.00 0.01 39.64 7.65 92.35 0.00 2.55

14 99.98 0.02 41.60 99.99 0.00 0.01 41.66 9.39 90.61 0.01 3.37

16 99.99 0.01 43.25 99.98 0.00 0.02 43.45 11.34 88.66 0.01 4.36

18 99.99 0.01 46.03 99.97 0.01 0.01 46.02 23.67 76.33 0.00 10.59

Intruder

1 99.81 0.19 0.02 99.77 0.02 0.21 0.02 99.80 0.00 0.20 0.02

2 99.02 0.98 0.44 96.62 2.56 0.81 0.30 99.04 0.02 0.94 0.35

4 96.17 3.83 2.19 89.15 8.61 2.24 2.20 96.37 0.16 3.47 2.11

6 92.74 7.26 4.77 81.06 16.07 2.87 4.88 93.46 0.77 5.77 4.67

8 97.39 2.61 14.79 77.10 19.43 3.47 10.85 90.91 1.12 7.96 11.82

10 97.31 2.69 21.88 75.37 21.11 3.51 16.10 88.33 2.62 9.05 17.89

12 95.22 4.78 26.98 71.94 23.05 5.02 19.23 83.10 4.98 11.93 20.89

14 87.26 12.74 26.99 71.24 23.09 5.68 21.87 77.76 9.48 12.76 22.60

16 96.70 3.30 35.26 75.22 23.91 0.86 27.75 75.83 18.51 5.66 27.64

18 83.47 16.53 35.07 61.25 35.14 3.61 25.64 67.62 20.29 12.09 27.47

For SSCA2, it is possible to see that NV-HTM performs well up to 4 threads,
but PSTM then starts to display a better performance. This is mostly due to
the stagnation problem occurring in NV-HTM as showed by the column LIS in
Table 1. Since PhTM* does not have the new heuristic that takes into account
the stagnation time E©, it does not transition to SW and therefore performs sim-
ilarly to NV-HTM, spending most of its time in HW mode. On the other hand,
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NV-PhTM is able to switch to the SW mode and follows PSTM’s performance
closely after 4 threads. Notice also that the LIS column (highlighted) confirms
the reduction of stagnation time due to the migration to SW mode. This result
highlights the main feature of phase-based systems: its ability to automatically
identify the best performing system (NV-HTM up until 4 threads, and PSTM
after that). Because PhTM* is not aware of the stagnation issue, it continues fol-
lowing NV-HTM and therefore does not perform well with more than 4 threads.

Intruder is a case in which HW performs better throughout all thread con-
figurations and therefore NV-HTM exhibits the best performance numbers. For
this application, stagnation is not as severe as with SSCA2 (LIS column). Con-
trary to other applications, the stagnation levels in Intruder varies during its
execution, with peaks at the beginning and end, when the number of writes is
more accentuated (see Fig. 2b). Although PhTM* performs better than PSTM,
its performance numbers are not as good as NV-PhTM from 6 threads onwards.
PhTM* is still able to transition to SW because of the high overall abort rate.
However, as Table 1 reveals (highlighted), it spends more time in SW than neces-
sary because it does not have the new SW→HW heuristic based on the reduction
of number of writes and transaction length F©. Overall, the results obtained with
NV-PhTM show the effectiveness of the new heuristics for HW→SW (SSCA2)
and SW→HW (Intruder) transitions.

4.3 Remaining STAMP Applications

The performance results for the remaining STAMP applications are shown
in Fig. 4. Due to space reasons we only consider a subset of the threads.
For Genome, Labyrinth and Vacation there are small performance differences
between PhTM* and NV-PhTM, implying that the new heuristics do not play a
major role with these applications. Stagnation is not a major issue in Genome and,
for Vacation, there is a large number of capacity aborts that force HW→SW
transitions. Indeed, 99% of the total execution time is spent in SW mode in
Vacation starting from 8 threads. On the other hand, Genome spends about
90% of the total execution time in HW mode. Labyrinth has very long trans-
actions, forcing HW transactions to abort almost all time. In fact, 99% of the
time is serialized with NV-HTM because it employs a global lock as the fallback
mechanism in case of high contention. Both PhTM* and NV-PhTM can detect
the serialization issue very early and switch to SW mode.

Kmeans is an application with a high variability in execution time. Even then,
it is possible to see that NV-PhTM follows the best system, NV-HTM, more
closely than PhTM* up to 4 cores (the maximum speedup achieved with this
application). After that, NV-HTM tends to get worse because stagnation time
starts to become an issue and, eventually, at 10 threads, PSTM takes over. At
this point NV-PhTM starts following PSTM whereas PhTM* does not, as seen
in the configuration with 16 threads. There is a small inaccuracy with NV-PhTM
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Fig. 4. Speedups for the STAMP applications.

at 8 threads as the stagnation threshold is reached and the system migrates to
SW mode. Yada is an application in which stagnation is not a major concern.
Capacity and conflict aborts are the major cause of its inefficiency, particularly
after 4 threads, when the majority of the execution time of NV-HTM is serialized.
Here, NV-PhTM correctly starts following NV-HTM but switches to PSTM as
serialization starts to dominate the execution time of the HW mode. PhTM* is
always using the SW mode because its heuristics force a HW→SW very early
given the capacity aborts. It also cannot return to HW because the length of
the transactions is way above the minimum threshold. NV-PhTM, on the other
hand, can perform a SW→HW transition since Yada has a behavior similar to
Intruder, in which the transaction length decreases rapidly.

The last plot in Fig. 4 shows the geometric mean of the speedups for all the
applications considered. It is clear from this plot that NV-HTM tends to be faster
than PSTM up until 4 threads when stagnation is still not a serious issue, but
after that PSTM starts to dominate. Since the phased systems are very likely
to follow the best performing system, they also display good overall results.
In particular, the improved heuristics provided by NV-PhTM in the context
of NVM makes it a superior option when compared to PhTM*. The reason is
clear: when stagnation is not a problem, it performs similarly to PhTM*; but
PhTM* heuristics cannot deal with log-induced stagnation and therefore NV-
PhTM performs better overall.
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Table 2. Percentage of total time spent during phase migrations and the average
number of transitions (ANoT).

Application Transition Threads

1 2 4 6 8 10 12 14 16 18

Genome HW→SW 0.00 0.01 0.03 0.03 0.03 0.04 0.05 0.06 0.11 0.10

SW→HW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

ANoT 1.80 2.07 1.70 2.03 1.27 1.47 3.73 5.70 17.20 13.97

Intruder HW→SW 0.00 0.00 0.00 0.01 0.07 0.22 0.56 0.56 0.06 1.02

SW→HW 0.00 0.00 0.00 0.01 0.01 0.03 0.06 0.06 0.02 0.07

ANoT 0.67 6.07 7.37 63.33 106.40 198.00 465.57 475.93 125.40 658.70

Kmeans HW→SW 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02

SW→HW 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01

ANoT 1.13 1.83 43.17 39.67 48.00 47.27 48.77 47.60 49.17 65.77

Labyrinth HW→SW 0.00 0.01 0.17 0.24 0.23 0.09 0.21 0.01 0.40 0.13

SW→HW 0.00 0.21 0.02 0.01 0.01 0.02 0.25 0.26 0.34 0.70

ANoT 1.00 1.50 1.03 1.00 1.00 1.00 1.00 1.00 1.07 1.00

SSCA2 HW→SW 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.06

SW→HW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

ANoT 0.47 0.23 1.47 3.80 8.77 8.60 16.40 21.27 25.33 119.07

Vacation HW→SW 0.00 0.01 0.04 0.16 0.03 0.03 0.03 0.03 0.03 0.03

SW→HW 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

ANoT 2.57 3.27 31.33 167.10 5.17 5.13 5.30 5.03 5.57 6.07

Yada HW→SW 0.00 0.01 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03

SW→HW 0.00 0.00 0.01 0.01 0.02 0.03 0.03 0.04 0.03 0.04

ANoT 2.13 3.40 5.10 12.40 15.87 15.20 16.47 13.13 12.40 12.07

Fig. 5. Results with a Xeon E5-2648L @1.80 GHz using the same thresholds.

4.4 Discussion

The results show that NV-PhTM is able to follow the best performing mode,
either HW or SW, but usually does not outperform the best of the two modes for
a given configuration. The reason for this, as discussed in details by Carvalho
et al. [7], is due to the lack of phases in the STAMP applications. However,
the ability of dynamically adapting its behavior to exploit the best execution
mode makes it a valuable option. A criticism of phased systems is that transi-
tion between modes can take a large fraction of the time because of the possible
barriers. In case of NV-PhTM, this has to be analyzed since it does require
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a barrier when transitioning from HW to SW because of the NVM consistency
requirements. In order to show that this is not a problem, Table 2 shows the per-
centage of the total time (averaged over 30 runs) consumed by transitions (both
HW→SW and SW→HW) and The Average Number of Transitions (ANoT) for
each application. As can be noticed, the largest overhead happens with Intruder
(18 threads) and it only consumes about 1% of the total execution time. The
reason for such low overhead is that the heuristics cause very few transitions, as
can also be observed in the table.

Finally, the heuristics require some thresholds to be tuned in order to get
a good performance. These values were set after a performance analysis with
the STAMP benchmark, similarly to previous work [7]. To show that the results
presented here are consistent, we repeated the experiments in another machine,
a 14-core Intel Xeon E5-2648L running at 1.80 GHz and 32GB of RAM, without
changing any of the thresholds. Notice that this machine is slightly slower and
has smaller L2 and L3 caches. The main results are shown in Fig. 5 for the SSCA2,
Intruder and the overall geometric mean. As can be seen, the main conclusions
carried over.

5 Related Work

The works of Avni et al. with PHTM [3] (Persistent Hardware Transactional
Memory) and Wang et al. with PTM [26] (Persistent Transactional Memory)
were the first to explore HTM in the context of durable transactions. In both
cases, the proposed solutions require changes to existing HTM designs which, in
practice, limit their usage. DHTM [17] (Durable Hardware Transactional Mem-
ory) is a more recent hardware approach that also requires minor changes to
the coherence protocol. HTM-enabled systems that use current microprocessors
were developed recently [8,14,20]. These systems use the same idea of splitting
the execution of a transaction into two parts: one that operates on volatile mem-
ory (using HTM support) and a decoupled phase responsible for persisting the
changes into NVM. They differ on how this is achieved. In particular, the app-
roach taken by Castro et al. with NV-HTM [8] avoids the use of a shared logical
clock to serialize hardware transactions as in DudeTM [20]. Also, NV-HTM does
not require instrumenting load operations as proposed in the work developed by
Gilles et al. [14].

The closest work to ours is PHyTM [2] (Persistent Hybrid Transactional
Memory), which allows the concurrent execution of both hardware and software
transactions. However, PHyTM is based on PHTM [3] and, as such, cannot use
current hardware support. NV-PhTM, on the other hand, does not have that
limitation since it uses the decoupled HW mechanism of recent works. More-
over, recent studies have showed that hybrid systems have an inherent scalability
limitation [1,7]. There are works on phase-based systems [6,7,19] but they tar-
get architectures with volatile memory. ProteusTM [12] automatically identifies
the best TM implementation based on a multi-dimensional online optimization
mechanism but, as with previous phase-based systems, it was design for volatile
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memory. Using phase-based systems with NVM, though, raises new problems
concerning both the switching policies (which need to take into account specific
performance issues, e.g., log stagnation, affecting NVM-related solutions) and
the logic used to regulate the switching between the various execution phases
(e.g., ensuring that logs are consolidated prior to switching to SW). In Section 4
we have compared the effectiveness of the switching policies used in prior phase-
based systems [7] that considered volatile memory and demonstrated experimen-
tally their inadequacy in the context of NVM.

6 Conclusion

In this paper we presented NV-PhTM: an efficient phase-based transactional
system for persistent memory. NV-PhTM solves the performance issues of both
hardware-only and software-only approaches by dynamically selecting the best
operation mode. The key novel contributions of NV-PhTM consist of: i) new
lightweight policies that allow for automatically identifying the best performing
execution mode (STM or HTM) for arbitrary workloads in a NVM context, and
ii) defining an architecture and phase transitioning mechanisms that allow for
the safe alternation between the phased execution modes. Experimental results
show that NV-PhTM can efficiently select the best execution mode and has low
transition overhead.
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Abstract. Task-based programming models are emerging as a promis-
ing alternative to make the most of multi-/many-core systems. These pro-
gramming models rely on runtime systems, and their goal is to improve
application performance by properly scheduling application tasks to
cores. Additionally, these runtime systems offer policies to cope with
application phases that lack in parallelism to fill all cores. However,
these policies are usually static and favor either performance or energy
efficiency. In this paper, we have extended a task-based runtime system
with a lightweight monitoring and prediction infrastructure that dynam-
ically predicts the optimal number of cores required for each application
phase, thus improving both performance and energy efficiency. Through
the execution of several benchmarks in multi-/many-core systems, we
show that our prediction-based policies have competitive performance
while improving energy efficiency when compared to state of the art
policies.

Keywords: Energy efficiency · Resource management · Resource
sharing · OmpSs-2 · Predictions · Monitoring · Cost

1 Introduction

High-performance computing (HPC) systems are widely used to execute appli-
cations from many domains, such as financial computing, medical applications,
and video and image processing. These systems are usually based on many-
/multi-core architectures with heterogeneous memory and computing devices.
Often, this implies the existence of complex memory hierarchies and technolo-
gies that evolve each year. Hence, application developers need productive and
efficient tools to keep pace with the growing power of HPC systems. Task-based
programming models have emerged as a promising alternative to develop com-
plex applications on those systems. These models provide high-level abstractions
to increase the productivity of application developers, and they rely on runtime
systems to cope with system complexity. The main goal of a runtime system
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is to dynamically schedule application tasks to cores to optimize performance.
However, these runtime systems must also cope with application phases with
low parallelism that leave some of the cores without any task to execute. In this
scenario, runtimes implement resource management policies to handle idle cores.

Commonly, resource managing policies focus on either improving perfor-
mance or energy efficiency. Policies aiming to improve application performance
adopt greedy strategies that always use all the available computational resources.
A clear example would be OpenMP’s [17] active policy, in which idle threads are
actively checking for new work, consuming processor cycles and energy. On the
other hand, techniques such as the ones in OpenMP’s passive policy are used
when the goal is to improve energy efficiency. In this case, idle threads imme-
diately yield the processor to avoid contention inside the runtime and minimize
the energy consumed. However, neither of these policies is adaptive enough to
optimize both energy consumption and performance.

In order to tackle this challenge, two different hybrid approaches have been
explored in the past [4,24]. The first one tries to improve performance-driven
policies by adopting a greedy strategy for some time and, if no work is found in
this period, yielding the processor to minimize energy consumption. Although it
has positive effects on energy efficiency, the explored proposals struggle to find
an optimal frequency to switch between policies. The second approach is based
on policies that favor energy efficiency, in which idle resources are woken up at
a specific frequency to check if new work is available. Similarly for both, finding
a frequency that suffices all cases is a hassle.

In this work, we propose a novel resource management policy that can
simultaneously optimize performance and energy efficiency. Our policy relies
on the information provided by our monitoring and prediction framework to
dynamically predict the number of cores that are required for each applica-
tion phase. The main contributions of this work are: (i) the creation of the
monitoring and prediction infrastructure, which is capable of making precise
workload predictions for task-based programming models; (ii) the design of
prediction-based resource managing policies; and (iii) the enhancing of existent
resource-sharing policies through predictions. Through the execution of distinct
well-known benchmarks across different many-core/multi-core architectures, we
show that:

– We equal – and sometimes beat – the performance of state of the art policies
that prioritize performance.

– Our policies also equal and, in some scenarios, beat the energy efficiency of
state of the art policies that prioritize energy efficiency.

– Enhancing resource-sharing techniques through predictions simultaneously
improves performance and energy efficiency.

The remainder of this paper is structured as follows. In Sect. 2, we discuss
state of the art resource managing strategies in different parallel programming
models. Next, in Sect. 3, we give insight into our monitoring and prediction
infrastructure and improved prediction-based policies. In Sect. 5, we present the
evaluation of our proposals across different systems and various benchmarks.
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In Sect. 6 we go over related work and state of the art policies. Finally, in Sect. 7
we give concluding remarks and comment on future work.

2 Background

In this paper, we study the enhancement of performance and energy efficiency
through resource management policies for one of the most widespread parallelism
strategies: tasking. In tasking, parallelism is specified through tasks, – i.e., the
basic unit work – which are blocks of code that can be executed concurrently.
The data flow of an application is specified through dependencies between tasks,
which are annotated by users. OpenMP and OmpSs-2 are some programming
models that can be used to exploit task-level parallelism. In OpenMP, users
define parallelism through regions of code in which two or more threads may
execute simultaneously. On the other hand, in OmpSs-2, there is an implicit
parallel region that covers the whole application. This allows resource manage-
ment to be more malleable since, at any point in the execution, the runtime
system can idle or resume threads.

Regardless of the programming model, threads that are not doing useful
computation at a given time – e.g., while they are in a barrier – must wait for
a new workload. While waiting, threads behave differently depending on the
underlying resource managing policies. Next, we describe conventional policies
in the literature, along with their advantages and flaws.

Active or Busy Policies: In these, waiting threads are kept busy-waiting
until work is available. Depending on the underlying runtime, this policy allows
for an instant reaction to the creation of work. Nevertheless, it is a static policy
that cannot adapt to workload changes. This exposes two main drawbacks in
most OpenMP implementations. The first one is dealing with the contention
caused by threads constantly polling shared data structures. In OmpSs-2, this
problem is resolved through subscription locking techniques. However, energy
efficiency – the second drawback – is ignored in the policies of both models, as
threads consume processor cycles while busy-waiting.

Fig. 1. Behavior of busy (left), idle (middle), and prediction policies (right)
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Figure 1 exemplifies the number of active CPUs over time for a parallel region
which has two different workload phases. The first phase (α) has enough work
for six CPUs, while the second one (β) has enough work, on average, for four
and a half CPUs. In this scenario, in busy policies – left part of the figure – at
all times there are eight threads actively polling for work.

Passive or Idle Policies: In these, waiting threads do not consume proces-
sor cycles. These policies are usually not reactive, as they are implemented by
idling threads for a constant amount of time. This causes benefits for energy effi-
ciency but may be adverse for performance. In OmpSs-2, as tasks are created,
threads are resumed so they may poll once again. This allows for an instan-
taneous reaction to the addition of work, which makes it more reactive than
OpenMP. Taking into account the previous example, the middle part of Fig. 1
shows that, in these policies, threads are regularly being resumed and idled onto
CPUs as the workload varies. Often, in fine-grained or irregular applications,
this causes substantial amounts of overhead.

Hybrid Policies: To solve all the previously listed issues, OpenMP users
can tune the rate at which waiting threads are idled and resumed. This enables
users to find a balance between energy efficiency and performance. However, the
chosen rate is a static value that cannot be changed at run-time. Therefore, this
method cannot cope with variability in irregular applications, as these may need
different rates throughout their executions.

Resource Sharing: OmpSs-2 offers an execution mode that integrates
Dynamic Load Balancing (DLB). DLB [9] is a tool that is transparent to users
and enables runtimes or applications to share processing elements between each
other. This sharing is implemented through the Lend When Idle (LeWI) mecha-
nism. It showcases similarities when compared to the idle policy. When threads
poll for tasks and receive none, the CPU onto which they are executing is shared
– instead of being idle. For this reason, depending on the application, this pol-
icy is excessively reactive and makes adverse decisions when lending/acquiring
CPUs.

3 Improving Resource Managing Policies

As previously discussed, policies that do not look ahead are too naive to cope
with the challenge of enhancing both energy efficiency and performance. There-
fore, we advocate for policies that take into account workload predictions to
make better decisions when handling processing elements. Next, we describe (i)
the necessary elements to create a monitoring and prediction infrastructure to
equip runtime systems with the required information to create better policies,
and (ii) our approach towards finding a solution to the trade-off between energy
efficiency and performance with prediction-based resource managing policies.

3.1 Monitoring and Prediction Infrastructure

In order to tackle the drawbacks of current policies and the challenges
exposed in Sect. 2, we used a lightweight infrastructure capable of providing
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 #pragma oss task label(merge) cost(end-start)
 void merge(int start, int end, float *A) {
   (...)
 }

Scheduler

Monitoring

CPU Manager

Tasktypes
type

Past Metrics

Prediction Module
cost

 createTask(Task *task, void *taskArgs) {
   (...)
   Monitoring::taskCreated(...);
   Scheduler::addReadyTask(task);
   (...)
 }

Application Code Runtime

Runtime Code

Fig. 2. A glimpse of the monitoring and prediction infrastructure

precise predictions with negligible overhead. Our infrastructure pinpoints crit-
ical changes in tasks, threads, or CPUs. Whenever possible, these changes are
tracked outside the critical path of the runtime (i.e., synchronization points) so
that the module is as lightweight as possible. Furthermore, to produce negligible
overhead in fine-grained task scenarios, we combine the usage of atomic struc-
tures and the aggregation of metrics in a per-thread and per-task type basis.

Another critical attribute is the precision of predictions. Averaging task exe-
cution times is not precise enough due to the variability discussed in previous
sections. On top of that, two tasks of the same type may behave unexpectedly
depending on their input size. For instance, one of the inputs may be too large
to fit within the same cache hierarchy level. Thus, to solve this, we use the cost
clause, already proposed in previous works [15]. This clause specifies, in a rough
way, the computational weight of a task. Such information allows normalizing
metrics in order to extrapolate predictions for any task of the same type. Fur-
thermore, this clause is user-friendly and requires little effort, as its filler value
should be well-known to application developers. Figure 2 generally exposes all the
elements involved in the computation of predictions. Upon a task is created and
placed in the scheduler, the monitoring module predicts its metrics using past
information from similar tasks. Predictions are then accumulated and passed
onto the prediction module, which aids the resource manager by predicting the
number of resources to use for the current workload.

Algorithm 1 shows a pseudo-code that describes how resource utilization pre-
dictions are computed. As previously mentioned, timing metrics are aggregated
on a per-task type basis. This allows at any given time to have a precise pre-
diction of the available workload (Wij ) for every runtime status (i) and every
task type (j). With these and normalized information from the execution of past
tasks of every task type (αj), we can precisely approximate the elapsed execu-
tion time of the available workload (β). Once a prediction rate is chosen (f),
we can compute the optimal number of CPUs to utilize over that period (Δ),
which takes into account the number of available tasks as well as their expected
execution time. This information is then passed to the resource manager so that
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Algorithm 1. Algorithm to predict the optimal CPU utilization (Δ)

Ti: Execution time of task i
Ci: Cost of task i
f : Prediction frequency
NCPUs: Maximum number of CPUs
Wij : Workload for runtime status i
and tasktype j
αj : Normalized cost for tasktype j
Mj : Number of tasks of type j

Ensure: 0 < Δ ≤ NCPUs

1: function getCPUPrediction(...)
2: γ ← 0
3: j ← 0
4: while (γ < NCPUs) do

5: β ← (Wreadyj
+Wexecutionj

)∗αj

f

6: γ ← γ + β
7: j ← j + 1
8: if i > Nruntime status then
9: break

10: end if
11: end while
12: Δ ← min(γ,

∑tasktypen
j=0 Mj)

13: end function

the current number of CPUs can progressively be trimmed or increased to meet
the prediction. Finally, to adapt to variability with haste, the normalized met-
rics are computed using a rolling window, which weights past metrics by their
occurrence. The more recent these previous metrics are, the more weight they
have towards the computation of their respective α.

3.2 Adaptive Prediction-Based Policies

Throughout Sect. 2, we describe the main flaws of current resource managing
policies. To enhance these policies, we propose predicting the optimal number
of CPUs at every point in time and at run-time. In other words, at a point in
time Ti, we decide the number of CPUs to be used until Ti + f , where f is the
time interval until the next prediction is made.

As shown in Sect. 3.1, our resource managing predictions are based on task
timing predictions. To compute the latter, we normalize task timing metrics
using their cost values in order to obtain normalized or unitary costs per task
type. These unitary costs roughly represent the amount of time spent in the
execution for each unit of cost of the task [15]. Then, we aggregate task costs
per task type and runtime status separately. With these two metrics, at run-time,
we compute the product of the accumulation of cost of all the task instances of
a specific type by the respective unitary cost metric. Since these unitary values
may vary over time, computing the product at run-time makes it susceptible
to changes, which is precisely our goal. Furthermore, we average these unitary
metrics using exponential moving averages. This allows them to be susceptible
to variability and update as executions progress.

To compute the current amount of available workload in the system, we take
into account ready and executing tasks. However, tasks in the executing status
cannot account for their entire predicted time, as they may already be deep
into their execution. To solve this, we aggregate task execution times through
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Algorithm 2. Pseudo-code of the behavior of threads within the CPU manager
Δ: An atomic variable that holds the predicted optimal number of CPUs
δ: The current number of active CPUs
a: The action that triggered the call (polling or adding tasks)

1: function executePolicy(thread, a) � δ is updated in a thread-safe manner
2: if a == POLL then
3: if queue == ∅ then
4: if δ > Δ then
5: δ ← δ − 1
6: idle(thread)
7: cpu ← getCPU(thread)
8: releaseCPU(cpu)
9: end if
10: end if
11: else [a == ADD]
12: if δ < Δ then
13: idleThread ← getIdleThread()
14: idleCPU ← acquireCPU()
15: if idleCPU �= ∅ then
16: δ ← δ + 1
17: resume(idleCPU, idleThread)
18: end if
19: end if
20: end if
21: end function

the parent-child link between tasks. When a task finishes, its execution time is
subtracted from the parent’s task predicted time, if it is available.

In Algorithm 2, we show a pseudo-code of how our CPU manager uses these
predictions. Rather than forcing the runtime to comply with the predicted num-
ber of CPUs (Δ), we save this value in an atomic variable. Then, when threads
poll for tasks and none exist, if this value marks that the current number of
active CPUs must be decreased, the thread idles until further notice, so that it
does not consume CPU cycles. Reversely, when tasks are added into the sched-
uler and this value marks that more CPUs are required, idle threads are resumed
to execute these newly created tasks.

The main benefits of our policy are twofold. If we compare our prediction
policy to the idle or passive policies, a common feature is that they are both
highly reactive to changes in the available workload. However, predictions occur
at a specific rate. This allows our policy to avoid the overhead of continuously
waking and idling threads in fine-grained or irregular applications. This benefit
can also be seen as a middle ground between idle and busy policies. Taking
into account the example introduced in Sect. 2, Fig. 1 shows the behavior of our
prediction policy (right part). The rate at which predictions are inferred avoids
multiple idling and resuming operations which, in the long run, adds up to avoid
substantial overhead.

Another primary benefit of our policy is the adaptiveness to the granularity
of tasks. Managing resources by only considering the number of ready tasks is
enough in some scenarios. Nonetheless, for applications with fine-grained tasks,
it would end up utilizing an excessive amount of CPUs for their workload. With
the prediction policy this is resolved, as it takes into account the predicted
granularity of tasks.
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3.3 Prediction-Based Sharing of Resources

Section 2 briefly introduces the DLB integration of OmpSs-2. This mode of exe-
cution, as previously mentioned, resembles the idle policy. As it is as reactive, it
may produce huge amounts of calls to the DLB library when lending or acquiring
CPUs. Such calls do not come for free; they introduce non-negligible overhead.

To fix this flaw, we propose to modify the mechanism within OmpSs-2 to
avoid making eager decisions. Our idea follows the same concept as the one
adopted in the prediction policy. Instead of letting threads decide when CPUs
are lent or acquired, we offload such decisions to an external prediction heuristic.
Similarly, this heuristic predicts the amount of workload currently available in
the system. Nonetheless, it is slightly modified to allow a superior number of
CPUs, as DLB may provide more CPUs than the ones currently available to the
runtime. When a thread polls for tasks and receives none, it will use the heuristic
to decide whether its CPU must be lent. Simultaneously, as soon as predictions
are inferred, the heuristic makes a single call to DLB in order to acquire as many
CPUs as required. Therefore, threads do not require to do it progressively.

4 Experimental Setup

The experiments we performed were run on Intel Xeon and KNL multi-core
systems, as shown in Table 1. In the same table, we also show the compilers
used in each system. We present all results as the arithmetic mean of five runs
for all metrics. To measure the energy efficiency, we consider the energy-delay
product (EDP), which correlates both performance and energy consumption
in only one value. To retrieve energy consumption metrics, we used the Intel
Running Average Power Limit library [7]. The evaluation is partitioned into
two phases. The first phase targets the measuring of overhead of our strategies
and a comparison between the policies in two versions of OmpSs-2 and different
OpenMP implementations. The second targets the evaluation of our prediction-
based strategy for resource sharing using DLB.

In our experiments, we used the Cholesky Factorization benchmark and
the High Performance Computing Conjugate Gradients1 (HPCCG) mini-
application. The former decomposes a matrix into the product of a lower tri-
angular matrix and its conjugate transpose. The latter is based on the CG
benchmark for a 3D chimney domain. They are both highly scalable bench-
marks that present varying compute-intensive workloads. Furthermore, to test
irregularity in applications, we used two versions of Cholesky; one that pro-
duces coarse-grained tasks, and another that creates an excessive amount of
fine-grained tasks. Similarly, we also covered both granularity scenarios for the
MultiSAXPY benchmark, which performs the SAXPY level one operation from
the Basic Linear Algebra Subprograms package [12]. Finally, to test our policies

1 HPCCG is implemented using multidependences, available in OpenMP 5.0 [17]. As
the Intel 2020.0 compiler does not support them, HPCCG-IOMP results are missing.
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Table 1. Architectures used in our experimental setup

Name MN4 KNL

Processor Intel Xeon Platinum 8160 Intel Xeon Phi CPU 7230

Architecture Skylake Knights Landing

Frequency 2.10 GHz 1.30 GHz

# of Sockets 2 1

# of Cores 48 (24 × 2) 64

Memory 96 GB 96 GB

OS SUSE 12 SP2 SUSE 12 SP2

Intel Compiler 19.1.0.166 19.1.0.166

GNU Compiler 9.2.0 9.2.0

in memory-bound benchmarks, we used Gauss-Seidel and STREAM. The for-
mer is a solver that simulates the distribution of heat over time, and the latter
is a benchmark that measures memory transfer rates in MB/s. While Gauss-
Seidel could be highly parallel, to have a fair comparison against OpenMP, in
the OmpSs-2 implementation we include a barrier after each time step. This
produces load imbalance but, simultaneously, makes it an ideal candidate to be
combined with STREAM, which is highly parallel and balanced.

5 Evaluation

Even though assessing the accuracy of our predictions was done in previous
works, in Table 2 we include results of the accuracy of task timing predictions
for all benchmarks and machines. In this table, we showcase the number of task
instances used to compute the accuracy results and the average accuracy of all
predictions. These predictions are then used towards calculating the optimal
number of CPUs to use, as shown in Algorithm 1. The (F) and (C) shown
next to benchmark names indicate whether the results are for the fine-grained
scenario or the coarse-grained scenario, respectively. Due to the low number of
task instances in coarse-grained Cholesky, CPU utilization predictions are based
only on the number of available tasks, which is the go-to approach when task
timing predictions are not available. Throughout the whole evaluation we used
the same prediction rate – f in Algorithm 1 – of 50 μs.

To measure the overhead of our monitoring infrastructure, we ran all the
previously mentioned benchmarks with varying task granularities. We compared
OmpSs-2’s current busy policy against a modified version of the busy policy that
monitors metrics and infers predictions, but uses neither. We observed that for
extreme situations with millions of fine-grained tasks, our infrastructure adds,
in the worst case, a maximum overhead of 3% to the execution time. We believe
these overheads are negligible in comparison to the benefits we obtain.
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Our evaluation comprises four different implementations: GCC OpenMP [16]
(gomp), Intel OpenMP [11] (iomp), OmpSs-2 using its linear regions depen-
dency system (oss2L), and OmpSs-2 using its improved discrete dependency
system (oss2D). For the OpenMP implementations, we evaluate all their avail-
able thread-waiting policies: active, passive, and a hybrid between both. For
the OmpSs-2 counterparts, we evaluate their current resource managing poli-
cies, busy and idle, and our prediction policy. Due to the similarities in their
concepts, we group the comparison as follows: Active/Busy, Passive/Idle, and
Hybrid/Prediction. In all figures, from left to right, we show the results of gomp,
iomp, oss2L, and oss2D.

Figure 3 showcases the normalized performance of all benchmarks, architec-
tures, and between all policies. For Cholesky’s coarse-grained scenario, Gauss-
Seidel, and HPCCG, the performance obtained using the prediction policy in
both OmpSs-2 versions either equals or surpasses the performance of all other
policies in MN4. In fine-grained Multisaxpy, comparing all the OmpSs-2 policies,
our policy yields either similar performance (in KNL) or surpasses other policies
(in MN4). Nonetheless, in the coarse-grained scenario in KNL, busy yields better

Table 2. Average prediction accuracy of each benchmark and architecture

MN4

Benchmark Cholesky (F) Cholesky (C) HPCCG Gauss-Seidel Multisaxpy (F) Multisaxpy (C)

# of Instances 3*106 600 15000 25600 1*105 20000

AVG Accuracy 88.25% NA 78.45% 99.91% 70.63% 79.49%

KNL

# of Instances 3*106 600 15000 25600 1*105 20000

AVG Accuracy 92.65% NA 75.32% 99.81% 76.83% 86.12%
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Fig. 3. Normalized performance w.r.t. the best scenario on each application
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performance than prediction. We attribute this to the precision in predictions,
as shown in Table 2. This accuracy could be enhanced by taking into account
other metrics – as it is a memory-bound benchmark. Last but not least, in the
fine-grained Cholesky scenario, the prediction policy yields similar performance
when compared to OmpSs-2’s linear version. However, in the discrete version,
its performance remains between the busy and idle policies, being busy the most
performant. This difference between versions led us to find out that the moni-
toring infrastructure adds slightly more overhead in OmpSs-2’s discrete version,
as contention is minimal and the overhead shifts to other runtime modules.

