
Teaching Formal Methods: An Experience
Report

Mehrnoosh Askarpour1(B) and Marcello M. Bersani2

1 Computing and Software, McMaster University, Hamilton, Canada
askarpom@mcmaster.ca

2 DEIB, Poltecnico di Milano, Milan, Italy
marcellomaria.bersani@polimi.it

Abstract. The general attitude of students towards formal specification
and verification of systems is not exactly what one could call enthusiastic.
Generally, software engineering courses at universities include an intro-
duction to specification with formal notations such as Z, Alloy, UML,
etc. However, it seems that the importance of formal specification to
replicate expected system behavior does not sink in as it should with the
students. Moreover, other products of computer science (e.g., machine
learning algorithms, robot systems deployment), rather than software,
benefit from formal specification as well. This paper is a general report
of our observations on teaching formal methods on undergraduate and
graduate levels at Politecnico di Milano.

Keywords: Formal methods · Temporal logic · Computer science ·
Computer engineering · Formal specification

1 Introduction

Formal methods (FM) have been used in hardware and software for a wide range
of applications (e.g., aerospace, transportation). Methods such as automated
formal verification and model checking are used in many different research and
practical areas. Hence, it is paramount for computer scientists and engineers to
be aware of their benefits and apply them to problems of the real world.

Formal Methods community is very well-known, and the world congress FM
is a landmark worldwide. Their affiliated Formal Methods Teaching Committee
(FMTea)1 gathered a repository of FM university courses around the world,2

which gives a reliable estimation of the situation globally. As of April 2020,
the website displays sixty-two -courses, mainly from European universities (see
Fig. 1a), dispensed at the M.Sc. level (see Fig. 1b), the half of which include
explicitly Logic in the list of topics of the course. Moreover, only ten of the
reported courses include Temporal Logic in their program.

1 fmeurope/teaching.
2 fme-teaching/courses.

c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 3–18, 2020.
https://doi.org/10.1007/978-3-030-57663-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_1&domain=pdf
http://orcid.org/0000-0001-6526-2544
http://orcid.org/0000-0001-5137-940X
http://www.fmeurope.org/teaching/
https://fme-teaching.github.io/courses/
https://doi.org/10.1007/978-3-030-57663-9_1


4 M. Askarpour and M. M. Bersani

(a) University FM Courses Divided by
Geographical Area

(b) University FM Courses Di-
vided by Grade

Fig. 1. A visual representation of the current state of Teaching Formal Methods around
the world, based on an study done by Formal Methods Teaching Committee.

To the best of our knowledge, and based on our observations at Politecnico
di Milano and our discussions with our colleagues elsewhere, the participation of
students in FM courses is decreasing, and their interest in doing thesis or research
about FM concepts is alarmingly low. For example Politecnico di Milano has
around 200 graduates every year3 in Master of computer science and engineer-
ing of which only on average 30 students participate in our FM course—which
we later report in this paper—annually.4 We asked those 30 attendees via a
questionnaire if they are interested in doing their master thesis in this area, and
only about 11% of them had positive answers. Based on the same questionnaire,
about 33% of students have some background or interest in the subject, which
means one third of those who are interested in FM still won’t pick it as their
thesis topic.

Da Rosal [48] argues that the reason why students find FM courses chal-
lenging lies in their mathematical background from high school. This opinion
has been raised even before [8,31,48] and highlights the need for a fundamen-
tal change in high school education and more focus on discrete and applicable
mathematics, instead of pedagogical issues. Gibson [25] blames neglecting case
studies and illustrative examples during teaching; Robinson [47] mentions the
lack of visibility of industrial use; Mandrioli [38] blames miscommunication, and
fuzzy terminology, and suggests the use of “push button” and user-friendly tools;
Buote [11] claims that tools could be misleading if mathematical fundamentals
and concepts are not clearly understood. Others point out student’s desire of
achieving quick results and bypassing important design steps [45] or their drift
to virtual reality, rather than modeling [27].

Just like FM courses, any other course in computer engineering/Science has
its difficulties. Students, though, do not run away from them because they view

3 Average computed by considering the last 5 years.
4 All the statistics and percentages reported throughout the paper are rounded and

therefore are approximate values.



Teaching Formal Methods: An Experience Report 5

Table 1. The second column categorizes the papers in proceedings of Formal Methods
in Computer Science Education 2008, Formal Methods Teaching 2004 - 2009 - 2019,
based on the tools and concepts they used. The third column lists the most popular
tools listed in FME Education Course Database (fme-teaching/courses).

