
Probabilistic Guarantees for Safe Deep
Reinforcement Learning

Edoardo Bacci(B) and David Parker

University of Birmingham, Birmingham, UK
exb461@bham.ac.uk, d.a.parker@cs.bham.ac.uk

Abstract. Deep reinforcement learning has been successfully applied
to many control tasks, but the application of such controllers in safety-
critical scenarios has been limited due to safety concerns. Rigorous test-
ing of these controllers is challenging, particularly when they operate in
probabilistic environments due to, for example, hardware faults or noisy
sensors. We propose MOSAIC, an algorithm for measuring the safety of
deep reinforcement learning controllers in stochastic settings. Our app-
roach is based on the iterative construction of a formal abstraction of
a controller’s execution in an environment, and leverages probabilistic
model checking of Markov decision processes to produce probabilistic
guarantees on safe behaviour over a finite time horizon. It produces
bounds on the probability of safe operation of the controller for different
initial configurations and identifies regions where correct behaviour can
be guaranteed. We implement and evaluate our approach on controllers
trained for several benchmark control problems.

1 Introduction

Deep reinforcement learning is the application of deep neural networks to solve
reinforcement learning tasks. This technique has been shown to solve many
complex control tasks successfully [5,28,31]. However, real-world applications of
these methods, especially in safety-critical scenarios such as autonomous driving,
is limited because it is difficult to establish guarantees on their safety.

Formal verification is a rigorous approach to checking the correctness of
computerised systems. It is particularly appealing for systems that are based
on neural networks, because the training process often yields models that are
large, complex and opaque. Furthermore, the input space is typically too large to
allow exhaustive testing, and there now exist a variety of approaches to construct
adversarial attacks, i.e., small and imperceptible perturbations to the inputs of
the neural network that cause it to produce erroneous outputs.

In recent years, there has been growing interest in verification techniques
for neural networks [15,18,21], with a particular focus on the domain of image
classification. These aim to prove the absence of particular classes of adversarial
attack, typically those that are “close” to inputs for which the correct output is
known. Methods proposed include mapping the verification to an SMT (satisfi-
ability modulo theories) problem and the use of abstract interpretation.
c© Springer Nature Switzerland AG 2020
N. Bertrand and N. Jansen (Eds.): FORMATS 2020, LNCS 12288, pp. 231–248, 2020.
https://doi.org/10.1007/978-3-030-57628-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57628-8_14&domain=pdf
http://orcid.org/0000-0002-0367-898X
http://orcid.org/0000-0003-4137-8862
https://doi.org/10.1007/978-3-030-57628-8_14

232 E. Bacci and D. Parker

There are also various approaches to tackling safety in reinforcement learn-
ing. For example, safe reinforcement learning [14] factors in safety objectives
into the learning process. Using formal specifications of the objectives has also
been proposed, such as maximising the probability of satisfying a temporal logic
objective [6,13,17] or restricting learning to a set of verified policies [19]. More
recently, formal verification of deep reinforcement learning systems has been
considered [22], by leveraging existing neural network verification methods.

A further challenge for verifying the safe operation of controllers synthesised
using deep reinforcement learning is the fact they are often developed to func-
tion in uncertain or unpredictable environments. This necessitates the use of
stochastic models to train, and to reason about, the controllers. One source of
probabilistic behaviour is dynamically changing environments and/or unreliable
or noisy sensing. Another source, and the one we focus on here, is the occurrence
of faults, e.g., in the hardware for actuators in the controller.

In this paper, we propose novel techniques to establish probabilistic guaran-
tees on the safe behaviour of deep reinforcement learning systems which can be
subject to faulty behaviour at runtime. Our approach, which we call MOSAIC
(MOdel SAfe Intelligent Control) uses a combination of abstract interpretation
and probabilistic verification to synthesise the guarantees.

Formally, we model the runtime execution of a deep reinforcement learning
based controller as a continuous-space discrete-time Markov processes (DTMP).
This is built from: (i) the neural network specifying the controller; (ii) a controller
fault model characterising the probability with which faults occur when attempt-
ing to execute particular control actions; and (iii) a deterministic, continuous-
space model of the physical environment, which we assume to be known.

We concern ourselves with finite-horizon safety specifications and consider
the probability with which a failure state is reached within a specified number
of time steps. More precisely, our main aim is to identify “safe” regions of the
possible initial configurations of the controller, for which this failure probability
is guaranteed to be below some specified threshold.

One key challenge to overcome, due to the continuous-space model, is that the
number of initial configurations is infinite. We construct a finite-state abstrac-
tion as a Markov decision process (MDP), comprising abstract states (based
on intervals) that represent regions of the state space of the concrete controller
model. We then use standard probabilistic model checking techniques on the
MDP abstraction, and show that this yields upper bounds on the step-bounded
failure probabilities for different initial regions of the controller model.

A second challenge is that constructing the abstraction requires extraction
of the controller policy from its neural network representation. We perform a
symbolic analysis of the neural network, for which we design a branch-and-
bound algorithm, and an abstraction process that explores the reachable abstract
states of the environment. We also iteratively refine the abstraction to yield
more accurate bounds on the failure probabilities. We evaluate our approach by
applying it to deep reinforcement learning controllers for two benchmark control
problems: a cartpole and a pendulum.

