
On the Design of a New Software
Engineering Curriculum in Computer

Engineering

Stefan Hallerstede(B), Peter Gorm Larsen, Jalil Boudjadar,
Carl Peter Leslie Schultz, and Lukas Esterle

DIGIT, Department of Engineering, Aarhus University, Aarhus, Denmark
{sha,pgl,jalil,cschultz,lukas.esterle}@eng.au.dk

Abstract. The Department of Engineering at Aarhus University has
started up a new science-based BSc degree in Computer Engineering. We
report about our planning of the curriculum during the first two years
in the Software Engineering area. We discuss highlights, basic concepts,
selected course contents, inter and intra course progression, observations
from the first two semesters taught, and our expectations concerning the
learning objectives and outcomes of the curriculum as a whole.

1 Introduction

At Aarhus University (AU) the initial engineering educations originally came
from the Engineering College of Aarhus, which was merged with AU in 2012.
Thus, the prime focus on the original curriculum was to deliver new BSc stu-
dents that directly were employable by the many local companies needing new
employees with skills in the core technologies used right now. This includes pro-
gramming environments such as C# and both embedded and Windows-based
technologies. The courses of the curriculum we describe here are designed as
independent units combining theoretical, methodological and practical aspects,
emphasising their orientation towards engineering.

The perspective of local companies is brought into the curriculum design
by means of an advisory board where the companies are represented. There, the
proposed BSc curricula are reviewed and recommendations given. From a univer-
sity perspective this curriculum strengthens the profile of the newly established
faculty of technical sciences that complements the faculty of natural sciences.

When designing the curriculum we have made assumptions and decisions
based on our experience at university teachers and researchers. Structure and
content of the different courses is based on tried practices, and first-hand infor-
mation from students in terms of direct feedback – using questionnaires and
end-of-course discussions– and observing learning success – their ability to apply
the acquired knowledge and reason about it. The general approach follows [1].

c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 178–195, 2020.
https://doi.org/10.1007/978-3-030-57663-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_12


On the Design of a New Software Engineering Curriculum 179

Overview. Section 2 describes the courses of the curriculum and their relation-
ships, as well as, some assumptions and decisions we have made when designing
the software engineering courses of the curriculum. In Sect. 3 we present an
outline of selected courses to clarify the contents and level of the curriculum.
Finally, in Sect. 4 we close with a discussion of some issues surrounding the Soft-
ware Engineering curriculum and some insights since we have started teaching
it.

2 Courses

Among the courses of the computer engineering curriculum we focus on the soft-
ware engineering courses listed below. There are links to and from courses outside
the software engineering scope, that are referred to, e.g., the Software Architec-
ture course refers to the Computer Networks course in the 4th semester and
Programming and Modelling refers to Classical Physics in the 1st semester. An
overview of these relations is given in Fig. 1 where the software-related courses
are shown in green. Although these courses are related to the Software Engi-
neering curriculum, they are not included in the current description because
their focus is not software as such. Note, however that courses like Computer
Networks also uses C, a preview of which is given in the Software Architecture
course. However, too much uniformity across the study would risk forcing alien
concepts with a focus on software on courses where this is counterproductive.

Computer Architecture

Numerical 
Linear Algebra

Probability Theory 
and Statistics

Discrete Signals and
Linear Systems

Classical Physics

Digital Circuits

Calculus

Control Theory

Computer Eng.
Project 2

Introduction to
Programming

Software
Architecture

HW/SW Co-design

Computer Eng.
Project 1

Algorithms and 
Data Structures

Software Engineering

Programming 
and Modelling

Computer Networks

4. Semester3. Semester2. Semester1. Semester

Distributed Systems

Discrete Mathematics

Fig. 1. The first two years of the curriculum for the Bachelor in Computer Software
Engineering. Highlighted in green are courses with a focus on Software Engineering.
Each column represents a single semester within the first two years of the curriculum.
Arrows between the boxes indicate their main dependencies. (Color figure online)



180 S. Hallerstede et al.

2.1 Variation in Learning Levels

We assume that each cohort of students beginning a BSc study has a wide vari-
ety of prior knowledge and talent, and we distinguish them into three major
groups (weaker, regular, stronger) for which we cater in the teaching to sup-
port the different groups according to their needs. The students are informed
about the different offers at the beginning of the different courses. It should be
emphasised here that although we consider the students according to the three
groups, we make offers to all of them, that range from supporting students with
exercises to challenge exercises and projects. The students can make informed
choices depending to how they assess themselves at certain points in time. The
main outcome of this approach will be a larger spread of talent in Computer
Engineering providing as much support as possible to the different learning lev-
els:

Weaker Students: Dedicated to weaker students, support with home assign-
ments is offered in specific exercise sessions.