Tools Papers FME course database

JML [3,34,44] -

Ada [13,36] -

Abstract state machines [10] -

Eiffel [43] -

B, Event-B [1,14,15,26,28,34,46,46] -

Hoare’s Logic [29,53,54] -

Alloy [12,41,50,51,55] 8 entries

Logic [7,20,33,35,42,52] -

UML [16,24] -

Z, Object-Z [17,55] -

Proof-checking [4,9,40] -

Model checking [6,19,30,32] -

Concurrency theory [2] -

Danfy - 7 entries

SPIN - 9 entries

Nusmv/Nuxmv - 3 entries

Mini-sat - 2 entries

Mcrl2 - 4 entries

Coq - 7 entries

them as important and necessary for their careers. Students often think of FM
courses as too theoretical and not practical. For example, when we teach them
about Hoare’s Logic, they straight up ask if there is any use of that at all. This
shows a serious lack of prospect that will be adjusted by showing the student
real-life examples of using FM in the industrial ambient or asking them to do
practical projects [58]. Open-source tools such as UPPAAL [57], NuSMV [18],
GreatSPN [56] are good examples of means that have industrial purposes and
could be used for homework projects as well. Other tools developed for modeling
and verifying complex systems, whose behavior combines discrete aspects (e.g.,
states and transitions) and continuous dynamics (e.g., time, continuous laws,
etc.), can be found, for instance, at [23] and [21]. Section 3 explains our experience
with Zot [59] on encouraging students to use formal verification for a practical
project.

Table 1 envisions the current state of FM courses and their subjects, by inte-
grating the teaching concepts extracted from teaching FM proceedings, and the
most popular concepts and tools highlighted in FME course data base. As it is

https://fme-teaching.github.io/courses/


6 M. Askarpour and M. M. Bersani

evident from the table, the importance of teaching temporal specification and
Temporal Logic to students, seems to be left out of spotlight in FM community.
On the Contrary, here at Politecnico di Milano we particularly focus on teach
temporal logic in addition to other concepts. Table 2 shows the profile of this
course in the last ten years.

Table 2. The profile of FM course tought at Politecnico di Milano over the last ten
years.

Title Formal methods for concurrent and
real-time systems

Students level Second year of Ms.c. in computer
engineering and computer science

Average number of students 30

Hours per semester 80

Course type Not mandatory

Required background Theoretical computer science and
mathematical logic

The syllabus The basis of FM,

Bisimulation, abstraction and
refinement

Concurrent, distributed and
real-time systems,

Computation tree logic,

PetriNets,

Hoare’s logic,

Timed automata,

Temporal logic (TRIO),

Case studies,

Evaluation Studying and presenting a recently
published article with a topic close
the material of the course,

Applying Hoare’s logic on an
algorithm,

Modeling a toy example via TRIO
and verify a predefined property
with a local model-checker

The rest of this paper is structured as follows: Sect. 2 discusses the importance
of teaching formal specification and verification to students, Sect. 3 reports our
experience at Politecnico di Milano on project-based and lecture-based teaching,
and finally Sect. 4 concludes.



Teaching Formal Methods: An Experience Report 7

2 Teaching Formal Specification: Why and When?

Language
Model based approaches are fundamental for all the academic curricula, not
only those belonging to scientific faculties. The act of transferring an abstract
representation of facts and their relations demands non trivial capabilities. The
problem is even more complex if we consider the case where the language, that
supplies all the syntactical structures capturing the facts and their relations,
has not been devised yet. This scenario is, of course, far from the reality that
professors or lectures face in their everyday academic teaching, which is instead
characterized by a different challenge.

Conveying facts and their relations through a predefined (logical) language is
the actual challenge that universities try to tackle, and that requires students to
learn specific capabilities, and professors and lecturers to develop suitable teach-
ing approaches. The first capability requires the development of specific mental
process that allows a subject to encode facts into sentences of the language,
by only using a limited number of basic syntactical structures, each providing
predefined, and formally stated, semantics. Yielding two different logic formu-
lae that are syntactically different but semantically equivalent is very common
when the same reality is analysed by two persons. Transferring an idea into a
formula or expressing solutions to problems in an algorithmic manner implicates
Computational Thinking, which is envisioning the reality through simpler facts
and more basic relationships. Computational thinking dates back to ’50, and
has been nourishing an interesting debate and research among pedagogues on
whether it can be counted as a basic skill that schools should teach with no
distinction of study careers and since the beginning of education. The mental
path that a subject follows to analyse and decompose the reality is, of course,
strongly dependent on the subject’s way of thinking. Additionally, the presence
of a duality, or a degree of freedom in the language is sometimes a source of
problems for students that are learning logics-related subjects. For example, a
subject can state the relation between A and B either by using a “future-to-
past” direction, or a “past-to-future” one; that is, A will cause B in the future,
or B is caused by A occurred in the past.

The presence of a duality, or a degree of freedom in general, in the language is
sometimes a source of problems for students that are learning logics-related sub-
jects. This freedom of choice has negative side effects leading to a phenomenon
called “Supermarket dilemma”. Schwart analysed this phenomenon in [49] by
providing the evidence that “Autonomy and Freedom of choice are critical to
our well being, and choice is critical to freedom and autonomy”. For this reason,
a person who stands in front of a supermarket shelf can find the choice of a prod-
uct difficult, if a decision has not been already taken in her/his mind. The same
feeling is experienced by students in learning logic. Despite the formal definition
of a logical language, the availability of a number of distinct ways to approach
the encoding of the decomposed reality they have in mind, might hamper the
construction of the sentence that should be the result of a correct composition
of basic syntactical structures.