Probabilistic Guarantees for Safe Deep Reinforcement Learning 233

Related Work. As discussed above, various verification techniques for neu-
ral networks exist, including those based on abstract interpretation. Some use
abstractions based on intervals [1,29,33], as we do; others use more sophisticated
representations such as polyhedra and zonotopes [15]. Recently, correctness for
Bayesian neural networks has been considered, using probabilistic notions of
robustness, e.g., [9]. Mostly, these approaches focus on supervised learning, often
for image classification, but they have also been built upon for verified deep rein-
forcement learning [22], where (non-probabilistic) safety and liveness properties
are checked. Other, non-neural network based, reinforcement learning has also
been verified, e.g., by extracting and analysing decision trees [3].

In the context of probabilistic verification, neural networks have been used
to find POMDP policies with guarantees [10,11], but with recurrent neural net-
works and for discrete, not continuous, state models. Also related are techniques
to verify continuous space probabilistic models, e.g., [25,32] which build finite-
state abstractions as Markov chains or interval Markov chains. Finally, there is
a large body of work on abstraction for probabilistic verification; ours is perhaps
closest in spirit to the game-based abstraction approach for MDPs from [20].

2 Preliminaries

We will use Dist(X) to denote the set of discrete probability distributions over
the set X, i.e., functions μ : X → [0, 1] where

∑
x∈X μ(x) = 1. The support of

μ, denoted Supp(μ), is defined as Supp(μ) = {x ∈ X |μ(x) > 0}. In some cases,
we will use distributions where the set X is uncountable but where the support
is finite. We also write P(X) to denote the powerset of X.

We use two probabilistic models: discrete-time Markov processes (DTMPs)
to model controllers, and Markov decision processes (MDPs) for abstractions.

Definition 1 (Discrete-timeMarkovprocess). A(finite-branching) discrete-
timeMarkovprocess is a tuple (S, S0,P,AP , L), where:S is a (possibly uncountably
infinite) set of states;S0 ⊆ S is a set of initial states;P : S×S → [0, 1] is a transition
probability matrix, where

∑
s′∈Supp(P(s,·)) P(s, s′) = 1 for all s ∈ S; AP is a set of

atomic propositions; and L : S → AP is a labelling function.

The process starts in some initial state s0 ∈ S0 and then evolves from state
to state in discrete time steps. When in state s, the probability of making a
transition to state s′ is given by P(s, s′). We assume that the process is finite-
branching, i.e., the number of possible successors of each state is finite, despite
the continuous state space. This simplifies the representation and suffices for the
probabilistic behaviour that we model in this paper.

A path is an infinite sequence of states s0s1s2 . . . through the model, i.e.,
such that P(si, si+1) > 0 for all i. We write Path(s) for the set of all paths
starting in a state s. In standard fashion [23], we can define a probability space
Prs over Path(s). Atomic propositions from the set AP will be used to specify
properties for verification; we write s |= b for b ∈ AP if b ∈ L(s).

234 E. Bacci and D. Parker

Definition 2 (Markov decision process). A Markov decision process is a
tuple (S, S0,P,AP , L), where: S is a finite set of states; S0 ⊆ S are ini-
tial states; P : S × N × S → [0, 1] is a transition probability function, where∑

s′∈S P(s, j, s′) ∈ {0, 1} for all s ∈ S, j ∈ N; AP is a set of atomic proposi-
tions; and L : S → AP is a labelling function.

Unlike discrete-time Markov processes above, we assume a finite state space.
A transition in a state s of an MDP first requires a choice between (finitely-
many) possible probabilistic outcomes in that state. Unusually, we do not use
action labels to distinguish these choices, but just integer indices. Primarily, this
is to avoid confusion with the use of actions taken by controllers, which do not
correspond directly to these choices. The probability of moving to successor state
s′ when taking choice j in state s is given by P(s, j, s′).

As above, a path is an execution through the model, i.e., an infinite sequence
of states and indices s0j0s1j1 . . . such that P(si, ji, si+1) > 0 for all i. A policy
of the MDP selects the choice to take in each state, based on the history of its
execution so far. For a policy σ, we have a probability space Prσ

s over the set of
paths starting in state s. If ψ is an event of interest defined by a measurable set
of paths (e.g., those reaching a set of target states), we are usually interested in
the minimum or maximum probability of the event over all policies:

Prmin
s (ψ) = inf

σ
Prσ

s (ψ) and Prmax
s (ψ) = sup

σ
Prσ

s (ψ)

3 Controller Modelling and Abstraction

In this section, we formalise the problem of modelling and verifying deep rein-
forcement learning controllers, and then describe the MDP abstraction that
underlies our MOSAIC approach to performing the verification.

3.1 Controller Execution Model

We consider controllers acting over continuous state spaces systems with a dis-
crete action space. We assume a set of n real-valued state space variables and
denote the state space by S = R

n. There is a finite set A = {a1, . . . , am} of m
actions that can be taken by the controller. For simplicity, we assume that all
actions are available in every state.

To describe the execution of a controller, we require three things: (i) a con-
troller policy ; (ii) an environment model ; and (iii) a controller fault model. Each
is described in more detail below.

Definition 3 (Controller policy). A controller policy is a function π : S →
A, which selects an action π(s) for the controller to take in each state s ∈ S.

We restrict our attention to policies that are memoryless (choosing the same
action in each state s) and deterministic (selecting a fixed single action, with

Probabilistic Guarantees for Safe Deep Reinforcement Learning 235

no randomisation). In this work, policies are represented by neural networks,
and generated through deep reinforcement learning. However, for the purposes
of this section, we treat the policy simply as a function from states to actions.