Figure 4 shows the comparison of EDP between all policies and architec-
tures. Thus, in these plots, lower values are better. For coarse-grained Cholesky,
prediction policies obtain better results than any other policies in MN4. In
KNL, the only configuration that beats the prediction policy of OmpSs-2 dis-
crete is OmpSs-2 linear’s idle policy. As for the fine-grained scenario, OmpSs-2
discrete’s prediction policy yields less EDP than any other policy for both archi-
tectures except when compared to GOMP’s passive policy in KNL, as their
results are similar. In both Gauss-Seidel and HPCCG, prediction policies beat
any other policy in any implementation and architecture. Finally, for the coarse-
grained Multisaxpy scenario, EDP results in KNL are very similar across policies
and implementations. However, in MN4, prediction policies achieve considerably
lower EDP than any other policy except when compared to GOMP’s hybrid pol-
icy, which obtains similar results. Both fine-grained and coarse-grained scenarios
present similarities. However, as predictions benefit from fine-grained and irreg-
ular applications, in MN4 prediction policies beat any other policy in EDP.
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Fig. 4. EDP results (raw data) for each application and policy
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To further evaluate our predictions, we created a prediction-based policy for
the DLB execution mode of OmpSs-2. We chose to run the Gauss-Seidel simula-
tion along with the STREAM benchmark in MN4, as they vary in features and,
thus, combine perfectly when executed concurrently. For the former, we used an
input size that generates slightly coarse-grained tasks, while in the latter, we
chose an input size that generates fine-grained tasks. Thus, STREAM benefits
from the lack of workload of Gauss-Seidel after each time-step. In Table 3, we
show the average results of several executions with multiple configurations. We
executed both applications concurrently, each in a single NUMA node (half the
number of processors of the whole node) for the Concurrent configuration. To
take into account any possible noise between shared resources – e.g., cache pol-
lution or bandwidth thresholds – we also executed each application in a single
NUMA node on its own, which is shown as the Single configuration. Then, we
executed using DLB to share cores between applications in three configurations:
Concurrent + DLB LeWI is the default policy. Concurrent + DLB Hybrid is
a modified version of the DLB integration that only shares CPUs after several
failed attempts of polling tasks from the scheduler – hence the similar name to
OpenMP’s hybrid policy. For our experiments we chose 100 as the number of
attempts before a CPU is shared. Finally, Concurrent + DLB Prediction shows
the results of the DLB execution mode enhanced with our predictions.

In the LeWI policy, STREAM can benefit from the lack of workload of Gauss-
Seidel, thus reducing its execution time. Nevertheless, as this policy is extremely
reactive, the combination of the number of calls to DLB is around 4 million in
executions of 100 and 75 s, respectively. These calls add non-negligible overhead.
On top of that, since Gauss-Seidel lends CPUs for short amounts of time in
which neither applications can benefit, its execution time increases. To try to
tackle this flaw in fine-grained scenarios, we let threads spin for a while before
lending their CPU in the Hybrid version. Nevertheless, as shown, the number
of calls and execution time are similar to LeWi’s. By spinning before lending,
the runtime is stressed with more contention, thus leading to similar execution
times, EDP, and number of DLB calls. Finally, when enhancing the LeWI pol-
icy with predictions (DLB Prediction), the results are promising. As shown, the
number of DLB calls is greatly reduced – 4 times fewer calls. Simultaneously,
better decisions are taken both when lending and acquiring CPUs. This leads
to a 1.4x speedup for STREAM, similar execution times for Gauss-Seidel, and
a considerable reduction in EDP in STREAM as well. Furthermore, when com-
paring EDP metrics between policies that use DLB and the Single policy, it
is noticeable that results are worse for the DLB counterparts. Since the Single
policy idles CPUs when they are not used, EDP is better than in DLB policies
where CPUs are never idled. Hence, if energy metrics are the primary target,
the Prediction policy in the non-DLB scenario would be preferable.

To visualize how prediction-based policies improve resource sharing, we add
the execution traces of the previous scenario for both the DLB + Hybrid policy
(left) and the DLB + Prediction policy (right) in Fig. 5. To shorten execution
traces, the execution of these benchmarks was slightly different in granularity of
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Table 3. Comparison of metrics between OmpSs-2 + DLB policies

Config. Time (s) EDP # DLB calls

Gauss-Seidel Stream Gauss-Seidel Stream Gauss-Seidel Stream

Single 87.4 78.3 1097330 1223111 – –

Concurrent 87.4 78.3 1705625 1434911 – –

Concurrent + DLB LeWI 100.9 73.3 2318388 1427072 768078 3392692

Concurrent + DLB Hyb. 101.5 74.3 2318244 1471916 890924 3169858

Concurrent + DLB Pred. 89.6 55.8 1849275 870269 69504 842634

tasks when compared to the results shown in Table 3, hence the slight difference
in execution time. The red series corresponds to the execution of Gauss-Seidel,
while the light-orange series corresponds to STREAM. In the prediction policy,
as shown, the granularity of sharing in resources is coarser. CPUs are not lent
unless they will not be used for a certain amount of time, and they will not be
acquired unless they truly are required. Reversely, in the hybrid policy, there are
still flawed decisions when lending or acquiring CPUs. As shown, there is much
sharing that could be removed to avoid both the delays in Gauss-Seidel and the
overhead of lending and immediately after re-acquiring CPUs.

6 Related Work

Resource Management: Techniques aiming to improve performance through
resource management have been thoroughly studied. Barekas et al. [2] and Cal-
listo [10] advocate for inter-process sharing of resources in their proposals. The
former presents a resource manager and a runtime system which, respectively,
distribute hardware resources to OpenMP applications and adapt their degree
of parallelism. Although it is capable of providing better performance than com-
mercial implementations of OpenMP, their approach offers no policies to improve
performance between parallel regions. Callisto is a resource management layer
for parallel runtime systems that coordinates the execution of parallel applica-
tions. It consists of (i) a dynamic scheduler that defines which jobs can execute
in parallel; and (ii) a low-level API to manage synchronization points. However,
it assumes that parallel sections of jobs are CPU-bound and that runtime sys-
tems need to be adapted to use Callisto. Eichenberger et al. [8] propose a model
to control thread affinity for OpenMP applications. However, their work does
not present any advances regarding the optimization of resource management
policies.

Other proposals [4,24] have focused on our primary target, optimizing
resource policies to improve performance or maintain it while improving energy
efficiency. In this line, Boguslavsky et al. [4] investigate different strategies to
determine for how long processes should spin before blocking. Even though their
results are promising, such static values cannot cope with irregular applica-
tions that may need different blocking rates throughout their executions. To
deal with oversubscription in OpenMP applications, Yan et al. [24] define five
policies: spin busy, spin pause, spin yield, suspend, and terminate. However, in
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OpenMP, such policies cannot change within parallel regions. Thus, this app-
roach flaws similarly. On the other hand, our approach is capable of dealing with
such situations, as our policies can adapt at any point in the execution.

Thread Malleability within Parallel Regions: A number of studies, such
as Thread Reinforcer (TR) [19], Feedback-Driven Threading (FDT) [23], and
ACTOR [6], investigate on optimizing either performance or energy by tuning
the number of threads in parallel regions. TR [19] is a framework in which appli-
cations are executed multiple times with varying numbers of threads. FDT [23]
adapts the number of threads by considering contention in locks and memory
bandwidth. ACTOR [6] is a system that aims to improve the energy efficiency
of parallel applications. In it, artificial neural networks are used to predict the
number of threads to execute each parallel region. These previous approaches
require either warm-up executions or techniques that may introduce substantial
amounts of overhead when done at runtime. Several other studies target solu-
tions at run-time. LIMO [5] is a system that monitors applications and adapts
the execution accordingly. Parcae [20] is a framework that creates multiple par-
allel transforms of sequential programs and, at run-time, determines the degree
of TLP exploitation. Similarly, ParallelismDial [22] is a model that automat-
ically regulates the number of threads per region. Nonetheless, some of these
approaches tune applications specifically for input sets and architectures. Oth-
ers require OS support to intercept blocked threads to change their policies.

Energy Efficiency: Improving energy efficiency through resource management
policies has been investigated as well, in studies such as OpenMPE [1], Benedict
et al. [3], and LAANT [14]. In the former, an OpenMP extension designed to
improve energy management is proposed. In [3], the authors propose an energy
prediction mechanism for OpenMP applications using a Random Forest Model-
ing approach. LAANT [14] is a library that aims at optimizing the EDP metric.
The study conducted in Porterfield et al. [18] similarly proposes a system to
automatically adjust the number of threads based on on-line measurements of
system resource usage. These works are based on adjusting the number of threads
of OpenMP applications in parallel-regions or the whole application. Thus, simi-
larly to our previous explanation, they lack adaptiveness when it comes to irregu-
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Fig. 5. Execution traces of hybrid (left) and prediction (right) DLB policies
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lar applications. Li et al. [13] propose a library to reduce energy consumption for
hybrid MPI/OpenMP applications. Even though their aim is out of our scope,
they use prediction models to enhance energy efficiency with negligible or no loss
of performance. Finally, Shafik et al. [21] propose an adaptive energy minimiza-
tion model for OpenMP programs using annotations. These annotations require
execution time estimations, which leads us to believe warm-up executions are
needed to provide the library with such metrics.

7 Concluding Remarks and Future Work

In this paper, we presented resource management policies based on predictions
that simultaneously optimize performance and energy efficiency. More specif-
ically, we showcase (i) a prediction-based CPU managing policy that main-
tains performance while improving energy efficiency, and (ii) a prediction-based
resource sharing mechanism which enhances both performance and energy effi-
ciency when compared to its predecessor. We exemplify our proposal in OmpSs-
2, although our approach can be applied to other parallel programming models
based on tasks or fork-join.

While our prediction-based policies are capable of making better decisions
than well-known policies from state of the art, we left a few aspects out of the
scope which we will target in future work. Firstly, our policies could benefit
from taking prediction error into account. Thus, when detecting anomalies, our
infrastructure would be able to swap between CPU managing policies at run-
time. We also believe that the rate at which predictions are inferred may be
improved with a combined approach that triggers our mechanism when a certain
number of events happen – e.g., the creation or finalization of a number of tasks.
Finally, we also plan to enable an on-line task characterization so that both our
policies and predictions take more than one metric into account.
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Abstract. Building efficient algorithms for data-intensive problems
requires deep analysis of data access patterns. Random data access pat-
terns exacerbate this process. In this paper, we discuss accelerating a
randomized data-intensive machine learning algorithm using multi-core
CPUs and several types of GPUs. A thorough analysis of the algorithm’s
data dependencies enabled a 75% reduction in its memory footprint. We
created custom compute kernels via code generation to identify the opti-
mal set of data placement and computational optimizations per compute
device. An empirical evaluation shows up to 245x speedup compared to
an optimized sequential version. Another result from this evaluation is
that achieving peak performance does not always match intuition: e.g.,
depending on the GPU architecture, vectorization may increase or ham-
per performance.

Keywords: Algorithms for accelerators and heterogeneous systems ·
Performance analysis · Combinatorial and data intensive application

1 Introduction

The past decade has witnessed a tremendous increase in the applicability and
usefulness of artificial intelligence in our daily lives. Much of this activity was
fueled by the mainstream adoption of machine learning approaches as they pro-
vide tools to solve inherently difficult problems. However, many of these tech-
niques require a massive amount of computation which severely limits the scale
of problems that can be tackled.

In this paper, we present the methodology followed in designing and imple-
menting a high-performance version of an existing Stochastic Gradient Markov
Chain Monte Carlo (SG-MCMC) machine learning algorithm that detects over-
lapping communities in graphs. The algorithm analyzes pair-wise interactions
between entities in order to discover hidden attributes. For instance, consider
a social network represented as an undirected graph where the vertices repre-
sent individuals and edges represent relations between them. Given the relation
c© Springer Nature Switzerland AG 2020
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information, the algorithm can identify latent groups of individuals that rep-
resent shared interests. This problem structure differs from graph partitioning
or clustering as there is a many-to-many relationship between individuals and
interests. For example, each individual can have multiple interests. Simultane-
ously, each interest group can span multiple individuals. Formally, this problem
domain is known as Mixed-Membership Stochastic Blockmodels (MMSB). The
theory behind the algorithm is discussed in more detail in [10].

The focus of this work is on the computational efficiency and parallel per-
formance of the SG-MCMC algorithm. More specifically, we discuss the process
of accelerating the algorithm by developing aggressive optimizations targeting
multi-core CPUs and GPUs. The parallel algorithm achieves speedup factors
up to 245, compared to a well-tuned sequential C++ program which itself is
a factor 1000–1500 faster than the Python/Numpy program developed by the
algorithm’s original authors. From a computational point of view, this algorithm
differs from widespread machine learning algorithms in several ways. First, it is
highly data-intensive which makes GPU acceleration particularly challenging.
Second, owing to the algorithm’s stochastic nature, the majority of its mem-
ory access patterns and data dependencies are non-deterministic. As a result,
straightforward optimization attempts of the memory access patterns either fail
or lead to non-intuitive results.

Through careful analysis of the computation and data structures we show
that the algorithm’s full state can be reduced by roughly 75%. Compressing the
state significantly reduces the data intensity and allows for tackling larger prob-
lems while maintaining all state in memory. Further, by cataloguing and account-
ing for the various load and store operations, we identified the highest priority
locations of data reuse. In order to navigate the unclear optimization landscape,
we developed an effective kernel code generation mechanism that explores all
permutations of the available optimization opportunities. These optimizations
include caching in shared memory, caching in the register file, loop unrolling and
explicit vectorization.

In summary, the contributions of this work are:

– decrease the algorithm’s data intensity by eliminating 75% of its memory
footprint;

– tune the algorithm’s performance by maximizing data reuse and identify the
fastest combination of optimizations through dynamic kernel code generation;

– perform a comparative performance analysis of the accelerated algorithm ver-
sions on a multi-core CPU and a number of GPUs, highlighting the particular
optimization combinations that were successful per device;

– achieve speedup factors of 21 and 245 over an optimized sequential program
using a multi-core CPU and a GPU respectively.

The remainder of this paper is organized as follows. A description of the
sequential version of the algorithm and its data structures is provided in Sect. 2.
Sect. 3 discusses the design of the parallel algorithm. Section 4 provides an empir-
ical evaluation of the contributions of this work. Sect. 5 presents an overview of
related works. Finally, Sect. 6 concludes.
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2 SG-MCMC Algorithm Overview

In this section we describe the computational aspects of the SG-MCMC MMSB
algorithm. Moreover, we will introduce the data structures and notation that
will be used throughout this paper. A detailed explanation of the algorithm is
provided in [4,10].

The network graph G consists of the undirected edges E and has N vertices.
The algorithm starts by partitioning G into the training set, the validation set
Eh and the test set (the latter is not used in our implementations). Eh and the
test set are much smaller than G, typically between 1% and 10% of the edges
in G. The number of communities K is specified as a model parameter to the
algorithm.

The algorithm progresses by iteratively improving the global state of the
learning problem, using the training set. There are two pairs of data structures
that hold the global state. θ, a K×2 matrix, is used for calculating the community
strength β, i.e. the probability that two members in a community share an edge.
β is a vector of length K; it is the normalized version of θk,2. The matrix π of
dimensions N×K represents the probability for each vertex in G to be a member
of each community. It is the normalized equivalent of the matrix φ of dimensions
N×K, on which the calculations occur. The definitions of β and π are:

βk =
θk,2
θsumk

where θsumk =
2∑

j=1

θk,j (1)

πi,k =
φi,k

φsum
i

where φsum
i =

K∑

j=1

φi,j (2)

The symbols used throughout this paper are given in Table 1.

Table 1. Definition of most important symbols

Symbol Type Size Description

G Graph

K K Set of communities

V {vertex} N Vertices in G

E {edge} Linked edges in G

E {edge} V × V: linked and nonlinked edges

Eh {edge} Held-out subset of the graph

En {edge} Sampled mini-batch of edges in E

m Number of vertices in En

Vn {vertex} Sampled neighbor set for a vertex in En

θ float vector 2-D K × 2 Reparameterization of β. βk = θk,2/
∑

j θk,j

β float vector K Community strength

φ float vector 2-D N × K Reparameterization of π. πi,k = φi,k/
∑

j φi,j

π float vector 2-D N × K πi,k is probability that vertex i is in community k
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Algorithm 1. Sequential version of SG-MCMC for a-MMSB
1: while sampling do
2: sample a mini-batch En

3: // En may be a subset of G, or disjoint with G
4: for each vertex i in En do
5: sample n random ’neighbors’ (not from G)
6: for each edge (i, neighbor) do
7: calculate its contribution to the gradient in φ

8: update φi using stepsize s

9: for each vertex i in En do
10: update πi according to changed φi

11: for the edges in En do
12: calculate gradients in θ and update θ

13: for the edges in En do
14: update β accordingly

15: every so many iterations: // metric is perplexity
16: verify the quality of π and β against the validation set

Pseudo-code for the algorithm is presented in Algorithm1 which is based on
the description in [4,10].

An iteration in the algorithm consists of 6 compute stages. We will high-
light the data accessed in the stages as this determines the opportunities for
parallelism.

The first stage (line 2 in the Algorithm) randomly draws a mini-batch En,
using the “stratified random node” strategy [10]. In this strategy, a coin toss
is used to decide between two sample types. The first sample type chooses one
random vertex i and selects all of its edges to constitute the mini-batch En. This
sample type is referred to as link edges. The second sample type randomly draws
a vertex i and generates random edges of the form (i, j) such that the edges are
not in G. This sample type is referred to as nonlink edges. The set of vertices
that constitute the edges of the mini-batch En is denoted m.

In the second stage (line 5), for each vertex i in m, a neighbor set Vn of size
n is randomly sampled with edges of the form (i, j).

Stage 3, update phi (line 6–10), calculates a gradient vector ∇φi for each
vertex i in the mini-batch, by iterating over the edges (i, j) in i’s neighbor set;
the data that is used is πi, πj , and β. The gradient ∇φi is used to update φi.
Stage 4 (line 9–10), update pi, updates πi so it remains the normalized version
of φi.

Stage 5, update theta (line 11–12), uses β and πa, πb for the edges (a, b) in the
minibatch En to calculate a gradient vector ∇θ. θ is updated using ∇θ. Stage 6,
update beta (line 13–14), recalculates β as the normalized version of θk,2.

At regular intervals, the algorithm’s global state is assessed by evaluating
the perplexity over the edges in the validation set Eh. Perplexity is a metric that
represents the quality of the algorithm solution at a given point in time. It is used
to detect the algorithm’s convergence. The perplexity, as elaborated in [4,10], is
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the exponential of the average over time of the negative log-likelihood of meeting
a link edge. In this calculate perplexity stage (lines 15–16), β is used, as are πa

and πb for each edge (a, b) in Eh.
The graph G is queried for membership in the stages update phi, update beta,

and calculate perplexity. The validation set Eh is traversed in the calcu-
late perplexity stage.

3 System Design and Implementation

The process of designing an accelerated version of the SG-MCMC MMSB algo-
rithm involved multiple transformations. First, we describe how an efficient C++
baseline was created. Further, changes to the algorithm and the data structures
were carried out, for both efficient resource utilization and parallelization. This
section provides an overview of the system’s evolution in incremental phases,
identifying the key contributions and differences between consecutive states.

3.1 An Efficient Sequential Baseline Version

The original implementation was done in Python, as is common in the machine-
learning community. It relied on Numpy [16] to perform numerical computations
efficiently. However, the algorithm made heavy use of Python sets and dictio-
naries which have no Numpy equivalent. We ported the Python code to C++,
maintaining the same program structure. This transformation yielded a speedup
factor of 171.

The next step was to remove a number of inefficiencies. E.g., one recurring
idiom in the Python implementation was a choice expression of the form ayb1−y

where y is either 0 or 1. We transformed such expressions into conditional expres-
sions which compute either a or b, and avoid floating-point exponentiation. Other
optimizations were loop strength reduction and common subexpression lifting.
These optimizations yielded another speedup factor of 6.

Finally, we investigated the performance effect of reducing the floating-point
precision from 64-bit to 32-bit. This reduces both the computation and data
intensity leading to a lower memory footprint which frees registers and enables
more effective data reuse. It has been previously shown that stochastic learning
algorithms do not require high precision in the presence of statistical approxima-
tions and the addition of random noise [7]. This reduction increased the speedup
by a factor of 1.5.

In conclusion, porting from Python to efficient 64-bit C++ gave a speedup
factor of ∼ 1000, and reducing the precision to 32-bit increased that to a factor
of ∼ 1500. We use the resulting sequential C++ version as baseline for our
performance comparisons.

3.2 Restructuring for Parallelism

The design of an accelerated version of the algorithm necessitated several crucial
modifications to allow for efficient parallelization. We chose OpenCL [17] as it
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provides a common abstraction for a variety of compute devices which fulfilled
our requirements of employing CPUs or GPUs. However, Nvidia’s OpenCL SDK
limits the total memory allocations within a context to 4GB which severely limits
the problem sizes that can be tackled on GPUs. Therefore, we migrated the sys-
tem to use the abstraction layer CLCudaAPI [15] to support both OpenCL and
CUDA [14] as back-ends. We considered using OpenMP for the CPU implemen-
tation but decided against it. OpenCL offers a common platform for CPU and
GPU, and hence makes performance comparison straightforward, and OpenCL
allows control of the multicore vector units.

This section discusses the key contributions to attain two optimized parallel
versions, catering for multi-core CPUs and GPUs. First, we present structural
changes that provide compute device specific optimizations. Next, we provide an
in-depth description of the optimized CPU and GPU versions respectively.

Fast Lookup of Graph Edges
The algorithm relies on a set data structure to store the edges of the graph.
This set is queried frequently with randomly generated edges to check for their
membership. To improve the performance of such lookups, we developed a cus-
tom set implementation that restricts its features based on its usage patterns.
For example, the set is used as a container for the graph edges which are known
in advance. Therefore, the set can be made immutable and does not require
thread-safety.

We designed the edge set as a variant of a cuckoo hash [18]. The hash is
indexed by a tuple of two 32-bit vertices that represent an edge. It uses two hash
functions to address two corresponding storage spaces. Additionally, it stores 4
different 64-bit edge values per bucket as shown in Fig. 1. This set implemen-
tation allowed us to obtain a loading factor upwards of 90% which reduces the
space overhead significantly.

Fig. 1. Structure of a single cuckoo hash bucket containing 4 edges.

Parallelization and Data Dependencies
The original algorithm was structurally reorganized into 4 main sections with
one or more kernels in each depending on data dependencies and synchronization
requirements. First, the sampling of a mini-batch of edges is done on the host
as it is a cheap operation. The mini-batch sampling is followed by the neighbor
sampling kernel which generates uniformly random neighbors for each vertex in
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the mini-batch. Second, the predominant kernel, update phi is invoked to calcu-
late the gradients for each vertex i in the mini-batch En and updates the value of
φi | i ∈ En. Third, the update pi kernel is invoked to normalize the individual φi

and store the result in the corresponding πi. Fourth, the kernels update theta and
update beta are invoked to modify the global parameters. Finally, a dedicated
kernel calculates perplexity.

Memory Footprint Reduction
A key structural change applied to the algorithm is the lossless compression of its
state. This enabled the algorithm to process larger data sets while maintaining
all state in memory. Moreover, as the algorithm is data-intensive, a reduction of
the state is accompanied by a decrease in its data-intensity. The data structures
that occupy most memory are the matrices π and φ of dimensions N × K.
However, the storage of both matrices is redundant as π is a row-normalized
copy of φ, see Sect. 2. The storage for φ is discarded; φik values are recalculated
each time as πik/φsum

i , which requires maintenance of a vector φsum of size N .
Moreover, the calculation for φik can be cached. The matrix φ is required in two
kernels only, namely, update phi and update pi. Both kernels access φi only for
vertices i in the mini-batch En, so for each iteration, the calculated values for φ
are cached in a smaller temporary matrix of size |En| × K. This transformation
trades memory storage and bandwidth for a minimal computation overhead.

Thus, the memory requirement for φ is reduced from N ×K to a vector φsum

of length N and a much smaller |En| × K matrix. For sufficiently large K, this
transformation roughly halves the memory footprint of the algorithm.

CPU-Specific Optimization
The multi-core CPU version of the algorithm uses OpenCL to perform its com-
putations. The work decomposition of the CPU kernels ensures that each thread
performs independent computation to avoid expensive synchronization. Edge-
centric kernels that operate over mini-batch edges perform computations over
every edge in parallel while vertex-centric kernels exploit parallelism across the
selected vertices. Additionally, the kernels were vectorized to decrease instruction
overhead and utilize the SSE capabilities of the CPU cores.

GPU-Specific Optimization
The GPU implementation builds on top of the CPU work decomposition scheme.
However, instead of having every thread perform independent computations,
each block of threads shares the work associated with the single edge or vertex
for edge-centric and vertex-centric kernels.

Similar to the CPU optimization, we investigated the use of vector data
types to decrease the instruction overhead and increase memory bandwidth for
all strategies.

Since all kernels are data-bound, we investigated several memory organization
strategies to exploit the GPU’s memory hierarchy. As a case study, a discussion
of the update phi kernel is provided as it is the predominant component of the
algorithm.
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The update phi kernel operates over every vertex i in the mini-batch and
requires two temporary vectors of length K to perform its computation. For
each vertex, it iterates over the randomly generated neighbors and computes
a vector of probabilities Probsi of length K. The individual Probsi vectors of
each (i, neighbor) tuple are used to update the gradients vector Gradsi for
each vertex i. Finally, the φi row is updated to reflect the changes that were
accumulated in Gradsi for each vertex i in the mini-batch En.

A deeper analysis of the memory access patterns of the update phi kernel
revealed the frequency and modality of access to the data structures. The read-
only accesses of πj of the randomly generated neighbors are unique with a high
probability. More precisely, each vertexi in the mini-batch randomly samples
a neighbor set from the uniform distribution. Given that the total number of
sampled neighbors is much smaller than N , there is a low likelihood of dupli-
cate samples, so there is only limited potential for data reuse. Therefore, these
accesses provide limited opportunities for optimization without interfering with
the algorithm’s entropy. The data structure usage patterns that are deterministic
and most frequently accessed in read/write mode are Probs and Grads. Simi-
larly, πi for each vertex in the mini-batch is read repeatedly for the calculation
of Probs per neighbor and again to update Grads.

The following strategies present alternative methods of handling the deter-
ministic memory usage patterns of Probsi, Gradsi and πi.

The naive strategy simply allocates temporary vectors in thread local
memory for Probs and Grads which physically resides in device memory. Mem-
ory accesses are coalesced to achieve the highest possible device memory band-
width.

The shared memory strategy allocates the temporary vectors Probsi
and Gradsi in shared memory. Furthermore, it copies the πi of the selected
mini-batch vertex to shared memory to avoid repeated reads of device memory.

The code generation strategy dynamically generates the code of the
kernel to custom tailor its properties. It controls whether a vector is placed
or cached in shared memory. Additionally, it controls which vectors explicitly
reside in registers by allocating space on the stack frame, unrolling all inner
loops of the kernel and substituting all vector addressing with static values. The
code generation strategy allows this flexibility for the vectors of concern, namely,
Probsi, Gradsi and πi. Hence, this strategy allows for 8 possible configurations
denoted by three letters each of which is a choice between Register (R) or
Shared (S). For example, SSR denotes that Probsi, Gradsi and πi were placed
in Shared, Shared and Register respectively.

3.3 Kernel Code Generation

To support our various configuration needs, we implemented a code genera-
tor as part of the host program. It receives the model and performance tuning
parameters, and produces compute kernels honoring the supplied constraints.
The generated code is then compiled on the fly using the CLCudaAPI before
driving the different phases of the algorithm’s execution.
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The code generator uses a template that defines the static structure of the
kernels. Further, it employs custom syntax of placeholders that determine where
dynamic content will be inserted. The code generator supports 2 forms of tem-
plate substitution: type definitions and loop unrolling.

Type definitions are used to control SIMD vector widths for both CPU and
GPU kernels. For example, ‘Floatn‘ can be replaced with ‘float4‘ when using 4-
wide CUDA SIMD. Further, macros and inline functions override the standard
arithmetic operations for each vector width. For example, ‘ADDn(x, y)‘ will
be replaced with ‘ADD4(x, y)‘. It is important to note that this substitution
method influences loop lengths. For example, using a 4-wide vector instead of
simple instructions reduces loop iterations by a factor of 4.

In the case of GPU kernels, type definitions also specify whether a buffer is
allocated in shared or global memory.

Loop unrolling is used to force variables to be stored in registers. The
kernel’s static template contains placeholders that specify the type of a statement
to be performed. The code generator looks for these placeholders and replaces
them with one or more statements in an independent activation record.

4 Evaluation

This section discusses the performance evaluation of the various optimizations
for resource utilization and parallelization from Sect. 3. First, we explore the per-
formance benefits of parallelizing the computations on a multi-core CPU using
OpenCL. Then we assess the trade-offs associated with the GPU optimization
strategies and their performance effects on different types of GPUs, spanning
four chip architecture generations.

All experiments were conducted on the VU Amsterdam DAS5 cluster [1].
The cluster consists of 68 compute nodes each equipped with a dual 8-core
Intel Xeon E5-2630v3 CPU clocked at 2.40 GHz, 64 GB of memory and 8 TB
of storage. Additionally, the cluster is fitted with a number of Nvidia GPUs
including RTX 2080 Ti, GTX TitanX, GTX980, K40c and K20m; see Table 3
for an overview of their properties. The network graph used for evaluation of the
algorithm’s performance is com-DBLP from the SNAP collection [9]. It has 317 K
vertices and a million edges. The focus of our paper is the effect of parallelizing
the algorithm; our findings are representative for any dataset since the behavior
of the calculation kernels does not depend on the dataset.

4.1 Analysis of CPU Parallelism

This section discusses the use of the multi-core CPU available on the DAS5 clus-
ter. The parallel OpenCL version divides the work across the cores and performs
independent calculations concurrently. As shown in Table 2, the dominant kernel
in the computation is update phi, which accounts for 66.5% of the computation
time. Without exploiting the dual 8-core processor’s vectorization capabilities,
the speedup relative to the baseline sequential C++ version is 9.8. The model
parameters for these experiments: K = 1024, m = 4096, |Vn| = 32.
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In addition to applying computations in parallel, we investigated the use
of the SIMD instructions to maximize resource utilization. Figure 2 presents
the performance of vectorizing the kernels with varying vector widths. A key
aspect in this figure is the diminishing performance benefit for higher vector
widths. As the computational performance increases, the memory throughput
becomes the leading performance bottleneck. Moreover, using 16-wide SIMD
gave a slight performance penalty compared to 8-wide SIMD. The 8-wide vector
version improves the speedup relative to the baseline version from 9.8 to 20.9.

Table 2. Multi-core CPU performance
breakdown without vectorization.

Kernel Time (seconds)

PPX CALC 0.0364737

PPX ACCUM 0.083

SAMPLING 0.535599

UPDATE PHI 25.6598

UPDATE PI 0.645875

THETA SUM 0.0483902

GRADS PAR 1.92919

GRADS SUM 9.31122

UPDATE THETA 0.0548013

NORM THETA 0.001

TOTAL 38.5858
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Fig. 2. Performance of CPU for varying
vector widths.

4.2 Analysis of GPU Parallelism

As discussed in Sect. 3.2, we employed multiple memory organization strategies:
NAIVE, SHARED and 8 variations of code generation. This section investigates
the effectiveness of each on the available GPUs.

Comparison of Memory Management Strategies. Figure 3(a) presents the
performance of the RTX2080 Ti GPU with an explicit vector width of 4 across
the strategies. The x-axis represents update phi thread block sizes while the y-
axis presents the total execution time of 1000 update phi invocations. The naive
and shared strategies are labeled NAIVE and SHARED respectively. Further,
each code generation strategy is labeled by GEN followed by the 3 choices that
identify it. A zoomed-in version of Fig. 3(a) is provided as the bottom row to
focus on the optimal range.

As would be expected, the naive strategy exhibits the worst performance
over all thread block sizes, as it does not explicitly cache repeated device read
operations.
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Fig. 3. Execution time of 1K update phi invocations (En = 4096,|Vn|= 32) on the
RTX2080 Ti across a sweep of update phi thread block sizes. The lower figures are
a zoom-in into the optimal block range of the figures above.

The SHARED and GEN-SSS strategies come next in terms of performance.
Both strategies cache Gradsi, Probsi and πi in shared memory but differ in one
aspect: GEN-SSS explicitly unrolls the internal loops of the kernel. However,
loop unrolling incurred additional overhead and made GEN-SSS slower than
the simple SHARED strategy.

The other flavors of the code generation strategy attain higher performance
as they unroll internal loops as well as cache data in registers. The RTX2080 Ti in
Fig. 3(a) obtains the best performance with the GEN-RRS strategy. The optimal
thread block size is 64 and vector width is 4. The results for other vector widths
are omitted as they obtain lower performance.

A key model parameter that affects the behavior of the optimization strate-
gies is the number of communities K. Figure 3(b) presents the same model con-
figuration as in Fig. 3(a) but K = 2048 instead of K = 1024. The most important
difference in performance between the two figures is the optimal thread block
size, which grows from 64 to 128 when K is doubled. An increase in K comes with
a proportional increase in the size of shared memory required by each thread
block for the strategies that employ it explicitly. Similarly, GEN strategies that
use the register file will require additional space. Therefore, the number of con-
current thread blocks that can execute on a single streaming multiprocessor will
decrease, minimizing the GPU’s occupancy and utilization. This limitation can
be counteracted by selecting a larger thread block size which in turn increases
the computation concurrency and occupancy. However, increasing the block sizes
has diminishing returns and eventually leads to worse performance that matches
the NAIVE strategy.
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Fig. 4. Execution time of 1000 update phi invocations on a Titan-X (Pascal and
Maxwell) and a K40 across a sweep of update phi thread block sizes. The lower figures
are a zoom-in into the optimal block range of the upper figures. Other relevant model
parameters: En = 4096, |Vn|= 32.

In contrast to the other GPUs, the Titan-X Pascal shows good performance
with the SHARED strategy as shown in Fig. 4(a). This can be explained by its
high bandwidth to computational power ratio compared to the other devices.
The Pascal performs best with the GEN-RSR strategy, a block size of 96 and
a vector width of 2. On the other hand, Fig. 4(b) shows the Titan-X Maxwell
performed best with a thread block size of 64 and no vectorization.

Figure 4(c) presents the performance of the K40c GPU for the same exper-
imental configuration as before, with a vector width of 2. The results for the
versions with vector width 4 and no vectorization are omitted as they exhibit
lower performance. Surprisingly, Fig. 4(c) shows that the NAIVE strategy out-
performs SHARED and some of the GEN strategies. This can be explained by
the unique properties of the Kepler Super Computing line of products to which
the K40c belongs. These GPUs include enhanced L2 caching mechanisms that
accelerate repeated and sparse memory accesses. This is especially advantageous
as it caches repeated reads across streaming multiprocessors. However, the high-
est performance is attained by GEN-RRS which explicitly employs registers for
both Probsi and Gradsi.

These performance results for a range of GPUs reinforce the importance of
customizing compute kernels to each GPU’s specific architecture and capabili-
ties. For instance, each GPU achieved its highest performance by employing a
different strategy. Moreover, each GPU displayed different strategy-performance
orderings.
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Comparison of Compute Devices. Figure 5 compares the highest speedup
achieved by the RTX2080 Ti, GTX Titan-X Maxwell and Pascal, GTX980, K40c
and K20m relative to the single-threaded baseline C++ version. These results
are consistent with the relative capabilities of each device as listed in Table 3.
For instance, the RTX2080 achieves the highest speedup of 245 relative to the
baseline.