Regular Students: Regular students receive a large number of exercises to
practice their skills, and we will also offer help with solving them, similarly
to the weaker students.

Stronger Students: Dedicated to stronger students, we offer challenging vol-
untary projects that go beyond the course objectives. These projects bring
the stronger students in direct contact with research groups.

2.2 Technology and Practical Orientation

The courses will build on software technologies shared between them. The tools
used in the courses during the lectures are shared between the courses, although
the students are allowed to use their preferred tools. However, they only receive
specific support for the tools used in the lectures.

Already in the Introduction to Programming course (see Sect. 3.1) the stu-
dents are allowed to use modern integrated development environments (IDEs)
but we do not use IDEs in the lectures because they hide underlying technologies
such as compilation and linking processes. Before using such tools the students
should understand the basic functions that are hidden away. IDEs only become
necessary when larger programming projects are carried out. Typically, the stu-
dents do not have problems choosing their preferred IDEs by themselves.

Projects are based on platforms such as Raspberry Pi and Arduino for the
deployment of software.

2.3 Languages and Notations

The basic programming language is C/C++ using gcc and gdb that can be
installed in Linux, Windows and MacOS. The students receive help installing
this software during the first programming café. At the end of the Introduction
to Programming course the students receive a short introduction to Python



On the Design of a New Software Engineering Curriculum 181

relating it to the concepts they have encountered in C/C++. Python is used in
their courses on Numerical Linear Algebra and Classical Physics (see Sect. 2).
It is unrealistic to base the entire study on one programming language but we
minimise the distractions caused by switching between different programming
languages.

This approach permits us to focus on just one programming language to
cover the Software Engineering part of the BSc programme, from the presen-
tation of basic algorithms and application development to controller design for
embedded systems. Software systems modelling uses graphical notations such
as Unified Modelling Language (UML) [5], Architecture Analysis and Design
Language (AADL) [3] and formal modelling language the Vienna Development
Method (VDM) [4]. All of them have been standardised and a sufficient num-
ber of secondary literature is available online and in book form, permitting the
students to consult additional sources as it aids their understanding.

2.4 Cross-Cutting Themes and Progression

The courses of the curriculum are connected by underlying themes that span
across the two years

• problem solving (PS),
• modelling (MD),
• reasoning (RS),
• verification (VR).

In the first semester we address these connections mostly informally, and as the
curriculum progresses towards the fourth semester these connections become
increasingly formal. The corresponding skills that students develop are trained
and refined from semester to semester. Table 1 shows on which topics and skills
the different courses focus. If these were developed in isolation, they would easily
end up disconnected from each other, making it difficult for the students to see
the big picture of software engineering. This was a major concern when we

Table 1. The software engineering curriculum

Sem. Lecture ECTS Main focus

1 Introduction to Programming 10 Problem solving, programming in C

2 Comp. Engineering Project I 5 Group work, embedded software

2 Software Architecture 5 Software qualities, principles & patterns

2 Discrete Mathematics 5 Abstraction and proof

3 Algorithms & Data Structures 5 Abstraction and efficiency

3 Software Engineering 5 Essential software technologies

3 HW/SW Co-design 5 Programming, modelling, simulation &

synthesis

4 Comp. Engineering Project II 5 Planning, organising, distributed

software

4 Programming and Modelling 10 Cyber-physical systems modelling, code

generation



182 S. Hallerstede et al.

developed the first drafts of the curriculum: on one hand we have to cover quite
distinct topics in a focussed way while the students attending the courses should
be able to make connections themselves. We help this by giving ample indications
of related courses (and how) and the intended progression during the lectures.
As a consequence, the students develop a sense for their overall progression: they
respond extremely well on material of this sort in the lectures.

The courses in the curriculum cover different topics of software engineering
going deeper in the cross-cutting themes. Table 2 below gives an overview of the
relevant themes per course. We introduce concepts for verification like pre- and
post-conditions in Introduction to Programming, discuss these ideas in Discrete
Mathematics more formally, consider how it is related to systematic testing in
Software Engineering and finally combine these techniques in Programming and
Modelling. As a result, we cover a lot of ground of what could be a course on
verification without having it explicitly in the curriculum and, at the same time,
provide a greater sense of coherence and continuity for the students.

