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Abstract. Accurate road surface markings and road edges detection is a
crucial task for operating self-driving cars and for advanced driver assis-
tance systems deployment (e.g. lane detection) in general. This research
proposes an original neural network based method that combines struc-
tural components of autoencoders, residual neural networks and densely
connected neural networks. The resulting neural network is able to con-
currently detect and segment accurate road edges and road surface mark-
ings from RGB images of road surfaces.

Keywords: Road surface markings + Road edge + Neural networks -
Segmentation - Machine learning - Autoencoder

1 Introduction

Road surface markings (RSMs) and road edges (REs) are among the most impor-
tant elements for guiding autonomous vehicles (AVs). High-Definition maps with
accurate RSM information are very useful for many applications such as navi-
gation, prediction of upcoming road situations and road maintenance [23]. RSM
and RE detection is also vital in the context of pavement distress detection to
ensure that RSMs are not confused with pavement defects and to eliminate the
areas where the cracks, potholes and other defects cannot possibly be found [17].

The detection of stationary objects of interest related to roadways is usu-
ally addressed by using video streams or still images acquired by digital cam-
eras mounted on a vehicle. For example, Reach-U Ltd.—Estonian company
specializing in geographic information systems, location based solutions and
cartography—has developed a fast-speed mobile mapping system employing six
high-resolution cameras for recording images of roads. The resulting orthoframes
assembled from recorded panoramic images are available to Estonian Road
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Administration via a web application called EyeVi [16] and are used as the
source data in present study.

RSM extraction methods are often based on intensity thresholds that are
subject to data quality, including lighting, shadows and RSM wear. RE detec-
tion is generally considered even more difficult than lane mark detection due
to lack of clear boundary between road and RE because of variations in road
and roadside materials and colors [9]. Due to recent advances in deep learning,
semantic segmentation of RSMs and REs is increasingly implemented within the
deep learning framework [21].

The present study combines both RSM and RE detection by a hierarchical
convolutional neural network to enhance the method’s predictive ability. On
narrow rural roads without RSMs, RE detection alone can provide sufficient
information for navigation but REs might escape the field of view of cameras on
wider highways and REs cannot provide sufficient information for lane selection.
Simultaneous detection of REs and RSMs can also improve the accuracy of these
tasks, e.g. RSMs suggested by the network outside the road can be eliminated
either implicitly within the network or explicitly during the post-processing.

2 Related Work

In recent years, several studies have tackled tasks of RSM and RE detection for
a variety of reasons. For example, [3,19] employ RSMs for car localization, [1]
applies RSMs to detect REs, [2,4,6,26] classify RSMs whereas [7,9,12,20,21,27]
focus on pixel level segmentation to detect the exact shapes and locations of
RSMs.

These works have used different input data. For example, [12,22,24] use 3D
data collected by LiDAR, [15,25] use 3D spacial data generated from images
captured by stereo camera, [11] uses radar for detecting metal guardrails and
[9,21,26] use 2D still images captured by a camera. Radars have an advantage
over cameras as they can be deployed regardless of lighting conditions. How-
ever, metal guardrails are rarely found on smaller rural roads. LiDARs can also
operate under unfavorable lighting conditions that can cause over- or under-lit
road surface, however, high quality LIDARs are expensive. Both 2D cameras and
3D (stereo) cameras are adversely affected by shadows, over- and under-lit road
surface and while 3D cameras can provide additional information, this infor-
mation requires more processing power. Consequently, 2D cameras are still the
most suitable equipment for capturing data for RSMs and RE detection provided
that the detection method is “smart” enough to cope with even the most adverse
lighting condition such as hard shadows, over- and under-lit surface of the road,
etc. Thus the RSM and RE detection methods must address these issues.

Possible RSMs and RE detection methods and techniques include, for exam-
ple, filtering [10] and (NN) based detection [26]. While filtering was the method
of choice in older research, the NN based methods have started to dominate
recent research. Even though the NN based methods have gained popularity, the
way NNs are implemented for RSM and RE detection has evolved significantly
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over the years. Earlier approaches used classifier networks. The segmentation
of images was achieved by applying a sliding window classifier over the whole
input image. To improve quality of the predictions, fully convolutional (AEs)
that can produce a segmented output image directly, have replaced the sliding
window method. However, since the ‘encoding’ part of the AE is subject to data
loss, the AEs have been phased out by residual networks (e.g., [5,8]) with direct
forward connections between layers of encoder and decoder for higher quality
image segmentation.