Table 3. Properties of the GPUs used in the evaluation

Device RTX 2080 Ti GTX Titan-X GTX 980 K40c K20m

Architecture Turing Pascal Maxwell Maxwell Kepler Kepler

Number of Cores 4352 3584 3072 2048 2880 2496

Clock (MHz) 1350 1417 1000 1126 745 706

GFlops (single) 13450 10157 6144 4612 4290 3520

GFlops (double) 420 317 192 144 1430 1170

Memory (GB) 11 12 12 4 12 5

Bandwidth (GB/s) 616 480 336.5 224 288 208

Figure 6 presents the execution time of the best-performing strategy for each
GPU. In this figure, the performance is normalized over the non-vectorized kernel
version for each GPU. Conforming to intuition, execution time of the RTX2080
improves with vector width. In contrast, it is notable that the Maxwell Titan-X
and GTX980 achieve their highest performance with non-vectorized kernels, and
the Pascal Titan-X and Kepler GPUs obtain the best performance with a vector
width of 2. At one extreme, the Maxwell Titan-X exhibits an overhead factor of
nearly 1.8 when using a vector width of 4. On the other hand, the RTX2080 Ti
improves its performance by roughly 35% when it uses a vector width of 4
compared to the non-vectorized kernel. Therefore, explicit vectorization of the
kernels can be either useful or harmful depending on the GPU architecture and
the specific problem it is applied to.
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5 Related Work

Several studies looked into the problem of tuning compute kernels [11,19]. Ker-
nel Tuner [19] is a tool that facilicates the exploration of the available tuning
parameters by appling multiple strategies to arrive at optimized configurations.
The main focus of this work was overcoming discontinuous search spaces of
established optimization techniques such as tiling and loop unrolling. On the
other hand, Lim et al. [11] leveraged static code analysis to suggest tuning
parameters without the need for experimentation. In contrast, our study focuses
on application-specific data structures, memory and caching optimizations that
required fundamental data representation changes. For example, we deduplicated
matrices and re-encoded a graph as a cuckoo hash.

Recent work focused on the applicability of graph algorithms on GPUs. The
common pattern is representing vertices and edges such that GPU memory hier-
archies can be effectively utilized. WolfGraph [22] tackles graph processing in
an edge-centric manner which prevents load imbalances associated with vertex-
centric traversals. We incorporated a similar technique to avoid nondeterministic
edge indirections when processing mini-batches. XBFS [5] laid out a methodol-
ogy to perform breadth-first search on GPUs.

Mei et al. [13] provided a micro-benchmark that assessed the memory hierar-
chies of different GPU models. Similar to our evaluation results, they show how
the seemingly similar memory hierarchies of different GPU models can produce
non-intuitive performance outcomes.

Whereas acceleration of deep learning algorithms on GPUs is an ongoing
success story, approximative Baysian algorithms (where our MCMC algorithm
belongs) are not natural candidates for acceleration. Nevertheless, a number
of projects explore this terrain. Medlar et al. [12] use GPUs with their MCMC
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approach to analyze parental linkage patterns in a biology context and White and
Porter [20] do the same to model terrorist activity. Latent Dirichlet Allocation,
another variety of Bayesian Approximation, is used on GPUs by Yan et al. [21].
There is also related work on MCMC algorithms that use the gradient to speed
up convergence. Langevin and Hamiltonian dynamics are representatives of these
varieties [6]. Our algorithm uses Riemann Manifold Langevin dynamics. Beam
et al. [2] use GPUs to perform Hamiltonian descent using Python interfaces to
access the cuBLAS library [3]. They limit GPU optimizations to reducing data
transfers between host and device memory.

Another MMSB algorithm with stochastic gradient descent on the GPU
is the Online Tensor approach [8]. Their implementation uses the cuBLAS
library. Unlike our work, there is no attempt to hand-optimize the GPU ker-
nels. Since they target GPUs only, the datasets they can handle are limited by
the device memory of the GPU. Our implementation can also be used, with
reduced speedup, on a multicore CPU which allows much larger datasets.

6 Conclusion

Identifying optimization strategies of parallel data-intensive algorithms is a com-
plex task. The SG-MCMC algorithm discussed in this paper posed additional
challenges due to its unique stochastic nature and nondeterministic memory
access patterns. We presented a methodology of improving performance by fun-
damentally restructuring the algorithm to cater for concurrency.

A deep analysis showed the algorithm’s state can be reduced by 75%. We nav-
igated the complex optimization landscape by dynamically generating compute
kernels and testing different combinations of optimizations. This effort culmi-
nated in significant speedup factors of 21 and 245 using a multi-core CPU and
a GPU respectively, compared to an optimized sequential program. Finally, we
contrasted the performance of several GPUs highlighting the difference between
their optimal configurations.

The outcome of this work reinforces the significance of avoiding premature
optimization as it can lead to unexpected results. In particular, the success of
common GPU optimizations depends on the particular device in use and the
problem it is applied to. Although GPU architectures and their memory hierar-
chies can be leveraged to obtain significant speedups, they introduce significant
complexity which hinders our ability to predict their benefits.
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Koç University, Rumelifeneri Yolu,

34450 Sariyer, Istanbul, Turkey
{nahmad16,byilmaz,dunat}@ku.edu.tr

Abstract. Sparse triangular solve (SpTRSV) is an important linear alge-
bra kernel, finding extensive uses in numerical and scientific computing.
The parallel implementation of SpTRSV is a challenging task due to the
sequential nature of the steps involved. This makes it, in many cases, one of
the most time-consuming operations in an application. Many approaches
for efficient SpTRSV on CPU and GPU systems have been proposed in
the literature. However, no single implementation or platform (CPU or
GPU) gives the fastest solution for all input sparse matrices. In this work,
we propose a machine learning-based framework to predict the SpTRSV
implementation giving the fastest execution time for a given sparse matrix
based on its structural features. The framework is tested with six SpTRSV
implementations on a state-of-the-art CPU-GPU machine (Intel Xeon
Gold CPU, NVIDIA V100 GPU). Experimental results, with 998 matrices
taken from the SuiteSparse Matrix Collection, show the classifier predic-
tion accuracy of 87% for the fastest SpTRSV algorithm for a given input
matrix. Predicted SpTRSV implementations achieve average speedups
(harmonic mean) in the range of 1.4–2.7× against the six SpTRSV imple-
mentations used in the evaluation.
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1 Introduction

The sparse triangular solve (SpTRSV) is one of the important kernels used
in direct and iterative methods for sparse linear systems and least square
problems [25]. Efficient implementation of SpTRSV on CPU and GPU has
been extensively studied and many SpTRSV implementations are available
[16,20,21,23,25,29,31,37]. However, there is no single execution platform or
algorithm that gives the best SpTRSV performance for all input matrices. This is
because, given a sparse matrix, the SpTRSV performance depends upon charac-
teristics of the available parallelism in the matrix and implementation details of
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the algorithm (e.g. data structures, the sequence of operations etc.) [38]. There-
fore, CPU has been observed to give better SpTRSV performance for some matri-
ces than GPU and vice versa [21,29]. Also, different SpTRSV implementations on
the same platform have been observed to achieve higher performance than others
for different matrices [20,29]. By selecting appropriate SpTRSV implementation
for a given matrix, one can achieve higher SpTRSV performance. This can result
in considerable performance gains for applications requiring multiple SpTRSV
iterations, e.g., iterative solvers [34]. Given that many SpTRSV implementations
are available for each platform, this selection can be a complex task. An obvi-
ous approach to select the fastest SpTRSV implementation is to run different
implementations one-by-one and collect the empirical results. This, however, is
a time-consuming and non-trivial process as each SpTRSV implementation has
its own data structures, API, and matrix analysis requirements [25,29].

In this paper, we propose a machine learning-based framework for predicting
the fastest SpTRSV algorithm for a given matrix on CPU-GPU heterogeneous
systems. The framework works by extracting matrix features, collecting algo-
rithm performance data, and training a prediction model with 998 real matrices
from the SuiteSparse Matrix Collection [10]. Once trained on a given machine,
the model can predict the fastest SpTRSV implementation for a given matrix by
paying a one-time matrix feature extraction cost. The framework is also capa-
ble of taking into account CPU-GPU communication overheads, which might be
incurred in an iterative solver. We test our prediction framework for two CPU
and four GPU algorithms on a modern Intel Xeon Gold CPU and NVIDIA Tesla
V100 GPU systems. The model achieves an average prediction accuracy of 87%
on our selected platform. Experimental results show predicted implementation
achieving an average speedup (harmonic mean) in the range 1.4×–2.7× over a
lazy choice of one of the six SpTRSV implementations used in this study.

The contributions of this work are summarized below:

– We provide comparative performance results of six SpTRSV implementations
on a CPU-GPU platform.

– We identify an important set of features of a sparse matrix and develop a tool
for efficiently extracting these features.

– We devise a framework to automatically extract matrix features, collect
SpTRSV performance data, train machine learning model, and predict the
fastest SpTRSV algorithm.

– We evaluate the performance, accuracy, and overhead of the framework on a
modern CPU-GPU heterogeneous system.

2 Background and Motivation

The triangular solve refers to the solution of a linear system of the form Ly = b
or Ux = y, where L and U are lower and upper triangular matrices and x, y,
and b are dense vectors. Due to the presence of dependencies among unknowns,
triangular solve is an inherently sequential operation not easily lending itself to
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Fig. 1. A lower triangular system Ly = b (left) and its dependency graph (right) [31]

efficient parallelization [23]. When L and U are sparse, some of the dependencies
may be missing thus offering an opportunity to calculate some unknowns in
parallel. Figure 1 shows a lower triangular system and its dependency graph. The
nodes of the graph represent row numbers thus unknowns and edges represent
dependencies of unknowns. The horizontal dashed lines separate the set of nodes
into levels where nodes in each level can potentially be calculated in parallel
[34]. The levels are numbered sequentially in the order in which computations
on them can begin. As the number of levels, the number of unknowns in a level,
and dependencies among unknowns is a function of matrix sparsity pattern, it
is hard to devise an efficient SpTRSV algorithm for all possible input matrices.

The parallel SpTRSV algorithms proposed in the literature can be broadly
categorized into (i) Level-scheduling [3] (ii) Synchronization-free [15,19,23,25]
(iii) Graph coloring [20,30] (iv) Partitioned inverse [2], and (v) Iterative algo-
rithms [5]. Most of these algorithms are comprised of two phases, an analysis
phase in which parallelism in the matrix is discovered, and a solve phase in which
the solver solves the linear system in parallel [20]. In level-scheduling algorithms,
the analysis phase constitutes discovering the levels and unknowns within each
level. In the solve phase, the algorithm proceeds level-by-level, synchronizing
before starting computations on a new level. In synchronization-free methods,
the number of dependencies per unknown [25] and in certain variations, the levels
and unknowns within each level [20] are calculated in the analysis phase. Unlike
level-scheduling approach, computations on an unknown can start as soon as its
dependencies are met. The rest of the methods provide an approximate solution
of the triangular system and are not the focus of this study.

For CPUs and GPUs, many implementations for the exact solution of
SpTRSV are available. For CPUs, Intel MKL library [16] provides parallel
(MKL(par)) and sequential (MKL(seq)) SpTRSV implementations. An imple-
mentation based on dependency graph sparsification has been developed by Park
et al. [31] for multicore CPUs. For NVIDIA GPUs, the cuSPARSE library pro-
vides SpTRSV based on the level-scheduling approach with their legacy API
(cuSPARSE(v1)) [29]. The newer cuSPARSE SpTRSV (cuSPARSE(v2)) works
with or without level information, depending upon the user’s choice [8]. Weifeng
et al. [23–25] developed a synchronization-free SpTRSV algorithm (Sync-Free)
with multiple right-hand sides for GPUs. In [20,22], the author proposes varia-
tions of SpTRSV based on synchronization-free algorithms for GPUs.
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Fig. 2. SpTRSV performance on Intel Xeon Gold (6148) CPU and an NVIDIA V100
GPU (32 GB, PCIe).

Table 1 shows the breakdown of winning algorithms among six SpTRSV
implementations (2 CPU, 4 GPU implementations) for a set of 37 matrices from
the SuiteSparse matrix collection. Figure 2 shows the comparison for CPU and
GPU winners for each of these matrices. The dashed vertical line separates the
matrices into two groups; matrices attaining the best performance on CPU are
on the left and on GPU, on the right. The x-axis shows the matrix degree of
parallelism (DoP), which equals the average number of rows per level. Results
show that no single algorithm or platform performs best for all matrices.

Table 1. SpTRSV winning algorithm breakdown for 37 matrices in Figs. 2

Arch. SpTRSV implementation Winner for # of matrices Percentage

CPU MKL(seq) 11 29.73%

MKL(par) 2 5.41%

GPU cuSPARSE(v1) 7 18.92%

cuSPARSE(v2)(level-sch.) 7 18.92%

cuSPARSE(v2)(no level-sch.) 2 5.41%

Sync-Free 8 21.62%

To find the best SpTRSV implementation for a given matrix, one option is to
test each algorithm individually and select the best performing one. This requires
the programmer to learn new APIs, manage data structures, and perform data
format conversions for each implementation, which is tedious and error-prone.
Moreover, some algorithms require non-trivial analysis time and necessitate mul-
tiple iterations to get stable performance numbers. To aid the programmer, this
work proposes a framework that hides all the mentioned complexities and reports
the predicted fastest algorithm by analyzing the matrix features. This can sub-
stantially improve the programmer’s productivity and solver performance.
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3 Related Work

The general problem of algorithm selection [33] has been previously studied using
statistical [14,36], empirical [39] and machine learning techniques. OSKI [37] is
an autotuning library based on statistical techniques for sparse linear algebra
kernels on CPU platforms, particularly the sparse matrix-vector multiplication
(SpMV) and SpTRSV. The library can transparently tune kernels at runtime
using the machine and input matrix characteristics. PetaBricks [4] is a language
and compiler that allows multiple implementations of multiple algorithms for the
same problem and automatically selects the best algorithm by building and using
the so-called choice dependency graph. Sequoia [13] autotunes an application
based on the memory hierarchy of the underlying machine. While PetaBricks
and Sequoia do not take input data characteristics except the data set size, Nitro
[28] framework allows programmers to guide the algorithm selection process by
letting them specify characteristics of the input data they want to be considered
for algorithm selection. These frameworks require programmers to learn new
APIs and procedures to guide the algorithm selection process. A previous work
dealing with SpTRSV execution choice between CPU and GPU is presented in
[17] for the MAPS reservoir simulation system. The approach is, however, specific
to reservoir simulation systems. A recent work by Dufrechou et al. [12] uses
supervised machine learning to automatically select a sparse triangular solver
on the GPUs. They tested their model for selection among cuSPARSE library-
based SpTRSV and three variants of a CSR-based self-scheduling algorithm [11].
Their model managed to achieve an accuracy of close to 81%.

A number of works exist dealing with the selection of solvers and
preconditioner-solver pairs for numerical software. Lighthouse [27] allows users to
select the right solver and generate corresponding code for PETSc applications.
It uses machine learning to analyze the matrix features and select the solver
accordingly. Motter et al. [26] utilize machine learning techniques for selecting
solver-preconditioner pairs for the PETSc framework [6] taking into account
machine characteristics.

Unlike many of the previous works[12,26,27,37], our prediction framework
targets heterogeneous CPU-GPU systems. Compared with other frameworks tar-
geting heterogeneous systems [4,28], it does not require programmer guidance
or target a specific application area [17]. In comparison to the similar work on
the GPUs [12], our framework achieved higher accuracy (87% versus 81%) using
a larger set of features for a wider (6 versus 4) and diverse set of SpTRSV algo-
rithms. In addition, our framework is extensible allowing the inclusion of new
SpTRSV algorithms as they become available [22].

4 Design and Implementation

The prediction framework is designed to automate the SpTRSV algorithm selec-
tion process for a given machine and matrix. It is composed of five main com-
ponents (Fig. 3); (1) An automatically downloadable set of matrices from the
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Fig. 3. The prediction framework Fig. 4. Prediction model design flow

SuiteSparse Matrix Collection, (2) A matrix feature extractor, (3) An SpTRSV
algorithm repository, (4) An SpTRSV performance data collector, which works
by automatically downloading matrices, running each SpTRSV algorithm in
the repository for each matrix, and logging the SpTRSV execution time. (5)
A trainer and tester for the machine learning algorithm prediction model, which
uses matrix features from the feature extractor as the input data and ID of the
winning algorithm from performance data collector as the target for the model
training and testing. Once the model is trained and tested, it can predict the
fastest SpTRSV algorithm for a given matrix based on its features.

Figure 4 shows the design flow for our prediction model. For training the
model, feature and algorithm performance data for the matrix data set is split
into training and testing sets. Once trained with the training set, the model is
tested with the matrices in the test set. Next, we discuss the important parts of
the framework: (1) feature set selection, (2) feature extraction, and (3) machine
learning model for prediction.

4.1 Feature Set Selection

SpTRSV performance is mainly affected by the sparsity pattern (i.e. the dis-
tribution of nonzero (nnz) elements in the matrix) [38]. The sparsity pattern
is described by matrix structural data such as the number of rows, columns,
nnzs, row and column lengths etc. We initially started with a set of around 50
structural features. After feature correlation analysis and feature score compar-
ison, 30 structural features are finalized. We choose not to reduce the number
of features further because reducing the number of features from 30 to, say, 10
negligibly improves the overhead of the feature extraction process but results in
up to 10% drop in prediction accuracy. This is because many of the top-scoring
features require per-level information, which in turn requires level calculation,
which is generally the most time-consuming part of the matrix analysis phase
[29]. The majority of the other features can be cheaply collected as a part of the
level calculation process. Table 2 lists the final feature set used by the framework.
The last column in the table also shows the score rank for each feature, where
the lower score rank means a higher impact on performance.
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Table 2. Selected feature set for the prediction framework

No. Features Description Score rank

1 nnzs Number of nonzeros 1

2–4 <max, mean, std> nnz pl rw <maximum, mean, std dev>
nonzeros per level row-wise

2, 4, 5

5 max nnz pl cw maximum nonzeros per
level column-wise

3

6 m Number of rows/columns 6

7–10 <max, mean, median, std> rpl <maximum, mean, median, std
dev>
rows per level

7, 12, 13, 16

11–12 <min, max> cl cnt <minimum, maximum> column
length count

8, 10

13–14 <max, min> rl cnt <maximum, minimum> row
length count

9, 11

15–17 <max,std,median> cl <maximum, std dev, median>
column length

14, 22, 29

18 lvls Number of levels 15

19–21 mean <max, mean, std> cl pl mean <maximum, mean, std
dev> columns per level

17, 18, 20

22–25 <max,mean,median,std> rl <maximum, mean, median, std
dev> row length

19, 27, 28, 30

26–30 mean <max,std,mean,
median,min> rl pl

mean <maximum, std dev, mean,
median, minimum> row length
per level

21, 23, 24, 25, 26

4.2 Feature Extraction

Feature extraction is an overhead for the SpTRSV algorithm prediction and
its execution time should be kept minimum. To achieve this, we employ both
CPU and GPU in our feature extraction tool. This process completes in three
steps. In the first step, row dependencies (row lengths) for lower/upper trian-
gular matrices are calculated on GPU. Then, we use a slightly modified CUDA
implementation of Kahn’s algorithm [9] presented in [20] to construct levels in
a triangular matrix. The algorithm calculates levels and rows in a level by per-
forming topological sorting on the dependency graph. It recursively finds rows
with zero dependencies, saves the row IDs of the current level into a queue, and
then removes these rows and their outgoing edges from the graph until no more
rows to process. In addition to level calculation, we also collect some statistics
such as the number of rows per level, row and column lengths per level, and the
nnzs per level. Finally, the remaining features listed in Table 2 are calculated
using the NVIDIA Thrust library [7]. For this purpose, while CPU iterates over
levels, GPU is used to calculate features for that level.
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4.3 Machine Learning Model and Training

For training the model, we use the Scikit-learn machine learning library in
Python [32]. As the matrix data set, we choose 998 real square matrices with
1000 or more rows (up to 16M rows) from the SuiteSparse Matrix Collection.
We train the model with two CPU SpTRSV algorithms, namely MKL(seq) and
MKL(par), and four GPU algorithms, namely cuSPARSE(v1), cuSPARSE(v2)
with and without level-scheduling and synchronization-free algorithm (Sync-Free)
[25].

We assign a unique integer ID to each of these algorithms and collect features
and SpTRSV performance data for each matrix in our data set in an automated
fashion using the libufget library [18] and our feature extraction tool. The matrix
features and the ID of the fastest SpTRSV implementation then serve as input
and target, respectively, for training the machine learning model.

For selecting appropriate classifier for the prediction model, we evaluated a
number of supervised machine learning-based classifiers provided by the Scikit-
learn library including Decision Trees, Random Forest, Support Vector Machines
(with grid-search), K-Nearest Neighbors, and Multi-Layer Perceptron Classi-
fier using the Scikit-learn model selection class. Based on the cross-validation
scores, we choose Random Forest classifier for prediction. The feature scores
are calculated using feature selection class (SelectKBest function) with chi-
squared used as the score function. Although Deep Neural Networks are suitable
for classification tasks and feature selection is done by the model itself, they take
considerable amount of time to train and a large training set is required. Hence,
we preferred classical supervised machine learning techniques mentioned above
and obtained good prediction accuracy.

To evaluate the performance of the prediction model, we utilize cross-
validation functionality provided by the Scikit-learn model selection class. For
this purpose, features in the input data set are first scaled using Standard Scaler
and the data set is then split into test and training data with train test split
function that randomly splits the data set into 75% training data and 25% test
data by default. We keep the default split ratios for our evaluation. Next, we use
k-fold cross-validation with k set to 10. In k-fold cross-validation, training data
set is divided into k smaller sets. For each of k sets, k-1 sets are used as training
data while the remaining set is used for validating the model. The performance
of the k-fold cross-validation is then the average of these results.

4.4 Effects of CPU-GPU Data Transfers

In a CPU-GPU system, executing the fastest SpTRSV algorithm may require
data transfers between CPU and GPU. For instance, GMRES solver with ILU-
preconditioning performs sparse matrix-vector multiplication and vector prod-
ucts in addition to SpTRSV in each iteration [35]. With data transfer overheads,
the fastest SpTRSV algorithm may no longer be the fastest as another imple-
mentation may require no data transfer.
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Fig. 5. CPU-GPU data exchange when
computations just before and after
SpTRSV execute on different platforms

Fig. 6. CPU-GPU data exchange when
computations just before and after
SpTRSV execute on the same platforms

Table 3. SpTRSV winning algorithm breakdown for the 998 matrices from SuiteSparse

Arch. SpTRSV implementation Winner for # of matrices Percentage

CPU MKL(seq) 411 41.18%

MKL(par) 11 1.10%

GPU cuSPARSE(v1) 111 11.12%

cuSPARSE(v2)(level-sch.) 61 6.12%

cuSPARSE(v2)(no level-sch.) 15 1.50%

Sync-Free 389 38.98%

To elaborate on this, consider a lower triangular system Ly = b to be solved
with SpTRSV (see Sect. 2). For iterative methods, matrix L is generally fixed
while b and y are updated every iteration. Consider the scenarios shown in
Fig. 5, where computations just before and after SpTRSV, execute on different
platforms. In Fig. 5, H->D and D->H represent host-to-device and device-to-
host data transfers, respectively. As shown in the figure, the data transfer for
either the right-hand side or solution vector is inevitable. Therefore, it is always
beneficial to choose the fastest SpTRSV algorithm irrespective of whether it runs
on the CPU or on the GPU. For the scenarios where computations, just before
and after SpTRSV, execute on the same platform and SpTRSV executes on a
different platform (Fig. 6), two data transfers are incurred; (the right-hand side
and the solution vector). Consequently, this data transfer overhead may change
the algorithmic choice. To cater for such scenarios, our framework allows users
to specify whether the rest of the numerical solvers executes on a CPU (CPU-
centric) or a GPU (GPU-centric). For the CPU-centric scenario, the data transfer
time (for the right-hand side and solution vector) is added to each of the GPU
algorithms during the training phase. Similarly, for the GPU-centric scenario,
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the data transfer time is added to each of the CPU algorithms before training
the model. Thus, the prediction framework can identify the fastest SpTRSV in
presence of data communication overheads.

Table 4. Number of rows and nonzero statistics for the 998 matrices from SuiteSparse

Minimum Median Maximum

Number of rows 1K 12.5K 16.24M

Number of nonzeros 1.074K 105.927K 232.232M

Fig. 7. Model cross validation scores
with 30 features in the feature set

Fig. 8. Model cross validation scores with
10 features in the feature set

5 Evaluation

This section evaluates the performance of different SpTRSV algorithms, our
framework’s prediction accuracy, its performance, and its overhead compared
to the analysis phase of SpTRSV algorithms. The performance results were
collected on a CPU-GPU machine with an Intel Xeon Gold (6148) CPU and
NVIDIA Tesla V100 GPU. CPU has 2 sockets with 20 cores in each and comes
with a 512 GB of memory. GPU has 32 GB of memory. The Intel MKL implemen-
tations are compiled with icpc compiler from Intel Parallel Studio 2019 with -O3
optimization. For MKL(par), all available CPU cores are used without hyper-
threading. The cuSPARSE and Sync-Free implementations are compiled using
nvcc compiler from CUDA version 10.1 with options -gencode arch=compute
70,code=sm 70. Statistics for the number of rows and nonzeros for the matrix
data set are given in Table 4.

5.1 Performance of SpTRSV Algorithms

This section presents the experimental results for the six SpTRSV algorithms.
For this purpose, each of the six SpTRSV implementations is run 100 times for
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each matrix in the data set and mean execution time is reported. The results
presented here are for the solution of the lower triangular system. Table 3 shows
the breakdown of the winning implementations for the entire matrix data set.
As regards the number of times an SpTRSV implementation was the fastest
for the data set, we observe that, in general, there is no clear GPU advantage
over CPU. Intel MKL(seq) is the fastest for a high percentage of the matri-
ces than any other implementation. This is possibly due to the fact that some
matrices exhibit very low parallelism that can be exploited or variable degrees
of parallelism. In general, Intel MKL(par) shows poor performance. The cuS-
PARSE(v1) surprisingly performs better than two variants of cuSPARSE(v2)
combined. Moreover, on GPU, the Sync-Free implementation is dominant over
cuSPARSE implementations.

5.2 Accuracy of the Framework

The performance of the machine learning model is measured using typical met-
rics of accuracy, precision, recall, and f1-score. Figure 7 shows the 10-fold cross-
validation results for the Random Forest classifier with 300 forests and feature
set with 30 features presented in Table 2. The yellow diamond shows the mean
value for each parameter. The classifier achieves an average weighted score of 87%
for accuracy, recall, f1-score, and 89% for precision. It means that our SpTRSV
framework correctly predicts the best algorithm for 87% of the data set.

To evaluate the effect of reducing the number of features on the prediction
model performance, we keep the top 10 features in the feature data set based on
their feature scores (score rank in Table 2) and perform 10-fold cross-validation
of the resultant model. As shown in Fig. 8, there is a 7–10% drop in performance
metrics with the reduced set of features. In addition, there is a wider spread of
performance. Considering the possibility of inclusion of new algorithms into the
framework in the future, we keep the 30 features listed in Table 2.

Possible reasons for incorrect predictions by the framework include (1) limited
diversity in matrix data set (2) comparable algorithm performance for a matrix
so that incorrect prediction does not really matter (3) limited feature set. We
will further investigate these reasons in the future.

5.3 Speedup Gained by the Framework

To evaluate the performance benefits of our framework, we compare the speedup
over the lazy choice made by the user for an SpTRSV implementation. Unlike an
aggressive programmer, who may test all the algorithms to find the best perform-
ing algorithm, the lazy programmer always uses the same SpTRSV algorithm
regardless of the input matrix. The speedup is defined as s = Tl/Tp, where Tl is
the execution time of the algorithm that the programmer lazily uses, and Tp is
the predicted algorithm by the framework, which may or may not be the fastest
algorithm. The speedup is calculated based on the SpTRSV running times and
does not include the analysis phase for the algorithms for Tl or Tp.
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Fig. 9. Speedup gained by predicted over lazy choice algorithm. >= 1 indicates speedup
of greater or equal to 1. (Harmonic) mean refers to average speedup achieved by the
framework over the lazy choice. Each bin covers a speedup range e.g. first bin covers
speedups between 0-0.99, second one covers speedups between 1–1.99 and so on.

Figure 9 shows the histogram for the speedups achieved by the prediction
framework over each of the six implementations for the entire data set. The
figure also shows the percentage when the predicted algorithm achieves equal
or better performance than the lazy choice. The results show that the predicted
fastest SpTRSV algorithm achieves the same or better performance for greater or
equal to 95% of the matrices. Note that for the aggressive programmer, our pre-
diction is 87%, which is presented in Sect. 5.2. We also observe that the speedup
obtained by the prediction framework can reach tens of times for some SpTRSV
implementations. Thus, using the framework is highly attractive than an arbi-
trary algorithmic choice for the SpTRSV execution.

To evaluate performance loss incurred by incorrect predictions, we compared
the actual fastest SpTRSV against the incorrectly predicted implementation by
our model. The results show that for roughly 3/4th of the incorrect predictions,
the predicted implementation is less than 2 times slower. Considering the pre-
diction accuracy, speedups achieved with correct predictions, and programming
benefits of the framework, we believe this performance loss is reasonable.

5.4 Framework Prediction Overhead

In this section, we evaluate the overhead associated with our algorithm predic-
tion framework. This overhead includes the time spent in feature extraction and
for the model to predict the fastest implementation. The feature extraction time
depends on matrix sparsity pattern and its size while prediction time is con-
stant for all matrices. Feature extraction includes computing dependencies in
triangular matrices, calculating levels, collecting matrix statistics (e.g. row per
level etc.), and calculating the final feature set from these statistics. This phase



A Prediction Framework for Fast Sparse Triangular Solves 541

is very similar to the analysis phase of the SpTRSV algorithms based on the
level-set method such as cuSPARSE(v1) and (v2) with levels.

We compare the framework overhead with empirical execution overhead. For
the empirical overhead, there are two different types of users: a lazy user, who
conservatively uses the same algorithm and an aggressive user who tests all
six algorithms and chooses the best performing SpTRSV implementation. The
empirical overhead for an aggressive user for N algorithms is calculated using
the equation:

Empirical Overhead =
N∑

i=1

(Ai + 10 ∗ (TS)i) (1)

where Ai and (TS)i are the matrix analysis phase and single SpTRSV iteration
times for algorithm i, respectively. The factor 10 in Eq. 1 refers to the approxi-
mate number of SpTRSV executions required to get a stable time estimate of a
single SpTRSV iteration. For the lazy user, there is only a matrix analysis phase
as the lazy user does not question the suitability of the algorithm.

For overhead analysis, we divide the matrices into three groups based on their
sizes (1K-100K, 100K-1000K, >1000K). For each group, we compare the mean
time spent by the framework, by the aggressive user to select the fastest algo-
rithm, and by the lazy user to run the analysis phase of their chosen algorithm.
We assume, without loss of generality, that each SpTRSV implementation runs
its own ILU factorization phase except cuSPARSE(v2)(no level-sch.) that can
use ILU factorization from cuSPARSE(v2)(level-sch.). In some cases, it might be
possible for some implementations to use ILU factorization from another imple-
mentation. However, it will generally require extra effort from the programmer
and might add its own processing overhead (e.g. converting ILU factors from
one data structure to another). For the sake of fairness, we provide an overhead
comparison with ILU factorization time included (w ILU) and excluded (w/o
ILU) ILU from Ai as well as framework overhead. For Sync-Free implementa-
tion, extraction of upper and lower triangular parts of the input matrix as ILU
factorization time as it does not perform actual ILU factorization [24].

Fig. 10. Mean overhead of framework versus mean empirical execution time for aggres-
sive and lazy users. 1K-100K, 100K-1000K and >1000K refer to matrix size ranges.
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Figure 10(a), (b), (c) compare overhead for the three groups of matrices with
ILU factorization time excluded. For matrix sizes less than 1000K, the average
framework overhead is comparable with the time spent by the aggressive user.
For matrix sizes >1000K, the framework overhead is on average 4 times less than
the overhead of the aggressive user. Figure 10(d), (e), (f) compare overhead for
the three groups of matrices with ILU factorization time included. For all matrix
sizes, the average overhead of the framework is observed to be considerably less
than aggressive user time by factors ranging between 5 (for 100K-1000K range)
and 161 (for >1000K range). Overall, considerable time savings can be obtained
by using our framework, especially for large matrices.

We also compute the number of SpTRSV iterations of the predicted algorithm
required to amortize the cost of the framework overhead. For all matrix sizes, the
mean number of iterations required to amortize the framework overhead is within
the range of hundreds. For instance, for the largest group of matrices (>1000K),
a mean number of 127 SpTRSV iterations of the predicted algorithm are required
to compensate for the framework overhead. Considering that an iterative solver
generally requires several hundreds of iterations for convergence, we claim that
the overhead of the framework is acceptable. For aggressive users, we provide an
option to aggressively test each implementation and bypass the prediction, thus
saving time and effort of manual implementation of each algorithm.

6 Conclusions

SpTRSV is an important and often most time consuming computational ker-
nel with no single SpTRSV implementation shown to give the best performance
for all matrices. In this work, we propose a machine learning-based framework
for predicting the fastest implementation for SpTRSV for a given input matrix
on heterogeneous systems. We train the prediction model with 30 features for
each of the 998 square, real matrices selected from SuitSparse collection, and
six SpTRSV algorithms. The experimental results, on an Intel Gold CPU with
NVIDIA V100 GPU, show our framework achieving an average prediction accu-
racy of 87% and an average speedup (harmonic mean) in the range 1.4–2.7×
over the lazy programmer scenario whereby the programmer always chooses
the same alogrithm. The framework is extensible with new algorithms as they
become available.
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Abstract. Recent research efforts have shown that Jacobi and block-
Jacobi relaxation methods can be used as an effective and highly paral-
lel approach for the solution of sparse triangular linear systems arising
in the application of ILU-type preconditioners. Simultaneously, a few
independent works have focused on designing efficient high performance
adaptive-precision block-Jacobi preconditioning (block-diagonal scaling),
in the context of the iterative solution of sparse linear systems, on many-
core architectures. In this paper, we bridge the gap between relaxation
methods based on regular splittings and preconditioners by demonstrat-
ing that iterative refinement can be leveraged to construct a relaxation
method from the preconditioner. In addition, we exploit this insight to
construct a highly-efficient sparse triangular system solver for graphics
processors that combines iterative refinement with the block-Jacobi pre-
conditioner available in the Ginkgo library.
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1 Introduction

A significant number of today’s leader high performance computing systems
integrate hardware accelerators, such as graphics processing units (GPUs), with
hundreds to thousands of arithmetic units. In consequence, there is a strong
urge to extract as much parallelism as possible from this type of platforms when
implementing numerical algorithms to satisfy the ever-increasing computational
demands of complex simulations. Furthermore, as memory traffic is much more
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expensive than computation in current systems, minimizing the overhead due to
memory accesses is crucial in order to implement well performing algorithms.