8 M. Askarpour and M. M. Bersani

Abstraction
The correct identification of the facts and relations of the reality that matter,
can be attained first by answering the question “What should I say with the for-
mula?” and, then by pulling the essential facts and relations out of the identified
answer, by using a possibly iterative process that removes unessential details.
Choosing the right facts and relations is another source of problems for the stu-
dents who come upon the study of logic-related subjects. The lack of capacity
for abstraction is the origin and the reason why students perceive the study of
logic too difficult.

The causes that might lead to a scarce development of abstraction skills are
far from being obvious, though they can be classified into exogenous and endoge-
nous ones. The former are related to the environment that surrounds a subject
and where the subject intertwines relationship with other persons, such as the
family, friends and the attended schools. It is well known that the environment
has a tangible impact on the subjects that live therein. Schools play an impor-
tant role in this game, because their programs and teaching methodologies can
determine the development of abstraction skills in students. The latter ones are
strongly dependent on the subject’s way of thinking, and can unlikely be studied
by only observing the behavior of subjects.

According to Anderson et al. [37], knowledge can be classified into four
distinct classes, namely, factual knowledge, conceptual knowledge, procedural
knowledge and metacognitive knowledge. Factual knowledge is the first kind of
knowledge that students learn at schools, and that schools must provide, and
pertains to the basic evidence of a discipline. For this reason, factual knowledge
always conveys the terminology and the specific details of a subject, and sup-
plies basic building blocks to understand the higher level relationships among
the objects of a given reality. Abstraction capabilities can be nourished through
conceptual and procedural knowledge, that focus on the relationship among the
pieces of a larger structure and how to solve problems. The pillars characterizing
conceptual knowledge are: Knowledge of classifications and categories, Knowl-
edge of principles and generalizations and Knowledge of theories, models, and
structures. The lack of abstraction capabilities in students can, therefore, origi-
nate from the scarce presence of the conceptual dimension of knowledge, which
is not adequately conveyed by suitable teaching program during the school.

Temporal Logic
Students often do not comprehend the meaning of the syntactical structures
of the language because they do not grasp the overall context in which the
language is defined. Missing the general picture is the main reason of a weak
comprehension of the basic evidence conveyed through the factual knowledge.

Logical languages were conceived by humans to capture very diverse aspects
of the reality. Modal logic is an example, and is one of the main families of
languages that are taught during academic careers at M.Sc. of Computer Science.
It includes several distinct languages that can be used to specify the “mode”
(or “modality”) that qualifies the validity of the sentences. Modalities can be



Teaching Formal Methods: An Experience Report 9

intuitively explained by analogize them to adverbs, as they change the truth
value of a sentence as adverbs refine the verbs in natural languages. For instance,
the sentence “it will rain tomorrow” does not express how the rain will be and
how likely the rain will occur. By using a “modality”, or an adverb in this case,
the information that the sentence conveys can be refined; for instance, “it will
surely rain tomorrow” communicates a more precise information about the rain.

The reception of logic by Computer Science is rather recent, despite Com-
puter Science is tightly connected with Mathematics. Amir Pnueli pioneered the
use of a specific class of Modal logic, called Temporal logic, in Computer Sci-
ence. Temporal logic allows for representing, and reasoning about, facts qualified
in terms of time. For this reason, the language is equipped with two modalities
that characterize the occurrence of a fact, that are the “eventually” and “always”
modalities. The semantics of the language is based on the intuitive order of time,
that allows humans to distinguish the notions of “before” and “after”, that is,
in particular, if an event, or a fact, holds true before or after a different one.
Temporal logic includes, in turn, several families, but in its original definition,
it allows one to state, for instance, that if something happens now, then in the
forthcoming future something else will occur.

Temporal logic in Computer Science is adopted to express the desired prop-
erties of systems or to specify entirely their behavior over the time. Writing
formulae that specify how a system behaves is fundamental to precisely capture
the functionality that the system should exhibit, but also to verify if the designed
system can actually behave as intended. For this reason, temporal logic became
rapidly one of the baseline tools to perform requirement specification and analy-
sis, during the Requirement Engineering phase of a project, and to verify certain
properties of the model of a system through Formal Verification.

The notion of time in Temporal logic has been refined over the years, moving
from a simple order to trees of realizable futures, or to dense time. According
to Furia et al. [22] there are many issues that temporal specification faces once
a system is subject to be modeled. It is important to clarify if a system is
more compatible with continuous or non-continuous time models. For example,
manifesting the behaviors of a model with certain characteristics is presumably
simpler considering continuous time domain. It is also important to figure out if
a system may function in a finite, infinite or periodic time window.

Moreover, to choose a suitable formalism for modeling purposes, one need to
realise if temporal characteristics of the system concern only order of events (e.g.,
event A happens before event B) or also metric constraints are important (e.g.,
event B must happen exactly three time units before event A). One needs to
choose between linear (i.e., sequences of states of the model) and branching time
(i.e., trees of states of the model) pattern to better describe the system behavior.
The granularity (e.g., seconds, minutes, days) and scaling with which the tem-
poral constraints of the system are described, is also another point to be careful
about. The nature of the system, in terms of determinism, non-determinism, and
probabilistic, is also very crucial in picking the right modeling means and tools.