Definition 4 (Environment model). An environment model is a function
E : S × A → S that describes the state E(s, a) of the system after one time step
if controller action a is (successfully) taken in state s.

The environment represents the effect that each action executed by a con-
troller has on the system. We assume a deterministic model of the environment;
probabilistic behaviour due to failures is introduced separately (see below).

We also extend E to define the change in system state when a sequence of
zero or more actions are executed, still within a single time step. This will be
used below to describe the outcome of controller execution faults. Re-using the
same notation, for state s ∈ S and action sequence w ∈ A∗, we write E(s, w)
to denote the outcome of taking actions w in s. This can be defined recursively:
for the empty action sequence ε, we have E(s, ε) = s; and, for a sequence of k
actions a1 . . . ak, we have E(s, a1 . . . ak) = E(E(s, a1 . . . ak−1), ak).

Definition 5 (Controller fault model). A controller fault model is a func-
tion f : A → Dist(A∗) that gives, for each possible controller action, the
sequences of actions that may actually result and their probabilities.

This lets us model a range of controller faults. A simple example is the case
of an action a failing to execute with some probability p: we have f(a)(ε) = p,
f(a)(a) = 1−p and f(a)(w) = 0 for all other action sequences w. Another
example, is a “sticky” action [26] a which executes twice with probability p, i.e.,
f(a)(aa) = p, f(a)(a) = 1−p and f(a)(w) = 0 for any other w.

Now, given a controller policy π, an environment model E and a controller
fault model f , we can formally define the behaviour of the execution of the
controller within the environment. We add two further ingredients: a set S0 ⊆ S
of possible initial states; and a set Sfail ⊆ S of failure states, i.e., states of the
system where we consider it to have failed. We refer to the tuple (π,E, f, S0, Sfail)
as a controller execution. Its controller execution model is a (continuous-space,
finite-branching) discrete-time Markov process defined as follows.

Definition 6 (Controller execution model). Given a controller execution
(π,E, f, S0, Sfail), the corresponding controller execution model describing its
runtime behaviour is the DTMP (S, S0,P,AP , L) where AP = {fail}, for any
s ∈ S, fail ∈ L(s) iff s ∈ Sfail and, for states s, s′ ∈ S:

P(s, s′) =
∑

{f(π(s))(w) | w ∈ A∗ s.t. E(s, w) = s′} .

For each state s, the action chosen by the controller policy is π(s) and the action
sequences that may result are given by the support of the controller fault model
distribution f(π(s)). For each action sequence w, the resulting state is E(s, w).
In the above, to define P(s, s′) we have combined the probability of all such
sequences w that lead to s′ since there may be more than one that does so.

236 E. Bacci and D. Parker

Recall the example controller fault models described above. For an action a
that fails to be executed with probability p, the above yields P(s, s) = p and
P(s,E(s, a)) = 1−p. For a “sticky” action a (with probability p of sticking), it
yields P(s,E(E(s, a), a)) = p and P(s,E(s, a)) = 1−p.

3.2 Controller Verification

Using the model defined above of a controller operating in a given environment,
our aim is to verify that it executes safely. More precisely, we are interested in
the probability of reaching failure states within a particular time horizon. We
write Prs(♦�kfail) for the probability of reaching a failure state within k time
steps when starting in state s, which can be defined as:

Prs(♦�kfail) = Prs({s0s1s2 · · · ∈ Path(s) | si |= fail for some 0 � i � k})

Since we work with discrete-time, finite-branching models, we can compute finite-
horizon reachability probabilities recursively as follows:

Prs(♦�kfail) =

⎧
⎨

⎩

1 if s |= fail
0 if s �|= fail ∧ k=0∑

s′∈Supp(P(s,·)) P(s, s′) · Prs′(♦�k−1fail) otherwise.

For our controller execution models, we are interested in two closely related
verification problems. First, for a specified probability threshold psafe, we would
like to determine the subset Ssafe

0 ⊆ S0 of “safe” initial states from which the
error probability is below the threshold:

Ssafe
0 = {s ∈ S0 | Prs(♦�kfail) < psafe}

Alternatively, for some set of states S′, typically the initial state set S0, or some
subset of it, we wish to know the maximum (worst-case) error probability:

p+S′ = sup{Prs(♦�kfail) | s ∈ S′}
This can be seen as a probabilistic guarantee over the executions that start in
those states. In this paper, we tackle approximate versions of these problems,
namely under-approximating Ssafe

0 or over-approximating p+S′ .

3.3 Controller Execution Abstraction

A key challenge in tackling the controller verification problem outlined above
is the fact that it is over a continuous-state model. In fact, since the model
is finite-branching and we target finite-horizon safety properties, for a specific
initial state, the k-step probability of a failure could be computed by solving a
finite-state Markov chain. However, we verify the controller for a set of initial
states, giving infinitely many possible probabilistic executions.

Our approach is to construct and solve an abstraction of the model of con-
troller execution. The abstraction is a finite-state MDP whose states are abstract

Probabilistic Guarantees for Safe Deep Reinforcement Learning 237

states ŝ ⊆ S, each representing some subset of the states of the original concrete
model. We denote the set of all possible abstract states as Ŝ ⊆ P(S). In our
approach, we use intervals (i.e., the “Box” domain; see Sect. 4).

In order to construct the abstraction of the controller’s execution, we build
on an abstraction Ê of the environment E : S × A → S. This abstraction is
a function Ê : Ŝ × A → Ŝ which soundly over-approximates the (concrete)
environment, i.e., it satisfies the following definition.

