
Jean-Michel Bruel · Alfredo Capozucca ·
Manuel Mazzara · Bertrand Meyer ·
Alexandr Naumchev · Andrey Sadovykh (Eds.)

LN
CS

 1
22

71

First International Workshop, FISEE 2019
Villebrumier, France, November 11–13, 2019
Invited Papers

Frontiers in Software
Engineering Education

Lecture Notes in Computer Science 12271

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Jean-Michel Bruel • Alfredo Capozucca •

Manuel Mazzara • Bertrand Meyer •

Alexandr Naumchev • Andrey Sadovykh (Eds.)

Frontiers in Software
Engineering Education
First International Workshop, FISEE 2019
Villebrumier, France, November 11–13, 2019
Invited Papers

123

Editors
Jean-Michel Bruel
University of Toulouse
Blagnac, France

Alfredo Capozucca
University of Luxembourg
Esch-sur-Alzette, Luxembourg

Manuel Mazzara
Innopolis University
Innopolis, Russia

Bertrand Meyer
Schaffhausen Institute of Technology
Schaffhausen, Switzerland

Alexandr Naumchev
Innopolis University
Innopolis, Russia

Andrey Sadovykh
Innopolis University
Innopolis, Russia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-57662-2 ISBN 978-3-030-57663-9 (eBook)
https://doi.org/10.1007/978-3-030-57663-9

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9765-1907
https://orcid.org/0000-0002-3860-4948
https://doi.org/10.1007/978-3-030-57663-9

Preface

The First International Workshop on Frontiers in Software Engineering Education
(FISEE 2019) (https://www.laser-foundation.org/fisee/fisee-2019/), held during
November 11–13, 2019, at the Château de Villebrumier, France, builds on top of the
experience gained with previous events run at the same place, for example DEVOPS
2018 and DEVOPS 2019. It aimed at bringing the attention to a topic of great
importance and actuality for academia, namely education. The event happened before
the global and massive move to online teaching, therefore the emphasis is more on
“classic” education, still there is mention of “remote teaching.” It can be considered a
compendium on best practices in the world pre 2020; a starting point to explore the
ongoing changes happening right now, while we are writing.

The event was kicked off by an outstanding introduction to the field by Professor
Alexander Tormasov, Founding Rector at Innopolis University, Russia, and Chief
Scientist of Parallels. The participants came from diverse organizations, with a repre-
sentation of both industry and academia. This volume gathers their papers, consider-
ably enhanced thanks to the feedback received during the conference and during two
different peer-review phases. We invited an excellent Program Committee as it can be
seen on the website. People from different continents allows for a broad and hetero-
geneous vision about teaching software engineering. This enriches perspectives,
experiences, and lessons learnt at the moment of assessing the submitted works. The
contributions cover a wide range of problems and are organized in different parts:
Course Experience, Lessons Learnt, Curriculum and Course Design, Competitions and
Workshops, Empirical Studies, Tools and Automation, and Globalization of Education.
The final part Tools Workshop: Artificial and Natural Tools (ANT) contains submis-
sions presented at a different, but related, workshop run at Innopolis University, Russia,
in the context of the TOOLS 2019 conference. We realized that these works also
deserve adequate dissemination in the context of education since they present research
results that are achieved thanks to the work of students, therefore representing a good
example of “learning by doing.”

FISEE 2019 is part of a series of scientific events held at the new LASER center in
Villebrumier near Montauban and Toulouse, France. Inspired by the prestigious
precedent of the Dagstuhl center in Germany (the model for all such ventures), but
adding its own sunny touch of accent du sud-ouest (the songful tones of Southwest
France), the LASER center (http://laser-foundation.org, site of the foundation which
also organizes the LASER summer school in Elba, Italy) provides a venue for high-tech
events of a few days to a week in a beautiful setup in the midst of a region rich with
historical, cultural, and culinary attractions. The proceedings enjoy publication in a
subseries of the Springer Lecture Notes in Computer Science.

https://www.laser-foundation.org/fisee/fisee-2019/
http://laser-foundation.org

We hope that you will benefit from the results of FISEE 2019 as presented in the
following pages and you may join one of the future events in Villebrumier.

July 2020 Jean-Michel Bruel
Alfredo Capozucca

Manuel Mazzara
Bertrand Meyer

Alexandr Naumchev
Andrey Sadovykh

vi Preface

Organization

Program Committee

Yamine Ait-Ameur INP-ENSEEIHT, France
Hamna Aslam Innopolis University, Russia
Jean Botev University of Luxembourg, Luxembourg
Joseph Alexander Brown Innopolis University, Russia
Jean-Michel Bruel IRIT, France
Antonio Bucchiarone FBK-IRST, Italy
Alfredo Capozucca University of Luxembourg, Luxembourg
Maximiliano Cristia CIFASIS-UNR, Argentina
Martina De Sanctis Gran Sasso Science Institute (GSSI), Italy
Carlo A. Furia Universita della Svizzera Italiana (USI), Switzerland
Nicolas Guelfi University of Luxembourg, Luxembourg
Mohamad Kassab Penn State University, USA
Manuel Mazzara Innopolis University, Russia
Bertrand Meyer ETH Zurich, Switzerland
Henry Muccini University of L’Aquila, Italy
Gail Murphy The University of British Columbia, Canada
Alexandr Naumchev Innopolis University, Russia
Cecile Peraire Carnegie Mellon University Silicon Valley, USA
Benoît Ries University of Luxembourg, Luxembourg
Victor Rivera The Australian National University, Australia
Andrey Sadovykh Innopolis University, Russia

Contents

Course Experience

Teaching Formal Methods: An Experience Report. 3
Mehrnoosh Askarpour and Marcello M. Bersani

A Review of the Structure of a Course on Advanced Statistics
for Data Scientists . 19

Mohammad Reza Bahrami, Sergey Masyagin, and Giancarlo Succi

Reflections on Teaching Formal Methods for Software Development
in Higher Education . 28

Mansur Khazeev, Hamna Aslam, Daniel de Carvalho, Manuel Mazzara,
Jean-Michel Bruel, and Joseph Alexander Brown

Experience of Mixed Learning Strategies in Teaching Lean Software
Development to Third Year Undergraduate Students 42

Ilya Khomyakov, Sergey Masyagin, and Giancarlo Succi

Teaching Theoretical Computer Science at Innopolis University 60
Manuel Mazzara

Lessons Learnt

Teaching Software Testing to Industrial Practitioners Using Distance
and Web-Based Learning . 73

Eduard Paul Enoiu

Towards Code Review Guideline in a Classroom . 88
Victor Rivera, Hamna Aslam, Alexandr Naumchev, Daniel de Carvalho,
Mansur Khazeev, and Manuel Mazzara

IT Education in St. Petersburg State University. 106
Terekhov Andrey and Mariia Platonova

Ten Unsafe Assumptions When Teaching Topics in Software Engineering . . . 115
David Vernon

Curriculum and Course Design

Analysing the SWECOM Standard for Designing a DevOps
Education Programme . 133

Alfredo Capozucca and Nicolas Guelfi

Teaching Logic, from a Conceptual Viewpoint . 151
Daniel de Carvalho and Nikolai Kudasov

On the Design of a New Software Engineering Curriculum
in Computer Engineering . 178

Stefan Hallerstede, Peter Gorm Larsen, Jalil Boudjadar,
Carl Peter Leslie Schultz, and Lukas Esterle

Collaborative Modelling and Co-simulation in Engineering
and Computing Curricula . 196

Peter Gorm Larsen, Hugo Daniel Macedo, Claudio Goncalves Gomes,
Lukas Esterle, Casper Thule, John Fitzgerald, and Kenneth Pierce

Competitions and Workshops

Designing Interactive Workshops for Software Engineering Educators 217
Cécile Péraire, Hakan Erdogmus, and Dora Dzvonyar

Hackathons as a Part of Software Engineering Education:
CASE in Tools Example . 232

Andrey Sadovykh, Maria Beketova, and Mansur Khazeev

Teaching Efficient Recursive Programming and Recursion Elimination
Using Olympiads and Contests Problems . 246

Nikolay V. Shilov and Danila Danko

Empirical Studies

An Experience in Monitoring EEG Signals of Software Developers During
Summer Student Internships . 267

Rozaliya Amirova, Vladimir Ivanov, Sergey Masyagin, Aldo Spallone,
Giancarlo Succi, Ananga Thapaliya, and Oydinoy Zufarova

A Study of Cooperative Thinking . 279
Paolo Ciancarini, Marcello Missiroli, and Daniel Russo

Tools and Automation

Analysis of Development Tool Usage in Software Engineering Classes 295
Shokhista Ergasheva, Vladimir Ivanov, Artem Kruglov,
Andrey Sadovykh, Giancarlo Succi, and Evgeny Zouev

Applying Test-Driven Development for Improved Feedback and
Automation of Grading in Academic Courses on Software Development 310

Dragos Truscan, Tanwir Ahmad, and Cuong Huy Tran

x Contents

Globalization of Education

Internationalization Strategy of Innopolis University 327
Iouri Kotorov, Yuliya Krasylnykova, Petr Zhdanov,
and Manuel Mazzara

Finding the Right Understanding: Twenty-First Century University,
Globalization and Internationalization . 341

Iouri Kotorov, Yuliya Krasylnykova, Petr Zhdanov,
and Manuel Mazzara

Tools Workshop: Artificial and Natural Tools (ANT)

Automated Cross-Language Integration Based on Formal Model
of Components . 357

Artyom Aleksyuk and Vladimir Itsykson

Scalable Thread-Modular Approach for Data Race Detection 371
Pavel Andrianov and Vadim Mutilin

On the Development of the Compiler from C to the Processor
with FPGA Accelerator . 386

Anton Baglij, Elena Metelitsa, Yury Mikhailuts, Ruslan Ibragimov,
Boris Steinberg, and Oleg Steinberg

Author Index . 401

Contents xi

Course Experience

Teaching Formal Methods: An Experience
Report

Mehrnoosh Askarpour1(B) and Marcello M. Bersani2

1 Computing and Software, McMaster University, Hamilton, Canada
askarpom@mcmaster.ca

2 DEIB, Poltecnico di Milano, Milan, Italy
marcellomaria.bersani@polimi.it

Abstract. The general attitude of students towards formal specification
and verification of systems is not exactly what one could call enthusiastic.
Generally, software engineering courses at universities include an intro-
duction to specification with formal notations such as Z, Alloy, UML,
etc. However, it seems that the importance of formal specification to
replicate expected system behavior does not sink in as it should with the
students. Moreover, other products of computer science (e.g., machine
learning algorithms, robot systems deployment), rather than software,
benefit from formal specification as well. This paper is a general report
of our observations on teaching formal methods on undergraduate and
graduate levels at Politecnico di Milano.

Keywords: Formal methods · Temporal logic · Computer science ·
Computer engineering · Formal specification

1 Introduction

Formal methods (FM) have been used in hardware and software for a wide range
of applications (e.g., aerospace, transportation). Methods such as automated
formal verification and model checking are used in many different research and
practical areas. Hence, it is paramount for computer scientists and engineers to
be aware of their benefits and apply them to problems of the real world.

Formal Methods community is very well-known, and the world congress FM
is a landmark worldwide. Their affiliated Formal Methods Teaching Committee
(FMTea)1 gathered a repository of FM university courses around the world,2

which gives a reliable estimation of the situation globally. As of April 2020,
the website displays sixty-two -courses, mainly from European universities (see
Fig. 1a), dispensed at the M.Sc. level (see Fig. 1b), the half of which include
explicitly Logic in the list of topics of the course. Moreover, only ten of the
reported courses include Temporal Logic in their program.

1 fmeurope/teaching.
2 fme-teaching/courses.

c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 3–18, 2020.
https://doi.org/10.1007/978-3-030-57663-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_1&domain=pdf
http://orcid.org/0000-0001-6526-2544
http://orcid.org/0000-0001-5137-940X
http://www.fmeurope.org/teaching/
https://fme-teaching.github.io/courses/
https://doi.org/10.1007/978-3-030-57663-9_1

4 M. Askarpour and M. M. Bersani

(a) University FM Courses Divided by
Geographical Area

(b) University FM Courses Di-
vided by Grade

Fig. 1. A visual representation of the current state of Teaching Formal Methods around
the world, based on an study done by Formal Methods Teaching Committee.

To the best of our knowledge, and based on our observations at Politecnico
di Milano and our discussions with our colleagues elsewhere, the participation of
students in FM courses is decreasing, and their interest in doing thesis or research
about FM concepts is alarmingly low. For example Politecnico di Milano has
around 200 graduates every year3 in Master of computer science and engineer-
ing of which only on average 30 students participate in our FM course—which
we later report in this paper—annually.4 We asked those 30 attendees via a
questionnaire if they are interested in doing their master thesis in this area, and
only about 11% of them had positive answers. Based on the same questionnaire,
about 33% of students have some background or interest in the subject, which
means one third of those who are interested in FM still won’t pick it as their
thesis topic.

Da Rosal [48] argues that the reason why students find FM courses chal-
lenging lies in their mathematical background from high school. This opinion
has been raised even before [8,31,48] and highlights the need for a fundamen-
tal change in high school education and more focus on discrete and applicable
mathematics, instead of pedagogical issues. Gibson [25] blames neglecting case
studies and illustrative examples during teaching; Robinson [47] mentions the
lack of visibility of industrial use; Mandrioli [38] blames miscommunication, and
fuzzy terminology, and suggests the use of “push button” and user-friendly tools;
Buote [11] claims that tools could be misleading if mathematical fundamentals
and concepts are not clearly understood. Others point out student’s desire of
achieving quick results and bypassing important design steps [45] or their drift
to virtual reality, rather than modeling [27].

Just like FM courses, any other course in computer engineering/Science has
its difficulties. Students, though, do not run away from them because they view

3 Average computed by considering the last 5 years.
4 All the statistics and percentages reported throughout the paper are rounded and

therefore are approximate values.

Teaching Formal Methods: An Experience Report 5

Table 1. The second column categorizes the papers in proceedings of Formal Methods
in Computer Science Education 2008, Formal Methods Teaching 2004 - 2009 - 2019,
based on the tools and concepts they used. The third column lists the most popular
tools listed in FME Education Course Database (fme-teaching/courses).

Tools Papers FME course database

JML [3,34,44] -

Ada [13,36] -

Abstract state machines [10] -

Eiffel [43] -

B, Event-B [1,14,15,26,28,34,46,46] -

Hoare’s Logic [29,53,54] -

Alloy [12,41,50,51,55] 8 entries

Logic [7,20,33,35,42,52] -

UML [16,24] -

Z, Object-Z [17,55] -

Proof-checking [4,9,40] -

Model checking [6,19,30,32] -

Concurrency theory [2] -

Danfy - 7 entries

SPIN - 9 entries

Nusmv/Nuxmv - 3 entries

Mini-sat - 2 entries

Mcrl2 - 4 entries

Coq - 7 entries

them as important and necessary for their careers. Students often think of FM
courses as too theoretical and not practical. For example, when we teach them
about Hoare’s Logic, they straight up ask if there is any use of that at all. This
shows a serious lack of prospect that will be adjusted by showing the student
real-life examples of using FM in the industrial ambient or asking them to do
practical projects [58]. Open-source tools such as UPPAAL [57], NuSMV [18],
GreatSPN [56] are good examples of means that have industrial purposes and
could be used for homework projects as well. Other tools developed for modeling
and verifying complex systems, whose behavior combines discrete aspects (e.g.,
states and transitions) and continuous dynamics (e.g., time, continuous laws,
etc.), can be found, for instance, at [23] and [21]. Section 3 explains our experience
with Zot [59] on encouraging students to use formal verification for a practical
project.

Table 1 envisions the current state of FM courses and their subjects, by inte-
grating the teaching concepts extracted from teaching FM proceedings, and the
most popular concepts and tools highlighted in FME course data base. As it is

https://fme-teaching.github.io/courses/

6 M. Askarpour and M. M. Bersani

evident from the table, the importance of teaching temporal specification and
Temporal Logic to students, seems to be left out of spotlight in FM community.
On the Contrary, here at Politecnico di Milano we particularly focus on teach
temporal logic in addition to other concepts. Table 2 shows the profile of this
course in the last ten years.

Table 2. The profile of FM course tought at Politecnico di Milano over the last ten
years.

Title Formal methods for concurrent and
real-time systems

Students level Second year of Ms.c. in computer
engineering and computer science

Average number of students 30

Hours per semester 80

Course type Not mandatory

Required background Theoretical computer science and
mathematical logic

The syllabus The basis of FM,

Bisimulation, abstraction and
refinement

Concurrent, distributed and
real-time systems,

Computation tree logic,

PetriNets,

Hoare’s logic,

Timed automata,

Temporal logic (TRIO),

Case studies,

Evaluation Studying and presenting a recently
published article with a topic close
the material of the course,

Applying Hoare’s logic on an
algorithm,

Modeling a toy example via TRIO
and verify a predefined property
with a local model-checker

The rest of this paper is structured as follows: Sect. 2 discusses the importance
of teaching formal specification and verification to students, Sect. 3 reports our
experience at Politecnico di Milano on project-based and lecture-based teaching,
and finally Sect. 4 concludes.

Teaching Formal Methods: An Experience Report 7

2 Teaching Formal Specification: Why and When?

Language
Model based approaches are fundamental for all the academic curricula, not
only those belonging to scientific faculties. The act of transferring an abstract
representation of facts and their relations demands non trivial capabilities. The
problem is even more complex if we consider the case where the language, that
supplies all the syntactical structures capturing the facts and their relations,
has not been devised yet. This scenario is, of course, far from the reality that
professors or lectures face in their everyday academic teaching, which is instead
characterized by a different challenge.

Conveying facts and their relations through a predefined (logical) language is
the actual challenge that universities try to tackle, and that requires students to
learn specific capabilities, and professors and lecturers to develop suitable teach-
ing approaches. The first capability requires the development of specific mental
process that allows a subject to encode facts into sentences of the language,
by only using a limited number of basic syntactical structures, each providing
predefined, and formally stated, semantics. Yielding two different logic formu-
lae that are syntactically different but semantically equivalent is very common
when the same reality is analysed by two persons. Transferring an idea into a
formula or expressing solutions to problems in an algorithmic manner implicates
Computational Thinking, which is envisioning the reality through simpler facts
and more basic relationships. Computational thinking dates back to ’50, and
has been nourishing an interesting debate and research among pedagogues on
whether it can be counted as a basic skill that schools should teach with no
distinction of study careers and since the beginning of education. The mental
path that a subject follows to analyse and decompose the reality is, of course,
strongly dependent on the subject’s way of thinking. Additionally, the presence
of a duality, or a degree of freedom in the language is sometimes a source of
problems for students that are learning logics-related subjects. For example, a
subject can state the relation between A and B either by using a “future-to-
past” direction, or a “past-to-future” one; that is, A will cause B in the future,
or B is caused by A occurred in the past.

The presence of a duality, or a degree of freedom in general, in the language is
sometimes a source of problems for students that are learning logics-related sub-
jects. This freedom of choice has negative side effects leading to a phenomenon
called “Supermarket dilemma”. Schwart analysed this phenomenon in [49] by
providing the evidence that “Autonomy and Freedom of choice are critical to
our well being, and choice is critical to freedom and autonomy”. For this reason,
a person who stands in front of a supermarket shelf can find the choice of a prod-
uct difficult, if a decision has not been already taken in her/his mind. The same
feeling is experienced by students in learning logic. Despite the formal definition
of a logical language, the availability of a number of distinct ways to approach
the encoding of the decomposed reality they have in mind, might hamper the
construction of the sentence that should be the result of a correct composition
of basic syntactical structures.

8 M. Askarpour and M. M. Bersani

Abstraction
The correct identification of the facts and relations of the reality that matter,
can be attained first by answering the question “What should I say with the for-
mula?” and, then by pulling the essential facts and relations out of the identified
answer, by using a possibly iterative process that removes unessential details.
Choosing the right facts and relations is another source of problems for the stu-
dents who come upon the study of logic-related subjects. The lack of capacity
for abstraction is the origin and the reason why students perceive the study of
logic too difficult.

The causes that might lead to a scarce development of abstraction skills are
far from being obvious, though they can be classified into exogenous and endoge-
nous ones. The former are related to the environment that surrounds a subject
and where the subject intertwines relationship with other persons, such as the
family, friends and the attended schools. It is well known that the environment
has a tangible impact on the subjects that live therein. Schools play an impor-
tant role in this game, because their programs and teaching methodologies can
determine the development of abstraction skills in students. The latter ones are
strongly dependent on the subject’s way of thinking, and can unlikely be studied
by only observing the behavior of subjects.

According to Anderson et al. [37], knowledge can be classified into four
distinct classes, namely, factual knowledge, conceptual knowledge, procedural
knowledge and metacognitive knowledge. Factual knowledge is the first kind of
knowledge that students learn at schools, and that schools must provide, and
pertains to the basic evidence of a discipline. For this reason, factual knowledge
always conveys the terminology and the specific details of a subject, and sup-
plies basic building blocks to understand the higher level relationships among
the objects of a given reality. Abstraction capabilities can be nourished through
conceptual and procedural knowledge, that focus on the relationship among the
pieces of a larger structure and how to solve problems. The pillars characterizing
conceptual knowledge are: Knowledge of classifications and categories, Knowl-
edge of principles and generalizations and Knowledge of theories, models, and
structures. The lack of abstraction capabilities in students can, therefore, origi-
nate from the scarce presence of the conceptual dimension of knowledge, which
is not adequately conveyed by suitable teaching program during the school.

Temporal Logic
Students often do not comprehend the meaning of the syntactical structures
of the language because they do not grasp the overall context in which the
language is defined. Missing the general picture is the main reason of a weak
comprehension of the basic evidence conveyed through the factual knowledge.

Logical languages were conceived by humans to capture very diverse aspects
of the reality. Modal logic is an example, and is one of the main families of
languages that are taught during academic careers at M.Sc. of Computer Science.
It includes several distinct languages that can be used to specify the “mode”
(or “modality”) that qualifies the validity of the sentences. Modalities can be

Teaching Formal Methods: An Experience Report 9

intuitively explained by analogize them to adverbs, as they change the truth
value of a sentence as adverbs refine the verbs in natural languages. For instance,
the sentence “it will rain tomorrow” does not express how the rain will be and
how likely the rain will occur. By using a “modality”, or an adverb in this case,
the information that the sentence conveys can be refined; for instance, “it will
surely rain tomorrow” communicates a more precise information about the rain.

The reception of logic by Computer Science is rather recent, despite Com-
puter Science is tightly connected with Mathematics. Amir Pnueli pioneered the
use of a specific class of Modal logic, called Temporal logic, in Computer Sci-
ence. Temporal logic allows for representing, and reasoning about, facts qualified
in terms of time. For this reason, the language is equipped with two modalities
that characterize the occurrence of a fact, that are the “eventually” and “always”
modalities. The semantics of the language is based on the intuitive order of time,
that allows humans to distinguish the notions of “before” and “after”, that is,
in particular, if an event, or a fact, holds true before or after a different one.
Temporal logic includes, in turn, several families, but in its original definition,
it allows one to state, for instance, that if something happens now, then in the
forthcoming future something else will occur.

Temporal logic in Computer Science is adopted to express the desired prop-
erties of systems or to specify entirely their behavior over the time. Writing
formulae that specify how a system behaves is fundamental to precisely capture
the functionality that the system should exhibit, but also to verify if the designed
system can actually behave as intended. For this reason, temporal logic became
rapidly one of the baseline tools to perform requirement specification and analy-
sis, during the Requirement Engineering phase of a project, and to verify certain
properties of the model of a system through Formal Verification.

The notion of time in Temporal logic has been refined over the years, moving
from a simple order to trees of realizable futures, or to dense time. According
to Furia et al. [22] there are many issues that temporal specification faces once
a system is subject to be modeled. It is important to clarify if a system is
more compatible with continuous or non-continuous time models. For example,
manifesting the behaviors of a model with certain characteristics is presumably
simpler considering continuous time domain. It is also important to figure out if
a system may function in a finite, infinite or periodic time window.

Moreover, to choose a suitable formalism for modeling purposes, one need to
realise if temporal characteristics of the system concern only order of events (e.g.,
event A happens before event B) or also metric constraints are important (e.g.,
event B must happen exactly three time units before event A). One needs to
choose between linear (i.e., sequences of states of the model) and branching time
(i.e., trees of states of the model) pattern to better describe the system behavior.
The granularity (e.g., seconds, minutes, days) and scaling with which the tem-
poral constraints of the system are described, is also another point to be careful
about. The nature of the system, in terms of determinism, non-determinism, and
probabilistic, is also very crucial in picking the right modeling means and tools.

10 M. Askarpour and M. M. Bersani

Considering all the mentioned issues, we advocate the teaching of logic and
logical thinking in schools and more emphasis on temporal logic in M.Sc. of
Engineering curricula, as it is of utmost importance to the future computer
scientists and engineers. We argue that the fundamentals of formal methods
need to start being thought at the initial years of university. This is in fact
how universities around the world approach to building the logic and discrete
mathematical background of students. However, more specific material such as
formal modeling of systems, model checking, and formal verification are concepts
to be thought during Masters, when students have already passed programming
courses and developed an understanding of requirements specification (e.g., by
using Alloy, UML diagrams).

3 Experience Report at Politecnico di Milano

In this section, we report our experience of teaching a FM course at our uni-
versity. The course, as shown in Table 2, has been going on for more than ten
years and follows a standard structure. The first part of this section explains our
project-based teaching method of temporal logic, and the second part reports
our observations from teaching Hoare’s Logic.

Project-Based Teaching of Temporal Logic
A part of the evaluation is usually done by a modeling project. In other words,
students are required to write a specification of a (complex) system by using
temporal logic formulae. This task is demanding but essential to make students
aware of the potential of logic and to show how logic goes beyond the abstract
examples that are commonly adopted for teaching it. Using logic to specify and
verify properties of realistic scenarios is therefore fundamental to motivate Com-
puter Engineering students, as the exercise links abstract notions with tangible
and realistic applications that they might encounter in their professional life.

We provide students with description of a safety-critical system. Using the
last years’s project5 as an illustrative example, the students were supposed to
formalize a scenario in which a human and a robot collaborate in an indus-
trial setting; robot moves workpieces around in a the workcell to suitable places
(position p1 and p2) for human to manipulate (at p1) and inspect (at p2) them.
Students had to model the dynamics between human and robot and temporal
back and forth between the two in a realistic and correct manner. Once they do
that, they need to come up with a simple safety property such as “human and
robot should never be closer that a certain distance, while robot is moving” and
verify if the model they defined satisfy this property or not.

5 polimi/fm2019.

https://github.com/Askarpour/FM2019

Teaching Formal Methods: An Experience Report 11

The formula below is an example of what students wrote as safety property.
It states that always6 no same position for human and robot exists when the
robot is moving.

Alw(¬∃x ∈ Positions : RobotPosition == x∧
HumanPosition == x ∧ RobotMoving)

(1)

where RobotPosition and HumanPosition are variables with a limited domain
expressing the position of the elements, and RobotMoving is a predicate indi-
cating robot is changing its position.

RobotMoving ⇔ ∃x, y ∈ Positions :
(x �= y ∧ RobotPosition == x ∧ Past (RobotPosition == y, 1))

(2)

Students were supposed to use TRIO [22], a metric temporal logic, to build
their model, and Zot [59], a bounded satisfiability checker implemented and
maintained at Politecnico di Milano, to verify their specified property. Follow-
ing the “push button tools” indication earlier, the Zot tool is easily accessible
through a Docker image and easy to use and readable instruction guides.

Our main observations during supervising the students for their projects
follows below.

– It is only by doing the project that students perceive the concept of exhaus-
tiveness of model checking which is its main difference with simulation. They
learn how important it is to define constraints that make the model outputs
realistic, but at the same time, do not limit the model to propagate only
certain outputs (e.g., those that are most probably predictable by students
while they imagine the model outputs) and avoid biased results.

– The concept of guaranteeing a property was also better conveyed to students
by doing the project. For example, a common mistake by many students was
to verify property P by model M with checking formula M ∧ P . They are
happy when the tool satisfies the formula and pops out a trace of M in which
P holds. This again shows the lack of proper understanding of model checking
as a concept.

– Again on property verification, it is hard for students to grasp its motivation
on a simple toy example; usually they ask “but why not to add the property
directly in the model instead of verifying if the model satisfies it or not”?
Working on the project allows students to clearly distinguish the model of
the system from the specification that renders a specific requirement stated
during requirement analysis, and that should be verified.

– Students usually better comprehend automata-based models, such as Timed
Automata [5], rather than plain logic formulae, and prefer to practice on
graphical modeling tools instead of writing formulae with a text editor. This
is not a problem per se, as we could use off-the-shelf tools such as UPPAAL.

6 A TRIO operator formalized as Alw (φ) ⇔ ∀t(Dist (φ, t)) which means φ occurs d
time units in the future, where Dist (φ, d) holds at time t if, and only if, φ holds at
time t + d.

12 M. Askarpour and M. M. Bersani

Lecture-Based Teaching of Hoare’s Logic
Another part of the evaluation of the students is the application of Hoare’s logic
to a sample algorithm. We teach the use of Hoare’s logic by applying it on a
simple loop-less algorithm, given proper pre and postconditions. The students
should learn how to come up with (i) a suitable invariant to prove the partial
correctness of the algorithm, and (ii) a variant to prove the termination of the
algorithm. After explaining the basics of Hoare, we move on to explain how we
can unroll the loops and analyse all the iterations with deductive reasoning. We
then see the same thing for conditional clauses. Students then are asked to do
the same thing on a new algorithm.

For example, consider the bubble sort algorithm below. Its pre-condition is
that array a had no repetition (D(a)), and its postcondition is that array a is
sorted (ORD(a)), has no repetition and has all, and only the elements that it
had before the execution of the algorithm. The latter is formalized by P (a, b)
that holds if there is an array b which had all and only the elements of a. The

Algorithm 1. The bubble sort algorithm used as an example to teach
correctness proof.
1: {n ≥ 0 ∧ P (a, b) ∧ D(a) = pre}
2: i := n-1;
3: while i > 0 do
4: j := 0;
5: while j < i do
6: if a[j] > a[j + 1] then
7: temp := a[j + 1]; a[j + 1] := a[j]; a[j] := temp;
8: end if
9: j + +;

10: end while
11: i − −;
12: end while
13: {P (a, b) ∧ D(a) ∧ ORD(a) = post}

steps of correctness proof is the following:
There are two while loops in the algorithm, thus students need to come up

with two invariants, that are Inv1 for the outer while and Inv2 for the inner loop.
Here we do not go trough the whole proof which is available in Mandrioli et al.
[39] and discuss the parts student find more challenging which are defining Inv1
and Inv2, and analysing the effect of temp := a[j + 1]; a[j + 1] := a[j]; a[j] :=
temp; at step three which requires to be unrolled properly. We suggest students
to ask themselves two questions in order to discover the proper invariant: (i) what
keeps the loop going on? and (ii) what does each iteration do? The answers to
these two questions for the outer loop are (i) while goes on for 0 < i < n, (ii)
it decreases i at each iteration so at final iteration i = 0 and rearranges the
array at each iteration so that every element after position i is larger than every

Teaching Formal Methods: An Experience Report 13

Algorithm 2. The steps of correctness proof for algorithm 1.
1: {pre} i := n − 1; {Inv1}
2: {Inv1 ∧ i > 0} j := 0; {Inv2}
3: {Inv2 ∧ j < i ∧ a[j] > a[j + 1]} temp := a[j + 1]; a[j + 1] := a[j]; a[j] :=

temp; j + +; {Inv2}
4: {Inv2 ∧ j < i ∧ a[j] ≤ a[j + 1]} j + +; {Inv2}
5: {Inv2 ∧ j ≥ i} i − −; {Inv1}
6: {Inv1 ∧ i ≤ 0} ⇒ {post}

element before it. We also make students note that the precondition constraints
still hold at line 3. Hence, Inv1 would be:

Inv1 =

⎡
⎢⎣

(0 < i < n ∨ i == 0)∧
∀z(i < z < n ⇒ ∀m(0 ≤ m ≤ i ⇒ a[m] < a[z]))∧
P (a, b) ∧ D(a) ∧ ORD(a, i)

⎤
⎥⎦ (3)

The first line cold be rewritten as (0 ≤ i < n).
For the outer loop the answers are (i) the loops goes on for 0 ≤ j < i while

Inv1 holds, (ii) it increases j at each iteration so at final iteration j = i and it
places the largest element between position 0 and j at position j.

Inv2 =

[
Inv1 ∧ (0 ≤ j ≤ i)∧
∀z(0 ≤ z < j ⇒ a[j] > a[z])

]
(4)

After defining Inv1 and Inv2, we guide the students through the deduction
they need to make step by step starting from precondition down to postcondi-
tions, as described in Algorithm 2. The most challenging step of Algorithm 2
for students is step three, where they have to analyse the manipulation of an
array. We try to make it easy to understand as along the following lines. Starting
from the constraint on line three of Algorithm 2 and having Inv2 figured out,
we need to replace j in Inv2 with j + 1 (assuming that backwards replacement
has been already explained to students with easier examples). Then, we need
to study how to apply backwards replacement with a[j] := temp. We ask the
students to imagine a new and old version for the array a, which correspond to
before and after execution of a[j] := temp. This would lead to the conclusion
that anew is the same as aold except at position j where anew[j] = temp. Next,
we analyse a[j + 1] := a[j]. Here again anew is the same as aold, except for
positions j and j + 1 where anew[j] = temp and anew[j + 1] = aold[j]. Finally,
temp := a[j+1] ends to anew be the same as aold except for anew[j] = aold[j+1]
and anew[j + 1] = aold[j]. This in other words mean that the analysed three
commands swaps element j with j + 1 and the rest of a has remained the same.

Our main observations on teaching Hoare follows:

– It is usually very difficult for students to guess an invariant. They usually
move along the proof with a wrong invariant and surprisingly get to the end

14 M. Askarpour and M. M. Bersani

(of course by mistake). It shows that student still have issues recognizing the
edge cases in an algorithm.

– It is particularly difficult for students to deal with algorithms that work with
arrays.

– Backwards replacement and deductions from constraints is not always easy
for students, and even in best cases one could find errors in their proofs which
goes back to their logic background, and imprecision.

4 Conclusions

In this paper we surveyed the current status of teaching formal methods at uni-
versity and discovered a lack of effort in encouraging students to learn temporal
modeling and specification. We analyzed several factors that might hamper an
effective learning of logic and advocated the need for more effort in teaching log-
ical thinking from the early stage of students careers. We argued that students
lack a correct prospect on the practice of formal specification and verification
which could be treated by project-based teaching. We then presented a report
on our experience at Politecnico di Milano on teaching temporal and Hoare’s
logic. We used a project-based teaching method for the first one and a lecture-
based for the other. In order to make a comparison between the two methods
we asked student’s feedback through a questionnaire. From 30 students attend-
ing the latest round of the course, of which only about 33% claimed to have
some knowledge about FM, approximately 45% reported that the course made
them more interested in the topic, only 11% consider to do their master thesis
in this area, and 45% evaluated the project as the most interesting and use-
ful part of the course. We received several comments from the students stating
that the project helped them to practice temporal logic that otherwise would
seem too theoretical and impractical. Additionally, we draw the following few
observations:

– Teaching model checking is more productive by practicing it with a realistic
system and off-the-shelf tools; Project-based teaching helps students prac-
ticing concepts such as exhaustiveness, property verification, and providing
guarantee that a certain situation would never happen.

– The tool we provide the students with is well documented and has many avail-
able examples. However, not all off-the-shelf tools, which could potentially be
very good alternatives to Zot, are well documented and easy for students. We
have to consider that students have a limited time for the project and the
effort for using the tool and modeling the scenario should be proportional to
the credits of the course. Therefore, our options for the tool(s) we suggest to
students are limited.

– Logic formulae scares students. It is helpful to use automata notions as the
first step of approaching formalization of systems.

– In order to teach either of theorem proving or model-checking, students need
a strong initial motivating introduction that demonstrates the practical use
of these techniques.

Teaching Formal Methods: An Experience Report 15

– The questionnaire asked students to pick their favourite part of the course. As
we said earlier 45% voted to the project, the other 33% picked the theoretical
part of the course on temporal logic (which was necessary for the project as
well), and 22% found the student presentations more interesting. That leaves
0% in favor of Hoare’s logic! We think that the unpopularity of the Hoare’s
logic among students is due to the lack of case studies to justify its usefulness
in the industry, and little possibility of assigning students with a feasible and
meaningful project about it.

Acknowledgements. The credit of the statistics reported on our course goes to its
official responsibles, previously prof. emeritus Dino Mandrioli and currently prof. Pier-
luigi San Pietro.

References

1. Abrial, J.R.: Teaching formal methods: an experience with event-B (invited
speaker’s extended abstract). In: Formal Methods in Computer Science Educa-
tion, p. 1 (2008)

2. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Teaching concurrency: theory
in practice. In: Proceedings of the Inernational Conference on TFM, pp. 158–175
(2009)

3. Ahrendt, W., Bubel, R., Hähnle, R.: Integrated and tool-supported teaching of
testing, debugging, and verification. In: Proceedings of the International Confer-
ence on TFM, pp. 125–143 (2009)

4. Almeida, A.A., Rocha-Oliveira, A.C., Ramos, T.M.F., de Moura, F.L.C., Ayala-
Rincón, M.: The computational relevance of formal logic through formal proofs.
In: Dongol, B., Petre, L., Smith, G. (eds.) FMTea 2019. LNCS, vol. 11758, pp.
81–96. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32441-4 6

5. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

6. Artho, C., Taguchi, K., Tahara, Y., Honiden, S., Tanabe, Y.: Teaching software
model checking. In: Workshop on Formal Methods in Computer Science Education,
pp. 171–179 (2008)

7. Back, R.J., Mannila, L., Peltomaki, M., Sibelius, P.: Structured derivations: a logic
based approach to teaching mathematics. In: FORMED 2008: Formal Methods in
Computer Science Education (2008)

8. Back, R.J., Von Wright, J., et al.: Structured derivations: a method for doing
high-school mathematics carefully. In: Turku Centre for Computer Science (1999)

9. Bohórquez, J., Rocha, C.: Assisted calculational proofs and proof checking based
on partial orders. In: Formal Methods in Computer Science Education, p. 37 (2008)

10. Börger, E.: A practice-oriented course on the principles of computation, program-
ming, and system design and analysis. In: Dean, C.N., Boute, R.T. (eds.) TFM
2004. LNCS, vol. 3294, pp. 65–84. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-30472-2 5

11. Boute, R.: Teaching and practicing computer science at the university level. ACM
SIGCSE Bull. 41(2), 24–30 (2009)

12. Boyatt, R., Sinclair, J.: Experiences of teaching a lightweight formal method. In:
Proceedings of Formal Methods in Computer Science Education (2008)

https://doi.org/10.1007/978-3-030-32441-4_6
https://doi.org/10.1007/978-3-540-30472-2_5
https://doi.org/10.1007/978-3-540-30472-2_5

16 M. Askarpour and M. M. Bersani

13. Carro, M., Mariño, J., Herranz, Á., Moreno-Navarro, J.J.: Teaching how to derive
correct concurrent programs from state-based specifications and code patterns. In:
Dean, C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 85–106. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30472-2 6

14. Cataño, N.: Teaching formal methods: Lessons learnt from using event-B. In: Don-
gol, B., Petre, L., Smith, G. (eds.) FMTea 2019. LNCS, vol. 11758, pp. 212–227.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32441-4 14

15. Dadeau, F., Tissot, R.: Teaching model-based testing with Leirios test generator
(2008)

16. Davies, J., Simpson, A., Martin, A.: Teaching formal methods in context. In: Dean,
C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 185–202. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-30472-2 12

17. Duke, R., Miller, T., Strooper, P.: Integrating formal specification and software
verification and validation. In: Dean, C.N., Boute, R.T. (eds.) TFM 2004. LNCS,
vol. 3294, pp. 124–139. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30472-2 8

18. FBK-IRST, group at Carnegie Mellon University, T.M.C., the Mechanized Rea-
soning Group at University of Genova, at University of Trento, T.M.R.G.: NuSMV
(2015). http://nusmv.fbk.eu/

19. Fernández-Iglesias, M.J., Llamas-Nistal, M.: An undergraduate course on protocol
engineering – how to teach formal methods without scaring students. In: Dean,
C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 153–165. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-30472-2 10

20. Ferreira, J.F., Mendes, A., Backhouse, R., Barbosa, L.S.: Which mathematics for
the information society? In: Gibbons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS,
vol. 5846, pp. 39–56. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04912-5 4

21. Filippidis, I.: A catalog of tools for verification and synthesis. github.com/fm-tools
22. Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling time in computing: a

taxonomy and a comparative survey. ACM Comput. Surv. 42(2), 6:1–6:59 (2010)
23. Garavel, H., Jorgensen, M.: A catalog of tools for the quantitative zoo. http://

cadp.inria.fr/faq.html
24. Gibson, J.P., Lallet, E., Raffy, J.L.: How do i know if my design is correct. In:

Formal Methods in Computer Science Education, pp. 61–70 (2008)
25. Gibson, P., Méry, D.: Teaching formal methods: lessons to learn. In: 2nd Irish

Workshop on Formal Methods, vol. 2, pp. 1–13 (1998)
26. Guyomard, M.: Eb: A constructive approach for the teaching of data structures.

In: Formal Methods in Computer Science Education, p. 25 (2008)
27. Habrias, H.: Teaching specifications, hands on. In: Formal Methods in Computer

Science Education, pp. 5–15 (2008)
28. Habrias, H., Faucou, S.: Linking paradigms, semi-formal and formal notations. In:

Dean, C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 166–184. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30472-2 11

29. Hähnle, R., Bubel, R.: A Hoare-style calculus with explicit state updates. In: For-
mal Methods in Computer Science Education, pp. 49–60 (2008)

30. Hallerstede, S., Leuschel, M.: How to explain mistakes. In: Gibbons, J., Oliveira,
J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp. 105–124. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04912-5 8

31. Hartel, P.H., van Es, B., Tromp, D.: Basic proof skills of computer science students.
In: Hartel, P.H., Plasmeijer, R. (eds.) FPLE 1995. LNCS, vol. 1022, pp. 269–283.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60675-0 50

https://doi.org/10.1007/978-3-540-30472-2_6
https://doi.org/10.1007/978-3-030-32441-4_14
https://doi.org/10.1007/978-3-540-30472-2_12
https://doi.org/10.1007/978-3-540-30472-2_8
https://doi.org/10.1007/978-3-540-30472-2_8
http://nusmv.fbk.eu/
https://doi.org/10.1007/978-3-540-30472-2_10
https://doi.org/10.1007/978-3-642-04912-5_4
https://doi.org/10.1007/978-3-642-04912-5_4
http://github.com/fm-tools
http://cadp.inria.fr/faq.html
http://cadp.inria.fr/faq.html
https://doi.org/10.1007/978-3-540-30472-2_11
https://doi.org/10.1007/978-3-642-04912-5_8
https://doi.org/10.1007/3-540-60675-0_50

Teaching Formal Methods: An Experience Report 17

32. Jard, C.: Teaching distributed algorithms using spin. In: Formal Methods in Com-
puter Science Education, p. 101 (2008)

33. Kofroň, J., Paŕızek, P., Šerý, O.: On teaching formal methods: behavior models and
code analysis. In: Gibbons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp.
144–157. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04912-
5 10

34. Kramer, J.: Abstraction and modelling: A complementary partnership. In: Gib-
bons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp. 1–1. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04912-5 1

35. Lau, K.: A beginner’s course on reasoning about imperative programs. In: Pro-
ceedings of CoLogNET/FME Symposium on TFM, pp. 1–16 (2004)

36. Lau, K.-K.: A beginner’s course on reasoning about imperative programs. In: Dean,
C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 1–16. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-30472-2 1

37. Anderson, L.W., Krathwohl, D.R., Bloom, B.S.: A taxonomy for learning, teaching,
and assessing: A revision of Bloom’s taxonomy of educational objectives (2001)

38. Mandrioli, D.: Advertising formal methods and organizing their teaching: Yes,
but. In: Dean, C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 214–224.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30472-2 14

39. Mandrioli, D., Ghezzi, C.: Theoretical Foundations of Computer Science. John
Wiley & Sons, New York (1987)

40. Naumowicz, A.: Teaching how to write a proof. In: Formal Methods in Computer
Science Education, p. 91 (2008)

41. Noble, J., Pearce, D.J., Groves, L.: Introducing alloy in a software modelling course.
In: Formal Methods in Computer Science Education, p. 81 (2008)

42. Ölveczky, P.C.: Teaching formal methods based on rewriting logic and maude. In:
Gibbons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp. 20–38. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04912-5 3

43. Paige, R.F., Ostroff, J.S.: Specification-driven design with eiffel and agents for
teaching lightweight formal methods. In: Dean, C.N., Boute, R.T. (eds.) TFM
2004. LNCS, vol. 3294, pp. 107–123. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30472-2 7

44. Poll, E.: Teaching program specification and verification using JML and
ESC/Java2. In: Gibbons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp.
92–104. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04912-5 7

45. Reed, J.N., Sinclair, J.E.: Motivating study of formal methods in the classroom. In:
Dean, C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 32–46. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30472-2 3

46. Robinson, K.: Embedding formal development in software engineering. In: Dean,
C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 203–213. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-30472-2 13

47. Robinson, K.: Reflecting on the future: Objectives, strategies and experiences. In:
Formal Methods in Computer Science Education, p. 15 (2008)

48. da Rosa, S.: Designing algorithms in high school mathematics. In: Dean, C.N.,
Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 17–31. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30472-2 2

49. Schwartz, B.: The Paradox of Choice (2004)
50. Simonot, M., Homps, M., Bonnot, P.: Teaching abstraction in mathematics and

computer science (2012)

https://doi.org/10.1007/978-3-642-04912-5_10
https://doi.org/10.1007/978-3-642-04912-5_10
https://doi.org/10.1007/978-3-642-04912-5_1
https://doi.org/10.1007/978-3-540-30472-2_1
https://doi.org/10.1007/978-3-540-30472-2_14
https://doi.org/10.1007/978-3-642-04912-5_3
https://doi.org/10.1007/978-3-540-30472-2_7
https://doi.org/10.1007/978-3-540-30472-2_7
https://doi.org/10.1007/978-3-642-04912-5_7
https://doi.org/10.1007/978-3-540-30472-2_3
https://doi.org/10.1007/978-3-540-30472-2_13
https://doi.org/10.1007/978-3-540-30472-2_2

18 M. Askarpour and M. M. Bersani

51. Simonot, M., Homps, M., Bonnot, P.: Teaching abstraction in mathematics and
computer science - A computer-supported approach with alloy. In: Proceedings of
the 4th International Conference on Computer Supported Education, vol. 2, pp.
239–245 (2012)

52. Spichkova, M.: “Boring formal methods” or “Sherlock Holmes deduction meth-
ods”? In: Milazzo, P., Varró, D., Wimmer, M. (eds.) STAF 2016. LNCS, vol. 9946,
pp. 242–252. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50230-
4 18

53. Spichkova, M., Zamansky, A.: Teaching of formal methods for software engineering.
In: ENASE, pp. 370–376 (2016)

54. Sznuk, T., Schubert, A.: Tool support for teaching Hoare logic. In: Giannakopoulou,
D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 332–346. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10431-7 27

55. Tarkan, S., Sazawal, V.: Chief chefs of Z to alloy: using a kitchen example to teach
alloy with Z. In: Gibbons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp.
72–91. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04912-5 6

56. University of Torino: GreatSPN: Graphical editor and analyzer for timed and
stochastic petri nets (2001). http://www.di.unito.it/greatspn/index.html

57. Department of Information Technology at Uppsala University, Sweden, the Depart-
ment of Computer Science at Aalborg University in Denmark: Uppaal (2008).
http://www.uppaal.org/

58. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: Practice
and experience. ACM Comput. Surv. 41(4) (2009)

59. Zot: A bounded satisfiability checker (2012). github.com/fm-polimi/zot

https://doi.org/10.1007/978-3-319-50230-4_18
https://doi.org/10.1007/978-3-319-50230-4_18
https://doi.org/10.1007/978-3-319-10431-7_27
https://doi.org/10.1007/978-3-642-04912-5_6
http://www.di.unito.it/greatspn/index.html
http://www.uppaal.org/
http://github.com/fm-polimi/zot

A Review of the Structure of a Course
on Advanced Statistics for Data Scientists

Mohammad Reza Bahrami(B) , Sergey Masyagin , and Giancarlo Succi

Innopolis University, Innopolis 420500, Russia
mo.bahrami@innopolis.ru

Abstract. This paper presents a review of an innovative course on
“Advanced Statistics” for a master program in data science. The pre-
requisites for this course include fundamental knowledge in Mathemat-
ics, Computer Science, and Economics. The expected learning outcome
is centered on the ability to model empirical investigations in terms of
hypotheses to prove via suitable statistical tests. The paper contains gen-
eral goals, description of the content, description of the structure of each
week, description of the evaluations, and overall outcomes from students
of the course.

Keywords: Advanced statistics · Inferential statistics · Data science ·
Course structure

1 Introduction

Data Science, consists of techniques and theories extracted from statistics, com-
puter science, and machine learning, is a constantly developing field. In this paper
we present the innovative approach taken in teaching a course on “Advanced
Statistics” to first year master students in data science. The core subject of the
course is the quantitative relations of qualitatively defined socio-economic phe-
nomena, and the laws of their relationship [1,15,34,49,50], together with a large
set of connections to software engineering [10,11,14,26–30,35,36,41,43–45].

The purpose of studying this course is to form theoretical knowledge and
practical skills in the field of modern statistics, as well as the formation of gen-
eral cultural and professional competencies necessary for the implementation of
professional tasks [5,17,23].

To this end we have focused mostly in supplying the students with a funda-
mental theoretical and practical knowledge in the basics of statistics, focusing on
the clear understanding of the underlying phenomena and mathematical struc-
tures.

This approach is different from many proposed on the field and looking at the
syllabus the striking difference is the amount of material that is being presented,
much less than the usual. However, the depth of such material is well above what
is commonly taught and we are convinced that a small but very fundamental and

c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 19–27, 2020.
https://doi.org/10.1007/978-3-030-57663-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_2&domain=pdf
http://orcid.org/0000-0003-4050-701X
http://orcid.org/0000-0002-6010-8764
http://orcid.org/0000-0002-3868-5354
https://doi.org/10.1007/978-3-030-57663-9_2

20 M. R. Bahrami et al.

deep content equips the students with all the relevant competence in Advanced
Statistics that is then used inside Data Science [2,4,6,46].

This paper is organized as follows. The course starts from basic informa-
tion about the subject, methods and tasks of statistics, statistical observation,
grouping and summarizing statistical observations, absolute and relative values,
average values and indicators of variation, sample observation, statistical study
of the relationship between phenomena, statistical study of the dynamics of
socio-economic phenomena, indices [7,18] (Sect. 2). Then it follows by covering
commonly used statistical inference methods for numerical and categorical data.
It covers the procedure of setting up and conducting hypothesis tests, inference
p-values, and the results of analysis [3,19]. The syllabus of the course is devel-
oped in accordance with the requirement of higher professional education in the
training of data scientists.

2 General Goals

The main purpose of this course is to present the fundamentals of inferential
statistics to the future software engineers and data scientists, on one side pro-
viding the scientific fundamentals of the disciplines, and on the other anchoring
the theoretical concepts on practices coming from the world of software devel-
opment and engineering. The course covers the statistical analysis of data with
limited assumptions on the distribution, with reference to testing hypotheses,
measuring correlations, building samples, and performing regressions. In general
the key concepts of the course are statistical inference, non parametric statistics,
test of statistical hypotheses, and simple linear regression and correlation analy-
sis. The course also draws its fundamental data often from software metrics, the
subject of a preliminary course on this matter [9,12,13,21,24,25,38–40,48], and
also referring to techniques of machine learning and computational intelligence
[31,32].

2.1 Course Objectives Based on Bloom’s Taxonomy

The students learning objectives are set using Bloom’s Taxonomy. Bloom’s Tax-
onomy is a powerful tool, which explains framework for categorizing educational
goals: Taxonomy of Educational Objectives, consists of six major categories. This
work explains the learning process including the following categories: remember,
understand, and apply.

We expect that by the end of the course, the students should be able to
remember the fundamentals of inferential statistics, the specifics and purpose of
different hypothesis tests, and distinguish between parametric and non paramet-
ric tests.

By the end of the course, the students should be able to understand the basic
concepts of inferential statistics, the fundamental laws in statistics, the concept
of null and alternative hypotheses, and the hypotheses test procedure.

Advanced Statistics for Data Scientists 21

Finally we expect that the students should be able to apply statistically
analysis of the problems related to data that are not distributed normally, to
apply the more recent computationally-intensive techniques that can help to
describe samples and to infer properties of populations in absence of normality,
to identify situations when the data is on nominal scales so alternative techniques
should be use, and act accordingly, and to run experiment to evaluate hypotheses
for situation of scarce data, distributed non normally, on different kinds of scales.

2.2 Course Evaluation

We carry out the course evaluation in the forms of weekly quizzes (in lectures
and labs), participation, midterm and final exam. The final rating is determined
by the system of point-rating assessment of the work as shown in Table 1. We try
to maintain an “agile” approach in our evaluations to ensure that early feedback
and flexible assignments support the different learning modes of the different
students [20].

Table 1. Course evaluation.

Type Proposed points Grade Interpretation Proposed range

Weekly quizzes 10 A Excellent 95–100

Midterm 20 B Good 75–94

Final oral exam 35 C Satisfactory 55–74

Final written exam 30 D Poor 0–54

Participation 5

3 Structure of the Course

The course has three main sections (Table 2):

– Sampling Distributions Associated with the Normal Population
– Test of Statistical Hypotheses
– Simple Linear Regression and Correlation Analysis

Section 1: Sampling Distributions Associated with the Normal Pop-
ulation. This section starts with an introduction to inferential statistics. The
process of obtaining conclusions about a certain population based on randomly
extracted samples from it (in essence, in parts or subsets of it) is called Statistical
inference.

Then it follows by the introduction of a few unique distributions of discrete
and continuous probability with the representation of a pattern. Given the shape
of a function, the probability density of a few distribution properties is also
discussed.

22 M. R. Bahrami et al.

Table 2. Course sections and subsections.

Section Section and subsection titles Teaching hours

1 Sampling Distributions Associated with the Normal
Population

12

Introduction to the course, toward inference

Student’s t-distribution

Bernoulli and binomial distribution

Chi-square distribution

Snedecor’s F-distribution

2 Test of Statistical Hypotheses 24

Z-test

Student’s t-test

Chi-square test

Snedecor’s F-test

3 Simple Linear Regression and Correlation Analysis 12

Kolmogorov-Smirnov test

Size of samples, Kolmogorov-Smirnov, Fisher exact

Logistic regression

Section 2: Test of Statistical Hypotheses. Statistical inference theory can
be used to assess the likelihood that private samples belong to a known popula-
tion. The process of statistical inference begins with the formulating of the null
hypothesis (H0), consisting in the assumption that sample statistics are obtained
from a certain set. The null hypothesis is maintained or rejected depending on
how likely the result is. If the observed differences are large relative to the mag-
nitude of the variability of the sample data, the researcher usually rejects the
null hypothesis and concludes that the alternative hypothesis holds which means
there are extremely small chances that the observed differences are due to the
case: the result is statistically significant.

There exist several methods of testing hypotheses that some of them in this
section are covered.

Section 3: Simple Linear Regression and Correlation Analysis. In the
previous chapter, we were introduced to a statistical community consisting of
one or more variable values. Sometimes the analyst is interested in studying
two or more statistical traits at a time. If the two variables are examined, the
correlation between them, regression and the testing of the hypotheses on the
regression line parameters are discussed in this section.

Starting point of point and interval estimation or statistic tests is drawing
a random sample X1,X2, ...,Xn of size n from a known distribution. Here, to
apply the theory to data analysis, one has to know the sample distribution.
Usually, the analyst based on the experience and nature of subject supposes the

Advanced Statistics for Data Scientists 23

distribution of the sample. To validate analyst’s assumption (from where the
sample is drawn), goodness of fit tests are conducted. Two common goodness
of fit tests that frequently used are the Kolmogorov-Smirnov (KS) test and the
Pearson chi-square (χ2) test.

The last part of this section covers “Logistic regression”. The main idea
of logistic regression is to analyse the correlation between multiple indepen-
dent variables and a categorical dependent variable, and predicts the occurrence
probability of an event by fitting data to a logistic curve.

4 Description of the Structure of Each Week

Methodical instructions for students to master the discipline in preparation for
classroom classes, directly during lectures, seminars, and practical classes, and in
the course of individual work, students can use educational literature (according
to the approved list of basic and additional literature on this discipline).

In the process of mastering the discipline “Advanced Statistics”, classical
forms and methods of teaching are used, primarily lectures, practical and seminar
classes.

When conducting lectures, students should learn the topic and purpose of
the lesson, the main theoretical provisions on the topic of the lesson, definitions
of basic concepts and calculation formulas, examples given by the teacher. It
should be mentioned that the lectures start with a weekly test from the topic of
previous lecture.

During practical classes (labs), students are expected to learn the topic and
purpose of the lesson, answer questions submitted to the lab (practical class),
actively participate in the work on issues and problems, formulated by the
instructor, to conduct analysis and generalization of the studied practical mate-
rial (in written form and/or in open discussion). Each lab terminated by a weekly
quiz from the topic of that day.

Individual work of students in the discipline “Advanced Statistics” con-
tributes to deeper assimilation of the studied discipline, develops research skills
and focuses the student on the ability to apply the theoretical knowledge in
practice.

Types of independent extracurricular work of students in the discipline
“Advanced Statistics” are including performing individual home tests and home-
work.

The results of independent works are checked by the instructors considering
the deadline.

It should be mentioned that the discipline “Advanced statistics” is taught
using as reference programming language Python, and, for those students not
comfortable with Python, Excel.

It should be mentioned that students use Excel when require the understand-
ing of statistical concepts and behaviour of the data, but when the data set is
huge or some specialized data analysis model such as linear or regression are
needed, we go for advanced tools such as Python. We also try to emphasize

24 M. R. Bahrami et al.

the role of open source tools and code to acquire, share, and then divulge their
competences [8,16,22,33,37,42,47].

5 Assessment

A “traditional” exam and a project are used to assess the knowledge gained
by the students. The selection of the form of assessment is up to the student,
under the premises that everyone has a different learning approach and different
“measurement” techniques can be used with the same final goal, still using the
approach most suited for each individual.

The project has the goal of exposing the students to a real life situation
where they should apply in a reasoned way the material learnt in class. It should
terminate with a report. The report should starts with a good introduction and
overview of background material and follows by the description of the problem
and the formalization of the problem in terms of statistical hypotheses. Then
it continues with the application of suitable statistical techniques to assess the
hypotheses, and terminated by final conclusion on such hypotheses.

6 Overall Outcomes from Students

By the end of the course, we expect that students should know skills of process-
ing and analysis of primary statistical data to conduct the information base of
statistical tests, skills of statistical tests and inference of its results, the skills of
applying the concept of the theory of statistics to solve problems arising in the
practical activities (in industries), and the process of conducting, analyzing and
applying regression.

7 Conclusions

This article aims to review the innovative course on “Advanced Statistics” for
a master’s program in data science. Basic knowledge of Mathematics, Com-
puter Science, and Economics are required for this course. The course expected
learning outcome focuses on the ability to model empirical research in terms
of hypotheses for evidence to prove via suitable statistical tests. In this article,
general goals, description of the content, description of structures of the lecture
and the practical class for each week, assessment, and overall outcomes from
students of the course are described.

Acknowledgments. We thank Innopolis University for generously funding this
endeavour.

Advanced Statistics for Data Scientists 25

References

1. Amrhein, V., Trafimow, D., Greenland, S.: Inferential statistics as descriptive
statistics: There is no replication crisis if we don’t expect replication. Am. Stat.
73(sup1), 262–270 (2019)

2. Aron, A., Aron, E.N.: Statistics for Psychology. Prentice-Hall, Inc. (1999)
3. Asadoorian, M.O., Kantarelis, D.: Essentials of Inferential Statistics. University

Press of America (2005)
4. Bahrami, M.R., Abed, S.A.: Mechanics of robot inspector on electrical transmission

lines conductors: performance analysis of dynamic vibration absorber. Vibroeng.
Proc. 25, 60–64 (2019)

5. Bahrami, M.R., Abeygunawardana, A.W.B.: Modeling and simulation of tapping
mode atomic force microscope through a bond-graph. In: Evgrafov, A.N. (ed.)
Advances in Mechanical Engineering. LNME, pp. 9–15. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-72929-9 2

6. Bahrami, M., Ramezani, A., Osquie, K.G.: Modeling and simulation of non-contact
atomic force microscope. In: ASME 2010 10th Biennial Conference on Engineer-
ing Systems Design and Analysis, pp. 565–569. American Society of Mechanical
Engineers Digital Collection (2010)

7. Bowker, A.H.: Engineering statistics. Technical report (1972)
8. Clark, J., et al.: Selecting components in large cots repositories. J. Syst. Softw.

73(2), 323–331 (2004)
9. Coman, I.D., Robillard, P.N., Sillitti, A., Succi, G.: Cooperation, collaboration and

pair-programming: Field studies on backup behavior. J. Syst. Softw. 91, 124–134
(2014)

10. Corral, L., Georgiev, A.B., Sillitti, A., Succi, G.: A method for characterizing
energy consumption in Android smartphones. In: 2nd International Workshop on
Green and Sustainable Software (GREENS 2013), pp. 38–45. IEEE, May 2013

11. Corral, L., Georgiev, A.B., Sillitti, A., Succi, G.: Can execution time describe
accurately the energy consumption of mobile apps? An experiment in Android. In:
Proceedings of the 3rd International Workshop on Green and Sustainable Software,
pp. 31–37. ACM (2014)

12. Corral, L., Sillitti, A., Succi, G.: Software assurance practices for mobile applica-
tions. Computing 97(10), 1001–1022 (2015)

13. Corral, L., Sillitti, A., Succi, G., Garibbo, A., Ramella, P.: Evolution of mobile
software development from platform-specific to web-based multiplatform paradigm.
In: Proceedings of the 10th SIGPLAN Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! 2011, pp. 181–183. ACM,
New York, NY, USA (2011)

14. Di Bella, E., Sillitti, A., Succi, G.: A multivariate classification of open source
developers. Inf. Sci. 221, 72–83 (2013)

15. U.S.O. of Educational Research, I.C. for Education Statistics, US of Education
Sciences, I.: Digest of education statistics, vol. 44. US Department of Health, Edu-
cation, and Welfare, Education Division (2008)

16. Fitzgerald, B., Kesan, J.P., Russo, B., Shaikh, M., Succi, G.: Adopting Open Source
Software: A Practical Guide. The MIT Press, Cambridge, MA (2011)

17. Garfield, J.: Teaching statistics using small-group cooperative learning. J. Stat.
Educ. 1(1), (1993)

18. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning,
2nd edn. ISBN: 10: 0387848576; ISBN: 13: 978–0387848570 (2008)

https://doi.org/10.1007/978-3-319-72929-9_2

26 M. R. Bahrami et al.

19. Hollander, M., Wolfe, D.: Nonparametric Statistical Methods, 2nd edn. John Wiley
& Sons, New York (1999)

20. Janes, A., Succi, G.: Conclusion. Lean Software Development in Action, pp. 355–
357. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-00503-9 12

21. Kivi, J., Haydon, D., Hayes, J., Schneider, R., Succi, G.: Extreme programming: A
university team design experience. In: 2000 Canadian Conference on Electrical and
Computer Engineering. Conference Proceedings. Navigating to a New Era (Cat.
No.00TH8492), vol. 2, May 2000

22. Kovács, G.L., Drozdik, S., Zuliani, P., Succi, G.: Open source software for the public
administration. In: Proceedings of the 6th International Workshop on Computer
Science and Information Technologies, October 2004

23. Krieg, R.G., Uyar, B.: Student performance in business and economics statistics:
Does exam structure matter? J. Econ. Financ. 25(2), 229–241 (2001)

24. Marino, G., Succi, G.: Data structures for parallel execution of functional lan-
guages. In: Odijk, E., Rem, M., Syre, J.-C. (eds.) PARLE 1989. LNCS, vol. 366,
pp. 346–356. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51285-
3 51

25. Maurer, F., Succi, G., Holz, H., Kötting, B., Goldmann, S., Dellen, B.: Software
process support over the internet. In: Proceedings of the 21st International Con-
ference on Software Engineering, ICSE 1999, pp. 642–645, May 1999

26. Moser, R., Pedrycz, W., Succi, G.: A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction. In: Proceedings of
the 30th International Conference on Software Engineering, ICSE 2008, pp. 181–
190. ACM (2008)

27. Moser, R., Pedrycz, W., Succi, G.: Analysis of the reliability of a subset of change
metrics for defect prediction. In: Proceedings of the Second ACM-IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement, ESEM
2008, pp. 309–311. ACM (2008)

28. Muśılek, P., Pedrycz, W., Sun, N., Succi, G.: On the sensitivity of COCOMO II
software cost estimation model. In: Proceedings of the 8th International Sympo-
sium on Software Metrics. METRICS 2002, pp. 13–20. IEEE Computer Society,
June 2002

29. Paulson, J.W., Succi, G., Eberlein, A.: An empirical study of open-source and
closed-source software products. IEEE Trans. Softw. Eng. 30(4), 246–256 (2004)

30. Pedrycz, W., Russo, B., Succi, G.: A model of job satisfaction for collaborative
development processes. J. Syst. Softw. 84(5), 739–752 (2011)

31. Pedrycz, W., Russo, B., Succi, G.: Knowledge transfer in system modeling and
its realization through an optimal allocation of information granularity. Appl. Soft
Comput. 12(8), 1985–1995 (2012)

32. Pedrycz, W., Succi, G.: Genetic granular classifiers in modeling software quality.
J. Syst. Softw. 76(3), 277–285 (2005)

33. Petrinja, E., Sillitti, A., Succi, G.: Comparing OpenBRR, QSOS, and OMM assess-
ment models. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey,
G.R., Noll, J. (eds.) OSS 2010. IAICT, vol. 319, pp. 224–238. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13244-5 18

34. Randles, R.H., Wolfe, D.A.: Introduction to the theory of nonparametric statistics,
Technical report. John Wiley (1979)

35. Ronchetti, M., Succi, G., Pedrycz, W., Russo, B.: Early estimation of software size
in object-oriented environments a case study in a CMM level 3 software firm. Inf.
Sci. 176(5), 475–489 (2006)

https://doi.org/10.1007/978-3-642-00503-9_12
https://doi.org/10.1007/3-540-51285-3_51
https://doi.org/10.1007/3-540-51285-3_51
https://doi.org/10.1007/978-3-642-13244-5_18

Advanced Statistics for Data Scientists 27

36. Rossi, B., Russo, B., Succi, G.: Modelling failures occurrences of open source soft-
ware with reliability growth. In: Ågerfalk, P., Boldyreff, C., González-Barahona,
J.M., Madey, G.R., Noll, J. (eds.) OSS 2010. IAICT, vol. 319, pp. 268–280.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13244-5 21

37. Rossi, B., Russo, B., Succi, G.: Adoption of free/libre open source software in public
organizations: Factors of impact. Inf. Technol. People 25(2), 156–187 (2012)

38. Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: A Relational approach to software
metrics. In: Proceedings of the 2004 ACM Symposium on Applied Computing,
SAC 2004, pp. 1536–1540. ACM (2004)

39. Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: A non-invasive approach to product
metrics collection. J. Syst. Architect. 52(11), 668–675 (2006)

40. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Measures for mobile users: An archi-
tecture. J. Syst. Architect. 50(7), 393–405 (2004)

41. Sillitti, A., Succi, G., Vlasenko, J.: Understanding the impact of pair programming
on developers attention: A case study on a large industrial experimentation. In:
Proceedings of the 34th International Conference on Software Engineering, ICSE
2012, pp. 1094–1101. IEEE Press, Piscataway, NJ, USA, June 2012

42. Sillitti, A., Vernazza, T., Succi, G.: Service oriented programming: A new paradigm
of software reuse. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol. 2319, pp. 269–280.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46020-9 19

43. Succi, G., Benedicenti, L., Vernazza, T.: Analysis of the effects of software reuse
on customer satisfaction in an RPG environment. IEEE Trans. Softw. Eng. 27(5),
473–479 (2001)

44. Succi, G., Paulson, J., Eberlein, A.: Preliminary results from an empirical study
on the growth of open source and commercial software products. In: EDSER-3
Workshop, pp. 14–15 (2001)

45. Succi, G., Pedrycz, W., Marchesi, M., Williams, L.: Preliminary analysis of the
effects of pair programming on job satisfaction. In: Proceedings of the 3rd Inter-
national Conference on Extreme Programming (XP), pp. 212–215, May 2002

46. Townsend, M.A., Moore, D.W., Tuck, B.F., Wilton, K.M.: Self-concept and anx-
iety in university students studying social science statistics within a co-operative
learning structure. Educ. Psychol. 18(1), 41–54 (1998)

47. Valerio, A., Succi, G., Fenaroli, M.: Domain analysis and framework-based software
development. SIGAPP Appl. Comput. Rev. 5(2), 4–15 (1997)

48. Vernazza, T., Granatella, G., Succi, G., Benedicenti, L., Mintchev, M.: Defining
metrics for software components. In: Proceedings of the World Multiconference on
Systemics, Cybernetics and Informatics, vol. XI, pp. 16–23, July 2000

49. Wasserman, L.: All of Nonparametric Statistics. Springer Science & Business
Media, New York (2006)

50. Wilson, S.G.: The flipped class: A method to address the challenges of an under-
graduate statistics course. Teach. Psychol. 40(3), 193–199 (2013)

https://doi.org/10.1007/978-3-642-13244-5_21
https://doi.org/10.1007/3-540-46020-9_19

Reflections on Teaching Formal Methods
for Software Development in Higher

Education

Mansur Khazeev1, Hamna Aslam1,2(B), Daniel de Carvalho1,
Manuel Mazzara1, Jean-Michel Bruel2, and Joseph Alexander Brown1

1 Innopolis University, 420500 Innopolis, Russian Federation
h.aslam@innopolis.ru

2 Université de Toulouse, IRIT-CNRS, 31000 Toulouse, France

Abstract. Despite the increasing attention to formal verification tech-
niques by industry and academia, the programs of Higher Education to
this regard still lie behind, and these concepts are not presented to the
majority of Computer Science students trained to be future IT special-
ists. The primary reason is the presumed complexity of the concepts,
tools, and formal processes together with a believed moderate interest
of employers, which tends to demotivate students. The starting point of
any process of change is typically higher education, which should intro-
duce a thoughtful plan of teaching and practice for the students to get
acquainted with these techniques. To do so, it is necessary to prelim-
inary identify the obstacles. The user study described in this paper is
examining AutoProof tool to identify the complexities attributed to for-
mal methods. We worked with a cohort of master students in Software
Engineering at an Information Technology University and monitored and
analyzed their performance and feedback on a pedagogical experience.
The work presented in this paper extends our previous research on for-
mal methods education by confirming the findings and adding qualitative
considerations to quantitative ones.

Keywords: Formal methods · Pedagogy · Software verification tools ·
Essay-based investigation

1 Introduction

In the past decades, researchers and practitioners deployed a significant effort to
develop and improve formal verification tools and the related methodologies [14].
It soon became clear that the benefits of static analysis and formal verification
play a determinant role in the deployment of safety-critical and mission-critical
systems but, at the same time, can support quality assurance for off-the-shelf
software. In order to exploit the positive effects of these solutions, it is necessary
to spread this understanding and educate specialists and engineers. The starting
point of any process of change is typically higher education. Despite increasing
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 28–41, 2020.
https://doi.org/10.1007/978-3-030-57663-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_3

Reflections on Teaching Formal Methods 29

attention to this research field in the research departments of big software com-
panies and the academic world, the teaching of formal techniques is still limited
to some advanced courses, and academic education does not sufficiently work
towards an improvement in this situation.

It naturally emerges the question of what should be done within educational
systems to change the trend slowly. In this article, we are discussing a teaching
experience conducted at an Information Technology (IT) University during the
academic year 2018/2019. A class of about 28 Master students attended the
course of Analysis of Software Artifacts. During the delivery of the course, the
Eiffel programming language [8] was introduced and explained together with the
Design-by-Contract (DbC) methodology [20] and the Autoproof verification tool
[11]. The course had a very formal backbone and approached the activities of
requirements elicitation and software specification from a rigorous point of view.
It was indeed a good laboratory to analyze the reaction of Master students when
using DbC and a static verifier.

In this paper, we present quantitative and qualitative results of the study
conducted with this cohort of students:

– The quantitative results are based on the performance of students in solving
tasks about formal software specification. The students have been monitored
in these activities to unambiguously determine if they could apply the tech-
niques they were introduced to.

– The qualitative results complement the quantitative study. Students have
been asked to submit essays and comments describing their experience while
solving the tasks and studying the topic. The essays were analyzed one by one,
summarizing the pros and cons that students have identified. This provides
means for understanding the subjective perceptions of the individuals: both
those who succeeded and those who failed.

The work presented in this paper extends the previous research [17] by con-
firming the findings on a new cohort of students and adding qualitative con-
siderations to quantitative ones. Here we are addressing a more general set of
research questions than in the previous work, and we are answering with a syn-
ergy of objectives but also subjective elements:

1. To what extent are our students ready to apply formal techniques, and why
or why not?

2. What kinds of prerequisites are necessary to face the challenges?
3. To what extent our results can be generalized to any cohort of Computer

Science students in other technical educational institutions?

The paper is organized as follows: Sect. 2 describes Autoproof, the verifica-
tion tools targeted by this study; Sects. 3 and 4 focus on the qualitative and
quantitative parts of the analysis; Sect. 5 provides our reflection on the results of
the analysis and Sect. 6 presents similar investigations conducted in the field of
verification and education. Section 7 analyses some possible factors limiting the
study. Finally, Sect. 8 summarizes our findings and our understanding of them.

30 M. Khazeev et al.

2 The Tool

The research conducted in this study is based on a specific course using a specific
methodology and a tool to specify and verify software formally. We try to gen-
eralize the findings to formal methods. However, the qualitative analysis of the
collected data suggests that different techniques may result in different levels of
effectiveness of learning. A broader generalization may require further research.
We reflect on this in Sect. 5.

The tool used in this study was AutoProof [27], a static analyzer for con-
tracted code written in the Eiffel programming language. The core idea behind
Eiffel is related to “contracts” inside the source code. The software correct-
ness methodology is called Design By Contract (DbC) [20]. It uses invariants
to document program state properties, and preconditions and postconditions to
document the change in the state. Some aspects of the usability of AutoProof
have been already studied before [11].

We have been using AutoProof and Eiffel for two principal reasons:

1. Eiffel is purely object-oriented. Modularity and scalability offered by object-
orientation are of paramount importance in the development of large software
systems and widely used in modern software engineering [23]. Eiffel is the kind
of programming language that Master graduates can practice to develop skills
required by industry.

2. Design By Contract (DbC) [20] is a methodology introduced about thirty
years ago, and it did not stay confined within the Eiffel programming lan-
guage. Instead, it has been gradually adopted by other popular program-
ming languages: Java with JML [4], C# (Spec#) [1], C++ (expects and
ensures clauses), and Kotlin (preconditions), to mention some. We are confi-
dent that the methodology implemented in AutoProof is transferable to any
other Object Oriented programming language, which means that the find-
ings of this work can be generalized at least to the Object-oriented paradigm
(further generalization may be less evident).

2.1 Basic Notions on DbC

To understand the results of the study, it is not necessary to have complete
mastery of the methodology used by the students. Above, we have just described
tools and approaches in general terms, with pointers to the literature that could
help interested readers to understand more details. However, we still report here
some basic notions of DbC to make the rest of the paper smoother to read.

DbC and Dynamic Check. In programming languages based on the notion of
class (object-oriented programming languages), design-by-contract is a method-
ology defining “rights” and “obligations” of a class (or a developer) and its clients
(hence the metaphor of contract). Contracts are the assertions: preconditions -
properties that the developer takes for granted and the client is “obliged” to

Reflections on Teaching Formal Methods 31

fulfill; postconditions and invariants - “obligations” for the developer and prop-
erties that the clients might reckon on. During the execution of the program
these assertions can be checked and an exception raised in case of violation.
This is a way to find bugs in the program for then resolving them.

Assertions in AutoProof. Code contracts are defined using assertions of the
following types:

– Precondition and postcondition of a method/feature/function: The caller of a
method/feature/function has an obligation to satisfy its preconditions, while
the callee is obliged to guarantee its postconditions to hold at the end of its
execution.

– Class invariant : Class invariants define properties of the state of an object
that should be preserved during the execution of the program.

– Loop invariant : It is an assertion that should be maintained at each iteration
of the loop.

– Framing assertion: Framing assertions express which objects can have their
state modified.

Furthermore, a loop variant is a measure that must decrease strictly at each
iteration of the loop to ensure that the loop eventually terminates [9].

Static Analysis. Instead of checking dynamically (that is, during the execution
of the program), it is possible to check statically (that is, analysing source code of
the program without executing it) the enforcement of contracts. In other words,
to prove that, for any execution of the program, none of the assertions specifying
the rights and obligations might be violated, but without running the program.
AutoProof statically checks the assertions described above and informs the user
about the outcome of the analysis.

3 Quantitative Analysis

In this section, we describe the setup of the experiment. We explain the study
design, the data collection process, and the conclusions we draw out of this
experience.

3.1 Study Design

The essay was conducted as a supplementary home assignment in the “Analysis
of Software Artifacts” course at an IT University. Preliminarly, the students
have received a lecture on Model Checking and Formal Verification as a part of
the course. The main goal of the assignment was to demonstrate the advantages
and challenges of formal verification. Furthermore, to allow getting practical
experience with the tool demonstrated during the lecture, check the students’
understanding of the topic and skills to specify requirements formally. In this
paper, with the word approach, we intend teaching DbC, Autoproof, the way of
delivering this material and how we assessed understanding.

32 M. Khazeev et al.

Rationale for Choosing the Exercises. The assignment was based on the
material of the tutorial of AutoProof. It contains a set of exercises of different
complexity and provides an online version of the tool. The material was chosen
for the simplicity of the set-up phase. Not only did this help to avoid a com-
plicated installation and configuration phase of the verification tool, allowing
students to concentrate on specification and verification immediately, but this
also allowed us to examine the usability of the tool by non-expert users.

Profile of Participants. The study has been conducted on 28 participants
of the Master Program in Software Engineering. All participants had a back-
ground education in Information Technology from different universities all over
Russia and other countries such as India, Sri Lanka, Bolivia, Ghana, Jordan,
and Kazakhstan.

Prior to the assignment, the students had a course on formal specification and
verification where they have studied required theory starting with very founda-
tions: formal systems, set theory, predicate and temporal logic; and experienced
variety tools of different purpose and level of automation - from model checkers
to proof assistants - LTSA, Z, Isabelle and Coq. Concepts relevant for AutoProof
tool - such as Hoare logic were also discussed.

Assignment Description. The participants were given a home assignment
consisting of three parts. In the first part, students had to do two exercises
available within the tutorial, simultaneously logging their progress. In the sec-
ond part, they had to write a short essay about their assessment of the previous
encounter with formal methods, to describe what they found easy or hard, what
obstacles they encountered, the relation to their experience as a software devel-
oper and student. Finally, the third part was to fill in a form where they had to
describe their industrial experience. The assignment was submitted via Moodle.1

Helping Material Provided. Before the assignment, the students had one
lecture on formal verification in general where the essential concepts and prin-
cipals for AutoProof tool were presented, as well as the proof process on partic-
ular examples, was demonstrated and discussed. The lecture took 1.5 hours and
refreshed knowledge on Hoare logic, DbC, that was covered in another course
one semester earlier. The lecture introduced AutoProof tools and discussed its
application to specific examples.

After all of these concepts were studied and the tool was introduced, the
students were left on their own as the assignment assumed as an individual effort.
However, they had access to the online document2 explaining the concepts and
examples. As the students were not acquainted with Eiffel syntax, they were also
provided with the link3 to the basic language constructs presented on the same
website.
1 https://moodle.org/.
2 http://se.inf.ethz.ch/research/autoproof/tutorial/downloads/tutorial.pdf.
3 http://se.inf.ethz.ch/research/autoproof/manual/.

https://moodle.org/
http://se.inf.ethz.ch/research/autoproof/tutorial/downloads/tutorial.pdf
http://se.inf.ethz.ch/research/autoproof/manual/

Reflections on Teaching Formal Methods 33

Exercises Description. The tutorial covers two examples (BANK ACCOUNT
and MAX IN ARRAY) and several exercises: on verification of Basic Proper-
ties (a CLOCK exercise), Algorithmic Problems (several searching and sorting
algorithms) and Object Consistency (exercises on data structures). The students
were allowed to pick any two exercises of nine in total. All exercises varied in
complexity, incorporating different verification challenges.

As a sample, the exercise CLOCK is partially depicted in Fig. 1. This code
snipped omits all features except featuring increase minutes and invariant of
the class. Each exercise comprised of several tasks. Here, on lines 9 and 17, Task
5 is to specify require (precondition) and ensure (post-condition) clauses for the
feature; on line 20 Task 2 - to provide the invariant of the class.

class CLOCK
. . . −− Some f e a t u r e s were omit ted
feature
i n c r e a s e s e c ond s

−− Increase ‘ minutes ’ by one .
note

e x p l i c i t : wrapping
require

−− TASK 5: Spec i f y procedure .
do

i f seconds = 59 then
s e t s e c ond s (0)
i n c r ea s e m inut e s

else s e t s e c ond s (seconds + 1)
end

ensure
−− TASK 5: Spec i f y procedure .

end
invariant

−− TASK 2: Add c l a s s i n va r i an t .
end

Fig. 1. Extract of CLOCK exercise

In order to succeed in verification, the students had to specify valid values for
attributes hours, minutes and seconds. Moreover, as part of Task 5, they had
to define a frame condition denoting the attributes allowed to be modified. Here,
seconds as well as minutes and hours, since increasing by one when seconds
equal to 59 should update minutes, and similarly hours should be updated
when minutes is 59. Lastly, the student had to add post-conditions describing
how these three attributes should be modified. In the same manner, all other
features of the exercise had to be specified.

Similarly, Algorithmic Problems included tasks on the specification of pre-
and post-conditions, and in addition, to provide loop invariants and variants.

34 M. Khazeev et al.

3.2 Collection of Data

The students have tackled exercises from all categories, but the majority tried
and could complete only the exercises about verification of Basic Properties and
the Algorithmic Problems. As it was mentioned above, students were asked to
record their verification process in a free format. A key aspect of this part of
the assignment was to write down the encountered difficulties and track the
time spent to overcome them. Many participants have created a very detailed
log. Some of them even provided screenshots. Several reports were brief and less
informative; however, they managed to capture the main blockers and total time
spent.

Table 1. Number of students doing CLOCK and LINEAR SEARCH exercises

Succeeded Failed Total

CLOCK 10 16 26

LINEAR SEARCH 1 24 25

Two exercises that were attempted by the majority of the students are
CLOCK and LINEAR SEARCH. The data regarding the number of stu-
dents doing these exercises is depicted in Table 1. Furthermore, the data on time
spent, trying to specify and verify these exercises, is depicted in Table 2. Com-
pared to the results presented in [17], these results appear to be weaker in terms
of the ratio of succeeding and failing attempts. However, from Table 2, it is clear
that the students were less persistent and have put less effort into completing
the exercises.

Table 2. Time spent on exercises (in minutes)

Succeeded Failed Total

CLOCK Min 24 37 24

Max 240 315 315

Mean 111 105 107

LINEAR SEARCH Min 137 30 30

Max 137 287 287

Mean 137 95 96.5

4 Analysis of Essays

This section complements the analysis of the data collected with information
acquired from the students’ essays. For that, detailed essays of 28 students
were analyzed by the authors. Despite different experiences, opinion, and writing
styles, some aspects appear as common, and that we try to summarize in this
section. On the negative and limiting side, the students said that:

Reflections on Teaching Formal Methods 35

General Comments (negative)

– Lack of documentation (can be generalized, not only AutoProof)
– Concrete use limited to safety-critical systems
– Costs of training specialists
– The job market is small for verification specialists

Specific to AutoProof (negative)

– AutoProof is too specific to Eiffel language. LTSA, OCL seem more flexible
and preferable

– Feedback given by the tool is unclear

Some positive comments were given on the usefulness of the approach:

General Comments (positive)

– Formal verification is useful in some market niche, but they never worked
there

– The verification process is fun

Specific to AutoProof (positive)

– AutoProof works nicely since the model, and the code is in the same place
(this is different, for example, for Model Checking).

– Tutorial, as a specific part of the documentation, is useful.

5 Reflections

Students’ feedback, the analysis of their performance and detailed logs demon-
strated that formal techniques at the moment are hard to be acquired even
by future IT specialists. As educators, we need to facilitate the learning pro-
cess, being this a way to support more widespread use. The verification process,
when applying specific techniques, should be more firmly supported, and possi-
bly more details about the internal implementation of the tools should be given.
This might allow future engineers to appreciate the ingenuity of the solutions
and the value of theory.

In general terms, the results of this study are confirming the ones that have
been presented with a previous cohort of students [17]. This way, we can gener-
alize the conclusions and answer broader research questions as defined in Sect. 1.
One notable difference that can be identified concerning the previous study is
that, on average, the time spent on the exercise was 1:50 hours instead of 3
hours. This can be explained by the fact that in the previous study, the task was
a prerequisite for the project, such as necessary to complete for the continuation
of the course, while this time, it was just the part of supplementary material not
of the core content.

36 M. Khazeev et al.

The students’ feedback and the teacher’s experience while teaching the course
indicate certain areas for concentration. Figure 2 summarizes these areas. A sig-
nificant aspect of learning is being able to perceive the importance of topics
being taught. We identified that the students were not enthusiastic about learn-
ing formal methods as they presumed these solutions to be invaluable for their
future careers. The students’ had a perception that:

1. Learning AutoProof would only benefit Eiffel users.
2. Formal methods are required for software that is designed for safety and

mission-critical applications.
3. There is no job market for those specialized in formal methods.

Fig. 2. Identified potential areas of improvement to support teaching of formal methods
and verification tools

The perception of students does not appear completely accurate. Let us dis-
cuss the points above one by one:

1. Although AutoProof is and Eiffel-based tool, the idea of Design-by-Contract
has been implemented natively in languages such as Kotlin and Scala, plus
libraries, preprocessors, and other tools have been developed for a large num-
ber of programming languages without native support, among all Java and
C.

2. Formal methods and their applications, some heavy-load methodologies are
indeed justified mostly in the case of safety- and mission-critical applica-
tions. However, Design-by-contract is not one of them, and its applicability is
lightweight and does not require a significant effort or a steep learning curve
to be applied. Design by contract does not replace testing, but it complements
it to ensure quality code.

3. The market for verification specialists is indeed tiny. However, acquaintances
with some lightweight formal techniques such as Design-by-contract, espe-
cially when integrated with testing, leads to an improved profile for any soft-
ware developer interested in quality.

Reflections on Teaching Formal Methods 37

These perceptions can be addressed by stating the application areas as well
as the usefulness of formal methods for developing everyday systems.

The other significant observation was the need for prerequisites covered before
teaching formal methods. Courses such as set theory and logic contribute to the
understanding of formal methods. Furthermore, in the teaching directions, the
structure of the course is of great significance. The results of the case study
suggest that a project-based course would contribute to the systematic course
design that would give students the experience of working with formal methods.

Considering course material, students pointed out the lack of online
resources. Students are habitual of consulting online resources. As stated in
feedback, they could not find much help online about AutoProof. In this regard,
teachers can refer to solid material available online.

The points stated above are based upon the feedback and teacher’s experience
of teaching formal methods. These areas can be addressed with a systematic
course design as well as taking into account students’ perceptions about the
subject. We believe, after addressing the points identified, teachers would be able
to make the learning process desirable. Students’ perceptions about the subject
introduced unnecessary hurdles in learning as they deemed it to be insignificant
for themselves in terms of prospects. Therefore, it is crucial to educate students
of the usefulness and the applications of formal methods.

6 Related Work

In the investigating papers on education, we found several related reports (the
following groups of references are not exhaustive):

Mathieu and Théo [16] emphasize on the need for teaching formal methods
at an undergraduate level. A suggestion is to incorporate FoCaLiZe as a teaching
tool at an undergraduate level. Liu et al. [18] also elaborates on the significance
of teaching formal methods in the context of software engineering. They suggest
having a project-based course along with a systematic curriculum. Their findings
are aligned with our research conclusions. These suggestions are not recent and
have been discussed since years, such as Gibson and Méry [12] have presented
the same arguments two decades ago. They recognize the need for interactive
teaching between the instructor and their students. A strong emphasis is made
on using the tools to support the teaching of formal methods. Active learning is
recognised to provide benefits to grades and outcomes in STEM [10].

Miller [21] provides details on aspects of teaching and how learning can be
enhanced. As an example, Miller states that the meaning of productivity is dif-
ferent for a learner of formal methods and a professional using them. While
incorporating tools as part of teaching, we should be careful about the outcomes
we want to get. Sotiriadou and Kefalas [25] demonstrates through a case study,
the significance of teaching formal methods at an undergraduate level. They
present their course structure and teaching material. The use of the Z specifica-
tion language has provided positive outcomes from the students’ learning aspect.
The study results indicate that a structured course with appropriate teaching

38 M. Khazeev et al.

tools enhances learning and understanding of formal methods. Sobel et al. [24]
identifies that formal methods teaching needs to address the issue of students
rushing to the implementation phase without reasoning about the correctness of
the system.

Furthermore, making students aware of the application areas might also
increase their interest in learning and applying these concepts in a wide range of
projects. Néstor Cataño [5] provides reflections from their experience of teach-
ing Models of Software Systems course. The use of proof assistants in the class
has been recommended, e.g., the author has used EventB2Java during lectures.
Students have demonstrated a thorough understanding by working on modelling
tools.

Ishikawa et al. [15] provides an overview of the ten years of the software
engineering program. The report discusses the experience of teaching formal
methods. The emphasis is on the need to bridge the gap between academia and
industrial needs. Along with a representation of a well-structured program, the
key findings are: having lecturers from industry also as well as covering non-
technical aspects such as planning and reporting. Tretmans et al. [26] discusses
the seven myths about formal methods in relation to the successfully completed
project, a control system for a movable dam. The seven myths as stated by
Tretmans et al. [26] are:

1. formal methods can guarantee that software is perfect;
2. formal methods are all about program proving;
3. formal methods are only useful for safety-critical systems;
4. formal methods require highly-trained mathematicians;
5. formal methods increase the cost of development;
6. formal methods are unacceptable to users;
7. formal methods are not used on real, large-scale software.

The project results are sometimes in agreement with the myths and sometimes
not. However, these myths are the most common challenges we face as educators.
Our research team has also been active in the field of education, both for what
concerns teaching formal specification [7] and verification [17] and in the design
and delivery of courses related to DevOps [2,3,19], in academic and industrial
environments.

The findings of our research are aligned with the reports we have mentioned.
In addition to this, we have identified the prerequisites for the course of formal
methods. The absence of these prerequisites was a hurdle in the learning process.
For the future, we plan to propose this model of teaching to the education
administration for a systematic teaching program.

7 Threats to Validity

One of the limitations that we have identified during the study and that could
have interfered is the fact that the lecturer mentioned the average duration of
the time needed in a previous study, and possibly some of the participants may

Reflections on Teaching Formal Methods 39

have limited themselves, as visible form some comments written in the logs. This
may have influenced the study, although not in a dramatic way. For future study,
it will be necessary to avoid such a mention.

Another limiting factor is the nature of the sample of participants, that it is
limited to students of one university, although international and heterogeneous
and with coding proactive. The study should be extended to currently employed
professionals.

Areas of improvements depicted in Fig. 2 are derived mostly from the feed-
back of students, and can also be confirmed by lecturers. However, some bias
may have influenced the outcome: for example, students with prior knowledge,
the lecturer’s ability, or the enthusiasm put in the delivery.

We should also consider another aspect that could limit a broader validity
of the conclusions of the study. The subject under consideration, methodology,
and tool, was covered in a very short time-span and challenged the class with a
single assignment. The concepts are non-trivial. Different results may have been
possibly obtained, providing multiple examples with a more varied complexity
in a more extended time.

8 Conclusions

After analyzing quantitative and qualitative aspects, there are individual lessons
that we have learnt on how the pedagogical process could be improved at the
university and we are confident that these lessons could be generalized.

– Teaching DbC [7] seems to be a useful choice, together with other solutions
such as OCL [13], Z [22] and Model-checking [6]. These are different techniques
that could offer different flavours. For example, some students found more
general the use of OCL that AutoProof, still being based on similar underlying
concepts. The fact that OCL is applicable to UML, therefore to any software
development process allows newcomers to appreciate it better. At the same
time, the concept deployed for one formalism also simplifies the understanding
of the other.

– More exposure to formal techniques can certainly support the pedagogical
process. Predicate Logic and Set Theory appeared to be a prerequisite of
paramount importance for being able to approach formal techniques.

– The knowledge of the target programming language may make the difference.
Students in their essays declared that a significant portion of time was spent
in learning and understanding the syntax of Eiffel.

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30569-9 3

https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-540-30569-9_3

40 M. Khazeev et al.

2. Bobrov, E., Bucchiarone, A., Capozucca, A., Guelfi, N., Mazzara, M., Masyagin,
S.: Teaching DevOps in academia and industry: reflections and vision. In: Bruel,
J.-M., Mazzara, M., Meyer, B. (eds.) DEVOPS 2019. LNCS, vol. 12055, pp. 1–14.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39306-9 1

3. Bobrov, E., et al.: DevOps and its philosophy: education matters!. Microservices,
pp. 349–361. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31646-
4 14

4. Burdy, L., et al.: An overview of JML tools and applications. Int. J. Soft. Tools Tech-
nol. Transf. 7(3), 212–232 (2004). https://doi.org/10.1007/s10009-004-0167-4

5. Cataño, N.: An empirical study on teaching formal methods to millennials. In:
Proceedings of the 1st International Workshop on Software Engineering Curricula
for Millennials, SECM ’17, Buenos Aires, Argentina, pp. 3–8. IEEE Press (2017)

6. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

7. de Carvalho, D.: Teaching programming and design-by-contract. In: Auer, M.E.,
Tsiatsos, T. (eds.) ICL 2018. AISC, vol. 916, pp. 68–76. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-11932-4 7

8. ES: The Eiffel Method and Language. https://www.eiffel.org/doc/eiffel/Eiffel
9. Floyd, R.W.: Assigning meanings to programs. In: Proceedings of the Symposium

on Applied Math, vol. 19, pp. 19–32. American Mathematical Society (1967)
10. Freeman, S., et al.: Active learning increases student performance in science, engi-

neering, and mathematics. Proc. Natl. Acad. Sci. 111(23), 8410–8415 (2014)
11. Furia, C.A., Poskitt, C.M., Tschannen, J.: The autoproof verifier: usability by non-

experts and on standard code. In: Proceedings of Formal Integrated Development
Environment, F-IDE 2015 (2015). Electron. Proc. Theor. Comput. Sci. 187, 42–55
(2015)

12. Gibson, P., Méry, D.: Teaching formal methods: lessons to learn. In: Proceedings
of the 2nd Irish Conference on Formal Methods, IW-FM’98, Swindon, GBR, pp.
56–68. BCS Learning & Development Ltd. (1998)

13. Object Management Group: Object constraint language. https://www.omg.org/
spec/OCL/About-OCL/

14. Hoare, C.A.R., Misra, J., Leavens, G.T., Shankar, N.: The verified software initia-
tive: a manifesto. ACM Comput. Surv. 41(4), 22:1–22:8 (2009)

15. Ishikawa, F., Yoshioka, N., Tanabe, Y.: Keys and roles of formal methods education
for industry: 10 year experience with top SE program. In: Bollin, A., Margaria,
T., Perseil, I. (eds.) Proceedings of the First Workshop on Formal Methods in
Software Engineering Education and Training, FMSEE&T 2015, co-located with
20th International Symposium on Formal Methods (FM 2015), Oslo, Norway, 23
June 2015. CEUR-WS.org (2015). CEUR Workshop Proc. 1385, 35–42 (2015)

16. Jaume, M., Laurent, T.: Teaching formal methods and discrete mathematics. In:
Dubois, C., Giannakopoulou, D., Méry, D. (eds.) Proceedings 1st Workshop on For-
mal Integrated Development Environment, Grenoble, France, 6 April 2014. Open
Publishing Association (2014). Electron. Proc. Theor. Comput. Sci. 149, 30–43
(2014)

17. Khazeev, M., Mazzara, M., Aslam, H., de Carvalho, D.: Towards a broader accep-
tance of formal verification tools. In: Auer, M.E., Hortsch, H., Sethakul, P. (eds.)
ICL 2019. AISC, vol. 1135, pp. 188–200. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-40271-6 20

18. Liu, S., Takahashi, K., Hayashi, T., Nakayama, T.: Teaching formal methods in
the context of software engineering. ACM SIGCSE Bull. 41(2), 17–23 (2009)

https://doi.org/10.1007/978-3-030-39306-9_1
https://doi.org/10.1007/978-3-030-31646-4_14
https://doi.org/10.1007/978-3-030-31646-4_14
https://doi.org/10.1007/s10009-004-0167-4
https://doi.org/10.1007/978-3-030-11932-4_7
https://www.eiffel.org/doc/eiffel/Eiffel
https://www.omg.org/spec/OCL/About-OCL/
https://www.omg.org/spec/OCL/About-OCL/
https://doi.org/10.1007/978-3-030-40271-6_20
https://doi.org/10.1007/978-3-030-40271-6_20

Reflections on Teaching Formal Methods 41

19. Mazzara, M., Naumchev, A., Safina, L., Sillitti, A., Urysov, K.: Teaching DevOps in
corporate environments. In: Bruel, J.-M., Mazzara, M., Meyer, B. (eds.) DEVOPS
2018. LNCS, vol. 11350, pp. 100–111. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-06019-0 8

20. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992)
21. Miller, J.F.: Teaching and learning formal methods, improving productivity. In:

Butterfield, A., Haegele, K. (eds.) 3rd Irish Workshop on Formal Methods, Galway,
Ireland, July 1999. Workshops in Computing. BCS (1999)

22. O’Regan, G.: Z formal specification language. Concise Guide to Formal Methods.
UTCS, pp. 151–166. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
64021-1 8

23. Pressman, R.S.: Software Engineering: A Practitioner’s Approach, 7th edn.
McGraw-Hill Higher Education, New York (2010). OCLC: ocn271105592

24. Sobel, A.E.K., Saiedian, H., Stavely, A., Henderson, P.: Teaching formal methods
early in the software engineering curriculum. In: Proceedings of the 13th Con-
ference on Software Engineering Education & Training, CSEET ’00, p. 55. IEEE
Computer Society (2000)

25. Sotiriadou, A., Kefalas, P.: Teaching formal methods in computer science under-
graduates. In: International Conference on Applied and Theoretical Mathematics
(2000)

26. Tretmans, J., Wijbrans, K., Chaudron, M.: Software engineering with formal meth-
ods: the development of a storm surge barrier control system revisiting seven myths
of formal methods. Formal Meth. Syst. Des. 19(2), 195–215 (2001)

27. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0 53

https://doi.org/10.1007/978-3-030-06019-0_8
https://doi.org/10.1007/978-3-030-06019-0_8
https://doi.org/10.1007/978-3-319-64021-1_8
https://doi.org/10.1007/978-3-319-64021-1_8
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1007/978-3-662-46681-0_53

Experience of Mixed Learning Strategies
in Teaching Lean Software Development
to Third Year Undergraduate Students

Ilya Khomyakov(B), Sergey Masyagin(B), and Giancarlo Succi(B)

Innopolis University, Innopolis, Russia
{i.khomyakov,s.masyagin,g.succi}@innopolis.ru

http://university.innopolis.ru

Abstract. Teaching is always a challenging task, especially in the cur-
rent fast-paced and changing world. Universities curricula and instruc-
tional practices should take into account growing and changing demands
of both industry and students themselves. Given all these factors, a Lean
Software Development course for third year BS has been developed and
continues to evolve at Innopolis University, Russia. In the course, lean
methods are used both for teaching lean software development skill, and
for teaching Lean via other, not directly related to programming, collab-
orative tasks, i.e. writing a research paper. Besides, lean methodology is
used by the course development team for course design. As a result, this
approach helps not only to develop the theoretical and practical skills
that students can apply in various spheres of life but also to engage the
students and to maintain their attention throughout the course without
any overload.

Keywords: Lean Software Development · Teaching · GQM ·
Experience Factory · Non-invasive Measurement

1 Introduction

Introducing students to new concepts can be difficult. In this article, we discuss
how we address this challenge of knowledge transfer to students during the train-
ing for Lean Software Development. We describe the ways of developing students’
theoretical knowledge and practical skills related to Lean Software Development
by using non-programming assignments and Lean techniques during Lean train-
ing.

Recently, the Lean becomes very popular, even in education But authors
mostly describes how to teach Lean Software Development using the concept of
Software Projects and programming tasks [8,19,22,24,46] Our approach in the
opposite is focused on developing meta-knowledge of Lean Software Development
by applying non-programming assignments in the course, which are described
in the article. Additionally, compared to other works [8,19,22], the approach
includes course evolution and renovation.
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 42–59, 2020.
https://doi.org/10.1007/978-3-030-57663-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_4

Experience of Mixed Learning Strategies 43

This paper is organized as follows: Sect. 2 provides details about the Lean
software development course taught to 3rd year undergraduate students, as well
as the course motivation and goals. Sect. 3 covers the background behind the
course main concepts such as Lean and Lean in Software development. Sect. 4 to
6 describe the course structure and all specific for the course general activities,
such as Goal-Question-Metric approach (GQM) in teaching activities.

2 About the Course

The course exposes the student to the core concepts behind Lean Development
in Software Engineering, beyond myths and legends, emphasizing how it relates
to the general principles of Lean Development. It discusses different possible
software processes, and how they can be tailored, enacted, and measured. In
addition, a significant part of the course is centered around the application of
Lean in software development to knowledge-intensive areas not necessarily con-
nected to the software. The overall goal of the course is that students should
learn the fundamental principles behind Lean Management, identify the key
role of measurement in Lean Management. Moreover, we consider it particularly
important that students are able to relate various approaches of Agile Methods
to the overall principles of Lean Management in order for them to be able to
define a suitable process for a new organization, including an approach to mea-
sure the outcome of such process introduction and institutionalization. Besides,
throughout the course, we try to create a “lean environment” itself, that should
help students to understand in practice what we mean by the lean organization.

3 Background

The term Lean was proposed [64] for production approach developed and applied
by Toyota Motor Company [58], which was not only successfully used by the
creators but served as a powerful revolutionary impetus in the management and
creation of the production process in the automotive industry from the second
half of the twentieth century. However many authors, for example, such as Stone
[54], demonstrate that “lean” is no longer unique for automobile industry and
it has found application in many different and naturally distant from each other
industries and sectors.

Lean production was conceptualized as a way to reduce waste, upskill work-
ers, improve quality and provide more variety in products than it was possible
with mass production [64]. Gradually, the method spread to every field of human
activity, from offices and government organizations to hospitals, universities,
and software production. Despite the differences between, for example, medicine
and automotive industry, many of Lean principles and concepts are applicable
with great benefit to organizations, employees, customers. Lean manufacturing
is also used in non-industrial fields, such as education [8,19]. Also, a framework
was developed to apply lean to the learning process - The Lean Teaching and

44 I. Khomyakov et al.

Learning (LTL) model was firstly presented by Dinis-Carvalho and Fernandes
[18].

The demand for cost savings in recent years has forced the software industry
to look at lean methods with the ambition of applying them to “software pro-
duction” [39]. Obviously, Lean cannot be applied to software production without
adaptation, since the production of a software product is more creative than a
typical pipelining. In this regard, at the moment there are various rethinking,
adapting lean approach to creating software, for example [40] or LSD [23]. Lean
development can be summarized by seven principles, very close in concept to
lean manufacturing principles [39]:

1. Eliminate waste
2. Amplify learning
3. Decide as late as possible
4. Deliver as fast as possible
5. Empower the team
6. Build integrity in
7. Optimize the whole

In our corse we focus on these principles and also use proposed Lean pillars
[23] as learning material and, moreover, as a toolset for course teaching process
itself, building on previous experiences [26]. According to [23], the main lean
software development pillars are the Goal Question Metric (GQM), the Experi-
ence Factory, and the Non-invasive Measurement. The listed pillars are briefly
described in the following section. When developing and conducting the course,
we tried to use only proven techniques, methods and tools, such as GQM [4],
PDSA [18], Simulation Games [60] etc., which we discuss in more detail in the
following sections.

3.1 GQM

Regular measurements in software development are important for a variety of
outcomes: for understanding, controlling, improving the development process,
also for creating and assessing the quality of the product itself. Throughout the
years there have been published sequences of papers evidencing empirically such
importance [11,14,29,31–35,43,44,47,51,52,55–57,61,63]. But not all metrics
should and could be collected and measured. It is critical to understand why and
how they should be measured during a particular software development process
step and the reasoning behind that, otherwise, the effort would be just a waste.
Any measurement should draw upon particular goals. For this reason, the Goal
Question Metric (GQM) model proposed by Basili and Weiss is so important
[4]. The GQM describes the process of establishing a data collection framework,
helps to answer the questions - what data and why should be collected and
how it should be interpreted afterword. The framework is defined in three levels
[12,13,15]:

1. Conceptual – It defines goals, according to different points of view on the
selected object of study and current environment.

Experience of Mixed Learning Strategies 45

2. Operational – It establishes questions. Questions are measurable entities that
establish a link between the object of study and its goals, and they define
what parts of the object of study should be considered and what the signs of
achievement of the related goal are.

3. Quantitative – It deduces metrics. Metrics in our case are software measure-
ments needed to answer the questions in a quantitative way.

3.2 Experience Factory

The experience is defined as “valuable, stored, specific knowledge that was
acquired in the previous problem-solving situations” [42]. Lean cannot be intro-
duced without respect for the existing knowledge and experience of a company
stuff. This consideration is most applicable and important for software compa-
nies. Therefore, the question arises of how to create an environment in which
such knowledge and experience are created, stored and ready for quick and high-
quality use, even by new employees, in new projects, etc. The solution introduced
by Basili [3,62] addresses this requirement, presenting Experience Factory. The
Experience Factory is an approach to collect and reuse past experiences, based
on the Plan-Do-Study-Act paradigm (PDSA) [62]. The purpose of the PDSA
[16] is to create a flow of constant quality improvement based on the following
steps:

1. plan the activities we need to perform so that we achieve the desired improve-
ment and their expected outcome;

2. do execute the plan;
3. study the outcome, measure it, and compare it with the expected outcome;

understand the reasons for the difference between reality and expectations;
4. act according to the results, that is, institutionalize the planned activities or

adjust them.

The Experience Factory uses the Plan-Do-Study-Act approach, adapted to
the software development domain, called the Quality Improvement Paradigm
(QIP) [1]. The QIP—as the PDSA approach—is a process model. It prescribes
a set of activities that have to be executed in the prescribed order to achieve the
expected results. It is an iterative model, i.e., it is based on the idea that a set of
steps is executed repeatedly until all the work is done. The steps are organized
using two cycles: the first is for long-term learning, and the second is executed
during the project phase and provides early feedback while the project is carried
out.

The main cycle consists of the following six steps [2]:

1. Characterize and understand
2. Set goals
3. Choose processes, methods, techniques, and tools
4. Execute, which includes Process execution, Result Analysis, and Feedback,

in cycles
5. Analyze results
6. Package and store experience.

46 I. Khomyakov et al.

3.3 Non-invasive Measurement

Measurement in software development is essential for understanding, control-
ling, and improving the development process. Software is invisible; therefore, we
need a way to make it visible [23]. The term “non-invasiveness” comes from the
medical field, in which it means that the diagnosis does not require to actually
look into the body [10]. In software measurement, we mean the use of methods
to collect data about the software development process, about the product, and
about the employed resources that do not require the personal involvement of the
participants of the process [49,50]. It is highly important to have non-invasive
instead of pervasive measurement at least for two reasons 1) we don’t need to
spend employees time, for example, developers on collecting the data and 2) we
want to have clear non-touched data, because of inaccuracy and incompleteness
of data that could be achieved using pervasive measurement [23].

