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Preface

In this current book, we present the proceedings of the 18th International Conference
on Formal Modeling and Analysis of Timed Systems (FORMATS 2020). This edition
of FORMATS was a special one. Amid a global crisis, we as a community strived to
maintain a healthy and safe research environment. Early on, after many countries
started shutting down most of public life as a reaction to the novel coronavirus, we
decided that QONFEST 2020, and with it FORMATS, CONCUR, FMICS, and QEST,
would not take place in Vienna but as a virtual event.

Despite the critical and difficult times, we are very happy to present a strong and
interesting program for FORMATS 2020. In total, we received 36 submissions, and
each one was reviewed by at least 3 Program Committee (PC) members. The com-
mittee, consisting of 28 members, decided to accept 16 very strong papers for which
the decisions where mostly unanimous.

FORMATS 2020 targeted timing aspects of systems from the viewpoint of different
communities within computer science and control theory. In particular, the aim of
FORMATS 2020 was to promote the study of fundamental and practical aspects of
timed systems, and be more inclusive to researchers from different disciplines that share
interests in modeling and analysis of timed systems. As an example, FORMATS
encouraged submissions related to foundations and semantics, methods and tools, as
well as techniques, algorithms, data structures, and software tools for analyzing timed
systems and resolving temporal constraints.

Moreover, we strongly encouraged contributions dedicated to applications. To
further foster emerging topics, we organized two special sessions:

Data-Driven Methods for Timed Systems: This session concerned all kind of
data-driven methods such as machine learning or automata learning that consider
timing aspects. Examples are automata learning for timed automata or reinforcement
learning with timing constraints. The session was chaired by Guillermo Alberto Perez.

Probabilistic and Timed Systems: Real-time systems often encompass probabilistic
or random behavior. We are interested in all approaches to model or analyze such
systems, for instance through probabilistic timed automata or stochastic timed Petri
nets. This session was chaired by Arnd Hartmanns.

In addition to the regular talks for the accepted papers, FORMATS 2020 featured an
excellent invited talk by Alessandro Abate, together with an overview paper that is part
of these proceedings. Moreover, invited talks by Roderick Bloem and Annabelle
McIver were organized jointly with the other conferences within QONFEST. Further
details may be found at https://formats-2020.cs.ru.nl/index.html.

Finally, some acknowledgments are due. First, we want to thank Ezio Bartocci for
the great organization of QONFEST 2020. Second, thanks to the Steering Committee
of FORMATS 2020, and notably to Martin Fränzle, for their support, to all the PC

https://formats-2020.cs.ru.nl/index.html


members and additional reviewers for their work in ensuring the quality of the con-
tributions to FORMATS 2020, and to all the authors and participants for contributing
to this event. Finally, we thank Springer for hosting the FORMATS proceedings in its
Lecture Notes in Computer Science series, and to EasyChair for providing a convenient
platform for coordinating the paper submission and evaluation.

It was an honor for us to serve as PC chairs of FORMATS 2020, and we hope that
this edition of the conference will inspire the research community to many further ideas
and direction in the realm of timed systems.

July 2020 Nathalie Bertrand
Nils Jansen

vi Preface
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Deep Reinforcement Learning
with Temporal Logics

Mohammadhosein Hasanbeig(B), Daniel Kroening, and Alessandro Abate

Department of Computer Science, University of Oxford, Oxford, UK
{hosein.hasanbeig,daniel.kroening,alessandro.abate}@cs.ox.ac.uk

Abstract. The combination of data-driven learning methods with for-
mal reasoning has seen a surge of interest, as either area has the poten-
tial to bolstering the other. For instance, formal methods promise to
expand the use of state-of-the-art learning approaches in the direction
of certification and sample efficiency. In this work, we propose a deep
Reinforcement Learning (RL) method for policy synthesis in continuous-
state/action unknown environments, under requirements expressed in
Linear Temporal Logic (LTL). We show that this combination lifts the
applicability of deep RL to complex temporal and memory-dependent
policy synthesis goals. We express an LTL specification as a Limit Deter-
ministic Büchi Automaton (LDBA) and synchronise it on-the-fly with
the agent/environment. The LDBA in practice monitors the environ-
ment, acting as a modular reward machine for the agent: accordingly,
a modular Deep Deterministic Policy Gradient (DDPG) architecture is
proposed to generate a low-level control policy that maximises the proba-
bility of the given LTL formula. We evaluate our framework in a cart-pole
example and in a Mars rover experiment, where we achieve near-perfect
success rates, while baselines based on standard RL are shown to fail in
practice.

Keywords: Model-free reinforcement learning · Deep learning · Linear
temporal logic · Continuous-state and continuous-action Markov
decision processes

1 Introduction

Deep Reinforcement Learning (RL) is an emerging paradigm for autonomous
decision-making tasks in complex and unknown environments. Deep RL has
achieved impressive results over the past few years, but often the learned solu-
tion is evaluated only by statistical testing and there is no systematic method
to guarantee that the policy synthesised using RL meets the expectations of
the designer of the algorithm. This particularly becomes a pressing issue when
applying RL to safety-critical systems.

Furthermore, tasks featuring extremely sparse rewards are often difficult to
solve by deep RL if exploration is limited to low-level primitive action selec-
tion. Despite its generality, deep RL is not a natural representation for how
c© Springer Nature Switzerland AG 2020
N. Bertrand and N. Jansen (Eds.): FORMATS 2020, LNCS 12288, pp. 1–22, 2020.
https://doi.org/10.1007/978-3-030-57628-8_1
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humans perceive sparse reward problems: humans already have prior knowledge
and associations regarding elements and their corresponding function in a given
environment, e.g. “keys open doors” in video games. Given useful domain knowl-
edge and associations, a human expert can find solutions to problems involving
sparse rewards, e.g. when the rewards are only received when a task is eventually
fulfilled (e.g., finally unlocking a door). These assumed high-level associations
can provide initial knowledge about the problem, whether in abstract video
games or in numerous real world applications, to efficiently find the global opti-
mal policies, while avoiding an exhaustive unnecessary exploration, particularly
in early stages.

The idea of separating the learning process into two (or more) synchronised
low- and high-level learning steps has led to hierarchical RL, which specifically
targets sparse reward problems [49]. Practical approaches in hierarchical RL,
e.g. options [43], depend on state representations and on the underlying problem
simplicity and/or structure, such that suitable reward signals can be effectively
engineered by hand. These methods often require detailed supervision in the
form of explicitly specified high-level actions or intermediate supervisory signals
[2,9,29,30,43,52]. Furthermore, most hierarchical RL approaches either only
work in discrete domains, or require pre-trained low-level controllers. HAC [32],
a state-of-the-art method in hierarchical RL for continuous-state/action Markov
Decision Processes (MDPs), introduces the notion of Universal MDPs, which
have an augmented state space that is obtained by a set of strictly sequential
goals.

This contribution extends our earlier work [19,20,22,57] and proposes a one-
shot1 and online deep RL framework, where the learner is presented with a modu-
lar high-level mission task over a continuous-state/action MDP. Unlike hierarchi-
cal RL, the mission task is not limited to sequential tasks, and is instead specified
as a Linear Temporal Logic (LTL) formula, namely a formal, un-grounded, and
high-level representation of the task and of its components. Without requiring
any supervision, each component of the LTL property systematically structures a
complex mission task into partial task “modules”. The LTL property essentially
acts as a high-level exploration guide for the agent, where low-level planning
is handled by a deep RL architecture. LTL is a temporal logic that allows to
formally express tasks and constraints in interpretable form: there exists a sub-
stantial body of research on extraction of LTL properties from natural languages
[16,38,55].

We synchronise the high-level LTL task with the agent/environment: we first
convert the LTL property to an automaton, namely a finite-state machine accept-
ing sequences of symbols [3]; we then construct on-the-fly2 a synchronous prod-
uct between the automaton and the agent/environment; we also define a reward
function based on the structure of the automaton. With this automated reward-

1 One-shot means that there is no need to master easy tasks first, then compose them
together to accomplish a more complex tasks.

2 On-the-fly means that the algorithm tracks (or executes) the state of an underlying
structure (or a function) without explicitly constructing it.
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shaping procedure, an RL agent learns to accomplish the LTL task with max
probability, and with no supervisory assistance: this is in general hard, if at all
possible, by conventional or handcrafted RL reward shaping methods [43,49,52].
Furthermore, as elaborated later, the structure of the product partitions the state
space of the MDP, so that partitions are solely relevant to specific task modules.
Thus, when dealing with sparse-reward problems, the agent’s low-level explo-
ration is efficiently guided by task modules, saving the agent from exhaustively
searching through the whole state space.

Related Work. The closest lines of work comprise model-based [4,8,12–15,24,
25,42,44] and model-free [7,11,17,27,28,51] RL approaches, aiming to synthe-
sise policies abiding by a given temporal logic property. In model-based RL, a
model of the MDP is firstly inferred and later an optimal policy is generated over
the learned model. This approach is known to hardly scale to large-dimensional
problems, which are in practice studied with model-free RL. Additionally, in
standard work on RL for LTL, formulae are translated to Deterministic Rabin
Automata (DRA), which are known to be doubly exponential in the size of the
original LTL formula. Conversely, in this work we use a specific Limit Determin-
istic Büchi Automaton (LDBA) [45], which we have employed in the context of
RL in [18]: this is only an exponential-sized automaton for LTL\GU (a fragment
of LTL), and has otherwise the same size as DRA for the rest of LTL. This can
significantly enhance the convergence rate of RL. Other variants of LDBAs have
been employed in cognate work [7,17,28,39].

Another closely-related line of work is the “curriculum learning” approach
[2], in which the agent masters easier instruction-based sub-tasks first, to then
compose them together in order to accomplish a more complex task. In this
work, instead, the complex task is expressed as an LTL property, which guides
learning and directly generates policies: it thus has no need to start from easier
sub-tasks and to later compose corresponding policies together. In other words,
the proposed method learns policies for the general complex task in a “one-shot”
scenario.

To the best of authors’ knowledge, no research has so far enabled model-free
RL to generate policies for general LTL properties over continuous-state/action
MDPs: relevant results are applicable to finite MDPs [8,11,12,17,21,44,51], or
are focused on sub-fragments of LTL [10,23,26,31,33,42], such as finite-horizon
formulae. Many practical problems require continuous, real-valued actions to be
taken in over uncountable state variables: the simplest approach to solve such
problems is to discretise state and action spaces of the MDP [1]. However, beyond
requiring the knowledge of the MDP itself, discretisation schemes are expected
to suffer from the trade off between accuracy and curse of dimensionality.

Contributions. To tackle the discussed issues and push the envelope of state
of the art in RL, in this work and propose a modular Deep Deterministic Pol-
icy Gradient (DDPG) based on [34,47]. This modular DDPG is an actor-critic
architecture that uses deep function approximators, which can learn policies in
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continuous state and action spaces, optimising over task-specific LTL satisfaction
probabilities. The contributions of this work are as follows:

• We deal with continuous-state/action, unknown MDPs. The proposed model-
free RL algorithm significantly increases the applicability of RL for LTL syn-
thesis.

• The use of LTL (and associated LDBAs) with deep RL allows us to efficiently
solve problems with sparse rewards, by exploiting relationships between sub-
tasks. Rewards are automatically assigned on-the-fly with no supervision,
allowing one to automatically modularise a global complex task into easy
sub-tasks.

• The use of LDBA in DDPG introduces technical issues to the learning process,
such as non-determinism, which are addressed in this work.

2 Problem Framework

The environment with which the agent interacts is assumed to be an unknown
black-box. We describe the underlying agent/environment model as an MDP,
however we emphasise that the MDP is unknown and the learning agent is
unaware of the transition (i.e., the dynamics) and the spatial labels (environ-
mental features grounded to tasks). This works assumes that the dynamics of
the interaction are Markovian, namely memory-less.

Definition 1 (General MDP [5]). The tuple M = (S,A, s0, P,AP, L) is a
general MDP over a set of continuous states S = Rn, where A = Rm is a set of
continuous actions, and s0 ∈ S is the initial state. P : B(Rn) × S × A → [0, 1]
is a Borel-measurable conditional transition kernel which assigns to any pair of
state s ∈ S and action a ∈ A a probability measure P (·|s, a) on the Borel space
(Rn,B(Rn)), where B(Rn) is the set of all Borel sets on Rn. AP is a finite set
of atomic propositions and a labelling function L : S → 2AP assigns to each state
s ∈ S a set of atomic propositions L(s) ⊆ 2AP.

Definition 2 (Path). An infinite path ρ starting at s0 is a sequence of states
ρ = s0

a0−→ s1
a1−→ ... such that every transition si

ai−→ si+1 is allowed in M, i.e.
si+1 belongs to the smallest Borel set B such that P (B|si, ai) = 1.

At each state s ∈ S, an agent behaviour is determined by a Markov policy
π, which is a mapping from states to a probability distribution over the actions,
i.e. π : S → P(A). If P(A) is a degenerate distribution then the policy π is said
to be deterministic.

Definition 3 (Expected Discounted Return [49]). For a policy π on an
MDP M, the expected discounted return is defined as:

Uπ(s) = Eπ[
∞∑

n=0

γn R(sn, an)|s0 = s],
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where Eπ[·] denotes the expected value given that the agent follows policy π,
γ ∈ [0, 1) (γ ∈ [0, 1] when episodic) is a discount factor, R : S × A → R is the
reward, and s0, a0, s1, a1, . . . is the sequence of state-action pairs generated by
policy π.

It has been shown that constant discount factors might yield sub-optimal
policies [7,17]. In general the discount factor γ is a hyper-parameter that has
to be tuned. There is standard work in RL on state-dependent discount factors
[37,40,54,56], that is shown to preserve convergence and optimality guarantees.
A possible tuning strategy to resolve the issues of constant discounting is as
follows:

γ(s) =
{

η if R(s, a) > 0,
1 otherwise, (1)

where 0 < η < 1 is a constant. Hence, Definition 3 is reduced to [37]:

Uπ(s) = Eπ[
∞∑

n=0

γ(sn)N(sn) R(sn, π(sn))|s0 = s], 0 ≤ γ ≤ 1, (2)

where N(sn) is the number of times a positive reward has been observed at sn.
The function Uπ(s) is often referred to as value function (under the policy π).

Another crucial notion in RL is action-value function Qπ(s, a), which describes
the expected discounted return after taking an action a in state s and thereafter
following policy π:

Qπ(s, a) = Eπ[
∞∑

n=1

γn R(sn, an)|s0 = s, a0 = a].

Accordingly, the recursive form of the action-value function can be obtained as:

Qπ(s, a) = R(s, a) + γQπ(s1, a1), (3)

where a1 = π(s1). Q-learning (QL) [53] is the most extensively used model-free
RL algorithm built upon (3), for MDPs with finite-state and finite-action spaces.
For all state-action pairs QL initializes a Q-function Qβ(s, a) with an arbitrary
finite value, where β is an arbitrary stochastic policy.

Qβ(s, a) ← Qβ(s, a) + μ[R(s, a) + γ max
a′∈A

(Qβ(s′, a′)) − Qβ(s, a)]. (4)

where Qβ(s, a) is the Q-value corresponding to state-action (s, a), 0 < μ ≤ 1 is
called learning rate (or step size), R(s, a) is the reward function, γ is the discount
factor, and s′ is the state reached after performing action a. The Q-function for
the remaining of the state-action pairs is not changed in this operation. QL is an
off-policy RL scheme, namely policy β has no effect on the convergence of the
Q-function, as long as every state-action pair is visited infinitely many times.
Thus, for the sake of simplicity, we may drop the policy index β from the action-
value function. Under mild assumptions, QL converges to a unique limit, and a
greedy policy π∗ can be obtained as follows:

π∗(s) = argmax
a∈A

Q(s, a), (5)
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and π∗ corresponds to the optimal policy that is generated by dynamic program-
ming [6] to maximise the expected return, if the MDP was fully known:

π∗(s) = argsup
π∈D

Uπ(s), (6)

where D is the set of stationary deterministic policies over the state space S. The
Deterministic Policy Gradient (DPG) algorithm [47] introduces a parameterised
function μ(s|θμ) called actor to represent the current policy by deterministically
mapping states to actions, where θμ is the function approximation parameters
for the actor function. Further, an action-value function Q(s, a|θQ) is called critic
and is learned as described next.

Assume that at time step t the agent is at state st, takes action at, and
receives a scalar reward R(st, at). In case when the agent policy is determinis-
tic, the action-value function update can be approximated by parameterising Q
using a parameter set θQ, i.e. Q(st, at|θQ), and by minimizing the following loss
function:

L(θQ) = E
π
st∼ρβ [(Q(st, at|θQ) − yt)2], (7)

where ρβ is the probability distribution of state visits over S, under any given
arbitrary stochastic policy β, and yt = R(st, at) + γQ(st+1, at+1|θQ) such that
at+1 = π(st+1).

The actor parameters are updated along the derivative of the expected return,
which [47] has shown to be a policy gradient, as follows:

∇θμUμ(st) ≈ Est∼pβ [∇θμQ(s, a|θQ)|s=st,a=μ(st|θμ)]

= Est∼pβ [∇aQ(s, a|θQ)|s=st,a=μ(st)∇θμμ(s|θμ)|s=st
].

(8)

DDPG further extends DPG by employing a deep neural network as function
approximator and updating the network parameters via a “soft update” method,
which is explained later in the paper.

2.1 Linear Temporal Logic (LTL)

We employ LTL to encode the structure of the high-level mission task and to
automatically shape the reward function. LTL formulae ϕ over a given set of
atomic propositions AP are syntactically defined as [41]:

ϕ:: = true | α ∈ AP | ϕ ∧ ϕ | ¬ϕ | © ϕ | ϕ U ϕ, (9)

where the operators © and U are called “next” and “until”, respectively. For a
given path ρ, we define the i-th state of ρ to be ρ[i] where ρ[i] = si, and the i-th
suffix of ρ to be ρ[i..] where ρ[i..] = si

ai−→ si+1
ai+1−−−→ si+2 . . .
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Definition 4 (LTL Semantics [41]). For an LTL formula ϕ and for a path ρ,
the satisfaction relation ρ |= ϕ is defined as

ρ |= α ∈ AP ⇐⇒ α ∈ L(ρ[0]),
ρ |= ϕ1 ∧ ϕ2 ⇐⇒ ρ |= ϕ1 ∧ ρ |= ϕ2,

ρ |= ¬ϕ ⇐⇒ ρ |= ϕ,

ρ |= ©ϕ ⇐⇒ ρ[1..] |= ϕ,

ρ |= ϕ1Uϕ2 ⇐⇒ ∃j ≥ 0 : ρ[j..] |= ϕ2 ∧ ∀i, 0 ≤ i < j, ρ[i..] |= ϕ1.

The operator next © requires ϕ to be satisfied starting from the next-state
suffix of ρ. The operator until U is satisfied over ρ if ϕ1 continuously holds
until ϕ2 becomes true. Using the until operator U we can define two tempo-
ral modalities: (1) eventually, ♦ϕ = true U ϕ; and (2) always, �ϕ = ¬♦¬ϕ.
LTL extends propositional logic using the temporal modalities until U, eventu-
ally ♦, and always �. For instance, constraints such as “eventually reach this
point”, “visit these points in a particular sequential order”, or “always stay safe”
are expressible by these modalities. Further, these modalities can be combined
with logical connectives and nesting to provide more complex task specifica-
tions. Any LTL task specification ϕ over AP expresses the following set of words
Words(ϕ) = {σ ∈ (2AP)ω s.t. σ |= ϕ}, where (2AP)ω is set of all infinite words
over 2AP. The set of associated words Words(ϕ) is expressible using a finite-state
machine [3]. Limit Deterministic Büchi Automata (LDBA) [45] are shown to be
succinct finite-state machines for this purpose [46]. We first define a Generalized
Büchi Automaton (GBA), then we formally introduce LDBA.

Definition 5 (Generalized Büchi Automaton). A GBA A = (Q, q0,Σ,
F,Δ) is a state machine, where Q is a finite set of states, q0 ⊆ Q is the set of
initial states, Σ = 2AP is a finite alphabet, F = {F1, ..., Ff} is the set of accepting
conditions where Fj ⊆ Q, 1 ≤ j ≤ f , and Δ : Q × Σ → 2Q is a transition relation.

Let Σω be the set of all infinite words over Σ. An infinite word w ∈ Σω is
accepted by a GBA A if there exists an infinite run θ ∈ Qω starting from q0
where θ[i + 1] ∈ Δ(θ[i], ω[i]), i ≥ 0 and, for each Fj ∈ F, inf (θ)∩Fj = ∅, where
inf (θ) is the set of states that are visited infinitely often in the sequence θ.

Definition 6 (LDBA [45]). A GBA A = (Q, q0,Σ,F,Δ) is limit-deterministic
if Q is composed of two disjoint sets Q = QN ∪ QD, such that:

• Δ(q, α) ⊂ QD and |Δ(q, α)| = 1 for every state q ∈ QD and for every α ∈ Σ,
• for every Fj ∈ F, Fj ⊆ QD,
• q0 ∈ QN , and all the transitions from QN to QD are non-deterministic ε-

transitions. An ε-transition allows an automaton to change its state without
reading any atomic proposition.

Intuitively, the defined LDBA is a GBA that has two components, an initial (QN )
and an accepting one (QD). The accepting component includes all the accepting
states and has deterministic transitions. As it will be further elaborated below,
ε-transitions between QN and QD can be interpreted as “guesses” on reaching
QD. We finally introduce the following notion.
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Definition 7 (Non-accepting Sink Component). A non-accepting sink
component of the LDBA A is a directed graph induced by a set of states Q ⊆ Q

such that (1) the graph is strongly connected; (2) it does not include all of the
accepting sets Fk, k = 1, ..., f that are necessary to satisfy the associated LTL
formula; and (3) there exist no other strongly connected set Q′ ⊆ Q, Q′ = Q
such that Q ⊆ Q′. We denote the union of all non-accepting sink components of
A as N. The set N includes those components in the automaton that are non-
accepting and impossible to escape from. Thus, a trace reaching them is doomed
to not satisfy the given LTL property.

3 Modular DDPG

We consider an RL problem in which we exploit the structural information pro-
vided by the LTL specification, by constructing sub-policies for each state of
the associated LDBA. The proposed approach learns a satisfying policy without
requiring any information about the grounding of the LTL task to be speci-
fied explicitly. Namely, the labelling assignment (as in Definition 1) is a-priori
unknown, and the algorithm solely relies on experience samples gathered online.

Given an LTL mission task and an unknown black-box continuous-
state/action MDP, we aim to synthesise a policy that satisfies the LTL specifica-
tion with max probability. For the sake of clarity and to explain the core ideas of
the algorithm, for now we assume that the MDP graph and the transition kernel
are known: later these assumptions are entirely removed, and we stress that the
algorithm can be run model-free. We relate the MDP and the automaton by
synchronising them, in order to create a new structure that is firstly compatible
with deep RL and that secondly encompasses the given logical property.

Definition 8 (Product MDP). Given an MDP M = (S,A, s0, P,AP, L) and
an LDBA A = (Q, q0, Σ,F,Δ) with Σ = 2AP, the product MDP is defined as
MA = M⊗A = (S⊗,A, s⊗

0 , P⊗,AP⊗, L⊗,F⊗), where S⊗ = S×Q, s⊗
0 = (s0, q0),

AP⊗ = Q, L⊗ : S⊗ → 2Q such that L⊗(s, q) = q and F⊗ ⊆ S⊗ is the set of
accepting states F⊗ = {F⊗

1 , ..., F⊗
f }, where F⊗

j = S × Fj. The transition kernel
P⊗ is such that given the current state (si, qi) and action a, the new state (sj , qj)
is obtained such that sj ∼ P (·|si, a) and qj ∈ Δ(qi, L(sj)).
In order to handle ε-transitions we make the following modifications to the above
definition of product MDP:

• for every potential ε-transition to some state q ∈ Q we add a corresponding
action εq in the product:

A⊗ = A ∪ {εq, q ∈ Q}.

• The transition probabilities corresponding to ε-transitions are given by

P⊗((si, qi), εq, (sj , qj)) =
{

1 if si = sj , qi
εq−→ qj = q,

0 otherwise.
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Remark 1. Recall that an ε-transition between QN and QD corresponds to a
guess on reaching QD without reading a label and changing a state in the MDP
M (see the definition of P⊗ above). This entails that if, after an ε-transition,
the associated label in the accepting set of the automaton cannot be read or no
accepting state in QD is visited, then the guess was wrong, hence the automaton
must have entered the non-accepting sink component N (Definition 7). These
semantics are leveraged in the case studies, and are generally applicable when
the constructed LDBA contains ε-transitions. ��

By constructing the product MDP, we synchronise the current state of the
agent with that of the automaton. This allows to evaluate partial satisfaction of
the corresponding LTL property, and consequently to modularise the high-level
LTL task into sub-tasks. Hence, with a proper reward assignment based on the
LTL property and its associated LDBA, the agent can break down a complex
task into a set of easier sub-tasks. We elaborate further on task modularisation
in the next subsection.

In the following we define an LTL-based reward function, emphasising that
the agent does not need to know the model structure or the transition proba-
bilities (or their product). Before introducing a reward assignment for the RL
agent, we need to present the ensuing function:

Definition 9 (Accepting Frontier Function). For an LDBA A = (Q, q0,
Σ,F,Δ), we define Acc : Q × 2Q → 2Q as the accepting frontier function, which
executes the following operation over a given set F ⊂ 2Q for every Fj ∈ F:

Acc(q,F) =

⎧
⎨

⎩

F \{Fj} (q ∈ Fj) ∧ (F = Fj),
{Fk}f

k=1 \{Fj} (q ∈ Fj) ∧ (F = Fj),
F otherwise.

In words, once the state q ∈ Fj and the set F are introduced to the function
Acc, it outputs a set containing the elements of F minus Fj . However, if F = Fj ,
then the output is the family set of all accepting sets of the LDBA, minus the
set Fj . Finally, if the state q is not an accepting state then the output of Acc
is F. The accepting frontier function excludes from F the accepting set that is
currently visited, unless it is the only remaining accepting set. Otherwise, the
output of Acc(q,F) is F itself. Owing to the automaton-based structure of the
Acc function, we are able to shape a reward function (as detailed next) without
any supervision and regardless of the dynamics of the MDP.

We propose a reward function that observes the current state s⊗, the current
action a, and the subsequent state s⊗′, to provide the agent with a scalar value
according to the current automaton state:

R(s⊗, a) =

⎧
⎨

⎩

rp if q′ ∈ A, s⊗′ = (s′, q′),
rn if q′ ∈ N, s⊗′ = (s′, q′),
0, otherwise.

(10)

Here rp is a positive reward and rn is a negative reward. A positive reward rp is
assigned to the agent when it takes an action that leads to a state, the label of
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which is in A, and a negative reward rn is given upon reaching N (Definition 7).
The set A is called the accepting frontier set, is initialised as the family set
A = {Fk}f

k=1, and is updated by the following rule every time after the reward
function is evaluated: A ← Acc(q′,A). The set N is the set of non-accepting
sink components of the automaton, as per Definition 7.

Remark 2. The intuition underlying (10) is that set A contains those accepting
states that are visited at a given time. Thus, the agent is guided by the above
reward assignment to visit these states and once all of the sets Fk, k = 1, ..., f,
are visited, the accepting frontier A is reset. As such, the agent is guided to visit
the accepting sets infinitely often, and consequently, to satisfy the given LTL
property. We shall discuss issues of reward sparseness in Sect. 3.1. ��

Given the product MDP structure in Definition 8 and the automatic formal
reward assignment in (10), any algorithm that synthesises a policy maximising
the associated expected discounted return over the product MDP, maximises
the probability of satisfying the property ϕ. Note that, unlike the case of finite
MDPs [18], proving the aforementioned claim is not trivial as we cannot leverage
notions that are specific to finite MDPs, such as that of Accepting Max End
Component (AMEC). Thus, the probability of satisfaction cannot be equated to
the probability of reaching a set of states in the product MDP (i.e., the AMEC)
and we have to directly reason over the accepting condition of the LDBA.

Theorem 1. Let ϕ be a given LTL formula and MA be the product MDP con-
structed by synchronising the MDP M with the LDBA A expressing ϕ. Then the
optimal stationary Markov policy on MA that maximises the expected return,
maximises the probability of satisfying ϕ and induces a finite-memory policy on
the MDP M.

Remark 3. Please see the Appendix for the proof. Note that the optimality of
the policy generated by the DDPG scheme depends on a number of factors,
such as its structure, number of hidden layers, and activation functions. The
quantification of the sub-optimality of the policy generated by DDPG is out of
the scope of this work. ��

3.1 Task Modularisation

In this section we explain how a complex task can be broken down into simple
composable sub-tasks or modules. Each state of the automaton in the product
MDP is a “task divider” and each transition between these states is a “sub-task”.
For example consider a sequential task of visit a and then b and finally c, i.e.
♦(a ∧ ♦(b ∧ ♦c)). The corresponding automaton for this LTL task is given in
Fig. 1. The entire task is modularised into three sub-tasks, i.e. reaching a, b, and
then c, and each automaton state acts as a divider. By synchronising the MDP M
and the LDBA A, each automaton state divides those parts of the state space S,
whose boundaries are sub-tasks, namely automaton transitions. Furthermore, the
LDBA specifies the relations between subs-tasks, e.g. ordering and repetition.
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¬c

c

true

Fig. 1. LDBA for a sequential task expressed by ♦(a ∧ ♦(b ∧ ♦c)).

By exploiting the relationship between sub-tasks, and also limiting the agent
exploration to the relevant regions of the state space for each sub-task, it can
efficiently guide the learning to solve problems with sparse rewards.

Given an LTL task and its LDBA A = (Q, q0, Σ,F,Δ), we propose a modular
architecture of n = |Q| separate actor and critic neural networks, along with their
own replay buffer. A replay buffer is a finite-sized cache in which transitions
sampled from exploring the environment are stored. The replay buffer is then
used to train the actor and critic networks. The set of neural nets acts as a global
modular actor-critic deep RL architecture, which allows the agent to jump from
one sub-task to another by just switching between the set of neural nets. For
each automaton state qi an actor function μqi

(s|θμqi ) represents the current
policy by deterministically mapping states to actions, where θμqi is the vector of
parameters of the function approximation for the actor. The critic Qqi

(s, a|θQqi )
is learned based on (7).

The modular DDPG algorithm is detailed in Algorithm 1. Each actor-critic
network set in this algorithm is associated with its own replay buffer Rqi

, where
qi ∈ Q (line 4, 12). Experience samples are stored in Rqi

in the form of

(s⊗
i , ai, Ri, s

⊗
i+1) = ((si, qi), ai, Ri, (si+1, qi+1)).

When the replay buffer reaches its maximum capacity, the samples are dis-
carded based on a first-in/first-out policy. At each time-step, actor and critic
are updated by sampling a mini-batch of size M uniformly from Rqi

. There-
fore, in the algorithm the actor-critic network set corresponding to the current
automaton state qt, is trained based on experience samples in Rqt

(line 12–17).
Further, directly implementing the update of the critic parameters as in (7) is

shown to be potentially unstable, and as a result the Q-update (line 14) is prone
to divergence [36]. Hence, instead of directly updating the networks weights, the
standard DDPG [34] introduces two “target networks”, μ′ and Q′, which are
time-delayed copies of the original actor and critic networks μ and Q, respec-
tively. DDPG uses “soft” target updates to improve learning stability, which
means that μ′ and Q′ slowly track the learned networks, μ and Q. These target
actor and critic networks are used within the algorithm to gather evidence (line
13) and subsequently to update the actor and critic networks. In our algorithm,
for each automaton state qi we make a copy of the actor and the critic network:
μ′

qi
(s|θμ′

qi ) and Q′
qi

(s, a|θQ′
qi ) respectively. The weights of both target networks

are then updated as θ′ = τθ + (1 − τ)θ′ with a rate of τ < 1 (line 18). Summaris-
ing, to increase stability and robustness in learning, for each automaton state qi
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Algorithm 1: Modular DDPG
input : LTL task ϕ, a black-box agent/environment
output: trained actor and critic networks

1 convert the LTL property ϕ to LDBA A = (Q, q0, Σ,F, Δ)

2 randomly initialise |Q| actors μi(s|θμi) and critic Qi(s, a|θQi) networks with

weights θμi and θQi , for each qi ∈ Q, and all state-action pairs (s, a)

3 initialize |Q| target networks μ′
i and Q′

i with weights θμ′
i = θμi , θQ′

i = θQi

4 initialise |Q| replay buffers Ri

5 repeat
6 initialise |Q| random processes Ni

7 initialise state s⊗
1 = (s0, q0)

8 for t = 1 to max iteration number do
9 choose action at = μqt(st|θμqt ) + Nqt

10 observe reward rt and the new state (st+1, qt+1)
11 store ((st, qt), at, Rt, (st+1, qt+1)) in Rqt

12 sample a random mini-batch of M transitions
((si, qi), ai, Ri, (si+1, qi+1)) from Rqt

13 set yi = Ri + γQ′
qi+1(si+1, μ

′
qi+1(si+1|θμ′

qi+1 )|θQ′
qi+1 )

14 update critic Qqt and θQqt by minimizing the loss:

L = 1/|M| ∑i(yi − Qqt(si, ai|θQqt ))2

15 update the actor policy μqt and θμqt by maximizing the sampled policy
gradient:

16 ∇θμqt Uμqt ≈ 1/|M| ∑i[∇aQqt(s, a|θQqt )|s=si,a=μqt (si|θμqt )

17 ∇θμqt μqt(s|θμqt )|s=si ]

18 update the target networks: θQ′
qt ← τθQqt + (1 − τ)θQ′

qt

θμ′
qt ← τθμqt

+ (1 − τ)θμ′
qt

19 end

20 until end of trial

we have a pair of actor and critic networks, namely μqi
(s|θμqi ), μ′

qi
(s|θμ′

qi ) and

Q′
qi

(s, a|θQ′
qi ), Qqi

(s, a|θQqi ) respectively.

4 Experiments

In this section we showcase the simulation results of Modular DDPG in two case
studies: a cart-pole setup and in a mission planning problem for a Mars rover.

In the cart-pole example (Fig. 2) a pendulum is attached to a cart, which
moves horizontally along a friction-less track [50]. The agent applies a horizontal
force to the cart. The pendulum starts upright, and the goal is (1) to prevent
the pendulum from falling over, and (2) to move the cart between the yellow
and green regions while avoiding the red (unsafe) parts of the track.

The second case study deals with a Mars rover, exploring areas around the
Melas Chasma [35] and the Victoria crater [48]. The Melas Chasma area displays
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Fig. 2. Cart-pole case study (a.k.a. inverted pendulum on a cart) [50].

a number of signs of potential presence of water, with possible river valleys and
lakes (Fig. 3 (a)). The blue dots, provided by NASA, indicate Recurring Slope
Lineae (RSL) on the surface of Mars [35], which are possible locations of liquid
water. The agent task is to first visit low-risk RSL (on the right of the area) and
then to visit high-risk RSL (on the left), while avoiding unsafe red regions. The
Victoria crater (Fig. 3 (b)) is an impact crater located near the equator of Mars.
Layered sedimentary rocks are exposed along the wall of the crater, providing
information about the ancient surface condition of Mars [48]. A NASA Mars
rover has been operating around the crater and its mission path is given in
Fig. 3 (b). The scenario of interest in this work is to train an RL agent that can
autonomously control the rover to accomplish the safety-critical complex task.

In each experiment, we convert tasks expressed as LTL properties into cor-
responding LDBAs, and use them to monitor the modular DDPG algorithm,
thus implicitly forming a product automaton. For each actor/critic structure,
we have used a feed-forward neural net with 2 fully connected hidden layers and
400 ReLu units in each layer.

MDP Structure. In the cart-pole experiment the pendulum starts upright with
an initial angle between −0.05 and 0.05 rads. The mass of the cart is 1 kg and
that of the pole is 100 g. The length of the pole is 1 m. The force applied by
the agent to the cart ranges from −10 to 10 N. A learning episode terminates if
the pendulum deviates more than 0.21 rad from the vertical position, or if the
cart enters any of the red regions at any time. The yellow region ranges from
−2.15 to −1.85 m, and symmetrically the green region is from 1.85 to 2.15 m.
The unsafe red region lies at the left of −4 m and at the right of 4 m.

In the Mars rover experiments, let the area of each image be the state space
S of the MDP, where the rover location is a state s ∈ S. At each state s the rover
has a continuous range of actions A = [0, 2π): when the rover takes an action it
moves to another state (e.g., s′) towards the direction of the action and within
a range that is randomly drawn within the interval (0,D], unless the rover hits
the boundary of the image, which restarts the learning episode.
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Fig. 3. (a) Melas Chasma in the Coprates quadrangle, map color spectrum represents
elevation, where red is high (unsafe) and blue is low. (b) Victoria crater and opportunity
rover mission traverse map [48], (c) replicated points of interest, and (d) unsafe area
(red). Image courtesy of NASA, JPL, Cornell, and Arizona University. (Color figure
online)
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Fig. 4. LDBAs expressing formula (11) in (a), (12) in (b), and (13) in (c).

In the actual Melas Chasma exploration mission (Fig. 3 (a)), the rover is
deployed on a landing location that is not precisely known. We therefore encom-
pass randomness over the initial state s0. Conversely, in the second experiment
(Fig. 3 (b)) the rover is supposed to have already landed and it starts its mission
from a known state.

The dimension of the area of interest in Fig. 3 (a) is 456.98 × 322.58 km,
whereas in Fig. 3 (b) is 746.98 × 530.12 m. Other parameters in this numerical
example have been set as D = 2 km for Melas Chasma, D = 10 m for the
Victoria crater. We have used the satellite image with additive noise as the
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Fig. 5. LDBA expressing the LTL formula in (14).

black-box MDP for the experiment. Note that the rover only needs its current
state (coordinates in this case), the state label (without seeing the entire map),
and the LTL task (Algorithm 1, line 11). The given maps in the paper are for
illustration purposes and to elucidate the performance of the output policy.

Specifications. In the cart-pole setup the properties of interest are expressed by
the following two LTL formulae:

♦�y ∨ ♦�g, (11)

�♦y ∧ �♦g ∧ �¬u, (12)

where y is the label of the yellow region, g denotes the green region, and u is
the label denoting when either the pendulum falls or when the cart enters the
red regions on the track. We call the experiment with (11) Cart-pole-1 and that
with (12) Cart-pole-2. Note that the task in Cart-pole-2 is a surveillance finite-
memory specification: such tasks can be easily expressed in LTL and achieved by
the modular DDPG architecture, but are impossible to solve with conventional
RL.

In the first of the Mars rover case studies, over the Melas Chasma area (Fig. 3
(a)) the control objective is expressed by the following LTL formula:

♦(t1 ∧ ♦t2) ∧ �(¬u), (13)

where t1 stands for “target 1”, t2 stands for “target 2” and u stands for “unsafe”
(the red region in Fig. 3 (d)). Target 1 corresponds to the RSL (blue dots) on the
right with a lower risk of the rover going to unsafe region, whereas the “target 2”
label goes on the left RSL that are a bit riskier to explore. Conforming to (13),
the rover has to visit any of the right dots at least once and then proceed to
the any of the left dots, while avoiding unsafe areas. From (13) we build the
associated LDBA as in Fig. 4.

The mission task for the Victoria crater is taken from a NASA rover mission
[48] and is expressed by the following LTL formula:

♦(t1 ∧ ♦(t2 ∧ ♦(t3 ∧ ♦(t4 ∧ ♦(... ∧ ♦(t12)))) ∧ �(¬u), (14)



16 M. Hasanbeig et al.

where ti represents the “i-th target”, and u represents “unsafe” regions. The i-th
target in Fig. 3 (c) is the i-th red circle from the bottom left along the crater
rim. According to (14) the rover is required to visit the checkpoints from the
bottom left to the top right sequentially, while avoiding a fall into the crater,
which mimicks the actual path in Fig. 3 (b). From (14), we build the associated
LDBA as shown in Fig. 5.

Fig. 6. Learning curves (dark blue) obtained averaging over 10 randomly initialised
experiments in the cart-pole setup with the task specified in (11) for (a) and in (12)
for (b). Shaded areas (light blue) represent the envelopes of the 10 generated learning
curves. (Color figure online)

(a) Coordinates (2,2) (b) Coordinates (113,199)

(c) Coordinates (14,165) (d) Coordinates (122,113)

Fig. 7. Paths generated by the learnt policy in the Melas Chasma experiment.
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Experimental Outcomes. In each cart-pole experiment we have employed three
actor-critic neural network pairs and ran simulations for 10,000 episodes. We
have then tested the trained network across 200 runs. Modular DDPG has
achieved a success rate of 100% (Table 1) and Fig. 6 shows the learning progress.
The learning run time has been 57 min.

In the Melas Chasma experiment we have employed 4 actor-critic neural
network pairs and ran simulations for 10,000 episodes. We have then tested
the trained network for all safe starting position. Our algorithm has achieved
a success rate of 98.8% across 18,202 landing positions, as reported Table 1.
Figure 7 gives the example paths generated by our algorithm. The learning run
time has been 5 h.

In the Victoria crater experiment we have used 13 actor-critic neural network
pairs. We have ran simulations for a total of 17,000 episodes, at which point it
had already converged. The learning run time was 2 days. We have then tested
the trained network across 200 runs. Our algorithm has achieved a success rate of
100% across all runs starting from t1 (Table 1). Figure 8 shows a generated path
that bends away from the crater, due to the back-propagation of the negative
reward in (10) associated with violating the safety constraint.

Discussion. In all the experiments, the modular DDPG algorithm has been
able to automatically modularise the given LTL task and to synthesise a suc-
cessful policy. We have employed stand-alone DDPG as a baseline for com-
parison. In the cart-pole example, without synchronising the LDBA with the
actor/environment, stand-alone DDPG cannot learn a policy for the non-
Markovian task in (12). Hierarchical RL methods, e.g. [32], are able to generate
goal-oriented policies, but only when the mission task is sequential and not par-
ticularly complex: as such, they would not be useful for (12). Furthermore, in
state-of-the-art hierarchical RL there are a number of extra hyper-parameters
to tune, such as the sub-goal horizons and the number of hierarchical levels,
which conversely the one-shot modular DDPG does not have. The task in (11)

Fig. 8. (a) Path generated by the policy learnt via modular DDPG around the Victoria
crater, vs (b) the actual Mars rover traverse map [48].
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Table 1. Success rates: statistics are taken over at least 200 trials

Case study Algorithm Success rate

Cart-pole-1 Stand-alone DDPG 100%

Modular DDPG 100%

Cart-pole-2 Stand-alone DDPG 0%

Modular DDPG 100%

Melas Chasma∗ Stand-alone DDPG 21.4%

Modular DDPG 98.8%

Victoria Crater Stand-alone DDPG 0%

Modular DDPG 100%

*The statistics for the M. Chasma study are taken over
different initial positions

is chosen to elucidate how the modular DDPG algorithm can handle cases in
which the generated LDBA has non-deterministic ε-transitions.

In the Mars rover examples, the reward function for the stand-alone DDPG is
rp if the agent visits all the checkpoints in proper order, and rn if the agent enters
regions with unsafe labels. However, the performance of stand-alone DDPG has
been quite poor, due to inefficient navigation. In relatively simple tasks, e.g. the
Melas Chasma experiment, stand-alone DDPG has achieved a positive success
rate, however at the cost of very high sample complexity in comparison to Mod-
ular DDPG. Specifically, due to its modular structure, the proposed architecture
requires fewer samples to achieve the same success rate. Each module encom-
passes a pair of local actor-critic networks, which are trained towards their own
objective and, as discussed before, only samples relevant to the sub-task are
fed to the networks. On the other hand, in standard DDPG the whole sample
set is fed into a large-scale pair of actor-critic networks, which reduces sample
efficiency.

5 Conclusions

We have discussed a deep RL scheme for continuous-state/action decision mak-
ing problems under LTL specifications. The synchronisation of the automaton
expressing the LTL formula with deep RL automatically modularises a global
complex task into easier sub-tasks. This setup assists the agent to find an opti-
mal policy with a one-shot learning scheme. The high-level relations between
sub-tasks become crucial when dealing with sparse reward problems, as the
agent exploration is efficiently guided by the task modules, saving the agent
from exhaustively exploring the whole state space, and thus improving sample
efficiency.

Acknowledgements. The authors would like to thank Lim Zun Yuan for valuable
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drafts of this manuscript.
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Appendix: Proof of Theorem 1

Theorem 1. Let ϕ be a given LTL formula and MA be the product MDP
constructed by synchronising the MDP M with the LDBA A associated
with ϕ. Then the optimal stationary Markov policy on MA that max-
imises the expected return, maximises the probability of satisfying ϕ
and induces a finite-memory policy on the MDP M.

Proof. Assume that the optimal Markov policy on MA is π⊗∗, namely at each
state s⊗ in MA we have

π⊗∗(s⊗) = argsup
π⊗∈D⊗

Uπ⊗
(s⊗) = argsup

π⊗∈D⊗
Eπ⊗

[
∞∑

n=0

γn R(s⊗
n , an)|s⊗

0 = s⊗], (15)

where D⊗ is the set of stationary deterministic policies over the state space
S⊗, Eπ⊗

[·] denotes the expectation given that the agent follows policy π⊗, and
s⊗
0 , a0, s

⊗
1 , a1, . . . is a generic path generated by the product MDP under policy

π⊗.
Recall that an infinite word w ∈ Σω, Σ = 2AP is accepted by the LDBA

A = (Q, q0,Σ,F,Δ) if there exists an infinite run θ ∈ Qω starting from q0 where
θ[i + 1] ∈ Δ(θ[i], ω[i]), i ≥ 0 and, for each Fj ∈ F, inf (θ) ∩ Fj = ∅, where
inf (θ) is the set of states that are visited infinitely often in the sequence θ.
From Definition 8, the associated run θ of an infinite path in the product MDP
ρ = s⊗

0
a0−→ s⊗

1
a1−→ ... is θ = L⊗(s⊗

0 )L⊗(s⊗
1 ).... From Definition 9 and (10), and

since for an accepting run inf (θ) ∩ Fj = ∅, ∀Fj ∈ F, all accepting paths starting
from s⊗

0 , accumulate infinite number of positive rewards rp (see Remark 2).
In the following, by contradiction, we show that any optimal policy π⊗∗

satisfies the property with maximum possible probability. Let us assume that
there exists a stationary deterministic Markov policy π⊗+ = π⊗∗ over the state
space S⊗ such that probability of satisfying ϕ under π⊗+ is maximum.

This essentially means in the product MDP MA by following π⊗+ the expec-
tation of reaching the point where inf (θ)∩Fj = ∅, ∀Fj ∈ F and positive reward
is received ever after is higher than any other policy, including π⊗∗. With a
tuned discount factor γ, e.g. (1),

Eπ⊗+

[
∞∑

n=0

γn R(s⊗
n , an)|s⊗

0 = s⊗] > Eπ⊗∗
[

∞∑

n=0

γn R(s⊗
n , an)|s⊗

0 = s⊗] (16)

This is in contrast with optimality of π⊗∗ (15) and concludes π⊗∗ = π⊗+.
Namely, an optimal policy that maximises the expected return also maximises
the probability of satisfying LTL property ϕ. It is easy to see that the projection
of policy π⊗∗ on MDP M is a finite-memory policy π∗. �
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Abstract. In this paper, we study the semantics of a specification lan-
guage for the coordination of concurrent systems, which supports time
at different levels: various time domains, polychrony, and mixed metric/-
logical time constraints. The language itself is defined by a denotational
semantics. In order to be able to construct the possible timelines for verifi-
cation purposes, we also define a symbolic operational semantics, which is
the reference for an efficient implementation of a tool for runtime-testing
of heterogeneous systems. This study presents a novel way to link these
two semantics by taking advantage of a coinductive unfolding principle
of these timelines. Furthermore, these semantics and their equivalence
have been formalized in the Isabelle/HOL proof assistant, together with
proofs for soundness, completeness and progress.

Keywords: Concurrency · Coordination · Semantics · Timed
behaviors

1 Introduction

The design of complex systems involves different formalisms for modeling their
different parts or aspects. The global model of a system may therefore consist
of a coordination of concurrent sub-models that use differential equations, state
machines, synchronous data-flow networks, discrete event models and so on. This
raises the interest in architectural composition languages that allow for “bolting
the respective sub-models together”, along their various interfaces, and specify-
ing the various ways of collaboration and coordination.