3 Methodology

3.1 Neural Network Design

The proposed architecture consists of three connected neural networks of identi-
cal structure (Fig. 1) that combines the architectures of symmetrical AE (with
dimension reducing encoder and expanding decoder), (ResNet) [5] and DenseNet
[8] having shortcut connections between encoder and decoder layers by feature
map concatenation.
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Fig. 1. Ilustration of sub-neural network design using 2 blocks with 3 convolutional
filters

This NN can be further divided into sub-blocks (hereafter blocks) that all
have a similar structure. In essence, a block consists of a set of convolutional
layers followed by a size transformation layer (either max pooling for encoder
or upsampling for decoder). As the NN is symmetric, encoder and decoder have
equal number of blocks. Thus a NN with “two blocks” would be a NN that
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has two encoding and two decoding blocks. Each of these blocks has an equal
number of convolutional layers with 3 x 3 kernel. After each decoding block,
there is a concatenation layer in order to fuse the upsampled feature map with
the corresponding convolutional layer’s feature map from the encoder part of
the network.

The overall design of the sub-NN is as follows:

Input layer (RGB image)

nx encoding block

nx decoding block + concatenation layer
flattening convolutional layer

Output layer (gray scale image).

CU o=

All the convolutional layers (except the last one) use LeakyReLU (o = 0.1)
as activation function. It is observed that a large gradient flowing through a
more common ReLLU neuron can cause the weights to update in such a way that
the neuron will never activate on any datapoint again. Once a ReLLU ends up in
this state, it is unlikely to recover. LeakyReLU returns a small value when its
input is less than zero and gives it a chance to recover [13]. The convolutional
layers’ padding is ‘same’, i.e., the height and width of input and output feature
maps are the same for each convolutional layer within a block.

The U-Net architecture proposed in [18] utilizes a similar idea, however, the
order of layers is different in the decoder part of their NN:

— [upsample | — [concatenate | — | convolution | (U-Net)

— | convolution | — | upsample | — | concatenate | (Proposed)

The number of computations required by a convolutional layer increases as
the size of inputs (feature maps from the previous layer) increases. The size of
layer’s inputs is given by Eq. 1, where width and height are width and height of
the feature map from the previous layer and depth is the number of convolutional
filters in the previous (convolutional) layer.

V = width x height x depth (1)

Because U-Net performs upsampling and concatenation before convolutional
layer, the input size (hence the required computational power) is more than four
times bigger (Eq. 2) than with the proposed NN. Upsampling with kernel size
(2 x 2) doubles both height and width and concatenation further increases depth
by adding depthe,. layers from an encoder block to the feature map.

Vinet = widthyner X heightyyer X depthyyet (2)
= (2 x width) x (2 x height) x (depth + depthen.)

Since RSMs and REs have different characteristics, these two tasks are per-
formed using two different NNs. Both NNs have a RGB input of size (224 x 224
x 13) and a single (224 x 13) output, i.e., a gray scale mask (Fig. 1). One pixel
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corresponds roughly to 3.37 mm, thus the width and height of the input segment
are about 75.42 cm.

The resulting outputs from RE and RSMs detection are concatenated with
the original input image and fed to a third NN (REFNET) to refine the final
results (Fig. 2). Hence, the final structure of the whole NN combines three NNs:
two parallel NNs (RENN and RSMNN) and a REFNET. REFNET has the same
general design as the RENN and RSMNN but the number of blocks and number
of convolutional filters per block differ (Table 1). It must be noted that adding
REFNET incurs relatively small overhead because it has considerably smaller
number of trainable parameters compered to RENN and RSMNN even though
REFNET has higher block count. Table 1 describes the chosen architecture that
had the best performance.

Table 1. Neural network parameters

Value RENN | RSMNN REFNET
Trainable parameters | 148489 | 208201 66058

Block count 3 4 5

Conv layers per block | 6 2 2

Number of filters (8,16,32) | (8,16,32,64) | (8,8,16,16,32)

Both RENN and RSMNN are pre-trained for 20 epochs. Several combinations
of blocks and layers were tested and best performing RENN and RSMNN were
chosen. Next, all three NNs — RENN, RSMNN and REFNET — are trained for
additional 60 epochs. The NNs were trained using Adadelta optimizer with initial
learning rate of 1.0 and binary crossentropy as loss function. Automatic learning
rate reduction was applied if validation loss did not improve in 15 epochs. Each
reduction halved the current learning rate.