Table 2. Coverage of cross-cutting themes

Sem. Course PS MD RS VR

1 Introduction to Programming X X X

2 Comp. Engineering Project I X

2 Software Architecture X X

2 Discrete Mathematics X X X

3 Algorithms & Data Structures X X X

3 Software Engineering X X

3 HW/SW Co-design X X

4 Comp. Engineering Project II X X X

4 Programming and Modelling X X X X

The different themes are practiced until they are all used in the course Pro-
gramming and Modelling in the 4th semester introducing the students to a
multi-disciplinary setting around Cyber-Physical Systems [9]. This approach
permits to teach advanced material at that stage in the curriculum without
having explicit introductory courses on formal methods and related topics. An
additional advantage is that the students see the four themes as being related
to the topics of the different courses from the start. For instance, the students
will learn that programming always involves some form of reasoning about why
the program “works”, arguing how certain functionality is implemented or why
a program terminates, in particular, from the beginning of their studies. They
will be aware that there are different approaches to this including informal argu-
ments, formal proofs, testing and debugging. They will become engineers that
make pragmatic choices depending on problems at hand, and we teach them a
range of techniques on which they will be able to make decisions. In particular,



On the Design of a New Software Engineering Curriculum 183

we avoid favouring specific techniques so that the students do not get biased by
our teaching.

2.5 International Collaboration

The technologies used in the courses partly are freely available, as well as locally
developed and maintained. Partly they are developed at other universities and
already used for teaching there. We collaborate with researchers at other univer-
sities for incorporating their technologies into our courses. At the moment these
are, in particular, the following two technologies to be used in the Programming
and Modelling course in the fourth semester (see Table 1 for an overview of the
courses):

• The University of Bremen: We will use an automated test case genera-
tion library (FSM library at https://github.com/agbs-uni-bremen/fsmlib-
cpp) that has been developed at the University of Bremen for teaching pur-
poses. It is a scaled-down version of complex automated verification tool
developed by Professor Jan Peleska and colleagues.

• Kansas State University (KSU): We will use verification tools developed at
KSU [11].

We intend to extend the number of collaborations in the coming years to inter-
nationalise the study environment and ensure that the students develop a sense
for the international character of the scientific and engineering communities.
The collaborations themselves permit us to have access to advanced tools with
a strong background in academic research, as well as, to benefit from teaching
experience at those universities.

The alignment of these courses into a coherent set of interconnected topics
poses a challenge. In addition to a natural progression of core skill sets such as
programming, we adopt cross-cutting themes that are followed up in the differ-
ent courses. As a consequence the connections between the courses go beyond
mere references to related and specialised courses. This is a unique opportunity
offered when designing new curricula. Adapting an already running curriculum
is difficult by comparison as it means changing courses that work well. It is a
continuing effort to preserve this structure.

3 Outline of Some Courses

In order to get an impression of the way the courses are taught, we outline four
of them,

(1) Introduction to Programming (Semester 1)
(2) Software Architecture (Semester 2)
(3) Discrete Mathematics (Semester 2)
(4) Computer Engineering Project I (Semester 2)

where we discuss the first one in more detail to illustrate how the courses are
designed. For the other three we summarise the main content and highlights.

https://github.com/agbs-uni-bremen/fsmlib-cpp
https://github.com/agbs-uni-bremen/fsmlib-cpp


184 S. Hallerstede et al.

3.1 Course: Introduction to Programming

Following the distinction of the students into three groups (weaker, regular,
stronger, see Sect. 2.1), the Introduction to Programming course (8 h/week) uses
three types of interaction with the students:

• (frontal/interactive) lectures (L),
• exercise sessions with feedback on assignments (E),
• programming cafés with active support (C).

The students receive information in the beginning of the course where we
explain our approach transparently to everyone. The following is a summary of
the information given in the first lecture concerning the learning environment
and our rationale:

• All students should receive support
• We distinguish the learning levels of students: weak, regular, strong
• We offer a programming café every week where all students will receive help

with the course material from the current week. In particular, weaker students
benefit from such offers. Students get help with tools, review exercises and
past exercises. Exercises for every week will have different difficulty levels
with a challenge exercise for the strong students (the challenge exercise is not
obligatory and open to all).

• Each week there will be a challenge exercise that students are invited to try
themselves: don’t do it if you are short of time (for whatever reason); don’t
do it if you are struggling with the regular exercises; do it otherwise and enjoy
doing it!

• In week 4 of the course, a voluntary programming project will be offered to all
students. We expect that this will mostly be taken on by regular and strong
students. The students decide which offers they take up.

We have developed the course curriculum (Table 3) after a review of similar
Introduction to Programming courses in many universities around the world.
Each topic is introduced by first motivating it through problem solving in the
context of programming:

• aim e.g. “We want to guarantee that our stack program will work as we
intend it to”;

• problem with executable code examples to concretely illustrate the
problem, e.g. stepping through a series of programs that misuse the stack
implementation;

• problem formulation as a more general statement, referring back to
the problem examples, e.g. “The problem is that stack variables are exposed”

• solution statement, e.g. “we need to restrict access to variables that define
the stack”

• main topic, e.g. data encapsulation and object oriented programming
• problem revisited, e.g. demonstrating how data encapsulation is used to

solve each presented problem example.



