
Chapter 3
S-adic Sequences: A Bridge Between
Dynamics, Arithmetic, and Geometry

Jörg M. Thuswaldner

Abstract A Sturmian sequence is an infinite nonperiodic string over two letters
with minimal subword complexity. In two papers, the first written by Morse and
Hedlund in 1940 and the second by Coven and Hedlund in 1973, a surprising
correspondence was established between Sturmian sequences on one side and
rotations by an irrational number on the unit circle on the other. In 1991 Arnoux
and Rauzy observed that an induction process (invented by Rauzy in the late
1970s), related with the classical continued fraction algorithm, can be used to
give a very elegant proof of this correspondence. This process, known as the
Rauzy induction, extends naturally to interval exchange transformations (this is the
setting in which it was first formalized). It has been conjectured since the early
1990s that these correspondences carry over to rotations on higher dimensional
tori, generalized continued fraction algorithms, and so-called S-adic sequences
generated by substitutions. The idea of working towards such a generalization
is known as Rauzy’s program. Recently Berthé, Steiner, and Thuswaldner made
some progress on Rauzy’s program and were indeed able to set up the conjectured
generalization of the above correspondences. Using a generalization of Rauzy’s
induction process in which generalized continued fraction algorithms show up,
they proved that under certain natural conditions an S-adic sequence gives rise
to a dynamical system which is measurably conjugate to a rotation on a higher
dimensional torus. Moreover, they established a metric theory which shows that
counterexamples like the one constructed in 2000 by Cassaigne, Ferenczi, and
Zamboni are rare. It is the aim of the present chapter to survey all these ideas and
results.
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3.1 Introduction

A Sturmian sequence is an infinite string over two letters with low subword
complexity. In particular, it has exactly n + 1 different subwords of a given length
n ∈ N. Sturmian sequences have been studied extensively in the literature from
various points of view and we refer to Lothaire [101, Chapter 2] or Pytheas
Fogg [82, Chapter 6] for detailed accounts. The history of the research surveyed
in the present chapter starts with two papers written by Morse and Hedlund [107] as
well as Coven and Hedlund [67] in 1940 and 1973, respectively. In these papers the
authors established a surprising correspondence between Sturmian sequences and
rotations by an irrational number α on the torus T = R/Z. In their proof “balance
properties” of Sturmian sequences play a prominent role. Several decades later,
Arnoux and Rauzy [22] observed that an induction process in which the classical
continued fraction algorithm appears can be used to give another very elegant proof
of this correspondence (see also Rauzy’s earlier papers [112, 113] on this induction
process). Their proof also shows how arithmetic and Diophantine properties of an
irrational number α are encoded in the corresponding Sturmian sequence.

It has been conjectured since the early 1990s that these correspondences between
rotations on T, continued fractions, and Sturmian sequences carry over to rotations
on higher dimensional tori, generalized continued fraction algorithms, and so-called
S-adic sequences generated by substitutions. The idea of working towards such
a generalization is known as Rauzy’s program and starting with Rauzy [114] a
number of examples which hint at such a generalization was devised. A natural
class of S-adic sequences to study in this context are so-called Arnoux-Rauzy
sequences which go back to Arnoux and Rauzy [22]. These are sequences over three
letters that behave analogously to Sturmian sequences in many regards. However,
in 2000 Cassaigne et al. [63] could construct Arnoux-Rauzy sequences with strong
“imbalance”, a property which cannot occur for a Sturmian sequence. Cassaigne et
al. [62] even constructed Arnoux-Rauzy sequences that give rise to weakly-mixing
dynamical systems which are far from rotations in their dynamical behavior. All
this shows the limitations of Rauzy’s program and indicates that the situation in the
general setting is more complicated than it is in the classical case.

Nevertheless, recently Berthé et al. [52] made some progress on Rauzy’s
program and were indeed able to set up the conjectured generalization of the above
correspondences. Using a generalization of Rauzy’s induction process in which
generalized continued fraction algorithms show up, they proved that under certain
natural conditions an S-adic sequence gives rise to a dynamical system which
is measurably conjugate to a rotation on a higher dimensional torus. Moreover,
they established a metric theory which shows that exceptional cases like the ones
constructed in [62] and [63] are rare. A prominent role in this generalization
is played by tilings induced by generalizations of the classical Rauzy fractal
introduced by Rauzy [114].

Another idea which can be linked to the above results goes back to Artin [26],
who observed that the classical continued fraction algorithm and its natural exten-
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sion can be viewed as a Poincaré section of the geodesic flow on the space of
two-dimensional lattices SL2(Z)\SL2(R). Arnoux and Fisher [14] revisited Artin’s
idea and showed that the correspondence between continued fractions, rotations,
and Sturmian sequences can be interpreted in a very nice way in terms of an
extension of this geodesic flow to pointed lattices which is called the scenery flow.
Currently, Arnoux et al. [12] are setting up a generalization of this connection
between continued fraction algorithms and geodesic flows. In particular, they code
the Weyl Chamber Flow, a diagonal Rd−1-action on the space of d-dimensional
lattices SLd(Z)\SLd(R), arithmetically and geometrically by generalized continued
fraction algorithms. In this coding, which provides a new view of the relation
between S-adic sequences and rotations on higher dimensional tori, non-stationary
Markov partitions defined in terms of generalized Rauzy fractals are of great
importance.

It is the aim of the present chapter to survey all these ideas and results. In
Sect. 3.2 we deal with the case of Sturmian sequences and Sect. 3.3 discusses the
problems with the extension of the theory to the more general situation. From
Sect. 3.4 onwards we set up the general theory of S-adic sequences and their relation
to generalized continued fraction algorithms and rotations on higher dimensional
tori.

3.2 The Classical Case

We start our journey by giving some elements of the interaction between Sturmian
sequences, the classical continued fraction algorithm, and irrational rotations on the
circle. After that we discuss natural extensions of continued fractions and show
how all these objects turn up in the study of the geodesic flow acting on the space
SL2(Z)\SL2(R) of lattices and its extension to pointed lattices. We will prove
most of the results that we state and although our exposition is self-contained we
recommend the reader to have a look at the survey [82, Chapter 6] in order to find
more background information on the subject of this section.

3.2.1 Sturmian Sequences and Their Basic Properties

For a finite set {1, 2, . . . , d} denote by {1, 2, . . . , d}∗ the set of all finite words
v0 . . . vn−1 whose letters vi , 0 ≤ i < n, are contained in {1, 2, . . . , d}. Moreover,
let {1, 2, . . . , d}N be the space of (right-infinite) sequences w = w0w1 . . . whose
letters wi , i ∈ N, are elements of {1, 2, . . . , d}. The shift Σ : {1, 2, . . . , d}N →
{1, 2, . . . , d}N on this space of sequences is defined by Σ(w0w1 . . .) = w1w2 . . .

Let w = w0w1 . . . ∈ {1, 2, . . . , d}N be a sequence. A factor (or subword) of
w is a word v0 . . . vn−1 ∈ {1, 2, . . . , d}∗ for which there is k ≥ 0 such that
wk . . . wk+n−1 = v0 . . . vn−1. In this case we say that v occurs in w at position k.
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The complexity function pw : N→ N of w assigns to each integer n the number of
words v0 . . . vn−1 ∈ {1, 2, . . . , d}∗ that are factors of w. If w is ultimately periodic
in the sense that there exist k > 0 and N ≥ 0 with wn = wn+k for each n ≥ N then
pw is a bounded function. On the other hand, a result by Coven and Hedlund [67]
which is not hard to prove states that a sequence w ∈ {1, 2, . . . , d}N that admits the
inequality pw(n) ≤ n for a single choice of n is ultimately periodic (see also [82,
Proposition 1.1.1]). It is the class of not ultimately periodic sequences with smallest
complexity function that we are interested in.

Definition 3.2.1 (Sturmian Sequence) A sequence w ∈ {1, 2}N is called a
Sturmian sequence if its complexity function satisfies pw(n) = n+ 1 for all n ∈ N.

It is a priori not clear that Sturmian sequences exist at all. However, we will see
in Theorem 3.2.11 below that they can be characterized as so-called natural codings
of irrational rotations which are easy to construct (and will be defined in Sect. 3.2.4).

A detailed account on the early history of Sturmian sequences, which goes back
to Bernoulli [39], is given in [101, Notes to Chapter 2]. The name “Sturmian
sequence” was coined in 1940 by Morse and Hedlund [107]. Sturmian sequences
have been studied extensively. For an overview on fundamental properties of
Sturmian sequences we refer in particular to Lothaire [101, Chapter 2], Pytheas
Fogg [82, Chapter 6], or Allouche and Shallit [6, Chapters 9 and 10]. Belov et
al. [38] discuss some aspects of Sturmian sequences which are related to the present
survey.

We start with the discussion of basic properties of Sturmian sequences. The fact
that pw(n) = n + 1 holds for a Sturmian sequence entails that for each n there is
only one factor v0 . . . vn−1 of w with the property that both words v0 . . . vn−11 and
v0 . . . vn−12 are factors of w. Such a word v0 . . . vn−1 is called right special factor
of w. Left special factors are defined analogously.

Our first lemma deals with recurrence of Sturmian sequences. Recall that a
sequence w ∈ {1, 2}N is called recurrent if each factor of w occurs infinitely often,
i.e., at infinitely many positions, in w.

Lemma 3.2.2 (Cf. e.g. [82, Proposition 6.1.2]) A Sturmian sequence is recurrent.

Proof Suppose that this is wrong and let w be a nonrecurrent Sturmian sequence.
Then there exists a factor v of length n, say, that occurs only finitely many times
in w. Then there exists k ∈ N such that w′ = Σkw does not contain v as a factor.
However, as pw(n) = n+1 this implies that pw′(n) ≤ n and, hence, w′ is ultimately
periodic. However, then also w is ultimately periodic, a contradiction. �	

Next we discuss balance. To give a formal definition we introduce some notation.
For a word v ∈ {1, 2}∗ we denote by |v| its length, i.e., the number of letters of v.
Moreover, for i ∈ {1, 2}, we write |v|i for the number of occurrences of the letter i

in v.

Definition 3.2.3 (Balanced Sequence) A sequence w ∈ {1, 2}N is called balanced
if each pair of factors (v, v′) of w with |v| = |v′| satisfies

∣
∣|v|1 − |v′|1

∣
∣ ≤ 1.
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As was observed already in [107], there is a tight relation between Sturmian
sequences and balance.

Proposition 3.2.4 Let w ∈ {1, 2}N be given. Then w is a Sturmian sequence if and
only if w is not ultimately periodic and balanced.

The proof of this result is combinatorial. It is based on the observation that for a
sequence w which is not balanced there is a word v ∈ {1, 2}∗ such that 1v1 and 2v2
are factors of w. Since the details are a bit tricky we do not give them here and refer
the reader to [107] or [82, Chapter 6, p. 147ff ].

The fact that Sturmian sequences are balanced will now be exploited in order to
prove that they can be coded using the Sturmian substitutions

σ1 :
{

1 
→ 1,

2 
→ 21,
σ2 :
{

1 
→ 12,

2 
→ 2.
(3.1)

The domain of these substitutions can naturally be extended from {1, 2} to {1, 2}∗
and {1, 2}N by concatenation. The next statement essentially says that balance is
maintained by “desubstitution”.

Lemma 3.2.5 (See e.g. [14, Lemma 4.2]) If a sequence w ∈ {1, 2}N is not
balanced, then for each a ∈ {1, 2} the sequence σ1(aw) is not balanced.

Proof If w is not balanced it is easy to see that there are words u and v with |u| = |v|
and |u|1 = |v|1 such that 1u1 and 2v2 are factors of w. Since 1u1 occurs in w there
is b ∈ {1, 2} such that b1u1 occurs in aw (we need a in case 1u1 is the initial word
of w). As σ1(b) always ends with 1 and σ1(2) begins with 2, the words 11σ1(u)1
and 21σ1(v)2 have the same length and both occur in σ1(aw). As the number of 1s
in these two words clearly differs by 2 the lemma follows. �	

Let w = w0w1 . . . ∈ {1, 2}N be given. If w is a Sturmian sequence, it contains
exactly three of the four factors 11, 12, 21, 22. Since it clearly contains 12 and 21
as factors, it either doesn’t contain 22, in which case we say that w is of type 1, or
it doesn’t contain 11, in which case we say it is of type 2. Using recurrence one can
easily see that for each Sturmian sequence w ∈ {1, 2}N at least one of the sequences
1w and 2w is Sturmian as well. A Sturmian sequence w ∈ {1, 2}N is called special
if 1w as well as 2w are both Sturmian sequences. With these notions we get the
following “desubstitution” of Sturmian sequences (see also [22, Section 1] where
an analog of this was proved along somewhat different lines).

Lemma 3.2.6 (See e.g. [14, Proposition 4.3]) Let u be a Sturmian sequence of
type 1.

(i) If u is not special then either u = σ1(v) with v Sturmian, or u = Σσ1(v) with
v Sturmian starting with 2 (but not both).

(ii) If u is special then u = σ1(v1) = Σσ1(v2) where Σv1 = Σv2 is a special
Sturmian sequence.

If u is of type 2 the same statement with the symbols 1 and 2 interchanged holds.
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Proof Since u is of type 1 it is immediate that it can be written as u = σ1(v) for
some v ∈ {1, 2}N.

To prove (i) suppose that u is not special. Then either 1u or 2u is Sturmian, but
not both.

If 1u is Sturmian, 1u = σ1(v
′) with v′ starting with 1 and, hence, by Lemma 3.2.5

and Proposition 3.2.4, v = Σv′ is Sturmian, and u = σ1(v). If u starts with 2 then
u �= Σσ1(v

′) for v′ starting with 2. If u starts with 1 then also v starts with 1. If we
replace the first letter of v by 2 this yields a sequence w satisfying u = Σσ1(w).
However, if w is also Sturmian Σv = Σw is special and, hence, one easily checks
that u is special, a contradiction and we are done.

If 2u is Sturmian then 12u has to be Sturmian (since 22 is forbidden) and thus
12u = σ1(1v) with v Sturmian and beginning with 2. Thus u = Σσ1(v). As before,
we can write u = σ1(w) where w is the word obtained from v by replacing the first
letter by 1. This leads again to the contradiction of u being special.

To show (ii) assume u is special. Then, as u has to start with 1 the sequences
12u = σ1(12v) and 21u = σ1(21v) are Sturmian (11u cannot be Sturmian for
imbalance reasons, see [82, Proposition 6.1.23]). By Lemma 3.2.5 and Proposi-
tion 3.2.4 the sequences 1v and 2v are Sturmian, so v is special and u = σ1(1v) =
Σσ1(2v).

The proof of the type 2 case is analogous. �	
From the proof of Lemma 3.2.6 we see that for a special sequence u of type 1

there exists a special sequence v such that 21u = σ1(21v) and 12u = σ1(12v)

are Sturmian sequences. If u is special of type 2 we get the existence of a special
sequence v with 21u = σ2(21v) and 12u = σ2(12v) Sturmian by analogous
reasoning. If u is a special Sturmian sequence then the two Sturmian sequences
12u and 21u are called limit sequences or fixed sequences. By the above arguments
they can be desubstituted to sequences that are limit sequences as well. This process
can be iterated: let w be a limit sequence. Then there is a sequence (w(n))n≥0 of
limit sequences with

w = w(0) and w(n) = σin(w
(n+1)) for n ≥ 0.

This can be rewritten as

w = σi0 ◦ · · · ◦ σin (w
(n+1)). (3.2)

As w is Sturmian, the sequence (in) ∈ {1, 2}N has to change its value infinitely often
because otherwise w would be ultimately constant. Now observe that a sequence
w(n) starting with a letter a results in a sequence w(0) also starting with a. Moreover,
since the sequence (in) changes its value infinitely often we see that the first letter of
w(n) determines a prefix of w whose length tends to infinity with n. Thus, equipping
{1, 2}N with the product topology of the discrete topology yields

w = lim
n→∞ σi0 ◦ · · · ◦ σin (a), (3.3)
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where a is the first letter of w (note that we slightly abuse notation here: to be exact
the argument of σin should be aa . . . ∈ AN since the limit is not defined for finite
words). We could also group the blocks of the sequence (in). So if it starts with a
block of a0 times the symbol 1 followed by a block of a1 times the symbol 2 and so
on we can rewrite (3.3) as

w = lim
k→∞ σ

a0
1 ◦ σ

a1
2 ◦ σ

a2
1 ◦ · · · ◦ σ

a2k

1 (a). (3.4)

A sequence w that can be represented by iteratively composing substitutions as in
(3.2) is called an S-adic sequence.

Note that for arbitrary Sturmian sequences a similar coding as in (3.2) is possible,
however, in the general case shifts have to be inserted between the composed
substitutions on the appropriate places according to Lemma 3.2.6. Inserting these
shifts does not change the collection of factors (called language) of the sequence.
Thus each Sturmian sequence w is associated with a sequence (σim) which
determines its language. We call this sequence the coding sequence of w. Summing
up we proved the following proposition.

Proposition 3.2.7 (See [22, Section 1]) Let σ1, σ2 be the Sturmian substitutions.
Then for each Sturmian sequence w there exists a coding sequence σ = (σin ),
where (in) takes each symbol in {1, 2} an infinite number of times, such that w has
the same language as

u = lim
n→∞ σi0 ◦ σi1 ◦ · · · ◦ σin(a).

Here a ∈ {1, 2} can be chosen arbitrarily.

Since it will turn out that (3.3) and (3.4) are nonabelian versions of the classical
continued fraction algorithm we will now review the basics of this well-known
concept.

3.2.2 The Classical Continued Fraction Algorithm

The “S-adic” representations of a Sturmian sequence given in (3.3) and (3.4) are
related to continued fraction expansions of irrational numbers. For this reason we
provide a brief discussion of the classical continued fraction algorithm (see e.g. [76,
Chapter 3] for an introduction to continued fractions of a dynamical flavor or [41]
for a discussion of continued fractions in a context related to the present paper).
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We start with the well-known additive Euclidean algorithm. Given a pair of two
nonnegative real numbers (a, b) �= (0, 0) we define the mapping F : R2≥0 \ {0} →
R

2≥0 \ {0} by

F(a, b) =
{

(a − b, b), if a > b,

(a, b − a), if a ≤ b.

If we iterate this mapping starting with (a, b) ∈ R
2
>0 we see that we reach a pair of

the form (0, c) or (c, 0) with c > 0 if and only if the ratio a/b is rational. If a/b �∈ Q

the iterations of F on (a, b) produce an infinite sequence of pairs of strictly positive
numbers. Setting

M1 =
(

1 1
0 1

)

and M2 =
(

1 0
1 1

)

(3.5)

we see that F(a, b)t = M−1
1 (a, b)t if a > b and F(a, b)t = M−1

2 (a, b)t if a ≤
b. Thus iterating F on a pair (a, b) with a/b �∈ Q produces an infinite sequence
(Min)n∈N ∈ {M1,M2}N defined by

(a, b)t = Mi0F(a, b)t = Mi0Mi1F
2(a, b)t = Mi0Mi1Mi2F

3(a, b)t = · · · .

(3.6)

This sequence (Min) is called the additive continued fraction expansion of (a, b).
In (3.14) we will see that, up to a scalar factor, (a, b) is determined by the sequence
(in).

Since the sequence (Min) is invariant under the multiplication of (a, b) by a
scalar, we may use projective coordinates. This motivates the following definition.
Let P be the projective line and X = {[a : b] ∈ P : a ≥ 0, b ≥ 0}. Define
M : X → {M1,M2} by M([a : b]) = M1 if a > b and M([a : b]) = M2 if a ≤ b.
Then the mapping

F : X → X; x 
→ M(x)−1x (3.7)

is called the linear additive continued fraction mapping.
Since (a, b) �= (0, 0) we can define a projective version of (3.7). Indeed, we can

write [a : b] = [1, b/a] if a > b and [a : b] = [a/b, 1] if a ≤ b and the mapping F

can be written as (c ∈ [0, 1])

F [1 : c] =
{

[1− c : c] = [ 1−c
c
: 1], if c > 1

2 ,

[1− c : c] = [1 : c
1−c
], if c ≤ 1

2 ,

F [c : 1] =
{

[1 : 1−c
c
], if c > 1

2 ,

[ c
1−c

: 1], if c ≤ 1
2 .

(3.8)
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Fig. 3.1 The Farey map
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Since the coordinate 1 contains no information in (3.8) and c ∈ [0, 1], this defines a
mapping f : [0, 1] → [0, 1] by

f (x) =
{

1−x
x

, if x > 1
2 ,

x
1−x

, if x ≤ 1
2 .

The mapping f is called projective additive continued fraction mapping or Farey
map. It is visualized in Fig. 3.1.

The additive continued fraction algorithm can be “accelerated” in the following
way. Assume that a, b > 0 are given. If a > b we do not just subtract b from a.
We subtract it m times where m is chosen in a way that 0 ≤ a −mb < b. If a ≤ b

we proceed analogously. This results in the multiplicative Euclidean algorithm G :
R

2
>0 → R

2≥0 \ {0} with

G(a, b) =
{

(a − � a
b
�b, b), if a > b,

(a, b − � b
a
�a), if a ≤ b.

As in (3.6), iterating G on a pair (a, b) ∈ R
2
>0 yields a sequence of matrices

M
a0
1 ,M

a1
2 ,M

a2
1 , . . . with positive integers a0, a1, . . . satisfying (we assume a > b

here; otherwise the sequence would start with a power of M2)

(a, b)t =M
a0
1 G(a, b)t = M

a0
1 M

a1
2 G2(a, b)t =M

a0
1 M

a1
2 M

a2
1 G3(a, b)t = · · · .

(3.9)

However, contrary to (3.6) this sequence stops if the iteration runs into a vector one
of whose coordinates is 0 because G is not defined for such vectors. Indeed, as can
easily be verified, we run into such a vector if and only if a/b ∈ Q.
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Again we move to the projective line and set X = {[a : b] ∈ P : a > 0, b > 0}.
Define M : X → {Mm

1 ,Mm
2 : m ≥ 1} by M([a : b]) = Mm

1 if a > b and
0 ≤ a − mb < b and M([a : b]) = Mm

2 if a ≤ b and 0 ≤ b − ma < b. Then the
mapping

G : X → X; x 
→ M(x)−1x (3.10)

is called the linear multiplicative continued fraction mapping.
Similar to the additive case assume that a, b > 0 and choose the representatives

[a : b] = [1, b/a] if a > b and [a : b] = [a/b, 1] if a ≤ b. The mapping G can
then be written as (c ∈ (0, 1])

G[1 : c] = [1− � 1
c
�c : c] = [{ 1

c
}c : c] = [{ 1

c
} : 1], G[c : 1] = [1 : { 1

c
}].
(3.11)

As the coordinate 1 contains no information in (3.11) this defines a mapping g :
(0, 1] → [0, 1) by

g(x) =
{1

x

}

. (3.12)

The mapping g is called projective multiplicative continued fraction mapping or
Gauss map. It is visualized in Fig. 3.2.

By direct calculation (see e.g. [76, Chapter 3]) it follows from the definition
that for each irrational x ∈ (0, 1) the Gauss map g can be iterated infinitely often.
This iteration process determines a sequence (an) of positive integers defined by

Fig. 3.2 The Gauss map
x 
→ { 1

x
}

0.0 0.2 0.4 0.6 0.8 1.0
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0.4

0.6

0.8

1.0
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an =
⌊ 1

gn(x)

⌋

which admits to develop x in its (multiplicative) continued fraction
expansion

x = 1

a0 + 1

a1 + 1

a2 + 1

a3 + . . .

(which will be denoted by x = [a0, a1, . . .]). By definition this is the same sequence
(an) as the one we obtain in the exponents of the matrices in (3.9) when setting
(a, b) = (1, x). One can show that this sequence is ultimately periodic if and only
if x is a quadratic irrational. If x is rational one can associate a finite sequence with
x in this way.

Continued fractions play an eminent role in Diophantine approximation. It is
therefore of special interest that they will appear in our theory of Sturmian sequences
naturally without being presupposed.

3.2.3 Dynamical Properties of Sturmian Sequences

We want to have a look at the “abelianized” version of (3.3) and (3.4) in order to get
a link between Sturmian sequences and the classical continued fraction algorithm.
For a word v ∈ {1, 2}∗ define the abelianization l(v) = (|v|1, |v|2)t , and for
i ∈ {1, 2} associate to the Sturmian substitution σi from (3.1) the incidence matrix
Mi = (|σi(k)|j )1≤j,k≤2. Then M1 and M2 are the matrices defined in (3.5) which
were used to define the linear version of the classical additive continued fraction
algorithm in (3.7). Indeed, since lσi(v) = Mi l(v) we see that the vectors (here
e1, e2 are the standard basis vectors)

Mi0 · · ·Minea (3.13)

form an abelianized version of the expression in the limit of (3.3). Since (in) changes
its value infinitely often, MinMin+1 is a positive matrix for infinitely many n (in
particular, MinMin+1 = M1M2 for infinitely many n; we therefore call the whole
sequence (Min) a primitive sequence of matrices). This property entails that the
positive cone R2≥0 is shrunk to a line by these matrices, more precisely, there exists

a vector u ∈ R
2
>0 such that

⋂

n≥0

Mi0 · · ·MinR
2≥0 = R+u (3.14)
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(see [84, pp. 91–95], [125, Chapter 26], or Proposition 3.5.5 below). This says that
the additive continued fraction algorithm defined by (3.6) is weakly convergent (as
is well known, this algorithm is even strongly convergent which is related to the
balance property of Sturmian sequences). We call u, which is uniquely defined up
to scalar factors by the sequence (Min), a generalized right eigenvector of (Min).
We also see from (3.14) that the vector (a, b)t in (3.6) is defined by the sequence
(Min) up to a scalar factor.

We go back to the (nonabelian) S-adic setting. Assume that a Sturmian sequence
w = w0w1 . . . has a coding sequence (σin ) whose associated sequence of incidence
matrices (Min) satisfies (3.14). We will now prove that in this case w has uniform
letter frequencies, i.e., the limit

fi(w) = lim
�→∞

|wk . . . wk+�−1|i
�

exists uniformly in k for each i ∈ {1, 2}. We get even more, namely, the following
lemma holds. In its proof and in all the remaining part of this section we use the
abbreviations

σi[m,n)
= σim ◦ · · · ◦ σin−1 and Mi[m,n)

= Mim · · ·Min−1 .

Lemma 3.2.8 Let w = w0w1 . . . be a Sturmian sequence with coding sequence
(σin ) whose associated sequence of incidence matrices (Min) has a generalized right
eigenvector u. Then w has uniform letter frequencies and (f1(w), f2(w))t = u

‖u‖1
.

Proof Let u/‖u‖1 = (u1, u2)
t . By Proposition 3.2.7 for all k, �, n ∈ N we can

write

wk . . . wk+�−1 = pσi[0,n)
(v)s

for some p, v, s ∈ {1, 2}∗, where the lengths of p, s are bounded by the number
max{|σi[0,n)

(1)|, |σi[0,n)
(2)|}.

Now, for each a ∈ {1, 2} we have the inequality

∣
∣
∣
∣

|wk . . . wk+�−1|a
�

− ua

∣
∣
∣
∣
≤
∣
∣|p|a − |p|ua

∣
∣

�
+

∣
∣|σi[0,n)

(v)|a − |σi[0,n)
(v)|ua

∣
∣

�
+
∣
∣|s|a − |s|ua

∣
∣

�
.

(3.15)

By the convergence of the positive cone to u in (3.14) we know that
|σi[0,n)

(b)|a/|σi[0,n)
(b)| is close to ua for all a, b ∈ {1, 2} if n is large. Thus for

each ε > 0 there is N ∈ N such that whenever � ≥ N we can choose n in a way
that |p|, |s| ≤ ε� and

∣
∣|σi[0,n)

(b)|a − |σi[0,n)
(b)|ua

∣
∣ < ε|σi[0,n)

(b)| for all letters a

and b. This proves that the right hand side of (3.15) is bounded by 3ε and thus
lim�→∞ |wk . . . wk+�−1|a/� = ua uniformly in k. �	
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For a proof of Lemma 3.2.8 along similar lines in a more general setting we
refer to Lemma 3.5.10 (see also Berthé and Delecroix [44, Theorem 5.7]; a proof
using balance, which also gives irrationality of the frequencies, is contained in [82,
Proposition 6.1.10]).