We are interested in languages for specifying the timed coordination of sub-
systems by addressing the following conceptual issues:

– events may occur in different subsystems at unrelated times, leading to poly-
chronous systems [6], not necessarily under a common base clock,

– the behavior of the subsystems is observed only at a series of discrete instants,
– the instants at which a system is observed may be arbitrary and should not

change its behavior (stutter-invariance),
– the coordination between subsystems involves causality, so the occurrence of

an event may cause the occurrence of other events, possibly after a delay,
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– the domain of time (discrete, rational, continuous, . . . ) may be different in
the subsystems, leading to polytimed systems,

– the time frames of different subsystems may be related (for instance, time in
a GPS satellite and in a GPS receiver on Earth are different but related).

Figure 1 presents a heterogeneous model with subsystems modeled with a
timed finite state machine, discrete events, and synchronous dataflows. To model
the full system, some architectural glue is needed to coordinate these subsystems.

Fig. 1. The power window: a heterogeneous timed system model

In order to tackle the heterogeneous nature of the subsystems, we abstract
their behavior as clocks. Each clock models an event – something that can occur
or not at a given time. This time is measured in a time frame associated with
each clock, and the nature of time (integer, rational, real or any type with a linear
order) is specific to each clock. When the event associated with a clock occurs, the
clock ticks. In order to support any kind of behavior for the subsystems, we are
only interested in specifying what we can observe at a series of discrete instants.
There are two constraints on observations: a clock may tick only at an observation
instant, and the time on any clock cannot decrease from an instant to the next
one. Also, it is always possible to add arbitrary observation instants, which allows
for stuttering and modular composition of systems. Finally, a run is defined by
a sequence of these observation instants. We can now consider the concept of
timed specification language, which is a set of formulae that constrains the space
of possible runs. This correspondence from specifications to run space is precisely
a denotational semantics, and specifications are composed by intersecting the
denoted run sets of constraint formulae.

For monitoring and online testing of heterogeneous systems, an operational
semantics was defined in [23] to calculate concrete prefixes of runs. However,
the rules of this semantics are somewhat arbitrary and not suitable for reasoning
about complete runs. Our study presents a minimal specification language named
TESL− (a side-effect-free subset of TESL [4]) for which our main results are:
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– a denotational and an operational semantics for TESL−,
– a formal validation of the operational semantics w.r.t. the denotational seman-

tics by means of proofs for soundness, completeness and progress.

This constitutes also the outline of our paper. Compared to [23], which relied on
an ad hoc operational semantics of TESL1 implemented in Standard ML, the
present work relies on properly defined and mechanized semantics. Moreover,
the logical structure used for linking both semantics allows for easily-defined
extensions of the language.

All definitions and theorems have been formalized into the Isabelle/HOL
proof assistant [24,25] and have been accepted in the Archive of Formal Proofs,
giving us a high level of confidence in our results. The latest version of the
mechanized theory is available online at github.com/heron-solver/TESL-Theory.
However, this paper is self-contained: all the key intermediate lemmas are stated
using mathematical notations and their proofs are sketched.

2 TESL−

We present here the TESL− minimal specification language in two parts: a basic
causal one and a temporal one.

2.1 The Causality Part

Here is a grammar for the purely causal part of the language:

Ψ ::= 〈atom〉 ∧ . . . ∧ 〈atom〉
〈atom〉 ::= 〈clock〉 sporadic 〈timestamp〉 on 〈clock〉

| 〈clock〉 implies 〈clock〉

where 〈clock〉 ∈ K (set of clocks), and 〈timestamp〉 ∈ T (domain of timestamps).
The meaning of a specification Ψ and of the atomic formulae are as follows:

– the composition of specifications is their conjunction ∧,
– a sporadic on requires a tick on the first clock, at an instant where the time

has the specified value in the time frame of the second clock2,
– an implies atom models instantaneous causality. It specifies that in every

instant, if the first clock ticks, the second ticks too.

In order to define the semantics of the above syntax, we formally define the
idea of runs and instants as previously introduced. The set of runs is defined
by a clock-indexed Kripke model: Runs = N → K → (

B × T
)
, where K is an

1 wdi.centralesupelec.fr/software/TESL/.
2 The two clocks in sporadic on may be identical, which means that this clock must

tick at the given time stamp.

https://github.com/heron-solver/TESL-Theory
http://wdi.centralesupelec.fr/software/TESL/
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enumerable set of clocks, B is the set of booleans – used to indicate that a clock
ticks at a given instant – and T is a universal metric time space with some linear
ordering ≤T. Also, we constrain this run space to prevent time from flowing
backwards, in other words a run ρ ∈ Runs must be monotonic3:

∀n ∈ N. ∀C ∈ K. π2(ρ n C) ≤T π2(ρ (n + 1) C)

A run is simply a infinite-sequence of instants. From a position n and a run
ρ, we can extract the instant ρn ∈ K → (B × T). Instants describe the status of
each clock at a given observation. We define two projections to get the status of
a clock C at an instant ρn:

– ticks(ρn(C)) indicates whether C ticks
– time(ρn(C)) is the timestamp of C at that instant.

The denotation
�
Ψ

�
TESL

of a TESL− formula Ψ is defined inductively as follows:

�
ψ0 ∧ . . . ∧ ψk

�
TESL

def=
�
ψ0

�
TESL

∩ . . . ∩ �
ψk

�
TESL�

C1 sporadic τ on C2

�
TESL

def= {ρ ∈ Runs | ∃n ∈ N. ticks(ρn(C1)) ∧ time(ρn(C2)) = τ}
�
Cmaster implies Cslave

�
TESL

def= {ρ ∈ Runs | ∀n ∈ N. ticks(ρn(Cmaster)) =⇒ ticks(ρn(Cslave))}

2.2 The Temporal Part

We introduce here some operators concerning time and duration.

〈atom〉 ::= ...

| time relation (〈clock〉, 〈clock〉) ∈ 〈relation〉
| 〈clock〉 time delayed by 〈duration〉 on 〈clock〉 implies 〈clock〉

where 〈relation〉 ⊆ T × T and 〈duration〉 ∈ T. The meaning of these operators is:

– a time relation atom gives a relation between the time frames of two clocks.
The time stamps of the clocks must be in the relation at every instant,

– a time delayed atom represents delayed causality. When the first (master)
clock ticks, the duration is added to the current time on the second (measur-
ing) clock to obtain the date at which the third (slave) clock has to tick.

3 π2 being the second projection, with π2(x, y) = y.
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The denotation of these operators is as follows:
�
time relation (C1, C2) ∈ R

�
TESL

def=
{
ρ ∈ Runs

∣
∣ ∀n ∈ N.

(
time(ρn(C1)), time(ρn(C2))

) ∈ R
}

�
Cmaster time delayed by δτ on Cmeas implies Cslave

�
TESL

def= {ρ ∈ Runs | ∀n ∈ N. ticks(ρn(Cmaster))
=⇒ ∀m ≥ n. time(ρm(Cmeas)) = time(ρn(Cmeas)) + δτ

=⇒ ticks(ρm(Cslave))}

A time relation makes it possible to specify, for example, that time on one
clock flows 2.5 times as fast as on another clock. Using the floor function � �,
it is also possible to establish a relation between continuous and discrete time
frames.

Cmeas

Cmaster

Cslave

δτ δτ

(a) Cmaster time delayed by δτ on Cmeas

implies impliesCslave

Cmeas

Cmaster

δτ δτ δτ δτ

(b) Cmaster time delayed by δτ on Cmeas

Cmaster

Fig. 2. Time delays and periodicity

The time delayed construct introduces durations in causal relationships.
Figure 2a shows the causal relation between Cmaster and Cslave, and the duration
measured in the time frame of clock Cmeas. Figure 2b shows how to specify a
periodic clock using this construct. Notice that there are no ticks on clock Cmeas

in this example, it is only used as a time frame to measure durations.

2.3 An Application Example: The Car Power Window

The car power window [3], illustrated in Fig. 1, is an example of timed coordi-
nation of four subsystems: a control button, a timed finite state machine, a syn-
chronous data flow (SDF) model of the electro-mechanical parts, and a discrete
events (DE) model of the CAN bus, which interconnects the other subsystems.
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For the sake of brevity, we consider only the raising of the window. Therefore,
the button can only be pulled up and released, what we model by the btn up
and btn neutral events. Similarly, we consider the up and stop input events for
the timed finite state machine, as well as its power output event, which denotes
the sending of a power command to the electromechanical subsystem (the value
of this command is ignored in our temporal coordination model).

The model of the electromechanical subsystem has an update power input,
which corresponds to an update of the power to deliver to the motor. However,
according to the SDF nature of this subsystem, this information is only taken into
account when it reacts to compute its next state, which occurs every 50 ms and
is modeled by a react input event. This periodic activation is part of the design
of this subsystem, and it must be enforced for the regulation of the current in
the motor to work properly. Here is a TESL specification for the power window:

1 unit−clock btn up // the button is pulled up
2 unit−clock btn neutral // the button is released
3 unit−clock up // the TFSM receives an up event
4 unit−clock stop // the TFSM receives a stop event
5 unit−clock power // the TFSM produces a power event
6 unit−clock update power // the SDF model gets a new power command
7 unit−clock react // the SDF model reacts to its inputs
8 rational−clock realtime // real-time in seconds
9 rational−clock bus // time scale of the CAN bus

10
11 time relation realtime = 0.002 ∗ bus
12 btn up time delayed by 1.0 on bus implies up
13 btn neutral time delayed by 1.0 on bus implies stop
14
15 // Inputs of the TFSM trigger an instantaneous update of its output
16 up implies power
17 stop implies power
18
19 // The transmission delay on the CAN bus is 2 ms
20 power time delayed by 1.0 on bus implies update power
21
22 // The window must react every 50 ms (periodic clock)
23 react time delayed by 0.05 on realtime implies react

This specification ignores the values that are sent over the bus, it specifies
only when things happen since its goal is to coordinate the behaviors of the
subsystems. Lines 1 to 7 declare the clocks that compose the interface of the
subsystems for the architectural glue, as explained on Fig. 1. The unit-clock
keyword simply sets the domain of timestamps of these clocks to a single value.
Lines 8 and 9 declare chronometric clocks used to measure elapsed time on the
CAN bus and in the real world. Their time domain is the rationals. Line 11 is
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an example of a relation between two time frames. It specifies that when 1 unit
of time elapses on the bus clock, 0.002 s elapses on the real time clock, which
means that time is measured in units of 2 ms on the bus clock. Lines 12 and
13 specify that when the button is pulled up or released, the timed finite state
machine receives its up or stop input event 1 unit of time later, measured in
the time frame of the bus clock (2 ms in real time). Lines 16 and 17 specify that
the state machine reacts instantaneously to its inputs by producing its power
output event. Line 20 specifies the transmission delay on the bus between the
state machine and the SDF subsystem. Last, line 23 specifies that the reaction
of the SDF subsystem is periodic, because it implies itself with a delay of 50 ms.
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Fig. 3. A satisfying run for the example of the power window specification

Figure 3 depicts a satisfying run. The user pulls the button up (clock btn up)
at 5 ms (on the time scale of the realtime clock). The controller receives this
information (clock up) at 7 ms due to the transmission delay on the CAN bus,
and immediately sets the power for the window motor (clock power). Then, the
mechanical part receives the command at 9 ms (clock update power). The next
tick of the periodic react clock occurs at 50 ms, which is the time at which
the new value of the power is taken into account and the window starts moving
up. At 320 ms, the user releases the button, which switches back to neutral
(clock btn neutral). The new value of the power is updated at 324 ms because
of the transmission delays between the button and the controller, and between
the controller and the mechanical parts. The next reaction of the window (clock
react) occurs at 350 ms, which is the time at which the window stops moving up.
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The additional clocks react scenario, up scenario and neutral scenario are
used to describe the user interface simulation scenario.

2.4 Properties of the Semantics

An important property that we derive directly from the denotational semantics is
invariance by stuttering. When we combine two specifications Ψ1 and Ψ2, clocks
in Ψ2 may tick at instants where no clock in Ψ1 ticks. Therefore, runs that
satisfy S1 should still satisfy it when these stuttering instants are added. Other
specification languages, such as LTL [16,17], seek stutter-invariance to avoid the
exponential explosion of the search space when checking properties [7,12,15,21].
In TESL, this idea is fully explored in the mechanized theory as previously
mentioned.

3 Operational Semantics

We define an operational semantics to be able to constructively derive all possible
satisfying runs for a given specification. This operational semantics works on
configurations, which are composed of three parts informally called the past, the
present and the future. The semantic rules unfold the constraints of the future
into the present, and the non-deterministic choices that are made in the present
are then stored into the past. The decisions on the past are expressed using
primitive constraints defined in Subsect. 3.1. The combination of the past, the
present and the future is called a configuration, as presented in Subsect. 3.2. The
reduction rules on configurations are presented in Subsect. 3.3.

3.1 Primitives

The primitives in Definition 2 describe prefixes of satisfying runs. Note that
compared to TESL− atomic formulae, they deal with fixed instant indexes.

Definition 1 (Time Variables). The set of time variables V contains symbols
tvarCn with n ∈ N and C ∈ K. Note that tvarCn stands for the symbolic value of
time on clock C at instant n.

Definition 2 (Run Primitives). A run primitive γ ∈ Γ is one of:

– C ⇑n constrains clock C to tick at instant index n;
– C �⇑n constrains clock C not to tick (to be idle) at instant index n;
– C ⇓n x constrains clock C to have timestamp x at instant index n, where x

can be a variable in V, or a constant in T;
– (tvarC1

n1
, tvarC2

n2
) ∈ R constrains values tvarC1

n1
and tvarC2

n2
to be in relation R.
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The semantics of these primitives is given by � �prim as:

�{γ0 ; . . . ; γk}�
prim

def
=

�
γ0

�
prim

∩ . . . ∩ �
γk

�
prim

�
C ⇑n

�
prim

def
=

{
ρ ∈ Runs | ticks(ρn(C)) is true

}

�
C �⇑n

�
prim

def
=

{
ρ ∈ Runs | ticks(ρn(C)) is false

}

�
C ⇓n x

�
prim

def
=

{
ρ ∈ Runs | time(ρn(C)) = x

}
with x in T or V

�
(tvarC1

n1 , tvarC2
n2 ) ∈ R

�
prim

def
=

{
ρ ∈ Runs | time(ρn1(C1)) and time(ρn2(C2)) are in R

}

3.2 Configurations

The operational semantics transforms configurations, which represent the “cur-
rent” state of the construction of a symbolic run and have three parts:

– the past Γ is a collection of primitive constraints that represents what has
been decided in previous instants (the prefix of the run);

– the present Ψ contains the constraints on the instant under scrutiny (what
can or cannot be added to the prefix);

– the future Φ contains the constraints on the future behavior of the run.

Definition 3 (Configuration). A configuration is a tuple Γ |=n Ψ � Φ, where
n is the index of the current instant, Γ the context, which contains primitives
describing the “past”, Ψ the TESL−-formula to be considered in the “present”,
and Φ the TESL−-formula to satisfy in the “future” of the run.

3.3 Reduction Rules

The semantics consists in rules that transform configurations in two ways:

1. Moving constraints from the future to the present (introduction), which
amounts to turning the “next” instant into the current instant;

2. Consuming constraints in the present to produce primitive constraints in the
past (elimination).

The introduction rule initializes a new instant by incrementing the index
counter and moving the constraints from the future into the present.

Definition 4 (Introduction Rule →i). The relation →i is the smallest rela-
tion satisfying:

Γ |=n ∅ � Φ →i Γ |=n+1 Φ � ∅ (instanti)

The elimination rules consume constraints on the present and produce primi-
tive constraints on the past as well as constraints on the future, which correspond
to consequences of the choices made for the current instant. The application of
these rules adds constraints to Γ and makes the run more defined.
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Definition 5 (Elimination Rules →e). The relation →e is the smallest rela-
tion satisfying the rules given in Table 1.

Table 1. Elimination Rules for TESL− formulae

Γ |=n Ψ ∧ (C1 sporadic τ on C2) � Φ (sporadic − one1)

→e Γ |=n Ψ � Φ ∧ (C1 sporadic τ on C2)

Γ |=n Ψ ∧ (C1 sporadic τ on C2) � Φ (sporadic − one2)

→e Γ ∪
{

C1 ⇑n, C2 ⇓n τ
}

|=n Ψ � Φ

Γ |=n Ψ ∧ (Cmaster implies Cslave) � Φ (impliese1)

→e Γ ∪
{

Cmaster �⇑n

}
|=n Ψ � Φ ∧ (Cmaster implies Cslave)

Γ |=n Ψ ∧ (Cmaster implies Cslave) � Φ (impliese2)

→e Γ ∪
{

Cmaster ⇑n, Cslave ⇑n

}
|=n Ψ � Φ ∧ (Cmaster implies Cslave)

Γ |=n Ψ ∧ (time relation (C1, C2) ∈ R) � Φ (time − relatione)

→e Γ ∪
{
(tvar

C1
n , tvar

C2
n ) ∈ R

}
|=n Ψ � Φ ∧ (time relation (C1, C2) ∈ R)

Γ |=n Ψ ∧ (Cmaster time delayed by δt on Cmeas implies Cslave) � Φ (time − delayede1)

→e Γ ∪
{

Cmaster �⇑n

}
|=n Ψ � Φ ∧ (Cmaster time delayed by δt on Cmeas implies Cslave)

Γ |=n Ψ ∧ (Cmaster time delayed by δt on Cmeas implies Cslave) � Φ (time − delayede2)

→e Γ ∪
{

Cmaster ⇑n

}
|=n Ψ ∧ (Cslave sporadic (tvarCmeas

n + δt) on Cmeas)

� Φ ∧ (Cmaster time delayed by δt on Cmeas implies Cslave)

It is necessary to apply elimination rules until the present of the configuration
is empty and the introduction rule can be applied to progress to the next instant.
Here are different possibilities to eliminate constraints from the present:

– C1 sporadic τ on C2: this formula can be postponed to a later instant
(Rule sporadic − one1), or satisfied in the current instant by adding ticking
and timestamp primitives to the context (Rule sporadic − one2),

– Cmaster implies Cslave: either clock Cmaster does not tick (Rule impliese1), or
both Cmaster and Cslave tick in the current instant (Rule impliese2). In both
cases, the formula is copied into the future to be satisfied at every instant,

– time relation (C1, C2) ∈ R: the corresponding primitive is added to con-
strain the timestamps on clocks C1 and C2 at the current instant, and the
formula is put into the future since it has to be satisfied at every instant,

– Cmaster time delayed by δt on Cmeas implies Cslave: either clock Cmaster does
not tick and we only copy the formula into the future (Rule time − delayede1);
or it ticks and we need to force a tick on Cslave when the time on Cmeas reaches
tvarCmeas

n +δt, which is the current timestamp on measuring clock Cmeas delayed
by duration δt. The formula is copied into the future (Rule time − delayede2).



On the Semantics of Polychronous Polytimed Specifications 33

3.4 Local Termination

Proposition 1 (Termination of Elimination Rules).
The relation →e is well-founded.

Proof. All of the elimination rules strictly decrease the number of formulae in
the “present” of the configuration, and a configuration with an empty “present”
is in normal form with respect to →e.

Definition 6 (Reduction →). We define → def= →i ∪ →e.
A reduction step is either an introduction or an elimination.

4 Relating Operational and Denotational Semantics

In this section, we give key properties of the operational semantics. We are
interested in establishing soundness (Theorem 1), completeness (Theorem 2),
and progress (Theorem 3) with respect to the denotational semantics defined in
Sect. 2.

4.1 Stepwise Denotational Semantics

In Subsect. 2.1 and Subsect. 2.2, we have defined a denotational semantics to
characterize the runs that satisfy a specification. Definition 7 gives a stepwise
version of this definition, which constrains the behavior only from a given instant.

Definition 7 (Stepwise Interpretation of TESL− formulae).
The stepwise interpretation of a TESL− formula Ψ , noted

�
Ψ

�≥i

TESL
, is defined as

in Table 2.

Table 2. Stepwise interpretation of TESL− formulae
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This stepwise interpretation from instant 0 matches the denotational inter-
pretation:

Lemma 1 (Start Step). For any TESL− formula Ψ ,
�
Ψ

�
TESL

=
�
Ψ

�≥0

TESL
.

Proof. From the definitions of
�
Ψ

�≥0

TESL
and

�
Ψ

�
TESL

and from n ∈ N ⇐⇒ n ≥ 0.

The next proposition links the operational and denotational semantics. The
structure of the right hand term in the equations in Table 3 matches the reduc-
tion rules of the operational semantics. Therefore, the coinductive unfolding of
the denotational semantics is similar to the derivation of a reduction step in
the operational semantics. The past-present-future pattern is also visible here:
the past is described by � �prim (denotation of fixed primitives), the present by
� �≥i

TESL, which denotes runs that are valid from the current instant, and the
future by � �≥i+1

TESL , which denotes runs that are valid from the next instant.

Proposition 2 (Coinductive Unfolding). The stepwise interpretation can be
coinductively unfolded as presented in Table 3.

Table 3. Coinductive unfolding of stepwise interpretation

Proof. By unfolding the quantifiers and substituting parts with Definition 2 and
Definition 7. The rules of Table 3 state that

�
Ψ

�≥i

TESL
can be decomposed into

what happens at index i and what happens starting from index i + 1.

This coinductive pattern explains the behavior of the operational semantics
at a denotational level and bridges the gap between those semantics.
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4.2 Soundness

To establish soundness, we define the meaning of a configuration.

Definition 8 (Interpretation of Configurations).
The interpretation of a configuration Γ |=n Ψ � Φ is:

�
Γ |=n Ψ � Φ

�
config

def=
�
Γ

�
prim

∩ �
Ψ

�≥n

TESL
∩ �

Φ
�≥n+1

TESL

It is trivial to show that the interpretation of a TESL− formula Ψ is the same
as the interpretation of the initial configuration starting at Ψ .

Lemma 2 (Start Configuration). For any TESL− formula Ψ , we have
�
Ψ

�
TESL

=
�
∅ |=0 Ψ � ∅

�
config

Proof. The proof is done by unfolding Definition 8:
�
∅

�
prim

and
�
∅

�≥n+1

TESL
are the

whole set of runs, since ∅ is not constraining anything, and
�
Ψ

�≥0

TESL
is

�
Ψ

�
TESL

by Lemma 1.

We now show that each reduction step is sound, in the sense that if a run
satisfies a derived configuration, it also satisfies the original configuration.

Lemma 3 (Sound Reduction). For any reduction (Γ |=n Ψ � Φ) → (Γ ′ |=n′

Ψ ′ � Φ′), we have
�
Γ |=n Ψ � Φ

�
config

⊇ �
Γ ′ |=n′ Ψ ′ � Φ′�

config
.

Proof. By Definitions 6 and 8, and case analysis on →. In the →i case, the
reduction is of the form Γ |=n Ψ � ∅ → Γ |=n+1 ∅ � Ψ : the semantics of both
sides are the same. In →e case, n′ = n+1 and we use Proposition 2 to decompose
the semantics at instant n using the semantics at instant n + 1.

Finally, we show soundness by generalizing Lemma 2 and Lemma 3 to an
arbitrary number of reductions from the initial configuration.

Theorem 1 (Soundness). Let Ψ be a TESL− formula. For all k and all con-
figurations Γ ′ |=n′ Ψ ′ � Φ′ such that ∅ |=0 Ψ � ∅ →k Γ ′ |=n′ Ψ ′ � Φ′, we have

�
Ψ

�
TESL

⊇ �
Γ ′ |=n′ Ψ ′ � Φ′�

config

Proof. By induction on k. For the base case, when k = 0 we have Γ ′ = Ψ ′ = ∅.
Lemma 2 then tells us that

�
Ψ

�
TESL

=
�
Γ ′ |=n′ Ψ ′ � Φ′�

config
. For the inductive

case, we suppose that the result is true for k and we consider k + 1 reductions:

∅ |=0 Ψ � ∅ →k Γ ′ |=n′ Ψ ′ � Φ′ → Γ ′′ |=n′′ Ψ ′′ � Φ′′.

The induction hypothesis tells us that
�
Ψ

�
TESL

⊇ �
Γ ′ |=n′ Ψ ′ � Φ′�

config
, and we

can conclude using Lemma 3 and the transitivity of ⊇.
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4.3 Completeness

Completeness consists in showing that if a run ρ belongs to the denotation
of a configuration, it is always possible to derive a new configuration whose
denotation also contains ρ. For this, we first define the direct successors of a
configuration.

Definition 9 (Direct Successors). For any configuration Γ |=n Ψ � Φ,
Cnext(Γ |=n Ψ � Φ) def=

{
Γ ′ |=n′ Ψ ′ � Φ′ ∣

∣ (Γ |=n Ψ � Φ) → (Γ ′ |=n′ Ψ ′ � Φ′)
}

Then we show that any denoted run belongs to some successor configuration.

Lemma 4 (Complete Direct Successors). For any configuration Γ |=n Ψ �
Φ,

�
Γ |=n Ψ � Φ

�
config

⊆
⋃

X∈Cnext(Γ |=nΨ�Φ)

�
X

�
config

Proof. Similarly to the proof of Lemma 3, we proceed by induction on the num-
ber of formulae in Ψ . If Ψ is empty, the only possible reduction is →i: the
reduction is of the form Γ |=n Ψ � ∅ → Γ |=n+1 ∅ � Ψ and there is only one
possible X, whose semantics is

�
Γ |=n Ψ � Φ

�
config

. If Ψ is not empty, the reduc-
tion is a →e-reduction. The case is solved using Proposition 2 to decompose the
semantics at instant n using the semantics of the possible reductions at instant
n + 1.

Hence, completeness holds for an arbitrary number of reductions starting
from the initial configuration.

Theorem 2 (Completeness). Let Ψ be a TESL− formula and ρ a satisfying
run, i.e. ρ ∈ �

Ψ
�
TESL

. For all k, there is a configuration Γ ′ |=n′ Ψ ′ �Φ′ such that
∅ |=0 Ψ � ∅ →k Γ ′ |=n′ Ψ ′ � Φ′ and ρ ∈ �

Γ ′ |=n′ Ψ ′ � Φ′�
config

Proof. By induction on k. For k = 0, we conclude using Lemma 2. For the
inductive case, we assume that the result is true for k and consider the k + 1
case. From the induction hypothesis we find a configuration Γ ′ |=n′ Ψ ′ � Φ′ such
that ∅ |=0 Ψ � ∅ →k Γ ′ |=n′ Ψ ′ � Φ′ and ρ ∈ �

Γ ′ |=n′ Ψ ′ � Φ′�
config

. From Lemma
4, we deduce that there is some X ∈ Cnext(Γ |=n Ψ � Φ) such that ρ ∈ �

X
�
config

.
This X is the configuration we are looking for to close the inductive case.

4.4 Progress

Progress ensures the increase of the length of the run in construction. We estab-
lish that for any instant index, a configuration can be “executed” to produce a
run prefix whose length is incremented by 1 (Lemma 5). Then in Theorem 3 we
show that for any instant index, a specification can be “executed” to produce a
run prefix of such length from the initial configuration.
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Lemma 5 (Instant Index Increase). Let Γ |=n Ψ � Φ be a configuration
and ρ a satisfying run, i.e. ρ ∈ �

Γ |=n Ψ � Φ
�
config

. There is Γ ′, Ψ ′, Φ′ and
a number of reductions k such that Γ |=n Ψ � Φ →k Γ ′ |=n+1 Ψ ′ � Φ′ and
ρ ∈ �

Γ ′ |=n+1 Ψ ′ � Φ′�
config

.

Proof. By induction on the size of Ψ . When Ψ is empty, we can just pick k = 1 as
the reduction will be a →i-reduction, and both sides of the reduction will have
the same semantics. Now, supposing that the result is true for any Ψ containing
i formulae, let’s assume that Ψ contains i + 1 formulae. Lemma 4 tells us that
there exists a configuration X such that Γ |=n Ψ � Φ → X and ρ ∈ �

X
�
config

.
Since Ψ is not empty, the reduction is a →e-reduction and the “present” part of
X is now of size i: we can apply the induction hypothesis and close the case.

Theorem 3 (Progress). Let Ψ be a TESL− formula and ρ a satisfying run,
i.e. ρ ∈ �

Ψ
�
TESL

. For all n, there is Γ ′, Ψ ′, Φ′ and a number of reductions k

such that ∅ |=0 Ψ � ∅ →k Γ ′ |=n Ψ ′ � Φ′ and ρ ∈ �
Γ ′ |=n Ψ ′ � Φ′�

config
.

Proof. The proof is by induction on n. For the base case, n = 0 we can pick
k = 0, and both sides of the reduction are equal. For the induction step, from
the induction hypothesis we have Γ ′, Ψ ′, Φ′ and a number k such that ∅ |=0

Ψ � ∅ →k Γ ′ |=n Ψ ′ � Φ′ and ρ ∈ �
Γ ′ |=n Ψ ′ � Φ′�

config
. With Lemma 5 we obtain

the required configuration at instant n + 1.

5 Runtime Monitoring and Testing

Our theories allow for straightforward tactic execution of the operational rules
of TESL− via the Isabelle proof engine. This turned out to be too inefficient
for even runs with a few simulation steps due to the internal mechanism of the
proof assistant. Nevertheless, the separate implementation of the operational
semantics, named Heron, which we use for monitoring and testing [23], can be
regarded with greater confidence. Indeed, its operational rules directly corre-
spond to the operational semantics of the Isabelle/HOL implementation, which
has been proved equivalent to the denotational semantics.

6 Related Work

TESL is a polychronous and polytimed language. Polymorphic time exists in
the family of synchronous languages that were designed in the 1980’s, such as
Lustre [13], Esterel [2] and Signal [18]. In these languages, time is purely logical
(there are no dates nor chronometric durations), and can be used for modeling
occurrences of any kind of events, hence the polymorphic nature of time. There-
after, Prelude [26] and Zélus [5] extended the Lustre programming language with
the addition of support for metric time.

As opposed to the latter synchronous models which derive all clocks from a
common root clock (defining the instants where the system reacts), polychronous
models [28] do not constrain all clocks to derive from a single reaction clock,
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allowing a more relaxed and concurrent execution of systems. Polychrony is
supported by the Signal language and in Polychronous automata [19].

Another source of inspiration in our work is CCSL [10,20], the Clock Con-
straints Specification Language, which supports asynchronous constraints on the
occurrence of events. It has an executable semantics [30] and a denotational
semantics [9,22]. However, all these approaches do not support chronometric
clocks, with dates and durations. They measure time in numbers of ticks on a
clock, not in elapsed durations on a time scale. In opposition, TESL supports
chronometric time, and allows different clocks to live in different time frames.

Timed automata [1] support both discrete events and measuring durations on
a time scale, with several mechanization approaches of their semantics [11,14,27].
However, this time scale is global and uniform: all clocks in a timed automaton
progress at the same rate. Our model considers a larger scope of time with
polychronous clocks flowing independently from each other.

The GEMOC initiative [8] has been targeting the development of frameworks
to facilitate the integration of heterogeneous modeling languages. In particular,
the BCOoL language [29] is specifically targeted at coordination patterns for
Domain Specific Events (interface of a domain specific modeling language).

7 Future Work

A few directions of extension for our work are worth mentioning:

– it might be worthwhile to look for even more fundamental operators on clock-
indexed models and derive a kind of core language-theory that is even more
compact albeit more expressive,

– we are interested in general architectural operators allowing to combine sub-
system specifications to larger ones (e.g., with hidden or local clocks),

– we plan to explore the code generation features of Isabelle/HOL to produce
certified solvers from the derived operational rules of our timed languages.

8 Conclusion

This study investigates the semantics of timed languages using clock-indexed
Kripke models. Illustrated by a minimalist language that supports event- and
timed-based constraints over polychronous clocks, we show a novel way to relate
from one side, a denotational semantics, whose advantages are to be logically
consistent by construction, compositional and trace-based, with an operational
semantics that constructs symbolic runs and is thus suited for verification pur-
poses. This technique is based on the observation that time, decomposed in
an intuitive past-present-future pattern, can be reflected in both semantics
through an operational unfolding principle. Yet, the time model we chose to
study exhibits several challenging properties: time constraints can be both logical
and metric, clocks are polychronous (no global clock) and polymorphic (various
domain types) and clock constraints can be synchronous or asynchronous.
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The unfolding principle of time in both denotational and operational seman-
tics allows us to establish crucial properties such as stutter-invariance at the
denotational level, as well as the equivalence results given by correctness and
completeness. Finally, local termination and progress properties bridge the gap
towards trustworthy verification tools.
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20. Mallet, F., Deantoni, J., André, C., De Simone, R.: The clock constraint specifica-
tion language for building timed causality models. Innov. Syst. Softw. Eng. 6(1–2),
99–106 (2010)

21. Michaud, T., Duret-Lutz, A.: Practical stutter-invariance checks for ω-regular lan-
guages. In: Fischer, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp.
84–101. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23404-5 7

22. Montin, M., Pantel, M.: Mechanizing the denotational semantics of the clock con-
straint specification language. In: Abdelwahed, E.H., Bellatreche, L., Golfarelli, M.,
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Abstract. We address the problem of computing the infimum accumu-
lated weight for the reachability of some goal location in weighted timed
automata. While there already exist efficient techniques to solve this
problem, we propose here a backwards symbolic algorithm computing
the accumulated weight to the goal, instead of the accumulated weight
from the initial state. Going backwards has in itself a few advantages:
most notably it does not require any extrapolation operation to ensure
termination. Also it may be more efficient than going forward if the set of
co-reachable states is smaller than the set of reachable states. Backwards
algorithms are also instrumental in several problems beyond reachability,
like control problems for instance. We obtain our backward algorithm by
proposing extensions of the classical action and time predecessor opera-
tions on zones to account for weights. We have implemented the approach
and report on its performance.

1 Introduction

The design of timed systems, including for instance critical real-time embedded
systems, is a challenging issue, with high stakes. Safety is of course of particular
interest but given the limited resources (e.g., memory or energy) such systems
usually have, so is optimisation.

This has lead to the development of dedicated formalisms, like timed
automata [1] and extensions of those, namely weighted (or priced) time
automata [2,3], to account for resource consumption.

The success of those formalisms relies on the availability of efficient algo-
rithms and data structures (in particular Difference Bound Matrices, DBM) for
their analysis, and of state-of-the-art tools, like Uppaal [19], implementing them.
Those successful techniques have been extended to the setting of weighted timed
automata [17] and then further refined [11,22,23], retaining much of their effi-
ciency, and are available in tools like Uppaal-CORA1 and TiAMo2.

Much of the efficiency of those tools for solving infimum weight reachabil-
ity in weighted timed automata comes from the extension of zones, represent-
ing in a symbolic manner the values of the clocks, to weighted zones includ-
ing an expression of the weight from the initial state. This extension of course
1 http://people.cs.aau.dk/∼adavid/cora/index.html.
2 https://git.lsv.fr/colange/tiamo.
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comes with extensions of the algorithms to efficiently handle zones represented
as DBMs. Based on that data structure the exploration of the state-space classi-
cally proceeds in a forward manner, by iteratively computing successors, rather
than backwards, by computing predecessors. This is mostly due to the fact that
state-of-the-art tools extend timed automata with finite-range integer variables
for modelling convenience, and that there are many predecessors by a transition
with an integer variable assignment like i ← 2.

The backwards approach has some advantages of its own however: most
notably it does not require any extrapolation operation to ensure termina-
tion [12,16], while its treatment in the weighted case is not trivial [11] (and
arguably it is already the case for plain timed automata [9]). Also it may be
more efficient than going forward if the set of co-reachable states is smaller
than the set of reachable states. Backwards algorithms are also instrumental in
several problems beyond reachability, like control problems for instance [13,21].
A hybrid forward/backward approach like that of [13], generalised in [14], also
allows to circumvent the “predecessor of assignment” problem mentioned above.

We therefore propose here an extension of the classical time and action pre-
decessors for timed automata, lifting them to the weighted case in the spirit
of [17], by encoding in zones the accumulated weight to the goal, instead of the
accumulated weight from the start. This allows us to easily adapt the classical
exploration algorithm of [23] so that it works in a backward manner. We have
implemented this algorithm and report on its performances.

Backwards algorithms for weighted timed automata have already been stud-
ied in more general contexts: for probabilistic timed automata in [6,7], where the
property studied is cost-bounded reachability with only non-negative weights,
and for optimal timed control in [10] with an additional assumption on weight
cycles. The main difference with our work is that in both cases, they are not
interested in the efficient representation and computation of the symbolic states,
which is the crux of this article.

The paper is organized as follows: Sect. 2 recalls the basics of weighted timed
automata, Sect. 3 introduces the operators needed to perform backward infimum
weight reachability and the corresponding algorithm. We proceed with a small
experimental evaluation in Sect. 4 and, finally, we conclude in Sect. 5.

2 Weighted Timed Automata

We denote by R the set of real numbers, by Q the set of rational numbers, by
Z the set of integers, and by N the set of natural numbers (including 0). The
subset of non-negative real numbers is denoted by R≥0.

For any sets A and B we denote by BA the set of mappings from A to B.
A clock constraint on finite set X is a conjunction of expressions of the form

x ∼ k, with x ∈ X, k ∈ N, and ∼∈ {<,≤,=,≥, >}. We denote by C(X) the set
of clock constraints, and by C′(X) its subset where ∼∈ {<,≤}.
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Definition 1 (Weighted Timed Automaton). A weighted timed automaton
(WTA) is a tuple A = (L, l0,X,E, Inv,weight) where:

– L is a finite set of locations;
– l0 ∈ L is an initial location;
– X is a finite set of clocks;
– E ⊆ L × C(X) × 2X × L is a finite set of edges. Let (l, g, R, l′) ∈ E. This

corresponds to an edge in the automaton with source location l, guard g, set
of clocks to reset to zero R, and target location l′;

– Inv ∈ (C′(X))L is a mapping giving for each location an invariant;
– weight : ZL∪E is a weight mapping giving for each edge a discrete weight and

for each location a weight rate.

A clock valuation is a mapping from X to R≥0. We denote by 0 the null
valuation such that ∀x,0(x) = 0. Given a clock x and d ∈ R≥0, v + d is the
valuation such that ∀x, (v + d)(x) = v(x) + d. Valuation v−d is defined similarly.
Given a set of clocks to reset to zero, R, v[R] is the valuation such that v[R](x) =
0 if x ∈ R and v(x) otherwise.

Given a clock constraint g, we say that valuation v satisfies g, denoted by
v |= g if substituting each clock x with v(x) in g gives a boolean expression that
evaluates to true. In the sequel, we often slightly abuse the notations and denote
also by g the set of valuations that satisfy g.

A state of a WTA is a tuple (l, v, w) ∈ L × R
X
≥0 × R. The semantics of a

WTA is a timed transition system [18]:

Definition 2 (Semantics of a WTA). The semantics of WTA A = (L, l0,
X,E, Inv,weight) is the timed transition system (Q, q0,→) where:

– Q is the subset of L × R
X
≥0 × R such that for all (l, v) ∈ Q, v |= Inv(l);

– q0 = (l0,0, 0);
– → is a subset of Q × (E ∪ R≥0) × Q. We write q

α−→ q′ to denote that
(q, α, q′) ∈→. Relation → is decomposed as:

• Discrete transitions: for e ∈ E, (l, v, w) e−→ (l′, v′, w′) iff e = (l, g, R, l′) ∈
E, with v |= g, v′ = v[R], and w′ = w + weight(e);

• Time elapsing: for d ∈ R≥0, (l, v, w) d−→ (l, v′, w′) iff v′ = v + d, and
w′ = w + weight(l) · d.

A run in a WTA is a possibly infinite sequence ρ = q1α1q2α2 · · · such that
for all i, qi

αi−→ qi+1. We denote by init(ρ) the first state of run ρ. Similarly,
last(ρ) denotes the last state of finite run ρ. We denote by Runs(q,A) the set of
runs starting in state q and by Runs(A) the set Runs(q0,A).

A state q is reachable if there exists a finite run ρ such that init(ρ) = q0
and last(ρ) = q. A location l is reachable if (l, v, w) is reachable for some v and
some w.

The weight of a finite run ρ is weight(ρ) = w′ − w where (l, v, w) is the first
state of ρ for some value of l and v, and (l′, v′, w′) is the last state of ρ for some
value of l′ and v′.
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Let lastl(ρ) denote the location of the last state in finite run ρ. The infimum
weight to reach some location l is defined as infweight(l) = +∞ if l is not
reachable, and infweight(l) = infρ∈Runs(A)

lastl(ρ)=l

weight(ρ) otherwise.

l0 l1

l2

l3

l4

+5

y = 0 +10

+1

x ≤ 2, y ← 0

x ≥ 2,+1

x ≥ 2,+7

Fig. 1. A weighted timed automaton.

Example 1. Figure 1 presents a classical example of weighted timed automaton
from [10]. Actually, it is a weighted timed game in that article but we treat it
here as a WTA. It has two clocks x and y, constrained by the guards written
on transitions (e.g. x ≤ 2 from l0 to l1) and invariants (e.g. y = 0 on l1), and
possibly reset to zero (e.g. y ← 0 from l0 to l1). The initial location is l0. Weight
is updated discretely on transitions (on both transitions to l4, +1 and +7) and
with time with a derivative written below the location (e.g. +5 for l0). When no
such indication is present, we assume the weight is not updated. The minimum
weight to reach l4 by going through l2 (and leaving it as soon as possible) is
5t + 10(2 − t) + 1 = 21 − 5t, with 0 ≤ t ≤ 2 the time spent in l0. When going
through l3, it is 5t + (2 − t) + 7 = 9 + 4t. Hence the minimum weight to reach
l4 is 9, obtained for t = 0 and by going through l3.

In Sect. 3, we propose a backwards symbolic zone-based algorithm to compute
infweight(l). Given a set of goal locations Goal, we assume that the weight of all
runs to a location in Goal is uniformly lower-bounded: there exists a constant
M such that ∀l ∈ Goal, infweight(l) ≥ M . This condition in particular prevents
negative weight cycles, the detection of which would make the algorithm more
complex. For further informations see [11].

3 Weighted Symbolic Predecessor

There is in general an infinite number of states in a WTA. In order to provide
an algorithm to compute infimum weights we group them into a finite number
of symbolic states. Such a symbolic state consists of all the states that can be
reached by taking a given sequence of edges (whatever the delays in between).
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They are therefore defined by the common location l of all those states and the
union D of all their valuations.

Assuming an arbitrary order on clocks, clock valuations can be seen as vectors
of R|X|

≥0 , where |X| is the (finite) number of clocks. Set D is a convex polyhedron

of R|X|
≥0 [10]. Its projection on clocks is defined as a conjunction of constraints of

the form xi ∼ ki0, −xi ∼ k0i, or xi −xj ∼ kij , with for all i, j, xi, xj ∈ X, kij ∈ Z

and ∼∈ {<, ≤} [18]. Such a polyhedron is called a zone.
In [23], the authors prove that inequalities relating weight and clock variables

can be computed and handled separately from the projection of Z on clock
variables, and that polyhedron D can be represented by a finite union of weighted
zones.

Definition 3 (Weighted Zone). A weighted zone is a tuple Z = (Z,w, r)
where:

– Z is a zone;
– w is the weight of the point in Z with infimum coordinates, called the offset,

and noted ΔZ (it exists and is unique due to the forms of the constraints
shaping Z);

– r ∈ Z
X gives for each clock its contribution to the evolution of the weight for

points in Z.

Then for a given valuation v ∈ R
X
≥0, the weight of the valuation in the weighted

zone Z is:
Weight(v,Z) = w +

∑

x∈X

r(x)(v(x) − ΔZ(x))

Now weighted symbolic states are represented by pairs of the form (l,Z),
and are subsets of the set of states Q.

In the backward computation context, the weight of weighted zones will rep-
resent the (opposite of the) infimum remaining weight from a given valuation,
to reach the goal. Thus, the weight of the null valuation in the weighted zone
obtained in the initial location is exactly the opposite of the infimum weight to
reach the goal from the initial state.

Definition 4. Let A = (L, l0,X,E, Inv,weight) be a WTA. Let e = (l, g, R, l′)
be an edge, and let D be a set of states of (the semantics of) A. Then:

Prede(D) = {(l, v, w) | ∃(l′, v
′
, w

′
) ∈ D s. t. (l, v, w)

e−→ (l
′
, v

′
, w

′
)}

Predδ(D) = {(l, v, w) | ∃d ≥ 0, (l
′
, v

′
, w

′
) ∈ D, s. t. (l, v, w)

d−→ (l
′
, v

′
, w

′
)

and w = sup{w
′ − t · weight(l) | t ≥ 0, (l, v + t, w

′
) ∈ D}}

Given a set of states D of an (unweighted) timed automaton, any point in
the past of D is in general the time predecessor of an infinity of points in D
(corresponding to infinitely many delays), Predδ computes one with an optimal
weight among all of them.

Let cl(Z) denote the topological closure of zone Z. Note that if D is actually
defined by a weighted zone Z = (Z,w, r), we can equivalently write the sup
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in Predδ as max{Weight(v + t,Z) − t · weight(l) | t ≥ 0, (l, v + t) ∈ cl(Z)}.
Moreover, if Z is unbounded then the supremum might not be finite and then
the result of Predδ is empty.

In the following we will sometimes need to shrink a weighted zone by inter-
secting it with a non-weighted zone. This implies a change of offset.

Definition 5. Let Z = (Z,w, r) be a weighted zone, and let Z ′ be a zone.
Then Z ∩ Z ′ is the weighted zone (Z ′′, w′′, r), where Z ′′ = Z ∩ Z ′, and
w′′ = Weight(ΔZ′′ ,Z). In particular, for a guard g we have Z ∩ g = (Z ′′, w′′, r),
where Z ′′ = Z ∧ g, and w′′ = Weight(ΔZ′′ ,Z).

Definition 6 (Facet). The facets of the zone Z are the derived zones cl(Z) ∧
(x = n), for each constraint x ∼ n defining the zone. The facets can be grouped
as follows:

– The facets defined by lower bounds on individual clocks, x ≥ n, are called
lower facets, and we denote LF(Z) the set of lower facets of Z;

– Similarly, the facets defined by upper bounds on individual clocks, x ≤ n, are
called upper facets, and we denote UF(Z) the set of upper facets of Z.

In the following, for a weighted zone Z = (Z,w, r) we denote by UF(Z)
and LF(Z) the set of weighted zones defined naturally by F ∈ UF(Z) (resp.
LF(Z)) iff there exists F ∈ UF(Z) (resp. LF(Z)) s.t. F = (F,wF , r), with
wF = Weight(ΔF ,Z).

In [17], the authors also define relative facets, corresponding to diagonal
constraints, but we will not need them here.

Some more operations on weighted zones are required to compute the prede-
cessors of weighted symbolic states.

First we need a relaxation operator to account for all clock valuations that
might be predecessors of some valuations by an edge with a reset. This leads to
an “inverse reset” operator.

Definition 7. Let Z = (Z,w, r) be a weighted zone, and R ⊆ X a subset of the
clock set.

We denote by relaxR(Z) the zone Z from which all constraints (except non-
negativity) on every clock in R are removed. That is: relaxR(v) = {v′ ∈ R

X
≥0|∀x �∈

R, v′(x) = v(x)} and relaxR(Z) =
⋃

v∈Z relaxR(v).
Then the zone obtained by taking backward a reset of the clocks in R is

Z[R]−1 = relaxR(Z ∧ (R = 0)), where R = 0 is a shorthand for
∧

y∈R(y = 0).
We further define Z[R]−1 = (Z ′, w′, r′) such that: Z ′ = Z[R]−1, w′ = w, and

r′(x) = 0 if x ∈ R and r(x) otherwise.

Second, we need to account for the past of clock valuations, that is valuations
from which we can reach a given valuation (or a set of them) by some delay.