On the Design of a New Software Engineering Curriculum 185

Reasoning is first practiced informally, arguing for the correctness of small soft-
ware artefacts, and then formally proving correctness of simple programs using a
dedicated theorem proving environment for C programs. Topics were repeatedly
revisited and referred back to throughout the course in an iterative way, to (a)
emphasis the connection between topics and (b) give students time and oppor-
tunity to really digest and understand each topic through repetition in slightly
different contexts.

Table 3. The Introduction to Programming lectures

Week Topic Theme Contact Hours

1 Basics Programming, problem solving,
and reasoning

4L+4C

2 Loops Development and derivation of
(simple) programs

4L+4C

3 Testing Development and analysis of
correct programs

4L+2C+2E

4 Problem Solving Array data structures 4L+2C+2E

5 Data Structures Structured data and pointers 4L+4C

6 Pointers to
pointers

Programming with pointers 4L+2C+2E

7 Library modules Programming larger software
projects

4L+2C+2E

8 Algorithms Designing sequences of program
instructions for solving
problems

4L+2C+2E

9 Recursion Functions that call themselves 4L+4C

10 Higher-order
programming

Passing functions as arguments
to other functions

4L+2C+2E

11 Problem Solving
with Recursion

Verifying correctness of
recursive programs

4L+2C+2E

12 Object-Oriented
Introduction

Bundling data and their
functions together

4L+2C+2E

13 Object-Oriented
Programming
Constructs

Controlling object state and
access to internals

4L+2C+2E

14 Python & Recap Introduction to Python 4L+2C+2E

We use an official course textbook [6] to provide students with further back-
ground reading and additional practice exercises outside of lectures (although
the structure of our course differs significantly from the structure of the text-
book). Lecture slides were developed with sufficient detail to be “self-contained”
so that they also function as lecture notes, and are provided in PowerPoint and
PDF format to students before the lecture; in total we produced over 1000 slides
for the course, in 13 lectures (Table 3). In addition, slidecasts were created dur-
ing the lectures and made available after the lecture until the end of the exam



186 S. Hallerstede et al.

Fig. 2. Live student feedback in response to the question “What were the most muddy
aspects today?” collected using mentimeter and presented back to the students for
discussion.

period i.e. recording audio from the lecture, and recording the lecturer’s screen
that presents the slides.

The initial size of the cohort in 2019 was 30. In Autumn 2020 this will be
increased to 60. During the lecture we invite live feedback from the students (2–3
times per lecture) on their understanding of the presented topics by answering 3–
4 content related questions via mentimeter (Fig. 2).1 The (anonymous) answers
and statistics of the responses are shown on the lecture slide and used as a
focused discussion point to clarify the topic at hand.

The lectures are interactive in that students are able to execute code pre-
sented on the lecture slides. All code examples are made available as C programs
(downloadable as a zipped folder) that can be compiled and executed, with the
program file name always listed on the lecture slide. To avoid issues with dif-
ferences in C compilers between operating systems, we created a Virtual Box
image with all compiler and debugging tools already installed.

Assignments and Challenge Project. Home assignments are given
weekly with sets of problems for all students and a challenge problem for the
stronger students. The assignment sheet is made available after the lecture on
a Tuesday (Fig. 3), and students are required to submit their solutions on the
following Tuesday. On Thursday we run a four hour programming café, a friendly
lab environment in which students can work on their assignment and exercises
from the textbook with two teaching assistants available for discussion, input,
etc. This approach permits us to give more tailored support for the three groups

Thursday

General assignment 
feedback given in 

Wednesday

Detailed personal 
feedback on their 

submission

Tuesday

Lecture; 
Assignment sheets

made availble

Thursday

students get help 
on assignment

Tuesday

Assignment 
submission 

deadline

Fig. 3. Schedule for one assignment (Introduction to Programming).

1 https://www.mentimeter.com/.

https://www.mentimeter.com/


On the Design of a New Software Engineering Curriculum 187

(weaker, regular, stronger) of students. One day after submission, students get
a grade of either pass or “more work needed” (allowing resubmission in the sub-
sequent weeks), with detailed personal feedback. In the following programming
café one of the teaching assistants presents general feedback and common issues
to the class for about 10–15 min.
In addition, a semester-long Challenge Project is offered to the students
(intended for the stronger students but open for all). This is a programming
project to be tackled by students in small self-formed groups of around 3–5 stu-
dents. Each week an instructor hosts a meeting with all the challenge project
students together, and discusses the project concepts, questions and progress,
in a fun, friendly and informal setting. On the first iteration of the course we
had 8 students (out of 28 students in the class) in two groups. This enabled
us, and enthusiastic students, to get to know each other, interact and engage
early on in their BSc program. The challenge project was specifically to create
an interpreter for a subset of the FORTH programming language.