Definition 7 (Environment abstraction). For environment model E : S ×
A → S and set of abstract states Ŝ ⊆ P(S), an environment abstraction is a
function Ê : Ŝ × A → Ŝ such that: for any abstract state ŝ ∈ Ŝ, concrete state
s ∈ ŝ and action a ∈ A, we have E(s, a) ∈ Ê(ŝ, a).

Using interval arithmetic, we can construct Ê for a wide range of functions E.
As for E, the environment abstraction Ê extends naturally to action sequences,
where Ê(ŝ, w) gives the result of taking a sequence w of actions in abstract state
ŝ. It follows from Definition 7 that, for any abstract state ŝ ∈ Ŝ, concrete state
s ∈ ŝ and action sequence w ∈ A∗, we have E(s, w) ∈ Ê(ŝ, w).

Our abstraction is an MDP whose states are abstract states from the set
Ŝ ⊆ P(S). This represents an over-approximation of the possible behaviour of
the controller, and computing the maximum probabilities of reaching failure
states in the MDP will give upper bounds on the actual probabilities in the
concrete model. The choices that are available in each abstract state ŝ of the
MDP are based on a partition of ŝ into subsets {ŝ1, . . . , ŝm}. Intuitively, each
choice represents the behaviour for states in the different subsets ŝj .

Definition 8 (Controller execution abstraction). For a controller execu-
tion (π,E, f, S0, Sfail), a set Ŝ ⊆ P(S) of abstract states and a corresponding
environment abstraction Ê, the controller execution abstraction is defined as an
MDP (Ŝ, Ŝ0, P̂,AP , L̂) satisfying the following:

– for all s ∈ S0, s ∈ ŝ for some ŝ ∈ Ŝ0;
– for each ŝ ∈ Ŝ, there is a partition {ŝ1, . . . , ŝm} of ŝ that is consistent with

the controller policy π (i.e., π(s) = π(s′) for any s, s′ ∈ ŝj for each j) and,
for each j ∈ {1, . . . , m} we have:

P̂(ŝ, j, ŝ′) =
∑ {

f(π(ŝj))(w) | w ∈ A∗ such that Ê(ŝj , w) = ŝ′
}

where π(ŝj) is the action that π chooses for all states s ∈ ŝj;
– AP = {fail} and fail ∈ L̂(ŝ) iff fail ∈ L(s) for some s ∈ ŝ.

The idea is that each ŝj within abstract state ŝ represents a set of concrete states
that have the same behaviour at this level of abstraction. This is modelled by
the jth choice from ŝ, which we construct by finding the controller action π(ŝj)
taken in those states, the possible action sequences w that may arise when taking
π(ŝj) due to the controller fault model f , and the abstract states ŝ′ that result
when applying w in ŝj according to the abstract model Ê of the environment.

238 E. Bacci and D. Parker

The above describes the general structure of the abstraction; in practice,
it suffices to construct a fragment of at most depth k from the initial states.
Once constructed, computing maximum probabilities for the MDP yields upper
bounds on the probability of the controller exhibiting a failure. In particular, we
have the following result (see [2] for a proof):

Theorem 1. Given a state s ∈ S of a controller model DTMP, and an abstract
state ŝ ∈ Ŝ of the corresponding controller abstraction MDP for which s ∈ ŝ, we
have Prs(♦�kfail) � Prmax

ŝ (♦�kfail).

This also provides a way to determine sound approximations for the two veri-
fication problems discussed in Sect. 3.2, namely finding the set Ssafe

0 of states
considered “safe” for a particular probability threshold psafe:

Ssafe
0 ⊇ {s ∈ ŝ | ŝ ∈ Ŝ0 and Prmax

ŝ (♦�kfail) < psafe}
and the worst-case probability p+S′ for a set of states S′:

p+S′ � max{Prmax
ŝ (♦�kfail) | ŝ ∈ Ŝ such that ŝ ∩ S′ �= ∅}

4 Policy Extraction and Abstraction Generation

Building upon the ideas in the previous section, we now describe the key parts
of the MOSAIC algorithm to implement this. We explain the abstract domain
used, how to extract a controller policy over abstract states from a neural network
representation, and then how to build this into a controller abstraction. We also
discuss data structures for efficient manipulation of abstract states.

Abstract Domain. The abstraction described in Sect. 3.3 assumes an arbitrary
set of abstract states Ŝ ⊆ P(S). In practice, our approach assumes S ⊆ R

n

and uses the “Box” abstract domain, where abstract states are conjunctions of
intervals (or hyperrectangles), i.e., abstract states are of the form [l1, u1] × · · · ×
[ln, un], where lj , ui ∈ R are lower and upper bounds for 1 � i � n.

4.1 Neural Network Policy Extraction

Controller policies are functions π : S → A, represented as neural networks. To
construct an abstraction (see Definition 8), we need to divide abstract states into
subregions which are consistent with π, i.e., those where π(s) is the same for
each state s in the subregion. Our overall approach is as follows. For each action
a, we first modify the neural network, adding an action layer to help indicate the
states (network inputs) where a is chosen. Then, we adapt a branch-and-bound
style optimisation algorithm to identify these states, which builds upon methods
to approximate neural network outputs by propagating intervals through it.