In the same way as for letters, we can define uniform frequencies for factors of an
infinite sequence w ∈ {1, 2}N. Let w be a Sturmian sequence with coding sequence
(σin ). The sequence is the shifted image of another Sturmian sequence under an
arbitrary large block σi[0,n)

of substitutions. This enables one to show that for the
words σi[0,n)

(a) there exist uniform frequencies in w. Since (in) changes its value
infinitely often, the length of the words σi[0,n)

(a) tends to infinity for each letter a

if n →∞. Using this fact one can prove the following result along similar lines as
Lemma 3.2.8 (for details we refer to the proof of Lemma 3.5.10 below; see also [44,
Theorem 5.7]).

Lemma 3.2.9 Let w = w0w1 . . . ∈ {1, 2}N be a Sturmian sequence with coding
sequence (σin ) whose associated sequence of incidence matrices (Min) has a gen-
eralized right eigenvector u. Let v ∈ {1, 2}∗ be given, and let |wkwk+1 . . . wk+�−1|v
be the number of occurrences of the factor v in the factor wkwk+1 . . . wk+�−1 of w.
Then |wkwk+1 . . . wk+�−1|v/� tends to a limit fv(w) for �→∞ uniformly in k.

We can associate a dynamical system with a Sturmian sequence w in a very
natural way. Let Xw = {Σkw : k ∈ N} be the closure of the shift orbit of w.
Alternatively, Xw can be viewed as the set of all sequences u whose language
L(u) (i.e., its set of factors) satisfies L(u) ⊆ L(w). Thus if σ = (σin ) is the
coding sequence of w, Proposition 3.2.7 implies that Xw contains all Sturmian
sequences with coding sequence σ . Since Xw is shift invariant the shift Σ acts on
Xw and the dynamical system (Xw,Σ) is well defined. We call (Xw,Σ) a Sturmian
system. From what we know about Sturmian sequences we can derive a number
of properties for these dynamical systems. The notions of minimality and unique
ergodicity of a dynamical system used in the following lemma are defined precisely
in Definitions 3.5.2 and 3.5.7, respectively.

Proposition 3.2.10 A Sturmian system (Xw,Σ) has the following properties.

(i) The system (Xw,Σ) is minimal.
(ii) The set Xw is the set of all Sturmian sequences having the same language.

(iii) The set Xw is the set of all Sturmian sequences having the same coding
sequence σ .

(iv) The system (Xw,Σ) is uniquely ergodic.
(v) We have Xw = Xw′ for any w′ ∈ Xw .

Proof Let (σin ) be the coding sequence of w with (Min) being the associated
sequence of matrices.

We start with (i). By Proposition 3.2.7 we may assume w.l.o.g. that w =
limn→∞ σi[0,n)

(1). Let v ∈ Xw be given. To prove minimality it suffices to show
that L(v) = L(w). Since L(v) ⊆ L(w) is true by definition we need to prove
the reverse inclusion. Let u ∈ L(w). By the definition of w and the primitivity
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of the sequence (Min) there is m ∈ N such that u occurs in σi[0,m)
(1). However,

there is a Sturmian word w(m) satisfying w = σi[0,m)
(w(m)). Since w(m) is balanced

by Proposition 3.2.4, the letter 1 occurs in w(m) with bounded gaps. This implies
that σi[0,m)

(1) and, hence, u occurs in w with bounded gaps. Thus u occurs in each
element of the orbit closure Xw of w, hence, also in v. Thus L(v) = L(w) is
established.

Since L(v) = L(w) holds for each v ∈ Xw according to the previous paragraph
we have pv(n) = pw(n) = n+ 1 for all n ∈ N, hence, v is Sturmian with the same
language as w. This proves (ii).

To prove (iii) we follow the proof of [82, Lemma 6.3.12]. Assume w.l.o.g. that the
elements of Xw are of type 1 and let u, u′ ∈ Xw . Then according to Lemma 3.2.6
there exist Sturmian words v, v′ such that u = σ1(v) or u = Σσ1(v) as well as
u′ = σ1(v

′) or u′ = Σσ1(v
′). We first prove that v, v′ belong to the same Sturmian

system. By (ii) we have to show that L(v) = L(v′). Suppose that x ∈ L(v). Since x

occurs infinitely often in v by recurrence, there is y ∈ L(v) starting with the letter
2 such that x is a subword of y. The word σ1(y) occurs in u and by (ii) it occurs
also in u′ and because σ1(y) begins with 2 and ends with 1 it can be desubstituted
in only one way by σ1, namely to y. This proves that y and, hence, also x occurs in
v′. Thus L(v) ⊆ L(v′). The other inclusion follows by interchanging the roles of v

and v′. Iterating this argument yields that u and u′ have the same coding sequence.
Thus all elements of Xw have the same coding sequence. As Sturmian sequences
with the same coding sequence have the same language by Proposition 3.2.7, Xw

contains all Sturmian sequences having the same coding sequence as w.
Item (iv) follows immediately by combining Lemma 3.2.9 with [82, Proposi-

tion 5.1.21] (see also Proposition 3.5.9 below) which states that the existence of
uniform word frequencies implies unique ergodicity. Alternatively, one can use
Boshernitzan [56].

Finally, (v) follows from (ii). �	
We emphasize on the fact that for minimality and unique ergodicity of (Xw,Σ)

the recurrence of w as well as the primitivity of the sequence (Min) is of importance.
This will be the same in the general case (see Sect. 3.5 below). In view of assertion
(iii) of the previous lemma we will write Xσ instead of Xw , where σ is the coding
sequence of w.

3.2.4 Sturmian Sequences Code Rotations

It was observed already by Morse and Hedlund [107] and Coven and Hedlund [67]
that each Sturmian sequence is a natural coding of a rotation by some irrational
number α. We now sketch a proof of this fact which goes back to Rauzy and in which
the multiplicative continued fraction expansion of α pops up when we represent such
a coding in an S-adic fashion. For proofs of this kind we refer to [13, 14, 46, 47]; a
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Fig. 3.3 Two iterations of
the irrational rotation Rα on
T which is subdivided into
the two intervals I1 and I2

x

x2

R x
0

I1

I2
R

different, combinatorial proof along the lines of the original proof by Morse, Coven,
and Hedlund is presented in [101, Theorem 2.1.13] and [6, Section 10.5].

Before we give the main result of this section we provide some definitions. Let
T be the 1-torus, i.e., the unit interval [0, 1] with its end points glued together. A
rotation or translation on T by a real number α is a mapping Rα : T → T with
x 
→ x + α (mod 1). If α �∈ Q this gives a minimal dynamical system. Moreover,
observe that Rα can be regarded as a two interval exchange of the intervals I1 =
[0, 1−α) and I2 = [1−α, 1) or of the intervals I ′1 = (0, 1−α] and I ′2 = (1−α, 1],
see Fig. 3.3. We say that a sequence w = w0w1 . . . ∈ {1, 2}N is a natural coding of
Rα if there is x ∈ T such that Rk

α(x) ∈ Iwk for each k ∈ N or Rk
α(x) ∈ I ′wk

for each
k ∈ N.

Theorem 3.2.11 A sequence w ∈ {1, 2}N is Sturmian if and only if there exists
α ∈ R \Q such that w is a natural coding of the rotation Rα.

The sufficiency part of the theorem is easy. Indeed, it just follows from the
observation that

v0 . . . vn−1 is a factor of a natural coding of Rα ⇐⇒
n−1⋂

k=0

R−k
α Ivk �= ∅,

(3.16)

whose proof is an easy exercise (see [46, Lemma 2.7]).
The proof of the necessity part of Theorem 3.2.11 needs more work and we will

see that the classical continued fraction algorithm pops up along the way without
being presupposed. We need the following key lemma.

Lemma 3.2.12 For α ∈ (0, 1) irrational let u be the coding of the point 1 −
α/(α + 1) under the irrational rotation Rα/(α+1). Then there is a sequence (σin )

of substitutions such that

u = lim
n→∞ σi0 ◦ · · · ◦ σin(2).
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The sequence (in) ∈ {1, 2}N is of the form 1a02a11a22a3 . . . where the sequence
[a0, a1, a2, a3, . . .] is the continued fraction expansion of α. For α > 1 a similar
result with switched symbols holds.

Proof We assume α < 1 (α > 1 can be treated in a similar way). For computational
reasons consider the rotation R by α on the interval J = [−1, α) with the partition
P1 = [−1, 0) and P2 = [0, α). The natural coding u of 1− α/(α + 1) by Rα/(α+1)

is the natural coding of 0 by R. Let R′ be the first return map of R to the interval

J ′ =
[

α
⌊ 1

α

⌋− 1, α
)

. Let v be a coding of the orbit of 0 for R′. As can be seen from

Fig. 3.4, after each occurrence of 2 in u we leave the interval J ′ and there follows

a block of 1s of length
⌊

1
α

⌋

before we enter the interval J ′ again. Thus v emerges

from u by removing such a block of 1s after each letter 2 occurring in u. By the
definition of σ1 this just means that u = σ

�1/α�
1 (v). We can now renormalize the

interval J ′ by dividing it by −α and, as illustrated in Fig. 3.4, then R′ is conjugate

to a rotation (called R′ again) by
{

1
α

}

on the interval
(

− 1,
{ 1

α

}]

, where v is the

natural coding of the partition P ′2 = (−1, 0] and P ′1 =
(

0,
{ 1

α

}]

. Note that the

Gauss map α 
→
{

1
α

}

from (3.12) comes up here without being presupposed. Since

we are in the same setting as before (just with the letters 1 and 2 interchanged), we

P2P1

0R 0 R2 R R'3

1 1
1

0 R'

1 1 1

P1P2 ''

0 0 0

0

Fig. 3.4 The rotation R′ induced by R
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can iterate this process and thereby obtain a sequence (u(n))n≥0 of natural codings
such that

u = u(0) and u(n) = σin(u
(n+1)) for n ≥ 0

for some sequence (σin ) with (in) ∈ {1, 2}N having infinitely many changes between
the letters 1 and 2. Arguing in the same way as in Sect. 3.2.1 we gain that

u = lim
n→∞ σi0 ◦ · · · ◦ σin(a)

where a = 2 is the first letter of u. The assertion on the continued fraction expansion
follows from the above proof as well. Just note that the interval we use has length
α + 1 so that the rotation by α on this interval is conjugate to Rα/(α+1). �	
Proof (Conclusion of the Proof of Theorem 3.2.11) The sufficiency assertion has
been treated in (3.16). The necessity part of the theorem can now be obtained as
follows. Let w be a Sturmian sequence. Consider its coding sequence (σin ) and
write (in) ∈ {1, 2}N as 1a02a11a22a3 . . . Then u = limn→∞ σi0 ◦ · · · ◦ σin(2) is a
natural coding of Rα/(1+α) where α = [a0, a1, a2, . . .]. By Proposition 3.2.7 the
sequence w has the same language as u and (3.16) together with an approximation
argument implies that w is a natural coding of Rα/(1+α) (it is easy to verify that there
are limit cases where we really need the intervals I ′1, I ′2 to define the natural coding
for w). �	

The fact that Sturmian sequences have irrational uniform letter frequencies is
an immediate consequence of Theorem 3.2.11. Moreover, we have the following
corollary of Theorem 3.2.11 for Sturmian systems.

Corollary 3.2.13 A Sturmian system (Xσ ,Σ,μ) is measurably conjugate to an
irrational rotation (T, Rα, λ). Here μ is the unique Σ-invariant measure on Xσ

and λ is the Haar measure on T.

Proof Let ϕ : Xσ → T be defined by ϕ(w0w1 . . .) = x if Rk
α(x) ∈ Iwk for each

k ∈ N or Rk
α(x) ∈ I ′wk

for each k ∈ N. Using Theorem 3.2.11 and the minimality of
Rα it is easy to check that this is well defined. Surjectivity of ϕ follows immediately
from Theorem 3.2.11. To investigate injectivity let u = u0u1 . . . and v = v0v1 . . .

be distinct elements of Xσ with ϕ(u) = ϕ(v). By the minimality of Rα this is only
possible if the orbit of ϕ(u) passes through 0 and u is naturally coded by I1, I2 while
v is naturally coded by I ′1, I ′2 (or vice versa).1 Since the set of such elements u and
v is countable, ϕ is bijective everywhere save for a countable set. Moreover, ϕ is
easily seen to be continuous and ϕ ◦Σ = Rα ◦ ϕ holds by the definition of ϕ. This
implies the result. �	

1This implies that u and v have Σx and Σy in their orbit where x and y are the two limit sequences
of σ . This interesting fact, which is not needed in this proof, should be proved by the reader.
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We illustrate the concepts of this section by a classical example.

Example 3.2.14 (A Variant of the Fibonacci Sequence) Let σ be given by

σ = σ1 ◦ σ2 :
{

1 
→ 121,

2 
→ 21.

This is a reordering of the square of the well-known Fibonacci substitution (which
is defined by 1 
→ 12, 2 
→ 1; see for instance in [82, Section 1.2.1]). Consider the
coding sequence σ = (σ ). In this case the associated limit sequences are “purely
substitutive”. One of the two limit sequences is

w = lim
n→∞ σn(2) = 21121121211211212112121121121 . . .

Since only one substitution plays a role here, the associated “S-adic” system

(Xσ ,Σ) is called a substitutive system. Let ϕ = 1+√5
2 . By the Perron-Frobenius

theorem the generalized right eigenvector u of the sequence of incidence matrices
M of σ is the eigenvector (ϕ, 1)t corresponding to the dominant eigenvalue ϕ2 of
the incidence matrix of σ . Let L be the eigenline defined by this eigenvector. Being
a Sturmian sequence, w is balanced by Proposition 3.2.4 and has uniform letter
frequencies (f1(w), f2(w))t = 1

1+ϕ
(ϕ, 1)t by Lemma 3.2.8. This is reflected by the

fact that the “broken line”

B = {l(p) : p is a prefix of w} (3.17)

associated with the sequence w stays at bounded distance from the eigenline L (see
Fig. 3.5).

Because w = limn→∞ σn(2) = limn→∞(σ1 ◦ σ2)
n(2), it has coding sequence

σ1, σ2, σ1, σ2, . . . Since the “run lengths” of σi in this sequence are always equal
to 1 we set α = [1, 1, 1, . . .] = ϕ−1 and, hence, α/(α + 1) = ϕ−2. Thus from
Theorem 3.2.11 and its proof we see that w is a natural coding of the rotation by ϕ−2

of the point 1−α/(α+1) = ϕ−1 ∈ [0, 1) with respect to the partition I1 = [0, ϕ−1),
I2 = [ϕ−1, 1) (or the according partition I ′1, I ′2) of [0, 1). This gives us an easy way
to construct w (and the broken line B). Indeed, start at the origin, write out 2 and go
up to the lattice point (0, 1)t . After that, inductively proceed as follows: whenever
the current lattice point is above L, write out 1 and go right to the next lattice point
by adding the vector (1, 0)t and whenever the current lattice point is below L, write
out 2 and go up to the next lattice point by adding the vector (0, 1)t .2

Let π be the projection along L to the line L⊥ orthogonal to L. If we project all
points on the broken line and take the closure of the image, due to the irrationality

2We could also have started with writing out 1 and going to the right from the origin. This would
have produced the second limit sequence of (σ ) which coincides with w save for the first two
letters.
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2

1 1

2

1 1

2

1

2

1 1

L

R

Fig. 3.5 The broken line and its projection to the Rauzy fractal

of u we obtain the interval

Ru = {π l(p) : p is a prefix of w}

on L⊥ (the subscript u indicates that Ru lives in the space L⊥ = u⊥ orthogonal to
u which is an arbitrary choice; other choices will play a roll in subsequent sections).
We color the part of the interval for which we write out 1 at the associated lattice
point light grey, the other part dark grey. This subdivides the interval Ru into two
subintervals Ru(1) and Ru(2), where

Ru(i) = {π l(p) : pi is a prefix of w} (i = 1, 2).

Moreover, we see that moving a step along the broken line amounts to exchanging
these two intervals in the projection: points in Ru(1) are moved downwards by a
fixed vector, while points in Ru(2) are moved upwards by a fixed vector.

Thus passing along the broken line each step amounts to exchanging the intervals
Ru(1) and Ru(2) in the projection. If we identify the end points of Ru this interval
exchange becomes a rotation. This is the rotation which is coded by the Sturmian
sequence w. The union Ru = Ru(1)∪Ru(2) is called the Rauzy fractal associated
with the substitution σ (or with the sequence σ = (σ )). The reason why we speak
about fractals here will become apparent in Sect. 3.6.1 when we define the analogs
of Ru in a more general setting.

Suppose we would be given an arbitrary sequence w ∈ {1, 2}N with letter
frequency vector u whose broken line stays within bounded distance of the line
L = R+u. Then we could draw a similar picture as in Fig. 3.5. However, although
the projection π would project the vertices of the associated broken line to a
bounded set, there is no reason for its closure Ru to be an interval. Also, if we
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use two colors as in the example above, it may well happen that the two sets Ru(1)

and Ru(2) have considerable overlap. This bad behavior prevents us from seeing a
rotation in the projections.

Making sure that the closure of the projection of the broken line behaves
topologically well and allows a partition whose atoms are essentially different will
be our main concern when we establish a theory of S-adic sequences that are codings
of rotations on higher dimensional tori in the subsequent sections and, hence, give
rise to dynamical systems that are measurably conjugate to torus rotations.

3.2.5 Natural Extensions and the Geodesic Flow
on SL2(Z) \ SL2(R)

In this section we talk about natural extensions of the Gauss map and of the coding
map of Sturmian sequences by substitutions. Moreover, we show how to relate these
natural extensions to the geodesic flow on the space SL2(Z)\SL2(R) of unimodular
two-dimensional lattices.

So far we could relate Sturmian sequences to rotations on the circle by using
the classical continued fraction algorithm. In our discussion we coded a Sturmian
sequence w by a sequence of substitutions (σin ) as

w = lim
k→∞ σ

a0
1 ◦ σ

a1
2 ◦ σ

a2
1 ◦ · · · ◦ σ

a2k

1 (a)

(see (3.4)). In the induction process used in the proof of Theorem 3.2.11 we recoded
w by a “desubstitution” process. If we look at the first step of this process we
produce the sequence

u = lim
k→∞ σ

a1
2 ◦ σ

a2
1 ◦ · · · ◦ σ

a2k

1 (a).

However, the mapping w 
→ u cannot be inverted since it is not possible to
reconstruct a0 from u. Similarly, the Gauss map g cannot be inverted since
g([a0, a1, . . .]) = [a1, a2, . . .], and a0 cannot be reconstructed from the image
[a1, a2, . . .].

In this section we want to make both of these mappings bijective by constructing
a geometric model for their natural extensions (in the sense of Rohlin [116]). To
this matter we look again at the induction used in Lemma 3.2.12 which is visualized
once more in Fig. 3.6a. In this figure we see why this induction process cannot
be reversed: the intervals [R(0), R2(0)) and [R2(0), R3(0)) get lost during the
induction process and cannot be reconstructed.

A first idea on how to mend this is indicated in Fig. 3.6b: one could “stack” the
lost intervals on the larger interval of the induced rotation. This would keep the
information of the last induction step. However, acting in this way we can go back
at most to the setting from which we started but not farther to the “past”.
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(a)

(b)

Fig. 3.6 (a) Induction without restacking loses some part of the information. The intervals
[R(0), R2(0)) and [R2(0), R3(0)) depicted in light gray are no longer present in the induced
rotation. (b) Induction together with restacking the intervals keeps all the information. The light
gray intervals [R(0), R2(0)) and [R2(0), R3(0)) are stacked on the longer interval of the induced
rotation

To make the induction process bijective, it is more convenient to build rectangular
boxes above the intervals as indicated in Fig. 3.7 (this approach is extensively
exploited in Arnoux and Fisher [14]; we follow here [82, Section 6.6]). The lengths
of the boxes are given by the intervals on which the induction process starts: one
box is of length 1, the other one has length α for some α ∈ (0, 1) \Q. The heights
are chosen in a way that the longer rectangle is also the higher one and that the
total area of the two rectangles is equal to one. The induction process can now be
performed on the rectangles as indicated in Fig. 3.7: let a × d be the size of the left
rectangle and b × c the size of the right one. Slice the larger rectangle by vertical
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restack renormalize

Fig. 3.7 Step 1: restack the boxes. Step 2: renormalize in a way that the larger box has length 1
again

cuts into pieces of lengths equal to b until a slice of length less than b remains. Then
stack all slices of length b on the smaller rectangle. The result can be seen in the
middle of Fig. 3.7. After that renormalize the resulting pair of rectangles (as we did
in the induction process on the intervals) by making it “thinner” and “longer” in a
way that the length of the larger rectangle is equal to 1 again and the area of the
whole region remains 1.

Call the resulting mapping on the rectangles Ψ . A priori, the mapping Ψ is a
mapping from a subset of R4 to a subset of R4. However, since ad + bc = 1 and
max{a, b} = 1, we can eliminate two coordinates and we are left with a mapping in
two variables.

We make this precise in the following definition.

Definition 3.2.15 (Natural Extension of the Gauss Map, see [14]) Let Δm be the
set of pairs (a × d, b × c) of rectangles of total area 1 such that the widest one is
the highest one (i.e., a > b ⇔ d > c) and such that the width of the widest one
is equal to 1 (i.e., max{a, b} = 1). Let Δm,0 be the subset of Δm with a = 1, and
Δm,1 the subset of Δm with b = 1.

The mapping Ψ is defined on Δm,1 as

(a, d) 
→
({ 1

a

}

, a − da2
)

,

and similarly on Δm,0. It is called the natural extension of the Gauss map (which is
seen in the first coordinate).

Remark 3.2.16 The subscript “m” stands for multiplicative since we work here
with the multiplicative version of the classical continued fraction algorithm defined
by the Gauss map. An analogous theory exists for the additive algorithm as well,
see [14].

The mapping Ψ is bijective as becomes clear from its geometric interpretation.
Moreover, it is easy to show that Ψ preserves the Lebesgue measure. By integrating
away the second coordinate one can show that the invariant measure of the Gauss
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map is dx
ln 2(1+x)

(see e.g. [76, Chapter 3]). We mention that another natural extension
of the Gauss map defined on the unit square is provided in [108].

We can also see Sturmian sequences in the rectangular boxes. To this end note
first that a pair of boxes a × d and b × c is a fundamental domain of the lattice
spanned by the vectors (a, c)t and (−b, d)t . This is illustrated in Fig. 3.8 and has
the consequence that the “L-shaped” region formed by this pair of boxes can be used
to tile the plane with respect to this lattice as indicated in Fig. 3.9.

Let us mark a point in this tiling. If we start from this point and move upwards
and write out 1 whenever we pass through a large rectangle, and 2, whenever we pass
through a small one, we get the coding u of a rotation by α on the interval (−1, α)

which, by Theorem 3.2.11, is a Sturmian sequence. This is indicated in Fig. 3.9. In
the same way we can produce a Sturmian sequence v by moving horizontally.

If we restack each of the fundamental domains, according to the procedure
described above, we get a new fundamental domain (indicated by the shaded region
in Fig. 3.9). We now code the same vertical line using this restacked region. Doing
this we obtain another Sturmian sequence u(1) which, by the definition of the
restacking process, satisfies u = σ(u(1)), where σ is the substitution defining the
induction process as in the proof of Lemma 3.2.12. On the other hand, looking at the

Fig. 3.8 A pair of boxes is a
fundamental domain of a
lattice

b
d

a
c

Fig. 3.9 The vertical line is
coded by a Sturmian
sequence u, the horizontal
line by a Sturmian sequence
v. The restacking procedure
desubstitutes u and
substitutes v. The shaded
region is a restacked
fundamental domain

u

v
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horizontal line we get v(−1) = σ(v) as the new coding. Thus the restacking process
corresponds to the mapping

(u, v) 
→ (u(1), v(−1)).

As mentioned at the beginning of this section, we cannot reconstruct u from u(1),
however we can reconstruct (u, v) from (u(1), v(−1)) since the type of the Sturmian
sequence v(−1) tells us (which power of) which of the two substitutions σ1, σ2 from
(3.1) we have to use to get back. This makes the coding process bijective as well.
We could mark the pair of rectangles discussed above by a point (x, y) and look at
the itinerary of this point under the restacking process. This would give an extension
Ψ̃ of the mapping Ψ that is defined on the T2-fibers over Δm (see [14]).

The following remark is of particular importance.

Remark 3.2.17 Regardless of the point in the “L-shaped” region in which we start,
the “vertical” Sturmian sequence will always be contained in the same Sturmian
system. Thus we can say that the “L-shaped” pairs of rectangles parametrize the
Sturmian systems (which are characterized by their coding sequence according to
Proposition 3.2.10(iii)), while the (x-coordinates of the) points in a given region
parametrize the sequences contained in this system. The same is true for the
“vertical” Sturmian sequence w.r.t. the y-coordinates.

We also mention that the vertical line producing the coding u can also be
extended downwards. This yields a sequence ũ ∈ AZ as a coding. Such a sequence
is an example of a bi-infinite Sturmian sequence (the same can be done in the
horizontal direction). Bi-infinite Sturmian sequences are studied for instance in [82,
Section 6.2]. It turns out that some of their properties are nicer than in our one-sided
case since one no longer has troubles coming from “the beginning” of the sequences.

Artin [26] observed that the continued fraction algorithm can be viewed as a
Poincaré section of the geodesic flow on the unit tangent bundle SL2(Z) \ SL2(R)

of the modular surface SL2(Z) \ H. In the meantime this correspondence between
the continued fraction algorithm and the geodesic flow was studied by many
authors (see e.g. Series [121]) and discussed in connection with our setting by
Arnoux [10] and later by Arnoux and Fisher [14]. The necessary details on the
modular surface and its unit tangent bundle including an explanation why the flow
diag(et , e−t ) which will come up below is a geodesic flow on the homogeneous
space SL2(Z) \ SL2(R) can be found for instance in [10] or [76, Chapter 9].

We now explain briefly how the geodesic flow on SL2(Z) \ SL2(R) enters our
model. We have to restack the rectangles as above and then renormalize the lattice
again. This can be done also in the following way. First multiply the basis of the
lattice from the right by diag(et , e−t ) for t varying from 0 to the threshold value for
which the width of the smallest rectangle equals 1. Then restack as above to end
up at a pair of rectangles whose larger rectangle has width 1. Altogether, starting
from a pair of rectangles drawn on the left hand side of Fig. 3.7 we ended up with a
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pair drawn on its right side. We just did the renormalization smoothly and we did it
before the restacking instead of after it.

What we do can be explained more precisely as follows:

• Define the set

Ωm =Ωm,0 ∪Ωm,1

=
{

M =
(

a c

−b d

)

: 0 < a < 1 ≤ c, 0 < d < b, ad + bc = 1

}

∪
{

M =
(

a c

−b d

)

: 0 < c < 1 ≤ a, 0 < b < d, ad + bc = 1

}

.

One can show that a.e. lattice has exactly one basis made of row vectors of a
matrix in Ωm (see [10]). Thus Ωm is a (measure theoretic) fundamental domain
for the action of SL2(Z) on SL2(R).

• Start with a lattice, associate with it a basis taken from Ωm.
• Hit this lattice (together with the chosen basis) with the geodesic flow

diag(et , e−t ), t ≥ 0.
• For increasing t this will eventually deform the basis in a way that the width

of the smaller rectangle gets equal to 1 (and we would leave Ωm when
deforming this basis further). If we restack at this point we end up with a pair
of rectangles contained in the Poincaré section Δm: indeed, after restacking the
larger rectangle will have width 1.