Assessment. The assessment at the end of the semester is by a 3 h hand-
written exam without any support graded according to the Danish 7-point scale.
During the semester students are required to submit and receive a “pass” grade
for their weekly assignments (described above) in order to be able to go to the
exam.

Learning Outcomes of the Course. The learning outcomes for this course
describe hands-on skills related programming concepts and reasoning, the two
main factors to support the course’s view of “programming as problem solving”.
At the end of the course, the participants are be able to:

• describe and discuss commands and control structures of imperative program-
ming;

• understand the relationship between iteration and recursion;
• describe and discuss structuring mechanisms in different programming styles;
• implement their own programs using different programming styles;
• explain the concept of imperative and functional programming;
• describe assertional techniques for reasoning about programs; and
• reason informally about programs and relate this to tests.

3.2 Course: Software Architecture

The second semester course on Software Architecture is brought to the students
as a continuation of the Introduction to Programming course. Whereas the latter
course focuses on functional requirements for software, the Software Architecture
course focuses on non-functional requirements. The proximity of the two courses
permits to make this aspect very explicit, showing them two major concerns of
programming: writing program code and organising it.

The course is taught in a standard format of two hours of lectures and two
hours of exercises every week during which the students present and discuss their
solutions to home assignments. A hands-on textbook is used as main text [10].



188 S. Hallerstede et al.

Table 4. The Software Architecture lectures

Week Topic Practice Patterns Principles Background Programming

1 Introduction X

2 Language Abstraction X X

3 SOLID Principles X X

4 Design Patterns X X

5 Architectural Styles X X

6 Networking Abstraction X X

7 Concurrency Design Patterns X X

8 Network Architectural Styles X X

9 Software Design X X

10 Software Metrics X X

11 Software Specification X X

12 Software Reuse X

13 Application Development X

14 Summary and Recap

In weeks 12 and 13 of the Introduction to Programming course the students
learn basics about object-oriented programming. This is continued in the Soft-
ware Architecture course emphasising programming methodology (using C++).
The students learn about object-oriented concepts such as inheritance, poly-
morphism and genericity. However, just like in the Introduction to Program-
ming course this is always embedded into problem solving. Each lecture relates
abstract architectural concepts to concrete programming concepts that can be
used to realise the abstract concepts. The software is modelled abstractly using
graphical notations like UML, T-diagrams (for composing compilers and inter-
preters) and ad-hoc diagrams. Subsequently, appropriate implementation tech-
niques are discussed. This makes it possible for the students to apply software
architecture immediately based on their first-semester knowledge. The students
grow their repertoire of problem-solving techniques to scale to larger problems
(which they are told about in the first lecture).

Table 4 shows an overview of the lectures of the course.
Because the course takes place in the second semester, there are two lectures

where computer engineering background is given: the second week discusses com-
pilation, interpretation and languages, and the third week network technology
emphasising the abstractions they provide for software development. The net-
working lecture is held as a guest lecture by the same lecturer who teaches the
computer networks course in the fourth semester. The intention of the guest
lecture is to provide a sense of continuity to the students that spans the curricu-
lum. A collection of lectures discusses principle underlying architectural design,
in particular, SOLID [10] and common design principles like “reduce coupling”
and “program defensively”. The discussion of specification and reuse go into
depth with respect to the Liskov substitution principle and the idea of refine-



On the Design of a New Software Engineering Curriculum 189

ment. About a third of the course discusses patterns describing typical elements
of software architectures. About three quarters of the course is dedicated to
evolving the programming skills from the level of the Introduction to Program-
ming course to large scale software applying the techniques taught in the course.
In a final lecture called Application Development the different principles and
patterns are applied to embedded, mobile and desktop software. This is comple-
mented by a guest lecture from a local software development company.

3.3 Course: Discrete Mathematics

The second semester course on Discrete Mathematics takes the informal reason-
ing from the Introduction to Programming course and adds formality to it and
discusses alternative strategies for arguments [2]. Discrete mathematics provides
the theoretical foundation for programming. It provides mathematical models
for common abstractions referred to in programming. It provides the basis on
which the (theoretical) performance of programs can be judged. It permits us to
make statements about properties of programs. The course will introduce first-
order logic, numbers, sets, sequences, relations and graphs, their applications
and techniques of proof. An overview of the course can be seen in Table 5.