Definition 8. Let Z = (Z,w, r) be a weighted zone, where F is a lower or upper
facet of Z, derived from a constraint y ∼ n, and F = Z ∩ (y ∼ n) = (F,wF , r)
the related weighted zone. Let p ∈ Z be a weight-rate.
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Then, the past of Z is Z↓ = {v | ∃d ∈ R≥0, v + d ∈ Z}.
And similarly, we define the past of F with rate p as F↓p = (Z ′, w′, r′) such

that Z ′ = F ↓, r′(y) = −(
∑

x
=y r(x) − p), r′(x) = r(x) for every x �= y, and
w′ = wF +

∑
x∈X r′(x) · (ΔZ′(x) − ΔF (x)).

The intuition behind w′ is that we compute the weight of the new offset ΔZ′

relatively to the offset of the facet. Notice that in the case where F is a lower
facet, we have ΔF = ΔZ and wF = w.

Finally, we define a notation for the subtraction of weight, on weighted zones.

Definition 9. Let Z = (Z,w, r) be a weighted zone, and let n ∈ Z. Then Z − n
is the weighted zone (Z,w − n, r).

We now have all the tools to compute the Pred-operations on weighted sym-
bolic states. We start with the action predecessor, i.e., predecessor by an edge.

Theorem 1 (Action Predecessor). Let A = (L, l0,X,E, Inv,weight) be a
WTA. Let e = (l, g, R, l′) ∈ E, and let Z ′ = (Z ′, w′, r′) be a weighted zone.
Then:

Prede((l′,Z ′)) = (l, (Z ′[R]−1 − weight(e)) ∩ g ∩ Inv(l))

Proof. If we forget about the weights, it is a classical result that symbolic states
are closed under action predecessor operator. We assume that it is also the case
for weighted symbolic states, and we prove that it is sufficient to have only
one weighted symbolic state to describe the action predecessor of one weighted
symbolic state (unlike for action Post-operator [17]).

We note Prede((l′,Z ′)) = (l,Z1) with Z1 = (Z1, w1, r1) and (Z ′[R]−1 −
weight(e)) ∩ g ∩ Inv(l) = Z2 with Z2 = (Z2, w2, r2).

We want to prove that Z1 = Z2, which is equivalent to Z1 = Z2 and for every
v ∈ Z1, Weight(v,Z1) = Weight(v,Z2). Equality Z1 = Z2 directly follows from
the literature on timed automata (see, e.g., [12]), so we focus on weights. Note
that with respect to that, the invariant plays no role since it cannot modify the
zone offset due to its particular form.

Equality of Weight Offsets. We now prove that w1 = w2. Let q = weight(e).
Let us define Δ′

Z1
such that (l,ΔZ1)

e−→ (l′,Δ′
Z1

). By definition of Prede,
we have: w1 = Weight(ΔZ1 ,Z1) = Weight(Δ′

Z1
,Z ′) − q. Thus, w1 = w′ +∑

x∈X r′(x)(Δ′
Z1

(x) − ΔZ′(x)) − q. But, Δ′
Z1

= ΔZ1 [R], so Δ′
Z1

(x) = 0 if x ∈
R and ΔZ1(x) if x /∈ R. And Z ′ ∧ (R = 0) �= ∅ (otherwise the transition e
would not have been taken), therefore ∀x ∈ R, ΔZ′(x) = 0. So we obtain:
w1 = w′ +

∑
x/∈R r′(x)(ΔZ1(x) − ΔZ′(x)) − q.

Besides, we have, by definition of the operations Z ∩ g, and Z − q, w2 =
Weight(ΔZ2 ,Z ′[R]−1) − q. We note Z3 = Z ′[R]−1 = (Z3, w3, r3). We have, by
definition of the operation [R]−1: Z3 = Z ′[R]−1 (thus ΔZ3 = ΔZ′), and w3 = w′,
and r3(x) = 0 if x ∈ R and r′(x) if x /∈ R. So, it gives ∀v ∈ Z3, Weight(v,Z3) =
w′ +

∑
x/∈R r′(x)(v(x) − ΔZ′(x)). Finally, we obtain:

w2 = w′ +
∑

x/∈R r′(x)(ΔZ2(x) − ΔZ′(x)) − q
As Z1 = Z2, we have ΔZ1 = ΔZ2 , so we can conclude that w1 = w2.
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Equality of Weight. We finally prove that for any v ∈ Z1, Weight(v,Z1) =
Weight(v,Z2).

Let v ∈ Z1, then ∃v′ ∈ Z ′ such that (l, v) e−→ (l′, v′) and Weight(v,Z1) =
Weight(v′,Z ′) − q. Thus we have: w1 +

∑
x∈X r1(x)(v(x) − ΔZ1(x)) = w′ +∑

x∈X r′(x)(v′(x) − ΔZ′(x)) − q. Yet w1 = w′ +
∑

x/∈R r′(x)(ΔZ1(x) −
ΔZ′(x)) − q, so by injecting the value of w1 we obtain:∑

x∈X r1(x)(v(x) − ΔZ1(x)) =
∑

x∈R r′(x)(v′(x) − ΔZ′(x)) +
∑

x/∈R r′(x)
(v′(x) − ΔZ′(x) − (ΔZ1(x) − ΔZ′(x))). Moreover, ∀x ∈ R, v′(x) = ΔZ′(x) = 0
and ∀x /∈ R, v′(x) = v(x), therefore we get:

∑
x∈X r1(x)(v(x) − ΔZ1(x)) =∑

x/∈R r′(x)(v(x) − ΔZ1(x)) and, by adding w1 to both sides, this gives:
Weight(v,Z1) = w1 +

∑
x/∈R r′(x)(v(x) − ΔZ1(x)).

Moreover, r2(x) = 0 if x ∈ R and r′(x) otherwise, by definition of Z2. Thus,
the weight in Z2 is: Weight(v,Z2) = w2 +

∑
x/∈R r′(x)(v(x) − ΔZ2(x)). Since

w1 = w2 and ΔZ1 = ΔZ2 , this finally gives Weight(v,Z1) = Weight(v,Z2). ��
As for the time Post-operator [17], weighted symbolic states are not directly

closed under Predδ operator: a split of the weighted zone is needed. For example,
let us consider the weighted zone (Z,w, r) depicted in Fig. 2, with w = −3,
r(x) = 2 and r(y) = −1. If we want to compute the time predecessor of this
weighted zone in l1 with a weight rate of 3, we will have to split Z↓ in three
subzones: Z, F1

↓ = (Z↓ \ Z) ∧ (x − y ≤ 1) and F2
↓ = (Z↓ \ Z) ∧ (x − y ≥ 1).

l1 l2

3

x ≥ 2, y ≥ 3

0 2 4 6 8 10
0

2

4

6

8

F1

F2ΔZ

2

−1

w = −3

Z

x

y

Fig. 2. Example of time predecessor of a weighted zone

The following theorem formalizes this intuition and gives an expression to
compute the Predδ operator.

Theorem 2 (Time Predecessor). Let A = (L, l0,X,E, Inv,weight) be a
WTA. Let l ∈ L, with weight(l) = p, Inv(l) = J , and let Z ′ = (Z ′, w′, r′) be
a weighted zone. Then:
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Predδ((l,Z ′)) =

{
(l,Z ′) ∪ ⋃

F∈LF(Z′)(l,F↓p ∩ J), if p ≥ ∑
x∈X r′(x)

⋃
F∈UF(Z′)(l,F↓p ∩ J), if p <

∑
x∈X r′(x)

To prove Theorem 2, we need three technical lemmas.

Lemma 1. Let Z be a zone. Then the following holds:

1. if UF(Z) �= ∅, then Z↓ ⊆ ⋃
F∈UF(Z) F ↓

2. Z↓ ⊆ Z ∪ ⋃
F∈LF(Z) F ↓

Proof. 1. Assume UF(Z) �= ∅. So there exists some facets Fi = (xi = ni) ∧ Z
for xi ∈ X, ni ∈ N, and xi ≤ ni the upper constraints of Z.
Consider v ∈ Z↓. Then there exists d ≥ 0 such that v + d ∈ Z. In partic-
ular, the latter satisfies the constraint of the upper bound constraints. For
the corresponding to Fi: (v + d)(xi) ≤ ni. Let dm = mini(ni − v(xi)). By
construction dm ≥ d ≥ 0. We prove that v + dm belongs to some upper
facet. By definition of dm, there exists xj such that v(xj) + dm = nj and
∀xi �= xj , v(xi) + dm ≤ ni, so v + dm satisfies the upper bound constraints
of cl(Z).
Moreover, for every xi ∈ X, and every lower bound constraint (xi ≥ mi)
of cl(Z), v + d |= (xi ≥ mi), and since dm ≥ d, v(xi) + dm ≥ mi. Finally,
diagonal constraints are trivially verified since (v + dm)(xj)− (v + dm)(xk) =
v(xj) − v(xk) = (v + d)(xj) − (v + d)(xk).
We conclude that v + dm ∈ cl(Z) and v + dm |= (xj = nj), which means
v + dm ∈ Fj and therefore v ∈ Fj

↓. And, finally, Z↓ ⊆ ⋃
F∈UF(Z) F ↓.

2. In the sequel, we write ≺ for an element of {<,≤} and � for an element of
{>,≥}. Let v ∈ Z↓, then ∃d ∈ R≥0 such that v + d ∈ Z. Then for every
xi ∈ X, if (xi � mi) is the corresponding lower bound constraint of Z, then
v + d |= (xi � mi). Let dM = maxxi∈X(mi − v(xi)).
If dM ≤ 0 then ∀xi, mi −v(xi) ≤ dM ≤ 0 so v(xi) ≥ mi. Yet ∀xi, if (xi ≺ mi)
is the corresponding upper bound constraint of Z, then v+d |= (xi ≺ ni) and
then v(xi) ≺ ni. Similarly any diagonal constraint (xi −xj ≺ pij) of Z is also
satisfied by v + d, and thus by v since v(xi)+ d− (v(xj)+ d) = v(xi)− v(xj).
So v ∈ Z.
Otherwise, dM > 0. By definition of dm, there exists xj such that v(xj)+dM =
mj and ∀xi �= xj , v(xi)+dM ≥ mi. Yet ∀xi ∈ X, d ≥ mi−v(xi), in particular
d ≥ mj − v(xj) = dM . So for every xi, v(xi) + dM ≤ v(xi) + d ≤ ni. As
before, v + dM also trivially satisfies the diagonal constraints of cl(Z) and
therefore, v + dM ∈ cl(Z) and v+dM |= (xj = mj). So v+dM ∈ Fj with Fj =
cl(Z) ∧ (xj = mj) ∈ LF(Z). Therefore v ∈ Fj

↓, and finally v ∈ ⋃
F∈LF(Z) F ↓.

��
Lemma 2. Let Z be a zone, and F be a facet of Z derived from a constraint on
a single clock x ∼ n. Let v ∈ F ↓. Then there exists dF such that v + dF ∈ F .
And the following holds:
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1. if F ∈ LF(Z), then dF = mind≥0
v+d∈cl(Z)

(d)

2. if F ∈ UF(Z), then dF = maxd≥0
v+d∈cl(Z)

(d)

Proof. The facet is defined by F = cl(Z) ∧ (x = n). Thus, v + dF ∈ F gives
v(x) + dF = n.

1. F ∈ LF(Z): Assume there exists d ∈ R≥0 such that v + d ∈ cl(Z) and d < dF .
We have in particular v(x) + d < v(x) + dF = n, therefore v + d does not
satisfy the guard (x ≥ n), hence v + d /∈ cl(Z). This is a contradiction, and
the result follows.

2. F ∈ UF(Z): Assume there exists d ∈ R≥0 such that v+d ∈ cl(Z) and d > dF .
We have in particular v(x) + d > v(x) + dF = n, therefore v + d does not
satisfy the guard (x ≤ n), hence v + d /∈ cl(Z). This is a contradiction, and
the result follows. ��

Lemma 3. Let Z = (Z,w, r) be a weighted zone, F be a lower or upper facet of
Z, derived from a constraint y ∼ n, with ∼∈ {<,≤,≥, >}, and F = (F,w, r) be
the corresponding weighted zone. Let p ∈ N be a weight-rate.

Then, Weight(v,F↓p) = Weight(v + dF ,Z) − dF · p, with dF = n − v(y).

Proof. Writing m =
∑

x∈X r(x) − p, we have:

Weight(v + dF ,Z) − dF · p = w +
∑

x∈X

r(x)(v(x) + dF − ΔZ(x)) − dF · p

= w +
∑

x∈X

r(x)(v(x) − ΔZ(x)) + dF · m

= w +
∑

x∈X

r(x)(v(x) − ΔZ(x)) − m · (v(y) − n)

Moreover, F is derived from the constraint y ∼ n, we have ΔF (y) = n. Then,
Weight(v + dF ,Z) − dF · p can be rewritten as:

Weight(v + dF ,Z)− dF · p = w +
∑

x∈X

r(x)(v(x)− ΔZ(x))− m · (v(y)− ΔF (y))

= w +
∑

x∈X

r(x)(ΔF (x)− ΔZ(x)) +
∑

x∈X

r(x)(v(x)− ΔF (x))− m · (v(y)− ΔF (y))

= wF +
∑

x �=y

r(x)(v(x)− ΔF (x))− (
∑

x �=y

r(x)− p) · (v(y)− ΔF (y))

Let us denote by (Z ′, w′, r′) the weighted zone F↓p. Then by definition r′(y) =
−(

∑
x
=y r(x) − p) and ∀x �= y, r′(x) = r(x):

Weight(v + dF ,Z) − dF · p = wF +
∑

x∈X

r′(x)(v(x) − ΔF (x))
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Recall that the weight w′ of the offset ΔZ′ of F↓p is defined as:

w′ = wF +
∑

x∈X

r′(x)(ΔZ′(x) − ΔF (x))

So finally:

Weight(v + dF ,Z) − dF · p = w′ +
∑

x∈X

r′(x)(v(x) − ΔZ′(x)) = Weight(v,F↓p)

��
Proof (Theorem 2). In order to prove this theorem we proceed by double inclu-
sion.

⊆ Let (l, v, w) ∈ Predδ((l,Z ′)). Then there exists d ∈ R≥0 such that

v + d ∈ Z ′, by definition of Predδ, and therefore v ∈ Z ′↓. Also, by definition of
Predδ, we have:

w = max{Weight(v + t,Z ′) − t · weight(l) | t ≥ 0, v + t ∈ cl(Z ′)}
For every t ∈ R≥0, writing m =

∑
x∈X r′(x) − p, we have:

Weight(v + t,Z ′) − t · weight(l) = w′ +
∑

x∈X

r′(x)(v(x) + t − ΔZ′(x)) − t · p

= w′ +
∑

x∈X

r′(x)(v(x) − ΔZ′(x)) + t · m

= Weight(v,Z ′) + t · m

In order to maximize this, we consider the derivative m =
∑

x∈X r′(x) − p.

– If p ≥ ∑
x∈X r′(x): Then we need to minimize t. Lemma 1 gives v ∈ Z ′ ∪⋃

F∈LF(Z′) F ↓.
• If v ∈ Z ′: Then, we can take t = 0 to minimize the weight, and we obtain

w = Weight(v,Z ′). Thus (l, v, w) ∈ (l,Z ′).
• Else v ∈ ⋃

F∈LF(Z′) F ↓: Then, there exists F ∈ LF(Z ′) such that v ∈ F ↓.
Facet F is defined by F = cl(Z ′) ∧ (y = n), with y ∈ X and n ∈ N.
Then, v ∈ F ↓ gives that there exists dF ∈ R≥0 s.t. v + dF ∈ F . Thus,
v(y)+dF = n. Lemma 2 gives that dF is the minimal value of d such that
d ≥ 0 and v + d ∈ cl(Z ′).
Then, if we note F = (F,w′, r′), we have v ∈ F ↓. Moreover w =
Weight(v + dF ,Z ′) − dF · p, thus Lemma 3 gives w = Weight(v,F↓p).
Finally, v |= J by definition of the time predecessor, thus (l, v, w) ∈
(l,F↓p ∩ J).

– Else p <
∑

x∈X r′(x): Then we need to maximize t.
Let us suppose that UF(Z ′) = ∅. Then

⋃
F∈UF(Z′)(l,F↓p ∩ J) = ∅. Let tM

the value of t that maximizes the weight, that is to say w = Weight(v +
tM ,Z ′) − tM · weight(l) and v + tM ∈ cl(Z ′). Let ε > 0, then v + tM + ε ∈
cl(Z ′) because Z ′ has no upper facet. Moreover, because tM + ε > tM and
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because
∑

x∈X r′(x) − p > 0, we have Weight(v + tM + ε,Z ′) − (tM + ε) ·
weight(l) > Weight(v + tM ,Z ′) − tM · weight(l). Which means that tM does
not maximize the weight: Weight(v,Z) < Weight(v + tM ,Z ′) + tM ·weight(l).
So the supremum in the expression of Predδ is infinite and Predδ((l,Z ′)) = ∅
also (and we actually could not take a point from it).
Assume now that UF(Z ′) �= ∅. Lemma 1 gives v ∈ ⋃

F∈UF(Z′) F ↓. Then, there
exists F ∈ UF(Z ′) such that v ∈ F ↓. Facet F is defined by F = cl(Z ′) ∧ (y =
n), with y ∈ X and n ∈ N. Then, v ∈ F ↓ gives that there exists dF ∈ R≥0

s.t. v + dF ∈ F = cl(Z ′) ∧ (y = n). Thus, v(y) + dF = n. Lemma 2 gives that
dF is the maximal value of d such that d ≥ 0 and v + d ∈ cl(Z ′).
Thus, if we note F = (F,w′, r′), we have w = Weight(v + dF ,Z ′) + dF · p,
thus Lemma 3 gives w = Weight(v,F↓p) and (v, w) ∈ F↓p. Moreover, v |= J
by definition of the time predecessor, thus v ∈ F↓p ∩ J . Therefore, (l, v, w) ∈
(l,F↓p ∩ J).

This concludes the proof for the left-to-right inclusion.
⊇ Consider now the right-to-left inclusion:

– If p ≥ ∑
x∈X r′(x): Let (l, v, w) ∈ (l,Z ′ ∩J)∪⋃

F∈LF(Z′)(l,F↓p ∩J). We still
have Weight(v + t,Z ′) − t ·weight(l) = Weight(v,Z ′) + t · (∑x∈X r′(x) − p),
for every t ∈ R≥0.

• If (l, v, w) ∈ (l,Z ′): Then, we have v ∈ Z ′, so there exists d ∈ R≥0

s.t. v + d ∈ Z ′ (d = 0). Also, since
∑

x∈X r′(x) − p ≤ 0, the maximum
of Weight(v,Z ′) + t · (

∑
x∈X r′(x) − p) is obtained for t = 0, thus w =

Weight(v,Z ′). We thus have (l, v, w) ∈ Predδ((l,Z ′)).
• Else ∃F ∈ LF(Z ′) s.t. (l, v, w) ∈ (l,F↓p ∩ J): We note F = (F,w′, r′),

with F = cl(Z ′) ∧ (y = n). Then v ∈ F ↓, thus ∃d ∈ R≥0 s.t. v + d ∈
F ⊆ cl(Z ′). Moreover, v |= J because v ∈ F ↓ ∧ J . Then, Lemma 3 gives
w = Weight(v,F↓p) = Weight(v + dF ,Z) − dF · p, with dF = n − v(y).
Also, we have v + dF ∈ F ⊆ cl(Z ′) (because v(y)+ dF = n). Furthermore
dF is the minimal d ≥ 0 such that v + d ∈ cl(Z ′) according to lemma 2.
Then w = max{Weight(v + t,Z ′) − t · weight(l) | t ≥ 0, v + t ∈ cl(Z ′)},
and finally (l, v, w) ∈ Predδ((l,Z ′))

– Else p <
∑

x∈X r′(x): Then ∃F ∈ UF(Z ′) s.t. (l, v, w) ∈ (l,F↓p ∩J), we note
F = (F,w′, r′), with F = cl(Z ′) ∧ (y = n). We still have Weight(v + t,Z ′) −
t · weight(l) = Weight(v,Z ′) + t · (

∑
x∈X r′(x) − p), for every t ∈ R≥0.

First v ∈ F ↓, thus ∃d ∈ R≥0 s.t. v + d ∈ F ⊆ cl(Z ′). Second, v |= J
because v ∈ F ↓ ∧ J . Then, Lemma 3 gives w = Weight(v,F↓p) = Weight(v +
dF ,Z) − dF · p, with dF = n − v(y). Also, we have v + dF ∈ F ⊆ cl(Z ′)
(because v(y) + dF = n). Furthermore dF is the maximal d ≥ 0 such that
v + d ∈ Z ′ according to Lemma 2. Then as

∑
x∈X r′(x) − p > 0, we indeed

have w = max{Weight(v + t,Z ′) − t · weight(l) | t ≥ 0, v + t ∈ cl(Z ′)}, and
finally (l, v, w) ∈ Predδ((l,Z ′)). ��
Using the Predδ and Prede operators, we can straightforwardly adapt the

algorithm of [23] to work backwards, which gives Algorithm 1.
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Starting from a set of goal locations Goal, we build initial set of symbolic
states by combining with each of these locations the universal zone R

X
≥0 (defined

by all clocks should be non-negative) on set of clocks X, with a weight uniformly
equal to 0.

The algorithm works as usual with a passed list Passed and a waiting list
Waiting. At each iteration, we pick a waiting symbolic state and if it contains
the initial state of the automaton, which is then necessarily the offset of the zone,
we check if the corresponding weight (the opposite of the weight of the offset
since we start from 0 at the goal and subtract the weights as we go backwards)
is better than the current value of Weight. If so we update Weight.

Then we add all predecessors of the current symbolic state to the waiting
list, unless some bigger and cheaper symbolic state has already been visited.

To capture this last notion of bigger and cheaper we use the classical sub-
sumption operator � defined as:

Definition 10. Let (l,Z), with Z = (Z,w, r), and (l′,Z ′), with Z ′ = (Z ′, w′, r′)
be two symbolic states. We say that (l,Z) is subsumed by (l′,Z ′), and we write
(l,Z) � (l′,Z ′), if: (1) l = l′, (2) Z ⊆ Z ′ and (3) for all v ∈ Z, Weight(v,Z) ≤
Weight(v,Z ′).

In the usual definition the weight in Z would be higher than in Z ′ but
remember that our weight is the opposite of the remaining weight to the goal.

Algorithm 1. Symbolic algorithm for optimal weight
1: Weight ← +∞
2: Passed ← ∅
3: Waiting ← {(l, (RX

≥0, 0,0)) | l ∈ Goal}
4: while Waiting �= ∅ do
5: select and remove S = (l, (Z,w, r)) from Waiting
6: if l = l0 and 0 ∈ Z and −w < Weight then
7: Weight ← −w
8: end if
9: if for all S′ ∈ Passed, S �� S′ then

10: add S to Passed
11: for all e = (l, g, R, l′) ∈ E, for all S′ ∈ Predδ(Prede(S)), add S′ to Waiting
12: end if
13: end while
14: return Weight

Algorithm 1 has the classical advantage of exploring only co-reachable states
(but may of course explore non-reachable states). Also in contrast to the discrete
successor operator for weighted symbolic states, the Prede operator never splits
zones. Finally, zone abstraction/normalization is not necessary to ensure termi-
nation when computing backwards [12,16], while it should be handled carefully
when working forward [11].
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4 Implementation and Experiments

We have implemented the technique in Roméo [20]. The implementation and all
the benchmarks presented here are freely available3. Note that Roméo is a tool
designed for time Petri nets, a model close to timed automata, but with some
expressiveness differences [5]. The zone graph techniques are however perfectly
usable for time Petri nets [15]. The forward technique of [17] is not implemented
in Roméo, so we instead compare with the similar forward technique presented
in [8]. Also, since Roméo deals with Petri nets, where markings can be seen as
the values of a finite set of integer variables, a purely backward method would be
impractical as explained in the introduction, so we have implemented a mixed
forward backward approach in which we first precompute the reachable state-
space and then compute backward on this. Therefore, for the comparison to be
fair, we look at examples with negative costs (but no negative cycles), for which
the whole state-space would have to be explored anyway.

First we look at the aircraft landing problem described in [4]. The modelling
with a Petri-net like model (even using also additional integer variables) is fairly
different from the original one: in particular we cannot test a global clock without
resetting it with time Petri nets. In accordance with the above comments, we
have also made it so that planes that land early actually get some bonus (negative
cost). For all these reasons, we had to limit to a small subset of the planes in
the original model to get some reasonable performances.

Second we look at the scheduling example of [8], in which we need to execute
some periodic task set, on two processors, possibly using renewable energy (which
counts as a negative cost), the availability of which depends on meteorological
conditions. We add an additional constraints that instances of tasks should not
overlap, which reduces the state-space quite a bit.

Both approaches give the same results on all examples, which is a good point.
The results are presented in Table 1.

Table 1. Results on an Intel Core i7-7700 CPU @ 3.60 GHz with 32 GB of RAM.

Landing Scheduling

Aircrafts/tasks 3 4 5 6 2 3 4 5

Forward Time (s) 1 4 14 50 1 17 196 1044

Mem. (MB) 8 48 205 756 17 177 1501 5826

Backward Time (s) <1 6 46 322 <1 6 50 251

Mem. (MB) 17 112 504 1804 13 61 209 504

We see that for the aircraft landing problem, the forward approach performs
clearly better, though both techniques scale exponentially with the number of
aircrafts (and hence of clocks, as expected). In the scheduling problem, for the

3 http://romeo.rts-software.org/releases/FORMATS2020.tgz.

http://romeo.rts-software.org/releases/FORMATS2020.tgz
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original problem of [8], with 4 tasks, we get 60 s (785 MB) forward and 52 s
(402 MB) backward. If we increase the execution time of task 2 from 4 to 16
(reaching a utilization factor of 1 for processor 1 if it were alone), we get the
numbers in Table 1, where the backward approach is now clearly better.

We conjecture the performance is heavily impacted by the size of the co-
reachable state-space. For the aircraft problem, using internal statistics, we esti-
mate the number of co-reachable states to represent more than 80% of the reach-
able state-space, while we estimate it to less than 50% in the scheduling problem.
It is even less (around 35%) for the original version but most of the time (around
65%) is used for the state-space precomputation, which is much bigger than with
the modified task 2 (where the precomputation only takes 15% of the total time).

5 Conclusion

We have proposed extensions of the classical backwards operators for timed
automata so that they can compute the remaining weight to some goal location in
a weighted setting. This allows us to devise a backwards optimal cost reachability
algorithm.

On the practical side, we have implemented the algorithm in the tool Roméo,
and we have reported on its performance on two (slightly modified) case-studies
from the literature. This experimental evaluation shows that the algorithm may
outperform the classical forward approach, in particular, as could be expected,
when the set of co-reachable states is significantly smaller than the set reachable
states.

While this algorithm has advantages on its own, it is also a step towards sym-
bolic and efficient verification and optimization for more expressive properties
and we now want to investigate timed computation tree logic and controllability.
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Abstract. Model checkers for timed automata are widely used to verify
safety-critical, real-time systems. State-of-the-art tools achieve scalabil-
ity by intricate abstractions. We aim at further increasing the trust in
their verification results, in particular for checking liveness properties.
To this end, we develop an approach for extracting certificates for the
emptiness of timed Büchi automata from model checking runs. These
certificates can be double checked by a certifier that we formally verify
in Isabelle/HOL. We study liveness certificates in an abstract setting and
show that our approach is sound and complete. To also demonstrate its
feasibility, we extract certificates for several models checked by TChecker
and Imitator, and validate them with our verified certifier.

Keywords: Timed automata · Certification · Model checking

1 Introduction

Real-time systems are notoriously hard to analyze due to intricate timing con-
straints. A number of model checkers for timed automata (TA) [1] have been
implemented and successfully applied to the verification of safety-critical timed
systems. Checking liveness properties of timed automata has revealed to be
particularly important, as emphasized by a bug in the standard model of the
CSMA/CD protocol that has been discovered only recently [16]. Several algo-
rithms have been implemented to scale the verification of liveness specifications
to larger systems [16,22,26,32,33]. Users of timed automata model checkers put
a high amount of trust in their verification results. However, as verification algo-
rithms get more complex, it becomes highly desirable to justify the users’ confi-
dence in their correctness.

There are two main approaches to ensure high degrees of trustworthiness
of automated tools: verification and certification. In the first approach, correct-
ness of the verification tool (its implementation and its theory) is proved using
another semi-automated method. This technique has been applied to model
checkers [13,34] and SAT solvers [7]. In the second approach, the automated
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tool produces a certificate, i.e. a proof for its verification result. Then an inde-
pendent tool, the certifier, checks that the proof is indeed valid. In the best case,
the certifier itself is formally verified. Examples include SAT certificate checking
[20,23] and unreachability checking of TA [37].

The certification approach promises many advantages over verification, since
certificate checking is much simpler than producing the certificate. This dras-
tically reduces the burden of semi-automated verification, which is a laborious
task. While proving correctness of a competitive verification tool might be pro-
hibitively complicated, it may be feasible to construct an efficient verified certifier
instead (in the case of SAT [23], the verified certifier was even faster than the orig-
inal SAT solvers). Finally, there is a wide variety of model checking algorithms
and high-performance implementations, which are suited for different situations.
Instead of verifying them one by one, these tools could produce certificates in a
common format, so they can be checked by a single verified certifier.

1.1 Related Work

Model checking LTL properties for timed automata [1,16,22,26,32,33] consists
of three conceptual steps: the LTL formula is transformed into a Büchi automa-
ton, the semantics of the TA is computed as a (finite) zone graph, and the cross-
product of these objects is checked for accepting cycles. The two main alternative
algorithms for detecting accepting cycles are Nested Depth-First Search (NDFS)
and the inspection of the Strongly Connected Components (SCC). The NDFS
algorithm was generalized to TA in LTSmin [21,22] and extended to parametric
TA in Imitator [2,28]. The SCC-based algorithm has also been generalized to
TA in TChecker [16,19]. Both algorithms support abstraction and subsumption
between states to reduce the state space.

Verified Model Checking. An early approach targeted the verification of a μ-
calculus model checker in Coq [27]. The NDFS algorithm was checked in the
program verifier Dafny [25,31], while a multi-core version of it was checked in the
program verifier Vercors [8,30]. A complete, executable LTL model checker was
verified in the interactive theorem prover Isabelle/HOL [13] and later extended
with partial-order reduction [9]. A verified model checker for TA, Munta [34],
has also been constructed in Isabelle/HOL [29,36].

Certification. A certifier for reachability properties in TA has been proposed
very recently [37]. A certification approach for LTL model checking was proposed
in [15]. It uses k-liveness to reduce the problem to IC3-like invariant checking.

Contributions. In this paper, we extend certificates for unreachability of TA [37]
to certificates for liveness properties, i.e. emptiness of timed Büchi automata
(TBA). We propose a common certification approach for tools using differ-
ent algorithms and various abstractions [16,22]. These certificates can be much
smaller than the original state space, due to the use of subsumption and abstrac-
tion. The difficulty here is that a careless application of subsumption can intro-
duce spurious accepting cycles. Our new contributions are1:
1 An artifact containing our code and benchmarks is available on figshare [35].

https://doi.org/10.6084/m9.figshare.12620582.v1
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– We introduce an abstract theory for certificates of Büchi emptiness, which
can be instantiated for zone graphs of TBA with subsumptions.

– We developed a fully, mechanically verified certifier in Isabelle/HOL. In par-
ticular, our certifier retains the ability to check certificates in parallel.

– We show that the previous certifier for reachability and our extension to Büchi
emptiness are compatible with implicit abstraction techniques for TA.

– We demonstrate feasibility by generating and checking certificates for two
external model checkers, representing the NDFS and the SCC approach.

Note that checking counter-examples is easy in practice, but checking “true”
model checking results is much harder. This is exactly what we address with
certifying emptiness of TBA. The main application would be to increase the
confidence in safety-critical real-time applications, which have been verified with
an existing model checker. Another possible application of the certifier would be
to facilitate a new model checking contest for liveness properties of TA.

2 Timed Automata and Model Checking

In this section, we set the stage for the rest of the paper by recapitulating the
basic notions of TA and summarizing the essential concepts of TBA verification.

2.1 Verification Problems for Timed Automata

A TA A = (Q, q0, F, I, T,X) is a finite automaton extended with a finite set of
clocks X. Q is a finite set of states with initial state q0 ∈ Q and accepting states
F ⊆ Q. I associates an invariant constraint to every state and T associates
a guard constraint g and clock reset R ⊆ X to each transition. Here (clock)
constraints are conjunctions of formulas x#c, where x is a clock, c ∈ N and
# ∈ {<,≤,=,≥, >}. Observe that we exclude diagonal constraints of the form
x − y#c. An example of a timed automaton is depicted in Fig. 1.

A clock valuation v : X → R≥0 associates a non-negative real value to
each clock x ∈ X. A configuration is a pair (q, v) where q is a state and v is a
clock valuation. The initial configuration is (q0,0). Without loss of generality,
we assume that the initial clock valuation 0 satisfies the invariant I(q0). There
are two kind of steps from a configuration (q, v):

delay (q, v) →δ (q, v′) for a delay δ ∈ R≥0 if for every clock x ∈ X, v′(x) =
v(x) + δ, and v′ satisfies the invariant I(q);

transition (q, v) →t (q′, v′) for transition t = (q, g,R, q′) ∈ T if v satisfies the
guard g, v′(x) = 0 if x ∈ R and v′(x) = v(x) otherwise, and v′ satisfies I(q′).

q0 q1 q2

x ≥ 1 x < 2, x := 0

x ≥ 2

Fig. 1. Timed (Büchi) automaton with initial state q0 and accepting state q1.
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We write (q, v) →δ,t (q′, v′) if there exists a configuration (q, v′′) such that
(q, v) →δ (q, v′′) →t (q′, v′). A run of a timed automaton is an (infinite) sequence
of transitions of the form: (q0,0) →δ0,t0 (q1, v1) →δ1,t1 · · · . A run is non-Zeno if
the sum of its delays is unbounded.

The reachability problem asks, given a timed automaton A, if there exists
a finite run from the initial configuration (q0,0) to an accepting configuration
(qn, vn) such that qn ∈ F .

In timed Büchi automata (TBA), F is interpreted as a Büchi acceptance
condition. The liveness problem then asks, whether a given TBA A is non-empty,
i.e. if there is an infinite non-Zeno run from the initial configuration (q0,0) that
visits infinitely many accepting configurations (qi, vi) with qi ∈ F . In this paper,
we work under the common assumption that TA only admit non-Zeno runs (see
[33] for a construction to enforce this on every TA).

Both problems are known to be PSPACE-complete [1]. Due to density of
time, these two verification problems cannot be solved directly from the transi-
tion system induced by configurations and steps. A well-known solution to this
problem is the region graph construction of Alur and Dill [1]. Yet, it is not used
in practice, as the region graph is enormous even for rather simple automata.

2.2 Zone Graph and Abstractions

The practical solution that is implemented in state-of-the-art tools like
UPPAAL [24], TChecker [19] and the Imitator tool [2] is based on zones. Let us
fix a set of clocks X. A zone Z is a set of valuations represented as a conjunction
of constraints of the form x#c or x − y#c for x, y ∈ X, # ∈ {<,≤,=,≥, >}
and c ∈ Z. Zones can be efficiently represented using Difference Bound Matrices
(DBMs) [12]. Moreover, zones admit a canonical representation, hence equality
and inclusion of two zones can be checked efficiently [6].

We now define the symbolic semantics [11] of a TA A. Let q, q′ be two states
of A, and let W,W ′ ⊆ R

X
≥0 be two non-empty sets of clock valuations. We

have (q,W ) ⇒t (q′,W ′) for some transition t ∈ T , if W ′ is the set of all clock
valuations v′ for which there exists a valuation v ∈ W and a delay δ ∈ R≥0 such
that (q, v) →δ,t (q′, v′). In other words, W ′ is the strongest postcondition of W
along transition t. The symbolic semantics of A , denoted by ⇒, is the union of all
⇒t over t ∈ T . The symbolic semantics is a sound and complete representation
of the finite and infinite runs of A. Indeed, A admits a finite (resp. infinite) run
(q0, v0) →δ0,t0 (q1, v1) →δ1,t1 . . . (qn, vn) →δn,tn . . . if and only if there exists a
finite (resp. infinite) path (q0,W0) ⇒t0 (q1,W1) ⇒t1 . . . (qn,Wn) ⇒tn . . . such
that vi ∈ Wi for all i ≥ 0 and W0 = {0} [11]. It is well-known that if Z is a zone,
and (q, Z) ⇒ (q′,W ′) then W ′ is a zone as well [6]. Since {0} is a zone, all the
reachable nodes in ⇒ are zones as well. The reachable part of ⇒ is called the
zone graph of A. The nodes of the zone graph are denoted as (q, Z) in the sequel
and the zone graph is simply denoted by its transition relation ⇒. Figure 2a
depicts the zone graph of the automaton in Fig. 1.
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q0, x ≥ 0

q1, x ≥ 0 q1, x ≥ 1

q2, x ≥ 0 q2, x ≥ 2

q1, x ≥ 2

(a) Zone Graph

q0, x ≥ 0

q1, x ≥ 0 q1, x ≥ 1

q2, x ≥ 0

q1, x ≥ 2

(b) Liveness compatible

q0, x ≥ 0

q1, x ≥ 0 q1, x ≥ 1

q2, x ≥ 0

q1, x ≥ 2

(c) Not compatible

Fig. 2. Three subsumption graphs for the automaton in Fig. 1.

Still, the zone graph of a timed automaton may be infinite. As a remedy,
finite abstractions have been introduced in the literature [4,5,11].

An abstraction α transforms a zone Z into a zone α(Z) such that Z ⊆
α(Z), α(α(Z)) = α(Z), and every run that is feasible from a valuation v′ ∈
α(Z) is simulated by a run from a valuation v ∈ Z. Such abstractions are
called extrapolations in the literature [5]. An abstraction is finite when the set
of abstracted zones {α(Z) |Z is a zone} is finite. Given an abstraction α, the
abstracted zone graph has initial node (q, α({0})) and transitions of the form
(q, Z) ⇒t

α (q′, α(Z ′)) for each transition (q, Z) ⇒t (q′, Z ′). Let ⇒α denote the
union of all ⇒t

α over t ∈ T . The abstracted zone graph is sound and complete:
there is a run (q0, v0) →δ0,t0 (q1, v1) →δ1,t1 . . . (qn, vn) (→δn,tn . . .) in A if and
only if there is an infinite path (q0, Z0) ⇒t0

α (q1, Z1) ⇒t1
α . . . (qn, Zn) (⇒tn

α . . .)
with vi ∈ Zi for all i ≥ 0. Hence, when α is a finite abstraction, the verification
problems for a TA A can be algorithmically solved from its abstracted zone
graph. The abstraction Extra+LU [5] is implemented by state-of-the-art verification
tools UPPAAL [24] and TChecker [19]. Our results hold for any finite, sound and
complete abstraction. The abstracted zone graph is denoted ⇒α in the sequel.

2.3 Subsumption

Consider the TA in Fig. 1 and its zone graph in Fig. 2a. Observe that every run
that is feasible from node (q1, x ≥ 1) is also feasible from (q1, x ≥ 0) since the
zone x ≥ 1 is included in the zone x ≥ 0 (recall that zones are sets of clock
valuations). We say that (q1, x ≥ 1) is subsumed by the node (q1, x ≥ 0). As a
result, if an accepting node is (repeatedly) reachable from (q1, x ≥ 1), then an
accepting node is also (repeatedly) reachable from (q1, x ≥ 0).

This leads to a crucial optimization for the verification of TA: reachability
and liveness verification problems can be solved without exploring subsumed
nodes. This optimization is called inclusion abstraction in [11]. Figure 2b shows
the graph obtained when the exploration is stopped at node (q1, x ≥ 1). All
the runs that are feasible from (q1, x ≥ 1) are still represented in this graph,
as they can be obtained by first taking the subsumption edge from (q1, x ≥ 1)
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to (q1, x ≥ 0) (depicted as a blue squiggly arrow), and then any sequence of
(actual or subsumption) edges from (q1, x ≥ 0). Such graphs with both actual
and subsumption edges are called subsumption graphs in the sequel.

It is tempting to use subsumption as much as possible, and only explore
maximal nodes (w.r.t. zone inclusion). While this is correct for the verification
of reachability properties, subsumption must be used with care for liveness ver-
ification. The bottom node (q1, x ≥ 2) in Fig. 2b is also subsumed by the node
(q1, x ≥ 0). A subsumption edge can thus be added between these two nodes
as depicted in Fig. 2c. However, due to this new subsumption edge, the graph
has a Büchi accepting path (of actual and subsumption edges) that does not
correspond to any run of the timed automaton in Fig. 1. Indeed, subsumption
leads to an overapproximation of the runs of the automaton. While all the runs
from node (q1, x ≥ 2) are feasible from node (q1, x ≥ 0), the converse is not true:
the transition q1

x<2,x:=0−−−−−−→ q2 is not feasible from (q1, x ≥ 2).
The subsumption graphs in Fig. 2b and 2c can be seen as certificates issued

by verification algorithms. The graph in Fig. 2b is a valid certificate for live-
ness verification as 1) it contains no accepting paths, and 2) every run of the
automaton is represented in the graph. In constrast, the graph in Fig. 2c is not a
valid certificate for liveness verification as it has an accepting path that does not
correspond to any run of the automaton. In the next sections, we introduce an
algorithm to check the validity of certificates produced by liveness verification
algorithms, as well as a proven implementation of the algorithm.

3 Certificates for Büchi Emptiness

In this section, we study certificates for Büchi emptiness in the setting of a slight
variation of well-structured transition systems [14]. First, we present reachability
invariants, which certify that every run in the original system can be simulated
on the states given in the invariant. Next, we show that the absence of certain
cycles in the invariant is sufficient to prove that the original transition system
does not contain accepting runs. Then, we add a proof of absence of these cycles
to the certificate. Finally, we instantiate this framework for the case of TA.

3.1 Self-simulating Transition Systems

A transition system (S,→) consists of a set of states S and a transition relation
→ ⊆ S × S. If S is clear from the context, we simply write →. We say that
s1 → s2 → . . . → sn is a path or that s1 → s2 → . . . is an (infinite) run in → if
si → si+1 for all i. Given an initial state s0 and a predicate for accepting states
φ, the path s0 → s1 → . . . → sn is accepting if φ(sn). A run s0 → s1 → . . . is
an (accepting) Büchi run if φ(si) for infinitely many i.
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A transition system → is simulated by the transition system →′ if there exists
a simulation relation � such that:

∀s, s′, t. s � s′ ∧ s → t −→ ∃t′. s′ →′ t′ ∧ t � t′

This simulation property can be lifted to paths and runs:

Proposition 1. If s1 → s2 → . . . → sn (→ . . .) is a path (run) and s1 � t1,
then there is a path (run) t1 →′ t2 →′ . . . →′ tn (→ . . .) with si � ti for all i.

Definition 1. A self-simulating transition system (SSTS) (S,→,�) consists of
a transition system (S,→) and a quasi-order (a reflexive and transitive relation)
� ⊆ S × S on states such that → is simulated by → itself for �.

In comparison to well-structured transition systems [14], our definition is
slightly more relaxed, as we only demand that � is a quasi order, not a well-
quasi order. Intuitively, transitivity of � is needed to allow for correct simulation
by arbitrary “bigger” nodes. In TA, � corresponds to subsumption ⊆, and →
corresponds to ⇒.

3.2 Reachability Invariants on Abstract Transition Systems

In this section, we introduce the concept of reachability invariants for SSTS.

Definition 2. A set I ⊆ S is a reachability invariant of an SSTS (S,→,�) iff
for all s ∈ I and t with s → t, there exists a t′ ∈ I such that t � t′.

A useful invariant is also fulfilled by some inital state. Such states will show up in
theorems below. In the remainder, unless noted otherwise, (S,→,�) is an SSTS
and I is a reachability invariant of it. Figures 2a to 2c all form a reachability
invariant for the zone graph from Fig. 2a.

As was observed by Wimmer and von Mutius [37], reachability invariants can
directly be applied as certificates for unreachability.

Definition 3. A predicate φ (for accepting states) is compatible with an SSTS
(S,→,�) iff for all s, s′ ∈ S, if φ(s) and s � s′, then also φ(s′).

An invariant I can now certify that no accepting state s with φ(s) is reachable:

Theorem 1. If ∀s ∈ I. ¬φ(s), for some compatible φ, s0 ∈ S and s′
0 ∈ I with

s0 � s′
0, then there is no accepting path s0 → s1 → . . . → sn with φ(sn).

Note that this approach to certifying unreachability is also complete: if no
accepting state is reachable from s0 in (S,→,�), we can simply set I := S.
However, this is not practical for infinite transition systems, of course. Thus we
will revisit the question of completeness for TA below.

Finally, we observe that the invariant can be limited to a restriction of �.
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Definition 4. A pair (I,�) of a set I ⊆ S and a binary relation � is a restricted
reachability invariant of an SSTS (S,→,�) iff:

1. For all s ∈ I and t with s → t, there exists a t′ ∈ I such that t � t′.
2. For all s, t, if s � t, then also s � t.

In Figure 2, the �-arrows would play the role of �. In Figure 2b, (q1, x ≥ 0)
is subsumed by both (q1, x ≥ 1) and (q1, x ≥ 2), but as we have seen in Figure
2c, it is crucial to disregard these subsumptions. Therefore we need to consider
restricted reachability invariants.

For any restricted reachability invariant, we can define a simulating transition
system →�:

Definition 5. The transition system (S,→�) is defined such that s →� t′ iff
there exists a t such that s → t and t � t′.

This simulation theorem is the key property of restricted reachability invariants2:

Theorem 2. Given s1 � t1 with t1 ∈ I, if s1 → s2 → . . . → sn (→ . . .) is a
path (run), then there is a path (run) t1 →� t2 →� . . . →� tn (→ . . .) such that
si � ti and ti ∈ I for all i.

Analogously to →�, the transition system →� can be defined, and Theorem 2
can be proved for →�. This is used for the proof of Theorem 1 (see [37]).

3.3 Büchi Emptiness on Abstract Transition Systems

In this section, we first give a general means of certifying that a transition system
does not contain a cycle, and then combine the idea with reachability invariants
to certify the absence of Büchi runs on SSTS.

Definition 6. Given a transition system → and an accepting state predicate φ,
a topological numbering of → is a function f with an integer range such that:

1. For all s, t, if s → t, then f(s) ≥ f(t).
2. For all s, t, if s → t and φ(s), then f(s) > f(t).

Proposition 2. Let f be a topological numbering of → and φ. If there exists a
path of the form s → s1 → s2 → . . . → s, then ¬φ(s).

These certificates are also complete:

Proposition 3. If there is no path s → s1 → s2 → . . . → s with φ(s) in →,
then the following are topological numberings for →.

1. The number of accepting states that are reachable from a node: f(s) :=
|{x | s →∗ x ∧ φ(x)}| (assuming {x | s →∗ x ∧ φ(x)} is finite for any s).

2 All proofs are omitted for brevity and can be found in the appendix of the online
version of this paper on arXiv: https://arxiv.org/abs/2007.04150.

https://arxiv.org/abs/2007.04150
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2. If h is a topological numbering (in the classical sense) of the strongly connected
components (SCCs) of →, then set g(s) := h(C) if s ∈ C.

We now lift this idea to the case of (restricted) reachability invariants.

Definition 7. Given an SSTS (S,→,�), an accepting state predicate φ, and
a corresponding restricted reachability invariant (I,�), a restricted topological
numbering of (S,→,�) is a function f with an integer range such that:

1. For all s, t′ ∈ I and t ∈ S, if s → t, and t � t′, then f(s) ≥ f(t′).
2. For all s, t′ ∈ I and t ∈ S, if s → t, t � t′, and φ(s), then f(s) > f(t′).

Moreover, let �� be the restriction of →� to I, i.e. the transition system such
that s �� t′ iff s, t′ ∈ I and there exists a t such that s → t and t � t′.

Now, f is clearly a topological numbering for ��. Thus �� is free of accepting
cycles. Additionally, the transition system �� trivially simulates →� with s � s′

iff s′ = s and s ∈ I. Therefore, any accepting cycle s →+
� s in →� with s ∈ I

and φ(s) yields an accepting cycle s �+
� s. Hence →� is free of accepting cycles.

From this, we conclude our main theorem that allows one to certify absence
of Büchi runs in a transition system →.