Branch and Bound. Branch and bound (BaB) is an optimisation algorithm
which aims to minimise (or maximise) a given objective function. It works iter-
atively, starting from the full domain of possible inputs. BaB estimates a max-
imum and minimum value for the domain using estimator functions, which are

Probabilistic Guarantees for Safe Deep Reinforcement Learning 239

Fig. 1. Illustrating branch-and-bound to identify actions. Each box represents an
abstract state and the bar on the right represents upper and lower bounds on the
output of the network. 0) The upper and lower bounds of the domain do not give a
definite answer, the domain is split into two subregions; 1) The boundaries are tighter
than in the previous iteration but the subregion is still undecided; 2) The upper bound
is < 0, the property “action taken is a” is always true in this subregion; 3) The lower
bound is > 0, the property “action taken is a” is always false in this subregion; 4)
The interval between upper and lower bound still contains 0, the action taken in this
interval is still unknown so we continue to branch. (Color figure online)

quick to compute and approximate the real objective function by providing an
upper bound (UB) and a lower bound (LB) between which the real function lies.
The chosen bounding functions must be admissible, meaning we can guarantee
that the real function will always lie within those boundaries.

At each iteration of BaB, the domain is split (or “branched”) into multiple
parts. In the absence of any additional assumptions about the objective function,
the domain is split halfway across the largest dimension. For each part, the upper
and lower bounds are calculated and regions whose lower bounds are higher than
the current global minimum upper bound (the minimum amongst all regions’
upper bounds) are discarded because, thanks to the admissibility property of
the approximate functions, they cannot ever have a value lower than the global
minimum upper bound.

The algorithm proceeds by alternating the branching phase and the bounding
phase until the two boundaries converge or the difference between the bounds is
less than an acceptable error value. After that, the current region is returned as
a solution to the optimisation problem, and the algorithm terminates.

Finding Consistent Regions. In order to frame the problem of identifying
areas of the domain that choose an action a as an optimisation problem, we
construct an additional layer that we call an “action layer”, and append it on
top of the neural network architecture. This is built in such a way that the
output is strictly negative if the output is a, and strictly positive value if not.
We adopt the construction from [8], which uses a layer to encode a correctness
property to be verified on the output of the network.

240 E. Bacci and D. Parker

Algorithm 1: Finding subregions of abstract state ŝ for action a

1 function find action subregions(net, a, ŝ):
2 queue = {ŝ}, sat = { }, unsat = { }
3 mod net = add action layer (net, a)
4 while queue �= ∅ do
5 curr domain = queue.pop()
6 UB = compute UB (mod net, curr domain)
7 LB = compute LB (mod net, curr domain)
8 if UB < 0 then
9 sat.append(curr domain)

10 else if LB > 0 then
11 unsat.append(curr domain)
12 else
13 dom1, dom2 = split (curr domain)
14 queue.append(dom1)
15 queue.append(dom2)

16 return sat,unsat

The techniques of [8] also adapt branch-and-bound algorithms, using opti-
misation to check if a correctness property is true. But our goal is different:
identifying areas within abstract states where action a is chosen, so we need
a different approach. Rather than minimising the modified output of the neu-
ral network, we continue splitting domains until we find areas that consistently
either do or do not choose action a or we reach a given precision. We do not keep
track of the global upper or lower bound since we only need to consider the local
ones to determine which actions are taken in each subregion. In the modified
branch-and-bound algorithm, after calculating upper and lower bounds for an
interval, we have 3 cases:

– UB > LB > 0: the controller will never choose action a for the interval;
– 0 > UB > LB : the controller will always choose action a;
– UB > 0 > LB : the outcome of the network is still undecided, so we split the

interval and repeat for each sub-interval.

At the end of the computation, we will have a list of intervals which satisfy the
property “the controller always take action a” and intervals which always violate
it. From these two lists we can summarise the behaviour of the controller within
the current region of the state space.

Algorithm 1 shows pseudocode for the overall procedure of splitting an
abstract state ŝ into a set of subregions where an action a is always taken,
and a set where it is not. Figure 1 illustrates the algorithm executing for a 2-
dimensional input domain. The blue subregions are the ones currently being
considered; the orange bar indicates the range between computed lower and
upper bounds for the output of the network, and the red dashed line denotes
the zero line.

Approximating Neural Network Output. The branch-and-bound algorithm
requires computation of upper and lower bounds on the neural network’s output

Probabilistic Guarantees for Safe Deep Reinforcement Learning 241

for a specific domain (compute UB and compute LB in Algorithm 1). To approx-
imate the output of the neural network, we use the Planet approach from [12].
The problem of approximating the output of the neural network lies in determin-
ing the output of the non-linear layers, which in this case are composed of ReLU
units. ReLU units can be seen as having 2 phases: one where the output is a
constant value if the input is less than 0 and the other where the unit acts as the
identity function. The algorithm tries to infer the phase of the ReLU function
(whether x < 0 or x � 0) by constraining the range of values from the input of
the previous layers. In the case of the algorithm not being able to determine the
phase of the activation function, some linear over-approximation boundaries are
used to constrain the output of each ReLU within the section. The constraints
used are y > 0, y > x and y � (u ·(x−l))/(u−l) where u and l are the upper and
lower bounds inferred from the boundaries of the input domain by considering
the maximum and minimum values of each input variable.

4.2 Building the Abstraction

Section 3.3 describes our approach to defining an abstract model of controller
execution, as an MDP, and Definition 8 explains the structure required of this
MDP such that it can be solved to produce probabilistic guarantees, i.e., upper
bounds on the probability of a failure occurring within some time horizon k.
Here, we provide more details on the construction of the abstraction.