Table 5. The Discrete Mathematics lectures

Week Topic Concepts Proof Programming

1–2 Introduction direct proofs and
contradiction

X

3–4: Counterexamples and proof by
contraposition

X

5 Logic X X

6 Set theory X X

7 Relations X X

8 Functions X X

9–10 Recursion and Induction X X X

11–12 Sequences and recurrence relations X X

13 Graph theory X X

14 Evaluation and exam preparation

This course is designed with special principles in two separate dimensions.
Firstly this course is delivered as flipped classroom where there is limited time
spent on presentations of the material in the four hours of confrontation time
every week (instead the students need to work with the material themselves
outside class with both videos and the text book, while the remaining parts of
confrontation time is spend on the lecturers assisting the students with work-
shops). Secondly this course is organised such that there is an oral exam where



190 S. Hallerstede et al.

75% of the grade is based on the students ability to present a subject in the
curriculum and 25% on the students ability to critically review another stu-
dent’s oral presentation. Both of these principles are introduced here in order
to strengthen the students abilities to work with reasoning in an independent
manner and to judge where the right level of formality is.

3.4 Course: Computer Engineering Project I

The second semester course Computer Engineering Project I offers a hands-on
experience with solving a comprehensive problem where students to reason, com-
bine and apply the knowledge they learn throughout first and second semester
courses. This course also offers the opportunity for students to develop new skills
related to design space exploration and code optimisation. On the application
side, students learn to manipulate individual technologies such as range finder
sensors and light sensors to monitor an environment, Arduino boards to pro-
cess collected data, Raspberry Pi platforms to actuate mechanical components.
This permits the students to see the larger context in which software develop-
ment typically takes place. An integration of these technologies is performed
on a Turtle Bot3 Robot simulating a rescue lab where students are introduced
to a set of ROS functions. The main goal is to deliver an optimal exploration
plan minimising the robot effort to explore an arena and maximise the number
of found “victims” to be rescued. Using their knowledge about compiling and
execution, students optimise their code to improve the robot response time and
reduce the memory use.

Table 6. The Computer engineering project workshops

Week Topic Technology Programming

1 Lab Introduction, system
architecture, subversion

X

2 Assembling Arduino and Breadboard X

3 Proximity sensors to Arduino X

6 Light sensors to Arduino X

7 Actuations X

8 ROS seminar X

9 Connecting Arduino to Raspberry Pi X

10–11 Robots navigation implementation X

12–13 Optimization X

14 Competition, demo and examination

Regarding the design space exploration, students learn the basis of how to
choose design alternatives and how to assess the different designs with respect



On the Design of a New Software Engineering Curriculum 191

to a set of possibly conflicting metrics. Towards the end of the semester, the
students have to deliver a report documenting their implementations and justi-
fying the design decisions taken throughout the course experience. An overview
of the course can be seen in Table 6. The fourth semester project course (Com-
puter Engineering Project II) in comparison follows the one discusses here but is
more challenging with respect to group coordination and technological mastery.
In particular, it will use material taught in accompanying courses on Control
Theory and Networking.

3.5 Summary of the Remaining Courses

Table 7 provides an overview of the remaining courses of the curriculum. We
provide only the names of the lectures as the content is mostly well-known.

The Software Engineering course has a special function in the curriculum
as it collects and links material from other courses. For instance, the lecture
in week 4, Software Design, discusses topics from Introduction to Programming,

Table 7. Remaining courses of the software engineering curriculum

Week Software Engineering Algorithms &

Data Structures

HW/SW Co-design Programming &

Modelling

1 Software

development

processes

Basics and

Introduction

Computer

Engineering

Introduction

2 Requirements

Elicitation and

Analysis

Implementation of

Sequences,

Queues and Stacks

HW/SW

Co-Design

Basic Technologies

for Modelling, Proof

and Simulationc

3 Requirements

Modelling

Array Searching Model-based

Design

Logics

4 Software Design Fixed Arrays,

Dynamic Arrays,

Slices and Iterators

Model-based

SW Design

Programming

and Proof

5 Version Control Union Find Model-based

SW Design

Automated Reasoning

about Programs

6 Software Quality Array Sorting SW Mini Project Automated Reasoning

about Programs

7 Formal Specification Priority Queue Model-based

HW Design

Modelling

Methodology

8 Unit Testing Sequence and Stream

Sorting and

Searching

Model-based

HW Design

Introduction to

INTO-CPS

9 Integration Testing Search Trees SW-HW

System Synthesis

20-sim Tutorial

10 Performance

Requirements

Sets and Dictionaries Design Space

Exploration

Co-simulation & De-

sign Space Exploration

11 Requirements

Validation

Matrices Optimisation and

Validation

C Code Generation

12 Formal

Verification

Graphs Final Project Model Validation &

Fault Tolerance

13 Specification,

Formal Verification

and Testing

Petri Nets Final Project Other Approaches:

JML

14 Recap Bitsets / matrices Summary Recap & Summary



192 S. Hallerstede et al.

Software Architecture, and Algorithms & Data structures. This is done expressly
in order to give more coherence to the curriculum. The topic of requirements
that regularly occurs in other courses is treated systematically. This permits to
argue the significance of the topic as such warranting more attention.