Theorem 3. Let f be a restricted topological numbering of (S,→,�) for a com-
patible predicate φ and a finite restricted reachability invariant (I,�). Then, for
any initial state s0 ∈ S with s0 � t0 for t0 ∈ I, there is no Büchi run from s0.

In practice, a certificate can now be given as a finite restricted reachability invari-
ant I as described above, and a corresponding restricted topological numbering f .
Both properties can be checked locally for each individual state in I.

3.4 Instantiation for Timed Automata

We now want to instantiate this abstract certification framework for the concrete
case of TBA. Our goal is to certify that the zone graph ⇒ does not contain any
Büchi runs. As the zone graph is complete, this implies that the underlying
TBA is empty. Thus we set → := ⇒. Subsumptions in the zone graph shall
correspond to the self-simulation relation of the SSTS. Hence we define � such
that (q, Z) � (q′, Z ′) iff q′ = q and Z ⊆ Z ′.

To certify unreachability, it is sufficient to consider arbitrary subsumptions
in the zone graph, i.e. � := � [37]. In other words it is sufficient to check that
the given certificate I is a reachability invariant for (S,→,�). We have not yet
given the set of states S. Abstractly, S is simply the set of non-empty states, i.e.
S := {(q, Z) |Z = ∅}. If it was allowed to reach empty zones, then soundness
of the zone graph would not be given. In practice, the certifier needs to be
able to compute ⇒ effectively, typically using the DBM representation of zones.
To this end one wants to add the assumption on states that all DBMs are in
canonical form. One needs to ensure that states are split according to φ, i.e.
∀(q, Z) ∈ S.Z ⊆ Φ(q) ∨ Z ∩ Φ(q) = ∅ where Φ(q) = {v |φ(q, v)}. This is trivial
for commonly used properties that concern only the finite state part.
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Following these considerations, we propose the following certifier for the
emptiness of TBA. A certificate C is a set of triplets (q, Z, i) where q is a discrete
state, Z is a corresponding zone, and i is the topological number for (q, Z). The
certifier runs Algorithm 1 on this certificate. The algorithm extends the one by
Wimmer and Mutius [37] with the topological numbers for liveness checking.

Theorem 4. If Büchi-Emptiness(φ,C, q0) accepts the certificate, then ⇒DBM

has no Büchi run for φ. Consequently, the underlying TBA is empty.

The proof constructs a suitable � such that (q, Z) � (q, Z ′) if Z ⊆ Z ′ and
(q, Z ′, k) ∈ C, where k is selected to beminimal. Setting I := {(q, Z) | ∃i. (q, Z, i) ∈
C)} and f(q, Z) := min{i | (q, Z, i) ∈ C}, Theorem 3 can be applied.

Algorithm 1. Certifier for the emptiness of TBA
1: procedure Büchi-Emptiness(φ, C, q0)
2: for all (q, Z, i) ∈ C do � All DBMs are well-formed
3: if Z = ∅ ∨ Z is not canonical
4: then reject certificate

5: if �(q0, Z0, i) ∈ C. {0} ⊆ Z0 � The initial state is covered
6: then reject certificate
7: for all (q, Z, i) ∈ C do � The certificate is:
8: for all (q1, Z1) s.t. (q, Z) ⇒ (q1, Z1) do
9: if (�(q1, Z

′
1, j) ∈ C. Z1 ⊆ Z′

1 � an invariant,
∧ (φ(q) −→ i > j) ∧ i ≥ j) � and a topological numbering

10: then reject certificate

11: accept certificate

The algorithm inherits several beneficial properties from [37]. First, it can
easily be parallelized. Most importantly however, the certifier does not need
to compute an abstraction operation α. Suppose the model checker starts with
a state (q0, {0}) and explores the transition (q0, {0}) ⇒ (q1, Z1). The model
checker could then abstract zone Z1 to α(Z1), and explore more edges from
(q1, α(Z1)), e.g. (q1, α(Z1)) ⇒ (q2, Z2). The certificate just needs to include
(q0, {0}), (q1, α(Z1)), and (q2, α(Z2)), and the certificate checker just needs to
check the following inclusions: {0} ⊆ {0}, Z1 ⊆ α(Z1), and Z2 ⊆ α(Z2). The
checker does not need to compute α as α(Z1) and α(Z2) are part of the certificate.

It is rather easy to see that these certificates are also complete for timed
automata. For any finite abstraction α, the abstracted zone graph ⇒α is finite
and complete. Thus, for a starting state (q0, {0}) the set

I := {(q, Z) | (q0, {0}) ⇒∗
α (q, Z)}

is a trivial finite reachability invariant that can be computed effectively for com-
mon abstractions α. Moreover, if the underlying TBA is empty, then ⇒α cannot
contain a Büchi run either, since the abstract zone graph is complete. Because
⇒α is finite, this means it cannot contain a cycle through φ. Hence a forward
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numbering of I can be given by computing the strongly connected components
of I. However, this type of certificate is not of practical interest as subsump-
tions are not considered. How certificates can be obtained for model checking
algorithms that make use of subsumption is the topic of Sect. 5.1.

4 Incorporating Advanced Abstraction Techniques

We have already discussed that the techniques that were presented above are in
principle agnostic to the concrete abstraction α used. This, however, is only true
for standard verification algorithms for T(B)A that use zone inclusion Z ⊆ Z ′ as
a simulation relation on the abstract zone graph. There is also the noteworthy
abstraction α�LU [5], which is the coarsest zone abstraction that can be defined
from clock bounds L,U [18]. Herbreteau et al. have shown that even though
α�LU (Z) is usually not a zone, it can be checked whether Z ⊆ α�LU (Z ′) directly
from the DBM representation of Z and Z ′, without computing α�LU (Z ′) [18].
Hence, one can use α�LU -subsumption over zones, Z ⊆ α�LU (Z ′), instead of
standard inclusion Z ⊆ Z ′ to explore fewer symbolic states. This technique can
also be integrated with our certification approach. This time, we will need more
knowledge about the concrete abstraction α, however.

We first describe the concept of time-abstract simulations, on which the def-
inition of α�LU is based.

Definition 8. A time-abstract simulation between clock valuations is a quasi-
order � such that if v � v′ and (q, v) →δ,t (q1, v1) then there exist δ′ and v′

1

such that (q, v′) →δ′,t (q1, v′
1) ∧ v1 � v′

1.

Behrmann et al. defined the simulation �LU based on the clock bounds L and U ,
and showed that it is a time-abstract simulation [5] (in fact one can show that
�LU is even a simulation, i.e. δ′ = δ). For any �, one can define the corresponding
abstraction α�(Z) = {v | ∃v′ ∈ Z. v � v′}. This yields a sound and complete
abstraction for any time-abstract simulation � [5]. Observe that α�(Z) is the set
of all valuations that are simulated by a valuation in Z w.r.t. �. As a result, every
sequence of transitions feasible from α�(Z) is also feasible from Z (although with
different delays).

The implicit abstraction technique based on the subsumption check Z ⊆
α�(Z ′) is compatible with our certification approach for any α� for which � is
a time-abstract simulation, and in particular α�LU . Actually, we are still able to
use algorithm Büchi-Emptiness with the only modification that the condition
Z1 ⊆ Z ′

1 is replaced with Z1 ⊆ α�(Z ′
1). We will justify this by showing that if

the algorithm accepts the certificate, then it represents a restricted reachability
invariant with a suitable topological numbering for ⇒α� . This means that ⇒α�
does not have a Büchi run (Theorem 3), which, as α� is a complete abstraction,
implies that the underlying TBA does not have a Büchi run either.

We first prove the following monotonicity property (which can be seen as a
generalization of Lemma 4 in the work of Herbreteau et al. [18]).
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Proposition 4. Let � be a time-abstract simulation. If α�(W ) ⊆ α�(W ′),
(q,W ) ⇒t (q1,W1), and (q,W ′) ⇒t (q1,W ′

1), then α�(W1) ⊆ α�(W ′
1).

Reminding ourselves that α� is idempotent, if follows that if (q,W ) ⇒t (q1,W1)
and (q, α�(W )) ⇒t (q1,W ′

1) for some states q, q1, and sets of valuations W ,
W1, and W ′

1, then α�(W1) = α�(W ′
1). In other words, ⇒ simulates ⇒α� for �

defined as (q,W ) � (q, Z) ←→ W = α�(Z).
Now, we show that the conditions of Definitions 4 and 7 can be transferred

along this simulation.

Theorem 5. Assume that the following conditions hold:

1. For all states q, and zones Z, Z ′, Z ′′, if (q, Z) � (q, Z ′), then Z ⊆ α�(Z ′).
Moreover, if α�(Z) = α�(Z ′) and (q, Z) � (q, Z ′′), then (q, Z ′) � (q, Z ′′).

2. For all q, Z, if φ((q, α�(Z))), then φ((q, Z)).
3. (I,�) satisfies condition (1) of Definition 4 for ⇒.
4. f is a restricted topological numbering for ⇒, (I,�), and φ.

Let (q,W ) �′ (q,W ′) ←→ ∃Z,Z ′.W = α�(Z) ∧ W ′ = α�(Z ′) ∧ (q, Z) � (q, Z ′),
I ′ := {s′ | ∃s ∈ I. s � s′} and f ′(s′) := Min {f(s) | s ∈ I ∧ s � s′}. Then

1. (I ′,�′) is a restricted reachability invariant for (⇒α� ,⊆).
2. f ′ is a restricted topological numbering for ⇒α� , (I ′,�′), and φ.

Algorithm Büchi-Emptiness ensures that there exist an invariant (I,�) and
a numbering f that fulfill the conditions of Theorem 5 for ⇒ (as indicated after
Theorem 4). Thus, if the algorithm accepts the certificate, there is a restricted
reachability invariant (I ′,�′) with a corresponding topological numbering f ′ for
⇒α� . Hence ⇒α� does not have a Büchi run.

5 Evaluation

In this section, we first give a brief description of the model checking algorithms
we consider and describe how certificates can be extracted from them. Then,
we outline the general architecture of our certification tool chain, and finally we
present some experiments on standard TA models.

5.1 Extracting Certificates from Model Checkers

We consider the two state-of-the-art algorithms for checking Büchi emptiness for
TA: the NDFS-based algorithm by Laarman et al. [22] and the iterative SCC-
based algorithm by Herbreteau et al. [16]. Both algorithms can be applied to
any abstracted zone graph ⇒α for a finite, sound and complete abstraction α.
As was noted by Herbreteau et al. [16], they also have in common that their
correctness can be justified on the basis that they both compute subsumption
graphs that are liveness compatible, in the sense that they do not contain any
cycle with an accepting node and a subsumption edge.
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Considering NDFS for TA from [22] more closely, it prunes the search space
by using subsumption in certain safe places. In particular, the outer (blue) search
is pruned when it reaches a state s that is subsumed by a state on which the
inner (red) search has been called, i.e. s � t and t is red. In order to generate
a liveness-compatible subsumption graph, the blue search exports all the states
which are not subsumed along with their →-successors. Moreover, the algorithm
exports �-edges as soon as the pruning by subsumption is applied.

The iterative algorithm from [16] interleaves reachability analysis and SCC
decompositions. The reachability analysis computes a subsumption graph with
maximal subsumption: a subsumption edge s � t′ is added whenever a new state t
is visited from s, and t is subsumed by some visited state t′. The resulting graph
→ ∪ � is a subsumption graph that preserves state reachability, but that may not
be liveness compatible. Therefore, an SCC decomposition is run, and all subsump-
tion edges from SCCs that contain both an accepting node and a subsumption edge
are removed. States which are not subsumed anymore are re-explored in the next
iteration of the main loop. Upon termination, the subsumption graph → ∪ � is
liveness compatible.

Both algorithms compute liveness compatible subsumption graphs. In order
to obtain a certificate we run one extra SCC decomposition of the graph with
→ ∪ �-edges from which we compute a topological ordering.

5.2 General Architecture

Our certifier is implemented as an extension of the tool Munta [34], which has
been fully verified in Isabelle/HOL [36,37]. Figure 3 depicts the architecture of
our tool chain to certify the emptiness of a given TBA. The model (a TBA)
and the acceptance property are given in the input format of Munta. For the
model checker in the middle, we used Imitator and TChecker. In a first step,
the Munta model is translated to an input model for the model checker. The
model checker decides whether the given TBA is empty. If not, then either the
model checker’s answer is correct or it has found a spurious counterexample; in
both cases no certificate can be extracted. Otherwise, the model checker emits
a certificate consisting of a number of symbolic states and the set of edges in
the subsumption graph. The latter can either include proper transitions (→)
and subsumptions (�) (this is done for Imitator with NDFS and subsumption),
or the edges that merge these two types (�’) (which is done for TChecker and
for Imitator with state merging enabled, see Sect. 5.3). In either case, in the
next step where the certificate is translated to Munta’s binary input format for
certificates, the SCC numbers (c.f. Proposition 3) are re-computed blindly from
these edges. This step additionally makes use of a renaming dictionary to map
from human readable labels for states, actions, etc., to natural numbers.

Finally, the TBA model, the translated certificate, and the renaming are given
to Munta. If it accepts the certificate, then there is an Isabelle/HOL theorem
that guarantees that the given TBA is indeed empty. If the certificate is rejected,
any of the steps in the tool chain could have failed. Note that the basis of trust
is minimal. One just needs to ensure that the model represents what one has
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Fig. 3. Workflow of the certifier pipeline. The dashed line is the trust boundary. If the
correct model is given, then the answer on the right can be trusted.

in mind, and to trust the correctness of Munta. To trust Munta, one essentially
needs to trust its TBA semantics, which is less than 200 lines long, some core
parts of Isabelle/HOL, and an SML compiler (MLton in our case). For details,
we refer the interested reader to previous publications on Munta [34,37].

5.3 Experiments

We have evaluated our approach on the TBA models that were also used by
Herbreteau et al. [16]. These are inspired by standard TA benchmarks, and all
consist of the product of a TA model and an additional Büchi automaton that
encodes the complement of the language of a given LTL formula that one wants
to check. Details are given by Herbreteau et al. [16].

For Imitator we tried two methods: NDFS with subsumption and reachability
analyis with merging [3]. Imitator does not apply abstractions (since it was
designed for parametric TA), so the full zone graph is often infinite and most
NDFS runs fail. The one that succeeds generates a valid certificate. Merging
tries to reduce the number of zones, by computing the exact convex hull of
zones. This creates new zones that could subsume several existing ones, and
often yields a finite zone graph. The certificate produced by merging is always
a reachability invariant but not necessarily a subsumption graph. Merging may
introduce spurious cycles, in which case the certificate is not liveness compatible;
these cases are caught by the Munta certifier. If there are no (spurious) accepting
cycles, we obtain a valid and quite small certificate. Note that the generalization
from subsumption graphs to our certificates is crucial to allow for merging.

Table 1 summarizes our experimental results. TChecker was run with the
algorithm from [16] and [22] and Imitator with the algorithm from [22], and with
a reachability procedure with full merging. The *** entries indicate cases where
Imitator did not terminate within 30 s. The results show that the certifier accepts
those certificates that we expect it to accept, but also rejects those that stem from
subsumption graphs that are not liveness compatible. Moreover, the certifier was
fully verified in Isabelle/HOL and still yields reasonable performance, certifying
models with more than a 100 k symbolic states in under 230 s.
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Table 1. Benchmark results on a 2017 MacBook Pro with 16 GB RAM and a Quad-
Core Intel Core i7 CPU at 3.1 GHz. For each algorithm, we show whether the certificate
was accepted, the number of DBMs in the certificate, and the time for certificate
checking on a single core in seconds.

Model TChecker Imitator

Iterative SCC NDFS Merge NDFS

CC1 ✓ 57 0.01 ✓ 3281 0.06 ✓ 58 0.01 ***

CC4 ✓ 195858 221.56 ✓ 32575 7.75 *** ***

CC5 ✓ 65639 30.63 ✓ 143057 218.98 *** ***

FD1 ✓ 214 0.02 ✓ 677 0.03 ✗ 294 0.02 ✓ 1518 0.11

FI1 ✓ 65 0.01 ✓ 71 0.00 ✓ 136 0.00 ***

FI2 ✓ 314 0.01 ✓ 344 0.01 ✓ 589 0.01 ***

FI4 ✓ 204 0.00 ✓ 224 0.01 ✓ 793 0.01 ***

FI5 ✓ 3091 0.13 ✓ 2392 0.09 ✗ 863 0.03 ***

6 Conclusion

Starting from an abstract theory on self-simulating transition systems, we have
presented an approach to extract certificates from state-of-the-art model check-
ing algorithms (including state-of-the-art abstraction techniques) that decide
emptiness of timed Büchi automata. The certificates prove that a given model
is indeed Büchi empty. We have verified the theory and a checker for these cer-
tificates in Isabelle/HOL, using the tool Munta as a basis. We demonstrated
that our approach is feasible by extracting certificates for some standard bench-
mark models from the tools TChecker and Imitator. We hope that our work can
help to increase confidence in safety-critical systems that have been verified with
timed automata model checkers. Furthermore, we envision that our tool could
help in the organization of future competitions for such model checkers.

To close, we want to illuminate some potential future directions of research.
First, one is usually not only interested in the emptiness of TBA per se, but more
generally in the question if a TA model satisfies some LTL requirements. Thus,
our tool would ideally be combined with a verified translation from LTL formulas
to Büchi automata or with a certifier for such a construction. The former has
been realized by the CAVA project [13], while an avenue towards the latter is
opened by the recent work of Seidl et al. [10].

Second, Herbreteau et al. have developed a technique of computing abstrac-
tions for TA on the fly, starting from very coarse abstractions and refining them
as needed [17]. It seems that our approach is in principle compatible with this
technique when augmenting certificates with additional information on the com-
puted abstractions, whose validity would have to be checked by the certifier.
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Third, one could attempt to reduce the size of the certificates. In one app-
roach, reachability certificates have been compressed after model checking (c.f.
[37]). On the other hand, model checking algorithms could speculate that the
given TBA is empty, and use this fact to use additional subsumptions to reduce
the search space, while risking to miss accepting runs. However, given the cer-
tification step afterwards, this is of no concern. For instance, one could remove
the red search from the NDFS algorithm, and use subsumption on blue nodes
instead of red nodes, as a quick pre-check. If the result passes the certifier, we
are done.

Finally, as our theory is not specific to timed automata per se, it could be
interesting to find other application domains for this approach to certification.
In light of the large body of existing work on well-structured transition systems,
this looks particularly promising as any such system is also self-simulating.
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Abstract. In this work, we introduce a supervised learning framework
for inferring temporal logic specifications from labelled patterns in sig-
nals, so that the formulae can then be used to correctly detect the same
patterns in unlabelled samples. The input patterns that are fed to the
training process are labelled by a Boolean signal that captures their
occurrences. To express the patterns with quantitative features, we use
parametric specifications that are increasing, which we call Increasing
Parametric Pattern Predictor (IPPP). This means that augmenting the
value of the parameters makes the predicted pattern true on a larger set.
A particular class of parametric specification formalisms that we use is
Parametric Signal Temporal Logic (PSTL). One of the main contribu-
tions of this paper is the definition of a new measure, called ε-count, to
assess the quality of the learned formula. This measure enables us to com-
pare two Boolean signals and, hence, quantifies how much the labelling
signal induced by the formula differs from the true labelling signal (e.g.
given by an expert). Therefore, the ε-count can measure the number of
mismatches (either false positives or false negatives) up to some error
tolerance ε. Our supervised learning framework can be expressed by a
multicriteria optimization problem with two objective functions: the min-
imization of false positives and false negatives given by the parametric
formula on a signal. We provide an algorithm to solve this multi-criteria
optimization problem. Our approach is demonstrated on two case studies
involving characterization and classification of labeled ECG (electrocar-
diogram) data.

Keywords: Signal pattern matching · Monotonic specification
learning · Pareto multi-criteria optimization · Signal Temporal Logic

1 Introduction

Complex systems consist of various inter-connected components for which rigor-
ous modelling is difficult. Due to technological advances a large amount of data
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from such systems is available. However, to ensure that systems behave correctly,
formal specifications defining the intended behaviour are needed. Data-driven
modelling involves the process of learning models and specifications of systems
from the traces they generate. Once learnt they can be used for analysing and
monitoring these systems. This is particularly useful when rigorous mathemati-
cal models based on first principles are difficult to obtain.

In this context, supervised learning involves designing a specification from
a given set of labelled signals, so that the specification is later used to label
signals via monitoring. One approach is to start from nothing but a sample
of labelled signals and learn a logical specification, essentially by enumerating
formulae of increasing size (using suitable heuristics) to come up with one that
is good enough w.r.t. the sample. A more suitable approach is to exploit prior
knowledge made available in the form of a parametric specification. For instance,
an engineer observing the behaviours of a concrete collection of cars would ask for
the parameter valuations p1 and p2 for the following emergency brake pattern:
“the car can pass from speed 30 m/s to p1 m/s within less than p2 seconds.”

Our work is of the second kind, following the trend initiated by [7] with
parametric specifications written in Parametric Signal Temporal Logic (PSTL).
We are inspired by several works on PSTL [7,11] whose aim was to compute
the validity domain of a parametric formula, i.e., the set of parameter valuations
that makes the formula true on a (or a set of) signal. Though in our experiments
we use PSTL with the extended semantics of [8], our framework is not specific
to it and can be applied to other specification formalisms. To provide a generic
approach which is not tied to a specific specification formalism, we introduce the
notion of parametric pattern predictors (PPP). A PPP is a parametric operator
Ψp that transforms unlabelled signal s to a labelling Boolean signal Ψp(s) that
is true on time points where the pattern is predicted. We focus our attention on
PPPs that are increasing: when the value of p increases for any given signal s,
the set of time points where Ψp(s) is true expands.

In our framework, we allow the learned specification Ψp to produce some
false positives and false negatives on parts of the training signals, i.e., there are
time points where Ψp predicts a pattern while there is none, or misses it. We
are interested in computing several sets of parameter valuations (called solution
sets) which ensure that the “quantities” of false positive and/or false negatives
are lower than given bounds. To define such quantities, we can use neither counts
of time points or of intervals nor the Lebesgue measure since, as we will see later,
these measures are not suitable. Instead we adapt the notion of ε-separated set
from information theory [18] to propose a new measure, called ε-count, with
suitable properties (Proposition 1). Our method for computing solution sets is
similar to the method for approximating monotonic validity domains, proposed
in [7]. The main difference is that the constraints on false positives and false
negatives involve two sets monotonic in opposite directions. To this end, we
develop an algorithm that computes the intersection of an upset and a downset
in R

n.
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The main contributions of the paper can be summarized as follows:

• A generic framework of learning parameter valuations for increasing para-
metric pattern predictors with quantitative constraints on false positives and
false negatives.

• A measure called ε-count for expressing “how often” a Boolean signal is true
and its application to extend the quantitative notions of false positives and
false negatives to Boolean labelling signals.

• An algorithm to compute the intersection of an upset and a downset that are
queried from a membership oracle.

Section 2 presents our specification learning framework. Section 3 describes
the algorithm that computes the intersection of an upset and a downset in R

n.
Section 4 demonstrates our approach on two case studies involving ECG signals.
More details and proofs can be found in the technical report [4].

Related Work on PSTL. Parameters in PSTL can be used to express con-
straints both on values and time bounds. They are called space and timing
parameters respectively in [11]. In [7] two different methods for computing valid-
ity domains for PSTL formulae are presented. The first method demonstrates
how exact validity domains can be computed using quantifier elimination, in
principle. Though complete and exact, the main drawback of this approach is
the exponential worst case complexity in nested depth of formulae. The second
method computes approximations of monotonic validity domains using query
functions. This method forms the foundation of our contributions regarding
monotonic validity domains. Another method which computes validity domains
recursively is proposed in [11]. This method deals only with space parameters
and leaves handling timing parameters for future work.

Other works which utilize PSTL for the tasks of clustering and classifica-
tion are as follows. They concentrate on extracting features and computing a
single solution rather than complete validity domains. In [28], template PSTL
formulae are used to extract features. These features are then used in an unsu-
pervised learning context to cluster traces. In [29], Hausdorff distance based
on monotonic validity domains boundaries [22] is used as a distance metric for
traces. Clustering was used to generate labelling and then construct specifica-
tions from monotonic PSTL templates. In [24], monotonic PSTL formulae are
enumerated using formula signatures. Computation of validity domain bound-
aries [22] is combined with checks for misclassification rate for parameter esti-
mation. The resulting algorithm is used to search for an STL formula to classify
traces. Another enumeration based method for classifying traces using robust-
ness value based decision trees is proposed in [23]. Grid sampling is used to esti-
mate timing parameters. Both the aforementioned enumeration based methods
deal with learning classifiers from example labelling (i.e. supervised learning).
In [17], parameter estimation for PSTL is formulated as multi-objective opti-
mization with respect to robustness. For inferring the structure of STL formulae
in the absence of templates, they propose an incremental construction approach.
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It is to be noted that we explicitly capture certain features using the quanti-
tative semantics of extended STL [8]. This simplifies the task by avoiding their
encoding as unknown parameters.

Other Related Work. Temporal logic and timed automata provide a frame-
work to describe and reason about occurrence of events and their correlations in
time. Unsupervised learning of hybrid timed automata from real-valued signals
was investigated in [30]. In [14] and [21] Timed Regular Expressions (TRE) and
LTL specifications respectively are mined from system traces using formula tem-
plates and event binding. Quantitative Regular Expressions (QRE) have been
used to express specifications for arrhythmia-detection algorithms [5]. Recently,
shape expressions have been proposed for learning specifications and features
from signals [27]. The problem of learning Linear Temporal Logic (LTL) for-
mulae without any requirements of a priori information in the form of formula
templates has been recently explored in [26]. Learning STL specifications using
different restrictions on the syntax has been studied in a series of papers by
others. A sub-class of STL called reactive STL is investigated in [19]. The for-
mulae in this sub-class are enumerated by defining a partial order and simulate
annealing is used for parameter estimation. Another sub-class named inference
PSTL is proposed in [20] for learning formulae that detect anomalies. A decision
tree approach combined with a restricted set of PSTL primitives using impurity
measures is proposed in [12].

2 Specification Learning Framework

Before introducing our specification learning framework we need few preliminar-
ies on signals and partial order on R

n.

Signals. A signal s is a function from R to R. A Boolean signal w is a signal
that takes its values in B = {0, 1}, with the common interpretation of 1 and 0
as true and false. The support of a signal w denoted by supp(w) is the smallest
closed set that contains the set {t | w(t) �= 0}. We consider only signals with
bounded support (aka. compact support1). The signal t �→ 0 which is always
false is denoted by 0.

Partial Order on R
n . Given two vectors p, q ∈ R

n, we say that p is lower than
q, denoted by p ≤ q, if ∀i, pi ≤ qi. A set X is an upset if for all p, q ∈ R

n such
that p ≤ q if p ∈ X then q ∈ X. A set X is a downset if for all p, q ∈ R

n such that
q ≤ p if p ∈ X then q ∈ X. The boundary consisting of all the minimal elements
of an upset (or all the maximal elements of a downset) is called a Pareto front
in the field of multi-criteria optimization. The box between two vectors x and x
with x ≤ x is �x, x	 = {y | x ≤ y ≤ x}.

1 A subset of R is compact if and only if it is closed and bounded.
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2.1 Parametric Pattern Predictor

The labels of patterns in our problem are modelled using Boolean signals that
we call labelling signals. A labelling signal λs for a signal s being 1 or 0 at a
time point indicates respectively the occurrence or absence of a pattern in s at
this time point. Particular cases of labelling signals are those whose support is
a list of time points where patterns occur. In these cases, a pattern is a discrete
event, and several labelling signals can be merged together to form what is called
a timed word in timed automata theory [6]. We prefer using Boolean signals
in continuous time for two main reasons. We want to allow patterns to have
duration, that is their occurrence lasts continuously throughout a time interval
(composed thus of uncountable number of points). They can be considered both
as input or output signals for monitoring tools for temporal properties in dense
time, such as StlEval [8] which we will use for our experiments.

Fig. 1. Showing the single false positive of Ψ ch
(8.20,0.64,−0.44) for ECG 221

Example 1. Consider electro-cardiograms (ECG) from the MIT-BIH Arrhyth-
mia Database of Physionet [16,25]. They are provided with annotations of time-
stamps where normal or abnormal peaks occur. The annotations for the normal
peaks can be modelled into a labelling signal that is 1 when a normal peak occurs
and 0 everywhere else. A portion of ECG 221 is depicted as in Fig. 1 where the
blue labelling signal comes from the database.

Our aim is to develop a pattern predictor, a tool that generates a labelling
signal for a given signal. For ECG signals, it is used to annotate them with
normal peaks, such as in Fig. 1 the red signal is predicted by our tool.

Definition 1 ((Increasing) Parametric Pattern Predictor (IPPP)). A
parametric pattern predictor (PPP) is a function that maps a vector p of reals
to an operator Ψp that maps real-valued signals to Boolean-valued signals. Ψ is
said increasing if for all p ≤ p′, for all signal s, ∀t ∈ [0, l) with l the length of s,
Ψp(s)(t) ≤ Ψp′(s)(t).
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Example 2. Formula (1) specified in the extended STL2 [8] gives a simple and
rough characterization of a normal ECG peak. Ψ ch

(p1,p2,p3)
(s)(t) = 1 if the maxi-

mum of s on [t − p1, t + p1] is above −p3, and its variation is within the bound
p2 on [t− c, t−p1] and on [t+p1, t+ c]. The parameter domains are p1 ∈ [0, 70],
p2 ∈ [0, 1] and p3 ∈ [−1, 0]. Here, c = 70 is a constant representing an upper limit
on p1. Note that if one increases (p1, p2, p3), the property is easier to achieve.

Ψ ch
(p1,p2,p3)

:= ((Max[−c,−p1] s − Min[−c,−p1] s) ≤ p2) ∧
((Max[−p1,p1] s) ≥ −p3) ∧ ((Max[p1,c] s − Min[p1,c] s) ≤ p2) (1)

We remark again that although our work uses the extended STL [8], our
framework can be applied to other specification formalisms. Indeed, many match-
ing problems can be cast into an IPPP, for instance matching as closely as possi-
ble a signal for the longest time possible. More formally, we can define an IPPP
Ψπ such that Ψπ

(p1,p2)
(s) is 1 at time t if the signal s restricted on the interval

[t, t + T − p1] is point-wise p2-close to a given signal π (representing a shape of
interest), that is, ∀t′ ∈ [0, T − p1], |s(t + t′) − π(t′)| ≤ p2. The idea of matching
such predefined shapes is inspired by the work on shape expression [27].

2.2 Quantifying Mismatches via ε-count

A labelled signal (s, λs) is a pair of signal s and labelling signal λs. We aim
at learning parameters p for an IPPP Ψp so that for every given labelled signal
(s, λs), the labelling signals Ψp(s) and λs should match together as much as
possible. We measure two kind of mismatches by measuring “how often” the two
following signals are true. The false positive signal ¬λs ∧ Ψp(s) indicates when
the predictor predicts an occurrence when there is none. The false negative signal
λs ∧ ¬Ψp(s) indicates when the predictor misses an actual occurrence.

The phrase “how often” may make one think of counting events like occur-
rences of a peak. However we cannot count the points where a Boolean formula
is true since they are in general uncountable. Counting the intervals where a
Boolean signal is true is also problematic since it is not always increasing with the
support of the signal. For example, a Boolean signal defined as b(t) := s(t) < p
has support that increases with p, but such interval counting is not monotoni-
cally increasing with p. Also there can be infinitely many intervals. Last but not
least, the most standard measure of subsets of R is the Lebesgue’s measure. This
is not convenient for our purpose because a signal whose support is the disjoint
union of many intervals of almost-null measure which are quite far apart will
entails a small measure while for such a signal we want instead a big “count”
because it can represent the number of mismatches. In this work we introduce
the notion of ε-count, inspired by the notions of ε-separated sets and ε-capacity
proposed in [18].

2 Here and in the rest of the paper we slightly simplified the syntax of [8] by replacing
(On[a,b] Max s) by (Max[a,b] s) whose value in t is maxt′∈[t+a,t+b] s(t

′).
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Definition 2 (ε-separated set and ε-count). Given a boolean signal w, a set
S of reals is ε-separated w.r.t. w if S ⊆ supp(w) and for every t, t′ ∈ S with
t �= t′, it holds that |t − t′| ≥ ε. The ε-count of a signal w is cε(w) = max{|S| |
S is ε-separated w.r.t. w}.
Proposition 1. The ε-count of a signal w is determined in a greedy manner
with the following recursive equations: cε(0) = 0 and cε(w) = 1 + cε(w′) where
w′(t) = 0 if t < ε + min(supp(w)) and w′(t) = w(t) otherwise.

Proposition 2. 1. The ε-count is null iff it is applied to the constant signal 0.
2. The ε-count is increasing: if w ≤ w′ then cε(w) ≤ cε(w′).
3. The ε-count satisfies a triangular inequality: cε(w ∨ w′) ≤ cε(w) + cε(w′).

2.3 Parameter Identification Problems

Given bounds f+, f− on the allowed ε-count of false-positives and false-negatives,
we are interested in the following three sets:

Dom+(Ψ,S, f+) = {p | ∀(s, λs) ∈ S, cε(Ψp(s) ∧ ¬λs) ≤ f+}, (2)
Dom−(Ψ,S, f−) = {p | ∀(s, λs) ∈ S, cε(¬Ψp(s) ∧ λs) ≤ f−}, (3)
DomInter(Ψ,S, f+, f−) = Dom+(Ψ,S, f+) ∩ Dom−(Ψ,S, f−). (4)

For convenience, we call them respectively the positive, negative and intersection
solution sets. It is also of great interest to compute the set of couples (f+, f−),
called set of feasible error bounds, for which a solution exists:

P(Ψ,S) = {(f+, f−) | DomInter(Ψ,S, f+, f−) �= ∅}. (5)

In addition, we are interested in a relaxed version of the identification problem
for false positive bounding, by tolerating a difference of σ time units in matching
the labels. This can be done by replacing λs with the signal3 F[−σ,σ] λs in (2).
More concretely, the solution set of the corresponding σ-relaxed problem is:

Dom+σ(Ψ,S, f+) = {p | ∀(s, λs) ∈ S, cε(Ψp(s) ∧ ¬F[−σ,σ] λs) ≤ f+}.

Hence, the corresponding relaxed version of the intersection solution set (4) is

DomInterσ(Ψ,S, f+, f−) = Dom+σ(Ψ,S, f+) ∩ Dom−(Ψ,S, f−). (6)

Note that Dom+(Ψ,S, f+) is a downset and Dom−(Ψ,S, f−) is an upset (see
the beginning of Sect. 2) because Ψ is increasing. Sets of this kind can be learned
from membership queries as proposed in [9,22]. The set DomInter(Ψ,S, f+, f−)
is the intersection of an upset and a downset, we thus face a new problem that we
address in Sect. 3. The set P(Ψ,S) is an upset and its minimal elements form a
Pareto front. We compute it via membership-queries for couples (f+, f−). They
are done via non-emptiness checking of DomInter(Ψ,S, f+, f−) which is an easier
problem than computing the whole set.
3 where (F[−σ,σ] λs)(t) = 1 iff ∃t′ ∈ [t − δ, t + δ], s(t′) = 1.
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3 Intersecting an Upset and a Downset in R
n

In this section, we describe our algorithm for estimating the intersection of an
upset and a downset in R

n which is required to compute DomInter(Ψ,S, f+, f−).
The upset and downset are accessed via membership oracles, that is, two
Boolean-valued functions ρ+ : R

n → B and ρ− : R
n → B which are respec-

tively monotonically increasing and decreasing with respect to the input.
A point where ρ+ and ρ− are both 1 (resp. 0) is called a positive (resp. neg-

ative) intersection point. Our approach involves intersection search on the diag-
onal of a hyper-rectangular parameter space.

Algorithm 1 builds on linear intersection search to compute the positive inter-
section of an upset and a downset for the multi-dimensional case. An alterna-
tive approach is to compute separately the two sets and then their intersection.
Computing directly the intersection has the advantage of quickly eliminating the
regions that surely do not contain a solution to focus on examining the rest. We
can also modify Algorithm 1 to make queries about emptiness of the intersection
without computing it exhaustively.

Intersection on a Line and Expansion. The procedure boundary finds the
Pareto boundary of a monotonically increasing function on a given line using
the classical idea of binary search. The procedure intersect finds the inter-
section of two monotonic Boolean functions ρ+ (increasing) and ρ− (decreas-
ing) on a line 〈x, x〉. Before starting intersection search on a line, by simple
queries on the endpoints we can sometimes altogether discard (oc=discard) or
fully accept (oc=accept) the bounding hyper-rectangle. This happens when the
hyper-rectangle is wholly contained in a negative or a positive intersection. When
this is not the case, we query for the values of ρ+ and ρ− at the midpoint. If
a point in the intersection is found we return with the result on whether it
is positive (oc=splitpos) or negative (oc=splitneg). Otherwise, we continue the
search recursively by discarding the half segment not containing an intersection.
This is possible because ρ+ and ρ− are monotonically increasing and decreasing
respectively. In this way we end up either finding an intersection or returning
a line segment of length equal to an error bound ε containing the intersection
(oc=notfound). On a line (p0, p1), we can have three outcomes of the search. The
first two outcomes are when a point pc in the positive intersection (Fig. 2b) or
the negative intersection (Fig. 2a) is found. For these cases, we can divide the line
into two segments (p0, pc) and (pc, p1). On these segments we can apply the clas-
sical binary search to find the Pareto fronts corresponding to the monotonically
decreasing and monotonically increasing functions. We call this operation an
expansion. In Fig. 2a,2b, the points p+, p− represent the points where the Pareto
fronts for the monotonically increasing and decreasing functions respectively
intersect with the line (p0, p1). The third and last case is when no intersection
has been found.
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p0 p1
pcp− p+

(a) Negative intersection.

p0 p1
pcp+ p−

(b) Positive intersection.

Fig. 2. Intersection on a line.

Decomposing the Box and Continuing the Search. Algorithm 1 uses the
result of the binary intersection search on the diagonal of a box to deduce which
regions (inside the box) do or do not contain a solution and which are unde-
cided. Then, it decomposes the undecided region into sub-boxes and recursively
processes the resulting sub-boxes (see Fig. 3) There are three cases:

• No intersection has been found (see Fig. 3c). As a result of monotonicity, we
know that the sub-boxes R1 and R2 do not contain a solution, and proceed
with the remaining region which is decomposed into two overlapping sub-
boxes U1 and U2. This decomposition is formulated in Sect. 3.1.

• A negative intersection has been found (see Fig. 3a). We can identify a line
segment on the diagonal where a solution can not exist and deduce that
the regions R1 and R2 do not contain a solution. The decomposition of the
undecided region leads to two sub-boxes U1 and U2 (see Sect. 3.2).

• A positive intersection has been found (see Fig. 3b). We obtain the sub-boxes
U1 and U2 as in the previous cases but use the procedure in Sect. 3.1 twice to
obtain overlapping sub-boxes U3, U4, U5 and U6.

The decompositions into non-overlapping and overlapping sub-boxes are denoted
by Inov and Iov in Algorithm 1 and explained in detail in Sects. 3.1 and 3.2.

zl

zu

y

R1

R2U1

U2

(a) Negative intersection

zl

zu

y

zu

zl
R1

R2

G

U1

U2

U3

U4

U5

U6

(b) Positive intersection

y

y

R1

R2

U1

U2

(c) No intersection found

Fig. 3. Illustration of sub-boxes.

Before continuing, we need a formal definition of sub-boxes resulting from
subdivision based on points y < y on the diagonal of a box �x, x	. These sub-
boxes are products of sub-intervals Iαi

where for each dimension, their bounds
are taken among the following sequence of coordinates xi < y

i
< yi < xi.
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Algorithm 1. Pareto front intersection algorithm
1: Input: A box X = �0,1�; ρ+ and ρ− are respectively monotonically increasing

and decreasing Boolean-valued functions; error bounds δ and ε.
2: Output: A set of boxes S containing the positive intersection of ρ+ and ρ− and a

set L representing the undecided region such that |L| ≤ δ. All sets are represented
by unions of boxes.

3: L = {X}; S = ∅ � initialization
4: repeat
5: pop first �x, x� ∈ L � take the largest box
6: {〈y, y〉, oc} = intersect(〈x, x〉, ρ+, ρ−, ε) � intersect search on the diagonal
7: if oc == splitpos then � found a positive intersection.
8: 〈zl, zl〉 = boundary(〈x, y〉, ρ+, ε)
9: 〈zu, zu〉 = boundary(〈y, x〉, ¬ρ−, ε)

10: S = S ∪ �zl, zu�
11: L = L ∪ Inov(x, x, zl, zu) ∪ Iov(x, zu, zl, zl) ∪ Iov(zl, x, zu, zu) � see Fig. 3b
12: else if oc == splitneg then � found a negative intersection.
13: 〈zl, zl〉 = boundary(〈x, y〉, ¬ρ−, ε)
14: 〈zu, zu〉 = boundary(〈y, x〉, ρ+, ε)
15: L = L ∪ Inov(x, x, zl, zu) � see Fig. 3a
16: else if oc == accept then
17: S = S ∪ �x, x�
18: else if oc �= discard then � no intersection found
19: L = L ∪ Iov(x, x, y, y) � see Fig. 3c.

20: Vol(L) = Vol(X) − Vol(Z)
21: until Vol(L) ≤ δ
22: return S, L

Definition 3 (Sub-interval encoding). A sub-interval Iαi
⊆ [x, x] is encoded

by its subscript αi ∈ {l,m, u,u, l,t} which is a letter such that αi = l for the
lower interval [xi, yi

]; αi = u for its complement [y
i
, xi]; αi = u for the upper

interval [yi, xi]; αi = l for its complement [xi, yi]; αi = m for the middle interval
[yi, xi]; and αi = t for the whole interval [xi, xi].

Definition 4 (Sub-boxes). Given α = (α1, . . . , αn) ∈ {l,m, u,u, l,t}n and
four n-dimensional points x = (x1, . . . , xn), x = (x1, . . . , xn), y = (y

1
, . . . , y

n
),

y = (y1, . . . , yn) such that x ≤ y ≤ y ≤ x, the sub-box of �x, x	 induced by α and
�y, y	 is Bα =

∏n
i=1 Iαi

with Iαi
defined in Definition 3.

3.1 Decomposition into Overlapping Sub-boxes

This decomposition, proposed in [9], is useful when we have to remove from a
box �x, x	 the downward closure of y (i.e. B(l,...,l) = �x, y	) and the upward-
closure of y (i.e. B(u,...,u) = �y, x	). The resulting sub-boxes can overlap but this
decomposition is only used with points that are ε-close. At least in one dimension
i the overlap is restricted to the middle interval [y

i
, yi] whose length is at most ε

leading to a negligible volume when ε is small compared to the length of [xi, yi]
and [y

i
, xi].



86 N. Basset et al.

Definition 5 (Overlapping sub-boxes). Let x, y, y, x be 4 n-dimensional
points with x < y < y < x. We define

Iov(x, x, y, y) = {Bα | α ∈ Dn}

where (Dn)n∈N is a sequence of set of words defined inductively as follows:

D2 = {lu,ul},D3 = {lut,tlu,utl}, and for n ≥ 4 Dn+1 = tDn ∪ lun ∪ uln.

As an example D4 = {tlut,ttlu,tutl, luuu,ulll}
Proposition 3. The set Inov(x, x, y, y) contains (2n − 3) boxes whose union is
the complement in �x, x	 of B(l,...,l) ∪ B(u,...,u).

3.2 Decomposition into Non-overlapping Sub-boxes

In case a negative intersection has been found the set of points in the upward-
closure of y should be removed. This is the sub-box B(u,...,u) = �y, x	. The same
reasoning holds for the downward-closure of y which is B(l,...,l) = �x, y	.
Definition 6 (Non-overlapping sub-boxes). We define An, Cn, En recur-
sively as follows

E0 = A0 = C0 = ∅ and for n ≥ 1

En+1 = mEn ∪ uAn ∪ lCn, An+1 = ltn ∪ uAn, Cn+1 = utn ∪ lCn.

Let x, y, y, x be 4 n-dimensional points with x < y < y < x. We define

Inov(x, x, y, y) = {Bα | α ∈ En}.

Proposition 4. The set Inov(x, x, y, y) contains (n2 − n) boxes whose union is
the complement in �x, x	 of B(u,...,u) ∪ B(l,...,l).

As an illustration we give An,Cn,En for the dimensions 1, 2 and 3:

n 1 2 3

An l lt ∪ ul ltt ∪ ult ∪ uul

Cn u ut ∪ lu utt ∪ lut ∪ llu

En ∅ lu ∪ ul mlu ∪ mul ∪ ult ∪ uul ∪ lut ∪ llu
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4 Experiments

We have implemented the algorithms proposed in this work and incorporated
them as additions to ParetoLib [2,10] (a Python library for Pareto-Front learn-
ing) and the tool StlEval [3,8]. Implementations in the ParetoLib library only
deal with upsets (or downsets). To satisfy this, one can easily replace some of
the parameters with their opposite.

We now present some experimental results obtained by using our supervised
learning framework to analyse labelled electrocardiogram (ECG). ECG signals
capture information about electrical activity of the heart and can help detect
anomalies in its functioning. We characterize several features (e.g. peaks and
ditches) as parametric specification, and provide the intersection solution set for
the involved parameters with the best possible trade-off between false positives
and false negatives.

4.1 Learning STL Specifications for Labelled ECGs

We present our results on three ECGs (100, 123, 221) each containing between
1500 to 2500 labelled pulses taken from the MIT-BIH Arrhythmia Database of
Physionet [16,25]. We use the formula (1) from Sect. 2 to characterize a parame-
ter predictor Ψ ch for a normal heart pulse. Given a set S of labelled ECG signals,
the upper bounds f− and f+ on the numbers of false negatives and positives
respectively and a matching tolerance value σ, we use the intersection algorithm
to find the relaxed intersection solution set DomInterσ(Ψ ch,S, f+, f−) as defined
in (6) (that is the set of parameter values p such that the predictor Ψ ch

p can pre-
dict normal heart pulses on the labelled signal set S with the numbers of false
positives and false negatives bounded by f+ and f−).

Trade Off Between False Negatives and False Positives. Using a modifi-
cation of Algorithm 1, we query about emptiness of DomInterσ(Ψ ch,S, f+, f−)
and compute the set P(Ψ ch,S) of feasible error bounds as defined in (5). We
recall that Algorithm 1 explores the parameter space up to a given bound δ
on volume. In our experiments we search until we have reduced the volume of
the undecided region to Vδ percentage of the total volume of the parameter
space. The Pareto front that we obtain asymptotically becomes exact as the
value of Vδ tends to zero. In Fig. 4 we show two Pareto front approximations for
ECG-100; the front separating the brown and the green regions corresponds to
Vδ = 1%. The Pareto front separating the red and the brown regions corresponds
to Vδ = 0.1% and is more accurate owing to better exploration.

Looking at Fig. 4, it is pertinent to ask why the predictor (1) cannot match
the labelling with better accuracy for ECG-100. Actually, our formula only takes
the shape of the heart pulses into account but not their time period. Some heart
pulses in ECG-100 are not labelled as normal because they violate the natural
rhythm of the heart and arrive too soon or too late. It is thus not possible to
distinguish them by considering only the shape. For ECG-221, the predictor (1)
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can match the labelling with no false negatives and only a single false positive
(shown in Fig. 1). For ECG-123, it can match with a single false negative and
no false positives.

Fig. 4. ECG 100, Vδ = 1% vs Vδ = 0.1%

3D Intersections. Once we have computed P(Ψ ch,S) with adequate accuracy,
we can use Algorithm 1 to further explore the parameter space for different
values of Vδ, f− and f+. Some exploration results are depicted in Fig. 5 and the
associated computation time in Table 1.

Table 1. Computation time for 3D intersection solution sets.

ECG n0 f− f+ Vδ = 1% Vδ = 0.1% Vδ = 0.01% τa

221 0 1 62 s 262 s 1279 s 19 s

123 1 0 103 s 592 s 3189 s 36 s

100 0 33 758 s 5273 s 18670 s 12 s
a τ represents the time taken to find the first point in the solu-
tion set.