Algorithm 2 shows pseudo code for the overall procedure. We start from the
initial abstract states Ŝ0, which are the initial states of the MDP, and then
repeatedly explore the “frontier” states, whose transitions have yet to be con-
structed, stopping exploration when either depth k (the required time horizon)
or an abstract state containing a failure state is reached. For each abstract state
ŝ to be explored, we use the techniques from the previous section to split ŝ into
subregions of states for which the controller policy selects the same action.

Determining successor abstract states in the MDP uses the environment
abstraction Ê (see Definition 7). Since we use the “Box” abstract domain, this
means using interval arithmetic, i.e., computing the successors of the corner
points enclosing the intervals while the remaining points contained within them
are guaranteed to be contained within the enclosing successors. The definitions
of our concrete environments are therefore restricted to functions that are exten-
sible to interval arithmetic.

4.3 Refining the Abstraction

Although the MDP constructed as described above yields upper bounds on the
finite-horizon probability of failure, we can improve the results by refining the
abstraction, i.e., further splitting some of the abstract states. The refinement step
aims to improve the precision of states which are considered unsafe (assuming
some specified probability threshold psafe), by reducing the upper bound closer
to the real probability of encountering a failure state.

242 E. Bacci and D. Parker

Algorithm 2: Build MDP

1 function build mdp(net, Ŝ0):

2 Ŝfrontier = Ŝ0, t = 0
3 while t < k do

4 foreach ŝ ∈ Ŝfrontier do
5 foreach a ∈ A do

6 Ŝa, Ŝa = find action subregions (net, a, ŝ)

7 foreach ŝj ∈ Ŝa and pi:wi in f(a) do

8 ŝ′ = Ê(ŝj , wi)
9 store (ŝ, pi, ŝ

′) in MDP

10 add ŝ′ to Ŝfrontier unless ŝ′ ∩ fail �= ∅

11 t = t + 1

Regions of initial abstract states that are considered unsafe are split into
smaller subregions and we then recreate the branches of the MDP abstraction
from these new subregions in the same way as described in Algorithm 2. This
portion of the MDP is then resolved, to produce a more accurate prediction of
their upper bound probability of encountering a failure state, potentially discov-
ering new safe subregions in the initial abstract state. The refinement process is
executed until either there are no more unsafe regions in the initial state or the
maximum size of the intervals are less than a specified precision ε.

4.4 Storing and Manipulating Abstract States

Very often abstract states have a topological relationship with other abstract
states encountered previously. One abstract state could completely encapsulate
or overlap with another, but simply comparing all the possible pairs of states
would be infeasible. For this reason we need a data structure capable of reducing
the number of comparisons to just the directly neighbouring states. A tree-like
structure is the most appropriate and significant progress has been made on tree
structures capable of holding intervals. However, most of them do not scale well
for n-dimensional intervals with n > 3.

R-tree [16] is a data-structure that is able to deal with n-dimensional inter-
vals, used to handle GIS coordinates in the context of map loading where only a
specific area needs to be loaded at a time. This data structure allows us to per-
form “window queries” which involve searching for n-dimensional intervals that
intersect with the interval we are querying in O(logn(m)) time, where m is the
number of intervals stored. R-tree organises intervals and coordinates in nested
“subdirectories” so that only areas relevant to the queried area are considered
when computing an answer.

Here, we use an improved version of R-tree called R*-tree [4] which reduces
the overlapping between subdirectories at the cost of higher computational cost
of O(n log(m)). This modification reduces the number of iterations required dur-
ing the queries effectively speeding up the calculation of the results. When an

Probabilistic Guarantees for Safe Deep Reinforcement Learning 243

abstract domain is queried for the actions the controller would choose, only the
areas which were not previously visited get computed.

5 Experimental Results

We have implemented our MOSAIC algorithm, described in Sects. 3 and 4, and
evaluated it on deep reinforcement learning controllers trained on two different
benchmark environments from OpenAI Gym [7], a pendulum and a cartpole,
modified to include controller faults. For space reasons, we consider only “sticky”
actions [26]: each action is erroneously executed twice with probability p = 0.2.

Implementation. Our implementation uses a combination of Python and Java.
The neural network architecture is handled through the Pytorch library [38],
interval arithmetic with pyinterval [37] and graph analysis with networkX [35].
Abstract domain operations are performed with Rtree [39], building on the
library libspatialindex [34]. Constructing and solving MDPs is done using
PRISM [24], through its Java API, built into a Python wrapper using py4j [36].

5.1 Benchmarks and Policy Learning

Pendulum. The pendulum environment consists of a pole pivoting around a
point at one of its ends. The controller can apply a rotational force to the left or
to the right with the aim of balancing the pole in its upright position. The pole
is underactuated which means that the controller can only recover to its upright
position when the pole is within a certain angle. For this reason, if the pole goes
beyond a threshold from which it cannot recover, the episode terminates and the
controller is given a large negative reward. Each state is composed of 2 variables:
the angular position and velocity of the pole.

Cartpole. The cartpole environment features a pole being balanced on top of a
cart that can either move left or right. The cartpole can only move within fixed
bounds and the pole on top of it cannot recover its upright state after its angle
exceeds a given threshold. In this problem the size of each state is 4 variables:
the position of the cart on the x-axis, the speed of the cart, the angle of the pole
and the angular velocity of the pole.