The Algorithms & Data structures course follows the problem solving per-
spective the students are already familiar with from semester one. It focuses on
practical aspects using abstractions learned in Discrete Mathematics to reason
about problems and algorithms that solve them. Theoretical complexity con-
siderations are discussed and related to practical evaluation of implementation
variants.

The course on HW/SW co-design permits the students to understand the
specificities of hardware design and of software design, and their similarities, in
particular, when done in a suitable framework, such as, System-C.

The fourth semester Programming and Modelling course requires familiar-
ity with the four cross-cutting themes as taught throughout the curriculum.
This course is directly linked to local research activities at the Department of
Engineering. Whereas reasoning about programs is done informally before, it is
treated formally with tool support at this stage. This is complemented by mod-
elling of cyber-physical systems as supported by INTO-CPS [8] and continuous
modelling in 20-sim [7]. The course relies particularly on the formal training the
students have received in Discrete Mathematics, as well as, Differential Equa-
tions and Classical Physics that are taught along side the Software Engineering
curriculum. In this respect the students will gain the important insight that soft-
ware can often not be developed without considering the real world with which
it interacts.

4 Discussion

In comparison to a typical curriculum in Computer Science, ours is eminently
practically oriented. Although students in Computer Engineering study also
more theoretical topics, this has a different focus: Computer Engineering stu-
dents study necessary theoretical issues in as far as it helps for solving engineer-
ing problems, whereas Computer Science students are exposed to the theories as
such. For instance, our students encounter functional programming and recursion
in Introduction to Programming course indicating suitable reasoning techniques,
this is pick up in Discrete Mathematics course where suitable formalised proof
techniques are taught. In Computer Science the students attend a course on func-
tional programming where they study the underlying lambda calculus and type
theory. Section 4.1 discusses briefly our approach to the relationship of science
and engineering in the curriculum.

In order to warrant high quality of the taught courses, we carry out regular
evaluations through continual feedback from the students during the courses and
collecting data about the courses. We discuss this briefly in Sect. 4.2 and give
some first results from the Introduction to Programming course.



On the Design of a New Software Engineering Curriculum 193

4.1 Science and Engineering

The learning objectives of the teaching are, of course, related to the contents
of the different lectures. Beyond this we also introduce the students from the
beginning to our research activities in engineering science. This makes it possi-
ble to offer later in their studies BSc thesis projects closer to ongoing research
and strengthen the scientific orientation of their education. For the most part
scientific education is treated as the background in the courses, gaining larger
weight later in the curriculum. At the end of the BSc studies they have seen
some scientific methodology and have applied it in their reasoning. However,
through the BSc curriculum (including their BSc theses) they will be guided in
that reasoning and the choice of methods. A more independent application of
scientific methods is only required in their subsequent MSc studies.

4.2 Evaluation

Starting a new BSc programme is a good opportunity to evaluate effectiveness as
we do not have constraints by an established course catalogue. We believe that
a culture of systematic evaluation will help to create a strong programme and
make a contribution to education research. In order to achieve this, we plan to
collect systematically data for all the lectures. E.g., for the Introduction to Pro-
gramming lecture: Numbers of students present at lectures, exercise sessions and
programming cafés, number of students attempting challenge exercises, number
of students attempting the programming project, number of students succeed-
ing in the afore mentioned. In addition, we have weekly meetings where we
discuss feedback from the students concerning their motivation, learning suc-
cess, and workload. The aim of this is to determine whether the students get the
best possible support according to their abilities. This needs to be fine-tuned
permanently.

At the start of the semester, 28 students participated in the course. Of these,
23 students finished the course. The drop-outs happened early in the course. We
sent out e-mail to follow up the situation from 3 week on but did not receive a
response from the five students. The attendance at the lecture was at least 90%
(of 23) at the lecture and a the programming café. However, we found that the
café was also used by the students to work on problems from other courses. We
did not stop this from happening as it turned out that the students would ask
for our help with the Introduction to Programming course when they needed it.
This is what had been “promised” to the students in the first lecture. The result
of the written exam at the end (A: 3, B: 9, C: 9, D: 1, E: 1) confirms that the
support worked well towards achieving the learning objectives.