10 M. Askarpour and M. M. Bersani

Considering all the mentioned issues, we advocate the teaching of logic and
logical thinking in schools and more emphasis on temporal logic in M.Sc. of
Engineering curricula, as it is of utmost importance to the future computer
scientists and engineers. We argue that the fundamentals of formal methods
need to start being thought at the initial years of university. This is in fact
how universities around the world approach to building the logic and discrete
mathematical background of students. However, more specific material such as
formal modeling of systems, model checking, and formal verification are concepts
to be thought during Masters, when students have already passed programming
courses and developed an understanding of requirements specification (e.g., by
using Alloy, UML diagrams).

3 Experience Report at Politecnico di Milano

In this section, we report our experience of teaching a FM course at our uni-
versity. The course, as shown in Table 2, has been going on for more than ten
years and follows a standard structure. The first part of this section explains our
project-based teaching method of temporal logic, and the second part reports
our observations from teaching Hoare’s Logic.

Project-Based Teaching of Temporal Logic
A part of the evaluation is usually done by a modeling project. In other words,
students are required to write a specification of a (complex) system by using
temporal logic formulae. This task is demanding but essential to make students
aware of the potential of logic and to show how logic goes beyond the abstract
examples that are commonly adopted for teaching it. Using logic to specify and
verify properties of realistic scenarios is therefore fundamental to motivate Com-
puter Engineering students, as the exercise links abstract notions with tangible
and realistic applications that they might encounter in their professional life.

We provide students with description of a safety-critical system. Using the
last years’s project5 as an illustrative example, the students were supposed to
formalize a scenario in which a human and a robot collaborate in an indus-
trial setting; robot moves workpieces around in a the workcell to suitable places
(position p1 and p2) for human to manipulate (at p1) and inspect (at p2) them.
Students had to model the dynamics between human and robot and temporal
back and forth between the two in a realistic and correct manner. Once they do
that, they need to come up with a simple safety property such as “human and
robot should never be closer that a certain distance, while robot is moving” and
verify if the model they defined satisfy this property or not.

5 polimi/fm2019.

https://github.com/Askarpour/FM2019


Teaching Formal Methods: An Experience Report 11

The formula below is an example of what students wrote as safety property.
It states that always6 no same position for human and robot exists when the
robot is moving.

Alw(¬∃x ∈ Positions : RobotPosition == x∧
HumanPosition == x ∧ RobotMoving)

(1)

where RobotPosition and HumanPosition are variables with a limited domain
expressing the position of the elements, and RobotMoving is a predicate indi-
cating robot is changing its position.

RobotMoving ⇔ ∃x, y ∈ Positions :
(x �= y ∧ RobotPosition == x ∧ Past (RobotPosition == y, 1))

(2)

Students were supposed to use TRIO [22], a metric temporal logic, to build
their model, and Zot [59], a bounded satisfiability checker implemented and
maintained at Politecnico di Milano, to verify their specified property. Follow-
ing the “push button tools” indication earlier, the Zot tool is easily accessible
through a Docker image and easy to use and readable instruction guides.

Our main observations during supervising the students for their projects
follows below.

– It is only by doing the project that students perceive the concept of exhaus-
tiveness of model checking which is its main difference with simulation. They
learn how important it is to define constraints that make the model outputs
realistic, but at the same time, do not limit the model to propagate only
certain outputs (e.g., those that are most probably predictable by students
while they imagine the model outputs) and avoid biased results.

– The concept of guaranteeing a property was also better conveyed to students
by doing the project. For example, a common mistake by many students was
to verify property P by model M with checking formula M ∧ P . They are
happy when the tool satisfies the formula and pops out a trace of M in which
P holds. This again shows the lack of proper understanding of model checking
as a concept.

– Again on property verification, it is hard for students to grasp its motivation
on a simple toy example; usually they ask “but why not to add the property
directly in the model instead of verifying if the model satisfies it or not”?
Working on the project allows students to clearly distinguish the model of
the system from the specification that renders a specific requirement stated
during requirement analysis, and that should be verified.

– Students usually better comprehend automata-based models, such as Timed
Automata [5], rather than plain logic formulae, and prefer to practice on
graphical modeling tools instead of writing formulae with a text editor. This
is not a problem per se, as we could use off-the-shelf tools such as UPPAAL.

6 A TRIO operator formalized as Alw (φ) ⇔ ∀t(Dist (φ, t)) which means φ occurs d
time units in the future, where Dist (φ, d) holds at time t if, and only if, φ holds at
time t + d.