3.2 Evaluation Methodology

There are several metrics for evaluating segmentation quality. The most common
of those is accuracy (Eq. 3) that calculates the percent of pixels in the image
that are classified correctly

TP+ TN 3)
TP+ FP+ TN + FN’

Acc =

where TP = True Positives (pixels correctly predicted to belong to the given
class), TN = True Negatives (pixels correctly predicted not to belong to the
given class), FP = False Positives (pixels falsely predicted to belong to the given
class), and FN = False Negatives (pixels falsely predicted not to belong to the
given class). In cases where there is a class imbalance in the evaluation data,
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Fig. 2. Overall structure of the final neural network

e.g. TN > TP, FP, FN (which is often the case in practice), accuracy is biased
toward an overoptimistic estimate.

For class-imbalanced problems, precision (Eq. 4) and recall (Eq. 5) (showing
how many of predicted positives were actually true positives and how many of
true positives were predicted as positives, respectively)

TP
P=— 4
"7 TP+ FP’ (4)
TP
RC_TP+FN’ (5)

or balanced accuracy that is an average of recall (also known a sensitivity or
True Positive Rate) and specificity (also known as True Negative Rate) (Eq. 6)

(6)

TPR+TNR ( TP TN ) .

Accyy = _
€Chal 2 TP+FN TN+ FP

give a better estimate
In addition, Jaccard similarity coefficient or Intersection over Union (IoU)
(Eq. 7) can be used

XNY| TP
IXUY| TP+ FP+FN’

IoU = (7)
IoU is the area of overlap between the predicted segmentation (X) and the
ground truth (V') divided by the area of union between the predicted segmenta-
tion and the ground truth.
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For binary or multi-class segmentation problems, the mean IoU is calculated
by taking the IoU of each class and averaging them.

mloU =n~! ZIoUi (8)
i=1

The same applies for the other metrics (Eq. 6, Eq. 4, Eq. 5).

4 Experimental Results

4.1 Setup of the Experiments

The proposed methods are evaluated on a dataset that contains a collection of
314 orthoframe images of Estonian roads that each have a size of 4096 x 4096
pixels.

The images in the dataset are manually annotated to generate ground truth
masks for both RSMs and RE. The annotation is performed by using Computer
Vision Annotation Tool (CVAT) (Fig. 3). These vector graphics annotations are
then converted into image masks with separate masks for RSM and RE.

Fig. 3. Image annotation. The annotated RSMs are outlined by red color and the area
outside the road masked out by the annotation mask is painted green for illustration.
(Color figure online)
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As a preliminary step before training and testing the proposed NN, auto-
matic image pre-processing (i.e. white balancing) is applied to each individual
input image by using gray world assumption with saturation threshold of (0.95).
The goal of image pre-processing is to mitigate color variance (e.g. due to color
difference of sun light).

Next, 249 of 314 pre-processed images are used to build the training/validation
dataset of image segments. This training/validation dataset contains 36497 image
segments and each segment has a size of 224 x 224 pixels (Fig. 3). It must be
noted that not all segments of a pre-processed image are included in the train-
ing/validation dataset. Since large part of the 4096 x 4096 pixel image is masked
out (depicted by black color in Fig. 3), only segments with 20% or more non-masked
pixels are considered. These segments are then divided into two groups: 1) those
that include annotations and 2) those that do not include annotations. A segment
is considered to be annotated if and only if at least 5% of its pixels contain anno-
tations. In order to prevent significant class imbalance in training data, the two
groups (i.e., segments with and without annotations) have to be of equal size. The
segments in the two groups do not overlap.

Built-in image pre-processing methods of TensorFlow/Keras library are ran-
domly applied on each 224 x 224 x 3 segment before training in order to perform
data augmentation. These image pre-processing methods include horizontal flip,
vertical flip, width shift (£5%), height shift (£5%) and rotation (<90°).

Output:

Fig. 4. Augmentation of input data

Rotation and/or shifting without zooming in can lead to situations where
part of the modified segment does not include the pixels from the original seg-
ment. Therefore, these pre-processing methods are performed using ‘nearest’ fill
method (Fig. 4).
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4.2 Image Post-processing and Testing Results

Testing is performed on 65 images which were not included in training or valida-
tion data sets. The images are turned into 224 x 224 x 3 RGB image segments
similarly to the process described in Sect. 4.1. The main difference is that after
pre-processing (i.e., white balance), the testable segments are generated from all
segments that are not 100% black. These testable segments are then passed to
the NNs and resulting output of the NNs is re-combined such that input seg-
ments that were 100% black are also fully black in the combined 4096 x 4096
output image. This process is repeated on each test image three times. Each
time a different amount of padding is used. These three outputs are cropped
to original size and averaged to assure that final generated masks/images are
smooth.