(a) ECG 221,
Vδ = 0.01%, f− = 0, f+ = 1

(b) ECG 123,
Vδ = 0.01%, f− = 1, f+ = 0

Fig. 5. Case study 1: intersection solution sets in 3D
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4.2 Classification of ECGs

We now demonstrate the application of our approach to binary classification of
signals, using the ECGFiveDays dataset from the UCR Time Series Classification
Archive [15]. More concretely, we consider two classes of ECGs taken 5 days
apart from the same person and want to find a classifier that can correctly
predict given an ECG, on which day it was observed (day1 or day5). In [23], an
enumerative method over STL is applied to solve this problem in the absence of a
priori information. By defining expressive and meaningful features, we show how
more informative formulae can be obtained with less training data (23 traces as
compared to 300 in [23]). The features are based on the well known theoretical
modelling of ECG signal as P and T waves combined with a QRS complex (see
e.g. [13]). For each ECG in the dataset, we observe two prominent peaks with
a ditch in between. We define STL formulae to quantify some features of the
signal around the ditch and the peaks as shown in Table 2. The range of feature
values (D1,D5) for day1 and day5 observed in the ECGs are shown in the last
two columns of Table 2. They can be computed using a slight modification of
classical binary search.

Enumeration of Formulae and Finding a Classifier. We rank the features
using the measure4 m = |D1�D5|/|D1∪D5|. We then enumerate all the distinct
pairs (ϕi, ϕj) of features using lexicographical ordering over rank. For each pair
we use the intersection algorithm to learn the parameters which make the dis-
junction formula (Ψ := ϕi ∨ϕj) classify correctly the ECGs given in the training
data. Let S1 and S2 be the labelled signals corresponding to the classes day1
and day5 of ECGs respectively. We compute the intersection of Dom−(Ψ,S1, f−)
and Dom+(Ψ,S2, f+).

Table 2. Features and formulae.

Feature Formula D1 for day1 D5 for day5

Def. of peak (s ≥ (Max[−10,10] s)) ∧ s ≥ 1 NA NA

Def. of ditch (s ≤ (Min[−10,10] s)) ∧ s ≤ −1 NA NA

Depth of the ditch (Min[0,136] s) ≤ p {or ≥ p} (−6.12, −4.767) (−6.51, −5.71)

Location of the ditch F[θ1,θ2] ditch (51.00, 58.99) (51.00, 59.99)

Height of peak 1 (Max s U ditch) ≤ p {or ≥ p} (1.01, 5.42) (0.77, 3.81)

Location of peak 1 F[θ1,θ2] peak (48.00, 56.99) (0.00, 55.99)

Height of peak 2 ditch ∧ ((Max[0,60] s) ≤ p) {or ≥ p} (1.25, 3.296) (1.43, 2.58)

Location of peak 2 ditch ∧ F[θ1,θ2] peak (25.00, 30.99) (23.00, 26.99)

Results for ECG5days Classify. Table 3 summarizes our results for five dif-
ferent training and testing configurations. For the first configuration, we use the
original 23 training traces and 861 testing traces from [1] without any changes.

4 � is the symmetric difference of two sets.
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For the other configurations we split the training set of size 861 and use one
portion for training and the other for testing. The number of traces used for
training and testing are mentioned within brackets in the first column of Table 3.
For example, in the second row we indicate that for configuration 2 we use 100
traces for training and the remaining 761 for testing. Note that for configuration
4 we use all the 861 traces for training and have no traces for testing. For this
configuration, the reason we did not find a solution could be because we required
100% training accuracy. For configuration 5, when we keep the same data split
but allow f−, f+ = 2, we succeed in finding a formula. The 0/0 in the column for
testing error is because the test set is empty. Note that, for a PSTL formula each
parameter valuation in the solution set produces a classifier. Two such classifiers
we found, Ψ cl1

(28.3,11.0,4.0) and Ψ cl2
(27.5,1.0,−1.3) have error values 2/861 and 17/861

respectively on the original testing set.

Ψ cl1
(p1,p2,p3)

:= (ditch ∧ F[p1,c2−p2] peak) ∨ ( (Max s U ditch) ≥ p3)

Ψ cl2
(p1,p2,p3)

:= (ditch ∧ F[p1,c2−p2] peak) ∨ (ditch ∧ (Max[0,c2] s) ≤ −p3) (7)

Table 3. Results for learning (case study 2). See Formula (7) for Ψcl1 , Ψ cl2

Configuration time (s) Testing error Training error

δ = 10−1 δ = 10−2 δ = 5.10−3 Ψcl1 Ψcl2 Ψcl1 Ψcl2

Confg. 1 (23, 861) 2 184 787 2/861 17/861 0/23 0/23

Confg. 2 (100, 761) 1.5 6 10 2/761 17/761 0/100 0/100

Confg. 3 (300, 561) 2 3 5 2/561 NAa 0/300 NA

Confg. 4 (861, 0) 13 79 153 NA NA NA NA

Confg. 5 (861, 0) 5 8.5 12 0/0 NA 2/861 NA
a NA: Not Applicable. Parameter search is unsuccessful.

5 Conclusion and Future Work

In this paper, we presented a new method for extracting knowledge from labelled
signals based on monotonic parametric specifications. To this end, we introduced
the ε-count, to measure the amount of mismatch between two Boolean signals
(e.g., the Boolean signal induced by the labelled input sample, and the one
defined by our learned specification). We then formulated the learning process
as a multi-criteria optimization problem with constraints on the ε-counts of false
positives and false negatives. Finally, we proposed an algorithm to solve this
problem based on the intersection of an upset and a downset, and then applied
it in particular for learning monotonic PSTL specifications. We demonstrated
the performance of our approach on two case studies involving ECG signals.
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As future work, we will investigate the computation of the exact or approxi-
mate solution sets for non-monotonic parametric specification. To partially solve
this, we can find the minimal set of parameters according to heuristic multi-
criteria optimization. However there exist trade-offs among parameters and also
between tightness and robustness. Finding tightest parameters for the given
training examples might not generalize well. Methods that intelligently explore
the parameter space uncovering these trade-offs are needed. Second, we would
like to investigate efficient representations for solution sets. We found the need
for this when dealing with timing parameters. The formula F[τ1,τ2] ϕ is monotonic
with respect to τ1 and τ2, but τ1 and τ2 are related by an implicit constraint,
τ1 ≤ τ2. Replacing multiple occurrences of a parameter with distinct symbols
as suggested in [28] might not be straightforward for timing parameters. Con-
sequently, it becomes more difficult to use boxes to represent the solution set.
The problem of selecting optimal parameter assignments from the solution set
in order to maximize average classification accuracy can also be studied.
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Abstract. We study multiplayer turn-based timed games with reacha-
bility objectives. In particular, we are interested in the notion of subgame
perfect equilibrium (SPE). We prove that deciding the constrained exis-
tence of an SPE in this setting is EXPTIME-complete.
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1 Introduction

Games. In the context of reactive systems, two-player zero-sum games played on
graphs are commonly used to model the purely antagonistic interactions between
a system and its environment [18]. The system and the environment are the two
players of a game played on a graph whose vertices represent the configurations.
Finding how the system can ensure the achievement of his objective amounts to
finding, if it exists, a winning strategy for the system.

When modeling complex systems with several agents whose objectives are not
necessarily antagonistic, the two-player zero-sum framework is too restrictive and
we rather rely on multiplayer non zero-sum games. In this setting, the notion
of winning strategy is replaced by various notions of equilibria including the
famous concept of Nash equilibrium (NE) [16]. When considering games played
on graphs, the notion of subgame perfect equilibrium (SPE) is often preferred to
the classical Nash equilibrium [17]. Indeed, Nash equilibrium does not take into
account the sequential structure of the game and may allow irrational behaviors
in some subgames.

Timed Games. Timed automata [19] is now a well established model for com-
plex systems including real time features. Timed automata have been naturally
extended into two-player zero-sum timed games [2,4,11,14]. Multiplayer non
zero-sum extensions have also been considered [5,7,15]. In these models both
time and multiplayer aspects coexist. In this non zero-sum timed framework,
the main focus has been on NE, and, to our knowledge, not on SPE.
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Main Contributions and Organization of the Paper. In this paper, we
consider multiplayer, non zero-sum, turn-based timed games with reachability
objectives together with the concept of SPE. We focus on the constrained exis-
tence problem (for SPE): given a timed game, we want to decide whether there
exists an SPE where some players have to win and some other ones have to
lose. The main result of this paper is a proof that the SPE constrained exis-
tence problem is EXPTIME-complete for reachability timed games. Let us notice
that the NE constrained existence problem for reachability timed games is also
EXPTIME-complete [7]. This may look surprising as often, there is a complexity
jump when going from NE to SPE, for example the constrained existence prob-
lem on qualitative reachability game is NP-complete for NE [12] and PSPACE-
complete for SPE [8]. Intuitively, the complexity jump is avoided because the
exponential blow up due to the transition from SPE to NE is somehow absorbed
by the classical exponential blow up due to the classical region graph used for
the analysis of timed systems.

In order to obtain an EXPTIME algorithm, we proceed in different steps.
In the first step, we prove that the game variant of the classical region graph
is a good abstraction for the SPE constrained existence problem. In fact, we
identify conditions on bisimulations under which the study of SPE of a given
(potentially infinite game) can be reduced to the study of its quotient. This
is done in Sect. 3 for (untimed) games with general objectives. In Sect. 4, we
then focus on (untimed) finite reachability game and provide an EXPTIME
algorithm to solve the constrained existence problem. Proving this result may
look surprising, as we already know from [8] that this problem is indeed PSPACE-
complete for (untimed) finite games. However the PSPACE algorithm provided
in [8] did not allow us to obtain the EXPTIME algorithm for timed games. The
latter EXPTIME algorithm is discussed in Sect. 5.

Related Works. There are many results on games played on graphs, we refer
the reader to [10] for a survey and an extended bibliography. Here we focus
on the results directly related to our contributions. The constrained existence
of SPEs is studied in finite multiplayer turn-based games with different kinds
of objectives, for example: (qualitative) reachability and safety objectives [8],
ω-regular winning conditions [20], quantitative reachability objectives [9],... In [5],
they prove that the constrained existence problem for Nash equilibria in concur-
rent timed games with reachability objectives is EXPTIME-complete. This same
problem in the same setting is studied in [7] with others qualitative objectives.

2 Preliminaries

Transition Systems, Bisimulations and Quotients. A transition system is
a tuple T = (Σ,V,E) where (i) Σ is a finite alphabet; (ii) V a set of states (also
called vertices) and (iii) E ⊆ V × Σ × V a set of transitions (also called edges).
To ease the notation, an edge (v1, a, v2) ∈ E is sometimes denoted by v1

a−→ v2.
Notice that V may be uncountable. We said that the transition system is finite
if V and E are finite.
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Given two transition systems on the same alphabet T1 = (Σ,V1, E1) and
T2 = (Σ,V2, E2), a simulation of T1 by T2 is a binary relation R ⊆ V1 × V2

which satisfies the following conditions: (i) ∀v1, v
′
1 ∈ V1, ∀v2 ∈ V2 and ∀a ∈ Σ:

((v1, v2) ∈ R and v1
a−→1 v′

1) ⇒ (∃v′
2 ∈ V2, v2

a−→2 v′
2 and (v′

1, v
′
2) ∈ R) and (ii)

for each v1 ∈ V1 there exists v2 ∈ V2 such that (v1, v2) ∈ R. We say that T2

simulates T1. It implies that any transition v1
a−→1 v′

1 in T1 is simulated by a
corresponding transition v2

a−→2 v′
2 in T2.

Given two transition systems on the same alphabet T1 = (Σ,V1, E1) and
T2 = (Σ,V2, E2), a bisimulation between T1 and T2 is a binary relation R ⊆
V1 × V2 such that R is a simulation of T1 by T2 and the converse relation R−1

is a simulation of T2 by T1 where R−1 = {(v2, v1) ∈ V2 × V1 | (v1, v2) ∈ R}.
When R is a bisimulation between two transition systems, we write β instead
of R. If T = (Σ,V,E) is a transition system, a bisimulation on V × V is called
a bisimulation on T .

Given a transition system T = (Σ,V,E) and an equivalence relation ∼ on
V , we define the quotient of T by ∼, denoted by T̃ = (Σ, Ṽ , Ẽ), as follows: (i)
Ṽ = {[v]∼ | v ∈ V } where [v]∼ = {v′ ∈ V | v ∼ v′} and (ii) [v1]∼

a−→∼ [v2]∼ if
and only if there exist v′

1 ∈ [v1]∼ and v′
2 ∈ [v2]∼ such that v′

1
a−→ v′

2. When the
equivalence relation is clear from the context, we write [v] instead of [v]∼.

Given a transition system T = (Σ,V,E), a bisimulation ∼ on T which is also
an equivalence relation is called a bisimulation equivalence. In this context, the
following result holds.

Lemma 1. Given a transition system T and a bisimulation equivalence ∼, there
exists a bisimulation ∼q between T and its quotient T̃ . This bisimulation is given
by the function ∼q: V → Ṽ : v 	→ [v]∼

Turn-Based games
Arenas, plays and histories An arena A = (Σ,V,E,Π, (Vi)i∈Π) is a tuple where
(i) T = (Σ,V,E) is a transition system such that for each v ∈ V , there exists
a ∈ Σ and v′ ∈ V such that (v, a, v′) ∈ E; (ii) Π = {1, . . . , n} is a finite set
of players and (iii) (Vi)i∈Π is a partition of V between the players. An arena is
finite if its transition system T is finite.

A play in A is an infinite path in its transition system, i.e., ρ = ρ0ρ1 . . . ∈ V ω

is a play if for each i ∈ N, there exists a ∈ Σ such that (ρi, a, ρi+1) ∈ E. A history
h in A can be defined in the same way but h = h0 . . . hk ∈ V ∗ for some k ∈ N is
a finite path in the transition system. We denote the set of plays by Plays and
the set of histories by Hist. When it is necessary, we use the notation PlaysA
and HistA to recall the underlying arena A. Moreover, the set Histi is the set of
histories such that their last vertex v is a vertex of Player i, i.e., v ∈ Vi. A play
(resp. a history) in (G, v0) is then a play (resp. a history) in G starting in v0.
The set of such plays (resp. histories) is denoted by Plays(v0) (resp. Hist(v0)).
We also use the notation Histi(v0) when these histories end in a vertex v ∈ Vi.
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Given a play ρ ∈ Plays and k ∈ N, its suffix ρkρk+1 . . . is denoted by ρ ≥ k. We
denote by Succ(v) = {v′|(v, a, v′) ∈ E for some a ∈ Σ} the set of successors of v,
for v ∈ V , and by Succ∗ the transitive closure of Succ. Given a play ρ = ρ0ρ1 . . .,
the set Occ(ρ) = {v ∈ V | ∃k, ρk = v} is the set of vertices visited along ρ.

Remark 1. When we consider a play in an arena A = (Σ,V,E,Π, (Vi)i∈Π), we
do not care about the alphabet letter associated with each edge of the play.
It is the reason why two different infinite paths in T = (Σ,V,E) v0

a−→ v1
a−→

. . .
a−→ vn

a−→ . . . and v0
b−→ v1

b−→ . . .
b−→ vn

b−→ . . . correspond to only one play
ρ = v0v1 . . . vn . . . in A. The same phenomenon appears with finite paths and
histories. We explain later why this is not a problem for our purpose.

Multiplayer Turn-Based Game. An (initialized multiplayer Boolean turn-based)
game is a tuple (G, v0) = (A, (gi)i∈Π) such that: (i) A = (Σ,V,E,Π, (Vi)i∈Π) is
an arena; (ii) v0 ∈ V is the initial vertex and (iii) for each i ∈ Π, gi : Plays →
{0, 1} is a gain function for Player i. In this setting, each player i ∈ Π is equipped
with a set Ωi ⊆ Plays that we call the objective of Player i. Thus, for each i ∈ Π,
for each ρ ∈ Plays: gi(ρ) = 1 if and only if ρ ∈ Ωi. If gi(ρ) = 1 (resp. = 0),
we say that Player i wins (resp. loses) along ρ. In the sequel of this document,
we refer to the notion of initialized multiplayer Boolean turn-based game by the
term “game”. For each ρ ∈ Plays, we write g(ρ) = p for some p ∈ {0, 1}|Π| to
depict gi(ρ) = pi for each i ∈ Π.

Strategies and Outcomes. Given a game (G, v0), a strategy of Player i is a function
σi : Histi(v0) → V with the constraint that for each hv ∈ Histi(v0), σi(hv) ∈
Succ(v). A play ρ = ρ0ρ1 . . . is consistent with σi if for each ρk such that ρk ∈ Vi,
ρk+1 = σi(ρ0 . . . ρk). A strategy profile σ = (σi)i∈Π is a tuple of strategies, one for
each player. Given a game (G, v0) and a strategy profile σ, there exists a unique
play from v0 consistent with each strategy σi. We call this play the outcome of
σ and denote it by 〈σ〉v0 .

Remark 2. We follow up Remark 1. The objectives we consider are of the form
Ω ⊆ Plays. These objectives only depend on the sequence of visited states along
a play (for example: visiting infinitely often a given state) regardless of the
sequence of visited alphabet letters. This is why defining the strategy of a player
with a choice of the next vertex instead of a couple of an alphabet letter and a
vertex is not a problem. Actually, in all this paper one may consider that the
alphabet is Σ = {a}. The reason why we allow alphabet letters on edges is to be
able to consider synchronous products of (timed) automata [3,19]. In this way,
we could consider wider class of objectives (see Sect. 5.4).

Subgame Perfect Equilibria. In the multiplayer game setting, the solution
concepts usually studied are equilibria (see [13]). We here recall the concepts of
Nash equilibrium and subgame perfect equilibrium.
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Let σ = (σi)i∈Π be a strategy profile in a game (G, v0). When we highlight the
role of Player i, we denote σ by (σi, σ−i) where σ−i is the profile (σj)j∈Π\{i}. A
strategy σ′

i �= σi is a deviating strategy of Player i, and it is a profitable deviation
for him if gi(〈σ〉v0) < gi(〈σ′

i, σ−i〉v0). A strategy profile σ in a game (G, v0) is a
Nash equilibrium (NE) if no player has an incentive to deviate unilaterally from
his strategy, i.e., no player has a profitable deviation.

A refinement of NE is the concept of subgame perfect equilibrium (SPE)
which is a strategy profile being an NE in each subgame. Formally, given a game
(G, v0) = (A, (gi)i∈Π) and a history hv ∈ Hist(v0), the game (G�h, v) is called
a subgame of (G, v0) such that G�h = (A, (gi�h)i∈Π) and gi�h(ρ) = gi(hρ) for
all i ∈ Π and ρ ∈ V ω. Notice that (G, v0) is subgame of itself. Moreover if σi

is a strategy for Player i in (G, v0), then σi�h denotes the strategy in (G�h, v)
such that for all histories h′ ∈ Histi(v), σi�h(h′) = σi(hh′). Similarly, from a
strategy profile σ in (G, v0), we derive the strategy profile σ�h in (G�h, v). Let
(G, v0) be a game, following this formalism, a strategy profile σ is a subgame
perfect equilibrium in (G, v0) if for all hv ∈ Hist(v0), σ�h is an NE in (G�h, v).

Studied Problem. Given a game (G, v0), several SPEs may coexist. It is the
reason why we are interested in the constrained existence of an SPE in this game:
some players have to win and some other ones have to lose. The related decision
problem is the following one:

Definition 1 (Constrained existence problem). Given a game (G, v0) and
two gain profiles x, y ∈ {0, 1}|Π|, does there exist an SPE σ in (G, v0) such that
x ≤ g(〈σ〉v0) ≤ y.

3 SPE in a Game and Its Quotient

In this section, we first define the concepts of bisimulation between games and of
bisimulation on a game. Then, we explain how given such bisimulations we can
obtain a new game, called the quotient game, thanks to a quotient of the initial
game. Finally, we prove that if there exists an SPE in a game with a given gain
profile, there exists an SPE in its associated quotient game with the same gain
profile, and vice versa.

3.1 Game Bisimulation

We extend the notion of bisimulation between transition systems (resp. on a
transition system) to the one of bisimulation between games (resp. on a game).
In this paper, by bisimulation between games (resp. on a game) we mean:
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Definition 2 (Game bisimulation). Given two games (G, v0) = (A, (gi)i∈Π)
and (G′, v′

0) = (A′, (g′
i)i∈Π) with the same alphabet and the same set of players,

we say that ∼ ⊆ V × V ′ is a bisimulation between (G, v0) and (G′, v′
0) if (i) ∼

is a bisimulation between T = (Σ,V,E) and T ′ = (Σ,V ′, E′) and (ii) v0 ∼ v′
0.

In the same way, if ∼ ⊆ V × V we say that ∼ is a bisimulation on (G, v0) if ∼
is a bisimulation on T = (Σ,V,E).

The notion of bisimulation equivalence on a transition system is extended
in the same way to games. In the rest of this document, we use the following
notations: (1) If ∼ ⊆ V × V ′ is a bisimulation between (G, v0) = (A, (gi)i∈) and
(G′, v′

0) = (A′, (g′
i)i∈), for each ρ ∈ PlaysA and for all ρ′ ∈ PlaysA′ , we write

ρ ∼ ρ′ if and only if for each n ∈ N: ρn ∼ ρ′
n. (2) If ∼ ⊆ V × V is a bisimulation

on (G, v0) = (A, (gi)i∈) , for each ρ ∈ PlaysA and for all ρ′ ∈ PlaysA, we write
ρ ∼ ρ′ if and only if for each n ∈ N: ρn ∼ ρ′

n. (3) Notations 1 and 2 can be
naturally adapted to histories1.

A natural property that should be satisfied by a bisimulation on a game is
the respect of the vertices partition. It means that if a vertex bisimulates an
other vertex, then these vertices should be owned by the same player.

Definition 3 (∼ respects the partition). Given a game (G, v0) = (A, (gi)i∈Π)
and a bisimulation ∼ on (G, v0), we say that ∼ respects the partition if for all v, v′ ∈
V such that v ∼ v′, if v ∈ Vi then v′ ∈ Vi.

3.2 Quotient Game

Given a game (G, v0) and a bisimulation equivalence ∼ on it which respects the
partition, one may consider its associated quotient game (G̃, [v0]) such that its
transition system is defined as the quotient of the transition system of (G, v0).

Definition 4 (Quotient game). Given a game (G, v0) = (A, (gi)i∈π) such that
A = (Σ,V,E,Π, (Vi)i∈Π), if ∼ is a bisimulation equivalence on (G, v0) which
respects the partition, the associated quotient game (G̃, [v0]) = (Ã, (g̃i)i∈Π) is
defined as follows: (i) Ã = (Σ, Ṽ , Ẽ, (Ṽi)i∈Π) is such that T̃ = (Σ, Ṽ , Ẽ) is the
quotient of T and, for each i ∈ Π, [v] ∈ Ṽi if and only if v ∈ Vi and (ii) for each
i ∈ Π, g̃i : PlaysÃ → {0, 1} is the gain function of Player i.

In order to preserve some equivalent properties between a game and its quo-
tient game, the equivalence relation on the game should respect the gain func-
tions in both games. It means that if we consider two bisimulated plays either
both in the game itself or one in the game and the other one in its quotient
game, the gain profile of these plays should be equal.

1 Once again, with this convention it is possible that two plays (or histories) such
that ρ ∼ ρ′ do not preserve the sequence of alphabet letters as it should be when
we classically consider bisimulated paths in two bisimulated transitions systems.
Remark 2 explains why it is not a problem for us.
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Definition 5 (∼ respects the gain functions). Given an initialized game
(G, v0) = (A, (gi)i∈π) such that A = (Σ,V,E,Π, (Vi)i∈Π) and a bisimulation
equivalence ∼ on (G, v0), we say that ∼ respects the gain functions if the follow-
ing properties hold: (i) for each ρ and ρ′ in Plays, if ρ ∼ ρ′ then g(ρ) = g(ρ′)
and (ii) for each ρ ∈ PlaysA and ρ̃ ∈ PlaysÃ, if ρ ∼q ρ̃ then g(ρ) = g̃(ρ̃).

3.3 SPE Existence

The aim of this section is to prove that, if there exists an SPE in a game equipped
with a bisimilation equivalence which respects the partition and the gain func-
tions, there exists an SPE in its associated quotient game with the same gain
profile, and vice versa.

Theorem 1. Let (G, v0) = (A, (gi)i∈π) be a game and (G̃, [v0]) = (Ã, (g̃i)i∈Π)
its associated quotient game where ∼ is a bisimulation equivalence on (G, v0).
If ∼ respects the partition and the gain functions, we have that: there exists an
SPE σ in (G, v0) such that g(〈σ〉v0) = p if and only if there exists an SPE τ in
(G̃, [v0]) such that g̃(〈τ〉[v0]) = p.

The key idea is to prove that: if there exists an SPE in a game equipped with
a bisimulation equivalence, there exists an SPE in this game which is uniform
and with the same gain profile (see Proposition 1). If σi is a uniform strategy,
each time we consider two histories h ∼ h′, the choices of Player i taking into
account h or h′ are in the same equivalence class (see Definition 6).

Definition 6. Let (G, v0) be a game and ∼ a bisimulation on it, we say that the
strategy σi is uniform if for all h, h′ ∈ Histi(v0) such that h ∼ h′, we have that
σi(h) ∼ σi(h′). A strategy profile σ is uniform if for all i ∈ Π, σi is uniform.

Proposition 1. Let (G, v0) = (A, (gi)i∈π) be a game and ∼ be a bisimulation
equivalence on (G, v0) which respects the partition and such that for each ρ and
ρ′ in Plays, if ρ ∼ ρ′ then g(ρ) = g(ρ′), there exists an SPE σ in (G, v0) such
that g(〈σ〉v0) = p if and only if there exists an SPE τ in (G, v0) which is uniform
and such that g(〈τ〉v0) = p.

4 Reachability Games

In this section we focus on a particular kind of game called reachability game. In
these games, each player has a subset of vertices that he wants to reach. First,
we formally define the concepts of reachability games and reachability quotient
games. Then, we provide an algorithm which solves the constrained existence
problem in finite reachability games in time complexity at most exponential in
the number of players and polynomial in the size of the transition system of the
game.
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4.1 Reachability Games and Quotient Reachability Games

Definition 7. A reachability game (G, v0) = (A, (gi)i∈Π , (Fi)i∈Π) is a game
where each player i ∈ Π is equipped with a target set Fi that he wants to reach.
Formally, the objective of Player i is Ωi = {ρ ∈ Plays | Occ(ρ) ∩ Fi �= ∅} where
Fi ⊆ V . This is a reachability objective.

Given a reachability game (G, v0) = (A, (gi)i∈Π, (Fi)i∈Π) and a bisimulation
equivalence ∼ on this game which respects the partition, one may consider its
quotient game (G̃, [v0]) = (Ã, (g̃i)i∈Π , (F̃i)i∈Π) where for each i ∈ Π, F̃i ⊆ Ṽ .
In attempts to ensure the respect of the gain functions by ∼, we add a natural
property on ∼ (see Definition 8) and define the sets F̃i in a proper way. In the
rest of this paper, we assume that this property is satisfied and that the quotient
game of a reachability game is defined as in Definition 9.

Definition 8 (∼ respects the target sets). Let (G, v0) be a reachability game
and ∼ be a bisimulation equivalence on this game, we say that ∼ respects the
target sets if for all v ∈ V and for all v′ ∈ V such that v ∼ v′: v ∈ Fi ⇔ v′ ∈ Fi).

Definition 9 (Reachability quotient game). Given a reachability game
(G, v0) = (A, (gi)i∈Π, (Fi)i∈Π) and a bisimulation equivalence∼ on this gamewhich
respects the partition and the target sets, its quotient game is the reachability game
(G̃, [v0]) = (Ã, (g̃i)i∈Π , (F̃i)i∈Π) where F̃i = {[v]∼ | v ∈ Fi} for each i ∈ Π. We
call this game the reachability quotient game.

Lemma 2. Let (G, v0) be a reachability game and let ∼ be a bisimulation equiv-
alence. If ∼ respects the target sets in this game, then ∼ respects the gain func-
tions.

4.2 Complexity Results

It is proved that the constrained existence problem is PSPACE-complete in finite
reachability games [8]. Our final purpose is to obtain an EXPTIME algorithm
for the constrained existence problem on reachability timed games (see Sect. 5).
Naively applying the PSPACE algorithm of [8] to the region games would lead
to an EXPSPACE algorithm. That is why we provide here an alternative EXP-
TIME algorithm to solve the constrained existence problem on (untimed) finite
games. This new algorithm will have the advantage to have a running time at
most exponential only in the number of players (and polynomial in the size
of its transition system). This feature will be crucial to obtain the EXPTIME
algorithm on timed games.

Theorem 2. Given a finite reachability game (G, v0), the constrained existence
problem can be solved by an algorithm whose time complexity is at most expo-
nential in |Π| and polynomial in the size of its transition system.
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This approach follows the proof for quantitative reachability games in [9]. This
latter proof relies on two key ingredients: (i) the extended game of a reachability
game and (ii) an SPE outcome characterization based on a fixpoint computation
of a labeling function of the states. Those two key ingredients will be defined
below. Further technical details can be found in [9] for the quantitative case.

Extended Game. Let (G, v0) be a finite reachability game, its associated
extended game (X , x0) = (X, (gX

i )i∈Π , (FX
i )i∈Π) is the reachability game such

that the vertices are enriched with the set of players that have already visited
their target sets along a history. The arena X = (Σ,V X , EX ,Π, (V X

i )i∈Π) is
defined as follows: (i) V X = V × 2Π ; (ii) ((v, I), a, (v′, I ′)) ∈ EX if and only
if (v, a, v′) ∈ E and I ′ = I ∪ {i ∈ Π | v′ ∈ Fi}; (iii) (v, I) ∈ V X

i if and only
if v ∈ Vi; (iv) (v, I) ∈ FX

i if and only if i ∈ I and (v) x0 = (v0, I0) where
I0 = {i ∈ Π | v0 ∈ Fi}.

The construction of (X , x0) from (G, v0) causes an exponential blow-up of
the number of states. The main idea of this construction is that if you consider a
play ρ = (v0, I0)(v1, I1) . . . (vn, In) . . . ∈ PlaysX(x0) , the set In means that each
player i ∈ In has visited his target set along ρ0 . . . ρn. The important points
are that there is a one-to-one correspondence between plays in PlaysA(v0) and
PlaysX(x0) and that the gain profiles of two corresponding plays beginning in
the initial vertices are equal. From these observations, we have:

Proposition 2. Let (G, v0) be a reachability game and (X , x0) be its associated
extended game, let p ∈ {0, 1}|Π| be a gain profile, there exists an SPE σ in
(G, v0) with gain profile p if and only if there exists an SPE τ in (X , x0) with
gain profile p.

In the rest of this section, we will write v ∈ V X (instead of (u, I)) and we
depict by I(v) the set I of the players who have already visited their target set.

Outcome Characterization. Once this extended game is built, we want a way
to decide whether a play in this game corresponds to the outcome of an SPE
or not: we want an SPE outcome characterization. The vertices of the extended
game are labeled thanks to a labeling function λ∗ : V X → {0, 1}. For a vertex
v ∈ V X such that v ∈ V X

i , the value 1 imposes that Player i should reach his
target set if he follows an SPE from v and the value 0 does not impose any
constraint on the gain of Player i from v.

The labeling function λ∗ is obtained thanks to an iterative procedure such
that each step k of the iteration provides a λk-labeling function. This procedure
is based on the notion of λ-consistent play : that is a play which satisfies the
constraints given by λ all along it.

Definition 10. Let λ : V X → {0, 1} be a labeling function and ρ ∈ PlaysX,
we say that ρ is λ-consistent if for each i ∈ Π and for each n ∈ N such that
ρn ∈ V X

i : gX
i (ρ≥n) ≥ λ(ρn). We write ρ |= λ.
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The iterative computation of the sequence (λk)k∈N works as follows: (i) at
step 0, for each v ∈ V X , λ0(v) = 0, (ii) at step k + 1, for each v ∈ V X , by
assuming that v ∈ V X

i , λk+1(v) = maxv′∈Succ(v) min{gX
i (ρ) | ρ ∈ PlaysX(v′) ∧

ρ |= λk} and (iii) we stop when we find n ∈ N such that for each v ∈ V X ,
λn+1(v) = λn(v). The least natural number k∗ which satisfies (iii) is called the
fixpoint of (λk)k∈N and λ∗ is defined as λk∗

. The following lemma states that
this natural number exists and so that the iterative procedure stops.

Lemma 3. The sequence (λk)k∈N reaches a fixpoint in k∗ ∈ N. Moreover, k∗ is
at most equal to |V | · 2|Π|.

Proof (Proof sketch). In the initialization step, all the vertex values are equal
to 0. Then at each iteration, (i) if the value of a vertex was equal to 1 in the
previous step, then it stays equal to 1 all along the procedure and (ii) if the value
of the vertex was equal to 0 then it either stays equal to 0 (for this iteration
step) or it becomes equal to 1 (for all the next steps thanks to (i)). At each step,
at least one vertex value changes and when no value changes the procedure has
reached a fixpoint which corresponds to the values of λ∗. Thus, it means that
λ∗ is obtained in at most |V | × 2|Π| steps.

As claimed in the following proposition, the labeling function λ∗ exactly
characterizes the set of SPE outcomes. The proof is quite the same as for the
quantitative setting [9].

Proposition 3. Let (X , x0) be the extended game of a finite reachability game
(G, v0) and let ρX ∈ PlaysX(x0) be a play, there exists an SPE σ with outcome
ρX in (X , x0) if and only if ρX is λ∗-consistent.

Complexity. Proposition 3 allows us to prove Theorem 2. Indeed, we only have
to find a play in the extended game which is λ∗-consistent and with a gain profile
which satisfies the constrained given by the decision problem.

Proof (Proof sketch of Theorem 2). Let (G, v0) = (A, (gi)i∈Π, (Fi)i∈Π) be a reach-
ability game and let (X , x0) = (X, (gX

i )i∈Π , (FX
i )i∈Π) be its associated extended

game. The game (X , x0) is built from (G, v0) in time at most exponential in the
number of players and polynomial in the size of the transition system of A.

The proof will be organized in three steps whose respective proofs will rely
on the previous step(s): (i) given a gain profile p ∈ {0, 1}|Π|, given λk for some
k ∈ N and given some v ∈ V X , we show that we can decide in the required
complexity the existence of a play which is λk-consistent, beginning in v and
with gain profile p; (ii) given λk for some k ∈ N, we show that the computation
of λk+1 can be performed within the required complexity; and finally (iii) given
x, y ∈ {0, 1}|Π|, we show that the existence of a λ∗-consistent play beginning in
x0 with a gain profile p such that x ≤ p ≤ y can be decided within the required
complexity.
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– Proof of (i): Given λk, v ∈ V X and p ∈ {0, 1}|Π|, we want to know if there
exists a play ρ ∈ PlaysX(v) which is λk-consistent and with gain profile p.
If a play ρ is such that gX(ρ) = p, then for each i ∈ Π such that pi = 1,
the condition of being a λk-consistent play is satisfied. For those such that
pi = 0, for each n ∈ N such that ρn ∈ V X

i , gX
i (ρ≥n) = 0 should be greater

than λk(ρn). This condition is satisfied if and only if for each n ∈ N such
that ρn ∈ V X

i , λk(ρn) �= 1. Thus, we remove from (X , x0) all vertices (and
all related edges) v ∈ V X

i such that λk(v) = 1, for each player i such that
pi = 0. Then, we only have to check if there exists a play ρ which begins in
v and with gain profile p in this modified extended reachability game. This
can be done in O(2|Π| · (|V X | + |EX |)) ([8, Lemma 23]), thus this procedure
runs in time at most exponential in the number of players and polynomial in
the size of the transition system of A.

– Proof of (ii): Given λk, we want to compute λk+1. For each v ∈ V X ,
λk+1(v) = maxv′∈Succ(v) min{gX

i (ρ) | ρ ∈ PlaysX(v′) ∧ ρ |= λk} (by assuming
that v ∈ V X

i ). Thus for each v′ ∈ Succ(v), we have to compute min =
min{gX

i (ρ) | ρ ∈ PlaysX(v′)∧ρ |= λk}. But min = 0 if and only if there exists
ρ ∈ PlaysX(v′) which is λk-consistent and such that gX

i (ρ) = 0. Thus for each
p ∈ {0, 1}|Π| such that pi = 0, we use point (i) to decide if min = 0. From
that follows a procedure which runs in O(|V X |·|V X |·2|Π| ·2|Π| ·(|V X |+|EX |))
(running time at most exponential in the number of players and polynomial
in the size of the transition system A).

– Proof of (iii): It remains to prove that the existence of a λ∗-consistent play
beginning in x0 with a gain profile p such that x ≤ p ≤ y can be decided
within the required complexity. In order to do so, we evaluate the complexity
to obtain λ∗. First, we build λ0 such that λ0(v) = 0 for all v ∈ V X in O(|V X |)
time. Then, we apply point (ii) at most |V |·2|Π| times (by Lemma 3) to obtain
λ∗. Given x, y ∈ {0, 1}|Π|, we consider each p ∈ {0, 1}|Π| such that x ≤ p ≤ y
(at most 2|Π| such ones) and we use point (i) to check if there exists a play
which begins in x0 with gain profile p and which is λ∗-consistent. This can
be done in running time at most exponential in the number of players and
polynomial in the size of the transition system of A.

We conclude the proof by applying Proposition 3.

5 Application to Timed Games

In this section, we are interested in models which are enriched with clocks and
clock guards in order to consider time elapsing. Timed automata [19] are well
known among such models. We recall some of their classical concepts, then we
explain how (turn-based) timed games derive from timed automata.

5.1 Timed Automata and Timed Games

In this section, we use the following notations. The set C = {c1, . . . , ck} denotes
a set of k clocks. A clock valuation is a function ν : C → R

+. The set of clock
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valuations is depicted by CV . Given a clock valuation ν, for i ∈ {1, . . . , k}, we
sometimes write νi instead of ν(ci). Given a clock valuation ν and d ∈ R

+, ν +d
denote the clock valuation ν + d : C → R

+ such that (ν + d)(ci) = ν(ci) + d
for each ci ∈ C. A guard is any finite conjunctions of expressions of the form
ci � x where ci is a clock, x ∈ N is a natural number and � is one of the symbols
{≤, <,=, >,≥}. We denote by G the set of guards. Let g be a guard and ν be
a clock valuation, notation ν |= g means that (ν1, . . . , νk) satisfies g. A reset
Y ∈ 2C indicates which clocks are reset to 0. We denote by [Y ← 0]ν the valua-
tion ν′ such that for each c ∈ Y , ν′(c) = 0 and for each c ∈ C\Y , ν′(c) = ν(c).

A timed automaton (TA) is a tuple (A, �0) = (Σ,L,→, C) where: (i) Σ is a
finite alphabet; (ii) L is a finite set of locations; (iii) C is a finite set of clocks;
(iv) → ⊆ L×Σ ×G× 2C ×L a finite set of transitions; and (v) �0 ∈ L an initial
location. Additionnally, we may equip a timed automaton with a set of players
and partition the locations between them. It results in a players partitioned timed
automaton.

Definition 11 ((Reachability) Players partitioned timed automa-
ton). A players partioned timed automaton (PPTA) (A, �0) = (Σ,L,→,
C,Π, (Li)i∈Π) is a timed automaton equipped with: (i) Π a finite set of players
and (ii) (Li)i∈Π a partition of the locations between the players.

If (A, �0) is equipped with a target set Goali ⊆ L for each player i ∈ Π, we
call it a reachability PPTA.

The semantic of a timed automaton (A, �0) is given by its associated tran-
sition system TA = (Σ,V,E) where: (i) V = L × CV is a set of vertices of the
form (�, ν) where � is a location and ν : C → R

+ is a clock valuation; and (ii)
E ⊆ V × Σ × V is such that ((�, ν), a, (�′, ν′)) ∈ E if (�, a, g, Y, �′) ∈ → for
some g ∈ G and some Y ∈ 2C , and there exists d ∈ R

+ such that: (1) for each
x ∈ X\Y : ν′(x) = ν(x) + d (time elapsing); (2) for each x ∈ Y : ν′(x) = 0
(clocks resetting); (3) ν + d |= g (respect of the guard).

In the same way, the semantic of a PPTA (A, �0) is given by its associated
game (GA, v0).

Definition 12 ((Reachability) Timed games GA). Let (A, �0) = (Σ,L,→
, C,Π, (Li)i∈Π) be a PPTA, its associated game (GA, v0) = (AA, (gi)i∈Π), called
timed game, is such that: (i) AA = (Σ,V,E,Π, (Vi)i∈Π) where TA = (Σ,V,E)
is the associated transition system of (A, �0) and, for each i ∈ Π, (�, ν) ∈ Vi if
and only if � ∈ Li; (ii) for each i ∈ Π, gi : PlaysAA → {0, 1} is a gain function;
(iii) v0 = (�0,0) where 0 is the clock valuation such that for all c ∈ C, 0(c) = 0.

If (A, �0) is a reachability PPTA, its associated timed game is a reachability
game (GA, v0) = (AA, (gi)i∈Π, (Fi)i∈Π) such that for each i ∈ Π, (�, ν) ∈ Fi if
and only if � ∈ Goali. We call this game a reachability timed game.

Thus, in a timed game, when it is the turn of Player i to play, if the play
is in location �, he has to choose a delay d ∈ R

+ and a next location �′ such
that (�, a, g, Y, �′) ∈ → for some a ∈ Σ, g ∈ G and Y ∈ 2C . If the choice of d
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respects the guard g, then the choice of Player i is valid: the clock valuation
evolves according to the past clock valuation, d and Y and location �′ is reached.
Then, the play continues.

5.2 Regions and Region Games

In this section, we consider a bisimulation equivalence on TA (the classical time-
abstract bisimulation from [19]) which allows us to solve the constrained exis-
tence in the quotient of the original timed game (the region game). All along
this section we use the following notations. We denote by xi the maximum value
in the guards for clock ci. For all positive number d ∈ R

+, �d� is the integral
part of d and d is the fractional part of d.

Definition 13 (≈ and region)

– Two clock valuations ν and ν′ are equivalent (written ν ≈ ν′) iff: (i) �νi� =
�ν′

i� or νi, ν
′
i > xi, for all i ∈ {1, . . . , k}; (ii) νi = 0 iff ν′

i, for all i ∈ {1, . . . , k}
with vi ≤ xi and (iii) νi ≤ νj iff ν′

i ≤ ν′
j for all i �= j ∈ {1, . . . , k} with νj ≤ xj

and νi ≤ xi.
– We extend the equivalence relation to the states (≈ ⊆ V ×V ) : (�, ν) ≈ (�′, ν′)

iff � = �′ and ν ≈ ν′;
– A region r is an equivalence class for some v ∈ V : r = [v]≈.

This equivalence relation on clocks and its extension to states of TA is usual
and the following result is well known [19].

Lemma 4 ([19]). Let (A, �0) be a TA, ≈ ⊆ V ×V is a bisimulation equivalence
on TA.

It means that if (GA, v0) is a (reachability) timed game, ≈ is a bisimulation
equivalence on it. Moreover, it respects the partition. Thus, we can consider the
(reachability) quotient game of this game. We call this game the (reachability)
region game. Notice that ≈ respects the target sets, so the reachability quotient
game is defined as in Definition 9.

Definition 14 ((Reachability) region game). Let (GA, v0) be a (reachability)
timed game and ≈ ⊆ V ×V be the bisimulation equivalence defined in Definition 13,
its associated (reachability) region game is its associated (reachability) quotient
game ( ˜̃GA, [v0]).

We recall [19] that the size of ˜̃TA, i.e., its number of states (regions) and
edges, is in O((|V | + | → |) · 2|δ(A)|) where δ(A) is the binary encoding of the
constants (guards and costs) appearing in A. Thus | ˜̃TA| is in O(2| A |) where | A |
takes into account the locations, edges and constants of A. From this follows the
following lemma.
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Lemma 5. The (reachability) region game ( ˜̃GA, [v0]) is a finite (reachability)
game.

Finally, in light of the construction of the reachability region game, the bisim-
ulation equivalence ≈ respects the gain functions of the reachability timed game
and of the reachability region game.

Lemma 6. Given (GA, v0) = (AA, (gi)i∈Π, (Fi)i∈Π) be a reachability timed game
and ( ˜̃GA, [v0]) = ( ˜̃AA, (˜̃gi)i∈Π , ( ˜̃Fi)i∈Π) its associated region game, ≈ respects
the gain functions.

Remark 3. Let A = (Σ,L,→, C) be a timed automaton, TA = (Σ,V,E) be its
associated transition system and ≈ be the bisimulation equivalence on TA as
defined in Definition 13, we have that ((�, ν), a, (�′, ν′)) ∈ E if and only if there
exist g ∈ G, Y ∈ 2C and d ∈ R

+ such that (�, a, g, Y, �′) ∈ →, ν′ = [Y ← 0](v+d)
and v + d |= g. Thus, we abstract the notion of time elapsing in the edges of the
transition system.

Then, since ≈ is a bisimulation equivalence on TA, for all ((�1, ν1),
a, (�′

1, ν
′
1)) ∈ E and for all (�2, ν2) ∈ V such that (�1, ν1) ≈ (�2, ν2), there exists

(�′
2, ν

′
2) ∈ V such that ((�2, ν2), a, (�′

2, ν
′
2)) ∈ E and (�′

1, ν
′
1) ≈ (�′

2, ν
′
2). The time

elapsing between ν1 and ν′
1 is not necessarily the same as between ν2 and ν′

2.
Thus, ≈ is a timed abstract bisimulation in the classical way [19].

5.3 Complexity Results

Theorem 3. Given a reachability PPTA (A, �0) and x, y ∈ {0, 1}|Π|, the con-
strained existence problem in reachability timed games is EXPTIME-complete.

The EXPTIME-hardness is due to a reduction from countdown games and
is inspired by the one provided in [7, Section 6.3.3]. Thus, we only prove the
EXPTIME-easiness.

Proof (EXPTIME-easiness). Given a PPTA (A, �0) with target sets (Goali)i∈Π

and given x, y ∈ {0, 1}|Π|. Thanks to Theorem 1, it is equivalent to solve this
problem in the reachability region game. Moreover, the size of the reachability
region game is exponential, because its transition system ˜̃TA is exponential in
the size of A, but not in the number of players. Then, since the reachability
region game is a finite reachability game (Lemma 5), we can apply Theorem 2.
It causes an exponential blow-up in the number of players but is polynomial in
the size of transition system ˜̃TA. Thus, this entire procedure runs in (simple)
exponential time in the size of the PPTA (A, �0) .

Notice that, since there always exists an SPE in a finite reachability game [20],
there always exists an SPE in the region game and so in the reachability timed
game (Theorem 1).
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5.4 Time-Bounded Reachability, Zenoness and Other Extensions

In this paper, we focus on (qualitative) reachability timed games, and ignore the
effect of Zeno behaviors2. Nevertheless we believe that our approach is rather
robust and can be extended to richer objectives and take into account Zeno
behaviors. In the following paragraphs, we try to briefly explain how this could
be achieved.

Time-Bounded Reachability. A natural extension of our framework would be to
equip the objective of each player with a time-bound. Player i aims at visit-
ing Fi within TBi time units. We believe that this time-bound variant of our
constrained problem is decidable. Indeed, for each player, his time-bound reach-
ability objective can easily be encoded via a deterministic timed automaton (on
finite timed words) Ai. Given a timed game Gb equipped with a timed-bounded
objective for each player (described via Ai), we could, via standard product con-
struction build a new reachability timed game (without time-bound) G. Solving
the constrained existence problem (with time-bound) in Gb is equivalent to solv-
ing the constrained existence problem (of Definition 1) in G (the constrained
being encoded in the Ai’s). This approach could extend to any property that
can be expressed via a deterministic timed automaton.
Towards ω-regular Objectives. Let us briefly explain how our approach could
be adapted to prove the decidability of the constrained existence problem for
timed games with ω-regular objectives. For the sake of clarity, we here focus on
parity objectives. First, let us notice that the results of Sect. 3 (including Theo-
rem 1) apply to a general class of games, including infinite games with classical
ω-regular objectives such as parity. An algorithm to decide the constrained exis-
tence problem (Definition 1) on parity on finite games can be found in [20] via
translation into tree automata. Equipped with these two tools, we believe that
we could adapt the definitions and results of Sect. 5 to obtain the decidability
of the constrained existence problem for parity timed games. Notice that, in
order to obtain our complexity results for finite reachability games, we use other
simpler tools than tree automata.