12 M. Askarpour and M. M. Bersani

Lecture-Based Teaching of Hoare’s Logic
Another part of the evaluation of the students is the application of Hoare’s logic
to a sample algorithm. We teach the use of Hoare’s logic by applying it on a
simple loop-less algorithm, given proper pre and postconditions. The students
should learn how to come up with (i) a suitable invariant to prove the partial
correctness of the algorithm, and (ii) a variant to prove the termination of the
algorithm. After explaining the basics of Hoare, we move on to explain how we
can unroll the loops and analyse all the iterations with deductive reasoning. We
then see the same thing for conditional clauses. Students then are asked to do
the same thing on a new algorithm.

For example, consider the bubble sort algorithm below. Its pre-condition is
that array a had no repetition (D(a)), and its postcondition is that array a is
sorted (ORD(a)), has no repetition and has all, and only the elements that it
had before the execution of the algorithm. The latter is formalized by P (a, b)
that holds if there is an array b which had all and only the elements of a. The

Algorithm 1. The bubble sort algorithm used as an example to teach
correctness proof.
1: {n ≥ 0 ∧ P (a, b) ∧ D(a) = pre}
2: i := n-1;
3: while i > 0 do
4: j := 0;
5: while j < i do
6: if a[j] > a[j + 1] then
7: temp := a[j + 1]; a[j + 1] := a[j]; a[j] := temp;
8: end if
9: j + +;

10: end while
11: i − −;
12: end while
13: {P (a, b) ∧ D(a) ∧ ORD(a) = post}

steps of correctness proof is the following:
There are two while loops in the algorithm, thus students need to come up

with two invariants, that are Inv1 for the outer while and Inv2 for the inner loop.
Here we do not go trough the whole proof which is available in Mandrioli et al.
[39] and discuss the parts student find more challenging which are defining Inv1
and Inv2, and analysing the effect of temp := a[j + 1]; a[j + 1] := a[j]; a[j] :=
temp; at step three which requires to be unrolled properly. We suggest students
to ask themselves two questions in order to discover the proper invariant: (i) what
keeps the loop going on? and (ii) what does each iteration do? The answers to
these two questions for the outer loop are (i) while goes on for 0 < i < n, (ii)
it decreases i at each iteration so at final iteration i = 0 and rearranges the
array at each iteration so that every element after position i is larger than every



Teaching Formal Methods: An Experience Report 13

Algorithm 2. The steps of correctness proof for algorithm 1.
1: {pre} i := n − 1; {Inv1}
2: {Inv1 ∧ i > 0} j := 0; {Inv2}
3: {Inv2 ∧ j < i ∧ a[j] > a[j + 1]} temp := a[j + 1]; a[j + 1] := a[j]; a[j] :=

temp; j + +; {Inv2}
4: {Inv2 ∧ j < i ∧ a[j] ≤ a[j + 1]} j + +; {Inv2}
5: {Inv2 ∧ j ≥ i} i − −; {Inv1}
6: {Inv1 ∧ i ≤ 0} ⇒ {post}

element before it. We also make students note that the precondition constraints
still hold at line 3. Hence, Inv1 would be:

Inv1 =

⎡
⎢⎣

(0 < i < n ∨ i == 0)∧
∀z(i < z < n ⇒ ∀m(0 ≤ m ≤ i ⇒ a[m] < a[z]))∧
P (a, b) ∧ D(a) ∧ ORD(a, i)

⎤
⎥⎦ (3)

The first line cold be rewritten as (0 ≤ i < n).
For the outer loop the answers are (i) the loops goes on for 0 ≤ j < i while

Inv1 holds, (ii) it increases j at each iteration so at final iteration j = i and it
places the largest element between position 0 and j at position j.

Inv2 =

[
Inv1 ∧ (0 ≤ j ≤ i)∧
∀z(0 ≤ z < j ⇒ a[j] > a[z])

]
(4)

After defining Inv1 and Inv2, we guide the students through the deduction
they need to make step by step starting from precondition down to postcondi-
tions, as described in Algorithm 2. The most challenging step of Algorithm 2
for students is step three, where they have to analyse the manipulation of an
array. We try to make it easy to understand as along the following lines. Starting
from the constraint on line three of Algorithm 2 and having Inv2 figured out,
we need to replace j in Inv2 with j + 1 (assuming that backwards replacement
has been already explained to students with easier examples). Then, we need
to study how to apply backwards replacement with a[j] := temp. We ask the
students to imagine a new and old version for the array a, which correspond to
before and after execution of a[j] := temp. This would lead to the conclusion
that anew is the same as aold except at position j where anew[j] = temp. Next,
we analyse a[j + 1] := a[j]. Here again anew is the same as aold, except for
positions j and j + 1 where anew[j] = temp and anew[j + 1] = aold[j]. Finally,
temp := a[j+1] ends to anew be the same as aold except for anew[j] = aold[j+1]
and anew[j + 1] = aold[j]. This in other words mean that the analysed three
commands swaps element j with j + 1 and the rest of a has remained the same.

Our main observations on teaching Hoare follows:

– It is usually very difficult for students to guess an invariant. They usually
move along the proof with a wrong invariant and surprisingly get to the end



14 M. Askarpour and M. M. Bersani

(of course by mistake). It shows that student still have issues recognizing the
edge cases in an algorithm.