In the next sections, we describe how we use such principles in teaching Lean
Software Development.

4 The Course

4.1 Course Goals

For deeper understanding of the course and underlying motivation behind activ-
ities, we are showing course goals in the following section. The goal of the course
is to make students understand the core aspects of software development, that
is, the creative nature of software production as an act of creation performed by
human mind, the substantial differences between tame and wicked problems, the
core concepts of measurement in software engineering, the fundamentals of Tay-
lorist/Fordist approaches to (software) production, the basis of lean and agile
software development, and the importance of knowledge and knowledge sharing
in producing software. This translates into the ability of students to determine
when a problem is “easy to solve” provided enough effort is put into such solu-
tion, and when it is not, why it is important and how we can define and perform
measurements in software engineering, especially in lean and agile development
environments, how to organize the development process to collect metrics non
invasively, the difference between pulling and pushing in (software) development,
and the fundamental principle of agility [30,48].

Moreover, the objective is to equip students with the ability to compute the
fundamental software metrics to track the evolution of a project, to organize
the aims of a (software) development organization in terms of Goals, Questions,
and Metrics, to create a tailored (lean and agile) development process for an
organization producing software, to define a path to insert and manage such
(lean and agile) development process into an organization producing software,
to structure the experience of gathering data while inside an organization and as
a result it the future to be able to make strategic decision in such organization,
and, especially, to relate various approaches of Agile Methods to the overall
principles of Lean Management.

Experience of Mixed Learning Strategies 47

To summarize, the main purpose of the course is to expose students to the
principles of lean software development via non-coding tasks and help them
to develop lean mindset, transferable skill of lean operational practice, includ-
ing lean application in software development, and also to teach students meta-
knowledge, which could be applicable in each life sector.

4.2 Course Structure

The course has a variety of approaches to designing learning experiences for two
main reasons:

1. to maximize the learning outcome: a particular teaching technique will be
most appropriate for the specific learning objective of the instructional pur-
pose, and

2. to make students aware of and prepared to handle different teaching
approaches used in academia and industry.

The course is organized in 15 weeks with every week 2 academics hours
of lectures and 4 academic hours of labs. Significant amount of course time is
dedicated for self-study: 6 h/week on reading, homework, and preparation for
each class (this time will contribute to the project assignment as well) 6 h/week
specifically on project/report assignments.

A balanced mixture of “standard” frontal classes, “standard” labs, class dis-
cussions and presentations by experts (will be described later on) is used in the
course. The style of teaching is highly informal and experiential. Students are
required to participate intensively, give their presentations, and also, sometimes,
take a leading role in the discussion. The data we collected as a result of surveys
demonstrate that students learn more by applying the ideas and explaining them
to others than by listening to a frontal explanation. The surveys showed that
more than 70% of students prefer application and explanation to others rather
than traditional teacher-to-student frontal explanation.

73.0

8.0

19.0

Prefer Active Participation
Prefer Traditional
Both ways of teaching is acceptable

As it was mentioned earlier, in the course we use the concept of Experience
Factory, i.e. students have the opportunity not only to listen or read about, but
also to experience the concept, by, for example, creating and improving lectures
notes, thus linking conceptual knowledge to real life.

The course currently requires various activities from students, including stan-
dard ones, such as reading or watching materials related to software develop-
ment as a homework, to reason on the content of the course, where tasks will

48 I. Khomyakov et al.

involve Higher Order Thinking skills, e.g. analyse, criticize, suggest a solution/an
improvement.

Moreover, there is a batch of non-standard activities used in the course. For
example, a report of Lean application in different areas of life, such as sports. This
task allows students to empirically focus on the application of lean approaches
to the non-traditional organizational context in the “joint educational work,” in
which students are assigned to write a book by first, independently studying a
selected new topic and writing their chapters, and then by joining those chapter
in a book.

Another example of such non-standard collaborative task is when, students
are required to study and to present a chapter of a book on poetics, linking it
with what has already been explained in the class and with the general theory of
software development. All kinds of specific for the course activities are described
in the following sections.

Additionally, class collaborative participation is a part of the course assess-
ment scheme, as the course is mainly informed by social constructivism approach
and Lean principle of shared knowledge. Hence discussions are the essential part
of instructional practice. To contribute to students’ engagement in class discus-
sions, active participation is also promoted with grades to enrich class discus-
sions with student knowledge, relevant experience, critical questions, and mate-
rial analysis. Another example when students are promoted for participation is
when they are evaluated for their participation in presentations by invited speak-
ers. Each student should write a question, which can subsequently be asked to
the speaker, if after a students voting it will appear in top 10. Moreover, students
are involved in team projects followed by reports and presentations in order to
understand one of the main Lean principles in the practice, non-invasive mea-
surement in a poor environment.

Given current dynamic status of Computer Science as discipline, it is difficult
to formalize all the knowledge that is required for a future Software Engineer,
so we expose students to state-of-the-art knowledge along with the experiences
from successful software engineers. As it is described in [7] it is really necessary
to engage industry representatives in teaching software engineering. Instructors
and guest contributors, who are practicing software engineers, are often much
better placed to teach practical software engineering skills than pure academics,
and naturally, lend a greater sense of relevance to the material being taught.
Drawing on practical experience, experts demonstrate two opposite topics: 1)
best practices from the field of Lean and project management 2) how not to
lead projects, why projects fail, on which concepts students should concentrate
more in the future in order to avoid the same mistakes. That is why during the
course we periodically have very experienced people from the industry. As we
use the concept of Experience Factory, all guest presentations are recorded and
published, so each student could access them whenever they want.

Experience of Mixed Learning Strategies 49

5 Course Design (Teaching Approaches and Process)

During the teaching process we are focusing on the use of the Lean Teaching
and Learning model and applying previously mentioned LSD pillars such as
GQM and Experience Factory, and PDSA as part of it. Since high applicability
of PDSA during teaching has been proven [18], we actively use this approach
in this course. Goals and metrics obtained with GQM allow us to control the
course program, its relevance and at the same time comply with state educa-
tion standards. Lean lists two types of process improvements: kaikaku (radical
improvement) and kaizen (continuous, incremental improvement). One of the
main tools used in the model for continuous improvement is the so-called PDSA
– P lan, Do, S tudy, Act. This approach has been proven and tested by various
researchers, for example, in [19]. PDSA is used in the course design for ongoing
and timely course update and delivery. Each class is planned (Plan) according
to the existing government and university standards and then executed (Do)
according to the plan. At the end of each activity of the course (lecture,lab etc.),
feedback from students is collected and analyzed (Study). Based on the feedback
analysis, the course material is updated and can be changed if necessary (Act).

We are interested in continuous course improvement and we use GQM and
PDSA cycle to improve the course. We regularly use students’ feedback, as its
effectiveness has been proved in e.g. [28], and we follow the procedure described
in this source. Figure shows an example of questionnaire.

Based on GQM and PDSA techniques we chose to use the following metrics
for continuous assessment of the course quality:

1. Student Satisfaction Rating
2. Course Clarity Assessment
3. Lecture Quality Assessment
4. Assessment of the quality of laboratory studies
5. Students’ interest in further, in-depth study of the lean topics

Data for metrics 1–4 are collected from the questionnaire in Fig. 1. Metric 5
is measured by collecting statistics on students employment, industry feedback,
and students publications.

In the last 3 issues of the course, students rated it with an average score of
4.5 on a 5-point scale every year. Moreover, several students who were attending
this course have successfully developed their theses in the Lean Software Devel-
opment field, with about 10% of the course participants having published on
Lean related topics in Scopus indexed international conferences. Finally, several
former students were hired by companies that use flexible methods and they
continued their practice as well as training in Lean methodologies area. A signif-
icant number of students were hired for flexible positions in software companies,
some were even hired as so-called Masters in various forms of dexterity.

We are also using other Lean techniques for teaching the course. For exam-
ple, teamwork is an integral part of each class as well as the majority of out-of
class assignments (those will described in more details in the next section). Also,

50 I. Khomyakov et al.

Fig. 1. Questionnaire example

the concept of the focus on the client is applied via periodic student represen-
tative meetings and feedback from students which together allow us to better
understand students’ needs. As a last point, during the course we encourage
the use of open source tools and methods, to promote the diffusion of knowledge
[17,20,27,38,45]. Moreover, to build models we also use techniques from machine
learning and computational intelligence [36,37].

6 Course Activities

Our task is not only to teach theoretical foundations, but also to create condi-
tions for expanding and deepening our horizon, as well as developing practical
skills, moreover, skills that a person cannot use thoughtlessly, but soberly and
clearly understanding the need and importance of each of necessary actions and

Experience of Mixed Learning Strategies 51

their timeliness, taking advantage from previous experiences [9,53]. We believe
that the use of non-programmatic methods can no less effectively solve the edu-
cational task. First, we aim to teach Lean framework itself, so it can be taught
on any appropriate content. Second, the curriculum is built so that students
enrolled in this core course are simultaneously involved in two programming
projects in other courses and they can transfer lean technology tools on those
projects. So, for example, we assign writing collective works, books, creating
group projects that not only acquaint participants in the course with basic con-
cepts but through accurate and constant mentoring lead to the formation of
skills for adapting lean approaches not only for software development. In this
section, we list and describe all the main activities that were used during the
Lean Software Development course.

6.1 Reports

On of the examples of the course activities is reports. Reports are very typical
in the industry, therefore these tasks constitute a very important component in
the preparation of future software engineers. Reports assignments imply reading
and presenting work related to lean software development, with also a particular
interest in measurements in order to broaden the understanding of the subject.
These are small group assignments covering several areas of creative production,
for example: lean in art, lean in cooking, lean in sport, lean in volunteering, lean
in games, etc. Students voluntarily choose a topic from such list, one topic per
each small group. Particular emphasis is placed on empirical research, which is
also one of the key tenets of lean, and on historical work that shows the roots of
existing technologies, explaining how they came into existence and the reasons
for specific constraints on them.

In the reports students purpose is to determine: goals of the chosen report
topic, material from the lectures, labs, articles which covers the topic right way,
identification of what “lean” would mean for the chosen topic, description of the
techniques related to (lean) software development, checking presented articles
on the selected topic and taking examples to their reports from the articles,
identification of what:

– the reader’s topic under study could learn from (lean) software development,
– (lean) software development could learn from the industry under study.

Each report is undertaken by a group of at most 10 students. Reports require
a review of the existing material (books, scientific papers, articles, ...), with
all such material duly collected, analyzed, cited. The reports are organized in
homogeneous chapters, where each student is required to be responsible for at
least one chapter (that is, a report needs to have at least as many chapters as
students), which requires serious and thorough group work. Typical chapters
explore the different aspects of the topic, like, if dealing with sport, for instance,
basketball, football, volleyball, etc. The report task is given in the first lecture
and continues thought the course. At the end of the course, students should

52 I. Khomyakov et al.

present the work. During the presentations, they should carefully listen not only
to their teammates but also to other groups team members, because students are
asked to grade each other’s materials and presentations. Also, the grade should
be supported by valuable feedback. While they are listening to each other, they
learn new lean applications and can compare with their findings. Each activity
is performed under careful supervisor control, to highlight problems, correct
students answers and lead the discussion. The example of reports content could
be found in Fig. 2.

Fig. 2. Reports content example

6.2 Projects

As mentioned earlier, non-invasive measurement is one of the LSD pillars. Even
qualitative and subjective measures are more effective than no measures. For
instance, in our life we live with qualitative measures. Consider how we select
restaurants, or even how we hire people. In these processes there are indeed
quantities components, but the core of the measure is qualitative and subjec-
tive. To introduce the concept of non-invasive measurement we use Innometrics
[6], that helps students improve their performance by comparing their current
metrics with the previous ones. The project assignment aims at supporting the
most motivated students, mitigating what Leans defines the waste of unused tal-
ent, and it is focused on providing students with real-life problems. The project
goal is to contribute to the overall support system for the key foundation of
Lean software development: non-invasive measurements. It consists of creating
a plug-in for a tool for non-invasively retrieving the actions that the user per-
forms. The project consists of the components, which are expected to be imple-
mented jointly and synergistically, including setting goals, developing a solution,
confidently implementing the solution, and thoroughly reviewing the solution.
The participants needed not only to provide a working solution but also to
perform competent planning, in accordance with lean technologies, the use of
lean software methods, for example, building quality. As Lean requires short
cycles and regular feedback, the projects are evaluated weekly. Each project
includes a review of existing material (books, scientific articles, press articles,
websites, news, ...), with all similar materials properly collected, analyzed, cited.
In addition, if necessary, an empirical study of the problem should be carried

Experience of Mixed Learning Strategies 53

out, including also interviews with key experts in this field. Since the project is
designed for practical aspects, it is necessary to develop a suitable set of code
and tests in a programming language that depends on the problem that needs
to be encountered and must be agreed with the instructor.

6.3 Chapters

As mentioned earlier, the creation and storage of past experience is one of the
most important tasks for Lean practitioners. Chapters assignment is one of the
mechanisms for implementing this concept in the course. Chapters are intended
to systematize the knowledge of the subject. This assignment implies listen-
ing in the class, with further reading and presenting the material that students
have learned for other people, to enhance the subject understanding. Each next
semester contributes to the work that has been in progress in the previous Lean
Software Development semesters, spanning this undergraduate class, and also
the graduate classes of Metrics and Empirical Methods, and of Advanced Statis-
tics. The book of such chapters is being written in LaTeX, using Overleaf which
allows for comfortable writing collaboration. The typical structure of a chapter
consists of the motivation of the content of the material in the chapter; presen-
tation of a problem to solve; explanation of the theory underneath, with the
justification of every part, using all the required mathematical infrastructure;
solution of the originally posed problem; proposition and solution of other simi-
lar problems (at least 2). As the course evolves over time, students are welcome
to find any inconsistency or extend the material including examples and solutions
by themselves. The Chapters found wide application in the student community,
as they are not only a repository of established paradigms and theories, but also
practical knowledge and skills that are constantly improving, and are in accor-
dance with the current demands of both industry and students. The Chapters
are a part of the realization Experience Factory in the course, which is a crucial
element of lean environment.

6.4 Simulation Games

The concept of using simulations games for teaching Lean basis becomes popular
nowadays popular nowadays, and the literature describing such cases is rich, e.g.
[25,41,59]. A variety of simulation games have proved to be efficient, e.g. [60], so
we decided to apply Paper Planes simulation in the course. Paper Planes [21] is a
collaborative hands-on learning experience used to introduce lean software devel-
opment main concepts. It requires to engage in production of paper planes within
time-boxed intervals and iterations, using different ways of process management,
from craft way of production till the lean process establishment. The main focus
of the simulation is on the iterative, incremental delivery model within changing
requirements environment and tight time frames, which look like real-life situ-
ations. A professor or a TA who performs as a facilitator, simulates the role of
a customer, providing requirements on each iteration, or even changing them
during one iteration. The facilitator at the start of each iteration describes the

54 I. Khomyakov et al.

rules and watches time. The simulation usually includes no more than three iter-
ations and lasts around two hours. At the start of each iteration, teams have a
planning stage, and then on completion of production - a reflection stage, when,
guided by the facilitator, students identify production problems, discuss possible
solutions, make decisions how those problems will be resolved, and implement
those solutions in the next iteration. The simulation, while putting participants
in real-life product creation conditions, allows us to introduce the students with
the concepts and show the reasoning behind main lean principles in a short two
hours time frame. The workshop helps students make the connection between the
new concepts and previous learning experiences, build on their previous knowl-
edge and see successful examples of new concepts implementation. Besides, it
helps to reaffirm their confidence by practicing their newly acquired knowledge
in their own production project. This instructional approach helps bridge the
gap between what the students are learning and what they will experience in
the real world. Hence, it is likely to better prepare the students for assisting
companies to improve the profitability of manufacturing companies, thus help
advance the manufacturing industry.

6.5 GQM

The GQM approach was introduced by Basili and Weiss [5], around 1984. From
this point on, it becomes one of the most recognizable and widely used method-
ologies. We use GQM in the course in several perspectives. The way it is used
from the course designers perspective is described in Chapter 5. Course Design, of
the current paper. For students - GQM allows to control the process of achieving
their goals while studying one of the Lean software development pillars. There
are two types of GQM assignments that should be performed and continuously
updated by the students - Global or Overall, and Weekly. Both GQMs should
consist of Goals, Questions, and Metrics, as it is proposed by the methodology
designers. In the Overall GQM, students list all their goals, present correspond-
ing goals refining questions, and goal achievement metrics for the whole semester
when the course is taught. Since clear articulation of feasible goals and the con-
trol of the process a big Overall goal achievement is a challenging task, each week
students break down their global goals, set metrics and measures for a week to
control the process of achieving the goals within a small timeframe - the activity
is called Weekly GQM. By Weekly GQM students can constantly improve their
goals statements, refine questions, accept or reject selected metrics while check-
ing achieved results. Moreover, they find out whether metrics are really aligned
with their goals, and if their goals really represent their wishes. Goal achieve-
ment progress is evaluated through weekly grading and feedback from a course
instructor. Since each Weekly GQM has to be completed before each lab session,
students get their grading and feedback during the lab session, which allows
for their continuous improvement. There is an ongoing tradition of presenting
GQM during student lab sessions. Presentations are made to elicit feedback from
students’ teammates and get a different perspective on their work. During such
presentations, students discuss the applicability of the selected indicators and

Experience of Mixed Learning Strategies 55

their suitability, give their suggestions and share knowledge and experience. In
this assignment, it is not the content of a goal or a metric that is evaluated, but
rather students’ ability to follow the GQM framework for goals setting, refining
and designing appropriate achievement metrics.

For example, if some student states as a goal to “improve his English“, but the
only metric they suggest is “the number of pages of an English book I have read
today“, the course instructor will request to refine the goal and will guide such
student through the Goal-Question-Metric refinement process. Metrics should be
highly related to the Goals and should show the progress of achieving the Goals.
In this particular case, the refined Goal was worded like “to extend English
vocabulary”, and the metric became - “the number of new words, the translation
of which I don’t know yet, per page”. The most rewarding outcome of the course
for us as practitioners, is that students point out the high value of using GQM
for everyday life and continue using it after the course.

7 Conclusion

The article describes an approach of using non-programming methods to teach
lean software development, a course, that having been taught for three years,
regularly receives an average of more than 4.5 out of 5 points from students
evaluations. Despite the fact that the basic structure remains unchanged, it is
constantly evolving, from course to course, from student to student, making
content more friendly for students, replacing the old obsolete with a new one in
demand. We showed our experience, and we hope that it will inspire practition-
ers to use such approach in their instructional practice for the benefit of their
students.

Acknowledgments. We thank Innopolis University for generously sponsoring these
studies.

References

1. Basili, V.R.: Quantitative evaluation of software methodology. Technical report,
TR-1519, Department of Computer Science, University of Maryland, College Park
(1985)

2. Basili, V.R.: The experience factory and its relationship to other improvement
paradigms. In: Sommerville, I., Paul, M. (eds.) ESEC 1993. LNCS, vol. 717, pp.
68–83. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57209-0 6

3. Basili, V.R., Caldiera, G., Rombach, H.D., Marciniak, J.J.: Encyclopedia of Soft-
ware Engineering, vol. 1. Wiley, New York (1994)

4. Basili, V.R., Caldiera, G., Rombach, D.H.: The Goal Question Metric Approach.
Wiley, Hoboken (1994)

5. Basili, V., Weiss, D.: A methodology for collecting valid software engineering data.
IEEE Trans. Softw. Eng. SE. 10(6), 728–738 (1984)

https://doi.org/10.1007/3-540-57209-0_6

56 I. Khomyakov et al.

6. Bykov, A., et al.: A new architecture and implementation strategy for non-invasive
software measurement systems. In: Proceedings of the 33rd Annual ACM Sympo-
sium on Applied Computing, SAC 2018, pp. 1832–1839. Association for Computing
Machinery, New York (2018)

7. Chatley, R., Field, T.: Lean learning - applying lean techniques to improve soft-
ware engineering education. In: 2017 IEEE/ACM 39th International Conference on
Software Engineering: Software Engineering Education and Training Track (ICSE-
SEET), pp. 117–126 (2017)

8. Chatley, R., Field, T.: Lean learning: applying lean techniques to improve software
engineering education. In: Proceedings of the 39th International Conference on
Software Engineering: Software Engineering and Education Track, ICSE-SEET
2017, pp. 117–126. IEEE Press (2017)

9. Clark, J., et al.: Selecting components in large COTS repositories. J. Syst. Softw.
73(2), 323–331 (2004)

10. Collins, C.: English Dictionary – Complete & Unabridged, 10th edn. HarperCollins
(2009). (December 2013)

11. Coman, I.D., Robillard, P.N., Sillitti, A., Succi, G.: Cooperation, collaboration and
pair-programming: field studies on backup behavior. J. Syst. Softw. 91, 124–134
(2014)

12. Corral, L., Georgiev, A.B., Sillitti, A., Succi, G.: A method for characterizing
energy consumption in Android smartphones. In: 2nd International Workshop on
Green and Sustainable Software (GREENS 2013), pp. 38–45. IEEE, May 2013

13. Corral, L., Georgiev, A.B., Sillitti, A., Succi, G.: Can execution time describe
accurately the energy consumption of mobile apps? An experiment in Android. In:
Proceedings of the 3rd International Workshop on Green and Sustainable Software,
pp. 31–37. ACM (2014)

14. Corral, L., Sillitti, A., Succi, G.: Software assurance practices for mobile applica-
tions. Computing 97(10), 1001–1022 (2015)

15. Corral, L., Sillitti, A., Succi, G., Garibbo, A., Ramella, P.: Evolution of mobile
software development from platform-specific to web-based multiplatform paradigm.
In: Proceedings of the 10th SIGPLAN Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! 2011, pp. 181–183. ACM,
New York (2011)

16. Deming, W.E.Q.: Productivity, and competitive position. Massachusetts Institute
of Technology, Centre for Advanced Engineering Study (MIT-CAES), Cambridge
(1982)

17. Di Bella, E., Sillitti, A., Succi, G.: A multivariate classification of open source
developers. Inf. Sci. 221, 72–83 (2013)

18. Dinis-Carvalho, J., Fernandes, S.: Students role in the implementation of a lean
teaching and learning models. In: Proceedings of the PAEE/ALE 2016, 8th Inter-
national Symposium on Project Approaches in Engineering, Guimaraes, July, pp.
6–8, 284–293 (2016)

19. Dinis-Carvalho, J., Fernandes, S.R., Filho, J.: Combining lean teaching and learn-
ing with eduScrum. Int. J. Six Sigma Competitive Adv. 10, 221 (2017)

20. Fitzgerald, B., Kesan, J.P., Russo, B., Shaikh, M., Succi, G.: Adopting Open Source
Software: A Practical Guide. The MIT Press, Cambridge (2011)

21. Heintz, J.: Agile Airplane Game, Gist Labs (2016). Accessed 9 May 2018
22. Hoda, R.: Using agile games to invigorate agile and lean software development

learning in classrooms. In: Parsons, D., MacCallum, K. (eds.) Agile and Lean
Concepts for Teaching and Learning, pp. 391–414. Springer, Singapore (2019).
https://doi.org/10.1007/978-981-13-2751-3 18

https://doi.org/10.1007/978-981-13-2751-3_18

Experience of Mixed Learning Strategies 57

23. Janes, A., Succi, G.: Lean Software Development in Action. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-00503-9

24. Järvi, A., Taajamaa, V., Hyrynsalmi, S.: Lean software startup – an experience
report from an entrepreneurial software business course. In: Fernandes, J.M.,
Machado, R.J., Wnuk, K. (eds.) ICSOB 2015. LNBIP, vol. 210, pp. 230–244.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19593-3 21

25. Johnson, T., Fesler, J.: Teaching Lean Manufacturing Principles in a Capstone
Course with a Simulation Workshop Paper presented at Annual Conference,
Nashville, Tennessee, June 2003

26. Kivi, J., Haydon, D., Hayes, J., Schneider, R., Succi, G.: Extreme programming: a
university team design experience. In: 2000 Canadian Conference on Electrical and
Computer Engineering. Conference Proceedings. Navigating to a New Era (Cat.
No.00TH8492), vol. 2, pp. 816–820, May 2000

27. Kovács, G.L., Drozdik, S., Zuliani, P., Succi, G.: Open source software for the public
administration. In: Proceedings of the 6th International Workshop on Computer
Science and Information Technologies, October 2004

28. Kregel, I.: Kaizen in university teaching: continuous course improvement. Int. J.
Lean Six Sigma 10(4), 975–991 (2019). https://doi.org/10.1108/IJLSS-08-2018-
0090

29. Marino, G., Succi, G.: Data structures for parallel execution of functional lan-
guages. In: Odijk, E., Rem, M., Syre, J.-C. (eds.) PARLE 1989. LNCS, vol. 366,
pp. 346–356. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51285-
3 51

30. Maurer, F., Succi, G., Holz, H., Kötting, B., Goldmann, S., Dellen, B.: Software
process support over the internet. In: Proceedings of the 21st International Con-
ference on Software Engineering, ICSE 1999. ACM, May 1999

31. Moser, R., Pedrycz, W., Succi, G.: A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction. In: Proceedings of
the 30th International Conference on Software Engineering, ICSE 2008, pp. 181–
190. ACM (2008)

32. Moser, R., Pedrycz, W., Succi, G.: Analysis of the reliability of a subset of change
metrics for defect prediction. In: Proceedings of the Second ACM-IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement, ESEM
2008, pp. 309–311. ACM (2008)

33. Muśılek, P., Pedrycz, W., Sun, N., Succi, G.: On the sensitivity of COCOMO II
software cost estimation model. In: Proceedings of the 8th International Sympo-
sium on Software Metrics, METRICS 2002, pp. 13–20. IEEE Computer Society,
June 2002

34. Paulson, J.W., Succi, G., Eberlein, A.: An empirical study of open-source and
closed-source software products. IEEE Trans. Softw. Eng. 30(4), 246–256 (2004)

35. Pedrycz, W., Russo, B., Succi, G.: A model of job satisfaction for collaborative
development processes. J. Syst. Softw. 84(5), 739–752 (2011)

36. Pedrycz, W., Russo, B., Succi, G.: Knowledge transfer in system modeling and its
realization through an optimal allocation of information Granularity. Appl. Soft
Comput. 12(8), 1985–1995 (2012)

37. Pedrycz, W., Succi, G.: Genetic granular classifiers in modeling software quality.
J. Syst. Softw. 76(3), 277–285 (2005)

38. Petrinja, E., Sillitti, A., Succi, G.: Comparing OpenBRR, QSOS, and OMM assess-
ment models. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey,
G.R., Noll, J. (eds.) OSS 2010. IAICT, vol. 319, pp. 224–238. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13244-5 18

https://doi.org/10.1007/978-3-642-00503-9
https://doi.org/10.1007/978-3-319-19593-3_21
https://doi.org/10.1108/IJLSS-08-2018-0090
https://doi.org/10.1108/IJLSS-08-2018-0090
https://doi.org/10.1007/3-540-51285-3_51
https://doi.org/10.1007/3-540-51285-3_51
https://doi.org/10.1007/978-3-642-13244-5_18

58 I. Khomyakov et al.

39. Poppendieck, M., Poppendieck, T.: Lean software development: an agile toolkit.
Addison-Wesley Prof. 13, 321–15078 (2003)

40. Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development:
From Concept to Cash. The Addison-Wesley Signature Series. Addison-Wesley
Professional (2006)

41. Hoda, R.: Using agile games to invigorate agile and lean software development
learning in classrooms. In: Parsons, D., MacCallum, K. (eds.) Agile and Lean
Concepts for Teaching and Learning, pp. 391–414. Springer, Singapore (2019).
https://doi.org/10.1007/978-981-13-2751-3 18

42. Ralph, B.: Experience Management: Foundations, Development Methodology, and
Internet-Based Applications, vol. 2432. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45759-3

43. Ronchetti, M., Succi, G., Pedrycz, W., Russo, B.: Early estimation of software size
in object-oriented environments a case study in a CMM level 3 software firm. Inf.
Sci. 176(5), 475–489 (2006)

44. Rossi, B., Russo, B., Succi, G.: Modelling failures occurrences of open source soft-
ware with reliability growth. In: Ågerfalk, P., Boldyreff, C., González-Barahona,
J.M., Madey, G.R., Noll, J. (eds.) OSS 2010. IAICT, vol. 319, pp. 268–280.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13244-5 21

45. Rossi, B., Russo, B., Succi, G.: Adoption of free/libre open source software in
public organizations: factors of impact. Inf. Technol. People 25(2), 156–187 (2012)

46. Sawhney, R., et al.: Teaching sustainable lean: the next step towards inculcating
a critical problem-solving mindset. In: Alves, A.C., Kahlen, F.-J., Flumerfelt, S.,
Siriban-Manalang, A.B. (eds.) Lean Engineering for Global Development, pp. 61–
94. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13515-7 3

47. Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: A relational approach to software
metrics. In: Proceedings of the 2004 ACM Symposium on Applied Computing,
SAC 2004, pp. 1536–1540. ACM (2004)

48. Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: A non-invasive approach to product
metrics collection. J. Syst. Architect. 52(11), 668–675 (2006)

49. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Measures for mobile users. In: Al-
Ani, B., Arabnia, H.R., Mun, Y. (eds.) Proceedings of the International Conference
on Software Engineering Research and Practice (SERP), vol. 1. CSREA Press, Las
Vegas (2003)

50. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Non-invasive measurement of the
software development process. In: Orso, A., Porter, A. (ed.) Proceedings of the
International Workshop on Remote Analysis and Measurement of Software Systems
(RAMSS). IEEE, Portland (2003)

51. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Measures for mobile users: an archi-
tecture. J. Syst. Archit. 50(7), 393–405 (2004)

52. Sillitti, A., Succi, G., Vlasenko, J.: Understanding the impact of pair programming
on developers attention: a case study on a large industrial experimentation. In:
Proceedings of the 34th International Conference on Software Engineering, ICSE
2012, pp. 1094–1101. IEEE Press, Piscataway, June 2012

53. Sillitti, A., Vernazza, T., Succi, G.: Service oriented programming: a new paradigm
of software reuse. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol. 2319, pp. 269–280.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46020-9 19

54. Stone, K.: Four decades of lean: a systematic literature review. Int. J. Lean Six
Sigma 3(2), 112–132 (2012)

https://doi.org/10.1007/978-981-13-2751-3_18
https://doi.org/10.1007/3-540-45759-3
https://doi.org/10.1007/3-540-45759-3
https://doi.org/10.1007/978-3-642-13244-5_21
https://doi.org/10.1007/978-3-030-13515-7_3
https://doi.org/10.1007/3-540-46020-9_19

Experience of Mixed Learning Strategies 59

55. Succi, G., Benedicenti, L., Vernazza, T.: Analysis of the effects of software reuse
on customer satisfaction in an RPG environment. IEEE Trans. Softw. Eng. 27(5),
473–479 (2001)

56. Succi, G., Paulson, J., Eberlein, A.: Preliminary results from an empirical study
on the growth of open source and commercial software products. In: EDSER-3
Workshop, pp. 14–15 (2001)

57. Succi, G., Pedrycz, W., Marchesi, M., Williams, L.: Preliminary analysis of the
effects of pair programming on job satisfaction. In: Proceedings of the 3rd Inter-
national Conference on Extreme Programming (XP), pp. 212–215, May 2002

58. Sugimori, Y., Kusunoki, K., Cho, F., Uchikawa, S.: Toyota production system and
Kanban system: materialisation of just-in-time and respect-for-human system. Int.
J. Prod. Res. 15(6), 553–564 (1977)

59. Terelak-Tymczyna, A., Biniek, A., Nowak, M.: The use of simulation games in
teaching lean manufacturing. In: Hamrol, A., Kujawińska, A., Barraza, M.F.S.
(eds.) MANUFACTURING 2019. LNME, pp. 358–369. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-18789-7 30

60. Burch, V., Reuben, F., Smith, B.: Using simulation to teach lean methodologies
and the benefits for Millennials. Total Qual. Manag. Bus. Excellence 30(3–4), 320–
334 (2019)

61. Valerio, A., Succi, G., Fenaroli, M.: Domain analysis and framework-based software
development. SIGAPP Appl. Comput. Rev. 5(2), 4–15 (1997)

62. Basili, V., Caldiera, G., McGarry, F., Pajerski, R., Page, G., Waligora, S.: The
software engineering laboratory - an operational software experience factory, pp.
370–381 (1992)

63. Vernazza, T., Granatella, G., Succi, G., Benedicenti, L., Mintchev, M.: Defining
metrics for software components. In: Proceedings of the World Multiconference on
Systemics, Cybernetics and Informatics, vol. XI, pp. 16–23, July 2000

64. Womack, J., Jones, D., Roos, D.: The Machine that Changed the World. Free
Press, New York (1990)

https://doi.org/10.1007/978-3-030-18789-7_30

Teaching Theoretical Computer Science
at Innopolis University

Manuel Mazzara(B)

Innopolis University, Innopolis, Russian Federation
m.mazzara@innopolis.ru

Abstract. Innopolis is a new IT city incorporating a technopark and
a university, aiming at prioritizing the development of IT and software
engineering in Tatarstan and in the Russian Federation. Innopolis Uni-
versity (IU) is a young university pioneering several research and peda-
gogical projects and experiments with innovative teaching methods and
curricula. This paper describes the experience of teaching a Theoreti-
cal Computer Science course at the bachelor level in a practice-oriented
institution.

1 Introduction

Innopolis University (IU) [1] is a young and ambitious university in Tartarstan
in the Russian Federation, which has a strong focus on education, and scientific
research in the field of IT and robotics [13]. It is located in the newly created
Innopolis City (near the capital city Kazan) which also comprises ICT companies
and the Innopolis Special Economic Zone. Innopolis aims to be the major Russian
IT hub. In its development the University was trying to follow the main trends
of IT education borrowed from the world’s leading higher education institutions.

Innopolis University was founded in year 2012 and started his pilot bachelor
program in 2014. A brief history of the university and its internationalization
trajectory cand be found in [12]. The initial curriculum was based on a lim-
ited number of core courses complemented by electives. While core courses were
mostly thought by full staff faculty, electives were mostly run by visiting pro-
fessors. As a first full time faculty member of the university I was in charge
of the course of Theoretical Computer Science as part of the basic curriculum.
The university is a practice-oriented university meant to produce highly qual-
ified specialists mostly for the local market. The only apparent contradiction
between the focus of the university and the name of the course have been solved
via specific design decisions and refined over the years thanks to students and
colleagues’ feedback.

The Lecturer
As a founding faculty I had the privilege and duty to choose and being assigned
to design and teach Theoretical Computer Science. As part of the start-up period

c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 60–70, 2020.
https://doi.org/10.1007/978-3-030-57663-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_5

Teaching Theoretical Computer Science at Innopolis University 61

of Innopolis I have also spent two months at ETH Zurich [4] in order to collect
material, study and prepare three courses, including this one. My profile was
particularly suitable for this subject given my research experience in formal
methods and concurrency theory [16], formal specification and service modelling
and reconfiguration [5,10,14,15,17,18].

Course Objectives
A good software developer ignorant of how the mechanics of a compiler works is
not better than a good pilot when it comes to fix the engine and he will defini-
tively not be able to provide more than average solutions to the problems he is
employed to solve. Like automotive engineering teach us, races can only be won
by the right synergy of a good driving style and mechanics. Most importantly,
limits of computation cannot be ignored in the same way we precisely know how
accelerations, forces and frictions prevent us from racing at an unlimited speed.
The course investigates the prerequisites to understand compilers functioning.
Although the act of compilation appears deceptively simple to most of the mod-
ern developers, great minds and results are behind the major achievements that
made this possible. All starts with the Epimenides paradox (about 600 BC),
which emphasizes a problem of self-reference in logic and brings us to the short
time window between WWI and WW2 when, in 1936, Alan Turing proved that
a general procedure to identify algorithm termination simply does not exist.
Another major milestone has been reached by Noam Chomsky in 1956 with his
description of a hierarchy of grammars. In this long historical timeframe we can
put most of the bricks with which we build modern compilers. The course will
be an historical tour through the lives of some of the greatest minds who ever
lived on this planet.

Mathematics and Beauty
The first lecture is an opening on mathematics, nature and art. We introduce
students to the importance of mathematics starting from geometry and sacred
architecture using as an example the golden ratio and how it has been used
in innumerable contexts in history, for example like in Fig. 1, the Bramante
Staircase of the Vatican Museum.

The opening has been designed with the idea to be unconventional on one
hand, and on the line of science popularization on the other hand. It has the
ability to attract attention since the early minutes of the first lecture.

Outline
In this article, we discuss the design of the course, its delivery and successive
refinements. After this introduction the paper is structured as follows: Sect. 2
describes the basic design ideas behind the course; Sect. 3 defines the material
that it is presented and how; Sect. 4 provides information about yearly feedback

62 M. Mazzara

Fig. 1. The Opening - a jump into beauty and mathematics

and to what changes this led; Sect. 5 discusses the idea of Guest Lectures and
why they are important; Sect. 6 describes the way we assess students while Sect. 7
offers a view on the future potential developments of the course.

2 Solving the Apparent Paradox

Innopolis University had since the beginning a strong orientation to practice.
During the original curriculum design, for which I was responsible with some
colleagues, the attention was on how important is fundamental knowledge. Bach-
elor students may not appreciate it at the early stages of their careers, but strong
foundations will eventually bring advantages also in terms of employment. There
was agreement that “Theoretical Computer Science” had to be part of the core
bachelor curriculum since 2014.

After the decision at the curriculum committee level, the details were moved
to the instructor level for the syllabus design, in this specific case myself. The
challenge was to design a course from an engineering point of view empha-
sizing practical application. There are three major software artifacts that are
paradigmatic examples of how theory and mathematics are applied in practice
in computer science:

– Operating Systems (OS)
– Database Management Systems (DBMS)
– Compilers

If we want to be more specific, we can add to this list theorem provers,
and perhaps type checkers, although they may be included as part of compilers.

Teaching Theoretical Computer Science at Innopolis University 63

We will not here discuss Operating Systems, algorithms and DBMS, but only
compilers, that originally were however intended as integral part of Operating
Systems. Compilers are a perfect example of how theory is fundamental to create
artifacts that simplify people’s life, here in particular developers’ life.

Furthermore, this course also offers the possibility for students to practice
rigorous formalization of ideas and principles that is fundamental, for example, in
requirements engineering where they will need to be the communication channel
between humans, maybe specialists of different disciplines, and machines.

The course is very much practice-based with programming assignments and
tries to limit the use of heavy mathematical notation whenever possible, and
always introducing concepts via intuition and examples, as detailed later in this
paper.

3 Content and Delivery

The course since the beginning has been organized in three parts:

– Automata and Models of Computation
– Formal Grammars and Chomsky’s Hierarchy
– Computability

The material does not follow specifically any textbook being a digest of the
lecturer of various sources. This on one hand gives an advantage to students that
could follow the course slides and find the major highlights and pointers; on the
other hand students not attending non-mandatory classes may have problems in
retrieving studying material, and often there have been questions about how to
find specific concepts in some textbook. Although there is no textbook covering
the material in the same way, clearly the course content is somehow the one
commonly thought in similar courses and in good recommended textbooks such
are [11] and [8].

Course Organization
The course has been organized initially as lectures only (4 h/week), then
lectures and labs (2 + 2 h/week) and finally as lectures, tutorials and labs
(2 + 2 + 2 h/week). Lectures introduce new concepts, tutorials show at the white-
board, after lectures, exercises solved by the teacher, labs involve students in
smaller groups (maximum 30) to engage solving the exercises. The duration of
a semester is 15 weeks, followed by 3 weeks of exams sessions.

Team
The teaching team is generally composed by a Principal Instructor, a Tutorials
Instructor and a number of Teaching Assistants (TAs), which depends on the
enrollment of that specific year. Typically an enrollment is of about 150 students

64 M. Mazzara

organized in 6 different groups, since by regulation a group cannot be larger than
30 students. Contractually TAs have to teach a number of groups, and typically
they teach 2 groups in the same course. A teaching team has therefore an average
of 3 TAs.

Approach to Delivery

Here we will show how the topics are typically introduced. Each aspect is always
presented following the scheme refined over the years:

– Intuition
– Example
– Formalization

The power of mathematical notation is synthesis; however, if intuition and
examples are missing the notation may become hard to understand and may
completely lose the simplifying power. As an example we show here a simple,
but potentially cumbersome, topic as Finite State Automata (FSA) is presented
in the course. Figure 2 is a slide introducing the idea using the game Pac-Man and
explaining as how the behavior of the ghosts in the game can be modelled with an
FSA. Figure 3 present some FSA in their diagrammatic notation. This notation
is also a formal notation, but somehow more digestible that the formalization
presented in Fig. 4 where we start presenting the formalization of the concepts
in a synthetic manner.

Fig. 2. Intuition

Teaching Theoretical Computer Science at Innopolis University 65

Fig. 3. Example

Course Conclusion

The last lecture of the course covers the major impossibility results of Com-
putability and Computer Science, i.e. Rice Theorem, following the same approach
formal vs informal (see Fig. 5 and Fig. 6).

Fig. 4. Formalization

66 M. Mazzara

Fig. 5. Rice Theorem - Formal

Fig. 6. Rice Theorem - Informal

Rice theorem is presented as the key impossibility result around which Soft-
ware Verification has to work presenting approximate solutions, i.e. with false
positive and false negatives, to problems that cannot have a precise solution.

4 Course Evolution

The course has been delivered every year since 2014 and some challenges have
been encountered and some changes made necessary to better deliver the mate-
rial and better integrate the content with the overall curricula.

The most complex part of the course is the last one, Computability. There is
a complex mathematical machinery and somehow a heavy notation that requires
to be introduced to define concepts such as computable, recursively enumerable
and to prove the undecidability of Halting Problem, or Rice Theorem by a diago-
nalization technique. The idea according to which the first two parts (Automata
Theory and Grammars) can be led by intuition and example before introducing
any notation, can also be applied to this part, however the ideas behind the
definitions and the results are a little bit less tangible as they do not belong to
everyday programmers’ life like automata, algorithms and to the same extent for-
mal grammars (think of, for example, regular expressions). This section requires
to slowly introduce a mathematical machinery supported by intuition, but also
requires students to pay attention and be sufficiently patient to figure out how
these ideas really apply into practice. The course leads a student to understand

Teaching Theoretical Computer Science at Innopolis University 67

Fig. 7. Overview of the course

languages inclusion and relationship with formal Chomsky Hierarchy and models
of computation as shown in Fig. 7.

The most significant change we have introduced over the year is going from
essays and presentations-based assignment to programming assignments. We
understood that, even in a theoretical course, it is better to keep alive the coding
practice. This approach has received more interest from students than the previ-
ous one were we were asking to write an essay on a theoretical topic and present
it. Programming assignments are connected to theoretical topics, such as writ-
ing an FSA simulator, and help students in familiarising with concepts through
a form of gamification. Another refinement of the course based on gamification
has been the introduction of weekly quizzed based on Kahoot! were students can
play and compete and receive extra points at the end of the semester.

5 Guest Lectures

One of the common traits that characterized the course since the beginning is
hosting one or two classes from an external lecturer. Often this lecturer has
been Bertrand Meyer [3] who has a great experience of compilers construction,
formal methods and Software Engineering. At times other lecturers delivered

68 M. Mazzara

additional content, for example Daniel de Carvalho [2] who has extensive expe-
rience in Lambda-calculus and delivered this topic as complementary equivalent
model to Turing Machine. Other colleagues from Innopolis University also inter-
vened. Students generally appreciate guest lecturers as external participants to
the course that can deliver integrative material from a different viewpoint. Some-
times the material from guest lectures is included in the exam, sometimes not.

6 Students Assessment

Evaluation of students is necessary for a complete and sustainable education
process and its realization requires also attention and time. Our assessment is
organized in four parts, and we aim at assigning a graded feedback to students
approximately every four weeks:

– First programming assignment (typically on FSA): due at Week 4
– Mid-term exam: typically at week 7 or 8
– Second programming assignment (typically on formal grammars or regexp):

due at Week 12
– Final exam: typically at week 16 or 17

We generally provide relative grading via normalization. Usually the passing
level is about 90/100 and A level is about 85/100.

The first two editions of the course instead of programming assignments
had essays on topical Computer Science paper with related public presentation.
This was a valuable activity, but at some point we preferred to integrate the
acquisition of theoretical concepts with the development of programming skills.
This move was generally well taken by both student and teaching team.

7 Towards the Future

Innopolis University is now in its seventh year and reached a students population
of about 800 with 300 employees of which about 30 faculty members and teaching
and research stuff up to 80 people. On top of this there is a unit for commercial
Research and Development with about 120 employees. The city of Innopolis itself
has about 6000 inhabitants. The numbers of development in the first seven years
are impressive.

Innopolis has an extensively developed network of international institu-
tions collaborating under different forms: students exchange, Erasmus+, visiting
professors, joint PhD supervision and joint projects. One of the collaborative
projects sees as partners CERN and Newcastle university [6,7] and collaborative
PhD supervisions involve several universities including Toulouse, University of
Souther Denmark and University of Messina. All these activities dramatically
supported the development of the university and, in turn, of the city itself.

What are the further refinements and changes that should be applied to
this course and, in general to the university curriculum? Despite the fact the

Teaching Theoretical Computer Science at Innopolis University 69

Theoretical Computer Science is now a well-designed and polished course that
received positive feedback from students and colleagues, it is not exempt from
the need of further steps of refinement:

– On top of the programming assignments we would like to introduce the use
of some tool that can help appreciating mathematical modelling (for example
Microsoft Z3 [9]).

– Better alignment with successive course on Compilers Construction.
– Better alignment with prerequisite course on Logic and possibly with Discrete

Math.
– An idea for the future is to write a textbook or booklet including the material

of lectures, tutorials and labs.

Acknowledgment. It is fundamental here to thank TAs and instructors that helped
delivering this course since 2014: Daniel de Carvalho, Mohamed Elwakil, Leonard
Johard, Mansur Khazeev, Munir Makhmutov, Ruslan Mustafin, Swati Megha, Alexan-
der Naumchev, Mariya Naumcheva, Larisa Safina, Alexander Tchitchigin and Victor
Rivera.

References

1. About IU. https://university.innopolis.ru/en/about/. Accessed 26 Aug 2018
2. Bertrand Meyer on Wikipedia. https://en.wikipedia.org/wiki/Bertrand Meyer.

Accessed 10 Feb 2020
3. de Carvalho, D.: https://scholar.google.com/citations?user=AFRx 0kAAAAJ&

hl=fr. Accessed 10 Feb 2020
4. ETH Zurich. https://ethz.ch/en.html. Accessed 12 Feb 2020
5. Abouzaid, F., Mazzara, M., Mullins, J., Qamar, N.: Towards a formal analysis of

dynamic reconfiguration in WS-BPEL. Int. Dec. Tech. 7(3), 213–224 (2013)
6. Bauer, R., et al.: The BioDynaMo project: experience report. In: Advanced

Research on Biologically Inspired Cognitive Architectures, pp. 117–125. IGI Global
(2017)

7. Breitwieser, L., et al.: The BioDynaMo project: creating a platform for large-scale
reproducible biological simulations. In: 4th Workshop on Sustainable Software for
Science: Practice and Experiences (WSSSPE4) (2016)

8. Davis, M.D., Sigal, R., Weyuker, E.J.: Computability, Complexity, and Languages.
Fundamentals of Theoretical Computer Science, 2nd edn. Academic Press Profes-
sional Inc. (1994)

9. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

10. Dragoni, N., Mazzara, M.: A formal semantics for the WS-BPEL recovery frame-
work. In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 92–109.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14458-5 6

11. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Boston (1979)

12. Karapetyan, S., Dolgoborodov, A., Masyagin, S., Mazzara, M., Messina, A., Prot-
sko, E.: Innopolis going global. In: Ciancarini, P., Mazzara, M., Messina, A., Sil-
litti, A., Succi, G. (eds.) SEDA 2018. AISC, vol. 925, pp. 138–145. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-14687-0 12

https://university.innopolis.ru/en/about/
https://en.wikipedia.org/wiki/Bertrand_Meyer
https://scholar.google.com/citations?user=AFRx_0kAAAAJ&hl=fr
https://scholar.google.com/citations?user=AFRx_0kAAAAJ&hl=fr
https://ethz.ch/en.html
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-14458-5_6
https://doi.org/10.1007/978-3-030-14687-0_12

70 M. Mazzara

13. Kondratyev, D., Tormasov, A., Stanko, T., Jones, R.C., Taran, G.: Innopolis
university-a new it resource for Russia. In: 2013 International Conference on Inter-
active Collaborative Learning (ICL), pp. 841–848, September 2013

14. Mazzara, M., Abouzaid, F., Dragoni, N., Bhattacharyya, A.: Toward design, mod-
elling and analysis of dynamic workflow reconfigurations. In: Carbone, M., Petit,
J.-M. (eds.) WS-FM 2011. LNCS, vol. 7176, pp. 64–78. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29834-9 6

15. Mazzara, M.: Timing issues in web services composition. In: Bravetti, M., Kloul,
L., Zavattaro, G. (eds.) EPEW/WS-FM -2005. LNCS, vol. 3670, pp. 287–302.
Springer, Heidelberg (2005). https://doi.org/10.1007/11549970 21

16. Mazzara, M.: Towards abstractions for web services composition. Ph.D. thesis,
University of Bologna (2006)

17. Mazzara, M., Abouzaid, F., Dragoni, N., Bhattacharyya, A.: Design, modelling
and analysis of a workflow reconfiguration. In: International Workshop on Petri
Nets and Software Engineering, pp. 10–24 (2011)

18. Salikhov, D., Khanda, K., Gusmanov, K., Mazzara, M., Mavridis, N.: Jolie good
buildings: internet of things for smart building infrastructure supporting concur-
rent apps utilizing distributed microservices. In: CCIT, pp. 48–53 (2016)

https://doi.org/10.1007/978-3-642-29834-9_6
https://doi.org/10.1007/11549970_21

Lessons Learnt

Teaching Software Testing to Industrial
Practitioners Using Distance
and Web-Based Learning

Eduard Paul Enoiu(B)

Mälardalen University, Väster̊as, Sweden
eduard.paul.enoiu@mdh.se

Abstract. Software testing is a business-critical process used by private
and public organizations and an important source of market competi-
tiveness. Employees of these organizations are facing tough competition
and are required to be able to maintain and develop their skills and
knowledge in software testing. In the education market, many commer-
cial courses and certifications are available for industrial engineers who
wish to improve their skills in software development. Nevertheless, there
is a lack of access to world-leading research within the software testing
field in these commercial courses that supports the companies’ innovation
in software testing. As an alternative, universities are approaching this
challenge by developing academic courses on software testing that can
suit professionals who need to be able to combine work and studies. This
study highlights several good approaches and challenges in developing
and teaching three distance web-based software testing courses target-
ing test practitioners. The proposed approaches for enhancing teaching
of software testing in an online setting for industrial practitioners are:
active participation at the student’s pace, inclusion of software testing
artifacts from the student’s organization as part of assignments, continu-
ous access to online materials, the use of short video materials on testing
theory, and setting clear expectations for performing online test design
assignments. Finally, several challenges have been identified: poor feed-
back on assignments, distances between students and teachers, the use
of non-realistic assignments and the difficulty for industrial practitioners
to complete academic assignments each week. Future work is needed to
explore these results in practice, for example on how to shorten distances
between students and teachers, as well as how to enhance the inclusion
of real-world testing artifacts in course assignments.

Keywords: Software testing education · Web-based learning · Online
education · Industrial practitioners · Software engineering education

1 Introduction

Software plays a vital role in our daily lives and can be found in a number
of domains, ranging from mobile applications to medical systems. The emer-
gence and wide spread usage of large complex software products has profoundly
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 73–87, 2020.
https://doi.org/10.1007/978-3-030-57663-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_6

74 E. P. Enoiu

influenced the traditional way of testing software. Nowadays, organizations need
skilled engineers that should maintain their software testing knowledge through-
out their careers. Even if many online courses on software engineering1 and test-
ing2 are available from both private and public sectors, there is a lack of evidence
on how to design and teach such courses, what particular challenges teachers are
facing and how these courses can be improved and tailored to industrial practi-
tioners [11]. Specifically, software testing education [2] is an important aspect of
a thorough software engineering education. In these courses, students learn to
apply specific test design techniques and technologies for a given software under
test.

In this paper we present the results of a longitudinal study on three online
software testing academic courses targeting industrial practitioners3. We identi-
fied several challenges that should be taken into account when designing online
courses on software testing: poor feedback on assignments, distances between
students and teachers, poorly supported assignments and some industrial prac-
titioner specific challenges. In addition, we identified several good approaches
for enhancing the development of online courses in software testing: active par-
ticipation at the student’s convenience and pace, inclusion of software testing
artifacts from industrial practice and creation of short video lectures of software
testing theory. These results can be used to improve online courses in software
testing that can suit industrial practitioners who need to be able to combine
work and studies.

2 Software Testing Education

Software testing education is an important aspect of learning software engineer-
ing. Education in software testing should ensure the supply of software testing
knowledge. Testing is widely considered to be an under-prioritized activity in
software and systems development. Courses in testing are providing an under-
standing of the fundamental problems, as well as practical methods and tools
for a systematic state-of-the-art approach to software testing. Books such as the
one written by Ammann and Offutt [1] are used in teaching as a pedagogical
approach to software testing instruction method in many university courses.

Garousi et al. [8] performed a literature review to map the topic of software-
testing education. There are many pedagogical approaches and specific tools
used in testing education. For example, Hynninen et al. [13] performed a survey
to find out the current state of industry in software testing education. According
to their results, some key learning objectives in software testing disciplines can
be used to identify the knowledge expectations from university graduates and

1 For example Edx and Coursera offer MOOC-based software engineering courses.
2 Udemy is one of the providers that offer software testing MOOC courses.
3 The courses are given within the frameworks of PROMPT (https://www.prompt

edu.se/) and FUTURE (https://www.mdh.se/en/malardalen-university/research/
research-projects/futuree), cooperation projects between academia and industry
with the aim of strengthening competitiveness in Swedish companies.

https://www.promptedu.se/
https://www.promptedu.se/
https://www.mdh.se/en/malardalen-university/research/research-projects/futuree
https://www.mdh.se/en/malardalen-university/research/research-projects/futuree

Teaching Software Testing to Industrial Practitioners 75

to align with the industry requirements. Garousi et al. [8] has also identified the
ways how to overcome some of these challenges in testing education, including
the alignment with industry needs. Nevertheless, there is a lack of distance and
online education course offerings for industrial practitioners. In this paper we
aim to cover this subject and identify the challenges and good approaches in
teaching software testing to industrial practitioners.

3 Moving to Distance and Web-Based Learning
for Industrial Practitioners

In the last five years, we have started digitizing campus courses and developing
new online courses to be exclusively given to industrial professionals. Working
in this new setting involves a close interaction with students using digital tools.
Nowadays, teaching has evolved and teachers are adopting blended learning tech-
niques throughout the whole process of giving a course. Similarly to the results
outlined in the study of Garrison et al. [9], we acknowledge that exploring and
assessing the impact of blended learning is important in bringing more relevant
learning experiences in these online courses. In the following sections, we outline
three online courses on software testing given at Mälardalen University.

3.1 A Course Module on Advanced Topics in Software Testing

This course developed at Mälardalen University provides an understanding of
the fundamental problems, as well as practical methods and tools for a system-
atic state-of-the-art approach to software testing4. After the course, the partic-
ipants are expected to have an overview knowledge in more advanced testing
methods (such as model-based testing, mutation testing and search-based test-
ing), and in the state-of-the-art in software testing research. As shown in Fig. 1,
the course is given in a flexible format where the theoretical content, covered
in video lectures, is interleaved with practical exercises. The course is divided
into five 1.5-credit modules: Introduction to software testing and test design,
unit testing, test design and automation, testing at integration and system level,
static and dynamic analysis and advanced test design (the course module under
investigation).

3.2 Model-Based Testing Course

This online course deals with model-based testing5, a class of technologies used
to assess the quality and correctness of large software systems in a more effi-
cient and effective way than traditional testing methods. Throughout the course
the participants learn how to design and use model-based testing tools, how to

4 https://www.promptedu.se/quality-assurance-the-applied-science-of-software-
testing.

5 https://www.promptedu.se/quality-assurance-model-based-testing-in-practice/.

https://www.promptedu.se/quality-assurance-the-applied-science-of-software-testing
https://www.promptedu.se/quality-assurance-the-applied-science-of-software-testing
https://www.promptedu.se/quality-assurance-model-based-testing-in-practice/

76 E. P. Enoiu

Fig. 1. An overview of the course material as part of the advanced test design module
containing video lecturers and interviews with experts.

create realistic models and how to use these models to automate the testing
process in their organisation. We developed online material (including recorded
videos of certain lectures as shown in Fig. 2) on basic model-based testing termi-
nology, creating models from industrial code, executing model-based tests and
how to use model-based testing in practice. After completing the course, the stu-
dents are expected to have acquired knowledge about models and understand
model-based testing, develop practical skills and abilities on applying model-
based testing in industrial practice, to test software using model-based testing
in structured, organised ways. The students are admitted based on both specific
entry requirements for credits in computer science and industrial experience.
The students can apply for the course and get their eligibility evaluated based
on knowledge acquired in other ways, such as work experience, and other studies.

3.3 Automated Test Generation Course

The automated test generation course is focusing on how to generate tests auto-
matically in the sense that test creation satisfying a given test goal or given

Teaching Software Testing to Industrial Practitioners 77

Fig. 2. A video lecture on model-based testing recorded using a campus course set-up.

requirement is performed automatically6. This course provides an understanding
of automating software testing using program analysis with the goal of intelli-
gently and algorithmically creating tests. The course covers search-based test
generation, combinatorial and random testing while highlighting the challenges
associated with the use of automatic test generation. The student is learning
about how to automatically generate test cases with assertions and to have a
working knowledge and experience in static and dynamic generation of tests.
The course is using a learning management system based on a discussion forum
(as shown in Fig. 3) in which students and teachers collaborate with each other
throughout the course.

4 A Longitudinal Study of Developing and Teaching
Three Online Courses in Software Testing

We present our experiences from developing and running three online courses
(described in Sect. 3) during the last five years. The courses were offered as
individual courses focused on flexible learning especially suited for working pro-
fessionals with a large part of the teaching being web-based.

4.1 Case Study Methodology

Little longitudinal research has examined online teaching in software engineer-
ing or software testing. This study helps fill this gap. The approach uses a case
6 https://www.mdh.se/utbildning/fortbildning/ai-och-mjukvaruutveckling/futuree-

automated-test-generation.

https://www.mdh.se/utbildning/fortbildning/ai-och-mjukvaruutveckling/futuree-automated-test-generation
https://www.mdh.se/utbildning/fortbildning/ai-och-mjukvaruutveckling/futuree-automated-test-generation

78 E. P. Enoiu

Fig. 3. A view of the forum learning platform used in the automated test generation
course.

study design methodology informed by a number of methods from ethnogra-
phy7, including the use of repeated surveys, anchored in discussions of artefacts
created by the course responsible. We followed the qualitative approach recom-
mended by Calderhead [6] in the form of a case study for gaining insights into
teaching through a variety of data collection methods over time. This study was
conducted as a multiple case study comprising three individual case studies, each
focusing on one of the courses described in Sect. 3. The research questions are: (1)
What challenges are affecting online teaching of software testing for industrial
practitioners? (2) What good approaches for improving distance and web based
learning of software testing are found when teaching industrial practitioners?

This study takes a qualitative approach, focusing on the experiences of
the course responsible and incorporating the knowledge of the context and its
insights and perceptions, while attempting to better understand online teaching
of software testing. The research was undertaken longitudinally to identify and
interpret the commonalities in each course instance from spring semester 2015
until spring 2020. Data was collected through analysis of study materials at the
end of each course by focusing on learning objectives, learning activities and
assessment tasks. No personal data was collected during this process. Data anal-
ysis was conducted to generate hypotheses and broader concepts [3] that can be
used by both researchers in investigating online teaching as well as by teachers
that can include these results in their own courses.

Methodological Approach for Data Collection. As ethnography aims to
explore a particular social phenomenon through research methods such as obser-
vations, we used this approach for data collection. This allowed the researcher
to gather data within the course environment (the context of the study).

7 Ethnography is a research method for gathering data by active participation in the
studied phenomenon [14].

Teaching Software Testing to Industrial Practitioners 79

We captured and interpreted the experiences of the students. The researcher
observed the activities in these course settings, taking handwritten notes. These
activities included interactions between the teachers and the learners as well as
the development of each course.

Data Analysis. We employed a process of thematic analysis to identify themes
emerging from the data set (i.e, researcher’s observations and personal reflec-
tions). This data was coded manually by grouping data (i.e., in segments of
text) under individual codes. These codes were organized into two categories:
good approaches and challenges. In addition, from the ensuing categories two
other overarching themes emerged: teaching and learning software testing with
digital tools and asynchronous communication between students.

4.2 On Teaching and Learning with Digital Tools

In practice, in the three courses under study, we are delivering online content out-
side of the virtual classroom and students can watch online lectures in advance,
have online discussions at home while learning new concepts in the virtual class-
room with teacher guidance through step-wise progression. This is achieved by
tackling content complexities with digital assignments that support progressive
learning [12]. During this longitudinal study we have learned how to use a vari-
ety of pedagogical techniques, including the use of visual aids (e.g., dynamic
diagrams, interactive slides, videos and audio recordings), virtual group-work,
student presentations and use case discussions. In addition, the use of learn-
ing platforms such as Piazza8, Scalable Learning9 and Canvas10 is important in
using the teaching aids in an efficient and effective manner. We have developed
material for online courses, including:

– Course Marketing Material. (e.g., Automated Test Generation11, Software
Testing in the Video Game Industry12, Software Testing Course13)

– Audio Podcast. In 2017 we have started a podcast called Testing Habits14

in which we have conversations with researchers, scientists and technologists
about technology transfer, software testing and software engineering research.
We have used this audio material in all ongoing courses.

– Video Recordings of Lectures. We have developed video recordings of regu-
lar lectures to be used in the flipped classroom method (e.g, Model-Based
Software Testing Lecture15).

8 https://piazza.com/.
9 https://www.scalable-learning.com/.

10 https://www.instructure.com/canvas/higher-education/platform.
11 https://play.mdh.se/media/0 f1243mpq.
12 https://www.youtube.com/watch?v=CBIhu 9OolY.
13 https://www.youtube.com/watch?v=OR63w8Iod9I.
14 https://podcasts.apple.com/us/podcast/testing-habits/id1255653631.
15 https://www.youtube.com/watch?v=4fXBrZnj2JU.

https://piazza.com/
https://www.scalable-learning.com/
https://www.instructure.com/canvas/higher-education/platform
https://play.mdh.se/media/0_f1243mpq
https://www.youtube.com/watch?v=CBIhu_9OolY
https://www.youtube.com/watch?v=OR63w8Iod9I
https://podcasts.apple.com/us/podcast/testing-habits/id1255653631
https://www.youtube.com/watch?v=4fXBrZnj2JU

80 E. P. Enoiu

Fig. 4. An example of a synopsis and evaluation conversation during a reading assign-
ment.

– Interviews with Experts. We have developed video interviews with relevant
academics to be used during lectures16. Voice over Slides Material. Some of
the videos we developed are in the form of voice over slides (e.g., Lecture on
Requirement based Testing17).

During the last five years we observed that continuous teaching in online
courses is a source for the teacher’s digital learning evolution. The learning
evolves especially when students ask direct questions and through the correction
of online assignments. This is part of continuously improving the video lectures
and assignments by directly reflecting on how students are able to solve them in
an innovative way.

4.3 Asynchronous Communication and Course Assignments

For all three online courses most of the class is taught asynchronously and assign-
ments leverage online educational opportunities to virtually merge students. All
groups in these case studies are using the same learning platform, watch the
same lectures, and read and discuss testing subjects. One example of such a
specific activity is an assignment in which students are summarizing, evaluat-
ing and critiquing a certain scientific paper on software testing. In this chosen
assignment, one student examines and critiques certain software testing papers
while others have the opportunity to critique the original synopsis. A snapshot
of a part of such a synopsis is shown in Fig. 4. For the set of papers, each student
must submit a simple evaluation. The evaluation should be about a page long
and must be posted on the learning platform. Several people will be assigned to
write and post a synopsis evaluation for each paper. The synopses should: (1)
describe the testing problem, (2) describe the goals of the paper, (3) describe
and analyze the testing technique presented or the experimental setup, (4) dis-
cuss the results and (5) analyze the industrial applicability. Two students are
designated as “skeptics” for each paper and are required to disagree with the
posted synopsis and provide reasonable arguments. All students can join in the
discussion for each paper throughout this assignment. All postings, including

16 https://www.youtube.com/watch?v=jbrhbnmkyAI.
17 https://www.youtube.com/watch?v=1pnqEom-xOw.

https://www.youtube.com/watch?v=jbrhbnmkyAI
https://www.youtube.com/watch?v=1pnqEom-xOw

Teaching Software Testing to Industrial Practitioners 81

the reviews are done using the learning platform and all students can join the
discussion and read these comments.

Since this assignment is supposed to provide a collaborative learning oppor-
tunity and the discussions are asynchronous, the aim is to focus on the learner
and not the teacher, implying a more reliable understanding of the content [4].
In this way we aim to directly improve learning by focusing on the outcomes
students are meant to deliver during the assignment. This focus opens up dif-
ferent perspectives on how knowledge and learning is transformative in these
strict conditions of time and space. One perspective on learning achieved during
several assignments during the last five years is related to the theory of collective
activities to produce scientific knowledge [16]. Roth and Lee argue that knowl-
edge and learning from scientific articles as a collective praxis process achieve
more advanced forms of knowledge than individual could produce. This implies
that an assignment that tries to create opportunities for literacy that emerges
from a collective activity can be used to develop communities of praxis inside a
course. Another highly-related perspective of knowledge and learning relates to
Dewey’s pragmatism [15]. This is where knowledge takes action form and theo-
ries (i.e., papers and reports read by students) become a tool and the application
of such a tool (i.e., critique work during the assignment) is producing and reor-
ganizing the experience needed for obtaining more understanding. In addition,
we observed during multiple course instances that the chosen assignment relies
on the problem-solving abilities of the students involved in this process.

These two perspectives of pragmatism and praxis on this kind of assignments
can be used to focus on different aspects of quality in learning and teaching. Since
online courses attract larger cohorts, the emerging community contained in some
cases unengaged students and lack of interactivity between them. Assignments
from this perspective can result in ineffective assessment and relatively limited
feedback. To counteract this, some researchers [7] have proposed new engagement
strategies for community learning by using more interactive digital content and
gamification. Given the environment and online platform used, there are ways
in which the pragmatic perspective can support learning and development for
this particular assignment. The issue here is that our own experiences in using
these assignments are not profound given that the assignment under study has
been tested in practice in couple of instances of the course. There is a scant
opportunity for improving it, but there is some evidence [18] that more analysis
of these experiences together with constructs of pragmatic interactions can be
used for a proper analysis. This is especially needed when taking into account
that the technology used can influence the context of pragmatic learning.

Our experience is that when designing software testing assignments the
teacher interaction and reflection is important when providing learning oppor-
tunities for feedback and critical review. We discovered that ceding control of
learning and knowledge acquisition to the learner can be formative and encour-
age community reflection. In the end, our scope is to develop a small community
in an online setting which is a challenging proposition in itself since learning is
a social process made up of connections between the concepts learned and the

82 E. P. Enoiu

other learners in the community. This assignment is constructively aligned with
the rest of the course since the other assignments are built on stepwise analy-
sis and reflection by the students. The peer review assignment was used as a
method for this particular learning activity and the course is all about learning
how to be a tester. The link between the other assignments and this one is strong
given that only a successful engagement in the activities and completion of the
assessment task can make a student achieve the subsequent individual learning
outcomes related to peer review and experimentation.

In addition, the peer review activities used in all three courses can be
redesigned and improved using the behaviorist theory of teaching [5]. The idea
would be to use both positive and negative reinforcement to shape the online
behavior of students by focusing on blended learning. The objective of the
redesign should focus on creating a more dynamic community where active par-
ticipation and teacher reinforcement can be implemented by using awards and
gamification aspects through competitions. In these sessions, the community
members can realize that they are not alone in experiencing the reinforcements
and lead to a sense of trust in the group and their achievements.

4.4 Challenges and Good Approaches

In this section we outline the identified challenges affecting online teaching of
software testing for industrial practitioners. In addition, we present several good
approaches for improving distance and web based learning of software testing. We
collected these results based on our experiences from teaching several instances
of these courses in the last five years using an ethnography-based case study and
thematic analysis.

The identified challenges are outlined in Table 1. For all three courses we
experienced that poor feedback on assignments can influence the progression
of the student throughout the course. One recommendation is to define a clear
success criteria and how you as a teacher are going to measure it in an online
setting. Getting the students to keep going throughout the course, means that
the teacher needs to ask for feedback early and give feedback early and often.
To address this challenge we used audio and video assignments feedback instead
of a traditional source code and tests solution. In this way, the student could
rather quickly gather evidence needed to modify the assignment for passing the
stated learning outcome.

Another challenge relates to the geographical, social, cultural, and temporal
distances that can have an impact on online teaching. These distances are not
well studied in the teaching of software testing literature. We experienced con-
cerns from students that factors related to these distances are making commu-
nication between teacher and student more difficult. For example, we observed
that spoken language in videos affects the communication of different testing
theory subjects. In our experience, a way of overcoming this type of distances
is to use different tools and techniques such as filming a practical test session
in the test environment while performing a certain assignment. However, the
use of testing and programming tools can negatively impact learning efficiency.

Teaching Software Testing to Industrial Practitioners 83

Table 1. Overview of challenges and recommendations for teachers.

Challenge Recommendations

1. Poor feedback on assignments Speed up feedback loops by providing
audio or video feedback

2. Distances between students and
teachers

Short distances improve online teaching
of software testing. Some distances can
be mitigated with certain tools

3. Testing topics are not sufficiently
explored in certain assignments

Use realistic testing assignments that
includes uncontrolled variables which
creates the complexity necessary to fully
understand the practical testing
challenges involved in a certain topic

4. Poorly supported assignments by other
teaching means

Assignments need to be clearly
connected to the testing-related lecture
material, but also to the reading
instructions

5. Difficulty for industrial practitioners to
complete academic assignments each
week

Assignments need to be relevant for the
company and the student

6. For industrial practitioners completing
the course is not as desirable as it is for
regular students

Learning effects are more important and
students need to be engaged for visible
results throughout the course

The challenge is that these tools may have compatibility distances and may not
always work well given that some are used in ways they are not designed for.

Just as in empirical and experimental software research, the use of controlled
experiments as assignments where we are able to control all independent vari-
ables in order to measure the dependent variables seems needed. The challenge
we have faced (Challenge 3 in Table 1) relates to cutting away all that which is
not relevant in an assignment, and hence the solution was easier to comprehend.
For some classes of testing assignments (e.g., test design techniques theory) we
found that this is not a problem, whereas for other more hands-on assignments
we found that developing realistic scenarios is a challenge. Our recommendation
is to include assignments that contain uncontrolled variables in which the actual
complexity is needed to fully understand the practical challenges involved in a
testing topic. For example, software testing courses are often taught with a focus
on test design techniques and test execution, whereas the real challenges arises
from software testing “at large” such as in the case of model-based testing and
automated test generation, where intelligent and automated methods need to
be used when thousands of new code changes happen per week and ambigu-
ously specified test specifications are used. Clearly, the latter situation calls for
different pedagogy methods and more realistic assignments to be created.

Another challenge relates to assignments that are loosely connected to the
lectures and the course book. Some students were not able to directly identify the

84 E. P. Enoiu

Table 2. Overview of good approaches and their implications for teachers.

Approach Recommendations

1. Active participation in teaching at the
student’s convenience and pace (although
within a specified time frame)

Encourage collaboration given that
learners are strongly motivated to
acquire new testing skills and make
professional progress. The learning
activities need to be flexible in time,
place and form to cater for different
learning styles and circumstances among
the involved testing practitioners and
their companies

2. Inclusion of software and testing
artifacts from the student’s organization
as part of the course assignments

Testing education for professionals with
employment in software companies needs
context-specific learning elements by
choosing situated learning

3. Continuous access to key concepts and
online course materials

Motivate your students by providing
mandatory and optional materials. Make
sure to link all the related material
explicitly and throughout the course

4. Video segments on testing theory
should be restricted to a few minutes

Human attention span is short and
hence your recorded video segments
should be restricted to a few minutes (at
most 15–30 min)

5. Provide clear expectations together
with the needed tools and frameworks
needed for performing assignments

Use suitable tools and make sure they
can be used by all students given that
you communicate clear expectations

material that is required to understand what an assignment is about and how to
conduct it. In an online setting, a practitioner has a limited time to perform an
assignment. A recommendation for addressing this challenge is to design online
assignments that are clearly connected to both the lecture material and also to
the reading instructions.

In all three courses we observed that it is more difficult to motivate indus-
try practitioners to continuously perform an academic assignment. As a recom-
mendation, a teacher in software testing needs to design assignments that are
relevant for the company and the student. In addition, the assignment needs to
contain precise instructions throughout the entire assignment. Another identified
challenge relates to industrial practitioners’ lack of desire to obtain credits and
completing all parts of a course. In our online courses, we observed that obtain-
ing credits and completing the course were not important reasons for performing
certain assignments. Some students did not complete a certain assignment on
time and drop out of the course. As a recommendation, teachers might not want
to maintain strict deadlines during the course.

Teaching Software Testing to Industrial Practitioners 85

In addition, we identified several good approaches for online teaching of soft-
ware testing (shown also in Table 2). A first approach is to encourage active
participation by following the actual pace of the student. A second good app-
roach relates to the inclusion of software artifacts from the student’s context in
the course assignments. This is important, since different learning goals require
different ways of teaching and learning. Testing examples and exercises should
connect to the students’ companies and application domains. A third good app-
roach is focusing on providing, throughout the course, all the material including
concept maps as inventories for all course modules. These are powerful tools for
outlining and relating key testing concepts. In addition, we included stories since
these tend to be remembered better than facts or abstract principles. Given that
these courses were separated in modules, we spaced out the study material since,
in our experience, this leads to better long-term learning than providing every-
thing in a single module. A fourth good approach identified in several course
instances is to make sure that students can actually follow lectures. One should
record video segments on software testing theory that are not longer than a
few minutes. It is more important to give an easily accessible overview of the
testing topic that can continue with an in-depth exercise. In addition, a fifth
good approach is to provide clear expectations on each assignment and use tools
that can be used easily by all students. It is important that each module has
a workload breakdown structure for all expectations per week, including how
communication should take place (e.g., in discussion groups).

5 Discussions and Limitations

Overall, the results from this study are obtained using the experiences in teach-
ing software testing in an online setting targeting industrial practitioners in three
separate courses. Even if these results are directly related to online education in
software testing, some of the listed challenges and good approaches are generic
enough and can target any online course. We recommend evaluating these chal-
lenges and good approaches in teaching of more software engineering topics.
Nevertheless, when developing online courses in software testing one should try
to address the challenges of understanding the objectives and details of the test-
ing topics explored in each assignment and how these testing assignments are
supported by all the needed instructions and details. Some of the mitigations
to the described challenges are already known to other domains [10,17]. This
is an indication that these results could be relevant to other software engineer-
ing practices, both for an academic and an industrial perspective. For research,
the experiences provided in this paper are useful as they bring knowledge from
teaching industrial practitioners in an online setting into academia. By under-
standing that teaching practitioners is not a trivial approach, further research
is made possible. We invite other researchers to revisit in other contexts the
experienced challenges and good approaches.

Our main aim with this paper is to highlight the themes, challenges and
approaches that arose from the development and running of online courses in

86 E. P. Enoiu

software testing targeting industrial practitioners. This qualitative approach has
produced an understanding of the challenges and good approaches in online
teaching of software testing in the industrial context. This approach has its
limitations regarding the small sample size of courses used in this analysis and the
uni-dimensional collection of observations; therefore, no attempt to generalize
the results of this study is made. We hope the findings of this study will stimulate
further research on teaching software testing to industrial practitioners in an
online setting.

6 Conclusions

This study has illustrated how advanced topics in software testing practice
and research can be taught to industrial practitioners. We report several good
approaches and challenges in developing and teaching distance web-based courses
in three software testing topics: software testing theory of advanced test design,
automated test generation and model-based testing. We identified several chal-
lenges in online teaching of software testing: poor feedback on practical assign-
ments, distances between students and teachers, poorly supported assignments,
and also some industrial practitioner-specific challenges. In addition, we iden-
tified several good approaches for improving online courses in software testing:
active participation at the student’s convenience and pace, inclusion of software
artifacts from industrial practice and creation of short video lectures among oth-
ers. Finally, our results show that more research on online teaching of software
testing is needed and that teachers and researchers need to take the aspects of
teaching industrial practitioners more clearly into account.

Acknowledgment. This research was supported by the Knowledge Foundation
(KKS) through the FuturE and PROMPT projects as well as the ECSEL Joint Under-
taking under grant agreement No. 737494 and the Swedish Innovation Agency, Vinnova
(MegaM@Rt2 and XIVT projects).

References

1. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press, Cambridge (2016)

2. Astigarraga, T., Dow, E.M., Lara, C., Prewitt, R., Ward, M.R.: The emerging role
of software testing in curricula. In: 2010 IEEE Transforming Engineering Educa-
tion: Creating Interdisciplinary Skills for Complex Global Environments, pp. 1–26.
IEEE (2010)

3. Bazeley, P.: The contribution of computer software to integrating qualitative and
quantitative data and analyses. Res. Sch. 13(1), 64–74 (2006)

4. Biggs, J.B.: Teaching for Quality Learning at University: What the Student Does.
McGraw-Hill Education, New York (2011)

5. Boghossian, P.: Behaviorism, constructivism, and socratic pedagogy. Educ. Philos.
Theory 38(6), 713–722 (2006)

6. Calderhead, J.: Teachers: Beliefs and Knowledge (1996)

Teaching Software Testing to Industrial Practitioners 87

7. De Freitas, S.I., Morgan, J., Gibson, D.: Will MOOCs transform learning and
teaching in higher education? Engagement and course retention in online learning
provision. Br. J. Educ. Technol. 46(3), 455–471 (2015)

8. Garousi, V., Rainer, A., Lauv̊as Jr., P., Arcuri, A.: Software-testing education: a
systematic literature mapping. J. Syst. Softw. 110570 (2020)

9. Garrison, D.R., Kanuka, H.: Blended learning: uncovering its transformative poten-
tial in higher education. Internet High. Educ. 7(2), 95–105 (2004)

10. Ghezzi, C., Mandrioli, D.: The challenges of software engineering education. In:
Inverardi, P., Jazayeri, M. (eds.) ICSE 2005. LNCS, vol. 4309, pp. 115–127.
Springer, Heidelberg (2006). https://doi.org/10.1007/11949374 8

11. Hadjerrouit, S.: Learner-centered web-based instruction in software engineering.
IEEE Trans. Educ. 48(1), 99–104 (2005)

12. Hrastinski, S.: Nätbaserad utbildning: en introduktion. Studentlitteratur (2009)
13. Hynninen, T., Kasurinen, J., Knutas, A., Taipale, O.: Guidelines for software test-

ing education objectives from industry practices with a constructive alignment
approach. In: Proceedings of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education, pp. 278–283 (2018)

14. Karn, J., Cowling, A.J.: Using ethnographic methods to carry out human factors
research in software engineering. Behav. Res. Methods 38(3), 495–503 (2006)

15. Miller, F.G., Fins, J.J., Bacchetta, M.D.: Clinical pragmatism: John Dewey and
clinical ethics. J. Contemp. Health L. & Pol’y 13, 27 (1996)

16. Roth, W.M., Lee, S.: Scientific literacy as collective praxis. Public understanding
of Science (2016)

17. Stuchlikova, L., Kosa, A.: Massive open online courses-challenges and solutions in
engineering education. In: International Conference on Emerging eLearning Tech-
nologies and Applications), pp. 359–364. IEEE (2013)

18. Taguchi, N.: “Contextually” speaking: a survey of pragmatic learning abroad, in
class, and online. System 48, 3–20 (2015)

https://doi.org/10.1007/11949374_8

Towards Code Review Guideline
in a Classroom

Victor Rivera1(B), Hamna Aslam2, Alexandr Naumchev2, Daniel de Carvalho2,
Mansur Khazeev2, and Manuel Mazzara2

1 Australian National University, Canberra, Australia
victor.rivera@anu.edu.au

2 Innopolis University, Innopolis, Russia
{h.aslam,a.naumchev,d.carvalho,m.khazeev,m.mazzara}@innopolis.ru

Abstract. Software companies generally adopt code review to identify
errors and suggest improvements to code, and share knowledge in the
team. Companies assume a pre-knowledge on their engineers to under-
take the activity. This could be difficult for freshly graduated students as
in an academic environment code review is not often exercised: it is not
an individual activity and requires substantial interaction among stu-
dents, educators, deliverance, and acceptance of feedback, timely actions
upon feedback as well as the ability to agree on a solution in the wake of
diverse viewpoints. This paper proposes a guideline to code reviewing in
a classroom. We report on the lessons learnt after applying the proposed
guidelines to a large course in Computer Science. Students’ feedback
suggests that the process has been well received with some points to be
improved.

1 Introduction

Professional Software Engineers and developers regularly implement code review,
i.e. they review each other’s code to identify errors, suggest improvements, and
share knowledge in the team. Code reviews are useful and common in the indus-
trial environment, e.g. they are part of the software development at Google where
it is applied by more than 25K developers making more than 20K source code
changes each workday [1]; however, code reviews are not always applied as they
should in academia, neither for what concerns research and development nor
regarding pedagogical approaches. We consider code reviews a best practice to
be applied in the academic environment.

Tools to support code reviews are abundant (see some of these in Sect. 2);
in this paper, we are not introducing another tool of this kind, but proposing
a process on how to perform a code review session in the university classroom,
in particular in large size courses. This paper also reports on experience from
applying the process on a first year, large course in Computer Science (CS). Our
work follows the convergent practices across several code review processes and
contexts identified in [2]: it is a lightweight and flexible process; reviews happen

c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 88–105, 2020.
https://doi.org/10.1007/978-3-030-57663-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_7

Towards Code Review Guideline in a Classroom 89

early (before a change is committed) and quickly; code sizes are small; few peo-
ple are involved; and it is a group problem solving activity. We describe how this
process can help in the development of the course and how it helps students to
understand colleagues’ mistakes and learn coding best practices. In particular,
students can reflect on Documentation: Is the code properly documented and
commented? Where should the documentation be better?; Error handling:
Does the code handle errors properly? Where should the error-handling be bet-
ter?; Suggestions: Provide two suggestions for the author on how to improve
the code.

In this work, we try to understand:

Q1: What are the benefits and pitfalls for a course performing code reviews?
educators need to achieve specific learning outcomes for a course in a specific
time frame. We want to explore how code review sessions can help lecturers in
the process. We are also interested in exploring the consequences of performing
code review as part of the course.

Q2: What are the benefits and pitfalls for students participating in code
reviews? We want to get a hint on whether code reviews help or hinder the
learning process in students. This is important as it is directly related to stu-
dents’ motivation. The more motivated students are the more engaged they are
in the course [3]. There is also a need to understand what the pitfalls of the
activity are so lecturers can focus on those elements.

The following high-level objectives motivate these questions. Keep the syl-
labus of the course realistic: the course may not cover topics that should be
covered. It may also loosely cover some of its topics, or cover some topics too
extensively. We believe that conducting communication-intensive activities such
as code review sessions may help uncover these problems; Ensure good enough
learning quality: we may not deliver some topics of the course well enough. The
course consists of both lectures and lab sessions. While the lectures may cover
up-to-date theory, the labs may insufficiently or inadequately practice that the-
ory. Some teaching assistants may practice the topics that they appreciate more.
They also may have different backgrounds; this will likely affect their perception
and delivery of the material; Ensure adequacy of the exercise itself: the setting
of the code reviews may require adaptation. It was the first time we applied
code reviews for teaching first-year bachelor’s. We designed the exercise based
on how a code review would look like in a software company. The participants
of code reviews in such companies understand very well the importance of code
reviews. They also understand what aspects of the artifacts under review they
should especially focus on. First-year bachelors most likely do not have that level
of awareness. By studying their behaviour during code review sessions, we may
learn how to adjust the setting of the exercise.

2 Related Work

Code inspection consists of a manual review of the code by other developers than
its authors to identify its defects. Already thirty-five years ago, it was recognised

90 V. Rivera et al.

as a good engineering practice, which was successfully applied in several pro-
gramming projects improving productivity and product quality [4]. At that time,
it was done with in-person meetings: such code inspections can be called tra-
ditional in contrast with practices that have been more recently introduced. In
particular, [5] defines Modern Code Reviews as informal, tool-based and regular
peer code reviews. Kemerer and Paulk [6] analyse the impact of designing and
performing code reviews in assignments of a Personal Software Process course
written in C or C++: they empirically verify that allowing sufficient preparation
time for reviews and inspections can produce better performance; this probably
explains why doing such research in a teaching environment is easier than in an
industrial one, which tends to try to decrease the short-term costs. Nevertheless,
such research in an industrial environment exists: as an example, Sadowski et al.
[7] studies the practice of Modern code reviews at Google and its impact. Inter-
estingly, they do not only study the impact on the codes themselves but also on
knowledge transfer due to code review; indeed, at Google, knowledge transfer is
part of the educational motivation for code review. This educational capability
of reviews was already emphasised in [8]. Rigby and Bird [2] attempt to measure
such spread knowledge across the development team through review. As recalled
above, modern code reviews in industry are tool-based. Some example of these
tools are: Github [9], where code review is built up in pull requests; CodeFlow
[10] used by Microsoft; Gerrit [11] used by Google; ReviewBoard [12] used by
LinkedIn and Mozilla; Phabricator [13] used by Facebook.

There are peculiarities of academic teaching that make the context different
from the industrial one. This does not allow to fully implement a commercial
code review processes so that students can get all the constructive comments
about their code in the same way they would get in industry [14]. The size of
assignments could be smaller, for example, and the timing of delivery can be
different (sometime shorter or longer). Furthermore, team composition in terms
of experience and motivation can be biased, and also the incentive system is very
different. The team dynamics is also not the same most of the time, and the
openness of team members may be influenced by the way in which the teacher
has conducted the operations. It is clear that the academic environment is a
simulation of real life. Still, it can be informative. Code review in education has
also been experimented in the context of secondary school [15], where students
perceived code review activities positively, and such activities helped in achieving
good results in programming projects.

University lecturers who at the same time work in software production under-
stand well the importance of code reviews, and realise the difficulties of teaching
and implementing them in a class environment. Lecturers might not have a prior
experience in presenting the topic, how to asses it, and even less how to coor-
dinate the action over large groups. In this paper, we try to answer some of
these questions. Some techniques applied in a university environment are infor-
mally described by D. Wind in [16]. Wind discusses their approach and conclude
that students actually learn from reviewing code and can assess quality, but
also that generally, and understandably, do not like to grade the work of their

Towards Code Review Guideline in a Classroom 91

peers. Hundhausen et al. presents a list of best practices for implementing code
reviews in an academic setting [17], the list is derived from empirical studies.
Our work follows most of the practices: establishing ground rules and modelling
the activity are part of the activities in phases (1) and (2) in Fig. 1. We did not,
however, perform “mock” reviews beforehand; requiring both independent and
team reviews is part of step (2) in Phase (3) (Fig. 1); avoiding redundancy in
reviewing is achieved by the nature of our work as we suggest to code review in
a more realistic scenario, students need to perform this activity before commit-
ting their code to a repository; we did not use trained moderators. Moderators
were trained, but they were students of the same course, we did not take into
consideration their experience.

3 Code Review Process

Code review is a process in which a piece of code is manually inspected by
developers other than the authors. The primary purpose of the code review is
to improve the quality of software projects. Code reviews are frequent in the
industry (e.g., [7]) where code is inspected before committing the changes in
centralised repositories. Reviews ensure that quality code adheres to the com-
pany’s best practices. The review process in the industry happens seamlessly as
part of the software development; however, freshly graduated students are not
prepared to perform the review (they instead learn the process on the fly). This
section describes the process of performing a code review in an academic envi-
ronment. This section only describes the process; we let educators choose the
different tools that can be used. For instance, Phase 3 in Fig. 1 can be performed
using pull requests in GitHub.

The code review process defined in this paper assumes a project-based course
that has at least six undergraduate students, so at least one review session is
performed. The process can handle large size courses; for instance, we applied
it to a group of 129 students of a first year undergraduate course, a total of
22 reviews were performed (see Sect. 4). Figure 1 depicts the whole process. The
process has two main components: the upper part of the figure shows the process
that educators performing the review need to follow. Detailed in Sect. 3.2; the
lower part of the figure shows the process of the actual code review that students
need to follow. Detailed in Sect. 3.3.

3.1 Components of the Code Review

Artifacts. An artifact is one of many tangible products produced during the
development of software. It can be any documentation of the software, e.g.
UML diagrams, Internal/External documentation; an agile artifact from an Agile
methodology, such as User Stories, acceptance criteria; or a piece of code such
as a class (or a small number of closely related classes). The artifact in the code
review has an owner and is the element reviewers comment on.

92 V. Rivera et al.

Fig. 1. Code review process for the Classroom.

The artifact should not be extensive, as this would impact (negatively) the
effectiveness of the review. It should be around 10 pages of text, for artifacts
of software documentation, or around 250 LOC for artifacts of software code
(otherwise, the effectiveness of the review is affected [18]). The process described
in the present paper assumes an artifact of software code.

Roles. There are three leading roles in a code review (roles are mutually exclu-
sive, e.g., an owner cannot be at the same time a reviewer or a moderator). (i)
Owners: they are the owners of the artifact. Their role is to provide the arti-
fact of the review, along with an explanation. Owners receive comments from
reviewers about the artifact. Each comment needs to be addressed. Owners can
defend their code and reject the comment, or accept the comment and work on
it. (ii) Reviewers: the set of people reviewing the artifact. Their role is to care-
fully read the artifact provided by owners and make comments on it based on
the review scope (see below). If a comment needs further explanation, reviewers
are required to provide it. (iii) Moderators: they keep reviewers focussed on
the process and the discussion on track. They also organise the review meeting
and moderate it. After the review is done, moderators need to ensure that the
follow-up step happens and prepare a final report. This is important to keep
the effectiveness of the process. During the review, moderators need to have
good skills of facilitation: not just moderating the review but also correcting
inappropriate behaviour; they should be impartial.

Review Scope. The review of the artifact has a scope to keep participants
focussed. Bertrand Meyer [19] defines the following review scope sections to be
discussed, from high-level to more implementation-oriented:

1. Design decisions: the high-level design of the artifact, e.g. Is a certain class
really justified? Should it have its functionalities merged with another class?;

2. API design: the usability of software elements by others, in particular to
reuse, e.g. Do any derived classes have common members that should be in
the base class?;

Towards Code Review Guideline in a Classroom 93

3. Architecture: the architecture of the artifact, e.g. Should a class really inherit
from another or instead be a client?;

4. Implementation techniques: the choices of data structures and algorithms, e.g.
Can better data structures or more efficient algorithms be used?;

5. Exceptions handling – Contracts: how the artifact handles unexpected
behaviours or about the use of code contracts, e.g. Have all array indexes
been prevented from going out-of-bounds?;

6. Programming style, names: the conventions of the code style and conformance
to standards and specifications, e.g. Are descriptive variable and constant
names used in accord with naming conventions?;

7. Comments and documentation: Is documentation complete, including Design
By Contract or Error checking specs as appropriate? are error messages com-
prehensive and provide guidance as to how to correct the problem?

Reviewers’ comments will belong to one of these seven sections. Each com-
ment will be tagged by owners with one of the following tag categories: [CLOSED],
when there was a clarification about the comment and the owner (with the
reviewer ’s consent) decides to close the comment. This comment does not need
any follow up; [TO BE IMPLEMENTED], when the owner agrees with the comment
and decides to take action on it. These comments need to be implemented only
after the review meeting; and [TO BE DISCUSSED], when, after a short discus-
sion about the comment, the owner and reviewer reach an impasse. Comments
with this tag are the ones being discussed during the actual code review meeting.

3.2 Code Review (for Educators)

This section describes the process that educators need to follow to apply a code
review session. The process contains four phases: Set-up, Preparation, Code
Review and Reflection (upper part of Fig. 1). Phases 1 and 2 could be shortened
after the first time the process is done. In a project-based course, the code review
can be done several times. After the first time around, there is no need to spend
time setting up or preparing the group. Although it is advised to revisit those
phases.

Phase 1: Set-Up. In Phase 1, educators instruct students on the process. The
level of motivation and engagement of students highly depends on this phase, as
a consequence the success of the code review activity. This phase also comprises
the explanation of the process. Starting with the explanation of the different
roles, what an artifact is and the review scope. Finally, an explanation on the
process to follow (as explained in Sect. 3.3).

After the corresponding explanation, review groups are formed. Groups will
have between five to seven participants: the owner of the artifact, the moderator
of the process, and between three to five reviewers. It is essential to have at least
three reviewers, so the feedback about the artifact is meaningful, and less than
five so the review is kept within limits (the length of the sessions increases per
participant). Phase 1 might take around one hour.

94 V. Rivera et al.

Phase 2: Preparation. Three meetings take place in Phase 2: one meeting per
role. Participants in the specific role must attend their role meeting. Although
they can attend all three meetings. Each meeting starts by explaining the specific
role. Part of this explanation was already given (Phase 1); the difference is that
the audience is more focussed. Several examples of code reviews are shown so
they get an initial idea of how they should perform theirs. At the end of the
meeting, there is a QA session. Each meeting has some specific discussions.
(1) The meeting with owners: educators should mention how feedback should
be received. Some of the students might not be comfortable receiving negative
feedback. It is important to remind them that this activity is for their benefit
and that no one is trying to do harm. Educators should also mention that owners
need to be responsive (answering to comments on a regular basis) as this affects
the effectiveness of the review. Finally, owners should be open-minded about
the comments of their peers. (2) The meeting with reviewers: educators should
mention how feedback should be given. This might be the first time for some
students to give feedback. Feedback should be descriptive and not evaluative.
The more specific, the better. If a reviewer finds a problem in the code, they
should say where exactly and how it can be reproduced. They can also suggest
how to solve the problem; take into consideration the needs of the artifact (do
not show off how much better/smarter you are); be balanced. It is important
to acknowledge owner ’s effort as well; be sensitive to owners: instead of “you
didn’t initialise this variable” you could write “I didn’t see where this variable
was initialised”. (3) The meeting with moderators: educators should mention
the relevance of moderating a session. They should also explain some of the
techniques for facilitating a session and resolving conflicts. It is also important
to tell them that a moderator should be impartial and should not impose their
judgement. Each meeting in phase 2 takes around 40 min.

Phase 3: Code Review. Steps of phase 3 are explained in detail in Sect. 3.3.

Phase 4: Reflection. Once the review meeting (Step 3 in phase 3) takes place,
there is a Reflection (Phase 4) session. The reflection session is performed to
help students organise their thoughts around the activity. All participants (in
all roles) are asked to reflect upon the review process activity. This session fol-
lows the Focused Conversational Model [20]. The model enables a conversa-
tion to flow surface to depth. It follows the Objective-Reflective-Interpretative-
Decisional (ORID) method for asking questions. This model is being practised
in various domains to examine an individual’s perception of the process they
are involved in and their corresponding affordances, primarily investigations on
design interactions [21]. In the method, the purpose of Objective questions is for
participants to think about the facts of the activity. There is no interpretation
or feeling involved at this stage. Participants should recall all steps of the activ-
ity, e.g. could anyone recall the steps of the review process? The purpose of the
Reflective questions is to evoke immediate personal reactions, emotions, feelings,
or associations, e.g. What do you feel when the owner marked a comment as

Towards Code Review Guideline in a Classroom 95

[CLOSED], but you thought it was not? The purpose of the Interpretative ques-
tions is to draw out meaning, significance, or implications about those reactions,
e.g. What new insight did you, as moderator, get from the activity? Finally, the
purpose of the Decisional questions is to bring the conversation to a close, elicit-
ing resolution and enabling participants to make a decision, e.g. What have you
learned from this activity? Phase 4 might take around 30 min.

3.3 Code Review (for Students)

This section describes the process that participants need to follow, the actual
code review process. The process contains five steps: Planning, Preparation,
Review, Rework and Follow-up (as depicted in the bottom of Fig. 1).

Step 1: Planning. The owner decides on an artifact and freezes it in the repos-
itory. The artifact cannot be modified during the review process. It needs to be
ready for comments at least five days before the actual meeting. Moderators
determine the objectives of the review session and share it with participants.
Objectives of the review in a classroom need to be aligned with the objectives
of the course. This process is highly influenced by the educator of the course.
Moderators also create a shared Google document in which owners write a short
overview of the artifact, along with some useful information for its understand-
ing. The description should not be a full description of the project, rather a
brief overview of the artifact. The Google document should also have a link to
the artifact’s repository. Moderators grant write permissions of the document to
all reviewers and to the educator of the course and distribute the link among
them1.

Step 2: Preparation. Reviewers should read the artifact and start commenting
on the Google doc based on the review scope. This is an initial interaction
between them and the owner. This activity lasts for five days, one day before
the actual review meeting is held. Reviewers are not supposed to run the code.
Their comments should be solely based on the artifact in isolation. Meanwhile,
owners reply to their comments. The purpose is to reduce the number of topics to
be discussed during the actual meeting. Some of the comments can be cosmetic;
some others need no discussion as an agreement can be found. For this, the
owner will try to clarify the comments and will tag each comment in the Google
doc with one of the following categories [CLOSED], [TO BE IMPLEMENTED], [TO
BE DISCUSSED]2.

Step 3: Review. The actual review meeting is held. Reviewers, owner and
moderator sit together for around 60 min (it could be as long as 90 min). The
1 An excerpt of the shared Google document can be found in here.
2 Examples of different tags: [CLOSED] here, [TO BE IMPLEMENTED] here and [TO BE

DISCUSSED] here.

https://github.com/varivera/CodeReview/blob/master/excerpts/GoogleDocExcerpt.png
https://github.com/varivera/CodeReview/blob/master/excerpts/closed.png
https://github.com/varivera/CodeReview/blob/master/excerpts/tobeimplemented.png
https://github.com/varivera/CodeReview/blob/master/excerpts/tobediscussed.png

96 V. Rivera et al.

meeting starts with an introduction of all participants (so everyone knows their
role), then a statement of objectives (so everyone is on the same page). Dur-
ing the meeting, owner and reviewers discuss those comments in the Google
doc that require attention, those tagged as [TO BE DISCUSSED]. The moderator
facilitates the meeting, making sure all comments are addressed, all reviewers
participate, and no one monopolises the review.

Step 4: Rework and Step 5: Follow Up. These steps of the process are
offline. In the rework step, owners should investigate the issues in the Google
document tagged as [TO BE IMPLEMENTED] and implement them, or at least
report them as issues in a tracking system. This is important not just because the
owner fully takes advantage of the code review, but also because reviewers can
see the progress on the comments they had spent time on. In the follow up step,
owners should report on the Google document the results of the code review.
Participants can access the doc to confirm that fixes have been implemented.
Moderators collect data such as the number of defects, number of participants,
number of fixes, and saved as issues, and total time spend reviewing. This is
used to improve any upcoming review process.

4 The Process at Work

This section reports on the code review process performed in a large size course
of a Computer Science program.

4.1 Course Structure

The Introduction to Programming II course at Innopolis University is a 6 ETCS
course delivered to freshmen in the second semester. This course is a continuation
from Introduction to Programming I, a course that focuses on Object-Oriented
Programming and the notion of Software Contract using the metaphor of busi-
ness contract [22,23]. Introduction to Programming II is a project-based course.
After successfully taking this course, students will master the fundamental data
structures and algorithms, modular programming, exception handling, and pro-
gramming language mechanisms, as well as the fundamental rules of producing
high-quality software. The teaching team is composed of a Principal Instructor
(PI) in charge of delivering lessons and Teaching Assistants (TA) in charge of
delivering lab sessions. Around 90% of the first-year students are between 17
and 19 years old (the rest are no older than 31), due to the specific structure of
the Russian scholastic itinerary and around 80% of the students are Russians.

The course’s project was the classical Library Management System (LMS).
LMSs are used in libraries to track the different items of the library. The system
also keeps track of people allowed to check out those items and people in charge of
the management of the library. The project was divided into four deliveries, and
students were free to use any programming language, paradigm, or framework,
the only restriction was that they had to host the source code in a subversion
repository (for monitoring purposes). The course size was 193 students.

Towards Code Review Guideline in a Classroom 97

4.2 Code Review Phases

Phase 1: Set-Up. Students were instructed on the different elements of the
review, the artifacts, the roles, the review scope, along with the tags for com-
ments and the code review process. They formed teams of five to seven partic-
ipants and were asked to assigned roles. They were advised to form different
groups for the review than the groups of the project. This phase was performed
in 1.5 h.

Phase 2: Preparation. Three different meetings were scheduled. These meetings
happened outside the lecture time. Meetings were open to all participants. Dur-
ing these meetings, the PI explained in more detail the process of the review and
each role. Examples of code reviews were shown so participants could get an idea
of the process. Each meeting lasted for about 30 min. The longest one was with
moderators as this role is less natural for students: they had not moderated a
meeting before.

Phase 3: Code Review. As the size of the course was large, the actual code
reviews were done in parallel with the help of Teaching Assistants (TA). They
were instructed to spend the first ten minutes of the session to remind students
about the activity: logistics, how the meeting was to be conducted, the dura-
tion (60 min) and a quick reminder about roles. Then, students were split among
their review teams and placed them around the classroom. The classroom should
be big enough to allow at most three different teams to discuss without affect-
ing each team. The review starts: the moderator starts facilitating. During the
review, TAs cannot influence or participate in the discussions. Although, TAs
should be alert in case there is a misconduct. In such a case, TAs can intervene
just to guide them to reach consensus rather than impose an opinion. TAs notify
students when there were ten minutes left to finalise the review. More details
about the review are shown in Sect. 4.3 below.

Phase 4: Reflection. TAs were instructed on how to conduct the reflection ses-
sion. After the review meeting was over, TAs gathered all students and reminded
owners to take care of the Follow-up part of the exercise. As well as to update
the document once they take care of issues. The reflection session is for students
to think and reflect upon the activity that they were exposed. TAs conduct this
activity using the ORID method. TAs were also instructed to make students
participate in the activity, e.g., by asking direct questions. This activity lasted
for 30 min.

4.3 Code Review Steps

Step 1: Planning. Owners were instructed to freeze the artifacts and to produce a
description of them. Moderators were instructed to determine a set of objectives
for the review. The PI influenced this process as the objectives should be aligned
with those of the course. The objectives of the review were set to answer the

98 V. Rivera et al.

following questions: (i) Does the artifact make use of the appropriated data
structures? Is the code scalable?; (ii) What is the level of quality of the artifact
presented? Is the owner using Design by Contract mechanisms? are unexpected
behaviours being handled (Exceptions)?; (iii) Does the artifact follow a defined
architecture?; and (iv) Is the artifact maintainable?

Moderators were also instructed to create a Google document and share it
(with write permissions) to all reviewers and the PI (for monitoring). The doc-
ument contained owner ’s description of the artifact and the link to the artifact.

Step 2: Preparation. During five days, reviewers reviewed the artifact and made
comments on the Google document. Owners continuously answered those com-
ments adding the respective tag. During this time, moderators made sure that
the process was in place and that all participants were working on it. As the
PI has permission to the shared documents, the PI continuously monitored the
progress of this step. PI should intervene in this process only if no one is working
or to give feedback on how to write comments (to reduce ambiguity).

Step 3: Review. The actual meeting happened. As explained before, this was
a large size course, so the reviews were monitored by the PI and TAs. They
were supposed to intervene only in case something went out of control. Nothing
damaging happened during the sessions. Some groups had more discussions than
others, but overall respect governed the process. All shared documents are avail-
able in [24] (Code Reviews folder). Names were changed to protect the identity
of students, and links to their code were removed. The reader can used these
review documents to show students before performing a code review session in
their courses.

Step 4 and 5: Rework and Follow Up. Moderators were instructed to monitor the
progress of the work after the review meeting. They had to check whether owners
were updating the shared document. If owners did not update the document,
moderators could send a reminder to them. The PI checked all shared documents
at the end of the course, and all comments were tagged as [CLOSED]; some
of those comments were reported as tickets to be taken care of in the future.
Moderators also collected data about the activity.

4.4 Data/Observations

There were a total of 129 students who participated in the activity. There were 22
groups for code review: 19 groups had 4 reviewers and the rest had 3 reviewers.
The artifacts contained, on average, 200 Lines of Code. After the review process,
moderators reported that owners found a total of 122 bugs off-line (before the
review meeting) and 19 bugs during the review. There were a total of 656 interac-
tions on the Google documents between owners and reviewers. All Google docs
can be accessed in [24] (Code Reviews folder). Table 1 shows the different cate-
gories on the Google docs and the number of comments per tag. The bottom row
and rightmost column show the totals. Around 41% of the comments were tagged

Towards Code Review Guideline in a Classroom 99

as [CLOSED]: owners explained the issues offline and decided to take no action;
around 52% of the comments were tagged as [TO BE IMPLEMENTED]: owners
decided to implement reviewers’ comments after the review process is finished;
and only 21 comments (around 7%) [TO BE DISCUSSED]. The review meeting
focuses only on these comments, so the meeting is very concrete, making it more
effective. We have found out that there are fewer comments about the high-level
aspect of the artifact (categories (1) to (3)) than about the implementation-
oriented aspects (categories (4) to (7)). The reason is that it is more difficult to
focus on high-level aspects by looking only at a piece of code. Around 30% of
the comments were about the high-level aspect of the artifact and 70% about
the implementation-oriented aspects.

Table 1. Code review categories and number of comments per tag.

Category CLOSED TO BE IMPLEMENTED TO BE DISCUSSED

(1) Design Decisions 19 20 5 44

(2) API Design 10 7 2 19

(3) Architecture 10 12 3 25

(4) Impl. Techniques 24 27 2 53

(5) Exception Handling 16 23 3 42

(6) Programming Style 22 47 3 72

(7) Comments and Doc. 21 22 3 46

122 158 21

Table 1 also shows that the most common comments were on Programming
Style. This was expected as reviewers only have access to the artifact and could
not run the code. Most of the comments, around 65%, are to be implemented.
This is followed by comments on Implementation techniques and Comments
and Documentation. The behaviour was expected and went in the direction of
the code review practices at Google [7]. Categories with the least comments were
API Design and Architecture. It is challenging to comment on these two cat-
egories having only the artifact. Typically, artifacts are not large so reviewers
cannot see the big picture. Although, in these two categories, around 42% of
the comments were tagged to be implemented. Meaning, even though these cat-
egories are difficult to comment on, those few comments were necessary.

After the code review activity, reviewers were asked to fill up a questionnaire
about the reviewed code. 98 of the reviewers participated in the survey. The
survey contained four Likert questions (linear scale from 1 to 5 – from Strongly
Disagree to Strongly Agree): (1) Is the reviewed code modular? (2) Does the
reviewed code implement a proper logging mechanism? (3) Is the reviewed code
understandable? (4) Does the reviewed code handle exceptions?

Figure 2 shows the results of the questionnaire (full responses can be accessed
from [24], in QuestionnaireResponses folder). This questionnaire and the results

100 V. Rivera et al.

for the code review (Table 1) can be used to check how students are perform-
ing in the course. Around 45% of the comments for Design Decisions, API
Design and Architecture are tagged as [CLOSED], as shown in Table 1, and
from Fig. 2(a), 61% agree that the reviewed code is modular. These two readings
suggest that in general, one of the objectives of the course was achieved, Modular
Programming. On the other hand, we can observe from Table 1 that around 55%
of the comments for Exception handling are tagged as [TO BE IMPLEMENTED],
and from Fig. 2(d), 35% disagree that the reviewed code properly handle excep-
tions. These two readings suggest that more work needs to be done to achieve one
of the objectives of the course, Exception Handling, impacting another objec-
tive on High-quality Software. Figure 2(b) did not let us make clear conclusions
regarding the coverage of logging mechanisms in the course. The even “agree”
vs. “disagree” distribution of the responses (41% vs. 40%) suggests two possible
explanations: students either have no clear knowledge of how a proper logging
mechanism looks like, or they have such knowledge but do not apply it. To cover
both of the possibilities, we will need to simultaneously increase the amount of
theory in the lectures and introduce more practical exercises to the lab sessions.