• Change the basis of the lattice to the basis corresponding to the new pair of
rectangles according to Fig. 3.8. Note that restacking does not change the lattice,
so the geodesic flow, which acts on SL2(Z) \SL2(R), is not affected by this base
change. However, this restacking has the effect that it creates a new basis of the
lattice that remains inside Ωm when it gets further deformed by the action of the
flow. Thus we can repeat the procedure.

• Repeating this procedure, the geodesic flow yields a sequence of restackings:
any time the width of the smaller rectangle gets equal to 1 by restacking, the
according basis gets inside the Poincaré section Δm. This restacking performs
one step of the natural extension of the Gauss map.

• Thus the geodesic flow on SL2(Z) \ SL2(R) can be regarded as a so-called
suspension flow of the natural extension of the Gauss map.

This viewpoint has many advantages and one can prove results on continued
fractions using the well-developed theory of the geodesic flow on SL2(Z)\SL2(R).

The same procedure can also be performed for pointed pairs of rectangles (which
we needed to study Sturmian sequences, see Fig. 3.9). This has the effect that the
geodesic flow on SL2(Z) \ SL2(R) has to be replaced by the so-called scenery flow
which also takes care of the distinguished point in the “L-shaped” region. All this is
described in detail in [14].
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We mention that similar results have been obtained for variants of the classical
continued fraction algorithm. For instance, Arnoux and Schmidt [23, 24] proved
that the α-continued fraction algorithm, Rosen’s continued fraction algorithm as
well as Veech’s continued fraction algorithm can be viewed as Poincaré sections of
a geodesic flow. The material presented in this section also forms an easy case of the
wide and appealing field of interval exchange transformations and their dynamics
(see e.g. Viana [125] for a survey).

3.3 Problems with the Generalization to Higher Dimensions

According to Cassaigne et al. [63] it was conjectured since the beginning of the
1990s that the beautiful correspondence between Sturmian sequences, continued
fractions, and irrational rotations on the circle described in Sect. 3.2 can be
extended to higher dimensions. The same paper gives strong indications towards
the wrongness of this conjecture. Indeed, in [63] Arnoux-Rauzy sequences over
a three letter alphabet that are not balanced and that cannot be viewed as natural
codings of rotations on the two dimensional torus with finite fundamental domain
are constructed. It is the objective of the present section to explain their work and
to give an account on further results by Cassaigne et al. [62] concerning weakly
mixing Arnoux-Rauzy systems as well as Arnoux-Rauzy systems with nontrivial
eigenvalues.

3.3.1 Arnoux-Rauzy Sequences

In an attempt to pave the way for a generalization to higher dimensions of
the correspondence between combinatorics, arithmetics, and dynamical systems
outlined in Sect. 3.2, Arnoux and Rauzy [22] defined sequences over the alphabet
{1, 2, 3} whose properties are inspired by Sturmian sequences.

In the following definition a right special factor of a sequence w ∈ {1, 2, 3}N is
a factor v of w for which there are distinct letters a, b ∈ {1, 2, 3} such that va and
vb both occur in w. A left special factor is defined analogously. The definition of
several other objects and notations from Sect. 3.2 carry over from two to three letter
alphabets without any change and we will use them without defining them again
(we will give exact definitions for the general setting from Sect. 3.4 onwards).

Definition 3.3.1 (Arnoux-Rauzy Sequence, see [22]) A sequence w ∈ {1, 2, 3}N
is called Arnoux-Rauzy sequence if pw(n) = 2n + 1 and if w has only one right
special factor and only one left special factor for each given length n.

Let w be an Arnoux-Rauzy sequence. Let (Γn) be a sequence of directed graphs
defined in the following way. For each n ∈ N the vertices of Γn are the factors of
length n of w. There is a directed edge from u to v if and only if there are letters
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a, b ∈ {1, 2, 3} and a word x ∈ {1, 2, 3}∗ such that u = ax and v = xb. Inspecting
these graphs we see that two cases can occur. If the left special factor v of length n

is also the right special factor then Γn is a bouquet of three circles whose common
vertex is v, otherwise it is a union of three circles that share the line between the
vertices corresponding to the right and left special factor. An investigation of these
graphs (as done in [22, Section 2]) shows that Arnoux-Rauzy sequences are “S-adic”
and we get the following analog of Proposition 3.2.7.

Proposition 3.3.2 (See [22, Section 2]) Let the Arnoux-Rauzy substitutions
σ1, σ2, σ3 be defined by

σ1 :

⎧

⎪⎪⎨

⎪⎪⎩

1 
→ 1,

2 
→ 12,

3 
→ 13,

σ2 :

⎧

⎪⎪⎨

⎪⎪⎩

1 
→ 21,

2 
→ 2,

3 
→ 23,

σ3 :

⎧

⎪⎪⎨

⎪⎪⎩

1 
→ 31,

2 
→ 32,

3 
→ 3.

(3.18)

Then for each Arnoux-Rauzy sequence w there exists a sequence σ = (σin ), where
(in) takes each symbol in {1, 2, 3} an infinite number of times, such that w has the
same language as

u = lim
n→∞ σi0 ◦ σi1 ◦ · · · ◦ σin (1). (3.19)

By this proposition each Arnoux-Rauzy sequence w has a coding sequence σ of
Arnoux-Rauzy substitutions and we may define the dynamical system (Xw,Σ) =
(Xσ ,Σ) as the dynamical system associated with w, where Xw = Xσ is the set of
sequences whose language equals the language of w and which just depends on σ .
These dynamical systems are called Arnoux-Rauzy systems.

Let w be an Arnoux-Rauzy sequence with coding sequence σ = (σin ) and
let (Min) be the associated sequence of incidence matrices. Since each symbol in
{1, 2, 3} occurs infinitely often in (in) the associated sequence of incidence matrices
(Min) is easily seen to be primitive in the sense that for each m ∈ N there is n > m

such that Mi[m,n)
is a positive matrix. Indeed, a block Mi[m,n)

is primitive if and only
if it contains each of the three matrices M1,M2,M3 at least once.

Lemma 3.3.3 Let w be an Arnoux-Rauzy sequence with coding sequence σ . Then
the dynamical system (Xσ ,Σ) is minimal and uniquely ergodic.

Proof Minimality follows if we can show that L(v) = L(w) for each v ∈ Xσ . This
in turn holds if each factor of w occurs infinitely often in w with bounded gaps,
which we will now prove. Let x be a factor of w. As w has the same language as the
sequence u in (3.19), by primitivity of (Min) there is m ∈ N such that x occurs in
σi[0,m)

(1). Using primitivity again we see that there exists n > m such that Mi[m,n)
is

a positive matrix. This entails that the word σi[m,n)
(b) contains 1 for any b ∈ {1, 2, 3}

and, hence, σi[0,n)
(b) contains σi[0,m)

(1) and, a fortiori, also x for each b ∈ {1, 2, 3}.
Thus x occurs in w infinitely often with gaps bounded by 2 max{|σi[0,n)

(b)| : b ∈
{1, 2, 3}}.
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Unique ergodicity of (Xσ ,Σ) can be derived from a general result of Bosher-
nitzan [56] due to the fact that (Xσ ,Σ) is minimal and its elements have linear
complexity with slope less than 3. �	

This proof implies that each Arnoux-Rauzy sequence is uniformly recurrent.
Generalizing an idea of Arnoux [9], in [22] it was shown that each Arnoux-Rauzy

sequence w can be viewed as a coding of a 6-interval exchange transformation (by
using sequences over an alphabet with only three letters!) and that each Arnoux-
Rauzy system can be represented by such a 6-interval exchange. In view of a
result by Katok [94] this implies that Arnoux-Rauzy systems cannot be mixing.
The incidence matrices of Arnoux-Rauzy substitutions can be used to define a
generalized continued fraction algorithm in the sense of Sect. 3.4.2 below. However,
this algorithm only works for vectors taken from a set of measure zero, the so-called
Rauzy gasket. For more on this interesting set we refer to [25, 29, 30, 69, 99].

Another interesting class of sequences of complexity 2n + 1 over the alphabet
{1, 2, 3} has been defined recently in [64] and is currently subject to intensive
investigation. Compared to Arnoux-Rauzy sequences it has the advantage that it
is defined in terms of only two substitutions and gives rise to a continued fraction
algorithm that works on a set of full measure.

3.3.2 Imbalanced Arnoux-Rauzy Sequences

To get the perfect analogy with the Sturmian case it would be desirable to represent
a given Arnoux-Rauzy sequence w as a natural coding of a rotation on the two-
dimensional torus T

2. In the seminal paper of Rauzy [114], this was achieved for
the sequence w = lim σn(1), where σ is the famous Tribonacci substitution defined
by

σ :

⎧

⎪⎪⎨

⎪⎪⎩

1 
→ 12,

2 
→ 13,

3 
→ 1.

(3.20)

Since σ 3 = σ1 ◦ σ2 ◦ σ3 the sequence w is an example of an Arnoux-Rauzy
sequence (with periodic coding sequence). Several years ago Barge, Štimac, and
Williams [37] as well as Berthé et al. [48] could generalize this result and proved
that each Arnoux-Rauzy sequence w with periodic coding sequence is a natural
coding of a rotation on T

2 (a weaker result in this direction is already contained in
[18]). A general theory for nonperiodic sequences was established only recently, see
Berthé et al. [52], and we will come back to this in later sections.

We recall that a sequence w = w0w1 . . . ∈ {1, 2, 3}N is a natural coding of a
rotation R on T

2 if there exists a fundamental domain Ω of T2 in R
2 together with

a partition Ω = Ω1 ∪Ω2 ∪Ω3 such that on each Ωi the map R′ induced on Ω by
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the rotation R acts as a translation by a vector ai ∈ R
2 and for some point x ∈ Ω

we have R′k(x) ∈ Ωwk for each k ∈ N (see also Definition 3.9.2).
An Arnoux-Rauzy sequence is not always a coding of a rotation on T

2 with
bounded fundamental domain. The reason for this is the lack of balance for some
particular instances of such sequences. Following Cassaigne et al. [63] we now
sketch the construction of an Arnoux-Rauzy sequence that is not balanced.

Let C ≥ 1 be an integer. Generalizing the notion of balance from Sect. 3.2.1
we say that a sequence w ∈ {1, 2, 3}N is C-balanced if each pair of factors (u, v)

of w having the same length satisfies
∣
∣|u|a − |v|a

∣
∣ ≤ C for each a ∈ {1, 2, 3}.

The following result implies that there is no uniform C that gives C-balance for
each Arnoux-Rauzy sequence. Here a substitution is called primitive if its incidence
matrix is primitive.

Lemma 3.3.4 (See [63, Proposition 2.2]) For each integer C ≥ 1 there is a finite
sequence of Arnoux-Rauzy substitutions σi1 , . . . , σik such that σ = σi1 ◦ · · · ◦ σik is
primitive and for each Arnoux-Rauzy sequence w the Arnoux-Rauzy sequence σ(w)

is not C-balanced.

Proof We prove by induction that for each n ≥ 2 there exist an, bn, cn ∈ N and a
primitive composition of Arnoux-Rauzy matrices σ (n) such that for each Arnoux-
Rauzy sequence w the sequence σ (n)(w) contains two factors u(n) and v(n) of equal
length with

⎛

⎝

|u(n)|i
|u(n)|j
|u(n)|k

⎞

⎠ =
⎛

⎝

an

bn + n

cn

⎞

⎠ and

⎛

⎝

|v(n)|i
|v(n)|j
|v(n)|k

⎞

⎠ =
⎛

⎝

an + 1
bn

cn + n− 1

⎞

⎠

for some choice i, j, k with {i, j, k} = {1, 2, 3}. This will prove the result because
∣
∣|u(n)|j − |v(n)|j

∣
∣ = n shows that σ (n)(w) is not (n− 1)-balanced.

For the induction start take n = 2 and σ (2) = σ1σ2 with u(2) = 212 and v(2) =
131.

To perform the induction step assume that the result is true for some n and let
u(n), v(n), an, bn, cn, i, j , k, and σ (n) be as above. Set σ (n+1) = σn

k ◦ σn
i ◦ σ (n).

We now construct u(n+1) and v(n+1). Let u be a nonempty factor of some Arnoux-
Rauzy sequence w. Then for each a ∈ {1, 2, 3} the word σa(u)a is a factor of σa(w)

which begins with a. If we define σ(a,+)(u) = σa(u)a and σ(a,−)(u) as the suffix
of σa(u) of length |σa(u)| − 1 (i.e., the first letter of σa(u) is canceled) we see that
u(n+1) = σn

(k,−)σ
n
(i,+)(vn) and v(n+1) = σn

(k,+)σ
n
(i,−)(vn) are factors of σ (n+1)(w).

Using the definition of σ(a,+) and σ(a,−) one can now check directly that

⎛

⎝

|u(n+1)|k
|u(n+1)|i
|u(n+1)|j

⎞

⎠ =
⎛

⎝

an+1

bn+1 + n+ 1
cn+1

⎞

⎠ and

⎛

⎝

|v(n+1)|k
|v(n+1)|i
|v(n+1)|j

⎞

⎠ =
⎛

⎝

an+1 + 1
bn+1

cn+1 + n

⎞

⎠ ,
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where

⎛

⎝

an+1

bn+1

cn+1

⎞

⎠ =
⎛

⎝

cn + n− 1+ n(an + n(bn + cn + n)+ bn)

an + n(bn + cn + n− 1)

bn

⎞

⎠ . �	

This lemma can even be sharpened in the following way.

Lemma 3.3.5 (See [63, Proposition 2.3]) For each integer C ≥ 1 and each
composition of Arnoux-Rauzy substitutions σ there exists a primitive composition
of Arnoux-Rauzy sequences σ ′ such that for each Arnoux-Rauzy sequence w the
Arnoux-Rauzy sequence σ ◦ σ ′(w) is not C-balanced.

The proof is technical and we do not provide it here. The idea is to use
Lemma 3.3.4 in order to choose σ ′ in a way that σ ′(w) is not K-balanced for each
Arnoux-Rauzy sequence w, where K , which depends on the incidence matrix of σ ,
is so large that even after the application of σ we cannot reach C-balance.

We are now able to establish the following result.

Theorem 3.3.6 (See [63, Theorem 2.4]) There exists an Arnoux-Rauzy sequence
which is not C-balanced for any C ≥ 1.

Proof By Lemma 3.3.5 one can construct primitive compositions of Arnoux-Rauzy
substitutions σ (1), . . . , σ (C) such that σ (1) ◦ · · · ◦ σ (C)(w) is not C-balanced for any
Arnoux-Rauzy sequence w. Thus u = limC→∞ σ (1) ◦ · · · ◦ σ (C)(w) is the desired
sequence. �	

Using this proposition we are able to establish the following result of [63] which
strongly indicates that an unconditional generalization of the theory presented in
Sect. 3.2 is not possible.

Corollary 3.3.7 (Cf. [63, Corollary 2.6]) There exists an Arnoux-Rauzy sequence
which is not a natural coding of a minimal rotation on the 2-torus with bounded
fundamental domain.

Proof By Theorem 3.3.6 there is an Arnoux-Rauzy sequence w which is not C-
balanced for any C > 0. Assume that w is a natural coding of a minimal rotation
on T

2 with bounded fundamental domain Ω . Each letter j ∈ {1, 2, 3} corresponds
to a translation aj on Ω and, hence, to each word u = u0 . . . un−1 ∈ {1, 2, 3}∗
there corresponds the translation au = ∑n−1

k=0 auk on Ω . Since Ω is bounded and
the rotation is minimal one easily checks that the vectors a1, a2, a3 satisfy R+a1 +
R+a2 + R+a3 = R

2. This implies that there exists a constant γ > 0 such that
two words u, v ∈ {1, 2, 3}∗ with

∣
∣|u|i − |v|i

∣
∣ ≥ C for some i ∈ {1, 2, 3} satisfy

‖au − av‖1 > γC.
Since w is not balanced there is a letter i ∈ {1, 2, 3} such that for each C > 0

there exist two factors u, v ∈ {1, 2, 3}∗ of w with
∣
∣|u|i − |v|i

∣
∣ ≥ C. Thus ‖au −

av‖1 > γC. Since C can be arbitrarily large, this difference can be made arbitrarily
large. Thus one of the two vectors au, av can be made arbitrarily large. Assume
w.l.o.g. that this is au. Since there is an element x ∈ Ω with x + au ∈ Ω , the
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diameter of Ω is bounded from below by the length of au. This contradicts the
boundedness of the fundamental domain Ω . �	
Remark 3.3.8 We mention that in [63, Corollary 2.6] it is claimed that Corol-
lary 3.3.7 is true without assuming that the fundamental domain is bounded.
However, we were not able to verify this proof.

3.3.3 Weak Mixing and the Existence of Eigenvalues

In Cassaigne et al. [62] the authors give a criterion for weak mixing for some class
of Arnoux-Rauzy systems. On the other hand they provide a class of Arnoux-Rauzy
systems that admit nontrivial eigenvalues. Before we give the details, we recall the
required terminology from ergodic theory (good references here are for instance
Einsiedler and Ward [76] or Walters [126]; we also mention Halmos [85] where
some concepts are illustrated in an intuitive way).

Let (X, T ,μ) be a dynamical system with invariant measure μ. We say that a
complex number λ is a measurable eigenvalue of T if there exists f ∈ L1(μ),
f �= 0, such that f (T x) = λf (x) for μ-almost every x. Such an f is called an
eigenfunction for λ. For topological dynamical systems the notion of topological
eigenvalue is defined analogously by using continuous eigenfunctions instead of
functions from L1(μ).

The transformation T is called weakly mixing if for each A,B ⊂ X of positive
measure we have

lim
n→∞

1

n

∑

0≤k<n

|μ(T −k(A) ∩ B)− μ(A)μ(B)| = 0.

Weak mixing is equivalent to the fact that 1 is the only measurable eigenvalue of T

and the only eigenfunctions are constants (in this case the dynamical system is said
to have continuous spectrum). We note that rotations are never weakly mixing. They
have pure discrete spectrum (with will be defined in Definition 3.9.1), meaning that
they have “a lot of eigenfunctions” and therefore they have a completely different
dynamical behavior. Indeed, from the definition of weak mixing we see that iterated
preimages of each set tend to “smear” (or mix) over the whole space, this is of course
not the case for the iterated preimages of a rotation.

We now come back to the aim of this section and discuss mixing properties of
Arnoux-Rauzy systems. Let

u = lim
n→∞ σ

k1
i1
◦ σ

k2
i2
◦ · · · ◦ σ

kn

in
(1)

with in �= in+1 be an Arnoux-Rauzy sequence. We define (n�) to be the sequence of
indices n for which in �= in+2. The sequence u is uniquely defined by the sequences
(kn) and (n�) (up to permutation of letters). The following result shows a result on
weak mixing Arnoux-Rauzy systems for large partial quotients (kn).
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Theorem 3.3.9 (See [62, Theorem 2]) For an Arnoux-Rauzy sequence w with
coding sequence σ and associated sequences (kn) and (n�) the system (Xσ ,Σ,μ)

(with μ being the unique invariant measure) is weakly mixing if the sequence
(kn�+2)�∈N is unbounded and the sums

∑

�≥1
1

kn�+1
and
∑

�≥1
1

kn�
converge.

This implies that (Xσ ,Σ,μ) is not measurably conjugate to a rotation on T
2.

The proof of this result is quite involved. In fact, to get weak mixing, by
definition one has to show that there exists no measurable eigenvalue apart from
1 for the system (Xσ ,Σ,μ). This is achieved by verifying the following criterion
(see [62, Proposition 10]): if ϑ is a measurable eigenvalue of (Xσ ,Σ,μ), then
kn+1{hnϑ} → 0 for n → ∞. Here hn is the length of σ

k1
i1
◦ · · · ◦ σ

kn

in
(1). This

criterion is proved using a sequence of nested Rohlin towers which are naturally
built using the coding sequence σ . As mentioned above, because an Arnoux-Rauzy
system can be represented by a 6-interval exchange, it cannot be mixing in view of
Katok [94].

To give this section a good end we mention that [62] also contains results that
support the hope that at least something along the lines of Sect. 3.2 can be done in
higher dimensions. Indeed, the authors are able to exhibit criteria for the existence of
nontrivial continuous eigenvalues (not equal to 1) for Arnoux-Rauzy systems which
implies that these systems have a rotation as a continuous factor. The novelty here is
the fact that these systems still have unbounded partial quotients (kn). For bounded
partial quotients criteria for the existence of continuous and measurable eigenvalues
are provided in the more general setting of linear recurrent minimal Cantor systems
in Cortez et al. [66].

It will be our concern in the subsequent sections to exhibit S-adic sequences that
are even measurable conjugates of rotations on tori of dimension greater than or
equal to two.

3.4 The General Setting

So far we have seen some elements of the correspondence between Sturmian
sequences, the classical continued fraction algorithm, and rotations on the circle.
We have also reviewed some results that highlight the problems and limitations of
a generalization of this nice interplay between several branches of mathematics to
higher dimensions. Nevertheless, we are able to set up a quite general extension
of the results contained in Sect. 3.2. Indeed, in the subsequent sections of this
chapter we will relate sequences generated by substitutions on alphabets over d

letters to generalized continued fraction algorithms and to rotations on the (d − 1)-
dimensional torus. From this point on we will give exact definitions of all objects we
use. This may seem redundant as some objects have already been introduced before
but as the subject is quite difficult and a variety of concepts and notations is needed
along the way we found it better for the reader to do it that way.
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3.4.1 S-adic Sequences

We now define so-called S-adic sequences which form analogs of sequences of the
form (3.2) and (3.19) for arbitrary “coding sequences” of substitutions over a fixed
finite alphabet. To this end we need some notation.

Let A = {1, 2, . . . , d} be a finite alphabet whose elements will be called
letters or symbols. Define A∗ to be the free monoid generated by A equipped
with the operation of concatenation. The elements of A∗, which are of the form
v = v0v1 . . . vn−1 with n ∈ N and vi ∈ A for i ∈ {0, 1, . . . , n − 1}, will be
referred to as words. The integer n, which is equal to the number of letters in the
word v, is called the length of v and will be denoted by |v|. The unique word of
length 0 is called the empty word. Let AN be the space of right infinite sequences
w = w0w1 . . . with wi ∈ A for each i ∈ N. We equip AN with the product topology
of the discrete topology on A. To a sequence w = w0w1 . . . ∈ AN we associate a
function pw : N→ N which is defined by

n 
→ |{v ∈ A∗ : v = wkwk+1 . . . wk+n−1 for some k ∈ N}|.

The function pw is called the complexity function of the sequence w. For more on
this function we refer for instance to Cassaigne and Nicolas [65].

A substitution σ over the alphabet A is an endomorphism on A∗ that in our
setting will always assumed to be nonerasing in the sense that the image of each
letter is a nonempty word taken from A∗. Being a morphism, a substitution is
completely defined by giving its image for each letter. Thus our previous examples
of Sturmian substitutions in (3.1) and of Arnoux-Rauzy substitutions in (3.18) are
indeed substitutions. We can extend the domain of a substitution σ to AN in a natural
way by defining it symbol-wise, i.e., by setting σ(w0w1 . . .) = σ(w0)σ (w1) . . . The
mapping σ defined in this way is continuous on AN.

With each substitution σ over the alphabetA we associate the |A|×|A| incidence
matrix Mσ whose columns are the abelianized images of σ(i) for i ∈ A. More
precisely, letting |v|i be the number of occurrences of a given letter i ∈ A in a word
v ∈ A∗ this matrix is given by Mσ = (mij ) = (|σ(j)|i ). The incidence matrix can
be seen as the abelianized version of σ . If we define the abelianization mapping
l : A∗ → N

d by l(w) = (|w|1, . . . , |w|d)t (here xt is the transpose of a vector
x ∈ R

d ) we have the commutative diagram

A∗ σ A∗

l l

N
d Mσ

N
d (3.21)

which says that lσ(w) = Mσ l(w) holds for each w ∈ A∗.
We will be interested in special classes of substitutions. Let σ be a substitution.

Then σ is called unimodular if | det Mσ | = 1, it is called primitive if Mσ is a
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primitive matrix (i.e., Mσ has a power each of whose entries is greater than zero), it
is called irreducible if Mσ has irreducible characteristic polynomial, and it is called
Pisot if the characteristic polynomial of Mσ is the minimal polynomial of a Pisot
number. We recall that a Pisot number is an algebraic integer β > 1 whose Galois
conjugates (apart from β itself) are all smaller than 1 in modulus.

In full generality substitutions are studied for instance in [6, 40, 87] and, in a
context related to the present chapter, in [82].

We will now define the analogs of the “coding sequences” used in Sects. 3.2
and 3.3 for a more general setting. We go in the reverse direction: in the mentioned
earlier sections the sequence (of letters) was there first and we constructed a
sequence of substitutions that generates this sequence. Now we start with a sequence
of substitutions in order to define a sequence of letters.

Let σ = (σn)n∈N be a sequence of substitutions over a given finite alphabet A.
For convenience, we will set Mn = Mσn for the incidence matrix of σn and write
M = (Mn) for the sequence of these incidence matrices. Moreover, as we will often
need blocks of substitutions as well as blocks of matrices we set

σ[m,n) = σm ◦ σm+1 ◦ · · · ◦ σn−1 and M[m,n) = MmMm+1 · · ·Mn−1

for positive integers m ≤ n (here we set σ[n,n)(a) = a for all a ∈ A and define
M[n,n) to be the |A| × |A| identity matrix).

We associate with σ a sequence of languages, for all m ∈ N,

L(m)
σ = {v ∈ A∗ : v is a factor of σ[m,n)(a) for some a ∈ A, m ≤ n}

and call Lσ = L(0)
σ the language of σ . Here u ∈ A∗ is a factor of v ∈ A∗ if

v ∈ A∗uA∗, or, more informally, if the word u occurs somewhere as subword in
the word v. We will use this notation also for (right infinite) sequences later. Then
u ∈ A∗ is a factor of v ∈ AN if v ∈ A∗uAN. The set of all factors of a sequence v

is called the language of v. It is denoted by L(v). We also introduce the notion of
prefix and suffix that will be used later. A prefix of a word v ∈ A∗ is a word u ∈ A∗
with v ∈ uA∗ and a suffix of v ∈ A∗ is a word u ∈ A∗ with v ∈ A∗u. A prefix of a
sequence v ∈ AN is a word u ∈ A∗ with v ∈ uAN.

After these preparations we can define S-adic sequences for a given sequence
of substitutions σ . The terminology “S-adic” goes back to Ferenczi [77]. In our
definition we follow Arnoux et al. [20] (see also [52, Section 2.2]).

Definition 3.4.1 (S-adic Sequence) Let A be a given finite alphabet, let σ =
(σn)n≥0 be a sequence of substitutions over A, and set S := {σn : n ∈ N}. We
call a sequence w ∈ AN an S-adic sequence (or a limit sequence) for σ if there
exists a sequence (w(n))n≥0 of sequences w(n) ∈ AN with

w(0) = w, w(n) = σn(w
(n+1)) (for all n ∈ N). (3.22)



3 S-adic Sequences 131

In this case we call σ the coding sequence or the directive sequence for w. (Note
that (3.22) says that w can be “desubstituted” infinitely often).