Policy Construction. We train our own controller policies for the benchmarks,
in order to take into account the controller failures added. For the policy neural
networks, we use 3 fully connected layers of size 64, followed by an output layer
whose size equals the number of controller actions in the benchmark. The train-
ing is performed by using the Deep Q-network algorithm [27] with prioritised
experience replay [30], which tries to predict the action value in each state and
choosing the most valuable one. For both environments, we train the controller
for 6000 episodes, limiting the maximum number of timesteps for each episode
to 1000. We linearly decay the epsilon in the first 20% of the total episodes
up to a minimum of 0.01 which we keep constant for the rest of the training.
The remaining hyperparameters remain the same as suggested in [27] and [30].

244 E. Bacci and D. Parker

Fig. 2. Heatmaps of failure probability upper bounds for subregions of initial states
for the pendulum benchmark (x/y-axis: pole angle/angular velocity). Left: the initial
abstraction; Right: the abstraction after 50 refinement steps. (Color figure online)

5.2 Results

We have run the MOSAIC algorithm on the benchmark controller policies
described above. We build and solve the MDP abstraction to determine upper
bounds on failure probabilities for different parts of the state space. Figure 2
(left) shows a heatmap of the probabilities for various subregions of the initial
states of the pendulum benchmark, within a time horizon of 7 steps. Figure 2
(right) shows the heatmap for a more precise abstraction, obtained after 50 steps
of refinement. We do not fix a specific probability threshold psafe here, but the
right-hand part (in blue) has upper bound zero, so is “safe” for any psafe > 0.
The refined abstraction discovers new areas which are safe due to improved (i.e.,
lower) upper bounds in many regions.

Results for the cartpole example are harder to visualise since the state space
has 4 dimensions. Figure 4 shows a scatterplot of failure probability bounds
within 7 time steps for the subregions of the initial state space; the intervals
have been projected to two dimensions using principal component analysis, the
size of the bubble representing the volume occupied by the interval. We also
plot, in Fig. 3, a histogram showing how the probabilities are distributed across
the volume of the subregions of the initial states. For a given value psafe on the
x-axis, our analysis yields a probabilistic guarantee of safety for the sum of all
volumes shown to the left of this point.

Scalability and Efficiency. Lastly, we briefly discuss the scalabilty and effi-
ciency of our prototype implementation of MOSAIC. Our experiments were run
on a 4-core 4.2 GHz PC with 64 GB RAM running Ubuntu 18.04. We success-
fully built and solved abstractions up to time horizons of 7 time-steps on both
benchmark environments. For the pendulum problem, the size of the MDP built
ranged up to approximately 160,000 states after building the initial abstrac-
tion, reaching approximately 225,000 states after 50 steps of refinement. For the

Probabilistic Guarantees for Safe Deep Reinforcement Learning 245

Fig. 3. Cartpole: Histogram plot of the
volume occupied by the initial state sub-
regions, grouped by their maximum fail-
ure probability.

Fig. 4. Cartpole: probability bounds
for initial state subregions (projection
using principal component analysis; size
denotes the volume occupied by the
interval). We can see that large sections
of the state space have max probability
close to 0.

cartpole problem, the number of states after 7 time-steps ranged up to approxi-
mately 75,000 states. The time required was roughly 50 min and 30 min for the
two benchmarks, respectively.

6 Conclusions

We have presented a novel approach called MOSAIC for verifying deep reinforce-
ment learning systems operating in environments where probabilistic controller
faults may occur. We formalised the verification problem as a finite-horizon anal-
ysis of a continuous-space discrete-time Markov process and showed how to use
a combination of abstract interpretation and probabilistic model checking to
compute upper bounds on failure probabilities. We implemented our techniques
and successfully applied them to two benchmark control problems.

Future work will include more sophisticated refinement and abstraction
approaches, including the use of lower bounds to better measure the precision
of abstractions and to guide their improvement using refinement. We also aim
to improve scalability to larger time horizons and more complex environments,
for example by investigating more efficient abstract domains.

Acknowledgements. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 834115, FUN2MODEL).

246 E. Bacci and D. Parker

References

1. Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization and abstraction:
a synergistic approach for analyzing neural network robustness. In: Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI’19, pp. 731–744 (2019)

2. Bacci, E., Parker, D.: Probabilistic guarantees for safe deep reinforcement learning
(2020). arXiv preprint arXiv:2005.07073

3. Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via policy
extraction. In: Proceedings of the 2018 Annual Conference on Neural Information
Processing Systems, NeurIPS’18, pp. 2499–2509 (2018)

4. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient
and robust access method for points and rectangles. In: Proceedings of the 1990
ACM SIGMOD International Conference on Management of Data, pp. 322–331
(1990)

5. Bougiouklis, A., Korkofigkas, A., Stamou, G.: Improving fuel economy with LSTM
networks and reinforcement learning. In: Proceedings of the International Confer-
ence on Artificial Neural Networks, ICANN’18, pp. 230–239 (2018)

6. Brázdil, T., et al.: Verification of Markov decision processes using learning algo-
rithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–
114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6 8

7. Brockman, G., et al.: OpenAI gym (2016). arXiv preprint arXiv:1606.01540
8. Bunel, R., Turkaslan, I., Torr, P., Kohli, P., Kumar, P.: A unified view of piece-

wise linear neural network verification. In: Proceedings of the 32nd International
Conference on Neural Information Processing Systems, NIPS’18, pp. 4795–4804
(2018)