Fig. 2. Postmortem questionnaire’s results on the code review activity.

5 Lessons Learnt and Discussion

We report on the lessons learnt after implementing the code review in a class-
room mentioned in previous sections. These lessons are supported by feedback
provided by students via a questionnaire (that can be found in [24]). Lessons
cover aspects related to the technicalities of the code review process, and some
suggestions are in regards to improving the work atmosphere to avoid unneces-
sary difficulties and achieve productive outcomes.

Discipline. Students need explicit guidelines to maintain the positivism of the
work environment. Some of the participants (being young) did not know how
to take the suggestions as feedback and not as criticisms. They emphasise that
developers must try to accommodate reviewers’ comments as much as possible.
Therefore, the argument of respect was brought onto the surface as students
stated that respect among team members should be maintained at all times.

Towards Code Review Guideline in a Classroom 101

Reference Material. Students need elaborated reference material. The refer-
ence material must include a code review document. The instructions regarding
the activity must be precise and supported with examples.

Reviewers’ Related Guidelines. The number of reviewers should be between
three to five. Less than three reviewers might end up in useless or contradicting
comments, e.g., one reviewer says A, and the other says no A. More than five
reviewers will make the review session (the actual meeting) too long, affecting the
outcome of the process negatively; reviewers must have clarity that their task is
to identify problems and provide suggestions for improvement, not solving it for
the developers; quantifiable goals should be set prior the activity, and the number
of lines of code should be between 200 and 300. Some students reported that
200 LOC is not enough; however, having more LOC will make the review session
(the actual meeting) too long, affecting the outcome of the process negatively.

Motivation to Work. To maintain a certain level of motivation (among all
participants) during the code review process, the provision of review statistics
can be useful. At the end of each review session, the moderator can check and
report whether all issues were resolved, i.e. are all “TO BE IMPLEMENTED”
tags addressed? They could also report on the achieved goals of the activity.
Students recommended instructors’ involvement to address the issues that are
beyond the control of the teams such as, participants not responding on time.

Feedback Structure. It is essential to emphasise the need to have balanced
feedback. It is not just about pointing out mistakes in the code, but also acknowl-
edging those good and smart implementations (e.g. from the activity in Sect. 4:
“Smart choice to use implemented DS in MySQL database for data queries”).

Clarity upon Grading Schema of the Code Review. The code review
activity should be part of the course grading schema, clear to students and fairly
distribute (the risk of unfair grades’ distribution, if not managed, may harm the
students’ motivation). This will not just play well in students’ motivation, but
also the code review could be used to determine any correlation between the
number of bugs found in a student’s code and their final grades.

Code reviews should not be placed close to major milestones of the course,
for instance, close to a project delivery or final exam. Some students reported
(quoted): “It would be better to do this activity in the time when we don’t have
to prepare for our finals so that we could dedicate more time on this activity.”
and “Don’t organize it at the end of the semester before finals”.

Activity Technicalities. Educators should give feedback on the spectrum of
goals to ensure that they are doable in the available time frame. Educators
should also read and give feedback on students’ comments to reduce ambiguity.

102 V. Rivera et al.

Discussion. We now summarise the results of the code review activity against
the questions stated in Sect. 1. The summary relies on the following key sources
of information: students’ evaluations of each other’s code (Fig. 2); students’
responses to a postmortem reflection questionnaire that we handed out to them
after the code review activity. We received 78 responses in total, which is slightly
more than half of the students (all responses can be found in [24]); and our gained
experience.

Q1: What are the benefits and pitfalls for a course performing code reviews?

Aligning both the code review and course goals can be used to boost the
quality of teaching: the activity can be used to: (i) assess students. Code review
activities can be part of the grading criteria of the course. Scores can be cal-
culated by the engagement of the student during the activity, e.g. the number
of comments reported, the number of answers given. Or it could be used in
a student peer assessment, in which students assess the work of their peers
against set assessment criteria (defined by the educator). When students act as
the assessor, they gain an opportunity to better understand assessment criteria
potentially increasing their motivation and engagement [25]; (ii) keep track of
the course objectives development. Code reviews can be used as a formative
assessment if done repeatedly during the course. Educators can track the course
objectives and act according to the findings, improving the learning outcomes of
the course. For instance, the code review session described previously helped us
spot well-developed and underdeveloped topics of the course. The course

– does not cover exception handling well enough (Fig. 2(d)),
– does cover modular programming in depth (Fig. 2(a)),
– trains students to write understandable code (Fig. 2(c));

track students’ learning. Students need to constantly commit their development
to a repository. Educators can check their progress and take action if needed.
Educators can also check the comments of the code review session. The latter
will help educators track the learning process of the group involved rather than
individuals.

Code review is an active learning activity. It involves students in the learning
process by doing things (phase (3) in Fig. 1) and making them think about what
they are doing (phase (4) in Fig. 1). Students use their own efforts to construct
their knowledge, guided by educators. This makes code review an effective tool
in making classrooms more inclusive, students more engaged, improving their
critical thinking, in general, increasing students’ performance in the course [26].

Code reviews can fall into different pitfalls that require an immediate action
from educators. Code review is a multistep process that requires considerable
time and effort during both the preparation and execution phases. Overlooking
possible problems during these phases will result in cascading problems during
the execution phase. The likelihood increases with large size courses. An example
of possible problems is not having moderators well prepared. This will affect the
outcome of the activity as students will not be well guided.

Towards Code Review Guideline in a Classroom 103

Motivating students is a key factor in the code review process. Failing to do
so might reflect on students’ final grade of the course. Students should have a
clear understanding of the activity and educators need to make them engage in
every step.

Q2: What are the benefits and pitfalls for students participating in code reviews?

Code reviews help students developing both hard and soft skills. Students
reported that the activity helped them learn to read and understand other peo-
ple’s code; take an external look at their code and thus improve it; practise
organising their thoughts clearly; practise working under tight deadlines; and
how not to write code. They have understood that writing code is for the bene-
fit of humans reading the code (machines do not read source code but low-level
code). Some of the soft skills exercised were collaborative and teamwork, give
and receive appropriate feedback (how to deal with criticism), and how to resolve
conflicts. Code reviews also prepare students to an industrial environment that
widely uses reviews as part of their software development process.

Some students do not know how to deal with criticism, though, influencing
negatively their motivation. Industrial practitioners of code reviews understand
the benefits of the activity from a tremendous experience. But, first-year bach-
elor students practising it for the first time instinctively take the outcome as
a personal criticism. Educators need to be vigilant to this situation and take
immediate action to mitigate the problem, not just because it may reflect on the
outcome of the activity, but also because it may affect students’ personal success.
Some responses to the postmortem questionnaire support this conclusion. As a
possible remedy, the participation of higher-grade students, TAs or educators
can be used to make their verdicts in possible conflicts.

Owners of the code may fall prey to the reviewers’ low discipline. Motivation
plays a key role once again. A motivated reviewer might give a substantial feed-
back to the owner, unlike a unmotivated one. One of the answers we received
on this regards reads: “It would be much better if reviewers have not started two
hours before the deadline”.

There is a risk of one student damaging the grade of another one during
the code review activity. Especially, if student peer assessment is exercised. This
should be carefully managed as it may impact both students’ final grades and
motivation.

6 Conclusions

Code reviews are widely used in industry. However, freshly graduated students
are not prepared to undertake them. This paper describes a process to perform
code reviews in an academic environment that seeks, inter alia, prepare students
for the future. The process defines two sub-processes to be carried out: one by
the educator of the course and the other one by students. The process for educa-
tors is composed of four phases, namely Set-up, Preparation, Code Review and
Reflection. We found out that the Reflection phase is of paramount importance

104 V. Rivera et al.

in an academic environment as great part of students’ learning about the pro-
cess happens here. The process for students is composed of five steps, namely
Planning, Preparation, Review, Rework and Follow-up. While these steps are
not closely followed in industry, e.g. reviews in industry do not take 5 days, the
steps help students to grasp the main idea behind Code Review. We applied the
process to a first year, large size course in Computer Science. We also presented
the findings of the activity and described the lessons learnt after the activity.
This paper can be used as a guide to implement code reviews in a classroom
(examples of code reviews and material can be found in [24]).

We plan to repeat the activity in a similar scenario (we invite educators
reading this paper to do so as well). We plan to apply the process several times
throughout the semester. In each iteration, we will gradually reduce the time of
the Code Review activity. Thus, students will eventually exercise a more realistic
situation. Performing the activity several times in a semester gives us also the
opportunity to let students experience different roles.

References

1. Potvin, R., Levenberg, J.: Why Google stores billions of lines of code in a single
repository. Commun. ACM 59(7), 78–87 (2016). https://doi.org/10.1145/2854146

2. Rigby, P.C., Bird, C.: Convergent contemporary software peer review practices. In:
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2013, pp. 202–212. ACM, New York (2013). https://doi.org/10.
1145/2491411.2491444

3. Saeed, S., Zyngier, D.: How motivation influences student engagement: a qualitative
case study. J. Educ. Learn. 1(2), 252–267 (2012)

4. Fagan, M.E.: Design and code inspections to reduce errors in pro-
gram development. IBM Syst. J. 15(3), 182–211 (1976). http://domino.
research.ibm.com/tchjr/journalindex.nsf/495f80c9d0f539778525681e00724804/
91d9f4f02fea9d9085256bfa00685ad3?OpenDocument

5. Bird, C., Bacchelli, A.: Expectations, outcomes, and challenges of modern code
review. In: Proceedings of the International Conference on Software Engineer-
ing. IEEE, May 2013. https://www.microsoft.com/en-us/research/publication/
expectations-outcomes-and-challenges-of-modern-code-review/

6. Kemerer, C.F., Paulk, M.C.: The impact of design and code reviews on software
quality: an empirical study based on PSP data. IEEE Trans. Softw. Eng. 35(4),
534–550 (2009)

7. Sadowski, C., Söderberg, E., Church, L., Sipko, M., Bacchelli, A.: Modern code
review: a case study at Google. In: International Conference on Software Engi-
neering, Software Engineering in Practice Track (2018)

8. Johnson, P.M.: Reengineering inspection. Commun. ACM 41(2), 49–52 (1998).
https://doi.org/10.1145/269012.269020

9. Github Inc.: Write better code (2020). https://github.com/features/code-review/.
Accessed June 2020

10. Czerwonka, J., Greiler, M., Bird, C., Panjer, L., Coatta, T.: CodeFlow: improving
the code review process at Microsoft. Queue 16(5), 81–100 (2018). https://doi.
org/10.1145/3291276.3292420

https://doi.org/10.1145/2854146
https://doi.org/10.1145/2491411.2491444
https://doi.org/10.1145/2491411.2491444
http://domino.research.ibm.com/tchjr/journalindex.nsf/495f80c9d0f539778525681e00724804/91d9f4f02fea9d9085256bfa00685ad3?OpenDocument
http://domino.research.ibm.com/tchjr/journalindex.nsf/495f80c9d0f539778525681e00724804/91d9f4f02fea9d9085256bfa00685ad3?OpenDocument
http://domino.research.ibm.com/tchjr/journalindex.nsf/495f80c9d0f539778525681e00724804/91d9f4f02fea9d9085256bfa00685ad3?OpenDocument
https://www.microsoft.com/en-us/research/publication/expectations-outcomes-and-challenges-of-modern-code-review/
https://www.microsoft.com/en-us/research/publication/expectations-outcomes-and-challenges-of-modern-code-review/
https://doi.org/10.1145/269012.269020
https://github.com/features/code-review/
https://doi.org/10.1145/3291276.3292420
https://doi.org/10.1145/3291276.3292420

Towards Code Review Guideline in a Classroom 105

11. Gerrit: Gerrit Code Review, June 2020. https://www.gerritcodereview.com/.
Accessed Apr 2020

12. Rawat, S.: Getting Started with Review Board. Packt Publishing (2014)
13. Phacility Inc.: Discuss. Plan. Code. Review. Test. (2020). https://www.phacility.

com/phabricator/. Accessed Apr 2020
14. Tatarchenko, E.: Analysis of performing code review in the classroom. Master’s

thesis (2012). http://up.csail.mit.edu/other-pubs/elena-thesis.pdf
15. Kubincová, Z., Csicsolová, I.: Code review in high school programming. In: 2018

17th International Conference on Information Technology Based Higher Education
and Training (ITHET), pp. 1–4 (2018)

16. Wind, D.K.: Teaching code review to university students, August 2017. https://
towardsdatascience.com/teaching-code-review-in-university-courses-using-peer-
feedback-5625fe039f2a. Accessed May 2020

17. Hundhausen, C.D., Agrawal, A., Agarwal, P.: Talking about code: integrating ped-
agogical code reviews into early computing courses. ACM Trans. Comput. Educ.
13(3), 1–28 (2013). https://doi.org/10.1145/2499947.2499951

18. Cohen, J.: White paper: 11 proven practices for more effective, efficient peer
code review. IBM, Technical report, January 2011. https://www.ibm.com/
developerworks/rational/library/11-proven-practices-for-peer-review/index.html

19. Meyer, B.: Design and code reviews in the age of the internet. Commun. ACM
51(9), 66–71 (2008). https://doi.org/10.1145/1378727.1378744

20. Stanfield, B.: The Art of Focused Conversation: 100 Ways to Access Group Wisdom
in the Workplace. New Society Publishers, Gabriola Island, B.C (2000)

21. Aslam, H., Brown, J.A.: Affordance theory in game design: a guide toward under-
standing players. Synth. Lect. Games Comput. Intell. 4(1), 1–111 (2020)

22. de Carvalho, D., et al.: Teaching programming and design-by-contract. In: Auer,
M.E., Tsiatsos, T. (eds.) ICL 2018. AISC, vol. 916, pp. 68–76. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-11932-4 7

23. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall Inc.,
Upper Saddle River (1997)

24. Rivera, V.: Code Review in the classroom, Data (2020). https://github.com/
varivera/CodeReview. Accessed Apr 2020

25. Ng, V., Fai, C.M.: Engaging student learning through peer assessments. In:
Proceedings of International Conference on E-Education, E-Business and E-
Technology, ser. ICEBT 2017, pp. 30–35. ACM, New York (2017). https://doi.
org/10.1145/3141151.3141165

26. Freeman, S., et al.: Active learning increases student performance in science, engi-
neering, and mathematics. Proc. Natl. Acad. Sci. 111(23), 8410–8415 (2014).
https://www.pnas.org/content/111/23/8410

https://www.gerritcodereview.com/
https://www.phacility.com/phabricator/
https://www.phacility.com/phabricator/
http://up.csail.mit.edu/other-pubs/elena-thesis.pdf
https://towardsdatascience.com/teaching-code-review-in-university-courses-using-peer-feedback-5625fe039f2a
https://towardsdatascience.com/teaching-code-review-in-university-courses-using-peer-feedback-5625fe039f2a
https://towardsdatascience.com/teaching-code-review-in-university-courses-using-peer-feedback-5625fe039f2a
https://doi.org/10.1145/2499947.2499951
https://www.ibm.com/developerworks/rational/library/11-proven-practices-for-peer-review/index.html
https://www.ibm.com/developerworks/rational/library/11-proven-practices-for-peer-review/index.html
https://doi.org/10.1145/1378727.1378744
https://doi.org/10.1007/978-3-030-11932-4_7
https://github.com/varivera/CodeReview
https://github.com/varivera/CodeReview
https://doi.org/10.1145/3141151.3141165
https://doi.org/10.1145/3141151.3141165
https://www.pnas.org/content/111/23/8410

IT Education in St. Petersburg State
University

Terekhov Andrey(B) and Mariia Platonova

Department of Software Engineering, St. Petersburg State University,
Saint-Petersburg, Russian Federation

a.terekhov@spbu.ru, platonova.maria@outlook.com

Abstract. For many years, the world IT industry seems to have insa-
tiable needs for qualified IT specialists. Russian higher education pro-
duces a large number of IT graduates each year, and the global market
values them highly, recruiting both remotely and onsite.

In this article we explore three success factors of the Russian IT edu-
cation: thorough grounding in fundamental mathematics, adherence to
international educational standards and close connections with IT indus-
try.

Since the early 1990s, Saint Petersburg State University (SPbU) accu-
mulated an immense experience in collaboration with IT companies on
education. Moreover, SPbU has developed a set of tools for IT education
purposes, providing significantly better control of student user errors,
both static and dynamic. This helps controlling the quality and progress
of students in the real-life tasks of IT, alongside with their academic
progress.

In this article we compare the efficiency of preparing new IT special-
ists via joint educational programs of universities with IT companies,
with the alternative of the traditional recruitment followed by additional
training in the workplace.

Keywords: Education · IT industry · Algorithmic languages ·
Educational tools

1 Introduction

IT industry success and growth as a whole depends largely on a few basic prin-
ciples. Perhaps one of the most important of them is education. Educating qual-
ified specialists in the IT industry is an ongoing issue, and Russia is no excep-
tion, because the market is large – the software exports market from Russia
is approaching 8 billion dollars annually and also the domestic market grows
rapidly, although not as fast as we would like.

Unlike oil and gas, software is a renewable resource. The main condition for
increasing software export is the rapid growth of qualified IT resources of var-
ious profiles – such as software architects, developers, QA, graphic designers,

c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 106–114, 2020.
https://doi.org/10.1007/978-3-030-57663-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_8

IT Education in St. Petersburg State University 107

marketers and HR. IT specialists are typically well-paid, they pay taxes and
expand the middle class - a welcome growth in any country. Russian Federation
appreciates the importance of its IT industry as a driving force of economic devel-
opment, and therefore grants budget to the IT industry, for example increasing
the quotas of budget-funded education in IT in Russian universities.

State sponsorship helps fast growth of IT education in Russia: increasingly
the universities open new directions and expand the existing teaching programs,
regularly hosting large conferences on IT education. Student software develop-
ment teams prepared in several Russian universities took ACM ICPC compe-
tition world championship 13 times since 2000, coming second and third even
more times. It is remarkable that the award-winning teams often come from
smaller Russian cities. Most of the students participants in ACM ICPC champi-
ons later continue to outstanding career as high-profile developers. For example
a member of the first Russian champion team (2000 and 2001) Nikolay Durov
became the key author of the most popular Russian social network – Vkontakte,
and after that the Telegram messenger. However, champions are and will remain
exceptions. The task is to teach hundreds and hundreds of students well, so that
a few of them reach star status, while all graduates make very good candidates
to be hired by any IT company.

In the global division of software labour, Russia historically took the niche
of producing software that requires deep mathematical proficiency. It is appro-
priate to note that Google, Kaspersky and a number of world brands in complex
software have graduates of Russian education system in the background. Also
many large Western companies continue with their R&D centers in Russia (e.g.
Dell, EMC, T-Systems, Nokia).

These successes are partially rooted in the historical merging of Russian soft-
ware industry with Russian universities. Teaching software engineering requires
material and licensing that have not been readily available via the education
budgets, so joining forces with the existing SW companies was a natural choice
for many.

The challenges are still great. Russian labour market needs many more fresh
graduates in IT and SW disciplines than the institutions are preparing now. It
is also necessary to increase their education achievements and keep programs
up to date in the fast changing world of IT technologies. Last but not least the
competition in the international software market is growing: India and China
are large players, and more countries such as Mexico, Philippines, Israel, Eastern
Europe are active and growing, too.

2 IT Education Standards

In 2005 the largest professional international associations ACM and IEEE issued
a common standard for computing [1], which includes 5 disciplines: computer sci-
ence, information systems, software engineering, computer engineering, informa-
tion technology. These education standards for Computer Science and Software
Engineering were immediately translated into Russian, and Russian education

108 T. Andrey and M. Platonova

standards adapted to them (the authors have participated in this process at
the time). After that many Russian universities have tailored their education
programs to these standards.

The standards contain not only the specifications of programs and standards
to achieve, but open the subject on a deeper philosophical level, with numer-
ous essays, for example, on what is common between software and traditional
engineering and how they differ, what role the mathematics plays, and so on.

It was not an easy task to combine the international educational standards
with Russian ones: on the one hand, many of the disciplines that were mentioned
in the standards have never earlier been taught either in the USSR or in Russia,
for example, the economics of the IT industry, the organization of teamwork,
and the sociological aspects of the profession. We had to create and run these
courses to adhere to international standards and serve the emerging Russian SW
industry.

On the other hand, we have traditionally taught much higher content of
math subjects to the future SW engineers. For example, the first year students
of the Faculty of Mathematics and Mechanics of SPbU take 8 h per week of
calculus, 6 h per week of algebra and 4 h per week of geometry, which is roughly
double the content of comparable international programs. This is all based on
the strong foundation of the Saint Petersburg school of mathematics, which has
been developing for 300 years since the great mathematician Leonard Euler,
who lived in Saint Petersburg for many years and was buried here. Over the
past 30 years, the level of IT education at the Faculty of Mathematics and
Mechanics has been significantly improving by structural, organizational and
personnel decisions under the guidance of the long-standing dean (until 2018),
mathematician Gennadiy Leonov. He is one of the most cited mathematician in
the world (more than 14000 citation).

Several branches of mathematics have direct relation to information tech-
nology – studies in continuity, discreteness and finiteness. Some other branches,
such as mathematical statistics, have applied value for programming, for exam-
ple the Big Data processing. Still other mathematical methods of theoretical and
applied cybernetics guide the construction of effective algorithms and study of
operations.

The immersive study of the more abstract fundamental branches of math-
ematics, such as algebra, functional analysis or topology, has intrinsic value
for the students. They form practical skills of working with complex formal
constructions. The ability to efficiently work with complex concepts at a high
level of abstraction distinguishes specialists and architects who have received
a fundamental mathematical education from their more “practically oriented”
colleagues.

To conclude, the development and implementation of algorithms for solving
the problems formulated as mathematical models is one of the main goals of SW
engineering training in SPbU. A mighty scion of deep mathematical education
in SW sciences was for example Svyatoslav Lavrov, who was the head of the
Department of Computer Software of the Faculty of Mathematics and Mechanics

IT Education in St. Petersburg State University 109

of SPbU. He influenced deeply the teaching of mathematical disciplines in SW
engineering training programs. Svyatoslav Lavrov is not as well-known abroad
as his achievement warrants (for the reasons of the USSR isolation from the rest
of the world), but his contribution as the head of external ballistic laboratory in
Korolev Institute, responsible for Sputnik 1 and Gagarin’s trajectories and the
first USSR Algol 60 compiler (1964), is highly recognized in Russia.

3 IT Companies’ Support of Education

Over the past 15 years, it has been known the understanding of the fundamental
problems associated with the training of specialists in the field of the modern
IT industry, that there is a fundamental gap between the profile of academic
education of university graduates and the profile of the needs of IT companies
[2,3]. Two main factors are distinguished of the existence of such a gap.

Firstly, the high dynamics of changes of the IT industry. Every year, new
technologies, tools, software and hardware platforms appear, and this process
conducts to a rapid change of the industrial environment in which graduates of
IT specialties have to work after graduation. It is practically impossible to keep
up with all the latest changes in products and technologies within the framework
of the academic environment and the traditional educational process, and as a
result, students have in fact to retrain when they come to work, and companies
have to spend additional funds on training and specialization of students.

Secondly, the difference between “the rules of the game” that taken by IT
companies and the stereotypes that students encounter during their studies at
the university. Usually educational tasks are clearly defined self-sufficient tasks,
the main criterion for them is to obtain the correct result. In production projects,
on the contrary, often the tasks are not clearly defined, they require communi-
cation with other project participants to clarify the details, and the conditions
may change during the work on the task. The measure for the task is not only
getting the right result, but also how this result was achieved, including the
quality and style of the code, complying with the various agreements took in the
project, documenting the solution, etc. Moreover, for successful work in the IT
industry, a graduate is required, in addition to the actual education, to possess
a number of soft skills, such as business communication skills, teamwork, the
ability to present the results of their work, etc. It is very difficult to train these
skills for a student in the framework of the academic process - to acquire them,
immersion in a real production environment is required.

The ways to solve the problem lie up in formation relations between the uni-
versity departments preparing IT specialists and large IT companies working in
the Russian and world markets. It is possible to organize the process of immers-
ing students in an industrial environment close to reality, while remaining within
the framework of the university educational process.

The specific forms of organizing such cooperation can be different - both
the traditional mechanism for organizing university departments and joint lab-
oratories, and the organization of joint education courses and intensive student

110 T. Andrey and M. Platonova

practices with IT companies, conducted with the active participation of devel-
opers, managers and other specialists.

The Software Engineering Curricula 2004 standard is quite complete and
constructive, it pays a lot of attention to production practice, work on projects,
and the importance and advantages of teamwork on a graduation project are also
emphasized. However it is almost impossible to teach in the classroom weekly
reporting, software configuration management, QA, teamwork, etc., so the fol-
lowing system of additional production education in student projects was cre-
ated.

Different IT companies have adopted different methods of planning and orga-
nizing a team of developers, as well as different programming technologies. As a
result, even the most successful university graduates have to spend 1 to 3 months
after starting work in a company for additional education before they become
useful in the workplace. Moreover, they will require existing staff’s valuable time
for answering questions and advice.

Therefore, more than 15 years ago, we began to implement a different app-
roach. We invite local IT companies to select at least two tutors among their
employees for managing student projects (since one tutor may fall sick or go on a
business trip). The subject of the project should be interesting to the company,
but at the same time, it should be scientifically intensive to be accepted as a topic
of course work or diploma. University strictly cuts off attempts to use students
as a free workforce, but almost every IT company has an interest in assaying
new technologies, some research that seems not worth to spend time and money,
and a student project allows them to assay new ideas and technologies at the
lowest cost.

In addition, there is another issue - retention. It is no secret that IT industry
has very high staff turnover percentage. A few years ago, A. Terekhov took
part in a large project to study staff turnover and retention in large Russian
(Lanit-Tercom) and Finnish (Nokia) companies. It turned out that employees
who came to the company by HR worked in the company for 2–3 years, and
those who came through student projects - 6–7 years. If we recall that the “from
the street” employees need about 1–3 month to become a part of the team, we
can compare this with those, who took part at a student project while were
educating at the university, are ready to work immediately, so the economic
benefit becomes even more obvious [4].

When we started student projects organization process, we heard objections
from different sides: industry members said that they did not want to pay money
(salaries to tutors) for educating, they said that this is the task of the country
or the student himself, and in addition, the university does not want to allow
people without appropriate education to teach students for.

It is easier to answer the second objection: our graduates are often working
as tutors from IT companies. They know all our orders and traditions, more-
over, students usually trust them more due to the connection of the university
generations.

IT Education in St. Petersburg State University 111

The first objection usually sounds like this: “We will invest the money and
the efforts of our tutors, but students may decide to work for other companies.”
Firstly, according to Russian laws, anyone can apply for dismissal and be fired in
two weeks. Secondly, many years of statistics show that if a student was educated
in a student project at IT company, he knows its subjects, working conditions,
salary, he is familiar with the team, it is highly probably that he will come there
to work after graduation and will remain there for many years.

The most important argument in favor of our education is the quality of the
resulting specialists. Classical university education with additional professional
education gives our graduates enormous advantages in the labor market. We can
clearly see this on the example of our employees.

Nowadays in St. Petersburg, as in many other cities of Russia, many IT
companies have taken up this practice, and each company chooses a university
which is close to it subjects.

4 Programming Learning Tools

One of the most important parts of IT education for student are quality pro-
gramming tools. On the one hand, the main goal of professional programmers
is the efficiency of their programs, but on the other hand, beginners especially
need clearness of the error messages, strict reference to the error place and the
maximum possibility of controlling of the dynamic errors. Moreover, professional
programmers know how to localize the error place, how a compiler can respond
to an error situation and how to respond to warnings. For beginners, the tasks of
working with errors are highly difficult, therefore, the implementation of special
tools for teaching programming is necessary.

In the field of creating critical software and hardware systems a paradoxi-
cal situation arises: firstly, programmers write programs in languages that do
not provide sufficient control for user errors, then they or specially educated
specialists work hard to find and fix these errors. Many years ago scientists
and industry experts understood this problem and invented programming lan-
guages and systems aimed at creating programs with the control of errors both
while compilation time and runtime. For example, we can mention the languages
Oberon by Niklaus Wirth [5] and Eifel by Bertrand Meyer [6], however, like
many other languages created for the same purpose, these have not become
widespread. Unfortunately, this often happens in programming, and the reasons
must be sought in the fields of engineering psychology and economics. The most
famous not accepted by the society programming language is Algol 68 - the first
high-level language in the world with a well-defined syntax and semantic, which
remains problematic for many present-day languages. Many features that firstly
appeared in Algol 68, for example, full control of the compilation time, consec-
utive sentences and conditional expressions, operators with assignment of type
+:=, recursive types, etc, were then successfully applied in Pascal, C, Ada and
other languages that appeared later.

We decided to choose another way for our project to develop. We did not
invent a new language, but took C, changing it in order to increase protection

112 T. Andrey and M. Platonova

against user errors, and carried out our own implementation, not only of the
compiler, but also of a full-fledged IDE. This project is called RuC.

Initially, the project arose from the needs of school teachers of robotics circles.
For a long time they have been using our graphics technology - TRIK-studio, it
is especially well suited for primary and secondary school students, but at the
same time it is desired for students’ ability to read the programs that are auto-
matically generated from graphic diagrams. Nowadays in many countries the
approach of programming which is based on graphical models with automatic
code generation in the target language is very popular. Traditionally, the C lan-
guage is used [7], but we must not forget that primary and secondary school
students practically do not know English, so it’s hard to learn programming lan-
guage like this. Therefore, the idea arose to develop a C compiler into the codes
of a virtual machine that we invented with additional Russian messages, key-
words and identifiers, and an interpreter for this machine. The virtual machine
provides easy portability to any platform. Although it works a little bit slower
due to codes decrypting, good architecture makes this problem insignificant.

Both the compiler and the language interpreter are implemented in C stan-
dard, so they can easily be ported to all platforms, in particular, the interpreter
is transferred to the TRIK robot designer [8], which is developed by employ-
ees and students of the Departments of Software Engineering and Theoretical
Cybernetics of St. Petersburg State University.

Gradually, the scope of the RuC project was expanded: firstly, it turned out
that using the example of this project can help to conduct compiler techniques
classes with students. Then the military and other customers became interested
in this project, for whom the reliability of the created software systems is impor-
tant, that was supported by the renouncement of address arithmetic, obligatory
control of indices in arrays and detailed information of user errors.

In fact, the introduction of restrictions on the input of a language during
the implementation of the compiler is a bad matter, it is the evidence of the
authors’ low qualifications, so we looked with some thrill at the options for C
language restrictions in order to increase the protection users from their own
errors. However, it turned out that we are far from being the first ones on this
path. Many authors tried to “improve” C, for example, languages D [9], Cyclone
[10]. Compared to our aims, these languages and programming systems have
a different goal - to prevent the penetration of malware into programs written
in C. We pursue a much more modest task - to prevent the programmer from
making many typical mistakes and to facilitate the localization and correction
of those mistakes that he still managed to make.

It is interesting that these two goals do not conflict with each other, since gen-
erally malware penetrates the applications through the places where the authors
relied on the compiler with no reason, and so did not find the error on time.
However, these mistakes, even without malware, can result in many troubles!

Let us consider in detail the differences between RuC and the classical C.

1. We abandoned “union” in structures. Firstly, this is a rarely used C language
feature. Secondly, the level of security is decreasing with this feature usage.

IT Education in St. Petersburg State University 113

2. RuC does not contain pointer arithmetic. User can describe pointer variable,
create a pointer using the & operation, assign a pointer to a variable of a
suitable type, but at the same time user cannot, for example, add a constant to
the pointer and write or read anything for the received address. All operations
of dynamic memory allocation have as an operand the type of value for which
memory is allocated. Thus, any pointer knows the type of value to which it
refers.

3. The dereferencing of a pointer at the moment when its NULL is one of the
most frequent and difficult errors, on the other hand, inserting a check for
NULL with each call to the pointer sharply affects the efficiency of the code. A
few years ago it was thought up how to get around this difficulty. In addition to
the usual pointer type (for example, int *), another pointer type (for example,
int @) is introduced. The second type is called Never Null Pointer, that is, a
pointer that never takes a NULL value. Variables of this type should always
be initialized, with a value other than NULL. The use of such pointers does
not require a NULL check; if you assign a variable of this type to a regular
pointer, the compiler will automatically insert a NULL check. As a result, for
example, chain lists will be implemented using ordinary pointers, but there
and so NULL checking is necessary to determine the end of the list, and, for
example, files after opening will have a second pointer type, therefore, in bulk
operations like scanf or printf files can use safely and without checking for
NULL.

4. An array in RuC is a normal language object, although it does not exist in the
base C language. It can be described, including with dynamically calculated
boundaries (in C, borders are only static), slice out an element from it, for
example, a[i][j], or even a[i] for a multidimensional array, assign it to another
array, enter or print. The number of array elements is stored in front of
the first element of an array, which makes it possible to dynamically check
if the index is out of the array. Usually translators neglect this check, and
this is one of the most difficult user errors to be detected. In the process of
analyzing the literature on the problems of error protection, we stumbled upon
the publication of a Russian author, who recommended not to use indexing
arrays, but to use only pointer arithmetic, he said that it is more efficient. In
our opinion, this advice is very dangerous, and the same indexing efficiency
can be provided with fairly simple optimizations.

5. Language C provides a large amount of ways to describe the formal param-
eters of functions. We have chosen, in our opinion, the most expressive one,
and tightened the checking on the compliance of the actual parameters with
the formal ones.

6. A lot of efforts have been spent to provide a detailed and understandable
error reporting system with reference to the place where the error occurred.

5 Conclusion

In this paper the methodology of IT education in Russia was presented with
the example of SPbU experience. Our methodology based on three rules: fun-

114 T. Andrey and M. Platonova

damental mathematics basement, following international education standards,
including nontraditional courses for Russia, and the connection with IT industry.
Success of such approach can be demonstrated by graduated students who are
effectively working in Russian and western companies, such as Google, Microsoft,
Oracle etc.

References

1. Computing Curricula 2005. Book ACM and IEEE (2005)
2. Leonov, G.A., Kiyaev, V.I., Kuznetsov, N.V., Onosovsky, V.V., Seledzhi, S.M.:

Computers and software engineering: developing new models for educating math-
ematicians. In: Book Computers in Education, vol. 2, pp. 157–169. Nova Science
Publishers (2012)

3. Abramovich, S., Kuznetsov, N.V., Kuznetsov, S.V., Leonov, G.A., Onosovsky,
V.V., Seledzhi, S.M.: Learning to develop and use software products: some com-
mon aspects of educational preparation of mathematicians and schoolteachers. In:
3rd World Conference on Information Technology, vol. 3, pp. 44–52 (2013)

4. Terekhov, A., Terekhova, K.: The economics of hiring and staff retention for an
IT company in Russia. In: Nordio, M., Joseph, M., Meyer, B., Terekhov, A. (eds.)
SEAFOOD 2010. LNBIP, vol. 54, pp. 54–63. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13784-6 6

5. Wirth, N., Gutknecht, J.: Project Oberon the Design of an Operating System and
Compiler. Addison-Wesley Publishing Co., Boston (1992)

6. Meyer, B.: Touch of Class, Learning to Program Well with Objects and Contracts.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92145-5

7. Kernighan, B.W., Ritchie, D.M.: The C Programming Language. Prentice Hall,
Englewood Cliffs (1988)

8. Terekhov, A., Luchin, R., Filippov, S.: Educational Cybernetical Construction Set
for Schools and Universities. Advances in Control Education (2012)

9. Alexandrescu, A.: The D Programming Language. Adison-Wesley, Boston (2010)
10. Grossman, D., Hicks, M., Trevor, J., Morrisett, G.: Cyclone: a type-safe dialect of

C. C/C++ Users J. 23, 112–139 (2005)

https://doi.org/10.1007/978-3-642-13784-6_6
https://doi.org/10.1007/978-3-642-13784-6_6
https://doi.org/10.1007/978-3-540-92145-5

Ten Unsafe Assumptions When Teaching
Topics in Software Engineering

David Vernon(B)

Carnegie Mellon University Africa, Kigali, Rwanda
vernon@cmu.edu

http://www.vernon.eu

Abstract. Software engineering is a branch of systems engineering and,
to be successful, software engineering students must work in a systems-
focussed manner. Instructors, including the author, routinely assume
that students have the requisite skills for this or can learn them quickly.
This article identifies ten common assumptions that are unsafe to make
and, if made, impact negatively on the ability of a student to acquire the
essential foundation on which to build their understanding of the techni-
cal aspects of software engineering. The ten unsafe assumptions are that
students understand how to decompose problems, that they know that
systems have to be specified at different levels of abstraction, that they
know how to bridge different levels of abstraction, that they understand
how software and hardware reflect these different levels, that they can
follow instructions and pay attention to detail, that they can easily fol-
low oral or written explanations, that they are able to stress test their
own software, that they understand the relevance of professional practice,
that they are adept at self-criticism, and they understand the relevance of
examples. In each case, we identify the implications for teaching practice
of not making these assumptions.

Keywords: Teaching practices · Unsafe assumptions · Foundational
skills · Effective learning

1 Introduction

Software engineering is a branch of systems engineering and, as such, it is con-
cerned with analysing, modelling, designing, implementing, and delivering large-
scale complex software systems. Consequently, there are multiple dimensions to
software engineering. One dimension embraces the tools, techniques, methods,
and processes required to develop software. A second embraces the manage-
ment techniques required to organize software projects successfully, to monitor
the effectiveness of the development, and to improve the development process.
A third addresses the way in which the non-functional attributes of the soft-
ware being developed are achieved. Non-functional attributes refer not to what
the software does (its function) but instead to the manner in which it does
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 115–130, 2020.
https://doi.org/10.1007/978-3-030-57663-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_9

116 D. Vernon

it (its dependability, security, composability, portability, interoperability, some-
times referred to as the “-ilities” [18]).

Software engineering degrees comprise courses that cover all of these topics.
However, the instructors who teach these courses, including the author of this
essay, often assume that students are well equipped with the requisite founda-
tional skills to learn the technical material in these courses. In the following,
I suggest that such assumptions are not always safe1 and that making them
can have a significantly adverse impact on the students’ learning experience and
the effectiveness of the instructor’s teaching practice. On the contrary, I suggest
the changes that are required to compensate for not making these assumptions
might possibly contribute to more effective teaching practice in general.

While much of what follows might seem trivial and the suggestions almost
self-evident, that does not diminish the impact of taking them on board and
putting them into practice. As we will see, they are consistent with pedagogical
principles, both in computer science and software engineering [11] and in educa-
tion generally [1]. Most of the suggestions focus on first and second year students.
Others, especially the last three which are concerned with professional practice
and soft-skills, will benefit students at all levels as they become increasingly
accomplished.

The contribution this essay makes to a volume devoted to exploring the
frontiers in software engineering education is less about advocating some spe-
cific approach such as component-based software engineering, much less about
introducing a revolutionary new pedagogy, but rather about adjusting teach-
ing practices to address some of the foundational systems-oriented skills that
underpin a student’s ability to engage successfully with software engineering
education.

2 Unsafe Assumptions

2.1 Students Understand How to Decompose Problems

Software engineering is concerned with solving problems and building reliable
software systems that meet the needs of users. When setting software engineer-
ing assignments, it is common practice to state the problems in the form of
functional requirements. In contrast to the requirements which are elicited when
working with an industrial or commercial client, these requirements are usually
complete and unambiguous and, hence, rather atypical. The job of a student

1 When teaching software-focussed courses to students from eighteen countries in
Africa I encountered several difficulties in delivering material in a style that had
apparently worked well in other parts of the world, including Europe, the Middle
East, and Russia. I say “apparently” because, when forced to address these difficul-
ties by adopting a more student-centric stance and questioning what I was assuming
about students’ foundational skills, it became clear that other students might benefit
from the changes to teaching practice that arose from not making these evidently
unsafe assumptions.

Ten Unsafe Assumptions When Teaching Topics in Software Engineering 117

is to deploy her or his knowledge and know-how to transform these require-
ments into to a software system. One of the principal difficulties is that map-
ping from requirements—even complete unambiguous requirements—to finished
system requires the student to formulate a feasible way of attacking the prob-
lem. There are several aspects to this plan of attack, all of which are evidently
very difficult for inexperienced students. They include the processes of prob-
lem decomposition, problem modelling (typically requiring the identification of
a computational model of the problem), systems analysis (involving the gen-
eration of functional, data, and behavioral models, as well as the modelling of
non-functional aspects), design (involving the selection of effective and efficient
algorithms and data structures), implementation, and various forms of verifica-
tion and validation testing. In terms of abstraction, the gap between problem
statement and final operational solution is big. We will address the pivotal issue
of abstraction in more detail in subsequent sections. Here we focus on the very
first process: problem decomposition and the identification of a plan of attack.

Experienced practitioners, including instructors, find the process of prob-
lem decomposition and coming up with a plan of attack straightforward [16].
It is evident that inexperienced students find the very opposite: the ability to
decompose problems doesn’t come naturally to many students. The solution is
straightforward: demonstrate how it is done.

Since demonstrations are most successful when they matter to the person
observing the demonstration and they have something to gain from it, one
successful approach is to fashion laboratory exercises for each assignment with
detailed instructions on how to attack the problem, typically ten to twenty indi-
vidual steps, each step comprising a distinct fine-grained sub-problem that is
clearly-stated and amenable to direct attack. As the course progresses, assign-
ments are accompanied by laboratory exercises comprising fewer and fewer
instructions, progressively weaning the students off this form of assistance.
The final assignment provides none. Employing this approach changes the class
dynamic and results in significantly greater motivation on the part of the stu-
dents, increased rate of learning, and, ultimately, the acquisition of reasonable
skill in problem decomposition.

2.2 Students Know that All Systems Have to Be Specified
at Different Levels of Abstraction

One of the most important concepts we teach in software engineering is the power
of abstraction [11]. In the previous section, we noted the big gap between the high
level of abstraction of a problem statement and the low level of abstraction of
final operational solution. This gives rise to two key difficulties faced by students:
(a) to recognize that this gap exists at all, and (b) to learn how to bridge the
gap effectively.

Regarding the first, it is apparent that many students do not realize that
problems, solutions, and systems in general need to be understood at different
levels of abstraction and that doing so is necessary if one is to map from problem
to solution. The concept of abstraction is routinely taught in courses on data

118 D. Vernon

Fig. 1. One version of the software development life cycle.

structures and algorithm when introducing abstract data types (ADTs) and the
associated concept of data hiding [12]. The same applies at the implementation
level, manifested in programming languages that expose functionality through
abstract interfaces [11]. However, here we are generalizing this beyond the design
and implementation phases and we are applying it across the complete software
development life cycle, from problem modelling to solution implementation (see
Fig. 1). The key idea is that the level of abstraction become progressively lower as
we proceed from the early problem modelling phases (which are typically under-
stood at a high level of abstraction) through to system modelling, to design, and
finally to implementation (which is specified at the lowest level of abstraction)
[7]. As we progress, more and more detail is added to the description as the
concepts are specified in less abstract terms. One of the most common difficul-
ties encountered by students is that, almost always unwittingly, they suffer from
level confusion where they don’t realize that they are applying the wrong form
of analysis in the wrong phase of the development life cycle, e.g. establishing
a theoretical understanding of the solution when developing an algorithm or,
most common of all, formulating an algorithm when writing the code during the
implementation phase.

More generally, all systems can be viewed at different levels of abstraction,
successively removing specific details at higher levels and keeping just the general
essence of what is important for a useful model of the system.2

As part of his influential work on modelling the human visual system [8],
David Marr advocated a three-level hierarchy of abstraction, often referred to
at the Levels of Understanding framework; see Fig. 2. He argued that the frame-
work applies to any information processing system. At the top level, there is
the computational theory. Below this, there is the level of representation and
algorithm. At the bottom, there is the hardware implementation. At the level
of the computational theory, you need to answer questions such as “what is
the goal of the computation, why is it appropriate, and what is the logic of the

2 The remainder of this section on levels of abstraction follows closely the treatment
in [19].

Ten Unsafe Assumptions When Teaching Topics in Software Engineering 119

Fig. 2. The three levels at which an information processing system should be under-
stood and modelled: the computational theory that formalizes the problem, the rep-
resentational and algorithmic level that addresses the implementation of the theory,
and the hardware level that physically realizes the system (after David Marr [8]). The
computational theory is primary and the system should be understood and modelled
first at this level of abstraction, although the representational and algorithmic level is
often more intuitively accessible.

strategy by which it is carried out?” At the level of representation and algorithm,
the questions are different: “how can this computational theory be applied? In
particular, what is the representation for the input and output, and what is the
algorithm for the transformation?”. Finally, the question at the level of hard-
ware implementation is “how can the representation and algorithm be physically
realized?” In other words, how can we build the physical system? Marr empha-
sized that these three levels are only loosely coupled: you can—and, according to
Marr, you should—think about one level without necessarily paying any atten-
tion to those below it. Thus, you begin modelling at the computational level,
ideally described in some mathematical formalism, moving on to representations
and algorithms once the model is complete, and finally you can decide how to
implement these representations and algorithms to realize the working system.
Marr’s point is that, although the algorithm and representation levels are more
accessible, it is the computational or theoretical level that is critically important
from an information processing perspective. In essence, he states that the prob-
lem can and should first be modelled at the abstract level of the computational
theory without strong reference to the lower and less abstract levels.3

Marr illustrated his argument succinctly by comparing the problem of under-
standing vision (Marr’s own goal) to the problem of understanding the mechanics
of flight.

“Trying to understand perception by studying only neurons is like trying
to understand bird flight by studying only feathers: it just cannot be done.

3 Tomaso Poggio recently proposed a revision of Marr’s three-level hierarchy in which
he advocates greater emphasis on the connections between the levels and an exten-
sion of the range of levels, adding Learning and Development on top of the computa-
tional theory level (specifically hierarchical learning), and Evolution on top of that
[13]. Tomaso Poggio co-authored the original paper [9] on which David Marr based
his more famous treatment in his 1982 book Vision [8].

120 D. Vernon

Fig. 3. The different levels of abstraction mapped to the software development life
cycle.

In order to understand bird flight, we have to understand aerodynamics;
only then do the structure of feathers and the different shapes of birds’
wings make sense”

Objects with different cross-sectional profiles give rise to different pressure pat-
terns on the object when they move through a fluid such as air (or when a fluid
flows around an object). If you choose the right cross-section then there is more
pressure on the bottom than on the top, resulting in a lifting force that coun-
teracts the force of gravity and allows the object to fly. It isn’t until you know
this that you can begin to understand the problem in a way that will yield a
solution for your specific needs.

Of course, you eventually have to decide how to realize a computational
model but this comes later. The point Marr was making is that you should
decouple the different levels of abstraction and begin your analysis at the highest
level, avoiding consideration of implementation issues until the computational
or theoretical model is complete. When it is, it can then subsequently drive the
decisions that need to be taken at the lower level when realizing the physical
system.

Marr’s dissociation of the different levels of abstraction is significant because
it provides an elegant way to build a complex system by addressing it in sequen-
tial stages of decreasing abstraction. It is a very general approach and can be
applied successfully to modelling, designing, and building many different systems
that depend on the ability to process information.

Introducing Marr’s levels of understanding framework is a very effective way
of exposing students to the need to treat problems at different levels of abstrac-
tion at different phases of the software development life cycle (thereby addressing
the first difficulty identified at the start of this section) and it also provides a
way of mapping it to the software development life cycle itself; see Fig. 3.

2.3 Students Know How to Bridge Different Levels of Abstraction

Knowing that any complex system can be modelled and understood at several
levels of abstraction is essential in being able to engineer effective, efficient, and

Ten Unsafe Assumptions When Teaching Topics in Software Engineering 121

appropriate software. However, there still remains the problem of knowing how
to map from one level of abstraction to another. This isn’t trivial [7]. As we saw
above, this mapping happens when one goes from the computational model to
the design and from the design to the implementation. When teaching software
engineering, we often use the mapping from computational theory to design as
the archetypal example of this process, pointing out how a given model and the
associated solution strategy often has many possible algorithms and data struc-
tures. We call these design choices. For example, a digital filter can be modelled
as a spectral process using the Fourier transform but there are several Fourier
transform algorithms that can yield the required transformation from temporal
or spatial data to frequency spectral data, e.g. the discrete Fourier transform
(DFT), the fast Fourier transform (FFT) [4], and different implementations, e.g.
the fastest Fourier transform in the west (FFTW) [5]. Sorting a list can be char-
acterized as the identification of the permutation of the elements of the list that
satisfies an ordering constraint, with many different sorting algorithms to choose
from, and with the choice depending on the required computational complexity,
space complexity, and need for stability or not.

However, the level-of-abstraction mapping problem occurs at the transition
of every phase of the development life cycle and the goal is to help students
understand that there are choices to be made at each transition and that the
only way to do the mapping effectively is to enumerate the choices and identify
the selection criteria. By continually making these choices explicit, the message
is absorbed by the interested student.

There exists yet another situation in which this level-of-abstraction mapping
problem arises: when developing solution strategies. Typically, these are initially
expressed in high-level abstract strategies and the difficulty is to translate this
conceptual understanding into detailed low-level unpacked tactics [16].

The key to overcoming these difficulties is through the copious use of exam-
ples. People learn by induction: by inferring general principles from multiple
instances of particular cases. The second key to overcoming these difficulties is
though practice: repeated engagement with the process so the inductive insight
is revealed quicker with experience.

The general approach, then, is to expose students to the practice of progres-
sive deepening: covering the same material multiple times at different levels of
abstraction or detail.

Some readers may be uncomfortable at this point with an approach based
on establishing an intuitive appreciation for the process and an understanding
that it requires as much skill and experience as it does knowledge. These readers
might justify these concerns on the basis that we are dealing here with science
and engineering, and that, as such, the problem would be finessed if we sim-
ply followed established engineering practices or methodologies. Model-driven
software engineering [3,14] or formal methods [2,10,15] would, to some extent,
alleviate these concerns. However, it should be remembered that we are speak-
ing here of both understanding the process and using an effective methodology
to bridge the gap in abstraction between requirements and implementation in

122 D. Vernon

several steps. Even if in possession of tools to help automate this process, it is
essential that the student understand what the tool is helping to automate.

2.4 Students Understand How Software and Hardware Reflect the
Different Levels of Abstraction

As we have said, software engineering rightly emphasizes the importance of
abstraction [7,11]. As we noted in Sect. 2.2, it contributes to clarity and trans-
parency in all phases of the software development life cycle, including computa-
tional modelling, design, and implementation. Abstraction hides the unnecessary
details of the levels below. However, there are times when these details matter
and they can matter at every level of abstraction and at every phase of the life
cycle [7]. In Marr’s levels of understanding framework, the levels are loosely-
coupled, not entirely decoupled. This is where an in-depth understanding of all
layers in the realization of a software system—from application to the hardware
architecture—can help with developing effective, efficient software. Developers
with this knowledge are often referred to as full-stack engineers or developers.4

Regrettably, many students are exposed only to high-level abstract knowledge
and this has two negative effects.

First, it means that the instructor is not able to revert to low-level imple-
mentation details, typically at the level of middleware, operating systems, and
computer architecture, to explain key topics.

For example, when teaching pointers, it is often helpful to explain to students
that they are effectively memory addresses and that referencing and dereferenc-
ing involves the manipulation of addresses of data and access to the data at given
addresses. The purely abstract concept of referencing and dereferencing, while
valid, involves more sophisticated semantics than the semantics of location and
content and often takes students longer to grasp. Furthermore, understanding
that pointers are memory addresses helps students understand why dereferenc-
ing an uninitialized pointer is dangerous and potentially harmful without some
form of memory protection. It also helps when explaining the meaning of seg-
mentation errors, i.e. attempts the access memory via pointers that lie outside
the user’s memory space.

When teaching the semantics of the CAR, CDR, and CONS function in
Common Lisp [6], understanding that lists are implemented as linked lists with
two fields, both of which are pointers (and that CAR and CDR derive from
reference to an address register), helps greatly in getting the semantics of these
functions across to students. Without that implementation level understanding,

4 In the past few years, the concept of a full-stack developer has changed in a significant
way, referring not to a developer with knowledge of all levels of the implementation
of a system, including the underlying middleware, operating system, and computer
architecture, but instead to a developer who is conversant with both front-end and
back-end development in client-server architectures. This alternative meaning loses
the emphasis on mastery of the many levels of abstraction, substituting instead a
mastery of user-interface programming and information processing.

Ten Unsafe Assumptions When Teaching Topics in Software Engineering 123

the different forms of equality operator, e.g. EQ, EQL, EQUAL, and EQUALP
are very difficult to grasp.

When explaining the semantics of recursion and the role of the implicit stack,
it helps to refer to the implementation of this stack in the operating system,
specifically the use of the process stack for dynamic memory allocation and
the associated time and space cost of pushing and popping the function state
when calling functions recursively and returning from recursive calls. Given the
importance of recursive algorithms and their dependence on the persistence of
local variables during recursion, this low-level understanding, well-below the level
of abstraction necessary to explain the semantics of recursion, helps student
understanding.

Similarly, when explaining dynamic memory allocation by a client program-
mer, knowledge of the operating system heap is helpful (and is essential if one
is to make any sense of “stack overruns heap” fatal error messages). It also
helps understand why buffer overruns can be difficult to trace and why memory
leakage is such an important problem.

Knowledge of computer architecture too, even the basic von Neuman archi-
tecture, can help students understand key concepts such as caching and the
relevance of cache memory. Arguably, it is essential to understand why caching
may not be of any value when accessing dynamic data structures that have
physical addresses which are not all be present in the current memory cache.

These are just some examples to make the point that full-stack knowledge
can aid both in instruction and in building a more complete picture for the
student of the trade-offs required when designing efficient software.

We mentioned above that there are two negative effects from being exposed
only to high-level abstract knowledge. The second is to do with how learning
works. As Ambrose et al. point out, [1], p. 49, experts and novices organize
knowledge in different ways. Specifically, experts have a much higher density of
connections between concepts, facts, and skills. Exposing these connections and
highlighting cross-linkage among topics helps novices transition to expert-level
understanding. Exploiting full-stack knowledge is an effective way of demonstrat-
ing this and, in the process, helping the student build a deeper understanding of
software engineering. Professionals—experts—typically see the software in the
context of the full stack, always working at the correct level of abstraction but
always being aware of the network of connections to the other levels.

2.5 Students Can Follow Instructions and Pay Attention to Detail

Students are human beings and human beings have limited working memory and
a natural capacity for pattern recognition. Consequently, students often tend
to look at things— problem statements, algorithms, and code—from a global
holistic perspective first and then infer the details. This causes many problems
because, while this may well help in forming an intuitive understanding of the
issue, it is very problematic when it comes to bridging the gap to the necessary
detailed description of the issue at hand.

124 D. Vernon

One striking example of this is the inclination of students to look at a code
segment or a pseudo-code representation of an algorithm and then try to under-
stand what is happening by looking for a pattern in the description as a whole.
Unfortunately, the meaning of the whole, at least in software, emerges from an
understanding on the individual statements and their relationship to each other:
meaning emerges from the detail and an understanding of that meaning requires
students to inhibit their predisposition to look at the code and infer what it
means. Consequently, it turns out that the key to success in this is to get the
students to adopt a letter-box view of code, seeing only one statement at a time,
inhibiting the natural tendency to link it to all the other parts of which you are
aware, and build the understanding of the process, step by step. As we will see
in Sect. 2.6, fine-grained diagrams help greatly with this.

The same issue arises when students attempt to assimilate written material.
There is a prevalent tendency to try to get the gist of the material by skim-
ming through it. While this is of itself fine, the problem arises with the belief
that complete understanding follows multiple skims through the material. This
becomes particularly problematic when following detailed written instructions,
e.g. detailed software installation instructions or lengthy on-line tutorials [17].
Students very often don’t have the patience or discipline to follow each instruc-
tion exactly, one step at a time. Either they skip steps in the instructions or
they guess what is meant without digesting fully what is meant. The idea that
instructions mean exactly what the say and only what they say is often hard
for students to grasp. The problem is exacerbated by providing fewer richer
instructions because these individual instructions then become subject to the
same skimming process to establish the gist and guess the meaning as larger
tracts of material. Paradoxically, the solution is to provide very fine grained
highly-explicit detailed instructions that minimize the tendency to skim and to
demonstrate that following them exactly does lead to success.

Of course, students also need to learn to follow coarse-grained instructions.
To facilitate this, the instructions for laboratory exercises that support assign-
ments (see Sect. 2.1) might take the form advocated above, i.e. many fine-grained
detailed explicit instructions, but reducing their number and making them pro-
gressively more coarse-grained over the course of a semester.

2.6 Students Can Easily Follow Oral or Written Explanations

We depend on spoken and written language as the main medium of instruction
when teaching. As with all forms of effective communication, one needs to keep
the vocabulary focussed and not use language that is unnecessarily complex.
The exception, of course, is where one is introducing new technical vocabulary
and the semantics of new concepts. However, this, in itself, is not enough. Some-
thing more is needed: graphic depiction of material. Diagrammatic illustration
matters, far more than one might expect. This becomes particularly evident
when performing structured walkthroughs of software code. The need to under-
stand both the syntax and the semantics of the code is often difficult for many
students. This is compounded when you factor in the temporal nature of code

Ten Unsafe Assumptions When Teaching Topics in Software Engineering 125

execution. Unwinding iterative constructs by describing in words what is hap-
pening is inadequate, even if it’s common practice. Unwinding recursion is even
worse. However, when supported by diagrams that show each step graphically—
each change of state that results from each statement in the software—using a
very fine-grained approach, the computational processes become much clearer
to the students. In essence, diagrams matter when describing structure and they
matter even more when describing processes. Processes need to be illustrated at
a fine level of temporal detail. Depending on language-based explanation alone
doesn’t work well. Conversely, using diagrams to unwind temporal processes and
visualize key concepts makes a significant difference to the student’s learning
experience.

2.7 Students Are Able to Stress Test Their Own Software

Every software engineering course has at least a few classes devoted to testing.
We distinguish between verification (of functionality against specifications), vali-
dation (of functionality and non-functional characteristics against requirements),
and benchmarking (against the performance of other solutions or systems). We
explain the important of static testing, dynamic testing, black box testing, white
box testing, grey box testing, stress testing, unit tests, integration tests, system
tests, acceptance tests, and regression tests. And we assume that students can
learn and apply the testing techniques effectively and efficiently. This assumption
may not be safe, especially when it comes to stress testing.

Despite being made aware of Dijkstra’s warning that testing can only be used
to demonstrate the presence of errors in software, not their absence, students
often see testing as demonstration that their software “works”. Reversing the
logic and seeing testing as an exercise in trying to break the software is not
something that comes naturally to students, particularly when testing their own
code. This is a natural consequence that they have a vested interest in their
code—their creation—and they are psychologically ill-equipped to intentionally
damage it by subjecting it to data that undermines its functionality, i.e. to
be aggressive in developing test strategies and to identify particularly difficult
unforeseen boundary test scenarios.

The resolution of this problem turns out to be quite straightforward. By
adopting a policy of providing sample test cases when issuing an assignment
but of always assigning marks on the basis of performance against a large set
of blind test cases, students quickly learn to be more aggressive in testing. It
may take three or four assignments to grasp the message, but eventually, as
marks are consistently deducted for failures on boundary cases, students come to
understand that showing the program works on typical data is far from sufficient
to get a good grade. That requires a more aggressive approach and, as a result,
the stress tests become more thorough.

In all of this, however, it is equally important to emphasize the truism of
software engineering that you can’t test quality into a program: it must be
designed in.

126 D. Vernon

2.8 Students Understand the Importance of Professional Practice

Students are often required to engage with companies, either individually or
in teams, as part of their program of education in order to prepare them for
the realities of working in a commercial or industrial environment after they
graduate. Often, these exercises involve the development and delivery of some
form of software systems. Typically, the industry client has some problem that
needs to be solved or some new capability they would like and they expect the
students to solve it or provide the required system. More often than not, they
only have vague notions of exactly what they want delivered at the end of the
project but they are very adept at recognizing what they do not want.

Students, when charged with liaising with clients are invariably shocked to
discover that the client doesn’t have a clear set of requirements and, worse,
that they are often too busy to engage in a lengthy requirements elicitation
process with the students. This is because, while the difficulty of the requirements
elicitation process is always taught in class, the reality is that students are usually
given assignments couched in terms of a clear requirements document and with
clear acceptance tests in the form of a grading rubric. Students rarely have
to concern themselves with what is unknown about the project they have to
complete and, over time, this lulls them into a false sense of security that the
requirements elicitation process is straightforward. Nothing, of course, could be
further from the truth.

Having to confront these difficulties provides one of the most valuable lessons
a student of software engineering can learn. They begin to appreciate the impor-
tance of dealing with uncertainty and ambiguity, striving to understand what
the client needs, rather than what the client says they need. In the process,
they also learn some of the most important soft skills that underpin success
in the commercial world of software engineering, specifically how to manage the
client—with politeness, respect, and patience—in order to maximize the value of
the limited time the client is willing to invest when meeting with the students.
This requires two adjustments in teaching practice: (a) don’t always provide
complete specifications and let the students grapple with that uncertainty (this
point appears in a different guise in the section on testing), and (b) be prepared
to tutor students as much in professional practice, e.g. the soft skills of client
liaison, meeting etiquette, writing minutes, timely delivery of documents being
tabled for discussion, as you do in the technical aspects of software engineering.

2.9 Students Are Adept at Self-criticism

Just as we teach students that one of the main goals of software engineering is
continuous process improvement, including quantitative and qualitative quality
assessment, we often assume that students understand that they are part of the
process and, consequently, the same goals apply to them and the manner in
which they conduct themselves as aspiring professionals. However, it is evident
that often students do not make the connection with the attendant need to
continually question everything they say and everything they do. In other words,

Ten Unsafe Assumptions When Teaching Topics in Software Engineering 127

students don’t automatically see the need for self-referential (or reflexive) quality
assurance. Moreover, even when they are made aware of this, they don’t typically
have a ready disposition to engage with it.

Teaching quality assurance in software engineering—something that should
not be relegated to a single course or even a part of a course—offers another
opportunity to help students learn the importance of professional practice and
soft skills. Since a software engineer is an intrinsic part of the software engi-
neering process, the two issues—quality assurance in software engineering and
quality assurance in professional practice—are just two sides of the same coin.

The magnitude of the task of inculcating a disposition to engage in the prac-
tice of self-referential quality assurance is more considerable than one might
imagine. People are generally not self-critical. We met a similar trait in Sect. 2.7
on stress testing your own code. There are many ways one can approach it.
For example, by imposing exacting standards for the manner in which students
frame questions in class (and elsewhere): saying exactly what they mean and
meaning exactly what they say. Often, students will have a vague notion of what
they don’t understand and, when asking a question, it’s not uncommon for them
to begin to speak while not yet having a clear idea of what it is they want to
establish in the answer they expect. Very often, they expect the instructor to
interpret their poorly- and partially-framed question and infer their intent and
meaning. And very often, we do. However, in doing so, we do them no favors
because we then reinforce this poor style of questioning and, implicitly, teach
them poor professional practice. It can be painful and slow, but working with
a student to have them re-frame their question and re-frame it again and again
until they are finally asking exactly what the need to know. It comes down to
precision of expression, something that should permeate the professional life of
a software engineer. The same approach can be applied to written reports, to
software documentation, to algorithm design, and to computational modelling:
to every aspect of the software development life cycle.

Finally, as instructors in software engineering, it is imperative that we, in
turn, embrace this almost obsessive-compulsive attachment to precision in all
our dealings with students so that they learn by example. This is not as easy
as it sounds. It means we must adopt a teaching practice that is founded on
leading by example and by being transparently self-critical in everything we
do. The transparency is important. We must correct ourselves in class when
we identify a weakness or flaw in what we’ve said. When writing reports or
papers, we routinely make multiple passes at editing the text, applying red ink
copiously and without restraint in an effort to polish our writing in search of
precision (as well as brevity, simplicity, and clarity). It can be a helpful device
to keep these multiple edits on hand to show students that we apply to ourselves
the same standards that we expect of them. This leads to the tenth and final
unsafe assumption.

128 D. Vernon

2.10 Students Understand the Relevance of Examples

Examples provide essential illustration. However, examples can expose far more
than just the meaning of the principle, practice, or technique currently being
examined. Important though that is, examples also provide an opportunity
to leverage several of the evidence-based principles of how learning works, as
expounded by Ambrose et al. [1]. These principles can be exploited in many other
ways, of course, but here we will take the opportunity to show how examples
provide a concrete way to leverage them to achieve more effective educational
practice.

One of the principles is that “to develop mastery, students must acquire
component skills, practice integrating them, and know when to apply what they
have learned” [1], p. 95. When coupled with Meyer’s observation that “to learn
a technique or a trade it is best to start by looking at the example of excellent
work produced by professionals, and taking advantage of it by (in order) using
that work, understanding its internal construction, extending it, improving it –
and starting to build your own” [11], the power of a well-presented example is
clear.

Examples demonstrate the process of application. Furthermore, if the exam-
ples relate to one another, they provide another opportunity to demonstrate
the difference between the way an expert organizes knowledge and the way a
novice organizes knowledge, as we noted already, with the former having a much
higher density of connections among concept, facts, and skills. Exposing these
connections and highlighting cross-linkage among topics can be accomplished by
stating them but demonstrating them through examples is even more effective.

The other aspect of examples is that they provide an opportunity for practice
through well-designed assignments, especially ones that reflect authentic, real-
world tasks: these are the types of example that feed student motivation. The
importance of assignments is well understood but it is worth re-emphasizing:
“Students must learn to assess the demands of the task, evaluate their own
knowledge and skills, plan their approach, monitor their projects, and adjust
their strategies as needed” [1], p. 191, reflecting another of the principles that
goal-directed practice coupled with targeted feedback are critical to learning [1],
p. 125. It is even better if scaffolding can be built into assignments, later assign-
ments leveraging what has been learned in earlier assignments. This demon-
strates the importance of reuse in a very practical manner while also speaking
to the core importance of systems thinking in software engineering.

3 Conclusion

In this essay, I have tried to convince that questioning assumptions about the
degree to which students possess foundational skills serves to reveal ways in which
teaching practice might be improved. It is important to emphasize that this
makes no value judgement about the aptitude or ability of the student but rather
targets the idiosyncrasies of how people learn to master the skills that underpin
software engineering. The contention is that recognizing these idiosyncrasies can

Ten Unsafe Assumptions When Teaching Topics in Software Engineering 129

help improve educational practice and contribute to more effective teaching. It
rebalances a possibly unbalanced approach that might favor a focus on content
over the object of teaching, i.e. the student. This more balanced approach is
captured succinctly by the exhortation to “Teach students, not content” [1].

Acknowledgements. Many thanks go to the reviewers of an earlier version of this
paper for their helpful and constructive comments.

References

1. Ambrose, S.A., Bridges, M.W., DiPietro, M., Lovett, M.C., Norman, M.K., Mayer,
R.E.: How Learning Works: Seven Research-Based Principles for Smart Teaching.
Wiley, Hoboken (2010)

2. Bjørner, D., Havelund, K.: 40 years of formal methods. In: Jones, C., Pihlajasaari,
P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 42–61. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06410-9 4

3. Bruyninckx, H., Klotzbücher, M., Hochgeschwender, N., Kraetzschmar, G., Gher-
ardi, L., Brugali, D.: The BRICS component model: a model-based development
paradigm for complex robotics software systems. In: Proceedings of the 28th
Annual ACM Symposium on Applied Computing, SAC 2013, pp. 1758–1764. ACM,
New York (2013)

4. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
fourier series. Math. Comput. 19(90), 297–301 (1965)

5. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005)

6. Graham, P.: ANSI Common Lisp. Prentice Hall (1996)
7. Kramer, J., Hazzan, O.: The role of abstraction in software engineering. In: Pro-

ceedings of International Conference on Software Engineering (ICSE 2006), vol.
31, pp. 1017–1018. ACM SIGSOFT Software Engineering Notes, Shanghai (2006)

8. Marr, D.: Vision. Freeman, San Francisco (1982)
9. Marr, D., Poggio, T.: From understanding computation to understanding neural

circuitry. In: Poppel, E., Held, R., Dowling, J.E. (eds.) Neuronal Mechanisms in
Visual Perception, Neurosciences Research Program Bulletin, vol. 15, pp. 470–488
(1977)

10. Why don’t people use formal methods? https://www.hillelwayne.com/post/why-
dont-people-use-formalmethods/

11. Meyer, B.: Touch of Class - Learning to Program Well with Objects and Contracts.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-540-92145-5

12. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Commun. ACM 15(12), 1053–1058 (1972)

13. Poggio, T.: The levels of understanding framework, revised. Perception 41, 1017–
1023 (2012)

14. Schlegel, C., Steck, A., Lotz, A.: Model-driven software development in robotics:
communication patterns as key for a robotics component model. In: Introduction
to Modern Robotics. iConcept Press (2011)

15. Schumann, J.M.: Formal methods in software engineering. In: Schumann, J.M.
(ed.) Automated Theorem Proving in Software Engineering, pp. 11–22. Springer,
Heidelberg (2001). https://doi.org/10.1007/978-3-662-22646-9 2

https://doi.org/10.1007/978-3-319-06410-9_4
https://www.hillelwayne.com/post/why-dont-people-use-formalmethods/
https://www.hillelwayne.com/post/why-dont-people-use-formalmethods/
https://doi.org/10.1007/978-3-540-92145-5
https://doi.org/10.1007/978-3-662-22646-9_2

130 D. Vernon

16. Skiena, S.: The Algorithm Design Manual, 2nd edn. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-1-84800-070-4

17. CRAM simple mobile manipulation plan. http://cramsystem.org/tutorials/
intermediate/simple mobile manipulation plan

18. Vanthienen, D., Klotzbücher, M., Bruyninckx, H.: The 5C-based architectural
composition pattern: lessons learned from re-developing the iTaSC framework for
constraint-based robot programming. J. Softw. Eng. Robot. 5(1), 17–35 (2014)

19. Vernon, D.: Artificial Cognitive Systems – A Primer. MIT Press, Cambridge (2014)

https://doi.org/10.1007/978-1-84800-070-4
http://cramsystem.org/tutorials/intermediate/simple_mobile_manipulation_plan
http://cramsystem.org/tutorials/intermediate/simple_mobile_manipulation_plan

Curriculum and Course Design

Analysing the SWECOM Standard
for Designing a DevOps Education

Programme

Alfredo Capozucca(B) and Nicolas Guelfi

Department of Computer Science, Faculty of Science, Technology and Medicine,
University of Luxembourg, Maison du Nombre,

6, Avenue de la Fonte, 4364 Esch-sur-Alzette, Luxembourg
alfredo.capozucca@uni.lu

Abstract. Developing academic education programmes for software
engineers is a difficult task mainly due to three main factors: (1) ever-
changing information and communication technologies produced by the
industry and meant for citizens living in digital disruptions age, (2) lack
of official or de-facto standards for the software engineering domain, (3)
slow pace of the standardisation bodies and of the academia for deploying
standard competence frameworks or education programmes. This applies
more especially to DevOps which regroups a set of skills being the most
demanded today by the job market. This paper is a first attempt to intro-
duce a standard based development process to derive a DevOps education
programme for graduate education. It is introduced as a generic process
mainly based on the SWECOM standard. This process is applied to gen-
erate a proposal for a significant DevOps graduate academic programme
definition in a comprehensive and, most importantly, in a skill oriented
manner.

1 Introduction

Software engineers initial education is mainly provided by universities or higher
education schools. Education is these types of institutions are organised in pro-
grammes that are often aligned in two types of degrees: a bachelor degree (under-
graduate) which lasts for 3 years, followed by a master degree (graduate) of 2
years. Thus, higher education of software engineers is done into the context of
these degrees.

The design of an education program for software engineers has been a difficult
task since the creation of software engineering as a discipline in the NATO
meeting of 1968 [26]. A first significant effort has been released by the ACM and
IEEE standardisation organisations in the provision of the SE2004 - Curriculum
Guidelines for Undergraduate Degree Programs in Software Engineering. This
effort has been complemented with the provision of a software engineering body
of knowledge in 2005 [19].

The software engineering domain as well as all domains directly related to the
digital world is rapidly evolving. Unfortunately the time scale of standardisation
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 133–150, 2020.
https://doi.org/10.1007/978-3-030-57663-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_10

134 A. Capozucca and N. Guelfi

bodies and academia is far slower than the one of the digital economy sector.
In addition to this fact, their is a huge gap between the software engineering
methods and tools effectively used by the economical sector and the ones covered
in standards of education programmes. This applies especially to the two main
software engineering development processes that are largely adopted by industry:
Agile [5] and DevOps [12,23].

Despite the fact that SE2004 and SWEBOK have been updated in 2014 ([1,
20]), it must be noticed that the academia failed to deploy programs in software
engineering that are complete, consistent and satisfactory for industry, as partly
shown in these studies of the SWEBOK coverage in education [18,18,20,20].

Concerning DevOps, the problem is critical since it is, along with agile meth-
ods, one of the first competence domain required by the job market as shown by
this study of nearly 100 000 job offers [17].

As of today, in the scientific community, there is no common agreement
(standard, competence framework,. . .) about the definition of DevOps [21,25]
nor acknowledged standard that can be used as fundamental building block for
clarifying what it means and covers [31]. Concerning education, there neither
exist a recognised content for a DevOps course and even less for a DevOps
graduate education programme.

Despite of this lack of common agreement in the community, it is already
possible to glimpse with an important level of confidence that main concerns
addressed by DevOps belong to the domain of software engineering (e.g. meth-
ods and tool to architect software systems targeting continuous delivery, depend-
ability while increasing delivery performance, etc.).

Thus, one of the current challenges for academic researches in education is
to contribute to deliver a new generation of software engineers being trained
to acquire the necessary initial knowledge and experience on DevOps principles
and practices.

Such a program should satisfy the following high level requirements: (1) be
based on the best available standard knowledge domain or competence frame-
work directly related to DevOps, (2) be complete and sound from a scientific and
technical point of view, (3) be coherent with the required initial competencies
expressed by the job market, (4) adapted to a graduate education level assuming
a common knowledge set acquired on software engineering and computer science
at undergraduate level, and, most importantly, (5) be skill oriented by defining
operational capabilities rather than static knowledge on DevOps notions.

This paper, describes a process and its application for deriving a DevOps
education programme that satisfies those requirements. It is structured in the
following way: presentation of the background on the standards used in the pro-
cess, definition of the generic DevOps programme design process, application of
the generic process and derivation of a DevOps graduate education programme,
discussion about the proposals and results, presentation and analysis of related
work and conclusion.

Analysing the SWECOM Standard for Designing a DevOps 135

2 Background

This section presents the concepts on which this work relies on. These concepts
are presented to make the paper self-contained, and in consequence, to ease its
understanding.

2.1 The Cognitive Process and Its Categories

As part of the process that leads to the specification of a DevOps programme, it
is required to collect and classify learning objectives. These learning objectives
are expected to be presented in a skill oriented manner, describing what a person
is expected to be able do about certain subject. What the person is able to do
is described using a verb, whereas the subject describes the knowledge area on
which the verb applies.

A skill is a capability applied on a knowledge area (e.g. use a versioning
system).

In order to identify the main categories of abilities (i.e. groups of verbs), it
is used the taxonomy proposed by Anderson et al. [3], which is a revision of
the seminal work made by Bloom [6] and known as the Bloom’s taxonomy of
educational objectives.

At difference with Bloom’s taxonomy, this revised work proposes a two-
dimensional taxonomy: the cognitive process, and knowledge. The cognitive pro-
cess dimension captures the cognitive complexity of associated to each capability.
This revised work also proposes abilities (19) and categories (6) to group these
abilities. It also proposes an complexity order among these categories.

Table 1 summarises information provided in the book of Anderson et al. ([3],
pp. 67–68) about the cognitive process, the categories of cognitive complexity
brought by this process, and how such as categories are ordered in terms of
increasing complexity.

Table 1. Categories within the cognitive process

Category level Category name Category description

L1 Remember Retrieve relevant knowledge from long-term
memory

L2 Understand Construct meaning from instructional messages,
including oral, written and graphic
communication

L3 Apply Carry out or use a procedure in a given situation

L4 Analyse Break material into constituent parts and
determine how parts related to one another and
to an overall structure or purpose

L5 Evaluate Make judgements based on criteria and standards

L6 Create Put elements together to form a coherent whole;
reorganise into a new pattern or structure

136 A. Capozucca and N. Guelfi

This work relies on these categories and the complexity order established
among them to classify the abilities that should acquired.

For what concerns the knowledge areas (i.e. the subjects), this papers focuses
on DevOps. Thus it is necessary to define all the knowledge areas related to
DevOps and useful to define the skills to be acquired by a person once he/she
completes the programme: i.e. what the person should be able to do as a DevOps
professional.

2.2 SWECOM

In order to define the DevOps knowledge area, this work proposes a standard
based approach. The process proposed is standard agnostic since the selection
of the standard to be used for driving the design of the programme is one of
the steps of such a process. However, as already stated, the paper is aimed at
being self-contained. Thus, very high level information on the standard that was
selected when executing the design process (described in Sect. 3) is presented in
this section. This information should ease understanding the rationale behind
the results obtained on each step of the process (described in Sect. 4).

The selected standard chosen to illustrate our approach (for the reasons
described in Sect. 4.1) is SWECOM [29] whose name stands for “Software Engi-
neering Competency Model”. It is a standard branded by the IEEE Computer
Society1, and it was first released in 2014. This standard presents a compe-
tency model for “software engineers who participate in developing and modifying
software-intensive systems”.

The abilities needed for the targeted software engineers to perform success-
fully their job are organised according to a specific structure which relies on the
terms: activity, skill and skill area. The term “activity” is used to refer to a self-
contained unit of work to be performed. A group of logically related activities
is referred to as “a skill” and the term“skill area” is used to refer to a group of
skills.

Using this structure, the standards presents 13 skill areas related to software
engineering: Requirements, Design, Construction, Testing, Sustainment, Process
and Life Cycle, Systems Engineering, Systems Engineering, Quality, Security,
Safety, Configuration Management , Measurement and, lastly, Human-Computer
Interaction.

Despite the fact these skill areas are presented in a flatten manner, they are
implicitly grouped in 2 categories: “life cycle” and“crosscutting”. A skill area
belonging to the life cycle category contains skills need to fulfil some activities
covered within a phase of the software development process (e.g. requirements
engineering, design), regardless the chosen methodology to perform such a pro-
cess. On the other hand, a crosscutting skill area is one that applies across all
life cycle skill areas (e.g. safety, security). There are 5 life cycle skill areas and 8
crosscutting skill areas.

1 https://www.computer.org/about.

https://www.computer.org/about

Analysing the SWECOM Standard for Designing a DevOps 137

3 DevOps Programme Design Process

3.1 Requirements

The programme to be defined is meant for a graduate level. This means that
each participant in the programme is supposed to have a background in informat-
ics: i.e he/she has completed an undergraduate programme in computer science
/information technology, or has enough working experience on the field to let
him/her accredit the required minimal knowledge.

The program is structured in 4 ordered levels of learning. These learning
levels are organised according to the cognitive efforts participants should make
to acquire the expected knowledge and skills. Obviously, lower levels require less
efforts than higher levels.

It is worth mentioning that these 4 levels fit the standard organisation of
graduate programmes organised by higher education institutions. Thus, the pro-
gramme presented in this paper represents a good reference for curricula design-
ers and quality officers of such as institutions.

3.2 Scope

The programme to be designed is aimed at specifying the core learning outcomes
to be acquired once the student has successfully completed the programme. A
core learning outcome is defined as a capability (or skill) related to a DevOps
concept. For example, at the end of the programme, the student is expected
to use the appropriate DevOps terminology, or select appropriate languages and
tools for the construction of a delivery ecosystem.

The so-called soft skills (e.g. communication and team management capabil-
ities) are not covered in the resulting specification of having applied the process
described in this section. However, it must be said that such soft-skills are con-
sidered in the extended version of the programme specification. This extended
version also has to contain details about the activities that would allow students
to meet the core learning outcomes, pedagogical approaches applied in the deliv-
ery of those activities, as well as the the grouping of the activities into blocks
(i.e. courses).

This work only focuses on describing the process that leads towards the
specification of the core learning outcomes.

3.3 Process

Selection of the Standard. The first step of the process corresponds with the
selection of the standard to be used as driver of the knowledge and capabilities to
be covered by the programme under design. The criterion to select the standard
is defined by the following attributes:

– Reputation of the organisation: the organisation that either leads the
work to create it, or supports the task force in charge of its creation is a well-
known organisation with a long history in creating standards. In may also

138 A. Capozucca and N. Guelfi

be the case that the organisation is very new, but the task force behind the
creation of the standard is composed of people recognised by the community
where the standard is supposed to be used.

– Software Engineering oriented: the standard must be focused on Software
Engineering (SE) as there is not any standard specific to DevOps; and it is
considered that DevOps is logically included in the Software Engineering
domain.

– Skill oriented: the content of the standard should provide insights about
what a person should be able to do (i.e. person’s skills) rather than what the
person knows. This means that the chosen standard must be skill oriented,
rather knowledge oriented.

– Job role oriented: Academic education has for aim to contribute to prepare
the learner to the job market. To this aim, the standard content is analysed
for its aim of defining job roles.

– Academic education oriented: since the target is the design of a academic
education programme, it is important to determine if the standard is intended
to be used for defining education programmes at academic level.

It is worth mentioning that due to the lack of DevOps-specific standard, it
is of outmost importance that at least the standard to be considered focuses on
Software Engineering. Thus, the Software Engineering oriented attribute has a
higher priority with respect to the other inspected attributes.

Standards that capability-oriented are also more relevant than organise infor-
mation in terms of knowledge coverage. In this work, it is central the idea of
expressing learning outcomes in terms of the capabilities acquired by a person
(i.e. rather than what the person hows, what he/she is able to do). Thus, stan-
dards that are skill-oriented are also of higher priority than other.

The notion of priority is materialised by weighting the attributes. An
attribute with a higher priority is considered to weight twice as a non-high
priority attribute. This policy then leads to the following distribution of weights
(over a scale of 100%):

– Reputation of the organisation: 14,29%
– Software Engineering oriented: 28,57%
– Skill oriented: 28,57%
– Job role oriented: 14,29%
– Academic education oriented 14,29%

These weights are used to find out which one of the assessed standards scores
the best.

Data Extraction. Once the standard has been selected, the next step is to
extract the skills prescribed into such a standard. This extraction has to be
made such that every single skill is collected while respecting the organisational
structure and semantics proposed by the standard. Therefore, the expected out-
come of this step is a data set containing skills, which are organised respecting
the same grouping principle as defined in the standard.

Analysing the SWECOM Standard for Designing a DevOps 139

Data Analysis. The skills collected in the previous step have to be analysed
according to the following properties of interest:

1. Knowledge suitability: a statement describing a skill should contain one
verb and (at least) one noun. The verb refers to the kind of cognitive capabil-
ity needed (e.g. remember, understand, apply, analyse, evaluate and create)
regarding the capability subjects (i.e. the nouns). This stage of the process
is aimed at assessing whether the knowledge described in the studied stan-
dard describes a skill that is indeed relevant from perspective of the DevOps
program under development.

2. Cognitive complexity: each relevant skill has to be analysed to determine
its complexity in terms of the efforts required to be made by the person
to acquire such competency (considering an initial knowledge status to be
defined). Each skill has to be associated to a level representing the cognitive
complexity of acquiring such a skill. It has been decided to use the cate-
gories within the cognitive process proposed by Anderson et al. [3] as levels
to categorise each collected skill (see Sect. 2 for details about this work).

Programme Specification. The last step of the process consists in writing
the specification of the programme. It consists in:

1. Defining the program structure exploiting:
– the Cognitive Complexity Levels
– a thematic hierarchical structure made of Topics, Sub-Topics, and Skills.
– a Programme level as an integer representing a strictly ordered set of mod-

ules to represent a program decomposition in consistent sub-programme
increments.

2. Mapping all the skills extracted from the standard to the program structure
3. If necessary, rewriting all the skill definitions to get a uniform and system-

atic skill definitions. This happens especially when the standard, being not
DevOps tailored, provides too abstract skill definitions for skills of interest.

4. If necessary, add skills that are not covered by the standard but are known,
from experience, to be necessary to include in the program.

5. Mapping of timing information (durations, periods, . . .) to the thematic struc-
ture components to ease the organisation of the delivery of such as activities
on a particular time frame and devoted hours.

4 Results

4.1 Selection of the Standard

The first step of the process leads to the selection of a standard such that it
fits (as best as possible) the selection criterion. In the context of this work,
as an attempt to reduce the threats to validity on the results to be produced,

140 A. Capozucca and N. Guelfi

the organisations to be considered are the IEEE2 and the ACM3. These two
organisations have a long history and very well reputation on the creation of
standards related to education. Since there is no standard explicitly focusing on
DevOps, the best option is to rely on SE-oriented standards coming from those
institutions.

Table 2. Comparison of standards

Attributes Standards

CS2013 [10] SE2014 [11] SWEBOK [30] SWECOM [29]

Organisation’s reputation (14,29%) Y Y Y Y

SE-oriented (28,57%) N Y Y Y

Skill-oriented (28,57%) Y N N Y

Job-role-oriented (14,29%) N N N N

Academic Education-oriented (14,29%) Y Y N N

Score 57,14% 57,14% 42,86% 71,43%

The assessed standards are: CS2013, SE2014, SWEBOK, and SWECOM.
Only CS2023 is branded by the ACM, the others belong to the IEEE. It is
worth mentioning that CS2013 and SE2014 are standards which were initially
conceived for educational purposes (i.e curricula design), whereas SWEBOK and
SWECOM were meant for providing guidelines to the SE community in terms
of knowledge (SWEBOK) and capabilities (SWECOM) coverage.

Table 2 sums up the assessment results based on selected criteria which shows
that the standard that best fits the selection criterion is SWECOM.

4.2 Data Extraction

This step refers to retrieving the relevant information conveyed by SWECOM
such that it can tractable for further analysis. Table 3 shows a subset of the
extracted data from SWECOM. This table presents the kind of information
being collected and how it is structured. This structure corresponds to the same
provided by the standard (and described in Sect. 2). Thus, the data is grouped
in skills areas, skills, and activity description. The table presents the part corre-
sponding to the “Software Requirements” skill area. This area contains 11 skill
oriented activities, grouped in 5 skill sets.

In total, this extraction step resulted in collecting 244 skill oriented activities,
grouped in 13 skill areas, and 59 skill sets. The data set that contains the com-
plete extracted information from the standard can be found at https://messir.
uni.lu/downloads/devops-programme/. Notice that any other data set produced
as result of having executed this process is also available in the same address.

2 https://www.ieee.org/.
3 https://www.acm.org//.

https://messir.uni.lu/downloads/devops-programme/
https://messir.uni.lu/downloads/devops-programme/
https://www.ieee.org/
https://www.acm.org//

Analysing the SWECOM Standard for Designing a DevOps 141

Table 3. SWECOM data extraction - software requirements skill area

Skill area name Skill set name Activity description

Soft. Requirements Elicitation Identify stakeholders for elicitation
of requirements

Engage stakeholders in elicitation of
requirements

Use appropriate methods to capture
requirements

Negotiate conflicts among
stakeholders during elicitation

Analysis Use appropriate domain analysis
techniques

Perform analysis of requirements for
feasibility and emergent properties

Specification Use appropriate notations for
describing requirements

Verification and
Validation

Check requirements for accuracy,
lack of ambiguity, completeness,
consistency, traceability, and other
desired attributes

Construct and analyse prototypes

Negotiate conflicts among
stakeholders during verification

Process and
Product
Management

Use appropriate methods for
management of requirements,
including configuration management

These data sets are released as .csv files, as the intention is to make them avail-
able in a tool agnostic manner.

It must be noticed that SWECOM also includes the description of activities
grouped by competency level (based on seniority). As this work relies on a dif-
ferent competency level categorisation, such kind of activity descriptions were
not taken into account during the data extraction.

4.3 Data Analysis

The analysis of the data collected in the previous step is done using two dimen-
sions: (1) the cognitive categories (and their complexity order) as presented by
Anderson et al. [3]4, (2) earlier teaching experiences on SE and DevOps [7–9,24]
and (3) the DevOps study market analysis [17]. While the first dimension is
used to categorise each collected activity, the second and third ones are used to

4 Duly introduced in Sect. 2.

142 A. Capozucca and N. Guelfi

determine whether an activity is relevant (or not) for then programme under
specification.

Despite of mapping an activity to a cognitive category is a subjective process,
it was done using the 19 cognitive processes that further clarify each of the
cognitive categories provided in [3]. This means that the (main) verb used in the
activity description was compared with the 19 cognitive processes to determine
to which it is closest (in terms of semantic meaning), and then find out the most
suitable cognitive category for such a activity.

For example, in the originally stated activity “Uses appropriate methods to
capture requirements” the main verb is “to use”; when comparing this verb with
the 19 specific cognitive processes, it is concluded that the closest one (among the
19) is “implementing” (as in [3] “using” is considered as part of this cognitive
process). Finally, it only remains to look to which category “implementing”
belongs to: the answer is “‘Apply’, which is notated as L3. This explains how
the activity “Uses appropriate methods to capture requirements” is categorised
as cognitive complexity level L3.

The process to determine whether an activity is (or not) relevant for DevOps
is mainly based on: (1) if it is NOT expected to be already acquired by the
learner, (2) if it applies to the software development phases covered by devel-
opers and/or operators, and (3) if it is relevant when engineering a delivery
ecosystem (known also as DevOps environment -DevOpsEnv). As a consequence,
(some) activities related to requirements elicitation, or human-computer inter-
action were left out.

Table 4 provides a subset of the outcome produced in this step. This table
shows the results of having analysed the “Software Requirements” skill area.
From this analysis, it has been concluded that 2 (out of 11) activities are not
going to be considered in the next steps of the process5. However, these 2 activi-
ties, as any other else have been categorised according to the cognitive complexity
levels.

4.4 Programme Specification

The final step is aimed at producing the programme specification according to
the established structure. The obtained programme specification after having
executed this step consists of 211 skills, grouped in 13 topics, and 47 sub-topics.

The 13 topics are:

1. DevOps Fundamentals
2. DevOps Process
3. DevOps Requirements
4. DevOpsEnv Design
5. DevOpsEnv Construction
6. Testing Management
7. DevOpsEnv Sustainment

8. DevOpsEnv Engineering
9. DevOpsEnv Quality

10. DevOpsEnv Security
11. Configuration Management
12. Metrics
13. DevOpsEnv Platform

5 These activities are expected to be already acquired by the learner.

Analysing the SWECOM Standard for Designing a DevOps 143

Table 4. SWECOM data analysis - software requirements skill area

Cognitive complexity level Skill name Activity description Relevance for DevOps

L1 Software

Requirements

Elicitation

Identify stakeholders for

elicitation of requirements

N

L3 Engage stakeholders in

elicitation of requirements

N

L3 Use appropriate methods to

capture requirements

Y

L5 Negotiate conflicts among

stakeholders during

elicitation

Y

L3 Software

Requirements

Analysis

Use appropriate domain

analysis techniques

Y

L4 Perform analysis of

requirements for feasibility

and emergent properties

Y

L3 Software

Requirements

Specification

Use appropriate notations

for describing requirements

Y

L5 Software

Requirements

Verification and

Validation

Check requirements for

accuracy, lack of ambiguity,

completeness, consistency,

traceability, and other

desired attributes

Y

L6 Construct and analyse

prototypes

Y

L5 Negotiate conflicts among

stakeholders during

verification

Y

L3 Software

Requirements

Process and Product

Management

Use appropriate methods

for management of

requirements, including

configuration management

Y

Most of the resulting skills are refinement of those proposed in the stan-
dard, except for the skills enclosed in the unique newly proposed topic named
“DevOpsEnv Platform”. This new topic covers the skills required to deal with
virtualisation and networking. The full list of skills cover by this topic, as well
as any other topic can be found at https://messir.uni.lu/downloads/devops-
programme/.

However, to make the paper self-contained, a small sub-part of the pro-
gramme specification is shown in Table 5. This table contains the skills that have
been obtained after refining the activities shown in Table 4. This refinement has
led to the definition of skills grouped in two different topics (“DevOps Funda-
mentals” and “DevOps Requirements”). Moreover, it must be noticed that the
skills grouped into “DevOps Requirements” are split between program levels 1
and 2 of the programme, whereas those in “DevOps Fundamentals”, are all into
programme level 1. However, the cognitive complexity level remains the same as
those assigned during the analysis step.

https://messir.uni.lu/downloads/devops-programme/
https://messir.uni.lu/downloads/devops-programme/

144 A. Capozucca and N. Guelfi

Table 5. Programme specification - Topics: “DevOps Fundamentals” and “DevOps
Requirements”

Programme level Sub-topic Skill description Cognitive complexity level

Topic: DevOps Fundamentals

1 Requirements

Elicitation

Use appropriate methods

for retrieval of DevOps

requirements

L3

1 Collect requirements for

DevOps environment (aka

DevOpsEnv)

L4

1 Requirements

Analysis

Use appropriate domain

analysis techniques

L3

1 Perform analysis of DevOps

requirements for feasibility

and emergent properties

L4

1 Requirements

Specification

Use appropriate notations

for describing DevOpsEnv

requirements

L3

Topic: DevOps Requirements

1 DevOps

Requirements

Verification and

Validation

Construct and analyse

prototypes for components

of the DevOpsEnv

L4

1 DevOps

Requirements

Process and Product

Management

Use appropriate methods

for management of

requirements, including

configuration management

L3

2 DevOps

Requirements

Verification and

Validation

Check requirements for

accuracy, lack of ambiguity,

completeness, consistency,

traceability, and other

desired attributes

L4

2 Negotiate conflicts among

Devs and Ops during

verification

L5

5 Discussion

In this work, the selected standard is SWECOM as it scores the best (among
the assessed) using the proposed selection criterion. SWECOM is a relatively
new standard (2014), based on other primary SE references like [14,28,30,32].
Thus, it is not surprising that it has a large coverage in terms of SE knowledge.
However, what it makes it the best, it is the proposed SE capability model which
is skills-oriented. For a vocational domain like DevOps, it is much more insightful
to present the expected abilities a person should have rather what he/she should
know.

However, it is worth noticing that the proposed programme design process
is standard independent. That means that in case a newer standard appears
(let Std2 be this new standard), it can be evaluated using the given criterion to
determine how it scores among any the other already assessed standards.

Analysing the SWECOM Standard for Designing a DevOps 145

In case this new standard scores better than the standard used in the first
run (let Std1 be this standard), then it makes perfect sense to re-run process
using the new standard (i.e. Std2).

The new run of the process will eventually result in a DevOps programme
specification based on Std2 (let DevOpsStd2

Prog be this resulting programme spec-
ification). The question that arises now is: what to do with DevOpsStd1

Prog? There
is no precise answer to this question as such a situation has not yet been
experimented. However, based on earlier experiences on updating course syl-
labuses, the advise will be to “merge” DevOpsStd1

Prog and DevOpsStd2
Prog into one

(i.e. DevOpsStd1,Std2
Prog). Merging means (1) to identify the differences between

both programmes, (2) to determine what it has to be kept on each of them, and
(3) combine the kept elements into one programme.

The number of differences between DevOpsStd1
Prog and DevOpsStd2

Prog can be used
as metric to assess the quality of former programme with respect to the new one.
A small number of differences would mean DevOpsStd1

Prog is still of good quality
despite of being based on no the best available standard. For example, it could
be assumed that the DevOps programme based on SWECOM is of good quality
if the number of new skills brought by the a programme based on a standard
scoring better than SWECOM is less than 40 (i.e. 80% of the SWECOM based
programme6 is still valid).

Up to now, it has been discussed the qualities that make SWECOM the
best choice among the selected standards, and how to proceed in case a better
standard appears. The proposed design process has also been discussed in terms
of suitability in case a new standard wants to be used. However, when talking
bout the suitability of the process, it has also to be discussed the possibility
of changing the proposed assessment criterion (by adding a new property or
weighting the proposed properties). In this case any selected standard has to be
re-assessed. Unless the standard to be selected using this new criterion is not
“skill oriented”, the proposed process remains valid.

This means that the next steps of the process have to be executed as pre-
scribed since they are independent from the selected standard: i.e. extract the
skills (or whatsoever they are referred to - abilities, capabilities, know-how, etc.),
and then categorise them using the cognitive categories provided in [3]. The use
of a standard competency level which is independent from the selected stan-
dard makes the design process generic. For example, SWECOM defines its own
competency levels (Technician, Entry Level Practitioner, Practitioner, Technical
Leader, and Senior Software Engineer) to refine the specification of the activi-
ties. However, activities described using these competency these levels were not
considered. Conversely, the level-independent activity description versions were
considered during the data extraction step.

Therefore, a priory, it can be concluded that the proposed design process
is quite general. However, it is acknowledged that this work only reports an
initial experience. This means that more experiments have to be executed to get
empirical evidence supporting the claim of a generic process.

6 This programme covers 211 skills.

146 A. Capozucca and N. Guelfi

6 Related Work

This section focuses on already existent works that are related to the use of
standards for the design of a DevOps curriculum driven by know-hows.

First of all, among all the sources found, there exist no work that exploits
or even cite the SWECOM Standard. It has been understood that, even though
SWECOM is around since 2014, studies that design education programmes are
not using standards that are know-hows driven. They prefer to use standards
that focus on knowledge first and are already well spread in education. This
includes mainly CS2013 [2] and SE2014 [1]. A second reason is that SWECOM
is less known in the academic community than SWEBOK [15] which is knowledge
based and is not DevOps specific.

Another important finding is that no study has been found which exploits the
standard job profiles which are by definition know-hows driven and that cover
DevOps. More specifically the DDaT - Digital, Data and Technology Profes-
sion Capability Framework used as a standard by the UK government. [16], and
the DASA - DevOps Competence Model [4]. The DDaT is the most advanced
job profile standard definition covering DevOps and introduces 6 roles precisely
defined: Apprentice DevOps engineer, Junior DevOps engineer, DevOps engi-
neer, Senior DevOps engineer, Lead DevOps engineer and Principal DevOps
engineer.

Despite those preliminary remarks, it can be found nonetheless three studies
that contain interesting findings or proposals related to the work addressed in
this paper.

– The PhD thesis of Candy Siu Tung Pang [27] entitled “Grounded Theory for
DevOps Education” confirms that there is no existing DevOps standard or
“true authority” that provides a reference for what is DevOps. It shows that
there exist very few academic courses on DevOps and mostly non standard
based. An analysis of the computer science curricula of the top 50 institutions
listed in the 2017 QS World University Rankings by Subject - Engineering
and Technology is described. The DevOps coverage of the study programmes
is made according to the following five domains: Continuous Integration, Test-
ing, Build, Repository and Version Control, Deployment. Among all the 50
programmes, none is addressing the 5 dimensions and only 3 are address-
ing partly 4 dimensions. None contains a module (set of courses) aiming at
covering DevOps principles and practices.

– In “A Proposal for Integrating DevOps into Software Engineering Curric-
ula” [22], Christopher Jones provides an approach for a integrating DevOps
into software engineering curricula. He advocates a large DevOps programme
rather than a single course. The programme proposed is more software engi-
neering oriented and covers 9 topics (Agile Development Frameworks, Archi-
tecting for DevOps, Infrastructure and Automation, Configuration Man-
agement, IT Operations, IT Security, Organizational Transformation, Soft-
ware Delivery Automation, Software Economics, Software Testing). This pro-
gramme is designed according to a study of standards focusing mainly on

Analysing the SWECOM Standard for Designing a DevOps 147

maturity models including CMMI variants, InfoQ Continuous Delivery matu-
rity model, and IBM DevOps maturity model. The ACM 2014 Curricula Rec-
ommendations for Software Engineering is analysed and 180 instruction hours
are extracted and associated to the DevOps topics proposed.

– In “Teaching DevOps and Cloud based Software Engineering in University
Curricula” [13], the authors present an interesting work that aims at intro-
ducing a standard body of knowledge for DevOps and use it for designing a
DevOps course. It is noticed the lack of academic or professional standard
for DevOps. A list of Knowledge Units grouped in 12 Knowledge Areas is
proposed in order to define a DevOps Software Engineering Body of Knowl-
edge (DevOpsSE BoK). The Knowledge Areas are: DevOps fundamentals,
Organisational impact of DevOps, Agile software development, DevOps Tools
and Processes, DevOps Practices and Platforms, Cloud Computing Architec-
tures, Cloud powered software development, Cloud monitoring tools, Cloud
Automation Overview, Cloud automation tools, Cloud Security Architecture,
DevSecOps. This body of knowledge table of content is very lightly defined
and loosely related to SWEBOK, CS-BoK, DS-BoK and CS2013. Nonethe-
less, this study shares many concerns that are addressed in this paper.

7 Conclusion

This paper presents a standard based process to derive a DevOps graduate edu-
cation programme. The derived programme, based on the SWECOM standard
as a result of the selection phase, is presented in a comprehensive manner such
that it can be used for curricula designers as reference when designing their own
programmes according to the constraints imposed by their educational insti-
tutions. However, the aim of these DevOps based programmes, regardless the
institution where they are delivered, is the same: to form the next generation of
software engineers with DevOps abilities. This will help to catch up the today’s
job market needs.

The standard based programme design process presented in this paper is at
its early stages, and it has been barely validated. The same, to certain extend,
applies to the skill oriented DevOps programme obtained after having enacted
the process. Nevertheless, it is worth concluding that the initial results reported
in this paper are grounded on solid bases (well referred standards and first-hand
experience of the paper’s authors on the fields of software engineering, and in
particular DevOps).

The results presented in the paper, despite of being very preliminary, are
also very promising. However, both the process and the programme will required
the efforts of the community (i.e. software educators, quality officers, curricula
designers, etc) to validate and improve them. Therefore, by making both the
process and the programme publicly available to the community, it is expected
not only to contribute to make the task of designing of software engineering
education programmes easier, but also to reinforce their validation.

Last, but not least important, it is worth mentioning that some actions aimed
at enhancing the validation of the contributions brought by this paper related

148 A. Capozucca and N. Guelfi

are already planned. A second iteration of the process is being considered to be
done including the Digital, Data and Technology Profession Capability Frame-
work (DDaT) [16] as a new standard to be assessed during the execution of the
process. This is a promising standard since it is also skill oriented as SWECOM
and dedicates a section specifically to DevOps. Therefore, regardless how this
standard scores the given criterion, the process will be continued using it to drive
the next phases. The purpose of doing so is twofold: first to assess the process
by doing a new iteration but with a different standard, and secondly to obtained
a second DevOps programme which could be used to judge the one proposed in
this paper, and then proceed according to the approach presented in Sect. 5.

References

1. ACM/IEEE: Software Engineering 2014 - Curriculum Guidelines for Undergradu-
ate Degree Programs in Software Engineering. ACM, New York (2015). https://
www.acm.org/education/SE2014-20150223 draft.pdf

2. ACM/IEEE-CS Joint Task Force on Computing Curricula: Computer science cur-
ricula 2013 (2013). https://doi.org/10.1145/2534860

3. Anderson, L., Krathwohl, D., Bloom, B.: A taxonomy for learning, teaching, and
assessing: a revision of Bloom’s taxonomy of educational objectives. Longman
(2001). https://books.google.lu/books?id=EMQlAQAAIAAJ

4. DDAS Association: Dasa - competence and maturity models. https://www.
devopsagileskills.org/dasa-competence-model/. Accessed Mar 2020

5. Beck, K., et al.: The agile manifesto (2001)
6. Bloom, B.: Taxonomy of Educational Objectives: The Classification of Educational

Goals. Mackay (1956)
7. Bobrov, E., Bucchiarone, A., Capozucca, A., Guelfi, N., Mazzara, M., Masyagin,

S.: Teaching DevOps in academia and industry: reflections and vision. In: Bruel,
J.-M., Mazzara, M., Meyer, B. (eds.) DEVOPS 2019. LNCS, vol. 12055, pp. 1–14.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39306-9 1

8. Bobrov, E., et al.: DevOps and its philosophy: education matters!. Microservices,
pp. 349–361. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31646-
4 14

9. Capozucca, Alfredo, Guelfi, Nicolas, Ries, Benôıt: Design of a (yet another?)
DevOps course. In: Bruel, Jean-Michel, Mazzara, Manuel, Meyer, Bertrand (eds.)
DEVOPS 2018. LNCS, vol. 11350, pp. 1–18. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-06019-0 1

10. AfCMA Joint Task Force on Computing Curricula, IC Society: Computer Science
Curricula 2013: Curriculum Guidelines for Undergraduate Degree Programs in
Computer Science, vol. 999133. ACM, New York (2013)

11. TJTF on Computing Curricula: Curriculum guidelines for undergraduate degree
programs in software engineering. Technical report, New York, NY, USA (2015)

12. Debois, P.: DevOps days Ghent. DevOps Days (2009). https://devopsdays.org/
about/

13. Demchenko, Y., et al.: Teaching DevOps and cloud based software engineering in
university curricula. In: 2019 15th International Conference on eScience (eScience),
pp. 548–552 (2019)

https://www.acm.org/education/SE2014-20150223_draft.pdf
https://www.acm.org/education/SE2014-20150223_draft.pdf
https://doi.org/10.1145/2534860
https://books.google.lu/books?id=EMQlAQAAIAAJ
https://www.devopsagileskills.org/dasa-competence-model/
https://www.devopsagileskills.org/dasa-competence-model/
https://doi.org/10.1007/978-3-030-39306-9_1
https://doi.org/10.1007/978-3-030-31646-4_14
https://doi.org/10.1007/978-3-030-31646-4_14
https://doi.org/10.1007/978-3-030-06019-0_1
https://doi.org/10.1007/978-3-030-06019-0_1
https://devopsdays.org/about/
https://devopsdays.org/about/

Analysing the SWECOM Standard for Designing a DevOps 149

14. Diaz-Herrara, J., Hilburn, T.B.: Software engineering 2004: Curriculum Guidelines
for Undergraduate Degree Programs in Software Engineering. IEEE Computing
Society(IEEE-CS), Association of Computing Machinery (ACM) (2004)

15. Fairley, R.E., Bourque, P., Keppler, J.: The impact of SWEBOK version 3 on
software engineering education and training. In: CSEE&T, pp. 192–200 (2014)

16. UK Government Digital Service: DDaT - digital, data and technology
profession capability framework. https://www.gov.uk/guidance/development-
operations-devops-engineer. Accessed March 2020

17. Guelfi, N.: Preventing the AI crisis: the AISE Academy proposal for Lux-
embourg. Farvest Group, ITOne Luxembourg (2019). http://www.itone.lu/pdf/
AISE-academy.pdf. Accessed 03 Apr 2014

18. Guelfi, N., Capozucca, A., Ries, B.: Measuring the SWEBOK coverage: an app-
roach and a tool. In: SWEBOK Evolution - Virtual Town Hall Meeting. IEEE
(2016). Virtual presentation of accepted peer reviewed paper

19. ISO/IEC: Software Engineering - Guide to the Software Engineering Body of
Knowledge (SWEBOK). International Organization for Standardization, iSO-IEC
TR 19759–2005 (2005)

20. ISO/IEC: Software Engineering - Guide to the Software Engineering Body of
Knowledge (SWEBOK). International Organization for Standardization, iSO-IEC
TR 19759–2014 (2014)

21. Jabbari, R., bin Ali, N., Petersen, K., Tanveer, B.: What is DevOps?: A systematic
mapping study on definitions and practices. In: Proceedings of the Scientific Work-
shop Proceedings of XP 2016, pp. 12:1–12:11. ACM, New York (2016). https://
doi.org/10.1145/2962695.2962707. https://doi.acm.org/10.1145/2962695.2962707

22. Jones, Christopher: A proposal for integrating DevOps into software engineer-
ing curricula. In: Bruel, Jean-Michel, Mazzara, Manuel, Meyer, Bertrand (eds.)
DEVOPS 2018. LNCS, vol. 11350, pp. 33–47. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-06019-0 3

23. Kim, G., Debois, P., Willis, J., Humble, J., Allspaw, J.: The DevOps Handbook:
How to Create World-Class Agility, Reliability, and Security in Technology Orga-
nizations. ITpro Collection, IT Revolution Press (2016). https://books.google.dk/
books?id=ui8hDgAAQBAJ

24. Konchenko, S.: Quality assessment of DevOps practices and tools. Master’s thesis,
Faculté des Sciences, de la Technologie et de la Communication, University of
Luxembourg (2018)

25. Leite, L., Rocha, C., Kon, F., Milojicic, D., Meirelles, P.: A survey of DevOps
concepts and challenges. ACM Comput. Surv. 52(6) (2019). https://doi.org/10.
1145/3359981

26. Naur, P., Randell, B.: Software engineering report of a conference sponsored by
the Nato science committee Garmisch Germany 7th–11th October 1968 (1969).
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

27. Pang, C.: Grounded theory for DevOps education (2019). https://era.library.
ualberta.ca/items/c1c2ac64-c553-4be0-9bde-85148d2a6def

28. Pyster, A., et al.: Graduate software engineering 2009 (gswe2009) curriculum guide-
lines for graduate degree programs in software engineering. Stevens Institute of
Technology (2009)

29. IC Society: Software engineering competency model version 1.0. SWECOM 2014
Software Engineering Competency Model (2014)

30. IC Society, Bourque, P., Fairley, R.E.: Guide to the Software Engineering Body of
Knowledge (SWEBOK(R)): Version 3.0, 3rd edn. IEEE Computer Society Press,
Los Alamitos (2014)

https://www.gov.uk/guidance/development-operations-devops-engineer
https://www.gov.uk/guidance/development-operations-devops-engineer
http://www.itone.lu/pdf/AISE-academy.pdf
http://www.itone.lu/pdf/AISE-academy.pdf
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/2962695.2962707
https://doi.acm.org/10.1145/2962695.2962707
https://doi.org/10.1007/978-3-030-06019-0_3
https://doi.org/10.1007/978-3-030-06019-0_3
https://books.google.dk/books?id=ui8hDgAAQBAJ
https://books.google.dk/books?id=ui8hDgAAQBAJ
https://doi.org/10.1145/3359981
https://doi.org/10.1145/3359981
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
https://era.library.ualberta.ca/items/c1c2ac64-c553-4be0-9bde-85148d2a6def
https://era.library.ualberta.ca/items/c1c2ac64-c553-4be0-9bde-85148d2a6def

150 A. Capozucca and N. Guelfi

31. Standard, N.I.: DevOps - standard for building reliable and secure systems includ-
ing application build, package and deployment (2016). https://standards.ieee.org/
develop/project/2675.html

32. Trustees of the Stevens Institute of Technology: GRCSE V1.1. In: Pyster, A.,
et al. (eds.) Graduate Reference Curriculum for Systems Engineering. Hoboken,
NJ, USA (2015). www.bkcase.org/grcse/

https://standards.ieee.org/develop/project/2675.html
https://standards.ieee.org/develop/project/2675.html
www.bkcase.org/grcse/

Teaching Logic, from a Conceptual
Viewpoint

Daniel de Carvalho(B) and Nikolai Kudasov

Innopolis University, 1, Universitetskaya Str., Innopolis 420500, Russia
{d.carvalho,n.kudasov}@innopolis.ru

Abstract. Logic is not only of foundational importance in mathemat-
ics, it is also playing a big role in software engineering and formal veri-
fication. Its different roles influence its teaching, which has to take into
consideration the recent developments in category theory and proof the-
ory. We show that teaching set theory from a categorical viewpoint, in
contrast with Zermelo-Fraenkel axioms, helps develop proper skills that
are essential in mathematics and software engineering. The use of a proof
assistant provides students with another perspective on both subjects:
basic category theory and proof theory.