Keeping these aspects in mind, in this paper we aim to combine efforts in both
directions –exploit hardware parallelism efficiently while tackling the memory
bandwidth bottleneck– to construct highly efficient iterative solvers for sparse
triangular (linear) systems.

Previous research has shown that block-Jacobi relaxation provides a
favourable means to exploit parallelism for the solution of sparse triangular sys-
tems arising in incomplete factorization preconditioning [4] when approximate
solutions are acceptable. Independently, it has also been found that, for certain
type of problems, using adaptive-precision in block-Jacobi preconditioning [3]
can drastically reduce memory traffic and, therefore, runtime.

In this paper, we make the following contributions by combining the insights
gained from in [4] and [3]:

– We propose an alternative approach to derive relaxation methods based
on regular matrix splittings. This enables us to establish an explicit rela-
tion between iterative refinement, preconditioners, and relaxation methods
(Sect. 2).

– Furthermore, we exploit this link in practice, by leveraging the highly opti-
mized adaptive-precision block-Jacobi preconditioner and the iterative refine-
ment components from the Ginkgo1 open source library in order to assemble
an adaptive-precision block-Jacobi relaxation method (Sect. 3).

– In addition, we employ this relaxation method as triangular solver for the
Incomplete Cholesky (IC) preconditioner in a Conjugate Gradient (ICCG,
Sect. 3).

– Finally, we evaluate the efficiency and effectiveness of the presented methods
by testing them on a selection of matrices from the SuiteSparse Matrix Col-
lection [1] (Sect. 4). Concretely, we compare the performance of our adaptive-
precision block-Jacobi implementation against a fixed precision block-Jacobi
relaxation method as well as Ginkgo’s direct triangular solvers.

The main goal of this paper is to demonstrate the benefits of our adaptive-
precision block-Jacobi approach versus a fixed-precision block-Jacobi relaxation.
For this reason, we choose test problems for which an iterative solver is a valid
choice for the triangular solves appearing in incomplete factorization precondi-
tioning. We recognize that the applicability of our approach remains problem
dependent [4], and there are cases where it will not provide an efficient alterna-
tive, particularly because the iterative triangular system solvers do not converge
quickly.

2 Background

Consider the linear system Ax = b, where A is an n × n input matrix, b is the
input right-hand side vector, comprising n components, and x is the sought-after
1 https://ginkgo-project.github.io.

https://ginkgo-project.github.io
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solution, also with n components. The iterative refinement method (IR) for this
linear system is then defined as the recurrence [7]:

rk := b − Axk, (1)
qk := Solve(A, rk), (2)

xk+1 := xk + qk, (3)

where xk is the current approximation to the solution x; rk is the current residual;
Solve(A, b) denotes a “coarse” solver that provides an approximated solution to
Ax = b; and qk corresponds to the approximation of the error x − xk obtained
using the coarse solver. This method can be also expressed as a single equation:

xk+1 := xk + Solve(A, b − Axk), (4)

which is the formulation that will be used in the remainder of this work.
Preconditioning refers to replacing the system Ax = b with an equivalent

counterpart M−1Ax = M−1b (a variant known as left preconditioning) in the
hope of improving the numerical properties of the transformed system matrix
(M−1A), which in turn accelerates the convergence of the iterative method used
to tackle the transformed system. Applying preconditioning to IR, by replac-
ing every occurrence of A with M−1A and those of b with M−1b, yields the
preconditioned iterative refinement method (PIR):

xk+1 := xk + Solve(M−1A,M−1b − M−1Axk) (5)

= xk + Solve(M−1A,M−1(b − Axk)). (6)

Equation (6) can be viewed as a variant of IR where the coarse method Solve
is replaced with its preconditioned variant SolveM , which tackles the system
Ax = b by applying Solve to the transformed (preconditioned) system M−1Ax =
M−1b:

xk+1 := xk + SolveM (A, b − Axk). (7)

The convergence rate of IR (or PIR) is directly tied to the accuracy of Solve
(or SolveM ). In particular, if the relative accuracy of Solve is given by a param-
eter δ, (i.e., ‖q̂k − qk‖ ≤ δ‖q̂k‖, where q̂k denotes the true solution of the system
Aq̂k = rk,) then the errors of two consecutive approximations to the solution x
satisfy:

‖x − xk+1‖ ≤ δ‖x − xk‖. (8)

This is a direct consequence of the following two equalities:

q̂k = A−1(b − Axk) = x − xk; and (9)
q̂k − qk = x − xk − qk = x − xk+1. (10)

A simple method to approximate the solution of the system consists in using
Solve(A, b) := b; that is, the solution is approximated by the right-hand side
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vector of the system b. The preconditioned version of this method is therefore
obtained by applying the same reasoning to the system M−1Ax = M−1b, which
results in SolveM (A, b) := M−1b. That is, the solution is obtained from the
preconditioner application to the right-hand side vector. Since the preconditioner
application is one of the most crucial kernels involving preconditioners, an added
bonus for this approach is that sparse linear algebra libraries usually include
highly optimized kernels for its computation.

Using the definition of SolveM (A, b) := M−1b in PIR from Eq. (7) results in
the method:

xk+1 := xk + SolveM (A, b − Axk)

= xk + M−1(b − Axk)

= M−1Mxk + M−1b − M−1Axk

= M−1(M − A)xk + M−1b

= M−1Nxk + M−1b, (11)

where the matrix N := M − A satisfies that A = M − N .
A number of relevant observations follow from the previous elaboration:

– Eq. (11) is exactly the definition of a relaxation method induced by the regular
splitting A = M − N [9]. Thus, every such method can be expressed as an
IR whose inner solver is Solve(A, b) := b preconditioned with the matrix M
from the regular splitting.

– Additionally, a PIR method preconditioned with M = A − R, where R is
the preconditioner’s residual matrix, induces a relaxation method xk+1 :=
M−1Rxk + M−1b.

– Finally, Eq. (8) demonstrates that the convergence rate of such methods is
given by the parameter δ of the preconditioner M :

δ := max
y∈Rn

‖M−1y − A−1y‖
‖A−1y‖ , y �= 0. (12)

3 Assemblinag the Algorithm with Ginkgo’s Components

The open-source Ginkgo linear algebra library provides high-performance imple-
mentations of popular Krylov methods and preconditioners. Ginkgo also includes
efficient realizations of IR, particularly for manycore accelerators such as GPUs.
While there is (yet) no direct support for the block-Jacobi relaxation method in
Ginkgo, the library is equipped with a highly optimized implementation of the
block-Jacobi preconditioner. This implementation also integrates an adaptive-
precision storage scheme [5], which reduces the total volume of data fetched
from memory at each iteration, while preserving the quality of the precondi-
tioner measured by δ.

The previous section showed that a relaxation method can be easily con-
structed by combining IR with a preconditioner. Concretely, the adaptive-
precision block-Jacobi preconditioner from Ginkgo yields an adaptive-precision



550 F. Goebel et al.

version of the block-Jacobi relaxation method. While the full-precision block-
Jacobi relaxation method proved effectiveness in providing an approximate solu-
tion for sparse triangular systems arising from incomplete LU (ILU)-type pre-
conditioners [4], in this work we focus on the method automatically constructed
from the preconditioner in Ginkgo, which allows seamless enhancements via the
adaptive-precision storage scheme. The code used to construct this method is
illustrated in Listing 1.1.

Listing 1.1. Realization of the adaptive block-Jacobi relaxation method using the
open-source Ginkgo linear algebra library.

1 #include <ginkgo / ginkgo . hpp>
2 #include <iostream>
3
4 int main ( ) {
5 auto gpu = gko : : CudaExecutor : : c r e a t e (0 ,

gko : : OmpExecutor : : c r e a t e ( ) ) ;
6 auto A = gko : : read<gko : : matrix : : Csr<>>(std : : c in ,

gpu ) ;
7 auto b = gko : : read<gko : : matrix : : Dense<>>(std : : c in ,

gpu ) ;
8 auto x = gko : : read<gko : : matrix : : Dense<>>(std : : c in ,

gpu ) ;
9 auto s o l v e r =

10 gko : : s o l v e r : : I r <>:: bu i ld ( )
11 . w i t h s o l v e r (
12 gko : : p r e c ond i t i on e r : : Jacobi <>:: bu i ld ( )
13 . w i th s t o r ag e op t im i z a t i on (
14 gko : : p r e c i s i o n r e du c t i o n : : autodetec t ( ) )
15 . on ( gpu ) )
16 . w i t h c r i t e r i a (
17 gko : : stop : : I t e r a t i o n : : bu i ld ( )
18 . w i th max i t e r s (1000u) . on ( gpu ) ,
19 gko : : stop : : ResidualNormReduction <>:: bu i ld ( )
20 . w i t h r e du c t i o n f a c t o r (1 e−15)
21 . on ( gpu ) )
22 . on ( gpu ) ;
23 so lve r−>generate ( g ive (A) )−>apply ( lend (b) , lend (x ) ) ;
24 wr i t e ( std : : cout , lend (x ) ) ;
25 }

Note that, with the new approach, we have to perform a matrix-vector mul-
tiplication with M−1 and a second matrix-vector product with A (per iteration),
whereas the classical block-Jacobi method involves one matrix-vector multipli-
cation with N and second with M−1 (per iteration). Since in the block-Jacobi
method M is a block-diagonal submatrix of A, N = M − A will generally have
less nonzero elements than A. This means that the IR-induced formulation can
be expected to perform more floating-point operations per iteration than the
classical block-Jacobi method. However, the IR approach can leverage Ginkgo’s
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highly optimized block-Jacobi kernels, including their adaptive-precision storage
realization. Furthermore, as presented in Listing 1.1, the development effort is
minimal.

Ginkgo also offers a direct means to generate an ILU-type preconditioner,
with IR as inner solver, and integrate the generated preconditioner into a Krylov
solver in order to obtain a general sparse linear system solver. Listing 1.2 shows
the complete code needed to tackle a sparse symmetric positive definite (s.p.d.)
system with a CG solver preconditioned with an ILU/incomplete Cholesky (IC)
decomposition using the presented adaptive-precision IR approach for solving the
triangular systems occurring at each iteration when applying the preconditioner.

In the next section, we compare the efficiency of the new IR-induced adaptive-
precision block-Jacobi solver for solving triangular systems against using direct
triangular solves as well as the IR-induced block-Jacobi method operating in
fixed (double) precision.

Listing 1.2. Realization of the adaptive block-Jacobi relaxation method using the
open-source Ginkgo linear algebra library.

1 #include <ginkgo / ginkgo . hpp>
2 #include <iostream>
3
4 int main ( ) {
5 auto gpu = gko : : CudaExecutor : : c r e a t e (0 ,

gko : : OmpExecutor : : c r e a t e ( ) ) ;
6 auto A = gko : : read<gko : : matrix : : Csr<>>(std : : c in ,

gpu ) ;
7 auto b = gko : : read<gko : : matrix : : Dense<>>(std : : c in ,

gpu ) ;
8 auto x = gko : : read<gko : : matrix : : Dense<>>(std : : c in ,

gpu ) ;
9

10 unsigned int b l o c k s i z e = 16u ;
11
12 auto i l u f a c t o r y =
13 gko : : f a c t o r i z a t i o n : : ParI lu <>:: bu i ld ( )
14 . w i t h s k i p s o r t i n g ( fa l se ) . on ( gpu ) ;
15 auto i l u de compos i t i on =

i l u f a c t o r y −>generate ( gko : : share (A) ) ;
16
17 auto t r i a n g u l a r s o l v e r f a c t o r y =
18 gko : : s o l v e r : : I r <>:: bu i ld ( )
19 . w i t h s o l v e r (
20 gko : : p r e c ond i t i on e r : : Jacobi <>:: bu i ld ( )
21 . w i th max b lock s i z e ( b l o c k s i z e )
22 . w i th s t o r ag e op t im i z a t i on (
23 gko : : p r e c i s i o n r e du c t i o n : : autodetec t ( ) )
24 . on ( gpu ) )
25 . w i t h c r i t e r i a (
26 gko : : stop : : I t e r a t i o n : : bu i ld ( )
27 . w i th max i t e r s (5u) . on ( gpu ) )



552 F. Goebel et al.

28 . on ( gpu ) ;
29
30 auto i l u p r e c o n d i t i o n e r f a c t o r y =
31 gko : : p r e c ond i t i on e r : : I lu<gko : : s o l v e r : : I r <>,
32 gko : : s o l v e r : : I r <>>:: bu i ld ( )
33 . w i t h l s o l v e r f a c t o r y (
34 gko : : c l one ( t r i a n g u l a r s o l v e r f a c t o r y ) )
35 . w i t h u s o l v e r f a c t o r y (
36 gko : : c l one ( t r i a n g u l a r s o l v e r f a c t o r y ) )
37 . on ( gpu ) ;
38
39 auto i l u p r e c o nd i t i o n e r =
40 i l u p r e c o nd i t i o n e r f a c t o r y −>generate (
41 gko : : share ( i l u de compos i t i on ) ) ;
42
43 auto s o l v e r =
44 gko : : s o l v e r : : Cg<>:: bu i ld ( )
45 . w i t h c r i t e r i a (
46 gko : : stop : : I t e r a t i o n : : bu i ld ( )
47 . w i th max i t e r s (1500u) . on ( gpu ) ,
48 gko : : stop : : ResidualNormReduction <>:: bu i ld ( )
49 . w i t h r e du c t i o n f a c t o r (1 e−15) . on ( gpu ) )
50 . w i th g ene r a t ed p r e cond i t i on e r (
51 gko : : share ( i l u p r e c o nd i t i o n e r ) )
52 . on ( gpu ) ;
53
54 so lve r−>generate ( g ive (A) )−>apply (
55 gko : : l end (b) , gko : : l end (x ) ) ;
56 wr i t e ( std : : cout , gko : : l end (x ) ) ;
57 }

4 Experimental Evaluation

4.1 Test Problems

This section collects results for 24 s.p.d. matrices from the SuiteSparse Matrix
Collection [1] arising in real applications or artificial academic problems. The
test matrices are listed in Table 1. For the block-Jacobi preconditioner, we use
supervariable amalgamation [4] for identifying strongly connected components
with a maximum block size of 16.

4.2 Hardware Setup

All results were collected on an NVIDIA Volta V100 GPU placed in the Summit
supercomputer. This GPU contains 16 GB of DDR4 memory and 80 streaming
multiprocessors with 32 double precision units each. The hardware specifications
show that peak performance for double precision operations is 7.8 TFLOP/s (i.e.,
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7.8 · 1012 floating-point operations per second) and the bandwidth to access the
main memory is 900 GB/s [8].

All results were gathered using the CUDA Toolkit 10.1.243 and Ginkgo 1.1.1.
In particular, when we compare against exact triangular solves, Ginkgo interfaces
to the cuBLAS routine csrsm2.

As our complete codes run on the GPU, the features of the platform (CPU,
main memory, PCI bus bandwidth, etc.) where the GPU resides are not relevant
for the following analysis.

Table 1. Test matrices along with key characteristics. The stated condition number are
an estimate to the 1-norm condition number obtained with Matlab’s condest function.

Name Problem kind #rows #nonzeros Cond. number

apache1 Structural problem 80, 800 542, 184 3.99e+06

bodyy4 Structural 17, 546 121, 550 1.02e+03

bundle1 Computer graphics 10, 581 770, 811 1.33e+04

crystm01 Materials 4, 875 105, 339 421.17

crystm02 Materials 13, 965 322, 905 448.91

crystm03 Materials 24, 696 583, 770 467.76

Dubcova1 2D/3D 16, 129 253, 009 2.62e+03

Dubcova3 2D/3D 146, 689 3, 636, 643 1.15e+04

finan512 Economic 74, 752 596, 992 98.39

jnlbrng1 Optimization 40, 000 199, 200 187.16

Muu Structural 7, 102 170, 134 155.06

qa8fm Acoustics 66, 127 1, 660, 579 109.6

t2dah e Model reduction 11, 445 176, 117 1.37e+09

s1rmt3m1 Structural 5, 489 217, 651 5.35e+06

s2rmt3m1 Structural 5, 489 217, 681 4.84e+08

shallow water1 Comp. fluid dynamics 81, 920 327, 680 3.63

shallow water2 Comp. fluid dynamics 81, 920 327, 680 11.28

ted B Thermal 10, 605 144, 579 3.02e+07

ted B unscaled Thermal 10, 605 144, 579 2.04e+11

thermal1 Thermal 82, 654 574, 458 4.96e+05

thermomech dM Thermal 204, 316 1, 423, 116 120.74

thermomech TC Thermal 102, 158 711, 558 119.82

torsion1 Duplicate optimization 40, 000 197, 608 41.00

Trefethen 20000 Combinatorial 20, 000 554, 466 2.01e+05



554 F. Goebel et al.

(a) finan512 (b) Dubcova3 (c) thermal1 (d) ted B (e) Muu

Fig. 1. Sparsity patterns of selected test matrices.

4.3 Numerical Experiments on HPC GPU

Initially, we want to investigate whether an iterative triangular solver based on
block-Jacobi can be faster than a conventional direct triangular solver. For that
purpose, we consider five sparse problems, finan512, Dubcova3, thermal1,
ted B and Muu, coming from different application scenarios; see Table 1 for
the matrix characteristics and Fig. 1 for the sparsity patterns.

The results for this first experiment are shown in in Fig. 2. The left-hand
side column of plots in that figure displays the number of iterations a Conjugate
Gradient method preconditioned with Incomplete Cholesky (ICCG) needs to
converge depending on how the triangular systems are solved: either using exact
triangular solves or, alternatively, block-Jacobi inside an IR method. Here, the
ICCG method is considered to have converged when the norm of the relative
residual

rrel =
b − Ax

‖b − Ax0‖
is less than 1e − 16 · cond, where cond is the estimated condition number of A
found in Table 1. As we can observe, when the number of sweeps of block-Jacobi
IR per triangular solve is low, there is a significant increase in terms of ICCG
iterations. When using more than 5 block-Jacobi IR sweeps though, the increase
of ICCG iterations shrinks to a moderate level. A large number of block-Jacobi
sweeps fully compensates the approximate characteristics, and retains the ICCG
iteration count observed for the variant using exact triangular solves. We note
that, in terms of convergence of the ICCG solver, there is no relevant difference
between the realizations that integrate the adaptive-precision block-Jacobi and
the fixed-precision block-Jacobi.

The center column of plots in Fig. 2 displays the number of block-Jacobi
sweeps to the ICCG runtime. Here, the performance advantage of a block-
Jacobi IR iteration over an exact triangular solver becomes visible: Although
the number of ICCG iterations is much higher when using only a few IR itera-
tions, the total runtime can be much shorter than leveraging a direct triangular
solve. For the finan512, thermal1 and Dubcova3 problems, the ICCG using
block-Jacobi IR is faster than ICCG using exact triangular solves. For the large
problems finan512, thermal1 and Dubcova3, we can appreciate significant
runtime benefits when using the adaptive-precision block-Jacobi. For the much
smaller ted B problem, the block-Jacobi IR is faster if we perform more than 2
IR sweeps. Only for Muu, which is both small and well conditioned, the approach
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Fig. 2. Relating the effect of the block-Jacobi sweep count in the iterative triangular
solution in incomplete factorization preconditioning for the matrix problems finan512,
Dubcova3, thermal1, ted B and Muu (from top to bottom): PCG iteration count
(left), time-to-solution, and speedup of using adaptive-precision block-Jacobi over fixed-
precision block-Jacobi (right).
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using iterative triangular solves fails to beat the runtime achieved with direct
triangular solves. Overall, we note that the optimal number of block-Jacobi IR
sweeps is a problem-dependent parameter.

In the right-hand side column of plots in Fig. 2, we visualize the speedup of
ICCG with the adaptive-precision block-Jacobi IR over its fixed-precision block-
Jacobi IR counterpart. Where the adaptive-precision technique yields shorter
runtime than the fixed-precision technique we observe a general positive trend
of the runtime benefits when increasing the number of block-Jacobi IR sweeps.
This is expected as increasing the sweep count enlarges the fraction of time spent
in the triangular solves, which is where the use of adaptive precision reduces the
volume of memory accesses and, therefore, runtime.

For finan512, thermal1 and Dubcova3, the runtime savings grow up to
around 10%. This is in accordance with a previous experimental analysis of
adaptive-precision block-Jacobi preconditioning [3].

Fig. 3. Speed-up of one adaptive-precision Block-Jacobi sweep versus a direct trian-
gular solve of the L and U factors of the regarded ILU decompositions (top) and the
according speedup versus one fixed-precision sweep (bottom). The maximum block size
is 16. The time of one iteration is taken as the average over the first 100 iterations.

For the following experiment, we select a set of 24 test matrices where block-
Jacobi IR is a viable option for the triangular solver. This selection recognizes
that iterative triangular solves can fail to propagate the accuracy needed by
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ICCG to solve the problem. Furthermore, it also acknowledges that, depending
on the matrix sparsity structure and the implied dependency tree, iterative trian-
gular solves are not necessarily always faster than exact triangular solves [2]. For
these problems (all those listed in Table 1), on the left-hand side plot in Fig. 3
we visualize the speedup of one adaptive-precision block-Jacobi sweep over the
level-based direct triangular solve. In the right-hand side plot of the same figure,
we display the speedup of the adaptive-precision over the fixed-precision block-
Jacobi sweeps. While there are three problems where we suffer small slowdowns,
for most of the selected matrices we obtain a speedup, and for some problems
we save around 20% computing time.

(a) Optimal number of Block-Jacobi sweeps (b) Soft continuous optimization

Fig. 4. Optimal number of adaptive-precision Block-Jacobi sweeps to minimize PCG
runtime (left) and soft continuous optimization (right).

Next, in Fig. 4 we use the test set of 24 matrices to identify the optimal num-
ber of sweeps. Looking at the results in the left-hand side in Fig. 4, we observe
that there is no overall optimal sweep count. In order to choose a reasonable
number of sweeps count, we give each of our test matrices an index i and define
ICCG(nsweeps, i) as the ICCG runtime for matrix i using nsweeps block-Jacobi
sweeps in the triangular solves. With this, we define the normalized ICCG run-
time for matrix i with nsweeps block-Jacobi sweeps in the triangular solves,

ti(nsweeps) =
ICCG(nsweeps, i)

min20
j=1ICCG(j, i)

,

as the relation between the actual and minimal ICCG runtime. We then look at
the soft optimization function

T (nsweeps) =
24∑

i=1

ti(nsweeps).

The right-hand side of Fig. 4 shows that for this problem test suite, T is small
for about 19 block-Jacobi sweeps per ICCG iteration.
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Finally, we compare the optimal number of block-Jacobi IR sweeps for each
matrix and the default setting of 19 sweeps to quantify the benefits of using
adaptive-precision in the block-Jacobi IR over using fixed-precision block-Jacobi
IR. In Fig. 5, we report the speedup of ICCG equipped with adaptive-precision
block-Jacobi IR for the triangular solves over ICCG using fixed-precision block-
Jacobi IR for the triangular solves. We first focus on the problem-specific opti-
mization of the block-Jacobi IR sweep count. For this setting (minimizing the
ICCG overall runtime), we observe that, for about two thirds of the problems, the
use of adaptive precision has only a negligible impact or none at all. For roughly
one third of the problems, we have single-digit speedups over the fixed-precision
usage.

If we fix the number of block-Jacobi IR sweeps to 19 (not considering the
problem-specific optimization reducing the ICCG runtime), the benefits of using
adaptive-precision over fixed-precision are generally larger. This implies that,
when using a default setting – which is realistic for practical use– adopting a
adaptive-precision block-Jacobi instead of a fixed-precision block-Jacobi renders
significant benefits.

Fig. 5. Speedup of ICCG with adaptive-precision block-Jacobi vs. fixed-precision block-
Jacobi for the optimal number of sweeps for each matrix (top) and 19 sweeps per itera-
tion as resulting from evaluating the soft continuous optimization function T (bottom).
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5 Summary

In this work, we have investigated the benefits of using adaptive precision block-
Jacobi for iteratively solving the triangular systems arising in incomplete factor-
ization preconditioning. This was accomplished by linking relaxation methods to
iterative refinement and preconditioners. Using the Ginkgo open source library
for numerical linear algebra, we set up a Conjugate Gradient (CG) solver using
an incomplete Cholesky decomposition preconditioner which replaces exact tri-
angular solves with iterative triangular solves based on block-Jacobi iterative
refinement.

Comparing the performance on high-end GPUs, we revealed that using adap-
tive precision block-Jacobi iterations is generally faster than using fixed precision
block-Jacobi iterations.

In accordance with [4], we emphasize that using iterative triangular solves
based on (adaptive) precision block-Jacobi is not always the fastest option. But
we emphasize that if using block-Jacobi iterations for solving triangular systems
in incomplete factorization preconditioning is a valid option, it is likely that the
performance can be improved by replacing fixed precision block-Jacobi with our
adaptive precision block-Jacobi method.
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Abstract. When a spacecraft is released into space, its initial condition
and future trajectory in terms of position and speed cannot be precisely
predicted. To ensure that the object does not violate space debris mit-
igation or planetary protection standards, such that it causes potential
damage or contamination of celestial bodies, spacecraft-mission design-
ers conduct a multitude of simulations to verify the validity of the set
of all probable trajectories. Such simulations are usually independent
from each other, making them a perfect match for parallelization. The
European Space Agency (ESA) developed a GPU-based simulator for
this purpose and achieved reasonable speedups in comparison with the
established multi-threaded CPU version. However, we noticed that the
performance starts to degrade as the spacecraft trajectories diverge in
time. Our empirical analysis using GPU profilers showed that the appli-
cation suffers from poor data locality and high memory traffic. In this
paper, we propose an alternative data layout, which increases data local-
ity within thread blocks. Furthermore, we introduce alternative model
configurations that lower both algorithmic effort and the number of mem-
ory requests without violating accuracy requirements. Our experiments
show that our method is able to accelerate the computations up to a
factor of 2.6.

Keywords: GPU · Simulation · Profiling · Astrodynamics

1 Introduction

In space mission design astrodynamics simulations are instrumental in deter-
mining the probabilities of spacecraft and space debris trajectories. At the point
of release or in-orbit failure, the position and speed of the object as well as the
properties (e.g. surface reflectivity) are only known to the mission architects only
with a certain precision. Hence, Monte-Carlo simulations containing thousands
of object samples are conducted in during the mission preparation phase. Based
on the results, the team will choose a nominal separation state or trajectory
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that satisfies the rules of the current planetary protection and space-debris mit-
igation guidelines. For instance, during the BepiColombo mission [3], currently
being flown to Mercury by the European Space Agency (ESA), the upper stage
of the Ariane 5 launcher places the mission spacecraft into the desired transfer
orbit before release. After the required passivation of the upper stage to pre-
vent further break-up, this object becomes space debris and it is not allowed to
impact e.g. Mars or return to near-earth space by a certain probability.

To verify cases like this, the European Space Agency (ESA) has recently
designed a tool called cudajectory to run such simulations on CUDA-capable
devices and achieved a speedup ranging from 1.9× to 10.5× in comparison with
established multi-threaded solutions on CPUs [6]. However, we found out that
the GPU implementation can benefit from further improvements.

To accelerate such highly parallelizable simulations, we analyze the state of
the art and suggest alternative methods to gain performance without violating
accuracy requirements. The simulations are typically performed using numerical
integration methods, such as the Runge-Kutta-Fehlberg 78 scheme [4]. The use
of variable step integration methods is extremely efficient for spacecraft trajec-
tories, since the step size can vary from days in interplanetary space to only
seconds, when the object moves very close to a celestial body. In such numer-
ical integration methods, the equations of motions are implemented, and force
or acceleration models are used. One of these models is the ephemeris model,
which we will focus on in this paper since its performance is often bound by
memory. The ephemeris model provides the position of the celestial bodies at a
given epoch/time and allows us to derive the gravity field affecting the spacecraft
trajectory. For the trajectory of a single object being calculated, the simulation
will sequentially go through the ephemeris calculations as the simulated time
progresses. However, when different spacecraft or object samples are simulated
in parallel, this is no longer the case. Even if the samples have the same initial
time, which is not the case in all problems, the integration steps can have differ-
ent lengths. Thus, each simulated object requires the positions of the celestial
objects at a different epochs. In a different problem to be investigated a space-
craft failure shall be simulated along the nominal flight path and thus already
the initial epochs of all samples are different. Such initial difference or diver-
gence during the integration process leads to different sets of data requested by
the ephemeris routines, overloading the on-chip memory, which indeed results
in register-spilling. Therefore, memory bandwidth becomes a bottleneck and
decreases the overall performance tremendously.

In this paper, we propose an alternative data layout for the ephemeris data.
This new data layout improves data locality. The ephemeris data is restructured
from a memory layout optimized for sequential processing to a layout more
suitable for parallel processing. We increase the likelihood that the required
ephemeris data is available in the caches for several threads running on the
GPU, thus preventing threads from stalling. Additionally, we were able to shrink
the ephemeris model while maintaining the required accuracy. First of all, some
celestial bodies may exert forces small enough to be disregarded. Then, planetary
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systems can be handled as a single body adding a small error. Lastly, a different
type of function can be used to approximate the movement of these bodies.
Originally, Chebyshev polynomials [5,12] with a degree between 6 to 14 were
being used in ephemeris models. However, previous experiments [7,15] already
demonstrated that cubic splines are more memory efficient and straightforward
while providing reasonable accuracy. Such optimizations reduce the algorithmic
effort and the number of data requests, thus improving data locality. In essence,
this paper makes the following major contributions:

– A novel data-locality aware data structure to hold ephemeris model data
– A method for balancing the trade-off between simulation accuracy and speed

In the remainder of the paper, we first provide background on the spacecraft
trajectory simulation using GPUs. Then, in Sect. 3, the effect of alternative
model configurations is analyzed to identify further case-dependent optimiza-
tions, followed by an evaluation in Sect. 4. A concise review of related work is
presented in Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Background on Astrodynamic Simulations

When objects in space are passivated, the point in time, position, and speed are
only known with a certain precision. For in-orbit failures, however, the problem
is more random as they can occur at any point during the mission. In addition
other uncertainties can occur, e.g. the surface reflectivity of an object and thus
the solar radiation pressure acting on will depend on the future attitude of the
S/C and the properties can also be determined only with a specific accuracy
prior to launch. Tiny deviations of the state parameters can lead to a significant
difference in the trajectory after years and decades of space travel. Therefore, the
Monte-Carlo method [8] is applied beforehand to generate a set of sample states
and propagated forward in time to generate their trajectory path. Depending on
the case, these samples may be located around an initial guess, as presented in the
first picture of Fig. 1, or along a specifically planned and controlled trajectory.
Once a sufficient amount of such samples (often up to hundreds of thousands) is
simulated for an appropriate period, we can produce a meaningful probabilistic
result from the predicted trajectories, such as impact probability to a specific
celestial body.

2.1 cudajectory : ESA Tool for Trajectory Simulations on GPUs

A spacecraft trajectory can be simulated step by step using numerical inte-
gration methods. Within each step, the change in position and velocity of the
spacecraft is calculated by applying a physics model. ESA developed an in-house
tool called cudajectory [6], solely designed to simulate the trajectories of a set of
initial spacecraft states, a.k.a samples. The tool parallelizes the trajectory sim-
ulations by starting one GPU thread per sample, as described in Fig. 1. They
are numerically integrated until every simulation of a sample reaches the end



564 F. Schrammel et al.

Fig. 1. Example of the main aspects of a collision analysis of space debris after sep-
aration. In a first step samples are generated, which need to be propagated in time in
a second step and the results need to be analyzed in a third step. The second part of
this process is implemented by cudajectory.

of a fixed simulation period or collides with a celestial body. The Runge-Kutta
method [9] of seventh order is used for step-wise integration, and the eighth order
is added via the Fehlberg method [4] to apply dynamic step-size control. Here,
each step contains 13 evaluations of the ordinary differential equation (ODE) on
eleven different points in time. Each ODE evaluation applies the physics model,
which includes routines to calculate gravitational forces, solar radiation pres-
sure, and collision detection regarding the nearby celestial bodies. All of these
calculations require the position of one or more celestial bodies at the current
time, retrieved from an ephemeris model.

An ephemeris is a collection of models and values that can describe the
position and velocity of astronomical objects over specific periods. Releases from
the Jet Propulsion Laboratory (JPL) are known to be the most accurate models
nowadays, and the applied data format (Type 2 ) is widely used in the industry
[2,11]. These models contain functions of time returning the three-dimensional
cartesian position of a body. Chebyshev polynomials are the method of choice
for high-precision orbit approximation (See Fig. 5) as they are best suited in
terms of accuracy, interpolation error, and applicability [12]. For each body, a
series of polynomials of fixed interval length and polynomial degree is provided
to approximate its orbit over the simulated period. Only the coefficients of each
polynomial will be stored in program memory, which are applied during position
calculations.

DE432 is the latest release by JPL [5] and serves as a baseline during our
research. It covers eleven major celestial bodies and planetary systems of the
solar system, where the center of mass (barycenter) is used to include moons.

2.2 State-of-the-Art Performance

Experiments show that the current implementation of cudajectory can be about
10× faster than established multi-threaded CPU solutions on different types of
input samples and physics models. However, we noticed that one major perfor-
mance bottleneck of cudajectory happens for samples at very different points
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Fig. 2. Distribution of the time difference between the simulation epoch at each inte-
gration step within warps of the BepiColombo case example. The maximum range
observed difference was 2352 days within a warp. A difference of 0 days indicates that
all threads can use the same ephemeris data block.

of simulation time [6]. The step sizes applied during the samples for the Bepi-
Colombo case range from several seconds to almost nine days. In the main imple-
mentation, GPU threads are divided into fixed groups called warps in CUDA
terms, each executing in parallel. When the range of the timestamps within a
warp increases due to different start times or dynamic step size control, the
threads require different sets of ephemeris polynomials to calculate the posi-
tion of a specific celestial body. These differences in time can be significant as
depicted in Fig. 2. If not all data can be made available the whole warp stalls
until all of these polynomials have their coefficients data ready. Therefore, when
this situation occurs the memory traffic is immensely increased and leads to
significant performance degradation.

3 Efficient Ephemeris Formats and Configurations

We analyze the original record-based ephemeris data format on GPUs and pro-
pose an alternative data format to improve performance. This format stores the
polynomial data in a different order and offers the opportunity to apply cubic
splines instead of the current Chebyshev polynomials. Finally, we present addi-
tional ways to reduce algorithmic effort, as well as data requirements.