– It is particularly difficult for students to deal with algorithms that work with
arrays.

– Backwards replacement and deductions from constraints is not always easy
for students, and even in best cases one could find errors in their proofs which
goes back to their logic background, and imprecision.

4 Conclusions

In this paper we surveyed the current status of teaching formal methods at uni-
versity and discovered a lack of effort in encouraging students to learn temporal
modeling and specification. We analyzed several factors that might hamper an
effective learning of logic and advocated the need for more effort in teaching log-
ical thinking from the early stage of students careers. We argued that students
lack a correct prospect on the practice of formal specification and verification
which could be treated by project-based teaching. We then presented a report
on our experience at Politecnico di Milano on teaching temporal and Hoare’s
logic. We used a project-based teaching method for the first one and a lecture-
based for the other. In order to make a comparison between the two methods
we asked student’s feedback through a questionnaire. From 30 students attend-
ing the latest round of the course, of which only about 33% claimed to have
some knowledge about FM, approximately 45% reported that the course made
them more interested in the topic, only 11% consider to do their master thesis
in this area, and 45% evaluated the project as the most interesting and use-
ful part of the course. We received several comments from the students stating
that the project helped them to practice temporal logic that otherwise would
seem too theoretical and impractical. Additionally, we draw the following few
observations:

– Teaching model checking is more productive by practicing it with a realistic
system and off-the-shelf tools; Project-based teaching helps students prac-
ticing concepts such as exhaustiveness, property verification, and providing
guarantee that a certain situation would never happen.

– The tool we provide the students with is well documented and has many avail-
able examples. However, not all off-the-shelf tools, which could potentially be
very good alternatives to Zot, are well documented and easy for students. We
have to consider that students have a limited time for the project and the
effort for using the tool and modeling the scenario should be proportional to
the credits of the course. Therefore, our options for the tool(s) we suggest to
students are limited.

– Logic formulae scares students. It is helpful to use automata notions as the
first step of approaching formalization of systems.

– In order to teach either of theorem proving or model-checking, students need
a strong initial motivating introduction that demonstrates the practical use
of these techniques.



Teaching Formal Methods: An Experience Report 15

– The questionnaire asked students to pick their favourite part of the course. As
we said earlier 45% voted to the project, the other 33% picked the theoretical
part of the course on temporal logic (which was necessary for the project as
well), and 22% found the student presentations more interesting. That leaves
0% in favor of Hoare’s logic! We think that the unpopularity of the Hoare’s
logic among students is due to the lack of case studies to justify its usefulness
in the industry, and little possibility of assigning students with a feasible and
meaningful project about it.

Acknowledgements. The credit of the statistics reported on our course goes to its
official responsibles, previously prof. emeritus Dino Mandrioli and currently prof. Pier-
luigi San Pietro.

References

1. Abrial, J.R.: Teaching formal methods: an experience with event-B (invited
speaker’s extended abstract). In: Formal Methods in Computer Science Educa-
tion, p. 1 (2008)

2. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Teaching concurrency: theory
in practice. In: Proceedings of the Inernational Conference on TFM, pp. 158–175
(2009)

3. Ahrendt, W., Bubel, R., Hähnle, R.: Integrated and tool-supported teaching of
testing, debugging, and verification. In: Proceedings of the International Confer-
ence on TFM, pp. 125–143 (2009)

4. Almeida, A.A., Rocha-Oliveira, A.C., Ramos, T.M.F., de Moura, F.L.C., Ayala-
Rincón, M.: The computational relevance of formal logic through formal proofs.
In: Dongol, B., Petre, L., Smith, G. (eds.) FMTea 2019. LNCS, vol. 11758, pp.
81–96. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32441-4 6

5. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

6. Artho, C., Taguchi, K., Tahara, Y., Honiden, S., Tanabe, Y.: Teaching software
model checking. In: Workshop on Formal Methods in Computer Science Education,
pp. 171–179 (2008)

7. Back, R.J., Mannila, L., Peltomaki, M., Sibelius, P.: Structured derivations: a logic
based approach to teaching mathematics. In: FORMED 2008: Formal Methods in
Computer Science Education (2008)

8. Back, R.J., Von Wright, J., et al.: Structured derivations: a method for doing
high-school mathematics carefully. In: Turku Centre for Computer Science (1999)

9. Bohórquez, J., Rocha, C.: Assisted calculational proofs and proof checking based
on partial orders. In: Formal Methods in Computer Science Education, p. 37 (2008)

10. Börger, E.: A practice-oriented course on the principles of computation, program-
ming, and system design and analysis. In: Dean, C.N., Boute, R.T. (eds.) TFM
2004. LNCS, vol. 3294, pp. 65–84. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-30472-2 5

11. Boute, R.: Teaching and practicing computer science at the university level. ACM
SIGCSE Bull. 41(2), 24–30 (2009)

12. Boyatt, R., Sinclair, J.: Experiences of teaching a lightweight formal method. In:
Proceedings of Formal Methods in Computer Science Education (2008)

https://doi.org/10.1007/978-3-030-32441-4_6
https://doi.org/10.1007/978-3-540-30472-2_5
https://doi.org/10.1007/978-3-540-30472-2_5