“Since the most fundamental social purpose
of philosophy is to guide education and
since mathematics is one of the pillars of
education, accordingly philosophers often
speculate about mathematics. But a less
speculative philosophy based on the actual
practice of mathematical theorizing should
ultimately become one of the important
guides to mathematics education.”

F. William Lawvere, [30]

In his famous proposal for reforming the teaching of mathematics [10], Jean
Dieudonné notices: “In order to provide what they think is a satisfactory course
in mathematics, university professors consider that a first-year student should
(...) already be fairly well trained in the use of logical deduction and have some
idea of the axiomatic method.” The purpose for such a proposal was the striking
revolution in mathematics with the dramatic increase of abstraction since around
1880. As Dieudonné says, “there is no turning back in science, and one cannot
even contemplate renouncing the new methods and new results; this would be
the very negation of what is the essential mission of higher education”.

This proposal was held sixty years ago and had a strong influence in the
wave of New Math in the secondary education in the 1970’s (even if Dieudonné
himself felt this reform betrayed it—see [42, Chapter 10] for an account of this
influence). Since then new methods and new results continued to appear; would
any of them justify new proposals to prepare better first-year students in order
to avoid renouncing them and thus negating “the essential mission of higher edu-
cation”? On the other hand, industrial software engineering has emerged and the
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 151–177, 2020.
https://doi.org/10.1007/978-3-030-57663-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_11

152 D. de Carvalho and N. Kudasov

importance of formal verification has increased; how could we take into account
these new needs in our proposals? The aim of the current paper is to contribute
to answer these two questions for teaching logic, taking into consideration:

– the tremendous developments in category theory and proof theory;
– the move in software engineering from programming computers with machine

codes to high-level programming languages and building complex information
systems and the formal verification techniques, which require good reasoning
and abstraction skills.

Other proposals taking into account such developments in category theory and
proof theory to renew the way to teach logic exist; let us mention in particular:

– the series of papers [14], which relates how Dan Ghica experimented with
teaching seven-and eight-year-olds about monoidal categories;

– the recent talk by Emily Riehl [52], which argued that ∞-categories should
be taught to undergraduate students taking into account the discovery of
homotopy type theory [57]; our proposal is probably less radical than hers
and perhaps a course based on our principles could be seen as an introduction
to a course based on her principles.

Sections 1 and 2 consider some of the main achievements in category theory
and proof theory respectively that can have a direct impact in teaching logic:
axiomatizing sets and mappings with category theory, use of natural deduction in
formalizing proofs and its implementation in proof assistants. Nevertheless, the
reader should be aware that the two fields have not the same status here: while an
introductory course in logic can have as a primary objective to introduce proof
theory, we do not evoke how to teach category theory (for instance, even the
word “functor” could/should be avoided in such an entire course), but we show
how developments in category theory inspire a way to teach set theory providing
an axiomatization of the category of sets that helps develop proper skills that
are essential in mathematics and software engineering. Finally, Sect. 3 discusses
relevant trends in software engineering and formal verification, reinforcing the
motivation from the perspective of IT industry for the approach discussed in the
preceding sections.

1 From a Categorical Viewpoint

1.1 Two Guiding Principles

According to Dieudonné, the teaching of mathematics should follow two funda-
mental guiding principles.

“The first (...) is that a mathematical theory can only be developed axiomat-
ically in a fruitful way when the student has already acquired some familiarity
with the corresponding material—a familiarity gained by working long enough
with it on a kind of experimental, or semi-experimental basis, i.e., with constant
appeal to intuition.”

Teaching Logic, from a Conceptual Viewpoint 153

Indeed, mathematics is not only an , it is also a ; now, accord-
ing to Immanuel Kant [24], the geometer “gelangt auf solche Weise durch eine
Kette von Schlüssen, immer von der Anschauung geleitet, zur völlig einleucht-
enden und zugleich allgemeinen Auflösung der Frage.”1

We illustrate this principle with the concept of isomorphism of sets (Sub-
sect. 1.3) and the concept of equalizer (Subsect. 1.4).

“The other principle (...) is that when logical inference is introduced in some
mathematical question, it should always be presented with absolute honesty—
that is, without trying to hide gasps or flaws in the argument; any other way, in
my opinion, is worse than giving no proof at all.” An axiomatic approach allows
such an absolute honesty and we could identify absolute honesty with precision.
As an example, one can consider the book [11] whose principal contribution “is an
axiomatic approach to the part of algebraic topology called homology theory”—
what we want to emphasize here is the fact that the origin of this axiomatization,
which was an outcome of the most advanced research in this abstract field of
mathematics, “was an effort, on the part of the authors, to write a textbook”
(thus the axiomatization of the homology theory had pedagogical motivations,
like it has been the case of Elementary Theory of Category of Sets on the part
of Lawvere, as we show it in Subsect. 1.2). Its authors wrote: “In spite of this
confusion, a picture has gradually evolved of what is and should be a homology
theory. Heretofore this has been an imprecise picture which the expert could use
in his thinking but not in his exposition. A precise picture is needed. It is at just
this stage in the development of other fields of mathematics that an axiomatic
treatment appeared and cleared the air” [11]. Ralf Krömer [27] commentates:

What is interesting here is how they use the term “precise”. They think
apparently that precision has the task to render communication possible,
in particular in cases where the expert (who has at his disposal a “picture”
serving his purposes) wants to impart something to the non-expert (that
is for example the student). They seem to think further that precision is to
be attained in particular by an axiomatic treatment. Hence, for Eilenberg
and Steenrod precision is not a property related to the adequateness of an
explication! (but to the adequateness of a means of communication.) And
this precision, it seems undebatable, is to be attained by a formal pre-
sentation: the receiver is able to decode the message following a scheme
agreed on beforehand. The formal creates intersubjectivity: all partici-
pants of the discourse have a kind of standard key. But this is insufficient
to grasp the intention. (...) In the continuity of this distinction, one can
distinguish between the communication function and the denotation of an
expression–and focus on both or only on the denotation. Now, Eilenberg
and Steenrod consider precisely the axiomatic treatment as establishing
the possibility of a communication while the “initiated” (who has at his

1 “In such a way, through a chain of inferences that is always guided by intuition, he
arrives at a fully illuminating and at the same time general solution of the question.”
[25].

154 D. de Carvalho and N. Kudasov

disposal an unexplicated common sense) has access to the concept in a
different way.

As a consequence of this second principle, if we want to teach some theory
to beginners (for instance, set theory), we need a formalization of this theory.
Several formalizations of set theory exist; in particular,

– Zermelo-Fraenkel (ZF) axioms, which axiomatize a material set theory;
– Elementary Theory of Category of Sets (ETCS), which axiomatizes a struc-
tural set theory and are an outcome of category theory.

The latter formalization reflects more faithfully Cantor’s viewpoint since a set
in a model of ETCS is not supposed to be endowed with a membership relation-
ship that relates its elements between them—compare how cardinal numbers are
defined in [6], p. 282:

“Mächtigkeit” oder “Cardinalzahl” von M nennen wit den Allgemeinbe-
griff, welcher mit Hülfe unseres activen Denkvermögens dadurch aus der
Menge M hervorgeht, daß von der Beschaffenheit ihrer verschiedenen Ele-
mente m und von der Ordnung ihres Gegebenseins abstrahirt wird2

from one hand and in ZF from the other hand, where cardinals are specific
ordinals, which are transitive sets; this extra structure on sets of ZF can be seen
as a useless gauge (at least as long as we do not do research into models of ZF),
as explained in [44]. In the next subsections, we argue why structural set theory
is more profitable to students (at least to those who do not intend to become
specialists of models of ZF).

1.2 Elementary Theory of the Category of Sets

In 1963, after having completed his PhD in which he set out, among other
important ideas in category theory, a new categorical viewpoint on universal
algebra, William Lawvere as a new assistant professor was supposed to teach
calculus to first-year students. In some interview [8], Lawvere relates:

At Reed I was instructed that the first year of calculus should concentrate
on foundations, formulas there being taught in the second year. Therefore
(...) I spent several preparatory weeks trying to devise a calculus course
based on Zermelo-Fraenkel set theory. However, a sober assessment showed
that there are far too many layers of definitions, concealing differentiation
and integration from the cumulative hierarchy, to be able to get through
those layers in a year. The category structure of Cantor’s structureless
sets seemed both simpler and closer. Thus, the Elementary Theory of the

2 “We will call by the name “power” or “cardinal number” of M the general concept
which, by means of our active faculty of thought, arises from the aggregate M when
we make abstraction of the nature of its various elements m and of the order in
which they are given. [5], p. 86”.

Teaching Logic, from a Conceptual Viewpoint 155

Category of Sets arose from a purely practical educational need, in a sort of
experience that Saunders also noted: the need to explain daily for students
is often the source of new mathematical discoveries.

Colin McLarty [43] notes: Lawvere “found the membership theoretic foun-
dation for set theory pedagogically awkward and not to the point so he worked
out a categorical axiomatization of the category of sets. In other words he gave
a version of set theory based on functions and composition of functions-set the-
ory without a set membership relation.” This new axiomatization of set theory
has been published in [28]. In its republishing [33] forty years later, Lawvere
commentates:

This elementary theory of the category of sets arose from a purely prac-
tical educational need. When I began teaching at Reed College in 1963, I
was instructed that first-year analysis should emphasize foundations, with
the usual formulas and applications of calculus being filled out in the sec-
ond year. Since part of the difficulty in learning calculus stems from the
rigid refusal of most textbooks to supply clear, explicit, statements of con-
cepts and principles, I was very happy with the opportunity to oppose that
unfortunate trend. Part of the summer of 1963 was devoted to designing
a course based on the axiomatics of Zermelo-Fraenkel set theory (even
though I had already before concluded that the category of categories is
the best setting for “advanced” mathematics). But I soon realized that
even an entire semester would not be adequate for explaining all the (for a
beginner bizarre) membership-theoretic definitions and results, then trans-
lating them into operations usable in algebra and analysis, then using that
framework to construct a basis for the material I planned to present in the
second semester on metric spaces. However I found a way out of the ZF
impasse and the able Reed students could indeed be led to take advantage
of the second semester that I had planned. The way was to present in a
couple of months an explicit axiomatic theory of the mathematical oper-
ations and concepts (composition, functionals, etc.) as actually needed in
the development of the mathematics.

Interestingly Michael Barr came to the same conclusion:

I was more-or-less familiar with Lawvere’s thoughts on the subject, I had
never thought too much about them until some years ago, more than 5, less
than 10, when I found myself teaching a course in set theory. For the first
time, I came to realize what a complex horror set membership really is. In
every other type of mathematics I had ever studied, the objects were some
kind of sets with some kind of structure and the arrows were the functions
(or at worst equivalence classes of such) that preserved them. Mostly, the
structure was given by operations, or at least partial operations (...)
But of course, Sets are an exception. Here are sets defined in terms of these
elaborate epsilon trees and this structure is invariably ignored. It seemed
to me intuitively, confirmed by Makkai, that the ONLY arrows between

156 D. de Carvalho and N. Kudasov

sets that actually preserved all that structure were inclusions of subsets.
(...) But of course the truth is that that epsilon structure is invariably
ignored. So why is it taken as the basis of mathematics. Much better to
simply define sets as the objects of a category and then an element is just
a global section, or rather an equivalence class thereof.
My whole experience with category theory convinces me that membership
(...) is an intrinsically obscure notion. Or rather, not that it itself is obscure,
but it obscures anything it touches. (...) [3]

The concepts of sets and mappings arise not only in calculus but everywhere
in mathematics. Thus mathematicians need a formalization of these concepts
and teachers of mathematics need to find a way to introduce them to students:
“Historically, the notion of mapping arises as an idealization of the notion of
rule. And this is also how we introduce it in mathematics education.” [37] Its
formalization in the Zermelo-Fraenkel theory (ZF) and in Lawvere’s Elementary
Theory of the Category of Sets (ETCS) are radically different: in ZF the concept
of mapping is reduced to the concept of set, while in ETCS, this concept is
axiomatized. It is a first difference and in Subsect. 1.3 we exemplify how Hume’s
principle can be reformulated without the membership relationship but only
with mappings.

At the time Lawvere introduced ETCS, this theory had a limited success.
Probably one of the reasons for that is that at that time the notion of elementary
topos was not yet introduced. Nowadays, on the opposite, ETCS can be better
understood in the framework of topos theory. The notion of topos has been
developed in three steps:

1. In the Tôhoku paper [18] Grothendieck considered (pre)sheaves on topolog-
ical spaces. A presheaf on a topological space X is a contravariant functor
with domain the category whose objects are the open sets of X and whose
morphisms are the inclusions. In particular this way to see a topological space
as a category allows to see the intersection of two open sets as a Cartesian
product (in the categorical sense) in that category (thus avoiding relying on
the elements of the two sets); it has eventually led to the introduction of the
notions of site and topos as first introduced by Grothendieck as follows: “On
appelle U -topos, ou simplement topos si aucune confusion n’est à craindre,
une catégorie E telle qu’il existe un site C ∈ U tel que E soit équivalent
à la catégorie C∼ des U -faisceaux d’ensembles sur C.”3 [1] A site is given
by a (Grothendieck) topology on a category; it is a considerable abstraction
from the notion of topological space—if O is a topology on some set and C
is the category obtained from this topology as described above and J asso-
ciates with each object U of C the set of all jointly-surjective families of open
inclusions (Ui ⊆ U)i∈I , then (C, J) is a site.

3 “We define a U -topos, or simply topos if no confusion can occur, to be a category E
such that there exists a site C ∈ U such that E is equivalent to the category C∼ of
U -sheaves of sets on C.”.

Teaching Logic, from a Conceptual Viewpoint 157

2. Now, for a given topos E there may be given many different sites of definition
for E (that is, sites (C, J) such that E is equivalent to the category of sheaves
on (C, J)). Since “les notions de topos et de morphisme de topos semblent
être le fil conducteur indispensable, et il convient de leur donner la place
centrale, la notion de site devenant une notion technique auxiliaire”4 [1], a
site of definition for a topos E can be seen as a presentation of E and it
becomes desirable to be able to define the notion of topos independently of
any site. It is what Giraud has done, providing an intrinsic characterization
of Grothendieck toposes (intrinsic in that it does not refer to a site).

3. Finally Lawvere and Tierney, in order to provide an elementary (i.e. first-
order) axiomatic approach to sheaves, define toposes as categories which have
finite limits and finite colimits, are Cartesian closed and have a subobject
classifier5 [29]; (Lawvere-Tierney) topologies on such categories are endomor-
phisms on the subobject classifier satisfying some axioms. Every Grothendieck
topos is an elementary topos and every Grothendieck topology on a small
category C determines a Lawvere-Tierney topology on the presheaf topos
SetCop

(see, for instance [39]). Nevertheless, some elementary toposes are not
Grothendieck toposes as exemplified by Hyland’s effective topos [22], a topos
of great importance in computer science. These new axioms for a topos “can
be understood as axioms for set theory formulated not in terms of member-
ship, but in terms of functions and their composition” [38]. From this view-
point the subobject classifier can be thought of as an object of truth-values,
which has a structure of Heyting algebra.

ETCS can be then presented in its natural framework: a model of ETCS is
an elementary topos satisfying some extra axioms.

We thus have two concurrent first-order set theories: ZF theory and ETCS.
In [34] Tom Leinster addresses the following question: “What kind of set theory
should we teach?” As an answer he writes: The big advantage is that a course
based on ETCS “is of far wider benefit than one using the traditional axioms.
It directly addresses a difficulty experienced by many students: the concept of
function (and worse, function space). It also introduces in an elementary setting
the idea of universal property. This is probably the hardest aspect of the axioms
for a learner, but since universal properties are important in so many branches
of advanced mathematics, the benefits are potentially far-reaching.”

In Subsect. 1.4 we investigate some instances of this idea of universal prop-
erty, which allows to substitute reductionism by axiomatization in many impor-
tant cases. In our view, more generally, providing an intrinsic account of concepts
rather than being satisfied with a formal reductionism is a strong trend in math-
ematics. Some other important examples include:

4 “The notions of topos and of morphism of toposes seem to be the indispensable
thread, and it is convenient to give them the central place, whereas the notion of
site becomes an auxiliary technical notion”.

5 This definition has been slightly simplified later on.

158 D. de Carvalho and N. Kudasov

– the transition from the definition by Descartes [9] of affine algebraic sets over
the field of real numbers by arbitrary sets of polynomials to the ideals of
polynomials that vanish on them;

– Giraud’s characterization of Grothendieck toposes, which avoids presenting
toposes with sites: we recalled how the notion of Grothendieck topos, “via the
Giraud characterization theorems, led to the development of elementary topoi
by Lawvere and Tierney and the consequent geometrization of logic” [17];

– the introduction of Lawvere theories providing an objective account6 of alge-
braic theories.

An introductory course in logic has not as an objective the presentation of
the general concept of universal property as a general theory with the essential
concept of adjointness [23]—in our opinion it is too advanced for beginners—even
if it is probably the most important concept in category theory:

But here lies what may seem to be a mystery: why do almost all funda-
mental constructions performed in different fields of mathematics turn out
to be adjoints? Is this an epistemological phenomenon, a fact of our way
of thinking? Is it an ontological phenomenon, a fact about the way math-
ematical objects are? (...) We might marvel at it and try to find how this
can be so. But it is simply a fact. What is wonderful is that the language
of category theory allowed for the definition of adjoints, that within the
categorical framework, one could find the appropriate level of abstraction.
Once adjoints have been defined, once their usefulness has been recognized,
once their ubiquitous character has been acknowledged, then it becomes
natural to use them whenever appropriate, to look for them whenever they
might show up and to exploit them as much as possible. In other words, the
way one does and thinks about mathematics has changed in an irreversible
manner [41].

An introductory course in logic should convey the idea of universal property
only via some instances of this concept; we provide such instances in Subsect. 1.4.
As an example, even if the categorical viewpoint reveals us that the universal
property of Cartesian products of sets is more important than any of its ZF def-
initions, it is perfectly possible to teach it without introducing any categorical
notion at all. Still, introducing ETCS requires some very basic category theory.
The purposes of the book written by Lawvere and Schanuel [32], were precisely
“to provide a skeleton key to mathematics for the general reader or beginning
student; and to furnish an introduction to categories for computer scientists,
logicians, physicists, linguists, etc. who want to gain some familiarity with the
6 “Presentations of algebraic structures for the purpose of calculation are always

needed, but it is a serious mistake to confuse the arbitrary formulations of such
presentations with the objective structure itself or to arbitrarily enshrine one choice
of presentation as the notion of logical theory, thereby obscuring even the existence
of the invariant mathematical content. In the long run it is best to try to bring the
form of the subjective presentation paradigm as much as possible into harmony with
the objective content of the objects to be presented;” [31].

Teaching Logic, from a Conceptual Viewpoint 159

categorical method. (...) Preliminary versions of this book have been used by
high school and university classes, graduate seminars, and individual profession-
als in several countries.” This book is a great support for the student and the
inspiration of the teacher; by the way its title inspired the title of our paper.

Finally, another contrast between ZF theory and ETCS is that in the former
theory the membership relation is global while the latter one is local and this
opposition can be seen as an opposition between untyped mathematics and typed
mathematics; we argue that typed mathematics corresponds more closely to
the everyday practice of mathematicians (and teachers of mathematics) than
untyped mathematics in Subsect. 1.5.

1.3 Hume’s Principle

Learning to count is a child’s very first step into mathematics. Counting the
number of elements of finite sets allows to address the following basic fundamen-
tal problem: given two finite sets, do they have the same number of elements?
Students are familiar with this problem and thus they find it very natural to
address the more general problem: given two sets, do they have the same num-
ber of elements?

A generalization of the concept of cardinality from finite sets to infinite sets
would allow to solve this problem, but such a generalization is not trivial at
all. In absence of the notion of cardinality for infinite sets, we can analyze the
equipotency relation in light of Hume’s principle: “When two numbers are so
combin’d, as that the one has always an unite answering to every unite of the
other, we pronounce them equal” [21].

A usual way to formalize this concept is to define the notions of injection,
surjection and bijection as follows:

Definition 1. Let A and B two sets and let f be a mapping from A to be B.
We say that f is an injection from A to B if, for any elements a1 and a2 of

A such that f(a1) = f(a2), we have a1 = a2.
We say that f is a surjection from A onto B if, for any element b of B, there

exists an element a of A such that f(a) = b.
We say that f is a bijection from A onto B if it is an injection from A to B

and a surjection from A onto B.

and then to say that two sets A and B are equipotent if there exists a bijection
from A onto B.

Now, something noteworthy is that these concepts of injection, surjection
and bijection can be rephrased without relying to any set membership relation.
A way to reach such a rephrasing is first to notice that, given any set 1 with
exactly one element ∗, for any set A, we have a bijection from the set Set(1, A)
onto the set A that associates with every mapping x from 1 to A the element
x(∗) of A, where, for any sets X and Y , we denote by Set(X,Y) the set of
mappings from X to Y . As a consequence, we get: Given any singleton 1, for
any sets A and B, for any mappings f1 and f2 from A to B, we have f1 = f2 if

160 D. de Carvalho and N. Kudasov

and only if, for any mapping x from 1 to A, we have f1 ◦ x = f2 ◦ x: we say that
the set 1 is a separator in the category of sets and mappings. Then a mapping
f from A to B is an injection if and only if, for any mappings x1 and x2 from 1
to A such that f ◦ x1 = f ◦ x2, we have x1 = x2. In order to understand better
what we got, it is worth introducing some terminology:

Definition 2. Let S be some set. Let A and B two sets and let f be a mapping
from A to B. We say that f is an S-injection from A to B if, for any mappings
x1 and x2 from S to A such that f ◦ x1 = f ◦ x2, we have x1 = x2.

Therefore all the injections from a set A to a set B are exactly the 1-injections
from A to B, where 1 is any set with exactly one element.

This analysis of the concept of injection allowed us to obtain the three fol-
lowing consequences:

1. We have a generalization of the concept of injection since, now, we can con-
sider S-injections for any set S. This generalization seems very boring and
uninteresting at first glance since actually it is easy to show that:

– if S is empty, then any mapping f from A to B is an S-injection;
– and, if S is inhabited, then all the S-injections are exactly the injections.

Nevertheless, this generalization is very important because it can be extended
to toposes in which there are objects that are not initial and not separator
either and extended to other concepts than injections also: such generalization
interprets the internal language of the topos in the sets of morphisms with
domain S—this interpretation is local and classical in contrast with the global
and intuitionistic interpretation of the internal language in the topos. The
local and classical interpretation gives opportunities to see how to manipulate
first-order predicate calculus with many given structures (each object of each
topos gives such a structure). The interplay between the local and the global
interpretations is described by the Kripke-Joyal semantics [48] and already
the notion of S-injection provides nice examples of how subtly the implication
connector behaves in the Kripke semantics.

2. All the singletons play the same role—any singleton 1 can be considered and
its element does not play any role: we are naturally working up to isomor-
phism.

3. And, finally, the notion of S-injection does not rely on the notion of any set
membership relation.

While interpreting first-order predicate calculus in general, reflecting with the
Kripke-Joyal semantics in general, reasoning up to isomorphism in general or
demonstrating a property without relying on the notion of any set membership
relation in general could scare the beginner, we can naturally introduce these
ways of thinking in particular cases addressing the basic (but fundamental) prob-
lem that consists in comparing sets in their numbers of elements.

Teaching Logic, from a Conceptual Viewpoint 161

1.4 Finite Limits

Cartesian Products. Cartesian products of sets, and more generally Cartesian
products, arise everywhere in mathematics and in computer science. We claim
that learning the set-theoretical encoding of ordered pairs is not the best way
to understand them, arguing against the reduction of ordered pairs to sets in a
similar way as Paul Benacerraf argued against the reduction of natural numbers
to sets [4]. There are different possible definitions of ordered pairs in the Zermelo-
Fraenkel theory; for instance:

– Wiener’s definition: (a, b) = {{{a}, ∅}, {{b}}}
– Kuratowski’s definition: (a, b) = {{a}, {a, b}}
What is interesting with such definitions is that ordered sets could be defined
as sets. But the way mathematicians use ordered pairs does not rely on these
definitions: The two definitions are completely different and Wiener’s definition
has some properties not shared by Kuratowski’s definition (and conversely).
For instance taking Wiener’s definition, we have ∅ ∈ ⋃

(a, b) whatever a and b
are, which is not necessarily the case with Kuratowski’s definition, while with
Kuratowski’s definition, we have a ∈ ⋃

(a, b) whatever a and b are, which is not
necessarily the case with Wiener’s definition. Taking Kuratowski’s definition, let
us consider the following statement:

(∀a, b)a ∈
⋃

(a, b) (∗)

This statement is provable: it is a theorem and we could thus use it to show other
statements. Nevertheless we are embarrassed. Indeed, taking Wiener’s definition
this statement is not provable any more. Since ordered pairs arise everywhere in
mathematics, it means that many different properties can be shown on objects
according to the definition we take for ordered pairs. The experienced mathe-
matician has the intuition that such a statement is not “legitimate”. We feel
as unsatisfactory to rely only on experience, intuition, on the notion of “legit-
imate” statement without trying to define it, especially because here intuition
and experience contradict formalism; indeed formally nothing distinguishes the
statement (∗) and the “legitimate” one:

(∀a, b, a′, b′)((a, b) = (a′, b′) ⇒ (a = a′ ∧ b = b′)) (∗∗)

Both (∗) and (∗∗) are theorems—the experienced mathematician knows that we
should “discard” the statement (∗), while the statement (∗∗) is very important.
And it is unsatisfactory to teach ordered pairs by giving such definitions to
students who do not have the intuition of the teacher to distinguish between the
legitimacy of these two statements, especially because such definitions do not
help convey intuition.

We could tentatively define legitimate statements as statements that do not
depend on the definition we take for ordered pairs as soon this definition is
“sensible”. But then we are led to define sensible definitions: Why are Wiener’s
and Kuratowski’s definitions “sensible” and how to distinguish between sensible

162 D. de Carvalho and N. Kudasov

definitions and non-sensible definitions? Addressing such a question assumes to
not identify the concept of ordered pair with one of its possible definitions in
Zermelo-Fraenkel theory.

In Zermelo-Fraenkel theory the Cartesian product of two sets A and B is
defined as the set of all ordered pairs (a, b) with a ∈ A and b ∈ B. In category
theory a Cartesian product of two sets is defined as a solution of a universal
problem: it is a set A × B with a mapping π1

A,B : A × B → A and a mapping
π2
A,B : A × B → B such that, for any set C, for any mappings f1 : C → A

and f2 : C → B, there exists a unique mapping h : C → A × B such that the
following diagram commutes:

C

A �
π1
A,B

�

f 1

A × B

h

π2
A,B

� B

f
2

�

Taking for A × B the set of Wiener ordered pairs (a, b) with a ∈ A and
b ∈ B and for π1

A,B (resp. π2
A,B) the mapping that associates with every Wiener

pair (a, b) the element a of A (resp. the element b of B), we obtain that the
set A × B with the mappings π1

A,B and π2
A,B satisfy the property expressed

by the diagram above. It is the case also if, instead, we take for A × B the
set of Kuratowski ordered pairs (a, b) with a ∈ A and b ∈ B. We could see
the diagram expressing the universal property as a specification and the Wiener
and the Kuratowski definitions as some possible implementations of this speci-
fication. The mathematician uses universal properties like the software engineer
uses information hiding [49]: he can use once an implementation of the universal
property to show its existence, but once the existence has been proved, he should
not need to know how it has been proved and he does not need to rely to any
specific implementation but only to the universal property—not only he should
not need to use a specific implementation, but he should not use it at the risk
of proving evil statements. What matters are the properties that axiomatize the
object we consider, not how it could be (subjectively and arbitrarily) codified
and reduced. Thus definitions in ZF “leak” some details that are not essential to
what a mathematician is trying to formalize, allowing “bad” statements about
defined objects and requiring a mathematician (or student) to understand which
statements are legitimate; on the other hand a definition in ETCS allows to cap-
ture the essence of the defined object precisely: this situation is analogous to a
programmer working directly with private fields of an object as compared to a
programmer working with an interface that hides the specifics of implementation.

Notice a further great benefit for the student who has been taught the uni-
versal property of the Cartesian products of sets: it will help him understand
the other instances of Cartesian products when he will encounter them: Carte-
sian products of topologies, Cartesian products of groups, Cartesian products of

Teaching Logic, from a Conceptual Viewpoint 163

types... since the universal property is always the same one—while reductionist
implementations of such instances can be very different.

Equalizers. Another kind of finite limit is the notion of equalizer. Again it is
defined by a universal property: an equalizer of two parallel morphisms f, g :
A → B in some category is a morphism e : E → A for some object E such that
f ◦ e = g ◦ e and, for any object E′, for any morphism e′ : E′ → A satisfying
f ◦ e′ = g ◦ e′, there exists a unique morphism h : E′ → E such that e′ = e ◦ h:

E
e � A

f �

g
� B

E′

h
e
′

�

Is it enough to give such definitions to teach them? Of course not! We need
to convey some intuition. How can it be done? A possible way is to show that
Cartesian products and equalizers are an abstraction of Descartes’s work in its
algebraization of geometry: Before Descartes, a parabola was defined as being
the locus of a point that is equidistant from a given line (the directrix) and a
given point (the focus), which does not lie on that line, in that plane. With
Descartes it is an equalizer of the polynomial functions f, g : R

2 → R with
f(x, y) = y2 − 4cx and g(x, y) = 0, where the focus has coordinate (c, 0) and the
line D is represented by the equation x = −c (see Fig. 1).

Fig. 1. Parabolas are equalizers

It is how the geometrical intuition can help get new intuition about categor-
ical finite limits.

164 D. de Carvalho and N. Kudasov

1.5 Sets as Types

Elementary toposes are (classical) models of a first-order theory but, at the same
time, they are intuitionistic models of local set theories, a higher-order type the-
ory. With the Curry-Howard isomorphism in mind, the fact that toposes can be
seen as models of higher-order type theory is not surprising: we know that toposes
are Cartesian closed categories and that Cartesian closed categories are models
of a higher-order type theory that corresponds to the simply-typed lambda-
calculus; thus toposes are a way to do mathematics in a higher-order typed pro-
gramming way. While the fact that physics is typed is commonly accepted (there
are units in physics), types in mathematics are not as well acknowledged: a com-
mon discourse asserts that mathematics are done in ZF; we claim that the way
to do mathematics in toposes with types actually corresponds more closely to
the usual practice of mathematics than how they are formalized in ZF. The idea
to formalize mathematics within some type theory is not new, it dates back at
least to 1903:

Every propositional function ϕ(x) – so it is contended – has, in addition
to its range of truth, a range of significance, i.e. a range within which x
must lie if ϕ(x) is to be a proposition at all [54]

It was then an attempt to solve contradictions that arise within untyped unre-
stricted set theories.

Let us illustrate this difference between global and local set theories:

– In global set theory, given any two sets A and B, we can always formulate
the proposition A ⊆ B, which bears some truth-value, and consider the set
A ∩ B, whatever A and B are.

– In local set theory, a set has always a unique type of the form PC for some
set C and we can formulate the proposition A ⊆ B and we can consider the
set A ∩ B (of type PC) only if A and B have the same type PC; the range of
significance of the propositional function ϕ(x, y) = x ⊆ y is a type PC × PC
(interpreted as an object of a topos).

Even if a teacher of mathematics does not work consciously in a typed framework,
in practice he does: there are mistakes that consist (let say) to write an equality
between two expressions denoting real numbers and a calculation error led the
student from one of these two expressions to the another one; and there are
mistakes that consist (let say) to write an equality between two expressions of
different “kinds” (an equality between a function and an integer, for instance);
in a global set theory, this latter equality is legitimate (it is just that it is false,
like the former one), while actually the mistake is much worse—it is a not a
calculation error, it does not even make sense at all. The fact that it does not
even make sense at all could be formalized by saying that the two expressions
have different types.

Local set theory is thus a way to make explicit the frequent implicit use of
types. In Subsect. 3.3 we see that in software engineering types are used not
only in an explicit way but also in an implicit way, especially with programming

Teaching Logic, from a Conceptual Viewpoint 165

languages that have weakly expressive types. For instance, one can compare
languages that have explicit sum types (like OCaml and Haskell) and languages
(like C) that do not have such explicit types for defining records with variants;
in the latter case it is matter of the discipline of the users that the fields are
well initialized and inconsistencies may lead to run-time errors that are subtle to
track and correct, while in the former case the discipline is enforced at compile-
time by the type-checker. In the same way higher-order types in mathematics
help ensure consistency and readability.

Interestingly, even explicitly untyped calculi like the untyped lambda-calculus
can be better understood with the notion of type. Indeed, a major breakthrough
in computer science has been the discovery that models of the untyped lambda-
calculus are provided by reflexive objects in Cartesian closed categories and since
the latter ones are models of the simply typed lambda-calculus, we get that the
untyped lambda-calculus is a typed lambda-calculus with one universal type!

2 Proof Theory

In his third attempt to define what is,
Theaetetus suggests that knowledge is true judgement with a justification
(“ ”, [50], 201c–201d). Proof theory is
this branch of logic initiated by David Hilbert that make mathematical objects
studied per se out of these justifications. Several formalisms have been intro-
duced for defining such objects: Hilbert systems, sequent calculus, natural deduc-
tion... Unlike with a specialized and advanced course in proof theory, a general
and introductory course in logic has to focus on only one formalism; we advocate
for natural deduction [51] for the following reasons:

– In contrast to Hilbert systems, natural deduction is natural in that, like what
mathematicians usually do in order to prove statements, it allows to introduce
assumptions that can be applied during the proof. So, natural deduction is
much closer to usual practice of mathematicians than Hilbert systems. It is
a strong argument in favour of using natural deduction as a pedagogical tool
to teach how to write usual proofs in English.

– In contrast to sequent calculus, natural deduction proofs enjoy nice prop-
erties, while in sequent calculus different cut-free proofs must be identified
and we have no perfect correspondence between cut-free proofs and simply-
typed lambda-terms: the syntactic objects of the natural deduction proofs
correspond better to their objective content than the syntactic objects of the
sequent calculus proofs.

Our colleagues of the University Grenoble 1 made this decision [47], choosing
natural deduction to teach reasoning to undergraduate students. After several
years of experimentation, they concluded that the experience was successful and
advocated that it “is the good way to introduce logic to beginners, at least for
students in computer science”; and even more: “In particular, proof-trees are
simple to understand and funny. They require no mathematical background. We

166 D. de Carvalho and N. Kudasov

think that they could be introduced at the highschool, at least for propositional
logic, thus helping scholars in their scientific activities.”

A further argument in favour of introducing natural deduction for teaching
logic is that proof-assistants like Coq, Agda, Lean, Isabelle are based on natural
deduction. This gives a benefit of double perspective on the topic – from the
point of view of using a proof assistant, and from proof theory – which helps
improving understanding of the topic.

2.1 Toposes in the Teaching of Proof Theory

A very common confusion is to consider many proofs that are not proofs by
contradiction as proofs by contradiction. It is thus often said that the usual
proofs of the Pumping lemma for regular languages or the irrationality of

√
2

are by contradiction while it is not the case. It is an essential objective of a
proof theory course to clarify what proofs by contradiction are and a syntactic
viewpoint is enough to distinguish between proofs that are by contradiction and
those that are not by contradiction. Nevertheless, a semantic viewpoint allows
to prove that a statement cannot be proved without proving it by contradiction
by exhibiting a topos that does not satisfy this statement.

Let us consider, as an example, the two following statements that are usually
taught to first-year students in mathematics:

1. Cantor’s theorem: For any set X, there is no surjection from X to the set
P(X) of subsets of X.

2. For any (finite) set X, the set P(X) is finite and its cardinality |P(X)| is
2|X|, where |X| is the cardinality of X.7

The two statements are related in that the second statement implies the first
one (at least if we have the same assumptions on X) but they should not be
confused and they are independent of each other in that:

– One can prove the first one by a proof that is not a proof by contradiction,
while the second one can be proved only by contradiction.

– There are universes in which the first one holds and not the other one.

By universes we mean here: toposes. It is easy to exhibit toposes in which Can-
tor’s theorem holds (Cantor’s theorem holds in any non-degenerate topos) and
not the second statement; it is a striking way to get the independence of these
two statements and how the second one can be denied by showing some universe
in which this happens, and it is where toposes can be useful—Seeing it is a way
to get some intuition about the distinction between the two kinds of proofs.
One of the most easiest toposes to describe in which such phenomenon appears
is probably the Sierpinski topos: we have three different truth-values and thus
|P(X)| = 3|X| for any object X—this topos can be described in an informal
7 This statement can be strengthened by removing the assumption that X is finite,

but it requires to introduce the notion of cardinality for infinite sets, which is often
always done only in more advanced courses.

Teaching Logic, from a Conceptual Viewpoint 167

way by sets that evolve along the time (we have two stages: earlier/later) and
doing mathematics in this topos is very instructive in that it allows to distin-
guish between concepts that are often confused in assuming that we have only
two truth-values.

2.2 Coq Proof Assistant

Coq is a proof assistant and provides, among other things, interactive proof
methods, decision and semi-decision algorithms, and a tactic language for letting
the user define its own proof methods. It has many applications, from formal-
ization of mathematics [16,58] and certification of properties of programming
languages [35,61], to formal verification of algorithms [12] and even extracting
certified, correct implementations from specifications [7,36], which is a direct
application of the Curry-Howard isomorphism for software engineering.

A general course in logic aiming to enhance the ability of students to work
with proofs can benefit from the aid of a proof-assistant like Coq, at the very
least to serve as proof-checks: if a student can convert a proof written in English
into a proof that Coq accepts, then the proof is probably correct. On the other
hand, interactive capabilities of the Coq IDE can give insights even when a
student does not have a complete proof.

In this section we describe how we integrated Coq in a logic course addressed
to the first year bachelor students of Innopolis University, Russia. Note that a
similar approach can be used with some other proof assistants that have similar
type-theoretic foundation, such as Agda, Isabelle or Lean. For example, [2] has
been used to teach propositional and classical logic with Lean. Perhaps intro-
ducing a proof assistant might complicate the course delivery for some students
that are not oriented at software engineering, as they are required to learn a
new tool. Nevertheless, from our experience, many students gain a much better
understanding of the material after having worked with a proof assistant, which
is a strong argument in favour of using a proof assistant as an alternative method
of working through the proofs without strong requirement for all students to be
proficient with the tool (it can be introduced in one or two classes to students).

Subset of Coq for Teaching. Coq has many features, which is nice for the
Coq users, but this good point has two drawbacks: It requires much time to learn
all of them and it helps too much the student for “trivial” proofs (trivial enough
for Coq being able to provide efficient automatic tools). In order to avoid these
two drawbacks, we can limit the use of Coq to a small subset of its features,
specifically only allowing the following tactics in proofs:

– intros for function arguments, premises of implication and forall;
– destruct for conjunction and exists in premises;
– unfold;
– split for splitting conjuction in conclusion into two separate goals;
– exists for construction of a proof of existential proposition;
– apply to apply a lemma or theorem to the goal;

168 D. de Carvalho and N. Kudasov

– exact to provide exact expression for the goal;
– rewrite for substitution using equality;
– reflexivity for trivial proofs of form x = x;
– assumption for using one of the assumptions as proof.

It is quite easy to go back and forth between formal proofs in Coq using these
few tactics and informal written proofs for the reason we already highlighted that
Coq is based on natural deduction and that natural deduction is a formalism
that is “natural” in that it is quite closed to the usual way for mathematicians
to prove theorems.

The Exercise Axiom. For the convenience of students, we can provide a
placeholder axiom for unsolved exercises. This axiom prevents Coq from failing
on unsolved exercises, allowing students to skip any intermediate exercise and
focus on the one they want to solve first. Removing the axiom from the code
allows to immediately see what exercises have not been solved yet.

(* ATTENTION: remove this axiom to step through exercises. *)
Axiom exercise : forall (Anything : Type), Anything.

Exercises on Sets and Mappings in Coq. It would be tempting to provide
exercises about sets and mappings in Coq immediately, without explicit axioma-
tization of set theory. Unfortunately, working with native Sets in Coq can often
become considerably more tedious than it is on paper.

One of the biggest problems is working with subsets. For instance, while it is
easy to define on paper the subset [n] = {i ∈ N | i < n} of N and the inclusion
from [n] to [n + 1] for each natural number n, in Coq, on the contrary, even if
the “set” nat is available, it is not so easy to define the “sets” [n] as “subsets”
of [n + 1] and nat at the same time.

Another problem is dealing with existential quantifiers that arise as conse-
quences of the Principle of Unique choice. An example of an application of this
principle is to prove that bijections have inverses. In usual mathematics (on
paper), we implicitly use this principle, while it does not hold in Coq’s type
theory; instead, this principle has to be introduced as an axiom and dealt with
explicitly.

Category Theory in Coq. Working with an explicit axiomatization of sets
and mappings based on category theory as described in Sect. 1 removes these
issues. The notion of category is easily modelled in Coq and allows for nice formal
proofs. A possible way that is easy to use is shown on Fig. 2.

Proofs in English and in Coq. To emphasize similarity between formal proofs
in Coq and in English, we suggest the following examples.

Exercise 1. Let C be a category. Let A be an object in C. Show that the identity
morphism idA : A → A is an isomorphism.

Teaching Logic, from a Conceptual Viewpoint 169

Record category : Type := Category {

obj : Type; (* what are objects *)

mor : obj -> obj -> Type; (* what are morphisms *)

(* identity and composition *)

mor_id : forall {X}, mor X X;

mor_comp : forall {X Y Z}, mor X Y -> mor Y Z -> mor X Z;

(* axioms *)

mor_idL : forall X Y (f : mor X Y), mor_comp f mor_id = f;

mor_idR : forall X Y (f : mor X Y), mor_comp mor_id f = f;

mor_assoc : forall X Y Z W

(f : mor X Y) (g : mor Y Z) (h : mor Z W),

mor_comp f (mor_comp g h) = mor_comp (mor_comp f g) h

}.

Fig. 2. Formalising the notion of category in Coq

Proof. It is enough to find g : A → A such that idA ◦ g = idA and g ◦ idA = idA.
We set g = idA. Then both equations are satisfied with such a morphism g.

A formalization of this proof in Coq is given in Fig. 3. We note that some
proofs will require students to be more explicit in the formal proof in Coq,
although sometimes, proofs in Coq may be more succinct. The latter is often the
case when apply tactic can be used directly without specifying any additional
arguments for the lemma. Still, Coq allows and often even demands from the
user to be explicit about the steps in a proof, which is instrumental in developing
a good intuition about the structure of proofs.

Example mor_id_is_iso (C : category) (A : obj C)

: is_iso C A A (@mor_id C A).

Proof.

unfold is_iso. (* Unfold the definition of isomorphism. *)

exists (mor_id C). (* Let identity morphism be the inverse. *)

split. (* Prove the two equations separately. *)

- apply mor_idL. (* Use left identity axiom. *)

- apply mor_idR. (* Similarly for the second equation. *)

Defined.

Fig. 3. Exercise 1 in Coq

Exercise 2. Let X and Y be two objects in some category C. Let s : X → Y
and r : Y → X be two morphisms in C such that r ◦ s = idX . Show that s is a
monomorphism.

Proof. Let S be an object in C. Let x and x′ be two morphisms S → X such
that s ◦ x = s ◦ x′. Then, by postcomposing with r on both sides we have
r ◦ s ◦ x = r ◦ s ◦ x′. Since r ◦ s = idX , we have idX ◦ x = idX ◦ x′. By identity

170 D. de Carvalho and N. Kudasov

(* A lemma for constructing equalities using postcomposition *)

Lemma postcomp_eq (C : category) (X Y Z : obj C)

(f f’ : Y ~> Z) (g : X ~> Y): f = f’ -> f o g = f’ o g.

Proof.

intros H. rewrite H. reflexivity.

Defined.

Theorem section_is_mono (C : category) (X Y : obj C)

(s : X ~> Y) (r : Y ~> X)

(rs_eq_id : r o s = mor_id C): is_monomorphism C X Y s.

Proof.

unfold is_monomorphism. intros S.

unfold S_injection. intros x x’ sx_eq_sx’.

(* Apply postcomposition lemma to one of the assumptions *)

apply (postcomp_eq _ _ _ _ _ _ r) in sx_eq_sx’.

(* Reassociate parentheses *)

rewrite <- mor_assoc, <- mor_assoc in sx_eq_sx’.

(* Replace (r o s) with identity *)

rewrite rs_eq_id in sx_eq_sx’.

(* Eliminate identities *)

rewrite mor_idL, mor_idL in sx_eq_sx’.

(* We have rewritten assumption to satisfy the goal *)

assumption.

Defined.

Fig. 4. Exercise 2 in Coq

axiom we have x = x′. We have shown that for any object S in C and any
morphisms x, x′ : S → X such that s ◦ x = s ◦ x′, we have x = x′. This means
that s is an S-injection for any object S and thus is a monomorphism.

A formalization of this proof in Coq is given in Fig. 4. Note that we used a
lemma for postcomposing on both sides of an equation; although this is a minor
inconvenience, it makes the step explicit and is very easy to formalize.

3 Logic in Software Engineering

It is generally accepted that logic is important not only in mathematics, but
also in software engineering, as it is necessary to be able to reason about the
program’s behaviour. For instance, programmers are expected to be familiar
with and be able to reason about pre- and post-conditions and invariants [19].
However, even though applied category theory reaches in many areas, including
industrial software engineering, it is much less known among engineers.

In the preface to their book [13], Brendan Fong and David I. Spivak write:

We believe that [category theory] has the potential to be a major cohesive
force in the world, building rigorous bridges between disparate worlds, both

Teaching Logic, from a Conceptual Viewpoint 171

theoretical and practical. The motto at MIT is mens et manus, Latin for
mind and hand. We believe that category theory and pure math in general
has stayed in the realm of mind for too long; it is ripe to be brought to
hand.

Unlike computer science or mathematics in general, software engineering
problems often do not put a burden of proof on the engineer and instead require
evidence of work. This often leads to a certain degree of trust since the code is
not formally verified in many cases, as it would significantly increase the cost of
development. That is why it is crucial for software engineers to employ various
approaches to structure their programs in order to be able to maintain complex
systems.

General ideas about program structuring are often referred to as design pat-
terns. As it turns out, many concepts of category theory can be used to struc-
ture programs and information systems, especially but not only in functional
programming languages. We argue that for future software developers and archi-
tects it is crucial to be familiar with basic concepts from category theory since
they provide the basis for reasoning using (composable) abstractions.

3.1 Curry-Howard Isomorphism

We already mentioned the Curry-Howard isomorphism in two occasions:

– To explain why doing mathematics in toposes is a way of doing mathematics
with higher-order types (Subsect. 1.5).

– To mention applications of proof-assistants (Subsect. 2.2).

The main idea behind the Curry-Howard isomorphism is that formulas in math-
ematics correspond with types in programmings, proofs of these formulas cor-
respond with programs and cut-elimination (normalization, Gentzen’s Haupt-
satz) corresponds with the execution of programs. It can be formalized with
natural deduction, Cartesian closed categories and typed lambda-calculus. In
such a framework conjunction corresponds with Cartesian products and records,
disjunction with coproducts and sum types and second order quantification of
Girard’s System F [15] with hyperdoctrines [55] and parametric polymorphism.

Strict applications of the Curry-Howard isomorphism consist in extracting
certified correct programs in an automatic way using a proof-assistant like Coq
from formal proofs in mathematics. More relax applications do not require from
the user to write proofs in mathematics—the user directly writes programs spec-
ified by very expressive types, which are formulas in mathematics, and the com-
piler checks if the program conforms its type (Type Driven Development).

3.2 Category Theory in Functional Programming

Functional programming, stemming from lambda calculus has been borrowing
ideas from category theory for many years. A famous example is the use of
monads to structure programs in functional programming languages [46,60],

172 D. de Carvalho and N. Kudasov

such as Haskell [20], that require handling of input and output (or some other
so called “side effects”, such as state and error handling, non-determinism and
more).

Many libraries in Haskell are constructed as embedded domain specific lan-
guages (eDSL), allowing for succinct, expressive sublanguage to state and solve
problems in the domain. In [45] Meijer, Fokkinga and Paterson show various
methods of recursive programming with F -algebras. These methods have been
implemented in Haskell8. A pattern of creating (extensible) eDSLs using free
monads has been popularized in Data types à la carte [56]. This pattern has
been increasingly popular in Haskell and other languages, especially since a more
efficient implementation based on Church encoding has been suggested in [59].
At the moment of writing this paper there are multiple self-contained packages
that implement various ideas from category theory for practical use in Haskell
ecosystem9. These packages are highly used in Haskell ecosystem and most of
them are in transitive packages of many industrial projects.

The success of applied category theory in functional programming has led to
increasing interest in category theory from software engineering industry, which
provides additional motivation to teach basic category theory to students.

3.3 Implicit Types in Software Engineering

Most programming languages have some support for types and it is a common
practice to use user-defined types for specific type of data one needs to work with.
However, even when used in reality these types are often not precise enough and
actual types programmers rely on are implicit. We give a few examples of this,
specifying when the use of imprecise types is dictated by limitation of the type
system or is a choice of the programmer.

Preventing Data Type Design Anti-patterns. “Stringly typed” is a slang
IT term that describes the process where a software engineer uses string values
excessively for variables. Stringly typed code is code in which variables are often
typed as strings, and handled as strings, when there are better alternatives
available to programmers. It is also a word play off of “strongly typed” code,
which describes code where types are used rigidly to enforce results. Stringly
typed code may be strongly typed, in that it reinforces the use of strings, but
it is generally not “strongly written,” as it typically does not make use of the
most efficient solutions.

While “stringly typed” programming is considered an anti-pattern (see, e.g.
[40]), many developers still rely on simpler default types like strings and integers
to encode all sorts of data. For instance, one may use a default machine-sized

8 It is available on Hackage repository at http://hackage.haskell.org/package/
recursion-schemes.

9 The list is documented in the category-extras metapackage in Hackage repository
at http://hackage.haskell.org/package/category-extras.

http://hackage.haskell.org/package/recursion-schemes
http://hackage.haskell.org/package/recursion-schemes
http://hackage.haskell.org/package/category-extras

Teaching Logic, from a Conceptual Viewpoint 173

integer type to represent the result of a dice roll in a game, which has a very lim-
ited set of possible values. Another example would be handling identifiers: many
unique identifiers are commonly treated as integer or string values, even though
they should not admit operations available for those types, such as addition or
concatenation. This use of such anti-patterns motivates some research (such as
[26]) aiming to recover or reinforce structured data in strings.

Sum Types. It is very common for some data to be described in terms of a
disjoint union of several possible description. One example is a request response
(e.g. to a database or some remote service), which can either result in a success
and provide some information based on the request or it may fail, providing some
error message in this case. This situation is very well modelled by so-called sum
types, which are one more instance of the notion of finite (co)limits we already
encountered in Subsect. 1.4; more precisely they are coproducts. For instance,
here is a possible definition in Haskell programming language:

data Response result = Success result | Failure ErrorMessage

However, many languages do not have a good support (if any) to create user-
defined types that enforce this disjoint union. Some well-known programming
languages that properly support sum types are Swift, Rust, Haskell, OCaml and
F#. The languages Scala, C# and some other, instead, have a limited support
of sum types through the mechanism of case classes; the limitation in those
cases is that they require the use of a switch statement which does not support
exhaustive pattern matching in these languages, so it is up to the developer to
not forget to process all possible cases.

How do programmers deal with disjointness if it is not supported by pro-
gramming language? By explicit tagging and checking: a data type is created
with optional fields for every possible alternative and a special tag field that
labels which alternative needs to be considered. Note that it is common to use
switch statement for the value of the tag which mimics pattern matching. Of
course, since this relationship is not enforced by a compiler or interpreter, it may
lead to illegal program states and non-exhaustive case analysis.

Data Invariants and Quotient Types. Many data structure implementa-
tions have some invariant that has to be preserved internally. For instance, when
implementing a self-balancing tree one has to keep track of the balance manually.
This has two important implications. One is that developers have to hide imple-
mentation of such data structures in some way to guard users from relying on its
representation. However, hiding implementation sometimes entails that users do
not have a (safe) way to use that data structure efficiently. Another implication is
that developers need to be conscious of these invariants to avoid mistakes in the
code. Since most programming languages do not have any support for keeping
track of such invariants, software engineers often rely on external specification
and verification tools when formally tracking these is important.

174 D. de Carvalho and N. Kudasov

However, even when implementation is hidden some invariants may still leak
to the user. For example, the result of a sorting function should produce a sorting
collection, but often the type of a corresponding method will not indicate that,
instead a programmer will only mention it in the documentation. On the other
hand, a binary search method might assume an input array to be sorted, but
again this property of input data is not (and usually cannot be) enforced by the
type system.

Similar problems arise when representation used for some data structure is
not unique. For instance, depending on the order in which elements are inserted
into a self-balancing tree, we may get a different result, even when those differ-
ent representations correspond to the same set of values. This identification of
multiple possible values in a set as equal is very well modelled by quotient types,
but most programming languages do not have this feature.

Both data invariants and quotient types require programming language to
have some feature that enables equations about data. Only a few of program-
ming languages with dependent type systems (e.g. Idris) and proof assistants
are capable of such features.

Conclusion
Dieudonné’s proposal was motivated by the increase of abstraction in mathe-
matics. As Andrei Rodin writes [53]:

The development of new intuitions was not wholly suppressed but it
became a prerogative of a narrow circle of creative mathematicians who
invented new mathematical concepts and solved with them real mathemat-
ical problems; the rest of the community received these concepts mostly
in the sterilized form of formal and quasi-formal (like in Bourbaki’s case)
axiomatic theories. (...) However already in the second half of the twen-
tieth century this general tendency began to change (...). Thus I claim
that the tendency towards a “higher abstraction” of the twentieth century
mathematics is nothing but a local effect comparable with similar tenden-
cies taking place in other historical periods (...); it does not represent a
global tendency in the historical development of mathematics.

This dialectics of abstraction and intuition is fundamental in mathematics and
thus should be taken into account in teaching mathematics—teaching logic
should not be an exception. Reducing teaching logic to the introduction of a
dry formalism is not only useless; it reinforces wrong popular biases. Avoiding
such a reduction is more ambitious and more challenging, and even more so,
as noticed in [34] about ETCS, there “is at present a lack of teaching materi-
als” (citing [31] as being the main exception); but the lack of such material just
makes more important to introduce such content in courses, since it can hardly
be self-taught.

Acknowledgements. We are grateful to Todd Trimble for having pointed Michael
Barr’s testimony to us. Also, we acknowledge an anonymous reviewer for the feedback
on a previous version.

Teaching Logic, from a Conceptual Viewpoint 175

References

1. Artin, M., Grothendieck, A., Verdier, J.L.: Séminaire de géométrie algébrique du
Bois-Marie - 1963–1964 - Théorie des topos et cohomologie étale des schémas (SGA
4) - Tome 1. Lecture Notes in Mathematics, vol. 269. Springer (1972)

2. Avigad, J., Lewis, R.Y., van Doorn, F.: Logic and Proof (2020). https://leanprover.
github.io/logic and proof/. Accessed 2 July 2020

3. Barr, M.: The Category Theory Mailing List (1996). https://www.mta.ca/∼cat-
dist/catlist/1999/set-memb-func-comp

4. Benacerraf, P.: What numbers could not be. Philos. Rev. 74, 47–73 (1965)
5. Cantor, G.: Contributions to the Founding of the Theory of Transfinite Numbers.

Dover Books on Mathematics. Dover Publications, Mineola (1955)
6. Cantor, G.: Gesammelte abhandlungen mathematischen und philosophischen

Inhalts. Springer(1932). Ernst Zermelo (ed.)
7. Chlipala, A.: Certified Programming with Dependent Types: A Pragmatic Intro-

duction to the Coq Proof Assistant. The MIT Press, Cambridge (2013)
8. Clementino, M.M., Picado, J.: An Interview with F. William Lawvere - Part Two,

Bulletin of the Centro Internacional de Matematica (2008)
9. Descartes, R.: Discours de la Méthode... plus la Dioptrique, les Météores et la

Géométrie (1644)
10. Dieudonné, J.: New thinking in school mathematics, pp. 31–49. Organisation for

Economic Co-operation and Development (1961)
11. Eilenberg, S., Steenrod, N.E.: Foundations of Algebraic Topology. Princeton Math-

ematical Series. Princeton University Press, Princeton (1952)
12. Filliâtre, J.-C., Magaud, N.: Certification of sorting algorithms in the Coq system.

In: Theorem Proving in Higher Order Logics: Emerging Trends (1999)
13. Fong, B., Spivak, D.I.: An Invitation to Applied Category Theory: Seven Sketches

in Compositionality. Cambridge University Press, Cambridge (2019)
14. Ghica, D.: Inventing an algebraic knot theory. Mathematics Teaching, pp. 264–268

(2018–2019)
15. Girard, J.-Y.: Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son

Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des
Types. In: Fenstad, J.E. (ed.) Proceedings of the Second Scandinavian Logic Sym-
posium, volume 63 of Studies in Logic and the Foundations of Mathematics, pp.
63–92. Elsevier (1971)

16. Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A modular formal-
isation of finite group theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007.
LNCS, vol. 4732, pp. 86–101. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74591-4 8

17. Gray, J.W.: Fragments of the history of sheaf theory. In: Fourman, M., Mulvey,
C., Scott, D. (eds.) Applications of Sheaves. LNM, vol. 753, pp. 1–79. Springer,
Heidelberg (1979). https://doi.org/10.1007/BFb0061812

18. Grothendieck, A.: Sur quelques points d’algèbre homologique. I. Tohoku Math. J.
9(2), 119–221 (1957)

19. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

20. Hudak, P., et al.: Report on the programming language Haskell: a non-strict, purely
functional language version 1.2. ACM SigPlan Notices 27(5), 1–164 (1992)

21. Hume, D.: A Treatise of Human Nature: Being an Attempt to Introduce the Exper-
imental Method of Reasoning into Moral, volume I (1739)

https://leanprover.github.io/logic_and_proof/
https://leanprover.github.io/logic_and_proof/
https://www.mta.ca/~cat-dist/catlist/1999/set-memb-func-comp
https://www.mta.ca/~cat-dist/catlist/1999/set-memb-func-comp
https://doi.org/10.1007/978-3-540-74591-4_8
https://doi.org/10.1007/978-3-540-74591-4_8
https://doi.org/10.1007/BFb0061812

176 D. de Carvalho and N. Kudasov

22. Hyland, J.M.E.: The Effective Topos. In: Troelstra, A.S., van Dalen, D. (eds.), The
L. E. J. Brouwer Centenary Symposium, volume 110 of Studies in Logic and the
Foundations of Mathematics, pp. 165–216. Elsevier (1982)

23. Kan, D.M.: Adjoint functors. Trans. Am. Math. Soc. 87(2), 294–329 (1958)
24. Kant, I.: Kritik der reinen Venunft, volume 37a of Philosophische Bibliothek. Felix

Meiner (1956)
25. Kant, I.: Critique of Pure Reason. The Cambridge Edition of the Works of

Immanuel Kant. Cambridge University Press (1998). Translated and edited by
Paul Guyer and Allen W. Wood

26. Kelly, D., Marron, M., Clark, D., Barr, E.T.: SafeStrings: Representing Strings as
Structured Data. CoRR, abs/1904.11254 (2019)

27. Ralf, K.: Tool and Object: A History and Philosophy of Category Theory. Science
Networks. Historical Studies, Birkhäuser Basel (2007)

28. Lawvere, F.W.: An elementary theory of the category of sets. Proc. Nat. Acad.
Sci. 52, 1506–1511 (1964)

29. Lawvere, F.W.: Quantifiers and sheaves. Actes Congress Int. Math. 1, 329–334
(1971)

30. Lawvere, F.W.: Foundations and applications: axiomatization and education. Bull.
Symbol. Logic 9(2), 213–224 (2003)

31. Lawvere, F.W., Rosebrugh, R.: Sets for Mathematics. Cambridge University Press,
Cambridge (2003)

32. Lawvere, F.W., Schanuel, S.H.: Conceptual Mathematics: A First Introduction to
Categories, 2nd edn. Cambridge University Press, Cambridge (2009)

33. Lawvere, W., McLarty, C.: An elementary theory of the category of sets (long
version) with commentary. Reprints Theory Appl. Categories 11, 1–35 (2005)

34. Leinster, T.: Rethinking set theory. Am. Math. Mon. 121, 403–415 (2014)
35. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–

115 (2009)
36. Letouzey, P.: Extraction in Coq: an overview. In: Beckmann, A., Dimitracopoulos,

C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69407-6 39

37. Linnebo, Ø., Pettigrew, R.: Category theory as an autonomous foundation. Philos.
Math. 19, 227–254 (2011)

38. Mac Lane, S.: Internal logic in toposes and other categories. J. Symbol. Logic 39,
427–429 (1974)

39. Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic. Springer, New York
(1992)

40. Malovitsa, I.: The Most Expensive Anti-Pattern (2015). http://m1el.github.io/
printf-antipattern/. Accessed 2 July 2020

41. Marquis, J.-P.: From a Geometrical Point of View: A Study of the History and
Philosophy of Category Theory, Volume 14 of Logic, Epistemology, and the Unity
of Science. Springer (2008). https://doi.org/10.1007/978-1-4020-9384-5

42. Maurice, M.: Bourbaki: A Secret Society of Mathematicians. American Mathemat-
ical Society, Providence (2006)

43. McLarty, C.: The uses and abuses of the history of topos theory. Br. J. Philos. Sci.
41, 351–375 (1990)

44. McLarty, C.: The roles of set theories in mathematics. In: Landry, E. (ed.) Cat-
egories for the Working Philosopher, pp. 1–17. Oxford University Press, Oxford
(2017)

https://doi.org/10.1007/978-3-540-69407-6_39
http://m1el.github.io/printf-antipattern/
http://m1el.github.io/printf-antipattern/
https://doi.org/10.1007/978-1-4020-9384-5

Teaching Logic, from a Conceptual Viewpoint 177

45. Meijer, E., Fokkinga, M., Paterson, R.: Functional programming with bananas,
lenses, envelopes and barbed wire. In: Hughes, J. (ed.) FPCA 1991. LNCS, vol. 523,
pp. 124–144. Springer, Heidelberg (1991). https://doi.org/10.1007/3540543961 7

46. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991).
Selections from 1989 IEEE Symposium on Logic in Computer Science

47. Monin, J.-F., Ene, C., Périn, M.: Gentzen-Prawitz Natural Deduction as a Teaching
Tool (2009)

48. Osius, G.: A note on Kripke-Joyal semantics for the internal language of topoi.
In: Lawvere, F.W., Maurer, C., Wraith, G.C. (eds.) Model Theory and Topoi.
LNM, vol. 445, pp. 349–354. Springer, Heidelberg (1975). https://doi.org/10.1007/
BFb0061300

49. Parnas, D.L.: Information distribution aspects of design methodology. In: IFIP
Congress (1971)

50. Duke, E.A., Hicken, W.F., Nicoll, W.S.M., Robinson, D.B., Strachan, J.C.G. (eds.):
Plato. Tetralogiae I-II, Volume 1 of Oxford Classical Texts: Platonis Opera. Oxford
University Press (1995)

51. Prawitz, D.: Natural Deduction: A Proof-Theoretical Study. Dover Books on Math-
ematics. Dover Publications, Mineola (2006)

52. Riehl, E.: ∞-category for undergraduates. Berkeley Logic Colloquium, May 2020.
http://www.math.jhu.edu/eriehl/berkeley-logic.mp4

53. Rodin, A.: Axiomatic Method and Category Theory, volume 364 of Synthese
Library (Studies in Epistemology, Logic, Methodology, and Philosophy of Science).
Springer (2014). https://doi.org/10.1007/978-3-319-00404-4

54. Bertrand, R.: The Principles of Mathematics. Cambridge University Press, Cam-
bridge (1903)

55. Seely, R.A.G.: Categorical semantics for higher order polymorphic lambda calculus.
J. Symbol. Logic 52(4), 969–989 (1987)

56. Swierstra, W.: Data types à la carte. J. Funct. Program. 18, 423–436 (2008)
57. The Univalent Foundations Program. Homotopy Type Theory: Univalent

Foundations of Mathematics. Institute for Advanced Study (2013). https://
homotopytypetheory.org/book

58. Voevodsky, V., Ahrens, B., Grayson, D., et al.: UniMath – a computer-checked
library of univalent mathematics. https://github.com/UniMath/UniMath

59. Voigtländer, J.: Asymptotic improvement of computations over free monads. In:
Audebaud, P., Paulin-Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp. 388–403.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70594-9 20

60. Wadler, P.: Monads for functional programming. In: Broy, M. (ed.) Program Design
Calculi, Berlin, Heidelberg, pp. 233–264. Springer, Heidelberg (1993) . https://doi.
org/10.1007/978-3-662-02880-3 8

61. Xu, F., Fu, M., Feng, X., Zhang, X., Zhang, H., Li, Z.: A practical verification
framework for preemptive OS kernels. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9780, pp. 59–79. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41540-6 4

https://doi.org/10.1007/3540543961_7
https://doi.org/10.1007/BFb0061300
https://doi.org/10.1007/BFb0061300
http://www.math.jhu.edu/eriehl/berkeley-logic.mp4
https://doi.org/10.1007/978-3-319-00404-4
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://github.com/UniMath/UniMath
https://doi.org/10.1007/978-3-540-70594-9_20
https://doi.org/10.1007/978-3-662-02880-3_8
https://doi.org/10.1007/978-3-662-02880-3_8
https://doi.org/10.1007/978-3-319-41540-6_4
https://doi.org/10.1007/978-3-319-41540-6_4

On the Design of a New Software
Engineering Curriculum in Computer

Engineering

Stefan Hallerstede(B), Peter Gorm Larsen, Jalil Boudjadar,
Carl Peter Leslie Schultz, and Lukas Esterle

DIGIT, Department of Engineering, Aarhus University, Aarhus, Denmark
{sha,pgl,jalil,cschultz,lukas.esterle}@eng.au.dk

Abstract. The Department of Engineering at Aarhus University has
started up a new science-based BSc degree in Computer Engineering. We
report about our planning of the curriculum during the first two years
in the Software Engineering area. We discuss highlights, basic concepts,
selected course contents, inter and intra course progression, observations
from the first two semesters taught, and our expectations concerning the
learning objectives and outcomes of the curriculum as a whole.

1 Introduction

At Aarhus University (AU) the initial engineering educations originally came
from the Engineering College of Aarhus, which was merged with AU in 2012.
Thus, the prime focus on the original curriculum was to deliver new BSc stu-
dents that directly were employable by the many local companies needing new
employees with skills in the core technologies used right now. This includes pro-
gramming environments such as C# and both embedded and Windows-based
technologies. The courses of the curriculum we describe here are designed as
independent units combining theoretical, methodological and practical aspects,
emphasising their orientation towards engineering.

The perspective of local companies is brought into the curriculum design
by means of an advisory board where the companies are represented. There, the
proposed BSc curricula are reviewed and recommendations given. From a univer-
sity perspective this curriculum strengthens the profile of the newly established
faculty of technical sciences that complements the faculty of natural sciences.

When designing the curriculum we have made assumptions and decisions
based on our experience at university teachers and researchers. Structure and
content of the different courses is based on tried practices, and first-hand infor-
mation from students in terms of direct feedback – using questionnaires and
end-of-course discussions– and observing learning success – their ability to apply
the acquired knowledge and reason about it. The general approach follows [1].

c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 178–195, 2020.
https://doi.org/10.1007/978-3-030-57663-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_12

On the Design of a New Software Engineering Curriculum 179

Overview. Section 2 describes the courses of the curriculum and their relation-
ships, as well as, some assumptions and decisions we have made when designing
the software engineering courses of the curriculum. In Sect. 3 we present an
outline of selected courses to clarify the contents and level of the curriculum.
Finally, in Sect. 4 we close with a discussion of some issues surrounding the Soft-
ware Engineering curriculum and some insights since we have started teaching
it.

2 Courses

Among the courses of the computer engineering curriculum we focus on the soft-
ware engineering courses listed below. There are links to and from courses outside
the software engineering scope, that are referred to, e.g., the Software Architec-
ture course refers to the Computer Networks course in the 4th semester and
Programming and Modelling refers to Classical Physics in the 1st semester. An
overview of these relations is given in Fig. 1 where the software-related courses
are shown in green. Although these courses are related to the Software Engi-
neering curriculum, they are not included in the current description because
their focus is not software as such. Note, however that courses like Computer
Networks also uses C, a preview of which is given in the Software Architecture
course. However, too much uniformity across the study would risk forcing alien
concepts with a focus on software on courses where this is counterproductive.

Computer Architecture

Numerical
Linear Algebra

Probability Theory
and Statistics

Discrete Signals and
Linear Systems

Classical Physics

Digital Circuits

Calculus

Control Theory

Computer Eng.
Project 2

Introduction to
Programming

Software
Architecture

HW/SW Co-design

Computer Eng.
Project 1

Algorithms and
Data Structures

Software Engineering

Programming
and Modelling

Computer Networks

4. Semester3. Semester2. Semester1. Semester

Distributed Systems

Discrete Mathematics

Fig. 1. The first two years of the curriculum for the Bachelor in Computer Software
Engineering. Highlighted in green are courses with a focus on Software Engineering.
Each column represents a single semester within the first two years of the curriculum.
Arrows between the boxes indicate their main dependencies. (Color figure online)

180 S. Hallerstede et al.

2.1 Variation in Learning Levels

We assume that each cohort of students beginning a BSc study has a wide vari-
ety of prior knowledge and talent, and we distinguish them into three major
groups (weaker, regular, stronger) for which we cater in the teaching to sup-
port the different groups according to their needs. The students are informed
about the different offers at the beginning of the different courses. It should be
emphasised here that although we consider the students according to the three
groups, we make offers to all of them, that range from supporting students with
exercises to challenge exercises and projects. The students can make informed
choices depending to how they assess themselves at certain points in time. The
main outcome of this approach will be a larger spread of talent in Computer
Engineering providing as much support as possible to the different learning lev-
els:

Weaker Students: Dedicated to weaker students, support with home assign-
ments is offered in specific exercise sessions.

Regular Students: Regular students receive a large number of exercises to
practice their skills, and we will also offer help with solving them, similarly
to the weaker students.

Stronger Students: Dedicated to stronger students, we offer challenging vol-
untary projects that go beyond the course objectives. These projects bring
the stronger students in direct contact with research groups.

2.2 Technology and Practical Orientation

The courses will build on software technologies shared between them. The tools
used in the courses during the lectures are shared between the courses, although
the students are allowed to use their preferred tools. However, they only receive
specific support for the tools used in the lectures.

Already in the Introduction to Programming course (see Sect. 3.1) the stu-
dents are allowed to use modern integrated development environments (IDEs)
but we do not use IDEs in the lectures because they hide underlying technologies
such as compilation and linking processes. Before using such tools the students
should understand the basic functions that are hidden away. IDEs only become
necessary when larger programming projects are carried out. Typically, the stu-
dents do not have problems choosing their preferred IDEs by themselves.

Projects are based on platforms such as Raspberry Pi and Arduino for the
deployment of software.

2.3 Languages and Notations

The basic programming language is C/C++ using gcc and gdb that can be
installed in Linux, Windows and MacOS. The students receive help installing
this software during the first programming café. At the end of the Introduction
to Programming course the students receive a short introduction to Python

On the Design of a New Software Engineering Curriculum 181

relating it to the concepts they have encountered in C/C++. Python is used in
their courses on Numerical Linear Algebra and Classical Physics (see Sect. 2).
It is unrealistic to base the entire study on one programming language but we
minimise the distractions caused by switching between different programming
languages.

This approach permits us to focus on just one programming language to
cover the Software Engineering part of the BSc programme, from the presen-
tation of basic algorithms and application development to controller design for
embedded systems. Software systems modelling uses graphical notations such
as Unified Modelling Language (UML) [5], Architecture Analysis and Design
Language (AADL) [3] and formal modelling language the Vienna Development
Method (VDM) [4]. All of them have been standardised and a sufficient num-
ber of secondary literature is available online and in book form, permitting the
students to consult additional sources as it aids their understanding.

2.4 Cross-Cutting Themes and Progression

The courses of the curriculum are connected by underlying themes that span
across the two years

• problem solving (PS),
• modelling (MD),
• reasoning (RS),
• verification (VR).

In the first semester we address these connections mostly informally, and as the
curriculum progresses towards the fourth semester these connections become
increasingly formal. The corresponding skills that students develop are trained
and refined from semester to semester. Table 1 shows on which topics and skills
the different courses focus. If these were developed in isolation, they would easily
end up disconnected from each other, making it difficult for the students to see
the big picture of software engineering. This was a major concern when we

Table 1. The software engineering curriculum

Sem. Lecture ECTS Main focus

1 Introduction to Programming 10 Problem solving, programming in C

2 Comp. Engineering Project I 5 Group work, embedded software

2 Software Architecture 5 Software qualities, principles & patterns

2 Discrete Mathematics 5 Abstraction and proof

3 Algorithms & Data Structures 5 Abstraction and efficiency

3 Software Engineering 5 Essential software technologies

3 HW/SW Co-design 5 Programming, modelling, simulation &

synthesis

4 Comp. Engineering Project II 5 Planning, organising, distributed

software

4 Programming and Modelling 10 Cyber-physical systems modelling, code

generation

182 S. Hallerstede et al.

developed the first drafts of the curriculum: on one hand we have to cover quite
distinct topics in a focussed way while the students attending the courses should
be able to make connections themselves. We help this by giving ample indications
of related courses (and how) and the intended progression during the lectures.
As a consequence, the students develop a sense for their overall progression: they
respond extremely well on material of this sort in the lectures.

The courses in the curriculum cover different topics of software engineering
going deeper in the cross-cutting themes. Table 2 below gives an overview of the
relevant themes per course. We introduce concepts for verification like pre- and
post-conditions in Introduction to Programming, discuss these ideas in Discrete
Mathematics more formally, consider how it is related to systematic testing in
Software Engineering and finally combine these techniques in Programming and
Modelling. As a result, we cover a lot of ground of what could be a course on
verification without having it explicitly in the curriculum and, at the same time,
provide a greater sense of coherence and continuity for the students.

Table 2. Coverage of cross-cutting themes

Sem. Course PS MD RS VR

1 Introduction to Programming X X X

2 Comp. Engineering Project I X

2 Software Architecture X X

2 Discrete Mathematics X X X

3 Algorithms & Data Structures X X X

3 Software Engineering X X

3 HW/SW Co-design X X

4 Comp. Engineering Project II X X X

4 Programming and Modelling X X X X

The different themes are practiced until they are all used in the course Pro-
gramming and Modelling in the 4th semester introducing the students to a
multi-disciplinary setting around Cyber-Physical Systems [9]. This approach
permits to teach advanced material at that stage in the curriculum without
having explicit introductory courses on formal methods and related topics. An
additional advantage is that the students see the four themes as being related
to the topics of the different courses from the start. For instance, the students
will learn that programming always involves some form of reasoning about why
the program “works”, arguing how certain functionality is implemented or why
a program terminates, in particular, from the beginning of their studies. They
will be aware that there are different approaches to this including informal argu-
ments, formal proofs, testing and debugging. They will become engineers that
make pragmatic choices depending on problems at hand, and we teach them a
range of techniques on which they will be able to make decisions. In particular,

On the Design of a New Software Engineering Curriculum 183

we avoid favouring specific techniques so that the students do not get biased by
our teaching.

2.5 International Collaboration

The technologies used in the courses partly are freely available, as well as locally
developed and maintained. Partly they are developed at other universities and
already used for teaching there. We collaborate with researchers at other univer-
sities for incorporating their technologies into our courses. At the moment these
are, in particular, the following two technologies to be used in the Programming
and Modelling course in the fourth semester (see Table 1 for an overview of the
courses):

• The University of Bremen: We will use an automated test case genera-
tion library (FSM library at https://github.com/agbs-uni-bremen/fsmlib-
cpp) that has been developed at the University of Bremen for teaching pur-
poses. It is a scaled-down version of complex automated verification tool
developed by Professor Jan Peleska and colleagues.

• Kansas State University (KSU): We will use verification tools developed at
KSU [11].

We intend to extend the number of collaborations in the coming years to inter-
nationalise the study environment and ensure that the students develop a sense
for the international character of the scientific and engineering communities.
The collaborations themselves permit us to have access to advanced tools with
a strong background in academic research, as well as, to benefit from teaching
experience at those universities.

The alignment of these courses into a coherent set of interconnected topics
poses a challenge. In addition to a natural progression of core skill sets such as
programming, we adopt cross-cutting themes that are followed up in the differ-
ent courses. As a consequence the connections between the courses go beyond
mere references to related and specialised courses. This is a unique opportunity
offered when designing new curricula. Adapting an already running curriculum
is difficult by comparison as it means changing courses that work well. It is a
continuing effort to preserve this structure.

3 Outline of Some Courses

In order to get an impression of the way the courses are taught, we outline four
of them,

(1) Introduction to Programming (Semester 1)
(2) Software Architecture (Semester 2)
(3) Discrete Mathematics (Semester 2)
(4) Computer Engineering Project I (Semester 2)

where we discuss the first one in more detail to illustrate how the courses are
designed. For the other three we summarise the main content and highlights.

https://github.com/agbs-uni-bremen/fsmlib-cpp
https://github.com/agbs-uni-bremen/fsmlib-cpp

184 S. Hallerstede et al.

3.1 Course: Introduction to Programming

Following the distinction of the students into three groups (weaker, regular,
stronger, see Sect. 2.1), the Introduction to Programming course (8 h/week) uses
three types of interaction with the students:

• (frontal/interactive) lectures (L),
• exercise sessions with feedback on assignments (E),
• programming cafés with active support (C).

The students receive information in the beginning of the course where we
explain our approach transparently to everyone. The following is a summary of
the information given in the first lecture concerning the learning environment
and our rationale:

• All students should receive support
• We distinguish the learning levels of students: weak, regular, strong
• We offer a programming café every week where all students will receive help

with the course material from the current week. In particular, weaker students
benefit from such offers. Students get help with tools, review exercises and
past exercises. Exercises for every week will have different difficulty levels
with a challenge exercise for the strong students (the challenge exercise is not
obligatory and open to all).

• Each week there will be a challenge exercise that students are invited to try
themselves: don’t do it if you are short of time (for whatever reason); don’t
do it if you are struggling with the regular exercises; do it otherwise and enjoy
doing it!

• In week 4 of the course, a voluntary programming project will be offered to all
students. We expect that this will mostly be taken on by regular and strong
students. The students decide which offers they take up.

We have developed the course curriculum (Table 3) after a review of similar
Introduction to Programming courses in many universities around the world.
Each topic is introduced by first motivating it through problem solving in the
context of programming:

• aim e.g. “We want to guarantee that our stack program will work as we
intend it to”;

• problem with executable code examples to concretely illustrate the
problem, e.g. stepping through a series of programs that misuse the stack
implementation;

• problem formulation as a more general statement, referring back to
the problem examples, e.g. “The problem is that stack variables are exposed”

• solution statement, e.g. “we need to restrict access to variables that define
the stack”

• main topic, e.g. data encapsulation and object oriented programming
• problem revisited, e.g. demonstrating how data encapsulation is used to

solve each presented problem example.

On the Design of a New Software Engineering Curriculum 185

Reasoning is first practiced informally, arguing for the correctness of small soft-
ware artefacts, and then formally proving correctness of simple programs using a
dedicated theorem proving environment for C programs. Topics were repeatedly
revisited and referred back to throughout the course in an iterative way, to (a)
emphasis the connection between topics and (b) give students time and oppor-
tunity to really digest and understand each topic through repetition in slightly
different contexts.

Table 3. The Introduction to Programming lectures

Week Topic Theme Contact Hours

1 Basics Programming, problem solving,
and reasoning

4L+4C

2 Loops Development and derivation of
(simple) programs

4L+4C

3 Testing Development and analysis of
correct programs

4L+2C+2E

4 Problem Solving Array data structures 4L+2C+2E

5 Data Structures Structured data and pointers 4L+4C

6 Pointers to
pointers

Programming with pointers 4L+2C+2E

7 Library modules Programming larger software
projects

4L+2C+2E

8 Algorithms Designing sequences of program
instructions for solving
problems

4L+2C+2E

9 Recursion Functions that call themselves 4L+4C

10 Higher-order
programming

Passing functions as arguments
to other functions

4L+2C+2E

11 Problem Solving
with Recursion

Verifying correctness of
recursive programs

4L+2C+2E

12 Object-Oriented
Introduction

Bundling data and their
functions together

4L+2C+2E

13 Object-Oriented
Programming
Constructs

Controlling object state and
access to internals

4L+2C+2E

14 Python & Recap Introduction to Python 4L+2C+2E

We use an official course textbook [6] to provide students with further back-
ground reading and additional practice exercises outside of lectures (although
the structure of our course differs significantly from the structure of the text-
book). Lecture slides were developed with sufficient detail to be “self-contained”
so that they also function as lecture notes, and are provided in PowerPoint and
PDF format to students before the lecture; in total we produced over 1000 slides
for the course, in 13 lectures (Table 3). In addition, slidecasts were created dur-
ing the lectures and made available after the lecture until the end of the exam

186 S. Hallerstede et al.

Fig. 2. Live student feedback in response to the question “What were the most muddy
aspects today?” collected using mentimeter and presented back to the students for
discussion.

period i.e. recording audio from the lecture, and recording the lecturer’s screen
that presents the slides.

The initial size of the cohort in 2019 was 30. In Autumn 2020 this will be
increased to 60. During the lecture we invite live feedback from the students (2–3
times per lecture) on their understanding of the presented topics by answering 3–
4 content related questions via mentimeter (Fig. 2).1 The (anonymous) answers
and statistics of the responses are shown on the lecture slide and used as a
focused discussion point to clarify the topic at hand.

The lectures are interactive in that students are able to execute code pre-
sented on the lecture slides. All code examples are made available as C programs
(downloadable as a zipped folder) that can be compiled and executed, with the
program file name always listed on the lecture slide. To avoid issues with dif-
ferences in C compilers between operating systems, we created a Virtual Box
image with all compiler and debugging tools already installed.

Assignments and Challenge Project. Home assignments are given
weekly with sets of problems for all students and a challenge problem for the
stronger students. The assignment sheet is made available after the lecture on
a Tuesday (Fig. 3), and students are required to submit their solutions on the
following Tuesday. On Thursday we run a four hour programming café, a friendly
lab environment in which students can work on their assignment and exercises
from the textbook with two teaching assistants available for discussion, input,
etc. This approach permits us to give more tailored support for the three groups

Thursday

General assignment
feedback given in

Wednesday

Detailed personal
feedback on their

submission

Tuesday

Lecture;
Assignment sheets

made availble

Thursday

students get help
on assignment

Tuesday

Assignment
submission

deadline

Fig. 3. Schedule for one assignment (Introduction to Programming).

1 https://www.mentimeter.com/.

https://www.mentimeter.com/

On the Design of a New Software Engineering Curriculum 187

(weaker, regular, stronger) of students. One day after submission, students get
a grade of either pass or “more work needed” (allowing resubmission in the sub-
sequent weeks), with detailed personal feedback. In the following programming
café one of the teaching assistants presents general feedback and common issues
to the class for about 10–15 min.
In addition, a semester-long Challenge Project is offered to the students
(intended for the stronger students but open for all). This is a programming
project to be tackled by students in small self-formed groups of around 3–5 stu-
dents. Each week an instructor hosts a meeting with all the challenge project
students together, and discusses the project concepts, questions and progress,
in a fun, friendly and informal setting. On the first iteration of the course we
had 8 students (out of 28 students in the class) in two groups. This enabled
us, and enthusiastic students, to get to know each other, interact and engage
early on in their BSc program. The challenge project was specifically to create
an interpreter for a subset of the FORTH programming language.

Assessment. The assessment at the end of the semester is by a 3 h hand-
written exam without any support graded according to the Danish 7-point scale.
During the semester students are required to submit and receive a “pass” grade
for their weekly assignments (described above) in order to be able to go to the
exam.

Learning Outcomes of the Course. The learning outcomes for this course
describe hands-on skills related programming concepts and reasoning, the two
main factors to support the course’s view of “programming as problem solving”.
At the end of the course, the participants are be able to:

• describe and discuss commands and control structures of imperative program-
ming;

• understand the relationship between iteration and recursion;
• describe and discuss structuring mechanisms in different programming styles;
• implement their own programs using different programming styles;
• explain the concept of imperative and functional programming;
• describe assertional techniques for reasoning about programs; and
• reason informally about programs and relate this to tests.

3.2 Course: Software Architecture

The second semester course on Software Architecture is brought to the students
as a continuation of the Introduction to Programming course. Whereas the latter
course focuses on functional requirements for software, the Software Architecture
course focuses on non-functional requirements. The proximity of the two courses
permits to make this aspect very explicit, showing them two major concerns of
programming: writing program code and organising it.

The course is taught in a standard format of two hours of lectures and two
hours of exercises every week during which the students present and discuss their
solutions to home assignments. A hands-on textbook is used as main text [10].

188 S. Hallerstede et al.

Table 4. The Software Architecture lectures

Week Topic Practice Patterns Principles Background Programming

1 Introduction X

2 Language Abstraction X X

3 SOLID Principles X X

4 Design Patterns X X

5 Architectural Styles X X

6 Networking Abstraction X X

7 Concurrency Design Patterns X X

8 Network Architectural Styles X X

9 Software Design X X

10 Software Metrics X X

11 Software Specification X X

12 Software Reuse X

13 Application Development X

14 Summary and Recap

In weeks 12 and 13 of the Introduction to Programming course the students
learn basics about object-oriented programming. This is continued in the Soft-
ware Architecture course emphasising programming methodology (using C++).
The students learn about object-oriented concepts such as inheritance, poly-
morphism and genericity. However, just like in the Introduction to Program-
ming course this is always embedded into problem solving. Each lecture relates
abstract architectural concepts to concrete programming concepts that can be
used to realise the abstract concepts. The software is modelled abstractly using
graphical notations like UML, T-diagrams (for composing compilers and inter-
preters) and ad-hoc diagrams. Subsequently, appropriate implementation tech-
niques are discussed. This makes it possible for the students to apply software
architecture immediately based on their first-semester knowledge. The students
grow their repertoire of problem-solving techniques to scale to larger problems
(which they are told about in the first lecture).

Table 4 shows an overview of the lectures of the course.
Because the course takes place in the second semester, there are two lectures

where computer engineering background is given: the second week discusses com-
pilation, interpretation and languages, and the third week network technology
emphasising the abstractions they provide for software development. The net-
working lecture is held as a guest lecture by the same lecturer who teaches the
computer networks course in the fourth semester. The intention of the guest
lecture is to provide a sense of continuity to the students that spans the curricu-
lum. A collection of lectures discusses principle underlying architectural design,
in particular, SOLID [10] and common design principles like “reduce coupling”
and “program defensively”. The discussion of specification and reuse go into
depth with respect to the Liskov substitution principle and the idea of refine-

On the Design of a New Software Engineering Curriculum 189

ment. About a third of the course discusses patterns describing typical elements
of software architectures. About three quarters of the course is dedicated to
evolving the programming skills from the level of the Introduction to Program-
ming course to large scale software applying the techniques taught in the course.
In a final lecture called Application Development the different principles and
patterns are applied to embedded, mobile and desktop software. This is comple-
mented by a guest lecture from a local software development company.

3.3 Course: Discrete Mathematics

The second semester course on Discrete Mathematics takes the informal reason-
ing from the Introduction to Programming course and adds formality to it and
discusses alternative strategies for arguments [2]. Discrete mathematics provides
the theoretical foundation for programming. It provides mathematical models
for common abstractions referred to in programming. It provides the basis on
which the (theoretical) performance of programs can be judged. It permits us to
make statements about properties of programs. The course will introduce first-
order logic, numbers, sets, sequences, relations and graphs, their applications
and techniques of proof. An overview of the course can be seen in Table 5.

Table 5. The Discrete Mathematics lectures

Week Topic Concepts Proof Programming

1–2 Introduction direct proofs and
contradiction

X

3–4: Counterexamples and proof by
contraposition

X

5 Logic X X

6 Set theory X X

7 Relations X X

8 Functions X X

9–10 Recursion and Induction X X X

11–12 Sequences and recurrence relations X X

13 Graph theory X X

14 Evaluation and exam preparation

This course is designed with special principles in two separate dimensions.
Firstly this course is delivered as flipped classroom where there is limited time
spent on presentations of the material in the four hours of confrontation time
every week (instead the students need to work with the material themselves
outside class with both videos and the text book, while the remaining parts of
confrontation time is spend on the lecturers assisting the students with work-
shops). Secondly this course is organised such that there is an oral exam where

190 S. Hallerstede et al.

75% of the grade is based on the students ability to present a subject in the
curriculum and 25% on the students ability to critically review another stu-
dent’s oral presentation. Both of these principles are introduced here in order
to strengthen the students abilities to work with reasoning in an independent
manner and to judge where the right level of formality is.

3.4 Course: Computer Engineering Project I

The second semester course Computer Engineering Project I offers a hands-on
experience with solving a comprehensive problem where students to reason, com-
bine and apply the knowledge they learn throughout first and second semester
courses. This course also offers the opportunity for students to develop new skills
related to design space exploration and code optimisation. On the application
side, students learn to manipulate individual technologies such as range finder
sensors and light sensors to monitor an environment, Arduino boards to pro-
cess collected data, Raspberry Pi platforms to actuate mechanical components.
This permits the students to see the larger context in which software develop-
ment typically takes place. An integration of these technologies is performed
on a Turtle Bot3 Robot simulating a rescue lab where students are introduced
to a set of ROS functions. The main goal is to deliver an optimal exploration
plan minimising the robot effort to explore an arena and maximise the number
of found “victims” to be rescued. Using their knowledge about compiling and
execution, students optimise their code to improve the robot response time and
reduce the memory use.

Table 6. The Computer engineering project workshops

Week Topic Technology Programming

1 Lab Introduction, system
architecture, subversion

X

2 Assembling Arduino and Breadboard X

3 Proximity sensors to Arduino X

6 Light sensors to Arduino X

7 Actuations X

8 ROS seminar X

9 Connecting Arduino to Raspberry Pi X

10–11 Robots navigation implementation X

12–13 Optimization X

14 Competition, demo and examination

Regarding the design space exploration, students learn the basis of how to
choose design alternatives and how to assess the different designs with respect

On the Design of a New Software Engineering Curriculum 191

to a set of possibly conflicting metrics. Towards the end of the semester, the
students have to deliver a report documenting their implementations and justi-
fying the design decisions taken throughout the course experience. An overview
of the course can be seen in Table 6. The fourth semester project course (Com-
puter Engineering Project II) in comparison follows the one discusses here but is
more challenging with respect to group coordination and technological mastery.
In particular, it will use material taught in accompanying courses on Control
Theory and Networking.

3.5 Summary of the Remaining Courses

Table 7 provides an overview of the remaining courses of the curriculum. We
provide only the names of the lectures as the content is mostly well-known.

The Software Engineering course has a special function in the curriculum
as it collects and links material from other courses. For instance, the lecture
in week 4, Software Design, discusses topics from Introduction to Programming,

Table 7. Remaining courses of the software engineering curriculum

Week Software Engineering Algorithms &

Data Structures

HW/SW Co-design Programming &

Modelling

1 Software

development

processes

Basics and

Introduction

Computer

Engineering

Introduction

2 Requirements

Elicitation and

Analysis

Implementation of

Sequences,

Queues and Stacks

HW/SW

Co-Design

Basic Technologies

for Modelling, Proof

and Simulationc

3 Requirements

Modelling

Array Searching Model-based

Design

Logics

4 Software Design Fixed Arrays,

Dynamic Arrays,

Slices and Iterators

Model-based

SW Design

Programming

and Proof

5 Version Control Union Find Model-based

SW Design

Automated Reasoning

about Programs

6 Software Quality Array Sorting SW Mini Project Automated Reasoning

about Programs

7 Formal Specification Priority Queue Model-based

HW Design

Modelling

Methodology

8 Unit Testing Sequence and Stream

Sorting and

Searching

Model-based

HW Design

Introduction to

INTO-CPS

9 Integration Testing Search Trees SW-HW

System Synthesis

20-sim Tutorial

10 Performance

Requirements

Sets and Dictionaries Design Space

Exploration

Co-simulation & De-

sign Space Exploration

11 Requirements

Validation

Matrices Optimisation and

Validation

C Code Generation

12 Formal

Verification

Graphs Final Project Model Validation &

Fault Tolerance

13 Specification,

Formal Verification

and Testing

Petri Nets Final Project Other Approaches:

JML

14 Recap Bitsets / matrices Summary Recap & Summary

192 S. Hallerstede et al.

Software Architecture, and Algorithms & Data structures. This is done expressly
in order to give more coherence to the curriculum. The topic of requirements
that regularly occurs in other courses is treated systematically. This permits to
argue the significance of the topic as such warranting more attention.

The Algorithms & Data structures course follows the problem solving per-
spective the students are already familiar with from semester one. It focuses on
practical aspects using abstractions learned in Discrete Mathematics to reason
about problems and algorithms that solve them. Theoretical complexity con-
siderations are discussed and related to practical evaluation of implementation
variants.

The course on HW/SW co-design permits the students to understand the
specificities of hardware design and of software design, and their similarities, in
particular, when done in a suitable framework, such as, System-C.

The fourth semester Programming and Modelling course requires familiar-
ity with the four cross-cutting themes as taught throughout the curriculum.
This course is directly linked to local research activities at the Department of
Engineering. Whereas reasoning about programs is done informally before, it is
treated formally with tool support at this stage. This is complemented by mod-
elling of cyber-physical systems as supported by INTO-CPS [8] and continuous
modelling in 20-sim [7]. The course relies particularly on the formal training the
students have received in Discrete Mathematics, as well as, Differential Equa-
tions and Classical Physics that are taught along side the Software Engineering
curriculum. In this respect the students will gain the important insight that soft-
ware can often not be developed without considering the real world with which
it interacts.

4 Discussion

In comparison to a typical curriculum in Computer Science, ours is eminently
practically oriented. Although students in Computer Engineering study also
more theoretical topics, this has a different focus: Computer Engineering stu-
dents study necessary theoretical issues in as far as it helps for solving engineer-
ing problems, whereas Computer Science students are exposed to the theories as
such. For instance, our students encounter functional programming and recursion
in Introduction to Programming course indicating suitable reasoning techniques,
this is pick up in Discrete Mathematics course where suitable formalised proof
techniques are taught. In Computer Science the students attend a course on func-
tional programming where they study the underlying lambda calculus and type
theory. Section 4.1 discusses briefly our approach to the relationship of science
and engineering in the curriculum.

In order to warrant high quality of the taught courses, we carry out regular
evaluations through continual feedback from the students during the courses and
collecting data about the courses. We discuss this briefly in Sect. 4.2 and give
some first results from the Introduction to Programming course.

On the Design of a New Software Engineering Curriculum 193

4.1 Science and Engineering

The learning objectives of the teaching are, of course, related to the contents
of the different lectures. Beyond this we also introduce the students from the
beginning to our research activities in engineering science. This makes it possi-
ble to offer later in their studies BSc thesis projects closer to ongoing research
and strengthen the scientific orientation of their education. For the most part
scientific education is treated as the background in the courses, gaining larger
weight later in the curriculum. At the end of the BSc studies they have seen
some scientific methodology and have applied it in their reasoning. However,
through the BSc curriculum (including their BSc theses) they will be guided in
that reasoning and the choice of methods. A more independent application of
scientific methods is only required in their subsequent MSc studies.

4.2 Evaluation

Starting a new BSc programme is a good opportunity to evaluate effectiveness as
we do not have constraints by an established course catalogue. We believe that
a culture of systematic evaluation will help to create a strong programme and
make a contribution to education research. In order to achieve this, we plan to
collect systematically data for all the lectures. E.g., for the Introduction to Pro-
gramming lecture: Numbers of students present at lectures, exercise sessions and
programming cafés, number of students attempting challenge exercises, number
of students attempting the programming project, number of students succeed-
ing in the afore mentioned. In addition, we have weekly meetings where we
discuss feedback from the students concerning their motivation, learning suc-
cess, and workload. The aim of this is to determine whether the students get the
best possible support according to their abilities. This needs to be fine-tuned
permanently.

At the start of the semester, 28 students participated in the course. Of these,
23 students finished the course. The drop-outs happened early in the course. We
sent out e-mail to follow up the situation from 3 week on but did not receive a
response from the five students. The attendance at the lecture was at least 90%
(of 23) at the lecture and a the programming café. However, we found that the
café was also used by the students to work on problems from other courses. We
did not stop this from happening as it turned out that the students would ask
for our help with the Introduction to Programming course when they needed it.
This is what had been “promised” to the students in the first lecture. The result
of the written exam at the end (A: 3, B: 9, C: 9, D: 1, E: 1) confirms that the
support worked well towards achieving the learning objectives.

With respect to the home assignments to be handed in by small groups we
made the following observations. None of the groups attempted all challenge
exercises. Seven groups attempted at least one challenge exercise, one group
attempted five challenge exercises. Eight groups handed in one late assignment,
one group two late assignments, and three groups three late assignments. Two
groups had two resubmit 2 assignments, and 4 groups one assignment.

194 S. Hallerstede et al.

Eight students started on the challenge project, one group of three and one
group of five. After some initial success (not solving the complete problem) the
latter group disbanded. The other group continued. One of the students continues
the project in the second semester following the Software Architecture lecture.
It appears to be a good idea to propose the challenge project to run over two
semesters in the first place because most students stopped because of short term
work loads in other courses.

4.3 Concluding Remarks and Evolution

We have outlined the Software Engineering curriculum at the Department of
Engineering at Aarhus University, discussed the rationale and provided some
examples of concrete courses. Given that we have started teaching in the cur-
riculum since autumn 2019 it is too early to draw any hard conclusions. We
have however already learned that the students appreciate the learning envi-
ronment and the material they are being taught. We believe, that asking them
regularly for feedback during the lecture has two major benefits: firstly, we can
make improvements while the course is running; secondly, it appears to boost the
motivation of the students when they get to play an active role in the shaping of
their learning environment by receiving and acting on their feedback. Of course,
there are some issues that can only be solved from one instance of the course
to the next, concerning, for instance, the order in which some of the material is
taught where the feedback that we receive refers to the teaching that is already
past.

Acknowledgements. We are grateful for the support and contributions to the prepa-
ration of teaching materials carrying our café and exercise sessions by Casper Thule,
Tomas Kulik, Christian Møldrup Legaard, Benjamin Salling Hvass, Hugo Daniel
Macedo, and Peter Würtz Vinther Tran-Jørgensen.

References

1. Biggs, J., Kum Tang, C.S.: Teaching for Quality Learning at University, 4th edn.
McGraw Hill (2011)

2. Cusack, C.A., Santos, D.A.: An Active Introduction to Discrete Mathematics and
Algorithms, Version 2.6.4 (2019)

3. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL - An Introduction
to the SAE Architecture Analysis and Design Language. SEI Series in Software
Engineering. Addison-Wesley (2012)

4. Fitzgerald, J., Larsen, P.G.: Modelling Systems - Practical Tools and Techniques
in Software Development, 2nd edn. Cambridge University Press, The Edinburgh
Building, Cambridge CB2 2RU, UK (2009). ISBN 0-521-62348-0

5. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage, 3rd edn. Addison Wesley (2003)

6. Hanly, J.R., Koffman, E.B.: Problem Solving and Program Design in C. Pearson
(2016)

On the Design of a New Software Engineering Curriculum 195

7. Kleijn, C.: Modelling and simulation of fluid power systems with 20-sim. Int. J.
Fluid Power 7(3) (2006)

8. Larsen, P.G., et al.: Integrated tool chain for model-based design of cyber-physical
systems: the INTO-CPS project. In: CPS Data Workshop, Vienna, Austria, April
2016

9. Larsen, P.G., et al.: Frontiers in software engineering education. In: Collaborative
Modelling and Co-simulation in Engineering and Computing Curricula (2020)

10. Martin, R.C.: Clean Architecture A Craftsman’s Guide To Software Structure And
Design. Prentice Hall (2018)

11. Yi, X., Li, R., Sun, M.: Generating Chinese classical poems with RNN encoder-
decoder. In: Sun, M., Wang, X., Chang, B., Xiong, D. (eds.) CCL/NLP-NABD
-2017. LNCS (LNAI), vol. 10565, pp. 211–223. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-69005-6 18

https://doi.org/10.1007/978-3-319-69005-6_18
https://doi.org/10.1007/978-3-319-69005-6_18

Collaborative Modelling
and Co-simulation in Engineering

and Computing Curricula

Peter Gorm Larsen1(B), Hugo Daniel Macedo1, Claudio Goncalves Gomes1,
Lukas Esterle1, Casper Thule1, John Fitzgerald2, and Kenneth Pierce2

1 DIGIT, Department of Engineering, Aarhus University, Aarhus, Denmark
{pgl,hdm,claudio.gomes,lukas.esterle}@eng.au.dk

2 School of Computing, Newcastle University, Newcastle upon Tyne, UK
{John.Fitzgerald,Kenneth.Pierce}@ncl.ac.uk

Abstract. The successful development of Cyber-Physical Systems
(CPSs) requires collaborative working across diverse engineering disci-
plines, notations and tools. However, classical computing curricula rarely
provide opportunities for students to look beyond the confines of one set
of methods. In this paper, we report approaches to raising students’
awareness of the integrative role of digital technology in future systems
development. Building on research in open but integrated tool chains for
CPS engineering, we consider how this has been realised in two degree
programmes in Denmark and the UK, and give preliminary findings.
These include the need for ensuring stability of research-quality tools,
and observations on how this material is presented in Computing versus
Engineering curricula.

1 Introduction

Collaboration between diverse disciplines is essential to the successful devel-
opment of the Cyber-Physical Systems (CPSs) that are key to future innova-
tions [26]. However, many university curricula train professionals within long-
established disciplinary silos such as mechanical, electrical, civil or software engi-
neering, with few opportunities for interaction between them. It is therefore crit-
ical to include elements within degree programmes to prepare students for the
cross-disciplinary work that will likely feature in their subsequent careers [18].
The ideal is sometimes described as a T-shaped professional, with deep skills in
one discipline, but an awareness of and capacity to work successfully with others.

The methods and tools to facilitate cross-disciplinary collaboration in CPS
design are novel, and still the product of research. Engineering disciplines have
developed vocabularies, ontologies, methods, notations and tools that are some-
times very different from one another, and are certainly different from those
deployed in the newer disciplines of computing and software engineering. Pro-
moting the kinds of collaboration needed to deliver modern CPSs is therefore
challenging. In our work, rather than advocate a single formalism to be used
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 196–213, 2020.
https://doi.org/10.1007/978-3-030-57663-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_13

Collaborative Modelling and Co-simulation 197

across the diversity of forms of engineering in a project, we have seen some
success from enabling stakeholders to use their own preferred notations and
tools, but combining these in a semantically sound fashion. Our universities have
been involved in joint European H2020 projects (including DESTECS [5,10] and
INTO-CPS [8,17]) for over a decade, leading to the development of tools that
support collaborative model-based systems engineering of CPSs, with a partic-
ular focus on co-simulation [13]. The prime goal in this work has been to enable
each collaborating stakeholder to continue to use their preferred technology, cou-
pling the different models together using co-simulation.

Given the need for T-shaped professionals in CPS engineering, but also given
the relative immaturity of methods and tools to address this challenge, the ques-
tion arises: how can we use research products to inform the development of cross-
disciplinary skills in university curricula? Although there is a widely-felt need
to deliver research-inspired teaching in universities, it faces the challenge that
proof-of-concept research products such as tools are often insufficiently stable to
be used by newcomers. The risk is that students have a suboptimal experience
when exposed to immature prototypes, potentially colouring their future atti-
tude to novel and advanced techniques. In this paper we describe how such new
research prototypes have been used in university education by ensuring that the
prototypes is sufficiently stable to be used by novices.

Boehm and Mobasser [4] identify significant differences between the ‘world
views’ of engineers specialising in physical systems, software and human fac-
tors, ranging from the approaches to economies of scale to forms of testing, as
well as the underlying technical formalisms. They describe a curriculum and
courses at Masters level that aim to broaden students’ skills beyond software
engineering alone to embrace T-shaped characteristics. This includes opportuni-
ties for students to undertake shared activities such as: developing shared oper-
ations concepts, jointly negotiating priorities and revisions with clients, jointly
setting criteria for development approaches, determining risks, and many oth-
ers. They identify tools to support systems thinking in these activities. In our
work, we have focussed on newly emerging tools to support cross-disciplinary
model-based engineering, and specifically, we aim to give students experience
of T-shaped skills including: negotiating common terms and concepts across
discipline models, identifying and performing system-level tests, modifying and
reassessing designs, and performing design optimisation.