We profiled the performance of the BepiColombo case, running 420,000
threads packed in 13,125 warps on a Tesla V100 using the Nvidia Visual Pro-
filer [14]. The results showed that 95.7% of the memory traffic is linked to local-
memory instructions. This is a strong hint to the existence of excessive register
spilling, as this memory space can not be utilized manually. Instead, the program
automatically includes such instructions to spill and reload the register data. We
also identified a high execution efficiency of over 98%, indicating almost no pro-
cessor idle time. However, such a large fraction of executed instructions is likely
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Fig. 3. Two caching examples for DE432 data stored in record-based format, where
e.g. the first record spans from S0 to P0. We depict data of polynomials for the Sun
(Si), the Earth (Ei), Jupiter (Ji) and Pluto (Pi). Multiple polynomials of the same
body are loaded in the cache lines of 128 bytes (between two black ticks) [13]. The
loaded but unneeded data in the cache is displayed by diagonal grey stripes.

linked to register spilling, which reduces the overall efficiency. To alleviate the
register spilling, the overall memory traffic must be reduced. Therefore, we apply
a different data alignment and memory access pattern, which helps us to improve
data locality.

The data format of DE432 is designed to improve the data locality of single-
thread execution. All data required for the position calculations of a specific point
in time is collected in one record, which covers 32 days. This method increases
the spatial locality, as some coefficients of the latter bodies in the list are pre-
cached by requests to earlier bodies. Since the move to the subsequent point in
time rarely exceeds 7.0 days, the ephemeris data valid for the previous timestamp
will often be reused, which provides temporal locality. Figure 3 describes DE432
data stored in the GPU texture memory. As the data size for each polynomial
is often not a multiple of the cache line size, they will not be stored at the
start of a cache line. When a warp requests the polynomial coefficients for one
specific body covering a specific period, the relevant cache lines are loaded into
the on-chip cache. The first request targets four Sun polynomials of 1056 bytes,
for which twelve cache lines are loaded, although they would fit into nine. This
results in 1536 bytes loaded, which is roughly 45% more than requested. In the
second example shown in Fig. 3 regarding Jupiter polynomials, 40% more cache
lines containing 56% more data than needed are loaded. When all polynomials
within the records are applied at some point during the calculations, a fraction
of the unneeded data may be used for a different body or point in time. If cached
until this point, the data is then immediately available. However, getting a warp
instruction ready for execution will generally involve more memory traffic than
theoretically necessary. Additionally, a cache overload will replace former cached
polynomials, alleviating both spatial and temporal locality effects.
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Fig. 4. Same ephemeris model data and example requests as in Fig. 3 but with the
polynomials sorted first by body and then by time.

3.1 CUBE: CUdajectory Binary Ephemeris Format

An efficient ephemeris data format for massively parallelized cudajectory requires
a different view of data locality. Instead of looking at the locality within a single
thread, we need to focus on the data that is requested at once by the threads of
one warp. By fitting the data’s alignment to the access pattern, we can reduce
the memory traffic and register spilling.

The threads within a warp will all perform the position calculation for the
same body by design of the software. In case they evaluate the same polyno-
mial, they will also need the same data. For higher timestamp ranges, however,
this ranges over multiple polynomials. Therefore, storing the list of polynomials
sorted first by the body and then by timestamp will result in a more efficient
format than the original record-based approach. This is the exact idea behind
the proposed CUBE format.

Figure 4 describes the same data requests as in Fig. 3, but now the poly-
nomials are stored in the CUBE format. For the Sun polynomials, we load the
minimum necessary number of cache lines, where only 9% more data than needed
is included. In the case of Jupiter, still, one more cache line than theoretically
necessary is loaded, which is caused by the alignment of the polynomials to the
cache lines in texture memory. However, we still perform much better compared
to the record-based format because only 20% more cache lines and 33% more
data than needed are loaded. Overall, we achieve a 21% reduction of loaded
cache lines (From 19 down to 15) by merely changing the alignment of the data,
promising a notable performance gain.

Furthermore, we identified a difference in the storage structure of coefficients
within each polynomial and the order of accesses by the cudajectory implemen-
tation. Thus, there is a chance for additional performance improvement when
either the algorithm is adjusted, or the CUBE format is further improved.
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Fig. 5. Exaggerated illustration of an arbitrary body’s position obtained from tra-
jectory approximations of different accuracy. The gravitational pull on a spacecraft,
calculated from this position, is affected by the position deviation introduced by the
approximation, especially when close as shown for spacecraft 1.

3.2 Alternative Models and Configurations

Using Cubic Splines; Popular types of ephemeris models apply Chebyshev
polynomials [2,12] to approximate the position and velocity of celestial bodies.
However, Korvenoja et al. [7] showed that ephemeris models for satellite orbits
could be computed using cubic splines, achieving high accuracy with significantly
lower effort. Moreover, Russell and Arora [15] demonstrated that this technique
could also be applied to ephemeris models of celestial bodies. When an alter-
native model is applied, the deviation in the calculated body positions affects
the direction and magnitude of the gravitational pull exerted on the simulated
spacecraft as depicted in Fig. 5. However, if this effect is small enough (e.g. for
spacecraft 2 in the figure), this model may be applied without consequences.

Cubic splines are polynomials of degree three, interpolating between a
sequence of knots. When generating an alternative ephemeris model for a spe-
cific celestial body, the positions at equally-spaced points in time retrieved from
the original DE432 model can be used as knots. By applying a model containing
such cubic splines instead of the DE432 Chebyshev polynomials, we are able
to improve the efficiency of specific position calculations. Chebyshev polyno-
mials are evaluated by a recursive algorithm, including six to fourteen three-
dimensional coefficients (Table 1). On the other hand, a cubic spline is simpler
to evaluate and reduces the number of coefficients to four and 96 bytes per poly-
nomial. Additionally, the CUBE format lets us choose the spline interval size
for each body independently, as we are not bound to the record’s interval any-
more. Here, longer intervals increase data reuse both within each specific sample
simulation and between different GPU threads.

Furthermore, an ephemeris model using cubic splines turns out to have a very
stable deviation compared to the positions retrieved from the original model.
The maximum deviation of such a cubic spline model against the original can
be calculated statically and later used as accuracy metric to support model
selection. Increasing the polynomial interval increases the maximum deviation
and decreases the approximation accuracy of the model. However, we improve
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Table 1. Statistics on type 2 polynomials from DE432 with N + 1 three-dimensional
coefficients of double precision floating point type [2,11].

Celestial body or Interval Polynomial Per polynomial Per 32 days record

Barycentre (BC) [days] Degree N Values Bytes Values Bytes

Sun 16 10 33 264 66 528

Mercury 8 13 42 336 168 1 344

Venus 16 9 30 240 60 480

Earth BC 16 12 39 312 78 624

Moon 4 12 39 312 312 2 496

Mars BC 32 10 33 264 33 264

Jupiter BC 32 7 24 192 24 192

Saturn BC 32 6 21 168 21 168

Uranus BC 32 5 18 144 18 144

Neptune BC 32 5 18 144 18 144

Pluto BC 32 5 18 144 18 144

the reuse of data as fewer different polynomials need to be loaded to cover the
same timestamp range. For bodies in the outer solar system, cubic splines seem to
be an efficient alternative. While using intervals much longer than set by DE432,
we still provide very high accuracy. For bodies closer to the Sun, however, cubic
splines are not able to provide more efficient intervals while achieving overall
acceptable accuracy levels. This is because of more extreme direction changes in
their movement caused by the surrounding close and massive bodies like the Sun
and Jupiter. Especially the trajectory of Mercury is heavily perturbed making
it very hard to apply cubic splines in an efficient way.

Celestial Bodies Exclusion; Another method to increase the performance is
to exclude a subset of bodies from simulations. An entire celestial body may be
excluded from the physics model if its full gravitational effect on the spacecraft
state is small enough. This skips the related position calculation and ephemeris
data loads within each step and thread, providing a significant performance
boost. Although such model modifications are not specific to GPU applications,
they are the extreme case of the deviation analysis and, therefore, included in
the upcoming experiments.

Planetary Systems Abstraction; The last optimization method is to
abstract planetary systems. In case a planet and its moons are treated as indi-
vidual bodies by the physics model, they may be abstracted using a fictional
body of combined mass at their barycentre, instead. For our applications, this
method can be applied for the Earth-Moon system, when the introduced error is
small enough to be accepted. We call this method EMB abstraction in the rest
of this paper.
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4 Experimental Results

To assess the impact of the proposed method on the simulation runtime, we exe-
cute the disposal analysis for the BepiColombo mission and two additional arti-
ficial test cases with different ephemeris models. Here, only the runtime spent on
the selected CUDA device is measured. The baseline applies the original DE432
model, and on top of that, the speedup is calculated for runs using alternative
ephemeris models. The experiments are executed on Tesla K80, K20XM, and
K40M devices as well as on a Tesla V100 in selected cases. The latter is pri-
marily used for detailed investigations of the performance via the Nvidia Visual
Profiler because it provides additional insight into the utilization of the device
compared to older GPU generations.

4.1 Accuracy Levels of Test Cases

To accelerate position calculations, we pick case-specific ephemeris models with-
out violating accuracy requirements. For this purpose, the accuracy level of the
conducted analysis is defined before we select a model for each celestial body.
We always opt for simpler models, provided that they guarantee the required
accuracy. This way, both the algorithmic complexity as well as the required data
size can be reduced.

Regarding the disposal analysis of the BepiColombo upper stage, the model
selection will be based on the astrodynamical analysis presented in Fig. 6. It
requires only a rough guess of the simulated trajectory range and leads to no
significant increase in runtime.

The ephemeris model configurations for a range of accuracy levels are pre-
sented in Table 2. For each celestial body, either the original polynomials, cubic
splines of a specific maximum deviation, or exclusion is selected. The deter-
mined collection of polynomials is then stored in the CUBE format supported
by cudajectory.

For high accuracy applications at, e.g., 10−20 km/s2, all listed celestial bodies
are included as their gravitational effect is of relevant magnitude (see the left plot
of Fig. 6). Since small position offsets of most bodies already have a worst-case
effect larger than 10−20 km/s2, we inherit the original polynomials for these. Only
for Uranus, Neptune, and Pluto, cubic splines of lower accuracy are selected.
These bodies are always very far away from the spacecraft. Thus, a position
deviation of 10 or 105 km, respectively, is accepted (see the right plot of Fig. 6).

For lower accuracy levels, less accurate cubic splines can be selected for most
of the bodies, and some may be excluded entirely when their overall gravitational
acceleration is determined to be lower than the level at all times. For instance,
Pluto and its moons can safely be excluded when an accuracy level of 10−16

or higher is applied, as shown in Fig. 6. The model for the lowest level in the
table (10−10) includes only six of the eleven bodies. Four of them still require
the original accuracy as the spacecraft might have a close encounter, and for the
other two, the Sun and Jupiter, cubic splines of quite a high deviation can be
selected.
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Fig. 6. The analysis of the overall range of gravitational acceleration (left) and worst-
case change of acceleration on given position offset (right) per celestial body on a
spacecraft between 9.8 × 107 and 2.3 × 108 km from the center of the solar system
(Potential distances for the BepiColombo upper stage around the Sun). As Venus,
the Earth, the Moon, and Mars orbit within this range, their potential gravitational
pull [km/s2] can be much higher (on close encounter) than for the rest and position
deviations would be more critical. For this, these bodies are not included on the right.

The models for all of the given accuracy levels produce results that can be
used to get the first idea of this specific problem, while 10−20 and 10−15 can also
be applied for the final analysis.

Two artificial sample sets on static circular orbits between Earth and Mars
are also included to test alternative models not covered by the BepiColombo case.
Additionally, we configured their timestamp ranges to stay at zero and 64 days
to investigate its effect on the performance. We define an accuracy level at 10−11

km/s2, where cubic spline models at 100 km (Sun), 106 km (Venus, Mars, and
Jupiter) and 108 km (Beyond Jupiter) maximum deviation are applied. Mercury,
Uranus, Neptune, and Pluto are excluded from the model if the body exclusion
feature is enabled. EMB abstraction can safely be applied at every step, as its
maximum error is two magnitudes below the selected accuracy level.

When the original model is applied by one of the cases, the total of all
position calculations for one point in time requires 2520 bytes of polynomial
coefficients. Using the alternative models for the BepiColombo case without
EMB abstraction, this data size is reduced by 6% at level 10−20 to 48% at
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Table 2. Ephemeris configurations for accuracy levels in km/s2 regarding the Bepi-
Colombo analysis. For each body either the original polynomials (DE432), cubic splines
of given maximum deviation in kilometers or exclusion (empty) is selected.

Accuracy level 10−20 10−15 10−12 10−10

Sun DE432 DE432 CS 1 CS 102

Mercury DE432 DE432 DE432

Venus DE432 DE432 DE432 DE432

Earth BC DE432 DE432 DE432 DE432

Moon DE432 DE432 DE432 DE432

Mars BC DE432 DE432 DE432 DE432

Jupiter BC DE432 CS 102 CS 105 CS 107

Saturn BC DE432 CS 104 CS 107

Uranus BC CS 10 CS 106

Neptune BC CS 10 CS 106

Pluto BC CS 105

level 10−10. However, when EMB abstraction is activated, a reduction of up to
60% can be achieved. The described model for the artificial case can improve
this further to 69% reduced memory consumption, while 45% of the position
calculations per point in time are skipped entirely.

4.2 Speedup Gained from Ephemeris Model Changes

The BepiColombo analysis applies step size control, which causes an average of
120 days range of timestamps within warps. To identify the performance impact
of this timestamp range, we execute the artificial cases without step size control.
One case contains samples starting at the same time, and thus the timestamp
range will always be zero. Within the second case, however, the samples’ start
times are equally distributed so that two days are in between every pair of
subsequent samples. This results in a static timestamp range of 64 days within
every warp of 32 threads.

The speedup displayed in Fig. 7 is observed for the mentioned cases when
applying different ephemeris model configurations. All configuration features
individually, as well as the fully adapted models, are able to achieve a signif-
icant runtime speedup of up to 2.6×, where roughly 62% of execution time is
saved. When the data is structured using the CUBE format, a speedup of 1.3×
to 1.37× is observed for the BepiColombo case on the tested GPUs. For cases of
smaller timestamp ranges, even higher speedup is achieved with over 1.4× and
1.5×, respectively.

The impact of the individual configuration features was tested on artificial
cases. Here, the performance gain is similar for both timestamp ranges. However,
all features combined are able to speed up the case of 64 days range more than the
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Fig. 7. The speedup of efficient ephemeris models used by the listed cases and config-
urations. The cases are BepiColombo (BC), zero days (0d), 64 days (64d) timestamp
range. The model features include CUBE format, EMB abstraction, cubic splines (CS),
and the full exclusion of bodies, which are all included for the accuracy level (AL) con-
figurations.

case of zero-days range. The higher range causes a runtime increase by a factor
of 1.13× in the first place, which is reversed by applying the optimizations.

The high accuracy model used for the BepiColombo case already gains a
decent performance boost, which is, however, mostly caused by the format
change. The included cubic splines do not make a big difference. The less accu-
rate models drive the runtime down to a speedup of 2.1× at the accuracy level
of 10−10, which is mainly due to the exclusion of specific bodies.

4.3 Performance Profiles of Ephemeris Model Changes

We profiled the cudajectory using the baseline data format and all the pro-
posed methods. The details are presented in Table 3. The CUBE format reduces
the overall runtime by 29.3%, where especially the heavy ephemeris routines are
accelerated. Further optimization methods are less affected but still faster by at
least 15%. The number of ephemeris data requests is unchanged, but we see a
significant reduction of total loads from device memory by over 26%. The only
change between the first two runs is the data structure of the texture memory.
We can determine that the improved load efficiency results in an increased L2
cache hit rate and fewer reloads of data in both global and local memory. Espe-
cially the 12 billion requests saved in local memory have a very beneficial impact
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Table 3. Performance profiles of one CUDA kernel call till the first clustering break of
the BepiColombo case on a Tesla V100 for DE432 model (baseline) and CUBE format.
The third case uses cubic splines on top, while the fourth case excludes Mercury, Saturn,
Uranus, Neptune and Pluto on top of the CUBE format.

DE432 CUBE Cub. Splines Exclusion

Full kernel runtime 10.81 s 7.64 s −29.3% 7.56 s −1% 5.99 s −22%

for integration 0.46 s 0.39 s −15.2% 0.42 s +8% 0.42 s +8%

for physics model 2.22 s 1.74 s −21.6% 1.85 s +6% 1.45 s −17%

for ephemeris model 7.45 s 4.82 s −35.3% 4.52 s −6% 3.41 s −29%

for positions copy 0.52 s 0.43 s −17.3% 0.46 s +7% 0.48 s +12%

Local memory overhead 95.7% 94.7% −1.0% 95.9% +1% 94.9% 0

L2 Cache hit rate 38.0% 47.0% +9.0% 53.0% +6% 42.0% −5%

Device memory loads (TiB) 2.508 1.847 −26.4% 1.738 −6% 1.612 −13%

Global memory requests 4.5 G 3.3 G −26.7% 3.9 G +18% 2.1 G −36%

Texture memory requests 90.2 G 90.2 G 0 61.9 G −31% 56.7 G −37%

Local memory requests 56.0 G 44.6 G −20.4% 49.8 G +12% 31.9 G −28%

on the runtime. Although the local memory overhead was only reduced by 1%,
we can state that register spilling is reduced significantly by applying the CUBE
format.

When the cubic splines are now applied on top, we observe a further reduction
of the ephemeris model runtime. However, the other program sections experience
an increase, which results in only a small speedup. This is in line with the
observations from Fig. 7, where only a small to no speedup is identified for cubic
splines on top of the CUBE format. The load requests to texture memory were
reduced by 31% as cubic splines are polynomials of lower degree involving fewer
coefficients. As the covered intervals are increased as well, we also observe an
increase in the L2 cache hit rate. However, the little extra logic in cudajectory to
support different types of polynomials introduces additional overhead and thus
increases register spilling. This is most likely why we encounter higher rates of
local and global memory requests and almost no additional speed.

When specific bodies are excluded entirely from the simulation, a large frac-
tion of the algorithmic effort and data requests are skipped. Thus, the run-
time decreases significantly, which makes case-specific model configurations very
beneficial. This can be seen in the observed speedup and the presented per-
formance profile for body exclusion. Compared to the CUBE format, 22% of
the kernel runtime is saved when 45% of the bodies are excluded. Most of the
skipped bodies’ orbits are approximated by Chebyshev polynomials of sixth or
seventh degree, where, in comparison, fewer coefficients and algorithmic effort
are involved. However, with Mercury involving polynomials of degree 14, the
most expensive position calculation is also excluded. In total, we perform 37%
fewer ephemeris data requests and reduce the device memory traffic by 13%,
which subsequently reduces the need for register spilling (28% less local memory
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requests). As mostly polynomials of shorter intervals are computed, the data
reuse and thus the L2 cache hit rate decreases as well.

Although the analyzed configuration features have different impacts on the
performance, they were not able to reduce the overall local memory overhead.
This states that the pressure on the memory bus due to register spilling is still
very high, and a significant amount of time is spent on moving register data
back and forth. Additionally, when executing a merged configuration of those
cubic splines and exclusions, we get a total runtime per kernel of 5.82 s, which
is a reduction of 1.73 s or 24% against the CUBE format and slightly more than
the sum of both individual changes. This draws the conclusion that the changes
boost each other and explains the much higher speedups achieved by the lower
accuracy level configurations compared to those in the profiles.

5 Related Work

Various astrodynamic simulations utilize the power of GPUs to accelerate their
computations. However, we noticed that achieving an efficiency level close to the
hardware peak performance necessitates modifications to both the algorithm and
data structure. Thus, each problem requires tailor-made optimizations, different
from other domains. In the following, we mention similar works in this field.

Russell et al. [16] parallelized the computation of a Mascon model, a high-
precision description of the mass distribution of a celestial body for one trajec-
tory simulation. In another work by the same authors [1], they use GPUs to
simulate trajectories generated by Lambert’s algorithm as an alternative to the
Monte-Carlo method. Massari et al. [10], on the other hand, present numeri-
cal methods to improve the performance of Monte-Carlo simulations on GPUs,
which in theory could also be used in cudajectory. Russell [15] and Korvenja [7]
demonstrated that cubic splines and cubic Hermite polynomials produce accept-
able ephemeris accuracy while reducing both memory requirements and compu-
tation time significantly. Thus, we implemented this concept to reduce the data
size of the ephemeris model in cudajectory. To the best of our knowledge, an
efficient GPU-specialized ephemeris model for a parallel set of trajectory simu-
lations is not introduced so far.

6 Conclusion and Outlook

Trajectory simulations can benefit significantly from massive parallelization on
GPUs. However, with the increase of simulation timestamps within one warp,
different ephemeris data need to be loaded into memory, thus causing consid-
erable memory traffic and register spilling. In this paper, we introduced a new
data format, called CUBE, which restructures the data to improve data locality.
Our experiments showed that by just using the CUBE data format, we could
obtain higher speedups of at least 1.3×. Additionally, we noticed that by exclud-
ing specific celestial bodies from simulations while losing negligible accuracy, we
could reduce the algorithmic complexity and data accesses within the ephemeris
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model computations and achieve significant speedup. Another approach that
yields higher performance with the cost of losing accuracy level is to use cubic
splines as an alternative polynomial type. This method decreases the accuracy of
the orbit approximation but also simplifies the calculation and reduces the size
of the required data. Additionally, adjusting the polynomial intervals affects the
data locality within warps of higher timestamp ranges. While the use of cubic
splines further improves caching, it also increases the need for register spilling
and thus results in only a small runtime improvement on top of the CUBE for-
mat. However, in combination with body exclusion, the model changes can boost
each other. Thus, cubic splines are a valuable ephemeris model setting. All the
proposed optimization methods enabled us to accelerate the trajectory simula-
tions on a real-world scenario between 1.31×–2.11×, depending on the desired
accuracy level.
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Abstract. Generation of appropriate computational meshes in the con-
text of numerical methods for partial differential equations is techni-
cal and laborious and has motivated a class of advanced discretization
methods commonly referred to as unfitted finite element methods. To
this end, the finite cell method (FCM) combines high-order FEM, adap-
tive quadrature integration and weak imposition of boundary conditions
to embed a physical domain into a structured background mesh. While
unfortunate cut configurations in unfitted finite element methods lead
to severely ill-conditioned system matrices that pose challenges to iter-
ative solvers, such methods permit the use of optimized algorithms and
data patterns in order to obtain a scalable implementation. In this work,
we employ linear octrees for handling the finite cell discretization that
allow for parallel scalability, adaptive refinement and efficient computa-
tion on the commonly regular background grid. We present a parallel
adaptive geometric multigrid with Schwarz smoothers for the solution of
the resultant system of the Laplace operator. We focus on exploiting the
hierarchical nature of space tree data structures for the generation of the
required multigrid spaces and discuss the scalable and robust extension
of the methods across process interfaces. We present both the weak and
strong scaling of our implementation up to more than a billion degrees
of freedom on distributed-memory clusters.

Keywords: Unfitted finite element · Finite cell · Geometric
multigrid · Massively parallel · High-performance computing

1 Introduction

In the context of numerical approximation of partial differential equations (PDE)
for scientific and engineering applications alike, the generation of appropriate
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computational meshes is still one of the narrowest bottlenecks. This has given
rise to isogeometric analysis (IGA) [18] on the one hand and unfitted finite
element and meshfree methods [2] on the other. Although unfitted finite element
methods encompass several classes, including the extended finite element method
(XFEM) [3], cutFEM [5] and finite cell method (FCM) [10,22], their common
goal is to try to find the solution to the PDE without the need for a boundary-
conforming discretization. As an unfitted finite element method, the finite cell
method combines adaptive quadrature integration and high-order FEM together
with the weak imposition of boundary conditions.

Although mesh generation is essentially circumvented, unfitted finite element
methods face several challenges, the most conspicuous of which is ill-conditioning
of the system matrix and imposition of essential boundary conditions [27]. The
former issue limits the usability of many iterative solvers, which has led the
majority of studies to focus on direct solvers. While direct solvers based on LU
factorization have proven to be robust, their scalability suffers greatly due to poor
complexity and concurrency [25]. Recently, a geometric multigrid preconditioner
with a penalty formulation has been studied for the finite cell method [23] to
formulate an efficient iterative solver.

On the other hand, unfitted FEM possesses characteristics that can be
exploited to its advantage, especially for parallel computing. For instance, the
computational mesh in unfitted FEM can normally be regular and Cartesian
that in turn permits efficient computation and precomputation of finite element
values. A parallel implementation of multi-level h-p-adaptive finite element with
a shared mesh was recently applied to the finite cell method, employing a CG
solver with an additive Schwarz preconditioner in [19] and AMG preconditioning
in [20].

The main contributions of the present work can be summarized as follows:

– We employ a fully distributed, space-tree-based discretization of the compu-
tation domain with low memory foot print to allow the storage and manipu-
lation of large problems and adaptive mesh refinement (AMR)

– We present the parallelization of the finite cell method with adaptive refine-
ment, focusing on the scalability of different aspects of the computation via
exploiting space-tree data structures and the regularity of the discretization

– We formulate a scalable hybrid Schwarz-type smoother for the treatment of
cut cells to use in our geometric multigrid solver

– We employ parallel adaptive geometric multigrid to solve large-scale finite
cell systems and focus on the process-local generation of the required spaces
and favorable communication patterns

– We present the strong and weak scalability of different computational com-
ponents of our methods

In Sect. 2, the FCM formulation of a model problem is set up. The geometric
multigrid solver is formulated in Sect. 3. The developed methods are applied to
a number of numerical experiments in Sect. 4. Finally, conclusions are drawn in
Sect. 5.
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2 Finite Cell Method

In the context of unfitted finite element methods, a given physical domain Ω
with essential and natural boundaries ΓD and ΓN , respectively, is commonly
placed in an embedding domain Ωe with favorable characteristics, such as axis
alignment as shown in Fig. 1. Consequently, appropriate techniques are required
for integration over Ω and imposition of boundary conditions on ΓD and ΓN . In
this work, we used the Poisson equation as model problem given by

−Δu = f in Ω,

u = g on ΓD,

∇u · n = t on ΓN ,

(1)

where Ω is the domain, Γ = ΓD ∪ ΓN is the boundary, n is the normal vector
to the boundary and u is the unknown solution.

Fig. 1. Illustration of a typical unfitted finite element setting, where the physical
domain Ω is embedded in an embedding domain Ωe. ΓD and ΓN are essential and
natural boundaries, respectively. Adaptive refinement in both FCM and integration
spaces is demonstrated for a cut cell

2.1 Boundary Conditions

Natural Boundary Conditions. In the context of standard finite element
method, natural boundary conditions are commonly integrated over the surface
of those elements that coincide with the natural part of the physical boundary
ΓN ; however, in the general case, the physical domain does not coincide with cell
boundaries in the context of the finite cell method. Therefore, a separate descrip-
tion of the boundary is necessary for integration of natural boundary conditions.
Except for an appropriate Jacobi transformation from the surface space to vol-
ume space, integration of natural boundary conditions does not require special
treatment.
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Essential Boundary Conditions. The imposition of essential boundary con-
ditions is a challenging task in unfitted finite element methods. Penalty meth-
ods [1,4,30], Lagrange multipliers [6,12–14] and Nitsche’s method [7,9,11,17,21]
are commonly used for this purpose. We use a stabilized symmetric Nitsche’s
method with a local estimate for the stabilization parameter that has the advan-
tage of retaining the symmetry of the system, not introducing additional unknowns
and being variationally consistent. The weak form is therefore given by

∫
Ω

∇v · ∇u dx −
∫

ΓD

v(∇u · n) ds

−
∫

ΓD

(u − g)(∇v · n) ds +
∫

ΓD

λv(u − g) ds

=
∫

Ω

vf dx +
∫

ΓN

vt ds,

(2)

where λ is the stabilization parameter. The computation of λ is further explained
in Sect. 2.3.

2.2 Spatial Discretization

Unfitted finite element methods normally permit the use of a structured grid
as the embedding domain. We employ distributed linear space trees [8] for the
discretization of the finite cell space. Space tree data structures not only require
minimal work for setup and manipulation, they also allow for distributed stor-
age, efficient load balancing and adaptive refinement and have a small memory
footprint. We make use of Morton ordering as illustrated in Fig. 2.

An attractive aspect of computation on structured spaces is the optimization
opportunities it provides, which is exactly where unfitted methods can seek to
benefit compared to their boundary-conforming counterparts. For example, we
compute element size, coordinates and Jacobian transformation efficiently on
the fly without caching during integration.

A natural repercussion of adaptive refinement on space tree data structures
is the existence of hanging nodes in the discretized space as shown in Fig. 1. To
ensure the continuity of the solution, we treat hanging nodes by distributing their
contribution to their associated non-hanging nodes and removing them from the
global system. The influence of hanging nodes is thereby effectively local and no
additional constraint conditions or unknowns appear in the solution space.

2.3 Volume Integration

The physical domain is free to intersect the embedding domain. During volume
integration, the portion of the embedding domain that lies outside of the physical
domain, Ωe\Ω, is penalized by a factor α � 1. This stage is essentially where the
physical geometry is recovered from the structured embedding mesh. Therefore,
cells that are cut by the physical boundary must be sufficiently integrated in
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Fig. 2. (a) The z-curve (Morton) ordering on a 2D example with one level of refinement
and (b) the tree representation of the domain in (a)

order to accurately resolve the geometry. On the other hand, the accuracy of
standard Gaussian quadrature is decidedly deteriorated by discontinuities in the
integrand. Thus, methods such as Gaussian quadrature with modified weights
and points [24] and uniform [22] and adaptive [10] refinement, also known as
composed Gaussian quadrature, have been proposed for numerical integration
in the face of discontinuities in the integrand.

We use adaptive quadrature for volume integration within the finite cell
discretization. A number of adaptive integration layers are thereby added on
top of the function space of Ωe for cut cells as shown in Fig. 1. The concept
of space tree data structures is congenial for adaptive quadrature integration
as the integration space can readily be generated by refinement towards the
boundary intersection. Furthermore, the integration space retains the regularity
of the parent discretization. This scheme is especially suitable to our parallel
implementation, where a given cell is owned by a unique process; therefore, the
adaptive quadrature integration procedure is entirely performed process locally,
and duplicate computations on the ghost layer are avoided.

Introducing a finite-dimensional function space Vh ⊂ H1(Ωe), the finite cell
formulation of the model problem can be written as

Find uh ∈ Vh ⊂ H1(Ωe) such that for all vh ∈ Vh

ah(uh, vh) = bh(vh) (3)
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with

ah(uh, vh) :=
∫

Ωe

α∇vh · ∇uh dx −
∫

ΓD

vh(∇uh · n) ds

−
∫

ΓD

uh(∇vh · n) ds +
∫

ΓD

λvhuh ds, (4)

bh(vh) :=
∫

Ωe

αvhf dx +
∫

ΓN

vht ds

−
∫

ΓD

g(∇vh · n) ds +
∫

ΓD

λvhg ds, (5)

where {
α = 1, in Ω,

α � 1, in Ωe\Ω.
(6)

The stabilization parameter drastically affects the solution behavior, and its
proper identification is vital to achieving both convergence in the solver and
the correct imposition of the boundary conditions. There are several methods,
including local and global estimates, for the determination of the stabilization
parameter [9,15]. We employ a local estimate based on the coercivity condition
of the bilinear form that can be formulated as a generalized eigenvalue problem
of the form

AX = BXΛ, (7)

where the columns of X are the eigenvectors, Λ is the diagonal matrix of the
eigenvalues, and A and B are formulated as

⎧⎪⎨
⎪⎩

Aij :=
∫

Γ c
D

(∇φj · n)(∇φi · n) ds,

Bij :=
∫

Ωc α∇φj · ∇φi dx,

(8)

where Γ c
D and Ωc are the portion of the essential boundary that intersects a given

cell and the cell domain, respectively. The stabilization parameter can be chosen
as λ > max(Λ). This formulation leads to a series of relatively small generalized
eigenvalue problems. On the other hand, global estimates assemble a single, large
generalized eigenvalue problem by integration over the entire domain. The local
estimate is more desirable in the context of parallel computing since it allows
for the process-local assembly and solution of each problem. Moreover, most
generalized eigensolver algorithms have non-optimal complexities, and a smaller
system is nevertheless preferred.

3 Geometric Multigrid

We employ a geometric multigrid solver [16] for the resultant system of the
finite cell formulation. Unfitted finite element methods in general and finite cell
in particular usually lead to the ill-conditioning of the system matrix due to
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Fig. 3. A sample four-level grid hierarchy generated using Algorithm 1

the existence of cut elements, where the embedding domain is intersected by
the physical domain [27]. Small cut fractions exacerbate this problem. There-
fore, an efficient multigrid formulation requires special treatment of this issue.
Nevertheless, the main components of geometric multigrid remain unaltered.

3.1 Grid Hierarchy

The hierarchical nature of space tree data structures allows for the efficient gen-
eration of the hierarchical grids required by geometric multigrid methods [26,29].
We generate the grid hierarchy top-down from the finest grid. In order to keep
the coarsening algorithm process local, sibling cells (cells that belong to the same
parent) are kept on the same process for all grids. While the coarsening rules are
trivial in the case of uniform grids, adaptively refined grids require elaboration.
Starting from a fine grid Ωe,hl

, we generate the coarse grid Ωe,hl−1 according to
Algorithm 1. Aside from keeping cell families on the same process, the only other
major constraint is 2:1 balancing, which means that no two neighbor cells can
be more than one level of refinement apart. In practice, load balancing and the
application of the mentioned constraints are carried out in a single step. Figure 3
shows a sample four-level grid hierarchy with the finest grid adaptively refined
towards a circle in the middle of the square domain.

3.2 Transfer Operators

Transfer operators provide mobility through the grid hierarchy, i.e., restriction
from level l to l − 1 and prolongation from level l − 1 to l. In order to minimize
communication and avoid costly cell lookup queries, we perform these operations
in two steps. Restriction starts by transferring entities from the distributed fine
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input : Ωe,hl

output: Ωi
e,hl−1

and Ωe,hl−1

Ωi
e,hl−1

← Ωe,hl ;

// rc is the refinement level of cell c

rmax ← max(rc ∈ Ωi
e,hl−1

);

for c ∈ Ωi
e,hl−1

do // process-local part of the domain

if rc == rmax then
// This replaces c and all its siblings with their parent

coarsen c ;

end

end

Ωe,hl−1 ← Ωi
e,hl−1

;

Apply 2:1 balance on Ωe,hl−1 ;
Adjust process interfaces of Ωe,hl−1 ;
Load balance Ωe,hl−1 ;

Algorithm 1: Generation of process-local and distributed coarse grids Ωi
e,hl−1

and Ωe,hl−1 , respectively, from fine grid Ωe,hl

grid Ωe,hl
to an intermediate coarse grid Ωi

e,hl−1
followed by a transfer to the

distributed coarse grid Ωe,hl−1 . Conversely, prolongation starts by transferring
entities from the distributed coarse grid Ωe,hl−1 to the intermediate coarse grid
Ωi

e,hl−1
followed by a transfer to the distributed fine grid Ωe,hl

. The intermediate
grids are generated and accessed entirely process locally and only store minimal
information regarding the Morton ordering of the local part of the domain. A
similar approach is taken in [29]. The restriction and prolongation operations of
a vector v can be summarized as

vl−1 = TlRlvl (9)

vl = Pl−1T −1
l−1vl−1 (10)

where Rl = P T
l . T represents the transfer operator between intermediate and

distributed grids.
This scheme allows R and P to be resolved in parallel, process locally and with-

out the need for cell lookupqueries.Additionally, flexible loadbalancing is achieved
which is especially important for adaptively refined grids. The only additional com-
ponent to establish effective communication between grids is the transfer operator
T , which concludes the majority of the required communication.