Before the final evaluation, the re-combined outputs undergo image post-
processing. First, thresholding using Otsu’s method [14] is applied on both RE
and RSM images to produce binary images (Fig. 5). Next, holes are filled in the
RE image. Then RE contours are detected and small objects are filtered out
based on their area. Next, the refined RE image is used as a mask to rule out
false positive RSMs. Finally, RSM contours are detected and small objects are
filtered out based on the object’s area (Fig. 6)

Fig. 5. Road surface markings and road edges masks before applying Otsu’s method
(left and middle, respectively) and the combined result after post-processing (right).

The number of pixels, classified as true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN) are determined over all test images
(Table 2). Based on the resulting figures, recall (R,), precision (P,), balanced accu-
racy (ACCpq) and IoU are calculated and given in Table 3. The figures in Table 3
imply that RE detection has somewhat better quality than RSMs detection. This
is, however, deceptive, because of the smaller overall size of RSMs (TP + FN in
Table 2), minor detection imperfections result in a greater degradation of perfor-
mance indices.
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In contrast to performance measures over all test images in Table 3, Table 4
provides performance analysis on orthoframe basis. First, performance measures
were calculated for each image separately. Next, statistical measures such as
average, minimum, maximum value and standard deviation (o) were calculated.
These additional characteristics show that RE detection accuracy is in fact less
consistent and more sensitive to hard shadows in particular as Fig. 7 demon-
strates. Standard deviation (o) for RSM detection is lower in all categories com-
pared to RE detection.

Fig. 6. Near-perfect detection of road surface markings (outlined by blue color) and
road edges (pale red). (Color figure online)

Fig. 7. Detection of road surface markings (outlined by blue color) and road edges
(pale red) in presence of hard shadows. (Color figure online)
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Table 2. Pixel classification after post-processing

Type TP TN FP FN
Edges | 159647475 915666344 | 8170998 | 7034223
Markings | 7501060 | 1081635670 581563 800747

Table 3. Detection performance indices after post-processing

Type Re | Pr | Accpar | IoU
Edges 0.960.95/0.97 |0.88
Markings | 0.90 | 0.93 10.95 |0.84

Table 4. Detailed measures of per image results

Value | Edges Markings

Re | Pr |TNR|Acchar |Rc | Pr | TNR| Accpal
Avg 10.92/0.95/0.99 [0.96 |0.90 0.93|1.00 |0.95
o 0.18/0.08/0.02 [0.09 |0.06 0.06|0.00 |0.03
Min [0.13]0.42/0.88 |0.57 0.640.71|1.00 |0.82
Max [1.00/0.99|1.00 [1.00 |0.981.00|1.00 |0.99

This was expected because RE detection is considered to be harder problem
to solve. The detection of RENN did not improve when NN size (block and/or
convolutional layer count) were increased. However, adding contextual informa-
tion (RSMNN) increased the proposed method’s predictive ability for both RE
and RSM detection when the outputs of RENN and RSMNN were combined in
REFNET.

5 Conclusion

In this study, we proposed a convolutional neural network-powered method for
concurrent road edge (RE) and road surface markings (RSMs) detection from
orthoframes even under severely adverse conditions such as bad lighting condi-
tions (shadows, over-lit road surface, etc) and RSM wear. The measures of IoU
(88% and 84%, respectively) indicate that the network performs well in most
conditions, however, hard shadows, cast either by trees or buildings alongside
the road, present a problem, particularly for RE detection.

In future works, we intend to research how to improve the predictive ability
of the method by using increased contextual awareness either by incorporating
data about the neighboring image segments or by using the whole orthoframe
image as input.



120

R. Pihlak and A. Riid

References

1.

10.

11.

12.

13.

14.