In this paper we examine two approaches to the incorporation of co-
simulation into university curricula as a means of introducing students to the
need for cross-disciplinary design. The first, applied at Aarhus University (AU)
is to approach this through overall systems engineering at Masters level. The
second, applied at Newcastle University (NU), addresses this in the context of a
computing (mono-disciplinary) course at Bachelors level. We give an overview of
the background in Model-Based Systems Engineering (MBSE) and our open tool
chain that supports the collaborative approach outlined above (Sect. 2). We then
describe how collaborative modelling and co-simulation has been introduced in
the engineering curriculum at AU (Sect. 3 and the undergraduate computing cur-

198 P. G. Larsen et al.

Fig. 1. Schematic of the INTO-CPS tool chain.

riculum at NU (Sect. 4). We discuss the experience so far in Sect. 5, and consider
future directions in Sect. 6.

2 Background: The INTO-CPS Tool Chain

As Systems Engineering moves from document-based approaches to MBSE [30],
the need arises to be able to analyse system models composed of diverse
discipline-specific models, often from separate suppliers with their own intel-
lectual property requirements. Co-modelling and co-simulation are seen as ways
of meeting technical aspects of this challenge. The INTO-CPS tool chain shows
how this can be realised.

The INTO-CPS Tool Chain (Fig. 1) supports an MBSE approach to CPS
development that allows the Discrete-Event (DE) formalisms used to express
cyber processes and Continuous-Time (CT) formalisms used for physical pro-
cesses to co-exist in a common simulation framework. The act of collaboratively
simulating these constituent models such that a simulation of a CPS is achieved
is referred to as coupled simulation (co-simulation) [13]. A co-simulation is gen-
erally carried out by simulating the individual models while exchanging data
and managing the progress of time between them.

Co-simulation requires the orchestration of a range of discipline-specific sim-
ulation tools [3,9]. The Functional Mock-up Interface (FMI) [22] is an approach
to generalising the simulation interface of models that are to participate in a
co-simulation. FMI provides and describes a C-interface and the structure of a
model description file. A model implementing this C-interface and providing a
model description file is referred to as a Functional Mock-up Unit (FMU) and
it can contain its own solver. The INTO-CPS Toolchain is based on FMI 2.0 for
its simulation capabilities.

The main user interface to the INTO-CPS tool chain is the INTO-CPS Appli-
cation [20] which has been developed on the Electron platform.

Collaborative Modelling and Co-simulation 199

The INTO-CPS Co-simulation Orchestration Engine (COE), called Mae-
stro [27], manages the FMUs in accordance with various co-simulation algo-
rithms. It is configured by a multi-model and a configuration. The multi-model
defines the FMUs participating in a co-simulation, the dependencies between
them, and their parameters. The configuration specifies the co-simulation exe-
cution including details such as logging and step size (i.e., the time interval
between value exchanges between the FMUs).

The tool chain also supports Design Space Exploration (DSE). This is the
process of systematically executing co-simulations with a variety of values for
specified design parameters, with the goal of maximising an objective such as
energy efficiency or a performance measure [6,9] and part of the INTO-CPS
Toolchain.

The tool chain is neutral about the sources of FMUs, but it has been instan-
tiated with several formalisms and simulation engines. For example, DE mod-
els can be developed in the Overture tool [16] which supports a dialect of
the Vienna Development Method’s modelling language for Real Time systems
(VDM-RT [29]). Using Overture and the extension overture-fmu1 one can export
FMUs from a VDM-RT project [15,28]. CT models have been developed using
20-sim2, which also can export conformant FMUs.

3 The Aarhus University Experience: Co-modelling and
Co-simulation in the Systems Engineering Curriculum

In this section, we describe the introduction of co-modelling and co-simulation
in the AU engineering curriculum. Students taking a Masters degree in elec-
tronic engineering or computer engineering follow a mandatory course in systems
engineering. Formerly largely focussed on document-based processes, the course
is evolving to provide a stronger introduction to model-based techniques, with
about half of the course using the new research results in MBSE, multi-modelling
and co-simulation through the INTO-CPS tool chain. Since the students are
novices in the technology, this demands user friendliness in the prototype tools
resulting from the research.

3.1 Course Structure and Content

The systems engineering course includes practical examples. A student driven
project spanning the entire semester is performed in close collaboration with
two Danish companies, namely Terma and Beumer. Here, student teams develop
different systems engineering artefacts while the companies act as the respective
customers in particular to embrace the T-shaped characteristics mentioned in
Sect. 1 above. During the course the students learn on one hand to use different
tools to model and design their systems and on the other hand to combine

1 https://github.com/overturetool/overture-fmu.
2 https://www.20sim.com.

https://github.com/overturetool/overture-fmu
https://www.20sim.com

200 P. G. Larsen et al.

these tools in a single tool chain for engineering their systems efficiently using
common terms. Hands-on tutorials as well as their ongoing group project guides
them towards a deep understanding of MBSE and co-simulation.

To achieve this, the course is structured as follows: First the students get an
overview on CPSs as well as co-simulation and the entire INTO-CPS tool chain.
This overview allows us to structure the remainder of the lectures to dive into the
relevant details. We use SysML, the industry standard for systems engineering,
as graphical modelling language and VDM to formally specify software systems
using the tools Modelio and Overture, respectively.

To teach students how to model dynamic systems, we utilise 20-sim, allowing
students to define models via sets of equations or as graphical models, i.e., block
diagrams.

Once students have the basis for constructing models of both cyber and
physical systems elements, and have gained experience using industry tools such
as 20-sim, they learn how to explore design parameters using the DSE features
of the tool chain. This is followed by an introduction to the development of the
software components, including automatic code generation.

3.2 Course Material

The INTO-CPS Association has created and maintains a series of tutorials on
the installation and operation of the features of the INTO-CPS tool chain, using
a simple running example based on the Line Following Robot (LFR) illustrated
in Fig. 2. These are:

Tutorial 0: Setting up the environment. This covers the installation of
INTO-CPS, its main dependencies, the Java runtime, and the use of the
COE Maestro.

Tutorial 1: First Co-simulation. This provides a demonstration of a water-
tank co-simulation followed by an introduction to the concepts involved e.g.

Fig. 2. Line Following Robot LFR used as a simple running example for co-simulation.

Collaborative Modelling and Co-simulation 201

FMUs, models, multi-models, and an introduction on how to run a preset
co-simulation.

Tutorial 2: Adding FMUs. This covers the deeper inner workings of a multi-
model and co-simulation configuration, including the definition of parame-
ters, which visual graphs to plot, which FMUs to use, and establishing the
input/output connections between FMUs. Exercises help students to think
about both the dynamics of the models being simulated and the effects
of co-simulation parameters in the short- and long-term results of the co-
simulation.

Tutorial 3: Using SysML. This introduces elements of SysML and the Mod-
elio tool to develop the overall architecture of a multi-model. It covers the
generation of a multi-model and its import into INTO-CPS.

Tutorial 4: FMU Export (Overture). The preceding tutorials have used a
ready-made controller FMU. This tutorial explains where that FMU comes
from. It includes the definition and export of a controller in VDM. Exercises
allow the students to experiment with different control approaches.

Tutorial 5: FMU Export (20-sim). This focuses on the use of 20-sim to
create and export the physical system FMU, allowing students to experiment
with different physical models and observe how the controller behaves with
each.

Tutorials 6 & 7: DSE configuration and execution. Building on Tutorial 3,
students create a SysML representation of the DSE configuration (Tutorial
6) and learn how to use the DSE script to launch it and automatically
compute fitness metrics for each design (Tutorial 7).

Tutorial 8: SysML for Co-Simulation. Students learn how use SysML to
generate and import the description of the sub-components used in a co-
simulation (Tutorial 3 was limited to using SysML to describe the overall
multi-model architecture).

Tutorial 9: Building Controllers in VDM. This tutorial introduces tech-
niques for designing controllers that are robust with respect to noise in
the signals. Controllers are validated by co-simulation and are ready to be
deployed.

Tutorial 10: Deploying the LFR Controller. At this point it is assumed
that students have experienced how to develop the models of the LFR in a
co-simulation (virtual) environment, and this illustrates how to deploy and
validate a co-simulation unit using hardware performing in a real environ-
ment. The goal is to show how to export a VDM controller as an FMU,
and subsequently use it to upload it as a sketch into the Arduino board
controlling a hardware model of LFR.

Tutorial 11: Building Controllers in PVSio-Web. This tutorial teaches the
students to write controllers in an PVSio-Web [21] and follows the approach
in [23]. This tools enables the rapid prototyping of user interfaces and control
code. The students then learn how to deploy their code into the hardware.

202 P. G. Larsen et al.

3.3 Course Delivery

We have applied the tutorials in the AU systems engineering course over the
last three years. We group the tutorials into thematic units and deliver them
throughout approximately five sessions depending on the students’ progress. Ses-
sions start with an exposition of the concepts behind the unit (e.g. co-simulation,
DSE). Then hands-on tutorials allow students to interact with the tools while
attempting to replicate the tutorial steps. A team of two to four teaching assis-
tants helps troubleshoot problems students may find. Both software errors and
repeated failed attempts to achieve the results of the steps prompt guidance
using a case by case approach. Naturally, having newcomers using the prototype
tools from the INTO-CPS project means that it gets used in ways not originally
envisaged and this feeds back into further improvements of the tool chain ele-
ments. In the following, we provide an account of our experience of the sessions
typical outcomes.

First Session. This is the students’ first contact with the model-based approach
and co-simulation concept. Usually students fully complete Tutorial 0, 1 and
2 and achieve an abstract understanding a co-simulation. The first challenge
appears with Tutorial 0 and the installation of the Java virtual machine, which
surprisingly poses troubles to a great group of students. Although theoretically a
simple step for a master level student to perform, in practice we observe that the
students often get frustrated while finding the links for the software package in
the official provider downloads webpage. The problem is nowadays compounded
with the display of complex licensing information and with the redirection to a
registration page. It is awkward to observe that often students decide to install
the virtual machine from non-official providers. This is a problem mostly affect-
ing students without previous exposure to the Java and its development environ-
ment. In most cases, the completion of Tutorial 1 poses no trouble beyond tool
glitches, or when the students miss accomplishing some of the previous steps.
Commonly, a student may be unable to invoke the co-simulation orchestrator
because they forgot to install the Java runtime or to download the coe.jar file.
In contrast, the completion of Tutorial 2 is more complex and students often
ask for assistance because the co-simulation is not launched (e.g., the miscon-
figuration of FMUs connections is detected by Maestro at launch time) or the
results diverge from what is expected (e.g., the LFR animation displays a robot
running in circles instead of following the line).

Second Session. After a shallow contact with co-simulation, the students are pre-
sented with Tutorials 3 and 4. Tutorial 3 is usually appreciated as it provides an
appealing graphical approach to manipulating and visualising the co-simulation
multi-model. On the downside, at some points, the Modelio tool is not user-
friendly. In some cases, it crashes unexpectedly and steps need to be repeated.
This tutorial takes most students time, which causes some students to move the
completion of Tutorial 4 to the following session. The completion of Tutorial 4
goes without much trouble. This may be because that most of the steps involve

Collaborative Modelling and Co-simulation 203

the use of INTO-CPS features that are already familiar from previous tutorials.
We find that the novel aspect of it – the generation of an FMU using Overture
– is typically less prone to tool crashes, and most of our students have previous
experience with Overture, which may simplify the task.

Third Session. This session is devoted to Tutorial 5 only. Installing and editing
a CT model in 20-sim is usually accomplished with little assistance. In the sec-
ond part, students are required to set up a C++ development environment in a
Windows system, which involves the installation of tools such as Microsoft Build
Tools and the troubleshooting of compilation errors. Usually students find this
challenging and require more instructor support, for example because some stu-
dents’ systems do not accommodate the multi-Gigabyte demands of the instal-
lation, or the compilation script fails to find some of the registry entries.

Fourth Session. At this point, students have a working knowledge of the DE and
CT models of the LFR. The session consists of Tutorials 6 and 7 which explore
the DSE concept. Some students follow Tutorial 6 with some difficulty, as the
graphical language is too abstract. But most are able to finish and progress to
Tutorial 7. This tutorial is usually well-received when completed, as the students
have a hands-on experience with DSE. Students are usually able to configure
DSE launch scripts, but often have trouble because of misconfiguration of the
Python dependency and the specific libraries required to run the scripts.

Fifth Session. To finalise the MBSE sessions we usually deliver one of the tuto-
rials where the students develop the controller for the LFR example either using
VDM (Tutorial 9) or PVSio-Web (Tutorial 11) and then deploy a controller
into the hardware platform Tutorial 10. Tutorial 10 involves the compilation
and upload of an Arduino sketch into LFR. Some of the steps are cumbersome
because the standard compiler in the Arduino IDE tool chain version must be
substituted by a different version. Also, the process involves several options and
flags, which may at points be confusing. The interested students get hold of
the LFR hardware and deploy it and run it on line tracks we set up for the
experiments.

To what extent have we addressed the need for the more T-shaped skills identi-
fied in Sect. 1? In the context of this systems engineering course, negotiating com-
mon terms and concepts across disciplinemodels is exercised both in the document-
based part as well as in the model-based part of the course. “Real” negotiation is
actually carried out in the document-based part where the different groups also act
as sub-contractors to another group. Identifying and performing system-level tests
is in particular exercised in the model-based part where co-simulation is used in the
tests performed. Experience at modifying and reassessing designs is done mostly
in the document-based part where a design change is introduced (on purpose but)
unexpectedly for the students. If we had more time we would like to also use this
in the model-based part of the course. Performing design optimisation is exercised
using DSE in a co-simulation context, and here we think that there is an opportu-
nity to run a small competition to deliver designs that deliver optimal performance
against specified systems-level criteria.

204 P. G. Larsen et al.

4 The Newcastle University Experience: Co-modelling
and Co-simulation for Computer Scientists

NU’s School of Computing admits about 300 students per year to study for a six-
semester Bachelor of Science (Honours) degree in Computer Science, or an eight-
semester Master of Computing degree. As a university focussed on fundamental
research that has a positive business, societal or environmental impact, there is
a strong motivation to expose students to advances in technology that are on
the horizon now, but may become significant in their professional careers.

The focus of the NU computer science degree programmes has traditionally
been on software and systems rather than on engineering. Perhaps as a conse-
quence of this, although the programmes require a high level of attainment by
students on entry, they do not require pre-entry qualifications to be in particular
subjects. Students enter having specialised at high school in almost any disci-
pline, although all must have a basic level of mathematics and around half do
have backgrounds in mathematical and physical sciences. The resulting diversity
of intellectual background among students is seen as a strongly positive feature,
but it does mean that mathematical and computing maturity varies across the
cohort on entry. Some “levelling up” in mathematics for computing takes place
in the first semester of study, and the mathematics needed for specialised sub-
jects, such as basic number theory for cryptography, is taught close to the point
of use.

The undergraduate programmes considered here are taught over six
semesters. We here consider the current Stage 3 specialist module in real time
and CPS delivered in Semester 6. Students with an interest in this area will have
studied some basic formal modelling in VDM in Semesters 3 or 4, and may also
have chosen to undertake a specialist project in the area in Semesters 5 and 6
alongside this pivotal module.

4.1 Course Structure and Material

CPSs typically have a significant real-time element as well as requiring the
integration of physical and digital worlds. The MBSE approach taught at NU
emphasises the real-time, concurrency and scheduling elements that Comput-
ing graduates need to know, alongside an appreciation of the multi-disciplinary
cyber-physical integrations that give rise to temporal requirements.

The technical aims of the module are to understand the basic concepts of real
time and embedded systems as well as CPSs; to understand the requirements
and challenges of such systems, and how these have influenced the design of
real-time languages; understand the implementation and analysis techniques for
realisation of these systems; and to understand the concepts of model-based
design, DE and CT models.

Collaborative Modelling and Co-simulation 205

Introduction: The concepts of real-time, embedded and CPSs are clarified, and
the integral role of dependability in such systems is introduced. In one class-
room exercise, for example, students are asked to form teams responsible for
the software, hardware or safety of a simple product (a personal transport
device like a Segway). Concepts of larger-scale CPSs as systems-of-systems
are introduced.

CT Modelling and Control of Physical Components: The motivations
for CT modelling are introduced: this is particularly important for com-
puter science students who have studied almost everything up to this point
in an exclusively DE setting. In many cases, this is the point of reacquaint-
ing computer science students with physics and applied mathematics that
they have not studied since high school. Concepts of controller characteris-
tics (e.g., managing jerky acceleration) are illustrated using 20-sim and the
standard example of the controller of a torsion bar in which a flexible axle
connects two disks, one of which is rotated by a controlled motor. Elements
of computer control (sample, compute and hold) are also introduced.

Discrete-event Modelling of Controllers: The idea of levels of control from
loop to supervisory control are introduced by considering motorway driv-
ing. A review of VDM-RT includes a discussion of support for concurrency.
Design patterns are introduced used as a basis for describing controller struc-
tures.

Multi-modelling and Co-simulation: The idea of a simple multi-model is
introduced using the same LFR example as the AU course. This section
discusses the pragmatics of co-model development and FMU integration.
This is the point at which variable time step co-simulation semantics is first
introduced. The full INTO-CPS tool chain is introduced, and DSE is first
encountered, again using the LFR.

Dependability and Fault Tolerance: Key dependability concepts are intro-
duced using traffic light control and a paper pinch control as examples.
Students examine techniques for error detection, isolation and recovery and
again use patterns to examine relevant solutions such as safety kernels and
voter architectures.

Related Topics covered in the later classes of the module build on the core
of control explored through co-modelling and co-simulation. For example,
techniques for managing concurrency are discussed through the lock- and
synchronisation-free communications mechanisms that are needed for exam-
ple soft control systems. Resource sharing is explored through the Mars
Pathfinder priority inversion problem.

4.2 Course Delivery

The module is delivered over a single semester. It is expected to require around
100 h of work from a student, of which about 36 are formal lectures or labo-
ratory teaching. The remainder is independent study with access to labs, tools
and learning materials including recordings of lectures. Contact hours are struc-
tured as a two-hour lecture followed by a one-hour practical session each week.

206 P. G. Larsen et al.

This timetabling can be tiring, but it does offer the opportunity to try tech-
niques discussed in the classroom immediately in the laboratory. Small items of
practical work are embedded within the main course material, to familiarise stu-
dents with specific technologies. These are followed by more substantial assessed
coursework which builds on these smaller exercises and broadens students’ expe-
rience. The module is assessed by a combination of this assessed work and a
written examination.

Practical sessions begin once CT modelling and 20-sim have been introduced
in lectures. Since the cohort are largely familiar with VDM and DE modelling3

from Stage 2, this material is presented upfront because it is the most different
to what students have previously experienced.

Practical classes are supported by three demonstrators (PhD students) and
the lecturer. Each of the first four practicals introduces a tutorial exercise that
lets students try out the tools and techniques discussed in preceding classes,
reinforcing the content and providing students with the experience needed to
tackle the longer assessed coursework. Each exercise is designed to take about
one hour and must be signed off for a small amount of credit. Since students
work at different rates and not all students can attend all sessions, sign-off sheets
help to track individual students’ progress; any students who seem to be falling
behind are contacted individually to identify problems. Once all sign-off dead-
lines has passed, the final practical sessions allow students to ask for help on
the longer piece of assessed coursework. In the following we discuss the practical
exercises and student experiences. These have been refined over a few years and
we highlight important changes that were made.

Installation. Practical classes are held in computer clusters with access to 20-
sim, Overture and INTO-CPS, so students can start rapidly. One problem with
INTO-CPS is due to the co-simulation engine using HTTP connections. Firewalls
occasionally block this traffic, resulting in failure to run a co-simulation without
a useful error message. One year there was a problem where only some machines
had the correct firewall exceptions, so the problem was intermittent. Another
issue was the need for the FMU export plug-in for Overture to be installed
manually by each user, causing problems with roaming profiles. In one case, a
new version of the plug-in was released that was incompatible with the version
of Overture, so an entire practical was lost pending a workaround.

Students are increasingly using their own devices, and we provide installation
instructions. Installation is typically smooth, but some machines have network-
specific firewall restrictions. In addition, some students using MacOS or Linux
are unable to install the full tool suite (e.g., 20-sim). So, while students are not
prevented from working, the nature of the tools might prevent some working in
the way that suits them best.

Exercise 1 follows a lecture on CT modelling and simulation, and an intro-
duction to 20-sim. Its aim is to familiarise students with the 20-sim interface

3 Exchange students unfamiliar with VDM are provided with extra gsupport.

Collaborative Modelling and Co-simulation 207

(making connections, changing parameters and running simulations) by recre-
ating a model of the standard torsion bar based on a screenshot of the layout.
This exercise is based on training material from Controllab Products, with the
of addition material to help clarify engineering concepts to non-engineer com-
puter scientists. A problem here is that some students are not sure what they
are modelling, since the torsion bar concept is not immediately familiar to most
computing students. This might be improved by finding a more familiar example
(e.g., a bouncing ball).

Exercise 2 introduces tuning of PID controllers, again using the torsion bar. This
aims to help students understand the nature of low-level real-time control – one
of the main new concepts the course introduces. The Ziegler-Nichols method,
which is a common heuristic for tuning a certain class of system, is used to
guide students. The torsion bar was designed as an example for teaching and is
therefore fairly forgiving, which can cause confusion when students are unsure
when they have finished tuning. In addition, while the Ziegler-Nichols method
keeps the exercise straightforward, it does not provide good intuition of the roles
of P, I, and D. This exercise could be enhanced using a different example where
students tune manually before applying Ziegler-Nichols.

Exercise 3 covers DE modelling using Overture and the LFR example. As the
majority of the cohort has studied VDM-SL, the aim here is to highlight the
differences with VDM-RT. The exercise uses a “DE-first” version of the LFR
example where a simple VDM environment model represents the robot. The
produces output to the console and a CSV file that can be used to visualise
the robot path in Excel. Students build a controller to follow the line, cop-
ing with ambient light. Some students find it frustrating building a controller
without seeing the robot, however this is somewhat intentional as it motivates
co-simulation in the next exercise. Another issue is that some students take time
to understand the paradigm of control loops, for example using loops inside a
main VDM operation, instead of treating the operation as the body of a loop.
This exercise typically takes the most time.

Exercise 4 uses INTO-CPS to run a co-simulation using the LFR example.
Students take their controller from Exercise 3 and see it driving the virtual
3D robot, which most students seem to find satisfying. This builds familiarity
with the INTO-CPS interface, and how to run and monitor a co-simulation.
The exercise is often quick to complete, compensating somewhat for the length
of Exercise 3. A frustration here is that the older LFR model crashes when
completing a co-simulation (even a successful one). Although a note is included
in the exercise description, some students still find this confusing.

Assessed Coursework Rather than use smaller exercises, the assessed coursework
focuses on a scenario that is explored in greater depth. For example, the 2019/20
coursework is based on designing a controller for a driverless train and testing it
using co-simulation. The train model includes a human passenger, the comfort

208 P. G. Larsen et al.

of whose ride is important: the train cannot accelerate or brake too much if the
passenger is to avoid falling. A model of train and passenger physics and a basic
PID loop controller is given in 20-sim, and an outline supervisory controller in
VDM-RT. A 3D visualisation is included to help test the controller. The tasks
are:

1. Within 20-sim, tune the PID controller with respect to a permitted upper
limit on passenger movement. Students explore a range of control parameters.
Once tuned, the model is imported into the INTO-CPS application.

2. Create a VDM-RT model of a supervisory controller that manages train
journeys subject to constraints on speed, stopping accuracy and passenger
comfort. Students are given a base project in INTO-CPS that includes the
necessary VDM-RT classes to read train position and speed, but which they
may extend with features to structure the control logic as they see fit. An
important requirement is the adaptability of the controller to a variety of
train route scenarios.

3. Reflect on their experience of the task, considering how they went about
tuning the controller, designing the controller to meet the constraints, and
how their solution could be further improved.

4.3 Next Steps for the NU Curriculum

To what extent have we addressed the need for the more T-shaped skills that we
identified in Sect. 1? Within the current NU module, students gain experience at
negotiating common terms and concepts across discipline models from the outset
because of the unfamiliarity of the kinds of CT model that we present. Concepts
of controller architecture are, for example, quite new to students form this back-
ground. Experience at identifying and performing system-level tests is gained
from the practical work. Experience at modifying and reassessing designs, and
performing design optimisation is provided to some degree, e.g. in the course-
work, but this is less systematic that we might wish.

The current module is moderately popular, attracting about 53 students in
2019-20 (about 20% of the available cohort). While those students who do take
the course mostly report positive experiences, the relative unfamiliarity of the
topic to classically trained computer scientists is potentially a deterrent.

In 2017 a complete review of the NU BSc computing curriculum was under-
taken, influenced by two factors. First, there was a desire to expose students
to active research topics earlier. Second, there was continuing recognition of the
need to equip graduates with skills for employment [25]) in an increasing range of
industries such as manufacturing that are not traditionally seen as destinations
of software specialists [1]. The new curriculum takes a portfolio-based approach
in which problem-based learning plays a significant role [2]. This suits CPS and
MBSE perfectly. In order to ensure an introduction to research-inspired topics
as early as practicable, a brief introduction to CPS will be given in Semester 4,
giving students an opportunity to consider specialising in the area by taking the
specialist module in Semester 5 and a capstone project in Semester 6. It is hoped

Collaborative Modelling and Co-simulation 209

that introducing topics in Stage 2 may demystify CPS engineering. The revised
Semester 5 module will run in 2021–22 year with the following key changes:

1. The new Semester 4 module provides only a brief introduction to MBSE,
CPS and VDM. This requires a change to the current delivery to teach more
fundamentals at Semester 5, but it creates an opportunity to broaden stu-
dents’ MBSE experience in the CPS context by introducing a wider range of
formalisms.

2. Two new academic staff will join the delivery team, bringing expertise in
probabilistic modelling, machine learning and verification for CPS. This cre-
ates an opportunity to engage in further research-informed teaching and bring
different perspectives on MBSE for a shared case study, for example.

3. The portfolio-based approach means students will be more familiar with
larger pieces of coursework, team working and reflective writing. This cre-
ates an opportunity to expand assessment to more collaborative aspects such
as assigning roles to students to create, share FMUs that could be integrated
in assigned teams, or as a supplier-customer relationship between students
supported by peer assessment and feedback to shape students’ collaboration
skills.

5 Discussion

In Sect. 1 we set ourselves the challenge of developing ‘T-shaped’ graduates,
but doing so in the context of research-inspired curricula. The approaches we
have taken at our two institutions are different in that one (AU) is situated in
the context of a systems engineering course at Masters level, while the other
(NU) is within a mono-disciplinary computer science programme at Bachelors
level. In both cases we feel that this initiative can be considered successful if the
graduates have both experienced the need for inter-disciplinary collaboration,
and understood the need to develop and adapt professional practice as new
research results become available, making companies innovative and competitive.

Although AU and NU have up to now placed the core modules on MBSE
for CPS at different stages of study, it is notable that both institutions are now
acting to place the first introduction of these topics earlier: both of them in
Semester 4 of undergraduate programmes [14].

The NU module is part of a computer science degree delivered in a Computing
school, rather than an Engineering degree in an Engineering education as at AU.
This has influenced the content in that we are introducing students who have
been thinking in largely discrete formalisms to the fact that their software will
have – for good or ill – profound physical effects. Conversely, engineering students
would benefit from greater awareness of the software engineering principles that
will be critical to the success of innovations in many sectors. To that end, NU
has created a new Masters programme in Smart Systems Engineering, aimed at
both engineers and computer scientists.

Practical work plays a key role in both the AU and NU approaches to develop-
ing T-shaped skills for model-based CPS engineering. One of the most important

210 P. G. Larsen et al.

lessons we have learned so far has been the need to create good ecosystems in
which students practice and develop their skills. In our experience there are two
such ecosystems to consider: first an ecosystem of disciplines; second, a busi-
ness ecosystem in which roles such as contractors, integrators and end users are
available. We have experienced pragmatic challenges in setting the disciplinary
ecosystem up because discipline silos are often embedded in university structures.
This makes it difficult to bring diverse groups together, often for prosaic rea-
sons such as timetabling, but also because student and faculty expectations and
forms of delivery differ between departments. As a result, we recommend devel-
oping an early-stage commitment to such multi-discipline projects. In creating
a business ecosystem, we strongly recommend building relationships with exter-
nal stakeholders to act as clients from outside the students’ immediate technical
environment. We have worked with real businesses, as well as other university
professional departments for this purpose, chiming with the experience of Boehm
and Mobasser [4]. The AU experience of creating subcontractors and integrator
teams has been successful in creating a rich environment for understanding con-
tractual relationships.

A lesson from both AU’s and NU’s experience is that successful deployment
of research products in teaching hinges on having robust, well-documented tools
with large bodies of examples aimed at users at a range of experience levels. This
requires a very significant investment of effort in activities that rarely win aca-
demic plaudits. These include carefully structuring and refactoring tools, dealing
with changes in platforms, developing, trialling, and improving materials (some-
times in several languages). Without these activities, tools and methods lack the
credibility to influence more than a handful of the next generation of practition-
ers. Such an effort is typically only possible by maintaining a coherent series of
research projects that keep key stakeholders involved.

6 Future Work

For 2021 we hope that we will be able to use a cloud-based version of the INTO-
CPS Application [24] such that the students will have less installation necessary
on their own laptops. In the future we hope to be able to use our research
prototypes in a digital twin context [11]. Here we plan to make use of desktop
version of the agricultural robot called Robotti [12]. This can be seen at Fig. 3
and it is a platform that can be equipped with additional sensors and explored
in a digital twin context as well [11].

In this paper, we have considered examples of the influence of research on
teaching in MBSE for CPSs. The underlying idea is that the best way to have a
positive influence on industry and the wider environment is to develop graduates
who keep abreast of research and allow it to influence their professional practice.
In that context, it is worth universities considering their responsibility for lifelong
learning [7]. What can we do to maintain the skills and knowledge of own alumni,
and maintain the virtuous cycle in which graduates convey advances in practice
to industry, which rewards universities in turn with new technological challenges
for research and innovation.

Collaborative Modelling and Co-simulation 211

Fig. 3. The Robotti agricultural robot (left), and desktop-sized version (right).

At both AU and NU we have taken the initiative of establishing not-for-
profit Digital Innovation Hubs (DIHs) with missions to improve the take-up of
innovative technology in the surrounding business ecosystems, particularly in
MBSE for CPSs. There is a long way to go in helping companies to truly take
advantage of the expertise and innovations to be found in our universities. This
is the goal of future work with partners in the HUBCAP project4 [19] which
aims to use DIHs to lower barriers to innovation through easier platform-based
access to MBSE tools, models and practitioner experience.

Acknowledgements. We are grateful to many colleagues and students at both our
universities. We acknowledge the European Union’s support for the INTO-CPS and
HUBCAP projects (Grant Agreements 644047 and 872698). We are especially grateful
to the Poul Due Jensen Foundation, which has funded subsequent work taking co-
modelling and co-simulation forward into the engineering of digital twins.

References

1. Made Smarter Review: UK Government. Department for Business, Energy and
Industrial Strategy (2017)

2. Barnes, J., et al.: Designing a portfolio-oriented curriculum using problem based
learning. In: Proceedings of the 4th Conference on Computing Education Practice
2020, CEP 2020. Association for Computing Machinery, New York (2020). https://
doi.org/10.1145/3372356.3372367

3. Bastian, J., Clauss, C., Wolf, S., Schneider, P.: Master for co-simulation using FMI.
In: 8th International Modelica Conference (2011)

4. Boehm, B., Mobasser, S.K.: System thinking: educating T-shaped software engi-
neers. In: Proceedings of IEEE/ACM 37th IEEE International Conference on Soft-
ware Engineering, pp. 333–342 (2015)

5. Broenink, J.F., et al.: Design support and tooling for dependable embedded con-
trol software. In: Proceedings of Serene 2010 International Workshop on Software
Engineering for Resilient Systems, pp. 77–82. ACM (2010)

6. Broenink, J.F., et al.: Methodological guidelines 3. Technical report, The
DESTECS Project (INFSO-ICT-248134) (2012)

7. Field, J.: Social Capital and Lifelong Learning. The Policy Press (2005)

4 See hubcap.eu.

https://doi.org/10.1145/3372356.3372367
https://doi.org/10.1145/3372356.3372367
https://www.hubcap.eu/

212 P. G. Larsen et al.

8. Fitzgerald, J., Gamble, C., Larsen, P.G., Pierce, K., Woodcock, J.: Cyber-physical
systems design: formal foundations, methods and integrated tool chains. In: For-
maliSE: FME Workshop on Formal Methods in Software Engineering, ICSE 2015,
Florence, Italy (2015)

9. Fitzgerald, J., Gamble, C., Pierce, K.: Method guidelines 3. Technical report,
INTO-CPS Deliverable, D3.3a (2017)

10. Fitzgerald, J., Larsen, P.G., Verhoef, M. (eds.): Collaborative Design for Embedded
Systems - Co-modelling and Co-simulation. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54118-6

11. Fitzgerald, J., Larsen, P.G., Pierce, K.: Multi-modelling and co-simulation in the
engineering of cyber-physical systems: towards the digital twin. In: ter Beek, M.H.,
Fantechi, A., Semini, L. (eds.) From Software Engineering to Formal Methods and
Tools, and Back. LNCS, vol. 11865, pp. 40–55. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30985-5 4

12. Foldager, F., Larsen, P.G., Green, O.: Development of a driverless Lawn Mower
using co-simulation. In: 1st Workshop on Formal Co-Simulation of Cyber-Physical
Systems, Trento, Italy (2017)

13. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
a survey. ACM Comput. Surv. 51(3), 49:1–49:33 (2018)

14. Hallerstede, S., Larsen, P.G., Boudjadar, J., Schultz, C.P.L., Esterle, L.: Frontiers
in software engineering education. In: On the Design of a New Software Engineering
Curriculum in Computer Engineering (2020)

15. Hasanagić, M., Fabbri, T., Larsen, P.G., Bandur, V., Tran-Jørgensen, P., Ouy, J.:
Code generation for distributed embedded systems with VDM-RT. Des. Autom.
Embed. Syst. (2019). https://doi.org/10.1007/s10617-019-09227-0

16. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.:
The overture initiative - integrating tools for VDM. SIGSOFT Softw. Eng. Notes
35(1), 1–6 (2010). https://doi.org/10.1145/1668862.1668864

17. Larsen, P.G., et al.: Integrated tool chain for model-based design of cyber-physical
systems: the INTO-CPS project. In: CPS Data Workshop, Vienna, Austria (2016)

18. Larsen, P.G., Kristiansen, E.L., Bennedsen, J., Bjerge, K.: Enhancing non-technical
skills by a multidisciplinary engineering summer school. Eur. J. Eng. Educ. 42,
1076–1096 (2017)

19. Larsen, P.G., et al.: An online MBSE collaboration platform. In: SimulTech 2020
(2020)

20. Macedo, H.D., Sanjari, A., Villadsen, K., Thule, C., Larsen, P.G.: Introducing
angular tests and upgrades to the INTO-CPS application. In: Submitted for Pub-
lication (2020)

21. Masci, P., Oladimeji, P., Zhang, Y., Jones, P., Curzon, P., Thimbleby, H.: PVSio-
web 2.0: joining PVS to HCI. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9206, pp. 470–478. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21690-4 30

22. Modelica Association: Functional Mock-up Interface for Model Exchange and Co-
Simulation (2019). https://www.fmi-standard.org/downloads

23. Palmieri, M., Macedo, H.D.: Automatic generation of functional mock-up units
from formal specifications. In: 3rd Workshop on Formal Co-Simulation of Cyber-
Physical Systems, Oslo, Norway (2019, To appear)

24. Rasmussen, M.B., Thule, C., Macedo, H.D., Larsen, P.G.: Migrating the INTO-
CPS application to the cloud. In: Gamble, C., Couto, L.D. (eds.) Proceedings of
17th Overture Workshop, pp. 47–61. Newcastle University Technical Report CS-
TR-1530 (2019)

https://doi.org/10.1007/978-3-642-54118-6
https://doi.org/10.1007/978-3-642-54118-6
https://doi.org/10.1007/978-3-030-30985-5_4
https://doi.org/10.1007/978-3-030-30985-5_4
https://doi.org/10.1007/s10617-019-09227-0
https://doi.org/10.1145/1668862.1668864
https://doi.org/10.1007/978-3-319-21690-4_30
https://doi.org/10.1007/978-3-319-21690-4_30
https://www.fmi-standard.org/downloads

Collaborative Modelling and Co-simulation 213

25. Shadbolt, N.: Shadbolt review of computer science degree accreditation and grad-
uate employability. UK Government. Department for Business, Innovation and
Skills, and Higher Education Funding Council for England (2016)

26. Thompson, H. (ed.): Cyber-Physical Systems: Uplifting Europe’s Innovation
Capacity. European Commission Unit A3 - DG CONNECT (2013)

27. Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.G.: Maestro: the INTO-
CPS co-simulation framework. Simul. Model. Pract. Theory 92, 45–61 (2019).
http://www.sciencedirect.com/science/article/pii/S1569190X1830193X

28. Thule, C., Lausdahl, K., Larsen, P.G.: Overture FMU: export VDM-RT models as
tool-wrapper FMUs. In: Pierce, K., Verhoef, M. (eds.) The 16th Overture Work-
shop, TR-1524, pp. 23–38. Newcastle University, School of Computing, Oxford
(2018)

29. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and validating distributed embed-
ded real-time systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.)
FM 2006. LNCS, vol. 4085, pp. 147–162. Springer, Heidelberg (2006). https://doi.
org/10.1007/11813040 11

30. Walden, D.D., Roedler, G.J., Forsberg, K.J., Hamelin, R.D., Shortell, T.M. (eds.):
Systems Engineering Handbook. A Guide for System Life Cycle Processes and
Activities, Version 4.0., 4 edn. Wiley (2015)

http://www.sciencedirect.com/science/article/pii/ S1569190X1830193X
https://doi.org/10.1007/11813040_11
https://doi.org/10.1007/11813040_11

Competitions and Workshops

Designing Interactive Workshops
for Software Engineering Educators

Cécile Péraire1(B), Hakan Erdogmus1(B), and Dora Dzvonyar2(B)

1 Carnegie Mellon University, Silicon Valley Campus,
Moffett Field, CA 94035, USA

{cecile.peraire,hakan.erdogmus}@sv.cmu.edu
2 Faculty of Informatics, Technical University of Munich, 80333 Munich, Germany

dora.dzvonyar@tum.de

Abstract. Given the rapid pace of changes in the software industry,
software engineering educators face the challenge of keeping up with
emerging trends and technology and incorporating them into the class-
room. Among other tools at their disposal, educators leverage software
engineering education workshops to share knowledge and experiences,
and hence further their own education. Unfortunately, information avail-
able to educators on how to run and organize these workshops is scarce.
This paper is an attempt to fill the gap by sharing lessons learned. It is
based on the authors’ experience designing, facilitating, and participat-
ing in such workshops, an interview with a workshop organizer, and an
exploration of software engineering education workshop websites. The
paper documents the current state of software engineering education
workshops, identifies workshop design challenges—including interactivity
of the format—and proposes solutions to address the challenges.

Keywords: Software engineering education · Continuing education ·
Professional development · Software Engineering Workshop · Workshop
design

1 Introduction

Given the rapid pace of changes in the software industry, Software Engineer-
ing (SE) educators face the challenge of keeping up with emerging trends and
technology and bringing new ideas to the classroom. SE educators typically stay
current by following the SE literature, attending SE conferences, participating
in webinars organized by professional organizations such as ACM and IEEE
Computer Society, taking online courses, and attending professional develop-
ment events. These events often take place at conferences, or are sponsored by
the educators’ institutions or (inter)national bodies and granting organizations.

Some of the above channels cover higher education within a context larger
than SE, typically in the much broader scopes of computer science or engineering
education. For example, in the U.S., the Association for Engineering Education
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 217–231, 2020.
https://doi.org/10.1007/978-3-030-57663-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_14

218 C. Péraire et al.

organizes the National Effective Teaching Institutes (NETI), a series of work-
shops aimed at developing teaching skills of educators in engineering-related
fields [18]. The annual technical symposium organized by ACM’s Special Inter-
est Group on Computer Science Education [14] also hosts a number of workshops
and tutorials highly relevant to SE educators. The National Science Foundation,
the main U.S. federal granting agency in science, engineering, and technology,
also routinely sponsors professional development events and workshops for com-
puter science educators, some of which are on topics highly relevant for SE
educators—for instance, see [15]. In addition, many universities have established
centers of teaching excellence to support their teaching faculty with continu-
ing education opportunities. An example is Carnegie Mellon University’s Eberly
Center [12], which organizes annual Teaching-As-Research workshops to promote
latest pedagogical strategies across the university, most of which are well-suited
for the increasingly interactive and collaborative nature of SE education.

However, the above channels do not specifically focus on the unique needs and
problems of SE education. They are not necessarily ideal to allow the smaller
cohort of SE educators to share their common experiences and solutions and
learn from each others. In this paper, we exclusively focus on workshops run
by SE educators for SE educators with the goal of allowing dynamic exchange
of knowledge among participants using approaches commonly used in the SE
practice itself and specifically suited in the SE context.

Furthermore, how to organize and run SE education workshops is not typ-
ically addressed in the SE education literature, and information and advice
available to educators willing to lead such workshops is scarce. This paper
attempts to fill the gap by sharing the authors’ experiences and lessons learned
in this space, primarily based on two highly interactive workshops: the First
IEEE/ACM International Workshop on Software Engineering Curricula for Mil-
lennials (SECM’17) [9] and the Second IEEE/ACM International Workshop on
Software Engineering Education for Millennials (SEEM’18) [8]. The paper also
reviews recent SE education workshops based on published workshop proceed-
ings (e.g. [24]), reports (e.g. [23]), and websites (see Table 1) to establish common
formats, strategies, and outcomes.

The above information is supplemented by an interview of one of the orga-
nizers of the First International Workshop on Frontiers in Software Engineering
Education (FISEE’19) [10]. The semi-structured interview was conducted over
video conference and lasted about an hour. It was based on a set of open-ended
questions (e.g., What was the workshop overall agenda? What are some workshop
elements that worked well and will be reused next time? What are some work-
shop elements that did not work well and will be removed or replaced? How?).
Prepared questions were used as a guide, rather than forcing a strictly scripted
sequence, allowing for discussions and additional topics to emerge. The inter-
view’s key insights are captured in the paper in a distributed fashion as they
pertain to a point being discussed.

As a result, the paper covers the design of SE education workshops from
multiple angles. Section 2 documents the current state of SE education work-

Designing Interactive Workshops for Software Engineering Educators 219

shops, using different workshops offered in 2019 as examples. Section 3 discusses
a number of design challenges faced by workshop organizers and facilitators and
proposes various solutions to address the challenges. Finally, Sect. 4 concludes
with the paper’s key contributions.

2 State of SE Education Workshops

Workshops have been used by SE educators to support their continuing educa-
tion and professional development needs for quite some time. As early as 1976,
Wasserman and Freeman facilitated a one-day Interface Workshop on Software
Engineering Education: Needs and Objectives [24]. The goal was to create an
“interface” between industry, government, and universities to discuss what SE
concepts needed to be taught to both students and practicing professionals.
About 40 participants attended the workshop. Discussions were based on short
position papers submitted by participants and later published in the workshop
proceedings.

Table 1. Examples of 2019 SE education workshops.

Acronym Workshop Country

SEISEWE’19 16th SEI Software Engineering
Workshop for Educators [3]

USA

EASEAI’19 First International Workshop on
Education through Advanced Software
Engineering and Artificial Intelligence
[4]

Estonia

FISEE’19 First International Workshop on
Frontiers in Software Engineering
Education [10]

France

WESEE’19 Second Workshop on Emerging Software
Engineering Education [5]

India

ISEE’19 Second Workshop on Innovative
Software Engineering Education [6]

Germany

SEED’19 Software Engineering Education
Workshop [7]

Malaysia

Workshops for SE educators have been offered on a regular basis since the
1970s. A simple internet search reveals that they have become relatively popular
in recent years. As examples, workshops offered in 2019 are presented in Table 1.
These workshops, although they share a common goal, vary in scope, audience,
admission process and outcomes, duration and agenda, level of interactivity, and
organization structure:

220 C. Péraire et al.

– Scope. While most workshops advertised a broad initial scope on SE educa-
tion, EASEAI’19 identified a narrower focus related to how artificial intelli-
gence can support SE education. The scope of most other workshops ended
up being shaped by participants’ interests. For instance, a SEISEWE’19 orga-
nizer [3] mentioned “Artificial intelligence, machine learning, and data sci-
ence were high on the list of topics participants thought were important to
introduce to the classroom.” As a result, those topics naturally emerged as
central to the workshop, rather than being predetermined.

– Audience. Even-though the primary audience of most workshops was SE
educators from academia, some—like EASEAI’19 and WESEE’19—explicitly
called for industry participants. SECM’17 (discussed later) also invited stu-
dent participants to get the perspectives of those on the receiving end.

– Admission Process and Outcomes. While WESEE’19 was open to all
participants without up-front contributions, admission to most workshops
was based on the submission of a paper formally reviewed by a program com-
mittee and later published in the workshop proceedings. Typical submissions
included short four-page papers as well as long eight-page papers. The pub-
lication of these papers was the sole tangible outcome of most workshops. At
SEISEWE’19 the educators’ “entrance fee” for attending the workshop was
the submission of an artifact aimed at introducing SE topics into the college
curriculum, such as course slides and syllabi.

– Duration and Agenda. While most workshops were one-day long, their
duration varied from half a day for SEED’2019 and WESEE’2019 to
three days for SEISEWE’19. While the SEED’2019 half-day workshop fol-
lowed a mini-conference format based mostly on paper presentations, the
WESEE’2019 half-day workshop was structured around one expert talk and
two interactive activities. The SEISEWE’19 three-day workshop offered two
days of instruction and a final day of invited talks and group sessions.

– Level of Interactivity. A number of workshops—ISEE’19, EASEAI’19, and
SEED’19—adopted a mini-conference format based mostly on paper or poster
presentations. In this format, discussions among participants happen primar-
ily during Question-and-Answer sessions during or after the presentations.
Other workshops introduced various activities to more actively engage par-
ticipants and make the workshop more interactive. For instance, WESEE’19
incorporated an interactive activity where participants leveraged the Wall
of Ideas [1] brainstorming technique: starting with trigger questions, the
goal was to generate as many ideas as possible to fill up an entire wall. At
FISEE’19, the organizers included a couple of Panel Discussions (see also
Sect. 3.3).

– Organizing Structure. Some workshops were co-located with larger SE
conferences while others were held independently. For instance, WESEE’19
was co-located with the 12th Innovations in Software Engineering Conference
(ISEC’2019), while FISEE’19 was an independent event. SEISEWE’19 was
also an independent event hosted by the Software Engineering Institute (SEI).

Outside of the 2019 workshops listed in Table 1, the First IEEE/ACM
International Workshop on Software Engineering Curricula for Millennials

Designing Interactive Workshops for Software Engineering Educators 221

(SECM’17) [9] and Second IEEE/ACM International Workshop on Software
Engineering Education for Millennials (SEEM’18) [8], organized by two of the
authors, are notable in terms of their strong focus on interactivity and how they
address design challenges. In the next section we will use these two workshops
as concrete examples while discussing design challenges and solutions.

3 Workshop Design Challenges and Solutions

This section discusses a number of design challenges faced by organizers and
facilitators of SE education workshops. The challenges relate to (1) involving all
participants during the workshop, (2) selecting the workshop topics, (3) making
the workshop interactive, (4) generating tangible workshop outcomes, (5) closing
the workshop, and (6) setting up the workshop physical space.

3.1 Involving All Participants

Workshops benefit from the perspectives of all participants. Some of us have wit-
nessed workshops where discussions were mostly among the workshop organizers,
presenters, and a few vocal participants in the audience. The other participants
remained mostly silent. To avoid such situations, we believe that it is important
to provide all participants with a space to introduce themselves and build cred-
ibility at the beginning of a workshop. This way, participants feel empowered to
actively participate during the rest of the workshop.

During SECM’17 [9], we used a simple round-table format to provide each
participant with one minute to briefly introduce themselves. Unfortunately, this
did not prevent us from having a few silent participants. Without visuals and
time to prepare, the introductions were generally dull and quickly forgotten.
With this common approach, shy or reserved participants do not build the cred-
ibility that they need to feel confident to actively participate later.

During SEEM’18 [8] we adopted a different format that proved more effective.
We asked participants to prepare a single Visual Introduction Slide including
their photo, name, title, affiliation, and a pictorial representation of their favorite
topics of interest when it comes to SE education. Each participant was given one
minute at the beginning of the workshop to present their slide in front of the
room. Figure 1 shows some examples of visual introduction slides. Furthermore,
we encouraged all participants to create a blog post at se-edu.org to advertise
their work before the workshop. We later observed that all 20 participants were
actively engaged during the rest of the workshop. Although we cannot know for
sure whether it was the introduction format and/or the blog posts that made
the difference versus the particular make-up of the participants, we believe that
strategies similar to those of SEEM’18 that promote stronger early presence
may be more effective at encouraging consistent participation than those that
promote only cursory early presence.

222 C. Péraire et al.

Fig. 1. Examples of visual introduction slides

3.2 Selecting the Workshop Topics

Selecting the main workshop topics can be challenging. A narrow scope reduces
the target population of participants. A broad scope makes it difficult to run
a workshop that is of interest to all participants. To identify topics of common
interest ahead of time, the organizers of the Software Engineering Education
Workshop (SEEW’12) [23] asked participants to submit a position statement,
respond to an online survey, and participate in an online discussion before the
workshop. In the workshop report, they describe their approach as somehow
successful, while acknowledging the need for a more effective way of analyzing
the collected data to better capture common participant interests ahead of the
workshop.

Attracting participants can also be challenging, especially for new and inde-
pendent workshops. The organizer of FISEE’19 [10]—a new and independent
workshop—mentioned during the interview that attracting participants was
a key challenge. To solve this problem, some workshops co-locate with well-
known international conferences, such as the International Conference on SE
(ICSE) and the Conference on Software Engineering Education and Training
(CSEE&T). That way, workshop organizers can draw participants from a large
and diverse pool of conference attendees from all over the world.

A further attendance factor is that most SE educators from academia are
evaluated by their department based on publications. These educators might be
more inclined to participate in workshops providing publication opportunities.
This poses another dilemma for workshop organizers: To attract participants
from academia they must solicit and formally review paper submissions and
include formal presentations in their agenda, while trying to conduct interactive
activities at the same time.

During both SECM’17 [9] and SEEM’18 [8], we addressed the scope and
attendance challenges by being co-located with ICSE, using a format allowing

Designing Interactive Workshops for Software Engineering Educators 223

participants to select topics during the workshop itself, and balancing interac-
tivity and presentations.

The initial workshop scope was intentionally left very broad, covering “the
unique needs and challenges of SE education for Millennials”. The proposed
topics included, but were not limited to:

– SE education for new and emerging technologies;
– Needs and expectations of the next generation of students aspiring to be

software engineers;
– Skills and continuing education for SE educators;
– Classroom formats that cater to diverse learning styles;
– Teaching approaches that leverage technology-enhanced education in SE

courses;
– Balancing teaching of soft and hard skills;
– Balancing rigor and practicality;
– Experiential and hands-on learning for software engineers; and
– Gaps and challenges in professional graduate SE programs.

To balance the academic participants’ needs and workshop goals, we solicited
three kinds of contribution: research papers (maximum 8 pages for case studies
and original research results), experience reports (maximum 8 pages for experi-
ences related to SE courses with a focus on insights and lessons learned), and
position papers (maximum 4 pages for original ideas or opinions).

Fig. 2. Affinity mapping activity: Whiteboard with unorganized sticky notes generated
during presentations (top); Participant grouping sticky notes by affinity (bottom left);
Sticky notes organized by affinity with dots from prioritization; each cluster represents
a discussion topic (bottom right).

224 C. Péraire et al.

During the workshop, authors of accepted papers gave brief (five-minute long)
presentations highlighting the key points of their papers. The audience was asked
not to interrupt, and only short clarification questions were allowed at the end of
each presentation. Instead, participants were tasked with capturing interesting
insights, follow-on questions from the presentations, and fundamental discussion
points on sticky notes to be used later in a more collaborative session.

Using the sticky notes generated during the short presentations, participants
later conducted an Affinity Mapping activity [2] as illustrated in Fig. 2. On a
large whiteboard participants collectively grouped related sticky notes into clus-
ters that they repeatedly re-arranged until the emergence of a number of cohesive
clusters. Each resulting cluster represented a discussion topic.

Community Dot-Voting [19] was used to prioritize the topics, with partic-
ipants placing colored dots on their favorite topics. High-priority topics—with
the highest numbers of dots—became the main topics. These topics were further
addressed during the rest of the workshop in the context of a highly interactive
activity.

3.3 Making the Workshop Interactive

Interaction among participants is a critical ingredient of a successful workshop.
Depending on the audience, the interaction can happen spontaneously and lead
to productive discussions without much work from the workshop facilitators.
Unfortunately, this is not always the case. Unstructured discussions can die, go
in circles, or go nowhere interesting with participants ultimately losing interest.

While some workshops rely solely on unstructured discussions following pre-
sentations to support interaction among workshop participants, others introduce
structured activities to better control and promote interaction. This section pro-
vides some examples of activities that could be incorporated into workshops to
make them more interactive: Panel Discussion, Park Bench Panel, Mad-Sad-
Glad Reflection, and Mind Mapping a Big Hairy Audacious Goal. Many other
techniques are also available [20]. However, in this section we focus on examples
that are based on our experience at SECM’17 [9] and SEEM’18 [8], as well as
the interview with a FISEE’19 [10] organizer.

Panel Discussion and Park Bench Panel: A Panel Discussion is a mod-
erated discussion on a specific topic by a selected group of panelists who share
differing perspectives in front of an audience [11]. Panels have been used in
several SE education workshops.

For instance, FISEE’19 included a couple of panel discussions. Each was
facilitated by a moderator. Each panel was formed by a group of about three
educators who shared facts and opinions and responded to questions from the
audience. Each had a specific topic defined by the workshop organizers (e.g.
“Assessment of teaching approaches”). The panel sessions lasted about one hour.
During the interview, which was conducted a few months after the workshop, a
FISEE’19 organizer declared that “Panels are a must!” and that the organizers
are planning to use panel discussions again in the next edition of the workshop.

Designing Interactive Workshops for Software Engineering Educators 225

The central activity of SECM’17 was a Park Bench Panel. A park bench
panel is similar to the panel discussion presented above, but with one key differ-
ence: an open chair in the panel. It works better in situations where “the panel
can’t get it together and the real expert is in the audience” [16]. If a member
of the audience wants to share her perspective on the currently discussed topic,
she joins the panel by taking the open chair. Since the rule is to always have
one open chair, another panelist must leave his chair—which becomes the new
open chair—and rejoin the audience. That way, the panel is made of a fluid
set of experts that evolves naturally based on the collective expertise of all the
workshop participants. During SECM’17, several topics were covered during the
park bench panel, selected out of the high priority topics that emerged during
the affinity mapping activity.

While a panel, whether regular or of parkbench variety, is an effective way
of generating productive discussions among participants, one drawback raised
during the SECM’17 workshop retrospective is the fact that all the participants
have to discuss the same topics together. To address this issue, we decided to
replace the panel with structured breakout sessions in SEEM’2018, allowing
participants to work on the topic they are interested in the most. This approach
is presented below.

Fig. 3. Breakout group conducting a Mad-Sad-Glad reflection.

Mad-Sad-Glad Reflection: The central activity of SEEM’18 was a Mad-Sad-
Glad Reflection done in breakout groups. The participants self-selected break-
out groups to discuss the highest-priority topics identified during the affinity
mapping activity. Each discussion was structured around the “Mad-Sad-Glad”
format [21], where participants reflect on their topic by answering the following
questions (as illustrated in Fig. 3):

1. What makes you glad about the topic? What are some encouraging aspects
and grounds gained?

226 C. Péraire et al.

2. What makes you sad? What disappoints you about the topic, for example,
certain angles not being addressed sufficiently, occasional misrepresentation
of underlying issues, or insufficient interest?

3. What makes you mad? What makes you passionately furious about the topic,
for example, lack of leadership, chronic student disinterest, systemic obstacles,
or inherent difficulty and complexity of the underlying problems?

4. What could be some improvements focusing on the issues identified, in order
of priority, under the mad and sad categories?

At the end of the activity, each breakout group summarized the outcomes
of their discussion to the rest of the audience. Figure 4 shows a breakout group
presenting the outcome of their Mad-Sad-Glad reflection.

Fig. 4. Breakout group presenting the outcome of their Mad-Sad-Glad reflection.

This format encourages participants to cover and share both positive and
negative aspects of their topic, and brainstorm possible solutions to contentious
issues and improvements to existing strategies.

Mind Mapping a Big Hairy Audacious Goal: Out of the four SEEM’18
breakout groups, one took a different approach (compared to the approach
described above) and conducted a Mind Mapping activity based on a Big Hairy
Audacious Goal (BHAG). A BHAG is a clear and compelling goal that serves
as a unifying focal point of effort [13]. By being bold, and with a clear finish
line, the BHAG stimulates progress by encouraging people to think outside the
box. For instance, during the workshop, the breakout group’s BHAG was to turn
every student team into a high-performance team. They called their goal “Team
Magic” for short. Then they brainstormed how to reach their goal by creating a

Designing Interactive Workshops for Software Engineering Educators 227

Fig. 5. Mind Map for the “Team Magic” Big Hairy Audacious Goal (BHAG).

mind map. A mind map [22] is a graphical way of representing related ideas. It
is a visual thinking tool that helps structure information while analyzing, com-
prehending, synthesizing, recalling and generating new ideas. The group’s mind
map is shown in Fig. 5 as an example.

This format encourages participants to think in a solution-oriented manner
by providing support for articulating a vision as well as a tool to brainstorm and
visualize how to achieve that vision.

3.4 Generating Tangible Workshop Outcomes

Typical workshop outcomes include the publication of papers submitted before
the workshop in the workshop proceedings, as well as new knowledge acquired
by participants during the workshop itself. In addition, a workshop is by design a
networking event. Hence the natural outcome of a workshop is also an extended
network for participants and the hope that new collaborations might somehow
emerge. However, generating tangible outcomes during the workshop itself, with
real artifacts of value to the community, is difficult: this requires intentional
actions from the workshop organizers.

Facilitating activities, as described in the previous section, provides workshop
organizers with more control over the outcomes. For instance, asking participants
to generate a mind map (as presented in Fig. 5) ensures that most participants
have something tangible to share at the end of the workshop.

228 C. Péraire et al.

During both SECM’17 [9] and SEEM’18 [8], we asked participants to publish
the outcomes of their breakout sessions online, at our se-edu.org blog, after
the workshop. Unfortunately, once the workshop is over, people get busy, their
motivation dies down, and they tend to forget to do their homework. Hence,
we plan on incorporating this publication step into an explicit activity in the
future so that the outcomes could be produced right during the workshop. For
instance, we could ask each breakout group to take a picture of their deliverable
(e.g. a mind map), write a paragraph summarizing the takeaways, and create a
short blog post with this content.

A complementary approach is to leverage the concept of post-proceedings
used by FISEE’19 [10]. Even-though all participants are encouraged to submit
a proposal (full paper or extended abstract) before the workshop, final contri-
butions are submitted and formally reviewed after the workshop. This format
might encourage workshop participants to join forces and publish papers together
or incorporate their learning from the workshop into the final versions of their
papers, hence leading to actual collaborations and value-added outcomes.

3.5 Closing the Workshop

In order to improve future editions of a workshop, it is important to collect
feedback and improvement ideas from the participants.

At the end of SECM’17 [9] and SEEM’18 [8], we conducted a Retrospective
[17] to identify what went well during the workshop, what went wrong, what
could be improved, and what the next steps should be. This activity aimed at
identifying opportunities for improvement as well as potential follow-up action
items, events, and collaborations. Insights from participants and organizers gath-
ered during the SECM’17 retrospective were incorporated in SEEM’18, and what
was learned during the SEEM’18 retrospective is presented as recommendations
here.

An example agenda of a one-day workshop, with the retrospective scheduled
just before the closing, is shown below:

– 08:15 Welcome
– 08:45 Introduction (with visual introduction slides)
– 10:00 Short Presentations (5 min each)
– 10:30 Coffee Break
– 11:00 Short Presentations (5 min each)
– 12:30 Lunch
– 14:00 Topics Selection (Affinity Mapping)
– 14:30 Breakout Sessions (Mind Mapping a Big Hairy Audacious Goal)
– 15:30 Coffee Break
– 16:00 Breakout Sessions Outcome Reporting
– 16:30 Retrospective
– 17:00 Closing
– 18:30 Dinner Social (at a local restaurant, optional)

Designing Interactive Workshops for Software Engineering Educators 229

Note that the workshop closes with an optional dinner social at a local restau-
rant. At FISEE’19 [10], the social event was a wine-tasting tour at a local winery.
Such social events allow participants to continue discussions started during the
workshop and forge collaborations in a convivial and unstructured setting.

3.6 Setting up the Workshop Physical Space

Traditional lecture-style classrooms are often optimized to accommodate a maxi-
mum number of people within a limited space. They sometimes have fixed tables
and chairs. Such a space does not fit the needs of an interactive workshop.

The workshop meeting room should be large enough to accommodate highly
interactive activities. For instance, with 25 participants, an interactive workshop
that allows people to move around freely during activities would require a room
that ordinarily accommodates up to 40 participants with an otherwise static
setup.

The room should be equipped with at least one large whiteboard or wall,
as well as movable chairs and tables. Organizers should configure the meeting
room before the event—and potentially reconfigure the room during the day—
based on the specific needs of the workshop activities. Fig. 6 shows an example
of workshop meeting room.

In addition, the organizers should consider needed supplies, props, and audio-
visual support, including flip-charts, markers, sticky notes, digital projector, and
microphones for plenary speakers, as applicable.

Fig. 6. Example of a workshop meeting room including a large whiteboard, walls with
workshop artifacts, and tables organized as islands for breakout groups discussions.

230 C. Péraire et al.

4 Conclusion

This paper covered the design of interactive workshops for SE educators. It
provides three main contributions.

– The paper documents the current state of SE education workshops by compar-
ing a representative sample of workshops offered in 2019. Despite a common
goal of supporting continuing education for software engineering educators,
the covered workshops vary in terms of scope, audience, admission process,
outcomes, duration, agenda, level of interactivity, and organization structure.

– The paper discusses central design challenges faced by workshop organizers
and facilitators. The challenges relate to involving all participants during the
workshop, selecting the workshop topics, making the workshop interactive,
generating tangible workshop outcomes, closing the workshop in a way that
supports continuity, and setting up the physical space.

– The paper proposes various solutions addressing the identified design chal-
lenges. These solutions could be leveraged by future organizers of SE educa-
tion workshops. We recognize however that every situation is unique and we
do not expect the proposed solutions to be applicable in all contexts. Instead,
we offer them as starting points for SE educators planning on organizing a
workshop for the first time, or as comparison points for experienced workshop
organizers.

These contributions matter since success factors for SE workshops for edu-
cators are not typically covered in the literature and the information available
to SE educators willing to lead such workshops is scarce. More experiences are
needed to validate or invalidate the practices and strategies presented in this
paper. The SE community needs to accumulate and share more content to sup-
port pedagogical solutions and ways of propagating these solutions among SE
educators. By further building on existing knowledge, the community should be
able to more effectively support professional development of SE educators. This
would enable educators to more rapidly adapt to our fast-paced industry, and
hence better serve our student population.

References

1. Wall of ideas. Design a better business. https://www.designabetterbusiness.tools/
tools/wall-of-ideas

2. The affinity diagram tool. Six Sigma Daily, your everyday fix (2012). http://www.
sixsigmadaily.com/the-affinity-diagram-tool

3. 16th SEI Software Engineering Workshop for Educators. Software Engineering
Institute, Pittsburgh, USA (2019). https://www.sei.cmu.edu/news-events/news/
article.cfm?assetid=553448

4. First International Workshop on Education Through Advanced Software Engineer-
ing and Artificial Intelligence (EASEAI 2019). Co-located with the 27th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), Estonia (2019). https://easeai.github.io/

https://www.designabetterbusiness.tools/tools/wall-of-ideas
https://www.designabetterbusiness.tools/tools/wall-of-ideas
http://www.sixsigmadaily.com/the-affinity-diagram-tool
http://www.sixsigmadaily.com/the-affinity-diagram-tool
https://www.sei.cmu.edu/news-events/news/article.cfm?assetid=553448
https://www.sei.cmu.edu/news-events/news/article.cfm?assetid=553448
https://easeai.github.io/

Designing Interactive Workshops for Software Engineering Educators 231

5. Second Workshop on Emerging Software Engineering Education (WESEE 2019).
Co-located with the 12th Innovations in Software Engineering Conference (ISEC),
India (2019). https://sites.google.com/view/wesee2019

6. Second Workshop on Innovative Software Engineering Education (ISEE 2019). Co-
located with the German Software Engineering conference SE 2019 in Stuttgart,
Germany (2019). https://ase.in.tum.de/isee2019/

7. Software Engineering Education Workshop (SEED 2019), Putrajaya, Malaysia
(2019). https://seed-2019.info/

8. Second IEEE/ACM International Workshop on Software Engineering Education
for Millennials (SEEM 2018). Co-located with the 40th International Conference
on Software Engineering (ICSE 2018), Gothenburg, Sweden, June 2018. http://
seem2018.se-edu.org/

9. First IEEE/ACM International Workshop on Software Engineering Curricula for
Millennials (SECM 2017). Co-located with the 39th International Conference on
Software Engineering (ICSE 2017), Buenos Aires, Argentina, May 2017. http://
secm2017.se-edu.org/wp/

10. First International Workshop on Frontiers in Software Engineering Education
(FISEE 2019). Château de Villebrumier, Toulouse, France, November 2019.
https://www.laser-foundation.org/fisee/fisee-2019/

11. Arnold, K.: The definition of a panel discussion. Powerful Panels. https://
powerfulpanels.com/definition-panel-discussion/

12. Carnegie Mellon University, Eberly Center: Eberly center faculty series. https://
www.cmu.edu/teaching/facultyprograms/index.html

13. Collins, J.: Bhag. https://www.jimcollins.com/concepts/bhag.html
14. Association for Computing Machinery: ACM SIGCSE Technical Symposium.

https://sigcse.org/sigcse/events/symposia/index.html
15. Association for Computing Machinery: Empirical CS education. EmpiricalCSEd.

http://empiricalcsed.org/
16. Cunningham, W.: Park bench panel. The WikiWikiWeb (also known as Wiki).

https://wiki.c2.com/?ParkBenchPanel
17. Derby, E., Larsen, D.: Agile Retrospectives: Making Good Teams Great. Pragmatic

Bookshelf, Raleigh (2006)
18. American Society for Engineering Education: National Effective Teaching Insti-

tutes. https://www.asee.org/education-careers/continuing-education/courses-
and-workshops/neti

19. Gibbons, S.: Dot voting: a simple decision-making and prioritizing technique in UX.
Nielsen Norman Group (2019). https://www.nngroup.com/articles/dot-voting/

20. Gray, D., et al.: Gamestorming: A Playbook for Innovators, Rulebreakers, and
Changemakers. O’Reilly, Sebastopol (2010)

21. Linders, B.: Retrospective classic: Mad sad glad. Ben Linders Consulting (2017).
https://www.benlinders.com/2017/retrospective-classic-mad-sad-glad/

22. Passuello, L.: What is mind mapping? (and how to get started immediately). Lite-
mind. https://litemind.com/what-is-mind-mapping/

23. Shukla, R., Sureka, A., Joshi, R., Mall, R.: A report on software engineering edu-
cation workshop. ACM SIGSOFT Softw. Eng. Notes 37(3), 26–31 (2012)

24. Wasserman, A., Freeman, P. (eds.): Software Engineering Education. Needs and
Objectives Proceedings of an Interface Workshop. Springer, New York (1976).
https://doi.org/10.1007/978-1-4612-9898-4

https://sites.google.com/view/wesee2019
https://ase.in.tum.de/isee2019/
https://seed-2019.info/
http://seem2018.se-edu.org/
http://seem2018.se-edu.org/
http://secm2017.se-edu.org/wp/
http://secm2017.se-edu.org/wp/
https://www.laser-foundation.org/fisee/fisee-2019/
https://powerfulpanels.com/definition-panel-discussion/
https://powerfulpanels.com/definition-panel-discussion/
https://www.cmu.edu/teaching/facultyprograms/index.html
https://www.cmu.edu/teaching/facultyprograms/index.html
https://www.jimcollins.com/concepts/bhag.html
https://sigcse.org/sigcse/events/symposia/index.html
http://empiricalcsed.org/
https://wiki.c2.com/?ParkBenchPanel
https://www.asee.org/education-careers/continuing-education/courses-and-workshops/neti
https://www.asee.org/education-careers/continuing-education/courses-and-workshops/neti
https://www.nngroup.com/articles/dot-voting/
https://www.benlinders.com/2017/retrospective-classic-mad-sad-glad/
https://litemind.com/what-is-mind-mapping/
https://doi.org/10.1007/978-1-4612-9898-4

Hackathons as a Part of Software
Engineering Education: CASE in Tools

Example

Andrey Sadovykh(B), Maria Beketova, and Mansur Khazeev

Innopolis University, Innopolis, Russia
{a.sadovykh,m.khazeev}@innopolis.ru, m.beketova@innopolis.university

Abstract. Software engineering programs intend to connect with indus-
try practices to provide the most relevant up to date knowledge to the
students. Students tend to pay more attention and attach more credi-
bility to the academic knowledge when they see the endorsement of the
program by the industry. For various reasons, faculty members find it
difficult to connect to the industry, while as we noted those relations
are essential both for education and research. Companies, while gener-
ally keen for recruitment of fresh graduates, may experience difficulty
to convey their needs in terms of required capabilities and to influence
education programs. We address these issues by introducing a hackathon
as a part of the software engineering program curriculum and propos-
ing a particular setup of this event. Incorporating educational hackathons
into software engineering programs will ensure a connection between aca-
demic educational programs and current industrial practice.

Keywords: Hackathon · Education · Software Engineering

1 Introduction

Co-located with the TOOLS 50+1 conference, the CASE in Tools hackathon
[2] joined students, companies, and researchers to experiment together with all
kinds of tools for Software Engineering (SE). This event intended to help to
gather expertise and new ideas on interesting practices, expose students to vari-
ous business domains and modern challenges in Software Engineering. The over-
all goal was to open a dialogue among companies, researchers and students on
hot topics in Software Engineering supported by hands-on experiments delivered
in an entertaining manner in a time-boxed brainstorming format. As faculty, we
designed this event to enhance the course on Management of Software Develop-
ment in order to motivate and encourage students.

In this paper, we provide a brief literature review of hackathons in educa-
tion, present our specific design of a hackathon that increases the outcomes for
all stakeholders, discuss our experience of implementing the hackathon - both
success and challenges, and present the results evaluated with a survey. We
believe that this approach will be interesting to a wide audience of instructors
in Software Engineering.
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 232–245, 2020.
https://doi.org/10.1007/978-3-030-57663-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_15

Hackathons as a Part of SE Education: CASE in Tools Example 233

2 Literature Review

The hackathons have been applied in education for over a decade, Porras et al.
[8] describe the history, discuss challenges and benefits of hackathons in var-
ious forms. They report that hackathons are a means to teach soft skills to
engineers and improve the engagement of students with the course material.
In particular, the hackathons provide a stimulating environment to practice
teamwork, leadership, communication, presentation skills. Hackathons expose
students to business domains, customers requirements and expectation manage-
ment, that way encouraging awareness about end-users’ preoccupations. Overall,
hackathons represent a gamification of the education process that may positively
impact learning outcomes. In the same paper, Porras et al. give a basic taxon-
omy of hackathons with 24-h events, week-long code camps, hacks as an exam,
competitions and industry hacks. The goals may differ from a fast track to a new
topic or a technology, to testing skills in a real project or emphasizing innovation
and creativity in a context given by a customer.

Nandi and Mandernach [7] looked at hackathons from the informal learning
standpoint and emphasized the benefits from informal peer learning that helps
participants to acquire new skills. Anslow et al. [1] proposed datatons - data
analytics hackathons as a way to boost the software engineering curricula. At
datatons the students and data scientists explore together customers datasets.
In [3] Decker et al. proposed a community-based format for hackathons - Think
Global Hack Local (TGHL) to alleviate the intimidating culture of hackathons
and make hackathons more fun and inclusive. They successfully run two TGHL
events with students helping non-profit organizations. Gama et al. described an
experience of introducing a hackathon as a part of an undergraduate course:
the final course projects were developed during the 24-h hackathon event [5].
Uys introduced 24-h hackathon into an undergraduate capstone course. During
the preparation phase that took about 12 weeks, teams formation, business case
development, requirements elicitation were completed. One of the teams was also
responsible for administrative tasks of the hackathon organization. During the
hackathon event, students were encouraged to stay awake through the entire 24-
h period and had to submit a working system by the end of the event. The final
documentation and presentations had to be developed in the past-hackathon
stage that lasted for four weeks [10].

Researchers admit that in education hackathons are helpful to extend core
content without over-stressing the curriculum [8]. Instructors obtain new means
to evaluate students’ skills and teach soft skills in a real environment. Students
learn faster, get appreciation and acknowledgment for their contributions by
their peers, companies, and community. Hackathons augment hiring perspectives
as students and companies closely collaborate in work-related areas. Companies
further benefit from crowdsourcing for new creative product ideas and solutions.
As pointed by J. Duhring, hackathons can be also used in academic course design
as a means to identify students’ interests, to reveal hidden students’ talents, to
benchmark students and identify their learning objectives [4].

234 A. Sadovykh et al.

Nevertheless, researchers indicate that hackathons may also have negative
effects. They require significant additional effort by faculty on top of their regular
duties. The intensity of hackathons and associated stress may affect participants’
study-life balance and in worse cases be harmful to health. When evaluating the
group work, it is difficult to cope with the “free rider” problem. Finally, the
outcomes for companies are uncertain since they depend on many factors that
are hard to control or unify such as the team’s qualification and experience with
a particular technology.

3 Proposed Design of Hackathon for SE Education

While teaching a Master’s program at Innopolis University, we faced several
challenges that led us to apply the hackathon approach. In this section we dis-
cuss the teaching challenges, the goals for the educational hackathon and the
particular hackathon setup that we designed in order to maximize the benefits
and alleviate the risks mentioned above.

3.1 Specific Challenges on Example of MSD Course

The CASE in Tools hackathon was designed for students of Masters programs at
Innopolis University, as a part of the “Managing Software Development” (MSD)
course. This course, originally created by David Root and Eduardo Miranda
from Carnegie Mellon University, is focused on such aspects of software develop-
ment as processes, planning, people management, etc. The course is organized as
follows: 2 lectures per week, individual assignments (reading questions, essays),
and group assignments (case studies). Overall, the course has a high workload:
twice as many lectures as in a regular course; heavy home assignments requiring
much writing resulting in up to 20 h weekly working effort.

The course is taught for students of two master’s programs: Software Engi-
neering and Data Science. The enrollment requirements for these programs differ
significantly: The Software Engineering program requires 1+ years of industrial
experience, while the Data Science program does not have such a requirement.
Lack of industrial experience causes difficulties in understanding of concepts and
techniques taught in the course. Another challenge comes from the theoretical
set-up of the course: although the course is packed with practical assignments,
they are built around papers that were written years ago, and discussing some
case studies in a form of essays; lack of real-life practice decreases students’ moti-
vation and makes it harder to convey the relevance of the course. The survey
conducted with the students of Software Engineering program has shown that
students are not enthusiastic and lack effort when learning tools and method-
ologies they believe to be invaluable for their future careers [6].

3.2 Overall Goals for Educational Hackathon

While designing the hackathon as a part of the “Managing Software Develop-
ment” (MSD) course, we set the following goals:

Hackathons as a Part of SE Education: CASE in Tools Example 235

Expose Students to Various Business Domains. Students need to get acquainted
with various business domains so that they can find a sphere of their interest
and aspiration.

Stimulate Soft Skills Development. Participation in the hackathon facilitates the
development of creativity, critical thinking, teamwork, leadership, communica-
tion and presentation skills.

Stimulate Communication with Real Customers. Facing a real customer provides
students with a deeper understanding of the importance of communication in
software development and the issues that it brings along.

Expose Students to Modern Challenges in Software Engineering. The problems
offered by customers represent a state of practice in software engineering.

Provide Tangible Benefits to Customers. The hackathon was designed to provide
customers with such benefits as the connection of students with potential future
employers, insights on technical challenges, promotion of the company and its
technologies.

Re-enforce Faculty-Industry Communication. Communication with the indus-
try, even though perceived by the faculty as important and beneficial, is often
insufficient due to the busyness of the faculty members or lack of soft skills.
The hackathon induces the researchers to connect and communicate with people
from the industry and face pertinent issues in software development.

3.3 Education “Hackathon” Process

The authors of the current paper designed and successfully conducted four spe-
cialized hackathons to boost collaboration in a large research project as reported
in [9]. We intended to transpose our experience to the education domain as
many characteristics were deemed extremely relevant. First, the hackathon was
restricted to 8 h of intensive work that limited the effort required by the orga-
nizers, students, and companies. Second, the customer was not just a stake-
holder, but an integral part of a team - that enhanced the collaboration between
students, companies and faculty. The “homework” - preparation activities by
the teams before the hackathon - helped to diminish stress, effectively plan the
Hackathon Day, and improved the outcomes. Third, entertainment was the nec-
essary part to stimulate creativity, facilitate communication and induce positive
experience for all participants. Finally, we opted for a frugal administrative app-
roach to limit the load on organizers. That was to choose the simplest and the
most affordable options for the registration, coffee breaks, lunch, rooms and
presentation equipment.

In the table below we compare the main characteristics in comparison with a
“Traditional” hackathon - the most frequent form of a hackathon as summarized
from the literature review above (Table 1).

With regards to the process and timeline, the CASE in Tools was designed
in three stages as depicted in Fig. 1:

236 A. Sadovykh et al.

Table 1. Comparing hackathon approaches.

Properties “Traditional”
hackathon

CASE in tools Intended benefits

Duration From 24 h 8 h - intensive work,
Several days of
“Homework”

Less stress, Better
work-life balance,
Individual pace,
Improving the
outcomes through
shaping the topics

Teams Students
only

Students, Extensive
communication and
working relations:

Industry
representative,

- Student-Industry

Mentor from
Faculty

- Faculty-Industry

Topic Product
prototype

Focused experiment More predictable
outcomes to
companies

Evaluation Jury All participants,
audience favorite

Better participation,
Students learn from
other teams’ results

Awards Monetary Symbolic goodies,
Course grades

Less stress, Less
control needed, Less
burden on event
budget

– Stage 1: Call for topics - starting three months before the Hackathon
Day. Sourcing potential customers and defining a topic: a focused experiment
feasible within 4–6 h.

– Stage 2: Team forming - a preparation stage, starting three weeks before
the Hackathon Day. Topics announcement is followed by students’ registra-
tion and gathering their interest in a set of particular topics. The teams are
formed and they have about two weeks to organize the first meeting with a
customer, ask questions about the topic, prepare a technical environment and
get familiar with background concepts.

– Stage 3: Hackathon Day - 8-h event with lunch and 2 coffee-breaks.
Competition The day starts with topic pitches, presented by customers.
Then the teams’ forming is finalized and the teams spread in various locations
to work together on selected topics.
Demo time - presentations of the teams’ results at the end of the Hackathon
Day. Evaluation of the technical progress, business impact and entertainment
level of the final demonstration. Award ceremony with symbolic prizes for
participants and winners, followed by an afterparty.

Hackathons as a Part of SE Education: CASE in Tools Example 237

Fig. 1. Three stages of the CASE in Tools hackathon.

4 CASE in Tools in Practice

The hackathon design presented in the previous section was implemented at
the TOOLS 50+1 Conference. In this section, we discuss our experience with
regards to implementation and elaborate on the hackathon outcomes based on
the evaluation survey.

4.1 Implementation

We started sourcing customers 3 months before the Hackathon Day. We used
direct connections and mailing to the Innopolis University network. It was hard
to convey benefits for potential customers: only direct connections worked, we
have not received answers to cold emails. Nonetheless, we managed to find eight
customers paying for participation in the hackathon. We conducted interviews
with each customer to discuss the potential benefits of participation, explain the
process and organization and define a feasible scope of a proposed challenge. The
duration of the interviews ranged between 1 and 3 h. The output of this stage was
the description of challenge topics that we published on the Hackathon website1.

The next stage was teams formation. Participation in the hackathon was
voluntary yet the students of MSD course were offered bonus points for partici-
pation, which accounted for 10% of the MSD course final grade. For these points
only participation was taken into account, regardless of the team’s final ranking
in the Hackathon. As a result, 34 out of 44 MSD students took part in the event.
We used an online poll to collect students’ preferred projects - they prioritised
the challenges on their 1st, 2nd and 3rd choice. Organizers allocated students
to teams according to the preferences collected. Some challenges attracted more
interest than the others, so manual balancing was required, and there were chal-
lenges that were not the first choice of any of its participants. A mentor from
the academic staff was added to each team.

1 https://www.caseintools.info/challenges.

https://www.caseintools.info/challenges

238 A. Sadovykh et al.

The preliminary work stage started 2 weeks before the Hackathon Day. Dur-
ing this stage, the teams had to organize at least one meeting with the customer
and to collect all the necessary information. Mentors were expected to track this
process. During this stage, 4 out of 8 customers conducted a tutorial so that the
hackathon participants could get acquainted with the technology to be used in
a respective challenge. We checked the teams status with online polls to ensured
that they had started working.

The Hackathon Day was the core part of the hackathon. After the opening
speech delivered by organizers, the customers presented their challenges. The
teams had 4 h, excluding lunch and coffee breaks, to provide a solution for their
challenge and prepare a presentation. A customer and a mentor worked together
with their team, providing guidance when necessary.

The Hackathon Day ended with the presentations, voting and award cere-
mony. Each team presented its results in a 10–15 min speech. Each presentation
was followed by voting: mentors, customers and students from other teams eval-
uated the presentation on a 5-point scale based on four criteria: importance for
the company or society, technical contribution of the team, potential for future
work, entertainment. The Mentimeter2 tool was used for voting. All participants
in the audience could follow the results on an interactive dashboard showing the
presenting team progress. Teams’ final scores were computed as the average of
four criteria. Example of the voting dashboard for the audience is presented in
Fig. 2. The winner was defined by the highest final score.

Fig. 2. Example of the voting dashboard as visible by the audience. The final score is
3.5.

2 https://www.mentimeter.com/.

https://www.mentimeter.com/

Hackathons as a Part of SE Education: CASE in Tools Example 239

4.2 Survey Results

We conducted a survey to evaluate the outcomes. The dataset collects replies of
28 out of 34 student participants, 5 out of 7 participating customers and all 9
mentors from researchers and faculty. Although the dataset is not representative
enough to draw definite conclusions, the results may give interesting insights
about the appropriateness of hackathons for education purposes.

Fig. 3. Students’ responses on the hackathon outcomes.

The majority of students reported acquiring new knowledge and practical
experience. More than half of students report contacts with industry and insights
about the business domain as an outcome. A minor part of students reported
that they obtained inputs for their research, potential projects for the company
and insights for their future career.

With regards to the hackathon objectives, we can conclude that they were
mostly met:

Expose Students to Various Business Domains. 57% of students reported that
they obtained insights into the business domain (Fig. 3).

Stimulate Soft Skills Development. The hackathon helped students to practice
creativity, critical thinking, teamwork, leadership, communication and presenta-
tion skills. In particular, 78% of students indicated that teammates’ contribution
was adequate (Fig. 4). Moreover, our observations after the hackathon made us
believe that the distance within the teams significantly diminished.

Stimulate Communication with Real Customers. 89% of students reported that
the customer provided all necessary information and feedback (Fig. 3). 4 of 5
customers reported that all team members were engaged in the work (Fig. 5).

Expose Students to Modern Challenges in Software Engineering. 96% of students
reported an exposure to new technologies and 89% reported to obtain a practical
experience (Fig. 3).

240 A. Sadovykh et al.

Fig. 4. Students’ responses on the teamwork.

Provide Tangible Benefits to Customers. All customers reported that their expec-
tations from the hackathon were met. 2 out of 5 reported that the value of the
outcome was 3 times higher than the registration fees. 3 out of 5 customers
expressed a wish to participate in the next edition of the hackathon. All cus-
tomers will recommend the hackathon to a colleague (Fig. 5).

Re-enforce Faculty-Industry Communication. 77% of researchers reported getting
new contacts with the industry. 55% reported obtaining inputs for their research.
33% indicated a possibility for a follow-up project with a customer (Fig. 6).

All in all, we can safely claim that the event was very successful. Students
were exposed to different advanced subjects in software engineering, while com-
panies could explore the solution for their problems with the help of students
and researchers. Overall the ambiance at the event and after made us believe
that we were on the right track for improving the education process.

As a concluding remark for the survey results, we would like to cite one of
the students: “Mr. Sadovykh, thank you for organizing this Hackathon. It was
really inspiring for me and I am happy to have one more wonderful day in my
life. At first, I was doing it for the grades but it turned out much more than that.
I learned so much from it.”

5 Discussion

The main challenge in the organization was sourcing customers that would be
interested in participating in the educational hackathon. The cold mailing among
partner companies did not provide any results. Ten companies responded to our
23 personal invitations, and all responded were our direct contacts. Among those
few, two organizations had difficulty understanding their professional benefits
in participating in this event. One of the obstacles was the preconception on

Hackathons as a Part of SE Education: CASE in Tools Example 241

Fig. 5. Customers’ responses on the hackathon outcomes.

students’ qualifications and ability to solve business problems. Three organiza-
tions found it difficult to formulate a compact business problem and define its
scope so that students would solve it in such a limited time. The interviews and
workshops between organizers and customers helped to bootstrap that process.
Overall, there was always a possibility to extract the right problem with an
effort of a 2 h workshop. The feasibility of solving the proposed problems within
the hackathon time frame was estimated based on the MSD course instructors
experience.

The soft skills learning and much of knowledge transfer about the business
domain rely on the involvement of customers in teamwork. We had a team with
a remote customer due to travel restrictions. While the team and the customer
reported overall satisfaction with the process and the event in general, our obser-
vations showed a limited success for the team, since the team would have had
difficulty conveying the business impact of their findings. Ability to collaborate
remotely is an important skill nowadays, especially in the information tech-
nologies field. So we believe that work with the remote customer is a valuable
experience even if it implies some complications.

One of the customers sent a representative, who had limited expertise in the
topic and lower personal engagement since he was not involved in the prepa-
ration workshop. That presumably harmed the team’s learning outcomes and
ultimately chances at the final presentations contest. Therefore for the future
hackathons we believe it is crucial to ensure that the customer demonstrates the
appropriate level of engagement during the preparation stage.

Team formation is a tricky task as some challenges might attract more inter-
est than the others. We believe that we found an effective solution to this issue.
We used an online poll to collect students’ preferred projects - they marked
the challenges of their 1st, 2nd and 3rd choice. Organizers allocated students to
teams according to the preferences collected. This process ensures that students

242 A. Sadovykh et al.

Fig. 6. Researchers’ responses on the hackathon outcomes.

are allocated uniformly to the challenges, and that they work on a challenge that
is of interest to them.

Managing an international event required an unintended amount of admin-
istrative effort, for example ordering branded hand-outs, badges, collecting reg-
istration fees, controlling the budget revenues and expenses. While we received
considerable help from volunteers and the Innopolis University administrative
staff, this imposed a significant unplanned distraction and added up on top
organizers’ regular daily duties. Admittedly, these complications arise only when
organizing hackathon for the first time, for the future hackathons it will be much
easier, as both the organisers and the administrative staff learnt what should be
done and how. Another opportunity would be to delegate the administrative
tasks to students to let them practice organisational, leadership and other soft
skills.

The role of a “customer” was clear for all the participants, yet the mentors’
communication with their teams was not always efficient. We think it is necessary
to select mentors well in advance (preferably among the current and probably
the former teaching assistants of the relevant courses) and to educate them on
their role in teams’ success.

We hoped that the voting process, when the audience evaluated each pre-
senting team would stimulate attention to the final presentations and would help
all the participants to learn from each other’s experience. These hopes were not
fully realized due to several reasons. First, the available project equipment was
not adequate for a large space. The presenters had very different presentation
skills. The audience was overly tired after a stressful day of intensive work. The
presentations took twice as long as it was planned. It was difficult to constantly
maintain the focus due to a large number of highly technically dense and diverse
topics. As a consequence, the participants reported their overall frustration with
the evaluation process. This all prevented the audience from getting maximum
from presentations. Thus, the evaluation may take an unreasonable amount of
time after a long working day. To avoid this, it is important to plan well the
agenda, to be strict with timing (8–10 min per presentation), and to make sure

Hackathons as a Part of SE Education: CASE in Tools Example 243

that teams are prepared to deliver their presentations in a timely manner by
practicing the delivery, foreseeing possible technical issues and addressing them
in advance. Meeting space and equipment is also very important - it is preferable
to use a room of appropriate size with pre-installed equipment. We also have to
admit that the scalability of the event is limited since the time needed for final
presentations grows with the number of teams. As for the voting process, after
analyzing the feedback from the students, we believe that the evaluation of the
teams’ presentations should be done by the customers and mentors, and students
should not be a part of this corps. Besides, it would be beneficial to acquaint
the evaluators with the grading rubric in advance.

Despite all the issues discussed above, we were quite pleased to witness that
our main goals were met. The customers presented a variety of business chal-
lenges that were quite relevant to the curriculum. The students and customers
actively communicated on the task-related topics. That had a positive impact
on learning outcomes for students and improved the outcomes for the customers.
Both groups reported high satisfaction with the event. We also observed a higher
motivation by students to attend sessions specific to their challenges at the
TOOLS conference.

In future we would like to extend our experience and experiment with the
hackathon as an integrative part of the software engineering program that would
assess the learning outcomes spreading over several courses at once. That way,
the students would practice their skills acquired at various courses applying them
to practical challenges provided by organizations as a replacement of traditional
course evaluation. As an example, in terms of timing, one Hackathon Day is an
equivalent of a series of mid-term exams at 4 courses lasting 2 h each. We would
argue that the Hackathon may be more motivating and engaging thus resulting
in better learning outcomes.

6 Conclusions

Hackathons have become an important means for educational purposes. The
gamification aspect of hackathons promotes faster learning of new technologies,
encourages the practice of soft skills and engagement with curricula. Students
get exposed to the business domain and technology challenges of companies in
real-life settings in an entertaining and stimulating environment. In the mean-
time, hackathons may reveal certain drawbacks such as associated stress, time
and administrative effort as well as uncertain outcomes to the participating com-
panies.

The connection between academic educational programs and the current
industrial practice is valuable for faculty, students and industry, yet not easy to
implement. Based on our experience with collaborative research hackathons, we
designed a specialized educational hackathon to accelerate learning and promote
collaboration between faculty, industry and students in a time-boxed event.

244 A. Sadovykh et al.

The hackathon setup has the following distinct features. First, the hackathon
is restricted to 8 h of intensive work that limits the effort required by the orga-
nizers, students, and companies. Second, the customer is an essential part of
the team - that enhanced the collaboration between students, companies and
faculty. Third, we introduce a set of preparation activities before the Hackathon
Day, such as meeting with a customer and tutorials, to help to diminish stress,
effectively plan the Hackathon Day and improve the outcomes. Fourth, enter-
tainment was the necessary part to stimulate creativity, facilitate communication
and induce positive experience for all participants. Finally, we propose a frugal
administrative approach to limit the load of organizers.

The hackathon organization revealed a number of challenges, such as diffi-
culty to find paying customers and define a feasible scope of a proposed topic,
high administrative effort of the organizers on top of their regular duties, short-
comings of Demo time organization. The discussion of these issues lays the foun-
dation for a more efficient organization of future hackathons.

Despite the challenges mentioned above, the event was very successful. Stu-
dents were exposed to different advanced subjects in software engineering, while
companies could explore the solution for their problems with the help of stu-
dents and researchers. The outcome of the hackathon is evaluated based on a
survey completed by students, mentors and industry representatives after the
event. All groups reported high satisfaction with the event. Students reported
that they obtained insights about the business domain (57%), exposure to new
technologies (96%) and practical experience (89%). Researchers reported get-
ting new contacts with the industry (77%), obtaining inputs for their research
(55%), obtaining a possibility for a follow-up project with a customer (55%). All
customers reported that their expectations from the hackathon were met. The
results make us believe that hackathons should become a part of the curriculum.

Acknowledgment. The authors would like to express their gratitude to Dr. A. Naum-
chev for his significant contribution to the hackathon organization, to Dr. V. Ivanov, O.
Bulichev for the mentorship of teams as well as to administrative staff and in particular
Inna Baskakova for providing support on administrative matters.

References

1. Anslow, C., Brosz, J., Maurer, F., Boyes, M.: Datathons: an experience report
of data hackathons for data science education. In: Proceedings of the 47th ACM
Technical Symposium on Computing Science Education. SIGCSE 2016, pp. 615–
620. Association for Computing Machinery, New York (2016). https://doi.org/10.
1145/2839509.2844568

2. Case in tools hackathon 2019. https://www.caseintools.info. Accessed 22 Oct 2019
3. Decker, A., Eiselt, K., Voll, K.: Understanding and improving the culture of

hackathons: think global hack local. In: Proceedings of the 2015 IEEE Frontiers
in Education Conference (FIE). FIE 2015, pp. 1–8. IEEE Computer Society, USA
(2015). https://doi.org/10.1109/FIE.2015.7344211

https://doi.org/10.1145/2839509.2844568
https://doi.org/10.1145/2839509.2844568
https://www.caseintools.info
https://doi.org/10.1109/FIE.2015.7344211

Hackathons as a Part of SE Education: CASE in Tools Example 245

4. Duhring, J.: Project-based learning kickstart tips: hackathon pedagogies as educa-
tional technology. In: VentureWell. Proceedings of Open, the Annual Conference,
pp. 1–8. National Collegiate Inventors & Innovators Alliance (2014)

5. Gama, K., Alencar Gonçalves, B., Alessio, P.: Hackathons in the formal learn-
ing process. In: Proceedings of the 23rd Annual ACM Conference on Innova-
tion and Technology in Computer Science Education. ITiCSE 2018, pp. 248–253.
Association for Computing Machinery, New York (2018). https://doi.org/10.1145/
3197091.3197138

6. Khazeev, M., Aslam, H., de Carvalho, D., Mazzara, M., Bruel, J.M., Brown, J.A.:
Reflections on teaching formal methods for software development in higher educa-
tion. In: Bruel, J., Capozucca, A., Mazzara, M., Meyer, B., Alexandr Naumchev,
A.S. (eds.) First International Workshop on Frontiers in Software Engineering Edu-
cation. LNCS, vol. 12271, pp. 28–41. Springer, Cham (2020)

7. Nandi, A., Mandernach, M.: Hackathons as an informal learning platform. In:
Proceedings of the 47th ACM Technical Symposium on Computing Science Edu-
cation. SIGCSE 2016, pp. 346–351. Association for Computing Machinery, New
York (2016). https://doi.org/10.1145/2839509.2844590

8. Porras, J., et al.: Hackathons in software engineering education: lessons learned
from a decade of events. In: Proceedings of the 2nd International Workshop on Soft-
ware Engineering Education for Millennials. SEEM 2018, pp. 40–47. Association
for Computing Machinery, New York (2018). https://doi.org/10.1145/3194779.
3194783

9. Sadovykh, A., et al.: On the use of hackathons to enhance collaboration in large
collaborative projects: - a preliminary case study of the MegaM@Rt2 EU project.
In: 2019 Design, Automation Test in Europe Conference Exhibition (DATE), pp.
498–503 (2019). https://doi.org/10.23919/DATE.2019.8715247

10. Uys, W.F.: Hackathons as a formal teaching approach in information systems
capstone courses. In: Tait, B., Kroeze, J., Gruner, S. (eds.) SACLA 2019. CCIS,
vol. 1136, pp. 79–95. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
35629-3 6

https://doi.org/10.1145/3197091.3197138
https://doi.org/10.1145/3197091.3197138
https://doi.org/10.1145/2839509.2844590
https://doi.org/10.1145/3194779.3194783
https://doi.org/10.1145/3194779.3194783
https://doi.org/10.23919/DATE.2019.8715247
https://doi.org/10.1007/978-3-030-35629-3_6
https://doi.org/10.1007/978-3-030-35629-3_6

Teaching Efficient Recursive
Programming and Recursion Elimination
Using Olympiads and Contests Problems

Nikolay V. Shilov(B) and Danila Danko

Innopolis University, 1, Universitetskaya Str., 420500 Innopolis, Russia
shiloviis@mail.ru, d.danko@innopolis.university

Abstract. Olympiads and contests are popular with bachelor students
of Software Engineering, Computer Science and other departments edu-
cating professionals to be involved software development. But educa-
tional role and potential of these activities are under-evaluated and
poorly used in the education. In the present paper we address one par-
ticular topic that can be introduced using problems from Olympiads and
Contests, namely — efficient recursive programming and recursion elim-
ination. Here we understand efficient recursive programming as problem
solving with recursive algorithm design. Recursion elimination studies
how to construct (functional) equivalent iterative (imperative) program
for a given recursive (functional) preferably with use of fix-size static
memory. Great computer scientists have contributed to the recursion
elimination studies — John McCarthy, Amir Pnueli, Donald Knuth, etc.,
many fascinating examples have been examined and resulted in recur-
sion elimination techniques known as tail-recursion and as corecursion.
We base our study on examples borrowed from the worlds of Mathe-
matical Olympiads and Programming contests. At the same time we use
these examples to stress importance of the recursion elimination studies
not only for better education but for better and more efficient program
specification, verification, optimization and compiler design.

Keywords: Recursive programming · Iterative programming ·
Functional equivalence · Recursion elimination · Ascending and
descending dynamic programming · International Mathematical
Olympiad · International Collegiate Programming Contest

1 Introduction

Almost two decades passed since publication of the article [19] on Engaging Stu-
dents with Theory through ACM Collegiate Programming Contests. The article
was published soon after publication 2001 of Computer Science curricular [22]
by Association for Computing Machinery (ACM). One of primary purposes of
the article [19] was to draw attention of CS educators to educational role and
potential of Olympiads and contests that are popular with bachelor students
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 246–264, 2020.
https://doi.org/10.1007/978-3-030-57663-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_16&domain=pdf
http://orcid.org/0000-0001-7515-9647
https://doi.org/10.1007/978-3-030-57663-9_16

Teaching Recursive Programming and Recursion Elimination 247

(like International Collegiate Programming Contest ICPC [26]). Unfortunately,
the current version of the ACM Computer Science curricular [23] (published in
2013) still ignore sport programming as curricular topic or as educational app-
roach.

Because of the above we would like to try again to draw attention of the SE
and CS educators to educational role and potential of Olympiads and contests.
This time we would like to present recursive programming and recursion elim-
ination using problems borrowed from different Olympiad and contests. At the
same time we use these examples to stress importance of the recursion elimi-
nation studies not only for better education but for better and more efficient
program specification, verification, optimization and compiler design.

1.1 Structure of the Paper

In the following-up Subsect. 1.2 we give a simple but fascinating example of
recursion elimination to solve a problem from the mot recent International Math-
ematical Olympiad (IMO)

In the next Sect. 2 we address recursion elimination for/in a problem that
is very popular for training students dynamic programming in preparation for
different programming contests.

Then in the Sect. 3 we discuss dynamic programming in more general settings
and introduce ascending dynamic programming.

In the Sect. 4 we study when fix-size memory is sufficient to implement
ascending dynamic programming and give examples of recursion elimination
(including an example borrowed from a popular contest and training resource
Code Forces [34]).

In the last Sect. 5 we sum up our results, discuss paper’ contribution, edu-
cational importance of popular Olympiads and contests, SE, CS and Artificial
intelligence for Olympiads and contests progress, and importance of further stud-
ies of recursion elimination.

1.2 Why Math Students Should Learn Programming Theory

A discourse about historical, cultural, educational relations and connections
between Mathematics and Science and Art of Programming (exactly Program-
ming not Computer Science) is quite old: it started in early days of computing
machinery more than 70 years ago (since, at least, since ENIAC was completed
and first put to work in 1945). Many programming pioneers — e.g. Edsger W.
Dijkstra, Andrey P. Ershov, Donald E. Knuth — had published their reflec-
tions on this topic [4–6,10]. (Unfortunately, we are not aware about reflections
of mathematicians on this topic while we know and highly recommend a book
of outstanding Russian mathematician Vladimir A. Uspensky [20] where he had
promoted and advocated a view on Mathematics as a humanitarian science.)

In our opinion it is very important introduction of programming art and
science [7,8,11] to mathematical education. It isn’t just because of industrial

248 N. V. Shilov and D. Danko

demand and/or employment opportunities for graduates but because of a need
of programming culture for solving mathematical problems. We would like to
advocate this claim by analysis of the problem set [25] of the most recent Inter-
national Mathematical Olympiad 2019 (IMO-2019) [24] (which was the 60th in
the series).

The Olympiad set [25] comprises 6 problems from which at least one is good
examples to demonstrate programming art and science. Namely, we speak about
the following problem 1 from the set:

Let Z be the set of integers. Determine all functions f : Z → Z such that,
for all integers a and b , f(2a) + 2f(b) = f (f(a + b)).

The problem can serve as an example of recursion elimination via reduction
(corecursion) of a monadic recursion to a tail recursion, we discuss this program-
ming technique and its application to the problem 1 in the next subsection.

A classic example monadic recursion elimination by reduction to the tail
recursion [30] via corecursion [2,29] is a so-called John McCarthy function M91 :
N → N [11,17] that is defined as follows below:

M91(n) = if n > 100 then (n − 10) else M91 (M91(n + 11)).

It turns out that M91(n) = if n > 101 then (n − 10) else 91. A key idea
in recursion elimination is move from a monadic function M91 : N → N to
a binary function M2 : N × N → N such that M2(n, k) = (M91)k(n) for all
n, k ∈ N (where (M91)k(n) is k-time application of the function, i.e. (M91)k(n) =

k
︷ ︸︸ ︷

M91 (. . .M91(n) . . .)); of course, M2(n, 0) = (M91)0(n) = n for every n ∈ N.
Let us apply the idea presented in the previous paragraph to the problem 1

of the International Mathematical Olympiad. Since f(2a)+2f(b) = f (f(a + b))
is true for all a, b ∈ Z, then f(0) + 2f(b) = f(f(b)) for all b ∈ Z. Let us define a
binary function F : Z×N → Z such that F (b, k) = fk(b) and F (b, 0) = f0(b) = b
for all a ∈ Z and k ∈ N. Then for all a ∈ Z and k ∈ N

F (b, (k + 1)) = 2F (b, k) + f(0) = 2 (2F (b, (k − 1)) + f(0)) + f(0) = . . .

= 2(k+1)F (b, 0) + (2(k+1) − 1)f(0) = 2(k+1)b + (2(k+1) − 1)f(0),

and, hence, f(b) = f1(b) = F (b, 1) = 2b + f(0) and thus the problem 1 from
IMO-2019 is solved!

2 Dynamic Programming Case Study

2.1 The Hull Strength Puzzle

In this section we discuss a so-called The Hull Strength Puzzle (HSP) [17], which
is just a literary version of The Dropping Bricks Problem [18] or The Egg Drop-
ping Puzzle from Wikipedia article on Dynamic Programming [28].

Teaching Recursive Programming and Recursion Elimination 249

Let us characterize the mechanical stability (strength) of a phone case (the
hull of a mobile phone) by an integer h that is equal to the height (in
meters) safe for the case to fall down, while height (h+1) meters is unsafe
(i.e. the hull breaks). You have to determine the stability of hulls of a
particular kind by dropping them from different levels of a tower of H
meters. (One may assume that mechanical stability does not change after
a safe fall.) How many times do you need to drop hulls, if you have 2 hulls
in the stock? What is the optimal number (of droppings) in this case?

The Hull Strength Puzzle is an example of optimization problems. For every
x ∈ [0..H] let TH be the number of test (droppings) that is the optimal (i.e. a
necessary but sufficient) to determine the (mechanical) strength up to level x
using 2 hulls (at most) Any optimal method to define the mechanical stability for
H > 0 should start with some step (command) that prescribes to drop the first
phone from some particular (but optimal) level h. Hence the following equality
must hold for this particular level h:

TH = 1 + max{(h − 1), TH−h},

where (in the right-hand side)

1. 1+ corresponds to the first test (dropping),
2. (h − 1) corresponds to the case when the hull of the first phone breaks after

the first dropping (and we have to drop the remaining second phone from the
levels 1, 2, . . . (h − 1) in a series),

3. TH−h corresponds to the case when the hull of the first phone is safe after the
first dropping (and we have to define stability by dropping the pair of phones
from (H − h) levels in [(h + 1) . . . H]),

4. ‘max’ corresponds to the worst in two cases above.

Since the particular value h is optimal, and optimality means minimality, the
above equality transforms to the following one:

TH = min
1≤h≤H

(1 + max {(h − 1), TH−h}) = 1 + min
1≤h≤H

max {(h − 1), TH−h} .

Besides, we can add one obvious equality T0 = 0.
Remark that the sequence of integers T0, T1, ... TH , ... that meets two equal-

ities above is unique since T0 has an explicit definition, T1 is defined by T0, T2

is defined by T0 and T1, TH is defined by T0, T1, ... TH−1. Hence it is possible
to move from the sequence T0, T1, ... TH , ..., to a function T : N → N that
maps every natural x to TH and satisfies the following functional equation for
the objective function T :

T (x) = if h = 0 then 0 else 1 + min
1≤h≤x

max {(h − 1), T (x − h)} . (1)

This equation has a unique solution as it follows from the uniqueness of the
sequence T0, T1, ... TH , ... let us summarize the above discussion as follows:

250 N. V. Shilov and D. Danko

Functional equation (1) has unique solution in N
N; moreover we can go further:

The equation (1) can be adopted as a recursive definition of a function, (i.e. a
recursive algorithm presented in a functional pseudo-code) that solves the Hull
Strength Puzzle.

The primary purpose of this section is to prove the following simple formula

T (x) = arg min t :
t(t + 1)

2
≥ x (2)

that is easy to implement as iterative imperative program.
A proof of the formula (2) can be found in [17], but the derivation in [17] relies

rather upon human analysis of the Hull Strength Puzzle than formal manipula-
tions and transformations. Because of it, in the next Subsect. 2.2 we present a
new (easier) derivation of this formula by means of corecursion (i.e. via problem
generalization and inductive proof).

2.2 HSP via Corecursion

Let us start with the following reformulation of the HSP question:

For every integer tight h ≥ 0 what is a necessary and sufficient number of
(dropping) tests T (h) to determine the (mechanical) strength in the range
[0..h] of the hull (of the mobile phones) if you have n = 2 hulls in the
stock?

Next let us introduce another function H : N × N → N that solves the
following problem:

For any number n ≥ 0 of hulls in stock and any number t ≥ 0 of
allowed (dropping) tests what is the largest H(n, t) such that n hulls and
t tests are sufficient to determine any mechanical strength in the range
h ∈ [0..H(n, t)]?

Then it is easy to see that for every x ≥ 0

T (x) = arg min t : H(2, t) ≥ x. (3)

Hence the only we need to prove the formula (2) is to prove that

H(2, t) =
t(t + 1)

2
. (4)

Let us derive recursive equation for H : N × N → N.