3.3 Parallelized Hybrid Schwarz Smoother

Special treatment of cut cells is crucial to the convergence of the solver for finite
cell systems. This special treatment mainly manifests itself in the smoother oper-
ator S in the context of geometric multigrid solvers. We employ a Schwarz-type
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Fig. 4. Subdomain designation for cut cells and parallel application of the hybrid
Schwarz smoother on a sample domain. Every node that does not appear in any of
the designated cut cell subdomains composes a subdomain with the functions sup-
ported only on that node. All nodal subdomains are applied multiplicatively. Nodes
are colored based on their owner process

smoother (e.g. [28], cf. also [19,23]), where subdomains are primarily determined
based on cut configurations: A subdomain is designated for every cut cell that
includes all the functions supported on that cell. The remaining nodes, which do
not appear in any cut cells, each compose a subdomain with only the functions
supported on that node. The selection of subdomains is illustrated in Fig. 4. The
Schwarz-type smoother can be applied in two manners: additively and multi-
plicatively as given by

uk+1 = uk + S(f − Auk) (11)

with

Sadd =
[
(RT

s,nAnRs,n) + · · · + (RT
s,1A1Rs,1)

]
(12)

Smult =
[
(RT

s,nAnRs,n) . . . (RT
s,1A1Rs,1)

]
(13)

where Rs,i are the Schwarz restriction operators, Ai = Rs,iART
s,i are the sub-

domain matrices and n is the number of subdomains. The Schwarz restriction
operator Rs,i essentially extracts the rows corresponding to the functions of sub-
domain i, and its transpose, the Schwarz prolongation operator, takes a vector
from the subdomain space to the global space by padding it with zeros.

Parallelization in the first approach is a relatively straightforward task. Each
process can simultaneously apply the correction from the subdomains that occur
on it, and within each process, subdomain corrections can be applied concur-
rently. Since any given cell is owned by a unique process, no communication
is required during this stage. The only communication takes place when the
correction is synchronized over process interfaces at the end.
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Parallel realization of the latter approach however is a challenging task. Strict
implementation of the multiplicative Schwarz method requires substantial com-
munication not only for exchanging updated residual values but also for synchro-
nizing the application of subdomain corrections, which is clearly not a desirable
behavior for the parallel scalability of the algorithm; therefore, we employ a
more compromised approach that adheres to the multiplicative application of the
smoother as much as possible while minimizing the required communication. To
this end, subdomains, whose support lies completely within their owner process
are applied multiplicatively, while at process interfaces, the additive approach is
taken. This application approach is demonstrated in Fig. 4.

4 Numerical Studies

We perform a number of numerical studies to investigate the performance of
the methods outlined in the previous sections. We use the finite cell formulation
developed in Sect. 2 and employ geometric multigrid from Sect. 3 as a solver.
We consider both uniform and adaptive grids and present the weak and strong
scaling of different components of the computation. The computations are per-
formed on a distributed-memory cluster with dual-socket Intel Xeon Skylake
Gold 6148 CPUs with 20 cores per socket at 2.4 GHz per core, 192 GB DDR4
main memory per node and a 100 GBit/s Intel Omni-Path network intercon-
nect via PCIe x16 Gen 3. All nodes run Red Hat Enterprise Linux (RHEL) 7,
and GCC 7.3 with the O2 optimization flag is used to compile the project. All
computations are performed employing MPI parallelization without additional
shared-memory parallelization and utilizing up to 40 MPI processes per node
which equals the number of cores per node.

The physical domain considered in this benchmark example is a circle that
is embedded in a unit square embedding domain throughout this section (see
Fig. 3). The finite cell formulation of the Poisson equation is imposed on the
embedding domain. An inhomogeneous Dirichlet boundary condition is imposed
on an arch to the left of the circle and a homogeneous Neumann boundary
condition is imposed on the remaining part. This example is chosen to act as a
reproducible benchmark. The conditioning of finite cell matrices directly depends
on the configuration of cells cut by the physical domain. The circular domain
covers a wide variety of cut configurations on each grid level due to its curvature.
Therefore, the resultant matrices include the ill-conditioning associated with the
finite cell method and can represent more general geometries. Furthermore, other
computational aspects, e.g., volume integration are virtually independent of the
geometry and mainly vary with problem size.

The geometric multigrid solver is set up with three steps of pre- and post-
smoothing each, employing a combination of the hybrid multiplicative Schwarz
smoother as in Sect. 3.3 and a damped Jacobi smoother. The Schwarz smoother
is applied only to the three finest grids in each problem, and the damped Jacobi
smoother is applied to the remaining grids. A tolerance of 10−9 for the residual
is used as the convergence criterion.
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Fig. 5. Strong scaling of different components of the computation on a uniformly
refined grid with 268,468,225 degrees of freedom (a and b) and an adaptively refined
grid with 16,859,129 degrees of freedom (c and d)

The scaling studies report the runtime of different components of the com-
putation. System setup Tsys setup includes setup and refinement of the main
discretization, load balancing, setup of the finite cell space and resolution of
the physical boundary. Assembly Tassembly is the time required for the assem-
bly of the global system, i.e., integration and distribution of all components of
the weak form. Solver setup Tsolver setup concerns the generation and setup of
the hierarchical spaces for geometric multigrid and includes the grid hierarchy,
transfer operators and smoothers. Finally, Tsolver and Titeration refer to the total
runtime and the runtime of a single iteration of the geometric multigrid solver,
respectively.

A model with roughly 268 million degrees of freedom with uniform refinement
and another model with roughly 16.8 million degrees of freedom with adaptive
refinement towards the boundary are chosen to investigate the strong scalability
of the computation as shown in Fig. 5. In both cases, the speedup of all compo-
nents are compared to the ideal parallel performance. Ideal or perfect speedup is
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Fig. 6. Weak scaling of different components of the computation using grids that range
in size from roughly 16.7 million degrees of freedom to 1.1 billion degrees of freedom

driven by Amdahl’s law and is defined as a speedup that is linearly proportional
to the number of processing units, normalized to the smallest configuration that
can accommodate the memory demand, i.e., 16 processes for the uniform grid
and 4 processes for the adaptively refined grid. Except Tassembly that virtually
coincides with ideal speedup, other components show slightly smaller speedups;
however, these minor variations are practically inevitable in most scientific appli-
cations due to communication overhead and load imbalances. The strong scala-
bility of all components can be considered excellent as there are no breakdowns
or plateaus and the differences from ideal speedup remain small.

On the other hand, weak scalability is investigated for a number of uniformly
refined grids, ranging in size from approximately 16.7 million to 1.07 billion
degrees of freedom as shown in Fig. 6. In addition to keeping roughly constant
the number of degrees of freedom per core, in order to study the scalability of the
geometric multigrid solver, the size of the coarse problem is kept constant on all
grids; therefore, a deeper hierarchy is employed for larger problems as detailed
in Table 1. The convergence behavior of the multigrid solver is shown in Fig. 7.
Within the weak scaling study, each problem encounters many different cut cell
configurations on each level of the grid hierarchy. The observed boundedness of
the iteration count is therefore a testament to the robustness of the approach.
All components exhibit good weak scalability throughout the entire range. While
Tsys setup and Tassembly are virtually constant for all grid sizes, Tsolver setup and
Tsolver slightly increase on larger problems. The difference in Tsolver setup can
be imputed to the difference in the number of grid levels for each problem, i.e.,
larger problems with deeper multigrid hierarchies have heavier workloads in this
step. On the other hand, Tsolver has to be considered in conjunction with the
iteration count. Although the multigrid solver is overall scalable in terms of
the iteration count, there are still minor differences in the necessary number of
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Fig. 7. The convergence behavior of the geometric multigrid solver for the grids in the
weak scaling study

iterations between different problems (see Fig. 7). Titeration can be considered a
normalized metric in this regard, which remains virtually constant. Nevertheless,
the differences in runtime remain small for all components and are negligible in
practical settings.

Although a direct comparison is not possible due to differences in formulation,
problem type and setup, hardware, etc., we try to give a high-level discussion
on some aspects of the methods with respect to closely related works. In [23],
a multigrid preconditioner with Schwarz smoothers was presented, showing
bounded iteration counts. However, a parallelization strategy was not reported.
In [20], a PCG solver with an AMG preconditioner was used. Similarly, a PCG
solver with a Schwarz preconditioner was used in [19]. In both studies, a shared
base mesh was employed. The size of the examples in [20] and [19] were smaller in
comparison to the ones considered here, which further hinders a direct compar-
ison; nevertheless, the multigrid solver presented in this work shows promising
results both in terms of parallel scalability and absolute runtime for similarly
sized problems. The multigrid solver is furthermore robust with respect to broad
variations in problem size, whereas the iteration count of the PCG solver in [19]
significantly increased for larger problems, which was directly reflected in the
runtime. Geometric multigrid is used as a solver in this work. It is expected that
even more robustness and performance can be gained if it is used in conjunc-
tion with a Krylov subspace accelerator, such as the conjugate gradient (CG)
method.
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Table 1. Problem and solver configuration for the weak scaling study. nproc is the
number of processes, nDoF is the number of degrees of freedom, ngmg

hierarchy is the depth
of the geometric multigrid hierarchy, ngmg

iteration is the number of required iterations and
ncoarse
DoF is the number of degrees of freedom on the coarsest grid

nproc nDoF ngmg
hierarchy ngmg

iteration ncoarse
DoF

16 16,785,409 6 13 16,641

64 67,125,249 7 11 16,641

256 268,468,225 8 12 16,641

1,024 1,073,807,361 9 14 16,641

5 Conclusions

A parallel adaptive finite cell formulation along with an adaptive geometric
multigrid solver is presented in this work. Numerical benchmarks indicate that
the core computational components of FCM as well as the GMG solver scale
favorably in both weak and strong senses. The use of distributed space-tree-based
meshes allows not only the scalable storage and manipulation of extremely large
problems, but also effective load balancing, which is above all manifest in the
perfect scalability of the integration of the weak form. Furthermore, the suitabil-
ity of the space-tree-based algorithms to parallel environments for the generation
of multigrid spaces is demonstrated by the scalability of the solver setup. The
geometric multigrid solver with the Schwarz-type smoother exhibits robustness
and scalability both in terms of the required iteration count for different problem
sizes and parallelization. We strive to minimize communication in the paralleliza-
tion of the multigrid components, especially for the application of the Schwarz
smoother; nevertheless, iteration counts do not suffer from parallel execution,
and the solver shows good weak and strong scalability. The ability to solve prob-
lems with more than a billion degrees of freedom and the scalability of the com-
putations are promising results for the application of the finite cell method with
geometric multigrid to large-scale problems on parallel machines. Nevertheless,
further examples and problem types are necessary to extend the applicability
of the presented methods. Moreover, the main algorithms and underlying data
structures that are used in the presented methods are suitable to hardware accel-
erators such as GPUs and FPGAs, and we expect that a scalable implementa-
tion should be achievable for such architectures given optimized data paths and
communication patterns. In particular, the semi-structuredness of the adaptive
octree approach is conducive to a hardware-oriented implementation compared
to unstructured meshing approaches. We intend to explore these opportunities
as a future work.
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Abstract. Dynamic Time Warping (DTW) is a widely used distance
measure in the field of time series data mining. However, calculation
of DTW scores is compute-intensive since the complexity is quadratic
in terms of time series lengths. This renders important data mining
tasks computationally expensive even for moderate query lengths and
database sizes. Previous solutions to accelerate DTW on GPUs are not
able to fully exploit their compute performance due to inefficient mem-
ory access schemes. In this paper, we introduce a novel parallelization
strategy to drastically speed-up DTW on CUDA-enabled GPUs based
on using low latency warp intrinsics for fast inter-thread communica-
tion. We show that our CUDA parallelization (cuDTW++) is able to
achieve over 90% of the theoretical peak performance of modern Volta-
based GPUs, thereby clearly outperforming the previously fastest CUDA
implementation (cudaDTW) by over one order-of-magnitude. Further-
more, cuDTW++ achieves two-to-three orders-of-magnitude speedup
over the state-of-the-art CPU program UCR-Suite for subsequence search
of ECG signals.

Keywords: Data mining · Dynamic Time Warping · GPUs · CUDA

1 Introduction

The rapid growth of recorded data through automated monitoring results in vast
quantities of time series with prominent examples including electrocardiograms
(ECGs), stock prices, gene activities, and audio signals. Thus, the comparison
of time series is an important data mining task with a variety of applications
such as database search, clustering, classification, or anomaly detection. When
comparing (or aligning) two time series elastic measures such as Dynamic Time
Warping (DTW) are often preferred to lock-step measures such as Euclidean
distance. As a consequence, DTW schemes have been proposed for a variety of
tasks [7,11,16,22–24,27].
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However, the complexity of computing the DTW distance between a pair of
time series is proportional to the product of their length. This can result in high
execution times for database scans or subsequence searches. Corresponding run-
time requirements are expected to become even more severe due to the growing
amount of recorded data. As a consequence, parallelization of DTW has been
proposed on a variety of architectures including GPUs [4,25], FPGAs [20], Xeon
Phis [8], big data clusters [28], and even customized fabrics [26].

However, existing GPU implementations are limited by inefficient memory
access schemes and thus cannot fully exploit the performance of modern GPUs.
The main contributions of this paper are the design of a novel fine-grained par-
allelization strategy based on warp intrinsics for DTW targeting massively par-
allel architectures and their implementation on CUDA-enabled accelerators. We
demonstrate that our implementation (cuDTW++) can achieve up to 92% of
the available peak performance on Volta-based GPUs in practice. For subse-
quence search of ECG signals, cuDTW++ achieves over two orders-of-magnitude
speedup for short queries and over three orders-of-magnitude speedup for long
queries compared to the state-of-the-art CPU code (UCR-Suite [17]). Further-
more, for database scans, cuDTW++ achieves over one order-of-magnitude
speedup compared to the previously fastest GPU code (cudaDTW [4]) on the
same hardware. Consequently, we are able to reduce corresponding data analy-
sis runtimes drastically enabling researchers to perform exploratory time series
analysis in an interactive manner, which makes our approach particular useful for
integration in modern accelerated data science frameworks such as RAPIDS [14].
cuDTW++ is publicly available at https://github.com/asbschmidt/cuDTW.

The rest of the paper is organized as follows. Section 2 provides some back-
ground about DTW, GPUs, and reviews related work. Section 3 describes our
fine-grained parallelization scheme for CUDA-enabled GPUs. Performance is
evaluated in Sect. 4. Section 5 concludes the paper.

2 Background

2.1 Dynamic Time Warping

Consider two real-valued time series Q = (q0, . . . , qi, . . . , qm−1) (query) and S =
(s0, . . . , sj , . . . , sn−1) (subject) of length m and n, respectively. DTW is a method
to measure the similarity of Q and S by means of an elastic assignment of their
indices. An example of a DTW alignment of two voice recordings is shown in
Fig. 1.

Consider the Cartesian product I × J of the index domains of Q and S;
i.e., I = {0, . . . , m − 1} and J = {0, . . . , n − 1}. DTW compares Q and S by
computing a sequence of index pairs γ :=

(
(il, jl) ∈ I × J )

l
, called a warping

path. Any considered warping path γ has to fulfill the following conditions:

– The first/last entries of Q and S are matched resulting in a global alignment;
i.e. (i0, j0) = (0, 0) and (j|γ|−1, j

′
|γ|−1) = (|Q| − 1, |S| − 1).

https://github.com/asbschmidt/cuDTW
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Fig. 1. Example of two voice recordings of the word exact in American (left) and British
(middle) English. Their optimal DTW alignment is displayed on the right.

– Any two subsequent index pairs have to increment either i, or j, or both
indices by 1; i.e. min(il+1 − il, jl+1 − jl) ≥ 0 and max(il+1 − il, jl+1 − jl) =
1,∀l ∈ {0, ..., |γ| − 2}. This means that at each step we either increment the
index of the query, the index of the subject, or both.

Furthermore, we define a weight function w(i, j) for each index pair (i, j) by
the squared distance of the two corresponding time series values qi and sj :

w : I × J → R
+
0 , w(i, j) = (qi − sj)2.

The objective of DTW is to find an (the) optimal warping path (score) γ̂ (d̂)
out of the set of all valid paths Γ that minimizes the associated accumulated
weights; i.e.

γ̂ := argmin
γ∈Γ

∑

(i,j)∈γ

w(i, j), and d̂ := min
γ∈Γ

∑

(j,j′)∈γ

w(j, j′).

In this paper we focus on computing d̂ for a large number of DTWs computed
in database scans or subsequence search tasks.

This problem can be described in terms of a directed acyclic graph (DAG)
G = (V,E) with the set of nodes V = I × J and a directed edge between any
two nodes (i, j) and (k, l) with min(k − i, l − j) ≥ 0 and max(k − l, l − j) = 1.
The set of valid warping paths is then equivalent to the set of paths from node
(0, 0) to (m−1, n−1) in G (see Fig. 2). By associating the weight w(i, j) to each
incoming edge of a node (i, j) in G, the problem of finding an optimal warping
path can be solved by applying the single-source shortest path (SSSP) problem
on G with source (0, 0).
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Fig. 2. DAG representation for comparing two time series of length three and four.
Nodes are connected by horizontal, vertical, and diagonal edges. Any warping path
(e.g. the bold red path) starts in the upper left cell and ends in the lower right cell.
(Color figure online)

In practice, computation is achieved by filling a dynamic programming
(DP) matrix M of size (m + 1) × (n + 1) with the relaxation scheme:

M [i, j] = w(i − 1, j − 1) + min

⎧
⎪⎨

⎪⎩

M [i − 1, j]
M [i, j − 1]
M [i − 1, j − 1]

(1)

using the initial conditions M [0, 0] = 0, M [0, j] = M [i, 0] = ∞, 1 ≤ i ≤ m, 1 ≤
j ≤ n. The score of an optimal warping path is then stored in M [m,n] which
can be computed in time O(

m×n
)
. Furthermore, an associated optimal warping

path can be determined by a traceback procedure.

2.2 GPU Computing

We briefly review a number of relevant features for GPU computing with the
CUDA programming model. CUDA kernels are executed using a number of inde-
pendent thread blocks. Each thread block is mapped onto exactly one streaming
multiprocessor (SM) and consists of a number of warps. All 32 threads within
a warp are executed in lock-step fashion (SIMD). CUDA-enabled GPUs con-
tain several types of memory: large but high latency global memory and fast
but small on-chip shared and constant memory. Nevertheless, the fastest way
to access data is through usage of the thread-local register file. Modern GPUs
provide instructions for warp-level collectives [2] in order to efficiently support
communication of data stored in registers between threads within a warp without
the need for accessing global or shared memory.

A crucial feature of our approach is the usage of warp shuffles for
low latency communication and minimization of memory traffic. In partic-
ular, we take advantage of the warp-level collectives shfl down sync()
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and shfl up sync(); e.g. the intra-warp communication operation R1 =
shfl up sync(0xFFFFFFFF, R0, 1, 32); moves the contents of register R0

in thread i within each warp to register R1 in thread i + 1 for 0 ≤ i < 32.

2.3 Related Work

The UCR-Suite [17] is the state-of-the-art CPU program for subsequence search
that makes excessive use of lower bounds before performing actual DTW calcula-
tions. Sart et al. [20] were the first to propose GPU and FPGA parallelizations of
DTW. Their approach computes one independent DTW score per CUDA thread
for subsequence search tasks. However, their approach is inefficient due to exces-
sive global memory accesses. CS-DTW [15] is based on the same approach but is
uses more efficient texture memory by means of shader programming. It reports
a speedup of around 30 on a GTX1070 compared to the sequential UCR-suite.

Hundt et al. [4] use a more efficient wavefront parallelization scheme for
DTW (called cudaDTW) in order to accelerate the UCR-Suite on GPUs, thereby
outperfoming Sart et al. [20] by over one order-of-magnitude. In their approach
each CUDA thread block computes one DTW score whereby threads compute
cells along a minor diagonal of the DP matrix M in parallel. Data between
neighboring diagonals is communicated via shared memory. There are also other
algorithms featuring similar data-dependency relationships such as the Smith-
Waterman algorithm for pairwise sequence alignment. Previous work in porting
this algorithm to GPUs based on wavefront patterns include CUDAlign [19] and
CUDASW++ [10]. However, even the state-of-the-art bioinformatics libraries
such as NVBIO [13] and AnySeq [12] can only achieve a sequence alignment
performance of up to 241 GCUPS (billion cell updates per second) on a Titan
V GPU [12].

Our approach is also based on a wavefront pattern but eliminates the need of
storing intermediate diagonals in shared memory. We compute one DTW score
per (sub)warp (or cooperative group) thereby allowing for fast communication
between thread-local registers by means of warp shuffles. We will show in Sect. 4
that we can clearly outperform both cudaDTW and UCR-Suite and can achieve
a performance of up to 4.36 TCUPS on two GV100 GPUs.

An alternative approach to parallelize wavefront algorithms has been pro-
posed based on parallel prefix computations [3,25]. However, Xiao et al. [25] are
only able to achive a performance of up to 4 GCUPS for DTW on a GTX480
GPU.

3 Parallelization Strategy

We base our approach on computing a DTW score per (sub)warp – a group
of sychnronized CUDA threads executed in lock-step fashion that can also com-
municate by means of warp-level collectives. Threads in a (sub)warp cooperate
to compute all values of a DP matrix M . Note that according to Eq. 1 each cell
in M depends on its left, upper, and upper-left neighbour, which means that
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(parallel) computation of DP cells has to follow this topological order. In order
to unlock the full potential of modern GPUs for DTW, we apply the following
techniques:

– Full in-register computation of the recurrence relation in Eq. 1.
– Low latency communication of neighbouring DP cells between threads

through warp shuffles.
– Replacing frequent loading of time series values from memory by means of a

communication scheme based on warp shuffles.
– DP matrix partitioning scheme for large time series sizes
– Integrating a novel early-exit strategy for subsequence search through warp-

level collectives and atomic variables.

3.1 Mapping DP Matrix and Time Series to Threads

We compute a DTW score between two time series Q (query) and S(i) (the ith

subject sequence) per (sub)warp; i.e., a group of p threads with p ∈ {4, 8, 16, 32}
executed in lock step. Different (sub)warps within a CUDA kernel compare the
same query to different subject sequences. This is a common requirement in
DTW-based data mining tasks such as database classification, anomaly detec-
tion, or subsequence search in data streams.

Assume Q of length m and S(i) of length n = k · p − 1 are compared by
a (sub)warp consisting of p threads T0, . . . , Tp−1. We assign k columns of the
DP matrix to be calculated to each thread (see Fig. 3). Computation proceeds
along a wavefront in m + p iterations: in Iteration i, Thread Tt, calculates k
cells of the DP matrix row i − t. Virtual cells located outside the DP matrix are
initialized with ∞. At the end of the procedure, the final DTW score is stored
in the lower right cell of thread Tp−1.

Each DP matrix cell depends on its left, upper, and upper-left neighbor (cf.
Eq. 1). All cells of the current and previous iteration are stored in thread-local
registers. The required access of Thread Tt to the rightmost value of Thread
Tt−1 computed in the previous iteration (see Fig. 3) is accomplished by using
the low-latency warp shuffle instruction shfl up sync().

Initially, k values of the subject time series S
(i)
j , t ·k−1 ≤ j < t ·k+k−1, are

loaded from global memory by each thread Tt, 0 ≤ t < p, and stored in registers.
While subject values remain constant for each column throughout DP matrix
computation, the required values of Q vary. We avoid their expensive reads from
memory in each iteration step by using two registers Reg Q0 and Reg Q1 as
follows. Only in iteration steps i, 0 ≤ i < m + p with i mod p = 0 a new value
Qi+t is loaded from memory by each Thread t and stored in Reg Q1. The value
of Q actually used for computation by each thread (Qi−t−1) is stored in Reg Q0.
At the beginning of every iteration, both Reg Q0 and Reg Q1 are updated by
values from neighboring threads, whereby the required communication can be
accomplished by the low-latency warp shuffle instruction shfl up sync() for
Reg Q0 and shfl down sync() for Reg Q1 (see green values in Fig. 3). Before
shuffling, the value stored in Reg Q1 needs to be copied to Reg Q0 in Thread 0.
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The following listing shows pseudocode of a CUDA kernel for the described
algorithm where each CUDA thread block consists of a single warp of 32 threads.
Template parameters k and p are used define the number of DP matrix columns
assigned to each thread and the (sub)warp thread group size. Before kernel
execution, we transfer Q to read-only constant memory (cQ[]). Every p iteration
steps, we load one query value per thread to register Reg Q1. By changing the
definitions of p and k kernels for the different problem sizes discussed above can
be generated.

// k = number o f DP matrix columns per thread
// p = thread group s i z e ( c a l c u l a t e one DTW sco r e per group )
template<i n t k , i n t p>

g l o b a l void DTW( f l o a t ∗ sub j e c t s , f l o a t ∗ s co re s , i n t m) {
f l o a t S [ k ] ; // k r e g i s t e r s s t o r i n g sub j e c t data
f l o a t M[ k ] ; // k r e g i s t e r s s t o r i n g DP matrix c e l l s
f l o a t M left , M diag ; // 2 reg . f o r data from l e f t ne ighbor
f l o a t Reg Q0 , Reg Q1 ; // 2 r e g i s t e r s s t o r i n g query data

in i t DP matr ix (M, M left , M diag , k , p ) ;
l o ad sub j e c t (S , sub j e c t s , threadIdx . x , b lockIdx . x , k , p ) ;
// load one query value per thread
Reg Q1 = cQ [ threadIdx . x%p ] ;
i f ( threadIdx . x%p == 0) Reg Q0=Reg Q1 ; e l s e Reg Q0=INFTY;

f o r ( i n t i =1; i<=m+p ; i++) { // wavefront loop
// compute k DP c e l l s per thread us ing r e g i s t e r s only
update DP matrix (M, M left , M diag , S , Reg Q0 , k ) ;
M diag = M le f t ;
// copy r ightmost DP c e l l to ne ighbor ing thread
M le f t = s h f l u p s y n c (M[ k ] , 1 ) ;
i f ( threadIdx . x % p == 0) M le f t = INFTY;
// load new query data to r e g i s t e r every p i t e r a t i o n s
i f ( i%p == 0) Reg Q1 = cQ [ i+threadIdx . x%p ] ;
// s h u f f l e query r e g i s t e r s
Reg Q0 = sh f l u p s y n c (Reg Q0 , 1 ) ;
i f ( threadIdx . x % p == 0) Reg Q0=Reg Q1 ;
Reg Q1 = sh f l down sync (Reg Q1 , 1 ) ;

}
output DTW score (M[ k ] , s co re s , threadIdx . x , b lockIdx . x , k , p ) ;

}

3.2 Partitioning Scheme

The amount of registers per thread is limited to 256 on modern CUDA-enabled
GPUs. This restricts the maximum number of columns assigned to each thread
in our parallelization scheme to k = 64 in practice, which in turn limits the
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supported subject time series length to 64 · 32 − 1 = 2047. Even though this is
sufficient for a number of applications, we now present a partitioning scheme for
time series of larger size.

Consider a (sub)warp of p threads (T0, . . . , Tp−1) where k DP matrix columns
are assigned to each thread and the two time series Q and S(i) to be compared are
of length m and n = l·p·k−1 with l ≥ 1, respectively. We partition the DP matrix
into l non-overlapping submatrices of size (m + 1) × (n+1)

k·p each. Computation
proceeds in l stages from left-to-right, where in each stage one submatrix is
calculated. In every iteration within each stage the calculated DP cells in the
right column of Thread Tp−1 needs to be saved and loaded by Thread T0 in
the subsequent stage (see Fig. 4). We thus need to store m cells per (sub)warp
(which can be re-used for each stage) in memory.

We use shared memory if the amount of required memory for 4 warps does
not exceed 64 KB. Otherwise, we use global memory. In case of fast shared
memory, we output the calculated right DP cell in Tp−1 in every iteration step.
For high latency global memory, we distribute the DP cells of the right column
across threads using warp shuffles and then perform one coalesced write using p
threads every p iteration steps. Reading of intermediate values from memory is
done in similar fashion.

Fig. 4. Example of our partitioning scheme for a subject time series processed in l = 3
stages from left-to-right by p threads. Each stage compares the full query to one third
of the subject.

3.3 Early Exit Strategy for Subsequence Search

Consider a query Q of length m and a data stream S of length n � m.
Each (sub)warp extracts one of the n − m + 1 subsequences of length m –
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say S(i) = (Si, . . . , Si+m−1) – from the stream and initially performs a local
z-normalization before calculating the DTW measure between Q and S(i). Sub-
sequence search is interested in subsequences with a very low DTW score, which
is important for stream monitoring [18] and anomaly detection [6]. Lower bound-
ing techniques are often utilized to prune unpromising candidates. For example,
in the UCR-Suite [17] the sum of the optimal alignments of the first and last
k entries (e.g. using k = 3) of Q and S(i) is included as the first lower bound.
If this value exceeds a certain threshold (e.g. the best DTW score computed
so far) we can prune the subsequence candidate before computing a full DTW.
However, existing pruning methods tend to become ineffective for longer query
sizes.

We have incorporated a new early exit strategy within our parallelization
scheme presented in Sect. 3.1 for p = 32 threads. In iteration steps i, 0 ≤ i < m+p
with i mod p = 0 we calculate the minimum value of the newly computed DP
cells (the red cells in Fig. 3) as a lower bound. If this value exceeds a certain
threshold, the DP matrix computation can prematurely terminate (by means
of an early exit of the respective warp) since the full DTW score can only be
larger than this value. Calculation can be achieved efficiently by determining the
minimum within each thread and then using the warp collective any sync()
to check in parallel if any of the local minima is still smaller than the threshold.

The threshold value itself is dynamically updated by the various warps during
a subsequence search task. Thus, we have defined it as a system-wide atomic
variable (called bsf (best-so-far)). Whenever a newly computed DTW score is
smaller than bsf, the best-so-far value can be updated by using the atomic
function atomicMin.

4 Performance Evaluation

We have implemented our method (cuDTW++) using CUDA C++ v10.2. The
configuration of the workstation with two Volta-based GV100 GPUs used for
benchmarking is listed in Table 1. We evaluate the performance of cuDTW++
for database scanning in Sect. 4.1 and for subsequence search of ECG signals in
Sect. 4.2 based on single precision floating point data. We evenly distribute the
workload between both GPUs by splitting the input database or the input ECG
signal into two equal-sized parts.

4.1 Database Scan Performance

For our experiments we generate several instances (databases) of the popular
Cylinder-Bell-Funnel (CBF) dataset. Each database consists of N = 219+ 2048

n+1

time series (subjects) of length n each for n ∈ {127, 255, 511, 1023, 2047}. CBF
is a synthetically created set of time series consisting of three characteristic
classes (cylinder, bell, and funnel) using corresponding randomized generator
functions [5]. We scan each database using queries of the same length; i.e. a
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Table 1. Configuration of the workstation used for benchmarking.

Host System CPU Dual Intel Xeon Gold 6238 2.1 GHz, 2 × 22 cores, HT

RAM 192 GB DDR4

OS Ubuntu 18.04.2

CUDA Device Device Dual NVIDIA Quadro GV100 (Volta)

GPU Cores 2 × 5120 SPs @ 1.85 GHz

DRAM 2 × 32 GB HBM2

Compilers Host g++ 7.4.0

Device nvcc 10.2.89

query of length n is compared to every subject of length n by computing their
pairwise DTW scores.

We evaluate the performance of GPU-based DTW implementations in terms
of Trillion Cell Updates Per Second (TCUPS). Based on the TCUPS mea-
sure, we model the theoretical peak performance (TPP) of the utilized GPU
hardware as:

TPP =
#GPUs × #Cores × Clock

Cycles one cell update
=

2 × 5120 × 1.85 GHz
4

= 4.7 TCUPS (2)

Cycles one cell update in Eq. 2 models the maximum attainable performance
constrained by the algorithm structure. In our case it refers to the minimal num-
ber of clock cycles needed by an individual core of the utilized hardware to cal-
culate one DP matrix cell according to Eq. 1. This is determined as 4 on Volta
GPUs based on the following SASS assembly instructions: two minimum instruc-
tions (FMNMX), one subtraction (FADD), and one fused multiply-add instruction
(FFMA).

We first evaluate the impact of varying the value of k (the number of
columns assigned to each thread) for a constant number of threads. Measured
kernel runtimes are converted into actually achieved TCUPS performance. Effi-
ciency is then determined dividing the achieved performance by TPP. The
results are shown in Fig. 5 for k ∈ {1, 2, 4, 8, 16, 32}, p = 32 threads, and
n ∈ {127, 255, 511, 1023}. In cases where k · p < n, our partitioning scheme
presented in Sect. 3.2 is used to calculate the DP matrix in several stages using
shared memory for storing intermediate results. The results show that perfor-
mance constantly improves when increasing k for a constant n. This can be
explained by an improved compute-to-communication ratio, i.e., when doubling
k the amount of computation per thread also doubles but the overhead for
warp shuffling, reading Q-values, and intermediate value I/O for partitioning (cf.
Figs. 3 and 4) remains constant. The highest efficiency of 96% is thus achieved
for k = 32 and n = 1023. Further increasing the number of columns assigned to
each thread to 64 is still possible but lowers performance; e.g., efficiency drops
to 70% for k = 64, p = 32, n = 2047 (see Table 2, right column). This can be
explained by increased register pressure; i.e., for k = 64 there are not enough
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registers available for storing two rows of the DP matrix (cf. red and blue cells
in Fig. 3). Thus, registers need to be re-used by overwriting the DP cells of the
previous row, which in turn requires an additional instruction to save values in
a temporary register, which decreases efficiency.

Second, we analyze the slowdown caused by our partitioning scheme. From
Fig. 5 we can see that efficiency decreases by 16.1% on average when comparing
performance of using the same value of k with and without partitioning; i.e.
k = 4 : n = 127 compared to n ≥ 255 (grey bars), k = 8 : n = 255 compared to
n ≥ 511 (yellow bars), and k = 16 : n = 511 compared to n = 1023 (dark blue
bars).
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Fig. 5. Efficiency of cuDTW++ kernels for various values of k using a constant number
of p = 32 threads for different time series lengths n. (Color figure online)

Note that the results shown in Fig. 5 only consider kernel execution times but
not data transfers between host and devices. In order to overlap required data
transfers over the PCIe bus and CUDA kernel execution, we have implemented
a framework using CUDA streams. We have observed that for time series of
length n ≥ 1023 kernel execution times dominate when scanning a database
with a single query. However, for smaller lengths (n ≤ 511) data transfer times
become significant. Thus, for these cases we increase the computational load by
scanning the same database with a set of 16 different queries.