About Zenoness. In the present paper, we allow a player to win (or to prevent
other players to win) even if his strategy is responsible of Zeno behaviors. In [1],
the authors propose an elegant approach to blame a player that would prevent
divergence of time. The main idea is to transform the ω-regular objective of
each player into another one which will make him lose if he blocks the time. We
believe that this idea could be exploited in our framework in order to prevent
from winning a “blocking time player”.

2 A run ρ = (�0, ν0)
d1,a1−−−→ (�1, ν1)

d2,a2−−−→ . . . in a timed automaton is said timed-
divergent if the sequence (

∑
j≤i dj)i diverges. A timed automaton is non-Zeno if

any finite run can be extended into a time-divergent run [6].
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Abstract. Timed automata are a convenient mathematical model for
modelling and reasoning about real-time systems. While they provide
a powerful way of representing timing aspects of such systems, timed
automata assume arbitrary precision and zero-delay actions; in partic-
ular, a state might be declared reachable in a timed automaton, but
impossible to reach in the physical system it models.

In this paper, we consider permissive strategies as a way to overcome
this problem: such strategies propose intervals of delays instead of single
delays, and aim at reaching a target state whichever delay actually takes
place. We develop an algorithm for computing the optimal permissive-
ness (and an associated maximally-permissive strategy) in acyclic timed
automata and games.

1 Introduction

Timed automata [AD94] are a powerful formalism for modelling and reasoning
about real-time computer systems: they offer a convenient way of modelling tim-
ing conditions (not relying on discretization) while allowing for efficient verifica-
tion algorithms; as a consequence, they have been widely studied by the formal-
verification community, and have been applied to numerous industrial case stud-
ies thanks to advanced tools such as Uppaal [BDL+06], TChecker [HPT19] or
Chronos [BDM+98].

One drawback of timed automata is that they are a mathematical model,
assuming infinite precision in the measure of time; this does not correspond
to physical devices such as computers. As a consequence, properties that are
proven to hold on the model may fail to hold on any implementation. As a very
simple example, consider two (or even infinitely-many) consecutive actions that
have to be performed at the exact same time: while this would be possible in a
mathematical model, this would not be possible on a physical device.

Several approaches have attempted to address such problems, depending on
the property to be checked. When considering safety properties, timing impreci-
sions may add new behaviours, which have to be taken into account in the safety
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check. In that setting, guard enlargement [Pur00,DDMR04] has been proposed
as a way to model the fact that some timing conditions might be considered
true even if they are (slightly) violated: the existence of an enlargement value
for which the set of executions is safe is decidable. When dealing with reachabil-
ity properties, timing imprecisions may prevent a run to be valid. A topological
approach has been proposed, where a state is declared reachable only if there is
a tube of trajectories reaching the target state [GHJ97]. Game-based approaches
have also been proposed, where a state is said reachable if there is a strategy to
reach this state when an opponent player is allowed to modify (up to a certain
point) the values of the delays [BMS15,BFM15].

In this paper, we build on the approach of [BFM15], where the authors aim
at computing maximally-permissive strategies for reaching a target state. While
in classical timed automata, reachability is witnessed by a sequence of delays
and transitions leading to a target state, here the aim is to propose intervals of
delays, leaving it to an opponent player to decide which delay will indeed take
place. Of course, the strategy has to be able to respond to any choice of the
opponent, eventually reaching the target state.

We can then have several ways of measuring permissiveness of a strategy, the
general idea being that larger intervals of delays are preferred. In [BFM15], each
interval is associated with a penalty, which is the inverse of the length of the inter-
val. Penalties are summed up along paths, and maximally-permissive strategies
are those having minimal worst-case penalty. This favours both large intervals
and short paths, but computing optimal strategies could only be achieved in the
case of one-clock timed automata in [BFM15].

In the present paper, permissiveness of a strategy is defined as the size of the
smallest interval proposed by that strategy. We develop an algorithm to compute
the permissiveness of any (winning) configuration in acyclic timed automata and
games, with any number of clocks. Consider for instance a scheduling problem,
where a number of tasks have to be performed in a certain order within a given
delay. Classical reachability algorithms would just say whether a given set of
tasks are schedulable (in the mathematical model); this then requires launching
some of the tasks at very precise dates, as the computed schedule need not be
correct if delays are slightly modified. Instead, our algorithm could compute the
permissiveness of the best schedule, thereby measuring the amount of imprecision
that can be allowed, depending on the deadline by which all tasks have to be
finished.

This paper is organized as follows: in Sect. 2, we introduce the necessary
definitions, in particular of timed automata and permissiveness of strategies, and
prove basic results. Sect. 3 is devoted to solving the case of linear timed automata,
where all states have at most one outgoing transition, thereby focusing only on
choices of delays. Sect. 4 extends this to acyclic timed automata and games.

By lack of space, most of the proofs could not be included in this version of
the paper. They can be found in the long version [CJMM20] of this article.
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2 Definitions

2.1 Piecewise-Affine Functions

A valuation for a set C of variables is a mapping v : C → R≥0, assigning a
nonnegative real value to each variable. We write 0 for the valuation defined
as 0(c) = 0 for any c ∈ C. We write (R≥0)C for the set of valuations for C,
which we identify with (R≥0)n when C has exactly n variables. We write R for
R ∪ {−∞; +∞}.

Definition 1. An n-dimensional affine function is a mapping f : Rn
≥0 → R s.t.

– either there exists a vector (Fk)0≤k≤n ∈ Rn+1 such that f(v) = F0 +∑
1≤i≤n Fi · vi;

– or f(v) = −∞ for all v ∈ Rn
≥0; in that case we can still write f(v) = F0 +∑

1≤i≤n Fi · vi, by setting F0 = −∞ and Fi = 0 for all 1 ≤ i ≤ n;
– or f(v) = +∞ for all v ∈ Rn

≥0; similarly, this corresponds to setting F0 = +∞
and Fi = 0 for all 1 ≤ i ≤ n.

A linear function f is an affine function for which f(0) = 0.

If Φ = (ϕk)1≤k≤m is a set of n-dimensional affine functions and b = (bk)1≤k≤m

is a set of intervals, we write �Φ, b� for the intersection
⋂

1≤k≤m ϕ−1
k (bk). This

defines a convex polyhedron of Rn
≥0.

An n-dimensional piecewise-affine function is a mapping f : Rn
≥0 → R for

which there exists a partition S = (Sk)1≤k≤m of Rn
≥0 into convex polyhedra,

and a family (fk)1≤k≤m of affine functions such that for any x ∈ Rn
≥0, writing k

for the (unique) index in [1;m] such that x ∈ Sk, it holds f(x) = fk(x).

2.2 Timed Automata

Given a valuation v and a nonnegative real d, we denote with v+d the valuation
w such that w(c) = v(c) + d for all c ∈ C. For any subset I ⊆ R≥0, we write
v + I for the set of valuations {v + d | d ∈ I}. Given a valuation v and a subset
r ⊆ C, we write v[r → 0] for the valuation w such that w(c) = 0 if c ∈ r and
w(c) = v(c) if c /∈ r.

The set of linear constraints over C is defined as G(C) � g ::= c ∼ n | g ∧ g
where c ranges over C, n ranges over N, and ∼ ∈ {<,≤,=,≥, >}. That a clock
valuation v satisfies a clock constraint g, denoted v |= g (and sometimes v ∈ g,
seeing g as a convex polyhedron), is defined inductively as

v |= c ∼ n ⇐⇒ v(c) ∼ n v |= g1 ∧ g2 ⇐⇒ v |= g1 and v |= g2

For the rest of this paper, we fix a finite alphabet Σ.

Definition 2 ([AD94]). A timed automaton over Σ is a tuple A = (C, L, T, I)
where C is a finite set of clocks, L is a finite set of states (or locations), and
T ⊆ L×G(C)×Σ × 2C ×L is a finite set of transitions, and I : S → G(C) define
the invariant constraints in locations.
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A configuration of a timed automaton is a pair (�, v) where � is a location
of the automaton and v is a clock valuation such that v |= I(�). The semantics
of timed automata can be defined as an infinite-state labelled transition system
whose states are the set of configurations, and whose transitions are of two kinds:

– delay transitions model time elapsing: no transitions of the timed automaton
are taken, but the values of all clocks are augmented by the same value.
For any configuration (�, v) and any delay d ∈ R≥0, there is a transition

(�, v) d−→ (�, v + d), provided that v + d |= I(�);
– action transitions represent the effect of taking a transition in the timed

automaton. For any configuration (�, v) and any transition t = (�, g, a, r, �′),
if v |= g, then there is a transition (�, v) a−→ (�′, v[r → 0]), provided that
v[r → 0] |= I(�′).

We write (�, v)
d,a−−→ (�′, v′) when there exists (�′′, v′′) such that (�, v) d−→ (�′′, v′′)

and (�′′, v′′) a−→ (�′, v′). A run of a timed automaton is a sequence of con-
figurations (�i, vi)i such that there exists d ∈ R≥0 and a ∈ Σ such that

(�i, vi)
d,a−−→ (�i+1, vi+1) for all i. Even if it means adding a sink state and corre-

sponding transitions, we assume that from any configuration, there always exists
a transition

d,a−−→ for some d ∈ R≥0 and some a ∈ Σ. This way, any finite run
can be extended into an infinite run (in terms of its number of transitions). We
also assume that, from any location � and any action a, there is at most one
transition from � labelled with a.

One of the most basic problems concerning timed automata is that of reach-
ability of a location: given a timed automaton A, a source configuration (�0, v0)
(usually assuming v0 = 0) and a target location �f , it amounts to decid-
ing whether there exists a run from (�0, v0) to some configuration (�f , vf ) in
the infinite-state transition system defining the semantics of A. This problem
has been proven decidable (and PSPACE-complete) in the early 1990s [AD94],
using region equivalence, which provides a finite-state automaton that is (time-
abstracted) bisimilar to the original timed automaton.

2.3 Permissive Strategies in Timed Automata

Solving reachability using the algorithm above, we can obtain a sequence of
delays and transitions to be taken for reaching the target location. Playing this
sequence of delays and transitions however requires infinite precision in order to
meet all timing constraints, which might not be possible on physical devices.

In this paper, we address this problem by building on the setting studied in
[BFM15]: in that setting, the delays that are played may be slightly perturbed,
and it can be required to adapt the future delays (and possibly actions) so as to
make sure that the target is indeed reached.

We encode the imprecisions using a game setting: the player proposes an
interval of possible delays (together with the action to be played), and its oppo-
nent selects, in the proposed interval, the exact delay that will take place.
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Formally, in our setting, a move from some configuration (�, v) is a pair (I, a),
where I ⊆ R≥0 is a closed1 interval, possibly right-unbounded, and a ∈ Σ, such
that there is a transition (�, g, a, r, �′) for which v + I ⊆ g (i.e., for any valuation
w ∈ v + I, it holds w |= g). We write moves(�, v) for the set of moves from (�, v).

A permissive strategy is a function σ mapping finite runs (�i, vi)0≤i≤n to
moves in moves(�n, vn). A run ρ = (�i, vi)i is compatible with a permissive strat-
egy σ if, for any finite prefix π = (�i, vi)0≤i≤j of ρ, σ(π) is defined and, writing

σ(π) = (I, a), there exists d ∈ I such that (�j , vj)
d,a−−→ (�j+1, vj+1). A permis-

sive strategy σ is winning from a given configuration (�0, v0) if any infinite run
originating from (�0, v0) that is compatible with σ is winning (which, in our
setting, means that it visits the target location �f ). Notice that classical strate-
gies (which propose single delays instead of intervals of delays) are special cases
of permissive strategies. It follows that, as soon as there is a path from some
configuration (�, v) to �f , there exists a winning permissive strategy from (�, v)
(possibly proposing punctual intervals). Such configurations are said winning,
and the winning zone is the set of all winning configurations.

Our aim is to compute maximally-permissive winning strategies. In this work,
we measure the permissiveness of a strategy σ in a configuration (�, v), denoted
Permσ(�, v), as the length of the smallest interval it may return. Formally:

Definition 3. Let σ be a permissive strategy, and (�, v) be a configuration of A.
The permissiveness of σ in (�, v), denoted with Permσ(�, v), is defined as follows:

– if σ is not winning from (�, v), the permissiveness of σ in (�, v) is −∞;
– otherwise, Permσ(�, v) = inf{|I| | ∃π. σ(π) = (I, a) for some a}.

The permissiveness of configuration (�, v) is then defined as

Perm(�, v) = sup
σ

Permσ(�, v).

In this paper, we prove that Perm is a piecewise affine function, and develop an
algorithm for computing that function. Intuitively, this corresponds to comput-
ing how much precision is needed in order to reach the target configuration.

Remark 4. Notice that our definition of permissiveness is similar in spirit with
that of [BFM15]. However, in [BFM15], each move (I, a) was associated a penalty
(namely 1/|I|), and penalties are summed up along the execution. This tends
to make the player favour shorter paths with possibly small intervals (hence
demanding more accuracy when playing) over long paths with larger intervals.
Our setting only aims at maximizing the size of the smallest interval to be played.

Our work can also be seen as a kind of quantitative extension of tubes of
trajectories of [GHJ97]: permissiveness could be seen as the minimal width of
such a tube. However, we are in a game-based setting, and (except in Sect. 3)
the strategy could suggest to take different transitions if they allow for more
permissiveness.

1 We only consider closed intervals here to simplify the presentation.
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Finally, and perhaps more importantly, our setting is quite close to that of
[BMS15], but with a more quantitative focus: we aim at computing the optimal
permissiveness for all winning configurations (with reachability objective), while
only a global lower bound (of the form 1/m where m is doubly-exponential in
the size of the input) is obtained in [BMS15]. Similar results to those of [BMS15]
are obtained in [SBMR13,BGMRS19] for Büchi objectives; such extensions are
part of our future work.

Remark 5. The term permissive strategy is sometimes used to refer to non-
deterministic, returning the set of all moves that lead to winning configurations.
In particular, Uppaal-Tiga [BCD+07] can compute maximally-permissive strate-
gies in that sense. But this is only a local view of permissiveness, while our aim
is to allow for high permissiveness all along the execution.

2.4 Iterative Computation of Permissiveness

Towards computing Perm, we define:

Pi(�f , v) = +∞ for all valuations v and all i ≥ 0;
P0(�, v) = −∞ for all valuations v, and for all � �= �f ;

Pi+1(�, v) =

⎧
⎪⎪⎨

⎪⎪⎩

sup
(I,a)∈moves(�,v)

min(|I|, inf{Pi(�′, v′) | ∃d ∈ I. (�, v)
d,a−−→ (�′, v′)})

if moves(�, v) �= ∅

−∞ otherwise

In the rest of section, we prove some basic properties of this sequence of
functions, and in particular its link with permissiveness. The next sections will
be devoted to its computation on acyclic timed automata.

Our first two results are concerned with the evolution of the sequence with
i. They are proved by straightforward inductions.

Lemma 6. For any (�, v), the sequence (Pi(�, v))i∈N is nondecreasing.

Lemma 7. If the longest path from � to �f has at most i transitions, then for
any v and any j ≥ 0, it holds Pi+j(�, v) = Pi(�, v).

The following lemma ties the link between the sequence (Pi) and permissiveness:

Proposition 8. For any i ∈ N and for any configuration (�, v), it holds:

1. Pi(�, v) = −∞ if, and only if, there are no runs of length at most i from (�, v)
to �f ;

2. for any p ∈ R≥0, and any i ∈ N, it holds Pi(�, v) > p if, and only if, there is
a permissive strategy with permissiveness larger than p that is winning from
(�, v) within i steps.
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Proof. We begin with the first equivalence, which we prove by induction on i.
The result is trivial for i = 0. Now, assume that the result holds up to index
i. There may be two reasons for having Pi+1(�, v) = −∞ for some (�, v): either
moves(�, v) is empty, or it is not empty and for any (I, a) ∈ moves(�, v), it holds

inf{Pi(�′, v′) | ∃d ∈ I.(�, v)
d,a−−→ (�′, v′)} = −∞.

This is true in particular when I = {d} is punctual: for any (d, a), the successor

(�′, v′) such that (�, v)
d,a−−→ (�′, v′) is such that Pi(�′, v′) = −∞. From the induc-

tion hypothesis, there can be no path from those (�′, v′) to �f with i steps or
less. Hence there are no paths from (�, v) to �f with at most i + 1 steps.

Conversely, if there are no paths having at most i + 1 steps from (�, v) to
�f , then either this is because moves(�, v) = ∅, or this is because all moves lead
to a configuration from which there are no paths of length at most i to �f . By
induction hypothesis, all successor configurations have infinite Pi, hence also
Pi+1(�, v) = −∞.

We now prove the second claim, still by induction. The base case is again
trivial. Now, assume that the result holds up to some index i. We fix some
p ∈ R≥0, and first consider a configuration (�, v) with Pi+1(�, v) > p. This entails
that moves(�, v) is non-empty, and that there is a move (I, a) with |I| > p such

that Pi(�′, v′) > p for all (�′, v′) such that (�, v)
d,a−−→ (�′, v′) with d ∈ I. Applying

the induction hypothesis, there is an i-step winning strategy with permissiveness
larger than p from each successor configuration (�′, v′), from which we can build
an i + 1-step winning strategy with permissiveness larger than p from (�, v).

Conversely, pick an i+1-step winning strategy σp from (�, v) with permissive-
ness larger than p. Write σp(�, v) = (I0, a0). Then for any d ∈ I0, in the location

(�′, v′) such that (�, v)
d,a0−−−→ (�′, v′), strategy σp is an i-step winning strategy

with permissiveness larger than p, so that, following the induction hypothesis,
Pi(�, v) > p. It immediately follows that Pi+1(�, v) > p. ��

Our next three results focus on properties of the functions Pi. First, we
identify zones on which Pi is constant. This will be useful for proving correctness
of our algorithm computing Pi in the next section:

Lemma 9. Let A be a timed automaton, with maximal constant M . Let � be a
location, and i ∈ N. Take two valuations v and v′ such that, for any clock c, we
have either v(c) = v′(c), or v(c) > M and v′(c) > M . Then Pi(�, v) = Pi(�, v′).

Next we prove that the functions Pi are 2-Lipschitz continuous (on the zone
where they take finite values):

Proposition 10. For any integer i ∈ N and any location �, the function τ� : v �→
Pi(�, v) is 2-Lipschitz on the set of valuations where it takes finite values.

Finally, the following lemma shows the (rather obvious) fact that Pi(�, v+t) ≤
Pi(�, v). A consequence of this property is that, for any non-resetting transition,
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the optimal choice for the opponent is the largest delay in the interval proposed
by the player2. This corresponds to the intuition that by playing later, the oppo-
nent will force the player to react faster at the next step. As Example 1 below
shows, this is not the case in general: in that example, from (�0, 〈x = 0; y = 0〉),
if the player proposes interval [1/4; 1], the optimal choice for the opponent is
d = 1/4).

Lemma 11. Let (�, v) be a configuration, t ∈ R≥0 such that (�, v + t) is a
configuration of the automaton, and i ∈ N. Then Pi(�, v) − t ≤ Pi(�, v + t) ≤
Pi(�, v).

Example 1. Consider the automaton of Fig. 1. We compute the optimal permis-
siveness (and corresponding strategies) for this small example. First, Pi(�f , v) =
+∞ for all i, and P0(�0, v) = P0(�1, v) = −∞.

�0 �1 �f

0≤x≤1

0≤y≤1

y:=0

1≤x≤2

0≤y≤1

1
2

1−x
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1+x−y
2

−∞

−∞

x

y

0

0

1

1

x

y

x−y 2−x

1−y

−∞

−∞

−∞

0

0

1

1

2

Fig. 1. A linear timed automaton and its permissiveness at �0 and �1

We first focus on �1, with some valuation v: obviously, if v(x) > 2 or v(y) > 1,
the set moves(�1, v) is empty, and P1(�1, v) = −∞ in that case; similarly if
v(y) > v(x). Since P0(�f , v) does not depend on v, the optimal move for the
player is the largest possible interval satisfying the guard:

– if v(x) ≤ 1 and v(y) ≤ 1 (and v(x) ≤ v(y)), the optimal interval of delays is
[1 − v(x); 1 − v(y)], whose length is v(x) − v(y);

– if v(y) ≤ 1 ≤ v(x) ≤ 2, the transition is immediately available, so that the
lower bound of the interval will be 0. For the upper bound, there are two
cases:

• if v(y) ≥ v(x) − 1, the optimal interval is [0; 1 − v(y)];
• if v(y) ≤ v(x) − 1, the optimal interval is [0; 2 − v(x)].

2 This also holds for any transition in a one-clock timed automaton (because in case
the clock is reset, the new valuation does not depend on the delay chosen by the
opponent).
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This defines the permissiveness for �1.

We now look at �0: first, P1(�0, v) = −∞ for all v, and only configurations
(�0, v) where v(x) ≤ 1 and v(y) ≤ 1 are winning, so that P2(�0, v) = −∞
as soon as v(x) > 1 or v(y) > 1. Fix a valuation v for which v(x) ≤ 1 and
v(y) ≤ 1. We have to find the interval I = [α, β] such that v(x) + β ≤ 1 and
v(y) + β ≤ 1, and for which min{β − α, infγ∈[α,β] P1(�1, (v + γ)[y → 0])} is
maximized. Noticing that (v + γ)[y → 0] is the valuation (x �→ v(x) + γ; y �→ 0),
and that P1(�1, w) = w(x) for any w satisfying w(x) ∈ [0; 1] and w(y) = 0, we
have to maximize min{β − α, infγ∈[α,β] v(x) + γ} over the domain defined by
0 ≤ α ≤ β ≤ min(1 − v(x); 1 − v(y)). Obviously, infγ∈[α,β] v(x) + γ = v(x) + α,
so we have to maximize min{β − α, v(x) + α} on the set {(α, β) | 0 ≤ α ≤ β ≤
min(1 − v(x); 1 − v(y))}.

We consider two cases:

– if v(y) ≤ v(x): clearly, it is optimal to maximize β, so we let β = 1 − v(x).
Hence we have to maximize min{1−(v(x)+α), v(x)+α} over 0 ≤ α ≤ 1−v(x).
Again, there are two cases, depending on whether v(x) is larger or smaller
than 1/2; in the former case, min{1 − (v(x) + α), v(x) + α} = 1 − v(x) − α
when α ranges over [0; 1 − v(x)]; it is maximized for α = 0, and we get
P2(�0, v) = 1 − v(x). If v(x) ≤ 1/2, the maximal value is reached when
α = 1/2 − v(x), and P2(�0, v) = 1/2.

– if v(y) ≥ v(x): then it is optimal to let β = 1 − v(y). Again there are two
cases for maximizing min{1 − v(y) − α, v(x) + α}: if 1 − v(y) ≤ v(x), then
α = 0 is optimal, and P2(�0, v) = 1− v(y); otherwise, α = (1− v(x)− v(y))/2
is optimal, and P2(�0, v) = (1 − v(y) + v(x))/2.

We end up with the diagram represented on the left of Fig. 1 (where for the sake
of readability we write x and y in place of v(x) and v(y)).

Our aim in the rest of this paper is to compute the sequence of functions Pi,
and to evaluate the complexity of this computation. Following Lemma 7, this
will provide us with an algorithm for computing permissiveness in acyclic timed
automata.

3 Computing Optimal Strategies in Linear Timed
Automata

In this section, we consider the simpler case of linear timed automata, where
each location has at most one successor.

3.1 Optimal Strategy for the Opponent

We begin with focusing on the optimal choice of the opponent: given a con-
figuration (�, v) and an interval I of delays proposed by the player (there is a
single outgoing transition, so the action to be played is fixed), what is the best
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delay that the opponent will choose so as to minimize the permissiveness of the
resulting configuration?

As we already mentioned, Lemma 11 answers this question for non-resetting
transitions: for such transitions, the best option for the opponent is to choose
the maximal delay in the interval proposed by the player. On the other hand,
Example 1 provides a situation where the opponent prefers to play as early as
possible.

It turns out that, for linear timed automata, the optimal choice of the oppo-
nent is always one of these two extremal choices. This property will be a corollary
of the following lemma, stating concavity of the permissiveness function in linear
timed automata:

Proposition 12. Let i ∈ N. Let � be a location of a linear timed automaton, let
v1 and v2 be two clock valuations such that Pi(�, v1) and Pi(�, v2) are finite. Let
λ ∈ [0; 1], and vλ = λ · v1 + (1 − λ) · v2. Then

Pi(�, vλ) ≥ λ · Pi(�, v1) + (1 − λ) · Pi(�, v2).

The aim of the opponent being to select the valuation in V = {v + δ[r → 0] |
0 ≤ δ ≤ d} that minimizes the permissiveness. Writing v1 = v[r → 0] and v2 =
v + d[r → 0], we have V = {λv1 + (1 − λ)v2 | 0 ≤ λ ≤ 1}. Proposition 12 entails
that the permissiveness is minimized either in v1 or in v2. This corresponds to
our claim that the best choice for the opponent always is to select one of the
bounds of the interval proposed by the player.

Corollary 13. Let � be a location of a linear timed automaton, v and v′ be two
clock valuations, λ ∈ [0; 1], and vλ = λ · v + (1 − λ) · v′. Then for all i:

Pi(�, vλ) ≥ min{Pi(�, v),Pi(�, v′)}.

In particular, for any valuation v, any bounded interval [α, β], and any transition
�

g,a,r−−−→ �′:

inf{Pi(�′, v′) | ∃d ∈ [α, β]. (�, v)
d,a−−→ (�′, v′)} = min{Pi(�′, v′

α),Pi(�′, v′
β)}

where (�, v)
α,a−−→ (�′, v′

α) and (�, v)
β,a−−→ (�′, v′

β).

3.2 Computing the Most-Permissive Strategy

Now that we have a better understanding of the optimal strategy of the opponent,
we can compute the most-permissive strategy of the player for reaching the target
location �f . We prove that for all i, Pi is in fact a piecewise-affine function that
can be computed in doubly-exponential time.
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First notice that, following Lemma7, for any location � of a linear timed
automaton with n locations, the sequence of functions (Pi)i converges in at
most n steps.

Theorem 14. The permissiveness function for a linear timed automaton with d
locations and n clocks is a piecewise-affine function. It can be computed in time
O((n + 1)8

d

).

The following technical lemma will be the central tool in the computation of
Pi:

Lemma 15. Let mα ≤ Mα and mβ ≤ Mβ, and D = {(α, β) ∈ R2
≥0 | mα ≤

α ≤ Mα, mβ ≤ β ≤ Mβ , α ≤ β}. Let f : α �→ aα + b and g : β �→ cβ + d
be two 1-dimensional affine functions, and μ : (α, β) �→ min{β − α, f(α), g(β)}.
Then the maximal value that μ may take over D is of one of the following five
forms: Mβ −mα, λ·f(ν), λ·g(μ), ad−bc

a−c and ad−bc
(a+1)(1−c)−1 , with λ ∈ {1, 1

1−c , 1
a+1}

and ν ∈ {mα,Mα,mβ ,Mβ}. This value can be computed by checking inequalities
between expressions of the same forms.

The following lemma corresponds to one step of our inductive computation
of Pi:

Lemma 16. Let A be a linear timed automaton with n clocks. Let (�, g, a, z, �′)
be a transition of A, and assume that v �→ Pi−1(�′, v) is piecewise affine, with m
cells. Then v �→ Pi(�, v) is piecewise affine. It can be computed in time O(m4 ·
(m+n)4). It can be defined using a polyhedral partition of size O(m4 · (m+n)4),
and with coefficients polynomial in those of Pi−1.

Proof. We assume that Pi−1(�′, v) is not constantly −∞ (if it were the case, then
also Pi(�, v) = −∞ for all v). Similarly, we assume that moves(�, v) is non-empty
for some v. Since v �→ Pi−1(�′, v) is piecewise-affine: we can then fix a polyhedral
partition �Φ,P � and, for each cell h in this partition, an affine functions fh, such
that Pi−1(�′, v) = fh(v) for the only cell h containing v.

hβ
hα

S(hα,hβ)

hβ
hα

v

Iv
α

Iv
β

hβ
hα

v

interval to
be played

Fig. 2. Three steps of our procedure: S(hα,hβ); then compute expressions for Iv
α and Iv

β

(notice that we had to refine S(hα,hβ), because the expression for Iv
β would be different

for the lower part of S(hα,hβ) since it ends of a different facet of hβ); finally select best
values for α and β.
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Our procedure for computing Pi in � consists in listing the possible pairs of
cells defining Pi−1 in �′ where the left- and right-bounds of the interval to be
proposed lie. For each pair (hα, hβ) of such cells, we perform the following three
steps (illustrated on Fig. 2):

– characterize the set S(hα,hβ) of all valuations from which those cells can be
reached by taking the transition from � to �′. We compute this polyhedron
using quantifier elimination;

– compute the ranges for α and β that can be played in order to indeed end up
respectively in hα and hβ . These are intervals Iα and Iβ , whose bounds are
expressed as functions of v. Computing these bounds may require refining the
polyhedron obtained at the previous step into several subpolyhedra, in order
to express them as affine functions of v ∈ S(hα,hβ);

– for each subpolyhedron, compute the optimal values for α and β: following
Corollary 13, this amounts to find values for α ∈ Iα and β ∈ Iβ that maximize
the following function:

μ : (α, β) �→ min{β − α;Pi−1(�′, (v + α)[z → 0]);Pi−1(�′, (v + β)[z → 0])}.

This is performed by applying our technical Lemma15; it may again require
another refinement of the subpolyhedra, and returns an affine function for
each subpolyhedron.

For each pair (hα, hβ), we end up with a (partial) piecewise-affine function,
defined on S(hα,hβ), returning the optimal permissiveness that can be obtained
if playing interval [α, β] such that taking the transition to �′ after delay α (resp.
β) leads to hα (resp. hβ). Our final step to compute Pi in � consists in taking the
maximum of all these partial functions on their (possibly overlapping) domains;
this may introduce on more refinement of our polyhedron.

Notice that all these computations are performed symbolically w.r.t v: we
manipulate affine functions of v, with conditions on v for our computations to
be valid. ��

Assuming that v �→ Pi−1(�′, v) has m cells, computing v �→ Pi(�, v) takes
time O(m4 · (m + n)4), where n is the number of clocks, and this function has
O(m4 · (m + n)4) many cells.

It follows that, for a linear timed automaton having d locations, we obtain
the permissiveness function in the initial state as a piecewise-affine function in
time O((n + 1)8

d

), which proves Theorem 14.

4 Extension to Acyclic Timed Automata and Games

4.1 Adding Branching

We extend the previous study to the case of acyclic timed automata (with branch-
ing). In that case, we can still apply our inductive approach, with a few changes:



Computing Maximally-Permissive Strategies in Acyclic Timed Automata 123

at each step, we would compute the optimal move of the player for each sin-
gle action, and then select the optimal action by “superimposing” the resulting
permissiveness functions and selecting the action that maximizes permissiveness.
This however breaks the result of Proposition 12: the maximum of two concave
functions need not be concave. Example 2, derived from Example 1, displays an
example where the permissiveness function is not concave.

Example 2. Consider the automaton of Fig. 3. The transition from �0 to �f has
the same constraint as that from �1 to �f ; hence the permissiveness offered by
that action is the same as the one from �1, which we already computed. Hence
the global permissiveness from �0 is the (pointwise) maximal of the two piecewise-
affine functions displayed on Fig. 1, which is depicted on Fig. 3. On this diagram,
the blue area corresponds to points from where it is better (or only possible) to
go via �1, while the red area corresponds to valuations from where it is better
(or only possible) to take the bottom transition.

�0 �1 �f

0≤x≤1∧0≤y≤1

y:=0

1≤x≤2∧0≤y≤1

1≤x≤2∧0≤y≤1
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y
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0

1

1

2

1
2

1
−x

1−y

1+x−y
2

x−y

2−x

1−y

−∞

−∞

x
y

permissiveness

Fig. 3. A timed automaton and its (non-concave) permissiveness function in �0 (Color
figure online)

We prove by induction that the permissiveness functions still are piecewise-
affine in that setting. Hence all four steps of our proof of Lemma16 still apply,
with some adaptations. For each location �, for each transition t from � to some
�′, the procedure now is as follows:

– for the first step, we again consider two cells hα and hβ in the partition
defining Pi−1(�′), together with a set H of cells that will be visited between
hα and hβ . Again applying Fourier-Motzkin, we get a polyhedron S(hα,hβ ,H)

of valuations from which those cells can indeed be visited;
– the computation of the intervals Iv

α and Iv
β is unchanged;
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– for each cell h ∈ H, we can compute the values dinh and douth for which
(v + dinh )[z → 0] enters h and (v + douth )[z → 0] leaves h (notice that this may
require further refinement of the polyhedron being considered). Since Pi−1 is
affine on cell h, it reaches its maximum on this cell either at (v + dinh )[z → 0]
or at (v + douth )[z → 0]. The function we need to maximize now looks like

μ′ : (α, β) �→ min({β − α,Pi−1(�′, (v + α)[z → 0]),Pi−1(�′, (v + β)[z → 0])} ∪
{Pi−1(�′, (v + dinh )[z → 0]),Pi−1(�′, (v + douth )[z → 0]) | h ∈ H}).

Now, we notice that all values in the second set are constant, not depending
on α and β. We can thus still apply Lemma 15 in order to maximize μ(α, β),
and then take the above constants into account (which may again refine the
polyhedra).

– the above three steps have to be performed for all outgoing transitions from
the location � being considered. The last step still consists in selecting the
maximum of all the resulting functions.

The complexity of our procedure is much higher than that of linear automata:
because we consider sets of cells already at the first step, we have O(2m) sets
to consider. Assuming that Pi−1 is made of m cells, we may end up with Pi

having more than 2m cells. Since we have to repeat this procedure up to |T |
times, so that the time complexity is in O(|T |2) (where na is tetration). Hence
our procedure is non-elementary in the worst case. In the end:

Theorem 17. The permissiveness function for acyclic timed automata is piece-
wise affine. It can be computed in non-elementary time.

4.2 Adding Uncontrollable States

We finally extend our approach to (acyclic) two-player turn-based timed games.
This setting is easily seen to preserve piecewise-affineness of the permissive-

ness function. Indeed, in order to compute Pi in a location � belonging to the
opponent, it suffices to first compute the functions P�→�′

i for all outgoing transi-
tions from � to some �′; this follows the same procedure as above, and results in
a piecewise-affine function, assuming (inductively) that Pi−1 is piecewise affine.
We then compute the (still piecewise-affine) minimum Mi(�, v) of all those func-
tions, and finally

Pi(�, v) = min
d s.t.

v+d |= Inv(�)

Mi(�, v + d)

which is easily computed and remains piecewise-affine. The computation for loca-
tions that belong to the player is similar as in the case of plain timed automata.
It follows:

Theorem 18. The permissiveness function for acyclic turn-based timed games
is piecewise affine, and can be computed in non-elementary time.
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5 Conclusions and Perspectives

In this paper, we addressed the problem of measuring the amount of precision
needed in a timed automaton to reach a given target location. We built on the for-
malism of permissive strategies defined in [BFM15], and developed an algorithm
for computing the optimal permissiveness in acyclic timed automata and games.

There are several directions in which we will extend this work: as a first task,
we will have a closer look at the complexity of our procedure, trying to either
find examples where the number of cells indeed grows exponentially (for linear
timed automata) or exponentially at each step (for acyclic timed automata). A
natural continuation of our work consists in tackling cycles. We were unable
to prove our intuition that there is no reason for the player to iterate a cycle.
Following [BGMRS19], we might first consider fixing a timed automaton made
of a single cycle, study how permissiveness evolves along one run in this cycle,
and compute the optimal permissiveness for being able to take a cycle forever.
Exploiting 2-Lipschitz continuity of the permissiveness function, we could also
develop approximating techniques, both for making our computations more effi-
cient in the acyclic case and to handle cycles. Finally, other interesting direc-
tions include extending our approach to linear hybrid automata, or considering
a stochastic opponent, thereby modelling the fact that perturbations need not
always be antagonist.
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Abstract. When a real-time model checker detects the violation of a
timed reachability property for a given Timed Automata model it returns
a counterexample, here referred to as a Timed Diagnostic Trace (TDT).
In this paper, we present a TDT analysis that computes actual dynamic
causes in terms of delay ranges that can be considered causal for the
violation of the property. The determination of actual causes can help in
system analysis as well as design space exploration. The causal analysis is
based on counterfactual reasoning and encoded in linear real arithmetic.
We apply an implementation of the analysis in the tool CaTiRA to a
number of Timed Automata models taken from the literature.

1 Introduction

The analysis of causes for the violation of a desired property has various appli-
cations in the design of systems. We are particularly interested in developing
notions of causality and related analyses for models describing system computa-
tions. We have defined Causality Checking in [14] as a means to compute actual
causes [10] for the violation of reachability properties, relying on a counterfactual
[15] notion of causality inspired by the seminal works of Halpern and Pearl [10].

The actual causes computed in this work rely on choices made during the
dynamic execution of the model, for instance, a non-deterministically chosen
interleaving of concurrent events during the execution of the model, and we
refer to this type of a cause as dynamic actual causes. In other work, we have
considered the syntactic repair of timed automata models based on an analysis
of timed diagnostic traces obtained in real-time model checking [12]. In that
work, syntactic features of the model are considered to be actual causes for the
violation of timed reachability properties, and we refer to this type of causes
as static actual causes. Both analyses are based on the counterfactual argument
and compare the alternative worlds that differ in the choice of delays or features
to find minimal sets of choices that lead to the effect. The analysis of both
static and dynamic actual causes can help in identifying possible modifications
to design-time models, establishing safety cases for those types of models, or
helping in forensic system failure analysis.
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(a) TA client (b) TA db (c) TDT illustrated using a time-
interval annotated sequence diagram

Fig. 1. Network of Timed Automata - running example

Real-time model checking [3] is a well-established design space exploration
technique aiming at analyzing the real-time behavior of a system and its com-
pliance with non-functional real-time requirements. A commonly used model
of computation for real-time systems is that of Timed Automata [3]. Timed
Automata (TA) describe the real-time behavior of a system in terms of states,
labeled with invariant conditions referring to bounds on system clocks, and tran-
sition guards, labeled with clock constraints on the enabledness of transitions.
Properties of Timed Automata are typically expressed in timed CTL [3]. In this
paper, we restrict ourselves to timed reachability properties [3].

It is the objective of this paper to propose the first steps towards a framework
of dynamic actual causality in the analysis of timed reachability properties of
Timed Automata. We will focus on the question of whether the dynamic timing
of the model during system execution can be considered an actual cause, based
on a counterfactual argument, of the violation of a timed reachability property.
In Timed Automata, the time that the automaton spends in a certain loca-
tion can be non-deterministically chosen, as long as it complies with the timing
constraints specified in the model. The question is then whether there are tim-
ing choices that can be considered causal for the violation of a desired timed
reachability property.

We now illustrate the idea of our analysis on the time automata of a database
request represented in Figure 1. In the model, a client sends a request req to a
database db and expects to receive a response ser in the location serReceiving
in less than 4 time units. A clock x is reset with sending the request and measures
the time until the response is received with leaving location serReceiving. The
timed model checker UPPAAL [2] finds a property violation in this model and
returns a timed sequence of transitions leading to the property violation in the
form of a TDT. A TDT is an alternating sequence of delay transition δi, which
describe the time that a system remains in state i, and action transitions Θi. A
TDT for the example in Fig. 1 is δ0, θ0 . . . δ3, θ3, δ4 with the action transitions
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θ0 = ((initial, reqAwaiting), ∅, τ, ∅, (reqCreate, reqAwaiting))
θ1 = ((reqCreate, reqAwaiting), ∅, τ, {x}, (reqSent, reqReceived))
θ2 = ((reqSent, reqReceived), {x ≥ 1}, τ, {y}, (reqSent, reqProc.))
θ3 = ((reqSent, reqProc.), {y ≥ 1}, τ, {z}, (serReceiving, reqAwait.)).

A TDT is symbolic in that it describes a set of executions where the time delays
before taking the next transition are represented by symbolic variables and con-
strained by symbolic constraints. The TDT of the database example and the
possible time delays are depicted by the sequence diagram in Fig. 1(c). For the
remainder of the paper, we use this TDT as a running example. A concrete
assignment of the delay values δ0...δ4 is a realization, and represents the real-
time characteristics of a concrete execution of the TDT S. A realization may, or
may not, violate the considered property. An assignment in which the minimal
possible values are assigned to all δj , in other words, the realization δ0 = 0,
δ1 = 0, δ2 = 1, δ3 = 1 and δ4 = 0, leads to a trace that does not violate the
considered property. Notice that the values of δ1 and δ3 are fixed. The values
of δ0, δ2 and δ4 in a concrete execution may be determined by environmental
effects, or by non-deterministic internal decisions of the two involved subsys-
tems, for instance as a result of task scheduling or memory management. If we
consider an alternate execution in which δ4 = 3, while all other delay values
remain as above, then this execution violates the considered property. Some
assignments of values to the delays satisfy the property, while others violate the
property. This indicates that the cause for the property violation is to be found
in the value assignment of certain delays. We are interested in characterizing
value assignments to the δis that inevitably lead to a property violation using
linear constraints. We base the analysis on counterfactual causal reasoning [9]
and call such constraints causal ranges. The causal ranges for the example TDT
are 2 ≤ δ4 ≤ 3 and 3 ≤ δ2 + δ4 ≤ 5. It is the objective of this paper to present
automated algorithmic ways to compute such causal ranges.

Related Work. Causal reasoning for real-time systems is considered in [7,19] and
for reactive systems in [6]. In these three approaches, a system consists of several
components and the analysis searches for a causal set of faulty components,
whereas we are interested in constraints on a set of causal delays. There is
research on system analysis based on counterfactual causal reasoning [10], for
instance, in [1,8,10,13]. We are not aware of any work to compute causal time
delays for a property violation in a TA.

Structure of the Paper. We exemplify our idea of timed causes in Sect. 2 and
discuss in Sect. 3 the foundations of our work. In Sect. 4, we present a formal
framework of dynamic trace analysis for causal delays and causal ranges, and
present an algorithm to compute causal ranges in Sect. 5. We evaluate an imple-
mentation of the algorithm in the tool CaTiRA in Sect. 6 by computing causal
ranges for several Timed Automata models. In Sect. 7, we draw conclusions and
suggest future developments.
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2 A Motivating Example

We motivate our definition of a cause for delays and exemplify our proposed
causal analysis. A TDT contains all information regarding possible assignments
of the delay variables, in particular the constraints determining possible value
ranges for these assignments. As discussed above, these value assignments in a
concretization of a TDT determine whether a property is violated.

In keeping with standard practice in engineering science, we will use a coun-
terfactual argument [15] to establish when certain assignments of delay variables
constitute a cause for a property violation. This argument says that one phe-
nomenon is a cause of another phenomenon, called effect, if and only if

I. whenever the cause applies, the effect is observed (regularity argument),
II. when the cause does not apply, the effect will not be observed either (coun-

terfactual argument), and
III. no true subset of the cause ensures I. and II (minimality argument).

In order to establish a causal relation between an assignment of values to the
delay variables and the violation of a temporal reachability property, we develop
criteria for what we understand to be a cause. For a TA, a dynamic actual cause
is a constraint on delay assignments where every assignment that satisfies the
cause violates a given property (condition I). Our interpretation of II is that
several independent causes can result in a property violation but at least one
assignment exists that is not violating the property. III is a minimality argument
and removes from a cause any constraint that has no influence on whether an
assignment violates the property or not.

Applying this reasoning to the running example from Fig. 1, choosing either
2 ≤ δ4 ≤ 3 or 3 ≤ δ2 + δ4 ≤ 5, with arbitrary but admissible values assigned
to all other δjs, means that the desired property is violated. Also a different
choice of the delay variables value not according to these two expression exists
where the property violation cannot be observed. We conclude that, following the
counterfactual argument, these two constraint expressions are to be considered
independent causes for the property violation.

We now illustrate the computation of a cause in the form of a causal range for
the running example. For a range expression, to be causal, the values for all δjs
in this range have to violate the considered property (I.). Furthermore, it needs
to satisfy the counterfactual argument (II.) which means that there is a different
assignment of values to at least one of the δjs such that this assignment violates
the range constraint and does not lead to a property violation. This means that
in order to check whether II. is satisfied overall we can test II. on every δj in
isolation. To illustrate this point, consider the realization δ0 = 1, δ1 = 0, δ2 = 1.5,
δ3 = 1, and δ4 = 1.5. The realization also violates the considered property with
any other value for δ0, while a decrease of the assigned values of δ2 or δ4 results
in a realization that satisfies the property. The assignment of δ0 has no impact on
the property since its satisfaction solely depends on the values of δ2, δ3 and δ4.
The values of δ1 and δ3 are fixed and, hence, they have no admissible alternative
assignment. We conclude that only δ2 and δ4 have the potential to prevent the
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violation of the property and, hence, satisfy II. We, therefore, call them causal
delay variables. Next, we determine the range in which δ2 and δ4 have realizations
that violate the considered property.

– A realization with an assignment of δ4 in the range [0, 1[ never violates the
property. On the other hand, any realization with an assignment of δ4 in the
range [2, 3] leads to a violation. For every of these realizations, a realization
exists that is identical, except for the value of δ4, that does not violate the
property. This means that I. and II. are satisfied and we conclude that the
constraint 2 ≤ δ4 ≤ 3 is a causal range.

– For any realization with an assignment of δ4 in the range [1, 2[, the violation
of the property depends on the assignment of the delay variable δ2. Hence,
we analyze which values can be assigned to δ2 so that this assignment is
admissible according to the constraints in the TDT. We then detect that
for any admissible assignment of δ2 in our running example, it conversely
depends on the assignment of δ4 whether a realization violates the property.
Thus, δ2 and δ4 need to jointly be considered when determining causal ranges.
In order to specify the interdependence of δ2 and δ4, we consider their sum.
We, hence, analyze the range of assigned values for which the sum of δ2 and
δ4 violates the property. We see that any realization satisfying 3 ≤ δ2+δ4 ≤ 5
violates the property and a realization not in this range exists that satisfies
the property. This means that I. and II. are satisfied and 3 ≤ δ2 + δ4 ≤ 5 is
a second causal range.

In the sequel of this paper, we will present an algorithmic way of determining
the constraints describing causal ranges.

3 Preliminaries

The Timed Automaton model that we use to represent models of timed systems
is adapted from [3]. Given a set of clocks C, we denote by B(C) the finite set of
all clock constraints over C, which are conjunctions of atomic clock constraints
of the form c ∼ n, where c ∈ C, ∼∈ {<,≤,=,≥, >} and n ∈ N

+
0 .

A Timed Automaton (TA) T is a tuple T = (L, l0, C,Σ,Θ, I) where L is a
finite set of locations, l0 ∈ L is an initial location, C is a finite set of clocks,
Σ is a set of action labels, Θ ⊆ L × B(C) × Σ × 2C × L denotes the transition
relation, and I : L→ B(C) denotes a labeling of locations with clock constraints,
referred to as location invariants. For θ ∈ Θ with θ = (l, g, a, r, l′), we refer to
g as the guard of θ, to a as the action label and to r as its clock resets. An
urgent location is a location that has to be left again without any delay in
time [4]. Urgent locations are syntactic sugar of Uppaal and can be expressed
as an additional clock p which is reset with entering the location and a location
invariant p = 0.

The operational semantics of TAs [3] is given via the definition of action and
delay transitions. Action transitions take the TA from a location l to a location
l′, execute an action from Σ, reset a subset of the clocks in C while the clock



132 M. Kölbl et al.

assignments comply with the clock constraints on transition guards and location
invariants. Delay transitions only advance the value of all clocks in C by a non-
deterministically chosen delay satisfying the invariant condition in the location
in which they occur.