Alvarez, J.M., Lépez, A.M., Gevers, T., Lumbreras, F.: Combining priors, appear-
ance, and context for road detection. IEEE Trans. Intell. Transp. Syst. 15(3),
1168-1178 (2014). https://doi.org/10.1109/TITS.2013.2295427

De Paula, M.B., Jung, C.R.: Automatic detection and classification of road lane
markings using onboard vehicular cameras. IEEE Trans. Intell. Transp. Syst. 16(6),
3160-3169 (2015). https://doi.org/10.1109/TITS.2015.2438714

Deng, L., Yang, M., Hu, B., Li, T., Li, H., Wang, C.: Semantic segmentation-based
lane-level localization using around view monitoring system. IEEE Sens. J. 19(21),
10077-10086 (2019). https://doi.org/10.1109/JSEN.2019.2929135

Gupta, A., Choudhary, A.: A framework for camera-based real-time lane and road
surface marking detection and recognition. IEEE Trans. Intell. Veh. 3(4), 476-485
(2018). https://doi.org/10.1109/tiv.2018.2873902

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770-778 (2015)

Hoang, T.M., Nam, S.H., Park, K.R.: Enhanced detection and recognition of road
markings based on adaptive region of interest and deep learning. IEEE Access 7,
109817-109832 (2019). https://doi.org/10.1109/access.2019.2933598

. Hu, J., Yang, M., Xu, H., He, Y., Wang, C.: Mapping and localization using seman-

tic road marking with centimeter-level accuracy in indoor parking lots. In: 2019
IEEE Intelligent Transportation Systems Conference, ITSC 2019, pp. 4068-4073.
Institute of Electrical and Electronics Engineers Inc. (October 2019). https://doi.
org/10.1109/ITSC.2019.8917529

Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks.
In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2261-2269 (2016)

Jiang, W., Wu, Y., Guan, L., Zhao, J.: DFNet: semantic segmentation on
panoramic images with dynamic loss weights and residual fusion block. In: Pro-
ceedings - IEEE International Conference on Robotics and Automation, vol. 2019,
pp. 5887-5892. Institute of Electrical and Electronics Engineers Inc. (May 2019).
https://doi.org/10.1109/ICRA.2019.8794476

Kim, Z.W.: Robust lane detection and tracking in challenging scenarios (2008).
https://doi.org/10.1109/TITS.2007.908582

Lin, J., Chien, S., Chen, Y., Chen, C.C., Sherony, R.: 24 GHz and 77 GHz radar
characteristics of metal guardrail for the development of metal guardrail surrogate
for road departure mitigation system testing. In: 2019 IEEE Intelligent Trans-
portation Systems Conference, ITSC 2019, pp. 3340-3346. Institute of Electri-
cal and Electronics Engineers Inc. (October 2019). https://doi.org/10.1109/ITSC.
2019.8916960

Ma, L., Li, Y., Li, J., Zhong, Z., Chapman, M.A.: Generation of horizontally curved
driving lines in HD maps using mobile laser scanning point clouds. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 12(5), 1572-1586 (2019). https://doi.org/10.
1109/JSTARS.2019.2904514

Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. In: ICML Workshop on Deep Learning for Audio, Speech
and Language Processing (2013)

Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans.
Syst. Man Cybern. 9(1), 62-66 (1979). https://doi.org/10.1109/TSMC.1979.
4310076


https://doi.org/10.1109/TITS.2013.2295427
https://doi.org/10.1109/TITS.2015.2438714
https://doi.org/10.1109/JSEN.2019.2929135
https://doi.org/10.1109/tiv.2018.2873902
https://doi.org/10.1109/access.2019.2933598
https://doi.org/10.1109/ITSC.2019.8917529
https://doi.org/10.1109/ITSC.2019.8917529
https://doi.org/10.1109/ICRA.2019.8794476
https://doi.org/10.1109/TITS.2007.908582
https://doi.org/10.1109/ITSC.2019.8916960
https://doi.org/10.1109/ITSC.2019.8916960
https://doi.org/10.1109/JSTARS.2019.2904514
https://doi.org/10.1109/JSTARS.2019.2904514
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TSMC.1979.4310076

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Simultaneous Road Edge and Road Surface Markings Detection 121

Ozgunalp, U., Fan, R.; Ai, X., Dahnoun, N.: Multiple lane detection algorithm
based on novel dense vanishing point estimation. IEEE Trans. Intell. Transp. Syst.
18(3), 621-632 (2017). https://doi.org/10.1109/TITS.2016.2586187

Reach-U Ltd.: Eyevi — mobile mapping based visual intelligence. https://www.
reach-u.com/eyevi.html. Accessed 12 Feb 2020