Let S be a finite set of substitutions over a given alphabet A. For this case S-adic
sequences have been thoroughly studied in the literature. With Sturmian sequences
and Arnoux-Rauzy sequences we already discussed two prominent classes of S-adic
sequences. Durand [71, 72] proved that linearly recurrent3 sequences are S-adic
with finite S. Ferenczi [77] and Leroy [97] showed that a uniformly recurrent4

sequence w with an at most linear complexity function pw is S-adic with finite S; see
also [98]. The so-called S-adic conjecture (see e.g. [82, Section 12.1.2] or [73, 97])
is also formulated for a finite set of substitutions S. It asks to what extent a converse
of this assertion can be true, i.e., which criteria are needed for an S-adic sequence
w to have linear complexity function pw . Berthé and Labbé [49] show linearity
of the complexity of S-adic sequences associated with the Arnoux-Rauzy-Poincaré
multidimensional continued fraction algorithm (their bound pw(n) ≤ 5

2n + 1 is
even strong enough to conclude from Boshernitzan [56] that, like Arnoux-Rauzy
sequences, these sequences pertain to uniquely ergodic dynamical systems). Arnoux
et al. [20] study S-adic sequences in the same context as we will do it. However, they
restrict their attention to sets of substitutions S whose elements have a common
incidence matrix. If S is a singleton, an S-adic sequence is called substitutive.
Substitutive sequences are very well studied (see for instance [82]; moreover in
the paragraphs following Definition 3.4.2 we review the literature on substitutive
sequences related to our subject). They are strongly related to automatic sequences
by Cobham’s Theorem, see e.g. [6, Theorem 6.3.2].

Generalizing Sturmian systems we introduce dynamical systems for S-adic
sequences. To this end, for a finite alphabet A define the shift on AN as Σ : AN →
AN by Σ(w0w1 . . .) = w1w2 . . .

Definition 3.4.2 (S-adic System) For an S-adic sequence w over a finite alphabet
A we denote by Xw = {Σkw : k ∈ N} the orbit closure of w under the action of
the shift Σ . If we denote the restriction of Σ to Xw by Σ again we call the pair
(Xw,Σ) the S-adic system (or S-adic shift) generated by w.

Alternatively, the set Xw can be defined using languages by setting Xw = {v ∈
AN : L(v) ⊆ L(w)}. The proof of the fact that both definitions of Xw agree is an
easy exercise. Also the set Xσ =⋃Xw , where the union is extended over all S-adic
sequences with directive sequence σ , and the associated dynamical system (Xσ ,Σ)

are of interest.5 A recent survey on S-adic systems is provided in [44].

3A sequence is called linearly recurrent if there is a constant K such that each of its factors u

occurs infinitely often in the sequence with gaps bounded by K|u|.
4A sequence is called uniformly recurrent if each of its factors occurs infinitely often in the
sequence with bounded gaps.
5If we impose the additional property of primitivity on the coding sequence of a sequence w ∈ AN

it turns out that Xw depends only on the directive sequence σ defining the S-adic sequence w and
we have Xσ = Xw . This will be worked out precisely in Sect. 3.5.
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In all what follows we will assume that all our substitutions and matrices are
unimodular.

The case of σ = (σ ), the constant sequence formed by a given unimodular
substitution σ over some alphabet A, has been studied extensively. In this case we
call (X(σ),Σ) a substitutive system (see Queffelec [110] for a profound study of
dynamical properties of these systems). The theory of Sect. 3.2 can be generalized
quite well to substitutive systems if σ is a unimodular Pisot substitution. The
seed for such a generalization was planted by Rauzy [114]. Constructing the
prototype of what is now called Rauzy fractal, he proved that the dynamical system
(Xσ ,Σ) is measurably conjugate to a rotation on T

2 if σ = (σ ) with σ being the
Tribonacci substitution introduced in (3.20). It was conjectured since then that each
unimodular Pisot substitution σ gives rise to a substitutive system (X(σ),Σ) which
is measurably conjugate to a rotation on the torus. This conjecture is still open and
known as Pisot (substitution) conjecture.

In the meantime, the Pisot conjecture was studied by many people and interesting
partial results have been achieved. We mention Arnoux and Ito [18] as well as Ito
and Rao [91] who could prove the Pisot conjecture subject to some combinatorial
coincidence conditions. Conditions of this type will also play an important role in
the general theory we will develop here, see Sect. 3.8.2. Recently, Barge [32, 33]
made considerable progress on this subject using refinements of the notion of
proximality (see [27, 35]). For survey papers on the subject we refer e.g. to [4, 51].
For extensions of this theory to the nonunimodular case see [106, 122].

3.4.2 Generalized Continued Fraction Algorithms

We now generalize the concept of continued fraction algorithm defined in Sect. 3.2.2
and introduce generalized continued fraction algorithms. Standard references for
these objects are Brentjes [58] and Schweiger [119]. Also Labbé’s Cheat Sheets [95]
for 3-dimensional continued fraction algorithms are highly recommended. For
discussions of generalized continued fraction algorithms in a context similar to ours
we refer e.g. to [11, 19, 21, 41].

Definition 3.4.3 (Generalized Continued Fraction Algorithm) For d ≥ 2 let X

be a closed subset of the projective space P
d−1 and let {Xi}i∈I be a partition of X

(up to a set of measure 0) indexed by a countable set I . Let M = {Mi : i ∈ I }
be a set of unimodular d × d integer matrices (that act on P

d−1 by homogeneity)
satisfying M−1

i Xi ⊂ X and let M : X → M given by M(x) = Mi whenever
x ∈ Xi . The generalized continued fraction algorithm associated with this data is
given by the mapping

F : X → X; x 
→ M(x)−1x.
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If I is a finite set, the algorithm given by F is called additive, otherwise it is called
multiplicative.

Note that F is defined only almost everywhere since {Xi}i∈I in general is only a
partition up to measure zero. We confine ourselves to unimodular matrices. Thus
the algorithms in Definition 3.4.3 are sometimes called unimodular algorithms.
Interesting examples of nonunimodular continued fraction algorithms are provided
by the N-continued fraction algorithm introduced by Burger et al. [60] and by the
Reverse algorithm, a certain “completion” of the Arnoux-Rauzy algorithm studied
in [19, Section 4].

We illustrate the definition of generalized continued fraction algorithms by a
classical example: Brun’s continued fraction algorithm.

Example 3.4.4 (Brun’s Algorithm) The linear version of Brun’s algorithm is
defined on the subset

X = {[w1 : w2 : w3] : 0 ≤ w1 ≤ w2 ≤ w3} ⊂ P
2.

It maps a vector [w1 : w2 : w3] to sort[w1 : w2 : w3 − w2], i.e., it subtracts the
second largest entry from the largest one and sorts the resulting entries in ascending
order. By a straightforward calculation we see that M = {M1,M2,M3} with

M1 =
⎛

⎝

0 1 0
0 0 1
1 0 1

⎞

⎠ , M2 =
⎛

⎝

1 0 0
0 0 1
0 1 1

⎞

⎠ , M3 =
⎛

⎝

1 0 0
0 1 0
0 1 1

⎞

⎠ , (3.23)

and that the partition X = X1 ∪X2 ∪X3 is given by Fig. 3.10.

Fig. 3.10 The partition of X

induced by Brun’s continued
fraction algorithm

[1 : 1 : 1]

[0 : 0 : 1]

[0 : 1 : 1][1 : 1 : 2]

[0 : 1 : 2]

X1

X3

X2
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With this data the linear Brun continued fraction mapping can be defined
according to Definition 3.4.3 by

FB : X → X; x 
→ M−1
i x for x ∈ Xi.

Since M1, M2, and M3 are unimodular, Brun’s algorithm is a unimodular continued
fraction algorithm. As we did for the classical continued fraction algorithm in
Sect. 3.2.2, we can define a projective version also in the case of Brun’s algorithm.
This projective version is the original version of this algorithm and goes back to
Brun [59]. It is defined on the set

Δ = {(x1, x2) ∈ R
2 : 0 ≤ x1 ≤ x2 ≤ 1} (3.24)

by

fB : (x1, x2) 
→

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(
x1

1−x2
, x2

1−x2

)

, for x2 ≤ 1
2 ,

(
x1
x2

, 1−x2
x2

)

, for 1
2 ≤ x2 ≤ 1− x1,

(
1−x2
x2

, x1
x2

)

, for 1− x1 ≤ x2.

(3.25)

To see that fB is the projective version of FB we use the same reasoning as in the
classical case in Sect. 3.2.2.

We refer to Example 3.5.12 where we provide S-adic sequences associated with
Brun’s algorithm.

Other well-known generalized continued fraction algorithms include the Jacobi-
Perron algorithm [109] and the Selmer algorithm [120].

3.5 The Importance of Primitivity and Recurrence

As indicated in Sect. 3.3 it is not possible to generalize the results of Sect. 3.2 to
higher dimensions (or, equivalently, to alphabets of cardinality greater than two)
without additional conditions on the sequence of substitutions σ . In this section we
will discuss two natural conditions that we will have to impose on our sequences of
substitutions. The first one is primitivity, the second one is recurrence. Both of them
will have important consequences for the underlying S-adic system: primitivity will
imply minimality, and if we assume recurrence on top of primitivity, the system will
be uniquely ergodic.
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3.5.1 Primitivity and Minimality

In the following definition a matrix is called nonnegative if each of its entries is
greater than or equal to zero. In a positive matrix each entry is greater than zero.

Definition 3.5.1 (Primitivity) A sequence M = (Mn)n≥0 of nonnegative integer
matrices is primitive if for each m ∈ N there is n > m such that M[m,n) is a
positive matrix. A sequence σ of substitutions is primitive if its associated sequence
of incidence matrices is primitive.

Note that primitivity of (Mn)n≥0 implies primitivity of the “shifted” sequence
(Mn+k)n≥0 for each k ∈ N. The same applies for primitive sequences of substitu-
tions.

Our definition of primitivity is taken from [52, Section 2.2]. It coincides with the
notion of weak primitivity introduced in [44, Definition 5.1] and with the notion of
nonstationary primitivity defined in [81, p. 339]. The more restrictive property of
strong primitivity which is also introduced in [44, Definition 5.1] requires that the
integer n in Definition 3.5.1 can be chosen in a way that the difference n − m is
uniformly bounded in m. In other papers, this stronger property is called primitivity
(see e.g. [71–73]).

As we will see in the first result of this section, the assumption of primitivity
entails minimality of the associated S-adic systems. We recall the definition of this
basic concept.

Definition 3.5.2 (Minimality) Let (X, T ) be a topological dynamical system.
(X, T ) is called minimal if the orbit of each point is dense in X, i.e., if
{T nx : n ∈ N} = X holds for each x ∈ X.

The following lemma summarizes the consequences of primitivity for an S-adic
system. It is proved for instance in [20, Proposition 2.1 and 2.2]; the minimality
assertion can already be found in [71, Lemma 7].

Proposition 3.5.3 If σ is a primitive sequence of substitutions, the following
properties hold.

(i) There exists at least one and at most |A| limit sequences for σ .
(ii) Let w,w′ be two S-adic sequences with directive sequence σ . Then the

dynamical systems (Xw,Σ) and (Xw′ ,Σ) are equal.
(iii) For a limit sequence w of σ the S-adic system (Xw,Σ) is minimal.

Proof To show (i) let σ = (σn) and for each n ∈ N let An be the set of all first letters
occurring in the family σ[0,n)(A) of words. Then (An) is a decreasing sequence of
nonempty subsets of A. Hence, there is a ∈ ⋂n≥0 An. By construction there is a
sequence (an) with a0 = a such that an is the first letter of σn(an+1). Moreover,
σ[0,n)(an) is a prefix of σ[0,n+1)(an+1). By primitivity, the lengths of these words



136 J. M. Thuswaldner

tend to infinity which implies that w = limn→∞ σ[0,n)(anan . . .) converges.6 By the
same reasoning (here we use that primitivity also holds for “shifted” sequences),
we see that w(m) = limn→∞ σ[m,n)(anan . . .) converges as well and the sequence
(w(m)) satisfies the conditions of Definition 3.4.1. Thus w = w(0) is an S-adic
sequence with directive sequence σ .

If w is an S-adic sequence with directive sequence σ , by Definition 3.4.1 we
can associate a sequence (w(n)) with it. For n ∈ N let an be the first letter
of w(n). Primitivity implies that |σ[0,n)(an)| → ∞ for n → ∞ and, hence,
the sequence w is determined by the sequence (an). In particular, we can write
w = limn→∞ σ[0,n)(anan . . .). Since an uniquely determines ap for each p < n,
there are at most |A| possible different choices for such a sequence.

To prove (ii) let w and w′ be two S-adic sequences with directive sequence σ .
Associate the sequences (an) and (a′n), respectively, with them as above. If u is a
factor of w then u is a factor of σ[0,m)(am) for some m. By primitivity, there exists
n > m such that am occurs in σ[m,n)(a

′
n). Thus σ[0,m)(am) and a fortiori also u is a

factor of w′ and, hence, L(w) ⊆ L(w′). Exchanging the roles of w and w′ we can
therefore conclude that L(w) = L(w′) which implies that Xw = Xw′ .

It remains to prove (iii). This follows if we can show that L(v) = L(w) for each
v ∈ Xw . This in turn holds if each factor of w occurs infinitely often in w with
bounded gaps, which we will now prove. Let u be a factor of w and let (an) be the
sequence of letters associated to w as above. Then u is a factor of σ[0,m)(am) for
some m. By primitivity, there exists n > m such that u is a factor of σ[0,n)(a) for
each a ∈ A. Since w is an S-adic sequence, w = σ[0,n)(w

(n)) holds for some w(n) ∈
AN. Thus u occurs in w infinitely often with gaps bounded by 2 max{|σ[0,n)(a)| :
a ∈ A}. �	

If σ is a primitive sequence of substitutions, assertion (ii) of this proposition
implies that Xσ = Xw and, hence, (Xσ ,Σ) = (Xw,Σ) for w being an arbitrary
S-adic sequence with directive sequence σ . Since we will assume primitivity
throughout the remaining part of the paper we will always work with Xσ .

3.5.2 Recurrence, Weak Convergence, and Unique Ergodicity

The next concept we introduce is recurrence. Let S be a finite set of substitutions. If
we take a random sequence of substitutions σ ∈ SN whose elements are taken from
a finite set S we will almost always (w.r.t. any natural measure on the space SN) get
a sequence σ each of whose patterns occurs infinitely often. This infinite repetition
of patterns is made precise in the following definition.

6Only the first letter an in the argument of σ[0,n) is relevant for the limit. However, since we use
the topology on AN and σ[0,n)(an) �∈ AN we have to write σ[0,n)(anan . . .).
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Definition 3.5.4 (Recurrence) A sequence M = (Mn) of integer matrices is
called recurrent if for each m ∈ N there is n ≥ 1 such that (M0, . . . ,Mm−1) =
(Mn, . . . ,Mn+m−1). A sequence σ = (σn) of substitutions is called recurrent if for
each m ∈ N there is n ≥ 1 such that (σ0, . . . , σm−1) = (σn, . . . , σn+m−1).

Note that recurrence of a sequence of substitutions σ implies that each block
of substitutions that occurs once in σ must occur infinitely often (the same is
true for sequences of matrices). Thus recurrence of (σn)n∈N implies recurrence of
(σm+n)n∈N for each m ∈ N and an analogous statement holds for sequences of
matrices. We also emphasize that a nonrecurrent sequence of substitutions may well
have a recurrent sequence of incidence matrices. This is due to the fact that two
different substitutions can have the same incidence matrix.

We now study consequences of primitivity and recurrence. We start with the
following result which follows from contraction properties of the Hilbert metric,
a metric on projective space that goes back to Birkhoff [55] and Furstenberg [84,
pp. 91–95] (we mention [81, Appendix A] and [125, Chapter 26] as more recent
references). A special case of this result is stated in Sect. 3.2, see (3.14).

Proposition 3.5.5 Let M = (Mn) be a primitive and recurrent sequence of
nonnegative integer matrices. Then there is a vector u ∈ R

d
>0 satisfying

⋂

n≥0

M[0,n)R
d
≥0 = R+u. (3.26)

Proof To prove this result we define a metric on the space W = {R+w : w ∈
R

d
≥0 \ {0}} of nonnegative rays through the origin by (see [81, Appendix A])

dW(R+v,R+w) = max
1≤i,j≤d

log
viwj

vjwi

,

where v = (v1, . . . , vd) and w = (w1, . . . , wd). It can be checked by direct
calculation that this is a metric on W which is the so-called Hilbert Metric (cf.
e.g. [81, Lemma A.5] or [125, Chapter 26]). Let diamW (A) be the diameter of a
set A ⊂ W w.r.t. this metric. Then diamW (W) = ∞ and diamW (MW) < ∞ for
every positive matrix M . It follows from the definitions that a nonnegative matrix
M is nonexpanding in the sense that dW(MR+v,MR+w) ≤ dW (R+v,R+w) for
all R+v,R+w ∈ W . Moreover, one can show that each positive matrix M is a
contraction, i.e., there is κ < 1 (depending on M) such that dW(MR+v,MR+w) ≤
κ dW(R+v,R+w) for all R+v,R+w ∈ W (see for instance [55] or [125, Proposi-
tion 26.3] for a proof of this).

We now apply these contraction properties to our setting. Since M is primitive
and recurrent, there exists a positive matrix B and an integer h > 0 such that B =
M[mi,mi+h) for a sequence of positive integers (mi)i≥0 satisfying mi + h ≤ mi+1.
By the preceding paragraph we get that diamW (BW) = γ for some γ > 0 and
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that B is a contraction with some contraction factor κ < 1. Thus for each m ∈
{mi + h,mi+1 + h− 1} we have

diamW
(
⋂

0≤n≤m

M[0,n)R
d
≥0

)

≤ γ κi.

Since κ < 1 and i →∞ for m →∞ this yields the result. Positivity of the entries
of u follows from the primitivity of M. �	

This result motivates the following definition.

Definition 3.5.6 (Weak Convergence and Generalized Right Eigenvector) If a
sequence of nonnegative integer matrices satisfies (3.26) for some u ∈ R

d
≥0 \ {0}

we say that M is weakly convergent to u. In this case we call u a generalized right
eigenvector of M. If a sequence σ of substitutions has a sequence of incidence
matrices M which is weakly convergent to u, we say that σ is weakly convergent to
u and call u a generalized right eigenvector of σ .

Our next goal is to establish unique ergodicity of S-adic systems with primitive
and recurrent directive sequences. We start with a fundamental definition (and refer
to [126, §6.5] for background material on this).

Definition 3.5.7 (Unique Ergodicity) A topological dynamical system (X, T ) on
a compact space X is said to be uniquely ergodic if there is a unique T -invariant
Borel probability measure on X.

By a theorem of Krylov and Bogoliubov (see e.g. [126, Corollary 6.9.1]) there
always exists an invariant probability measure on (X, T ) if X is compact.

A uniquely ergodic dynamical system is ergodic (thus the name) since otherwise
there would be a T -invariant set E with μ(E) ∈ (0, 1) which could be used to
define a second T -invariant Borel probability measure ν(B) = μ(B∩E)

μ(E)
on X.

Unique ergodicity is equivalent to the fact that each point is generic in the sense that
Birkhoff’s ergodic theorem holds everywhere (cf. [126, Theorem 6.19]). Roughly
speaking, this is true since nongeneric points (as for instance periodic points) could
be used to construct a second invariant measure.

We note that unique ergodicity is close to minimality in the sense that there are
many dynamical systems that either enjoy both or none of the two properties. If
(X, T ) is uniquely ergodic with T -invariant measure μ having full support then
minimality follows. However, there are examples of systems that have only one
of these two properties. For a discussion of such examples in a context similar to
ours see [78] and the references given there. What happens for these examples is
that although we have a primitive sequence of matrices (leading to minimality) this
primitivity is so weak that it does not make the positive cone converge to a single line
as in (3.26). This entails that no letter frequencies exist which permits to construct
many invariant measures (see also [53, 54, 81]).

It has been mentioned already in Sect. 3.2 that the existence of uniform frequen-
cies of letters and words in a shift (Xw,Σ) entail unique ergodicity. We want to
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give the elegant proof of this result here before we use it in order to establish unique
ergodicity of primitive and recurrent S-adic systems. To this matter we need the
following definition (see Lemma 3.2.9 for the special case of Sturmian sequences).

Definition 3.5.8 (Uniform Word and Letter Frequencies) Let w = w0w1 . . . ∈
AN be given and for each k, � ∈ N and each v ∈ A∗ let |wk . . . wk+�−1|v be the
number of occurrences of v in wk . . . wk+�−1. We say that w has uniform word
frequencies if for each v ∈ A∗ the ratio |wk . . . wk+�−1|v/� tends to a limit fv(w)

(which does not depend on k) for � → ∞ uniformly in k. It has uniform letter
frequencies if this is true for each v ∈ A.

Proposition 3.5.9 (See [82, Proposition 5.1.21]) Let w ∈ AN be a sequence with
uniform word frequencies and let Xw = {Σkw : k ∈ N} be the shift orbit closure
of w. Then (Xw,Σ) is uniquely ergodic.

Proof For every factor v of w = w0w1 . . . let [v] be the cylinder of all sequences
in Xw that have v as a prefix. Define a function μ on these cylinders by μ([v]) =
μ(Σ−n[v]) = fv(w). Since cylinders generate the topology on Xw this defines a
Borel measure μ on Xw. Our goal is to show that every element of Xw is generic in
the sense of Birkhoff’s ergodic theorem. To this end note first that (here 1Y denotes
the characteristic function of a set Y ⊂ Xw)

1

N

∑

n<N

1[v](Σn+j w)→ μ([v]) =
∫

1[v]dμ

holds uniformly in j ∈ N for every v ∈ A∗ by the existence of uniform
word frequencies for w. Since continuous functions are monotone limits of simple
functions this extends to

1

N

∑

n<N

g(Σn+j w)→
∫

gdμ (3.27)

uniformly in j ∈ N for each g ∈ C(Xw). By this uniform convergence, in (3.27) we
may choose j = nk with any sequence (nk) and (3.27) holds uniformly in k. Since
each u ∈ Xw is the limit of (Σnk w) for some sequence (nk) this implies that

1

N

∑

n<N

g(Σnu)→
∫

gdμ

holds for each g ∈ C(Xw) and each u ∈ Xw . Thus each point is generic in the sense
of Birkhoff’s ergodic theorem which is equivalent to unique ergodicity (by [126,
Theorem 6.19] which was already mentioned above). �	

We now show that the conditions we introduced so far imply unique ergodicity of
S-adic systems. In view of Proposition 3.5.9 we will establish the following lemma
(see also [44, Theorem 5.7]).
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Lemma 3.5.10 Let σ be a sequence of substitutions with associated sequence of
incidence matrices M. If M is primitive and recurrent then each sequence w ∈ Xσ

has uniform word frequencies.

Proof Let w = w0w1 . . . ∈ Xσ be given. We follow the proof of [44, Theorem 5.7]
to establish that w has uniform word frequencies.

Part 1: Uniform Letter Frequencies Since M satisfies the conditions of
Proposition 3.5.5, it admits a generalized right eigenvector u. Let u/‖u‖1 =
(u1, u2, . . . , ud)t . Since w ∈ Xσ , for all k, �, n ∈ N we can write

wk . . . wk+�−1 = pσ[0,n)(v)s

for some p, v, s ∈ A∗, where the lengths of p, s are bounded by the number
max{|σ[0,n)(a)| : a ∈ A}. Now for each a ∈ A
∣
∣
∣
∣

|wk . . . wk+�−1|a
�

− ua

∣
∣
∣
∣
≤
∣
∣|p|a − |p|ua

∣
∣

�
+

∣
∣|σ[0,n)(v)|a − |σ[0,n)(v)|ua

∣
∣

�
+
∣
∣|s|a − |s|ua

∣
∣

�
.

(3.28)

By the convergence of the positive cone to u in Proposition 3.5.5 we know that
|σ[0,n)(b)|a/|σ[0,n)(b)| is close to ua for all a, b ∈ A if n is large. Thus for each
ε > 0 there is N ∈ N such that whenever � ≥ N we can choose n in a way
that |p|, |s| ≤ ε� and

∣
∣|σ[0,n)(b)|a − |σ[0,n)(b)|ua

∣
∣ < ε|σ[0,n)(b)| for all letters

a and b. This proves that the right hand side of (3.28) is bounded by 3ε and,
hence, lim�→∞ |wk . . . wk+�−1|a/� = ua uniformly in k. Thus w has uniform letter
frequencies.

Part 2: Uniform Word Frequencies For m ∈ N let u(m) be a right eigenvector of
the shifted sequence σ (m) = (σm+n)n∈N and set u(m)/‖u(m)‖1 = (u

(m)
1 , . . . , u

(m)
d ).

Such an eigenvector exists by Proposition 3.5.5 since the shifted sequence σ (m) has
a primitive and recurrent sequence of incidence matrices as well.

Fix v ∈ Lσ . We claim that for each m ∈ N and each w(m) = w
(m)
0 w

(m)
1 . . . ∈

Xσ (m) we have

lim
j→∞

∑q+j−1
i=q |σ[0,m)(w

(m)
i )|v

|σ[0,m)(w
(m)
q . . . w

(m)
q+j−1)|

=
∑

a∈A u
(m)
a |σ[0,m)(a)|v

∑

a∈A u
(m)
a |σ[0,m)(a)|

=: g(v,m) (3.29)
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uniformly in q ∈ N. This claim follows because, since w(m) has uniform letter
frequencies (u

(m)
1 , . . . , u

(m)
d ) by Part 1, we get that

lim
j→∞

|σ[0,m)(w
(m)
q . . . w

(m)
q+j−1)|

j
=
∑

a∈A
u(m)

a |σ[0,m)(a)| and

lim
j→∞

∑q+j−1
i=q |σ[0,m)(w

(m)
i )|v

j
=
∑

a∈A
u(m)

a |σ[0,m)(a)|v

uniformly in q ∈ N.
Now we proceed similarly to Part 1. First define

m+n = max{|σ[0,n)(a)| : a ∈ A} and m−n = min{|σ[0,n)(a)| : a ∈ A},

and observe that primitivity of σ implies that both of these quantities tend to ∞ for
n →∞. For each n ∈ N choose a fixed w(n) = w

(n)
0 w

(n)
1 . . . ∈ Xσ (n) . As w ∈ Xσ ,

for all k, � ∈ N we can write

wk . . . wk+�−1 = pσ[0,n)(w
(n)
q . . . w

(n)
q+r−1)s

for some q, r ∈ N, where the lengths of p, s ∈ A∗ are bounded by m+n . There are
three possibilities for an occurrence of v in wk . . . wk+�−1. Firstly, v can overlap
with p or s. This can happen at most 2m+n times. Secondly, v can have nonempty

overlap with the images σ[0,n)(w
(n)
i ) and σ[0,n)(w

(n)
i+1) of two consecutive letters

w
(n)
i and w

(n)
i+1 of w

(n)
q . . . w

(n)
q+r−1. This can happen at most |v|(r − 1) ≤ |v| �

m−n
times. Thirdly, v can occur as a factor of σ[0,n)(w

(n)
i ) for some i ∈ {q, . . . , q +

r − 1} which happens exactly
∑q+r−1

i=q |σ[0,n)(w
(n)
i )|v times. Each of these three

possibilities contributes one of the summands of the right hand side of the estimate

∣
∣
∣
|wk . . . wk+�−1|v

�
− g(v, n)

∣
∣
∣ ≤ 2m+n

�
+ |v|

m−n
+
∣
∣
∣
∣

∑q+r−1
i=q |σ[0,n)(w

(n)
i )|v

�
− g(v, n)

∣
∣
∣
∣
.

(3.30)

Letting � →∞ and using (3.29) for the third term on the right this yields that

lim sup
�→∞

∣
∣
∣
|wk . . . wk+�−1|v

�
− g(v, n)

∣
∣
∣ ≤ |v|

m−n
. (3.31)

Since for n → ∞ the quantity |wk...wk+�−1|v
�

does not change while |v|
m−n

→ 0 we

conclude from (3.31) that (g(v, n))n∈N is a Cauchy sequence converging to the
frequency fv(w) of v in w. Since |v|

m−n
does not depend on k and the convergence
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in (3.29) is uniform in q , the estimate (3.30) implies that |wk...wk+�−1|v
�

→ fv(w) for
� →∞ uniformly in k and the proof is finished. �	

The following main result of this section is an immediate consequence of
Propositions 3.5.3, 3.5.9, and Lemma 3.5.10.