– It is quite obvious that H(0, t) = H(n, 0) = 0 for all n, t ∈ N.
– If n > 0 and t > 0 then any test trial starts with the first dropping from some

particular level h ∈ [1..H(n, t)];
• since the first tested hull can break in the first test in the trial
(i.e. we lose one hull and one test) then (h − 1) can be as large as
H ((n − 1), (t − 1));

Teaching Recursive Programming and Recursion Elimination 251

• since the first tested hull can return safe after the first test in the
trial (i.e. we don’t lose any hull but one test) then there can be up to
H (n, (t − 1)) levels above h;

hence H(n, t) = (H ((n − 1), (t − 1)) + 1) + H (n, (t − 1)) in this case.

To sum-up the above arguments, we come to the following equation:

H(n, t) = if (n = 0 or t = 0) then 0
else (H ((n − 1), (t − 1)) + H (n, (t − 1)) + 1) . (5)

Now we can prove (4) and (2) as follows. First, according to (5) for every
t ≥ 0 we have

H(1, t) = if t = 0 then 0 else (H (1, (t − 1)) + 1) =
k=t
∑

k=1

1 = t. (6)

Next, according to (5) and to (6) for every t ≥ 0 we have

H(2, t) =
= if t = 0 then 0 else (H (1, (t − 1)) + H (2, (t − 1)) + 1) =

= if t = 0 then 0 else (t + H (2, (t − 1))) =
∑k=t

k=1 k =
= t(t+1)

2 .

(7)

Hence, according to (3) and (7) we get (4) and then (2).
The following proposition give explicit (recursion-free) definition (8) for the

function H : N × N → N defined by recursive equation (5). Let us remark that
the explicit definition (8) is easy to implement using iterative imperative pro-
gramming with fixed size finite memory. (Remark also that the implementation
can be even loop-free if integer multiplication is provided!)

Proposition 1.

H(n, t) =
k=n
∑

k=1

Ck
t (8)

where Ck
t are the standard binomial coefficients.

Proof. Let us proceed by mathematical induction on t ≥ 0.
Base case t = 0 is trivial: For all n ≥ 0, according to (5), H(n, 0) = 0, as well

as H(n, 0) = 2t − 1 = 0 according to (8).
Induction hypothesis: Let us assume that for some T ≥ 0 equality (8) is true

for all t ∈ [0..T] and all n ≥ 0.
Induction step:

252 N. V. Shilov and D. Danko

H (n, (T + 1)) = (according to (5)) = H ((n − 1), T) + H (n, T) + 1 =
= (according the induction hypothesis) =

(
∑k=n−1

k=1 Ck
T

)

+
(
∑k=n

k=1 C
k
T

)

+ 1 =

= (index substitution in the first sum) =
(
∑k=n

k=2 C
k−1
T

)

+
(
∑k=n

k=1 C
k
T

)

+ 1 =

= (because 1 = C0
T) =

(
∑k=n

k=1 C
k−1
T

)

+
(
∑k=n

k=1 C
k
T

)

+ 1 =

= (re − grouping both sums) =
∑k=n

k=1

(

Ck−1
T + Ck

T

)

=
= (becauseCk

T+1 = Ck−1
T + Ck

T forallk) =
∑k=n

k=1 C
k
T+1,

i.e. H (n, (T + 1)) =
∑k=n

k=1 C
k
T+1.

Hence, according to principle of mathematical induction, equality (8) is true
for all t ≥ 0 and all n ≥ 0. — Q.E.D.

Remark that according to this Proposition 1, for all k, t ∈ N, if k ≥ T then
H(n, t) = 2t − 1. Also, the proposition implies equality (4):

H(2, t) =
k=2
∑

k=1

Ck
t = t +

t(t − 1)
2

=
t(t + 1)

2
.

Together with (3) it gives another proof for (4) and (2).
We believe that both proofs of (2) as a solution for the Hull Strength Problem

are much more transparent and formal than a proof from [17]).

3 Ascending Dynamic Programming

3.1 Recursive Dynamic Programming

In the previous section 2 we discuss recursion elimination for a particular exam-
ple of dynamic programming, in the present section we discuss recursion elimi-
nation for dynamic programming in more general settings. The term Dynamic
Programming was introduced by Richard Bellman in the 1950s to tackle optimal
planning problems. Bellman equation is a name for recursive functional equation
for the objective function that expresses the optimal solution at the “current”
state in terms of optimal solutions at next (changed) states, it formalizes a so-
called Bellman Principle of Optimality : an optimal program (or plan) remains
optimal at every stage.

In papers [16,18] we study a class of Bellman equations that matches the
following recursive pattern:

G(x) = if p(x) then f(x) else g

(

x,
{

hi

(

x,G(ti(x))
)

, i ∈ [1..n(x)]
}

)

(9)

We consider the pattern as a recursive program scheme (or template) [15], i.e. a
recursive control flow structure with uninterpreted symbols:

Teaching Recursive Programming and Recursion Elimination 253

– G is the main function symbol representing (after interpretation of ground
functional and predicate symbol) the objective function G : X → Y for some
X and Y ;

– p is a ground predicate symbol representing (after interpretation) some
known1 predicate p ⊆ X;

– f is a ground functional symbol representing (after interpretation) some
known(see footnote 1) function f : X → Y ;

– g is a ground functional symbol representing (after interpretation) some
known(see footnote 1) function g : X × Z∗ → X for some appropriate Z
(with a variable arity n(x) : X → N);

– all hi and ti (i ∈ [1..n(x)]) are ground functional symbols representing (after
interpretation) some known(see footnote 1) function hi : X × Y → Z, ti :
X → X (i ∈ [0..(n(x) − 1)]).

Let us remark that both recursive function definitions (1) and (5) match
the pattern (9). Please refer [18] for detailed discussion how (1) does match the
pattern (9), but let us discuss here why (5) does match the pattern (9):

– G is H, X is N × N, Y is N (i.e. H : N × N → N);
– p is (n = 0 or t = 0) — a subset of N × N;
– f is a constant 0 (i.e. a function f : (x, y) �→ 0 that always return 0);
– g is 1 plus the sum of the elements of the second component (i.e. g :

(x, (y0, y1, . . .)) �→ (1 + (y0 + y1 + . . .)));
– • n is a constant 1 (i.e. a function n : (x, y) �→ 1 that always return 1),

• both functions h0 and h1 are second component of a pair (i.e. h0, h1 :
(x, y) �→ y),
• functions t0 and t1 are defined as t0 : (x, y) �→ ((x − 1), (y − 1)) and
t1 : (x, y) �→ (x, (y − 1)).

3.2 Using One-Time Allocated Associative Array

Let us consider a function G : X → Y that is defined by the interpreted recursive
scheme (9). Let us define two sets bas(v), spp(v) ⊆ X:

– base bas(v) = if p(v) then ∅ else {ti(v) : i ∈ [1..n(v)]} ⊆ X comprises all
values that are immediately needed to compute G(v);

– support spp(v) is the set of all values that appear in the call-tree of G(v).

For example,

– for function T defined by (1), bas(x) = spp(x) = [0..(x − 1)] for all x ∈ N;
– for function H defined by (5) bas(x, y) = {((x− 1), (y − 1)), (x, (y − 1)} and

spp(x, y) = [0..x] × [0..(y − 1)] for all x, y ∈ N.

Note that

– bas(v) is always finite;
1 i.e. that we know how to compute .

254 N. V. Shilov and D. Danko

– G is defined on v then the support spp(v) is finite;
– spp(v) can be computed by the following algorithm:

spp(x) = if p(x) then {x} else {x} ∪ (
⋃

y∈bas(x)

spp(y)). (10)

(Remark also that (10) has recursive dynamic programming pattern (9).)
Let us specify and verify below the following iterative annotated template

for/of (ascending) dynamic programming:

– Precondition PRE(v) parameterized by an “input” value v:
1. v is a value in X (i.e. v ∈ X);
2. function G is defined by (9);
3. spp : X → 2X is the support function for G;
4. NiX is a distinguishable fixed indefinite value2 for X;

– Template Pseudo-Code TPC(v) parameterized by an “input” value v:
1 : V AR LUT : assosiative array indexed by values in spp(v)

containing values in Y ;
2 : LUT := array filled with NiX;
3 : for all u ∈ spp(v) do
4 : if p(u) then LUT [u] := f(u);

// Annotation-1: for all u ∈ spp(v):

// ((p(u) ⇔ LUT [u] = f(u)) & (¬p(u) ⇔ LUT [u] = NiX))

5 : while LUT [v] = NiX do
// Annotation-2: for all u ∈ spp(v):

// (p(u) ⇒ LUT [u] = G(u)) &

// & (LUT [u] = G(u) ⇔ LUT [u] �= NiX)

6 : let u ∈ spp(v) be any element
7 : such that LUT [u] = NiX and
8 : LUT [ti(u)] 	= NiX for all i ∈ [1..n(u)]
9 : in LUT [u] := g (u, {hi (u,LUT [ti(u)]) , i ∈ [1..n(u)]}) .

Note that the template uses one time allocated associative array LUT (stays for
Look Up Table) that size depends on the parameter value v.

Proposition 2. For every v ∈ X, if PRE(v) then the following holds:

1. if G(v) is defined then TPC(v) terminates after |spp(v)| iterations of both
loops, and LUT [v] = G(v) by termination;

2. if G(v) is not defined then TPC(v) never terminates.

Proof. 1. If PRE(v) then Annotation-1 and Annotation-2 are invariants of
the control points of their location; because of it and because v ∈ spp(v),
LUT [v] = G(v) upon TPC(v) termination.
Recall that if G(v) is defined then spp(v) is finite; termination of both loops
in TPC(v) is guaranteed in this case, because each iteration of each of these
loops decreases the number of elements u ∈ spp(v) where LUT [u] = NiX.

2 NiX—Non in any type X, similarly to Non a Number — NaN.

Teaching Recursive Programming and Recursion Elimination 255

2. Recall that if G(v) isn’t defined then spp(v) is infinite; hence (at least) the
second loop never terminates.
— Q.E.D.

For example, let us specialize (and optimize a little bit) the template TPC
to compute value H(n, t) of the function H defined by (5) for given n, t ∈ N:
1 : V AR LUT : array [0..n; 0..(t − 1)] of integers;
2 : for all (x, y) ∈ [0..n] × [0..(t − 1)] do
3 : if ((x = 0) ∨ (y = 0)) then LUT [x, y] := 0
4 : else LUT [x, y] := NaN ;
5 : while LUT [n, t] = NaN do
6 : let (x, y) ∈ [0..n] × [0..(t − 1)] be any element
7 : such that LUT [x, y] = NaN and
8 : LUT [(x − 1), (y − 1)] 	= NaN and LUT [x, (y − 1)] 	= NaN
9 : in LUT [x, y] := (LUT [(x − 1), (y − 1)] + LUT [x, (y − 1)] + 1).

Let us refer this iterative algorithm as TPC − H in the sequel; remark that
it uses a standard (indexed by integers) array instead of an associative array
(indexed by elements of a fixed but arbitrary type) that is used in general case
in the template TPC.

4 Using Fix-Size Static Memory

4.1 When Fix-Size Memory Is Enough

Nevertheless, the above algorithm TPC − H uses array while the function H
defined by (5) and computed by this algorithm may be computed by an iterative
program (according to Proposition 1) without array at all. Hence, a natural ques-
tion arises: is a finite fix-size static memory sufficient when computing a recursive
function that matches recursive dynamic programming pattern (9)? Unfortu-
nately, in general, the answer is negative according to the following proposition
by M.S. Paterson and C.T. Hewitt [15].

Proposition 3. The following special case

F (x) = if p(x) then x else f(F (g(x)), F (h(x))) (11)

of the recursive template (9) is not equivalent to any standard program scheme
(i.e. an uninterpreted iterative program scheme with finite fix-size static mem-
ory).

Proposition 3 does not imply that dynamic memory is always required; it
just says that for some interpretations of uninterpreted symbols p, f , g and h
the size of required memory depends on the input data. But if p, f , g and h
are interpreted, it may happen that function F can be computed by an iterative
program with a finite static memory. For example, Fibonacci numbers

Fib(n) = if (n = 0 or n = 1) then 1 else F ib(n − 2) + Fib(n − 1) (12)

matches the pattern of the scheme in the above Proposition 3, but just six (three
actually) integer variables suffice to compute it by an iterative program.

256 N. V. Shilov and D. Danko

Proposition 4. Assume that PRE(v) holds altogether with the following addi-
tional conditions:

– the arity function n : X → N is some constant n ∈ N;
– base functions t1, . . . tn are invertible and ti = (t1)i for all i ∈ [1..n];
– predicate p is t1-closed in the following sense: p(u) ⇒ p(t1(u)) for all u ∈ X.

Let m ∈ N be number of static variables that suffice to implement imperative
iterative algorithms to compute ground predicate and functions p, f , hi (i ∈
[1..n]), t1 and t−1 for any input value. Then the objective function G may be
computed by an imperative iterative algorithm with 2n + m + 2 static variables.

Let us simply present below one particular array-free template AFT (v) that
proves the proposition:

1 : var x, x1, . . . xn : X;
2 : var y, y1, . . . yn : Y ;
3 : x := v;
4 : if p(x) then y := f(x)
5 : else

{

do x := t1(x) until p(x);
6 : x1 := x; x2 := t1(x1); . . . xn := t1(xn−1);
7 : y1 := f(x1); y2 := f(x2); . . . yn := f(xn);
8 : do x := t−1 (x);

// Annotation: x = t−1 (x1) & bas(x) = {x1, . . . xn} &

// & y1 = G(x1) & . . .& yn = G(xn)

9 : y := g
(

x,
(

h1(x, y1), . . . hn(x, yn)
)
)

;
10 : yn := yn−1; . . . y3 := y2; y2 := y1;
11 : y1 := y;
12 : x1 := t−1 (x1); . . . xn := t−1 (xn)
13 : until x = v

}

.

Formally correctness of the Proposition 4 follows from the observation that
the Annotation is an invariant of the point where it is specified. The idea behind
this template AFT (v) is quite simple:

– let m = arg min m : p (gm1 (v));
– let prf = {gk1 (v) : 0 ≤ k < m};

– let suf =
{{v}, if m = 0

{gm1 (v), . . . , gm+n−1
1 (v)}, if m > 0 ;

then spp(v) = prf ∪ suf , prf is traversed in the line 5 of AFT (v), and suf —
in the line 4 xor in the line 6 of AFT (v).

4.2 Example: Fibonacci Numbers

Let us remark that there is no contradiction between Propositions 3 and 4
because functions g and h in (11) that correspond to functions ti, i ∈ [1..n]

Teaching Recursive Programming and Recursion Elimination 257

in (9) (i.e. n = 2 and either g is t1 and h is t2 or h is t1 and g is t2) aren’t
expressible one in terms of another, but are considered as unrelated functions.

Fibonacci numbers (12) matches the template (11) but satisfy conditions of
the Proposition 4: let

– t1, t2 : N → N be
• t1 : x �→ (if x > 0 then (x − 1) else 0),
• t2 : x �→ (if x > 1 then (x − 2) else 0),

– p ⊆ N be (x = 0 or x = 1);

then

– t2 = t21 and t−1 : x �→ (x + 1),
– p(x) ⇒ p(t1(x)) for all x ∈ N.

Hence iterative program with a fix-size finite memory to compute Fibonacci
numbers can result from specialization of the AFT :
1 : var x, x1, x2 : N;
2 : var y, y1, y2 : N;
3 : x := v;
4 : if (x = 0 or x = 1) then y := 1
5 : else

{

do x := (x − 1) until (x = 0 or x = 1);
6 : x1 := x; x2 := (x1 − 1);
7 : y1 := 1; y2 := 1;
8 : do x := (x + 1);

// Annotation: x = (x1 + 1) & bas(x) = {x1, x2} &

// & y1 = Fib(x1) & y2 = Fib(x2)

9 : y := (y1 + y2);
10 : y2 := y1;
11 : y1 := y;
12 : x1 := (x1 + 1);x2 := (x2 + 1)
13 : until x = v

}

.

4.3 Example: Fibonacci Words

The example below was presented on the workshop Fun With Formal Meth-
ods FWFM-2013 [31], the first workshop in a series FWFM-2013, FWFM-2014
FWFM-2019. The example is closely related to the Fibonacci numbers but is
about the Fibonacci words.

An infinite sequence of Fibonacci words w0, w1, . . . is defined [13] very similar
as the infamous sequence of Fibonacci numbers: let a and b be two distinguishable
symbols (“letters”); then w0 = b, w1 = a, and wi+2 = wi ◦ wi+1 for all i ≥ 0
where “◦” is concatenation on words. In other words, Fibonacci words are defined
by the following recursion:

W (n) = if (n = 0 or n = 1) then
{

if n = 0 then b else a
}

else W (n − 2) ◦ W (n − 1). (13)

258 N. V. Shilov and D. Danko

It is easy to see that the sequence of Fibonacci words starts as b; a; ba; aba;
baaba; ababaaba; baabaababaaba.

One can observe that none of the first seven Fibonacci words listed above
contains two b’s or three a’s in a row (i.e. no sub-words bb or aaa). This obser-
vation leads to a hypothesis that all Fibonacci words contain neither two b’s nor
three a’s in a row. But then the next question arises: how to prove (or refute)
the hypothesis?—The paper [13] discusses how to prove these two hypothesis in
two steps:

1. first-order sound axiomatization of algebraic systems (first-order models)
where all elements of the domain may be generated using Fibonacci words

2. and then automatic generation of finite countermodels that meet the axioma-
tization but refute that some element may be generated using two b’s or three
a’s in a row.

Surprisingly, the countermodels for each of these properties are quite small, —
just 5 elements to refute a possibility of two b’s and 11 element to refute a
possibility three a’s in a row [13].

But we are interested exclusively in recursion elimination, i.e. how to compute
(13) iteratively using finite fix-size memory. This time base functions t1, t2 and
predicate p are the same as for Fibonacci numbers above (see Subsect. 4.2).
But the function f is a little bit more complicated because it gets different
values for 0 and for 1. Hence iterative program with a fix-size finite memory to
compute Fibonacci words isn’t just specialization of the AFT but requires some
modification (in contrast to Fibonacci numbers):
1 : var x, x1, x2 : N;
2 : var y, y1, y2 : {a, b}∗;
3 : x := v;
4 : if (x = 0 or x = 1) then

{

if x = 0 then y := b else y := a
}

5 : else
{

do x := (x − 1) until (x = 0 or x = 1);
6 : x1 := x; x2 := (x1 − 1);
7 : y1 := a; y2 := b;
8 : do x := (x + 1);

// Annotation: x = (x1 + 1) & bas(x) = {x1, x2} &

// & y1 = W (x1) & y2 = W (x2)

9 : y := (y2 ◦ y1);
10 : y2 := y1;
11 : y1 := y;
12 : x1 := (x1 + 1);x2 := (x2 + 1)
13 : until x = v

}

.

4.4 Example: Beyond Hull Strength Puzzle

Proposition 1 gives an explicit expression (8) for the function H : N × N → N

defined by recursive equation (5). Remark that this explicit expression (8) is easy

Teaching Recursive Programming and Recursion Elimination 259

to implement by an iterative imperative program with finite fix-size memory,
but with loops (to accumulate sum). We also know an explicit expression (4) for
function H(2, t) : N → N. Because of it we can construct an iterative imperative
program with finite fix-size memory to compute function H(3, t) : N → N in two
ways:

– either specializing a program that computes H : N × N → N for the first
argument being equal to 2,

– or specializing the recursive definition (5) for the first argument being equal
to 2 and using Proposition 4.

Below we present the latter approach.
According to (5) for every t ≥ 0 we have

H(3, t) =
= if t = 0 then 0 else (H (2, (t − 1)) + H (3, (t − 1)) + 1) =
= if t = 0 then 0 else

(

(t−1)((t−1)+1)
2 + H (3, (t − 1)) + 1

)

=

= if t = 0 then 0 else
(

1 + t(t−1)
2 + H (3, (t − 1))

)

.

(14)

Remark that this equation is not an instance of the tail recursion but satisfies
conditions of the Proposition 4 if

– t1 : N → N is t1 : x �→ (if x > 0 then (x − 1) else 0).
– and p ⊆ N is predicate x = 0.

Because of it, H(3, t) can be computed by the following specialization of the
template AFT (t):
1 : var x, x1 : N;
2 : var y, y1 : N;
3 : x := t;
4 : if x = 0 then y := 0
5 : else

{

do x := x − 1 until x = 0;
6 : x1 := x;
7 : y1 := 0;
8 : do x := x + 1;

// Annotation: x = (x1 + 1) & bas(x) = {x1} & y1 = H(3, x1)

9 : y := 1 + x(x−1)
2 + y1;

11 : y1 := y;
12 : x1 := x1 + 1;
13 : until x = t

}

.

(Remark that line 10 has vanished because in the template AFT (v) the template
for this line is yn := yn−1; . . . y2 := y1, but n = 1 in our case.)

4.5 Example: Permutation Concatenation

Wikipedia reads [33] about Code Forces [34]: Codeforces is a website that hosts
competitive programming contests. It is maintained by a group of competitive
programmers from ITMO University led by Mikhail Mirzayanov.

260 N. V. Shilov and D. Danko

Below we are going to discuss the following problem New Year and the Per-
mutation Concatenation (PCP) [35]:

Let n be an integer. Consider all permutations on integers 1 to n in lexico-
graphic order, and concatenate them into one big sequence p. For example,
if n = 3, then p = [1, 2, 3, 1, 3, 2, 2, 1, 3, 2, 3, 1, 3, 1, 2, 3, 2, 1]. The length of
this sequence will be n · n!.
Let 1 ≤ i ≤ j ≤ n · n! be a pair of indices. We call the sequence
(pi, pi+1, . . . , pj−1, pj) a subarray of p. Its length is defined as the num-
ber of its elements, i.e., j − i + 1. Its sum is the sum of all its elements,
i.e.,

∑j
k=i pk.

You are given n. Find the number of subarrays of p of length n having
sum n(n+1)

2 .

In the above we skip the ending of the problem statement because it is important
only for solution of the problem using integers of a fix size. Also we need to
expand the formulation by the assumption that n > 0 (since case n = 0 doesn’t
make sense for permutations).

Algorithm of the solution is also available on Code Forces [36]:

The answer is:

n · n! −
n−1
∑

k=1

n!
k!

This can be calculated in O(n) without the need of modular division.
There is also a simple recurrence counting the same answer, found by
arsijo:

d(n) =
(

d(n − 1) + (n − 1)! − 1
)

· n.

Of course, the above recurrent relation must be completed by the basic case
n = 1:

d(n) = if n = 1 then 1 else
(

d(n − 1) + (n − 1)! − 1
)

· n. (15)

Below we first explain the recurrent formula (15), then extract iterative algorithm
to compute function d : N → N using Proposition 4 assuming that the factorial is
one of known functions, and finally discus a variation of the recurrent equation
(15) and equivalent iterative algorithm without assumption that we know how
to compute factorial.

Remark that the equation (15) satisfies conditions of the Proposition 4 if

– t1 : N → N is t1 : x �→ (if x > 1 then (x − 1) else 1.
– and p ⊆ N is predicate x = 1.

Teaching Recursive Programming and Recursion Elimination 261

Because of it, d(n) can be computed by the following specialization of the tem-
plate AFT (n):
1 : var x, x1 : N;
2 : var y, y1 : N;
3 : x := n;
4 : if x = 1 then y := 1
5 : else

{

do x := x − 1 until x = 1;
6 : x1 := x;
7 : y1 := 1;
8 : do x := x + 1;

// Annotation: x = (x1 + 1) & bas(x) = {x1} & y1 = d(x1)

9 : y := x(y1 + x1! − 1);
11 : y1 := y;
12 : x1 := x1 + 1;
13 : until x = n

}

.

(Remark that again the line 10 has vanished because in the template AFT (v)
the template for this line is yn := yn−1; . . . y2 := y1, but n = 1 in our case.)

5 Conclusion

We started this paper with an example of recursion elimination in a problem from
International Mathematical Olympiad of 2019. Unfortunately, competitions like
IMO or ICPC are still not involved into education process but we hope that
competitions of this kind may be used for engaging students with Theory of
Computer Science and Formal Methods in Software Engineering [19].

We also would like to stress that our example for recursion elimination as an
unified approach to some mathematical Olympiad problems can be considered
as a step towards a so-called IMO Grad Challenge [27]:

The International Mathematical Olympiad (IMO) is perhaps the most cel-
ebrated mental competition in the world and as such is among the ultimate
grand challenges for Artificial Intelligence (AI).
The challenge: build an AI that can win a gold medal in the competition.
To remove ambiguity about the scoring rules, we propose the formal-to-
formal (F2F) variant of the IMO: the AI receives a formal representation
of the problem (in the Lean Theorem Prover), and is required to emit
a formal (i.e. machine-checkable) proof. We are working on a proposal
for encoding IMO problems in Lean and will seek broad consensus on the
protocol.
. . .
Challenge. The grand challenge is to develop an AI that earns enough
points in the F2F version of the IMO (described above) that, if it were a
human competitor, it would have earned a gold medal.

262 N. V. Shilov and D. Danko

But we didn’t bound our study of recursion elimination by educational exam-
ples like IMO problems or the Hull Strength Puzzle (i.e. the Egg Dropping Puzzle
[28]). We also studied use of associative arrays (with one-time memory alloca-
tion) for recursion elimination in descending dynamic programming (see Sect. 3),
conditions that are sufficient for finite fixed-size static memory in ascending
dynamic programming (see Sect. 4), and gave examples of recursion elimination
to illustrate these mentioned results.

To the best of our knowledge, use of integer arrays for efficient translation
of recursive functions of integer argument was suggested first in [1]. In the cited
paper this technique of recursion implementation was called production mecha-
nism. The essence of the production mechanism consists in support evaluation
(that is a set of integers), array declaration with a proper index range, and fill-in
this array in bottom-up (i.e. ascending) manner by values of the objective func-
tion. Use of auxiliary array was studied also in [14]. The book [14] doesn’t use
templates but translation techniques that is asymptotically more space efficient
that our approach.

Some topics for further studies are presented below (from the nearest to that
which require more time).

– To prove using a proof-assistance (ACL2 most probably) that iterative and
recursive versions of the function H(n, t) are equivalent.

– To investigate how to generalize the pattern of the recursive function and very
particular manipulations used/presented in this paper for recursion elimina-
tion in more general cases.

– Investigate methods to find recursive patterns admitting recursion elimina-
tion. Maybe, we need to design a type system or/and use machine learning
to advance in this direction.

– To design and implement a plugin for some IDE (Integrated Development
Environment) that analyses program code to find recursive patterns admit-
ting recursion elimination and eliminates these cases of recursion at object
code level.

References

1. Berry, G.: Bottom-up computation of recursive programs. RAIRO - Informatique
Théorique et Applications (Theoret. Inform. Appl.) 10(3), 47–82 (1976)

2. Bird, R.S.: Using circular programs to eliminate multiple traversals of data. Acta
Informatica 21(3), 239–250 (1984). https://doi.org/10.1007/BF00264249

3. Bird, R.S.: Zippy tabulations of recursive functions. In: Audebaud, P., Paulin-
Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp. 92–109. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-70594-9 7

4. Dijkstra, E.W.: On a cultural gap. Math. Intell. 8(1), 48–52 (1986). https://doi.
org/10.1007/BF03023921

5. Ershov, A.P.: Aesthetics and the human factor in programming. Commun. ACM
15(7), 501–505 (1972)

6. Ershov, A.P.: Programming as the second literacy (1980). http://ershov.iis.nsk.su/
ru/second literacy/article. Accessed 20 Jan 2020 (in Russian)

https://doi.org/10.1007/BF00264249
https://doi.org/10.1007/978-3-540-70594-9_7
https://doi.org/10.1007/BF03023921
https://doi.org/10.1007/BF03023921
http://ershov.iis.nsk.su/ru/second_literacy/article
http://ershov.iis.nsk.su/ru/second_literacy/article

Teaching Recursive Programming and Recursion Elimination 263

7. Ershov, A.P., Knuth, D.E. (eds.): Algorithms in Modern Mathematics and Com-
puter Science. LNCS, vol. 122. Springer, Heidelberg (1981). https://doi.org/10.
1007/3-540-11157-3

8. Gries, D.: The Science of Programming. Monographs in Computer Science.
Springer, Heidelberg (1981). https://doi.org/10.1007/978-1-4612-5983-1

9. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

10. Knuth, D.E.: Computer science and its relation to mathematics. Am. Math.
Monthly 81(4), 323–343 (1974)

11. Knuth, D.E.: Textbook Examples of Recursion (1991). https://arxiv.org/pdf/cs/
9301113.pdf. Accessed 20 Jan 2020

12. Knuth, D.E.: The Art of Computer Programming, Volumes 1–3 Boxed Set, 2nd
edn. Addison-Wesley, Boston (1998)

13. Lisitsa, A.: Tackling Fibonacci words puzzles by finite countermodels. Contributed
talk at the CAV Workshop Fun With Formal Methods, St. Petersburg, Rus-
sia, 13 July 2013. http://cgi.csc.liv.ac.uk/∼alexei/Fibonacci Challenge/fun2013.
pdf. Accessed 20 Jan 2020

14. Liu, Y.A.: Systematic Program Design: From Clarity to Efficiency. Cambridge
University Press, Cambridge (2013)

15. Paterson, M.S., Hewitt C.T.: Comparative schematology. In: Proceedings of the
ACM Conference on Concurrent Systems and Parallel Computation, pp. 119–127
(1970)

16. Shilov, N.V.: Study of recursion elimination for a class of semi-interpreted recursive
program schemata. In: Abstracts of 31st Nordic Workshop on Programming Theory
NWPT 2019, Tallinn, Estonia, 13–15 November 2019, pp. 54–58 (2019)

17. Shilov, N.V.: Etude on recursion elimination. Model. Anal. Inf. Syst. 25(5), 549–
560 (2018)

18. Shilov, N.V.: Algorithm design patterns: program theory perspective. In: Pro-
ceedings of Fifth International Valentin Turchin Workshop on Metacomputation
(META-2016), University of Pereslavl, pp. 170–181 (2016)

19. Shilov, N.V., Yi, K.: Engaging students with theory through ACM collegiate pro-
gramming contests. Commun. ACM 45(9), 98–101 (2002)

20. Uspensky, A.V.: Mathematics Apology. Amphora, Sant-Petersburg (2009). (in Rus-
sian)

21. Shilov, N.V., Shilova, S.O.: On mathematical contents of computer science contests.
In: Enhancing University Mathematics: Proceedings of the First KAIST Interna-
tional Symposium on Teaching. CBMS Issues in Mathematics Education, vol. 14,
pp. 193–204. American Society (2007)

22. Computing Curricula 2001. Computer Science. https://www.acm.org/binaries/
content/assets/education/curricula-recommendations/cc2001.pdf. Accessed 01
July 2020

23. Computer Science Curricula (2013). https://www.acm.org/binaries/content/
assets/education/cs2013 web final.pdf. Accessed 01 July 2020

24. International Mathematical Olympiad. https://www.imo-official.org/default.aspx.
Accessed 20 Jan 2020

25. Problems (with solutions). 60th International Mathematical Olympiad. Bath -
UK, 11th–22nd July 2019. https://www.imo2019.uk/wp-content/uploads/2018/
07/solutions-r856.pdf. Accessed 20 Jan 2020

26. ICPC. International Collegiate Programming Contest. https://icpc.baylor.edu/.
Accessed 20 Jan 2020

https://doi.org/10.1007/3-540-11157-3
https://doi.org/10.1007/3-540-11157-3
https://doi.org/10.1007/978-1-4612-5983-1
https://arxiv.org/pdf/cs/9301113.pdf
https://arxiv.org/pdf/cs/9301113.pdf
http://cgi.csc.liv.ac.uk/~alexei/Fibonacci_Challenge/fun2013.pdf
http://cgi.csc.liv.ac.uk/~alexei/Fibonacci_Challenge/fun2013.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2001.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2001.pdf
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://www.imo-official.org/default.aspx
https://www.imo2019.uk/wp-content/uploads/2018/07/solutions-r856.pdf
https://www.imo2019.uk/wp-content/uploads/2018/07/solutions-r856.pdf
https://icpc.baylor.edu/

264 N. V. Shilov and D. Danko

27. IMO Grand Challenge. https://imo-grand-challenge.github.io/. Accessed 20 Jan
2020

28. The Egg Dropping Puzzle. From Wikipedia, the free encyclopedia, article on
Dynamic Programming. https://en.wikipedia.org/wiki/Dynamic programming#
Egg dropping puzzle. Accessed 20 Jan 2020

29. Corecursion. From Wikipedia, the free encyclopedia. https://en.wikipedia.org/
wiki/Corecursion. Accessed 20 Jan 2020

30. Tail call. From Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/
Tail call. Accessed 20 Jan 2020

31. Fun With Formal Methods (2013). http://www.iis.nsk.su/fwfm2013. Accessed 20
Jan 2020

32. Fun With Formal Methods (2019). https://persons.iis.nsk.su/en/FWFM19.
Accessed 20 Jan 2020

33. Codeforces. From Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/
Codeforces. Accessed 22 June 2020

34. Code Forces. Sponsored by Telegram. https://codeforces.com/. Accessed 22 June
2020

35. D. New Year and the Permutation Concatenation. https://codeforces.com/
contest/1091/problem/D?locale=en. Accessed 22 June 2020

36. 1091D - New Year and the Permutation Concatenation. https://codeforces.com/
blog/entry/64196. Accessed 22 June 2020

https://imo-grand-challenge.github.io/
https://en.wikipedia.org/wiki/Dynamic_programming#Egg_dropping_puzzle
https://en.wikipedia.org/wiki/Dynamic_programming#Egg_dropping_puzzle
https://en.wikipedia.org/wiki/Corecursion
https://en.wikipedia.org/wiki/Corecursion
https://en.wikipedia.org/wiki/Tail_call
https://en.wikipedia.org/wiki/Tail_call
http://www.iis.nsk.su/fwfm2013
https://persons.iis.nsk.su/en/FWFM19
https://en.wikipedia.org/wiki/Codeforces
https://en.wikipedia.org/wiki/Codeforces
https://codeforces.com/
https://codeforces.com/contest/1091/problem/D?locale=en
https://codeforces.com/contest/1091/problem/D?locale=en
https://codeforces.com/blog/entry/64196
https://codeforces.com/blog/entry/64196

Empirical Studies

An Experience in Monitoring EEG
Signals of Software Developers During

Summer Student Internships

Rozaliya Amirova1, Vladimir Ivanov1, Sergey Masyagin1, Aldo Spallone2,
Giancarlo Succi1, Ananga Thapaliya1(B), and Oydinoy Zufarova1

1 Innopolis University, Innopolis 420500, Russia
a.thapaliya@innopolis.ru

2 RUDN University, Moscow 117198, Russia

Abstract. Given the emerging importance of individual biophysical
data for understanding software development activities, an internship
was organized to provide the students with first hand experience on the
collection of such data. The specific goal of the internship was to offer
students the possibility to collect, analyse, understand, and draw conclu-
sions from EEG signals. The overall internship spanned about 3 months
and involved about 17 students. The results have been very positive in
terms of the specific knowledge gained by each student and also of the
value of the collected data. In this paper we detail the structure of the
internship, the tasks carried out, the challenges faced, and how such
challenges have been overcome.

Keywords: EEG · Brain waves · ERD · Correlation

1 Introduction

Electroencephalography (EEG) is a device to record electrical activity with a
high spatial resolution that provides non-obtrusive access to neuronal dynamics
at the population level on virtually any transient scale that is now considered
essential for cognition [15]. It’s more accessible and inexpensive than various
devices, such as MEG, and facilitates cognition research in a broader variety of
circumstances [30]. This internship was related to the field of software engineer-
ing which requires using EEG device to analyze the brain waves of programmers
under conditions such as pair programming and programming with (without)
music which was completed over the time period of 3 months carrying out exper-
iments with 17 participants, both undergraduate and graduate students.

The goal of the internship was to collect the brain waves of the programmers
using EEG and analyze their data to measure the difference in concentration
level given under different physical situations [14,17,39] or for carrying out spe-
cial tasks in coding [19,40]. In this paper, we describe the overall process of how
the internship was carried out, how the process of collecting & analyzing the
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 267–278, 2020.
https://doi.org/10.1007/978-3-030-57663-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_17&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_17

268 R. Amirova et al.

data worked and also including the organizational report about what happened
before the start of the internship. This paper is organized as follows: Sect. 2 gives
the overall idea of the internship, organizational tasks, methods of data manage-
ment, experiment procedure, data collection procedures and the tools for data
collection, analysis & visualization. Section 3 gives the brief description about
the settings of the device and how the experiment was carried out. Section 4 give
the evaluation and preliminary outcomes of the internship. Section 5 talks about
the technical & organizational challenges faced during the internship and finally
on Sect. 6 we give our final thoughts and point out about the future research
that can be done based on this internship.

2 Preliminaries

In this study, we identify a complete workflow using EEG to examine the sub-
ject’s brain activities during the programming process. The data consists of
continuous EEG recordings executing a programming task from 17 participants.
These participants were computer scientists (undergraduate or graduated) from
the age 18 to 35. Subjects were faced with various levels of programming assign-
ments, from which they had to select and continue with the task according to
their experience. The dataset offers a rich framework for researching various
brain behavior and cognitive problems, such as: What brain signals activate the
behavior at what particular point? At the same time, it introduces a well-studied
model that can be advantageous for the growth of communication and reference
localisation processes [1]. Experiments were performed under two factors: pair
programming and music (without music). These factors are the most common
factors practiced in industry and academia used by developers while solving prob-
lems and developing software [2,25]. The relevance of this study goes beyond the
simple understanding of a practice, but fits the overall evolution of the discipline
of metrics and empirical software engineering through the last 25 years of exper-
iments always providing a better understanding of the complex phenomena of
the development of software [3,4,10,20–23,26,27,32,33,36–38,43–45,47,48].

2.1 Organizational Tasks of the Internship

This section describes the initial stage of the internship where we discussed how
the internship can initiate, how to proceed with the experiments and conduct
meetings. Like every other internship, first we set the organizational structure
(basic rules, initiation of the internship) about the meetings and divided the
tasks as required by the internship.

First we decided to formalize everything (word by word) that was discussed
during the meeting. Then we got the references and opinions from experts in the
field about the EEG device, data collection and analysis. This was done for the
theoretical knowledge of the keywords, device and ways to conduct and collect
the experiment data. Also, we talked about the organization of weekly meetings
for the discussion of weekly progress of interns. We finalized the goals, metrics,

Monitoring EEG Signals of Software Developers 269

protocol of the experiment and about porting all the data collected to the new
storage and classifying the data according to the protocol.

2.2 Method of Data Management

Format of Saving: After the collection of data from the subject, it was decided
to save it on edf format describing all the metadata such as name and birth date
in regardless of the tools and data format used [16].

Naming Convention: For the naming convention, we wanted to make it as
self explanatory as possible for the ease of read. The following convention was
used:

– NameOfSubject.DateOfExperimentDay.Goal.Mode.edf
– NameOfSubject.DateOfExperimentDay.Goal.Calibration.Condition.edf

2.3 Experiment Procedure

Before the start of the experiment there were certain procedures that should
be applied to the device, for the better quality of the data [9]. This procedure
includes to clean the EEG cap (the device), put the cap on the test subject
and making it comfortable for the subject, put the ear electrodes on the test
subject’s earlobes, fill the electrodes with conductive gel (also ear electrodes)
and connect the transmitter of the device to personal computer using bluetooth.
Then, choose the reference electrode as the referent and Mono 21 as the montage
and make sure that every electrode is running in it’s own range and there are no
spikes nor noises on the signal. Finally, if the electrode is not working properly
then put additional gel on it or try to make the cap fit better.

During the experiment it was necessary to follow the specific procedure and
protocol in a systematic way so that it would be beneficial for both the researcher
and the subject [13]. First, run the calibration procedures (eyes closed and open
for 2 min before the initiation). Then, we let the subjects set up the environment
on their computer, start working on the given tasks and start recording. The
record session should be at least 60 min long. During the recording the subject
should not leave his/her working place and he/she should move and talk as less
as possible (if it is not a part of the experiment).

2.4 Tools for Data Collection, Analysis and Visualization

The programming tools and libraries that were used for the experiment was Ana-
conda 3 with Python 3, Numpy Packs, Scipy Packs, MNE 0.16.1 and Jetbrains
Pycharm IDE. For filtering the data, we used finite impulse response method
which is provide by MNE library. For all the recording, processing and imaging
we used Mitstar EEG studio.

270 R. Amirova et al.

3 Approach to the Experiment

3.1 Device and Experiment Settings

We have used a lightweight 24-channel portable EEG Smart BCI cap which
is offered by Mitsar company in the study. Electrode positioning is achieved
by a regular 10–20 scheme. The frequency of measurements is 250 Hz, and the
amplitude range is 0–70 Hz. Since we are using a dual-channel EEG tool, the
first step to take is to select the channels that are the most appropriate for
the study. On the one side, most channels offer a wide range of data from the
entire scalp. Anyway this detail may be redundant. Furthermore, various kinds
of EGG objects affect electrodes mounted on different areas of the scalp, such as
cortical electrodes which are expected to be affected by body and eye motions.
The following 18 electrodes, Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, C4, T4, T5,
P3, Pz, P4, T6, O1 and O2 with the reference electrode being Cz were used. For
the primer data investigation on the music analysis, all electrodes were utilized.
During the test set-up of the structure for the pair programming, we found that
with EEG pre-processing strategies, for example, particular segment investiga-
tion and manual separating, a sign from the frontal terminals can’t be cleaned.
We didn’t propose any procedures other than these two for frontal electrodes as
we found that central electrodes would be sufficient for examination and results
for this particular little scope try. Before the trial terminals were cleaned with
liquor, we additionally utilized conductive gel during information recording to
give a superior association among electrodes and scalp. The Mitsar EEG studio
programming was utilized to record, pre-process and perform frequency tests.

A pair was formed between each participant of driver (programmer) and nav-
igator (tells the programmer what to do). Each trial was performed on a daily
basis in one month’s time frame with comparable conditions. The analysis con-
sists of two stages. The underlying stage is the two-section modification period.
The first is the member sits in a relaxed state with the shut eyes doing nothing
and the second is the same with the eyes opened. The coordination stage tests
the synchronization of alpha and theta waves. The next step is the step where
real employment and undertakings take place. Members are actually beginning
to program in solo. It is going on only for an hour. Currently after the completion
of the solo programming, participants are given five minutes of replay before the
start of pair programming. One carries on as a driver throughout pair program-
ming, and another as a pilot. The jobs don’t make any difference because the
two participants need to resume the test with separate jobs again. Equally, this
goes on for an hour. Members are given 30 min of reprieve after the second cycle
of pair programming. Members are in complete state of rest during the break.
After the break, the pair programming cycle starts only with navigator’s and
driver’s changing roles.

The same experimental setting is repeated with the music factor. The only
new setting is that the participants work with (without) music to complete the
given task. The music was already selected, a typical instrumental music for
work [12]. Participants used the earphone provided by us.

Monitoring EEG Signals of Software Developers 271

4 Evaluation and Preliminary Results

The preliminary assessment using Mitsar EEG Studio software was finalized for
the music experiment. Analysis of power spectra [42] was per-shaped by taking
spectral qualities from the unit. Band esteems acquired from a similar subject
programming were analyzed at that stage, with and without music. The idea
was to identify variations in power spectra for a specific unit, and to differentiate
common designs from different topics. For pair programming, investigation was
performed using Event Related Desynchronization (ERD) techniques and corre-
lation analysis [13]. The main machine gauges the different neuron movements
between the state of rest and programming as a sign of the undertaking’s trou-
ble performed. The relation quantifies the association between different waves.
Strong wave relation clarifies various mental exercises and studies. ERD and
relationship were used along those lines to break down the experimental details
for Pair Programming.

Fig. 1. Image A shows us the waves produced while closing eyes and Image B shows
us the waves produced during open eyes. We can see from the waves that we can see
that amplitude on the eyes closed is higher than on eyes open (coding) part.

Regarding pair programming, we got higher pair-navigator ERD and equal
qualities for solo and pair-driver mode. This result is like the results of a corre-
lation analysis. This can conclude that pair programming in pilot mode needs
more thought, as they have to evaluate and direct as of now theorized by dur-
ing code composition. Figure 1 shows the comparison of amplitude between eyes
closed and eyes open (programming). Figure 2, 3, 4 shows the brain maps of the
programmers in their own state which is visualized using EEG spectral wizard.
The brain maps can be compared to detect the areas of the brain, were the
different waves are generated. At first glance, you can see there are differences
in the power of the waves between the different situations, with a higher brain
activation in solo compared to both pair programming.

For programming with (without music), after analyzing the details, we discov-
ered that in all the subjects a huge distinction was documented in the cerebrum
movement as the force spectra are diverse programming and music contrasting,

272 R. Amirova et al.

1.png

Fig. 2. Brain maps of the waves of solo programming (spectra wizard, power percent-
age)

2.png

Fig. 3. Brain maps of the waves of navigator (spectra wizard, power percentage)

3.png

Fig. 4. Brain maps of the waves of driver (spectra wizard, power percentage)

Monitoring EEG Signals of Software Developers 273

and without. In any case, an unusual illustration of cerebrum activity could not
be identified in our datasets, nor could we differentiate engineering gatherings
with comparable examples: some subjects had lower delta waves with music and
some had higher delta waves with music comparing with control gathering, and
similar circumstances existed with other wave types, similar to theta, alpha,
beta, and gamma. Over and over, but we can’t close out an outstanding music
effect over the entire datasets. Later on, by making the datasets accessible, we
want to discern rational co-variations that can help profile the music’s effect on
specific developer groups even more successfully.

5 Challenges

The primary objective of this internship was to test the methodology and the
nature of the study to decide if EEG is an appropriate way to research program-
mers’ behavior. Although this methodology appears ideal for evaluating brain
involvement during training, we have faced the difficulties and shortcomings.
During the internship, students came across different challenges and we have
grouped them into two types: technical and organizational challenges.

5.1 Technical Challenges

– Depending on the design of the study used, before starting the actual exper-
iment researchers should plan both the collection of data and the review of
protocols fully at individual experiments as well as specific groups of individ-
uals [31].

– This evaluation of the study will potentially alter how the stimulus should
be communicated or how problematic the activation function may be, for
example, to ensure that adequate preliminaries and signal-to-noise ratio are
present in preliminary proper behavior [49].

– During the data gathering, we gained extreme muscle action which muddied
our results. Subjects also had to stay as silent as possible and to wince as
sparingly as possible [1].

– The skull passes on like a minimal-pass network and defects the fundamental
electrical activity of the brain over a vast scalp region. In addition, the sce-
narios reported on the scalp are expected to be generated by multiple groups
of cerebral and post-cortical producers distributed over a reasonably large
region [46].

– It is difficult to distribute with EEG report bits which are devalued by motor
skill motions or eye blinks accompanying data processing because the EEG
signal is of very low intensity as these motor skill gestures appear to over-
whelm the EEG signal [35].

– EEG needs intensive analysis only to speculate what regions are implemented
by a particular reaction, because EEG reveals very poor cortical temporal
resolution [41].

274 R. Amirova et al.

5.2 Organizational Challenges:

– This took a considerable amount of time to start the test, as the system
required a complex configuration of multiple electrodes across the head using
different gels.

– Because the number of individuals who participated in the project is quite
small and is restricted to participants at Innopolis University, a very minimal
amount of data has been obtained. It results in the study findings being of
no statistical significance. There are no publicly accessible databases which
can be included in our experiments.

– Similar to the above, the limited number of individuals does not provide a
credible assurance that all people will obtain confirmation of the results. Since
only male students were tested, the results can be biased.

– The EEG machine itself is extremely susceptible to ambient noise, and needs
to be adjusted very carefully. The good results are obtained once the subject
of the study is not shifting, is not communicating and there is no electrifi-
cation. But in real life and in the circumstances of our study design, those
requirements are not achievable.

– Students in the study have not undergone a formal medical assessment, and
most of them will have concealed issues with the blood flow, brain, and other
irregularities that may affect EEG scan tests. Many anatomical characteristics
can also add prejudice, such as long hair.

– During the test, the atmosphere could influence the results, too. The light
may be too intense for example, or the activity around the subject. Therefore
the setting for the study should be carefully constructed to remove external
variables that can influence the signals from the samples collected.

– This is also an observational analysis, a summer internship, with the goal of
deciding if the work will go forward. As such, it does not have the purpose
or the potential of making a definite statement on whether computing with
music or with pair programming produces different impacts in developers’
brains that can be identified using EEG tools.

6 Conclusion and Future Research

The utilization of biological signs to break down engineers’ activities and yield
is getting perpetually normal. The findings correlated with brain function are of
special interest as they can measure the response to various stimuli which are not
readily identified by the human eye. Students in this internship have studied EEG
approach to evaluate people’s job programming with (without) music and in pair
programming. We may reason that the EEG approach is feasible to the end of our
expectations and it helped us to see the effect of the programming circumstances
on cerebrum behavior. EEG designs for programming with (without) music and
during pair programming are distinctive. The actual meaning of such cases is
not well known. Further studies are expected to support the effect of music and
pair programming on mind movement all the more probable.

Monitoring EEG Signals of Software Developers 275

Thus from the internship, the extent of further work was recognized, a con-
vention for the investigation was grown, new apparatuses, settings, and issues
were introduced. Playing out the analysis for a bigger scope may prompt better
outcomes and open new territories of enthusiasm for considering designers’ pro-
file signals. To summarize, contingent upon all the results, our future research
will be founded on progressively engaged analyses with specific programming cir-
cumstances utilizing bigger understudy informational collections and afterward,
actually, endeavoring to move our assessment to the business. Future work would
be directed in understanding better also specific application domains that are
particularly important, such as mobile systems [5–8] and open source systems
[11,18,24,29,34], and in applying techniques from machine learning and compu-
tational intelligence [28].

Acknowledgment. We thank Innopolis University for generously supporting this
research.

References

1. Bell, M.A., Cuevas, K.: Using EEG to study cognitive development: issues and
practices. J. Cogn. Dev. 13(3), 281–294 (2012)

2. Busechian, S., et al.: Understanding the impact of pair programming on the minds
of developers. In: 2018 IEEE/ACM 40th International Conference on Software
Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER), pp.
85–88. IEEE (2018)

3. Clark, J., et al.: Selecting components in large cots repositories. J. Syst. Softw.
73(2), 323–331 (2004)

4. Coman, I.D., Robillard, P.N., Sillitti, A., Succi, G.: Cooperation, collaboration and
pair-programming: field studies on backup behavior. J. Syst. Softw. 91, 124–134
(2014)

5. Corral, L., Georgiev, A.B., Sillitti, A., Succi, G.: A method for characterizing
energy consumption in Android smartphones. In: 2nd International Workshop on
Green and Sustainable Software (GREENS 2013), pp. 38–45. IEEE, May 2013

6. Corral, L., Georgiev, A.B., Sillitti, A., Succi, G.: Can execution time describe
accurately the energy consumption of mobile apps? An experiment in Android. In:
Proceedings of the 3rd International Workshop on Green and Sustainable Software,
pp. 31–37. ACM (2014)

7. Corral, L., Sillitti, A., Succi, G.: Software assurance practices for mobile applica-
tions. Computing 97(10), 1001–1022 (2015)

8. Corral, L., Sillitti, A., Succi, G., Garibbo, A., Ramella, P.: Evolution of mobile
software development from platform-specific to web-based multiplatform paradigm.
In: Proceedings of the 10th SIGPLAN Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! 2011, pp. 181–183. ACM,
New York (2011)

9. Daly, I., et al.: What does clean EEG look like? In: 2012 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3963–
3966. IEEE (2012)

10. Di Bella, E., Sillitti, A., Succi, G.: A multivariate classification of open source
developers. Inf. Sci. 221, 72–83 (2013)

276 R. Amirova et al.

11. Fitzgerald, B., Kesan, J.P., Russo, B., Shaikh, M., Succi, G.: Adopting Open Source
Software: A Practical Guide. The MIT Press, Cambridge (2011)

12. Hyde, K., et al.: The effects of musical training on structural brain development.
Ann. N. Y. Acad. Sci. 1169(1), 182–186 (2009)

13. Ikramov, R., et al.: Initial evaluation of the brain activity under different software
development situations. In: SEKE, pp. 741–777 (2019)

14. Janes, A., Succi, G.: Lean Software Development in Action. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-00503-9

15. Jas, M., et al.: A reproducible MEG/EEG group study with the MNE software:
recommendations, quality assessments, and good practices. Front. Neurosci. 12,
530 (2018)

16. Kemp, B., Olivan, J.: European data format ‘plus’(EDF+), an EDF alike standard
format for the exchange of physiological data. Clin. Neurophysiol. 114(9), 1755–
1761 (2003)

17. Kivi, J., Haydon, D., Hayes, J., Schneider, R., Succi, G.: Extreme programming: a
university team design experience. In: 2000 Canadian Conference on Electrical and
Computer Engineering. Conference Proceedings. Navigating to a New Era (Cat.
No.00TH8492), vol. 2, pp. 816–820, May 2000

18. Kovács, G.L., Drozdik, S., Zuliani, P., Succi, G.: Open source software for the public
administration. In: Proceedings of the 6th International Workshop on Computer
Science and Information Technologies, October 2004

19. Marino, G., Succi, G.: Data structures for parallel execution of functional lan-
guages. In: Odijk, E., Rem, M., Syre, J.-C. (eds.) PARLE 1989. LNCS, vol. 366,
pp. 346–356. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51285-
3 51

20. Maurer, F., Succi, G., Holz, H., Kötting, B., Goldmann, S., Dellen, B.: Software
process support over the internet. In: Proceedings of the 21st International Con-
ference on Software Engineering, ICSE 1999, pp. 642–645. ACM, May 1999

21. Moser, R., Pedrycz, W., Succi, G.: A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction. In: Proceedings of
the 30th International Conference on Software Engineering, ICSE 2008, pp. 181–
190. ACM (2008)

22. Moser, R., Pedrycz, W., Succi, G.: Analysis of the reliability of a subset of change
metrics for defect prediction. In: Proceedings of the Second ACM-IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement, ESEM
2008, pp. 309–311. ACM (2008)

23. Muśılek, P., Pedrycz, W., Sun, N., Succi, G.: On the sensitivity of COCOMO II
software cost estimation model. In: Proceedings of the 8th International Sympo-
sium on Software Metrics, METRICS 2002, pp. 13–20. IEEE Computer Society,
June 2002

24. Paulson, J.W., Succi, G., Eberlein, A.: An empirical study of open-source and
closed-source software products. IEEE Trans. Softw. Eng. 30(4), 246–256 (2004)

25. Pauws, S., Bouwhuis, D., Eggen, B.: Programming and enjoying music with your
eyes closed. In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, pp. 376–383 (2000)

26. Pedrycz, W., Russo, B., Succi, G.: A model of job satisfaction for collaborative
development processes. J. Syst. Softw. 84(5), 739–752 (2011)

27. Pedrycz, W., Russo, B., Succi, G.: Knowledge transfer in system modeling and
its realization through an optimal allocation of information granularity. Appl. Soft
Comput. 12(8), 1985–1995 (2012)

https://doi.org/10.1007/978-3-642-00503-9
https://doi.org/10.1007/3-540-51285-3_51
https://doi.org/10.1007/3-540-51285-3_51

Monitoring EEG Signals of Software Developers 277

28. Pedrycz, W., Succi, G.: Genetic granular classifiers in modeling software quality.
J. Syst. Softw. 76(3), 277–285 (2005)

29. Petrinja, E., Sillitti, A., Succi, G.: Comparing OpenBRR, QSOS, and OMM assess-
ment models. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey,
G.R., Noll, J. (eds.) OSS 2010. IAICT, vol. 319, pp. 224–238. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13244-5 18

30. Pfurtscheller, G., Da Silva, F.L.: Event-related EEG/MEG synchronization and
desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)

31. Puce, A., Hämäläinen, M.S.: A review of issues related to data acquisition and
analysis in EEG/MEG studies. Brain Sci. 7(6), 58 (2017)

32. Ronchetti, M., Succi, G., Pedrycz, W., Russo, B.: Early estimation of software size
in object-oriented environments a case study in a CMM level 3 software firm. Inf.
Sci. 176(5), 475–489 (2006)

33. Rossi, B., Russo, B., Succi, G.: Modelling failures occurrences of open source soft-
ware with reliability growth. In: Ågerfalk, P., Boldyreff, C., González-Barahona,
J.M., Madey, G.R., Noll, J. (eds.) OSS 2010. IAICT, vol. 319, pp. 268–280.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13244-5 21

34. Rossi, B., Russo, B., Succi, G.: Adoption of free/libre open source software in
public organizations: factors of impact. Inf. Technol. People 25(2), 156–187 (2012)

35. Schlögl, A., Slater, M., Pfurtscheller, G.: Presence research and EEG. In: Proceed-
ings of the 5th International Workshop on Presence, vol. 1, pp. 9–11 (2002)

36. Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: A relational approach to software
metrics. In: Proceedings of the 2004 ACM Symposium on Applied Computing,
SAC 2004, pp. 1536–1540. ACM (2004)

37. Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: A non-invasive approach to product
metrics collection. J. Syst. Architect. 52(11), 668–675 (2006)

38. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Measures for mobile users: an archi-
tecture. J. Syst. Architect. 50(7), 393–405 (2004)

39. Sillitti, A., Succi, G., Vlasenko, J.: Understanding the impact of pair programming
on developers attention: a case study on a large industrial experimentation. In:
Proceedings of the 34th International Conference on Software Engineering, ICSE
2012, pp. 1094–1101. IEEE Press, Piscataway, June 2012

40. Sillitti, A., Vernazza, T., Succi, G.: Service oriented programming: a new paradigm
of software reuse. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol. 2319, pp. 269–280.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46020-9 19

41. Srinivasan, R.: Methods to improve the spatial resolution of EEG. Int. J. Bioelec-
tromagnetism 1(1), 102–111 (1999)

42. Stoica, P., Moses, R.L., et al.: Spectral analysis of signals (2005)
43. Succi, G., Benedicenti, L., Vernazza, T.: Analysis of the effects of software reuse

on customer satisfaction in an RPG environment. IEEE Trans. Softw. Eng. 27(5),
473–479 (2001)

44. Succi, G., Paulson, J., Eberlein, A.: Preliminary results from an empirical study
on the growth of open source and commercial software products. In: EDSER-3
Workshop, pp. 14–15 (2001)

45. Succi, G., Pedrycz, W., Marchesi, M., Williams, L.: Preliminary analysis of the
effects of pair programming on job satisfaction. In: Proceedings of the 3rd Inter-
national Conference on Extreme Programming (XP), pp. 212–215, May 2002

https://doi.org/10.1007/978-3-642-13244-5_18
https://doi.org/10.1007/978-3-642-13244-5_21
https://doi.org/10.1007/3-540-46020-9_19

278 R. Amirova et al.

46. Tarasau, H., Thapaliya, A., Zufarova, O.: Problems in experiment with bio-
logical signals in software engineering: the case of the EEG. In: Mazzara, M.,
Bruel, J.-M., Meyer, B., Petrenko, A. (eds.) TOOLS 2019. LNCS, vol. 11771, pp.
81–88. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29852-4 6

47. Valerio, A., Succi, G., Fenaroli, M.: Domain analysis and framework-based software
development. SIGAPP Appl. Comput. Rev. 5(2), 4–15 (1997)

48. Vernazza, T., Granatella, G., Succi, G., Benedicenti, L., Mintchev, M.: Defining
metrics for software components. In: Proceedings of the World Multiconference on
Systemics, Cybernetics and Informatics, vol. XI, pp. 16–23, July 2000

49. Wendel, K., et al.: EEG/MEG source imaging: methods, challenges, and open
issues. Comput. Intell. Neurosci. 2009 (2009)

https://doi.org/10.1007/978-3-030-29852-4_6

A Study of Cooperative Thinking

Paolo Ciancarini1,2(B), Marcello Missiroli1, and Daniel Russo3

1 University of Bologna, Bologna, Italy
paolo.ciancarini@unibo.it

2 Innopolis University, Innopolis, Russia
3 University of Aalborg, Aalborg, Denmark

Abstract. Computational Thinking is a competence in computational
problem solving. Cooperative Thinking (CooT) is an enhancement of
Computational Thinking, supporting team-based computational prob-
lem solving. CooT is actually grounded on both Computational Thinking
(CT) and Agile Values (AV) competencies, which focus respectively on
the individual capability to think in a computational-oriented way (CT),
and on the social dimension of software development (AV). However,
CooT is not just the sum of CT and AV, rather it is a new overarching
competence suitable to deal with complex software engineering problems.
Previous papers focused on the conceptualization and the validation of
Cooperative Thinking. We now analyze in depth the characteristics and
consequences of this construct, with respect to the level of seniority and
coding experience. Consequently, we run a Multi–Group Analysis of a
representative stratified sample of High–School students, University stu-
dents, and practitioners, through a Structural Equation Modeling tech-
nique. Our goal is to identify if there is a significant difference among
groups with respect to the CooT model. Results show that seniority is a
significant factor, suggesting as beneficial an early exposure of students
to Cooperative Thinking practices.

Keywords: Computational Thinking · Cooperative Thinking · Agile ·
SEM-PLS

1 Introduction

Cooperative Thinking is an educational construct which enhances Computa-
tional Thinking with Agile Values and practices [41]. Since the scope and the
tasks solved by software systems are becoming more complex day by the day,
Computer Science education should evolve to train new generations of students
which are fit to deal with real world complex tasks i.e., wicked problems. These
problems do not have usually an unique solution but many Pareto-optimal
ones [47]. This goal is largely shared also by governments, which recognize
Computer Science (CS) as a “new basic” competency necessary for economic
opportunity and social mobility1. This awareness is also shared by the European
Commission [15].
1 https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all.

c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 279–292, 2020.
https://doi.org/10.1007/978-3-030-57663-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_18&domain=pdf
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://doi.org/10.1007/978-3-030-57663-9_18

280 P. Ciancarini et al.

In consideration of the complex nature of the disciplines of Computer Science,
critical thinking, as opposed to mere memorization, is a crucial competence for
future professionals. Some ad hoc teaching practices, such as Cooperative Learn-
ing [31] and Problem-based learning [29] do support the development of criti-
cal thinking, introducing also organizational and social skills in the pedagogical
process.

Several scholars have argued that Computational Thinking (CT) [57] and
Agile Values (AV) [5] are both core competencies for software developers. For
instance, Denning and Tedri in their recent book [10] argue that two Compu-
tational Thinking competencies exist, a basic one for students and an advanced
one for ICT professionals. We combine CT and AV into Cooperative Thinking,
intended as the ability to describe, recognize, decompose problems and computa-
tionally solve them in teams in a socially sustainable way [41]. With particular
regard to Software Engineering education, CT and AV represent core skills of
software development: the individual ability to produce computationally efficient
code and the social ability to interact with peers and stakeholders to deliver
effective software.

A model of Cooperative Thinking has been recently conceptualized [48]; it
was validated through an extensive empirical study [9]. In this paper we build on
this research stream in order to explore the pedagogical implications of Cooper-
ative Thinking, digging deeper into the analysis of such a construct.

This paper focuses on the level of seniority of software developers. A typical
problem for educators is when to introduce new learning frameworks to students,
i.e., which is the best age to start? More precisely, we are interested to find out
these two issues: i) does seniority have any influence on CooT, and ii) if so, how
does seniority influence CooT? This raises the following research question:

RQ1: Does seniority influence the Cooperative Thinking model?

In other words, can we affirm that groups of informants with a different
level of seniority fit the CooT model in a significant different way? If this is
the case, how does seniority influence CooT? Does the model fit improve or
decrease with more mature informants? At which education grade should we
start implementing the Cooperative Thinking learning framework?

Thus, our second RQ is:

RQ2: How does Cooperative Thinking evolve with seniority?

To answer these questions we run a Multi–Group Analysis [50] on Structural
Equation Modeling with Partial Least Squares (SEM–PLS) [21]. This technique
is grounded in Karl Popper’s postpositivist view, according to social observations
should be treated as entities like physical phenomena [43].

A Study of Cooperative Thinking 281

In order to compute the SEM–PLS model, we surveyed three samples: a rep-
resentative sample of European K–12 students (lowest seniority), some University
students (moderate seniority), and a number of practitioners (highest seniority).

The analysis found significant differences among these groups. Hence, this
paper provides the following contributions:

– Segmentation by seniority of the Cooperative Thinking model.
– Evidence of the importance of an early exposure to the Cooperative Thinking

learning framework.
– Validation of the Cooperative Thinking construct through Structural Equa-

tion Modeling – Partial Least Square Analysis (SEM–PLS).

This paper is organized as follows. In Sect. 2 we present the related literature.
Then, we describe our research design in Sect. 3, along with a short explanation
of PLS. Afterwards, in Sect. 4 we validate the results obtained with PLS. The
analysis of our findings with the study limitations is in Sect. 5. Finally, we outline
future works and our conclusions in Sect. 6.

2 Related Work

In 2001 the Agile Manifesto [27] was published, envisioning an alternative app-
roach to the established software practices of the time. The agile vision puts much
more emphasis on the social issues when developing some software product. Cur-
rent agile development models provide opportunities to assess the direction of a
project throughout the software lifecycle, focusing on the repetition of abbrevi-
ated workflows and stressing the importance of teamwork. This is formalized in a
family of related methods such as Scrum [51] and Extreme Programming [4]. The
latter work has arguably a more theoretical approach, clearly defining the agile
values, practices, and principles that collectively define the Agile movement. In
this work, we will collectively refer to them as Agile Values (AV).

A few years later, Jeannette Wing’s paper defined the concept of Computa-
tional Thinking [57], portrayed as a fundamental skill in all fields, not only in
Computer Science. It is a way to approach complex problems, breaking them
down in smaller ones (decomposition), taking into account how similar problems
have been solved (pattern recognition), ignoring irrelevant information (abstrac-
tion), and producing a general, deterministic solution (algorithm).

After more than 10 years, the influence of Wing’s paper is still strong in
the education field. In fact, only recently governments have begun to update
school programs including CT elements in every order of schools (in the US, for
example [19]). In general, computing education has been too slow moving from
pure coding to more general considerations, CT included [24].

On the other hand, for the moment Agile has not had a disruptive effect
on education practices. Though universities have started teaching Agile meth-
ods [37,45,53], little has been done at the K-12 level, barring a few excep-
tions [30,38,39]. This is all the more intriguing since K-12 education has already
accepted and embraced Cooperative Learning [31], Collaborative Learning [12],

282 P. Ciancarini et al.

Problem-Based Learning [2], and Project Based Learning [36], even in the spe-
cific field of Computer Science [7,13,35,54]. These two teaching strategies focus
on social skills and goal-oriented skills, two key elements of the Agile philoso-
phy. Still, AV and CT remained quite unrelated concepts both in general and
in Education; in particular, CT has always been considered an individual skill,
and taught as such.

From the on-boarding and novice and senior developers performance per-
spective, literature already provided several different insights such as the role
of on-boarding and providing support to new hires [6,32,44,52]. Similar studies
have also been conducted in other disciplines [33], providing ad hoc on-boarding
models [3].

With this paper we do not address the on-boarding process as such. Instead,
we want to assess the degree to which the cooperative thinking competence
is present among different seniority groups. Nevertheless, the implications of
previous research are decisive to frame better pedagogical strategies to support
CooT.

This stream of research is based on several research experiments [39,40,42]
whose results suggest that effective coding teamwork in educational environ-
ments leads to quality software and improved learning outcomes. Nevertheless,
good teamwork is not sufficient, per se, to solve complex tasks - individual prob-
lem solving competencies are also needed. We found that the best outcomes
were provided in cases where both such competences (i.e., teamwork and prob-
lem solving skills) were effectively implemented [39].

Similarly, there is a growing belief that complex problem solving, criti-
cal thinking, creativity, people management, and coordinating with others will
become the most important job skills [17]. According to the World Economic
Forum, companies will actively search for employees who can master “capacities
used to solve novel, ill-defined problems in complex, real-world settings” and
“motivate, develop and direct people as they work, identifying the best people
for the job, also adjusting actions in relation to others’ actions” [17]. So, skills
to think in a computational friendly way and to solve them in a social and sus-
tainable manner are both required. Apparently, CT and AV skills are strictly
connected for companies, as suggested by the World Economic Forum [17].

3 Research Design

Partial Least Squares Structural Equation Modeling is a soft theory statistical
approach for the validation of latent variables [49]. It has been used in the
first validation study of CooT [9]; we are extending it here with a Multi-Group
analysis. This research technique has been already used in Computer Science
Education [56], and also by other research communities as a model validation,
in Management [28], Information Systems Research [11], and Organizational
Behavior [26]. There is a general agreement that “SEM has become de rigueur in
validating instruments and testing linkages between constructs” [18, p. 6], since
it allows to distinguish between measurement and structural models, taking also
the measurement error into account.

A Study of Cooperative Thinking 283

SEM is based on two different approaches: the first one includes covariance-
based techniques (LISREL – CB-SEM); the second one includes variance-based
techniques i.e., among which partial least squares (PLS) path modeling is the
most used one [25]. So, CB-SEM estimates model parameters to minimize the
estimated and sample covariance matrices differences; while PLS-SEM estimates
model parameters to maximize the variance of endogenous constructs. Therefore,
CB assumes multivariate normality with high sample sizes and PLS works with
small sample sizes, since it makes no distributional assumptions. Accordingly,
model convergence is in PLS the point at which no substantial difference happens
from one iteration to the next one; while in CB it is the increase or decrease in the
function value beyond a certain threshold. The PLS technique is used to test rela-
tions among variables, maximizing the explained variance of the dependent latent
constructs. It offers several advantages compared to CB, beyond those already
stressed. Notably for complex models CB seldom converges, especially while deal-
ing with small sample sizes or non-normal data; this is not the case of PLS. Oper-
ational Research scholars consider PLS as a “silver bullet” for estimating causal
models in many theoretical models and empirical data situations [22].

Data have been collected through a cross-sectional study using a survey. The
scale development, as the structural model are taken from [9]. Those items were
deeply-rooted in the existing literature and a 7-point Likert scale was used to
collect informants statements. For all groups we used the same questionnaire to
support construct validity and reliability [55], and allowed us to make trustwor-
thy comparisons between groups.

To define the minimum sample size for a linear multiple regression t–test,
which is a good approximation for a PLS analysis, we run an a priori power test
[16]. In our model we have up to seven predictors for one latent variable (Agile
Values). Therefore, considering average effect sizes of 0,15, error probability of
5%, and a Power of 80%, the minimum sample size required to compute the
model is 103.

To define the different groups we used a convenience stratified sampling tech-
nique. Strata and demographics variables relevant to the context were controlled
and represented in Table 1. In total we had 138 respondents, above the minimum
power requirement.

Since the aim of this study is to provide a deeper understanding of an already
validated model, the basic models assumptions do not change from the work of
Ciancarini et al. [9]. Accordingly, we share the same three hypotheses:

H1: Computational Thinking positively influences Cooperative Thinking

H2: Agile Values positively influence Cooperative Thinking

H3: Cooperative Thinking positively influences Complex Problem Solving

The difference will be the degree to which different groups will load on these
three hypotheses.

284 P. Ciancarini et al.

Table 1. Demographics

% #

Population

Grad. & Undergrad. students 44.20% 61

High School students 30.43% 42

Practitioners 25.36% 35

Programming experience

Less than 1 year 7.97% 11

2-3 years 40.58% 56

4-6 years 22.46% 31

7-10 years 5.07% 7

11-20 years 13.04% 18

21-35 years 7.97% 11

More than 35 years 2.90% 4

Completed software projects

1 10.14% 14

2-4 38.41% 53

5-10 27.54% 38

11-20 10.87% 15

20+ 13.04% 18

Agile methods experience

No experience 0.00% 0

Beginner or theoretic 30.43% 43

Moderate to expert 69.57% 98

Largest team participated in

2 3.63% 5

3 4.35% 6

4 10.34% 14

5 27.54% 38

6 37.68% 52

7+ 16.67% 23

A Study of Cooperative Thinking 285

4 Results

Since the measurement model has been positively validated [9], according to state
of the art procedures [21,23], the focus of this paper is on Multi–Group Analysis
[50], after a simplified assessment of the structural model. We remind that all
measurements are reflective [21]. Our aim here is not to validate the model per
se, rather to find significant differences among groups. Therefore, we took for
granted the theoretical and empirical outcomes of the previous studies. Accord-
ingly, we compute our model with Smart PLS 3.2.7 [46] to estimate the path
weighting scheme. The Multi–Group Analysis allows to test if pre-defined data
groups have significant differences in their group-specific parameter estimates
(e.g., outer weights, outer loadings and path coefficients). Correspondingly, data
groups were generated according to the demographics, assigning 1 for K–12 stu-
dents, 2 for University students, and 3 for practitioners. Finally, we applied also
non-parametric bootstrapping with 5000 replications to obtain standard error’s
estimates [8,14].

4.1 Model Validation

Briefly, we exploit the validity and exploratory power of the structural model
proposed in [9]. We assert the robustness of the model based on different sta-
tistical parameters. The inner variance inflation factor values (VIF) are below
the critical value of 5 to discard redundant inner–model constructs [21]. We see
that those values are between 1,05 and 2,03, well below the critical value. Also
the path’s significance through biased–corrected and accelerated bootstrapping
is robust. With a two–tailed test with a significance level of 10% all indicators
are within critical values, as we can see from Table 2. So, T–statistics are above
1,96 for all paths and the p–values are below the reference level of 0,1 (for 10%
significance), suggesting that all paths in the model are significant. This supports
all the three hypotheses H1, H2, and H3.

Likewise, R-square values of the two endogenous variables have a good fit
with 0,43 for Cooperative Thinking and 0,083 for Complex Problem Solving.
These results are in line with those shown in [9]. Overall, our structural model,
represented in Fig. 1, is comparable to previous studies [9]. Thus, we conclude
that the model is significant and predicts all tested constructs.

Table 2. Paths coefficients

Paths Orig. sample Mean St. dev. T p

AV → CooT 0,540 0,548 0,070 7,722 0,000

CT → CooT 0,214 0,299 0,074 2,874 0,004

CooT → CPS 0,288 0,312 0,074 3,865 0,000

286 P. Ciancarini et al.

Fig. 1. Structural model with Path coefficients and p values

4.2 Multi–Group Analysis

The MGA was run with a percentile bootstrapping of 5000 samples. We used a
two tailed test with a significance level of 10%.

The aim is to see if there is a statistically significant difference between
the paths of the three groups. So, we compared group–wise GROUP 1 (High
School students), GROUP 2 (University students), and GROUP 3 (practition-
ers). Results are displayed in Table 3.

Table 3. PLS Multi–Group Analysis

Paths Path Coeff.-diff
(1-3)

Path Coeff.-diff
(1-2)

Path Coeff.-diff
(1-3)

p (1-3) p (1-2) p (2-3)

AV → CooT 0,398 0,305 0,093 0,923 0,862 0,780

CT → CooT 0,069 0,048 0,117 0,388 0,468 0,349

CooT → CPS 0,671 0,642 0,028 0,921 0,941 0,649

Interestingly, we notice how several relations are significantly different. In fact,
the different groups High School students and practitioners for Agile Values and
Cooperative Thinking, as also Cooperative Thinking and Complex Problem Solv-
ing, have a p–value above 0,9 (threshold value for 10% significance). Also the two
groups High School students and University students are significantly different in
the relationships Cooperative Thinking and Complex Problem Solving.

Therefore, these three relationships are statistically different between groups.
To analyze how Cooperative Thinking evolves with seniority, we have to

look now at the absolute group–wise path weights. Accordingly, we run the PLS

A Study of Cooperative Thinking 287

algorithm per data groups to see the different path coefficients per seniority
groups. Looking at the results, shown in Table 4, we notice that with respect
to the differences between High School students and practitioners, path weighs
of practitioners are significantly greater in the model. This means that they
fit the model better than students. Similarly, we notice more maturity also in
University students, with respect to High School students for the relationship
CooT → CPS.

All other relationships are not significantly different, as suggested by the
p–values in Table 3.

Table 4. Group paths coefficients

Paths GROUP 1 GROUP 2 GROUP 3

AV → CooT 0,300 0,605 0,698

CT → CooT 0,288 0,336 0,219

CooT → CPS 0,247 0,396 0,424

Hence, after this analysis we can conclude that the Cooperative Thinking
model is empirically grounded, and the model fit improves with seniority.

5 Discussion

A first relevant finding of this paper is the further validation of the structural
model of Cooperative Thinking through the positive assessment of H1, H2, and
H3.

With reference to our Research Questions, we can answer them both posi-
tively, according to these statistical considerations:

– RQ1: seniority has a significant influence on the Cooperative Thinking model.
Our Multi–Group Analysis highlighted a statistically significant difference
between groups. In particular, those differences are among novice developers
(i.e., GROUP 1) and more senior ones (i.e., GROUP 2, and 3). The p–value
(above the threshold value of 0,9) is observed three times.

– RQ2: the PLS analysis per data groups shows different path coefficients per
groups. Therefore, coefficients of more senior developers (i.e., GROUP 2, and
3) are higher with respect to novice ones (i.e., GROUP 1). Accordingly, the
Cooperative Thinking model fits better with senior developers.

Consistently with our research design, we outline now the educational impli-
cations of this study and its limitations.

288 P. Ciancarini et al.

5.1 Implications

We can affirm that the level of seniority has a significant positive impact on the
Cooperative Thinking model. Therefore, the support for an early exposure to
the CooT paradigm is the primer implication of this study. Taking for granted
the pedagogical value of CooT, we see how non–trained developers perform sub-
optimally, with respect to senior ones. We may explain this observation with
the fact that the CooT construct is internalized by developers along with their
practice, although not specifically trained for.

This aspect is also of great interest, suggesting that CooT is not an artificial
construct, but an emerging competence important for every software developer.
Accordingly, the attention should be focused on the teaching aspects, to enhance
it from the earliest educational stages. Practicing activities related to CooT since
High School (or even earlier) may introduce several benefits. The most relevant
one regards the ability to work in teams to solve complex problems [17]. Indeed,
the CooT model has been designed to specifically address those issues [9].

We are developing an approach to teaching Cooperative Thinking compe-
tency exploiting team building and serious games for agile developers; this is the
subject of a future report.

The idea that “Groups are better and more efficient that individuals” is
supported by both modern educational and organizational theories, but also by
common sense. Teaching to teams is more fun and engaging—when properly
executed—though arguably more difficult to execute. Moreover, the ultimate
goal of developers is to solve new, complex problems, not to reinvent some exist-
ing solutions; the link between CoopT and Complex Problem Solving suggests
that Cooperative Thinkers are potentially more suited to these tasks. Collabo-
rative tools are also important [1]; most modern tools for software development
need people expert in working in team, but these tools are expensive and usually
not used by high school or university educators. This lays a heavy burden on
educators. CS has traditionally been taught as a strictly individual activity, in
general using directed education models. Group interaction only begins once the
students starts programming “for real”, and social skills inside a development
team must be (re)learned from scratch.

5.2 Limitations

We summarize the limitations of this study, as inherent of any scientific investi-
gation [58].

The use of cross–sectional data (i.e., observation of the population through
data collection of many subjects at the same point of time) for the empirical
assessment of the model has been addressed through a sound theoretical deriva-
tion, which is the best way to minimize these limitations [21]. In detail, we based
our model on an existing one, already validated in literature.

Our constructs were measured from a subjective perspective through a single–
informant approach with a sample size of 138 observations through different
European environments to minimize the common method bias [34].

A Study of Cooperative Thinking 289

The use of perceptual measures, rather than objective ones, asking students
to state their level of agreement on literature–derived items may not fully reflect
the real world accurately due to potential respondent bias and random errors. We
adapted, for this reason, items from previous studies, to minimize this limitation,
following the recommendation of [21].

Sampling technique biases have also been taken into consideration: we used
stratified sampling, were strata were defined accordingly to the level of seniority.
However, we have to state that our research overlooked non–European countries;
this may weaken the generalizability of our results, since the empirical results
might not fully represent the constructs elsewhere.

In sum, we consider our limitations acceptable for this exploratory study,
since we took several precautions to minimize them.

6 Conclusions

This paper suggests to introduce Cooperative Thinking practices in the early
stages of education. This conclusion is supported by a Multi–Group Analysis
based on Structural Equation Modeling with Partial Least Squares. Groups were
defined per seniority level (High School students, University Students, and prac-
titioners). Indeed, we found several statistically differences within the CooT
model, suggesting a better fit of senior informants with respect to novice ones.

Future work will continue to analyze various specific aspects of the emerging
Cooperative Thinking construct. Multi Group–Analysis will be performed on
the following independent variables: gender, culture, and geographical regions.
Moreover, a Finite Mixture Partial Least Squares (FIMIX-PLS) segmentation
test will captures heterogeneity by estimating the probabilities of segment mem-
berships, to better understand the construct performance on different segments
[20]. We are also planning a similar analysis for the original construct of Compu-
tational Thinking. Also, through a controlled experiment we could confirm the
findings of this study, using randomized control groups to test whenever treated
groups have the same performance of non-treated ones. Finally, the pedagog-
ical perspective of Cooperative Thinking should be fostered through teaching
practices and rubrics, to provide teachers with an actionable didactic tool set.

Acknowledgment. This work was partially funded by the Consorzio Interuniversi-
tario Nazionale per l’Informatica (CINI) and by CNR-ISTC. The authors thank all the
colleagues who helped us spreading the survey, and the students who answered it.

References

1. Abeti, L., Ciancarini, P., Moretti, R.: Wiki-based requirements management for
business process reengineering. In: Proceedings of the ICSE Workshop on Wikis
for Software Engineering, pp. 14–24. IEEE Computer Society, Vancouver, May
2009

2. Barrows, H.S.: Problem-based learning in medicine and beyond: a brief overview.
New Dir. Teach. Learn. 1996(68), 3–12 (1996)

290 P. Ciancarini et al.

3. Bauer, T., Bodner, T., Erdogan, B., Truxillo, D., Tucker, J.: Newcomer adjust-
ment during organizational socialization: a meta-analytic review of antecedents,
outcomes, and methods. J. Appl. Psychol. 92(3), 707 (2007)

4. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, Boston (2000)

5. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change.
Addison-Wesley, Boston (2004)

6. Begel, A., Simon, B.: Novice software developers, all over again. In: Proceedings of
the Fourth International Workshop on Computing Education Research, pp. 3–14.
ACM (2008)

7. Chase, J., Okie, E.: Combining cooperative learning and peer instruction in intro-
ductory computer science. In: ACM SIGCSE Bulletin, vol. 32, pp. 372–376. ACM
(2000)

8. Chin, W.W.: Issues and opinion on structural equation modeling. MIS Q. 22(1),
vii–xvi (1998)

9. Ciancarini, P., Missiroli, M., Russo, D.: Cooperative thinking: analyzing a new
framework for software engineering education. J. Syst. Softw. 157, 1–12 (2019)

10. Denning, P., Tedre, M.: Computational Thinking. MIT Press, Cambridge (2019)
11. Dibbern, J., Goles, T., Hirschheim, R., Jayatilaka, B.: Information systems out-

sourcing: a survey and analysis of the literature. ACM SIGMIS Database 35(4),
6–102 (2004)

12. Dillenbourg, P.: Collaborative learning: cognitive and computational approaches.
Advances in Learning and Instruction Series. ERIC (1999)

13. Dillenbourg, P., Järvelä, S., Fischer, F.: Technology-Enhanced Learning. Springer,
Heidelberg (2009)

14. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. CRC Press, Boca
Raton (1994)

15. EU: Key competences for lifelong learning: European reference framework (2007).
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=LEGISSUM:
c1109

16. Faul, F., Erdfelder, E., Buchner, A., Lang, A.: Statistical power analyses using
g* power 3.1: tests for correlation and regression analyses. Behav. Res. Methods
41(4), 1149–1160 (2009)

17. Forum, W.E.: The future of jobs: employment, skills and workforce strategy for
the fourth industrial revolution, January 2016. http://www3.weforum.org/docs/
WEF-Future-of-Jobs.pdf

18. Gefen, D., Straub, D., Boudreau, M.C.: Structural equation modeling and regres-
sion: guidelines for research practice. Commun. AIS 4(1), 7 (2000)

19. Great Schools Partnership: The Glossary of Education Reform - 21st century skills
(2016). http://edglossary.org/21st-century-skills/

20. Hahn, C., Johnson, M.D., Herrmann, A., Huber, F., et al.: Capturing customer
heterogeneity using a finite mixture PLS approach. Schmalenbach Bus. Rev. 54(3),
243–269 (2002)

21. Hair, J.F., Hult, G.T., Ringle, C., Sarstedt, M.: A Primer on Partial Least Squares
Structural Equation Modeling (PLS-SEM). Sage Publications, New York (2016)

22. Hair, J.F., Ringle, C., Sarstedt, M.: PLS-SEM: indeed a silver bullet. J. Mark.
Theory Pract. 19(2), 139–152 (2011)

23. Hair, J.F., Sarstedt, M., Ringle, C., Gudergan, S.: Advanced Issues in Partial Least
Squares Structural Equation Modeling. SAGE Publications, New York (2017)

24. Henderson, P.B.: Ubiquitous computational thinking. Computer 42(10), 100–102
(2009)

http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=LEGISSUM:c1109
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=LEGISSUM:c1109
http://www3.weforum.org/docs/WEF-Future-of-Jobs.pdf
http://www3.weforum.org/docs/WEF-Future-of-Jobs.pdf
http://edglossary.org/21st-century-skills/

A Study of Cooperative Thinking 291

25. Henseler, J., Ringle, C., Sinkovics, R.R.: The use of partial least squares path mod-
eling in international marketing. In: New Challenges to International Marketing,
pp. 277–319. Emerald Group Publishing Limited (2009)

26. Higgins, C.A., Duxbury, L.E., Irving, R.H.: Work-family conflict in the dual-career
family. Organ. Behav. Hum. Decis. Process. 51(1), 51–75 (1992)

27. Highsmith, J., Fowler, M.: The agile manifesto. Softw. Dev. Mag. 9(8), 29–30
(2001)

28. Hulland, J.: Use of partial least squares (PLS) in strategic management research:
a review of four recent studies. Strateg. Manag. J. 20, 195–204 (1999)

29. Hung, W., Jonassen, D.H., Liu, R., et al.: Problem-based learning. Handb. Res.
Educ. Commun. Technol. 3, 485–506 (2008)

30. de Jager, T.W.: Using eduScrum to introduce project-like features in Dutch sec-
ondary Computer Science Education (2015). http://dspace.library.uu.nl/handle/
1874/307201

31. Johnson, D., et al.: Cooperative learning in the classroom. ERIC (1994)
32. Johnson, M., Senges, M.: Learning to be a programmer in a complex organization:

a case study on practice-based learning during the onboarding process at google.
J. Workplace Learn. 22(3), 180–194 (2010)

33. Jones, G.: Socialization tactics, self-efficacy, and newcomers’ adjustments to orga-
nizations. Acad. Manag. J. 29(2), 262–279 (1986)

34. Kim, D., Cavusgil, E.: The impact of supply chain integration on brand equity. J.
Bus. Ind. Market. 24(7), 496–505 (2009)

35. Köse, U.: A web based system for project-based learning activities in “web design
and programming” course. Procedia-Soc. Behav. Sci. 2(2), 1174–1184 (2010)

36. Krajcik, J., Blumenfeld, P.: Project-Based Learning. Oxford University Press,
Oxford (2006)

37. Kropp, M., Meier, A.: Teaching agile software development at university level: val-
ues, management, and craftsmanship. In: Proceedings of the Conference on Soft-
ware Engineering Education and Training, pp. 179–188. IEEE (2013)

38. Meerbaum-Salant, O., Hazzan, O.: An agile constructionist mentoring methodol-
ogy for software projects in the high school. ACM Trans. Comput. Educ. 9(4),
1–29 (2010)

39. Missiroli, M., Russo, D., Ciancarini, P.: Learning agile software development in
high school: an investigation. In: Proceedings of the 38th International Conference
on Software Engineering, pp. 293–302. ACM (2016)

40. Missiroli, M., Russo, D., Ciancarini, P.: Una didattica agile per la programmazione.
Mondo Digitale 15(64), 1–10 (2016)

41. Missiroli, M., Russo, D., Ciancarini, P.: Cooperative thinking, or: computational
thinking meets agile. In: Proceedings of the Software Engineering Education and
Training. IEEE (2017)

42. Missiroli, M., Russo, D., Ciancarini, P.: Agile for millennials: a comparative study.
In: Proceedings of the 1st International Workshop on Software Engineering Cur-
ricula for Millennials, pp. 47–53. IEEE Press (2017)

43. Popper, K.: The Logic of Scientific Discovery. Routledge, Abingdon (2005)
44. de Raadt, M.: A review of Australasian investigations into problem solving and

the novice programmer. Comput. Sci. Educ. 17(3), 201–213 (2007)
45. Rico, D., Sayani, H.: Use of agile methods in software engineering education. In:

Agile Conference, AGILE 2009, pp. 174–179. IEEE (2009)
46. Ringle, C., Wende, S., Becker, J.M.: SmartPLS 3. Boenningstedt: SmartPLS GmbH

(2015). http://www.smartpls.com

http://dspace.library.uu.nl/handle/1874/307201
http://dspace.library.uu.nl/handle/1874/307201
http://www.smartpls.com

292 P. Ciancarini et al.

47. Rittel, H.W., Webber, M.M.: 2.3 planning problems are wicked. Polity 4, 155–169
(1973)

48. Russo, D., Missiroli, M., Ciancarini, P.: A conceptual model for cooperative think-
ing. In: Proceedings of the 40th International Conference on Software Engineering,
pp. 157–158. ACM (2018)

49. Russo, D., Stol, K.J.: Soft theory: a pragmatic alternative to conduct quantita-
tive empirical studies. In: Proceedings of the Joint 7th International Workshop
on Conducting Empirical Studies in Industry and 6th International Workshop on
Software Engineering Research and Industrial Practice, pp. 30–33. IEEE (2019)

50. Sarstedt, M., Henseler, J., Ringle, C.: Multigroup analysis in partial least squares
(PLS) path modeling: alternative methods and empirical results. In: Measurement
and Research Methods in International Marketing, pp. 195–218. Emerald Group
Publishing Limited (2011)

51. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press (2004)
52. Sharma, G., Stol, K.J.: Exploring onboarding success, organizational fit, and

turnover intention of software professionals. J. Syst. Softw. 159, 110442 (2020)
53. Steghöfer, J.P., Knauss, E., Alégroth, E., Hammouda, I., Burden, H., Ericsson, M.:

Teaching Agile: addressing the conflict between project delivery and application of
Agile methods. In: Proceedings of the 38th International Conference on Software
Engineering Companion, pp. 303–312. ACM (2016)

54. Trytten, D.: Progressing from small group work to cooperative learning: a case
study from computer science. In: 29th Annual Frontiers in Education Conference,
FIE 11999, vol. 2, pp. 13A4-22. IEEE (1999)

55. Urbach, N., Ahlemann, F.: Structural equation modeling in information systems
research using partial least squares. J. Inf. Technol. Theory Appl. 11(2), 5–40
(2010)

56. Wang, F.H.: On the relationships between behaviors and achievement in
technology-mediated flipped classrooms: a two-phase online behavioral PLS-SEM
model. Comput. Educ. 142, 103653 (2019)

57. Wing, J.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)
58. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Exper-

imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Tools and Automation

Analysis of Development Tool Usage
in Software Engineering Classes

Shokhista Ergasheva, Vladimir Ivanov, Artem Kruglov(B), Andrey Sadovykh,
Giancarlo Succi, and Evgeny Zouev

Innopolis University, Innopolis, Russia
a.kruglov@innopolis.ru

Abstract. In this paper, the survey, dedicated to the usage of software
systems in a software development process, is analysed. The survey was
conducted among the students of Innopolis University. Based on the
result of the survey, the following conclusions were made: (1) Windows,
macOS and Linux-based operating systems have almost equal share of
usage among future software developers (2) the most popular IDE is
IntelliJ IDEA, however, to the end of the studying process students the
diversity of IDEs usage increases (3) the mostly used code management
system by far is Github, with almost 100% share (4) Trello and Jira
are the most popular project management software for lightweight and
complex industrial projects respectively. The obtained results will be
used for the prioritization of the development of integration agents for
InnoMetrics project, as well as for the adaptation of a studying process
in academic institutions to make it more relevant to the given trends and
for the market analysis of software engineering environment.

Keywords: Non-invasive measurement · Software engineering ·
Computer science education · Software system · Operating system ·
IDE · Project management software

1 Introduction

One of the most important factors in determining system quality is the quality
of individual objects composing this software system. Measurement is a mecha-
nism of adaptation and control of the software quality referring to the received
feedback from its environment (set of software systems used in a software devel-
opment process). The feedback taken within the environment is collected as
a set of metrics derived from the software development process and software
product analysis [40,42]. Moreover, metrics can help uncovering interesting rela-
tionships and properties of software systems and the processes used to develop

This research project is carried out under the support of the Russian Science Founda-
tion Grant №19-19-00623.

c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 295–309, 2020.
https://doi.org/10.1007/978-3-030-57663-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_19&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_19

296 S. Ergasheva et al.

them, as repeatedly confirmed throughout the years [26,27,30,33,37,41,44–
47,50,51,56,59–63], also borrowing from models of machine learning and com-
putational intelligence [48].

One of the obvious drawbacks of the process metrics (e.g. active time track-
ing) is the high overhead that it entails. Developers must switch between devel-
opment tasks and metric collection tasks, that places a large cognitive burden on
developers. To reduce the metrics collection cost, non-invasive way of collecting
metrics can be used for the automatic gathering of metrics without requiring per-
sonal involvement of a developer. Non-invasive software measurement techniques
are emerging as an effective and solid mechanism to collect software measure-
ment data, forming the basis of software process improvement [35].

The InnoMetrics project [9] aims at building and validating a quantitative
framework to assess and guide a software development team using a variety of
process and product metrics collected non-invasively throughout the life cycle
of software systems, from the initial concept to the deployment, execution, and
maintenance. The idea is then to deliver a core portion of it as Open Source
[34,38,49,52].

Automated In-process Software Engineering Measurement and Analysis sys-
tems (AISEMA) are the ones, which collect automatically data from soft-
ware development process using non-invasive software measurement techniques
[28,39,53–55,57]. The data typically represents fine-grained measurements from
a software development processes that are collected automatically without inter-
vention from developers. InnoMetrics is an example of an AISEMA system. It
allows developers and managers to be aware of the process strength and weak-
nesses from several perspectives, including energy efficiency assessment, based
on the data from the developers’ workstations. The crucial insights are visual-
ized with the help of metrics for a dedicated analysis. This system manifests
several benefits including real-time process analysis on a daily basis, the system
can be customized to different levels of company sizes and audits of software
development process. Moreover, the development itself can be monitored at the
same time.

The main objectives of the project are the following:

– To identify existing and easily-collectible measures, if possible, in the early
phases of software development, for predicting and modeling both the tra-
ditional attributes of software systems and attributes specifically related to
their efficient use of resources and to create new metrics for such purposes.

– To create ways to collect these measures during the entire lifecycle of a system,
using minimally-invasive monitoring of design-time processes, and consolidate
them into conceptual frameworks able to support model building by using a
variety of approaches, including statistics, data mining and computational
intelligence.

– To create models and tools to support design-time evolution of systems based
on design-time measures and to empirically validate them. The models will
support designers by providing suggestions with the idea of realizing an expe-
rience factory based on the analysis of the available measures e.g. by using

Analysis of Development Tool Usage in Software Engineering Classes 297

a model, which identifies a vulnerability in the source code and suggests the
need for refactoring.

2 Methods

In order to achieve the declared goals of the project, the framework for the
non-invasive reconstructing and analysis of the development process has to be
developed, which consists of:

– agents for collecting data from different OS types and software systems
– models for quantitative and qualitative analysis of the obtained data and fur-

ther representation of information based on the purpose of the team assess-
ment

– dashboard for the representation of obtained metrics about the development
process

There are a number of software systems used in the software development
process. In order to maximize the efficiency of the developing InnoMetrics frame-
work, we have to assign priority on agents and data collectors being implemented
within the project. Thus a number of questions have to be answered in the con-
text of this research to justify the project strategy:

RQ 1: What is the most popular operating system at the moment?
RQ 2: What are the most popular IDEs?
RQ 3: What are software engineering tools used in a development process?

To answer these questions, the survey among the students of Innopolis Uni-
versity was conducted. Innopolis University is a Russian higher education insti-
tution focused on education and research in the field of IT. Students of Innopolis
University get modern education and take on independent research projects in
the sphere of IT [10]. At the end of their studies, students implement an industrial
project, that is counted toward a thesis. Students and academic staff actively
cooperate with representatives of the industry. As students and faculty are in
close contact with the industry working in collaborative projects, the knowl-
edge on current practice is naturally spread in the Innopolis community. That is
why we consider the Innopolis University’s students for our research: they com-
bine up-to-date industry approaches and well-proven practices in their software
engineering process, so we can assume this study reflects reality to high extend.

The added benefit of the survey is that its results could be used to align the
practical part of the curriculum for software engineering courses with current
demand from the industry.

The survey was based on a questionnaire, which consists of the following
questions (see Table 1).

The 229 students participated in the survey. One of the aims of the survey
was to analyze the differences and trends among the different generations of
developers. Thus, the 2–4 year bachelor students and 1 year master students
took part in the study. The distribution by year of studying is given in Table 2.

298 S. Ergasheva et al.

Table 1. Questionnaire

Question Options

1 What operating system are you using? Windows, macOS, Linux

2 What is your preferable IDE? IntelliJ IDEA, Eclipse, Visual
Studio, Android Studio, Xcode,
Qt Creator, pyCharm, other
(open-ended choice)

3 What tools are you using in the development process Github, GitLab, BitBucket,
YouTrack, Cloudforge, Trello,
Jira, Slack, Mural, Toggl, Atom,
Asana, Redmine, Mercurial,
other (open-ended choice)

Table 2. The distribution by the year of study

Year Number of students

2 bachelors 129

3 bachelors 47

4 bachelors 27

1 masters 26

3 Results

It has to be mentioned, that the survey was focused on those who study in the
Software Engineering program and do not cover students from Data Science,
Robotics, and Cyber Security programs [10]. That is because the aim of the
survey is to understand trends in general software development avoiding being
biased to specific areas of information technologies. That is why there is so great
difference in the number of respondents between 2nd and 3rd year bachelors:
in Innopolis University the specialization is performed after 2nd year of study.
Also, we do not conduct a survey for the 1st year bachelors, since they rarely
have any relevant experience in programming at this stage.

For the preferable operating system, the distribution is the following (see
Fig. 1, multiple choice was possible): 89 respondents use Windows OS, 63
respondents use macOS, 91 respondents mentioned different Linux-based sys-
tem, among which the most popular ones are Ubuntu (specified 30 times) and
Arch (specified 7 times).

In respect to the year of study distribution the usage of a particular operating
system by the students is the following (see Fig. 2)

The most popular IDE, according to the survey (see Fig. 3), is IntelliJ IDEA
[11] (161 references). It followed by pyCharm [12] (116 references), Visual Stu-
dio [20] (67 references) and Android Studio [1] (34 references). Less popular
are Atom [3] (25 references), VS code [21] (19 references), Xcode [23] (14 refer-
ences), Qt Creator [13] (13 references), Vim [19] (9 references), WebStorm [22]
(8 references), Emacs [8] (7 references), Sublime [16] (6 references), Clion [5] (6

Analysis of Development Tool Usage in Software Engineering Classes 299

Windows

36.6%

macOS 26.0%

Linux

37.4%

Fig. 1. Usage of the operating systems

2B 3B 4B 1M
0

20

40

60

33

49

22
27

19
23

44 42

52

28
33 31

Year of study

P
er
ce
nt
ag

e

Windows macOS Linux

Fig. 2. Usage of operating systems

references). Other IDEs are mentioned 36 times and no one of them mentioned
more than two times.

The relative popularity of specific tools, divided by the groups as code man-
agement systems (repository + version control software + bug tracker), project
management tools, trackers, and corporate messengers is given in Fig. 6, 7, 8
and 9.

The analysis of the most popular IDEs shows the following trend by year
(Fig. 4).

In the last category, we did not distinguish the software engineering tools
by their purpose. Thus, we have version control systems, project management
software, trackers, and other tools in one place, and respondents were free to
choose or specify any of them. As a result, the most popular tool in a soft-
ware development process is Github [6], which is used by almost everyone (213
references). Other popular systems are Trello [18] (129 references), GitLab [7]
(103 references), Toggl [17] (62 references) and Slack [15] (58 references). Overall
result is shown in Fig. 5.

300 S. Ergasheva et al.

In
te
lli
J
ID

EA
py
C
ha
rm

V
isu

al
St
ud
io

A
nd
ro
id

St
ud
io

A
to
m

V
S
co
de

X
co
de

Q
t
C
re
at
or

V
im

W
eb
St
or
m

Em
ac
s

Su
bl
im
e

C
lio
n

ot
he
r

0

50

100

150
161

116

67

34 25 19 14 13 9 8 7 6 6

36

Number of references

Fig. 3. Usage of the IDEs

In our survey, only one time-tracking software and one corporate messenger
are presented. Even with an option of open-ended response for this question,
no other tools except Trello and Slack respectively were mentioned. However, it
should be mentioned that all respondents used Telegram messenger for personal
needs and teamwork collaboration as well.

2B 3B 4B 1M
0

20

40

60

80

100

66.7

89.4

66.7

57.7
51.2

59.6

48.1

34.6

24.8

34
29.6

23.1

10.8 12.8

22.2
30.8

Year of study

P
er
ce
nt
ag

e

IntelliJ IDEA pyCharm Visual Studio Android Studio

Fig. 4. Relative popularity of the IDEs

Analysis of Development Tool Usage in Software Engineering Classes 301

Git
hub

Git
Lab

Bit
Bu

cke
t

You
Tra

ck
Tre

llo JiraSla
ck

Tog
gl

Asa
na

Red
min

e
oth

er
0

100

200
213

103

48
27

129

495862

16 4 16

Number of references

Fig. 5. Usage of the software engineering tools

2B 3B 4B 1M
0

20

40

60

80

100 91.5
97.9

85.2

100

30.2

63.8
55.6

73.1

9.3 10.6
22.2

15.4
5.4

34 37

57.7

Year of study

P
er
ce
nt
ag

e

Github GitLab YouTrack BitBucket

Fig. 6. Relative usage rate of the code management systems

2B 3B 4B 1M
0

20

40

60

80

100

51.2

76.6

48.1
53.8

5.4

34
40.7

57.7

3.1

14.9 14.8

3.80.8 0
7.4 3.87

Year of study

P
er
ce
nt
ag

e

Trello Jira Asana Redmine

Fig. 7. Relative usage rate of the project management tools

302 S. Ergasheva et al.

2B 3B 4B 1M
0

20

40

60

80

100

17.8

40.4

25.9

50

Year of study

P
er
ce
nt
ag

e

Toggl

Fig. 8. Relative usage rate of the time tracker

2B 3B 4B 1M
0

20

40

60

80

100

15.5
25.5

40.7

57.7

P
er
ce
nt
ag

e

Slack

Fig. 9. Relative usage rate of the messenger

4 Discussion

Based on the results of the survey we are able to answer the research questions
stated previously. However, it should be clear that the results of the study cannot
be generalized to the whole IT industry, as far as the given sample located in the
same area and has similar experience and background knowledge. Widespread
usage of some of the tools could be the result of requirements of the studying
process and not personal preferences.

Nevertheless, given results provide interesting insights into the preferences
and habits of the next generation of software developers with respect to software
development environment organization.

What is the most popular operating system at the moment?
Analysis of this part of the survey provides us with a surprising result. Despite

the worldwide market share of Windows OS with more than 77% [58], for the

Analysis of Development Tool Usage in Software Engineering Classes 303

analyzed group, we have a completely different distribution. For the overall pop-
ulation, we have almost equal shares for Windows and Linux-based systems
(Ubuntu, Debian, Arch, Mint, etc.) leaving the Mac system in third place with
26% users.

However, the analysis by the studying year shows that Windows is the less
popular operating system for the older students - last year’s bachelors and mas-
ters. For them, macOS is the most popular system with more than 40%share.

One more interesting fact is that for the new generation (2nd-year bachelors)
the most popular are Linux-based systems. The least usage of the Mac system
for this year could be explained by the fact that not everyone can afford to
purchase Apple products at this stage.

In respect to the InnoMetrics framework, it could be concluded that no one
system can be excluded in the data collector development, as far as each of them
has a significant share.

What are the most popular IDEs? Even if the preferences of an IDE can be
biased due to specific of the study process, we think that, in general, it reflects
the actual popularity of the IDEs. Most of the students prefer IntelliJ IDEA with
more than a 50% share (up to 89% for 3rd-year bachelors). One important fact
that almost no one uses Eclipse, an open source solution and mostly focused on
java development as well. According to the worldwide IDEs popularity based on
Google searches frequency [25], Eclipse is the second popular IDE after Visual
Studio with a decreasing trend (−3.7%). This study can predict a further decline
in Eclipse popularity, and it should be taken into account for curriculum updates
in Innopolis University, as far as many courses make heavy use of Eclipse in
assignments.

For the rest IDEs the most interesting is trend analysis. Thus, pyCharm, hav-
ing more than 50% share for 2nd and 3rd-year bachelors, decreasing to 34.6%
users for master students. That can be the result of software developers’ spe-
cialization and diversity of applying frameworks. If at the beginning of studying
process students are focused on educational tasks and projects, later they meet
with industrial projects and such areas as mobile development and cross-platform
development [29,31,32].

Thus, with respect to InnoMetrics project, the results of the survey indicate
that the development of a plugin for IntelliJ IDEA has the utmost priority.
Behind this task, it is much harder to choose one particular framework. We
suggest that additional plugins for IDEs should be developed simultaneously to
cover most popular programming languages and platforms [43].

What are software engineering tools used in a development process?
Among a huge amount of software engineering tools that can support the soft-

ware development process within our study, we can derive two primary groups:
code management and project management tools. The former related to the orga-
nization of a shared repository, version control, and bug tracker functionality,
while the letter is about organizing and monitoring development process.

There is one obvious candidate for the code management system - Github.
It is used by almost every student in the software engineering course. However,

304 S. Ergasheva et al.

its competitor - GitLab, is also quite popular with increasing share from 30%
for the 2nd-year bachelors up to 73% for master students. BitBucket [4] also
demonstrate steady growth, starting from 5.4% for 2nd year bachelors up to
57.7% for master students but, in general, it is used much less than GitLab.

Based on the results, GitHub should be considered the top priority for
the development of the agents to be integrated into InnoMetrics. Integrating
agents with GitLab and BitBucket will cover the majority of developers’ activ-
ity. YouTrack [24] is the least popular system in this group and its share is
relatively small, thus the development of the agent for this system is question-
able and should be considered as “could have” but not “must have” feature
[36].

The analysis of the survey in the context of project management tools demon-
strates that Trello is the most popular task management tool among the students
due to its lightweight and intuitive mechanics. More than half of the respondents
use this tool in their software development process. By looking at the relative
popularity of the project management software (PMS), it can be seen the posi-
tive trend of Jira towards the year of study. This tool even competes with Trello
in the case of older students - 4th-year bachelors and masters. That could be a
result of the increasing complexity of the projects (and development processes)
and getting experience in the industry. Thus, this trend could be extrapolated to
the graduates - when they will start working in the industry they will prefer one
of these two tools with more or less equal probability. Asana [2], being one of the
leader in project management tools over the world, demonstrates very low usage
rate with only 16 users among all courses which is a quite surprising result. With
regard to Redmine [14], it was predictable that this software would be the least
popular since it is being displaced from the market by more convenient modern
counterparts.

Thus, for InnoMetrics framework the agents for Trello and Jira software
should be developed as the ones with the highest usage rate.

Regarding the other tools which were mentioned during the survey, the fol-
lowing facts can be stated. Firstly, it looks like the time tracker Toggl is used
mostly due to the requirements of the studying process. Nevertheless, this tool
in some aspects could be considered as a competitor for developing InnoMetrics
framework - in terms of time tracking of developer’s activities. Thus there is
no reason to develop the agent for integration with this software. Secondly, for
Slack, despite the fact that it is a quite popular tool with a trend on increas-
ing usage rate, the development of the agent is unreasonable. That is due to
ambiguous criteria for which activities should be hooked in respect to messen-
ger. It would be more efficient to track time spent in Slack using data collector
of the operating system.