16 M. Askarpour and M. M. Bersani

13. Carro, M., Mariño, J., Herranz, Á., Moreno-Navarro, J.J.: Teaching how to derive
correct concurrent programs from state-based specifications and code patterns. In:
Dean, C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 85–106. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30472-2 6

14. Cataño, N.: Teaching formal methods: Lessons learnt from using event-B. In: Don-
gol, B., Petre, L., Smith, G. (eds.) FMTea 2019. LNCS, vol. 11758, pp. 212–227.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32441-4 14

15. Dadeau, F., Tissot, R.: Teaching model-based testing with Leirios test generator
(2008)

16. Davies, J., Simpson, A., Martin, A.: Teaching formal methods in context. In: Dean,
C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 185–202. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-30472-2 12

17. Duke, R., Miller, T., Strooper, P.: Integrating formal specification and software
verification and validation. In: Dean, C.N., Boute, R.T. (eds.) TFM 2004. LNCS,
vol. 3294, pp. 124–139. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30472-2 8

18. FBK-IRST, group at Carnegie Mellon University, T.M.C., the Mechanized Rea-
soning Group at University of Genova, at University of Trento, T.M.R.G.: NuSMV
(2015). http://nusmv.fbk.eu/

19. Fernández-Iglesias, M.J., Llamas-Nistal, M.: An undergraduate course on protocol
engineering – how to teach formal methods without scaring students. In: Dean,
C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 153–165. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-30472-2 10

20. Ferreira, J.F., Mendes, A., Backhouse, R., Barbosa, L.S.: Which mathematics for
the information society? In: Gibbons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS,
vol. 5846, pp. 39–56. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04912-5 4

21. Filippidis, I.: A catalog of tools for verification and synthesis. github.com/fm-tools
22. Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling time in computing: a

taxonomy and a comparative survey. ACM Comput. Surv. 42(2), 6:1–6:59 (2010)
23. Garavel, H., Jorgensen, M.: A catalog of tools for the quantitative zoo. http://

cadp.inria.fr/faq.html
24. Gibson, J.P., Lallet, E., Raffy, J.L.: How do i know if my design is correct. In:

Formal Methods in Computer Science Education, pp. 61–70 (2008)
25. Gibson, P., Méry, D.: Teaching formal methods: lessons to learn. In: 2nd Irish

Workshop on Formal Methods, vol. 2, pp. 1–13 (1998)
26. Guyomard, M.: Eb: A constructive approach for the teaching of data structures.

In: Formal Methods in Computer Science Education, p. 25 (2008)
27. Habrias, H.: Teaching specifications, hands on. In: Formal Methods in Computer

Science Education, pp. 5–15 (2008)
28. Habrias, H., Faucou, S.: Linking paradigms, semi-formal and formal notations. In:

Dean, C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 166–184. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30472-2 11

29. Hähnle, R., Bubel, R.: A Hoare-style calculus with explicit state updates. In: For-
mal Methods in Computer Science Education, pp. 49–60 (2008)

30. Hallerstede, S., Leuschel, M.: How to explain mistakes. In: Gibbons, J., Oliveira,
J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp. 105–124. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04912-5 8

31. Hartel, P.H., van Es, B., Tromp, D.: Basic proof skills of computer science students.
In: Hartel, P.H., Plasmeijer, R. (eds.) FPLE 1995. LNCS, vol. 1022, pp. 269–283.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60675-0 50

https://doi.org/10.1007/978-3-540-30472-2_6
https://doi.org/10.1007/978-3-030-32441-4_14
https://doi.org/10.1007/978-3-540-30472-2_12
https://doi.org/10.1007/978-3-540-30472-2_8
https://doi.org/10.1007/978-3-540-30472-2_8
http://nusmv.fbk.eu/
https://doi.org/10.1007/978-3-540-30472-2_10
https://doi.org/10.1007/978-3-642-04912-5_4
https://doi.org/10.1007/978-3-642-04912-5_4
http://github.com/fm-tools
http://cadp.inria.fr/faq.html
http://cadp.inria.fr/faq.html
https://doi.org/10.1007/978-3-540-30472-2_11
https://doi.org/10.1007/978-3-642-04912-5_8
https://doi.org/10.1007/3-540-60675-0_50


Teaching Formal Methods: An Experience Report 17

32. Jard, C.: Teaching distributed algorithms using spin. In: Formal Methods in Com-
puter Science Education, p. 101 (2008)

33. Kofroň, J., Paŕızek, P., Šerý, O.: On teaching formal methods: behavior models and
code analysis. In: Gibbons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp.
144–157. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04912-
5 10

34. Kramer, J.: Abstraction and modelling: A complementary partnership. In: Gib-
bons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp. 1–1. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04912-5 1

35. Lau, K.: A beginner’s course on reasoning about imperative programs. In: Pro-
ceedings of CoLogNET/FME Symposium on TFM, pp. 1–16 (2004)