Theorem 3.5.11 Let σ be a sequence of substitutions with associated sequence of
incidence matrices M. If M is primitive and recurrent then (Xσ ,Σ) is minimal and
uniquely ergodic.

A proof of a similar result as Theorem 3.5.11 is sketched in Berthé and
Delecroix [44]. Moreover, we refer to Fisher [81] and Bezuglyi et al. [53, 54], where
theorems of this flavor are proved in the context of Bratteli-Vershik systems.

Example 3.5.12 We associate substitutions with the matrices M1, M2, and M3 that
came up in (3.23) during the definition of Brun’s continued fraction algorithm.
Indeed, the substitutions

σ1 :

⎧

⎪⎪⎨

⎪⎪⎩

1 
→ 3,

2 
→ 1,

3 
→ 23,

σ2 :

⎧

⎪⎪⎨

⎪⎪⎩

1 
→ 1,

2 
→ 3,

3 
→ 23,

σ3 :

⎧

⎪⎪⎨

⎪⎪⎩

1 
→ 1,

2 
→ 23,

3 
→ 3.

(3.32)

are called Brun substitutions (see [52, Sections 3.3 and 9.2] where also the relation
between these substitutions and a slightly different set of “Brun substitutions”
studied in [42] is discussed).

It is immediate that M1M2M1M2 is a strictly positive matrix. Thus we get the
following result.

Proposition 3.5.13 Let S = {σ1, σ2, σ3} be the set of Brun substitutions and σ ∈
SN. If σ is recurrent and contains the block (σ1, σ2, σ1, σ2) then the associated S-
adic system (Xσ ,Σ) is minimal and uniquely ergodic.

Proof Since σ is recurrent it contains the block (σ1, σ2, σ1, σ2) infinitely often.
Thus σ is primitive and the result follows from Theorem 3.5.11. �	

3.6 The Importance of Balance and Algebraic Irreducibility

Let σ be a sequence of unimodular substitutions over an alphabetA = {1, 2, . . . , d}
and let (Xσ ,Σ) be the S-adic system defined by it. At the end of Sect. 3.2.4 we gave
some rough idea on how we want to prove that (Xσ ,Σ) is measurably conjugate
to a rotation on T

d−1. Indeed, we wish to project the broken line (see (3.17) for
an example) associated with a limit sequence w ∈ Xσ to a hyperplane in R

d not
containing the frequency vector u of the sequences in Xσ . On a natural subdivision
R(1), . . . ,R(d) of the closure R of this projection we want to define a domain
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exchange and a rotation. This is possible only if the sets R(i), i ∈ A, have suitable
topological properties and the mentioned subdivision has no essential overlaps.

In the present section we will define these sets R and R(i), i ∈ A, and discuss
basic properties of them. Besides primitivity and recurrence, the crucial conditions
we will have to impose on σ in order to get suitable properties of the sets R and
R(i) will be algebraic irreducibility of the sequence of incidence matrices of σ

and balance of the language Lσ . Both of these conditions will be defined and
first consequences of them will be discussed. This paves the way to obtain deeper
topological and measure theoretic properties of R and R(i) in Sect. 3.7. The theory
we will outline in the present as well as in the forthcoming sections is mainly due
to Berthé et al. [52] and we refer to this paper for rigorous proofs of the statements
we give.

3.6.1 S-adic Rauzy Fractals

Following Berthé et al. [52, Section 2.9] we will now define S-adic Rauzy fractals.
As mentioned before, on these objects we will be able to “see” the rotations to which
we want to (measurably) conjugate our S-adic systems. In the definition we will use
the following notations. For a vector w ∈ R

d \ {0} we write w⊥ for the hyperplane
orthogonal to w, i.e., w⊥ = {x ∈ R

d : 〈x, w〉 = 0} with 〈·, ·〉 being the dot product
on R

d , and we equip the space w⊥ with the (d − 1)-dimensional Lebesgue measure
λw. Since its orthogonal hyperplane will be of special interest later we introduce the
vector 1 = (1, . . . , 1)t .

For vectors u, w ∈ R
d \ {0} satisfying u �∈ w⊥ we denote the projection along u

to w⊥ by πu,w.

Definition 3.6.1 (S-adic Rauzy Fractal and Subtiles) Let σ be a sequence
of unimodular substitutions over the alphabet A and assume that σ is weakly
convergent to a generalized right eigenvector u ∈ R

d
>0. The S-adic Rauzy fractal

in the representation space w⊥, w ∈ R
d
≥0 \ {0}, associated with σ is the set

Rw := {πu,wl(p) : p is a prefix of a limit sequence of σ }.

The set Rw can be covered by the subtiles

Rw(i) := {πu,wl(p) : pi is a prefix of a limit sequence of σ } (i ∈ A).

(3.33)

For convenience we will use the notation R(i) = R1(i) and R = R1.

The prototype of a Rauzy fractal goes back to Rauzy [114] and was used
there in order to show that a certain substitutive dynamical system is measurably
conjugate to a rotation on the torus, see Example 3.6.2 below. In the meantime



144 J. M. Thuswaldner

there exists a vast literature on Rauzy fractals. For constant sequences σ = (σ )

with σ being a Pisot substitution fundamental properties of Rauzy fractals were
studied for instance by Ito and Kimura [89], Holton and Zamboni [86], Arnoux
and Ito [18], Canterini and Siegel [61], Sirvent and Wang [124], Hubert and
Messaoudi [88], and Ito and Rao [91]. Akiyama [2, 3] and Messaoudi [103, 104]
consider versions of Rauzy fractals for β-numeration, in Siegel [122], Minervino
and Thuswaldner [106], and Minervino and Steiner [105] Rauzy fractals with p-adic
factors are related to nonunimodular substitutions. For versions of Rauzy fractals
corresponding to substitutions with reducible incidence matrices (whose most
prominent representative is the so-called “Hokkaido Fractal” studied by Akiyama
and Sadahiro [5]) we refer to [3, 75, 100]. A case of a non-Pisot substitution is
treated in [16]. Surveys containing information on Rauzy fractals are provided in
[51, 123] (see also [4] for their relation to the Pisot substitution conjecture). An
easily accessible treatment of Rauzy fractals intended for a broad audience is given
in [17].

Recently, Boyland and Severa [57] considered a particular family of S-adic
sequences associated with the so-called infimax S-adic family over three letters.
These sequences do not fit into our framework. Indeed, they have two “expanding
directions” which entails that the authors have to project on a 1-dimensional
subspace of R3 in order to obtain compact Rauzy fractals. Their Rauzy fractals turn
out to be Cantor sets which can be subdivided naturally into three subtiles whose
convex hulls are intervals that intersect on their boundary points. This fact is used to
show that the infimax S-adic systems can be geometrically represented as 3-interval
exchange transformations.

In what follows, instead of “S-adic Rauzy fractal” we will often just say “Rauzy
fractal”. This will cause no confusion. To give the reader a feeling for a Rauzy fractal
and its importance in the remaining part of this chapter we provide an example.

Example 3.6.2 (Tribonacci Substitution) We explain the definition of a Rauzy
fractal for the constant sequence σ = (σ )n∈N with σ being the Tribonacci
substitution introduced in (3.20). The sequence σ is easily checked to be primitive
and obviously it is recurrent. Thus it admits a generalized right eigenvector u which
is just the Perron-Frobenius eigenvector of Mσ . Since each of the words σ(1), σ(2),
and σ(3) begins with 1 the only limit sequence of (σ ) is given by

w = lim
n→∞ σn(1) = 1213121121312121312112131213121 . . .

and, hence, Rw := {πu,wl(p) : p is a prefix of w} for w ∈ R
d
≥0 \ {0}. In Fig. 3.11

we illustrate the definition of Ru and its subtiles (we choose w = u in this case
so the occurring projection πu,u is an orthogonal projection). As mentioned before,
this famous prototype of a Rauzy fractal first appears in Rauzy [114].

For this example it is known since Rauzy [114] that one can define a rotation
on the Rauzy fractal using the broken line. This can be used to prove that the
substitutive system (X(σ),Σ) is measurably conjugate to a rotation on T

2. We want
to give an idea on how this works without going into the details. To this end it is
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Fig. 3.11 The broken line and its projection to u⊥ defining the Rauzy fractal Ru for the case of the
Tribonacci substitution (note that only the vertices of the broken line are projected; not the whole
edges). Each of the three subtiles Ru(i) is shaded differently. The shaded triangle represents a part
of the plane u⊥ in which Ru is situated

convenient to work with R = R1 and its subtiles. It was shown in [114] that each
of the three subtiles R(i), i ∈ {1, 2, 3}, is a compact subset of the space 1⊥ which
is equal to the closure of its interior and has a boundary of λ1-measure 0. Moreover,
it is proved that these subtiles are pairwise disjoint apart from overlaps on their
boundaries. Thus we can almost everywhere define a “domain exchange” E in the
following way. If we set

R̃(i) := {πu,1l(pi) : pi is a prefix of w} (i ∈ {1, 2, 3})

we see from the definition of R(i) that R̃(i) = R(i) + πu,1l(i) (recall that w is
the only limit sequence of σ ). As the Lebesgue measure λ1 doesn’t change under
translation and we still have that R = R̃(1)∪R̃(2)∪R̃(3) also the translated pieces
only overlap on a set of measure 0. The domain exchange

E : R→ R; x 
→ x+ πu,1l(i) for x ∈ R(i)

is thus well defined almost everywhere and it moves R(i) to R̃(i) for each i ∈
{1, 2, 3}. By what was said above, E is an almost everywhere bijective symmetry.
The effect of E on the points of R is illustrated in Fig. 3.12. As in the Sturmian case
discussed in Sect. 3.2.4, each step on the broken line performs the domain exchange
on R.

The problem that remains is the transition from the domain exchange to the
rotation. In the Sturmian case this was achieved by identifying the endpoints of an
interval. Here things become more complicated as intervals are replaced by fractals
and we have to make identifications on ∂R.

To settle this, Rauzy [114] proved that R forms a fundamental domain of the
lattice

Λ = (πu,1l(1)− πu,1l(2))Z⊕ (πu,1l(1)− πu,1l(3))Z,
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Fig. 3.12 The domain exchange on the classical Rauzy fractal associated with the Tribonacci
substitution: the bright domain R(1) is translated by πu,1l(1), the darker domain R(2) is translated
by πu,1l(2), and finally the darkest domain R(3) is translated by πu,1l(3). The union of the
translated domains gives R again

i.e., it forms a tiling of 1⊥ when translated by elements of Λ. Thus R can be
seen as a subset of the 2-torus 1⊥/Λ and since it is a fundamental domain of Λ it
covers the torus without overlaps (apart from the boundary). This gives the desired
identifications on ∂R. If we look at the domain exchange on this torus we see that
πu,1l(i) ≡ πu,1l(j) (mod Λ) holds for i, j ∈ {1, 2, 3}. Thus on this torus all the
translations performed by the domain exchange E become the same and, hence, on
the torus the mapping E induces a rotation by πu,1l(1). One can show (by defining
a suitable “representation map” for the elements of X(σ) on the torus 1⊥/Λ) that
(X(σ),Σ) is measurably conjugate to (1⊥/Λ,+πu,1l(1)), which is a rotation on
the 2-torus. We also refer to [52, Section 8] where rigorous arguments are given in
a general context (a sketch of these arguments is provided in Sect. 3.9.2 below).

In the preceding example various properties of the Rauzy fractal were needed
in order to get the measurable conjugacy between the substitutive system and the
rotation. Our aim is to establish these conditions for S-adic Rauzy fractals under a
set of natural conditions. Since tiling properties of S-adic Rauzy fractals will play
an important role we will now define some collections of Rauzy fractals that will
later be shown to provide tilings in the following sense.

Definition 3.6.3 (Multiple Tiling and Tiling) A collection K of subsets of a
Euclidean space E is called a multiple tiling of E if each element of K is a compact
set which is equal to the closure of its interior, and if there is m ∈ N such that almost
every point (w.r.t. Lebesgue measure) of E is contained in exactly m elements of K.
If m = 1 then a multiple tiling is called a tiling.

The collections of tiles we need in our setting are defined in terms of so-called
discrete hyperplanes. These objects were first defined and studied in the context
of theoretical computer science (see [115] and later [7, 93]) and have interesting
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connections to generalized continued fraction algorithms (cf. e.g. [45, 79, 80, 90,
92]). The formal definition reads as follows. Pick w ∈ R

d≥0 \ {0}, then (setting
ei = l(i) for i ∈ A)

Γ (w) = {[x, i] ∈ Z
d ×A : 0 ≤ 〈x, w〉 < 〈ei , w〉}.

This has a geometrical meaning: if we interpret the symbol [x, i] ∈ Z
d × A as the

hypercube or “face”

[x, i] =
{

x+
∑

j∈A\{i}
λj ej : λj ∈ [0, 1]

}

, (3.34)

the set Γ (w) turns into a “stepped hyperplane” that approximates w⊥ by hyper-
cubes. In Fig. 3.13 this is illustrated for two cases: for a rational vector w, which
leads to a periodic pattern and for an irrational vector w which yields an aperiodic
one. A finite subset of a discrete hyperplane will often be called a patch.

Using the concept of discrete hyperplane we define the following collections
of Rauzy fractals. Let σ be a sequence of substitutions with generalized right
eigenvector u ∈ R

d
>0 and choose w ∈ R

d
≥0 \ {0}. Then, following [52, Section 2.10],

we set

Cw = {πu,wx+Rw(i) : [x, i] ∈ Γ (w)}. (3.35)

As mentioned above, we will see that each of these collections forms a tiling of the
space w⊥ under natural conditions. A special role will be played by the collection
C1 which will give rise to a periodic tiling of 1⊥ by lattice translates of the Rauzy
fractal R.

Fig. 3.13 Examples of stepped planes. On the left hand side the stepped plane Γ (1), on the right
hand side Γ (u) with u as in Example 3.6.2. Since 1 is rational the stepped plane Γ (1) is periodic,
while the irrationality of u leads to an aperiodic structure in Γ (u)
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3.6.2 Balance, Algebraic Irreducibility, and Strong
Convergence

Let (Xσ ,Σ) be an S-adic system. As we mentioned already, the associated Rauzy
fractals can be used to prove that (Xσ ,Σ) is measurably conjugate to a rotation on
a torus provided that they have suitable properties. In the present section we will
discuss two conditions that have to be imposed on σ in order to guarantee that each
of the associated Rauzy fractals Rw, w ∈ R≥0 \ {0}, as well as each of their subtiles
Rw(i), i ∈ A, is a compact set that is the closure of its interior and has a boundary
of zero measure λw.

The first property is balance and as we will see immediately it entails com-
pactness of Rw and its subtiles (see e.g. [1, 44] or [52, Section 2.4] for similar
definitions).

Definition 3.6.4 (Balance) Let A be an alphabet and consider a pair of words
(u, v) ∈ A∗ ×A∗ of the same length. If there is C > 0 such that

∣
∣|v|i − |u|i

∣
∣ ≤ C

holds for each letter i ∈ A, the pair (u, v) is called C-balanced. A languageL ⊂ A∗
is called C-balanced if each pair (u, v) ∈ L × L with |u| = |v| is C-balanced. It is
called finitely balanced if it is C-balanced for some C > 0.

In Definition 3.2.3 and in Sect. 3.3.2 we defined balance of an infinite sequence
and applied this notion to Sturmian sequences as well as to Arnoux-Rauzy
sequences. For a general S-adic system (Xσ ,Σ) it is more convenient to look
at balance of the associated language Lσ since there might be more than one
limit sequence associated with the given directive sequence σ . Of course, by
Proposition 3.5.3(ii) primitivity of σ implies that each of these limit sequences has
the language Lσ of factors.

The following result goes back essentially to [1, Proposition 7] and, in the form
we present it here, is contained in [52, Lemma 4.1] (in fact, the conditions that are
imposed on σ in that paper are slightly weaker than ours).

Proposition 3.6.5 Let σ be a primitive and recurrent sequence of unimodular
substitutions. Then Rw and each of its subtiles is compact for each w ∈ R

d
≥0 \ {0}

if and only if Lσ is finitely balanced.

Proof Since Rw as well as each of its subtiles is closed by definition it suffices to
prove that

Rw is bounded for each w ∈ R
d≥0 \ {0} ⇐⇒ Lσ is finitely balanced.

(3.36)

We start with proving (3.36) for the case w = 1 and follow [52]. Let u be a
generalized right eigenvector for σ which exists by Proposition 3.5.5.

If R is bounded then there is C > 0 such that ‖πu,1l(p)‖∞ ≤ C for
each prefix of a limit sequence of σ . Let u, v ∈ Lσ be of equal length. Then,
by primitivity these words are factors of a limit sequence which entails that
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‖πu,1l(u)‖∞, ‖πu,1l(v)‖∞ ≤ 2C. As l(u)− l(v) ∈ 1⊥ this yields ‖l(u)− l(v)‖∞ =
‖πu,1l(u)− πu,1l(v)‖∞ ≤ 4C and, hence, Lσ is 4C-balanced.

Assume now that Lσ is C-balanced and let w be a limit sequence of σ . Let p

be a prefix of w and write w = v0v1 . . . where vk ∈ A∗ with |vk| = |p| for each
k ≥ 0. By C-balance, ‖πu,1l(vk) − πu,1l(p)‖∞ ≤ C for each k ∈ N and, hence,
∥
∥ 1

n

∑n−1
k=0 πu,1l(vk)−πu,1l(p)

∥
∥∞ ≤ C for each n ∈ N. By Lemma 3.5.10 (see proof

of Part 1), the letter frequencies of w are given by the entries of the vector u/‖u‖1
which implies that limn→∞ 1

n

∑n−1
k=0 πu,1l(vk) = 0 and thus

‖πu,1l(p)‖∞ =
∥
∥
∥
∥

lim
n→∞

1

n

n−1
∑

k=0

πu,1l(vk)− πu,1l(p)

∥
∥
∥
∥∞

≤ C.

This finishes the proof of (3.36) for the case w = 1. The full statement (3.36)
follows from this because Rw = πu,wR, which implies that R is bounded if and
only if Rw is bounded for each w ∈ R

d
≥0 \ {0}. �	

Our next aim is to make sure that Rw(i) has nonempty interior for each w ∈
R

d
≥0 \ {0} and each i ∈ A. This will require much more work. In a first step

observe that we have no hope to get nonempty interior if u has coordinates which are
rationally dependent, i.e., if there is x ∈ Z

d such that 〈x, u〉 = 0. Indeed, in this case
the set Rw is contained in a finite union of proper affine subspaces of w⊥. We wish
to exclude this case first. This is related to an irreducibility property (going back to
[52, Section 2.2]) of the underlying set of incidence matrices which we define now.

Definition 3.6.6 (Algebraic Irreducibility) Let M = (Mn) be a sequence of
nonnegative integer matrices. We say that M is algebraically irreducible if for each
m ∈ N there is n > m such that the characteristic polynomial of M[m,�) is irreducible
for each � ≥ n.

A sequence σ of substitutions is called algebraically irreducible if it has a
sequence of incidence matrices which is algebraically irreducible.

Remark 3.6.7 For our purposes we can replace algebraic irreducibility by the
weaker condition that for each m ∈ N the matrix Mm is regular and there is n > m

such that M[m,�) does not have 1 as eigenvalue for each � ≥ n. This condition is
easier to check than algebraic irreducibility.

However, since we will always have to assume balance in our setting all but
the dominant eigenvalue of large blocks M[m,�) should be inside the closed unit
disk anyway (cf. also the definition of the Pisot condition in (3.59)). Thus this new
condition is not essentially weaker than algebraic irreducibility. For this reason we
work with algebraic irreducibility in the sequel.

Together with other properties, algebraic irreducibility of σ implies rational
independence of the right eigenvector. We announce this in the following lemma,
whose elegant proof is taken from [52, Lemma 4.2].
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Lemma 3.6.8 Let σ be an algebraically irreducible sequence of substitutions with
finitely balanced languageLσ that admits a generalized right eigenvector u ∈ R

d≥0\{0}. Then u has rationally independent coordinates.

Proof The proof is done by contradiction. Assume that u has rationally dependent
coordinates. Then there is x ∈ Z

d \ {0} such that 〈x, u〉 = 0. This implies that
〈(M[0,n))

tx, ei〉 = 〈x,M[0,n)ei〉 = 〈x, lσ[0,n)(i)〉 = 〈x, πu,1lσ[0,n)(i)〉 is uniformly
bounded in i ∈ A and n ∈ N by balance of Lσ . Thus (M[0,n))

tx ∈ Z
d is bounded

and, hence, there exists an integer k and infinitely many � > k with (M[0,k))
tx =

(M[0,�))
tx. Multiplying by ((M[0,k))

t )−1 we see that x is an eigenvector of (M[k,�))
t

with eigenvalue 1. Since � can be chosen arbitrarily large this contradicts algebraic
irreducibility. �	

In Definition 3.5.6 the concept of weak convergence of a sequence of matrices
is introduced. In what follows, we will need a stronger form of convergence, viz.
strong convergence. If we look back to Lemma 3.2.12 we see that the cascade of
inductions we perform on the interval leads to smaller and smaller intervals (that are
blown up by renormalization) whose lengths tend to 0. To get an analogous behavior
on S-adic Rauzy fractals we need to introduce a certain subdivision on them whose
pieces have a diameter that tends to zero. It will turn out that strong convergence is
the right condition to guarantee this behavior. We thus recall the definition of strong
convergence which is well known in the theory of generalized continued fraction
algorithms (see e.g. [119, Definition 19]) and then derive it from the conditions we
introduced so far.

Definition 3.6.9 (Strong Convergence) We say that a sequence M = (Mn) of
nonnegative integer matrices is strongly convergent to u ∈ R

d
≥0 \ {0} if

lim
n→∞πu,1M[0,n)ei = 0 for all i ∈ A.

If σ has a strongly convergent sequence of incidence matrices we say that σ is
strongly convergent.

The difference between weak and strong convergence is explained and illustrated
in Fig. 3.14: while weak convergence of vectors can be seen on the unit ball, strong
convergence takes place at their end points.

M[0,n) e1

M[0,n) e2
u

Fig. 3.14 The sequence M = (Mn) of matrices is weakly convergent, if the intersections of
M[0,n)ei with the unit ball converge to the intersection of the generalized right eigenvector u with
the unit ball. It is strongly convergent, if the minimal distance of the point M[0,n)ei to the ray R+u
converges to zero for each i ∈ A. Summing up: weak convergence takes place on the unit ball
while strong convergence concerns the end points of the vectors
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The following result on strong convergence will be needed in the sequel. It is the
content of [52, Proposition 4.3].

Proposition 3.6.10 Let σ be a primitive, algebraically irreducible, and recurrent
sequence of substitutions with finitely balanced language Lσ . Then

lim
n→∞ sup{‖πu,1M[0,n)l(v)‖∞ : v ∈ L(n)

σ } = 0.

By primitivity this implies that σ is strongly convergent.

The proof of this result is quite tricky. We give a sketch to illustrate the ideas and
refer to [52, Proposition 4.3] for details.

Proof (Sketch) Let w be a limit sequence of σ . By primitivity we may apply Propo-
sition 3.5.3(ii) to the shifted sequence (σn, σn+1, σn+2, . . .). Thus the language L(n)

σ

is equal to the language L(w(n)) of factors of the nth “desubstitution” w(n) of w (see
(3.22)), i.e., each v ∈ L(n)

σ satisfies l(v) = l(p) − l(q), where p and q are prefixes
of w(n). Thus it suffices to prove

lim
n→∞ sup{‖πu,1M[0,n)l(p)‖∞ : p is a prefix of w(n)} = 0. (3.37)

Let (in) be the sequence of first letters of w(n) and choose ε > 0 arbitrary.
Define the sets Sn = {πu,1l(p) : p is a prefix of σ[0,n)(in)} and R̃ :=
{πu,1l(p) : p is a prefix of w}.

Then Sn → R̃ for n → ∞ in Hausdorff metric. Since, on the other hand,
πu,1M[0,n)l(p) + Sn ⊂ R̃ holds for each p ∈ A∗ such that pin is a prefix w(n)

we obtain

‖πu,1M[0,n)l(p)‖∞ < ε (3.38)

for each p ∈ A∗ such that pin is a prefix w(n) for a large enough n. We have to prove
(3.38) for arbitrary prefixes p of w(n). If N(p) = {n ∈ N : pin is a prefix of w(n)}
is infinite then (3.38) yields

lim
n∈N(p), n→∞‖πu,1M[0,n)l(p)‖∞ = 0. (3.39)

Using algebraic irreducibility and balance by some tricky arguments it is now
possible to find a set P of prefixes of w such that the abelianizations l(P ) contain a
basis of Rd and N(P) =⋂p∈P N(p) is an infinite set (moreover, the elements of P

can by “synchronized” in a certain way by using the recurrence of σ ). This implies
that (3.39) is true for each p ∈ P when N(p) is replaced by N(P), i.e.,

lim
n∈N(P ), n→∞‖πu,1M[0,n)l(p)‖∞ = 0 (p ∈ P).
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Since l(P ) contains a basis of Rd we gain

lim
n∈N(P ), n→∞‖πu,1M[0,n)x‖∞ = 0 (x ∈ R

d). (3.40)

Using primitivity and recurrence again, Eq. (3.37) can be obtained using (3.38) and
(3.40). This again requires some work and we omit the details. �	

3.7 Properties of S-adic Rauzy Fractals

Based on the results of the previous section we will now study deeper properties of
S-adic Rauzy fractals. In particular, the present section is devoted to the illustration
of the proof of the following result from Berthé et al. [52, Theorem 3.1 (ii)].

Theorem 3.7.1 Let S be a finite set of unimodular substitutions over a finite
alphabet A and let σ = (σn) be a primitive and algebraically irreducible sequence
of substitutions taken from the set S. Assume that there is C > 0 such that for every
� ∈ N there exists n ≥ 1 such that (σn, . . . , σn+�−1) = (σ0, . . . , σ�−1) and the
language L(n+�)

σ is C-balanced.
Then each subtile R(i), i ∈ A, of the Rauzy fractal R is a nonempty compact

set which is equal to the closure of its interior and has a boundary whose Lebesgue
measure λ1 is zero.

Remark 3.7.2

(i) We can see that the assumptions of this theorem contain all the properties
we discussed in the previous subsections. We could have used the stronger
assumption that σ is primitive, recurrent, algebraically irreducible, and has C-
balanced language L(n)

σ for each n ∈ N. However, although this assumption
is more handy and holds for many natural examples it would lead to a
measure zero subset of the set of “all” sequences σ . The conditions we give
in Theorem 3.7.1 will turn out to be “generic” in the sense that they are true
for “almost all” sequences σ . All this will be made precise when we develop a
metric counterpart of our theory in Sect. 3.9.3.

(ii) Let σ be a substitution on the alphabet A. It is easy to prove that for each
C > 0 there is C′ > 0 such that σ(w) is C′-balanced for each C-balanced
sequence w ∈ AN. Applying this to the substitution σ = σ[0,n+�) for some

n, � with balanced language L(n+�)
σ we see that we can choose the constant C

in Theorem 3.7.1 in a way that also Lσ is C-balanced. We will always assume
that C is chosen in this way in the sequel.

(iii) We confine ourselves to finite sets S of substitutions to keep things as simple
as possible. With a bit more effort it is possible to generalize Theorem 3.7.1
to infinite sets S. This is of interest because infinite sets S correspond to
multiplicative continued fraction algorithms like the important Jacobi-Perron
algorithm or an acceleration of the Arnoux-Rauzy algorithm proposed recently
by Avila et al. [30]. This more general setting is treated in [52].
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Theorem 3.7.1 will enable us to study tiling properties of Rw and its subtiles
which will finally lead to the measurable conjugacy of (Xσ ,Σ) to a rotation.