One more interesting result of the survey is the level of similarity between
4th-year bachelors and 1st-year master students. In Innopolis University the
majority of master students are not graduated bachelors, but those who come
from other universities and industry, from different parts of the world. That
means, that background of these students is completely different from the one

Analysis of Development Tool Usage in Software Engineering Classes 305

which bachelors have, and it should be reflected in the results of the survey.
However, the correlation coefficient between 4th-year bachelors and masters is
0.91, which means that the results of the survey can be extrapolated to other
areas despite geography or cultural peculiarities and based only on the experience
of the developers.

5 Conclusion

In this paper, an attempt to analyse trends in the usage of certain software
systems in a software development process is done. For this purpose the survey
among the students of Innopolis University was conducted. The result of the
survey provides insights into the most popular tools and frameworks used by
the students in their software development process.

This information helps us to form a strategy for InnoMetrics project by
assigning a priority to the development of data collectors and agents to external
systems. The following decisions were made:

1. Windows, macOS and Linux-based operating systems have an almost equal
share of usage, thus data collectors for all three types of systems should be
developed. The problem is in the Linux collector development, as far as it is
represented by a number of operating systems, among which Ubuntu is the
most popular, but Debian, Arch, and Mint also have significant number of
users.

2. In respect to the IDE plugins, the most popular one is IntelliJ IDEA, but
the trend demonstrates increasing diversity of IDEs usage to the end of edu-
cation. However, as far as laboratory testing of InnoMetrics is planned to
be conducted within the university, it is possible to focus on IntelliJ IDEA,
pyCharm, Visual Studio, and Android Studio agents (in this order of priority).

3. In respect to the external software systems, the development team should be
focused first of all on Github and GitLab agents to cover code management
systems and Trello and Jira for project management tools.

As for the impact on educational process, we can suggest following actions to
be taken to make it consistent and align it with up-to-date trends in industry:

1. For any task, students should be provided with cross-platform tools, as far as
major operating systems demonstrate equal popularity.

2. For practical tasks, the choice of the IDE and programming language should
be provided, at least between Java, Python, and C# (if the particular lan-
guage is not a subject of the course).

3. In the context of project management tools, students should get experience
with both Trello and Jira. For now the former is implicitly promoted in the
educational process, while the latter becomes more popular with introducing
industrial internship and industrial projects.

We hope, that the result of this study can be useful not only for the InnoMet-
rics project itself but for analysis and adoption of studying process in Innopolis

306 S. Ergasheva et al.

University, as well as market analysis and prediction of the upcoming trends in
industrial software development.

Acknowledgments. This research project is carried out under the support of the
Russian Science Foundation Grant №19-19-00623.

References

1. Android studio. https://developer.android.com/studio. Accessed 25 Mar 2020
2. Asana. https://asana.com/. Accessed 25 Mar 2020
3. Atom text editor. https://atom.io/. Accessed 25 Mar 2020
4. BitBucket. https://bitbucket.org/. Accessed 25 Mar 2020
5. Clion. A cross-platform IDE for C and C++. https://www.jetbrains.com/clion/.

Accessed 25 Mar 2020
6. Github. https://github.com/.Accessed 25 Mar 2020
7. GitLab. https://about.gitlab.com/. Accessed 25 Mar 2020
8. GNU Emacs text editor. https://www.gnu.org/software/emacs/. Accessed 25 Mar

2020
9. InnoMetrics project website. https://innometrics.ru/. Accessed 25 Mar 2020

10. Innopolis university. https://university.innopolis.ru/en/about/. Accessed 25 Mar
2020

11. IntelliJ IDEA. https://www.jetbrains.com/idea/. Accessed 25 Mar 2020
12. pyCharm. https://www.jetbrains.com/pycharm/. Accessed 25 Mar 2020
13. Qt Creator. https://www.qt.io/product. Accessed 25 Mar 2020
14. Redmine. https://www.redmine.org/. Accessed 25 Mar 2020
15. Slack. https://slack.com/. Accessed 25 Mar 2020
16. Sublime text editor. https://www.sublimetext.com/. Accessed 25 Mar 2020
17. Toggl - free time tracking software. https://toggl.com/. Accessed 25 Mar 2020
18. Trello. https://trello.com/. Accessed 25 Mar 2020
19. Vim text editor. https://www.vim.org/. Accessed 25 Mar 2020
20. Visual studio. https://visualstudio.microsoft.com/ru/vs/. Accessed 25 Mar 2020
21. Visual studio code. https://code.visualstudio.com/. Accessed 25 Mar 2020
22. WebStorm javascript IDE. https://www.jetbrains.com/webstorm/. Accessed 25

Mar 2020
23. Xcode. https://developer.apple.com/xcode/. Accessed 25 Mar 2020
24. YouTrack. The issue tracker designed for agile software teams. https://www.

jetbrains.com/youtrack/. Accessed 25 Mar 2020
25. Carbonnelle, P.: Top IDE index. https://pypl.github.io/IDE.html. Accessed 04

Mar 2020
26. Clark, J., Clarke, C., De Panfilis, S., Granatella, G., Predonzani, P., Sillitti, A.,

Succi, G., Vernazza, T.: Selecting components in large cots repositories. J. Syst.
Softw. 73(2), 323–331 (2004)

27. Coman, I.D., Robillard, P.N., Sillitti, A., Succi, G.: Cooperation, collaboration and
pair-programming: field studies on backup behavior. J. Syst. Softw. 91, 124–134
(2014)

28. Coman, I.D., Sillitti, A., Succi, G.: A case-study on using an automated in-process
software engineering measurement and analysis system in an industrial environ-
ment. In: Proceedings of the 31st International Conference on Software Engineer-
ing, ICSE 2009, 16–24 May 2009, Vancouver, Canada, pp. 89–99. IEEE (2009)

https://developer.android.com/studio
https://asana.com/
https://atom.io/
https://bitbucket.org/
https://www.jetbrains.com/clion/
https://github.com/
https://about.gitlab.com/
https://www.gnu.org/software/emacs/
https://innometrics.ru/
https://university.innopolis.ru/en/about/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/pycharm/
https://www.qt.io/product
https://www.redmine.org/
https://slack.com/
https://www.sublimetext.com/
https://toggl.com/
https://trello.com/
https://www.vim.org/
https://visualstudio.microsoft.com/ru/vs/
https://code.visualstudio.com/
https://www.jetbrains.com/webstorm/
https://developer.apple.com/xcode/
https://www.jetbrains.com/youtrack/
https://www.jetbrains.com/youtrack/
https://pypl.github.io/IDE.html

Analysis of Development Tool Usage in Software Engineering Classes 307

29. Corral, L., Georgiev, A.B., Sillitti, A., Succi, G.: A method for characterizing
energy consumption in android smartphones. In: 2nd International Workshop on
Green and Sustainable Software (GREENS 2013), pp. 38–45. IEEE, May 2013

30. Corral, L., Georgiev, A.B., Sillitti, A., Succi, G.: Can execution time describe
accurately the energy consumption of mobile apps? an experiment in Android. In:
Proceedings of the 3rd International Workshop on Green and Sustainable Software,
pp. 31–37. ACM (2014)

31. Corral, L., Sillitti, A., Succi, G.: Software assurance practices for mobile applica-
tions. Computing 97(10), 1001–1022 (2015)

32. Corral, L., Sillitti, A., Succi, G., Garibbo, A., Ramella, P.: Evolution of mobile
software development from platform-specific to web-based multiplatform paradigm.
In: Proceedings of the 10th SIGPLAN Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! 2011, pp. 181–183. ACM,
New York (2011)

33. Di Bella, E., Sillitti, A., Succi, G.: A multivariate classification of open source
developers. Inf. Sci. 221, 72–83 (2013)

34. Fitzgerald, B., Kesan, J.P., Russo, B., Shaikh, M., Succi, G.: Adopting Open Source
Software: A practical guide. The MIT Press, Cambridge (2011)

35. Janes, A., Succi, G.: Lean software development in action. Lean Software Devel-
opment in Action, pp. 249–354. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-00503-9 11

36. Khan, J.A., Rehman, I.U., Khan, Y.H., Khan, I.J., Rashid, S.: Comparison of
requirement prioritization techniques to find best prioritization technique. Int. J.
Mod. Educ. Comput. Sci. 7(11), 53–59 (2015)

37. Kivi, J., Haydon, D., Hayes, J., Schneider, R., Succi, G.: Extreme programming: a
university team design experience. In: Proceedings of the2000 Canadian Conference
on Electrical and Computer Engineering. Conference . Navigating to a New Era
(Cat. No.00TH8492), vol. 2, pp. 816–820, May 2000

38. Kovács, G.L., Drozdik, S., Zuliani, P., Succi, G.: Open source software for the public
administration. In: Proceedings of the 6th International Workshop on Computer
Science and Information Technologies, October 2004

39. Marino, G., Succi, G.: Data structures for parallel execution of functional lan-
guages. In: Odijk, E., Rem, M., Syre, J.-C. (eds.) PARLE 1989. LNCS, vol. 366,
pp. 346–356. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51285-
3 51

40. Maurer, F., Succi, G., Holz, H., Kötting, B., Goldmann, S., Dellen, B.: Software
process support over the internet. In: Proceedings of the 21st International Con-
ference on Software Engineering ICSE 1999, pp. 642–645. ACM, May 1999

41. Moser, R., Pedrycz, W., Succi, G.: A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction. In: Proceedings of
the 30th International Conference on Software Engineering ICSE 2008, pp. 181–
190. ACM (2008)

42. Moser, R., Pedrycz, W., Succi, G.: Analysis of the reliability of a subset of change
metrics for defect prediction. In: Proceedings of the Second ACM-IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement ESEM
2008, pp. 309–311. ACM (2008)

43. Musienko, Y.: Outstanding devs: top programming languages to learn in
2020. https://merehead.com/blog/most-popular-programming-languages-2020/.
Accessed 25 Mar 2020

https://doi.org/10.1007/978-3-642-00503-9_11
https://doi.org/10.1007/978-3-642-00503-9_11
https://doi.org/10.1007/3-540-51285-3_51
https://doi.org/10.1007/3-540-51285-3_51
https://merehead.com/blog/most-popular-programming-languages-2020/

308 S. Ergasheva et al.

44. Muśılek, P., Pedrycz, W., Sun, N., Succi, G.: On the sensitivity of COCOMO II
software cost estimation model. In: Proceedings of the 8th International Sympo-
sium on Software Metrics METRICS 2002, pp. 13–20. IEEE Computer Society,
June 2002

45. Paulson, J.W., Succi, G., Eberlein, A.: An empirical study of open-source and
closed-source software products. IEEE Trans. Softw. Eng. 30(4), 246–256 (2004)

46. Pedrycz, W., Russo, B., Succi, G.: A model of job satisfaction for collaborative
development processes. J. Syst. Softw. 84(5), 739–752 (2011)

47. Pedrycz, W., Russo, B., Succi, G.: Knowledge transfer in system modeling and
its realization through an optimal allocation of information granularity. Appl. Soft
Comput. 12(8), 1985–1995 (2012)

48. Pedrycz, W., Succi, G.: Genetic granular classifiers in modeling software quality.
J. Syst. Softw. 76(3), 277–285 (2005)

49. Petrinja, E., Sillitti, A., Succi, G.: Comparing OpenBRR, QSOS, and OMM assess-
ment models. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey,
G.R., Noll, J. (eds.) OSS 2010. IAICT, vol. 319, pp. 224–238. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13244-5 18

50. Ronchetti, M., Succi, G., Pedrycz, W., Russo, B.: Early estimation of software size
in object-oriented environments a case study in a cmm level 3 software firm. Inf.
Sci. 176(5), 475–489 (2006)

51. Rossi, B., Russo, B., Succi, G.: Modelling failures occurrences of open source soft-
ware with reliability growth. In: Ågerfalk, P., Boldyreff, C., González-Barahona,
J.M., Madey, G.R., Noll, J. (eds.) OSS 2010. IAICT, vol. 319, pp. 268–280.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13244-5 21

52. Rossi, B., Russo, B., Succi, G.: Adoption of free/libre open source software in
public organizations: factors of impact. Inf. Technol. People 25(2), 156–187 (2012)

53. Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: A relational approach to software
metrics. In: Proceedings of the 2004 ACM Symposium on Applied Computing SAC
2004, pp. 1536–1540. ACM (2004)

54. Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: A non-invasive approach to product
metrics collection. J. Syst. Architect. 52(11), 668–675 (2006)

55. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Measures for mobile users: an archi-
tecture. J. Syst. Architect. 50(7), 393–405 (2004)

56. Sillitti, A., Succi, G., Vlasenko, J.: Understanding the impact of pair programming
on developers attention: a case study on a large industrial experimentation. In:
Proceedings of the 34th International Conference on Software Engineering ICSE
2012, pp. 1094–1101. IEEE Press, Piscataway, June 2012

57. Sillitti, A., Vernazza, T., Succi, G.: Service oriented programming: a new paradigm
of software reuse. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol. 2319, pp. 269–280.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46020-9 19

58. Statcounter: Desktop operating system market share worldwide. https://gs.
statcounter.com/os-market-share/desktop/worldwide. Accessed 25 Mar 2020

59. Succi, G., Benedicenti, L., Vernazza, T.: Analysis of the effects of software reuse
on customer satisfaction in an RPG environment. IEEE Trans. Softw. Eng. 27(5),
473–479 (2001)

60. Succi, G., Paulson, J., Eberlein, A.: Preliminary results from an empirical study
on the growth of open source and commercial software products. In: EDSER-3
Workshop, pp. 14–15 (2001)

61. Succi, G., Pedrycz, W., Marchesi, M., Williams, L.: Preliminary analysis of the
effects of pair programming on job satisfaction. In: Proceedings of the 3rd Inter-
national Conference on Extreme Programming (XP), pp. 212–215, May 2002

https://doi.org/10.1007/978-3-642-13244-5_18
https://doi.org/10.1007/978-3-642-13244-5_21
https://doi.org/10.1007/3-540-46020-9_19
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://gs.statcounter.com/os-market-share/desktop/worldwide

Analysis of Development Tool Usage in Software Engineering Classes 309

62. Valerio, A., Succi, G., Fenaroli, M.: Domain analysis and framework-based software
development. SIGAPP Appl. Comput. Rev. 5(2), 4–15 (1997)

63. Vernazza, T., Granatella, G., Succi, G., Benedicenti, L., Mintchev, M.: Defining
metrics for software components. In: Proceedings of the World Multiconference on
Systemics, Cybernetics and Informatics, vol. XI, pp. 16–23, July 2000

Applying Test-Driven Development
for Improved Feedback and Automation

of Grading in Academic Courses on Software
Development

Dragos Truscan(B) , Tanwir Ahmad , and Cuong Huy Tran

Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
{dragos.truscan,tanwir.ahmad,huy.tran}@abo.fi

Abstract. Grading student assignments and projects in software development
courses is a time-consuming task. The lecturer has to download individually each
assignment, compile it and manually check that the implementation satisfies the
requirements. In addition, the students would like to get early feedback on their
solutions, not only as guidelines onwhether their solutionmeets the expectations of
the lecturers, but also a way to estimate the current number of points their solution
deserves. In thiswork,wepropose the use of the test-drivendevelopment process as
an approach to both guide the students during the implementation of their projects
and as away to speed up andmake the grading processmore scalable. Furthermore,
we show howwe take advantage of community-based software development tools
such as GitHub to support our approach. We evaluate the proposed approach by
applying it to an academic course for developing web applications. The results
show that the approach reduces the grading effort by 60% and that the early
feedback it provides was appreciated by students.

Keywords: Test-driven development · Test automation · Academic course ·
Software development · Course self-evaluation

1 Introduction

Evaluating student projects in academic courses on software development can be a
tedious and time-consuming task. In such projects, a software application is typically
developed either individually or in groups by students. Lecturers formulate the require-
ment of the application and then students develop it before the deadline of the task. Then
the students submit their project for grading, typically by uploading the project files to a
course management system such as Moodle. After the deadline, the lecturers download
the project, execute it, and check that the application requirements are satisfied. Then,
the lecturers provide feedback for the solution and a grade for the project.

There are two issueswith the above approach. First, the students receive feedback and
a grade for their project only after the submission deadline and evaluation period needed
by the lecturers. Receiving earlier feedback, during the development of the project,would

© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 310–323, 2020.
https://doi.org/10.1007/978-3-030-57663-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_20&domain=pdf
http://orcid.org/0000-0002-4367-6225
http://orcid.org/0000-0003-3416-2422
http://orcid.org/0000-0003-1127-4659
https://doi.org/10.1007/978-3-030-57663-9_20

Applying Test-Driven Development for Improved Feedback 311

allow students to evaluate better their work and efforts needed to complete the project.
The second issue is related to the time needed by the lecturers to check the project of
all the students in the course. For a large number of student projects, it may take several
days or weeks before all the submissions are evaluated.

As a concrete example, in a course on developingWeb applications at our university,
the size of a completed project is between 1500 and 2000 lines of code. On average,
grading a project takes around 20min. The course has a variable number of students each
year, ranging between 50 and 100, which can result in a high workload for evaluating
all projects and providing feedback by the teaching personnel.

Based on previous experience, following an incremental software development app-
roach for the projects would be beneficial for students in receiving feedback faster, but
will increase the amount of work of the lecturers compared to checking the project at
the end of the course. This is because the features implemented in past versions have
to be rechecked in case they may have been updated. So for every increment of the
project more time has to be allocated per student and, in the end, in the last increment
the complete project will have to be checked anyway.

Test-driven Development (TDD) is a software development process that promotes
the development of software based on short iteration cycles. The starting point is a
set of tests that are created, typically from the requirements of the system, before the
implementation of the system is available. During each cycle, one or several features
of the product are implemented to make one or several of the tests pass. When all the
provided tests pass, the development of the software is considered complete.

The proposed approach applies TDD for evaluation and grading of student projects.
We create a set of acceptance tests that are provided to students at the beginning of the
project. These tests are used as a reference byboth the students during the implementation
of their projects and by lecturers to evaluate the solutions implemented by students. The
approach allows the students to receive continuous feedback during their work on the
quality of their solutions and simplifies the grading process by the lecturers. To automate
our approach, we use the Github repository hosting service and a set of custom scripts.
Using our approach, the lecturers can save time from the grading process and allocate it
to providing more in-class feedback during the course.

Theworkpresented in this chapter is an extensionof theworkpublished in (Tran, et al.
2020). We extend the previous work with a more thorough introduction of the software
development concepts and more details on the approach. Moreover, we provide more
details on the case study and its evaluation.

The structure of this chapter is as follows. We start by introducing different concepts
of the software engineering field that are relevant for this chapter. Section 3 introduces a
generic approach in which TDD is employed for grading student projects and discusses
the design decisions and the benefits of the approach. Section 4 presents a case study on
how we have applied the approach in practice. We analyze the results in Sect. 5. Finally,
we draw conclusions in Sect. 6.

2 Software Development Concepts

Traditionally software is developed in phases starting from the requirements of the
application, then its design and implementation.When the implementation is completed,

312 D. Truscan et al.

it is tested to see if it satisfies the requirements. In software testing, the implementation
(code) is executed with different test inputs and the test outputs are checked if they
correspond to the expected outputs. The latter are typically derived from the requirements
or specification of the software. Whenever the test outputs correspond to the expected
outputs we assign a passed verdict to the test, otherwise a failed one.

The development phases are typically combined into different software development
processes such as waterfall, agile, etc. depending on the characteristics of the application
to be developed and of the structure of the development team.

2.1 Test-Driven Development

Originating from Extreme Programming practices, Test-Driven Development (TDD)
(Beck 2003) is a software development process that requires tests to be written before
the implementation of the code is started. The TDD process is a cycle that is repeated
over and over until all the tests pass (Beck 2003), as shown in Fig. 1.

Fig. 1. Test-driven development cycle.

• Write a test. Every new feature begins with writing a test. The test should be brief
and clearly expressed. Writing a test before the code is implemented motivates the
developers to think first about the requirements, the design of the system and the way
it should work.

• Run and check if the test fails. The test is expected to fail since the application code
does not exist yet. This step emphasizes the target feature for the developers. If the
test passes, it must be re-written to fail.

• Write code. Write just enough production code to fulfill the test. Programmers need
to be careful not to implement further than the functionality of the test.

• Run all tests. If all tests pass, it means the new code does not break any existing
features and the new test is satisfied. If they fail, the new code has to be modified until
all tests pass.

• Refactor code. In this step, the code is refactored, by cleaning it up, removing dupli-
cation, or improving its readability and maintainability. The test cases are re-run
frequently to ensure the refactoring code does not alter unrelated features.

Applying Test-Driven Development for Improved Feedback 313

The main benefit of TDD is that when writing new code, the test cases can act as a
guideline, so the developers can conveniently follow, resting assured that they are on
track and no feature’s specification is missing IBM (n.d.). Additionally, by running
tests throughout the development process, feedback is given regularly and no code left
untested.Moreover, developers spend less time on debugging and fixing errors. Although
TDD is not amiracle solution to eliminate all bugs,more testsmean better code coverage,
and that will reduce the cost of maintenance and a large number of bugs IBM (n.d.).
Combined with a version control system, when a test fails, TDD helps to identify the
error quickly and more productively. TDD can also lead to more clean, modularized, and
extensible code because of the constant refactoring. The code is tidier, well documented,
which allows other team members to understand it. This makes the application under
development more suitable for future enhancement or expansion.

TDD also has some limitations. Different authors report that TDD‘s slow learning
curve makes it difficult to adopt. In addition, the final product may be too biased by the
way the tests were created and the requirements provided may not be complete or well-
specified. Furthermore, if the project specifications and requirements are not studied
and analyzed well enough, passing tests could cause a false sense of safety. Due to the
nature of TDD, it has a long learning curve. Additionally, writing and maintaining an
overwhelming number of tests costs time and resources, particularly for small teams. It
takes approximately as much as 16% more development time than that of the traditional
approach where tests are created after the implementation is completed (George and
Williams 2004).

2.2 Software Version Control System

Aversion control system (VCS) (Spinellis 2005) is a tool that helps developers tomanage
changes to source code over time so that they can recall them later if needed. VCS keeps
track of every modification from add or edit to move or delete in a special kind of
database. The types of file VCS can track are not only source code, but also images,
audio files, movies, or any other type of digital asset.

For almost all software projects, the source code is the most critical central part, and
the teams are responsible for protecting it. A VCS, which is updated frequently during
the development, can also act as a backup storage. If some files are lost due to accidents
or human error, the team can quickly recover them from VCS.

There are two popular types of version control systems: centralized and distributed.
Centralizedversion control systems store all files and the full versionhistory in one shared
server. The developers retrieve some of the source files from the central location, modify
it and store it back to the central location. In contrast, in distributed VCSs, the developers
completely mirror the project or repository, including the full version history. Then they
make changes locally to the files and submit them later to the centralized location.

Git is one of the most popular open-source versioning control systems and sev-
eral deployment servers are available for public use. For instance, github.com is a Git
repository hosting service where developers can version and share their software. It
provides services for both public and private repositories. It offers several additional
functionalities, such issue tracking system, wiki pages, etc.

314 D. Truscan et al.

One interesting feature of github.com is that it is free to use for educational pur-
poses via the GitHub Classroom initiative. GitHub Classroom allows lecturers to create
assignments for which students submit code via the VCS, track student progress, and
integrate with useful third-party tools. It also scales up for courses with a large number
of students.

3 Approach

The proposed solution is to apply the concepts of TDD to evaluating and grading student
projects.We provide students with a set of acceptance tests at the beginning of the project
to be used as a reference by both the students during the development of the project and
by lecturers to evaluate and grade the project after the deadline. The students are not
allowed to modify the provided acceptance tests, but they can add additional tests if they
consider them helpful for their implementation.

The approach is illustrated inFig. 2. The requirements of the project are first specified.
Then, the lecturers implement a reference project (similar to the one expected to be
delivered by students). The set of tests is created from the requirements of the project
by the lecturers. However, in order to execute the tests against the implementations
created by the students, lecturers need to decide and clearly specify the interface of
the application in advance. The tests are executed to verify the implementation of the
project. This is an iterative process which ends when tests for all requirements have been
implemented.

The requirements specification, interface specification and the tests are used to create
a GitHub Classroom assignment. The assignment link is provided to students.Whenever
a student accesses the link, a new source code repository is automatically created on
GitHub, to which both the student and the lecturers of the course have access. If a starter
code is provided in the initial assignment repository, it will be copied to the newly created
student repository. When students download (clone) their assignment repository to their
computer, they receive a copy of the started code, including the tests, and they can start
the implementation of their projects.

The first time the tests are run against the project they will all fail since the project
is not yet implemented. The students will proceed with developing their project and can
run the tests regularly. Asmore features are implemented, the tests will start passing. The
tests serve as self-evaluation to the students on the progress of their project. At the same
time, the students should push their project regularly to the repository for versioning and
backing up the code.

When the deadline of the project is over, the code is already available in the reposi-
tory and the lecturers can evaluate the projects by pulling all student projects from their
corresponding repositories and running the tests to check the progress and the complete-
ness of the projects. In our approach, the last two activities are performed automatically
using a set of scripts and the Application Programming Interface (API) of GitHub.

When the deadline of the project is over, the code is already available in the repository.
Lecturers can pull students’ projects and run acceptance tests to evaluate their progress
and completeness. In our approach, pulling and running tests are performedautomatically
using a set of scripts and the Application Programming Interface (API) of GitHub. Based

Applying Test-Driven Development for Improved Feedback 315

Fig. 2. Workflow of the proposed approach

on the result of the tests, lecturers can create an overview report including the grades.
Manual inspection of the code can still take place if lecturers consider it necessary.

4 Case Study

As an example of our approach, we show how we have applied it in practice in an
academic course on the development of web applications. In this course, the students
have to develop a web application, called YaaS (Yet Another Application) similar to
ebay.com, in which different users (sellers) can create auctions to sell products, whereas
other users (buyers) can make bids on ing auctions. When the deadline for a given bid
passes, the auction is adjudicated to the highest bidder and the seller, buyer and other
bidders are notified.

AWebApplication is a computer program that provides dynamically created content
to be displayed in a web browser (Shklar and Rosen 2003). The information between
the client (i.e., the web browser) and the server is exchanged via the HyperText Transfer
Protocol (HTTP) (Fielding and Reschke 2014). HTTP is a stateless request/response
protocol. In a typical interaction, the client submits a request to a server, the server
processes the request and returns a response to the client, most often formatted using
the HyperText Markup Language (HTML) (Krause 2016).

316 D. Truscan et al.

In this course, we required that the YaaS application was implemented by students
using the Django Web framework (Holovaty and Kaplan-Moss 2009), which is based
on the Python programming language (van Rossum et al. 2008).

4.1 Initial Project Artefacts

In order to apply the process proposed in Sect. 3, the lecturers of the course created three
artefacts to be delivered to students: requirements specification, interface specification,
and the acceptance tests. We detail them in the following.

Requirements Specification Document. The requirements of the project are specified
using use cases, for instance, the user should be able to sign up, sign in, sign out, create
items, delete items, etc. In total, the YaaS application has 12 use cases, each having
different levels of complexity. Each use case is decomposed into several functional
requirements, such as the user should be able to log in with valid credentials or an error
message should be displayed if invalid credentials are used. To summarize, the YaaS
application has 41 functional requirements.

With respect to the grading of the project, each use case gives a predefined number
of points depending on its complexity. The number of points given by each use case is
clearly mentioned in the requirements specification document as a hint to the students
on the importance and expected complexity of the use case. The points for a use case
are obtained only if all the requirements associated with the use case are implemented
correctly. This grading approach is specific for this particular course and project, but it
can be customized in other courses.

Interface Specification. An interface specification is created to reflect all the require-
ments of every use case in terms of the interface of the application. The interface specifi-
cation file describes what are the URLs used by each user case, what HTTP requests can
be sent to those URLs, what parameters they require, and what is the expected response.
An example of interface specification for use case UC1-Create user account is given in
the following Table 1.

Acceptance Tests. In order to verify that different project requirements are imple-
mented successfully by students, we create one or several tests for each requirement.
Since each requirement belongs to one use case, we group the tests belonging to require-
ments of the same use case under one test case (see Fig. 6). The tests are implemented
based on the given interface specification. For conveniencewe have implemented them in
the Python programming language, using the Python unit testing library. However, other
programming languages can be considered because the application interface is clearly
specified and the acceptance tests are not dependent on the programming language used
for the implementation of the application.

For instance, use case UC1 has five requirements. One of the tests for one of the
requirements is shown in Fig. 3 as a test method. The test verifies requirements REQ 1.1
(lines 2–3) by sending an HTTP POST request to the signup/URL (line 9) and providing
a set of parameters via the context variable defined at lines 4–8. The test expects (line
10) that the application will return an HTTP response message with status code 302, in
which case the test will be marked as PASS otherwise as FAIL.

Applying Test-Driven Development for Improved Feedback 317

Table 1. Example of interface specification for UC1

Use case UC1 - Create a user account

URI /signup/

Allowed HTTP methods GET – get a signup form, return code 200
POST – create a user with username and password
• Sign up without a password, means invalid data, return status
code 200

• Sign up with an already taken username, return status code
400, and an error message is present in the response content
(HTML)

• Sign up with an already taken email, return status code 400,
and an error message is present in the response content
(HTML)

• Sign up with valid data, return status code 302 because the
page would redirect to the index page after a successful signup

Example request: HTTP1.1 POST/signup

Example expected response: HTTP1.1 302 Redirect
{
“username”: “user1”,
“password”: “Password1”,
“password1”: “Password1”,
“password2”: “Password1”,
“email”: “user1@mail.com”
}

1
2
3
4
5
6
7
8

def test_sign_up_with_valid_data(self):
REQ1.1 Sign up with valid username, password and
password confirmation, should return status code 302

context = {
"username": "testUser3",
"password": "!@ComplicatedPassword123",
"email": "user1@mail.com"

}
9
10
11
12

 response = self.client.post("signup/", context)
self.assertEqual(response.status_code, 302)
calculate points
self.class.number_of_passed_tests += 1

Fig. 3. Example of a test of requirement REQ 1.1

When the test is successful (PASS verdict), line 12 will be executed and the number
of points scored by the entire project will be increased by 1.

4.2 Support for Automatic Grading

Every test case corresponding to a use case has some class-level variables to track and
show the number of tests, passed tests, and points of the test case, as shown in Fig. 4.

318 D. Truscan et al.

1
2
3

number_of_passed_tests = 0 # passed tests in this test case
tests_amount = 5 # number of tests in this suit
points = 1 # points granted by this use case if all test pass

Fig. 4. Example of points awarded for a given use case

When a test case completes its execution, a global method is invoked to calculate
points aggregated from the individual tests. The method in Fig. 5 checks if all tests of
the test case are passed (line 3). If there is a failed test, the system will prompt a failure
message (line 4). Otherwise, the method adds the points of this use case to the total
number of points of the project (line 6–7) and the system will print a success message
(line 11) to the user.

1
2
3
4
5
6
7
8
9
10
11

def calculate_points(number_of_passed_tests, amount_of_tests,
 points_of_the_use_case, use_case_name):

if number_of_passed_tests < amount_of_tests:
print("{} fails!".format(use_case_name))

else:
global current_points

 current_points += points_of_the_use_case
 msg = """{} passed, {} points,
 Current points: {}/30""".format(use_case_name,
 points_of_the_use_case, current_points)

print(msg)

Fig. 5. Code for calculating the points of the project

4.3 Feedback to Students

During the course, the students receive three types of feedback:

• From the execution of the acceptance tests, students receive feedback when a feature
is implemented or not (if its tests pass or not). In addition, we have tried to implement
the tests to provide informative error messages. As mentioned in the paper, after each
execution of the tests, the students get an automated evaluation of the grade of the
project. This is a continuous process.

• Throughout the course, during lectures and labs, the students can ask questions
on different aspects related to the teaching material, coding practice or the project
implementation from course assistants and lecturers. This is also a continuous process.

• When their project is evaluated, besides checking the project with automated tests,
the lecturers also inspect the code and provide the final feedback on the project.

In the following, we will focus on the first type of feedback that is an outcome of
our proposed method.

At the beginning of the project implementation, all acceptance tests will fail, since
no implementation is yet available. A simplified example of a test report where all the
tests fail is shown in Fig. 6.

By having the acceptance tests readily available, the students can check at any
moment the status of their implementation. After each execution of the acceptance tests,

Applying Test-Driven Development for Improved Feedback 319

Fig. 6. Example of failed tests.

a report will show what tests have failed or passed and how many points a project has
currently earned. Students can inspect the test failure in more detail. Figure 7 shows the
test report for the same tests as in Fig. 6, when the functionality of the web application
satisfies the requirements of the project.

Fig. 7. Example of passed tests.

The students should frequently commit their projects to the GitHub for backup and
versioning purposes. When the deadline for project submission has passed, the latest
version in the repository will be considered for grading.

4.4 Support for Automatic Grading by Lecturers

In order to automate the grading process, a set of scripts has been implemented to
automate different steps performed by the lecturers. The scripts, written in Python, use
the GitHub API to download all student projects fromGitHub Classroom and store them
in a local folder. Then, they execute the tests on each project and save the test report
results in a grading report file with the structure presented in Table 2. For each student,
the report includes: name of the student, date of running the script, points received by
each use case, the total number of points earned by the student, and the link to the
repository of the project.

These scripts can be run not only at the end of the course after the deadline for
project submission has passed, but also regularly (e.g., weekly) to check the progress of
the students during the course. This allows them to provide additional support or change
the pace of the lectures according to the needs of the students.

320 D. Truscan et al.

Table 2. Example of the grading report for the course

Student Date UC1 UC2 … Total Repo link

Student A 25/03/2020 1 1 … 16 https://github.
com/…

Student B 25/03/2020 1 0 … 18 https://github.
com/…

Student C 25/03/2020 0 1 … 15 https://github.
com/…

5 Discussion and Evaluation

As discussed earlier in this work, TDD brings some benefits but it may also have some
limitations. In order to cope with the slow learning curve, we have provided detailed
requirements and interface specifications, and a project skeleton to facilitate quick adop-
tion of TDD concepts. In order to make sure that the requirements and the tests were
well-specified, the initial effort was allocated by lecturers to create the tests, the refer-
ence project, and the interface specification. Having the reference project implemented
in advance, also allowed us to make sure that all requirements are testable and to detect
and remove possible inconsistencies.

Another perceived limitation of TDD, is that one can create an implementation that
passes the tests without implementing the expected behavior of the application and thus
providing a false level of confidence. In our approach, this risk is reduced by the way the
tests were designed. Some tests were inherently dependent on each other and sharing
data. For instance, one test checked if the user can create an account, another test checked
if the user can log in with the specified account which should have been created by the
previous tests. This is not a complete bullet-proof approach, and for that reason, the
lecturers also inspect the code manually to detect possible problems practices.

Additional effort has been required to specify the application interface, but this
was a tradeoff for having automated tests for the project. When creating the interface
several design decisions had to be made which limited the implementation freedom of
the students, in our opinion, but that was an acceptable compromise and we consider
that it still satisfied the learning objectives of the course.

For the YaaS application, we have implemented 41 tests in total. We have evaluated
the approach in one edition of the course in which 60 students submitted projects. After
the deadline, we were able to run the automated tests on all 60 projects submitted by
students in around110minon aWindows10 laptop featuring an Intel i7-7500UCPUwith
two cores at 2.90 GHz and 16GB of RAM. This means less than twominutes per project.
Roughly 5 min of additional time was allocated on average for manual code inspection.
This activity was largely performed for giving feedback and recommendations to the
students. Overall, we have observed a reduction of more than 65% in the grading time.

The submitted student projects, which received the highest grade, hadmore than 90%
of the project requirements implemented and between 1490 and 2050 lines of code. The
acceptance tests we provided achieve between 77% and 91% coverage of the source

https://github.com/
https://github.com/
https://github.com/

Applying Test-Driven Development for Improved Feedback 321

code, which shows that the acceptance tests give a good metric for the overall quality of
the project.

The feedback from the students, collected via interviews and course feedback forms,
was in general positive. Most of them liked the approach and considered useful to have
the acceptance tests available from the beginning. In addition, they appreciated not only
the fact that they could estimate the grade in advance, but they can also utilize the tests as
guidelines during the development of their project. However, there were some students
that considered that the TDD approach and the use of GitHub for versioning required a
different mindset and new technical skills. Nonetheless, we consider that these technical
skills are useful and mandatory for any computer engineering student.

Based on this preliminary evaluation, we plan to re-apply the approach in the next
editions of the course and, in addition, to extend it to other software development courses
at our university.

6 Related Work

Automatic grading of assignments is not a novel topic and several researchers have
already addressed this topic in the past with similar approaches.

Edwards (2003a, b) presents his vision and tool support for automatic grading in
which TDD should be used in all programming assignments starting from the first year
of the Computer Science education. Differently from our approach, Edwards suggests
that the students are required to create their own tests to accompany the code that they
write, and these tests are evaluated against a reference implementation. Similar to our
approach, he proposes an automated assessment tool to which the students submit their
code, with the difference the tool is assessing both the correctness of the student tests
and of the application. In addition, the tool provides static checks and feedback on the
coding style which in our approach is performed manually in class and at the end of the
course.

Janzen and Saiedian (Janzen and Saiedian 2006) propose test-driven learning as a
way of using TDD for teaching both testing and programming. In practice, they suggest
that different programming examples and small assignments are accompanied by tests
(assert statements) that would indicate to students both the expected interface and the
expected behavior of the program. The main benefits perceived from their approach is
that they can improve the teaching of programming via examples accompanied by tests.
Differently from their approach, the goal of our work is automated acceptance testing
of student programming projects as a way of guiding the students during their work.

Pilla (Pilla 2017) utilizedGitHub and Travis CI, a continuous integration (CI) service
that integrates with GitHub, to build an automatic testing environment for students.
Although the work was conducted on some simple C-code assignments, the preliminary
results showed great potential. Comparably, Cai and Tsai (Cai and Tsai 2019) applied a
similar solution to an Android application development course with improved security.

However, neither of them used a starter repository in their solution. Our approach
is also different from theirs because we follow TDD to create a starter repository. Stu-
dents should download the repository and start working immediately. We do not use any
continuous integration (CI) service; instead, we have implemented our approach to auto-
matically download student projects, grade them and generate a detailed course-level

322 D. Truscan et al.

report. From our experience, a continuous integration does not provide a global view on
all student repositories, and it requires students to commit code frequently to be relevant.
With our approach, we can retrieve student projects at any time we want and have all
the information about those projects in the report. Our approach also allows lecturers to
update the starter repository and even student repositories.

7 Conclusions

This chapter introduced an automated approach for evaluating student projects by
employing the concepts of the test-driven development approach and by taking advan-
tage of community-based tools such as GitHub. We have applied and evaluated the
approach in an academic course on developing web applications. Even though we used
a specific development framework in that course such as Django, the approach can be
easily adapted and applied with other tools and development environments.

The approach required some extra efforts in the beginning, when creating the tests
and the interface specification and developing the scripts used for automatic grading and
reporting of all student projects. But these artefacts were created only once and they can
be reused in future editions of the course.

Depending on the course settings, the implementation of the reference project can
be omitted, which will be in the true spirit of TDD. However, to make sure that the
expectations from student projects are realistic we consider it advisable.

The evaluation showed benefits with respect to both the early feedback that the
approach provides to students, but also in speeding up the course grading process. The
latter makes the approach a good candidate for online courses with a large number of
participants.

In future work, we plan to evaluate the approach in future editions of the course
and to measure its impact on the grades of the students. To this extent, we plan to run
controlled experiments in which a part of the students will use the TDD approach and
the other part the manual approach. In addition, we plan to reapply the approach in other
courses on software development in order to evaluate its benefits and limitations.

Last but not least, we consider that by having an automatic grading approach, we
are not aiming at minimizing the lecturer-student interaction, but by providing clear
quantifiable expectations on the course goals and in automating tedious tasks.

Acknowledgements. This work has received partial funding from the Electronic Component
Systems for European Leadership Joint Undertaking under grant agreement No 737494. This Joint
Undertaking receives support from the European Union’s Horizon 2020 research and innovation
programme and Sweden, France, Spain, Italy, Finland, the Czech Republic.

References

Beck, K.: Test-Driven Development: By Example. Addison-Wesley, Boston (2003)
Cai, Y.-Z., Tsai,M.-H.: Improving programming education qualitywith automatic grading system.

In: Rønningsbakk, L., Wu, T.-T., Sandnes, F.E., Huang, Y.-M. (eds.) ICITL 2019. LNCS, vol.
11937, pp. 207–215. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35343-8_22

https://doi.org/10.1007/978-3-030-35343-8_22

Applying Test-Driven Development for Improved Feedback 323

Tran, C.H., Truscan, D., Ahmad, T.: Applying test-driven development to evaluating student
projects. In: 6th International Conference on Higher Education Advances (HEAd’2020) 2020

Edwards, S.: Using test-driven development in the classroom: providing students with automatic,
concrete feedback on performance. In: Proceedings of the International Conference on Educa-
tion and Information Systems: Technologies and Applications EISTA, Vol. 3 (2003a). http://
web-cat.org/publications/Edwards-EISTA03.pdf

Edwards, S.H.: Rethinking computer science education from a test-first perspective. In: Com-
panion of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications - OOPSLA 2003 (2003b). https://doi.org/10.1145/949
344.949390

Fielding, R., Reschke, J.: Hypertext transfer protocol (HTTP/1.1): message syntax and routing.
RFC 7230 (2014)

George, B., Williams, L.: A Structured Experiment of Test-Driven Development. Inf. Softw.
Technol. 46(5), 337–342 (2004)

Holovaty, A., Kaplan-Moss, J.: The definitive guide to django (2009). https://doi.org/10.1007/
978-1-4302-1937-8

IBM. Test-driven development (n.d). https://ibm.com/garage/method/practices/code/practice_
test_driven_development/. Accessed 20 Apr 2020

Janzen, D.S., Saiedian, H.: Test-driven learning. In: Proceedings of the 37th SIGCSE Technical
Symposium on Computer Science Education - SIGCSE 2006 (2006). https://doi.org/10.1145/
1121341.1121419

Krause, J.: HTML: hypertextmarkup language. IntroducingWebDevelopment, pp. 39–63.Apress,
Berkeley, CA (2016). https://doi.org/10.1007/978-1-4842-2499-1_3

Pilla,M.L.: Teaching computer architectures through automatically corrected projects: preliminary
results. Int. J. Comput. Archit. Educ. 6(1), 62–67 (2017)

Guido van, R., Hettinger, R., Coghlan, N., Diedrich, J., Beazley, D., Mertz, D.: The python pro-
gramming language. Prentice Hall Open Source Software Development Series. Prentice Hall
PTR (2008)

Shklar, L., Rosen, R.: Web Application Architecture: Principles, Protocols and Practices. Wiley,
Hoboken (2003)

Spinellis, D.: Version control systems. IEEE Softw. 22(5), 108–109 (2005)

http://web-cat.org/publications/Edwards-EISTA03.pdf
https://doi.org/10.1145/949344.949390
https://doi.org/10.1007/978-1-4302-1937-8
https://ibm.com/garage/method/practices/code/practice_test_driven_development/
https://doi.org/10.1145/1121341.1121419
https://doi.org/10.1007/978-1-4842-2499-1_3

Globalization of Education

Internationalization Strategy of Innopolis
University

Iouri Kotorov, Yuliya Krasylnykova, Petr Zhdanov(B), and Manuel Mazzara

Innopolis University, Innopolis, Republic of Tatarstan, Russian Federation
pe.zhdanov@innopolis.ru

Abstract. Since the establishment of Innopolis University, there was
an emphasis placed on the importance of internationalization and inter-
national cooperation for its further development, especially in terms of
teaching in the English language only, recruiting staff from different cul-
tures and regions of the world, enrollment of students from different
countries and educational systems, as well as developing study abroad
and joint teaching and research initiatives. Being an English-speaking
university in a non-English-speaking country, Innopolis University and
its International Relations Office, in particular, as it is responsible for the
internationalization strategy of Innopolis University, managed to achieve
what might be considered as a significant degree of its internationaliza-
tion. This paper describes the course of actions taken by Innopolis Uni-
versity towards its internationalization, the strategy adopted and the
instruments applied. The definition of internationalization, in general, is
briefly discussed and it is suggested that the strategy of international-
ization has to be individually considered by every higher education insti-
tution as the term is relatively broad. The instruments are described
as they were applied by Innopolis University and as they were applied
at the time of writing this paper and therefore, there might be certain
limitations if adopted.

1 Introduction

Globalization leads to the creation of a unified educational space and market
dominated by international rankings where Universities now have to compete
[1]. This trend is likely to affect even the countries that are known for their
traditional model of cooperation, for example, Nordic European countries [2].
International rankings often become a strategic objective while higher education
becomes a global commodity [3]. Russian education has a well-known reputation
for its fundamental science, which represents a strong selling point on interna-
tional markets. In 2012, Russian government proclaimed internationalization as
one of the major objectives of higher education development [4] and supported
this claim launching the ‘5top100’ project [5] aimed at “maximizing the com-
petitive position of a group of leading Russian universities in the global research
and education market.” A group of leading Russian universities received addi-
tional funding in order to facilitate their international attributes and increase
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 327–340, 2020.
https://doi.org/10.1007/978-3-030-57663-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_21&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_21

328 I. Kotorov et al.

their positions in the world university rankings (QS World University Rankings,
Times Higher Education, Shanghai Ranking of World Universities). A high posi-
tion of a university in the world university rankings typically means high-quality
teaching, research and well-established technological infrastructure. The factors
that attract larger flows of best students worldwide [6].

Innopolis University is a young ambitious university located in the Republic
of Tatarstan of the Russian Federation. The University is strongly focused on
education and scientific research in the fields of IT and robotics. It is located
in the founded in 2012 Innopolis City (near the capital city of the Republic
of Tatarstan Kazan) which also comprises ICT companies and the Innopolis
Special Economic Zone. Innopolis aims to be the major Russian IT hub. In its
development, the University is trying to follow the main trends of IT educa-
tion borrowed from the world’s leading higher education institutions. One of
these trends is internationalization. In the middle of 2018, the Vice-Rector for
Academic Affairs - Head of the Department of Academic Policy and Organi-
zation of Educational Activities Sergei Masiagin proclaimed the importance of
the internationalization of Innopolis University after securing a solid position
and reputation of the University in the Russian Federation. This resulted in a
brand new approach to internationalization and the development of a number
of innovative solutions.

Historically, universities have always been interested in recruiting students
from other countries and even more so today [7], partially as a response to
globalization that leads higher education institutions to incorporate ‘an interna-
tional, intercultural or global dimension into the purpose, function or delivery of
post-secondary education’ [8]. Innopolis University not being an exception since
the very foundation tried to attract international students as well as to hunt
international faculty members. Additionally, the University has been developing
various international initiatives including mobility programs, internships, confer-
ences, etc. Existing for seven years, it could be claimed that the University and
its International Relations Office, as it is responsible for the internationalization
strategy, succeeded in creating a truly international environment on campus.
Besides internationalization at home, Innopolis University considers community
building, especially computer science community building, as an integral part of
internationalization [9].

In this article, we discuss the internationalization strategy of Innopolis Uni-
versity during its seven years of existence. After this introduction the paper
is structured as follows: Sect. 2 (Strategy and Objectives) defines the strategy
adopted to reach the objectives of internationalization; Sect. 3 (Instruments)
describes the instruments that are used to support the strategy and Sect. 4 (Con-
clusion) draws some conclusions on the story of the university and the issue of
internationalization.

2 Strategy and Objectives

Since the establishment of Innopolis University, there was an emphasis placed
on the importance of internationalization and international cooperation for its

Internationalization Strategy of Innopolis University 329

further development, especially in terms of teaching in the English language only,
recruiting staff from different cultures and regions of the world, enrollment of
students from different countries and educational systems, as well as developing
study abroad and joint teaching and research initiatives. Currently, Innopolis
University employs 216 faculty members and research staff from 22 countries
and 771 students at undergraduate, graduate and doctoral levels more than 20
per cent of whom are international students.

Many universities across the world claim their ‘international’ status, but yet
there is no agreement on what the internationalization of a higher education
institution actually means [10]. In particular, Innopolis University defines its
approach to internationalization in line with Knight’s [8] definition as ‘the inter-
national process of integrating an international, intercultural or global dimension
into the purpose, functions and delivery of post-secondary education, in order to
enhance the quality of education and research for all students and staff, and to
make a meaningful contribution to society’. Even though such definition of inter-
nationalization is quite popular among higher education institutions, we consider
it as relatively wide for our purposes and therefore it can be referred to as an
umbrella concept with many different dimensions. That is why to practically use
the concept of internationalization, especially in higher education we argue that
higher education institutions have to move beyond the umbrella concept and
consider application of only certain dimensions of it that we are going to discuss
further.

The mission and vision of Innopolis University ‘to develop a global university’
are supported by its internationalization strategy that aims to increase the inter-
national presence across a wide range of activities and to ensure the regarded
reputation of the University is maintained and positively developed. It is worth
to point out that the growing number of agreements is not an indicator of the
internationalization, the viewpoint that is shared by the majority of the partners
of Innopolis University, and is definitely not a priority for Innopolis University
unlike the high-quality and high level of engagement with partners. As a result
Innopolis University conceives increased opportunities for the internationally-
minded and mobile academics to conduct internationally co-authored and glob-
ally impactful research with a greater propensity for high citation rates, for the
internationally engaged and skilled students to be considered highly employable
worldwide and for the university to have a world-renowned profile and to attract
prominent staff and talented students from all over the world.

Central to the process of the internationalization of Innopolis University is
the imperative of developing the University’s international profile and promotion
of its reputation in education and research as the internationalization strategy
is a constituent part of the Innopolis University Strategic Plan 2024. The inter-
nationalization strategy of Innopolis University is shaped and informed by the
globalization and worldwide interconnectedness within which higher education
operates and reflects the understanding of the importance of actively embedding
global values into the development of all activities on a ‘whole university basis’.
The pervasive nature of internationalization is thus embedded across all three

330 I. Kotorov et al.

main pillars of (1) teaching and learning, (2) research and (3) engagement from
the Innopolis University’s Strategic Plan. Implementation of the international-
ization strategy across the strands is based on the same principles of develop-
ment, review and enhancement of activities in two distinct domains: ‘at home’,
e.g. internationalization of the curriculum, recruitment of international academic
staff and students, integration of international students [10] etc. and ‘abroad’, e.g.
joint ventures with global academic partners, joint research platforms, cotutelles,
etc.

Besides being as previously mentioned a constituent part of the Innopo-
lis University Strategic Plan the internationalization strategy integrates with
the individual faculty strategies, teaching and learning, research and innova-
tion, external engagement and student experience strategies. Together they form
a comprehensive set of mission-driven interventions that support, deepen and
enhance the development of Innopolis University during the lifetime of its strate-
gic plan.

The main objectives which Innopolis University seeks to achieve through the
next phase of internationalization are to:

1. Advance Innopolis University’s leadership in the field of global IT education
and improve the visibility and international esteem of the University and its
research by reforming academic mobility processes and strengthening and/or
expanding partnerships in which Innopolis University has a strategic interest.

2. Deepen and enhance Innopolis University’s unique position as the English-
speaking IT university in Russia by adding a global intercultural dimension
to the University’s curriculum and designing study programs offering global
labor market-driven expertise and competencies.

3. Internationalize campus, curriculum and services to students and staff to
enhance the University’s diversity and intercultural understanding by increas-
ing and supporting the number of international students and staff members
on campus and by embracing cultural diversity.

4. Facilitate the development of international research projects by building
mutually beneficial relationships with key strategic partners and improving
national and international cooperation through joint applications and partic-
ipation in international research projects.

3 Instruments

The internationalization of higher education distinguishes many various strate-
gies and approaches. Committed to its previously described objectives and strat-
egy, Innopolis University uses several instruments in order to promote interna-
tionalization, develop intercultural understanding and foster international sensi-
bility. Among them, the following four instruments of internationalization, that
include (1) global academic partnerships, (2) international academic mobility,
(3) internships, (4) joint research platforms, and (5) cotutelles, are suggested
to be essential for the universities that would like to develop and maintain a

Internationalization Strategy of Innopolis University 331

sustained reputation of an internationally oriented and renowned university.
Although these instruments might be of essential value to the international-
ization of higher education, it does not mean that the establishment of one of
them or even all of them automatically equals the complete internationalization
of a university. In other words, the four instruments presented in this paper are
merely the means for promoting internationalization and not the goals. As the
number of competitors of universities in teaching and research is growing [11],
the instruments are supposed to support and develop the knowledge transfer to
the students as the initial purpose of universities in which knowledge can be
defined as ‘information that is relevant, actionable, and based at least partially
on experience’ [12]. The five instruments discussed in this paper are chosen
based on the probability to meet fewer barriers towards the internationaliza-
tion of the knowledge transfer in human, organizational, strategic and financial
dimensions [6].

3.1 Global Academic Partnerships

In higher education, there are several benefits that global partnerships and well-
established networks of academic and industry partners can bring to a higher
education institute. For instance, a university with a well-established network
of academic and industry partners is more likely to achieve a higher position
in global rankings as reputation represents a key factor in most of the rank-
ings. What is even more important than the position in rankings, reputation
certainly reflects an estimate of the quality of services an institution provides
including teaching and learning, research and engagement. Additionally, a net-
work of partners, especially international partners, might serve as a good sign of
a significant degree of internationalization of its members. Members of such net-
works almost automatically are considered as higher education institutes where
international students, faculty members, and staff will always receive a warm
welcome. Therefore, it could be argued that global academic partnerships devel-
oped into established networks of partners may bring not only greater reputation
but also recognition through exposure and visibility of its members.

In general, an academic partnership can be defined as a formal collaboration
arrangement in which two or more institutions or organizations work together
to get mutual benefits in such areas as teaching and learning or research. The
activities developed through academic partnerships may include course deliv-
ery, course articulation, staff and student mobility, internships, joint research,
joint Ph.D. supervision, and many others. In this paper, we understand global
academic partnership as the term of the Global Learning Partnership that is
successfully used in the healthcare and medicine sectors [13]. As Lees and Webb
[13] argue, such partnerships have to have as their goals the intentions not only
to create international learning opportunity, develop cultural competence and
global-minded workforce, but also to build capacities, create opportunity for
academic resource sharing, include students in host countries and create ben-
efits for the bigger community. Using this model it conceives to be easier for

332 I. Kotorov et al.

the participating institutions to mutually benefit from the global academic part-
nerships and also to benefit as a partnership entity that builds capacities and
expertise in particular aspect of education and international aspect of it that
institutions can later capitalize on the global market. The need for global aca-
demic partnerships is conceived today even bigger as national economies become
more intertwined and increasingly interdependent [11].

To qualitatively improve the internationalization of a university using global
academic partnerships a higher education institution though should not only
consider establishing the partnerships as such but establishing selection criteria
based on which a university will prioritize or choose partners. To ensure the high
quality of partnerships, the International Relations Office of Innopolis University
selects its partners primarily based on the strategic fit of institutions concern-
ing curricula, research activities, and geographic region. The quality of potential
partner institutions is estimated by checking their national and/or international
accreditation, research output, and faculty qualification. The geographic area
of partners can also play a major role in the partner selection process as geo-
graphical proximity can significantly help to develop close cooperation within
the framework of a partnership, especially in terms of international academic
mobility. Such regionalization or clustering of higher education is an emerging
approach that is likely to foster greater regional competition and cooperation
across international boundaries [14]. As such, global academic partnerships can
bring a significant if not an essential contribution to the development of the
internationalization of a higher education institution.

Innopolis University values especially the establishment of high-quality aca-
demic partnerships that create routes for international research collabora-
tions, promote international recruitment, provide enhanced student experiences
through student mobility, potentially enhance employability prospects, assist in
internationalizing the curriculum, strengthen research developments and fund-
ing opportunities, and fundamentally enhance the reputation of the universities
in such partnerships. At Innopolis University, the establishment of a new aca-
demic partnership with a foreign higher education institution normally involves
a proposal and a three-stage approval process. A proposal can originate from
a range of sources including but not limited to students, faculty members, and
staff of Innopolis University or external entity. Global academic partnership pro-
posals are firstly reviewed and approved by the International Relations Office
of Innopolis University. The process of approval includes the assessment of a
partner proposed and estimation of risks and resource commitment entering the
partnership. The operating framework established by the International Relations
Office of Innopolis University for the selection and formation of global academic
partnerships is intended to help to focus on the most valuable academic part-
nerships and proceed confident that there is a system of checks and balances to
ensure quality and to protect the University’s reputation. On the second stage
the negotiated agreement undergoes the approval by the Legal Department and
lastly the academic partnership is approved on the whole-university level.

Internationalization Strategy of Innopolis University 333

Discussing global academic partnerships, we mainly consider two types of
official agreements, in particular, memoranda of understanding (MOUs) and
inter-institutional agreements (IIAs). Typically, MOUs as legal documents cover
general academic activities, such as exchange of best practices and innovative
experience, exchange of faculty members and students for lectures, visits, joint
experiments, internships and implementation of other collaborative projects,
development, and realization of joint educational initiatives and organization
of events of common interest and generally lack the binding power of a contract.
While IIAs are written contracts between parties to work together on an agreed-
upon project or meet an agreed-upon often quantitatively measurable objective,
for example, international academic mobility and/or joint laboratories, and as a
result are legally binding.

3.2 International Academic Mobility

An act of students, faculty members and staff of one higher education institu-
tion (typically known as ‘home institution’) going to a foreign higher education
institution (typically known as ‘host institution’) for the purpose of learning
or teaching is commonly referred to as international academic mobility (IAM).
At Innopolis University, IAM is a cornerstone of internationalization, especially
considering the overall close relationship between IAM and innovation in differ-
ent areas, like highly qualified human capital, research networks and publica-
tions [15]. On the individual level, students greatly benefit from IAM through
the accumulation or enhancement of their productive capacities, such as knowl-
edge, understandings, talents, and skills as well as through the realization of
international dimensions of them [16]. Furthermore, coming out of the comfort
zone through traveling to new destinations might be a transformative journey
of self-discovery where the participants are forced to test themselves in terms of
resourcefulness and self-awareness [17]. On the institutional level, partner uni-
versities that have regular incoming and outgoing traffic build trust between
each other that might serve as a proxy for further cooperation in forms of joint
research, joint publications, joint research platforms, and cotutelles. Globally,
international academic mobility is of a special value as it offers a competi-
tive advantage in a global knowledge economy in the current fierce battle for
brains [18].

Establishing IAM, especially for those universities that are located in non-
English speaking countries, might take significant consideration and planning
as the English language currently has a status of an ‘academic lingua franca’
and students normally expect the courses to be taught in English. Being an
English-speaking university in a non-English speaking country Innopolis Uni-
versity had though fewer barriers to its internationalization. The fact of having
the whole curriculum taught in English even in a non-English speaking country
is likely to significantly raise the chances not only to attract foreign applicants as
full-time students but also to attract students from partner universities within
the framework of IAM. Furthermore, English-medium education provides better
chances for Innopolis University to attract prominent foreign faculty members

334 I. Kotorov et al.

and visiting professors. The foreign faculty members and visiting professors can
surely expect the same level of student engagement as they would’ve expected
in the English-speaking countries as the students have proven sufficient English
skills. Thus, it may even be argued that English was one of the ‘enablers’ to the
University’s IAM development and overall internationalization.

Even though the opportunity of IAM at Innopolis University is offered to
students, faculty member and staff, the student mobility is considered as the
most important part of IAM as it is typically larger at scale and serves as a
groundwork for further general cooperation. Staff and faculty mobility, on the
other hand, have other functions within the mobility framework to share and
integrate best practices in the administration of higher education and to further
research and research practices, respectively. The student mobility at Innopolis
University is taking place on a voluntary basis at all levels of studies, includ-
ing undergraduate, graduate and post-graduate. For the better accommodation
to the world practice of IAM, the curricula at Innopolis University are theme
and competence-based. The learning outcomes of courses are defined as degree-
specific and general competences so that they could be easily matched with
the courses offered at the host university by the students who are willing to go
on exchange. The general competence may include learning skills, ethical com-
petence, work competence, internationalization competence, and development
competence. As Douglas et al. argue [9] the students even of computer science
must develop awareness of other cultures and one’s own cultural point of view.
As a result, mobility programs equip students with necessary skills and inter-
national experience, hence enabling them to better perform in a globalized and
internationally networked working environment.

In the current age of living in a globalized and interconnected world, IAM is
likely to be an increasingly important part of higher education that improves the
multicultural and cross-cultural capabilities of its participants. Moreover, con-
sidering how social networks as structures and new connections made through
travel and communication might define norms and shape decisions, IAM might
become a taken for granted part of studies that most of the students will expe-
rience [19]. Within the framework of IAM, the International Relations Office
of Innopolis University considers its mission to ensure the quality of the IAM
experience alongside the commitment to share and integrate the best practices.
To fulfill this obligation, the International Relations Office of Innopolis Univer-
sity has implemented a procedure with the selection criteria that are based on
merit and without regard to any other factor protected by applicable law (e.g.
race, nationality, religion, race, etc.). The women are particularly encouraged
to participate as they might have more obstacles than men combining work
and family [20]. Addressing inequalities is important issue in higher education
as higher education institutions because of their significant involvement in the
interdependent national labour markets and overall social life might be a good
subject to study the reasons for inequalities production and reproduction [21].
The procedure is open for the access of applicants and is being communicated to
every mobility target group within the promotion period of every mobility call.

Internationalization Strategy of Innopolis University 335

The applicants are being evaluated based upon academic performance, foreign
language skills, involvement in extracurricular activities, interest in learning a
new culture and other factors, therefore, increasing chances for the individual
to gain the most from the IAM and for the University to build further trust
with the partner. Throughout the process of the mobility, namely on the pre-
departure, post-arrival, and repatriation stages, the participants receive support
and advice from the International Relations Office in terms of professional, cul-
tural and personal challenges that they meet or may meet [22]. Even though
it is commonly believed that the success of the overall internationalization of a
higher education institution can be expressed in such quantifiable aspects of it
as the number of international students, the number of education abroad pro-
grams offered, or the proportion of students engaged in education abroad, it is
important to remember that IAM is just one of the instruments and typically
serves as a proxy for further development of internationalization [23].

3.3 Internships

Having commitment to share and integrate the best practices Innopolis Uni-
versity promotes research internships at its laboratories that provide an oppor-
tunity for undergraduate and graduate students to work collaboratively with
the members of the computer science faculty of the University on industry and
academic projects. The goals of such internships are (1) to provide experience
of application of the skills learned during classes to the real-world or close to
the real-world projects; (2) to build research capacities among students; (3) to
produce new knowledge; and (4) to promote Innopolis University as an English-
speaking university and a place to continue your studies. Internships usually
have a workload between 10 and 60 ECTS depending on the duration and hours
per week dedicated to the work for the laboratory. The internships as a research
mobility are likely to experience an increase in scope globally due to the rise of
the knowledge economy and the impact of globalization [11].

Acknowledging the fact that students might be resistant to go study or do the
internship in a non-English speaking country, Innopolis University offers several
types of internships, including onsite, virtual and combined. The onsite intern-
ships are carried out on the campus of Innopolis University with the research
facilities and equipment provided by the University. Virtual internships though
are meant to be carried out remotely what might happen due to several reasons
ranging from the fear to come to a different especially non-English speaking coun-
try, disability to other personal reasons that do not let the intern leave his/her
country including the outbreaks of the viruses such as the recent COVID-19. And
finally, combined internships are the combination of both with the virtual part
of the internship preceding or succeeding the onsite part. Applications for any
type of the internship are accepted from undergraduate and graduate students
from any university, not necessarily from partner universities. However, it may
be preferable to review the applications from partner universities as the quality
of the students from those universities might be already known as high. After the
application is received there would be typically two interviews scheduled with

336 I. Kotorov et al.

one of the members of faculty and a representative of the International Relations
Office. At first, the candidate needs to fulfill the requirements of the laboratory
that he or she applies to, after what the International Relations Office helps
to decide on the way and the period of internship delivery and also helps to
solve administrative problems. Unlike IAM that is typically carried out between
partner universities, regular internships can lead to an academic partnership,
especially if any student from any university can apply for an internship posi-
tion throughout the year as it is established at Innopolis University.

3.4 Joint Research Platforms

Despite the fact that higher education institutions face growing competition even
in research, they remain to be the biggest accumulators of scientific human cap-
ital and hubs of scientific networks [11]. In higher education, the joint research
platform might be referred to differently, for instance, joint laboratory, double
laboratory, mirror laboratory or virtual laboratory. Fundamentally, they all rep-
resent research-based cooperation between two or more institutions. For the inex-
perienced in this type of international cooperation institutions, it might be more
beneficial to establish a joint research platform of two partner institutions at
first. The International Relations Office of Innopolis University considers estab-
lishing joint research platforms as a further development of existing partnerships
between higher education institutions. In other words, there must be some form
of cooperation between particular professors and/or faculties, for instance, joint
research, joint publications, joint course delivery or articulation, preceding the
establishment of a joint research platform. Normally, those professors become
the heads of the joint research platform established. Based on the trust of the
previous cooperation we argue it is easier to create such platforms that will allow
participating institutions to develop grander mutual research projects, attract
funding from complementary sources and build a multidisciplinary team around
those projects with the potential to attract visiting scientists and trainees from
Ph.D., Master’s and Bachelor’s level students.

After the establishment of a joint research platform, its team assigned to
the mission of a new project, obtain several key opportunities that otherwise
would not occur, for example, (1) inter-institutional cooperation with postdoc-
toral researchers, interns, graduate and undergraduate students that could result
in joint publications and participation in conferences (particular interest should
be placed on those students that are oriented on the future academic career);
(2) platform creation for the work with postdoctoral researchers; (3) platform
creation for the work with Ph.D. students and a further selection of elite can-
didates for cotutelle; (4) experience of coordinating an international project for
the team and other attracted participants.

On the initiation stage, the costs of establishing a joint research platform
can be as low as nearly zero, especially if it is based on the existing partnership
between professors and/or faculties and if the partner universities have certain
already existing research capacities dedicated to the research area of the joint
project. The further development and expansion of research resources though can

Internationalization Strategy of Innopolis University 337

be funded by not only the participating institutions but also by taking grant or
commercial projects and research opportunities. The research opportunities of
the involved in the projects institutions and research cooperation with other
organizations offer a chance to raise awareness about the issue and increase the
citation rate of the institutions as the research and publications with a larger
number of participants are likely to get bigger exposure.

Based on the successes of a joint research platform, the partners might build
further initiatives such as a joint learning platform that could serve as an instru-
ment for (1) the development of double degree programs for Master’s and Bach-
elor’s level students; (2) development of unique courses to be taught at partner
institutions; (3) development of unique study programs to be taught at partner
institutions; (4) development of intensive study and research programs to bring
together students and researchers from the partner institutions; (5) establish-
ment of dedicated and mutually taught summer schools that might take place
on the campuses of different universities during the year.

Procedurally, if the proposal of a joint research platform gets the green light
from the administrations of the participating institutions, the heads of the plat-
form are to set and prioritize goals, define deliverables with the milestones, estab-
lish and assign responsibilities for the team members, create a project schedule
and complete a risk assessment. Typically, the planning stage provides a well-
formulated, data-informed and mutually agreed upon strategy with goals and
objectives, with solid resource and/or fiscal plan to support the strategy and
each goal and objective and accountability process to monitor the progress on
further stages of implementation and control. The practical experience of Innop-
olis University shows that the establishment and planning processes of such
projects will face fewer bureaucratic procedures and less resistance from the
administrations of the participating institutions if the joint research platform
uses as little additional resources as possible.

As it is regulated at Innopolis University, the role of the International Rela-
tions Office is to select the partners for the establishment of a joint research
platform based on the strategy and objectives of the internationalization of the
University. Upon selection, the largest part of the involvement of the Interna-
tional Relations Office belongs to the first stage of the initiation of cooperation.
The main tasks are to initiate, negotiate and define agreements required for
the establishment of a joint research platform. After the official documents are
signed by all partner institutions, the International Relations Office of Innop-
olis University has to make sure that the strategy sessions are carried out and
a proposal of strategy and goals for the joint research platform as a result of
those sessions is submitted for approval by the Faculties and administrations
of partner universities. Upon mutual approval of the strategy, the International
Relations Office’s primary job becomes to track the project progress in terms
of milestones and goals. The heads of the platform are responsible for tracking
the activities and resources the reports of which they normally submit to the
International Relations Office to keep the paperwork of the project at one place.
Typically, the team working at the joint research platform reports the results 2

338 I. Kotorov et al.

times per year for the assessment by the heads of the platform and the Inter-
national Relations Offices of every partner. The purpose of involvement of the
International Relations Office throughout the whole process of establishing and
operating a joint platform is to have a third party that is not directly benefit-
ting from the partnership but can serve the partner universities as an enforcer of
the strategy approved. The process of initiation, planning and implementation
described in this section is as it is used at Innopolis University when consider-
ing an establishment of a joint research platform. However, the process can be
adjusted to certain regulations and requirements of the partner universities.

3.5 Cotutelles

A cotutelle agreement is an inter-institutional agreement that allows two part-
ner higher education institutions to co-supervise a Ph.D. candidate that after
successful evaluation of his/her doctoral degree dissertation receives a diploma
from each of the partner institutions. A term ‘cotutelle’ originates from French
practice of ‘co-tutoring’. Establishing a cotutelle means not only benefit for the
student who will manage to get two diplomas but it can also create a ‘triple
win’ situation where the student, his home university and the cotutelle partner
university win. It may be more beneficial to consider this type of partnership
when the study program that a Ph.D. candidate as a result of this type of agree-
ment gets could not be delivered otherwise. Also, such research training might
be the first time when the student is exposed to international research networks
[11]. In general, such agreement must regulate the procedures for enrollment,
supervision and the evaluation of the candidate’s doctoral degree dissertation
and the international cooperation within the agreement.

When entering cotutelle agreements, especially with European higher educa-
tion institutions, Innopolis University gets an opportunity to offer its students a
chance to get a degree recognized worldwide. The European institutions though
get the access to the best candidates as Innopolis University only considers top
performing students for the co-supervision opportunities. Moreover, to ensure
that only the top performing students are enrolled into a double degree program
Innopolis University introduces a program of excellence at the graduate level
with the future incentive to be enrolled into a double Ph.D. program.

Such partnership is an attempt to solve the issue of inequalities derived from
the non-recognition of qualifications by certain national educational and labour
market systems [21]. Furthermore, the non-recognition of degrees and different
legislations may create certain challenges for cotutelle. The establishment of
cotutelle agreements might be challenging as the terms that such agreements use
are likely to differ from country to country. Failure in matching the bureaucratic
constrains might result in failure of the partnership. Furthermore, as cotutelle is
a prolonged partnership for at least 3 years, there is always a risk of legislation
change that will hinder the implementation of the program. Besides being a long
and a complex engagement the co-supervision can always be restrained by a lack
of interested students, dedicated faculty or continuous financial support.

Internationalization Strategy of Innopolis University 339

4 Conclusion

Despite being an internationally oriented university from the very beginning,
one and a half years ago, Innopolis University has reconsidered its approach
to internationalization and revitalized all its international activities. With the
dedication to its newly advised mission and vision, the university and interna-
tionalization strategies Innopolis University successfully gained the experience
of development of the internationalization of a higher education institution and
international cooperation in such forms as global academic partnerships, student
and staff mobility including Erasmus+ programs, internships, joint research plat-
forms, joint Ph.D. supervision and other international joint projects. Although
the instruments of the internationalization described in this paper helped signif-
icantly Innopolis University, they have their limitations and should be adopted
according to the policies of a particular university. The limitations of those
instruments and their universality can be a subject for further research. It is also
recommended that a comprehensive examination of risk management of inter-
nationalization be undertaken as the situation with COVID-19 demonstrated
that there are circumstances that might significantly hinder the efforts of higher
education institutions to internationalize their activities. With the extensively
developed network of international higher education institutions, established
student and staff mobility programs, collaboration with such organizations as
CERN [24], collaborative supervision of Ph.D. students with the University of
Toulouse - Jean Jaures II, the University of Southern Denmark and the Uni-
versity of Messina, Innopolis University is aiming at maximizing the benefits of
global trends without compromising on the excessive emphasis on the market
needs from higher education and avoiding the risks of losing the fundamental
academic values in favor of a higher position in the global rankings [25].

References

1. Gao, Y., Baik, C., Arkoudis, S.: Internationalization of Higher Education, pp. 300–
320. Palgrave Macmillan, London (2015)

2. Kristensen, K.H., Karlsen, J.E.: Strategies for internationalisation at technical uni-
versities in the Nordic countries. Tert. Educ. Manag. 24(1), 19–33 (2017). https://
doi.org/10.1080/13583883.2017.1323949

3. Soliman, S., Anchor, J., Taylor, D.: The international strategies of universities:
deliberate or emergent? Stud. High. Educ. 44(8), 1413–1424 (2019)

4. Decree of the president of the russian federation. http://www.kremlin.ru/acts/
bank/35263. Accessed 23 Aug 2018

5. Project 5top100. https://5top100.ru/en/. Accessed 23 Aug 2018
6. Pagani, R.N., Ramond, B., Silva, V.L.D., Zammar, G., Kovaleski, J.L.: Key fac-

tors in university-to-university knowledge and technology transfer on international
student mobility. Knowl. Manag. Res. Pract. 1–19 (2019)

7. Baker, W.: English as an academic lingua franca and intercultural awareness: stu-
dent mobility in the transcultural university. Lang. Intercultural Commun. 16(3),
437–451 (2016)

8. Knight, J.: Updating the definition of internationalization (2003)

https://doi.org/10.1080/13583883.2017.1323949
https://doi.org/10.1080/13583883.2017.1323949
http://www.kremlin.ru/acts/bank/35263
http://www.kremlin.ru/acts/bank/35263
https://5top100.ru/en/

340 I. Kotorov et al.

9. Douglas, S., Farley, A., Lo, G., Proskurowski, A., Young, M.: Internationaliza-
tion of computer science education. In: Proceedings of the 41st ACM Technical
Symposium on Computer Science Education, pp. 411–415 (2010)

10. Robson, S., Almeida, J., Schartner, A.: Internationalization at home: time for
review and development? Eur. J. High. Educ. 8(1), 19–35 (2018)

11. Jacob, M., Meek, V.L.: Scientific mobility and international research networks:
trends and policy tools for promoting research excellence and capacity building.
Stud. High. Educ. 38(3), 331–344 (2013)

12. Leonard, D., Sensiper, S.: The role of tacit knowledge in group innovation. Calif.
Manag. Rev. 40(3), 112–132 (1998)

13. Lees, J., Webb, G.: A review of the literature to inform the development of a new
model of global placement: the global learning partnership. Phys. Ther. Rev. 23(1),
40–49 (2018)

14. Gao, Y., Baik, C., Arkoudis, S.: Internationalization of higher education. In: Huis-
man, J., de Boer, H., Dill, D.D., Souto-Otero, M. (eds.) The Palgrave International
Handbook of Higher Education Policy and Governance, pp. 300–320. Palgrave
Macmillan, London (2015). https://doi.org/10.1007/978-1-137-45617-5 17

15. Siekierski, P., Lima, M.C., Borini, F.M., Pereira, R.M.: International academic
mobility and innovation: a literature review. J. Glob. Mobility Home Expatriate
Manag. Res. 6, 285–298 (2018)

16. Cao, C., Zhu, C., Meng, Q.: A survey of the influencing factors for international
academic mobility of chinese university students. High. Educ. Q. 70(2), 200–220
(2016)

17. Brown, L.: The transformative power of the international sojourn: An ethnographic
study of the international student experience. Ann. Tourism Res. 36(3), 502–521
(2009)

18. Riaño, Y., Van Mol, C., Raghuram, P.: New directions in studying policies of
international student mobility and migration. Globalisation Soc. Educ. 16(3), 283–
294 (2018)

19. Beech, S.E.: International student mobility: the role of social networks. Soc. Cult.
Geogr. 16(3), 332–350 (2015)

20. Nikunen, M., Lempiäinen, K.: Gendered strategies of mobility and academic career.
Gend. Educ. pp. 1–18 (2018)

21. Bilecen, B., Van Mol, C.: Introduction: international academic mobility and
inequalities. J. Ethnic Migr. Stud. 48, 1241–1255 (2017)

22. Conroy, K.M., McCarthy, L.: Abroad but not abandoned: supporting student
adjustment in the international placement journey. Stud. High. Educ. 1–15 (2019)

23. Green, M.F.: Measuring and assessing internationalization. In: NAFSA: Associa-
tion of International Educators, vol. 1, pp. 1–26 (2012)

24. Bauer, R., et al.: The biodynamo project: experience report. In: Advanced Research
on Biologically Inspired Cognitive Architectures, pp. 117–125. IGI Global (2017)

25. Jibeen, T., Asad Khan, M.: Internationalization of higher education: potential
benefits and costs. Int. J. Eval. Res. Educ. (IJERE) 4, 196–199 (2015)

https://doi.org/10.1007/978-1-137-45617-5_17

Finding the Right Understanding:
Twenty-First Century University,

Globalization and Internationalization

Iouri Kotorov, Yuliya Krasylnykova, Petr Zhdanov(B), and Manuel Mazzara

Innopolis University, Innopolis, Republic of Tatarstan, Russian Federation
pe.zhdanov@innopolis.ru

Abstract. The “idea of a university” has been a subject of contested
discussions for over a century. There is a significant number of different
views on what it means to be a university of the twenty-first century
as well as on its purpose and primary functions. Today, universities as
any other organization experience transformations forced by the current
trends, including globalization. As a result, twenty-first century universi-
ties have to come up with the strategies and tools such as international-
ization strategy that could help them to utilize the advantages that the
twenty-first century brings and to minimize the temporary influences of
today that could undermine the essence of the “idea of a university”.
The aim of this paper is to discover the concept of a university in the
twenty-first century, the impact of the ever growing globalization and the
role of institutional internationalization in today’s world. Exploring the
interconnected nature of a twenty-first century university, globalization
and internationalization this paper seeks to report a neglected aspect of
the understanding of the “idea of a university”, especially by such univer-
sity community as professional staff. An implication of this paper is the
possibility to popularize the “idea of a university” in order to promote
a contribution to its development by communities other than academics
and students.

1 Introduction

It is hard to disagree with the claim that in the twenty-first century organizations
including universities tend to operate within ever more interconnected regional,
national and transnational networks that still might be influenced by the deci-
sions of governments and market forces. Despite the fact that governments do
not always take decisions considering the global perspective instead often prefer-
ring national interests, the universities can though greatly benefit through the
participation in global networks because such networks typically have greater
power to lobby, attract larger sources of funding and conduct grander projects
[1]. These benefits suggest that universities have to think and research more
globally and riskier, in other words, past their local comfort zone [2].

Today, universities build networks not only because of the geographical prox-
imity but also based on their identifications, such as “research-led universities”,
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 341–353, 2020.
https://doi.org/10.1007/978-3-030-57663-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_22&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_22

342 I. Kotorov et al.

“young universities” or universities that have a particular religious standpoint
[1]. Development of such networks definitely supports the idea of growing global-
ization which itself suggests the interconnectedness between countries and orga-
nizations [3]. Furthermore, globalization that might have started to influence
universities already in the 1970s and 1980s, is also pushing them to change
their nature or the “idea of a university” from the classical notion of “a place
of teaching universal knowledge” [4] to the tailored for economic utilitarian-
ism organization repurposed to the preferences of transnational organizations
[5]. The universities of the twenty-first century as a result had most likely to
be transformed not only internally with the “idea of a university” reimagined
but also externally coming up with new strategies and tools such as interna-
tionalization strategy that could help them to develop their global capacities
and facilitate partnerships that would be beneficial for their global development
and would not allow to be influenced extensively by the temporary needs of the
private sector.

In this article, we explore the nature of universities in the twenty-first century,
the impact of challenging external factors such as globalization, competitiveness,
and the knowledge-based economy, and examine the internationalization as an
intentional answer to external challenges. Following the introduction the paper is
structured as follows: Sect. 2 discovers the “idea of a university”, Sect. 3 focuses
on the factors that led to a change of the universities in the twenty-first cen-
tury, Sect. 4 describes the importance and advantages of the internationalization
process while Sect. 5 provides certain conclusions.

2 The Idea of a Twenty-First Century University

The “idea of a university” as “a place of teaching universal knowledge” [4] is
more than a hundred years old. Already in 1810 Humboldt suggested that there
should be two types of higher scientific institutions: (1) academies that must be
free to choose what and how they are going to research and (2) universities that
are supposed to develop practical knowledge to transfer it to its students [6]. The
second type might though mislead the reader into believing that the universities
have to basically serve the industries and organizations that their students are
going to be employed in. Contrary to this belief the Humboldtian idea of such
universities indicates that the science was meant to develop autonomously from
the political agenda and economic tendencies and the ultimate goals of science
were supposed to intrinsically demonstrate the excellence and the highest scien-
tific and academic aspirations [5]. Acknowledging the importance of science and
scientific discoveries, Newman [4] also supported the idea of the importance of
knowledge transfer for the universities arguing that there would be no need for
students if science was a primary concept for the “idea of a university”.

Since the original publications of the works by Wilhelm von Humboldt in
1810 and Will John Henry Cardinal Newman in 1899, the concept of the “idea
of a university” has most certainly evolved. Nowadays, Salisbury and Pesete [7]
argue that the discourse over the previous century was historically restricted to

Finding the Right Understanding 343

academics and students and thus might have left certain university communities
out of the conversation but whose role might be of an essential value especially
for the university as an institute. Being disengaged such communities as profes-
sional staff of a university might not even fully grasp the “idea of a university”
and therefore might be able to contribute much less to its development and the
development of a university as an institute [7]. The “idea of a university” itself
has always been a multidisciplinary phenomenon with no clear borders between
history, philosophy of education and sociology [8]. Barnett claims that the mean-
ing of “being a university” becomes increasingly inclusive over the years: from
the years of the orientation on knowledge, truth and understanding to the focus
on financial, societal and power expansion and finally to the recent develop-
ment of such areas as rules, regulations, risks, audits, procedures, systems and
processes [8].

In the twenty-first century when organizations can have extremely complex
organizational structures and mixed functions, it might be critical to differenti-
ate: (1) a university as an idea and (2) a university as an institute. The former
suggests the general purpose and functions of a university while the latter rep-
resents the form or organizational structure. One of the major characteristics
of the idea of a twenty-first century university is the so-called ‘third mission’,
the concept that has already been discussed for over two decades [9]. The ‘third
mission’ is an attempt to formalize the socio-economic role of universities in
addition to their classic functions of teaching and research. It can be argued
that a twenty-first century university may be found being pressured simultane-
ously by (1) government regulations to accept the new mission and obligations
to contribute to the development of the society and (2) industry demands to
follow the trends of market forces in teaching and research, especially the cur-
rent trend of digitalization. As Jongbloed [10] suggests government regulations
and market forces turn the universities of the twenty-first century into hybrid
organizations that have to adjust their objectives in teaching, research and con-
tribution to society. Depending on which pulling force between government and
private sector a university relies to a greater extent, it will produce greater num-
ber of either professional or academic publications [10]. Even though generating
a higher share of funding from the private sector may seem to liberate a univer-
sity from the government, it is likely to limit teaching and research to the current
trends of the market forces and force a university to almost forget the Humbold-
tian idea of the highest scientific and academic aspirations. For a twenty-first
century university as an institution, Nelles and Vorley [9] suggest that the ‘third-
mission’ pushes them to design and build entrepreneurial architecture meaning
establishing departments that will be responsible for the commercialization of
the research. It is worth to point out that the degree of the changes brought to
a university by the ‘third-mission’ is likely to differ depending on the type of a
university: public or private, local or global, liberal or conservative. In general,
such evolution of the “idea of a university” and university as an institute is likely
to be caused not only by the development of the discourse as such but by certain
external factors, as well.

344 I. Kotorov et al.

Also, it is worth noting that there are two approaches to higher educa-
tion. The initial ‘university’ approach was originally introduced during the times
when the world was seen as a coherent whole and the word, a ‘university’, itself
meant “a whole unit or a single community—whether of fishmongers or schol-
ars (both masters and students)” [11]. It was only later when the meaning of
the word became strongly associated with a scholar community as it is now. In
the 1960s though Clark Kerr introduced a new approach namely “multiversity”
that reflected a new form of higher education institution which combined tradi-
tional undergraduate colleges, professional schools, and graduate research schol-
arship, in other words, it represented a community of communities with mixed
and potentially conflicting interests [12]. Even though this approach “glorified a
truly American model, infusing the best of British and German traditions” [12],
it was also meant to especially stress the connection between certain groups of
scholars and external patrons meaning that the multiversities almost became the
retailers of knowledge [11]. Today, this term might characterize what is known
as ‘research universities’ that are engaged in teaching, research and knowledge
transfer [13]. In the twenty-first century, it is even argued that we have moved
into yet another face of academic development, suggesting the appearance of
new approach of ‘transversity’ which reflects the current trends of continuous
rather than episodic learning and education delivery through the Internet as if
the higher education of the twenty-first century transcends one place, population
and purpose [12].

3 Globalization, Competitiveness and the
Knowledge-Based Economy in the Twenty-First
Century

The external circumstances that the universities operate in have drastically
changed over the last century. Even though the universities internally might
operate based on the previously mentioned strong idealistic principles as defined
by the classic scholars, they can barely allow themselves to ignore the trends
and the changes of the twenty-first century and moreover are often pushed by
the government to respond and develop certain policies accordingly. As several
scholars [5,14] suggest there are three major narratives that have significantly
affected the development of the “idea of a university” and a university as an
institution at the end of the twentieth century and the beginning of the twenty-
first century: (1) globalization, (2) competitiveness and (3) the knowledge-based
economy.

Globalization is likely to be a phenomenon that is the largest in scope among
those three. Even though it is a complicated and multi-faceted process, as a whole
it is not a new phenomenon and has already influenced the world for over the past
three decades. With its great power and broad effects on almost every aspect of
our lives it has certainly been a subject of many debates and grabbed significant
attention in the scholar community. Due to the still increasing trend of global-
ization, transforming not only higher education but all areas of the organization

Finding the Right Understanding 345

and cooperation in the world, investigating the impact of economic globalization
on higher education is prominent and as a result it is worth understanding what
is meant by economic globalization per se. As it is defined by Babones [15], the
economic globalization is:

“one of the three main dimensions of globalization commonly found in coun-
tries, academic literature, with the two others being political globalization and
cultural globalization, as well as the general term of globalization.”

Having found the place of economic globalization among other dimensions
it is important to point out to the definition of the United Nations [16] that
suggests the economic globalization refers to:

“the increasing interdependence of world economies as a result of the growing
scale of cross-border trade of commodities and services, flow of international
capital and wide and rapid spread of technologies. It reflects the continuing
expansion and mutual integration of market frontiers, and is an irreversible trend
for the economic development in the whole world at the turn of the millennium.”

Since the process as it is described above is irreversible, the effects of economic
globalization need to be discovered more closely. Samimi and Jenatabadi [17]
argue that economic globalization effects:

“flows of goods and services across borders, international capital flows, reduc-
tion in tariffs and trade barriers, immigration, and the spread of technology, and
knowledge beyond borders.”

In higher education, globalization is not a new trend either, but what might
be new in the twenty-first century is its form and intensity [2]. The definitions of
globalization and internationalization are sometimes used interchangeably, but
for the purpose of this paper the globalization will be referred to as the eco-
nomic and academic trends of the twenty-first century and internationalization
as the policies and practices developed by universities to stay ideologically and
institutionally up to date with the global academic environment [18]. Although
globalization means that several global trends influence the universities across
the world, it does not equal to standardization as the responses might signifi-
cantly differ. As Tight [2] argues the number of general approaches to global-
ization might be limited to: (1) pragmatic using which universities desperately
attracting international students and staff and thus project power globally and
(2) idealistic with the universities openly critique the international practices and
only adapt those that can enhance student experience and curriculum.

The other two factors of competitiveness and the knowledge-based economy
are most likely the products of the influence of the twenty-first century on higher
education and the proliferation of neoliberalism. With the growth of economy
becoming prevailing concern of states, governments are likely to push local uni-
versities to their economic success intending to increase their productivity and
obtaining of a larger world “market share” in higher education and research
[14]. To fully grasp the idea of competitiveness the concept of a world-leading
university must be discussed. If in the twentieth century the leading universities
were likely defined by the number of staff with outstanding awards, the twenty-
first century brought the complex systems of quantitative evaluations that help

346 I. Kotorov et al.

to rank universities. To compare the universities in their key activities today
there are ranking agencies such as QS World University Rankings, Times Higher
Education and Shanghai Ranking. Based on these annual rankings the adminis-
tration of universities, governments and other stakeholders in higher education
often take decisions. While the economic growth might become the most sig-
nificant quantitative result for the governments to evaluate their successes, the
management of the private companies leverage more influence on universities
through their direct or indirect participation in international organizations and
state bureaucracies almost dictating what skills the students have to have when
graduated and what research is needed by the industry [5]. Even though univer-
sities have to maneuver among such actors in higher education as governments,
global governance institutions, ranking agencies and transnational corporation,
universities as a unique educational form have to remember their primary goal
of promoting the common learning of mankind [5].

The third factor of the knowledge-based economy became certainly of an
extraordinary intensity in the twenty-first century with its growing digitalization
and extreme demand in particular types of experts such as computer science
specialists. According to Chochliouros et al. [19], the knowledge-based economy
is

“a form of modern economy referring to a specific structural transformation,
where the fast creation of new knowledge and the improvement of access to
various knowledge bases increasingly constitute the main resource for greater
efficiency, novelty and competitiveness.”

It is worth to note though that already at the start of the post-industrial era
the role of knowledge might have become even more pervasive than the role of
capital and land [20]. The increasing since then importance of knowledge and
knowledge-based professions has definitely changed the landscape of teaching
and research, the two primary functions of a university. Pugh et al. [21] argue
that the emergence of the knowledge-based economy has pushed universities
to the commercialization and maximization of their economic application. The
universities as the commonly recognized accreditors of professional knowledge
and guarantor of the knowledge base may thus have become less ideological in
their pursuits but rather a market-driven organization [20]. Being the engines of
the knowledge-based economy it is clear that the twenty-first century universities
obtained a unique opportunity to gain substantial funding from the industry
that is suffering from the insufficient number of the experts and research in their
industry.

As a consequence of all these fast changes, the profile of a modern univer-
sity looks very different from even a couple of decades ago. However indepen-
dent the universities across the world are, staying aside from the globalization,
competitiveness and the knowledge-based economy they might lose significant
advantages that these factors bring but they also always should consider if those
changes will bring them further away and how far away from their primary
missions.

Finding the Right Understanding 347

4 What Is Internationalization?

As the twenty-first century unfolds and globalization brings unprecedented
changes into economy, politics and society, internationalization of the univer-
sity has become a strategic priority for numerous universities. With the growing
pace of globalization, competitiveness and the knowledge-base economy, univer-
sities of the twenty-first century could not stay ideologically and institutionally
unchanged and had to begin to adapt to the changing circumstances. More-
over, as argued by the American Council on Education [22], if a nation wants
to prosper in the twenty-first century, its higher education institutions must
become borderless. Higher numbers of the mobility of students and staff, full-
time international students and international collaborations between researchers
and teachers on individual level lead the universities of the twenty-first century
to the necessity of an institutional answer that is often named as international-
ization. The emphasis within the discourse of internationalization has often been
put on the importance of understanding other nations, languages and cultures
that historically led to the introduction of various initiatives in higher education,
for instance, Erasmus, Camett and Tempus, the student mobility programs in
Europe.

Although the internationalization as such is far from a clearly defined and
completely understood concept of higher education [23], one of the most encom-
passing definitions of internationalization may be suggested by Knight [24] who
defines it as:

“the process of integrating an international, intercultural or global dimension
into the purpose, functions or delivery of post-secondary education.”

Analyzing Knight’s definition it can be claimed that internationalization is
a continuous process that is shaped by the effects of globalization according
to which universities need to reconsider their purpose, functions and delivery of
their services. In other words, the universities are basically changing the idea of a
university and also are changing themselves as institutions. A more detailed defi-
nition of internationalization and especially in terms of the institutional changes
of universities can be found in the works of Ellingboe [25] who suggests interna-
tionalization to be:

“the process of integrating an international perspective into a college or
university system. It is an ongoing, future-oriented, multidimensional, interdis-
ciplinary, leadership-driven vision that involves many stakeholders working to
change the internal dynamics of an institution to respond and adapt appropri-
ately to an increasingly diverse, globally focused, ever-changing external envi-
ronment.”

It is important to note that Ellingboe points out the role of leadership in the
process of internationalization and acknowledges the role of other stakeholders
demonstrating the inter-connectedness of today’s world. Another definition of
internationalization, in particular suggested by Hudzik [26], says that interna-
tionalization is:

348 I. Kotorov et al.

“a commitment, confirmed through action, to infuse international and com-
parative perspectives throughout the teaching, research and service mission of
higher education [26].”

Unlike previously described definitions, Hudzik suggests that international-
ization should be committed to and also can be instilled. Therefore, according
to this definition, it can be argued that internationalization is a process of engi-
neering and implementation of particular policies and programs that contribute
to the international dimension of a university. Supporting this idea Bartell [23]
claims that international literacy is a crucial part of the cultural, technological,
economic and political health of mankind in the twenty-first century.

Contrary to the previous relatively broad definitions some of the scholars
though define the contribution of internationalization to the international dimen-
sion of a university in an extremely specific manner expecting individual students
to:

“speak two to three languages in addition to English at the level of 7 or
above on a 10 point scale, where zero means no knowledge of the language and
10 refers to native knowledge of the language, and reside in at least two non-
English speaking countries, in non-Americanized environments, for at least one
year each [27].”

Even though the international experience may now have become less of an
exclusive option of the elites, such definition of a student with international com-
petences still seems to be hardly achievable, especially on a scale. Considering
the existence of such a specific definition it is worth mentioning that although
the internationalization can be expressed in certain quantitative results to be
achieved, it might be more beneficial to think of it, as it has been described
above, as a conceptualized transformative process that involves several stake-
holders and is aimed at the adaptation to the global tendencies and also helps
to develop teaching, research and service mission of higher education.

Global competition is most certainly driving universities of the twenty-first
century towards the preference of quantitative over qualitative evaluations, espe-
cially of those mentioned by ranking agencies. However, such a tendency to have
quantitatively comparable results often leads the administrations of universities
to fall into believing that the numbers of international agreements, numbers of
international staff employed as well as numbers of international mobility can
truly reflect the internationalization of a university. It may be understandable
that administrations of universities and governments would like to have mea-
surable results from internationalization as it is a relatively new instrument and
thus may still need to prove its workability, but the problem is that measurable
results do not always reflect the degree and the entirety of the advantages of
internationalization. Several of the main advantages of the internationalization
are often mentioned as: (1) extensive global cooperation including but not lim-
ited to joint research and mobility; (2) the access to the global and typically
larger sources of research funding; (3) curriculum innovation; (4) higher quanti-
tative results in the areas defined by the leading ranking agencies that may lead
to a higher position in the world university rankings. Even though these types of

Finding the Right Understanding 349

benefits may seem attractive, especially for the management of a university, it
is also important to remember that a university should qualitatively enhance its
primary functions of teaching, research and its ‘third mission’ of socio-economic
contribution.

Discussing the advantages that internationalization can bring, it is critical to
mention the practically-oriented concept of ‘comprehensive internationalization’
defined by CIGE [28] as:

“a strategic, coordinated process that seeks to align and integrate interna-
tional policies, programs, and initiatives, and positions colleges and universities
as more globally oriented and internationally connected institutions. This pro-
cess requires a clear commitment by top-level institutional leaders, meaningfully
impacts the curriculum and a broad range of stakeholders, and results in deep
and ongoing incorporation of international perspectives and activities through-
out the institution.”

The main underlying messages of this definition may be that (1) compre-
hensive internationalization is a process of integration of international policies
throughout the whole institution and that (2) it is a complex in its institutional
nature process involving institutional leaders, curriculum changes and engage-
ment with various stakeholders. To visualize the idea clearly, CIGE [28] offers a
model with six vertical pillars that represent: (1) articulated institutional com-
mitment, (2) administrative leadership, structure, and staffing; (3) curriculum,
co-curriculum and learning outcomes; (4) faculty policies and practices; (5) stu-
dent mobility; (6) collaboration and partnerships. Across those six pillars at the
bottom the ‘comprehensive internationalization’ is depicted as a double arrow
linking the pillars and as if simultaneously assisting in their expansion. Such
inter-connectedness of individual pillars through the ‘comprehensive internation-
alization’ also represents the idea that progress or lack of it in one area can have
an impact on the others [28].

As the curriculum is one of the main tools with the help of which students
can get international literacy and international competence and as campuses are
the locations where the internationalization is supposed to take place, it could
be claimed that the internationalization of the curriculum and the internation-
alization of campuses are the subcategories of the ‘comprehensive international-
ization’. Curriculum, co-curriculum and learning outcomes, in particular, as one
of the six defined by CIGE [28] pillars of ‘comprehensive internationalization’
represents the obligation:

“of colleges and universities to prepare people for a globalized world including
developing the ability to compete economically, to operate effectively in other
cultures and settings, to use knowledge to improve their own lives and their
communities, and to better comprehend the realities of the contemporary world
so that they can better meet their responsibilities as citizens.”

To fulfill this obligation a university must explicitly incorporate into the con-
tent of its formal and informal curriculum intercultural dimension and intercul-
tural learning objectives as well as learning and assessment activities to be able to
measure the progress of intercultural competencies as without designated tasks,

350 I. Kotorov et al.

attendance sheets, credits and grades it might be difficult to track such develop-
ment [29]. Even though these solutions might sound easily implementable, espe-
cially on paper, in the process of curriculum internationalization a university might
face significant challenges as intercultural interactions are intrinsically intense and
risky and therefore it can be beneficial if the teaching staff would be trained to
obtain certain knowledge and skills in this area [29]. Curricular and co-curricular
programs are often influenced by an institutional culture that can be rigid and
slow to transform. The internationalized curriculum is supposed to provide tasks
and learning activities to the students that could not be completed without them
engaging in a meaningful exchange of cultural information [29]. As a result of an
internationalized curriculum as proposed by Leask [29], the students are to engage
with internationally informed research and cultural and linguistic diversity during
their studies and graduate as global professionals and citizens with international
and intercultural perspectives.

The development of intercultural competencies of students is also significantly
dependent on the campus environment. Therefore, the internationalization of the
campus is likely to be another subcategory of ‘comprehensive internationaliza-
tion’ that represents a number of interventions for the support and development
of international and intercultural interactions on campus and complement the
formal program learning [29]. As argued by the British Council [30] the presence
of international students on campus does not in itself equals the international-
ization of campus pointing out to the importance of integration of international
students in communities and classes and considering integration as an integral
part of campus internationalization that potentially can help the further pro-
motion of a university and even a nation. Although student mobility is also
often highly prioritized as such, for the purpose of this paper it is considered
as the cornerstone and the ‘face’ of internationalization [31] and thus can not
be internationalized as such. Spencer-Oatey et al. [32] point out in their study
that even though the language barrier is definitely a major aspect of integra-
tion and the internationalization of campus, additional factors such as individual
preferences of international students, cultural distance, welcoming approach and
situational context should be considered as well. In other words, to internation-
alize a campus requires to develop such campus environment and institutional
culture that would acknowledge the individualities of international students,
demonstrate the openness to other cultures and reward support of international
students and interaction between international and home students in terms of
curricular and extra-curricular activities. Such an environment can definitely
assist and encourage students in becoming responsible global citizens that can
well manage challenging intercultural situations. Culturally diverse and essen-
tially internationalized campus thus can provide opportunities for the students
from different cultures to learn form each other and obtain skills that will help
them to become a member of a globalized community.

Considering the scope of the overall ‘comprehensive internationalization’ it
becomes clear that to introduce and implement this process a broad range of peo-
ple of the university community has to be involved from teaching and research

Finding the Right Understanding 351

staff to service and administrative departments. The amount of resources
required for this process is likely to depend on such factors as (1) structure
of a university, (2) strategy, (3) field of study, and (4) university culture [23].
For instance, the internationalization of a university that (1) structurally has a
department dedicated to international functions such as international relations
office, (2) is strategically-oriented to internationalization, (3) is involved into
research and teaching in the globalized area, for example, computer science and
(4) has intercultural awareness among the staff, could be more successful in the
adaptation to environmental changes. Obvious from the discussion of the defini-
tion the role of the leadership is central to the process of internationalization and
to the question of university culture, in particular. A hierarchically-driven uni-
versity that is focused on internal maintenance, operations and control will not
likely be open to the changes and advantages that internationalization can bring
[23]. To implement changes in the previously described six pillars of ‘compre-
hensive internationalization’, especially in curriculum and university culture, a
university must embrace creativity, innovation and entrepreneurial spirit among
its departments. The role of leadership thus becomes to support and reward
the diversity of cultures and subcultures of different units that eventually will
represent and promote the “meaning and identification with the objectives and
strategies of internationalization” [23].

5 Conclusion

As we enter the third decade of the twenty-first century, higher education is fac-
ing the influence of intensity of globalization, competitiveness and the knowledge-
based economy at an unprecedented level. The noteworthy changes in the global
and academic trends might be stirring not only the way how universities oper-
ate as institutions but also the “idea of a university”, its functions and roles
in today’s society. On the one hand, globalization exposes universities to a global
competition that requires them to demonstrate certain quantitative results and
thus to prioritize strategies, policies, programs and audits that help to produce
these results. However, it is not clear if such orientation could produce any sig-
nificant contribution to the essential functions of universities of teaching and
research. On the other hand, the inter-connectedness of the globalized world
and the knowledge-based economy brings different cultures, sometimes previ-
ously totally unexposed to each other, closer with the student mobility being a
cornerstone of such a process. International students bring cultural diversity to
the campus and provide the home students with the opportunity to learn inter-
cultural competencies and also develop their understanding of what it means to
be a global citizen.

Systemic answer of a university to the challenges that the twenty-first century
brings would be a well-planned internationalization strategy. The scope of the
internationalization needed will likely depend on the analysis of such factors as
current structure of a university to define the amount of resources to dedicate to
this purpose, current general strategy that might have already included certain

352 I. Kotorov et al.

aspects of internationalization, current state of a field of study as there are more
and less affected by globalization industries, and finally organizational culture
of universities that may need to involve cultural awareness to a greater extent.
Internationalization strategy today is likely to be the key instrument that can
help a university in the twenty-first century to maintain its primary functions
and simultaneously use the advantages that the current trends offer. Careful
planning and commitment to a qualitative change within the comprehensive
internationalization or internationalization of certain aspects such as curriculum
or campus can be of an immense value to the international status of a university
and even a nation.

References

1. Kirkland, J.: A centenary reflection: challenges for universities and the wider com-
monwealth. Round Table 103(3), 323–330 (2014)

2. Tight, M.: Globalization and internationalization as frameworks for higher educa-
tion research. Res. Pap. Educ. 1–23 (2019)

3. Beech, S.E.: International student mobility: the role of social networks. Soc. Cul-
tural Geograph. 16(3), 332–350 (2015)

4. Newman, J.H.: The idea of a university, longimans (1986)
5. Patomäki, H.: Repurposing the university in the 21st century: toward a progressive

global vision. Globalizations 16(5), 751–762 (2019)
6. von Humboldt, W.: On the internal and external organization of the higher scien-

tific institutions in berlin. Ger. Hist. Doc. Images 1, 1648–1815 (1810)
7. Salisbury, F., Peseta, T.: The “idea of the university”: positioning academic librari-

ans in the future university. New Rev. Acad. Librarianship 24(3–4), 242–262 (2018)
8. Barnett, R.: Being a University. Foundations and Futures of Education. Taylor &

Francis, Abingdon (2010)
9. Nelles, J., Vorley, T.: From policy to practice: engaging and embedding the third

mission in contemporary universities. Int. J. Soc. Soc. Policy (2010)
10. Jongbloed, B.: Universities as hybrid organizations: Trends, drivers, and challenges

for the european university. Int. Stud. of Manag. Organ. 45(3), 207–225 (2015)
11. McCully, G.: Multiversity and university. J. High. Educ. 44(7), 514–531 (1973)
12. Halfond, J.: In my opinion: from multiversity to transversity: the new uses of the

university. J. Continuing High. Educ. 53(2), 41–42 (2005)
13. Frank, A.I., Sieh, L.: Multiversity of the twenty-first century-examining opportu-

nities for integrating community engagement in planning curricula. Plan. Pract.
Res. 31(5), 513–532 (2016)

14. Sum, N.-L., Jessop, B.: Competitiveness, the knowledge-based economy and higher
education. J. Knowl. Econ. 4(1), 24–44 (2013)

15. Babones, S.: Studying globalization: methodological issues (2007)
16. Shangquan, G., et al.: Economic globalization: trends, risks and risk prevention.

Econ. Soc. Aff. CDP Backround Pap. 1 (2000)
17. Samimi, P., Jenatabadi, H.S.: Globalization and economic growth: empirical evi-

dence on the role of complementarities. PLoS One 9(4), e87824 (2014)
18. Altbach, P.G., Knight, J.: The internationalization of higher education: motivations

and realities. J. Stud. Int. Educ. 11(3–4), 290–305 (2007)
19. Chochliouros, I.P., Spiliopoulou, A.S., Chochliouros, S.P.: Exploitation of public

sector information in Europe (2008)

Finding the Right Understanding 353

20. Holmwood, J., Servos, C.M.: Challenges to public universities: digitalisation, com-
modification and precarity. Soc. Epistemol. 33(4), 309–320 (2019)

21. Pugh, R., Hamilton, E., Jack, S., Gibbons, A.: A step into the unknown: universities
and the governance of regional economic development. Eur. Plann. Stud. 24(7),
1357–1373 (2016)

22. American Council on Education: Washington, Educating Americans for a World
in Flux: Ten Ground Rules for Internationalizing Higher Education. American
Council on Education (1995)

23. Bartell, M.: Internationalization of universities: a university culture-based frame-
work. High. Educ. 45(1), 43–70 (2003)

24. Knight, J.: Updated definition of internationalization. Int. High. Educ. (33) (2003)
25. Ellingboe, B.J.: Divisional strategies to internationalize a campus portrait: results,

resistance, and recommendations from a case study at a us university. Reforming
High. Educ. Curriculum: Int. Campus 1998, 198–228 (1998)

26. Hudzik, J.K.: Comprehensive Internationalization: From Concept to Action.
NAFSA: Association of International Educators, Washington, DC (2011)

27. Dobbert, M.L.L.: The impossibility of internationalizing students by adding mate-
rials to courses. Reforming High. Educ. Curriculum: Int. Campus 53–68 (1998)

28. Helms, R.M., Brajkovic, L., Struthers, B.: Mapping Internationalization on US
Campuses: 2017 Edition. American Council on Education, Washington, DC (2017)

29. Leask, B.: Using formal and informal curricula to improve interactions between
home and international students. J. Stud. Int. Educ. 13(2), 205–221 (2009)

30. British Council: Integration of International Students - a UK Perspective. British
Council (2014)

31. Knight, J.: Student mobility and internationalization: trends and tribulations. Res.
Comp. Int. Educ. 7(1), 20–33 (2012)

32. Spencer-Oatey, H., Dauber, D., Jing, J., Lifei, W.: Chinese students’ social inte-
gration into the university community: hearing the students’ voices. High. Educ.
74(5), 739–756 (2017)

Tools Workshop: Artificial and Natural
Tools (ANT)

Automated Cross-Language Integration
Based on Formal Model of Components

Artyom Aleksyuk and Vladimir Itsykson(B)

JetBrains Research, Peter the Great St. Petersburg Polytechnic University,
Saint Petersburg, Russia

aleksyuk@kspt.icc.spbstu.ru, vlad@icc.spbstu.ru

Abstract. The paper presents the research aimed at development of a
new method for integration of software components written in different
languages, which allows omitting glue code manual writing. The necessity
to write additional project-specific linking logic requires that program-
mers have at least good knowledge of two languages. Therefore, it is
rather difficult to reuse well-tested libraries and other software compo-
nents written in other languages in spite of the benefits, which they can
offer. The paper analyzes advantages and disadvantages of the previously
developed methods and tools intended for linking software components.
The proposed method is based on the RPC approach, augmented with
the LibSL language, previously created by the authors of the research
that is designed to describe the software components external interface.
The description of the external interface allows generating all the glue
code automatically.