9. Cardelli, L., Kwiatkowska, M., Laurenti, L., Paoletti, N., Patane, A., Wicker, M.:
Statistical guarantees for the robustness of Bayesian neural networks. In: Pro-
ceedings of the International Joint Conference on Artificial Intelligence, IJCAI-19
(2019)

10. Carr, S., Jansen, N., Topcu, U.: Verifiable RNN-based policies for POMDPs under
temporal logic constraints. In: Proceedings of the IJCAI’20 (2020, to appear)

11. Carr, S., Jansen, N., Wimmer, R., Serban, A.C., Becker, B., Topcu, U.:
Counterexample-guided strategy improvement for POMDPs using recurrent neural
networks. In: Proceedings of the IJCAI’19, pp. 5532–5539 (2020)

12. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

13. Fu, J., Topcu, U.: Probably approximately correct MDP learning and control with
temporal logic constraints. In: Proceedings of Robotics: Science and Systems (2014)

14. Garcia, J., Fernandez, F.: A comprehensive survey on safe reinforcement learning.
J. Mach. Learn. Res. 16, 1437–1480 (2015)

15. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: Proceedings of the 2018 IEEE Symposium on Security and Pri-
vacy (S&P), pp. 3–18. IEEE Computer Society (2018)

16. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Pro-
ceedings of the 1984 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’84, pp. 47–57. ACM (1984)

http://arxiv.org/abs/2005.07073
https://doi.org/10.1007/978-3-319-11936-6_8
http://arxiv.org/abs/1606.01540
https://doi.org/10.1007/978-3-319-68167-2_19

Probabilistic Guarantees for Safe Deep Reinforcement Learning 247

17. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Omega-
regular objectives in model-free reinforcement learning. In: Vojnar, T., Zhang,
L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 395–412. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17462-0 27

18. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

19. Junges, S., Jansen, N., Dehnert, C., Topcu, U., Katoen, J.-P.: Safety-constrained
reinforcement learning for MDPs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 130–146. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49674-9 8

20. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. Form. Meth. Syst.
Des. 36(3), 246–280 (2010)

21. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

22. Kazak, Y., Barrett, C.W., Katz, G., Schapira, M.: Verifying deep-RL-driven
systems. In: Proceedings of the 2019 Workshop on Network Meets AI & ML,
NetAI@SIGCOMM’19, pp. 83–89. ACM (2019)

23. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains, 2nd edn. Springer,
New York (1976)

24. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

25. Lahijania, M., Andersson, S.B., Belta, C.: Formal verification and synthesis for
discrete-time stochastic systems. IEEE Trans. Autom. Control 60(8), 2031–2045
(2015)

26. Machado, M.C., Bellemare, M.G., Talvitie, E., Veness, J., Hausknecht, M., Bowling,
M.: Revisiting the arcade learning environment: evaluation protocols and open prob-
lems for general agents. J. Artif. Intell. Res. 61, 523–562 (2018)

27. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

28. Ohn-Bar, E., Trivedi, M.M.: Looking at humans in the age of self-driving and
highly automated vehicles. IEEE Trans. Intell. Veh. 1(1), 90–104 (2016)

29. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: Proceedings of the 27th International Joint
Conference on Artificial Intelligence, IJCAI’18 (2018)

30. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay
(2015). arXiv preprint arXiv:1511.05952

31. Shalev-Shwartz, S., Shammah, S., Shashua, A.: Safe, Multi-Agent, Reinforcement
Learning for Autonomous Driving (2016). arXiv preprint arXiv:1610.03295

32. Soudjani, S.E.Z., Gevaerts, C., Abate, A.: FAUST2: Formal Abstractions of
Uncountable-STate STochastic Processes. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 272–286. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0 23

33. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis
of neural networks using symbolic intervals. In: Proceedings of the 27th USENIX
Security Symposium, pp. 1599–1614 (2018)

https://doi.org/10.1007/978-3-030-17462-0_27
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1610.03295
https://doi.org/10.1007/978-3-662-46681-0_23
https://doi.org/10.1007/978-3-662-46681-0_23

248 E. Bacci and D. Parker

34. libspatialindex. https://libspatialindex.org/. Accessed 7 May 2020
35. Networkx - network analysis in Python. https://networkx.github.io/. Accessed 7

May 2020
36. Py4j - a bridge between Python and Java. https://www.py4j.org/. Accessed 7 May

2020
37. Pyinterval - interval arithmetic in Python. https://pyinterval.readthedocs.io/en/

latest/. Accessed 7 May 2020
38. Pytorch. https://pytorch.org/. Accessed 7 May 2020
39. Rtree: Spatial indexing for Python. https://rtree.readthedocs.io/en/latest/.

Accessed 7 May 2020

https://libspatialindex.org/
https://networkx.github.io/
https://www.py4j.org/
https://pyinterval.readthedocs.io/en/latest/
https://pyinterval.readthedocs.io/en/latest/
https://pytorch.org/
https://rtree.readthedocs.io/en/latest/

	Probabilistic Guarantees for Safe Deep Reinforcement Learning
	1 Introduction
	2 Preliminaries
	3 Controller Modelling and Abstraction
	3.1 Controller Execution Model
	3.2 Controller Verification
	3.3 Controller Execution Abstraction

	4 Policy Extraction and Abstraction Generation
	4.1 Neural Network Policy Extraction
	4.2 Building the Abstraction
	4.3 Refining the Abstraction
	4.4 Storing and Manipulating Abstract States

	5 Experimental Results
	5.1 Benchmarks and Policy Learning
	5.2 Results

	6 Conclusions
	References