The proof of Theorem 3.7.1 is quite long and technical and we refer to [52,
Section 6] for details. Our aim here is to illustrate the main ideas in a way that is
hopefully more accessible to a broader readership than the original research paper.
First we will establish a set equation for the subtiles Rw(i), i ∈ A, of Rw that
governs certain subdivisions of Rw(i). Using this set equation we will be able to
establish the properties of S-adic Rauzy fractals stated in Theorem 3.7.1.

Theorem 3.7.1 has a number of predecessors. For instance, Lagarias and
Wang [96] proved that each self-affine tile T is the closure of its interior and ∂T
has Lebesgue measure zero. For substitutive Rauzy fractals the according result was
proved by Sirvent and Wang [124]. However, in all these cases the sets have strong
self-affinity properties which are no longer present in our setting. We therefore need
new ideas and more efforts to get the desired results (in particular, the proof of the
fact that the boundary of an S-adic Rauzy fractal has measure zero will need quite
some work).

3.7.1 Set Equations for S-adic Rauzy Fractals and Dual
Substitutions

The first important tool in the proof of Theorem 3.7.1 will be a set equation for
the subtiles Rw(i), w ∈ R

d
≥0 \ {0} and i ∈ A, of a sequence σ of unimodular

substitutions as well as for related subtiles associated with “shifts” of σ . This set
equation equips the sets Rw(i) with a subdivision structure that is governed by σ .
We now give an idea on how this works.

Let σ = (σn) be a primitive and recurrent sequence of unimodular substitutions
over the alphabet A with generalized right eigenvector u ∈ R

d
>0 and choose w ∈

R
d
≥0 \ {0}. In all what follows, keep in mind the definition of the subtile Rw(i) from

(3.33). We choose a limit sequence w of σ and associate with it the sequence (w(n))

of its “desubstitutions” according to (3.22).
Consider the set {πu,wl(p) : pi is a prefix of w} and observe that by the

definition of a limit sequence each p ∈ A∗ for which pi is a prefix of w can be
written as p = σ0(p

′)p0 with p0i a prefix of σ0(j) for some j ∈ A and p′j some
prefix of w(1). Using this decomposition of p we obtain the decomposition

{πu,wl(p) : pi is a prefix of w} =
⋃

j∈A, p0∈A∗
σ0(j)=p0iA∗

{πu,wl(p0)+ πu,w(lσ0(p
′)) : p′j is a prefix of w(1)}.

(3.41)
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From (3.21) we see that lσ0(p
′) = M0l(p′). Moreover, direct calculation (see [52,

Lemma 5.2]) yields that πu,wM0 = M0πM−1
0 u,Mt

0w. Inserting this in (3.41) we gain

{πu,wl(p) : pi is a prefix of w} =
⋃

j∈A, p0∈A∗
σ0(j)=p0iA∗

πu,wl(p0)+M0{πM−1
0 u,Mt

0wl(p′) : p′j is a prefix of w(1)}.

Taking the union over all (finitely many, by Proposition 3.5.3) limit sequences of σ

and taking the closure we obtain by (3.33) that

Rw(i) =
⋃

j∈A, p0∈A∗
σ0(j)=p0iA∗

πu,wl(p0)+

M0{πM−1
0 u,Mt

0wl(p′) : p′j is a prefix of some limit sequence of (σn+1)}.
(3.42)

We now inspect the closures in the union in (3.42). Looking at the definition of
subtiles in (3.33) we see that these are subtiles of the Rauzy fractal corresponding to
the shifted sequence (σn+1)n≥0 of σ . Indeed, it follows from Proposition 3.5.5 that
M−1

0 u is the right eigenvector of this shifted sequence. This motivates the following
definitions.

For k ∈ N let

π(k)
u,w = π

M−1
[0,k)

u,Mt
[0,k)

w, (3.43)

denote the subtiles of the shifted sequence of substitutions (σn+k)n∈N which live in
the hyperplane (Mt

[0,k)w)⊥ by

R(k)
w (i) := {π(k)

u,wl(p′) : p′j is a prefix of some limit sequence of (σn+k)n∈N},
(3.44)

and set R(k)
w = ⋃

i∈AR(k)
w (i). Together with these notations (3.42) can be

generalized by using similar arguments as we used in its proof. The generalized
form of (3.42) reads as follows (for a detailed proof see [52, Proposition 5.6]).

Proposition 3.7.3 (The Set Equation) Let σ be a primitive and recurrent
sequence of unimodular substitutions with generalized right eigenvector u. Then for
each [x, i] ∈ Z

d ×A and every k, � ∈ N with k < � we have

π(k)
u,wx+R(k)

w (i) =
⋃

[y,j ]∈E∗1 (σ[k,�))[x,i]
M[k,�)(π

(�)
u,wy+R(�)

w (j)), (3.45)
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where

E∗1 (σ )[x, i] = {[M−1
σ (x+ l(p)), j ] : j ∈ A, p ∈ A∗, pi prefix of σ(j)}.

(3.46)

The elements in the union on the right hand side of (3.45) are called the level
(�−k) subtiles of π

(k)
u,wx+R(k)

w (i). The collection of all the elements in the union is

called the (�− k)-th subdivision of π
(k)
u,wx +R(k)

w (i). This will often be applied for
the case k = 0. In Fig. 3.16 the set equation is illustrated for the situation discussed
in Example 3.7.8.

The dual geometric realization E∗1 (σ ) of a substitution σ defined in (3.46) will
turn out to be useful when we define so-called coincidence conditions in Sect. 3.8.2.
If we regard the pairs [x, i] as hypercubes as we did in (3.34) this dual also has a
geometric meaning. We explain this in the following example.

Example 3.7.4 Let σ be the Tribonacci substitution defined in (3.20). Then by direct
computation we see that E∗1 (σ ) is given by

E∗1 (σ )[0, 1] = {[0, 1], [0, 2], [0, 3]},
E∗1 (σ )[0, 2] = {[(0, 0, 1)t , 1]},
E∗1 (σ )[0, 3] = {[(0, 0, 1)t , 2]}

together with the obvious fact that E∗1 (σ )[x, i] = M−1
σ x + E∗1 (σ )[0, i]. One can

extend the definition of E∗1 (σ ) to subsets of Y ⊂ Z
d ×A in a natural way by setting

E∗1 (σ )Y =
⋃

[x,i]∈Y

E∗1 (σ )[x, i].

Using this extension we can then iterate E∗1 (σ ). The geometric interpretation of
E∗1 (σ )12[0, 1] is depicted in Fig. 3.15. It is not by accident that this image is a good
approximation of (an affine image of) the classical Rauzy fractal corresponding to σ

depicted in Fig. 3.12. In fact, E∗1 (σ ) can even be used to give an alternative definition
of R, see for example [18, 51].

The dual E∗1(σ ) and its higher dimensional generalizations have been investi-
gated thoroughly in connection with the study of substitutive dynamical systems and
their Rauzy fractals (see [18, 51, 74, 91, 100, 117]). We need a result of Fernique [79]
that shows how E∗1 (σ ) behaves with respect to discrete hyperplanes. Before we state
it we introduce some notation. Let σ be a sequence of substitutions with generalized
right eigenvector u ∈ R

d
>0 and let a fixed vector w ∈ R

d
≥0 \ {0} be given (such that

the Rauzy fractal Rw can be defined). Then, motivated by the projections (3.43) we
needed in the formulation of the set equation we set

u(k) = (M[0,k))
−1u, w(k) = (M[0,k))

tw (k ∈ N). (3.47)
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Fig. 3.15 An approximation
of R using E∗1 (σ )

Lemma 3.7.5 Let σ = (σn) be a sequence of unimodular substitutions. Then for
all k < � the following assertions hold.

(i) M[k,�)(w(�))⊥ = (w(k))⊥,
(ii) E∗1 (σ[k,�))Γ (w(k)) = Γ (w(�)),

(iii) for distinct pairs [x, i], [x′, i ′] ∈ Γ (w(k)) the images E∗1 (σ[k,�))[x, i] and
E∗1 (σ[k,�))[x′, i ′] are disjoint patches of Γ (w(�)).

Proof Assertion (i) is an immediate consequence of the definition of w(k), asser-
tions (ii) and (iii) are the content of [79, Theorem 1]. Their proof is a bit tedious,
however, it just uses the definition of discrete hyperplane and checks the required
conditions (assertion (iii) is essentially already contained in [18, Lemma 3]). �	

Combining Proposition 3.7.3 and Lemma 3.7.5 we get the following result in
which we use the notation

C(k)
w = {πu,wx+R(k)

w (i) : [x, i] ∈ Γ (w(k))} (k ∈ N)

for the collection of subtiles associated with the shifted sequence (σn+k)n∈N of σ .

Proposition 3.7.6 Let σ be a primitive and recurrent sequence of unimodular
substitutions with generalized right eigenvector u. Then for each [x, i] ∈ Z

d × A
and every k, � ∈ N with k < � we have

⋃

[x,i]∈Γ (w(k))

πu,wx+R(k)
w (i) =

⋃

[y,j ]∈Γ (w(�))

M[k,�)(π
(�)
u,wy+R(�)

w (j)).
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The collection M[k,�)C(�)
w is a refinement of C(k)

w in the sense that each element of the
latter is a finite union of elements of the former.

The following lemma shows that the set equation subdivides Rauzy fractals into
sets whose diameter eventually tends to zero (see [52, Lemma 5.5]).

Lemma 3.7.7 Let σ = (σn) ∈ SN be a primitive, algebraically irreducible, and
recurrent sequence of unimodular substitutions with balanced language Lσ , and let
w ∈ R

d
≥0 \ {0}. Then

lim
n→∞M[0,n)R(n)

w = {0}.

Proof As M[0,n)π
(n)
u,w = πu,w M[0,n) and πu,w = πu,w πu,1, we conclude that

M[0,n)π
(n)
u,w l(v) = πu,w πu,1 M[0,n) l(v) for all v ∈ L(n)

σ . Now, the result follows

from Proposition 3.6.10 and the definition of R(n)
w in (3.44). �	

We explain the concepts and results of this section in the next example.

Example 3.7.8 Recall the definition of the Arnoux-Rauzy substitutions σ1, σ2, σ3
from (3.18) and consider a sequence

σ = (σ1, σ2, σ3, σ1, σ2, σ3, σ1, σ2, σ3, . . . ),

where the dots “. . . ” mean that the sequence is continued in a way that σ is primitive
and recurrent.

If we start with three blocks of the form σ1, σ2, σ3 it turns out that Rw is close to
the classical Rauzy fractal studied in Example 3.6.2 in Hausdorff metric, which, of
course, doesn’t say anything about its topological properties or tiling properties; we
just did it this way to get nice pictures in Fig. 3.16.

In Fig. 3.16a we show a patch P0 of the collection Cw (for some convenient vector
w ∈ R

3
≥0 \ {0}) of subtiles associated with σ , while Fig. 3.16b shows a patch P1 of

the collection C(1)
w associated with the shifted sequence

σ (1) = (σ2, σ3, σ1, σ2, σ3, σ1, σ2, σ3, . . . ).

Note that, since w and w(1) are not collinear, these patches live in two different
planes which is illustrated in Fig. 3.16c.

In this setting, the set equation in Proposition 3.7.3 says that each element of the
collection Cw can be viewed as the union of elements from M0C(1)

w . In other words,
if we take the patch P1 depicted in Fig. 3.16b and apply the linear mapping M0 to it,
the resulting patch M0P1 lies in the same plane w⊥ as the collection Cw and some
elements of P0 are unions of elements from M0P1. In Fig. 3.16d this is illustrated:
the image of the patch P1 from Fig. 3.16b under the mapping M0 is subdividing
some parts of P0. Figure 3.16e illustrates that, according to Proposition 3.7.6, each
element of Cw is a union of elements from M0C(1)

w .
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(a) (b) (c)

)e()d(

Fig. 3.16 Illustration of the set equation. (a) shows a patch P0 of the collection Cw = C(0)
w , (b)

shows a patch P1 of C(1)
w . In (c) P0 and P1 are drawn together to illustrate that they lie in different

planes. In (d) the matrix M0 is applied to P1: the image M0P1 is located in the same plane as P0

and forms a subdivision of tiles of P0. The subdivision of P0 in patches of M0C(1)
w is shown in (e)

for the whole patch P0

Note that in Fig. 3.16 the collections Cw and C(1)
w are depicted as tilings and the

patches of M0C(1)
w subdivide the elements of Cw without overlap. This is the situation

we “dream” of. So far, we only know that elements of Cw are unions of elements of
M0C(1)

w . To realize this ideal situation we need to work more.

3.7.2 An S-adic Rauzy Fractal Is the Closure of Its Interior

The present section is devoted to the interior of the subtiles. We start with a covering
result taken from [52, Proposition 6.2]. In its statement we use the following
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terminology. Let K be a collection of subsets of a set D. The covering degree of
K (in D) is the largest number m having the property that each x ∈ D is contained
in at least m elements of K.

Lemma 3.7.9 Let σ be a sequence of unimodular substitutions and w ∈ R≥0 \
{0}. If σ is primitive, recurrent, algebraically irreducible, and has finitely balanced
language Lσ then C(n)

w covers (w(n))⊥ with finite covering degree for each n ∈ N.
The covering degree of C(n)

w increases monotonically with n.

Proof We prove the covering property for Cw. The covering property for C(n)
w as

well as the monotonicity of the covering degree follow from this by the set equation
in Proposition 3.7.3.

By Proposition 3.7.6 with the choices k = 0 and � = n ≥ n0 we know that

⋃

T ∈Cw

T =
⋃

n≥n0

⋃

T ∈C(n)
w

M[0,n)T =
⋃

n≥n0

⋃

[y,j ]∈Γ (w(n))

M[0,n)(π
(n)
u,wy+R(n)

w (j))

(3.48)
holds for each n0 ∈ N. Because Cw is a locally finite collection of compact sets
it suffices to show that

⋃

T ∈Cw
T is dense in w⊥. To prove this we show that the

right hand side of (3.48) is dense in w⊥ for each n0 ∈ N. To see this note that by
the definition of the discrete hyperplane Γ (w(n)) the set of translates in this union
satisfies (recall from (3.47) that w(n) = (M[0,n))

tw)

{M[0,n)π
(n)
u,wy : [y, j ] ∈ Γ (w(n))} =

{πu,wM[0,n)y : y ∈ Z
d , 0 ≤ 〈y, (M[0,n))

tw〉 ≤ max
i∈A

〈ei , (M[0,n))
tw〉} =

{πu,wz : z ∈ Z
d , 0 ≤ 〈z, w〉 ≤ max

i∈A
〈M[0,n)ei , w〉}.

As u has rationally independent coordinates by Lemma 3.6.8, the set

{πu,wz : z ∈ Z
d , 0 ≤ 〈z, w〉}

is dense in w⊥. Since maxi∈A〈M[0,n)ei , w〉 → ∞ for n → ∞ by primitivity, this
yields that

⋃

n≥n0

⋃

[y,j ]∈Γ (w(n))

M[0,n)π
(n)
u,wy = {πu,wz : z ∈ Z

d , 0 ≤ 〈z, w〉}. (3.49)

is dense in w⊥ for each n0 ∈ N. Because n0 was arbitrary, and the limit
limn→∞M[0,n)R(n)

w (i) = {0} by Lemma 3.7.7 this implies that the right hand side
of (3.48) is dense in w⊥ for each n0 ∈ N and we are done. �	

From this result we get the assertion on the interiors of S-adic Rauzy fractals.
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Proposition 3.7.10 Let σ be a sequence of unimodular substitutions over the
alphabetA and w ∈ R≥0\{0}. If σ is primitive, recurrent, algebraically irreducible,
and has finitely balanced language Lσ , then R(i) is the closure of its interior for
each i ∈ A.

Proof Choose some w ∈ R≥0 \ {0}. By Lemma 3.7.9 the collection C(n)
w is a locally

finite covering of (w(n))⊥ by compact sets for each n ∈ N. Thus by Baire’s theorem
for each n ∈ N there is in ∈ A such that int(R(n)

w (in)) �= ∅. By primitivity of σ

the set equation in Proposition 3.7.3 implies that each R(n)
w (i) contains R(k)

w (ik) for
some k > n. Thus for each n ∈ N and each i ∈ A we have int(R(n)

w (i)) �= ∅.
For each i ∈ A and each n ∈ N, Proposition 3.7.3 yields a subdivision of Rw(i)

in translates of sets of the form M[0,n)R(n)
w (j), j ∈ A. The diameters of these sets

tend to 0 by Lemma 3.7.7. Since they all contain inner points, the set of inner points
of Rw(i) is dense in Rw(i). In other words, Rw(i) is the closure of its interior. The
result now follows by taking w = 1. �	

3.7.3 The Generalized Left Eigenvector

Let σ be a primitive and recurrent sequence of unimodular substitutions. If we look
at the set equation in Proposition 3.7.3 for k = 0 and � = n we see that it subdivides
the sets Rw(i), i ∈ A, into translates of sets of the form R(n)

w (j), j ∈ A. In the
well-studied substitutive case R(n)

w (i) = Rw(i) holds for each n, i.e., the sets Rw(i)

are subdivided into small copies of themselves. This fact is crucial in most of the
proofs of properties of substitutive Rauzy fractals (see e.g. [123]). In our case, in
general the sets R(n)

w are not only different for each n ∈ N, but also live in different
hyperplanes (w(n))⊥ of Rn.

In what follows we want to deal with this problem by choosing a strictly
increasing sequence (nk) of integers such that R(nk)

w (i) is at least getting closer
and closer to Rw(i) in Hausdorff metric when k →∞.

To this matter let σ be a sequence of substitutions that satisfies the assumptions
of Theorem 3.7.1. We now successively choose subsequences of the integers to get
the desired properties.

(a) Consider the set equation in Proposition 3.7.3 for the choices k = 0, � = m

and k = n, � = n +m. Look at the subdivision of Rw(i) and R(n)
w (i). We can

hope to get Rw(i) and R(n)
w (i) close to each other in Hausdorff metric if they

have the same subdivision structure. From Proposition 3.7.3 we see that these
subdivision structures are the same if (σ0, . . . , σm−1) = (σn, . . . , σn+m−1).
Since σ is recurrent, there exist strictly increasing sequences (nk) and (�k) such
that

(σ0, . . . , σ�k−1) = (σnk , . . . , σnk+�k−1). (3.50)

By recurrence and primitivity it is possible to choose (nk) and (�k) in a way that
there is some h such that M[�k−h,�k) is the same primitive matrix for all k ∈ N.
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(b) We know that M[0,�k)R
(�k)
w (j) tends to {0} in Hausdorff metric for k → ∞

by Lemma 3.7.7 so that the subdivision corresponding to the choice k = 0,
� = �k in the set equation gives a subdivision of Rw(j) into sets whose
diameter tends to 0 for k → ∞. However, if we consider R(nk)

w (i), there is no
reason for M[nk,nk+�k)R

(nk+�k)
w (j) = M[0,�k)R

(nk+�k)
w (j) to tend to {0} unless

R(nk+�k)
w (j) is bounded uniformly in k. To this end we need to assume that

L(nk+�k)
σ is C-balanced as this implies that R(nk+�k)

w (j) is indeed bounded by
Proposition 3.6.5. In view of the conditions imposed on σ in Theorem 3.7.1 it
is, however, possible to change the sequence (nk) and (�k) chosen in (a) in a
way that also L(nk+�k)

σ is C-balanced for C ∈ N not depending on k.
(c) Still (a) and (b) give us no reason for R(nk)

w living in a hyperplane w(nk) close
to w which is needed in order to get R(nk)

w close to Rw in Hausdorff metric.
By the compactness of the space of directions in R

d , using the Hilbert metric
from Proposition 3.5.5 it is possible to exhibit a vector v ∈ R≥0 \ {0} for which
there exists subsequences of (nk) and (�k) (called (nk) and (�k) again) such that
limk→∞ v(nk)/‖v(nk)‖1 = v/‖v‖1. Here we set v(n) = (M[0,n))

t v.

Summing up, if the conditions of Theorem 3.7.1 are in force we can choose
sequences (nk) and (�k) satisfying (a), (b), and (c). The vector v defined in (c)
deserves special attention.

Definition 3.7.11 (Generalized Left Eigenvector) A vector v as in (c) is called a
generalized left eigenvector of σ .

Sequences (nk) and (�k) associated with σ in the above way will just be called
associated sequences for σ in the sequel (they are related to the property PRICE
of [52, Definition 5.8]). It turns out that associated sequences are suitable for our
purposes. In particular, we get the following result (we refer to [52, Proposition 5.12]
for details).

Proposition 3.7.12 Let σ be a sequence of substitutions that admits associated
sequences (nk) and (�k) and has a generalized left eigenvector v. Then for each
i ∈ A

lim
k→∞R(nk)

v (i) = Rv(i)

in Hausdorff metric.

Proof (Sketch) By (3.50) in (a) the sets Rv(i) and R(nk)
v (i) have the same

subdivision structure governed by E∗1 (σ[0,�k)) for k ∈ N. More precisely,

Rv(i) =
⋃

[y,j ]∈E∗1 (σ[0,�k))[0,i]
M[0,�k)(π

(�k)
u,v y+R(�k)

v (j)),

R(nk)
v (i) =

⋃

[y,j ]∈E∗1 (σ[0,�k))[0,i]
M[0,�k)(π

(nk+�k)
u,v y+R(nk+�k)

v (j)).

(3.51)
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By Proposition 3.6.10 the sets M[0,�k)R
(�k)
v (j) tend to {0} in Hausdorff metric for

k →∞. With more effort, using the balance conditions of (b) and the convergence
properties of (c), one can also show that the sets M[0,�k)R

(nk+�k)
v (j) tend to {0} in

Hausdorff metric for k → ∞. So replacing all these sets by {0} on the right hand
side of (3.51) changes the sets on the left hand side of (3.51) only very little in
Hausdorff metric for large k ∈ N. Thus for large k ∈ N the Hausdorff distance
between R(nk)

v (i) and Rv(i) is (up to an error tending to 0 for k →∞) bounded by

max
{

‖M[0,�k)(π
(�k)
u,v y− π(nk+�k)

u,v y‖∞ : [y, j ] ∈ E∗1 (σ[0,�k))[0, i]
}

=

max
{

‖πu,vM[0,�k)y− π(nk)
u,v M[0,�k)y‖∞ : [y, j ] ∈ E∗1 (σ[0,�k))[0, i]

}

.

One can now show that the latter maximum tends to 0 for k → ∞. Here one
uses that by the definition of the generalized left eigenvector in (c) the hyperplanes
(v(nk))⊥ converge to v⊥. �	

3.7.4 An S-adic Rauzy Fractal Has a Boundary of Measure
Zero

We now turn to the boundary of an S-adic Rauzy fractal. We start with a result on
level � subtiles contained in the interior of a given subtile whose detailed proof is
contained in [52, Lemma 6.6].

Lemma 3.7.13 Let σ be a sequence of unimodular substitutions that satisfies
the properties of Theorem 3.7.1 and let associated sequences (nk), (�k), and a
generalized left eigenvector v be given.

Then there is � ∈ N such that for each i, j ∈ A there is [y, j ] ∈ E∗1 (σ[0,�))[0, i]
such that

(i) M[0,�)(π
(�)
u,vy+R(�)

v (j)) ⊂ int(Rv(i)),

(ii) M[0,�)(π
(nk+�)
u,v y+R(nk+�)

v (j)) ⊂ int(R(nk)
v (i)) for each sufficiently large k ∈ N.

Moreover, the covering degree of C(n)
v does not depend on n.

Proof (Sketch) Since the conditions in the lemma imply that int(Rv(i)) �= ∅ (see
Proposition 3.7.10) and that the diameter of M[0,�)R(�)

v (j) becomes arbitrarily small
for large � (see Lemma 3.7.7), assertion (i) follows easily from primitivity.

The fact that � and y can be chosen in a way that (i) and (ii) hold simultaneously
is more difficult to prove. By Proposition 3.7.12 we get that R(nk)

v (i) → Rv(i) in
Hausdorff metric. Moreover,Rv(i) andR(nk)

v (i) have the same subdivision structure
for �k steps. This implies that the “inner structure” of these tiles is similar for large
k. However, as inner points are not respected by the Hausdorff metric, technical
difficulties occur and also the “outer structure”, i.e., the structure of the collections
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Cv and C(nk)
v has to be exploited. One can show that if a patch P occurs in a

discrete hyperplane Γ (w), then translates of P occur relatively densely in each
discrete hyperplane Γ (w̃) provided that ‖w − w̃‖∞ is small enough. In particular,
containment of translates of a patch P is an open property of discrete hyperplanes.
Thus, if k is large then at level nk there is a translation yk ∈ Z

d such that the sets
Γ (v) and Γ (v(nk))− yk have a large patch around the origin in common.

Summing up, this means that the collections C(nk)
v − π

(nk)
u,y yk converge7 to Cv for

k → ∞. This implies that the covering degree of C(nk)
v − π

(nk)
u,y yk is less than or

equal to the covering degree of Cv = C(0)
v for k large enough. Since the covering

degree of C(n)
v is monotonically increasing in n by Lemma 3.7.9, the last assertion

of the lemma follows.
The fact that the collections C(nk)

v − π
(nk)
u,y yk converge to Cv and have the same

covering degree can now be used to show that inner points of elements of Cv are
close to inner points of elements of C(nk)

v − π
(nk)
u,y yk for large k. Using this together

with the fact that Rv(i) and R(nk)
v (i) have the same subdivision structure for �k

steps, one can show that (i) and (ii) holds simultaneously as claimed. �	
After these preparations we can also prove the result on the measure of the

boundary of S-adic Rauzy fractals announced in Theorem 3.7.1.

Proposition 3.7.14 Let σ be a sequence of unimodular substitutions over the
alphabet A that satisfies the assertions of Theorem 3.7.1. Then the Lebesgue
measure λ1(∂R(i)) is zero for each i ∈ A.

Proof (Sketch) Choose � ∈ N and the sequences (nk) and (�k) as in Lemma 3.7.13
and consider Rv(i) for some i ∈ A (see Fig. 3.17a), where v is a generalized
left eigenvector of σ . Then subdivide Rv(i) into its level � subtiles as shown
in Fig. 3.17b. According to Lemma 3.7.13(i) there is at least one level � subtile
M[0,�)(π

(�)
u,vy + R(�)

v (j)) which is a subset of int(Rv(i)); this is indicated with

a black boundary in Fig. 3.17b. Letting mij = λv(M[0,�)R(�)
v (j))/λv(Rv(i)) and

m = min{mij : i, j ∈ A} we therefore gain

λv(∂Rv(i)) = λv(Rv(i) \ int(Rv(i))) ≤ (1−m)λv(Rv(i)).

Now we subdivide all level � subtiles of Rv(i) apart from M[0,�)(π
(�)
u,vy +R(�)

v (j))

in level nk subtiles where k is chosen in a way that nk ≥ �. This is illustrated in
Fig. 3.17c.

7In [111] a space of tilings is equipped with a topology by saying that two tilings are close to
each other if their tiles are close to each other in Hausdorff metric inside a large ball around the
origin. Although Cv and C(nk )

v are no tilings, an analogous topology can be used here: Cv and
C(nk)

v − π
(nk)
u,y yk are said to be close to each other if Γ (v) and Γ (v(nk ))− yk coincide inside a large

ball B around the origin and the tiles associated to an element of [y, i] ∈ Γ (v)∩B in each of these
two collections are close to each other in Hausdorff metric.
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)b()a(

)d()c(

Fig. 3.17 Illustration of the proof of Proposition 3.7.14. In (a) a subtile Rv(i), i ∈ A, is shown.
In (b) we see the �th subdivision of Rv(i). The level � subtile contained in int(Rv(i)) has black
boundary. In (c) all other level � subtiles are further subdivided in level nk subtiles. Each of them
contains a level nk + � subtile in its interior. These level nk + � subtiles, which a fortiori are also
contained in int(Rv(i)), are depicted in (d) also with black boundary

We iterate this procedure: each level nk subtile Rnk we got in this way is
subdivided in level nk + � subtiles. By Lemma 3.7.13(ii) one of these level nk + �

subtiles lies in the interior of Rnk (see Fig. 3.17d for an illustration of this) and, a
fortiori, in the interior of Rv(i). If we set

m
(nk)
ij = λv(M[0,nk+�)R(nk+�)

v (j))

λv(M[0,nk)R
(nk)
v (i))

= λv(M[nk,nk+�)R(nk+�)
v (j))

λv(R(nk)
v (i))

= λv(M[0,�)R(nk+�)
v (j))

λv(R(nk)
v (i))

(note that the last equation follows from recurrence of σ if k is chosen large enough)
and m(nk) = min{m(nk)

ij : i, j ∈ A} we obtain

λv(∂Rv(i)) ≤ (1−m)(1−m(nk))λv(Rv(i)).