Furthermore, our parallelization scheme allows for varying the number of
threads used per DTW score computation. Thus, we can employ the identified
optimal value of k = 32 for various time series sizes n ∈ {127, 255, 511, 1023},
by setting the number of utilized threads correspondingly to p = n+1

32 . Table 2
reports the performance and efficiency in comparison to cudaDTW ([4] and §7
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Table 2. Performance (in terms of TCUPS) and efficiency of cuDTW++ and cud-
aDTW for different time series sizes n with corresponding speedups (including data
transfers over the PCIe bus).

Query size 127 255 511 1023 2047

TCUPS (Effic.) cuDTW++ 3.97 (84%) 4.10 (87%) 4.12 (87%) 4.36 (92%) 3.32 (70%)

cudaDTW 0.25 (5%) 0.282 (6%) 0.285 (6%) 0.282 (5%) 0.272 (6%)

Speedup 15.9 14.4 14.4 15.5 12.2

Table 3. Runtimes (in seconds) of subsequence search of an ECG signal with ≈20
million data points for early-exit cuDTW++, full cuDTW++, and UCR-DTW for
different query lengths (averaged over 8 queries). Corresponding speedups of early-exit
cuDTW++ compared to full cuDTW++ and UCR-DTW are also reported.

Query size 127 255 511 1023 2047

Runtime Early-exit cuDTW++ 0.027 s 0.053 s 0.17 s 0.8 s 5.4 s

Full cuDTW++ 0.09 s 0.34 s 1.22 s 4.78 s 25.1 s

UCR-DTW 3.69 s 23.3 s 455 s 3247 s 30629 s

Speedup Early-exit to full cuDTW++ 3.3 6.4 7.2 6.0 4.6

Early-exit cuDTW++ to UCR-DTW 137 440 2676 4059 5672

in [21]) executed on the same hardware (also using both GPUs). The average
(maximum) speedup achieved by cuDTW++ over cudaDTW is 14.5 (15.9).

4.2 Subsequence Search Performance

For our experiments we search an ECG dataset consisting of approximately
22 hours streamed electrocardiograms (≈20 million data points) using different
queries of length n ∈ {127, 255, 511, 1023, 2047}. cudaDTW++ is compared to
the banded DTW portion of the UCR-Suite (UCR-DTW) running on the CPU
(using a band of size 20% of the query length). The comparison is fair because our
implementation uses an unbanded (full) version of nearest neighbor DTW search
with an effective band width of 100% and thus has a significant lower pruning
efficiency than UCR Suite’s lower bound cascade. A banded GPU version might
perform even better. Note that UCR-DTW is only single-threaded but features
a cascade of three early-exit strategies for pruning of unpromising candidates
including the reordering of query indices and using warping envelopes. However,
we have found that many of these techniques cannot be easily mapped onto a
GPU and can also be ineffective for longer queries. As a result, we developed
the GPU-friendly early-exit strategy presented in Sect. 3.3.

Table 3 reports the measured execution times (averaged over 8 different
queries), which include data transfers over the PCIe bus. We can see that early-
exit cuDTW++ is on average 5.5 times faster than the full cuDTW++ version.
Furthermore, the average (maximal) speedup achieved by early-exit cuDTW++
compared to UCR-DTW is 2597 (5672). Note that the speedup is constantly
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increasing with the query size. This shows that the cuDTW++ early-exit strat-
egy is more effective than the lower-bound cascade used by UCR-DTW for longer
queries.

5 Conclusion

In this paper we have introduced a fine-grained parallelization strategy for DTW
which can achieve close-to-peak performance on modern GPUs. Our approach
employs thread-local register files as a cache thereby removing the bottleneck
of (global or shared) memory accesses. To communicate data between threads,
our scheme relies on low-latency warp-level collectives. Furthermore, we have
proposed a corresponding DP matrix partitioning schemes and a suitable early-
exit strategy. Our cuDTW++ implementation outperforms state-of-the-art algo-
rithms, namely cudaDTW and the UCR-Suite, by over one order-of-magnitude
and over two-to-three orders-of-magnitude, respectively. Thus, our approach
allows for fast and interactive processing of exceedingly bigger streams or sets
of time series data.

Our parallelization scheme is in general not limited to DTW but is appli-
cable to a wider range of DP-based algorithms. Examples include the Smith-
Waterman algorithm for pairwise biological sequence alignment and the Viterbi
algorithm for finding (the score of) a most likely sequence of hidden states in
a hidden Markov model. It would be interesting to evaluate the performance of
our approach when applied to these algorithms. Corresponding codes could also
be automatically generated by using DSL tools such as AnyDSL [9] or SSAM
[1].

cuDTW++ is publicly available at https://github.com/asbschmidt/cuDTW.

Acknowledgments. We acknowledge support by the BMBF project MetaDL.
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Abstract. Epistasis detection represents a fundamental problem in bio-
medicine to understand the reasons for occurrence of complex pheno-
typic traits (diseases) across a population of individuals. Exhaustively
examining all possible interactions of multiple Single-Nucleotide Poly-
morphisms provides the most reliable way to identify accurate solu-
tions, but it is both computationally and memory intensive task. To
tackle this challenge, this work proposes a modular and self-adaptive
framework for high-performance and energy-efficient epistasis analysis
on modern tightly-coupled heterogeneous platforms composed of multi-
core CPUs and integrated GPUs. To fully exploit the capabilities of
these systems, the proposed framework incorporates both task- and data-
parallel approaches specifically tailored to enhance single and multi-
objective epistasis detection on each device architecture, along with
allowing efficient collaborative execution across all devices. The experi-
mental results show the ability of the proposed framework to handle the
heterogeneity of an Intel CPU+iGPU system, achieving performance and
energy-efficiency gains of up to 5× and 6× in different parallel execution
scenarios.

Keywords: Epistasis detection · Heterogeneous computing ·
Integrated GPU+CPU platforms

1 Introduction

In the last decade, the increasing research focus on Genome-Wide Association
Studies (GWAS) resulted in considerable developments in the understanding of
human genomics [15]. These studies provide insight into the biological impor-
tance of Single-Nucleotide Polymorphisms (SNPs) and their k-order interactions,
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known as epistasis. As the variation of interacting SNPs is highly coupled with
trait changes in the phenotype of each individual, epistasis analysis represents a
fundamental tool to identify the relationship between particular genotypes and
the risk of development of complex diseases. While some diseases are correlated
to pairwise combinations of SNPs (k = 2) [2], other illnesses, such as Alzheimer’s
and type-2-diabetes, depend on higher-order epistasis (k > 2) [14,19]. Since the
computational complexity increases exponentially with the interaction order k,
due to the higher number of SNP combinations, achieving an efficient execu-
tion of this analysis is a challenging task. This is even more demanding when
considering multi-objective optimization, which is increasingly being used in
state-of-the-art works to improve the accuracy of epistasis detection [4,5,8].

To tackle this issue, the algorithms for epistasis detection can be deployed
and optimized in modern processors, with powerful out-of-order cores [5]. On the
other hand, the high computational complexity of high-order epistasis and the
characteristics of modern processors may lead to a decreased energy-efficiency.
An alternative is the utilization of low power devices, such as the integrated
Graphics Processing Unit (iGPU) contained in the chip package of modern desk-
top processors [7]. However, the lower power consumption in these devices comes
at the cost of reduced performance. To address this challenge, heterogeneous
architectures constituted by multi-core Central Processing Units (CPUs) and an
iGPU can be used to balance performance and energy-efficiency. However, it is
not trivial to fully exploit the capabilities of these systems. CPUs and iGPU share
part of the memory hierarchy, thus, the execution of one device may affect the
performance of the other [7]. Furthermore, each device has distinct capabilities
and, in order to achieve accurate load balancing and maximize the exploitation
of parallelism, the data needs to be carefully partitioned across each device.

State-of-the-art works on epistasis are strongly focused on the performance
boosting of optimization algorithms in several devices, such as CPUs [13,16,18],
discrete GPUs [6,9], FPGAs [10] and co-processors [17]. Other works propose
methods based on machine-learning and evolutionary algorithms [1,4]. Although
these stochastic approaches allow high-order epistasis detection, they provide
sub-optimal solutions to the problem. On the other hand, exhaustive methods
have a deterministic nature that guarantees optimal solutions, at the expense of
higher computational restrictions difficult to handle for higher-order epistasis.
For these reasons, the work herein proposed focuses on addressing the challenges
of exhaustive epistasis detection, in order to attain an efficient execution when
targeting SNP interactions of order k ≥ 2 on single and multi-objective search
scenarios. To the best of our knowledge, there are no state-of-the-art works that
explore heterogeneous computing at this level of integration (CPU+iGPU) to
enhance the performance and energy-efficiency of epistasis detection.

To close this gap, this work proposes a modular and robust framework for
single and multi-objective exhaustive epistasis analysis, targeting heterogeneous
systems-on-chip with multi-core CPU and iGPU. Moreover, the efficiency of
the proposed framework is experimentally assessed in an Intel CPU+iGPU
platform, for a range of parallel and single-device execution scenarios, several
data-sets with diverse characteristics and for different optimization goals, i.e.,
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performance, power consumption or energy-efficiency. In particular, this work
includes the following contributions:

– Parallel algorithms for exhaustive epistasis detection on two different archi-
tectures, namely a modern multi-core CPU and a low-power iGPU;

– Configurable execution framework for collaborative single-objective and
multi-objective epistasis detection on heterogeneous computing platforms;

– Insights into the performance, energy-efficiency and power consumption
trade-offs when performing epistasis detection on modern CPU+iGPU
systems.

This paper is structured as follows: Sect. 2 introduces the epistasis detec-
tion and its optimization challenges, while Sect. 3 provides algorithm and
CPU+iGPU architecture overview. Section 4 describes the proposed frame-
work and device-targeted optimizations, while Sect. 5 presents the experimental
results. Section 6 concludes the paper and suggests future research directions.

2 Problem Formulation

The likelihood of certain phenotypic traits, e.g. diseases, is often governed by
the joint interaction of different SNPs in the genome of a particular individual.
The epistasis detection is targeted at identifying such interactions by processing
genotypic information from a case-control data set D of size N × (M +1), where
N is the number of individual samples and M the number of SNPs under study.
Each entry D[i, j], i ∈ {1, ..., N}, j ∈ {1, ...,M} displays the genotypic value
observed at the j-th SNP from the i-th sample, represented as 0 (homozygous
major allele), 1 (heterozygous allele), or 2 (homozygous minor allele). The disease
status y for the i-th sample is stored in the last entry (D[i,M +1]), where y = 0
for control samples and y = 1 for case samples.

Epistasis procedures often implement optimization engines to identify the
combination of k SNPs x = [x1, x2, ..., xk] best supported by some biological crite-
ria, where xi ∈ {1, ...,M}. The number k of SNPs in the combination is designated
as ‘interaction order’ and represents a key element from a computational perspec-
tive. When looking for higher-order epistatic interactions (k > 2, as in the case
of complex diseases), the search space of all possible solutions increases exponen-
tially according to the expression M !

k!(M−k)! [12], thus impacting the times required
to conduct accurate experimental campaigns in real-world scenarios.

The approach presented in this paper is aimed at dealing with such complex-
ity issues by exploiting the heterogeneous computing capabilities of CPU+iGPU
architectures. Several biological criteria, implemented as objective functions, can
be adopted in our proposal. In the present work, two widely-used objective func-
tions have been examined: Bayesian K2 score [11] and Mutual Entropy [3]. Built
upon Bayesian network principles, the K2 score can be expressed as:

K2 =
I∑

i=1

⎛

⎝
ri+1∑

b=1

log(b) −
J∑

j=1

rij∑

d=1

log(d)

⎞

⎠ , (1)
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where I is the number of possible genotypic combinations among k SNPs (I =
3k), J the number of phenotypic states (J = 2 in case-control scenarios), ri
the frequency of a certain genotypic combination i at the evaluated SNPs x =
[x1, x2, ..., xk], and rij the number of samples that satisfy the occurrence of the
phenotypic state j with the genotypic combination i at the evaluated SNPs.
Lower K2 score denote better solution quality.

The second objective function employs information theory concepts to quan-
tify the quality of the evaluated SNP interaction. More specifically, the mutual
entropy ME is the reciprocal of the mutual information I(x, y):

I(x, y) =
I∑

i=1

J∑

j=1

p(x[i], y[j])log
p(x[i], y[j])
p(x[i])p(y[j])

, (2)

where p(x[i]) is the probability of observing the genotypic combination i at x,
p(y[j]) the probability of the phenotypic state j, and p(x[i], y[j]) the probability
of j under the genotypic combination i. Similarly to the K2 function, candidate
solutions with lower ME scores are preferred from a quality perspective.

The proposed heterogeneous strategies are aimed at allowing efficient epis-
tasis detection supporting single-objective and multi-objective searches. While
single-objective approaches seek a single optimal solution (attending to the cho-
sen objective function, K2 or ME), a multi-objective search looks for a compre-
hensive set of non-dominated1, Pareto-optimal solutions that represent the best
trade-offs across the considered objectives (K2 and ME simultaneously).

3 Algorithm – Architecture Overview

This section is devoted to the description of the epistasis search workflow, design
strategies, and characterization of the targeted CPU+iGPU architecture. In
order to identify the SNPs interactions that best explain the traits in the input
data set, a number of well-defined steps must be followed (Fig. 1(a)):

1. Generation of the combination of k interactive SNPs x = [x1, x2, ..., xk] sub-
ject to evaluation, given by an integer array for solution encoding purposes.

2. Identification of genotype frequencies across case-control samples in the data
set, at the SNPs x1, x2, ..., xk.

3. Scoring of the evaluated combination according to the considered objective
function (single-objective search) or functions (multi-objective search).

4. Evaluation of the candidate solution:
(a) Single-objective optimization: the currently evaluated interaction is

retained in memory in case it improves the objective score of the best
solution identified in previous iterations of the search.

1 Given two solutions s1 and s2 and n objective functions f (s) = [f1(s), ..., fn(s)], s1
dominates s2 iff 1) ∀ i ∈ [1, 2, ..., n], fi(s1) is not worse than fi(s2) and 2) ∃ i ∈
[1, 2, ..., n] such that fi(s1) is better than fi(s2). Those solutions that are not dom-
inated by any other candidate compose the Pareto-optimal set. The representation
of this set in the objective space is commonly designated as Pareto front.



Heterogeneous CPU+iGPU Processing for Efficient Epistasis Detection 617

Fig. 1. General overview of epistasis detection: a) exhaustive search steps; b) binarized
data set representation; c) frequency table construction.

(b) Multi-objective optimization: the currently evaluated interaction is stored
in the Pareto set (front) in case it is not dominated by any other previous
solution kept in the set. All the solutions in the set that are dominated
by the new interaction are consequently removed.

These steps are performed for each possible combination of k sorted, non-
repeated SNPs. In a single-objective search, the combination with minimal objec-
tive score represents the most supported solution. On the other hand, a multi-
objective search returns the combinations that compose the Pareto-optimal set.

According to these steps, the representation and efficient processing of the
input case-control data set represents a major concern to boost the performance
of epistasis detection. The input data matrix can contain thousands of SNPs
and samples, potentially resulting in high memory requirements. This can lead
to an increased contention in shared memory resources of modern processors,
thus reducing application performance. Since the range of genotypic values that
a SNP can take is limited to three (0, 1 or 2), this issue can be mitigated by
compressing the data. This is attained by binarizing the data matrix, i.e., each
element is codified in individual bits of a larger data element, i.e., a 32-bit
integer, as illustrated in Fig. 1(b). By using the binary encoding, each SNP is
represented with three binary vectors (with indexes 0, 1 and 2), one for each
genotypic value. Each bit in the vector reflects the presence (1) or absence (0)
of a genotypic value the processed sample exhibits at the considered SNP. The
disease status array is also binarized.

In the proposed work, the computations performed to calculate objective
scores use a frequency table as support, where the instances of all possible geno-
typic combinations for the evaluated SNP interaction are accounted. This fre-
quency table has 3k rows, where k is the interaction order, and two columns, one
per disease state, as presented in Fig. 1(c). To construct this table, the bitwise
operations AND, NOT and POPCOUNT (POPCNT) are used to extract from
the binary data the information required by each objective function. As shown
in Fig. 1(c) for k = 2 and two SNPs X and Y, a bitwise AND is performed
between the binarized data elements X[1] and Y[0] to calculate the observations
of the genotypic combination ‘10’ across samples. After this step, AND and
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Fig. 2. General heterogeneous CPU+iGPU architecture.

AND+NOT operations are performed between this intermediate result and the
disease status, resulting in two arrays that identify which observations belong
to cases and which ones to controls. Finally, the POPCNT is performed over
the two arrays and the frequency table is updated in the position corresponding
to the considered genotype combination. Once the frequency table is filled, the
objective scores can be computed by using the expressions in Eqs. 1 and 2.

In order to enhance epistasis searches through parallelism (namely targeting
the parallel processing of independent SNP combinations and the data paral-
lelism exhibited by frequency calculations), this work explores heterogeneous
CPU+iGPU systems. Since each device has distinct hardware specifics, it is
necessary to analyze their micro-architectures to understand the implementa-
tion scenarios that benefit the most from CPU and iGPU capabilities.

As shown in Fig. 2, modern processors are complex systems-on-chip contain-
ing several CPU cores and iGPU. In particular, CPU cores are equipped with
powerful out-of-order engines that support diverse instruction types, including
vector instructions to handle multiple computations per instruction, leading to
higher performance. The vector length varies according to the micro-architecture,
e.g., Intel processors may support 128-bit, 256-bit or even 512-bit AVX instruc-
tions. The CPU memory hierarchy usually encapsulates two private caches (L1
and L2), and shared memory levels: LLC and DRAM. Data sharing between
cores is performed through the ring interconnect, which also provides a commu-
nication interface between the CPU LLC and the iGPU L3 cache, allowing data
transfer between them.

The iGPU micro-architecture is organized in several slices, each formed by
subslices, as illustrated in Fig. 2. The subslices consist on a set of Execution
Units (EUs) containing the Arithmetic Logic Units (ALUs) and FP units that
also perform vector instructions. These EUs handle several threads simultane-
ously, in order to exploit data-level parallelism. The subslices have access to the
shared L3 cache, and also contain private L1 and L2 caches (reserved for sampling
tasks, thus not used for general-purpose computing). The presence of an iGPU
in the processor package and its sharing of the memory subsystem differentiates
it from discrete GPUs. While discrete GPUs have its own dedicated memory,
iGPUs share the memory subsystem with the CPU, which reduces the impact
of data transfers between the two devices. When executing memory-intensive
tasks, such as epistasis detection, this allows to fully extract the potential of the
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Fig. 3. Framework for heterogeneous exhaustive epistasis detection.

heterogeneous architecture. The application performance can be further
improved by reducing its memory footprint (e.g. by binarizing the data set).

Due to the micro-architectural differences between CPU and iGPU, the het-
erogeneous implementation of epistasis detection algorithms should rely on differ-
ent programming models that allow to fully exploit the properties of each device
type, including their memory and compute resources. In the scope of this work,
OpenMP is used for the CPU to efficiently distribute work across the multi-core
processor, achieving task-level parallelism. For the iGPU, OpenCL was chosen,
an often employed and highly optimized programming model that explores the
compute abilities of these highly parallel devices. This can be explored to offload
the iGPU kernels and exploit data-level parallelism in this application.

4 Heterogeneous Framework for Epistasis Detection

To achieve an efficient and collaborative search for optimal epistasis solutions in
tightly-coupled multi-core CPU+iGPU systems, this work proposes a heteroge-
neous framework, presented in Fig. 3, that uses task and data-level parallelism as
a mean to exploit the full potential of CPUs and iGPU, not only for performance,
but also for power consumption and energy-efficiency.

In the proposed framework, the CPU master thread, i.e., the scheduler, is
responsible for assuring the load balancing by distributing different amount
of combinations to be processed at the iGPU and all CPUs cores (including
the scheduler). Besides the total number of combinations, each CPU core also
receives the initial SNP combination number, which is used by the CPU com-
bination generators to locally determine the next combination to be processed.
At the CPU master, the iGPU kernel is enqueued and the iGPU combination
generator creates a buffer containing the SNP combinations to be offloaded for
the iGPU processing. While the iGPU performs these combinations, the sched-
uler enqueues the next iGPU kernel and refills the combination buffer with the
next combinations to be processed. Some SNP combinations are also attributed
to the scheduler, in order to maximize the utilization of the CPU cores. This
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process is repeated by the scheduler until all SNP combinations are exhausted,
which means that all candidate solutions to the problem have been evaluated.

In the final step, the scheduler reports the solutions of the single-objective
(the solution with minimum score) or multi-objective (Pareto front) approaches.
It is worth to note that the local optimum solutions are kept at each device during
the processing of SNP combinations, and the final solution(s) are produced at
the CPU master only upon examination of all possible combinations. For the
multi-objective approach, the local Pareto fronts are exclusively constructed at
the CPU cores due to the low data-parallel potential of this algorithm. However,
these local fronts include the scores computed at the iGPU, which are distributed
across all CPU cores to ensure load balancing.

Due to its modular design, the proposed framework can be divided in distinct
modules, each representing a processing element of the heterogeneous implemen-
tation of the algorithm presented in Sect. 3.

4.1 Multi-core CPU Parallelization and Vectorization

To exploit the task-level parallelism of multi-core CPUs, OpenMP is used to
allow for the SNP combinations evaluation among the available threads. As
shown in Fig. 3, after receiving the number of combinations and the initial SNP
combination from the scheduler, each CPU core proceeds with the frequency
table construction. To fully exercise the data-level parallel processing capabilities
offered by modern CPUs, vectorization techniques are applied at this processing
stage, which is accomplished by using the SIMD instructions supported by the
CPU micro-architecture. For example, Intel 8th generation CPUs have AVX
instructions, which can be employed to perform bitwise operations required by
the algorithm, i.e., AND and AND+NOT operations presented in Fig. 1(c) (see
Sect. 3), using up to 256-bit wide vectors. In this case, the AND operation is
performed with the mm256 and si256 intrinsic, while AND+NOT operation is
also implemented by a single intrinsic instruction, i.e., mm256 andnot si256,
allowing to compute AND+NOT for 256-bit wide data in a single clock cycle.
As the POPCOUNT operation is not available as an intrinsic Intel 256-bit AVX
instruction, it is implemented using the popcnt64 instruction on 64-bit data.

After the frequency table construction, the scores of the Objective Function
1 (and Objective Function 2 for the multi-objective algorithm) are calculated,
as illustrated in Fig. 3. For the considered objective functions, i.e., K2 score and
Mutual Entropy, it is necessary to perform calculations based on the natural
and base-2 logarithms, respectively. Since logarithm operations are computa-
tionally intensive, their repeated utilization may potentially lead to significant
performance degradation (especially due to a high probability of recalculating
the same logarithm value when evaluating a large set of SNP combinations). To
overcome this issue, in the proposed work, look-up tables were employed to store
and reuse the values for the logarithms. To reduce the memory impact of the
look-up tables, their size is kept small, thus it is only needed to compute the
values that surpass the maximum table size. Moreover, to increase the perfor-
mance of the K2 score, the log(n!) function is replaced by a gamma function, a
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less computationally demanding alternative that removes the need to compute
factorials. To limit the size of the look-up table while maintaining accuracy in
the solutions, the gamma function is only used for higher values of n. For low n
values, the look-up table is accessed to obtain log(n!).

After the score calculation, the best local solution or the partially composed
Pareto set are stored locally in each thread, to minimize the communication
costs between threads. This process is repeated until each CPU core has finished
evaluating all the attributed SNP combinations. When all threads have finished
this stage, the globally optimal solutions, i.e., a solution with the minimum score
for the single-objective or Pareto-optimal set for the multi-objective approach,
are constructed by the scheduler thread.

4.2 iGPU Implementation

The iGPU implementation explores the capabilities of the OpenCL programming
model to offload work to the accelerator. The kernel function is defined to con-
tain all operations related to the evaluation of a SNP combination through the
building of the frequency table and calculation of objective function(s). The com-
binations to be evaluated by different work-items are provided in a buffer, which
is created in the iGPU Combinations Generator module at the CPU master
thread, as shown in Fig. 3. Each work-item in the iGPU independently processes
the assigned SNP combinations, in parallel with the remaining work-items, in
order to explore the data-parallel potential of this architecture.

Similarly to the CPU implementation, frequency table construction is imple-
mented with vectorized instructions and specific OpenCL vector data types, thus
employing the vector functional units contained in the iGPU EUs to maximize
the overall performance. For example, each EU in Intel Gen9.5 iGPU supports
128-bit wide instructions [7], thus uint4 data type is used, which corresponds
to four 32-bit unsigned integers. By using these data types, the AND and NOT
operators are vectorized, along with the POPCOUNT operation used in the
proposed algorithm. After filling the frequency table, the scores of the objective
functions are calculated by using the look-up tables and gamma function, similar
to the procedure elaborated in the CPU implementation. The look-up tables are
built by the CPU master and transferred to the iGPU before kernel execution.

For single-objective optimization, the minimum solutions are kept locally (in
the iGPU L3 cache) on a per work-item basis, and communicated back to the
CPU master only when all SNP combinations of the data-set are examined.
This process is described in pseudo-code in Fig. 4. The combination (comb) to be
processed by the specific work-item (identified by id) is obtained from the combs
array and its score is computed with the get score() function. This value is
compared to the local best score and solution, which is updated if necessary.
To compute the score, the kernel iterates through the patients (n patients
in total), filling the frequency table ft (with 3k rows and 2 columns), using
logical operations (AND, NOT and POPCOUNT) with the SNP and disease
state (state). Following this, the final score for the combination is obtained by
applying the objective function (represented by obj function()).
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Fig. 4. Pseudo-code for the iGPU kernel computing the score for a given combination
of SNPs.

In the case of multi-objective optimization, the two scores are computed in
the iGPU within each work-item and distributed to the CPU cores for the local
Pareto front construction, as previously referred. It is worth emphasizing that the
involvement of CPU cores for generating combinations, Pareto fronts and look-
up table is crucial for attaining the high performance execution on iGPU, due
to the low potential for data-level parallelization of these routines that involve
a high amount of complex control statements, as it will be shown in Sect. 5.

4.3 Execution Orchestration for Multi-core CPU+iGPU Processing

As previously referred (see Fig. 3), the scheduler in the CPU master is responsible
for distributing workload among the processing entities, i.e., iGPU and CPU
cores. Additionally, the scheduler also participates in the evaluation of SNP
combinations, in order to fully exploit the multi-core CPU capabilities.

To attain an efficient data distribution across the devices, dynamic load bal-
ancing is applied with the goal of minimizing potential idle times at the CPU and
iGPU sides. While the SNP combinations handled by the iGPU are performed
in several rounds with the fixed amount of work-items per kernel invocation, the
combinations evaluated in the CPU threads (in each scheduling round) is defined
as NCPU = NiGPU

PiGPU
× PCPU , where NiGPU is the number of SNP combinations

assigned to the iGPU, while PiGPU and PCPU denote the measured performance
of the iGPU and CPU, respectively (both assessed during the algorithm run-time
to ensure self-adaptive nature of the proposed framework).

In the case of single-objective evaluation, the CPU master is responsible for
performing the final reduction stage on the local optimum solutions encountered
at each processing entity, thus determining the final optimal epistasis solution.
For multi-objective optimization, this reduction stage consists on building the
final Pareto front from the partial fronts built by the remaining CPU cores.

5 Experimental Results

In order to evaluate the benefits and drawbacks of the proposed heterogeneous
framework for single and multi-objective epistasis detection on CPU+iGPU, its
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performance, energy-efficiency and power consumption needs to be compared
and evaluated against different implementations and configurations. With this
aim, four main comparative execution scenarios are considered, i.e.: the baseline
CPU algorithm presented in Sect. 3 (Popcnt), its vectorized CPU implementation
(Popcnt Vec), execution of the search in the iGPU alone (iGPU), and execution
in the iGPU with the CPU running only the scheduler thread (Sched).

The iGPU execution scenario was included to characterize the iGPU when
working as a single device, which implied placing the operations necessary to iter-
ate through combinations in an iterating kernel executing in the iGPU. Addition-
ally, single-objective optimization is performed for the considered two objective
functions, i.e., K2 score and Mutual Entropy, separately.

5.1 Experimental Setup

The experimental platform involves an Intel i7-8700K processor and the Gen9.5
iGPU, following the architecture described in Sect. 3. This system has 32 GB
of DRAM and runs Linux-based CentOS 7.5, with OpenCL 2.1 NEO drivers,
version 19.34.13959. The CPU was kept at its base frequency of 3.7 GHz, and
the number of OpenMP threads defined for execution was equal to the number
of cores (6), and each thread was bound to a single core. The applications were
compiled using ICC, version 19.0.5.281, with O3 optimization enabled. For the
iGPU, the number of OpenCL work-items chosen was the same across all config-
urations of the framework, while the work-group dimension was defined as the
maximum allowed in this iGPU, i.e., 256 work-items. As work-items in the same
group reside in the same subslice, the total number of work-items was defined
as a multiple of 3 × 256 = 768. The value chosen was 76800 work-items, as this
amount was experimentally determined to lead to better performance across the
different test cases, i.e., varying number of samples, SNPs and epistasis orders.

To perform an experimental evaluation for diverse amounts of SNPs and
individual samples, three data sets from [5] are considered in this work, namely:
small data set, with 23 SNPs and 10000 samples; medium data set, with 1000
SNPs and 4000 samples; large data set, with 31339 SNPs and 146 samples. Five
individual tests were performed for each application implementation, for the
epistasis orders k = 2 and k = 3.

Performance is reported as the amount of operations executed per second
(OPS/s), while the energy-efficiency corresponds to the amount of operations
per joule (OPS/J). For all the test cases considered in this work, the number of
operations, OPS, is defined as OPS = nCr(M,k) × N , where M is the num-
ber of SNPs, k the interaction order, N the number of individual samples, and
nCr(n, k) the number of k-combinations in a set of n items. The power consump-
tion (W) and consumed energy are obtained through the RAPL interface, which
allows the measurement of the energy consumption in the package (CPU and
iGPU), iGPU and CPU cores. For all versions the package power was considered,
except for the iGPU version, where the iGPU power is evaluated instead.
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Fig. 5. Performance, power consumption and energy-efficiency results for single-
objective configurations.

5.2 Single-Objective Evaluation

As a first step, the results obtained for the single-objective configurations are
analyzed, aiming at determining the characteristics of each implementation
depending on the execution scenario and input data set. Figure 5 contains the
results for single-objective optimization. The performance and energy-efficiency
units presented in the plots (OPS/s and OPS/J) were chosen to facilitate com-
parisons across different tests, as the time and energy results vary greatly, with
the small data set having very short execution times and reduced energy con-
sumption, and the larger tests executing in minutes, with large energy con-
sumption. This is mainly due to the epistasis order, since the number of SNP
combinations to be processed vastly increases with it, making the tests increase
in complexity. For example, the number of SNP combinations for the medium
data set increases from 4.99 × 105 with k = 2 to 1.66 × 108 with k = 3, which
results in greatly increased average execution times (from 145 ms to 168 s) and
average energy consumption (from 5 J to 6801 J). For the large data set (result-
ing in a total of 4.91 × 108 SNP combinations for k = 2), the average execution
time was of 312 s, and the average consumed energy was 4295 J. The tests with
the small data set have average execution time of 17 ms and average consumed
energy of 383 mJ.
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As can be observed, except for the simplest data set and epistasis order of
k = 2, i.e., small (k = 2), the CPU+iGPU architecture corresponds to the
highest performance for the remaining test cases. For the small (k = 2) test,
the amount of combinations to process is very small, which does not allow to
fully exploit the data-level parallelism provided by the iGPU. For this test,
Popcnt Vec achieves the maximum performance for both objective functions
across all execution scenarios. Moreover, by comparing Popcnt and Popcnt Vec
across all tests, it is possible to conclude that the use of vectorization leads to
performance increases of up to 79%, in the case of the medium data set (k = 2).

On the other hand, executing solely on the iGPU leads to worse performance
in all tests except for the medium data set. For this test, the iGPU scenario
registered higher performance than Popcnt Vec for k = 2 and k = 3. This
behavior mainly occurs due to the execution time of the iterating kernel of the
iGPU. According to the GPU Hotspots analysis in Intel VTune Amplifier, for
k = 2, it takes 0.1 ms for the small data set (1 execution), 7 ms for the medium
data set (7 executions), and 240 ms for the large data set (6395 executions).
This indicates that the architecture of the iGPU is not suited for performing
nested conditional statements and loops such as the ones necessary to iterate
through combinations of SNPs, as the execution time grows exponentially with
the number of SNPs. The number of iterating kernel executions also indicates
that the medium data set makes full use of the iGPU data parallelism, while
the small data set is not able to use all available work-items, as it only needs 1
execution to complete its work, resulting in lower performance.

Regarding the power consumption results, it can be observed that Popcnt Vec
has higher power consumption than Popcnt, due to the use of 256-bit vector exe-
cution units. The iGPU scenario reports the lowest power consumption values.
This result is expected given the fact that this device operates in more strict
power requirements than the CPU cores. Following it, the Sched scenario presents
lower power consumption values than the remaining, which is explained by it
only utilizing one CPU core with the scheduler thread and the iGPU. This same
reason explains the highest power consumption registered for the CPU+iGPU
fully operating simultaneously.

When comparing energy efficiency results, the Popcnt Vec and Popcnt sce-
narios present higher efficiency than the iGPU operating by itself in all tests
except for the medium data set, which is the same trend followed in the per-
formance results, where the iGPU showed greater performance in these tests.
This indicates that although the strategies operating in the CPU require more
power, they compensate for it when it comes to energy efficiency, due to lower
execution times. This correlation between high performance and high energy-
efficiency is also observed when comparing just Popcnt Vec and Popcnt, with
the former having up to 60% higher energy-efficiency (medium data set, k = 2),
despite the higher power-consumption values. Regardless, the energy-efficiency
is highest for the Sched scenario, due to its high performance and especially low
power consumption, whereas CPU+iGPU has lower energy-efficiency due to its
high power values.
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Fig. 6. Performance, Power consumption and energy-efficiency results for multi-
objective heterogeneous configurations.

All performance, power or energy results are consistent through the two dif-
ferent objective functions, demonstrating that the differences between methods
used to compute the K2 and ME scores are negligible for performance or energy.