36. Lau, K.-K.: A beginner’s course on reasoning about imperative programs. In: Dean,
C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 1–16. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-30472-2 1

37. Anderson, L.W., Krathwohl, D.R., Bloom, B.S.: A taxonomy for learning, teaching,
and assessing: A revision of Bloom’s taxonomy of educational objectives (2001)

38. Mandrioli, D.: Advertising formal methods and organizing their teaching: Yes,
but. In: Dean, C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 214–224.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30472-2 14

39. Mandrioli, D., Ghezzi, C.: Theoretical Foundations of Computer Science. John
Wiley & Sons, New York (1987)

40. Naumowicz, A.: Teaching how to write a proof. In: Formal Methods in Computer
Science Education, p. 91 (2008)

41. Noble, J., Pearce, D.J., Groves, L.: Introducing alloy in a software modelling course.
In: Formal Methods in Computer Science Education, p. 81 (2008)

42. Ölveczky, P.C.: Teaching formal methods based on rewriting logic and maude. In:
Gibbons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp. 20–38. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04912-5 3

43. Paige, R.F., Ostroff, J.S.: Specification-driven design with eiffel and agents for
teaching lightweight formal methods. In: Dean, C.N., Boute, R.T. (eds.) TFM
2004. LNCS, vol. 3294, pp. 107–123. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30472-2 7

44. Poll, E.: Teaching program specification and verification using JML and
ESC/Java2. In: Gibbons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp.
92–104. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04912-5 7

45. Reed, J.N., Sinclair, J.E.: Motivating study of formal methods in the classroom. In:
Dean, C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 32–46. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30472-2 3

46. Robinson, K.: Embedding formal development in software engineering. In: Dean,
C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 203–213. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-30472-2 13

47. Robinson, K.: Reflecting on the future: Objectives, strategies and experiences. In:
Formal Methods in Computer Science Education, p. 15 (2008)

48. da Rosa, S.: Designing algorithms in high school mathematics. In: Dean, C.N.,
Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 17–31. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30472-2 2

49. Schwartz, B.: The Paradox of Choice (2004)
50. Simonot, M., Homps, M., Bonnot, P.: Teaching abstraction in mathematics and

computer science (2012)

https://doi.org/10.1007/978-3-642-04912-5_10
https://doi.org/10.1007/978-3-642-04912-5_10
https://doi.org/10.1007/978-3-642-04912-5_1
https://doi.org/10.1007/978-3-540-30472-2_1
https://doi.org/10.1007/978-3-540-30472-2_14
https://doi.org/10.1007/978-3-642-04912-5_3
https://doi.org/10.1007/978-3-540-30472-2_7
https://doi.org/10.1007/978-3-540-30472-2_7
https://doi.org/10.1007/978-3-642-04912-5_7
https://doi.org/10.1007/978-3-540-30472-2_3
https://doi.org/10.1007/978-3-540-30472-2_13
https://doi.org/10.1007/978-3-540-30472-2_2


18 M. Askarpour and M. M. Bersani

51. Simonot, M., Homps, M., Bonnot, P.: Teaching abstraction in mathematics and
computer science - A computer-supported approach with alloy. In: Proceedings of
the 4th International Conference on Computer Supported Education, vol. 2, pp.
239–245 (2012)

52. Spichkova, M.: “Boring formal methods” or “Sherlock Holmes deduction meth-
ods”? In: Milazzo, P., Varró, D., Wimmer, M. (eds.) STAF 2016. LNCS, vol. 9946,
pp. 242–252. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50230-
4 18

53. Spichkova, M., Zamansky, A.: Teaching of formal methods for software engineering.
In: ENASE, pp. 370–376 (2016)

54. Sznuk, T., Schubert, A.: Tool support for teaching Hoare logic. In: Giannakopoulou,
D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 332–346. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10431-7 27

55. Tarkan, S., Sazawal, V.: Chief chefs of Z to alloy: using a kitchen example to teach
alloy with Z. In: Gibbons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp.
72–91. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04912-5 6

56. University of Torino: GreatSPN: Graphical editor and analyzer for timed and
stochastic petri nets (2001). http://www.di.unito.it/greatspn/index.html

57. Department of Information Technology at Uppsala University, Sweden, the Depart-
ment of Computer Science at Aalborg University in Denmark: Uppaal (2008).
http://www.uppaal.org/

58. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: Practice
and experience. ACM Comput. Surv. 41(4) (2009)

59. Zot: A bounded satisfiability checker (2012). github.com/fm-polimi/zot

https://doi.org/10.1007/978-3-319-50230-4_18
https://doi.org/10.1007/978-3-319-50230-4_18
https://doi.org/10.1007/978-3-319-10431-7_27
https://doi.org/10.1007/978-3-642-04912-5_6
http://www.di.unito.it/greatspn/index.html
http://www.uppaal.org/
http://github.com/fm-polimi/zot

	Teaching Formal Methods: An Experience Report
	1 Introduction
	2 Teaching Formal Specification: Why and When?
	3 Experience Report at Politecnico di Milano
	4 Conclusions
	References