Iterating this further we get for some infinite set K ⊂ N that

λv(∂Rv(i)) ≤ (1−m)
∏

k∈K

(1−m(nk))λv(Rv(i)). (3.52)
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One can show that m(nk) is uniformly bounded away from 0. To this end one needs
Proposition 3.7.12 and the fact that �k is chosen in a way that there is some h such
that M[�k−h,�k) is the same primitive matrix for all k ∈ N (see (a) in Sect. 3.7.3).
Now (3.52) yields λv(∂Rv(i)) = 0 and, hence, λ1(∂R(i)) = 0. �	

Propositions 3.7.10 and 3.7.14 imply Theorem 3.7.1.

3.8 Tilings, Coincidence Conditions, and Combinatorial
Issues

We now turn to tiling conditions of Rauzy fractals. Already in the substitutive case
combinatorial conditions like the strong coincidence condition (see e.g. [18]) or the
super coincidence condition and its variants (cf. [36, 51, 91]) have to be imposed
in order to gain all the tiling results on Rauzy fractals required for our purposes.
Here we discuss an S-adic version of these concepts and establish a variety of tiling
results. For detailed proofs we refer again to Berthé et al. [52]. As before, our aim
is to discuss the main ideas and to make these ideas understandable without going
into all the technical details.

3.8.1 Multiple Tiling and Inner Subdivision of the Subtiles

In this section we prove tiling properties of Rauzy fractals that hold without further
combinatorial conditions. Our first result contains a multiple tiling property of the
collections of Rauzy fractals Cv defined in (3.35).

Proposition 3.8.1 Let σ = (σn) be a primitive and algebraically irreducible
sequence of unimodular substitutions. Assume that there is C > 0 such that for
every � ∈ N there exists n ≥ 1 such that (σn, . . . , σn+�−1) = (σ0, . . . , σ�−1) and
the language L(n+�)

σ is C-balanced.
If v is a generalized left eigenvector of σ then the collection Cv forms a multiple

tiling of the hyperplane v⊥.

Proof (Sketch) Let (�k) and (nk) be associated sequences for σ . We subdivide the
proof in seven observations. In the sequel BX(x, ε) denotes an open ball in a metric
space X centered at x with radius ε.

(i) Let w ∈ R
d
≥0 \ {0}. As mentioned in the proof of Lemma 3.7.13 one can show

that each patch P ⊂ Γ (w) is repetitive in the following sense: there exists
δP > 0 and a radius rP > 0 such that for each w̃ ∈ R

d
≥0 \ {0} with ‖w̃ −

w‖∞ < δP and each z with [z, i] ∈ Γ (w̃) a translate of P occurs in Γ (w̃) ∩
BRn(z, rP ). This means that each patch occurring in a discrete hyperplane D
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occurs uniformly repetitively in each hyperplane D′ which is close enough to
D. This general property of discrete hyperplanes is proved in [52, Lemma 6.5].

(ii) Let m be the covering degree of Cv. Then each point x ∈ v⊥ which is covered
exactly m times by elements of Cv is not contained in the boundary of any
element of Cv. Suppose this was wrong and let R1, . . . , Rm ∈ Cv be the
elements containing x. Since Cv is a locally finite union of compact sets there
is ε > 0 such that Bv⊥(x, ε) doesn’t intersect any R ∈ Cv \ {R1, . . . , Rm}.
By assumption x ∈ ∂Ri for some 1 ≤ i ≤ m. Thus there is y ∈ Bv⊥(x, ε)

with y �∈ Ri and, hence, y is covered by at most m − 1 elements of Cv, a
contradiction.

(iii) Choose x which is covered exactly m times by elements of Cv. Since the
elements of Cv are uniformly bounded, the set of elements of Cv which contain
x is contained in a set {πu,vx+Rv(i) : [x, i] ∈ P }, where P is a patch of Γ (v)

which is chosen so large that, regardless of how the elements of Γ (v) continue
outside P , they will not contribute elements of Cv containing x because they
are bounded and located “too far away” from x. Thus, whenever we encounter
a translate P + t of P in Γ (v), the point x + πu,vt will be covered m times
by elements of Cv as well. Thus by (i) and (ii) there exist rm and r ′m such that
in each ball of radius r ′m the hyperplane v⊥ contains a ball of radius rm that is
covered by exactly m elements of Cv.

(iv) C(nk)
v converges to Cv in a sense described in the proof of Lemma 3.7.13. Thus

by (i) the radii rm and r ′m in (iii) can be chosen in a way that in each ball of
radius r ′m the hyperplane (v(nk))⊥ contains a ball of radius rm that is covered

by exactly m elements of C(nk)
v for k large enough.

(v) Suppose that Cv is not a multiple tiling. Then there is a set X ⊂ v⊥ with
λv(X) > 0 which is covered at least m + 1 times. Since the boundaries of
the elements of Cv have measure 0 by Proposition 3.7.14, there is x, which is
covered a least m+ 1 times and which is not contained in the boundary of any
element of Cv. Thus there is ε > 0 such that Bv⊥(x, ε) is covered at least m+1
times.

(vi) Suppose that Cv is not a multiple tiling. By analogous arguments as in (iii),
by (v) there exist rm+1 and r ′m+1 such that in each ball of radius r ′m+1 the
hyperplane v⊥ contains a ball of radius rm+1 that is covered by at least m+ 1
elements of Cv.

(vii) By Proposition 3.7.6 each element of Cv can be subdivided into elements of
M[0,nk)C

(nk)
v . The diameters of the elements of M[0,nk)C

(nk)
v tend to 0 for k →

∞ by Lemma 3.7.7 and the balls of radius r ′m occurring in (iv) are shrunk by
M[0,nk) to ellipsoids contained in balls of radius less than rm+1. Thus by (iv)
we can chose k so large that in each ball of radius rm+1 in v⊥ there are points
which are covered exactly m times by M[0,nk)C

(nk)
v . Thus, by Proposition 3.7.6,

in each ball of radius rm+1 there are points which are covered at most m times
by Cv. This contradicts (vi) and the result follows. �	
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This result can be generalized to Cw for arbitrary w ∈ R
d
≥0 \ {0}. To establish this

generalization one needs to show first that the measures of the subtiles of Rv are
determined by

(λv(Rv(1)), . . . , λv(Rv(d))) = m(λv(πu,v[0, 1]), . . . , λv(πu,v[0, d])),

where m is the covering degree of the multiple tiling Cv. This can be proved along
similar lines as in the substitutive case, see [91, Lemma 2.3]. Using this, measure
theoretical considerations lead to the following generalization of Proposition 3.8.1.

Proposition 3.8.2 Let σ = (σn) be a primitive and algebraically irreducible
sequence of unimodular substitutions. Assume that there is C > 0 such that for
every � ∈ N there exists n ≥ 1 such that (σn, . . . , σn+�−1) = (σ0, . . . , σ�−1) and
the language L(n+�)

σ is C-balanced.
Then for each w ∈ R

d
≥0 \ {0} the collection Cw forms a multiple tiling of the

hyperplane w⊥.

It remains to show that this multiple tiling is actually a tiling. As we will see
later, additional assumptions are needed to prove this. However, there is one tiling
result which holds without additional assumptions. This result, which concerns the
“inner tiling” of Rw(i) by the set equation (3.45) will be proved next.

Proposition 3.8.3 Let σ = (σn) be a primitive and algebraically irreducible
sequence of unimodular substitutions. Assume that there is C > 0 such that for
every � ∈ N there exists n ≥ 1 such that (σn, . . . , σn+�−1) = (σ0, . . . , σ�−1) and
the language L(n+�)

σ is C-balanced.
Then the unions in the set equation (3.45) of Proposition 3.7.3 are disjoint in

measure.

Proof From Proposition 3.8.2 we know that Cw is a multiple tiling for each w ∈
R

d
≥0 \ {0} with multiplicity m not depending on w. Together with Proposition 3.7.6

this implies that the (�− k)th subdivisions of all the tiles in the multiple tiling Cw(k)

form a multiple tiling M[k,�)Cw(�) of the same covering degree (for all k, � ∈ N with
k < �). This is possible only if each tile of Cw(k) is tiled without overlaps by elements
of M[k,�)Cw(�) . This proves the result. �	

3.8.2 Coincidence Conditions and Tiling Properties

Let σ be a sequence of unimodular substitutions over an alphabet A. In view of
Example 3.6.2 in order to prove that (Xσ ,Σ) is measurably conjugate to a rotation
on a torus we need two properties of the associated Rauzy fractal R. Firstly, the
subtiles R(i), i ∈ A, need to be disjoint in measure and secondly, the Rauzy fractal
itself has to be a fundamental domain of a (well-chosen) torus. The latter property
is equivalent to the fact that R admits a lattice tiling of v⊥. Setting w = 1 in
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Proposition 3.8.2 we obtain that C1 is a multiple tiling of 1⊥. Since the discrete
hyperplane Γ (1) can be written as Γ (1) = {[x, i] : 〈x, 1〉 = 0, i ∈ A} we see that

⋃

R∈C1

R =
⋃

[x,i]∈Γ (1)

πu,1x+R(i) =
⋃

x∈Zd : 〈x,1〉=0

πu,1x+R.

Thus R is a covering of 1⊥ w.r.t. the lattice {x ∈ Z
d : 〈x, 1〉 = 0} and we have to

prove that the elements of the union on the right hand side are measure disjoint to
get tiling properties of R.

We have therefore three types of unions which we want to be disjoint in
measure:

(i) The unions of subtiles on the right hand side of the set equation (3.45).
(ii) The union R = R(1) ∪ · · · ∪R(d).

(iii) The union 1⊥ =⋃x∈Zd : 〈x,1〉=0 πu,1x+R =⋃[x,i]∈Γ (1) πu,1x+R(i).

The elements of the unions in (i) are disjoint in measure by Proposition 3.8.3.
One can use this fact in order to prove that the unions in (ii) are disjoint in measure
as well. However, to make this proof work we need an additional assumption on σ .

Definition 3.8.4 (Strong Coincidence Condition) A sequence σ of substitutions
over an alphabet A satisfies the strong coincidence condition if there is � ∈ N such
that for each pair (j1, j2) ∈ A2 there are i ∈ A and p1, p2 ∈ A∗ with l(p1) = l(p2)

such that σ[0,�)(j1) ∈ p1iA∗ and σ[0,�)(j2) ∈ p2iA∗.

This definition has an easy geometric meaning: it says that the broken lines
associated with σ[0,�)(j1) and σ[0,�)(j2) have at least one line segment in common
for each pair (j1, j2) ∈ A2.

Example 3.8.5 Figure 3.18 shows that the strong coincidence condition is satisfied
for the constant sequence σ = (σ ) with σ(1) = 121, σ(2) = 21. Because we are in
a case with a two letter alphabet we only have to deal with the instance (j1, j2) =
(1, 2).

Using the strong coincidence condition we get the following result.

Proposition 3.8.6 Let σ = (σn) be a primitive and algebraically irreducible
sequence of unimodular substitutions. Assume that there is C > 0 such that for
every � ∈ N there exists n ≥ 1 such that (σn, . . . , σn+�−1) = (σ0, . . . , σ�−1) and
the language L(n+�)

σ is C-balanced.

Fig. 3.18 The broken lines
associated with i, σ[0,1)(i),
and σ[0,2)(i) for i ∈ {1, 2}.
Coincidence is indicated by
the bold line

i σ[0 ,1) (i) σ[0 ,2) (i)
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If the strong coincidence condition holds then the subtiles R(i), i ∈ A, are
disjoint in measure.

Proof (Sketch) Let (nk) and (�k) be the associated sequences of σ . Let R(j1)

and R(j2) be two subtiles with j1, j2 ∈ A distinct and assume that the strong
coincidence condition holds with � ∈ N. By the definition of the dual E∗1 in (3.46)
this implies that for k satisfying nk ≥ � there is zk ∈ Z

d and a letter i ∈ A such that
[zk, j1], [zk, j2] ∈ E∗1 (σ[0,nk))[0, i]. Thus the set equation

R(i) =
⋃

[y,j ]∈E∗1 (σ[0,nk))[0,i]
M[0,nk)(π

(nk)
u,1 y+R(nk)(j)),

(see (3.45)) contains M[0,nk)(zk+R(nk)(j1)) and M[0,nk)(zk+R(nk)(j2)) in the union
on the right hand side. Proposition 3.8.3 now implies that R(nk)(j1) and R(nk)(j2)

are disjoint in measure. Since this is true for arbitrarily large k, using results along
the line of Proposition 3.7.12 (in particular, [52, Lemma 6.8]) this implies that R(j1)

and R(j2) are disjoint in measure as well. �	
What we did in the proof of Proposition 3.8.6 can be explained in a simple way.

If the strong coincidence condition holds, each intersection of the subtiles R(j1) ∩
R(j2) can be realized as an intersection of two elements in the union on the right
hand side of the set equation (3.45). Since we know that the elements in the union
of the set equation are measure disjoint, the same is true for R(j1) and R(j2). More
briefly: in case of strong coincidence the elements in the union in (ii) are special
cases of the elements in some union in (i).

The same strategy can be used in order to prove that the unions in (iii) are
measure disjoint. To this end we need another type of coincidence condition.

Definition 3.8.7 (Geometric Coincidence Condition) A sequence σ of unimodu-
lar substitutions over an alphabet A satisfies the geometric coincidence condition if
the following is true. For each r > 0 there is n0 ∈ N such that for each n ≥ n0 the set
E∗1 (σ[0,n))[0, in] contains a ball of radius r of the discrete hyperplane Γ ((M[0,n))

t1)

for some in ∈ A.

Along similar lines as Proposition 3.8.6 one can prove the following tiling
criterion for Rauzy fractals (see [52, Proposition 7.9]).

Proposition 3.8.8 Let σ = (σn) be a primitive and algebraically irreducible
sequence of unimodular substitutions. Assume that there is C > 0 such that for
every � ∈ N there exists n ≥ 1 such that (σn, . . . , σn+�−1) = (σ0, . . . , σ�−1) and
the language L(n+�)

σ is C-balanced. Then the following assertions are equivalent.

(i) The collection C1 forms a tiling of 1⊥.
(ii) The sequence σ satisfies the geometric coincidence condition.

(iii) The sequence σ satisfies the strong coincidence condition and for each r > 0
there exists n0 ∈ N such that

⋃

i∈A E∗1 (σ[0,n))[0, i] contains a ball of radius r

of Γ ((M[0,n))
t 1) for all n ≥ n0.
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(iv) The sequence σ satisfies the following effective condition: There are n ∈ N,
i ∈ A, and z ∈ R

d , such that

{[y, j ] ∈ Γ ((M[0,n))
t 1) : ‖π(M[0,n))

−1u,1(y− z)‖ ≤ C
} ⊂ E∗1 (σ[0,n))[0, i],

where C ∈ N is chosen in a way that L(n)
σ is C-balanced.

An (essentially) more restrictive condition than the geometric coincidence
condition and its variants in Proposition 3.8.8 is the following one.

Definition 3.8.9 (Geometric Finiteness Property) A sequence σ of unimodular
substitutions over an alphabet A satisfies the geometric finiteness property if for
each r > 0 there is n0 ∈ N such that

⋃

i∈A E∗1 (σ[0,n))[0, i] contains the ball {[x, i] ∈
Γ ((M[0,n))

t 1) : ‖x‖ ≤ r} for all n ≥ n0.

The geometric finiteness property implies that
⋃

i∈A E∗1 (σ[0,n))[0, i] generates a
whole discrete plane for n → ∞, and that 0 is an inner point of the Rauzy fractal
R (as is proved in [52, Proposition 7.10]). It is immediate that together with the
strong coincidence condition the geometric finiteness property is more restrictive
than the condition in Proposition 3.8.8(iii). The name geometric finiteness property
comes from the fact that it is related to certain finiteness properties in number
representations w.r.t. positional number systems (see for instance Barat et al. [31]
for a survey on these objects). By Proposition 3.8.8(iii) strong coincidence plus
geometric finiteness imply that C1 forms a tiling of 1⊥.

3.8.3 How to Check Geometric Coincidence and Geometric
Finiteness?

In most cases it is easy to check strong coincidence of a sequence σ = (σn) of
substitutions over an alphabet A. For instance, this property trivially holds if σ0(i)

starts with the same letter for each i ∈ A. However, it is a priori not so clear how
to check geometric coincidence or geometric finiteness and although there is an
effective criterion for geometric coincidence contained in Proposition 3.8.8(iv) this
is only suitable for checking single instances. Geometric coincidence asserts that
a large piece of a discrete hyperplane can be generated by the dual substitution
E∗1 (σ[0,n)) acting on [0, in] if n is large. If geometric finiteness holds, even a
whole discrete hyperplane can be generated by the patches E∗1 (σ[0,n))

⋃

i∈A[0, i]
for n→∞. The idea of generating discrete hyperplanes in this way using sequences
of substitutions coming from generalized continued fraction algorithms goes back
to Ito and Ohtsuki [90]. More recently, Berthé et al. [42, 48] provide a systematic
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study on how to check geometric coincidence as well as geometric finiteness. While
[48] concentrates on Arnoux-Rauzy substitutions, the more general treatment in
[42] uses substitutions related to the Brun as well as the Jacobi-Perron algorithm
as guiding examples. In this section we give a brief discussion of their ideas which
are centered around an “annulus property” of stepped hyperplanes generated by
E∗1 (σ[0,n)).

Let σ = (σn) be a sequence of unimodular substitutions over an alphabet A and
let S = {σn : n ∈ N}. The fact that σ satisfies the geometric coincidence condition
in Definition 3.8.7 roughly says that the patch E∗1 (σ[0,n))[0, in] contains a larger
and larger ball when n is growing. In this section, for the sake of simplicity, we
will deal with the geometric finiteness property. Indeed, we will assume that this
ball is centered at the origin and instead of [0, in] we will use U = ⋃i∈A[0, i] as
our “seed”. So we want to show that for each R > 0 there is n0 ∈ N such that
E∗1 (σ[0,n))U contains the ball {[x, i] ∈ Γ ((M[0,n))

t 1) : ‖x‖ ≤ R} for all n ≥ n0.
Following [42] we shall reformulate the geometric finiteness property in a

more combinatorial way. Let P be a patch of a discrete hyperplane containing U
and interpret its elements as faces as in (3.34). Then the minimal combinatorial
radius rad(P ) of P is equal to the length � of the shortest sequence of faces
[x1, j1], . . . , [x�, j�] ∈ P satisfying [x1, j1] ∈ U , [x�, j�] contains a part of the
boundary of P (regarded as a topological manifold), and [xk, jk]∩[xk+1, jk+1] �= ∅
for 1 ≤ k ≤ � − 1. Intuitively, rad(P ) is the minimal distance between 0 and
the boundary of P . For instance, one easily checks that the minimal combinatorial
radius of the patch on the left hand side of Fig. 3.13 is equal to six. Clearly a
sequence σ enjoys the geometric finiteness property if and only if rad

(

E∗1 (σ[0,n))U
)

tends to∞ for n →∞.
Let P[m,n) = E∗1 (σ[m,n))U . We have to show that the minimal combinatorial

radii of the patches P[0,n) tend to ∞ for n → ∞. Since the patches P[0,n) can
have complicated shapes there is no obvious way to do this. One approach to prove
this property goes back to Ito and Ohtsuki [90] and makes use of “annuli”. Let
� < m < n and suppose that U ⊂ E∗1 (σ )U holds for each σ ∈ S (this is not a crucial
assumption and, if it is not true, can often be gained by blocking the substitutions
of the sequence σ ). Then P[m,n) ⊂ P[�,n) holds by the definition of E∗1 (σ ) (note
in particular that E∗1 (τ )E∗1 (σ ) = E∗1 (στ) for σ, τ ∈ S). The idea is to make sure
that whenever (σ�, . . . , σm−1) is of a certain shape then P[�,n) \ P[m,n) contains an
annulus of positive width. One can then show that if (σ0, . . . , σn) contains the block
(σ�, . . . , σm−1) for k times, the patch P[0,n) contains k “concentric” annuli and has
a minimal combinatorial radius greater than or equal to k.

To achieve this we first search for a block (σ0, . . . , σm−1) such that A = P[0,m) \
U contains an annulus of positive width, i.e., ∂P[0,m) ∩ U = ∅. If σ is recurrent,
the block (σ0, . . . , σm−1) occurs infinitely often in σ . Let (nj ) with n0 = 0
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and nj ≥ nj−1 + m be an increasing sequence such that (σnj , . . . , σnj+m−1) =
(σ0, . . . , σm−1). Fix k ∈ N and set A0 = P[0,nk+m) \ P[m,nk+m) and Aj :=
P[nj−1+m,nk+m) \ P[nj+m,nk+m) for j ≥ 1. Then

P[0,nk+m) = (P[0,nk+m) \ P[m,nk+m)) ∪ P[m,nk+m)

= A0 ∪ P[m,nk+m)

= A0 ∪ (P[m,nk+m) \ P[n1+m,nk+m)) ∪ P[n1+m,nk+m)

= A0 ∪ A1 ∪ P[n1+m,nk+m)

= A0 ∪ A1 ∪ (P[n1+m,nk+m) \ P[n2+m,nk+m)) ∪ P[n2+m,nk+m)

= A0 ∪ A1 ∪ A2 ∪ P[n2+m,nk+m)

= · · · = A0 ∪ · · · ∪ Ak ∪ U .

(3.53)

Because

Aj = P[nj−1+m,nk+m) \ P[nj+m,nk+m)

⊃ P[nj ,nk+m) \ P[nj+m,nk+m)

= E∗1 (σ[nj+m,nk+m))(P[nj ,nj+m) \ U)

= E∗1 (σ[nj+m,nk+m))A

for j ≥ 1 (the last step comes from the recurrence property; the case j = 0
follows along similar lines) each Aj contains some image of A under E∗1 . If
the annulus A has certain “covering properties” that are described in detail in
[42, 48], one can show that images of A under E∗1 are annuli of positive width
as well. Thus such an annulus of positive width is contained in each of the pairwise
disjoint subsets A0, . . . , Ak of P[0,nk+m) and therefore (3.53) implies that the patch
P[0,nk+m) contains a “concentric” annulus for each of the k + 1 (non overlapping)
occurrence of the block (σ0, . . . , σm−1) in (σ0, . . . , σnk+m−1). Since an application
of E∗1 maps disjoint annuli to disjoint annuli also P[0,n) = E∗1 (σ[nk+m,n))P[0,nk+m)

with nk + m ≤ n < nk+1 + m contains k + 1 such “concentric” annuli. Thus
if n → ∞, the number of such annuli in P[0,n) tends to ∞. Since the above-
mentioned covering properties of A imply that A0 ∪ · · · ∪ Ak ∪ U = P[0,nk+m)

is simply connected for each k ∈ N and that the same is true for all the patches
P[0,n) (see [48]), we gain that the minimal combinatorial radii of the patches P[0,n)

tend to∞ for n→∞.
The following example shows that this method can be used in order to prove

geometric finiteness for large classes of sequences of substitutions.

Example 3.8.10 We want to illustrate the construction of the annulus A around U
for the case of sequences of Arnoux-Rauzy substitutions σ = (σn) (all details for
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Fig. 3.19 An illustration of the annulus property for sequences of Arnoux-Rauzy substitutions

this case can be found in [48]). Suppose that σ is a recurrent sequence of Arnoux-
Rauzy substitutions which contains each of the three Arnoux-Rauzy substitutions
(3.18). Then, by recurrence, σ contains a block (σ0, . . . , σm−1) in which each
Arnoux Rauzy substitution occurs at least twice. In the graph depicted in Fig. 3.19
the action of E∗1 on U is illustrated.8 The vertices of this graph are patches and

there is an edge P1
i−→ P2 if P2 ⊂ E∗1 (σi)P1. Thus each vertex has an outgoing

edge for each i ∈ {1, 2, 3} (loops and outgoing edges of patches that contain
an annulus of positive width around U are suppressed). Examining the graph we
see that E∗1 (σ[k,n))U contains an annulus around U of positive width whenever
the block (σk, . . . , σn−1) contains at least two occurrences of each Arnoux-Rauzy
substitution. Thus, P[0,m) is a patch which contains U together with an annulus A of
positive width around it.

If one proves that the annulus A has the above-mentioned covering properties
(which was done in [48]) one can iterate this procedure as indicated above and
prove that P[0,n) is simply connected and contains a growing number of “concentric”

8We note that in [48] the dual E∗1 (σ ) is defined using suffixes of the images of σ instead of prefixes.
Nevertheless, this difference does not change the behavior of E∗1 (σ ) significantly and in Fig. 3.19
we get the same image as the authors obtained in [48, Figure 1].
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annuli for growing n. Thus the minimal combinatorial radius of P[0,n) tends to ∞
for n →∞ and, hence, σ has the geometric finiteness property.

Summing up, in Example 3.8.10 we have sketched a proof of the following result.

Proposition 3.8.11 Let σ be a sequence of Arnoux-Rauzy substitutions. If σ is
recurrent and contains each of the three Arnoux-Rauzy substitutions then σ satisfies
the geometric finiteness property.

3.9 S-adic Systems and Torus Rotations

Let σ be a sequence of unimodular substitutions over an alphabet A with d letters.
In the past sections we proved a variety of properties of Rauzy fractals. Using all
these results makes Rauzy fractals suitable to “see” a rotation on the torus T

d−1

acting on them. This rotation turns out to be measurably conjugate to the underlying
S-adic system (Xσ ,Σ). In this section we prove the according results which form
special cases of the main results of [52] and provide some examples.

In Sect. 3.9.1 we state Theorem 3.9.4, a result that gives the measurable conju-
gacy between (Xσ ,Σ) and a torus rotation together with some of its consequences
under a set of natural conditions. Section 3.9.2 is devoted to the proof of this
result. In Sect. 3.9.3 we formulate a metric version of Theorem 3.9.4. In particular,
for a finite set S of substitutions we consider the shift9 (SN,Σ, ν) acting on all
infinite sequences of substitutions taken from S. The measure ν is chosen in a way
that this shift becomes ergodic. We prove that the conditions of Theorem 3.9.4
are “generic” w.r.t. the measure ν if the Pisot condition (3.59) on the Lyapunov
exponents associated with a linear cocycle of (SN,Σ, ν) is in force. Thus under
this Pisot condition we gain that ν-almost all σ ∈ SN give rise to an S-adic system
(Xσ ,Σ) that is measurably conjugate to a torus rotation. This result is the content
of Theorem 3.9.5. Section 3.9.4 is devoted to the proof of this result. Finally,
Sect. 3.9.5 gives examples for S-adic systems associated with Arnoux-Rauzy and
Brun substitutions. This shows that the Pisot condition is satisfied in many natural
situations.

9Note that there are two kinds of shifts: the one just defined acts on the sequence of substitutions
SN, the other one (the S-adic shift) acts on the set of sequences Xσ which is defined in terms of
a single sequence of substitutions σ ∈ SN. It should cause no confusion that both of these shift
mappings are denoted by Σ .
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3.9.1 Statement of the Conjugacy Result

Before we state the first main result of this survey we give some terminology.
We start with a spectral property of a measurable dynamical system that is “the
opposite” of continuous spectrum (see Sect. 3.3.3; we refer to this section also for
the definition of an eigenfunction).