Riid, A., Léuk, R., Pihlak, R., Tepljakov, A., Vassiljeva, K.: Pavement distress
detection with deep learning using the orthoframes acquired by a mobile mapping
system. Appl. Sci. 9(22), 4829 (2019)

Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. ArXiv (May 2015)

Rose, C., Britt, J., Allen, J., Bevly, D.: An integrated vehicle navigation system
utilizing lane-detection and lateral position estimation systems in difficult environ-
ments for GPS. IEEE Trans. Intell. Transp. Syst. 15(6), 26152629 (2014). https://
doi.org/10.1109/TITS.2014.2321108

Suleymanov, T., Kunze, L., Newman, P.: Online inference and detection of curbs
in partially occluded scenes with sparse LIDAR. In: 2019 IEEE Intelligent Trans-
portation Systems Conference, ITSC 2019, pp. 2693-2700. Institute of Electri-
cal and Electronics Engineers Inc. (October 2019). https://doi.org/10.1109/ITSC.
2019.8917086

Tran, L.A., Le, M.H.: robust U-Net-based road lane markings detection for
autonomous driving. In: Proceedings of 2019 International Conference on System
Science and Engineering, ICSSE 2019, pp. 62-66. Institute of Electrical and Elec-
tronics Engineers Inc. (July 2019). https://doi.org/10.1109/ICSSE.2019.8823532
Uzer, F., Benmokhtar, R., Moujtahid, S., Perrotton, X.: Dempster shafer grid-
based hybrid fusion of virtual lanes for autonomous driving. In: 2019 ITEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 3760—
3765. IEEE (November 2019). https://doi.org/10.1109/IROS40897.2019.8967610,
https://ieeexplore.ieee.org/document /8967610/

Wen, C.; Sun, X., Li, J., Wang, C., Guo, Y., Habib, A.: A deep learning frame-
work for road marking extraction, classification and completion from mobile laser
scanning point clouds. ISPRS J. Photogramm. Remote Sens. 147, 178-192 (2019).
https://doi.org/10.1016/j.isprsjprs.2018.10.007

Yu, Y., Li, J., Guan, H., Jia, F., Wang, C.: Learning hierarchical features for
automated extraction of road markings from 3-D mobile LiDAR point clouds.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(2), 709-726 (2015). https://
doi.org/10.1109/JSTARS.2014.2347276

Yuan, C., Chen, H., Liu, J., Zhu, D., Xu, Y.: Robust lane detection for complicated
road environment based on normal map. IEEE Access 6, 49679-49689 (2018).
https://doi.org/10.1109/ACCESS.2018.2868976

Zhang, F., Wu, X., Gu, C.: Detection of road surface identifiers based on deep
learning. In: 2019 International Conference on Artificial Intelligence and Advanced
Manufacturing (AIAM), pp. 66—70. Institute of Electrical and Electronics Engi-
neers (IEEE) (January 2020). https://doi.org/10.1109/aiam48774.2019.00020
Zhang, W., Mi, Z., Zheng, Y., Gao, Q., Li, W.: Road marking segmentation based
on siamese attention module and maximum stable external region. IEEE Access
7, 143710-143720 (2019). https://doi.org/10.1109/ACCESS.2019.2944993


https://doi.org/10.1109/TITS.2016.2586187
https://www.reach-u.com/eyevi.html
https://www.reach-u.com/eyevi.html
https://doi.org/10.1109/TITS.2014.2321108
https://doi.org/10.1109/TITS.2014.2321108
https://doi.org/10.1109/ITSC.2019.8917086
https://doi.org/10.1109/ITSC.2019.8917086
https://doi.org/10.1109/ICSSE.2019.8823532
https://doi.org/10.1109/IROS40897.2019.8967610
https://ieeexplore.ieee.org/document/8967610/
https://doi.org/10.1016/j.isprsjprs.2018.10.007
https://doi.org/10.1109/JSTARS.2014.2347276
https://doi.org/10.1109/JSTARS.2014.2347276
https://doi.org/10.1109/ACCESS.2018.2868976
https://doi.org/10.1109/aiam48774.2019.00020
https://doi.org/10.1109/ACCESS.2019.2944993

	Simultaneous Road Edge and Road Surface Markings Detection Using Convolutional Neural Networks
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Neural Network Design
	3.2 Evaluation Methodology

	4 Experimental Results
	4.1 Setup of the Experiments
	4.2 Image Post-processing and Testing Results

	5 Conclusion
	References