The type of properties that we are interested in are time bounded reachability
properties, i.e., properties that state that a certain state will (or will not) be
reached while a certain clock is satisfying a given bound. When a real-time model
checker such as UPPAAL is noticing a violation of such a property, it produces
a TDT which we represent symbolically as a symbolic timed trace (STT) [12]. A
STT is a sequence of actions S = θ0, . . . , θn−1. A realization of S is a sequence of
delay values δ0, . . . , δn such that there exist states s0, . . . , sn, sn+1 with si

δi−→ θi−→
si+1 for all i ∈ [0, n) and sn

δn−→ sn+1.
We encode the symbolic semantics of the TDT in linear real arithmetic as

a timed diagnostic trace constraint system (TDTCS) [12]. A TDTCS T encodes
every transition θj = (lj , gj , a, rj , lj+1) in the TDT and is a conjunction of the
following constraints:

C0 ≡
∧

c∈C

c0 = 0 (clock initialization)

A ≡
∧

j∈[0,n]

δj ≥ 0 (time advancement)

R ≡
∧

c∈rj ,

cj+1 = 0 (clock resets)

D ≡
∧

c/∈rj

cj+1 = cj + δj (sojourn time)

I ≡
∧

(c∼β)∈I(lj)

c ∼ β ∧ c + δj ∼ β (location invariants)

G ≡
∧

(c∼β)∈gj

c + δj ∼ β (transition guards)

L ≡ @ln ∧
∧

l �=ln

¬@l (location predicates)

A model satisfies the TDTCS iff the sequence of the delay values δ0, ..., δn in the
model is a realization of the STT [12]. We denote a realization by T [δ0...δn].
A TDTCS is convex since it is a conjunction of constraints [17]. The clock
variables are syntactic sugar and can be removed from the TDTCS by replacing
all occurrences of a clock variable cj with Σj′≤i≤jδi where j′ = 0 or the index of
the last transition with a reset of clock c before cj . A partial realization δ = δ0...δj

of T with 0 ≤ j ≤ n is a realization of a TDTCS Tj , where Tj encodes only the
first j transitions of a given TDT. A suffix blocking partial realization δ′

0...δ
′
j is

a partial realization that satisfies Tj [δ′
0...δ

′
j ] while T [δ′

0...δ
′
j ] is unsatisfiable.

We also logically encode a given timed safety property Π as a property
constraint system φ. The original property Π contains location constraints and
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time constraints for a clock set C. A location predicate @l ∈ L is satisfied when
the Timed Automaton is in location l. Let φ ≡ Π[cn+1/c] where Π[cn+1/c] is
obtained from property Π by substituting the location constraints by location
predicates and all occurrences of clocks c ∈ C by cn+1. This substitution replaces
a clock c referred to in property Π by the variable referring to the clock cn+1 in
the final location n of the TDT. The logical encoding of the property in Fig. 1
is ¬@client.serReceiving ∨ x5 < 4.

4 Formalizations to Compute Causal Ranges

We first introduce the notion of a delay set, which is a subset of the indices of
the delay variables δ0, . . . , δn occurring in the STT. For instance, the set {δ2, δ4}
is represented by the delay set {2, 4}. The aim of this section is to define a causal
range as a range of values for a given delay set D where any value satisfies the
regularity argument (I.), the counterfactual argument (II.) and the minimality
argument (III.).

Before we define a causal range, we need to determine a delay set D. Any
delay variable δj in D shall be causal, thus, a realization δ exists where the value
assignment of δj matters whether δ violates or satisfies the property. In case δ
exists, we call δj a causal delay variable. Whether δ satisfies or violates the prop-
erty can interdepend on the value assignment of several causal delay variables as
we have seen before. In this case, a realization δ exists such that a different value
assignment of any δj in D can results in a realization that satisfies the property.
We formally define the existence of δ for a delay set D in Definition 1. CV1 in
Definition 1 ensures that a realization δ exists for a value v where the sum of
the delay assignments with an index in D is equivalent to v =

∑
j∈D δj . This δ

violates a given property φ and this satisfies the regularity argument (I.). CV2
ensures II. by requiring the existence of an alternate assignment for every delay
variable with an index in D, resulting in a realization δ′ that does not violate the
property. δ′ can also be a suffix blocking partial realization δ0 . . . δj−1δ

′
j which

cannot be completed to a full realization in a way that would violate the prop-
erty. For instance, consider a TDT with a guard on a transition that leads to an
immediate property violation and where the guard is enabled for an assignment
δj < 2 and disabled for an assignment δj ≥ 2. Thus, assigning δj = 2 prevents
the property violation to be reachable. In conclusion, a causal value satisfies
I. and II. for a realization δ, and witnesses that any δj in D is a causal delay
variable.

Definition 1 (Causal Value). Assume a TDTCS T for a TDT of length n, a
delay set D of T and a property constraint system φ. A causal value is a value v
in a delay set constraint v =

∑
j∈D δj where δj ∈ R

+
0 that satisfies:

CV1 There exists a realization δ = δ0...δn with delay values δj ∈ R
+
0 for 0 ≤

j ≤ n, v =
∑

j∈D δj is satisfied and φ is violated.
CV2 For every delay value δj with j ∈ D, a different delay value δ′

j with δj �= δ′
j

exists that either δ0 . . . δj−1δ
′
j is a suffix blocking partial realization or

δ0 . . . δj−1δ
′
jδj+1 . . . δn satisfies T and φ.
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In the TDT in the example from Fig. 1(c), a causal value of the delay set {4} is
every value in the range [1, 3], of the delay set {2} every value in the range [1, 2]
and of the delay set {2, 4} is every value in the range [3, 4].

Not all values from a causal range are causal values. For instance, in the
TDT in Fig. 1(c), the value v = 5 is part of the causal range 3 ≤ δ2 + δ4 ≤ 5,
and has a realization with the assignments δ2 = 2 and δ4 = 3 that violates
the property φ, thus satisfying conditions CV1 and I. CV2 requires that an
alternative assignment for each of δ2 and δ4 exists that prevents the property
violation. Such an assignment does not exist for δ2 but for δ4 with the assignment
δ4 = 0. Thus, v = 5 is not a causal value since it violates CV2, even though it
satisfies II. The purpose of a causal value is different from a causal range. A causal
value ensures that the assignment of every delay variable in D influences for at
least one realization whether the realization violates the property. In difference,
a causal range is a cause and ensures that for every realization that satisfies the
cause a different assignment exists that satisfies the property.

Next, we define a causal range for a delay set D in Definition 2. A causal range
is a constraint of the form l ∼

∑
j∈D δj ∼ u with a lower bound l and an upper

bound u. Every value v in a causal range has to satisfy the causal arguments
I and II. Condition CR1 in Definition 2 claims that every value v in the causal
range has a realization with v =

∑
j∈D δj . CR2 ensures the regularity argument

I that any realization which satisfies the causal range violates the property.
Also, a partial realization δ0 . . . δm can satisfy the causal range constraints when
all delays in D are assigned a value m ≥ max(D) where max(D) returns the
maximal value of all elements in D. In order to satisfy causal condition I, this
partial realization is not allowed to be a suffix blocking partial realization that
prevents the property violation. CR2 refers to all partial realizations. Notice
that in particular a partial realization with m = n satisfies T and violates the
property φ. We conclude that any realization that satisfies the causal range
constraint violates the property, and CR2 actually ensures I. Condition CR3
ensures that a causal value vc in the range exists that is not a causal value for
a true subset of D. We interpret the causal minimality argument III such that
we require the number of delay variables that are part of a causal range to be
minimal. When vc is already part of a causal range r′ for a true subset of the
variables in D, then we conclude that r′ is a more concise cause for the violation
of property φ, thus satisfying III. The existence of vc, as required by CR3, will
be used in the proof of Theorem1. Condition CR4 claims that the causal range
r is maximal in the sense that there is no truly larger range encompassing r
which satisfies CR1 to CR3. We include this constraint on the assumption that
an analysis result consisting of fewer causal ranges is easier to interpret than one
with more causal ranges.

Definition 2 (Causal Range). Assume a TDTCS T for a TDT of length n
and a property constraint system φ. A causal range r is a constraint for a delay
set D of the form l ∼

∑
j∈D δj ∼ u and ∼∈ {<,≤}, where l, u ∈ R≥0, delay

values δj ∈ R
+
0 and the following conditions hold:

CR1 Every value v ∈ [l, u] has a realization δ0 . . . δn with v =
∑

j∈D δj.
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CR2 For every partial realization δ0 . . . δm where max(D) ≤ m ≤ n and the
value v =

∑
j∈D δj is in [l, u], there exists a realization δ0 . . . δm . . . δn that

violates φ.
CR3 At least one value vc in the causal range is a causal value of D, and vc is

not a causal value for a true subset of D.
CR4 The range r is maximal, that means any lower bound l′ < l and any higher

bound u′ > u will not satisfy CR1 to CR3.

As an example, the constraint 2 ≤ δ4 ≤ 3 and the constraint 3 ≤ δ2 + δ4 ≤ 5
satisfy the definition of a causal range for the example in Fig. 1(c).

A causal range is only a cause when it satisfies the counterfactual argument
(II.) and is ensured by Theorem 1. CR2 ensures that every realization r with
value v violates a given property φ. The counterfactual argument is satisfied for
v when for every r a different value assignment only of the delay variables in D
exists such that the resulting realization satisfies φ.

Theorem 1. For every value in a causal range, the counterfactual argument II.
is satisfied.

We have argued above that CR2 ensures the regularity argument I. and CR3
ensures the minimality argument III. In combination with Theorem1, we con-
clude that a causal range represents a cause for the property violation according
to the definition in Sect. 2.

5 Causal Range Algorithm

Fig. 2. Control flow diagram of
Causal Range Algorithm

We present the Causal Range Algorithm to
compute a set of causal ranges for a given
TDT T and a given property φ. The input
of the algorithm is a TDTCS T derived from
T and a property constraint φ created for the
considered property. The output of the algo-
rithm is a set of causal ranges, where any
causal range is characterized by a real val-
ued lower bound, a real valued upper bound
and a delay set taken from the power set of
the TDT delay variables. The algorithm per-
forms the search for causal ranges by solving
three satisfiability problems. These problems
are depicted in the control flow diagram given in Fig. 2. By solving the problem
P1 the algorithm starts to iteratively compute the causal delay variables for
T . For every computed causal delay variable it creates a delay set. Next, the
algorithm computes for every delay set D a causal range by solving the problem
P2. After the range computation of a delay set D, the algorithm solves problem
P3 to check whether another causal delay variable δk depends on D. In case δk

exists, the algorithm found a new delay set D′ = D ∪ {k}. The algorithm solves
P2 and P3 for every delay set. We encode the problems P1 to P3 in linear real
arithmetic as follows:
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Problem P1: Existence of a Causal Value. The algorithm first checks for every
delay variable δj in the TDT whether it is a causal delay variable. A delay
variable δj is causal when a causal value for D = {δj} exists. We encode the
conditions that CV1 and CV2 in Definition 1 specify for a causal value in the
constraint Cj (1). The constraint ensures that a realization δ = δ0, . . . , δn with
δj and value v = δj exists. δ is a realization when it satisfies T , and has to
violate φ in order to satisfy CV1 in Definition 1. The constraint Cj also ensures
that CV2 is satisfied. It is satisfiable when an assignment δ′

j that is different
from δj exists, such that either δ′ = δ0 . . . δj−1δ

′
j is a suffix blocking partial

realization, or δ[δj/δ′
j ] is a realization that satisfies φ. When δ′ is a suffix blocking

partial realization, it satisfies T ∗ (2). T ∗ ensures that δ′ satisfies the constraint
Tj for a partial realization and no assignment of δ′

j+1 to δ′
n exists such that

δ0 . . . δj−1δ
′
jδ

′
j+1, . . . , δ

′
n is a realization that satisfies T .

Cj ≡ (∃δ0, . . . , δn, δ′
j)(T ∧ ¬φ ∧ (T ∗[δ0 . . . δj−1δ

′
j ] ∨ (T [δj/δ′

j ] ∧ φ[δj/δ′
j ]))) (1)

T ∗[δ0 . . . δj−1δ
′
j ] ≡ Tj [δ0 . . . δj−1δ

′
j ]∧¬(∃δ′

j+1, . . . δ
′
n)(T [δ0 . . . δj−1δ

′
j . . . δ′

n]) (2)

By iteratively determining the satisfiability of the constraint Cj for all delay
variables δj occurring in T , the algorithm checks whether these δjs actually are
causal delay variables. In the implementation of the algorithm, we combine all
Cj into one linear constraint system C of the form

∧
0≤j≤n ¬cj ∨ Cj in which

we add a fresh Boolean variable cj for every occurring δj . These cj are defined
such that if some Cj is unsatisfiable, then ¬cj holds. We use a MaxSMT solver
in order to determine the minimum number of cj = true assertions that need
to be violated in order to render C satisfiable. A delay variable δj is causal if
and only if cj is true in the solution to the MaxSMT problem. Subsequently,
for every computed causal delay variable δj the algorithm adds a delay set {δj}
to a first-in-first-out queue X. This queue stores every computed delay set and
will be handed over to the algorithm addressing problem P2, which computes
a causal range for every element of X. For the example in Fig. 1(c), the queue
passed on to P2 is X = {{4}, {2}}.

Problem P2: Existence of a Causal Range. The algorithm solving problem P2
removes a delay set D from queue X and computes the causal ranges of D.
We encode the computation of a causal range as a satisfiability problem. We
formalize the conditions CR1 to CR3 in Definition 2 as individual constraints
R1 to R3. The satisfiability of this conjunction yields an answer to problem
P2 and computes causal ranges if they exist. CR1 claims that every value t in
the causal range [l, u] has a realization. If Rb

1 is satisfiable, then there exists a
realization of T with a value b =

∑
j∈D δj . We now check whether Rb

1[b/l] and
Rb

1[b/u] are satisfiable, respectively. If both are satisfiable, due to the convexity
of T we can conclude that Rb

1[b/t] is satisfiable for any value t ∈ [l, u].

Rb
1 ≡ (∃δ0 . . . δn)(T ∧ b =

∑
j∈D

δj) (3)

CR2 claims that for every partial realization δ0 . . . δj which satisfy l ≤
∑

j∈D δj ≤
u there exists δ0 . . . δjδj+1 . . . δn that violates the property φ. We formalize CR2
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as follows:

R2 ≡
∧

max(D)≤j≤n
(∀δ0 . . . δj)(Tj [δ0 . . . δj ] ∧ (l ≤

∑
j∈D

δj ≤ u) (4)

⇒ (∃δj+1 . . . δn)(T ∧ ¬φ))

We project a realization δ = δ0 . . . δn to a single value v with the formula v =∑
j∈D δj . If v ∈ [l, u] we say that δ is contained in [l, u]. Constraint R3 (5)

ensures that a realization δ contained in [l, u] exists and δ is not contained in
any causal range [li, ui] of a subset Di of D. When this δ exists, CR3 is fulfilled.
Notice that the subset Di is not necessarily a true subset of D and therefore
ignores previously found causal ranges contained in D. If further causal ranges
are contained in D these will also be computed by the algorithm solving P2.

R3 ≡ ∃δ0 . . . δn.T ∧ l ≤
∑

j∈D

δj ≤ u ∧
∧

Di⊆D

(
∑

i∈Di

δi < li) ∨ (ui <
∑

i∈Di

δi) (5)

A satisfying assignment for the conjunction of Rl
1, Ru

1 , R2, and R3 contains a
causal range [l, u] which is not necessarily maximal. The algorithm takes advan-
tage of the optimization possibilities of the SMT solver Z3 [16] to minimize l and
to maximize u in the conjunction in order to ensure a maximal range (c.f. CR4).
In the example of Fig. 1(c) for the delay set D = {4}, the algorithm computes
the causal range 2 ≤ δ4 ≤ 3. Since no further causal range is found, then the
algorithm proceeds with extending D by solving problem P3.

Problem P3: Existence of a Dependent Delay. A delay variable δk is dependent
on a delay set D when the delay set D′ = D ∪ {k} has a causal value. The
algorithm solving P3 extends a delay set D with the index of a delay variable δk

depending on D. We encode the question whether a causal value for D′ exists
as the problem whether constraint Ck (6) is satisfiable. The satisfiability of Ck
yields an answer to problem P3. A satisfying model then yields the dependent
delays δk, if any exist. Ck ensures that there exists a realization δ = δ0 . . . δn

with value v that violates the property φ. For every index j in the delay set D′

a realization exists that differs from δ only in the assignment of δj and does not
violate φ, thus satisfying CV2 in Definition 1.

Ck ≡ ∃δ0, . . . , δn.T ∧ ¬φ ∧
∧

j∈D′
∃δ′

j .T ∗[δ0 . . . δj−1δ
′
j ] ∨ (T [δj/δ′

j ] ∧ φ[δj/δ′
j ]) (6)

For every causal delay variable δk with k �∈ D for which Ck is satisfiable, the
algorithm adds D′ = D ∪ {k} to the queue X. To illustrate this step, for the
TDT in Fig. 1(c) and the delay set D = {4}, Ck is satisfiable for k = 2 and the
queue X = {{2}} is extended to X = {{2}, {4, 2}}. The algorithm proceeds with
removing the next delay set from X, solving problems P2 and P3 for this delay
set, and terminates when X is empty.

Correctness of the Algorithm. The theorems below show that the algorithm to
compute causal ranges is correct with respect to soundness and completeness.
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(a) TA (b) Sequence Diagram

Fig. 3. Fischer’s protocol

Theorem 2 (Soundness of Causal Range Computation). Every causal
range returned by the Causal Range Algorithm for a TDTCS T and a delay set
D satisfies CR1 to CR4.

Theorem 3 (Completeness of Causal Range Computation). The Causal
Range Algorithm returns every maximal causal range for any given TDT.

6 Evaluation

We implemented the Causal Range Algorithm in a tool that we call Causal
Timed Range Analyser (CaTiRA) and evaluated the tool by computing causal
ranges for several case studies taken from the literature.

Evaluation Methodology. CaTiRA is intended to be used at design time to sup-
port design space exploration based on causal information regarding the dynamic
timing behavior. We foresee a usage of CaTiRA at an intermediate design stage
when a considered preliminary model does not yet satisfy all required proper-
ties. The objective of the analysis is to point the designer to variations in the
delay timings at certain locations in a TDT, which may motivate changes in, for
instance, timing bounds in the model. Such preliminary design models are not
available for experimentation. Therefore, it is necessary that we use published,
correct models and revert them to a preliminary state by seeding syntactic code
variations. We emphasize that the objective is not to locate these code vari-
ations, or even propose repairs to syntactic elements, but to illustrate to the
designer what ranges of delay variations contribute to avoiding the observed
property violation. The designer can then decide to perform syntactic changes
to the model in order to constrain the timing of the system in such a way that
property violations will be avoided.

Database Example [12]. For the running example in Fig. 1, the analysis found the
causal delays δ2 and δ4, and the causal ranges 2 ≤ δ4 ≤ 3 and 3 ≤ δ2 + δ4 ≤ 5.
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Fischer’s Protocol [18]. The purpose of Fischer’s protocol is to ensure mutual
exclusion. The TA in Fig. 3 is a process of the protocol with a unique id pid and
requests for the critical section cs. The global variable id controls the access to
the critical section and allows a process only to enter the critical location cs when
id = pid. In order to request access to the critical section, a process checks the
transition guard id == 0 to check that no other process currently requests access
to the critical section, and subsequently enters the location req. Afterwards the
process enters the location wait within 3 time units for the critical section and
overwrites id with its unique pid. The process has to wait for 2 time units to
ensure that when another process also requests access to the critical section,
then this process will have left the location req. In this model, the timing is not
correct and it is possible that a process enters location cs and the other process
is in location req. We reverted the model to a preliminary state by replacing
the invariant x ≤ 2 as in [18] by x ≤ 3. We checked mutual exclusion of this
model with UPPAAL and obtained a TDT depicted by the sequence diagram in
Fig. 3(b).

For this TDT, the causal range analysis by CaTiRA finds the causal delays
δ1 to δ3, and the causal ranges 2 < δ1 ≤ 3, 0 ≤ δ2 < 1, 2 < δ3 ≤ 3, and
0 ≤ δ1 + δ2 < 1. Notice that the TDT of Fischer’s protocol has no realization
that satisfies the property. The causal ranges were computed because the Causal
Range Algorithm also considers suffix blocking partial realization to satisfy the
counterfactual argument (II.).

The causal ranges with the causal delay variables δ1, δ2 and δ3 are reasonable
since during these time delays the TDT is in the location req, labeled with the
seeded constraint x ≤ 3. During the time delay δ4, the TDT is also in location req.
However, δ4 is not a causal delay variable since no different delay assignment
exists for it that prevents the property violation. The interval of the causal
ranges 2 < δ1 ≤ 3 and 2 < δ3 ≤ 3 is identical to the seeded faulty extension
of the constraint. The choice of delay assignments that satisfies 0 ≤ δ2 < 1
and 0 ≤ δ1 + δ2 < 1 ensures that TA P1 leaves location req early enough that
the extension of the constraint comes into effect and the property violation will
be reached. We see that the causal ranges actually express the choices of delay
assignments that will lead to a property violation.

Camel Transporter (Adapted from [5]). In this model, in every location load1 to
load4 a worker loads a bag on a camel. The weight of a bag is between 1 and 4
units and is modeled by the time that the worker stays in a location. The camel
will only arrive at the destination when the weight is not more than 7 units.
The worker checks the payload of the camel with loading the third bag on the
camel but is in a rush and does not check the payload after loading the fourth
bag. A verification of the model with UPPAAL results in a TDT depicted in the
Fig. 4(b). We manually computed the possible assignments of the delay variables
and added them in red to the diagram. For this TDT, CaTiRA computes the
causal delays δ0 to δ3, and the causal ranges 7 < δ0 + δ3 ≤ 8, 7 < δ1 + δ3 ≤ 8,
7 < δ2+δ3 ≤ 8, 7 < δ0+δ1+δ3 ≤ 11, 7 < δ0+δ2+δ3 ≤ 11, 7 < δ1+δ2+δ3 ≤ 11,
and 7 < δ0 + δ1 + δ2 + δ3 ≤ 11.
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(a) TA (b) Sequence Diagram

Fig. 4. Camel transporter (Color figure online)

All causal ranges contains the delay variable δ3 of the location load4. This is
reasonable since an overload of the camel is checked in location load3. The load
limit of 7 can only be exceeded in a combination of at least two delay assignments
since the maximal delay assignment is 4 for every delay variable. Also, even two
variable assignments can already result in an overload of the camel, every delay
assignment has an impact on whether the camel is overloaded. This becomes
obvious by the realization δ0 = 2, δ1 = 2, δ3 = 2, δ4 = 2 that is contained only
by the causal range 7 < δ0 + δ1 + δ2 + δ3 ≤ 11. In this realization, every delay
assignment contributes to the overload of the camel but no subset of the delay
assignments can overload the camel. We see that the causal ranges express the
dynamic timing behavior that leads to the property violation.

The Pacemaker Model [11] that we consider originally satisfies all properties. We
analyze this model since it is a realistic model and of a reasonable size. A modified
version of the model, which contains a property violation, is analyzed in [12].
The violated property expresses that the time delay between two ventricular
heartbeats is not too high. For the TDT illustrating the property violation,
CaTiRA computes the causal delays δ0 and δ6, and the causal range 150 <
δ6 < 350.

The results can be interpreted as follows. After the time delay of δ0, the
first heartbeat happens and a timer starts to measure the time delay until the
next ventricular heartbeat. For some realization of the TDT that violate the
property, an increase of the value assignment of δ0 can prevent the property
violation, thus, δ0 is a causal delay variable. However, no causal range with δ0
exists since each of these realizations is already contained by the causal range
150.0 < δ6 < 350.0. Only during the time delay δ6, the TDT is in the location in
which a constraint was altered when reverting the model. The modification of the
constraint corresponded to an increase of 1200 time units of a bound. However,
the possible assignments in this location that lead to a property violation are
in the range from [150, 350]. Thus, only the increase of the constraint bound by
the first 200 time units has an impact on the possible execution. We see that the
causal range shows the erroneous timing behavior of the TDT.

Quantitative Results. The quantitative results of every model are represented
in Table 1. For every model, we indicate the time TUP that UPPAAL needed to
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Table 1. Quantitative experimental results.

Model TUP Ln #CD #CR T M #Cn #Vr TZ3 MZ3

Database [12] 0.010 4 2 2 0.420 13.2 66 19 0.020 6.7

Fischer’s protocol [18] 0.010 6 3 4 0.626 26.5 78 23 0.040 6.9

Camel Transporter [5] 0.008 3 4 7 4.724 35.9 138 105 0.350 7.1

Pacemaker [11] 0.015 7 2 1 0.587 33.5 226 114 0.080 7.3

compute a TDT for the model and the length Ln of the TDT. For a given TDT,
CaTiRA computes a number #CD of causal delay variables and a number #CR
of causal ranges. The computation of the causal ranges takes in total a time T
in seconds and consumes at most an amount M of memory in megabytes. Z3
solves constraint systems with at most a count #Cn of clauses and at most a
number #Vr of variables. Z3 needs at most the time TZ3 in seconds to solve a
constraint system with a maximal memory usage of MZ3 in megabytes.

All experiments were performed with the SMT-solver Z3 (Version 4.8.3) on
a computer with an i7-6700K CPU (4.00 GHz), 60 GB of RAM and a Linux
operating system. For the considered models, we found a total of 11 causal
delay variables and 14 causal ranges. The highest computation effort for a causal
range computation can be observed in the camel transporter TDT with 35.9 MB
memory consumption and 4.724 s computation time. In line with this, Z3 has
the highest computation effort in time (0.350 s) with this model. The intrinsic
complexity of this TDT seems to be high since with 138 clauses it has fewer
clauses than the TDT of the Pacemaker model with 226 clauses.

The most complex model is the Pacemaker model since it takes the most
time (0.015) for UPPAAL to compute the TDT. Also, its TDT is the longest
with 7 transitions. With 226 the encoding of the analysis has the most clauses
and with 114 the most variables. Even so, the computation effort of the causal
ranges is moderate with 0.587s and 33.5 MB. In conclusion, the analyses results
show that the causal range analysis requires a reasonable computation effort.

7 Conclusion

We have presented the Causal Range Algorithm and its implementation in the
tool CaTiRA. Based on a counterfactual causality argument, the Causal Range
Algorithm performs an analysis to determine dynamic causes for timed reachabil-
ity property violations in the timing behavior of a timed system as documented
by TDTs. Using various case studies we have shown that the analysis is both
efficient and effective. In particular, our work shows that using interpretations
of counterfactual causal reasoning can lead to precise and intuitive explanations
for dynamic timing behaviors.

In future work, we plan to generalize our findings to the analysis of hybrid
systems. Another direction of research is to develop causal analyses that do not
just rely on a single execution, as given by a TDT, but on the full structure of
a Timed Automaton model.
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Abstract. Active learning of timed languages is concerned with the
inference of timed automata by observing some of the timed words in
their languages. The learner can query for the membership of words in
the language, or propose a candidate model and ask if it is equivalent
to the target. The major difficulty of this framework is the inference of
clock resets, which are central to the dynamics of timed automata but
not directly observable.

Interesting first steps have already been made by restricting to the
subclass of event-recording automata, where clock resets are tied to obser-
vations. In order to advance towards learning of general timed automata,
we generalize this method to a new class, called reset-free event-recording
automata, where some transitions may reset no clocks.

Central to our contribution is the notion of invalidity, and the algo-
rithm and data structures to deal with it, allowing on-the-fly detec-
tion and pruning of reset hypotheses that contradict observations. This
notion is a key to any efficient active-learning procedure for generic timed
automata.

1 Introduction

Active learning [Ang87a] is a type of learning in which a teacher assesses the
learner’s progress and direct the learning effort toward meaningful decisions. The
learner can request information from the teacher via membership queries, asking
about a specific observation, and equivalence queries, proposing to compare the
current hypothesis to the correct model; in the latter case, the teacher either
accepts the hypothesis or returns a counter-example exemplifying mispredictions
of the learner’s hypothesis.

This framework is well-studied in the setting of finite-state automata
[Ang87a,Ang87b,Ang90], and allows to make sound proofs for both correctness
and complexity of learning algorithms. As most real-life systems dispose of con-
tinuous components, attempts have been made to leverage this framework to
take them into account. One of the most classic additions is time. An observa-
tion is then a timed word, made of actions and delays between them. One of the
most recognized models for such timed languages is the timed automaton (TA),
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but its dynamics are complex: TAs measure time using a set of clocks that hold
a positive real value progressing with time, can be compared with integer con-
stants to allow or disallow transitions, and reset to zero along those transitions.
For a learning algorithm, one of the main challenges is to deal with those resets,
that are typically not observable, but play a central role in the system dynamics.

Some work has already been done in the active learning of subclasses of
TAs, mostly deterministic TAs with only one clock [ACZ+20] and deterministic
event-recording automata (DERA) [GJP06,Gri08], which have as many clocks as
actions in the alphabet, and where each clock encodes exactly the time elapsed
since the last corresponding action was taken. These classes of automata present
the advantages of having a low-dimensional continuous behaviour (for 1-clock
TAs) and to allow to derive the resets of the clocks directly from the observations
(for DERA). Other approaches have been investigated for the learning of timed
systems. Learning of TAs from tests has been studied using genetic algorithms
[TALL19], which is a very different approach to ours to exploit a similar setting.
Inference of simple TAs from positive data [VWW08,VWW12] has also been
well studied. These works are more loosely related to ours, as our setting greatly
differs from positive inference.

We propose in this work to generalize to a class of timed automata enjoying
both several clocks and different possible resets that can not be inferred directly
from observations. This allows us to design and prove algorithms that handle all
the main difficulties that arise in deterministic TAs, making this contribution
an important first step towards active learning for generic deterministic TAS.

To our knowledge, the closest works are Grinchtein’s thesis on active learning
of DERA [Gri08] and the paper proposing to learn one clock TAs [ACZ+20]. The
work of Grinchtein et al. [GJP06] is the most related to ours, as we use some
of the data structures they developed and keep the general approach based on
timed decision trees. The main difference between our work and this one is
that we handle the inference of resets in a class of models in which they can
not be directly deduced from observations. The approach reported in [ACZ+20]
proposes to deal with reset guessing, but makes it in a somewhat “brute force”
manner, by directly applying a branch-and-bound algorithm and jumping from
model to model. In order to be able to deal with larger dimensions, e.g. to handle
TAs with a large set of clocks, we need to be more efficient by exploiting the
theory built around TAs and detecting invalid models as early as possible.

For the details of the proofs and algorithms, we refer the reader to the long
version [HJM20].

2 Preliminaries

2.1 Timed Automata

For the rest of this paper, we fix a finite alphabet Σ.
Let X be a finite set of variables called clocks. A valuation for X is a function

v : X → R≥0. We write 0 for the clock valuation associating 0 with all clocks.
For any δ ∈ R≥0 and any valuation v we write v + d for the valuation such that
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(v + δ)(x) = v(x) + δ for each clock x; this corresponds to elapsing δ time units
from valuation v. The future of a valuation v is the set v↗ = {v+ t | t ∈ R≥0} of
its time successors. Finally, for any X′ ⊆ X and any valuation v, we write v[X′←0]

for the valuation such that v[X′←0](x) = v(x) for all x /∈ X′ and v[X′←0](x) = 0
for all x ∈ X′.

Simple clock constraints are expressions of the forms x − x′
∼ n and x ∼ n,

for x, x′ ∈ X, ∼ ∈ {<,≤,=,≥, >} and n ∈ N. We call zone over X any finite
conjunction of such constraints, and write ZX for the set of zones over X. Given
a valuation v and a zone z, we write v |= z when v satisfies all the constraints in
z. We may identify a zone z with the set of valuations z such that v |= z. We
call guard any zone not involving constraints of the form x − x′

∼ n, and write
GX for the set of guards. We extend all three operations on valuations to zones
elementwise.

Definition 1. A timed automaton (TA) over Σ is a tuple T = (L, l0,X,
E,Accept) such that: L is a finite set of locations, and l0 ∈ L is the initial
location; X is a finite set of clocks; Accept ⊆ L is a set of accepting locations;
E ⊆ L × Σ × GX × 2X × L is a set of transitions. For a transition (l, a, g, r, l′),
we call g its guard, a its action and r its reset.

We write KT (or K when the context is clear) for the maximal constant appear-
ing in T . We say that a TA is deterministic when, for any two transitions
(l, a, g, r, l′) and (l, a, g′, r′, l′′) where g ∧ g′ is satisfiable, it holds l′ = l′′ and
r = r′. We only consider deterministic TAs in the sequel, as active-learning
methods can only target this (strict) subclass of TAs.

Definition 2. With a TA T = (L, l0,X,E,Accept), we associate the transition
system ST = (S = L × R

|X|
≥0 , (l0,0),Δ,AcceptST ) where L × R

|X|
≥0 is the set

of configurations, (l0,0) is the initial configuration, AcceptST = {(l, v) | l ∈
Accept} is the set of accepting configurations, and Δ ⊂ S × (R≥0 ∪ E) × S a
set of transitions, such that for any (l, v) ∈ S: (a) for any δ ∈ R≥0, we have
((l, v), δ, (l, v + δ)) in Δ; (b) for any e = (l, a, g, r, l′) ∈ E s.t. v |= g, we have
((l, v), e, (l′, v[r←0])) in Δ.

A path in a timed automaton T is a sequence of transitions in the associated
transition system ST . A timed word with resets of T is a path wtr = ((li, vi)

ei−→
(li+1, vi+1))i∈[0,n] ∈ (S × (Δ ∪ R≥0))∗ × S of its semantics ST . A timed word
with resets is accepting when its final configuration is in AcceptST .

In order to obtain a finite representation of the infinite set of timed words
with resets, we use an abstraction based on the following notion of K-equivalence.

Definition 3. Two nonnegative reals x and y are K-equivalent, noted x≈K y,
when either x > K and y > K, or x = y are integers, or x and y are non-integers
and they have the same integral part. Two valuations v and v′ are K-equivalent
if v(x)≈K v′(x) for all x ∈ X. We say that two configurations are K-equivalent
when their valuations are, and that two timed words with reset are K-equivalent
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l0start l1 l2

e1 = (a,�, ∅)

e2 = (b, x ≤ 2, {x})
e3 = (a, x ≤ 2 ∧ y > 3, ∅)

Fig. 1. A simple TA

when they have the same size and the configurations of same indices in both
words are K-equivalent.

Notice that K-equivalence is coarser than the usual notion of region equiva-
lence of [AD94], as it aims to encode direct indistinguishability by a guard along
words, instead of indistinguishability in the future.

We call zone-word with resets a timed word with resets in which all val-
uations are replaced with zones. A timed word with resets r = ((li, vi)

ei−→
(li+1, vi+1))i∈[0,n] is compatible with a zone word with resets zr = ((li, zi)

ei−→
(li+1, zi+1))i∈[0,n], written r |= zr, when vi |= zi for all i. We call K-closed word
a zone word in which all zones are K-equivalence classes.

Lemma 4. For any timed word with reset r of a (deterministic) timed automa-
ton T , there is a unique K-closed word zr such that r |= zr. For any timed word
with resets r′ compatible with zr, r′ is accepting if, and only if, r is.

Event recording automata (ERA) [AFH99] are a subclass of TAs in which
there is one clock xa per letter a of the alphabet, such that xa is reset exactly
along a-transitions. We slightly extend them as reset-free ERAs (RERAs), in
which transitions may or may not reset their clock: we let XΣ = {xa | a ∈ Σ},
and ZΣ and GΣ be shortcuts for ZXΣ

and GXΣ
respectively.

Definition 5. A reset-free event recording automaton (RERA) over Σ is a TA
T = (L, l0,XΣ ,E,Accept) such that for all transitions (l, a, g, r, l′) ∈ E, it holds
r ∈ {{xa}, ∅}.

Example 1. Consider the timed automaton depicted in Fig. 1. This TA is actu-
ally a RERA, by associating clock x to letter b and clock y to letter a. An

accepting timed word with resets of this automaton is (l0,0) 1.5−−→ (l0, ( 1.5
1.5 ))

a,∅−−→
(l1, ( 1.5

1.5 ))
b,{x}−−−→ (l0, ( 0

1.5 ))
a,∅−−→ (l1, ( 0

1.5 )) 2−→ (l1, ( 2
3.5 ))

a,∅−−→ (l2, ( 2
3.5 )). The corre-

sponding path is l0
e1−→ l1

e2−→ l0
e1−→ l1

e3−→ l2.

Although closely related, ERA and RERA differ in a central way w.r.t. our
learning problem: while the resets of an ERA can be directly inferred from obser-
vations, in a RERA this is not directly possible. Thus, generalizing a learning
method from ERA to RERA requires dealing with the inference of resets—one
of the central challenges of the learning of general deterministic TA.
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2.2 Timed Languages

Automata-learning techniques are based on the identification of a candidate
automaton that generalizes the observations obtained during the learning pro-
cess. Angluin’s tabular approach [Ang87a] directly identifies a set of observations
(i.e. words) having good properties, and builds a deterministic automaton from it.
Our contribution, as well as all the active-learning algorithms that we are aware
of, follow a similar approach. An important issue for extending this approach
to timed words is the infinite number of observations fitting even the simplest
model, due to time density. We thus have to use good abstractions to represent
classes of these words, and use these classes to direct the learning process. A first
such extension was initiated in [GJP06].

A timed word with resets of a RERA can be seen as an element of (R≥0 ×
Σ × {�,⊥})∗. A timed word is the projection of a timed word with resets on
(R≥0 × Σ)∗; timed words correspond to observations of timed words with resets.

In order to represent infinitely many timed words with resets in a succinct
way, we define guarded words with resets wgr ∈ (GΣ × Σ × {�,⊥})∗, which
correspond to paths in a RERA. For a timed word wt and a guarded word with
resets wgr we say that wt satisfies wgr, noted wt |= wgr, if wt is a possible
observation of wgr. We extend this correspondence to timed words with resets by
ensuring that the resets match. The satisfiability relation between timed words
and guarded words with resets will be central in the rest of the paper, as it
relates an observation to the unfolding of a RERA (or of our hypothesis).

Example 2. The timed word wt = (1.3, a).(0.4, b) satisfies the guarded word with
reset wgr = (xb > 1, a, {xa}).(xa < 1, b, ∅): indeed, wt and wgr have the same

untimed projection, and the timed word with resets wtr = 0 1.3−−→ ( 1.3
1.3 )

a,{xa}−−−−→
( 0
1.3 ) 0.4−−→ ( 0.4

1.7 ) satisfies the guards of wgr. Notice that wt �|= w′
gr = (xb >

1, a, ∅).(xa < 1, b, ∅), as modifying resets changes the valuations that appear in
the corresponding timed word with resets.

Zone words with resets can be seen as elements wz of (ZΣ ×Σ×{�,⊥})∗.ZΣ .
From a guarded word with resets wgr = (gi, ai, ri)i∈[0,n] we can define the corre-
sponding zone word with resets wz = (zi, ai, ri)i∈[0,n]zn+1 with z0 = {0}↗ and
zi+1 = (zi ∧ gi)↗ if ri = ⊥ and zi+1 = (zi ∧ gi)[xai

←0]
↗ otherwise.

In our learning process, we will manipulate linear combinations of timed
words. For two timed words w1

t = ((t1i , ai))i∈[0,n] and w2
t = ((t2i , ai))i∈[0,n]

with the same untimed projection, we define their λ-weighted sum w3
t =

λ.w1
t + (1 − λ)w2

t , as the timed word w3
t = ((λ.t1i + (1 − λ).t2i , ai)i∈[0,n]). Such

linear combinations have the following property:

Proposition 6. For any two timed words wj
t = (tji , ai)i∈[0,n] for j ∈ {1, 2} with

the same untimed projection, for any λ ∈ [0, 1] and for any reset word (ri)i∈[0,n],
all the valuations v3

i,r reached along w3
tr = ((λ.t1i + (1 − λ).t2i , ai, ri)i∈[0,n]) are

such that for all clocks xa ∈ XΣ, v3
i,r(xa) = λ.v1

i,r(xa) + (1 − λ).v2
i,r(xa) for vj

i,r

the valuations reached along wj
tr = (tji , ai, ri).
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3 Observation Structure

The general principle of (untimed) active-learning is to learn a model from obser-
vations acquired by membership queries and equivalence queries. In membership
queries, a timed word is provided to a teacher, who in return informs us about
the membership of this world in the target language. In an equivalence query,
we propose an hypothesis (model) to the teacher; she either accepts it if it is
equivalent to the model we wish to learn, or otherwise provides us with a coun-
terexample, i.e., a timed word that separate the language of the model and that
of our hypothesis. The set of observations is formalized as a partial function Obs
mapping words to acceptance status (+ or −). To build a model, we then want
to identify a prefix-closed subset U of Dom(Obs) such that for all letters a in
the alphabet and words u ∈ U , u.a ∈ Dom(Obs) and either u.a ∈ U , or there is
another word u′ ∈ U having the same observed behaviour as u.a. When transfer-
ring this approach to timed words, one has to deal with two difficulties: first, the
uncountable number of possible delays before each discrete action; second, the
fact that observations do not include clock valuations (nor clock resets), which
we also have to learn.

In this section, we describe the structures used to represent and process these
timed observations acquired during the learning and the decisions on the built
structures made based on those observations. We generalize timed decision trees
defined in [GJP06], so as to encode timed words with possible resets. We basically
use a timed decision graph, a model close to acyclic timed automata, to encode
the current knowledge inferred about the model from observations, and a timed
observation graph (TOG) to implement Obs with a step of abstraction and help
decisions.

Our data structure is centered around the notion of observation structure
composed of a timed decision graph, which stores the current hypothesis (and
will later be folded into a TA), and an observation function, which stores current
observations.

Definition 7. An observation structure is a pair (N ,Obs) made of a timed
decision graph (TDG) and a partial mapping Obs from timed words to {+,−}.
The TDG is a labelled bipartite graph N = (S,E) with S = Sl � Sd where:

– Sl ⊆ {s0 = (ε, {0}↗)} ∪ (GΣ × Σ × {�,⊥})+ × ZΣ is a set of language
states, made of a prefix-closed finite set of guarded words with resets paired
with zones; s0 is the root state.

– Sd ⊆ Sl × Σ × GΣ is a set of decision states such that for any sl ∈ Sl and
a ∈ Σ, if I = {g ∈ GΣ | (sl, a, g) ∈ Sd} is non-empty, then

∨
g∈I g ≡ � and

for all g and g′ in I, if g �= g′ then g ∧ g′ ≡ ⊥;
– E ⊆ S × (Σ × GΣ ∪ {�,⊥}) × S is defined such that transitions to a decision

state sd = (sl, a, g) are of the form (sl, a, g, sd) and if sl = wgr.z transitions
from sd are (sd,�, (wgr.(g, a,�), (z ∧ g)[xa←0]

↗)) and (sd,⊥, (wgr.(g, a,⊥),
(z ∧ g)↗)).
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⊥
a, true

� ⊥
(a) A first observation structure

start

a, true, {xa}

a, xa ≤ 1, ∅
(b) The RERA providing observations

Fig. 2. An active-learning setting

The labelling of an observation structure maps language states to the set of
observations compatible with them:

label(sl = (wgr.z)) = {Obs(wt) | wt ∈ Dom(Obs) ∧ wt |= wgr}.

It can be seen from this definition that TDGs are trees. For a guarded word wgr,
we note s0

wgr−−→N sl when there is a path in N from s0 to sl labelled with wgr,
and note wgr ∈ N when such a path exists.

Observation structures store both the words that have been observed (in Obs)
and the inferred guards and enforced resets (or absence thereof) (in N ). We can
extend Obs to guarded words with resets by considering them as language states
and using their labels. The labels are used to carry the observation information
to the TDG.

Example 3. Figure 2a represents an observation structure storing some words
observed from the RERA in Fig. 2b. Language states are depicted as circles
and decision states as diamonds. Notice that in this example the leaves have
labels of size 2: they model both accepting and non-accepting observations e.g.
((0.7, a)(0.9, a),+) and ((0.7, a)(1.2, a),−).

We define some desired properties of information structures.

Definition 8. For an observation structure (N ,Obs), a subtree N ′ of N rooted
in sN ′

l = w′
gr.z

′ is said:

– complete when all observations in Obs are taken into account, i.e. for any

wt ∈ Dom(Obs) such that wt = w′
t.w

′′
t with w′

t |= w′
gr there is sN ′

l

w′′
gr−−→ sl

such that w′′
t |= w′′

gr and for all such w′′
gr and sl, Obs(wt) ∈ label(sl);

– consistent when it separates accepting and non accepting behaviours, i.e. for
any sl in the subtree, |label(sl)| = 1.

We say that an observation structure is complete or consistent when N is.

Detecting and handling inconsistencies is central to our algorithms, as it
characterizes the need to introduce new guards to split language nodes in the
timed decision graph.
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(b) A timed observation graph

Fig. 3. Detecting an invalidity

Example 4. The leaves of the TDG in Fig. 2a are inconsistent. The inconsistency
can be resolved for the left branch by splitting the transition, as made in Fig. 3a.
This leaves a label of size two in the right branch, but there exists no guard that
can separate the observations.

We now define timed observation graphs, a structure used to encode the
observation function Obs efficiently and abstractly. More precisely, it represents
the undistinguishable tube around each observation (i.e. the K-closed-words
with resets), and allows to detect on-the-fly when two observations sharing the
same K-closed word do not agree on acceptance and when reset combinations
cannot happen.

Definition 9. A timed observation graph (TOG) is a TDG where all guards and
zones correspond to K-equivalence classes, language states are called observation
states sO ∈ SO and transitions from decision to observation states do not use
the future operator, i.e. for (sd = (w.z),�, sO) ∈ E, sO = w.(g, a,�).g[xa←0]

and same for ⊥. We add a labelling l : SO → P({+,−}) for observation states
and words : SO → P((R≥0.Σ)∗) a function associating to each observation state
a set of observations that it represents. For two observation states sO and s′

O,
we note sO

wzr−−→ s′
O if there is a path from sO to s′

O and there exists a zone word
w.z such that sO = w.z and s′

O = w.wzr.

As for TDGs, TOGs are trees. Timed observation graphs will allow to detect
impossible combinations of resets denoted by labels of observation states of car-
dinality larger than one. This is ensured by an encoding of Obs into the TOG,
in a way defined as follows:

Definition 10. A timed observation graph Obse is said to implement an obser-
vation function Obs when the following two conditions are fulfilled:

Correspondence: all observations are encoded in the TOG, i.e. for all wt ∈
Dom(Obs), for any wtr compatible with wt, there is a path sε

wzr−−→ sO = wzr

in Obse such that wtr |= wzr, wt ∈ words(sO) and Obs(wt) ∈ l(sO);
Coverage: all observation states are covered by Dom(Obs), i.e. for any sO =

(wzr) ∈ SO, words(sO) �= ∅ and for any wt ∈ words(sO), wt ∈ Dom(Obs),
wt |= wzr and Obs(wt) ∈ l(sO).



152 L. Henry et al.

Example 5. The TOG in Fig. 3b corresponds to the observation structure dis-
played in our previous examples. Notice that it has a label of size two on the
leafs of the right branch.

The pruning of the timed decision graph relies on invalidity of words and
states, our key contribution to the active learning framework for timed automata.
It allows to characterize reset combinations that are impossible for a given K-
closed word. This complements inconsistency and allows to prune resets and
schedule guards to be added when resets are not tied to observations.

Definition 11. A K-closed word with reset wzr = (zi, ai, ri)i∈[0,n]z is invalid
with respect to an observation graph Obse if one of the following condi-
tions holds: |l(wzr)| = 2, or a prefix of wzr is invalid w.r.t. Obse, or there
exists zn+1, an+1 such that both (zi, ai, ri)i∈[0,n].(zn+1, an+1,�)zn+1[a←0] and
(zi, ai, ri)i∈[0,n].(zn+1, an+1,⊥)zn+1 are invalid w.r.t. Obse.

A zone word with reset (or a guarded word with reset) is invalid if it models
an invalid K-closed word with reset.

Invalid guarded words with resets encode behaviours that can not correspond
to any model, and thus should be pruned in the TDG:

Proposition 12. If a timed observation graph Obse has an invalid observation
state sO = wzr, there is no TA model having execution wzr.

Situations may arise where a guarded word with reset is not invalid but all
its successors by a given action are; an example is presented below. In such
situations, two different K-closed words with resets make the successors invalid,
and a guard has to be added.