Definition 3.9.1 (Pure Discrete Spectrum, see [126, Defintion 3.2]) An ergodic
dynamical system (X, T ,μ) on a probability space X has pure discrete spectrum if
there exists an orthonormal basis of L2(μ) which consists of eigenfunctions of T .

It is well known that an ergodic dynamical system on a probability space that has
pure discrete spectrum is measurably conjugate to a rotation on a compact abelian
group. On the other hand, each ergodic rotation on a compact abelian group has
pure discrete spectrum (see for instance [126, Theorems 3.5 and 3.6]; these results
can be proved by using character theory and Pontryagin duality for compact abelian
groups).

The notion of natural coding came up already in Sects. 3.2.4 and 3.3.2 in the
framework of Sturmian sequences and Arnoux-Rauzy sequences. Sloppily speaking
a natural coding is a coding of a torus rotation that induces translations on the
atoms of the partition that was used to define the coding. We give a precise general
definition of this concept.

Definition 3.9.2 (Coding and Natural Coding) Let Λ be a full-rank lattice in R
d

and Tt : Rd/Λ → R
d/Λ, x 
→ x+ t a rotation on the torus Rd/Λ. Let Ω ⊂ R

d be a
fundamental domain for the lattice Λ and T̃t : Ω → Ω the mapping induced by Tt
on Ω . Assume that Ω = Ω1 ∪ · · · ∪Ωk is a (measure theoretic w.r.t. the Lebesgue
measure) partition of Ω .

A sequence w = w0w1 . . . ∈ {1, . . . , k}N is the coding of a point x ∈ Ω with
respect to this partition if T̃

j
t (x) ∈ Ωwj holds for each j ∈ N. If, in addition, for

each 1 ≤ i ≤ k the restriction T̃t|Ωi is given by the translation x 
→ x + ti for
some ti ∈ R

d we call w a natural coding of Tt.

For the sake of completeness we give the definition of bounded remainder set.

Definition 3.9.3 (Bounded Remainder Set) Let Λ be a full-rank lattice in R
d .

A subset A of Rd/Λ is called a bounded remainder set for the rotation Tt : Rd/Λ→
R

d/Λ, x 
→ x+ t if there exist γ,C > 0 such that, for a.e. x ∈ R
d/Λ,

|#{n < N : T n
t (x) ∈ A} − γN | < C

holds for all N ∈ N.

The following result gives sufficient conditions for an S-adic system (Xσ ,Σ) to
be measurably conjugate to an irrational rotation on a torus. The subtiles R(i) of the
Rauzy fractal R turn out to be bounded remainder sets for this rotation and induce
natural codings of the elements of (Xσ ,Σ).
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Theorem 3.9.4 (See [52, Theorem 3.1]) Let S be a finite set of unimodular
substitutions over a finite alphabet A = {1, 2, . . . , d} and let σ = (σn) be a
primitive and algebraically irreducible sequence of substitutions taken from the set
S. Assume that there is C > 0 such that for every � ∈ N there exists n ≥ 1 such that
(σn, . . . , σn+�−1) = (σ0, . . . , σ�−1) and the language L(n+�)

σ is C-balanced.
If the collection C1 forms a tiling of 1⊥ then the following results hold.

1. The S-adic shift (Xσ ,Σ,μ), with μ being the unique Σ-invariant Borel proba-
bility measure on Xσ , is measurably conjugate to a rotation T on the torus Td−1;
in particular, its measure-theoretic spectrum is purely discrete.

2. Each element of Xσ is a natural coding of the torus rotation T with respect to
the partition {R(i) : i ∈ A} of the fundamental domain R.

3. The subtile R(i) is a bounded remainder set for the torus rotation T for each
i ∈ A.

For the special case of two letter alphabets the tiling condition does not have to
be assumed. It can be derived from the remaining assumptions of Theorem 3.9.4.
The corresponding result is proved in [50] and generalizes an analogous result for
substitutive systems from [34].

3.9.2 Proof of the Conjugacy Result

In this section we illustrate the proof of Theorem 3.9.4 given in [52]. We assume
throughout this section that the sequence σ satisfies the conditions of Theorem 3.9.4.
The main part is the proof of the measurable conjugacy between (Xσ ,Σ,μ)

and a rotation on the torus T
d−1, where d is the cardinality of the underlying

alphabet. Here μ is the unique Σ-invariant Borel probability measure on Xσ (see
Theorem 3.5.11).

Our first aim is to set up the representation map from Xσ to the Rauzy fractal.
We define this map using a nested sequence of the subsets

R(u) := {πu,wl(p) : pu is a prefix of a limit sequence of σ } (u ∈ A∗)

of the Rauzy fractal R. In particular, we set

ϕ : Xσ → R; v0v1v2 . . . 
→
⋂

n∈N
R(v0v1 . . . vn−1). (3.54)

To show that ϕ is a well-defined continuous surjection one has to prove that the
intersection on the right-hand side of (3.54) is a single point. Using the minimality
of (Xσ ,Σ) and the strong convergence property from Proposition 3.6.10 this is done
in [52, Section 8].
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In the next step one proves that (Xσ ,Σ,μ) is measurably conjugate to the
domain exchange (R, E, λ1), where E is given by

E : R→ R; x 
→ x+ πu,1l(i) for x ∈ R(i) \
⋃

j �=i

R(j)

which is illustrated in Fig. 3.12. Since C1 is a tiling, the overlaps of the subtiles R(i)

have measure 0 and, hence, E is well defined a.e. w.r.t. the measure λ1 on R. To
prove the asserted conjugacy, we have to show that ϕ is bijective μ-a.e. and that the
diagram

X
Σ

X

R E R (3.55)

commutes. Since

E ◦ ϕ = ϕ ◦Σ (3.56)

follows easily by direct calculation it remains to prove the bijectivity assertion. This
runs as follows (all statements are true up to measure zero). First observe that, for
all i ∈ A, E satisfies

E(R(i)) = {πu,1 l(p i) : p ∈ A∗, p i is a prefix of a limit word of σ }.

Therefore, we have
⋃

i∈A E(R(i)) = R and, hence, E is a surjective piecewise
isometry. Therefore, E is bijective. Since the subtiles R(i), i ∈ A, are disjoint in
measure and

R(w0w1 · · ·wn−1) =
n−1
⋂

�=0

E−�R(w�), (3.57)

the injectivity of E implies that also the elements of the collection of “length n

subtiles”10 Kn = {R(u) : u ∈ Lσ with |u| = n} are disjoint in measure. By
(3.56) the measure λ1 ◦ ϕ is a shift invariant probability measure on Xσ . As by
Theorem 3.5.11 there is only one such measure, μ = λ1 ◦ ϕ. Now, essential
disjointness of the elements of Kn implies that ϕ(x) �= ϕ(y) for all distinct x, y
satisfying ϕ(x), ϕ(y) ∈ R \ ⋃n∈N,K∈Kn

∂K . As, by (3.57) and Theorem 3.7.1,
λ1(∂K) = μ(ϕ−1(∂K)) = 0 for all K ∈ Kn, n ∈ N, the map ϕ is μ-a.e. injective.

10Not to be confused with the level n subtiles introduced in Sect. 3.7.1.
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Since surjectivity follows from the definition of ϕ this proves μ-a.e. bijectivity.
Finally, using (3.56), the commutativity of the diagram (3.55) follows from the
bijectivity of ϕ.

Since C1 forms a tiling of 1⊥ by assumption, the Rauzy fractalR is a fundamental
domain of the lattice Λ = 1⊥ ∩Zd spanned by e1− ei , i ∈ A\ {1}. But as πu,1 ei ≡
πu,1 e1 (mod Λ) holds for each i ∈ A, the canonical projection of E onto the torus
1⊥/Λ ! T

d−1 is equal to the rotation T : Td−1 → T
d−1, x 
→ x + πu,1 e1. Thus,

if we denote by ϕ the canonical projection of ϕ to the torus 1⊥/Λ, the diagram

X
Σ

X

ϕ ϕ

1⊥/Λ
+ πu,1 e1 1⊥/Λ

commutes. Note that ϕ is m to 1 onto, where m is the covering degree of C1,
and, hence, a bijection as C1 forms a tiling. This proves the first assertion of
Theorem 3.9.4.

The second assertion of Theorem 3.9.4 follows from the definition of a natural
coding because the rotation T was defined in terms of an exchange of domains.
Finally, due to [1, Proposition 7], the C-balance ofLσ implies that R(i) is a bounded
remainder set for each i ∈ A, which also proves the last assertion.

3.9.3 A Metric Result

As mentioned already in Remark 3.7.2(i), the assumptions of Theorems 3.7.1
and 3.9.4 allow for a metric version of these results. To be more precise, let S be a
finite set of substitutions and consider the full shift (SN,Σ, ν), where ν is an ergodic
Σ-invariant probability measure satisfying some mild conditions. Our aim is to state
a version of Theorems 3.5.11, 3.7.1, and 3.9.4 that is valid for ν-a.e. σ ∈ SN. This
second main result of the present survey is also a special case of a result from Berthé
et al. [52].

To state our result we need to introduce some new concepts. Let S be a finite
set of substitutions over the alphabet A = {1, 2, . . . , d} and consider the shift
(SN,Σ, ν), where ν is some Σ-invariant probability measure on SN. With each
σ = (σn)n≥0 we associate the linear cocycle operator A(σ ) = (M0)

t (recall that
M0 is the incidence matrix of σ0) and define the Lyapunov exponents ϑ1, . . . , ϑd of
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(SN,Σ, ν) iteratively by

ϑ1 + ϑ2 + · · · + ϑk = lim
n→∞

1

n

∫

SN

log ‖ ∧k
(

A(Σn−1(σ )) · · ·A(σ )
)‖∞ dν(σ )

= lim
n→∞

1

n

∫

SN

log ‖ ∧k (M[0,n))
t‖∞ dν (3.58)

= lim
n→∞

1

n

∫

SN

log ‖ ∧k M[0,n)‖∞ dν

for 1 ≤ k ≤ d , where ∧k denotes the k-fold wedge product. We say that (SN,Σ, ν)

satisfies the Pisot condition if

ϑ1 > 0 > ϑ2 ≥ · · · ≥ ϑd (3.59)

(cf. [44, §6.3]). Using these definitions we get the following metric version of
Theorems 3.5.11, 3.7.1, and 3.9.4.

Theorem 3.9.5 (See [52, Theorem 3.3]) Let S be a finite set of unimodular
substitutions and assume that the shift (SN,Σ, ν) is ergodic and satisfies the Pisot
condition. Assume further that ν assigns positive measure to every cylinder and
that there exists a cylinder corresponding to a substitution with positive incidence
matrix. Then, for ν-almost every σ ∈ SN the following assertions hold.

1. (Xσ ,Σ) is minimal and uniquely ergodic (denote the unique Σ-invariant
measure by μ).

2. Each subtile R(i), i ∈ A, is equal to the closure of its interior and satisfies
λ1(∂R(i)) = 0.

3. If the collection C1 associated with σ forms a tiling of 1⊥ then (Xσ ,Σ,μ) is
measurably conjugate to a rotation T on T

d−1, each element of Xσ is a natural
coding of T w.r.t. the partition {R(i) : i ∈ A} of R, and each R(i), i ∈ A, is a
bounded remainder set for T .

3.9.4 Proof of the Metric Result

In the present section we give a quite complete proof of Theorem 3.9.5. The
idea is to show that each of the conditions posed in Theorem 3.9.4 is generic.
A prominent tool in this proof is the Multiplicative Ergodic Theorem (also called
Oseledec Theorem; see for instance [8, 3.4.1 Theorem]). Also the famous Poincaré
Recurrence Theorem (cf. e.g. [126, Theorem 1.4]), which states that a.e. orbit in
a measurable dynamical system (X, T ,μ) starting in a set of positive measure E

hits E infinitely often, will be used. In our setting, the Oseledec theorem has the
following consequence.
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Proposition 3.9.6 Let S be a finite set of unimodular substitutions over the alphabet
A = {1, 2, . . . , d} and assume that the shift (SN,Σ, ν) is ergodic with Lyapunov
exponents ϑ1, . . . , ϑd satisfying the Pisot condition (3.59). Assume further that
ν assigns positive measure to every cylinder and that there exists a cylinder
corresponding to a substitution with positive incidence matrix. Then for ν-a.e.
σ ∈ SN the following assertions hold.

(i) The sequence σ is primitive and recurrent, thus the letter frequency vector u =
u(σ ) exists.

(ii) For each ε > 0 there exists n0 = n0(ε, σ ) such that the sequence of incidence
matrices M = (Mn) = (Mn(σ )) satisfies11

‖(M[0,n))
t |u⊥‖2 < e(ϑ2+ε)n

for each n ≥ n0.

Proof Since ν puts positive mass on each cylinder, ν-a.e. σ is recurrent by Poincaré
recurrence. Together with the fact that there is a cylinder corresponding to a positive
incidence matrix Poincaré recurrence also implies primitivity for ν-a.e. σ . Thus ν-
a.e. σ has a letter frequency vector u by Proposition 3.5.5. This proves (i).

In order to apply the Multiplicative Ergodic Theorem [8, 3.4.1 Theorem] we need
to assure log-integrability of the cocycle which, in our case, means that

max{0, log ‖M0(σ )‖2} ∈ L1(SN, ν). (3.60)

Since S finite, the quantity max{0, log ‖M0(σ )‖2} is bounded and therefore (3.60)
always holds. Thus, because ϑ1 is a simple Lyapunov exponent, [8, 3.4.1 Theorem]
implies that for ν-a.e. σ there is a hyperplane H = H(σ ) ⊂ R

d such that
limn→∞ 1

n
log ‖M[0,n)(σ )t |H‖2 ≤ ϑ2. This implies that for each ε > 0 there is

n0 = n0(ε, σ ) such that

‖M[0,n)(σ )t |H‖2 < e(ϑ2+ε)n (3.61)

holds for n ≥ n0. It remains to show that H = u⊥. However, this follows because
for x �∈ u⊥ we have that 〈M[0,n)(σ )tx, 1〉 = 〈x,M[0,n)(σ )1〉 is unbounded because
for large n the vector M[0,n)(σ )1 is a large vector close to the line R+u. Thus the
only hyperplane for which (3.61) can possibly hold is H = u⊥ and (ii) follows. �	

Proposition 3.9.6 is now used in order to show that balance is generic for
elements of a shift (SN,Σ, ν) satisfying the Pisot condition.

Lemma 3.9.7 Let S be a finite set of unimodular substitutions over the alphabet
A = {1, 2, . . . , d} and assume that the shift (SN,Σ, ν) is ergodic and satisfies
the Pisot condition (3.59). Assume further that ν assigns positive measure to every

11Here ‖ · ‖2 is the operator norm w.r.t. the Euclidean norm on R
d .
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cylinder and that there exists a cylinder corresponding to a substitution with positive
incidence matrix. Then the sets

S(C) = {σ ∈ SN : Lσ is C-balanced} (C ∈ N)

satisfy

lim
C→∞ ν(S(C)) = 1,

i.e., balance of Lσ is a generic property of σ ∈ SN.

Proof By Proposition 3.9.6 we see that for ν-a.e. σ ∈ SN the sequence is primitive
and recurrent, and for the letter frequency vector u = (u1, . . . , ud)t (with ‖u‖1 = 1)
we have

∑

n≥0

‖(M[0,n))
t |u⊥‖2 < ∞. (3.62)

We assume that σ ∈ SN has all these properties and follow the proof of [44,
Theorem 5.8]. Let w ∈ Xσ be arbitrary. Since by the proof of Proposition 3.5.3(iii)
each element of Xσ has the same language, each factor v of w is a factor of a limit
sequence of σ and, hence, by (3.4.1) can be written as

v = p0σ0(p1 . . . σN−2(pN−1σN−1(x)sN−1) . . . s1)s0 (3.63)

where pn and sn is a prefix and a suffix of σn(i) for some i ∈ A, respectively, for
each 0 ≤ n ≤ N−1 and x is a factor of σN(i) for some i ∈ A. To make the notation
easier we set pN = x and sN = ε. We mention that (3.63) is the Dumont-Thomas
decomposition of v which was first introduced in [70]. Using (3.63) and denoting
by e1, . . . , ed the standard basis vectors of Rd we have

|v|i − |v|ui =
N
∑

n=0

(|σ[0,n)(pn)|i − |σ[0,n)(pn)|ui + |σ[0,n)(sn)|i − |σ[0,n)(sn)|ui)

=
N∑

n=0

〈ei − ui(e1 + · · · + ed ),M[0,n)l(pn + sn)〉
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for each i ∈ A. Since u1 + · · · + ud = 1 we see that ei − ui(e1 + · · · + ed ) ∈ u⊥.
This can be used to get

∣
∣|v|i − |v|ui

∣
∣ ≤

N∑

n=0

∣
∣〈ei − ui(e1 + · · · + ed),M[0,n)l(pn + sn)〉

∣
∣

=
N
∑

n=0

∣
∣〈(M[0,n))

t (ei − ui(e1 + · · · + ed )), l(pn + sn)〉
∣
∣

≤ 2
√

d

N∑

n=0

‖(M[0,n))
t |u⊥‖2‖Mn‖2.

Since S is a finite set, the quantity ‖Mn‖2 is uniformly bounded in n. Thus, using
(3.62) this implies that w is finitely balanced. Since σ was taken from a set of full
measure ν of SN this finishes the proof. �	

Before we can put everything together we need to deal with the genericness of
algebraic irreducibility. This has been done in [52, Lemma 8.7] in the following
fashion.

Lemma 3.9.8 Let S be a finite set of unimodular substitutions over the alphabet
A = {1, 2, . . . , d} and assume that the shift (SN,Σ, ν) is ergodic and satisfies the
Pisot condition (3.59). If ν-a.e. sequence σ ∈ SN is primitive then ν-a.e. sequence
σ ∈ SN is algebraically irreducible.

Proof (Sketch) Let σ be a generic sequence with sequence of incidence matrices
M = (Mn) and fix k ∈ N. Then for � → ∞ the matrix M[k,�) maps the unit
sphere into an ellipse whose largest semiaxis tends to infinity and all of whose other
semiaxes tend to zero by the Pisot condition. We prove that for � large enough there
can be only one eigenvalue λ with |λ| ≥ 1.

Indeed, if � is large enough then M[k,�) is strictly positive, thus there is a dominant
Perron-Frobenius eigenvalue λ0 > 1. It corresponds to an eigenvector w0 with
strictly positive entries. Suppose that there is another real eigenvalue λ with |λ| ≥ 1
and corresponding eigenvector w. Since the image of the unit sphere under M[k,�) is
an ellipse with the above mentioned properties, the corresponding eigenvector has
to have a direction close to w0 for � large, because otherwise its length would be
shrunk by the application of M[k,�) as can be seen in Fig. 3.20. Thus, if � is large
enough then w must have strictly positive entries. However, such an eigenvector
has to belong to the Perron-Frobenius eigenvalue, a contradiction. The case of
nonreal eigenvalues can be treated similarly. Thus M[k,�) has only one eigenvalue
of modulus greater than or equal to 1. Since M[k,�) is an unimodular integer matrix,
it cannot have 0 as an eigenvalue. This implies that the characteristic polynomial
of M[k,�) is irreducible and, hence, σ is algebraically irreducible. Indeed, we even
proved that the characteristic polynomial of M[k,�) is the minimal polynomial of the
Pisot number λ0. �	
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Fig. 3.20 An illustration of the elliptic image of the unit circle under M[k,�). The dashed lines are
the axes of the ellipse, the largest axis being the direction of the Perron-Frobenius eigenvector w0.
If the indicated vector w is an eigenvector of M[k,�) for another eigenvalue, its direction has to be
far from the direction of w0 (because not all of its entries can be positive). This entails that its
length is less than 1 and so it can only correspond to an eigenvalue less than 1 in modulus

We now have all the necessary ingredients to finish the proof of Theorem 3.9.5.

Proof (Conclusion of the Proof of Theorem 3.9.5) We show that the conditions of
Theorem 3.9.4 are satisfied for ν-a.e. σ ∈ SN. To keep things simple we give the
proof only for ν being a Bernoulli measure. Primitivity and algebraic irreducibility
hold ν-a.e. by Proposition 3.9.6(i) and Lemma 3.9.8, respectively.

It remains to deal with the condition involving recurrence and balance. We claim
that there is C ∈ N such that

ν([σ0, . . . , σ�−1] ∩Σ−�S(C)) > 0 for each (σn) ∈ SN and each � ≥ 0. (3.64)

Indeed, since ν is a Bernoulli measure, [σ0, . . . , σ�−1] is independent from
Σ−�S(C). Thus we have

ν([σ0, . . . , σ�−1] ∩Σ−�S(C)) = ν([σ0, . . . , σ�−1])ν(S(C))

and the claim (3.64) follows because ν([σ0, . . . , σ�−1]) > 0 by assumption and
ν(S(C)) > 0 for C large enough by Lemma 3.9.7. By another application of
Poincaré recurrence (3.64) yields that for ν-a.e. σ ∈ SN and for every � ∈ N there
is n > 0 such that Σnσ ∈ [σ0, . . . , σ�−1] and Σn+�σ ∈ S(C).

Summing up we see that the assumptions of Theorem 3.9.4 are satisfied for ν-a.e.
σ ∈ SN. Thus Theorem 3.9.5 (1) follows from Theorem 3.5.11, Theorem 3.9.5 (2)
follows from Theorem 3.7.1, and Theorem 3.9.5 (3) follows from Theorem 3.9.4.

�	
Remark 3.9.9 With small amendments in the conclusion of the proof of Theo-
rem 3.9.5 it is possible to prove Theorem 3.9.5 for sofic subshifts (X,Σ, ν) of
(SN,Σ, ν). Even the case of infinitely many substitutions (i.e., |S| = ∞) can be
treated provided that the log-integrability condition (3.60) is satisfied. In this case
one has to deal with the S-adic graph introduced in [44]. As mentioned above, the
general result is contained in [52].
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3.9.5 Corollaries for Arnoux-Rauzy and Brun Systems

We now want to apply the two main theorems to Arnoux-Rauzy as well as Brun S-
adic systems. Since these systems and their related generalized continued fraction
algorithms have been studied quite well in the literature this will yield unconditional
results on measurable conjugacy to a torus rotation, natural codings, and bounded
remainder sets.

We start with the case of Arnoux-Rauzy systems. Let S = {σ1, σ2, σ3} be the
set of Arnoux-Rauzy substitutions defined in (3.18). First we give a version of
Theorem 3.9.5 for the S-adic sequences taken from SN.

Corollary 3.9.10 (See [52, Theorem 3.8]) Let S be the set of Arnoux-Rauzy
substitutions defined in (3.18) and consider the full shift (SN,Σ, ν) equipped with
an ergodic invariant measure ν that assigns positive mass to each cylinder. Then
ν-a.e. σ ∈ SN defines an S-adic system (Xσ ,Σ) that is measurably conjugate to a
rotation T on the 2-torus T2. Moreover, each element of Xσ forms a natural coding
of T w.r.t. the partition {Ri : i ∈ A} defined by the subtiles of the Rauzy fractal R.
Each of these subtiles is a bounded remainder set of T .

Proof (Sketch) It is easy to see that each cylinder containing each of the three sub-
stitutions has positive incidence matrix. Thus the result follows from Theorem 3.9.5
if we can establish that (SN,Σ, ν) satisfies the Pisot condition and that for ν-a.e.
σ ∈ SN the associated collection C1 of Rauzy fractals forms a tiling. The fact that the
Pisot condition holds was proved by Avila and Delecroix [28]. The tiling property is
a consequence of Proposition 3.8.8. Indeed, assertion (iii) of this proposition holds
by the following results. Firstly, strong coincidence follows from [37, Proposition 4]
(or [52, Section 9] where “negative coincidence” was used). The other assertion
from Proposition 3.8.8(iii) is a weaker form of the geometric finiteness property
which holds by Proposition 3.8.11 (see also [48, Theorem 4.7]). �	

With help of the balance properties of Arnoux-Rauzy sequences proved in [43]
it is possible to use Theorem 3.9.4 in order to show results for concrete Arnoux-
Rauzy systems. For instance it is proved in [52, Corollary 3.9] that any linearly
recurrent Arnoux-Rauzy sequence with recurrent directive sequence generates an
S-adic system (Xσ ,Σ) that is measurably conjugate to a rotation on a 2-torus.

For the second class of examples let S = {σ1, σ2, σ3} be the set of Brun
substitutions defined in (3.32). In this case a version of Theorem 3.9.5 completely
analogous to Corollary 3.9.10 holds.

Corollary 3.9.11 (See [52, Theorem 3.10]) Let S be the set of Brun substitutions
defined in (3.32) and consider the full shift (SN,Σ, ν) equipped with an ergodic
invariant measure ν that assigns positive mass to each cylinder. Then ν-a.e. σ ∈ SN

defines an S-adic system (Xσ ,Σ) that is measurably conjugate to a rotation T on
the 2-torus T2. Moreover, each element of Xσ forms a natural coding of T w.r.t. the
partition {Ri : i ∈ A} defined by the subtiles of the Rauzy fractal R. Each of these
subtiles is a bounded remainder set of T .
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Proof (Sketch) First observe that σ1σ2σ1σ2 has positive incidence matrix. One uses
again [28] to ensure that the Pisot condition holds (see also [83, 102, 118] for
similar results). The tiling property follows from geometric coincidence which is
established in [42] for the Brun class. �	

Contrary to the Arnoux-Rauzy continued fraction algorithm, the Brun algorithm
can be performed for all elements (x1, x2) ∈ Δ with Δ as in (3.24). Thus, using
Brun systems we get natural codings for a.a. torus rotations t ∈ T

2.

Corollary 3.9.12 (See [52, Corollary 3.12]) Let S be the set of Brun substitutions
defined in (3.32). Then for almost every t ∈ T

2 (w.r.t. the Haar measure on T
2) there

is σ ∈ SN such that the shift (Xσ ,Σ) is measurably conjugate to the rotation Tt by
t on T

2. Moreover, the sequences in Xσ form natural codings of the rotation Tt.

To create concrete examples of Brun S-adic shifts being measurably conjugate to
a rotation, one can use Theorem 3.9.4 together with the balance results established
in [68].

3.10 Concluding Remarks: Natural Extensions, Flows, and
Their Poincaré Sections

It remains to extend the ideas and results presented in Sect. 3.2.5 to generalized
continued fraction algorithms and S-adic systems on d letters. This is the subject of
the ongoing paper by Arnoux et al. [12].

It is possible to study natural extensions of generalized continued fraction
algorithms (see for instance [19, 21]). In the way we do it in [12], the analogs
of the L-shaped regions of Sect. 3.2.5 are “Rauzy-Boxes” which are defined as
suspensions of S-adic Rauzy fractals. They were introduced in the S-adic setting
in [52, Section 2.9] but have been studied earlier in the substitutive case, see for
instance Ito and Rao [91]. These Rauzy boxes allow nonstationary Markov partitions
for so-called “mapping families” in the sense studied by Arnoux and Fisher [15] that
can be visualized by restacking S-adic Rauzy fractals in a suitable way.

Also Artin’s idea of viewing continued fraction algorithms as Poincaré sections
of the geodesic flow on SL2(Z)\SL2(R) can be generalized. In this generalization
the role of the geodesic flow is played by the Weyl Chamber Flow, a diagonal
R

d−1-action on the space SLd (Z)\SLd (R) of d-dimensional lattices. It turns out
that each coordinate direction of this R

d−1-action has a Poincaré section which is
arithmetically coded by a generalized continued fraction algorithm. Geometrically,
this is visualized by deforming a given Rauzy box (one for each coordinate) by
the action of the Weyl Chamber Flow and restacking it accordingly as soon as a
Poincaré section is reached.

Details of all this will be contained in [12].
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