5.3 Multi-objective Evaluation

The results obtained for the multi-objective configurations are presented in
Fig. 6, focusing the comparisons with the Sched execution scenario. The average
execution times for the medium data set are of 133 ms and 79 s, for k = 2 and
k = 3 respectively. The same tests have energy consumption of 3 and 3280 J. For
the large data set (k = 2), the average execution time is 18 s, and the average
consumed energy is 374 J. Both tests with the small data have low execution
times and energy consumption, in average 16 ms and 276 mJ, respectively.

Performance-wise, the CPU+iGPU proposal presents better results in all
tests, similarly to the single-objective configurations. The Sched approach
presents lower performance values, with the largest difference in performance
being observed for the test with the large data set. This difference is due to
the fact that the build of the Pareto front with the results from the iGPU is
done only in the master thread in the Sched scenario, while in CPU+iGPU
this task is divided across the processing threads, minimizing the workload and
leaving the master thread available to send work for the iGPU as soon as it is
available. The power and energy results herein shown are similar to the results
for the heterogeneous single-objective versions, with the added CPU cores used
for processing in the CPU+iGPU proposal increasing power consumption and
decreasing energy-efficiency.

In summary, the attained results demonstrate the benefits in performance
and energy efficiency when using heterogeneous strategies for exhaustive epistasis
analysis. While the CPU or iGPU only provide advantage in specific tests, as is
the case of the medium data set for the iGPU, the heterogeneous configurations,
especially CPU+iGPU, show consistently better parallel performance in overall
terms. The power consumption and energy-efficiency results are generally better
for the Sched approach, as CPU+iGPU uses all CPU cores and the iGPU, while
the Sched scenario uses only the iGPU and a single CPU thread, which in most



Heterogeneous CPU+iGPU Processing for Efficient Epistasis Detection 627

cases leads to an energy efficiency advantage. These results are consistent when
using a multi-objective method with the K2 and ME scores.

6 Conclusions

Epistasis detection is a fundamental GWAS research topic aimed at identify-
ing interactive SNPs responsible for complex traits, with significant applications
in biology and human health. In this context, exhaustive search methods are
adopted to provide accurate solutions to the problem, at the cost of higher com-
plexity, especially for high interaction orders. To tackle this issue, this work
proposed a heterogeneous framework for efficient exhaustive epistasis detection
in multi-core CPU+iGPU systems. The proposed framework considers both sin-
gle and multi-objective optimization, based on the K2 score and Mutual Entropy
objective functions. To fully exploit the potential of each device, OpenMP
and OpenCL programming models were used and the adaptive scheduling was
employed to attain efficient collaborative execution across several CPU cores and
iGPU. The experimental evaluation shows that the proposed framework allows
attaining performance and energy-efficiency gains of 5× and 6×, respectively, for
different data sets and execution scenarios. Future directions involve the exten-
sion of the framework for other hybrid architectures, e.g., CPU+FPGA and/or
different CPU+iGPU systems, as well as the evaluation of performance and
energy-efficiency benefits when applying dynamic voltage and frequency scaling.
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5. Gonçalves, F., et al.: Parallel evolutionary computation for multiobjective gene
interaction analysis. J. Comput. Sci. 40(101068), 1–15 (2020)
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Abstract. The SYCL standard promises to enable high productivity in
heterogeneous programming of a broad range of parallel devices, includ-
ing multicore CPUs, GPUs, and FPGAs. Its modern and expressive C++
API design, as well as flexible task graph execution model give rise to
ample optimization opportunities at run-time, such as the overlapping of
data transfers and kernel execution. However, it is not clear which of the
existing SYCL implementations perform such scheduling optimizations,
and to what extent. Furthermore, SYCL’s high level of abstraction may
raise concerns about sacrificing performance for ease of use. Benchmarks
are required to accurately assess the performance behavior of high-level
programming models such as SYCL. To this end, we present SYCL-
Bench, a versatile benchmark suite for device characterization and run-
time benchmarking, written in SYCL. We experimentally demonstrate
the effectiveness of SYCL-Bench by performing device characterization
of the NVIDIA TITAN X GPU, and by evaluating the efficiency of the
hipSYCL and ComputeCpp SYCL implementations.

Keywords: SYCL benchmarks · Heterogeneous computing · SYCL
runtime · Cross platform

1 Introduction

The pursuit of high performance and energy efficiency led to the emergence of
heterogeneous computing, where different parts of an application benefit from
specialized hardware better suited for the problem. Hardware accelerators such
as GPUs, FPGAs, and many-core CPUs are used as co-processors resulting in
heterogeneous architectures. To achieve optimal performance, such hardware
typically also requires dedicated code paths. However, existing programming
models either lack industry support, are specific to certain vendors (such as
NVIDIA’s CUDA), or too low level and cumbersome to use (e.g. OpenCL) to
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find universal adoption. SYCL [12] is a recent, royalty-free open standard pub-
lished by the Khronos Group intended for programming a wide range of hetero-
geneous architectures. Its high-level single-source programming model combines
the portability of OpenCL with modern C++ constructs and idioms. Mundane
tasks such as scheduling, data management, and synchronization are handled
implicitly by the SYCL runtime, increasing programmer productivity. While the
SYCL runtime may automatically perform optimizations such as overlapping
data transfers and kernel executions, it is not apparent whether any particular
implementation actually employs such optimizations for a given code pattern. As
SYCL is a recent standard, to the best of our knowledge only individual bench-
marks exist to evaluate the different implementations, whereas a cross-platform
benchmark suite has not yet been proposed. We present SYCL-Bench1, a versa-
tile benchmark suite written in SYCL. The main goal of SYCL-Bench is to eval-
uate the performance of both devices and different SYCL implementations. To
this end, SYCL-Bench not only contains benchmarks to characterize hardware,
but also SYCL-specific benchmarks that present optimization opportunities to
the SYCL runtime and test how well a particular implementation capitalizes on
those opportunities. In summary, we make the following main contributions:

– We present the first benchmark suite designed specifically for SYCL: SYCL-
Bench includes 62 codes suited for hardware characterization and 9 codes to
evaluate SYCL-specific runtime features.

– The benchmark suite models various use cases and enables detailed evaluation
of different SYCL implementations and their optimization strategies, thereby
facilitating adoption and further development of SYCL.

– We experimentally demonstrate the effectiveness of SYCL-Bench by perform-
ing device characterization on an NVIDIA GTX TITAN X and by evaluating
two different implementations, hipSYCL and ComputeCpp.

2 The SYCL Programming Model

SYCL is a programming model for heterogeneous computing that builds on pure
C++. This means that SYCL does not extend the C++ language itself in any
way. As a SYCL program is always a valid C++ program, a SYCL implementa-
tion for CPUs can be implemented without requiring a dedicated compiler. This
property can, for example, be used to debug heterogeneous applications written
in SYCL with regular CPU debugging tools. When accelerators are targeted, a
SYCL implementation requires a dedicated SYCL compiler that identifies ker-
nels, extracts them, and compiles them either into an intermediate representation
(such as SPIR or PTX) or machine code for the accelerator. The resulting device
binary is then typically embedded by the SYCL implementation within the host
binary for execution. Unlike OpenCL, where kernel code is usually either loaded
at runtime from a source file or stored in an application as a string, kernel code
and host code in SYCL are stored in the same source file, similarly to e.g. CUDA.

1 https://github.com/bcosenza/sycl-bench.

https://github.com/bcosenza/sycl-bench
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SYCL is, therefore, a single-source programming model, enabling modern C++
design approaches such as templates to work seamlessly and in a type-safe man-
ner across boundaries of host and device code.

In SYCL, the execution of data parallel kernels is organized by a task graph.
This task graph is implicitly constructed by the SYCL runtime based on data
access specifications that a programmer associates with a kernel by constructing
accessor objects. If two kernels request conflicting accesses to the same data
(e.g. both require read-write access), the SYCL runtime introduces a dependency
between the two kernels based on the order in which they were submitted. Note
that this only guarantees correctness with respect to the execution order of
multiple kernels, race conditions within kernels (e.g., on the level of individual
instructions) are not covered.

SYCL follows the execution and memory model of OpenCL: work items con-
stitute a unit of work that is processed in parallel. They are grouped in work
groups. Within a work group, the execution of work items can be synchronized.
There is a host memory, a global memory on the accelerator, local memory that
is shared between the work items of a group and per-work-item private memory.

SYCL kernels can be submitted in four different ways:

– A single, non-parallel task is submitted using single task() functionality.
– A basic parallel for mechanism that, from the programmer’s point of view,

does not group parallel work items together in work groups.
– An hierarchical parallel for, where a first level of parallelism for the work

groups is initiated using parallel for work group(). Inside the invoca-
tion parallel for work group(), another level of parallelism can be created
using parallel for work item(). With hierarchical parallel for kernels, the
programmer can optionally control the work group size that will be used to
execute the kernel on the hardware. Additionally, local memory can be used
in these types of kernels.

– ndrange parallel for provides a method for invoking kernels that grants
explicit control over work group sizes, allowing the usage of local memory
and explicit barriers in SYCL code. In principle, it is not more powerful than
hierarchical parallel for, but rather provides a programming model that is
more familiar to programmers who have a background in OpenCL or CUDA.

While SYCL is still a relatively new programming model with the first imple-
mentation reaching official specification conformance in August 2018 [13], there
is a growing SYCL ecosystem including projects such as the SYCL parallel STL,
a Tensorflow port to SYCL as well as four major SYCL implementations: Code-
play’s commercial ComputeCpp [6], the open-source LLVM-based SYCL [10]
led by Intel, hipSYCL [2], an open-source implementation led by Heidelberg
University, as well as triSYCL [21], an open-source project mainly funded by
Xilinx. Together, these four implementations allow a SYCL program to target
any CPU2, GPUs from at least four vendors, and FPGAs from two vendors.
Table 1 summarizes different implementations and supported platforms.

2 Given that a suitable C++ compiler exists for the hardware.



632 S. Lal et al.

Table 1. A summary of different SYCL implementations, backends, supported plat-
forms, and specification conformance.

Implementation Backends Supported hardware Conformance

ComputeCpp OpenCL SPIR/SPIR-V Intel CPUs, SYCL 1.2.1

OpenCL PTX Intel GPUs, ARM Mali

(Experimental) NVIDIA GPUs

hipSYCL CPU (OpenMP) any CPU Pre-conformance

CUDA NVIDIA GPUs

ROCm AMD GPUs

LLVM SYCL OpenCL SPIR-V Intel CPUs Pre-conformance

CUDA Intel GPUs, Intel FPGAs

(Experimental) NVIDIA GPUs

triSYCL CPU (OpenMP, TBB) any CPU Pre-conformance

OpenCL SPIR Xilinx FPGAs

(Experimental)

3 Benchmarks Design Methodology

SYCL-Bench has been designed to accomplish multiple goals. First, like tradi-
tional benchmark suites, it contains benchmarks designed to characterize the per-
formance of existing and future hardware that can be programmed using SYCL.
The range of potential target architectures is very broad: it includes all OpenCL-
conformant devices, addressed with the approach defined by SYCL 1.2.1 of inter-
preting SYCL as a higher-level model for OpenCL3; alternatively, SYCL imple-
mentations may support additional ways to target specific hardware without
using OpenCL (e.g., hipSYCL targets NVIDIA and AMD devices by extending
Clang’s CUDA frontend with support for SYCL constructs). For device charac-
terization, particular attention is given to GPU architectures, addressed with a
specific set of microbenchmarks. This set of architectural microbenchmarks is
complemented by a set of applications and single kernels.

The SYCL programming model and its peculiar aspects are also central to
the design of the benchmarks. For example, the benchmark codes are written in
modern C++, using template types to broaden the evaluation set.

Additionally, SYCL-Bench includes a number of codes that explicitly create
complex inter-task dependencies, thus implicitly stressing the efficiency of the
SYCL runtime implementations. Since SYCL implementations may implement
the various mechanisms to submit SYCL kernels (see Sect. 2) differently and
with varying performance characteristics, many benchmarks include variants for
several of those mechanisms. Lastly, we also present a set of synthetic patterns

3 This approach assumes the existence of one or more OpenCL implementations avail-
able on the host machine. If no OpenCL implementation is available, then the SYCL
implementation provides only the SYCL host device to run kernels on [12].



SYCL-Bench: A Versatile Cross-Platform Benchmark Suite 633

to benchmark the SYCL runtime overhead and task throughput. To summarize,
SYCL-Bench contains three categories of benchmarks:

Microbenchmarks. A set of architectural microbenchmarks with different pat-
terns stressing different hardware subsystems, e.g. arithmetic or the memory
subsystem. They have been designed to emphasize performance characteriza-
tion on GPU devices.

Applications/Kernels. These are real-world applications and kernels from dif-
ferent domains such as linear algebra, image processing, molecular dynamics.
The main goal of this category is to test the performance of different devices
and SYCL implementations for real-world code patterns.

SYCL Runtime Benchmarks. These benchmarks are designed to stress the
SYCL runtime. This category includes multiple-kernels that can generate dif-
ferent task graphs and stress different aspects of the SYCL runtime. Examples
include the benchmarks to measure the scheduling latency and the capabilities
of the SYCL implementation to automatically overlap compute operations
and data transfers.

3.1 Microbenchmarks

We present five distinct microbenchmarks designed to quantitatively evaluate
various device performance characteristics through the lens of SYCL. The first,
DRAM, measures the achievable device memory bandwidth by copying single and
double precision floating-point values between two buffers. As an added twist,
it can also measure the performance for two and three-dimensional buffers, thus
indirectly quantifying how efficient a given SYCL implementation’s mapping of
higher-dimensional indices to the underlying hardware is. The local mem bench-
mark is similar in spirit, measuring the attainable local memory bandwidth by
repeatedly swapping single and double precision floating-point values inside a
work group’s local memory allocation.

The arith and sf benchmarks exercise the device’s main arithmetic units
and special function units, respectively. Both execute a tight loop, the former
doing repeated multiply-add operations, and the latter applying three trigono-
metric functions (sin, cos, tan) in series. Finally, host device bandwidth mea-
sures the transfer bandwidth between the host and device memory, by copying
large, contiguous and strided chunks of one, two, and three-dimensional buffers.

3.2 Applications/Kernels

To ensure the diversity of the benchmark suite, it is essential to include applica-
tions/kernels from different domains. Even applications from the same domain
may exhibit different features. Therefore, we include applications/kernels from
a wide range of domains such as image processing, linear algebra, data mining,
data analytics. There are mainly two sources of applications and kernels. We
ported 15 CUDA applications/kernels from PolyBench suite [9] to SYCL and
developed 9 additional SYCL applications/kernels to cover image processing,
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data analytics, and physics simulation domains. In addition, applications and
kernels are also equipped with a functional validation framework that further
validates SYCL implementations on a wide range of benchmarks. Table 2 shows
the list of applications and kernels along with their domain.

3.3 SYCL Runtime Benchmarking

DAG Task Throughput for Sequential Tasks. In this benchmark, for a
given problem size N , N kernels are launched that request read-write access
to the same buffer, and the time from submission to the completion of all N
kernels is measured. Because more than one kernel accesses the same memory
object, a read-write conflict arises that forces the SYCL runtime to process the
kernels sequentially. These memory accesses, therefore, represent an edge in the
resulting DAG (directed acyclic graph). In order to verify that each kernel has
completed successfully, the buffer holds a counter which is incremented by one by
each kernel. Since the kernel itself is trivial, this benchmark is dominated by the
scheduling latency of the SYCL implementation and the latency of the backend
used by the SYCL implementation (e.g. OpenCL for ComputeCpp or HIP for
hipSYCL). Because SYCL implementations may have different scheduling code
paths or different amounts of execution overhead for different types of kernel
invocations, this benchmark comes in variants that utilize the various mecha-
nisms in SYCL to submit kernels (single task, basic parallel for, ndrange
parallel for and hierarchical parallel for).

DAG Task Throughput for Independent Tasks. The DAG task through-
put benchmark for independent tasks is very similar to the benchmark described
in Sect. 3.3. However, here given a problem size N , N independent tasks are
spawned. The independence is guaranteed by creating one buffer per kernel so
that each kernel only accesses its own buffer and no conflicts arise. To verify that
each kernel has been executed successfully, each kernel simply sets the content
of the buffer to a unique number that is different for each kernel submission.
The runtime to submit and complete all kernels is measured. While this bench-
mark is also sensitive to the scheduling latencies and overheads in the SYCL
implementation, it additionally allows the SYCL implementation to exploit hard-
ware concurrency, such as running multiple kernels concurrently on a device to
improve the overall throughput. Note that, while more complex dependencies
between tasks compared to our two throughput benchmarks may be interesting
to increase the load on the SYCL task synchronization mechanisms and the task
dependency analysis, the throughput benchmarks provide a way of testing two
easy-to-understand extreme cases: The case where no tasks can be run concur-
rently (sequential throughput benchmark) and the case where everything can run
concurrently (independent throughput benchmark). They can therefore be used
to estimate the overhead that can be expected from a SYCL implementation in
ideal, well-defined scenarios.
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Block Transform. The blocked transform benchmark divides an input array
into chunks of configurable size, and submits a kernel for each chunk that requests
read/write access only to its chunk. Each kernel then performs a tunable num-
ber of Mandelbrot iterations on the input data. This only serves as a dummy
workload to extend the kernel runtime. The actual focus of the benchmark is to
test whether the SYCL implementation is able to automatically overlap the data
transfers needed to copy the chunk data to the device and the kernels operating
on each chunk. Because the kernels are independent, a SYCL implementation
might even be able to execute multiple kernels concurrently, if this is supported
by the hardware. Additionally, the benchmark is also sensitive to whether the
SYCL implementation is capable of transferring data at sub-buffer granularity
at all (i.e., individual data transfers per chunk). When running on CPU, a SYCL
implementation might also be able to remove the data transfers entirely as the
kernel and host would be running in the same memory space. This can also be
investigated with this benchmark. The resulting DAG is illustrated in Fig. 1.

Fig. 1. The DAG for blocked transform. The arrows represent dependencies.

Table 2 shows the full list of benchmarks in the SYCL-Bench suite. The three
categories Micro, Application/Kernel, and Runtime contain five, twenty
four, and three benchmarks, respectively. We also leverage SYCL’s support for
C++ templates to instantiate benchmarks with different data types. As a result,
the SYCL-Bench consists of 26 microbenchmarks codes, 36 applications/kernels
codes (total 62 codes for hardware characterization) and 9 codes to evaluate the
efficiency of the SYCL-runtime.

4 Experimental Evaluation

We present results obtained on a machine equipped with both a high-end
NVIDIA GPU and Intel CPU, representing two important target architectures
for SYCL. However, given the selective support of different hardware platforms
in current SYCL implementations as shown in Table 1, the set of implementa-
tions to compare was limited. It was, therefore, necessary to restrict the evalu-
ated SYCL implementations to a common denominator that supports both our
CPU and GPU, namely hipSYCL and ComputeCpp. Table 3 shows details of
our experimental setup.
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Table 2. The detailed list of benchmarks included in the SYCL-Bench suite.

Category Benchmark Name Short Domain

Micro arith, DRAM, local mem, sf - Microbench

host device bandwidth - Microbench

App/Kernel lin reg coeff LRC Data Analytics

lin reg error LRE Data Analytics

median MEDIAN Image Processing

mol dyn MD Physics Simulation

scalar prod SP Linear Algebra

sobel3/5/7 SOBEL3/5/7 Image Processing

vec add VA Linear Algebra

2DConvolutiona 2DCON Image Processing

2mma 2MM Linear Algebra

3DConvolutiona 3DCON Image Processing

3mma 3MM Linear Algebra

ataxa ATAX Linear Algebra

bicga BICG Linear Algebra

correlationa CORR Data Mining

covariance a COV Data Mining

fdtd2da FTD2D Stencils

gemma GEMM Linear Algebra

gesummva GESUM Linear Algebra

gramschmidta GRAMS Linear Algebra

mvta MVT Linear Algebra

syr2ka SYR2K Linear Algebra

syrka SYRK Linear Algebra

Runtime blocked transform BT Microbench

dag task throughput independent DTI Microbench

dag task throughput sequential DTS Microbench
aPorted from PolyBench suite [9].

4.1 ComputeCpp PTX Performance

In order to target NVIDIA GPUs with ComputeCpp 1.3, it is necessary to use
the experimental4 ComputeCpp PTX backend. This is because the NVIDIA
OpenCL implementation does not support ingesting kernels in the SPIR format,
which is normally used by ComputeCpp. Because of the experimental quality of
this backend, we expect to see an overall lower performance in microbenchmarks
and applications/kernels when compared to hipSYCL.

However, we found that even very short running kernels (of the order of
microseconds, when executed using hipSYCL) could sometimes run for tens of
milliseconds. In fact, with very high probability (> 90%) the third consecutive

4 https://developer.codeplay.com/products/computecpp/ce/guides/platform-
support/targeting-nvidia-ptx?version=1.3.0.

https://developer.codeplay.com/products/computecpp/ce/guides/platform-support/targeting-nvidia-ptx?version=1.3.0
https://developer.codeplay.com/products/computecpp/ce/guides/platform-support/targeting-nvidia-ptx?version=1.3.0
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Table 3. Hardware and software used for our experiments.

Hardware Intel Xeon CPU E5-2699 v3 2.30 GHz 32GiB DDR4

NVIDIA GTX TITAN X (Maxwell) 1.0 GHz/1.215 GHz (boost)

Software Ubuntu 16.04 Linux 4.15 Clang 9.0.1

NVIDIA OpenCL 1.2 Intel OpenCL 2.0 CUDA 10.1

hipSYCL 0.8.1-master(12406c8c) ComputeCpp 1.3

run of a very short running kernel would inexplicably require approximately
100 ms to complete. As a workaround for this performance anomaly, we deter-
mined that by using SYCL’s built-in event profiling capabilities, we were able to
obtain timings that were in line with our expectations. As these timings reflect
the actual kernel execution time in hardware, relying solely on them would give
ComputeCpp an unfair advantage over hipSYCL’s host-side timings. We, there-
fore, decided to proceed as follows: For all measurements taken on NVIDIA
hardware using ComputeCpp, we will provide two values. Results marked as
ComputeCpp PTX include the full execution time as observed by the user,
including the inexplicable overhead. A second value, Kernel only, shows the
execution time that is close to what could ideally be expected without the over-
head. Crucially however, unlike for hipSYCL, these results include no runtime,
driver, and kernel launch overhead. Note that we cannot rely on event profil-
ing in general, as this functionality is currently not available in some SYCL
implementations, including hipSYCL.

4.2 Microbenchmarking

This section describes the results we obtained by running the benchmarks
described in Sect. 3.1 on an NVIDIA GTX TITAN X. Figure 2 shows the
microbenchmarking results. All microbenchmarks were executed 20 times, and
we present the best result obtained out of these runs. Missing bars indicate failed
verification of benchmark results. For the DRAM benchmark 3.375 GiB of mem-
ory were copied between two buffers. As can be seen in Fig. 2a, ComputeCpp’s
real-world performance is limited considerably by the aforementioned perfor-
mance bug. Considering ComputeCpp’s kernel time only, both implementations
achieve about 78% of the Titan X’s 336.6 GiB/s theoretical maximum for one
and two-dimensional single and double-precision floating-point copies. For three-
dimensional copies, hipSYCL exhibits a significant drop in throughput. On first
sight, this might indicate a choice of work group size that does not allow for
full memory coalescing. However, closer investigation reveals that the compu-
tation of linear buffer offsets becomes too expensive in three dimensions to be
completely hidden by DRAM access latencies. More specifically, the device code
generated by hipSYCL performs the same linear offset computation twice, once
for the reading buffer access, and another time for the write access. Explic-
itly computing the linear offset once within the kernel, and using raw pointer
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accesses for reading and writing, alleviates this inefficiency and allows hipSYCL
to achieve full throughput again. Figure 2b indicates that host ↔ device copy
bandwidth is relatively unaffected by the type of transfer performed, with only
three-dimensional contiguous and strided device-to-host copies dipping slightly
for hipSYCL. ComputeCpp’s performance is somewhat worse for host-to-device
copies and considerably worse for device-to-host copies. Furthermore, many of
the variants could not correctly be verified for ComputeCpp, which we again
attribute to the experimental nature of the PTX backend. Figure 2c shows similar
local memory performance for both implementations, achieving approximately
3300 GiB/s for single and double precision copies. This is in line with results for
the GTX TITAN X published by Lopes et al. [17], when adjusting for the higher
boost clock used in our testing setup.

Fig. 2. Microbenchmarking results on NVIDIA GTX TITAN X.

Moving on to arithmetic throughput in Fig. 2d, we see that integer perfor-
mance is considerably lower than single-precision performance for both imple-
mentations. This is to be expected, as the IMAD instructions used in arith are
emulated on Maxwell [11]. Curiously, with 3134 single-precision GFLOP/s, even
for the idealized kernel-only measurement, ComputeCpp achieves little more
than half of hipSYCL’s 6016 GFLOP/s. This indicates that the device compiler
might not map the benchmark kernel’s multiply-add operations to correspond-
ing FMA instructions. Examination of the PTX device code generated by Com-
puteCpp confirms that this is indeed the case. Both implementations approxi-
mately achieve the expected 1⁄32-th in double-precision performance compared to
single precision. Finally, for the sf benchmark’s result, shown in Fig. 2e, we again
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see ComputeCpp achieving only about half of hipSYCL’s single-precision perfor-
mance, and a third in double precision. However, even hipSYCL’s performance is
much lower than the theoretical maximum (which, with Maxwell’s 32 SFUs per
SM should be approximately 1000 GOP/s, depending on clock speed). Exami-
nation of the PTX device code reveals that both implementations emulate the
trigonometric functions rather than mapping to the corresponding SFU intrin-
stics (e.g. CUDA’s cosf). At the time of writing, it is therefore not possible to
benchmark SFU throughput on NVIDIA using either SYCL implementation.

4.3 Applications / Kernels

Figure 3 and Fig. 4 show the execution time of benchmarks using hipSYCL and
ComputeCpp implementations running on NVIDIA GTX TITAN X and Intel
Xeon CPU, respectively. For measuring the execution time, we run each bench-
mark 10 times and pick the median of the samples. In this work, we focus on
32-bit data types.

Fig. 3. hipSYCL and ComputeCpp runtime on NVIDIA TITAN X.

Figure 3 shows that hipSYCL outperforms the ComputeCpp implementa-
tion across most of the benchmarks. On average, hipSYCL is 2.7× faster than
ComputeCpp on NVIDIA TITAN X. As mentioned earlier, this is primarily due
to the experimental PTX backend support for NVIDIA GPUs which has limita-
tions such as no support for OpenCL builtins. The suffixes ND and H are used to
differentiate between ndrange parallel for and hierarchical parallel for
implementations. The scalar prod (SP) benchmark provides both variants.

Figure 4 shows the execution time of benchmarks using hipSYCL and Com-
puteCpp implementations running on Intel Xeon CPU. Figure 4 shows that the
setup consisting of ComputeCpp with Intel’s OpenCL implementation outper-
forms hipSYCL with the LLVM OpenMP implementation across most of the
benchmarks except SOBEL3, SOBEL5, SOBEL7, and 2DCON benchmarks. On
average, ComputeCpp is 25.2× faster than hipSYCL on CPU. The main reason
for the higher execution time for hipSYCL is that some benchmarks use ndrange
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Fig. 4. Comparison of hipSYCL and ComputeCpp runtime on Intel Xeon CPU.

parallel for. ndrange parallel for cannot be implemented efficiently by
library-based SYCL implementations without dedicated compiler support (such
as the CPU backends in hipSYCL and triSYCL) because it allows for explicit
barriers. To implement correct barrier semantics, a SYCL implementation is
forced to launch one thread per SYCL work item. For the usual fine-grained
parallelism exposed in typical SYCL applications at the work item level, this
forces the SYCL implementation to spawn a very large number of threads (often
much more than numbers of cores available in typical CPUs), each of which is
only assigned a small amount of work. This parallelization scheme is not a good
fit for CPU architectures. If we take out benchmarks which implement ndrange
parallel for (LRC, SPND), ComputeCpp is 4.5× faster than hipSYCL.

Of the evaluated benchmarks in this category, for instance, SPND and LRC
use ndrange parallel for. The execution time of LRC and SPND are 94.07 (s)
and 51.33 (s) using hipSYCL compared to 0.008 (s) and 0.005 (s) using Com-
puteCpp, respectively. Therefore, for applications that are expected to show
performance portability, it is highly recommended to prefer hierarchical paral-
lel for over ndrange parallel for. The figure shows that the hierarchical
parallel for implementation (SPH) is significantly faster for scalar prod. It
will be interesting for future work to test other C++ compilers and OpenMP
implementations with hipSYCL (e.g., Intel C++ Compiler with Intel OpenMP
implementation).

4.4 SYCL Runtime

We measured the runtime of hipSYCL and ComputeCpp implementations using
dag task throughput sequential and dag task throughput independent
benchmarks on NVIDIA TITAN X. We varied the problem size that corresponds
to the number of submitted kernels. For the dag task throughput sequential,
we observed that not only is the SYCL runtime overhead almost the same for
hipSYCL and ComputeCpp, but also for the four different kernel invocations.
This is likely because for sequential GPU tasks, runtimes are dominated by
latencies below the level of the SYCL implementation (driver, PCIe, GPU).



SYCL-Bench: A Versatile Cross-Platform Benchmark Suite 641

29 210 211 212 213 214 215 216

Problem Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Ex

ec
ut
io
n
Ti
m
e
[s
]

BasParFor-hipSYCL
BasParFor-ComputeCpp

HierParFor-hipSYCL
HierParFor-ComputeCpp

NDRParFor-hipSYCL
NDRParFor-ComputeCPP

SinTask-hipSYCL
SinTask-ComputeCPP

Fig. 5. SYCL runtime overhead of hipSYCL and ComputeCpp implementations on
NVIDIA GTX TITAN X. The DAG consists of independent tasks.
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Fig. 6. SYCL runtime overhead of hipSYCL and ComputeCpp implementations on
Intel Xeon CPU. The DAG consists of independent tasks.

Figure 5 shows the SYCL runtime overhead of hipSYCL and Com-
puteCpp implementations when executing dag task throughput independent
on NVIDIA TITAN X. In contrast to the sequential tasks, we see that the Com-
puteCpp stack exhibits a higher runtime overhead compared to the hipSYCL
implementation. Moreover, the gap is proportional to the number of submitted
tasks, which means that ComputeCpp has a higher average latency per submit-
ted kernel. There are two possible explanations for this behavior. An implemen-
tation could be faster for this test because it executes the kernels concurrently
on the hardware, or because it has a lower scheduling overhead. Since hipSYCL
does not launch kernels concurrently for this benchmark, the performance per-
formance gap can be explained by a lower scheduling overhead in hipSYCL.

Figure 6 shows the execution time of the dag task throughput independent
benchmark on Intel Xeon CPU. As shown in the figure, submitting independent
kernels is significantly slower for hipSYCL basic parallel for and hierarchical
parallel for kernels compared to hipSYCL single task kernels and ComputeCpp.
Since basic and hierarchical parallel for kernel invocations in hipSYCL require
spawning OpenMP threads, OpenMP overheads are likely an explanation for
this behavior.
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5 Related Work

Benchmarking has been used to characterize heterogeneous architectures and
different programming models [1,3–5,7,8,14]. Che et al. [4] proposed Rodinia
benchmark suite to study emerging platforms such as GPUs. Che et al. [5] later
extended their work and characterized Rodinia benchmark suite and also com-
pared to contemporary CMP workloads. Burtscher et al. [3] did a quantitative
study of irregular programs on GPUs and presented two metrics called control-
flow irregularity and memory-access irregularity and investigated how irregular
GPU kernels differ from regular kernels with respect to these metrics. Kulkarni et
al. [14] presented a benchmark suite called Lonestar that is targeted for graph-
based irregular programs and characterized the first five programs from this
suite. The results show that even irregular applications can be accelerated using
modern multi-core machines. Fang et al. [8] designed and implemented Mars,
a runtime system for distributed data processing. They also ported six repre-
sentative applications on Mars. Danalis et al. [7] designed a benchmark suite
called Scalable HeterOgeneous Computing benchmark suite (SHOC) and used
it to compare OpenCL and CUDA programming models. Grauer-Gray et al. [9]
implemented PolyBench codes for processing on GPU using CUDA, OpenCL,
and HMPP, a pragma-based compiler.

Some researchers have used microbenchmarks as well as benchmarks to
understand the performance as well as power characteristics of GPUs [15,18,
22,24]. Thoman et al. [22] proposed microbenchmarks suite called uCLbench to
characterize and compare OpenCL performance of existing and future devices.
Zhang et al. [24] designed a set of microbenchmarks to study the power con-
sumption of different functional units of a GPU. Mei and Chu [18] studied the
characteristics of the memory hierarchy using microbenchmarks. Specifically,
they investigated GPU cache systems and investigated the throughput/latency
of GPU global and shared memory. Lal et al. [15] studied bottlenecks that cause
low performance and low energy efficiency in GPU workloads.

There are a few works on SYCL benchmarking as it a relatively new program-
ming model [19,20]. Potter and Keir [19] described a methodology for creating
efficient domain specific embedded languages on top of the SYCL for the OpenCL
standard. There are also some works which compare different programming mod-
els. For example, Silva et al. [20] analyzed the performance and characteristics
of SYCL, OpenMP, and OpenCL using two benchmarks. The results indicated
that benchmarks that rely on SYCL runtimes are not on par with OpenMP and
OpenCL. However, the gap is shrinking compared to previous studies. Thoman
et al. [23] developed the Celerity programming environment based on SYCL,
enabling developers to scale C++ applications to distributed memory clusters
with relative ease, and included some benchmark results comparing against an
MPI+OpenCL software stack. While these works provide some limited insight
into SYCL performance compared to other programming models, we present the
first SYCL benchmark suite that contains a complete and diverse set of bench-
marks to characterize both hardware devices and runtime performance aspects
of different SYCL implementations.
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6 Conclusions

We presented SYCL-Bench, the first benchmark suite specifically written in and
for SYCL, featuring three categories of benchmarks and a total of 71 code pat-
terns. We experimentally demonstrated the effectiveness of SYCL-Bench by per-
forming device characterization of the NVIDIA TITAN X GPU, showing that
near-peak performance can be achieved for metrics such as arithmetic through-
put and DRAM bandwidth. We also evaluated the efficiency of two SYCL
implementations: hipSYCL outperformed ComputeCpp on average by 2.7× in
real-world performance on TITAN X, and ComputeCpp was 4.5× faster than
hipSYCL on Intel Xeon without ndrange benchmarks. While ComputeCpp’s per-
formance on TITAN X is primarily hampered by the experimental PTX backend,
hipSYCL’s CPU performance is much lower because of API constructs that can-
not be implemented efficiently without a dedicated compiler. In the future work,
we plan to evaluate other SYCL implementations such as triSYCL and Intel
SYCL. SYCL-Bench is publicly available along with the testing framework.
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