Based on the offered method, the tool that supports C, Java, Kotlin,
Go, and JavaScript was developed. Applicability and efficiency of the
proposed solution was tested by creation of the LibSL descriptions and
stubs generation for a set of real-world libraries, such as a Z3 SMT solver.

Keywords: Cross-language integration · Language interoperability ·
Library models

1 Introduction

Today, it is common to have multiple languages in one software project. Lan-
guages differ in their usage areas, approaches to memory control and multi-
threading, applicability for different tasks. Old languages tend to have long-
standing, well tested sets of libraries, though new languages usually provide
additional syntactic sugar and safety improvements.

Although there exist several solutions for the cross-language interaction, most
of them focus on solving particular tasks or require writing an additional link-
ing code. Another issue with currently existing techniques is that they usually

This research work was supported by the Academic Excellence Project 5–100 proposed
by Peter the Great St. Petersburg Polytechnic University.

c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 357–370, 2020.
https://doi.org/10.1007/978-3-030-57663-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_23&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_23

358 A. Aleksyuk and V. Itsykson

require that software developers have good knowledge of both languages, which
limits their applicability. The aim of this study is to create the method for
the cross-language interaction, which allows software developers to use software
components written in other programming languages without glue code manual
writing and to implement it in a tool. The following tasks were established:

– Study the difficulties that arise when pairing different languages and runtime
environments.

– Explore existing solutions to the problem of linking programs written in dif-
ferent programming languages.

– Create the method for the cross-language interaction which does not require
glue code manual writing.

– Develop the research tool that implements the proposed method.
– Test the developed tool to verify the applicability of the method.

The rest of the paper is organized as follows. The second section contains
the description of the state of the art. In the third section the proposed method
for cross-language integration is presented. The fourth section is devoted to the
implementation of the tool that proves feasibility of our method. In the fifth
section the estimation of the tool applicability and performance is given. In the
conclusion the obtained results are analyzed and possible directions of the future
research are discussed.

2 State of the Art

The field of cross-language integration has been around for a long time. It
is considerably related to the world-wide tendency to maintain already exist-
ing software over to develop the completely new [12]. There are a large num-
ber of approaches and tools that implement various aspects of cross-language
integration.

In order to analyze the achievements in this area it is necessary to establish
criteria for evaluating existing tools and approaches.

– Language support—a range of supported programming paradigms, runtimes,
and memory models. Example: support for programming languages with a
procedural paradigm, support for languages with automatic memory man-
agement using garbage collection.

– Difficulty of adaptation to a new language—the number of the components
of the approach that should be modified in order to be applied to a new
language.

– Difficulty of adaptation to a new project—the number of project components
that need to be changed in order to apply the approach to a new project.

– Performance—the amount of additional overhead incurred due to the use of
integration tools

An Automated Cross-Language Integration Based on the Formal Model 359

We can distinguish the following existing approaches to solving the prob-
lem: FFI (Foreign Function Interface), based on function call convention bridg-
ing, RPC (Remote Procedure Call), based on data and function call exchange
between separate processes, and application-level virtualization, based on creat-
ing a unified runtime environment for programs.

FFI is the approach assuming that the reused software component is located
in the same virtual address space as the main program. Thus, the main task
of FFI is to bridge calling conventions between different languages. Examples of
the tools implemented on the top of the FFI approach are libffi and Java JNI [1].
libffi implements a calling convention for several popular operating systems and
processor architectures, controls the location of arguments of called functions on
the stack and in CPU registers.

Due to the fact that both programs are located in a common address space,
data exchange between them is simplified. There is no need to convert data
into a special format convenient for transmission (i.e. to perform a serializa-
tion). Since both programs from the point of view of the operating system are a
single process, data exchange between them does not require a context switch.
Switching the context is a resource-intensive operation, therefore, the absence of
the need for switching allows increasing the performance of event transmission
between programs and reduction of the transmission delay. FFI requires writing
an additional code for each call to the reused software component. Also, FFI
does not solve the task of adaptation of complex data structures, so it should
be solved by a developer. Another drawback of the FFI approach is that it does
not support bridging language runtimes. Many implementations of modern pro-
gramming languages require usage of complex runtimes, which manage memory,
process operating system events, and organize an interaction with a debugger.
Several runtimes running inside the same process may have problems with gain-
ing an exclusive access to the specified resources [13,18].

Usability of the tools grounded in FFI approach can be improved by applica-
tion of wrapper programs, which establish all the data transformations necessary
for the cross-language integration. Such wrappers can be written manually or
generated by some tool. The main disadvantage of the wrapper-based approach is
that a separate wrapper should be created for each pair of integrated languages.
Also, wrappers are usually unable to solve the problem of bridging language
runtimes. FFI and wrapper approach are widely used when it is necessary to
reuse software components written in C, C++, and Fortran language, but are
rarely used to integrate more high-level languages. The following projects are
examples of this approach:

– SWIG [3] is a wrapper generator developed to allow using libraries written
in C and C++. To describe libraries, SWIG uses its own language, partially
compatible with C and C++. It is enough for the developer to rewrite the
header files from C or C++ to the SWIG project language, which does not
usually cause much difficulty.

– Lua programming language is specially designed for convenient interaction
with C code [8].

360 A. Aleksyuk and V. Itsykson

– JNA (Java Native Access) utilizes interfaces written in Java language to
describe functions and structures in a C library.

Another approach is to use RPC (Remote Procedure Call). Like FFI, it allows
calling methods written in different languages, however, in case of RPC, two
software components are loosely coupled, have separate virtual address spaces,
and the only way to transfer data between them is to serialize it and send over a
channel (over some kind of IPC, for example). RPC approach is not affected by
the problem of conflicting runtimes and thus it is easy to add support for new
languages to it. Examples of modern RPC tools are Google gRPC and Apache
Thrift [16].

An RPC system consists of a client-side stub, which encodes a function call
request and sends it over a channel, a server-side stub, which decodes a request,
and a set of handlers which process the decoded request. To describe types of
messages and their content, a special language called IDL (Interface Definition
Language) is used. While most of RPC implementations automatically generate
client stubs, there is still a need to manually write handlers for the receiving
side which call a reused component [5]. Another drawback is the necessity to
perform a serialization and synchronization of data. Problems can arise during
serialization of objects with cyclic relationships, or when introspection informa-
tion is not available. The examples of modern RPC systems are Cap’n Proto
RPC and gRPC.

A special case of RPC is an approach called ORB (Object Request Broker).
In addition to the functionality of calling functions from another language, ORB
provides features for creating distributed applications, such as transaction sup-
port. One of ORB implementations is CORBA (Common Object Request Broker
Architecture), a standard for organizing distributed application development,
which can also be used for linking software components written in different lan-
guages. Despite its extensive capabilities, CORBA is almost not used for linking
components on a single computer, primarily because of its complexity, as well as
the need to manually write a glue code. A detailed analysis of the shortcomings
of CORBA is available in the research works [7] and [11].

Another approach to solve this problem is to create an application-level vir-
tual machine (VM) that can run programs written in different programming
languages internally. The VM unifies the data types, the way data structures
are stored in memory, and the calling convention. The VM also includes a run-
time environment that is responsible for memory management. Using a com-
mon environment for multiple languages makes it easier to organize interaction
between software components. An example of this approach is the Java Virtual
Machine (JVM), which was originally created for one language, but later became
used for other languages, such as Python (using Jython), Ruby (using JRuby),
Kotlin (using Kotlin/JVM), and others. The development of JVM ideas is the
GraalVM virtual machine [6]. The .NET CLR runtime was originally created
to support multiple languages. The disadvantage of this approach is the need
to develop a new environment, which is a time-consuming task, and can cause
possible incompatibility of the existing software with the new environment.

An Automated Cross-Language Integration Based on the Formal Model 361

There are several research papers with the analysis of the considered
approaches applied to the specific areas of cross-language integration. Despite
the specifics, as a rule, the findings can be reused in other areas. For example,
the research work [4] covers the field of integration in relation to bioinformatics,
while the article [17] considers the current situation in the field of aerospace.

Of the approaches considered, RPC is the easiest to adapt for new languages
and new projects, but none of the tools considered based on RPC allows linking
components written in different programming languages without manual glue
code writing. This complicates the pairing procedure, depriving the developer of
the advantages that the code reuse gives them.

3 The Proposed Method

To overcome the limits of the listed solutions, a new method for cross-language
integration called LibraryLink was developed. The method in based on the RPC
approach and extends it with automatically generated server and client stubs and
several other additions, which allow reusing the existing software components
without manual code writing.

The components of the method split into two categories: components that
make a link between two programs (run time components) and components that
generate a code (generator components). The scheme demonstrating relations
between the runtime components is shown on Fig. 1.

Client stub Server stub

Client core Server core

Reused component
(library)

Client program

Handle registry

IPC

Fig. 1. The scheme of run time components

– Client program and reused component are the existing software compo-
nents that should be linked.

– Client-side stub is a library written in a client program’s language which
has the same external interface as the reused component. This library doesn’t
contain any business logic of the reused component, it only receives calls and
redirects them to another components.

362 A. Aleksyuk and V. Itsykson

– Client core is a module that encodes method calls and data exchanges to
the form suitable for the transfer to another process via an IPC.

– Server core decodes messages received from the client core.
– Server-side stub is a module written in reused component ’s language which

translates messages into the actual calls to the reused component.

Modules marked in orange are independent of the specific library, so they can
be developed once. Modules marked in red are dependent to the specific library,
so they need to be written manually or generated automatically. The scheme
which demonstrates generator components is presented on Fig. 2.

LibSL library
description

Code generator

Client stub Server stub

Client and server stub
template for each

language

Fig. 2. The scheme of generator components (Color figure online)

To generate those modules, a description of the library’s external interface
is necessary. An external interface of the software component includes its class
hierarchy, public method names, list of arguments, return value types and other
elements, which define how the components can be used.

In this research the LibSL language [10] was chosen for description of an exter-
nal interface of software components. LibSL is based on the formalism created
earlier by the authors for the library specification [9]. The formalism describes
software components as a set of extended finite state machines (EFSMs). Each
EFSM reflects the life cycle of the entire software component or its individual
entity.

The model of the program library in the LibSL language is a formal descrip-
tion of the external interface of the library available to the programmer for the
use in software projects, as well as a description of the behavior of the library,
abstracted from the specific implementation. LibSL description language is not
tied to a specific programming language. LibSL is already used in other projects,
such as Library Migration [2], so the description of a software component in
LibSL allows solving a number of tasks.

An Automated Cross-Language Integration Based on the Formal Model 363

The library model description in LibSL consists of the following sections:

– List of library modules and header files.
– Description of entities and data types used by the library.
– Description of automata.
– Declaration of functions and methods of a software component.

The data types section describes all semantic data types that are contained in
or used by the library. Semantic data types are classes, structures, enumerations,
and primitive data types in case they have a special meaning in the library, such
as file descriptors or sockets. The section describing automata defines extended
finite state machines (EFSM), which describe the behavior of library entities.
The definition of a finite state machine includes the list of its states, as well as
possible transitions between them (the transition function).

For the developed method, the most important transitions are the transition
to the Constructed state (corresponds to calling the object constructor or ini-
tializing the structure) and the transition to the finished state marked with the
finishstate keyword (corresponds to closing the resource and freeing the mem-
ory). Thus, if the client program is written in a language with automatic garbage
collection and the reused component is written in a language with manual mem-
ory management, the developed method can intercept the garbage collection
event in the client program and translate this event into a specified resource
release operation in the reused component. Similarly, a call to the constructor
in the client program is translated into a call to the initialization function in the
component.

The functions and methods declaration section includes the description of the
function/method signature of the software component, as well as the descrip-
tion of the properties of the function being described. The signature includes
the function name, the list of function arguments (the argument name and its
semantic type), and the value returned by the function. Each function is bound
to a semantic type or entity. Listing 1 contains a fragment of Requests library
description in LibSL. For more information about the LibSL syntax see [10].

types {
Requests (Requests);
Response (Response);
StatusCode (Int);

}

automaton Requests {
state Constructed;
shift Constructed -> self (get);

}

fun Requests.get(url: URL, headers: Dict): Response;

List. 1. A fragment of Requests library description in LibSL

364 A. Aleksyuk and V. Itsykson

While developing the method, the LibSL language was expanded with a num-
ber of new constructions. The keyword extendable means that the library user
can adjust the operation of the entity. The specific meaning depends on the
programming language for which the libraries are described. If there is an inher-
itance mechanism in the language, this flag means that the entity can be inher-
ited. If there is a callback mechanism or other mechanism in which the code is a
data type, the flag extendable means that developers can set their own callback
function. A description fragment that uses the keyword extendable is shown in
Listing 2.

types {
ErrorHandler (Z3_error_handler);

}

automaton ErrorHandler {
shift Constructed -> self (invoke);
extendable;

}

fun ErrorHandler.invoke(c: Z3_context, e: Int);

List. 2. A fragment of Z3 library specification illustrating a callback function

One of the tasks solved when developing the method was to eliminate the
difficulties associated with serialization of data structures. The need to serialize
transmitted structures is associated with the following difficulties:

– Need to track and synchronize changes in the client program and in the reused
component.

– Requirement for an introspection programming interface in the programming
language.

– Need to handle circular references when synchronizing changes.

The method uses the approach that eliminates the need for serialization of
data structures. To do this, the interaction between components is organized
using so-called handle objects. The client program works with handle, not with
the objects of the reused component itself. Handles correspond to library objects
and contain the same methods as the library objects. The handle method calls
are translated into calls to the library methods. The actual data transfer is
performed only when the main program requests data for transmission to other
parts of the program and is limited only to primitive data types. This solution
is similar to object references used in CORBA, promises used in Cap’n Proto
RPC, and the proxy design pattern, but is applied not only to objects but also
to the data structures and primitive types. Handles are stored in the Handle
registry, see Fig. 1.

LibraryLink requires that not only the reused component be described but
also its environment, in particular, the standard library of the language and its
type system. To do this, separate LibSL descriptions are prepared and attached

An Automated Cross-Language Integration Based on the Formal Model 365

to the description of the reused component. For common data structures such
as array, list, text string, and map, special reserved types were added to LibSL
with a set of basic functions for operating these data structures. If necessary,
other data structures can be specified in the description of language’s standard
library.

To improve performance, LibraryLink uses semantic information about the
software component that is being reused. In particular, on the basis of the
automata-based model and information about semantic actions it is determined
whether it is possible to prefetch data from the component to the client code.
More information about semantic actions can be obtained from the description
of formalism [9]. For example, if a getter call is linked to a transition in an
automata-based model, the model allows this transition at the next step, and
this transition has no associated semantic actions, then we can assume that the
transition has no side effects, and therefore the getter can be called in advance
to forward data to the client program. This mechanism can be disabled if there
is a possibility that data will be modified from another thread of the reused
component.

The developed method involves developing client core, server core, and IPC
for each supported language, as well as preparing a set of templates for gener-
ating client stub and server stub. The advantage of this method is that there
is no need to develop components for each pair of languages. The method does
not require serialization of the transmitted data. By using semantic information
about the library, in particular, information about transitions in the automata-
based model, the method allows coordinating memory management in the linked
languages and prefetch data from the reused component in advance. To summa-
rize the information, the comparison of LibraryLink to the basic approaches,
such as RPC or FFI, is presented in Table 1.

Table 1. Comparison of cross-language integration methods and approaches

Solution Glue

code

Language

support code

Serialization

required

Memory

management

coordination

Caching

and

prefetching

FFI Manually

written

For each pair of

languages

(∼ N2)

No Manual Manual

RPC Manually

written

For each

language (N)

Yes Manual Manual

LibraryLink Generated For each

language (N)

No Inferred from a

semantic model

Inferred

from a

semantic

model

366 A. Aleksyuk and V. Itsykson

4 Tool Development

Based on the developed method, a research tool was developed1. The structure
of the tool follows the structure of the method illustrated in Fig. 1 and Fig. 2.

Client core and Server core are written from scratch based on a custom IPC
layer. The IPC layer employs Unix sockets because of their good performance
[14] and wide support in different programming languages. However, the tool
can be adapted to use an existing message exchange system like ZeroMQ. The
developed tool is multithreaded since it is intended for modern object-oriented
and procedural languages. A data exchange in one thread does not block an
ability to transfer data in another thread.

To parse library descriptions written in LibSL, the ModelParser component
was developed, which is placed in a separate library2. ModelParser is written
in Kotlin and allows getting the library description in the form of AST. The
ANTLR 4 parser is used to build the syntax tree. In addition, there is support
for converting AST back to text (pretty printing).

Currently the tool allows generating server stubs for Java, Kotlin, Python,
Go, and C programming languages. For Python, a universal stub is used that
does not require adaptation for specific libraries and uses introspection and
reflection, for other languages stubs are generated from the descriptions of spe-
cific libraries. In the case of client stubs, Java, Kotlin, and JavaScript program-
ming languages are supported. The tool is able to generate Kotlin stubs that
can be used from both Kotlin and Java programs, special Kotlin annotations
are used for this purpose to establish compatibility with Java. A universal client
stub was implemented for JavaScript using the Proxy API.

The first versions of the tool used separate libraries for each language, for
example, JavaParser - for generating a code in Java and Jennifer - for generating
code in Go. Stub AST was being constructed, which then was being converted
into a code using the pretty printing component. The main disadvantage of this
approach is a large amount of duplicate codes, since the stub generation process
is structurally similar for different languages, but it still has enough differences
to extract common code blocks. In addition, libraries for building AST are often
written in the same language that they generate. Although it was possible to use
these libraries with the tool being developed, the process known as bootstrapping
was necessary.

The current version of the tool uses a template-based system. StringTem-
plate4 [15] is used as a template engine, which was initially developed for gen-
erating a program code. Although the new implementation has no drawbacks
in code duplication, there is a issue of lack of conditional operators in the ST4
template language. To resolve this problem, an additional and more detailed
intermediate representation of the library model is created during the stub gen-
eration. As possible ways to develop further the code generation component, we
can consider switching to a template engine with more functionality. Another

1 https://github.com/h31/LibraryLink.
2 https://github.com/h31/ModelParser.

https://github.com/h31/LibraryLink
https://github.com/h31/ModelParser

An Automated Cross-Language Integration Based on the Formal Model 367

possible development direction is to abandon the code generation approach and
switch to using introspection and reflection for all languages that support it.

A distinctive feature of our tool is an ability to release memory when objects
become unused. The client core communicates with a garbage collector, and
when a handle in the client program has no references pointing to it, the tool
sends a message to the server core to remove all references on the actual object
from the inner structures of the tool. A library description may contain infor-
mation about how to properly delete an object and the tool is able to use this
information. This feature is disabled by default for languages with manual mem-
ory management, but can still be enabled.

When using callback functions, the event initiator is the server. Therefore,
the entire infrastructure for receiving and processing requests should be imple-
mented on the client side. When the client code sets a callback function, a stub
should be passed to the reused component that would translate the call back
to the client part. In addition to the call event, arguments should be passed to
the client program, which may require creating additional handles. If the client
code sets several different callback functions, then several different stubs should
be generated for the reused component so that the resulting events could be
distinguished and dispatched to different handlers on the client side. Since it
is impossible to determine in advance how many functions there will be, the
dynamic generation of trampoline stub functions is used.

5 Evaluation

To test the applicability of the method several tests were performed using a tool
developed on the basis of the method.

To test the completeness of support for syntactic constructions in the library
description language, examples of using the Z3 library were rewritten in Kotlin
(the file examples/c/test_capi.c from the Z3 source code tree). The result of
rewriting can be found in the repository of the developed tool. The code written
in Kotlin calls the Z3 library written in C++ (with C external interface) using
the developed tool. The example of the source code in C and a rewritten version
in Kotlin are shown in Listing 3 and Listing 4 respectively.

During this test, functions of the Z3 library are called, text strings and arrays
are processed, data structures are selected in memory and deleted, and custom
callback functions are installed. The check shows that the result of executing
the original and rewritten versions coincides, and the programs output identical
information to the standard output stream.

Z3_config cfg;
Z3_context ctx;
Z3_ast x, y, not_x, not_y, x_and_y;
Z3_ast args[2];

cfg = Z3_mk_config();
ctx = Z3_mk_context(cfg);

368 A. Aleksyuk and V. Itsykson

Z3_del_config(cfg);
x = Z3_mk_const(ctx, symbol_x, bool_sort);
y = Z3_mk_const(ctx, symbol_y, bool_sort);

not_x = Z3_mk_not(ctx, x);
not_y = Z3_mk_not(ctx, y);
args[0] = x;
args[1] = y;
x_and_y = Z3_mk_and(ctx, 2, args);

List. 3. Fragment of C code using Z3 library

LibraryLink.runner = CRunner()
val cfg = Z3Kotlin.Z3_config();
val args = cArray<Z3Kotlin.Z3_ast>(2);
val ctx = cfg.Z3_mk_context();
x = ctx.Z3_mk_const(symbol_x, bool_sort);
y = ctx.Z3_mk_const(symbol_y, bool_sort);
not_x = ctx.Z3_mk_not(x);
not_y = ctx.Z3_mk_not(y);
args[0] = x;
args[1] = y;
x_and_y = ctx.Z3_mk_and(2, args);

List. 4. Fragment of Kotlin code using Z3 library

To test the correctness of the server stub implementations in Python and
Go, we have prepared examples of using Requests and Jennifer libraries from
the Kotlin language. The test showed that the created examples were working
correctly. To test the client stub in JavaScript, an example of program using the
Z3 library was created.

Despite the improvement of performance characteristics of cross-language
integration was not specified as the main objective of research, performance
testing was conducted. The results are shown in Table 2. All tests were run for
60 seconds with extra 10 seconds for warm up. Confidence level is 99.9%.

For performance testing, the JMH library (Java Microbenchmark Harness)
was employed. Since we were interested only in a rough estimation of overhead
added by tool, the test consisting a single function call which returns integer was
developed. The client side was a module in Kotlin language, and the server side
was a module in Go. The proposed test was run multiple times on Intel i7-4790
CPU and Linux with kernel version 5.3. The speed of call transfer was 57438
calls per second. With prefetch of up to 16 calls enabled, the speed increased to
194552 calls per second. Garbage collector was enabled during the test.

To conduct an illustrative performance comparison for LibraryLink and JNI
methods the standard wrapper for the Z3 library (Z3 JNI) was utilized and
several tests, containing different commonly used library calls, were developed.
It takes 138.73 µs to create an object of the Context class, which is comparable to

An Automated Cross-Language Integration Based on the Formal Model 369

the results shown by LibraryLink (160.84 µs). However, it took 1.06 microsecond
to make a simple Context.mkBoolSort call using JNI, and 25.6 microseconds
to make a call using LibraryLink.

Table 2. Performance characteristics of LibraryLink and JNI

Payload Tool Calls/s Av. time (µs) St. dev Confidence interval

No-op func LibraryLink 57438 17.41 2.12 [15.99, 18.82]

No-op func w/ prefetch LibraryLink 194552 5.14 2.82 [4.19, 6.10]

new Context JNI 7208 138.73 28.98 [135.71, 141.76]

LibraryLink 6217 160.84 13.36 [156.31, 165.37]

mkBoolSort JNI 943396 1.06 0.85 [≈ 0, 2.37]

LibraryLink 39062 25.6 0.87 [24.05, 26.68]

6 Conclusion

The aim of the presented research is to develop the cross-language integration
method that allows developers to use software components written in other pro-
gramming languages with a minimum amount of manual work. The new method
called LibraryLink was created to solve this task. The developed method uti-
lizes formal library models to generate the necessary glue code and does not
require modifying reused components. The key features of LibraryLink are inher-
itance support and bridging of memory management between languages. The
method was implemented in a tool supporting Kotlin, Java, C, Go, JavaScript
and Python. The developed tool was successfully tested on a set of real-world
libraries, which proves the applicability of the method.

The key direction of the future work is to adapt the developed tool for less
popular languages where the library shortage issue is more substantial than in
the mainstream ones including functional languages.

References

1. Adler, D.: Dynamic language bindings for C libraries with emphasis on their
application to R. Ph.D. thesis, Niedersächsische Staats-und Universitätsbibliothek
Göttingen (2013)

2. Aleksyuk, A.O., Itsykson, V.M.: Semantics-driven migration of Java programs: a
practical application. Autom. Control Comput. Sci. 52(7), 581–588 (2018)

3. Beazley, D.M., et al.: Swig: an easy to use tool for integrating scripting languages
with C and C++. In: TCL/TK Workshop, vol. 43 (1996)

4. Bonnal, R.J.P., et al.: Sharing programming resources between bio* projects.
In: Anisimova, M. (ed.) Evolutionary Genomics. MMB, vol. 1910, pp. 747–766.
Springer, New York (2019). https://doi.org/10.1007/978-1-4939-9074-0 25

https://doi.org/10.1007/978-1-4939-9074-0_25

370 A. Aleksyuk and V. Itsykson

5. Grechanik, M., Batory, D., Perry, D.E.: Design of large-scale polylingual systems.
In: Proceedings of 26th International Conference on Software Engineering, pp.
357–366 (2004)

6. Grimmer, M., Schatz, R., Seaton, C., Würthinger, T., Luján, M., Mössenböck,
H.: Cross-language interoperability in a multi-language runtime. ACM Trans. Pro-
gram. Lang. Syst. 40(2), 8:1–8:43 (2018). http://doi.acm.org/10.1145/3201898

7. Henning, M.: The rise and fall of CORBA. Commun. ACM 51(8), 52–57 (2008).
https://doi.org/10.1145/1378704.1378718

8. Ierusalimschy, R., de Figueiredo, L.H., Celes, W.: The evolution of Lua. In: Pro-
ceedings of the 3rd ACM SIGPLAN Conference on History of Programming Lan-
guages, pp. 2-1 (2007)

9. Itsykson, V.M.: Formalism and language tools for specification of the semantics of
software libraries. Autom. Control Comput. Sci. 51(7), 531–538 (2017). https://
doi.org/10.3103/S0146411617070100

10. Itsykson, V.: LibSL: language for specification of software libraries. Softw. Eng. 9,
209–220 (2018)

11. Kaplan, A., Ridgway, J., Wileden, J.C.: Why IDLs are not ideal. In: Proceedings
Ninth International Workshop on Software Specification and Design, pp. 2–7 (1998)

12. Krikhaar, R., Postma, A., Sellink, A., Stroucken, M., Verhoef, C.: A two-phase
process for software architecture improvement. In: Proceedings IEEE International
Conference on Software Maintenance - 1999 (ICSM 1999). Software Maintenance
for Business Change (Cat. No.99CB36360), pp. 371–380 (1999)

13. Li, D., Srisa-an, W.: Quarantine: a framework to mitigate memory errors in JNI
applications. In: Proceedings of the 9th International Conference on Principles and
Practice of Programming in Java, PPPJ 2011, pp. 1–10. Association for Computing
Machinery, New York (2011). https://doi.org/10.1145/2093157.2093159

14. Nambiar, M.K., Samudrala, S., Narayanan, S.: Experiences with UNIX IPC for
low latency messaging solutions. In: International CMG Conference (2009)

15. Parr, T.J.: Enforcing strict model-view separation in template engines. In: Pro-
ceedings of the 13th International Conference on World Wide Web. WWW 2004,
pp. 224–233. Association for Computing Machinery, New York (2004). https://doi.
org/10.1145/988672.988703

16. Slee, M., Agarwal, A., Kwiatkowski, M.: Thrift: scalable cross-language services
implementation. Facebook White Paper 5(8) (2007)

17. Snyder, R.D.: A cross-language remote procedure call framework. In: 18th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, p. 3822
(2017)

18. Tan, G.: JNI Light: An Operational Model for the Core JNI. In: Ueda, K. (ed.)
APLAS 2010. LNCS, vol. 6461, pp. 114–130. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-17164-2 9

http://doi.acm.org/10.1145/3201898
https://doi.org/10.1145/1378704.1378718
https://doi.org/10.3103/S0146411617070100
https://doi.org/10.3103/S0146411617070100
https://doi.org/10.1145/2093157.2093159
https://doi.org/10.1145/988672.988703
https://doi.org/10.1145/988672.988703
https://doi.org/10.1007/978-3-642-17164-2_9
https://doi.org/10.1007/978-3-642-17164-2_9

Scalable Thread-Modular Approach
for Data Race Detection

Pavel Andrianov(B) and Vadim Mutilin

Ivannikov Institute for System Programming of the RAS,
Moscow Institute of Physics and Technology, Moscow, Russia

andrianov@ispras.ru

Abstract. Most of the state-of-the-art verifiers do not scale well on com-
plicated software. Concurrency benchmarks from SV-COMP based on
Linux device drivers cause significant difficulties for any software model
checker tool.

We suggest a method, which is based on the Thread-Modular app-
roach and Configurable Program Analysis theory. It overapproximates a
potential thread iteration by a “worst case” assumption, that the threads
may change the shared data in any way. The suggestion allows to avoid
construction of a precise thread environment and simplifies the analysis.

For data race detection we use an extension of the Lockset algorithm
based on compatibility of partial states. A BnB memory model allows to
deal with complicated data structures without a precise alias analysis.

The approach was evaluated on benchmarks set, based on Linux device
drivers. The approach allows verifying industrial software, as it was
shown on the Linux drivers benchmarks. Predicate abstraction keeps
false alarms rate on a reasonable level.

Keywords: Data race · Thread-modular approach · Linux kernel

1 Introduction

Verification of a multithreaded program is always a much more complicated
task then verification of sequential program. Precise computation of all possi-
ble interleavings leads to a state explosion. Thus, most of the verification tools
try to perform different kinds of optimizations: partial order reduction [1,2],
counter abstraction [3] and others. Anyway, most state-of-the-art tools do not
scale well on real-world software. That is confirmed by the software verification

The research was carried out with funding from the Ministry of Science and Higher Edu-
cation of the Russian Federation (the project unique identifier is RFMEFI60719X0295).

c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 371–385, 2020.
https://doi.org/10.1007/978-3-030-57663-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_24&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_24

372 P. Andrianov and V. Mutilin

competition [4]. Concurrency benchmarks based on Linux device drivers1 cause
significant difficulties for any software model checker tool.

Software model checkers usually have the following two stages for data race
detection algorithm:

1. Constructing of a set of reachable states.
2. Checking a property over the set of the reached states.

The two steps may be performed sequentially or in parallel and even the
reached set construction may be driven by the checked property. The most com-
plicated task is considered to be an efficient construction of a reached set. How-
ever, finding a pair of states, which forms a data race is also a nontrivial task
for a complicated software.

Regarding the construction of a reached set, our tool is based on a thread-
modular approach [5,6], which is an efficient technique for analysis of multi-
threaded software. The thread-modular approach considers each thread sepa-
rately, that allows avoiding cartesian product of thread states, which is common
for model checking. As a result, an abstract state is not a complete one any-
more and represents only a state of a single thread as a partial state. Usually,
analysis of a single thread without any other interactions is more efficient, than
an analysis of all together. However, considering only partial states, the analysis
loss information about transitions in other threads, which are strongly required
for the soundness of the analysis.

The classical thread-modular approaches construct a thread environment,
which overapproximates the potential thread effect. However, the construction
of a precise environment is a difficult task. In the paper we describe an approach,
which is invariant to thread effects, and thus avoids much effort for environment
construction. Also, we describe a specific optimization for reached set construc-
tion based on Block Abstraction Memoization [7,8].

An implementation on the top of the CPAchecker framework allows combin-
ing different approaches to strengthen their advantages. For example, together
with the thread-modular approach, we use CEGAR algorithm [9] and predicate
abstraction [10]. The level of the abstraction may be flexibly adjusted.

Considering options to detect data races, static data race detectors usually
use a Lockset algorithm [11]. We use a more intelligent way to detect data
races: a potential data race is a pair of two compatible abstract states with
corresponding transitions, which modifies the same memory. Compatibility here
means the two partial abstract states may be a part of a single global state. Thus,
the precision of such definition corresponds to a level of abstraction. So, for a
single lock analysis, which tracks acquired locks, compatibility check corresponds
to a classical Lockset algorithm.

We evaluated our approach on a set of benchmarks, based on Linux device
drivers. They are prepared by Klever, a framework for verification of large soft-
ware systems [12,13] which divides a large codebase into separate verification
tasks (usually, one or two Linux modules) and prepares an environment model.

1 sv-benchmarks/c/ldv-linux-3.14-races/directory.

Scalable Thread-Modular Approach for Data Race Detection 373

Our contribution is:

– an extension of CPA theory to be able to describe thread-modular approach;
– an approach for data race detection, based on the extended theory;
– a tool, which was successfully evaluated on benchmarks, based on Linux

device drives.

The rest of the paper is organized as follows. In Sect. 2 we present an overview
of the approach. The Sect. 3 introduces a program model and basic definitions.
The Sect. 4 describes an extension of the general CPA theory. The Sects. 5 and 6
contain two extended CPAs for thread modular approach: predicate analysis
and lock analysis. In the Sect. 7 we discuss some specifics of data race detection
with our approach. The Sect. 8 describes the Block Abstraction Memoization
optimization. The Sect. 9 presents the results of our approach on a benchmark
set, based on Linux device drivers.

2 Overview of the Approach

Consider a simple program, which has only two threads (Fig. 1). This is a model
example, which contains accesses to a shared data, which are protected by a
lock. Thus, there is no data race.

volatile int d = 0;

Thread1 {

lock();

if (d > 0) {

d = d + 1;

}

unlock();

...

}

Thread2 {

lock();

d = 2;

unlock();

...

}

Fig. 1. An example of code

Classic model checking approaches have to consider all possible interleavings,
and possible values of shared data. It leads to a high consumption of resources:
memory and time. Figure 2 presents a potential Abstract Reachability Graph
(ARG), which may be computed by a precise software model checker tool.

To identify a potential data race, it is necessary to find an abstract state
which has two potential transitions in both threads, and the transitions should
modify the same variable. Each state marked as #1,#2,#3 has an outgoing
transition, which modifies the global variable, but there is no transition from
the other thread. Thus, the model checker confirms that the example has no
data race.

374 P. Andrianov and V. Mutilin

d → 0

d → 0
lock

d →lock() lock()

[d <= 0]

d → 2
lock

d = 2

d → 0
lock

d → 0
lock

d → 0

unlock()

d → 2
unlock()

lock()

d → 2
lock

d = 2

d → 0
lock

d → 2

k
unlock()

d → 2
lock

dlock()

[d > 0]
d → 2
locklo

d = d + 1
d → 2
lock

... ...
d → 2

... ...

loc
unlock()

d#2:

d#1:

d#3:

Fig. 2. ARG with interleaving analysis

In the paper we suggest an approach based on a well-known idea of thread-
modular approach. In this case threads are analyzed separately in a special
environment. The environment may be computed in a different way, and its pre-
cision strongly affects on precision of the whole analysis. However, construction
of a precise environment takes a lot of time for complicated benchmarks. So,
to consider a thread interaction we overapproximate possible thread effects and
suppose that any thread may affect shared data in any way. That means, that
value of shared data may be changed arbitrary at any moment. This is a very
strong overapproximation, but it allows to consider every thread without any
interaction, as we have already supposed the worst case.

Let us show, how thread-modular approach works.
Figure 3 shows a part of abstract reachability graph (ARG) for both threads.

This is an imaginary analysis, which tracks only acquired locks. Values of a
shared variable d is totally ignored in both threads. So, this part of ARG totally
corresponds to the source code (or CFA), as if the threads are executed sepa-
rately.

To check if there is a data race we need to find a pair of states, which start a
transitions over the same shared data. Then we should check a compatibility of
the states. Compatible partial states mean that they may be a part of a single
global state. In the example there are states, which are followed by transitions
with accesses to a global variable. Consider those ones, which modify a global
variable d: #1 and #2. The states are not compatible, as both have the same

Scalable Thread-Modular Approach for Data Race Detection 375

Ø

lock lock

Ø
lock() lock()

[d <= 0]
[d > 0]

lock
d = 2

...

Ø

...

lock

Ø

loc
unlock()

lock

lock

lock
d = d + 1

Ø

ck
unlock()

]
:#1

lock(
#2:

Fig. 3. ARG with thread-modular analysis

lock acquired. There can not be a global state, where two threads acquired the
same lock simultaneously. In other words, the sets of the acquired locks of the
sates must be disjoint. As the states are not compatible, they can not form a
data race. For other accesses the reasoning are the same, thus there are no data
races in the example.

The number of states are less than for classical model checker approach. It
is achieved by two main reasons: the interaction of thread was omitted and the
states become more abstract due to abstraction from shared variables. Thus,
there are less resources consumed.

3 Preliminary Definitions

In this section, we present preliminary definitions of a parallel program and
reachable concrete states in the program.

We restrict the presentation to a simple imperative programming language,
where all operations are assignments, assumptions, acquire/release synchroniza-
tion operations and thread creates. We denote all operations in a program as
Ops.

A parallel program is represented by a Control Flow Automaton (CFA) [14],
which consists of a set L of program locations (modeled by a program counter,
pc), and a set G ⊆ L×Ops×L of control-flow edges (modeling the operation that
is executed when control flows from one program location to another). There is a
thread create operation in Ops which creates a thread with an identifier from the
set T and the thread starts from some location in L. The set of program variables
that occur in assignment and assumption operations from Ops is denoted by X
having values from Z. The parts of X, containing local and global variables,
are denoted by X local and Xglobal respectively. Acquire/release operations are
defined over a set of lock variables S having values from T ∪ {⊥T }, where t ∈ T
means that the lock is acquired by a thread t and ⊥T means that the lock is not
acquired.

376 P. Andrianov and V. Mutilin

A concrete state of a parallel program is a quadruple of (cpc, cl, cg, cs), where

1. A mapping cpc : T → L is a partial function from thread identifiers to loca-
tions.

2. A mapping cl : T → Clocal is a partial function from thread identifiers to
assignments to local variables Clocal, where Clocal : X local → Z assigns each
local variable its value.

3. cg : Xglobal → Z is an assignment of values to global variables.
4. cs : S → T ∪ {⊥T } is an assignment of values to lock variables.

A set of all concrete states of a program is denoted by C.
We define a (labeled) transition relation ⊆−→ C × G × T × C. We will write

c
g,t−→ c′ instead of (c, g, t, c′) ∈−→
We denote Reach−→(c) = {c′ | ∃c1, . . . , cn ∈ C.c −→ c1 −→ . . . −→ cn = c′}
We skip a complete definition of the semantics of all operators.

4 Extension of Configurable Program Analysis

The CPA theory was suggested in [14,15]. Basically, the main concepts of the
theory remain the same. In our theory, an abstract state is a partial one, so it may
not represent any concrete state of a program. That is why the concretization
function in our theory differs from the original one. Our concretization function
is defined on a set of elements. However, this change does not affect operator
definitions. One more change is introduction of a new operator for checking
compatibility of states.

Now define the Configurable Program Analysis D = (D, Π, merge, stop, prec,
�, compatible). It consists from an abstract domain D of abstract elements,
a set of precisions Π, a merge operator merge, a termination check stop, a
precision adjustment function prec and transfer relation � and compatibility
check compatible. The operator compatible is a new operator for CPA theory,
which is used for checking if the two partial states can represent parts of a single
concrete state.

1. The abstract domain D = (C, E , [[·]]) is defined by the set C of concrete states,
the semi-lattice E of abstract states and a concretization function [[·]]. The
E = (E,�,⊥,	,
) consists of the (possibly infinite) set E of abstract domain
elements, a top element � ∈ E, a bottom element ⊥ ∈ E, a partial order
	⊆ E×E and a function
 : E×E → E (join operator). The function
 yields
the least upper bound for two lattice elements, and symbols � and ⊥ denote
the least upper bound and greatest lower bound of the set E respectively.
The concretization function [[·]] : 2E → 2C assigns to each set of abstract
states R ⊆ E its meaning, i.e. the set of concrete states that it represents.
Note, that we use concretization on sets of state instead of a single state.
Thus we have

∀R ⊆ E : [[R]] ⊇
⋃

e∈R

[[{e}]]

Scalable Thread-Modular Approach for Data Race Detection 377

meaning that the summary knowledge for the set of partial states may be
bigger than union of knowledge for the single (partial) transition.
For thread-modular analyses a concretization function [[·]] means all possible
compositions of partial states:

∀R ⊆ E : [[R]]P =
∞⋃

k=1

⋃

e0, e1, . . . , ek ∈ R
t0, t1, . . . , tk ∈ T

⊕
I

({(
e0
t0

)
, . . . ,

(
ek

tk

)})
(1)

So, an analysis is required to define not a concretization function [[·]], but
a composition operator

⊕
because the thread-modular approach requires

unified schema for calculation of concrete states.
As we have already discussed all states are partial, so they may not be directly
related to concrete states. To get a complete state we should get a composition
of a set of partial states, which represent all available threads. Compatible
partial states can be composed into a complete concrete state with an operator⊕

: 2E×T → 2C . It returns a set of concrete states, which is represented by
given partial states.

2. The transfer relation �: E × Π × E assigns to each partial state ê with
precision π possible new abstract state e′ which is abstract successor of ê.
The transfer relation must overapproximate the concrete transitions:

∀R ⊆ E,π ∈ Π

[[
⋃

e∈R

{e′ | (e,π) � e′} ∪ R]] ⊇
⋃

c∈[[R]]

{c′ | c −→ c′} (2)

The requirement 2 generalizes the requirement on transfer operator in the
classical CPA theory, because of change in concretization function.

3. For data race detection we need one more operator: compatible : E × E →
{true, false}. It defines if the two partial states may be a part of a single
concrete state. If so, the corresponding transitions may be executed in parallel
from different threads. The operator is used not in main CPAAlgorithm, but
for data race detection after construction of reached set.

The precision domain Π, termination check stop, merge operator merge,
precision adjustment prec are the same as in the original CPA theory. The main
algorithm, which computes a set of reached abstract transitions, also stays the
same.

The main Theorem 1 may be proven for the algorithm with extended opera-
tors as well as for classical version.

Theorem 1 (Soundness). For a given configurable program analysis with thread
abstractions D and an initial abstract state e0 with precision π0, Algorithm CPA
computes a set of abstract states that overapproximates the set of reachable con-
crete states:

378 P. Andrianov and V. Mutilin

[[CPA(D, e0,π0)]] ⊇ Reach−→([[{e0}]])

5 Predicate Analysis

In the section, we describe a commonly used Predicate Analysis [16] in a thread-
modular version. To satisfy the requirement 2 the analysis has to be invariant
to possible changes in other threads. That means, the predicate abstract state
should not contain any information about shared data, considering, that it may
be changed at any moment by some other thread.

Let P be a set of formulas over program variables in a quantifier-free theory
T . Let P ⊆ P be a set of predicates. Let v : X → Z is a mapping from variables
to values. Define v |= ϕ, where v is called model of ϕ.

Define (ϕ)π – the boolean predicate abstraction of formula ϕ.
Define SPop(ϕ) – strongest postcondition of ϕ and operation op, regarding

the specifics of shared data.
We define Predicate Analysis P = (DP , ΠP ,�P , mergeP , stopP , precP)

which can track the validity of predicates over program variables.
It consists of the following components.

1. The abstract domain DP = (C, EP ,
⊕

P).
EP = (EP ,�P ,⊥P ,	P ,
P). EP = P, so a state is a quantifier free formula.
The top element �P = true, and bottom element ⊥P = false. The partial
order 	P ⊆ EP × EP is defined as e 	P e′ ⇔ e =⇒ e′. The join
P :
EP × EP → EP yields the least upper bound according to partial order.

∀e0, . . . , en ∈ EP , t0, . . . , tn ∈ T, ti �= tj , v̂i |= ei :
⊕

P

({(
e0
t0

)
, . . . ,

(
en

tn

)})
=

{
c ∈ C

∣∣∣∣
∀0 ≤ i ≤ n
cl(ti) = v̂i

}
(3)

The definition of
⊕

P means that the abstract partial states are combined
using only information about local variables. So, any model v̂i for every local
state ei may produce a corresponding local part of a global state cl(ti). There
is no limitations about global part cg as the analysis has no information about
values of global variables.

2. The set of precisions ΠP = 2P models a precision for an abstract state as a
set of predicates.

3. For g ∈ G we have the transfer (e,π) �P e′ with g = (·, op, ·), if e′ = SPop(e).
4. Merge operator may have several modifications, for example,

(a) mergeJoin merges both parts of the transition:

∀e, e′ ∈ EP ,π ∈ ΠP :
mergeP (e, e′,π) = e ∨ e′ (4)

(b) mergeSep does not merge elements.

Scalable Thread-Modular Approach for Data Race Detection 379

5. The stop checks if e is covered by another state in the reached set:
stopP (e,R,π) = ∃e′ ∈ R : (e 	 e′).

6. The precision adjustment function constructs predicate abstraction over pred-
icates in precision π: precP (e,π, R) = eπ = (sπ, q).

7. Compatibility check is trivial, because PredicateCPA does not track the val-
ues of global variables: compatible(e1, e2) ≡ true.

6 Lock Analysis

We define Lock Analysis S = (DS , ΠS ,�S , mergeS , stopS , precS) which tracks
the set of acquired locks (synchronization variables) for each thread.

It consists of the following components.

1. The abstract domain DS = (C, ES ,
⊕

S) uses semi-lattice ES = 2S∪{�E ,⊥E}
is a superset of synchronization variables, ⊥S 	 ls 	S �S and ls ⊆ ls′ ⇒
ls �S ls′ for all elements ls, ls′ ⊆ S (this implies ⊥S
S

S ls = ls, �S
S
 ls = �S ,

ls
S ls′ = ls ∩ ls′ for all elements ls, ls′ ⊆ S, ls �= ls′),

∀e1, . . . , en ∈ ES :
⊕

S

({(
e0
t0

)
, . . . ,

(
e′
n

tn

)})
=

=

{
{c ∈ C | ŝ ∈ si =⇒ cs(ŝ) = ti}, if ∀i �= j : compatible(ei, ej)
∅, otherwise

The definition of
⊕

S means that the partial states may be combined into
global ones if any acquired lock is acquired only in a one state. Then, in a
corresponding global states the acquired lock appears in a cs.

2. There is only one empty precision: ΠS = {{∅}}.
3. The transfer increases the number of stored locks in case it goes via acquire

operator and decreases in case of release. Formally, the transfer relation �S

has the transfer (e,π)
g�S e′, g = (·, op, ·′) if

– op = acquire(s) and s /∈ e ∧ e′ = e ∪ {s}, g′ ∈ G.
– op = release(s) and e′ = e \ {s}, g′ ∈ G.
– op = thread create(lν) and ls′ = ∅, g′ ∈ G.
– otherwise, ls = ls′, g′ ∈ G.

4. The merge operator does not combine elements: mergeS(e, e′,π) = e′.
5. The termination check is true if exists state which contains less locks:

stopS(e,R,π) = (∃e′ ∈ R ∧ e 	 e′).
6. The precision is never adjusted: precS(e,π, R) = (e,π).
7. ∀e1, e2 ∈ ES : compatibleS(e, e′) = (ls ∩ ls′ = ∅). The compatibility check

is very close to basic Lockset algorithm. If there is the same lock in both
threads, the operations can not be composed into the concrete one, as two
threads can not acquire the same lock.

380 P. Andrianov and V. Mutilin

7 Data Race Detection

Usually, data race is considered to be a situation where simultaneous accesses
to the same memory takes place from different threads, and one of the accesses
is a write one. Here are two main issues: how to detect the same memory in a
static way and how to detect simultaneous accesses. Further, we will discuss the
two features of our approach.

To detect data race conditions, we construct an abstract reachability graph
of possible abstract states. Then, we search for two compatible states, which are
followed by transitions, modifying the same memory. Our approach for static
race detection is a generalization of Lockset [11], which claims data race as two
accesses with disjoint sets of locks. One of the limitations of the Lockset approach
is the absence of support of other synchronization primitives. We use compatible
operator to identify the potentially parallel operations. As compatibility check is
based on different kinds of analyzes, including Lock analysis, it is more precise,
than the Lockset.

The presented theory supports shared data, which are expressed only by
global variables. In a real-world software, there are a lot of operations with
pointers, structure fields and so on. We are using BnB memory model, which
divides memory into a disjoint set of regions [8,17,18]. The region corresponds
to a special data type or to a special structure field in case of the field was not
addressed. The memory model has a certain number of limitations. First of all, it
does not support address arithmetic and casting, which reduces the soundness.
Then, there may be false alarms for general data types, like integer, as there are
a lot of accesses to it.

The data race detection algorithm consists of the following steps:

1. compute a complete set of reached abstract states (ARG);
2. for every reached state extract a memory region it accesses to;
3. for every memory region try to find a compatible pair of transitions, which

form a race condition;
4. check every potential data race for feasibility and refine a predicate abstrac-

tion if necessary [16];

8 Utilizing Block Abstraction Memoization

Block Abstraction Memoization (BAM) implements an optimization, which is
based on caching the results of the analysis. Caching is performed on border
of blocks, which are usually function bodies. So, at block entry an abstract
state is remembered as starting state and at block exit an abstract states are
remembered as final states. And at the next block entry with the same starting
state the analysis reuse the final state without reconstruction of the reached
states inside the block.

To increase the number of cache hits a transformation of states is applied.
An operator reduce remove irrelevant part of the starting state, generalizing it.
So, two different starting states may be reduced into the same one, and there

Scalable Thread-Modular Approach for Data Race Detection 381

is a cache hit. A missed information is returned at the block exit with expand
operator. The operators are defined by every CPA.

Reached states inside an abstract block are combined into a nested reached
set. The nested reached set may be reused several times if there are multiple
entries into the corresponding abstract block. It allows to significantly reduce
memory consumption, as a single copy is stored.

int global;

...

1: int f(int a) {

2: int r = a + 1;

3: return r;

4: }

5: int main(){

6: int l = nondet_int();

7: l = f(l);

8: lock();

9: l = f(l);

10: unlock();

11:}

Reached set

Reached set
(#7,Ø)

(#1,Ø)
reduce(#1,Ø)

(#2,Ø)

(#3,Ø)

expand
(#8,Ø)

(#1,lock)

f(l)
,)

r = a +1

,)
return r,)

lock()

(#9,lock),)
f(l) (#1,Ø)

reduce

(#3,Ø)
expand

(#10,lock),)
unlock()

(#11,lock)

Cache
Reached set

(#1,Ø)

r = a +1

return r

(#1,Ø)

...

(#6,Ø)

int l = ...

Fig. 4. An example of BAM work

Figure 4 presents an example of analysis with BAM. At the first entry in
function f , operation reduce does not change the state. At the second entry in
function f , operation reduce removes a lock and after that the reduced states
becomes equal to the first reduced state. Thus, BAM gets the result of analysis of
function f from the cache. After that it expands the resulting state and returns
the omitted lock.

Using reduction of states and a cache, BAM allows to reduce exploring state
space using a cache. However, the optimization has a number of disadvantages.

1. A set of reached states becomes incomplete. Due to reduce operation the
reached set may not contain those states, which are reachable in analysis
without BAM. As the reduced states are generalization of expanded ones,
that does not mean the analysis becomes unsound, but it becomes imprecise.
Although reduce operation should save all relevant information for analysis,
missed details may be necessary for some post-analysis, for example, data
race detection.

382 P. Andrianov and V. Mutilin

2. A set of reached states becomes distributed between different abstract blocks.
For every abstract block its own reached set is created, which contains all
states reachable in the particular block. The copy is used to convenient work
with the cache.

3. The previous issues lead to problems with path computation, as the path goes
through different reached sets and potentially reduced states.

4. All modifications of reached set, for example, removing a part of ARG, become
much more complicated, as currently we need to traverse all nested reached
sets.

The described disadvantages are not so important for a reachability analysis,
but for data race detection they become more valuable. In origin BAM opti-
mization there is only one error state, and once it is found the analysis stops.
So, if the error state was found, the analysis restores the path to it. While data
race detection we should compute all reachable states, and only after complete
construction, proceeds to searching racy pairs. It leads to some indeterminacy,
because an abstract block may have several entries, if the nested reached set was
reused several times.

BAM for data race detection has to implement a specific algorithm for path
restoration, and subgraph removing. As the tool can output several potential
data races in a single launch, it should have a possibility to compute many paths
in efficient way. The refinement procedure also becomes more complicated, as
it is also necessary to refine several paths at one iteration. Many of considered
paths pass through the same parts of code and the fact may be used while
computing the paths. For example, while restoring a path, we found, that there
are a sequence of states, which is the same as in infeasible path, which was refined
just now, we may skip it and try to restore another path. Note, the optimization
does not lead to unsoundness, as if the data race is true, it will appear on the
next iteration of the analysis.

9 Evaluation

We have evaluated CPALockator tool in the following configuration:

– Location Analysis (tracks program locations),
– Callstack Analysis (tracks function callstack),
– Thread Analysis (tracks tread creation points to detects happens-before

dependencies),
– Lock Analysis (Sect. 6),
– Predicate Analysis (Sect. 5)
– BAM optimization (Sect. 8)

The benchmark sets were launched on a set of machines with a GNU/Linux
operating system (x86 64-linux, Ubuntu 18.04), Intel Xeon E3-1230 v5,
3.40 GHz. We used default SV-COMP limits: 15 min of CPU time and 15 GB
of memory.

Scalable Thread-Modular Approach for Data Race Detection 383

The set of benchmarks, based on Linux device drivers, was prepared by Klever
tool, a framework for verification of large software systems [12,13]. It divides a
large codebase into separate verification tasks. For the Linux kernel, a verifica-
tion task consists of one Linux module. Then Klever automatically prepares an
environment model, which includes a thread model, a kernel model, and opera-
tions over the module. After the preparation of a verification task, Klever calls
a verification tool via a common interface – BenchExec [19].

We chose the drivers/net/ subsystem of Linux kernel 4.2.6, for which Klever
prepared 425 verification tasks2. We compared the following configurations:

1. Base. The default configuration without BAM and without Predicate anal-
ysis.

2. WithBAM. A configuration with BAM optimization.
3. WithPredicate. A configuration with Predicate analysis.
4. Both. A configuration with both BAM and Predicate analysis.

Table 1 presents the results.

Table 1. Comparison on benchmarks drivers/net/

Approach Base WithBAM WithPredicate Both

False verdicts 135 158 5 38

correct 85 85 3 29

confirmed 1 2 3 29

incorrect 50 73 2 9

True verdicts 246 246 248 256

correct 246 246 248 256

incorrect 0 0 0 0

Unknown 44 21 172 131

CPU time (c) 14 300 13 100 70 500 98 600

Discussion. A false verdict means, that there is at least one potential data
race condition. Note, the potential race condition may be not correct one, for
example, due to infeasible paths. We denote modules with feasible data races as
confirmed. So, without predicate analysis most of the warnings have contradic-
tions in variable values along the path. They are false alarms even though the
final verdict is correct, because corresponding paths are infeasible.

Base configuration works very fast because of absence of precise predicate
analysis. However, it also leads to imprecision and lots of false alarms (not
confirmed). WithBAM improves the situation a bit, but new verdicts are
mostly incorrect. WithPredicate improves the precision, but losing the speed.
2 https://gitlab.com/sosy-lab/software/ldv-benchmarks.git, directory linux-4.2.6-
races.

https://gitlab.com/sosy-lab/software/ldv-benchmarks.git

384 P. Andrianov and V. Mutilin

Enabling BAM in Both configuration significantly improves the situation. Note,
the increasing CPU time for the configuration Both in comparison to With-
Predicate is related to a number of out of memory results in the latter. For
these cases BAM allows to reduce memory consumption and works longer. The
evaluation confirms the efficiency of BAM optimization.

We reported most of the true race conditions and they were confirmed by
Linux maintainers. However, most of the bugs were found in ancient drivers and
nobody wants to fix it. Only a couple of patches are applied to the upstream as
a part of Google Summer of Code project.

10 Conclusion

The paper presents an approach for practical data race detection in complicated
software. We extended an existing CPA theory and implemented it in a new
tool. The experiments show the benefit of the approach on large examples. On
the other hand, small and complicated benchmarks are better solved with other
approaches. Anyway, the approach is sound and may be improved and optimized
in the future.

One of the possible directions is to implement a precise thread-modular app-
roach, which can compute thread environment efficiently. It will help to increase
the precision of the whole analysis.

References

1. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order
reduction. SIGPLAN Not. 49(1), 373–384 (2014)

2. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Sys-
tems: An Approach to the State-Explosion Problem. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-60761-7

3. Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Symbolic counter abstraction
for concurrent software. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 64–78. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02658-4 9

4. Beyer, D.: Automatic verification of C and Java programs: SV-COMP 2019. In:
Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS, vol.
11429, pp. 133–155. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17502-3 9

5. Henzinger, T.A., Jhala, R., Majumdar, R., Qadeer, S.: Thread-modular abstraction
refinement. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp.
262–274. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-
6 27

6. Gupta, A., Popeea, C., Rybalchenko, A.: Threader: a constraint-based verifier for
multi-threaded programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 412–417. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 32

https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/978-3-642-02658-4_9
https://doi.org/10.1007/978-3-642-02658-4_9
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-540-45069-6_27
https://doi.org/10.1007/978-3-540-45069-6_27
https://doi.org/10.1007/978-3-642-22110-1_32
https://doi.org/10.1007/978-3-642-22110-1_32

Scalable Thread-Modular Approach for Data Race Detection 385

7. Friedberger, K.: CPA-BAM: block-abstraction memoization with value analysis
and predicate analysis. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS,
vol. 9636, pp. 912–915. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49674-9 58

8. Andrianov, P., Friedberger, K., Mandrykin, M., Mutilin, V., Volkov, A.: CPA-
BAM-BnB: block-abstraction memoization and region-based memory models for
predicate abstractions. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10206, pp. 355–359. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54580-5 22

9. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

10. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63166-6 10

11. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a
dynamic data race detector for multi-threaded programs. SIGOPS Oper. Syst.
Rev. 31(5), 27–37 (1997)

12. Novikov, E., Zakharov, I.: Towards automated static verification of GNU C pro-
grams. In: Petrenko, A.K., Voronkov, A. (eds.) PSI 2017. LNCS, vol. 10742, pp.
402–416. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74313-4 30

13. Novikov, E., Zakharov, I.: Verification of operating system monolithic kernels with-
out extensions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247,
pp. 230–248. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03427-
6 19

14. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73368-3 51

15. Beyer, D., Henzinger, T.A., Theoduloz, G.: Program analysis with dynamic pre-
cision adjustment. In: 2008 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering, pp. 29–38, September 2008

16. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Formal Methods in Computer-Aided Design, FMCAD 2010
(2010)

17. Bornat, R.: Proving pointer programs in hoare logic. In: Backhouse, R., Oliveira,
J. (eds.) MPC 2000. LNCS, vol. 1837, pp. 102–126. Springer, Heidelberg (2000).
https://doi.org/10.1007/10722010 8

18. Burstall, R.M.: Some techniques for proving correctness of programs which alter
data structures. Mach. Intell. 7, 23–50 (1972)

19. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solu-
tions. Int. J. Softw. Tools Technol. Trans. 21(1), 1–29 (2017). https://doi.org/10.
1007/s10009-017-0469-y

https://doi.org/10.1007/978-3-662-49674-9_58
https://doi.org/10.1007/978-3-662-49674-9_58
https://doi.org/10.1007/978-3-662-54580-5_22
https://doi.org/10.1007/978-3-662-54580-5_22
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/978-3-319-74313-4_30
https://doi.org/10.1007/978-3-030-03427-6_19
https://doi.org/10.1007/978-3-030-03427-6_19
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/10722010_8
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y

On the Development of the Compiler
from C to the Processor with FPGA

Accelerator

Anton Baglij(B), Elena Metelitsa, Yury Mikhailuts, Ruslan Ibragimov,
Boris Steinberg, and Oleg Steinberg

Southern Federal University, Rostov-on-Don, Russia
{abagly,metelica,mihayluc,ribragimov,
byshtyaynberg,obshtyaynberg}@sfedu.ru

Abstract. This work describes the further development of the compiler
project for CPU with FPGA-accelerator. This compiler is based on the
Optimizing Parallelizing System (OPS) of the Southern Federal Univer-
sity. There is a structure of the considered compiler briefly described
in the article. Some specific parts of OPS internal representation for
pipelines and automats to control pipelines are described in more detail.
Examples of programs that are compiled by an experimental compiler
are given, as well as high-level program transformations of OPS that can
be used in this compiler.

Keywords: HDL · FPGA · Compiler · Pipeline generation · Program
transformations

To the famous developer of compilers, Andrey Nikolaevich Terekhov is
devoted

1 Introduction

Field-programmable gate arrays (FPGA) deliver performance advantages for a
wide class of problems as well as relatively low energy consumption. This makes
FPGAs more appealing for use in unmanned vehicles, especially flying ones, as
well as in supercomputers. However, FPGA development is set back by a lack of
high-level programming language compilers. This work is continuing the authors’
previous work dedicated to the development of the compiler for a reconfigurable
computational architecture. Target computer is either a system on chip that
contains a processor core along with a reconfigurable logic block matrix [1] or a
standard processor with FPGA accelerator.

This compiler’s structure was described in previous work [2], This project’s
relevance is proved by the fact that a reconfigurable architecture accelerator is

Supported by organization Southern Federal University x.

c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): FISEE 2019, LNCS 12271, pp. 386–400, 2020.
https://doi.org/10.1007/978-3-030-57663-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57663-9_25&domain=pdf
https://doi.org/10.1007/978-3-030-57663-9_25

Compiler for Processor with FPGA Accelerator 387

able to adjust to the structure of high-level programs and reach higher perfor-
mance than universal accelerators.

Computers with programmable and reconfigurable pipeline architectures are
being developed for a wide range of applications and show high efficiency [3,4].
Multi-pipeline architectures are described in works [5–8].

It should be noted that there are a lot of tools for high-level synthesis. Exam-
ples of commercial products are: Catapult C, Vivado Design Suite, Impulse
CoDeveloper, Altium Designer, HDL Coder for MATLAB. Academic research
projects: C-to-Verilog [9], THE [10] and Parallel Intellectual Compiler [11]. Here
we can also mention the system described in [12], which contains a Converter
from high-level language to electronic circuit design. The Trident Compiler [13]
system requires a user to manually split the code into software and hardware
parts.

There are a set of tools for lower-level synthesis as well. Mitrion C [14],
Handel-C [15], and HaSCoL [16] systems use specially designed language con-
structs to describe hardware elements and commands that are not present in
traditional programming languages (operations with individual bits, synchro-
nization tools, etc.). This makes such languages lower-level. For example, the
paper [17] proposed a generalization of data flow graph under the name bit-flow
graph. In [18], Autocode is a low-level FPGA language, but higher than Verilog
or VHDL.

This paper proposes a compiler from C to a processor with an FPGA accel-
erator. The compiled code is partially run on the CPU and on the FPGA. This
approach is very close to one from the Altera C2H compiler project for the
NIOS2 processor. This compiler became obsolete as it requires to write a lot of
architecture-specific pragmas along with the program code in the C language.
However, this requirement destroys the idea of high-level languages, because
the programmer must know the features of the target architecture. In addition,
transferring code from this processor to other processors or, conversely, from
other processors to this one is also very time-consuming.

Let us note the works of a group of authors that preceded this article. Previ-
ously, this group of authors described the C2HDL converter from C to the HDL
language [2,19–23]. It has made several versions of this converter. This converter
creates an HDL description of the pipeline matching a one-dimensional program
loop written in C. HDL-code generation is performed from the OPS IR (internal
representation of Optimizing parallelizing system), which allows you to use the
high-level program transformations implemented in the OPS [24]. The advan-
tages for generating HDL descriptions of a high-level OPS intermediate repre-
sentation compared to register-based internal representations were described in
[25]. An internal representation of pipeline [26] has been included to the OPS as
a subclass of the OPS internal representation. We consider an algorithm for cre-
ating a tree that covers several trees in [27]. This algorithm replaces two pipelines
with one that is slightly more complex. This transformation solves the problem
of minimizing the reconfiguration time of the FPGA when it is necessary to
perform calculations sequentially by different pipelines. The drivers’ generator

388 A. Baglij et al.

is proposed for mapping programs to a CPU with an FPGA accelerator in [28].
If the body of the pipelined loop contains few operations, the generated pipeline
will use few FPGA resources and will not be efficient enough. To increase effi-
ciency, it is proposed to make a sweep of the pipelined loop. In this case, it will
be necessary to generate a multi-pipeline instead of a pipeline [29–31]. This will
require creating multiple memory modules for each array on FPGA (in order
to read multiple array elements simultaneously). This leads to the problem of
placing arrays in distributed memory which was discussed in [21].

We propose the following new compiler elements for a CPU and FPGA accel-
erator in this paper. When the HDL pipeline code is generated automatically,
the innermost loop of a nest is pipelined. However, if this loop is inside another
loop, then for different values of the outer loop counter, the pipeline must be
generated with some differences for the inner loop. Therefore, in this paper we
propose the generation of a state machine that controls the generated pipeline.
Program transformations implementations for OPS “circular shift” and “retim-
ing” [32,33], which allows regrouping operations in a one-dimensional loop. This
paper suggests using these transformations to optimize the generated pipeline
and provides examples to illustrate their advantages. We consider that acceler-
ator can be effectively applied to the loop nests called singular. A function that
recognizes singular loop nests has been developed based on the OPS.

2 Automatic Pipeline Creation and the State Machine
that Controls This Pipeline

Pipeline inner representation (PIR) – abstract structure, which represents a
pipeline architecture along with some specific information about pipeline nodes.
Pipeline nodes can be divided into two types: buffers and cores. Together, they
allow using the power of DataFlow architecture in pipeline design.

The core is a simple processor, which is capable of processing a single operator
within an exact amount of time. The core can be of various arity, still binary
cores are the most common. Moreover, it contains a special signal aggregator
to provide DataFlow capability. This aggregator takes ready signals from core
data sources, processes them and returns true or false. As soon as the aggregator
returns true, the core starts operating. The most common type of aggregator is
simple conjunction, which means that an operation begins as soon as all its data
sources are ready.

The buffer is a data container. It stores data after core processing and serves
as a data source for further cores. Every core stores its results to a single buffer,
but, in general, a buffer can be a source for multiple cores simultaneously. There-
fore, it is designed as an outgoing oriented tree of memory cells. Each tree branch
serves as a data source for a single core. Various branch lengths are to delay data
for some ticks in order to balance data threads and minimize core downtime. As
soon as the datum in the leaf is used by the core, it is replaced by the datum
from its ancestor cell, and so on towards the tree root. This is a basic buffer

Compiler for Processor with FPGA Accelerator 389

behaviour, but there are some cases when the same value should be read mul-
tiple times, e.g. a variable referenced inside a loop body. Moreover, there is a
possibility to store a constant literal in a buffer permanently.

Some buffers serve as a pipeline interface. To emphasize this, special tags
called ports are applied to these buffers. A port contains a reference to the
buffer and a reference to the data, e.g. the array, which should be transferred to
or read from the buffer. As the pipeline is based on for loop body, it is possible
to calculate an exact order of array elements to transfer to the buffer, using loop
iteration borders and a loop step.

Considering the node types above, the pipeline can be represented as a bipar-
tite oriented graph. One part is formed by buffers, another one - by cores.
Pipeline construction can be performed while traversing calculation graph with
DFS. In order to make this process handy, there is a set of dynamic construction
methods, which allow to add a buffer, a core, or a literal to the pipeline.

As soon as the pipeline is designed, it needs data to process. As for loop with
arrays references inside its body is of most interest for us, special mechanism of
data arrays transfer from RAM to pipeline is necessary. To fulfill this purpose,
a special autogenerated driver is designed. It uses information about data from
pipeline ports and sends or receives array elements in exact order, which pipeline
requires. Thus, entire pipelined for loop can be replaced in the source code with
a single driver access statement.

The workflow described above works quite well considering one dimensional
for loops. However, as soon as we try to increase loop dimensions, we face a dra-
matic performance deterioration. The case can be revealed studying the exam-
ple in the Fig. 1. Here, the inner loop was pipelined and all the data referenced
inside its body should be transferred to the pipeline via its driver on each outer
loop iteration. It results in multiple transmissions of the same array elements,
which has a bad impact on the overall performance. To overcome this issue,
FPGA inner storage should be used to store processed arrays in case of multidi-
mensional loops. This gives a rise for further problems with transmission array
elements to the pipeline in exact order inside FPGA. Considering all these, we
came up with an idea of driver hardware implementation and extension, which
is called pipeline FSM (finite-state machine) inner representation.

Pipeline FSM inner representation – abstract structure, which represents
a loop nest as a pipeline for the most inner loop using PIR and a FSM, which
controls the iteration order of all the other nested loops and serves as a hardware
driver for the pipeline, calculating the exact order of array elements for each
iteration and transferring them to the pipeline. As FSM, it has a set of states as
a Cartesian multiplication of the sets of all possible loop counter values for each
loop except for the most inner one, which was pipelined. Thus, a single state is
a set of loop counters values, or an exact nest iteration. Signal to change the
state is sent by the pipeline when it has finished operating. Next state is picked
while trying to increment each loop counter if it is possible, or reset it otherwise,
from inner to outer loops, until a single counter is incremented. This is a total
analogy to the process of for loop nest next iteration. After each state change,

390 A. Baglij et al.

the exact order of the array elements to be sent to the pipeline is recalculated
as a function of loop counters. The whole process is finished as soon as the state
became initial again (all the counters have been reset while picking the next
state). Quite similarly to single-loop case, the entire pipelined loop nest can be
replaced with a single driver access statement, but in this case a driver will avoid
repeatable data sending.

3 The HDL Modules Generation and the Drivers
Generation

3.1 The Compiler Structure Scheme

The compiler was implemented based on OPS. It uses OPS high-level internal
representation Reprise for C and VHDL. Some VHDL language constructions,
that are not presented in Reprise, were implemented as an extension of the
standard internal representation. The process of the compilation can be divided
into 4 phases using different classes:

1. The phase of source code parsing when a parser class converts C source files
to OPC internal representation Reprise.

2. The phase of pattern searching. Each pattern is searched by the corresponding
transformation class. An instance of the class is created for each piece of code
satisfying one of the patterns. This instance provides an abstract descrip-
tion of the algorithms of the corresponding pattern to be later transferred to
FPGA.

3. The phase of pattern processing. During this phase driver code instances are
created in the internal representation, and HDL module instances are created
for algorithms that are transferred to FPGA.

4. The output phase. During this phase the results of the previous step are
written to the output files.

The structure scheme that shows the interactions of compiler modules at all
phases is presented at Fig. 1.

3.2 The Structure of HDL-Generator

Now the compiler has two HDL generators of pattern implementation - for
pipelines and for state machines. In addition to HDL generators for patterns,
the compiler contains generators of utility modules, such as buffers. Moreover,
the compiler has a library of predefined utility modules on SystemVerilog, such
as a queue, a counter, a memory cell with parameterized address alignment.

3.3 Pipeline HDL Code Generator

The algorithm of pipeline HDL code generation can be divided into three phases:

1. Generation of structures described by the main pattern class.

Compiler for Processor with FPGA Accelerator 391

Fig. 1. The Compiler Structure Scheme. The classes or the groups of classes performing
certain transformations or analyses are lightened out. The classes or the groups of
classes that are responsible for data storage are grayed out. The arrows indicate the
information dependencies of blocks.

2. Traversing of the pipeline graph and generation of structures that describe
the edges between nodes.

3. The generation of utility modules - buffers and operations.

During the first phase the main HDL module that describes the pipeline body
and its ports and declarations of some related signals is generated. Three HDL
ports are created for each abstract port:

– Data—this port passes the payload directly. Its direction coincides with the
direction of the abstract port and its size is equal to the size of the corre-
sponding data type.

392 A. Baglij et al.

– Valid—this port transmits the data presence flag. The direction of this port
is also the same as the direction of the abstract port, but it always has the
size of 1 bit. If this HDL port is pulled up, it means that the abstract port
has data.

– Ready—this port synchronizes the pipeline work with the data transfer inter-
face. The direction of this HDL port is always backward to the direction of
the corresponding abstract port and its size is always 1 bit. The input port
of this type is for the pipeline to be able to suspend its work when the out-
put buffers of the data transfer interface are full. The output port is for the
driver to be able to suspend the data submission while the pipeline is busy
processing the previous portion of data.

It is worth noting that in this case one instance of the PLPort class from
PIR can correspond to several abstract ports. This is possible when one instance
of the PLPort class is referenced with more than one buffer in the pipeline In
addition to the HDL ports corresponding to the abstract ports, the pipeline
generates 5 service ports. Their presence is mandatory in all cases, regardless of
the pipeline structure:

– Clock—this port is for the clock signal. Through this port a clock signal that
determines the frequency of the pipeline work is transmitted to the pipeline.
Its input port has the size of 1 bit.

– Reset—it is a vent port. It is for all the pipeline registers to reset to its original
state during the enable and reload of VS. Its input port has the size of 1 bit.

– TurnOn—this port turns on the pipeline. After setting up the start initial-
ization, the port must be pulled up to start the pipeline. Its input port has
the size of 1 bit.

– TurnOff—this port turns off the pipeline. After all calculations have been
performed, the port must be pulled up to stop the pipeline. Its input port
has the size of 1 bit.

– IsOn—the sign of the pipeline work. This port is pulled up if and only if the
pipeline is active. It allows the driver to get information about the current
state of the pipeline. Its output port has the size of 1 bit.

3.4 The Generator of State Machine HDL Code

The algorithm of state machines generation can be divided into four phases:

1. The generation of ports and service structures.
2. The generation of counters that implement the state and the function of the

state machine state.
3. The generation of distributed memory blocks and the construction of switch-

ing circuitries.
4. The generation of the controlled pipeline.

The list and the purpose of service ports that are created at the first phase of the
state machine’s HDL code generation coincide with the list and the purpose of

Compiler for Processor with FPGA Accelerator 393

the ones for single-pipeline case: Clock, Reset, TurnOn, TurnOff, IsOn. But the
list of HDL ports corresponding to the abstract ports of the state machine is con-
structed differently. Thus, one instance of the PLPort class always corresponds
exactly to one abstract port and generates the following HDL ports:

– Data—the port of the data. Its direction coincides with the direction of the
abstract port and its size is the same as the data bus capacity of the target
architecture in all cases.

– Address—the address port. It is always an input port and its size is equal to
the target architecture address bus bit set.

– Valid—this port transmits the data presence flag. It is always pointed in the
same direction as the abstract port that has generated it; it has a size of 1
bit.

– Keep—this port allows the driver to point the Data port bytes that have the
payload. This is necessary when the Data port contains data that is smaller
than the size of the bus data. This port is always input, it can be generated
only for the input abstract port. It has a size equal to the size of the Data
port divided by the size of the smallest data type. At the moment, this type
of data has the size of one byte that is equal to 8 bits.

– ReadEnable—this port allows the driver to report to the state machine about
the necessity of reading the data of the corresponding output port. It is an
input port and can be generated only by an output abstract port. It has a
size of 1 bit.

The state function of the state machine is built in the form of counters; each
of them corresponds exactly to the counter of one of the external (in relation to
the innermost loop, that was transformed to pipeline) loops of nest. Currently,
the start value, the step and the final value of such counters can be only a
compile-time constant.

During the memory blocks generation, the number of blocks is considered
equal to the number of the managed pipeline‘s abstract ports. Moreover, for
each abstract port of the pipeline, a so-called “Selector” is generated; it actually
is the same counter as the counters that are part of the state function of the
state machine. The only difference of the selector is that its start value, step and
final value are not set by constants, but by affine expressions, the arguments of
which are the values of the counters that form the state of the automaton. At
the same time, some memory blocks and abstract ports can be combined into
one group if they all correspond to the same state machine abstract port. In the
case of such combining, there may be a situation where, under different states of
the control state machine, the same abstract port of the pipeline must read or
write data to different blocks of distributed memory. In this case, an additional
switch is generated as part of the state machine that is parameterized by the
index expressions of the corresponding abstract ports. The placement of data in
distributed memory occurs according to the scheme proposed in [34].

394 A. Baglij et al.

4 Finding Singular Loop Nests with OPS

While mapping a source code to a heterogeneous system with CPU and FPGA
accelerator, it is important to choose fragments of an input program that would
be mapped onto FPGA. Usually such fragments should be of limited size and
performing large amount of computations. We consider loop nests to be the most
typically chosen fragments with the mentioned characteristics. However, not all
loop nests are suitable for optimization and translation onto FPGA.

Modern processors require an order of magnitude less time to perform simple
arithmetic operations than to read their operands from memory. Because of
this, code regions that have a lot more computational operations in relation
to the number of memory accesses are more suitable to be mapped onto FPGA
accelerator. Shared memory access is the bottleneck of many algorithms. In such
algorithms, using the local memory (processor cache) would be more efficient,
as its performance is significantly higher than operative memory’s. This creates
a necessity for data locality. Without it, accelerators cannot give a significant
performance boost.

For a subset of C programs, it is possible to approximate amount of memory
accesses inside a loop nest in relation to the number of basic arithmetic opera-
tions. The number of operations inside a loop nest is proportional to the number
of vertices in the iterations space of that loop nest. The number of operations in
a loop nest, which has k loops with N iterations each, is proportional to Nk. The
amount of data required to compute a loop nest is usually proportional to Nm,
where m is the maximum dimension of the arrays used in the loop nest. Map-
ping a loop nest to an accelerator is potentially more beneficial if the inequality
m < k holds true. We define a singular loop nest as a loop nest in which the
number of indices for each variable occurrence is less than the number of loops
in the nest.

E.g. a singular loop nest that has two loops can only have one-dimensional
arrays and scalar variables. Choosing singular loop nests to be run on accelerator
is very likely to lead to overall speedup.

For example, the loop nest that calculates a convolution is a singular loop
nest.

for(i = 0; i < M; i++)
for(j = 0; j < N; j++)

X[i] = A[i+j]*B[j];

The next loop nest is singular, but is very unlikely to be sped up by an
accelerator, because it has O(M · N) operators and O(M · N) array entries.

for(i = 0; i < M; i++)
for(j = 0; j < N; j++)

A[i*N+j] = B[i] + C[j]*D[i+j];

The above loop nest is equivalent to the following one-dimensional loop.

Compiler for Processor with FPGA Accelerator 395

for(i = 0; i < M*N; i++)
A[i] = B[i div N] + C[i mod N]*D[(i div N)+(i mod N)];

The fact that a loop nest is singular does not necessarily mean that it could
be sped up. However, it could be done with higher probability. The acceleration
potential depends on data dependencies and target computer architecture.

5 Loop Unrolling and Array Distribution in Distributed
Memory

Example of convolution program source code that is used to test target archi-
tecture performance.

for (j = 0 ; j < CONV LEN ; j += 1)
for (i = 0 ; i < CORE LEN ; i += 1)

a0 [j] = a0 [j] + c [j + i] ∗ b [i] ;

If CORE LEN is divided by 8, then the loop unrolling looks as follows

for (j = 0 ; j < CONV LEN ; j += 1)
for (i = 0 ; i < CORE LEN ; i += 8)

a0 [j] = a0 [j] +
c [j + i + 0] ∗ b [i + 0] + c [j + i + 1] ∗ b [i + 1] +
c [j + i + 2] ∗ b [i + 2] + c [j + i + 3] ∗ b [i + 3] +
c [j + i + 4] ∗ b [i + 4] + c [j + i + 5] ∗ b [i + 5] +
c [j + i + 6] ∗ b [i + 6] + c [j + i + 7] ∗ b [i + 7] ;

Loop unrolling reduces the number of iterations of the loop that is to be
transformed to pipeline. After the loop unrolling each occurrence of the array
is repeated several times with different index expressions. For the efficiency of
the pipeline all the data are to be read simultaneously. Therefore, the elements
of each array must be placed in a special way in several memory blocks. Such
placements are described in [34].

The figure shows how to speed up the calculations by loop unrolling (Fig. 2).

6 Loop Statements Regrouping to Save Time the Initial
Load and Buffer Memory Pipeline

This transformation changes the order of loop body operator execution. Similar
transformations include retiming [33,35] and round-robin loop body shift [32]

We will examine how loop operator regrouping is working on an example.
For example, consider a loop which data dependency graph is a tree:

for (i =0; i<N; ++i) {
a [i +1] = b [i +2] ∗ c [i] ;
d [i] = a [i] + e [i] ; (1)
b [i] = f [i] − g [i] ;

}

396 A. Baglij et al.

Fig. 2. The dependence of the convolution computation time on FPGA on the number
of arithmetic operations for the unrolling factors that are equal to 1 and 8.

Different index expressions for the variable occurrences “a” and “b” lead to a
necessity for synchronization buffers inside the pipeline and preliminary (before
pipeline start) loading of some of these buffers. Preliminary loading requires
FPGA elements that are used only once before the pipeline start. Because of
this, lowering the volume of preliminary loading raises FPGA efficiency (Fig. 3).

Fig. 3. Diagram of a pipeline created for a loop (1) by OPSDemo

After application of “loop operator regrouping” transformation to loop (1)
the following code fragment is created:

Compiler for Processor with FPGA Accelerator 397

d [0] = a [0] + e [0] ;
b [0] = f [0] − g [0] ;
b [1] = f [1] − g [1] ;
for (i =0; i<N−2; ++i) {

a [i +1] = b [i +2] ∗ c [i] ;
d [i +1] = a [i +1] + e [i +1] ; (2)
b [i +2] = f [i +2] − g [i +2] ;

}
a [N−2] = b [N−2] ∗ c [N−2] ;
a [N−1] = b [N−1] ∗ c [N−1] ;
d [N−1] = a [N−1] + e [N−1] ;

Computing “prologue” (three assignment operators before loop (2)) and “epi-
logue” (three assignment operators after loop (2)) could be carried out on the
CPU.

It is worth to point out that after performing “loop regrouping” transfor-
mation in loop (2) the variable occurrences “a” and “b” have identical index
expression. This means that it is no longer necessary to perform initial pipeline
loading for these variables. Apart from that, pipeline would now require less
buffer memory for data movement synchronization (Fig. 4).

Fig. 4. Diagram of a pipeline created for a loop (2) by OPSDemo

7 Conclusion

This article takes a new step towards building a compiler from a high-level
language to a processor with a FPGA-accelerator. The compiler built Pipeline
computing systems for loops with several assignment operators, and there may
be information dependencies between operators. Together with the pipeline, an
automaton is created to control this pipeline. There is presented the optimizing
loops transformation, which simplifies the generated HDL-code of the pipeline,
it saves FPGA resources. This transformation is implemented in the Optimizing
Parallelizing System on the basis of which the compiler is developed. The OPS
function is developed, which looks for program code fragments that could be
transferred to the accelerator.

398 A. Baglij et al.

References

1. Preliminary Product Specification/XILINX/Zynq-7000 All Programmable SoC
Overview (2018). http://www.xilinx.com/support/documentation/data sheets/
ds190-Zynq-7000-Overview.pdf. Accessed 21 July 2019

2. Steinberg, B.Y., Dubrov, D.V., Mikhailuts, Y., Roshal, A.S., Steinberg, R.B.:
Automatic high-level programs mapping onto programmable architectures. In:
Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 474–485. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21909-7 46. ISBN 978-3-319-21909-7

3. Bondalapati, K.K.: Modeling and mapping for dynamically reconfigurable hybrid
architectures. Ph.D. thesis. University of Southern California, California (2001)

4. Kalyaev, A., Levin, I.: Modulno-narashchivaemye mnogoprotsessornye sistemy so
strukturno-protsedurnoi organizatsiei vychislenii. (Russian) [Modularly multipro-
cessor systems with structurally-procedural organization of computations]. “Ianus-
K”, p. 380 (2003)

5. Korneev, V.: Arkhitektura vychislitelnykh sistem s programmiruemoi strukturoi.
(Russian) [Programmable Computer Architecture]. Nauka, Novosibirsk (1985)

6. Kalyaev, I., Levin, I.: Rekonfiguriruemye multikonveiernye vychislitelnye struktury.
(Russian) [Reconfigurable multi-pipeline computing structures] ed. by I. Kaliaeva,
Izdatelstvo IuNTs RAN, Rostov-n/D, p. 344 (2009)

7. Yadzhak, M.: Vysokoparallelnye algoritmy i metody dlia resheniia zadach
massovykh arifmeticheskikh i logicheskikh vychislenii. (Russian) [Highly parallel
algorithms and methods for solving problems of mass arithmetic and logical cal-
culations]: Ph.D. thesis, Yadzhak, M.S. Institut prikladnykh problem mekhaniki i
matematiki, Lvov (2001)

8. Samofalov, K., Lutskii, G.: Osnovy teorii mnogourovnevykh konveiernykh vychis-
litelnykh sistem. (Russian) [Fundamentals of the theory of multidimensional con-
veyor computing systems]. Radio i sviaz, Moskva, p. 272 (1989)

9. Yosi, B.-A., Nadav, R., Eddie, S.: Finding the best compromise in compiling
compound loops to Verilog. J. Syst. Arch. 56(9), 474–486 (2010). https://doi.
org/10.1016/j.sysarc.2010.07.001. http://www.sciencedirect.com/science/article/
pii/S1383762110000688. ISSN 1383–7621

10. Esko, O., et al.: Customized exposed datapath soft-core design flow with com-
piler support. In: 2010 International Conference on Field Programmable Logic and
Applications, pp. 217–222 (2010). https://doi.org/10.1109/FPL.2010.51

11. Polyakov, G., Lysykh, V.: A formal method of functional SNS-synthesis of problem-
oriented parallel-pipelined devices. In: Proceedings of the National Supercomputer
Forum (NSCF-2013). Pereslavl-Zalessky, Russia (2013)

12. Cardoso, J., Diniz, P.: Compilation Techniques for Recongurable Architectures
(2009)

13. Tripp, J.L., Gokhale, M., Peterson, K.: Trident: from high-level language to hard-
ware circuitry. Computer 40(3), 28–37 (2007). https://doi.org/10.1109/MC.2007.
107. ISSN 0018-9162

14. Kindratenko, V.V., Brunner, R.J., Myers, A.D.: Mitrion-C application develop-
ment on SGI Altix 350/RC100. In: Proceedings of the 15th Annual IEEE Sym-
posium on Field-Programmable Custom Computing Machines, FCCM 2007, pp.
239–250. IEEE Computer Society, Washington, DC (2007). https://doi.org/10.
1109/FCCM.2007.45. ISBN 0-7695-2940-2

15. Self, R.P., Fleury, M., Downton, A.C.: Design methodology for construction of
asynchronous pipelines with Handel-C. IEE Proc. Softw. 150(1), 39–47 (2003).
https://doi.org/10.1049/ip-sen:20030206. ISSN 1462-5970

http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://doi.org/10.1007/978-3-319-21909-7_46
https://doi.org/10.1016/j.sysarc.2010.07.001
https://doi.org/10.1016/j.sysarc.2010.07.001
http://www.sciencedirect.com/science/article/pii/S1383762110000688
http://www.sciencedirect.com/science/article/pii/S1383762110000688
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/MC.2007.107
https://doi.org/10.1109/MC.2007.107
https://doi.org/10.1109/FCCM.2007.45
https://doi.org/10.1109/FCCM.2007.45
https://doi.org/10.1049/ip-sen:20030206

Compiler for Processor with FPGA Accelerator 399

16. Boulytchev, D., Medvedev, O.: Hardware description language based on mes-
sage passing and implicit pipelining. In: 2010 East-West Design Test Symposium
(EWDTS), pp. 438–441 (2010). https://doi.org/10.1109/EWDTS.2010.5742095

17. Zhang, J., et al.: Bit-level optimization for high-level synthesis and FPGA-based
acceleration. In: Proceedings of the 18th Annual ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays, FPGA 2010, pp. 59–68. ACM,
Monterey (2010). https://doi.org/10.1145/1723112.1723124. http://doi.acm.org/
10.1145/1723112.1723124. ISBN 978-1-60558-911-4

18. Lacis, A., Dbar, S.: Sistema programmirovaniia Avtokod HDL i opyt ee primeneniia
dlia skhemnoi realizatsii chislennykh metodov v FPGA. (Russian) [Programming
system Autocode HDL and experience of its application for circuit implementation
of numerical methods in FPGA], Nauchnyi servis v seti Internet: masshtabirue-
most, parallelnost, effektivnost: Trudy Vserossiiskoi nauchnoi konferentsii (21–26
sentiabria 2009 g., g. Novorossiisk). Izd-vo MGU, p. 237 (2009)

19. Dubrov, D., Roshal, A.: Generating pipeline integrated circuits using C2HDL con-
verter. In: East-West Design Test Symposium (EWDTS 2013), pp. 1–4 (2013).
https://doi.org/10.1109/EWDTS.2013.6673108

20. Dubrov, D., Roshal, A.: Avtomaticheskoe otobrazhenie programm na protsessor
s PLIS-uskoritelem. (Russian) [Automatic mapping of programs on a processor
with FPGA accelerator], Vestnik Iuzhno-uralskogo gosudarstvennogo universiteta.
Seriia “Vychislitelnaia matematika i informatika”, vol. 3, no. 2, pp. 117–121 (2014)

21. Steinberg, B.Y., et al.: A project of compiler for a processor with programmable
accelerator. Procedia. Comput. Sci. 101(1), 435–438 (2016). https://doi.
org/10.1016/j.procs.2016.11.050. https://www.sciencedirect.com/science/article/
pii/S1877050916327193

22. Steinberg, B.Y., et al.: Developing a high-level language compiler for a computer
with programmable architecture. In: Proceedings of the 12th Central and East-
ern European Software Engineering Conference in Russia on - CEE-SECR 2016,
pp. 1–6. ACM Press, New York (2016). https://doi.org/10.1145/3022211.3022226.
http://dl.acm.org/citation.cfm?doid=3022211.3022226. ISBN 9781450348843

23. Steinberg, B.Y., et al.: Classification of loops with one statement for executing on
the processor with programmable accelerator. Prog. Syst. Theory Appl. 8(3), 189–
218 (2017). https://doi.org/10.25209/2079-3316-2017-8-3-189-218. ISSN 2079-
3316

24. Optimizing parallelization system (2013). www.ops.rsu.ru. Accessed 21 July 2019
25. Gervich, L.R., et al.: How OPS (optimizing parallelizing system) may be use-

ful for clang. In: ACM International Conference Proceeding Series Association
for Computing Machinery (2017). https://doi.org/10.1145/3166094.3166116. ISBN
9781450363969

26. Alymova, E.V.: On the intermediate program representation for automatic genera-
tion of pipeline compute units. University News. North-Caucasian Region. Techni-
cal Sciences Series, no. 3, pp. 22–28 (2017). https://doi.org/10.17213/0321-2653-
2017-3-22-28. ISSN 03212653

27. Steinberg, B.Y., et al.: Pipeline circuits to compute several expressions. In:
Proceedings of the 14th Central and Eastern European Software Engineer-
ing Conference Russia on ZZZ - CEE-SECR 2018, pp. 1–7. ACM Press,
New York (2018). https://doi.org/10.1145/3290621.3290632. http://dl.acm.org/
citation.cfm?doid=3290621.3290632. ISBN 9781450361767

https://doi.org/10.1109/EWDTS.2010.5742095
https://doi.org/10.1145/1723112.1723124
http://doi.acm.org/10.1145/1723112.1723124
http://doi.acm.org/10.1145/1723112.1723124
https://doi.org/10.1109/EWDTS.2013.6673108
https://doi.org/10.1016/j.procs.2016.11.050
https://doi.org/10.1016/j.procs.2016.11.050
https://www.sciencedirect.com/science/article/pii/S1877050916327193
https://www.sciencedirect.com/science/article/pii/S1877050916327193
https://doi.org/10.1145/3022211.3022226
http://dl.acm.org/citation.cfm?doid=3022211.3022226
https://doi.org/10.25209/2079-3316-2017-8-3-189-218
www.ops.rsu.ru
https://doi.org/10.1145/3166094.3166116
https://doi.org/10.17213/0321-2653-2017-3-22-28
https://doi.org/10.17213/0321-2653-2017-3-22-28
https://doi.org/10.1145/3290621.3290632
http://dl.acm.org/citation.cfm?doid=3290621.3290632
http://dl.acm.org/citation.cfm?doid=3290621.3290632

400 A. Baglij et al.

28. Mikhajluts, J., et al:. Drajvery dlja obespechenija vzaimodejstvija uskoritelja s
rekonfiguriruemoj arhitekturoj i central’nogo processora vychislitel’noj sistemy.
(Russian) [Drivers for the interaction of the accelerator with the reconfigurable
architecture and the central processor of the computing system]. Jazyki program-
mirovanija i kompiljatory. Trudy Vserossijskoj nauchnoj konferencii pamjati A.L.
Fuksmana. Publishing house of the southern federal university, Rostov-on-Don,,
pp. 205–208 (2017)

29. Steinberg, R.: Vychislenie zaderzhki v startakh konveierov dlia superkompiuterov
so strukturno protsedurnoi organizatsiei vychislenii. (Russian) [Calculation of delay
in pipeline starts for supercomputers with structurally procedural organization
of calculations]. Iskusstvennyi intellekt. Nauchnoteoreticheskii zhurnal, no. 4, pp.
105–112 (2003)

30. Steinberg, R.: Ispolzovanie reshetchatykh grafov dlia issledovaniia mnogokonveier-
noi modeli vychislenii. (Russian) [The Use of Lattice Graphs to Research the
Multi-Pipeline Computation Model]. Izvestiia VUZov. Severokavkazskii region.
Estestvennye nauki, no. 2, pp. 16–18 (2009)

31. Steinberg, R.: Otobrazhenie gnezd tsiklov na mnogokonveiernuiu arkhitekturu.
(Russian) [Mapping Loop Nests to a Multi-Pipeline Architecture] Program-
mirovanie 36(3), 177–185 (2010)

32. Steinberg, O.B.: Circular shift of loop body-programme transformation, promot-
ing Parallelism. Vestnik Iuzhno-Uralskogo gosudarstvennogo universiteta. Seriia:
Matematicheskoe modelirovanie i programmirovanie 10(3) (2017)

33. Steinberg, O.B., Ivlev, I.A.: Primenenie preobrazovaniia tsiklov “Retiming” s tseliu
umensheniia kolichestva ispolzuemykh registrov. (Russian) [Using “Retiming” loop
transformation to reduce the number of registers used]. Izvestiia vysshikh ucheb-
nykh zavedenii. Severo-Kavkazskii region. Tekhnicheskie nauki. 3(195) (2017)

34. Steinberg, B.: Blochno-affinnye razmeshcheniia dannykh v parallelnoi pamiati.
(Russian) [Block-affine Parallel Memory Locations]. Informatsionnye tekhnologii,
no. 6, pp. 36–41 (2010). https://elibrary.ru/item.asp?id=14998775. ISSN 1684–
6400

35. Liu, D., et al.: Optimally maximizing iteration-level loop parallelism. IEEE Trans.
Parallel Distrib. Syst. 23(3), 564–572 (2012)

https://elibrary.ru/item.asp?id=14998775

Author Index

Ahmad, Tanwir 310
Aleksyuk, Artyom 357
Amirova, Rozaliya 267
Andrey, Terekhov 106
Andrianov, Pavel 371
Askarpour, Mehrnoosh 3
Aslam, Hamna 28, 88

Baglij, Anton 386
Bahrami, Mohammad Reza 19
Beketova, Maria 232
Bersani, Marcello M. 3
Boudjadar, Jalil 178
Brown, Joseph Alexander 28
Bruel, Jean-Michel 28

Capozucca, Alfredo 133
Ciancarini, Paolo 279

Danko, Danila 246
de Carvalho, Daniel 28, 88, 151
Dzvonyar, Dora 217

Enoiu, Eduard Paul 73
Erdogmus, Hakan 217
Ergasheva, Shokhista 295
Esterle, Lukas 178, 196

Fitzgerald, John 196

Gomes, Claudio Goncalves 196
Guelfi, Nicolas 133

Hallerstede, Stefan 178

Ibragimov, Ruslan 386
Itsykson, Vladimir 357
Ivanov, Vladimir 267, 295

Khazeev, Mansur 28, 88, 232
Khomyakov, Ilya 42
Kotorov, Iouri 327, 341

Krasylnykova, Yuliya 327, 341
Kruglov, Artem 295
Kudasov, Nikolai 151

Larsen, Peter Gorm 178, 196

Macedo, Hugo Daniel 196
Masyagin, Sergey 19, 42, 267
Mazzara, Manuel 28, 60, 88, 327, 341
Metelitsa, Elena 386
Mikhailuts, Yury 386
Missiroli, Marcello 279
Mutilin, Vadim 371

Naumchev, Alexandr 88

Péraire, Cécile 217
Pierce, Kenneth 196
Platonova, Mariia 106

Rivera, Victor 88
Russo, Daniel 279

Sadovykh, Andrey 232, 295
Schultz, Carl Peter Leslie 178
Shilov, Nikolay V. 246
Spallone, Aldo 267
Steinberg, Boris 386
Steinberg, Oleg 386
Succi, Giancarlo 19, 42, 267, 295

Thapaliya, Ananga 267
Thule, Casper 196
Tran, Cuong Huy 310
Truscan, Dragos 310

Vernon, David 115

Zhdanov, Petr 327, 341
Zouev, Evgeny 295
Zufarova, Oydinoy 267

	Preface
	Organization
	Contents
	I Course Experience
	Teaching Formal Methods: An Experience Report
	1 Introduction
	2 Teaching Formal Specification: Why and When?
	3 Experience Report at Politecnico di Milano
	4 Conclusions
	References

	A Review of the Structure of a Course on Advanced Statistics for Data Scientists
	1 Introduction
	2 General Goals
	2.1 Course Objectives Based on Bloom's Taxonomy
	2.2 Course Evaluation

	3 Structure of the Course
	4 Description of the Structure of Each Week
	5 Assessment
	6 Overall Outcomes from Students
	7 Conclusions
	References

	Reflections on Teaching Formal Methods for Software Development in Higher Education
	1 Introduction
	2 The Tool
	2.1 Basic Notions on DbC

	3 Quantitative Analysis
	3.1 Study Design
	3.2 Collection of Data

	4 Analysis of Essays
	5 Reflections
	6 Related Work
	7 Threats to Validity
	8 Conclusions
	References

	Experience of Mixed Learning Strategies in Teaching Lean Software Development to Third Year Undergraduate Students
	1 Introduction
	2 About the Course
	3 Background
	3.1 GQM
	3.2 Experience Factory
	3.3 Non-invasive Measurement

	4 The Course
	4.1 Course Goals
	4.2 Course Structure

	5 Course Design (Teaching Approaches and Process)
	6 Course Activities
	6.1 Reports
	6.2 Projects
	6.3 Chapters
	6.4 Simulation Games
	6.5 GQM

	7 Conclusion
	References

	Teaching Theoretical Computer Science at Innopolis University
	1 Introduction
	2 Solving the Apparent Paradox
	3 Content and Delivery
	4 Course Evolution
	5 Guest Lectures
	6 Students Assessment
	7 Towards the Future
	References

	I Lessons Learnt
	Teaching Software Testing to Industrial Practitioners Using Distance and Web-Based Learning
	1 Introduction
	2 Software Testing Education
	3 Moving to Distance and Web-Based Learning for Industrial Practitioners
	3.1 A Course Module on Advanced Topics in Software Testing
	3.2 Model-Based Testing Course
	3.3 Automated Test Generation Course

	4 A Longitudinal Study of Developing and Teaching Three Online Courses in Software Testing
	4.1 Case Study Methodology
	4.2 On Teaching and Learning with Digital Tools
	4.3 Asynchronous Communication and Course Assignments
	4.4 Challenges and Good Approaches

	5 Discussions and Limitations
	6 Conclusions
	References

	Towards Code Review Guideline in a Classroom
	1 Introduction
	2 Related Work
	3 Code Review Process
	3.1 Components of the Code Review
	3.2 Code Review (for Educators)
	3.3 Code Review (for Students)

	4 The Process at Work
	4.1 Course Structure
	4.2 Code Review Phases
	4.3 Code Review Steps
	4.4 Data/Observations

	5 Lessons Learnt and Discussion
	6 Conclusions
	References

	IT Education in St. Petersburg State University
	1 Introduction
	2 IT Education Standards
	3 IT Companies' Support of Education
	4 Programming Learning Tools
	5 Conclusion
	References

	Ten Unsafe Assumptions When Teaching Topics in Software Engineering
	1 Introduction
	2 Unsafe Assumptions
	2.1 Students Understand How to Decompose Problems
	2.2 Students Know that All Systems Have to Be Specified at Different Levels of Abstraction
	2.3 Students Know How to Bridge Different Levels of Abstraction
	2.4 Students Understand How Software and Hardware Reflect the Different Levels of Abstraction
	2.5 Students Can Follow Instructions and Pay Attention to Detail
	2.6 Students Can Easily Follow Oral or Written Explanations
	2.7 Students Are Able to Stress Test Their Own Software
	2.8 Students Understand the Importance of Professional Practice
	2.9 Students Are Adept at Self-criticism
	2.10 Students Understand the Relevance of Examples

	3 Conclusion
	References

	I Curriculum and Course Design
	Analysing the SWECOM Standard for Designing a DevOps Education Programme
	1 Introduction
	2 Background
	2.1 The Cognitive Process and Its Categories
	2.2 SWECOM

	3 DevOps Programme Design Process
	3.1 Requirements
	3.2 Scope
	3.3 Process

	4 Results
	4.1 Selection of the Standard
	4.2 Data Extraction
	4.3 Data Analysis
	4.4 Programme Specification

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Teaching Logic, from a Conceptual Viewpoint
	1 From a Categorical Viewpoint
	1.1 Two Guiding Principles
	1.2 Elementary Theory of the Category of Sets
	1.3 Hume's Principle
	1.4 Finite Limits
	1.5 Sets as Types

	2 Proof Theory
	2.1 Toposes in the Teaching of Proof Theory
	2.2 Coq Proof Assistant

	3 Logic in Software Engineering
	3.1 Curry-Howard Isomorphism
	3.2 Category Theory in Functional Programming
	3.3 Implicit Types in Software Engineering

	References

	On the Design of a New Software Engineering Curriculum in Computer Engineering
	1 Introduction
	2 Courses
	2.1 Variation in Learning Levels
	2.2 Technology and Practical Orientation
	2.3 Languages and Notations
	2.4 Cross-Cutting Themes and Progression
	2.5 International Collaboration

	3 Outline of Some Courses
	3.1 Course: Introduction to Programming
	3.2 Course: Software Architecture
	3.3 Course: Discrete Mathematics
	3.4 Course: Computer Engineering Project I
	3.5 Summary of the Remaining Courses

	4 Discussion
	4.1 Science and Engineering
	4.2 Evaluation
	4.3 Concluding Remarks and Evolution

	References

	Collaborative Modelling and Co-simulation in Engineering and Computing Curricula
	1 Introduction
	2 Background: The INTO-CPS Tool Chain
	3 The Aarhus University Experience: Co-modelling and Co-simulation in the Systems Engineering Curriculum
	3.1 Course Structure and Content
	3.2 Course Material
	3.3 Course Delivery

	4 The Newcastle University Experience: Co-modelling and Co-simulation for Computer Scientists
	4.1 Course Structure and Material
	4.2 Course Delivery
	4.3 Next Steps for the NU Curriculum

	5 Discussion
	6 Future Work
	References

	I Competitions and Workshops
	Designing Interactive Workshops for Software Engineering Educators
	1 Introduction
	2 State of SE Education Workshops
	3 Workshop Design Challenges and Solutions
	3.1 Involving All Participants
	3.2 Selecting the Workshop Topics
	3.3 Making the Workshop Interactive
	3.4 Generating Tangible Workshop Outcomes
	3.5 Closing the Workshop
	3.6 Setting up the Workshop Physical Space

	4 Conclusion
	References

	Hackathons as a Part of Software Engineering Education: CASE in Tools Example
	1 Introduction
	2 Literature Review
	3 Proposed Design of Hackathon for SE Education
	3.1 Specific Challenges on Example of MSD Course
	3.2 Overall Goals for Educational Hackathon
	3.3 Education ``Hackathon" Process

	4 CASE in Tools in Practice
	4.1 Implementation
	4.2 Survey Results

	5 Discussion
	6 Conclusions
	References

	Teaching Efficient Recursive Programming and Recursion Elimination Using Olympiads and Contests Problems
	1 Introduction
	1.1 Structure of the Paper
	1.2 Why Math Students Should Learn Programming Theory

	2 Dynamic Programming Case Study
	2.1 The Hull Strength Puzzle
	2.2 HSP via Corecursion

	3 Ascending Dynamic Programming
	3.1 Recursive Dynamic Programming
	3.2 Using One-Time Allocated Associative Array

	4 Using Fix-Size Static Memory
	4.1 When Fix-Size Memory Is Enough
	4.2 Example: Fibonacci Numbers
	4.3 Example: Fibonacci Words
	4.4 Example: Beyond Hull Strength Puzzle
	4.5 Example: Permutation Concatenation

	5 Conclusion
	References

	I Empirical Studies
	An Experience in Monitoring EEG Signals of Software Developers During Summer Student Internships
	1 Introduction
	2 Preliminaries
	2.1 Organizational Tasks of the Internship
	2.2 Method of Data Management
	2.3 Experiment Procedure
	2.4 Tools for Data Collection, Analysis and Visualization

	3 Approach to the Experiment
	3.1 Device and Experiment Settings

	4 Evaluation and Preliminary Results
	5 Challenges
	5.1 Technical Challenges
	5.2 Organizational Challenges:

	6 Conclusion and Future Research
	References

	A Study of Cooperative Thinking
	1 Introduction
	2 Related Work
	3 Research Design
	4 Results
	4.1 Model Validation
	4.2 Multi–Group Analysis

	5 Discussion
	5.1 Implications
	5.2 Limitations

	6 Conclusions
	References

	I Tools and Automation
	Analysis of Development Tool Usage in Software Engineering Classes
	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	5 Conclusion
	References

	Applying Test-Driven Development for Improved Feedback and Automation of Grading in Academic Courses on Software Development
	1 Introduction
	2 Software Development Concepts
	2.1 Test-Driven Development
	2.2 Software Version Control System

	3 Approach
	4 Case Study
	4.1 Initial Project Artefacts
	4.2 Support for Automatic Grading
	4.3 Feedback to Students
	4.4 Support for Automatic Grading by Lecturers

	5 Discussion and Evaluation
	6 Related Work
	7 Conclusions
	References

	I Globalization of Education
	Internationalization Strategy of Innopolis University
	1 Introduction
	2 Strategy and Objectives
	3 Instruments
	3.1 Global Academic Partnerships
	3.2 International Academic Mobility
	3.3 Internships
	3.4 Joint Research Platforms
	3.5 Cotutelles

	4 Conclusion
	References

	Finding the Right Understanding: Twenty-First Century University, Globalization and Internationalization
	1 Introduction
	2 The Idea of a Twenty-First Century University
	3 Globalization, Competitiveness and the Knowledge-Based Economy in the Twenty-First Century
	4 What Is Internationalization?
	5 Conclusion
	References

	I Tools Workshop: Artificial and Natural Tools (ANT)
	Automated Cross-Language Integration Based on Formal Model of Components
	1 Introduction
	2 State of the Art
	3 The Proposed Method
	4 Tool Development
	5 Evaluation
	6 Conclusion
	References

	Scalable Thread-Modular Approach for Data Race Detection
	1 Introduction
	2 Overview of the Approach
	3 Preliminary Definitions
	4 Extension of Configurable Program Analysis
	5 Predicate Analysis
	6 Lock Analysis
	7 Data Race Detection
	8 Utilizing Block Abstraction Memoization
	9 Evaluation
	10 Conclusion
	References

	On the Development of the Compiler from C to the Processor with FPGA Accelerator
	1 Introduction
	2 Automatic Pipeline Creation and the State Machine that Controls This Pipeline
	3 The HDL Modules Generation and the Drivers Generation
	3.1 The Compiler Structure Scheme
	3.2 The Structure of HDL-Generator
	3.3 Pipeline HDL Code Generator
	3.4 The Generator of State Machine HDL Code

	4 Finding Singular Loop Nests with OPS
	5 Loop Unrolling and Array Distribution in Distributed Memory
	6 Loop Statements Regrouping to Save Time the Initial Load and Buffer Memory Pipeline
	7 Conclusion
	References

	Author Index