With respect to the home assignments to be handed in by small groups we
made the following observations. None of the groups attempted all challenge
exercises. Seven groups attempted at least one challenge exercise, one group
attempted five challenge exercises. Eight groups handed in one late assignment,
one group two late assignments, and three groups three late assignments. Two
groups had two resubmit 2 assignments, and 4 groups one assignment.



194 S. Hallerstede et al.

Eight students started on the challenge project, one group of three and one
group of five. After some initial success (not solving the complete problem) the
latter group disbanded. The other group continued. One of the students continues
the project in the second semester following the Software Architecture lecture.
It appears to be a good idea to propose the challenge project to run over two
semesters in the first place because most students stopped because of short term
work loads in other courses.

4.3 Concluding Remarks and Evolution

We have outlined the Software Engineering curriculum at the Department of
Engineering at Aarhus University, discussed the rationale and provided some
examples of concrete courses. Given that we have started teaching in the cur-
riculum since autumn 2019 it is too early to draw any hard conclusions. We
have however already learned that the students appreciate the learning envi-
ronment and the material they are being taught. We believe, that asking them
regularly for feedback during the lecture has two major benefits: firstly, we can
make improvements while the course is running; secondly, it appears to boost the
motivation of the students when they get to play an active role in the shaping of
their learning environment by receiving and acting on their feedback. Of course,
there are some issues that can only be solved from one instance of the course
to the next, concerning, for instance, the order in which some of the material is
taught where the feedback that we receive refers to the teaching that is already
past.

Acknowledgements. We are grateful for the support and contributions to the prepa-
ration of teaching materials carrying our café and exercise sessions by Casper Thule,
Tomas Kulik, Christian Møldrup Legaard, Benjamin Salling Hvass, Hugo Daniel
Macedo, and Peter Würtz Vinther Tran-Jørgensen.

References

1. Biggs, J., Kum Tang, C.S.: Teaching for Quality Learning at University, 4th edn.
McGraw Hill (2011)

2. Cusack, C.A., Santos, D.A.: An Active Introduction to Discrete Mathematics and
Algorithms, Version 2.6.4 (2019)

3. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL - An Introduction
to the SAE Architecture Analysis and Design Language. SEI Series in Software
Engineering. Addison-Wesley (2012)

4. Fitzgerald, J., Larsen, P.G.: Modelling Systems - Practical Tools and Techniques
in Software Development, 2nd edn. Cambridge University Press, The Edinburgh
Building, Cambridge CB2 2RU, UK (2009). ISBN 0-521-62348-0

5. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage, 3rd edn. Addison Wesley (2003)

6. Hanly, J.R., Koffman, E.B.: Problem Solving and Program Design in C. Pearson
(2016)



On the Design of a New Software Engineering Curriculum 195

7. Kleijn, C.: Modelling and simulation of fluid power systems with 20-sim. Int. J.
Fluid Power 7(3) (2006)

8. Larsen, P.G., et al.: Integrated tool chain for model-based design of cyber-physical
systems: the INTO-CPS project. In: CPS Data Workshop, Vienna, Austria, April
2016

9. Larsen, P.G., et al.: Frontiers in software engineering education. In: Collaborative
Modelling and Co-simulation in Engineering and Computing Curricula (2020)

10. Martin, R.C.: Clean Architecture A Craftsman’s Guide To Software Structure And
Design. Prentice Hall (2018)

11. Yi, X., Li, R., Sun, M.: Generating Chinese classical poems with RNN encoder-
decoder. In: Sun, M., Wang, X., Chang, B., Xiong, D. (eds.) CCL/NLP-NABD
-2017. LNCS (LNAI), vol. 10565, pp. 211–223. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-69005-6 18

https://doi.org/10.1007/978-3-319-69005-6_18
https://doi.org/10.1007/978-3-319-69005-6_18

	On the Design of a New Software Engineering Curriculum in Computer Engineering
	1 Introduction
	2 Courses
	2.1 Variation in Learning Levels
	2.2 Technology and Practical Orientation
	2.3 Languages and Notations
	2.4 Cross-Cutting Themes and Progression
	2.5 International Collaboration

	3 Outline of Some Courses
	3.1 Course: Introduction to Programming
	3.2 Course: Software Architecture
	3.3 Course: Discrete Mathematics
	3.4 Course: Computer Engineering Project I
	3.5 Summary of the Remaining Courses

	4 Discussion
	4.1 Science and Engineering
	4.2 Evaluation
	4.3 Concluding Remarks and Evolution

	References