Example 6. Consider the partial set of observations {((1.7, a)(1, a),+), ((1.7, a)
(1.1, a),−), ((2.9, a)(1.1, a),−), ((2.7, a)(1.1, a),+)} over the alphabet Σ = {a}.
The corresponding partial timed observation graph Obse is displayed in Fig. 41.

+ + − −

i

i i

i

i i + + − −

a,(1,2)

�

a,[1]

� ⊥

a,(1,2)

� ⊥

⊥

a,(2,3)

� ⊥

a,(2,3)

�

a,(1,2)

� ⊥

⊥

a,(3,4)

� ⊥

a,[4]

� ⊥

Fig. 4. A (partial) timed observation graph with some invalid nodes.

1 In order to avoid overloading the explanation, we call the observation and graph
partial because we do not mention some of the observations that would be necessary
to have the implementation property.
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We do not represent the actual K-equivalent classes on the graph so as to
keep the figure as simple as possible. It can be seen that both resetting and
not resetting the clock after the first action may sometimes lead to an invalidity.
Hence, taking these observations into account in a timed decision graph with a
� guard on this transition leads to pruning both successors of a decision tree.

This is problematic, as a decision state should always have successors. Hence
it is necessary to introduce a guard to distinguish the different invalidities.

4 Updating a Timed Observation Structure

We define the algorithms used to update the previously defined data structures.
The general idea is to add observations while preserving the good properties
of the data structures, which requires detecting inconsistencies and invalidities
on-the-fly, and resolving them by adding new guards.

The algorithms in Sect. 4.1 handle new observations while keeping most of
the good properties of the structures, except for consistency. When inconsisten-
cies arise, calls are scheduled to the algorithms proposed in Sect. 4.2. Sect. 4.3
deals with a similar but different problem arising from different invalidities meet-
ing each others. Finally an algorithm to rebuild (parts of) the structure using
the informations gathered using the previous section algorithms is described in
Sect. 4.4.

4.1 Adding a New Observation

In essence, our algorithms propagate new words in the TDG N , using satisfiabil-
ity between guarded words with resets and timed words to guide the descent in
the tree. When new states have to be created, membership queries are launched
to get a label for them. All of this is complemented by a similar work on the
TOG Obse, in order to take into account all the new observations. The main
difference between the two algorithms is that in the TDG, labels of size 2 are
detected and left for a future handling as the procedure to identify guards is
potentially heavy, while in the TOG, invalidity leads to immediate pruning in
order to limit the size of the structures.

We use the functions FindPathN and FindPathObse to propagate new observa-
tions in the existing structures. Subsequent creation of new nodes is made with
the functions AddWordN and AddWordObse . Membership queries and the result-
ing function calls are handled by the Request function, and the effective pruning
is made in SearchPrune.

The FindPathN/Obse algorithms execute the descent through the existing
structures, while the AddWordN/Obse ones extend the structures, and make calls
to Request. The latter algorithm first checks if a fitting observation already exists
before making a membership query if necessary. The SearchPrune procedure fol-
lows the lines of the definition of invalidity and finds the root of the invalid
subtree before pruning it.
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The following three statements express soundness of our algorithms. They
ensure that the good properties of the structures are invariant by the call to the
FindPath algorithms. Property 13 states that FindPathN keeps the good proper-
ties of N , except consistency, that is handled by in later. Property 14 does the
same for FindPathObse and Obse, while Property 15 ensures that the calls made
to SearchPrune during the execution of the FindPath algorithm prunes exactly
the invalid words.

Proposition 13. Starting from a complete observation structure (N ,Obs) such
that |Obs(wgr)| ≥ 1 for all wgr ∈ N , and a new word wt associated with an obser-
vation o, a call to FindPathN (wt, o, ε,0, s0) terminates and modifies the observa-
tion structure in such a way that it is complete, wt ∈ Dom(Obs), Obs(wt) = o,
and |Obs(wgr)| ≥ 1 for all wgr ∈ N .

Proposition 14. Starting from a timed observation graph Obse implementing
an observation function Obs, and a new timed word wt associated with the obser-
vation o, a call to FindPathObse(wt, o, ε, ε,0, sε) terminates and modifies the timed
observation graph in such a way that it implements the valid part of Obs extended
to wt.

Proposition 15. Starting from an observation structure (N ,Obs) where Obs
is implemented by Obse and no invalid states can be reached in N , calling
FindPathN or FindPathObse modifies Obse and N in such a way that no invalid
states can be reached in N . Furthermore, no valid words are made unreachable.

4.2 Dealing with Inconsistency

An inconsistency arises when a language state of the TDG contains both accept-
ing and non-accepting observations. It means that a guard must be added some-
where in the structure in order to distinguish between these observations.

For this we search for a pair of adjacent words, which intuitively identify
the boundary between accepting and non-accepting behaviours. We then build
a finite set of differences between adjacent words, each of which corresponds to
a possible guard. This procedure is described in the AdjPair algorithm.

We use K-equivalence to define the notion of adjacency. Intuitively adjacent
words have the same projection on actions and resets, and their valuations either
are K-equivalent, or they materialize a boundary between the accepted and non-
accepted words.

Definition 16. For two timed words with resets wtr = (vi
ti,ai,ri−−−−→ vi+1)i∈[0,n]

and w′
tr = (v′

i

t′
i,ai,ri−−−−→ v′

i+1)i∈[0,n], we say that wtr is adjacent to w′
tr when for

all i ∈ [0, n] and xa ∈ XΣ:

– if vi(xa) + ti ∈ N then |(vi(xa) + ti) − (v′
i(xa) + t′i)| < 1,

– otherwise, vi(xa) + ti ≈K v′
i(xa) + t′i.
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Notice that adjacency is not a symmetric relation. We will sometimes abuse
the notations and say that a pair w,w′ is adjacent to mean that w is adjacent to
w′. We use adjacency to identify differences between the words as possible new
guards that resolve the inconsistency.

Definition 17. The difference between two words wtr = (vi
ti,ai,ri−−−−→ vi+1)i∈[0,n]

adjacent to w′
tr = (v′

i

t′
i,ai,ri−−−−→ v′

i+1)i∈[0,n], noted diff(wtr, w
′
tr) is the set of quadru-

ples defined as: if for a clock x, vi(x) + ti = k ∈ N, then if v′
i(xa) + t′i < k,

(i, x, k,≥) ∈ diff(wtr, w
′
tr) and if v′

i(xa) + t′i > k, (i, x, k,≤) ∈ diff(wtr, w
′
tr).

Using these definitions, we can derive from two adjacent words a set of candidates
to make a new guard. AdjPair makes membership queries on linear combinations
of the two initial observations to perform a binary search until the clock values
of the pair have less than 1 time unit of distance. Then it forces every non-K-
equivalent pair of clock values to have one of its elements be an integer with
more linear combinations. Finally, in order to ensure that only one of the two
words have such integer distinctions, it compares them with their mean. This
gives an adjacent pair.

Proposition 18. The AdjPair algorithm constructs an adjacent pair using at
most O(m|Σ|log(K)) membership queries.

Proof. We refer the reader to the proof of Theorem 5.8 in [GJP06].

4.3 Dealing with Invalidity

A label of size two in the TOG indicates an invalidity. It points to a combination
of resets being impossible combined with those precise observations. Invalidity
is simply dealt with by pruning the invalid parts of the TDG and TOG. But
a challenge can arise, as explained in Example 6: sometimes all successors of a
decision state of the TDG following a valid language state are pruned, due to
invalidities. In this case, a guard must be introduced to separate the different
invalidities and allow to rebuild the graph accordingly. As for inconsistencies, it
is important to introduce guards that model as closely as possible the changes
in behaviours of the observation.

For this purpose, we again use a binary search, but this time manipulating a
pair of sets of words. Furthermore, as the invalidities are often detected by the
precise combination of fractional values, the delays in the words are only modified
by integer values. For two timed words wi

t = (tij , aj)j∈[1,ni] with n1 ≤ n2, we
define the operator w1

t �w2
t = (�t1j�+〈t2j 〉, aj)j∈[1,n1].(t

2
j , aj)j∈[n1+1,n2] to describe

the operation used in the algorithm (where �t� and 〈t〉 respectively represent the
integral and fractional parts of t).

Of course, it is impossible to obtain a good precision while keeping all frac-
tional values: clock values can not be modified to become integers. For this
reason our algorithm only identifies a set of integer constants separating two
behaviours, but does not find which behaviour the constants belong to. This



156 L. Henry et al.

means that we have to wait for a counterexample from an equivalence query to
correct the possible wrong guesses we made.

Procedure InvalidityGuard outputs a validity guard (sl, a, g, x,∼, k) where
a ∈ Σ, g is a guard, x a clock, k ∈ N and ∼ ∈ {<,≤,�}. Such validity guard
states that in the language state sl, after playing a with guard g, adding x ∼ k
to the guard separates the two causes of invalidity. We use � to denote that both
strict and large inequalities could fit the current observations. The InvalidityGuard
algorithm conducts a binary search between two sets of timed words, while keep-
ing the fractional part of the clock values unchanged thanks to the � operator,
while the K-closed sets corresponding to the sets of words do not touch each
other.

Proposition 19. Algorithm InvalidityGuard terminates after O(m(|W1|+ |W2|) ·
|Σ| · log(K)) membership queries, where m is the size of a largest word in
W1 ∪ W2.

Proof. The proof uses the same arguments as the one of AdjPair.

4.4 Rebuilding the Graph

To rebuild a subtree is to introduce new guards using adjacent pairs and valid-
ity guards only when necessary, and re-propagate the informations in the new
guarded words with resets they satisfy. We use Algorithm Rebuild for this. From
an adjacent pair, we extract consistency guards, which will be used to reconstruct
a decision graph that is consistent with respect to the adjacent pair.

Definition 20. For an adjacent pair wtr, w
′
tr, clock constraint xa ≤ k is a

consistency guard at depth i if (i, xa, k,≺) ∈ diff(wtr, w
′
tr) and there is no

(j, xa, l,≺′) ∈ diff(wtr, w
′
tr) such that j < i or j = i and l < k.

The consistency guards are taken on the first difference, so as to ensure that
they can not be overwritten later (there are no guards that can separate the pair
before the guard), and to avoid large constants as much as possible.

Notice that we can not always infer a unique guard from an adjacent pair,
as multiple clocks can be different at the same time. Intuitively, Rebuild only
introduces guards “when needed”, which is formalized by the following well-
guardedness property.

Definition 21. A timed decision graph is said well guarded if, for all transitions
(sl, a, g, sd) ∈ EΣ and all constraints xb ≺ k in g, either there is wtr adjacent to
w′

tr such that both pass by sl and xb ≺ k is a consistency guard for the pair at
this depth or (sl, a, g′, xb,∼, k) is a validity guard with g ⊂ g′ and ≺ is either ∼
or ¬ ∼.

Rebuild constructs a complete, consistent and well-guarded subtree if it is called
high enough in the tree.
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Proposition 22. Running Rebuild on a valid and consistent state sl of which no
successors have inconsistencies that lead to consistency guards at a depth lesser
than |sl|, constructs a subtree rooted in its argument that is complete, consistent
and well-guarded. It furthermore does not have invalid states.

This proposition tells us we can keep the timed decision graph up-to-date
with respect to observations (i.e., complete and consistent) while keeping the
good properties that were ensured by the previous algorithms. It remains to
show how a candidate timed automaton can be constructed from this structure.

5 Building a Candidate Timed Automaton

Following the active learning approach, our purpose is to identify a subset of
nodes in the decision graph that will correspond to locations of the automaton,
and then fold transitions according to an order on the remaining nodes. [GJP06]
discusses such orders when resets are fixed. To handle RERA we first have to
fix a reset strategy before applying the original method. This gives as many
hypotheses as we have strategies.

Reset Selection. We present the general framework but do not discuss good
strategies in the following. Such strategies would rely on heuristics.

Definition 23. A reset strategy over a timed decision graph N is a mapping
π : Sd → {�,⊥}, assigning a decision to each decision states.

A reset strategy π is said admissible if for any state sd, there is a language state
sl such that (sd, π(sd), sl) ∈ E.

Proposition 24. In a timed decision graph constructed using the FindPath and
Rebuild algorithms and where every scheduled call to Rebuild has been done, there
always exists at least one admissible reset strategy.

An admissible reset strategy is used to prune the decision graph in such a
way that only one reset combination is considered for each transition. The effect
of an admissible reset strategy π on its timed decision graph N is the TDG
π(N ) defined from N by keeping only outgoing transitions from decision states
that agree with π. We call this TDG the resulting graph of π. It can be seen
quite directly that a resulting graph always has exactly one successor to each
decision state. Using this, we can notice that those resulting graphs are very
close to timed decision trees of [GJP06], in which no decision states exist and
the transitions from language states to language states directly hold the (only
possible) reset.

Orders and Folding. Once an admissible reset strategy is fixed, it is possible to
fold the resulting graph into a RERA. This is made through the use of a preorder
on states: we want to find a maximal subset for this order.

We define the height of a language state sl, noted height(sl), as the height
of the subtree it is the root of. A preorder � on language states is said height-
monotone when sl � s′

l implies height(sl) ≤ height(s′
l).



158 L. Henry et al.

Definition 25. Let N be a timed decision graph and � a preorder on its lan-
guage states. A prefix-closed subset U of N is called �-closed if sl � U for all
successors of U and �-unique if for all sl, s

′
l ∈ U , sl �= s′

l ⇒ ¬(sl � s′
l).

�-closedness is used to construct a RERA by folding the successors of U into
comparable states of U . �-uniqueness is useful to bound the number of states
in U and thus the size of the resulting automaton.

The following lemma (Lemma 6.2 in [GJP06]) ensures that there always exists
a satisfying set of states U . For its constructive proof, we refer the reader to the
original paper.

Lemma 26. Let � be a height-monotone preorder on states in a resulting graph
π(N ). Then there exists a �-closed and �-unique prefix-closed subset of the
language states of π(N ).

Using such a subset, we can fold the resulting graph into a RERA as follows:

Definition 27. Let (Obs,N ) be a consistent observation structure, π an admis-
sible reset strategy and � a preorder on language states of π(N ). Consider a
�-unique, �-closed and prefix-closed subset U of π(N ). Then a U
-merging of
(Obs,N ) according to π is a RERA (U, ε,XΣ ,E,Accept) such that Accept = {u ∈
U | label(u) = {+}} and for any language node u.(a, g, r) of π(N ) with u ∈ U ,
there is exactly one edge of the form (u, a, g, r, u′) ∈ E with u.(a, g, r) � u′.
Notice that, by the second condition, a U
-merging RERA is deterministic.

Furthermore, if the observation structure is complete, a U
-merging generalizes
the observations obtained so far.

Constructing a Candidate RERA. Using the results of the previous subsections,
we can now construct a candidate RERA from our observation structure. All
admissible reset strategies can be constructed by branch and bound. Then a
merging is constructed for each resulting graph, and equivalence queries are
launched.

For each of the RERA constructed by merging, either a counter-example
will be returned by the equivalence query, or the candidate is deemed correct.
In the latter case, we return this RERA; in the former case, we include the
counter-example in our observation structure and repeat the process.

6 Conclusion

In this paper, we propose an active learning method for deterministic reset-
free event recording automata. We add a key feature to the state of the art:
invalidity, that allows to detect incorrect guesses of resets when they are not tied
to observations. This required to rework all the data structures and algorithms
involved to handle invalidity on the fly. Most importantly, this brings the lacking
notion to scale up to the class of deterministic timed automata (DTAs).

A clear future work is to generalize this method to actually handle DTAs.
This mostly requires to handles resets of sets of clocks instead of single ones.
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As the complexity would be greatly increased, this calls for some optimization.
An promising addition would be to use an implicit structure. Instead of storing
all possible reset configurations, only storing a small set of them at the same
time would decrease the memory cost. As the models are built directly from
observations, and not from previous states, the computational overhead may be
limited. An other interesting trail for future development is to find a way to build
a timed automaton from the observation structure that exploits the different
admissible reset strategies without building all of them. Works on approximate
determinization of timed automata through games [BSJK11] deal with similar
problems and offer interesting leads. Finally, in [GJP06], the authors propose to
refine the adjacent pairs into critical pairs, that have a minimal set of differences.
This allows to better identify the guards to be added, and thus can have a
positive effect on both the size of the constructed models and the computational
cost. Sadly, no precise procedure is given to construct the pairs, so creating one
would be beneficial to the approach. More generally, studying the efficiency of
this algorithm and of the variants proposed as future work could help better
understand the applicability and bottlenecks of the approach.
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Abstract. This paper proposes a new approach, grounded in Satisfi-
ability Modulo Theories (SMT), to study the transient of a Max-Plus
Linear (MPL) system, that is the number of steps leading to its peri-
odic regime. Differently from state-of-the-art techniques, our approach
allows the analysis of periodic behaviors for subsets of initial states, as
well as the characterization of sets of initial states exhibiting the same
specific periodic behavior and transient. Our experiments show that the
proposed technique dramatically outperforms state-of-the-art methods
based on max-plus algebra computations for systems of large dimensions.

1 Introduction

Max-Plus Linear (MPL) systems are a class of discrete-event systems (DES) that
are based on the max-plus algebra, an algebraic system using the two operations
of maximisation and addition. MPL systems are employed to model applications
with features of synchronization without concurrency, and as such are widely used
for applications in transportation networks [4], manufacturing [14] and biological
systems [6,10]. In MPL models, the states correspond to time instances related to
discrete events.

A fundamental and well-studied property of MPL systems is related to the
periodic behavior of its states: from an initial vector, the trajectories of an MPL
system are eventually periodic (in max-plus algebraic sense) starting from a spe-
cific event index called the transient, and with a specific period called cyclicity [4].
As explained in [14, Section 3.1], the transient is closely related to the notion of
cycle-time vector, which governs the asymptotic behaviour of MPL systems.

The transient is key to solve a number of fundamental problems of MPL sys-
tems, such as reachability analysis [17] and bounded model checking [18]: it plays
a crucial role as the “completeness threshold” (namely, the maximum iteration
that is sufficient for the termination of the algorithm) [9] for those two problems.
The computation of the transient is an interesting problem, as it is in general not

c© Springer Nature Switzerland AG 2020
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correlated to the dimension of the MPL system. Thus, it is possible for the result-
ing transient to be relatively large for a small-dimensional MPL system. There are
several known upper bounds [8,16,19,20] for the transient, which are mostly com-
puted via the corresponding precedence graph and are, in practice, much larger
than the actual values.

This paper has two specific contributions. The first is to provide a novel pro-
cedure to compute the transient by means of Satisfiability Modulo Theory (SMT)
solving [5]. The main idea underpinning the new method is to transform the prob-
lem instance into a formula in difference logic, and then passing the formula into
an SMT solver, which outputs the transient. More precisely, in order to check
the validity of the formula, we check the unsatisfiability of its negation. If the
SMT solver reports “satisfied”, then the original formula admits a counterexam-
ple, from which we can refine the formula. On the other hand, if SMT solver reports
“unsatisfied”, then from the formula we obtain the transient and the correspond-
ing cyclicity. The second contribution of this work is to provide a procedure to
synthesize the subset of the state space of an MPL system that corresponds to a
specific transient/cyclicity pair. We show that one can partition the state space
into sets corresponding to different transient/cyclicity pairs.

The rest of the paper is structured as follows. Section 2 describes the basics
of MPL systems, including the key notion of cycle-time vector. In Sect. 3, we pro-
vide the formal definition of transient over MPL systems and also a standard linear
algebra procedure, based on matrix multiplication, to compute the transient (cf.
Algorithm 1), which is later used as a benchmark. Section 4 is divided into four
parts. The first part provides the background on SMT and including the underly-
ing relevant theory. The translation of inequalities over max-plus algebra to for-
mulae in difference logic is explained in the second part. In the third part, we pro-
vide SMT-based methods (cf. Algorithms 2 and 3) to compute the transient. The
spatial synthesis problem is discussed in the last part. The comparison of the per-
formance of the novel algorithm against the standard linear algebra procedure is
presented in Sect. 5. The paper is concluded with Sect. 6. The proofs of the propo-
sitions and theorems are presented in a longer version of this paper [1]. The devel-
oped code and generated data can be found in https://es.fbk.eu/people/amicheli/
resources/formats20/.

2 Preliminaries

2.1 Max-Plus Linear Systems

Max-plus algebra is a modification of linear algebra derived over the max-plus
semiring (Rmax,⊕,⊗) where Rmax := R∪{ε := −∞} and a⊕ b := max{a, b}, a⊗
b := a + b, for all a, b ∈ Rmax. The zero and unit elements of Rmax are ε and 0,
respectively. The max-plus algebraic operations can be extended to matrices and

https://es.fbk.eu/people/amicheli/resources/formats20/
https://es.fbk.eu/people/amicheli/resources/formats20/
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vectors in a natural way. For A,B ∈ R
m×n
max , C ∈ R

n×p
max and α ∈ Rmax,

[α ⊗ A](i, j) = α + A(i, j),
[A ⊕ B](i, j) = A(i, j) ⊕ B(i, j),

[A ⊗ C](i, j) =
n⊕

k=1

A(i, k) ⊗ C(k, j).

Given A ∈ R
n×n
max and t ∈ N, A⊗t denotes A ⊗ . . . ⊗ A (t times). For t = 0, A⊗0 is

an n-dimensional max-plus identity matrix where all diagonal and non-diagonal
elements are 0 and ε, respectively.

Given V = {v1, . . . , vp} as a set of vectors in R
n
max, we use the same notation

to denote a matrix where all columns are in V i.e., V (·, i) = vi for 1 ≤ i ≤ p. A
vector v ∈ R

n is a max-plus linear combination of V if v = α1 ⊗v1 ⊕ . . .⊕αp ⊗vp

for some scalars α1, . . . , αp ∈ R or equivalently there exists w ∈ R
p such that

V ⊗ w = v. The set of all max-plus linear combinations of V is called max-plus
cone1 and is denoted by cone(V ) [7]. It is formally expressed as

cone(V ) = {V ⊗ w | w ∈ R
p}. (1)

Furthermore, we denote as v1, . . . , vp the basis of cone(V ). Notice that the max-
plus cone is closed under the operations ⊕ and ⊗: if v, w are in cone(V ), then so is
α ⊗ v ⊕ β ⊗ w for α, β ∈ R. Max-plus cones are the analogues of vector subspaces
in classical linear algebra.

A dynamical system over the max-plus algebra is called a Max-Plus Linear
(MPL) system and is defined as

x(k + 1) = A ⊗ x(k), k = 0, 1, . . . (2)

where A ∈ R
n×n
max is the system matrix, and vector x(k) = [x1(k) . . . xn(k)]�

encodes the state variables [4]. For example, x can be used to represent the
time stamps associated to the discrete events, while k corresponds to the events
counter. Hence, it is more convenient to consider Rn (instead of Rn

max) as the state
space. Applications of MPL systems are significantly found on systems where the
time variable is essential, such as transportation networks [14], scheduling or [3]
manufacturing [15] problems, or biological systems [6,10].

Definition 1 (Precedence Graph [4]). The precedence graph of A ∈ R
n×n
max ,

denoted by G(A), is a weighted directed graph with nodes 1, . . . , n and an edge
from j to i with weight A(i, j) for each A(i, j) �= ε. �

Definition 2 (Regular Matrix [14]). A matrix A ∈ R
n×n
max is called regular if

A contains at least one finite element in each row. �

Definition 3 (Irreducible Matrix [4]). A matrix A ∈ R
n×n
max is called irre-

ducible if G(A) is strongly connected. �
1 Unlike in [7,13], we require each max-plus cone to be a subset of Rn.
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Recall that a directed graph is strongly connected if, for any two different nodes
i, j, there exists a path from i to j. The weight of a path p = i1i2 . . . ik is equal to
the sum of the edge weights in p. A circuit, namely a path that begins and ends
at the same node, is called critical if it has maximum average weight, which is the
weight divided by the length of the path [4].

Each irreducible matrix A ∈ R
n×n
max admits a unique max-plus eigenvalue λ ∈ R

and a corresponding max-plus eigenspace E(A) = {x ∈ R
n | A⊗x = λ⊗x}2. The

scalar λ is equal to the average weight of critical circuits in G(A), and E(A) can
be computed from A+

λ =
⊕n

k=1((−λ)⊗A)⊗k. More specifically, E(A) is the max-
plus linear combination of the ith column of A+

λ , for i such that A+
λ (i, i) = 0 [4].

Thus, the eigenspace E(A) is a max-plus cone. A reducible matrix may have mul-
tiple eigenvalues, where the maximum one equals to the average weight of critical
circuits of G(A).

Example 1. Consider a two-dimensional MPL system x(k + 1) = A⊗x(k), with

A =
[
2 5
3 3

]
,

which represents a simple railway network between two cities [4, Sec. 0.1], as
shown in Fig. 1. The dynamics w.r.t. (2) can be expressed as

[
x1(k + 1)
x2(k + 1)

]
=

[
max{x1(k) + 2, x2(k) + 5}
max{x1(k) + 3, x2(k) + 3}

]
.

For 1 ≤ i, j ≤ 2, the element A(i, j) corresponds to the time taken to travel from
station Sj to Si, while xi(k) is the time of the k-th departure at station Si.

2
3

3

5

S1 S2

Fig. 1. A simple railway network represented by an MPL system.

From an initial vector, say x(0) = [0 0]�, one can compute vectors denoting
the next departure times, as follows

[
5
3

]
,

[
8
8

]
,

[
13
11

]
,

[
16
16

]
, . . . .

Leaving the details aside, the matrix A has eigenvalue λ = 4 and eigenspace
E(A) = {x ∈ R

2 | x1 − x2 = 1}. �
2 Because we regard R

n to be the state space of the MPL system (2), we only consider
eigenvectors with finite elements.
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2.2 Cycle-Time Vector

This section presents the definition of cycle-time vector of MPL systems. The com-
putation of the cycle-time vector is indeed important, as it can shed light on the
asymptotic behavior of MPL systems. In this section, we show its relationship with
the eigenspace and eigenvalue of the underlying state matrix. Furthermore, as it
will be clear in Sect. 3, the cycle-time vector can be used to determine whether the
states of an MPL system are eventually periodic.

Definition 4 (Cycle-Time Vector [14]). Consider a regular MPL system (2),
and assume that for all j ∈ {1, . . . , n} the quantity ηj , defined by

ηj = lim
k→+∞

(xj(k)/k),

exists. Then the vector χ = [η1 . . . ηn]� is called the the cycle-time vector of
the given sequence x(k) with respect to A. �

It has been shown in [14, Theorem 3.11] that if the cycle-time vector of A exists
for at least one initial vector then it exists for any initial vector. Instead of com-
puting the limit as in Definition 4, the cycle-time vector can be generated using a
procedure [12, Algorithm 31].

Theorem 1 ([12]). Suppose we have a regular MPL system (2). For each x(0) ∈
R

n there exist natural numbers p, q such that x(k + q) = (q × χ) + x(k) for all
k ≥ p, where χ = [η1 . . . ηn]� is the cycle-time vector of A and the multiplication
q × χ is defined in the classical algebra. �

By Theorem 1, the trajectories of a regular MPL system (2) starting from any
initial vector is governed by the corresponding cycle-time vector χ. In general, the
elements of χ may be different, as shown in [12, Example 1]. However, if E(A) �= ∅
then the elements of χ are all equal.

Proposition 1. Suppose a regular MPL system (2) has maximum eigenalue λ.
The eigenspace E(A) is not empty iff χ = [λ . . . λ]T ∈ R

n. �

3 Transient in Max-Plus-Linear Systems

The transient of MPL systems is related to the sequence of the powers of matrix
A, namely A⊗k for k ≥ 0.

Proposition 2 (Transient [4,14]). For an irreducible matrix A ∈ R
n×n
max and

its max-plus eigenvalue λ ∈ R, there exist k0, c ∈ N0, such that A⊗(k+c) =
(λ × c) ⊗ A⊗k for all k ≥ k0. The smallest such k0 and c are called the transient
and the cyclicity of A, respectively. �
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For the rest of this paper, we denote the transient and the cyclicity of A as
tr(A) and cyc(A), respectively. While cyc(A) is related to critical circuits in the
precedence graph G(A) (see [4, Definition 3.94] for more details3), tr(A) is unre-
lated to the dimension of A. Even for a small n, the transient of A ∈ R

n×n
max can be

large. Upper bounds of the transient have been discussed in [8,16,19,20].
By Proposition 2, each irreducible MPL system enjoys a periodic behaviour

with a rate λ: for each initial vector x(0) ∈ R
n we have x(k + cyc(A)) = (λ ×

cyc(A)) ⊗x(k) for all k ≥ tr(A) where the vectors x(1),x(2) are computed recur-
sively by (2). A similar condition may be found on reducible MPL systems: we
denote the corresponding transient and cyclicity as global, as per Proposition 2.
The local transient and cyclicity for a specific initial vector x ∈ R

n and for a set
X ⊆ R

n is defined as follows.

Definition 5. Given A ∈ R
n×n
max with maximum eigenvalue λ and an initial

vector x ∈ R
n, the local transient and cyclicity of x(0) w.r.t. A are respectively

the smallest k0, c ∈ N0 such that x(k + c) = λc ⊗ x(k) for all k ≥ k0. We
denote those scalars as tr(A,x) and cyc(A,x), respectively. Furthermore, for X ⊆
R

n, tr(A,X) = max{tr(A,x(0)) | x(0) ∈ X} and cyc(A,X) = lcm{cyc(A,x(0)) |
x(0) ∈ X}, where lcm stands for the “least common multiple”. �

By definition, we have tr(A,Rn) = tr(A). For a max-plus cone X = cone(V ),
we show that the local cyclicity and transient can be computed from the corre-
sponding bases, provided that tr(A, vi) exists for all 1 ≤ i ≤ p.

Proposition 3. Given a max-plus cone X = cone(V ) where V = {v1, . . . , vp},
we have tr(A,X) = tr(A, V ) = max{tr(A, v) | v ∈ V }, and cyc(A,X) =
cyc(A, V ) = lcm{cyc(A, v) | v ∈ V }. �

Definition 6. Suppose we have a regular matrix A ∈ R
n×n
max . The underlying

MPL system (2) is classified into three categories as follows:

i. never periodic: tr(A,x(0)) does not exist for all x(0) ∈ R
n,

ii. boundedly periodic: tr(A,x(0)) exists for all x(0) ∈ R
n and tr(A) exists,

iii. unboundedly periodic: tr(A,x(0)) exists for all x(0) ∈ R
n but tr(A) does not.

We call (2) periodic if it is either unboundedly periodic or boundedly periodic. �

We show that the periodic behavior of an MPL system is indeed related to the
eigenspace and cycle-time vector of its corresponding state matrix.

Theorem 2. Suppose we have a regular matrix A ∈ R
n×n
max with a maximum

eigenvalue λ and cycle-time vector χ. The following statements are equivalent.

a. The underlying MPL system (2) is periodic.
b. The corresponding cycle-time vector is χ = [λ . . . λ]� ∈ R

n.
c. The eigenspace E(A) is not empty. �

3 In this reference, one can find the cyclicity for reducible and irreducible matrices
using graph-theoretical approaches.
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Proposition 4. Suppose we have a regular matrix A ∈ R
n×n
max with maximum

eigenvalue λ and non-empty eigenspace E(A). If there exist i ∈ {1, . . . , n} and
natural numbers k′

0, c
′ such that A⊗k+c′

(·, i) = μc′ ⊗A⊗k(·, i) for all k ≥ k′
0 with

μ < λ then (2) is unboundedly periodic. �

We now will provide the procedure to compute the transient of MPL sys-
tems. As per Proposition 2, the common method to obtain the (global) transient
of A ∈ R

n×n
max is by computing the power of the matrix A⊗0, A⊗1, . . . until we find

k0 ≥ 0 such that A⊗(k0+c) = λ⊗c ⊗ A⊗k0 where λ, c is respectively the max-plus
eigenvalue and cyclicity of A. Similarly, to find the transient of A w.r.t. a max-plus
cone X = cone(V ) one needs to compute A⊗0 ⊗ V,A⊗1 ⊗ V, . . ..

Algorithm 1 illustrates the procedure to compute transient (and cyclicity) for a
max-plus cone cone(V ) w.r.t. A ∈ R

n×n
max . While originally designed for irreducible

matrices, it also can be applied to find the transient of reducible matrices (if any).
For this reason, we assign a maximum bound as termination condition. It is impor-
tant to note that Algorithm 1 can also be used to compute the local transient and
cyclicity for a vector: that is, when V has only one column. The algorithm starts
by computing the cycle-time vector χ of the state matrix. If the entries of χ are not
all the same then the transient for cone(V ) does not exist. In line 11, we perform
equality checking w.r.t. a scalar between A⊗it−m ⊗ V and A⊗it ⊗ V .

By Theorem 2 and Proposition 4, one can classify an MPL system (2) into a
category in Definition 6. As a result, determining the existence of global tran-
sient is a decidable problem. For boundedly periodic MPL systems, computing
the global transient is also a decidable problem. This is because they ensure the
existence of a finite transient, meaning that Algorithm 1 eventually terminates.
However, Algorithm 1 is sound but does not necessarily terminate (in general) for
unboundedly periodic MPL systems.

Algorithm 1. Computation of cyclicity and transient of A w.r.t. cone(V )

1: function TransCone(A, V, N)
2: M ← EmptyVector() � empty vector used to store
3: M.push back(V ) A0 ⊗ V, A1 ⊗ V, . . .
4: it ← 0 � number of iterations
5: χ ← CycleTimeVector(A) � computing cycle-time vector
6: if elements of χ are all equal then
7: while (it ≤ N) do
8: M.push back(A ⊗ M[it])
9: it ← it + 1

10: for 1 ≤ m < it do
11: if (M[it] = (λ × m) ⊗ M[it − m]) then
12: return 〈it − m, m〉
13: if (it > N) then
14: print “terminated after reaching maximum bound”

15: else
16: print “the transient does not exist”
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Remark 1. The procedure in Algorithm 1 only employs matrix operations in
max-plus algebra. It can be improved by computing the cyclicity of the matrix
from the corresponding precedence graph. If the resulting cyclicity is c then the
range in line 10 of Algorithm 1 can be taken between 1 and c. �
Example 2. Suppose we have a regular and reducible MPL system x(k + 1) =
B ⊗ x(k), where

B =

⎡

⎣
2 8 ε
10 5 ε
3 ε a

⎤

⎦ , (3)

and where a ≥ 8. The corresponding eigenvalue for B is λ = 9 if 8 ≤ a ≤ 9;
λ = a otherwise. Taking the power of the matrix, we have

B⊗2 =

⎡

⎣
18 13 ε
15 18 ε

a + 3 11 2a

⎤

⎦ , B⊗3 =

⎡

⎣
23 26 ε
28 23 ε
b a + 11 3a

⎤

⎦ , B⊗4 =

⎡

⎣
36 31 ε
33 36 ε

a + b 2a + 11 4a

⎤

⎦ ,

where b = max{21, 2a + 3}. One can check that, for a > 9, the matrix does
not admit an eigenvector over R

3 (but it still has eigenvector over R
3
max). As a

result, B is never periodic.
On the other hand, for 8 ≤ a ≤ 9, the corresponding E(B) is not empty.

Thus, B is periodic. Furthermore, for k ≥ 2, we have

[B⊗k+2](i, ·) =
{

18 ⊗ [B⊗k](·, i), if i ∈ {1, 2},
2a ⊗ [B⊗k](·, i), if i = 3,

which shows that B is boundedly periodic with global transient tr(B) = 2 if and
only if a = 9. Thus, when 8 ≤ a < 9 B is unboundedly periodic. �

4 Computation of Transient of MPL Systems with SMT

This section describes a new procedure to compute the transient of MPL systems
by means of Satisfiability Modulo Theories (SMT). We first mention some basic
notions on SMT.

4.1 Background on SMT

Given a first-order formula ψ in a background theory T, the Satisfiability Modulo
Theory (SMT) problem consists in deciding whether there exists a model (i.e. an
assignment to the free variables in ψ) that satisfies ψ [5]. For example, consider
the formula (x ≤ y) ∧ (x + 3 = z) ∨ (z ≥ y) within the theory of real numbers.
The formula is satisfiable and a valid model is {x := 5, y := 6, z := 8}.

SMT solvers can support different theories. A widely used theory is Linear Real
Arithmetic (LRA). A formula in LRA is an arbitrary Boolean combination, or uni-
versal (∀) and existential (∃) quantification, of atoms in the form

∑
i aixi 	
 c

where 	
∈ {>,<,≥,≤, �=,=}, every xi is a real variable, and every ai and c
are rational constants. Difference logic (RDL) is the subset of LRA in which all
atoms are restricted to the form xi − xj 	
 c. Both theories are decidable [5,
Section 26.2.2.2].
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4.2 From Max-Plus Algebra to Difference Logic

Before providing the main contribution, we show that the inequalities in max-plus
algebra can be expressed as a formula in difference logic. For the rest of this paper,
∼ is either ≥ or >. We write ¬(a ∼ b) if it is not the case that a ∼ b.

Proposition 5. Given a1, . . . , ap, a, b ∈ Rmax, real-valued variables x1, . . . , xp,
and 1 ≤ j ≤ p, we have

p⊕

i=1

(xi + ai) ∼ a ≡
p∨

i=1

(xi + ai ∼ a), (4)

a ∼
p⊕

i=1

(xi + ai) ≡
p∧

i=1

(a ∼ xi + ai), (5)

p⊕

i=1

(xi + ai) ∼ xj + b ≡

⎧
⎪⎪⎨

⎪⎪⎩

true, if (aj ∼ b), (6)
p∨

i=1
i�=j

(xi + ai ∼ xj + b), otherwise, (7)

xj + b ∼
p⊕

i=1

(xi + ai) ≡

⎧
⎪⎪⎨

⎪⎪⎩

p∧

i=1
i�=j

(xj + b ∼ xi + ai), if (b ∼ aj), (8)

false, otherwise. (9)

Proposition 6 (Reduced Formula). Given real valued variables x1, . . . , xp

and a1, . . . , ap, b1, . . . , bp ∈ Rmax, the inequality

F ≡
p⊕

i=1

(xi + ai) ∼
p⊕

j=1

(xj + bj) (10)

is equivalent to
F ∗ ≡

⊕

i∈S1

(xi + ai) ∼
⊕

j∈S2

(xj + bj), (11)

where S1 = {1, . . . , p}\{1 ≤ k ≤ p | ak = ε or ¬(ak ∼ bk)} and S2 = {1, . . . , p}\
{1 ≤ k ≤ p | bk = ε or ak ∼ bk}, respectively. �
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Proposition 6 ensures that any inequality expression in max-plus algebra can
be reduced to a simpler one in which no a variable appears on both sides i.e., S1 ∩
S2 = ∅. However, S1 and S2 cannot be both empty if there exists at least one finite
scalar in both sides of (10). We call (11) as a non-trivial reduced formula if both
S1 �= ∅ and S2 �= ∅.

Proposition 7. Given a non-trivial reduced formula in (11), then

F ∗ ≡
∧

j∈S2

(
∨

i∈S1

(xi − xj ∼ bj − ai)

)
≡

∨

i∈S1

⎛

⎝
∧

j∈S2

(xi − xj ∼ bj − ai)

⎞

⎠ . (12)

If S1 = ∅ then F ∗ ≡ false. On the other hand, if S2 = ∅ then F ∗ ≡ true. �

Proposition 7 shows that any non-trivial formula of (11) can be expressed as
a difference logic formula in disjunctive and conjunctive normal forms.

4.3 Procedure to Compute Transient of MPL Systems with SMT

We now will discuss the procedure to compute the transient of an MPL system
via SMT-solving. The idea behind the SMT-based procedure is to transform the
equality checking in line 11 of Algorithm1 into a formula in difference logic. Notice
that the quantity M[it] in Algorithm 1 corresponds to A⊗it⊗V next, and cone(V )
can be expressed as matrix V . Thus, it can be equivalently written as

(A⊗it ⊗ V ) ⊗ x = (λ × m) ⊗ (A⊗it−m ⊗ V ) ⊗ x, ∀x ∈ R
p, (13)

where p is the number of columns of V . By denoting R = A⊗it ⊗ V and S =
(λ × m) ⊗ A⊗it−m ⊗ V , (13) can be expressed as

n∧

k=1

⎛

⎝

⎛

⎝
p⊕

i=1

(xi + rki) ≥
p⊕

j=1

(xj + skj)

⎞

⎠∧
⎛

⎝
p⊕

i=1

(xi + ski) ≥
p⊕

j=1

(xj + rkj)

⎞

⎠

⎞

⎠, (14)

where rki (resp. ski) is the element of R (resp. S) at row k and column i. For
simplicity, we denote (14) as EqFunc(R,S). By Proposition 7, each disjunct in (14)
can be expressed as a formula in difference logic.

Algorithm 2 summarizes the SMT-based version of Algorithm 1. If the corre-
sponding eigenspace of the matrix is not empty, we set the value for transient and
cyclicity respectively to k0 = 0 and c = 1 (the smallest possible for both). Then,
we generate the corresponding difference logic formula F w.r.t. (13) in line 10.
To check the validity of F , we use an SMT solver to check the unsatisfiability of
the negation. If it is not satisfiable then the original formula is valid, and then we
obtain the transient and cyclicity from the current value of k0 and c.
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On the other hand, if it is satisfiable then there exists a counterexample falsi-
fying formula F . We express the counterexample from a satisfying assignment of
¬F as a real-valued vector w ∈ R

p (line 15). Vector v = V ⊗ w corresponds to
the counterexample: its transient is greater than k0 or its cyclicity is greater than
c. The resulting transient and cyclicity of v become the updated value for (k0, c).
This process is repeated until either the SMT solver reports “unsatisfiable” in line
12 or k0 + c exceeds the maximum bound N . (which corresponds to the termina-
tion condition of Algorithm1).

Unlike Algorithm 1, which only works on max-plus cones, Algorithm 2 can be
modified (into Algorithm 3) so that it can be applied on any set of initial conditions
X ⊆ R

n. Although (14) is can be translated exclusively to RDL, we can extend
X as an LRA formula. In line 9 of Algorithm3, we generate a formula F which
corresponds to the equality checking between A⊗k0 and A⊗k0+c. If X → F is
valid then for all x(0) ∈ X we have tr(A,x(0)) ≤ k0 and cyc(A,x(0)) ≤ c. Again,
to check the validity of X → F , we check the unsatisfiability of its negation.

Algorithm 2. Computation of transient and cyclicity of A w.r.t. cone(V ) via SMT-
solving

1: function TransConeSMT(A, V, N)
2: χ ← CycleTimeVector(A)
3: if elements of χ are all equal then
4: n ← NrRows(A)
5: p ← NrCols(V )
6: for i ∈ {1 · · · p} do
7: x[i] ← MakeSMTRealVar( ) � symbolic variables

8: k0 ← 0, c ← 1
9: while ((k0 + c) ≤ N) do

10: F ← EqFunc(A⊗k0+c ⊗ V, (λ × c) ⊗ A⊗k0 ⊗ V )
11: model ← GetSMTModel(¬F )
12: if model = ⊥ then � formula is unsatisfiable
13: return 〈k0, c〉
14: else � formula is satisfiable
15: w ← 〈model(x[1]), · · · model(x[p])〉 � vector in R

p

16: v ← V ⊗ w � vector in R
n

17: 〈k′
0, c

′〉 ← TransCone(A, A⊗k0 ⊗ v) � computed by Algorithm 1
18: k0 ← k0 + k′

0

19: c ← LCM(c, c′)

20: if ((k0 + c) > N) then
21: print “terminated after reaching maximum bound”

22: else
23: print “the transient does not exist”
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Algorithm 3. Computation of transient and cyclicity of A w.r.t. a set of initial
conditions X via SMT-solving

1: function TransSMT(A, X, N)
2: χ ← CycleTimeVector(A)
3: if elements of χ are all equal then
4: n ← Row(A) � number of rows of A
5: for i ∈ {1 · · · n} do
6: x[i] ← MakeSMTRealVar( ) � symbolic variables

7: k0 ← 0, c ← 1
8: while (k0 + c) ≤ 1000 do
9: F ← EqFunc(A⊗k0+c, (λ × c) ⊗ A⊗k0)

10: model ← GetSMTModel(X ∧ ¬F )
11: if model = ⊥ then � formula is unsatisfiable
12: return 〈k0, c〉
13: else � formula is satisfiable
14: v ← 〈model(x[1]), · · · model(x[N ])〉
15: 〈k′

0, c
′〉 ← TransCone(A, A⊗k0 ⊗ v)

16: k0 ← k0 + k′
0

17: c ← LCM(c, c′)

18: if ((k0 + c) > N) then
19: print “terminated after reaching maximum bound”

20: else
21: print “the transient does not exist”

4.4 A Synthesis Problem

In addition to computing the transient and cyclicity of A ∈ R
n×n
max w.r.t. a set of

initial conditions, we show that by means of difference logic and SMT, one can
synthesise sets of states corresponding to specific transient (and cylicity) defined
as follows

Sp,q(A) = {x ∈ R
n | tr(A, x) = p, cyc(A, x) = q}, (15)

Sp(A) = {x ∈ R
n | tr(A, x) = p}. (16)

On the one hand, the computation of (16) has been discussed in [2, Section 4.2]
by applying backward reachability analysis. On the other hand, to the best of the
authors’ knowledge, there is no approach to generate (15). The following propo-
sition shows that both (15) and (16) can be computed symbolically by expressing
them as difference logic formulae: the set (15) (resp. (16)) is not empty if and only
if the corresponding formula (17) (resp. (18)) is satisfiable.

Proposition 8. Given A ∈ R
n×n
max with global cyclicity c and maximum eigen-

value λ, we have

Sp(A) =

⎧
⎪⎪⎨

⎪⎪⎩

EqFunc(A⊗p+c, λc ⊗ A⊗p), if p = 0,

EqFunc(A⊗p+c, λc ⊗ A⊗p)∧
¬EqFunc(A⊗p−1+c, λc ⊗ A⊗p−1), if p > 0,

(17)
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and

Sp,q(A) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EqFunc(A⊗p+q, λq ⊗ A⊗p)∧
∧

d∈Div(q)−{q}
¬EqFunc(A⊗p+d, λd ⊗ A⊗p), if p = 0,

EqFunc(A⊗p+q, λq ⊗ A⊗p) ∧ ¬EqFunc(A⊗p−1+q, λq ⊗ A⊗p−1)∧
∧

d∈Div(q)−{q}
¬EqFunc(A⊗p+d, λd ⊗ A⊗p), if p > 0,

(18)
where Div(q) is a set of divisors of q. �

As both (15) and (16) can be expressed as formulae in difference logic, the
problem of determining the emptiness of both sets is decidable. By definition, for
never periodic MPL system, Sp,q = Sp = ∅ for all p, q. Furthermore, for irreducible
MPL systems the emptiness of (15) and (16) is related to the global transient and
cyclicity of A.

Proposition 9. For an irreducible matrix A ∈ R
n×n
max with global transient k0

and cyclicity c we have S0(A) = E(A⊗c) and S0,1(A) = E(A). Furthermore,

i. Sp(A) �= ∅ iff p ≤ k0,
ii. If p > k0 or q is not a divisor of c then Sp,q(A) = ∅,
iii. If Sp,q(A) is empty then so is Sp+1,q(A). �

Example 3. Let us recall the 3 × 3 MPL system in Example 2 with a = 8. From
the precedence graph G(B), the global cyclicity is c = 2. Leaving details aside,
for p ≥ 1, we have

EqFunc(Bp+2, 18⊗B⊗p) ≡
{

(x1 − x3 ≥ 6 − p) ∨ (x2 − x3 ≥ 8 − p), if p is odd,
(x1 − x3 ≥ 7 − p) ∨ (x2 − x3 ≥ 7 − p), if p is even.

Thus, by Proposition 8, for p ≥ 2 we have

Sp(B)=
{{x ∈ R

3|(6 − p ≤ x1 − x3 < 8 − p) ∧ (x2 − x3 < 8 − p)}, if p is odd,
{x ∈ R

3|(x1 − x3 < 7 − p) ∧ (7 − p ≤ x2 − x3 < 9 − p)}, if p is even.

An illustration of the above sets is depicted in Fig. 2. From an initial vector
x(0) = [4 2 0]� ∈ S3(B) one can compute x(k) for k = 1, . . . , 5 as follows:

⎡

⎣
10
14
8

⎤

⎦ ,

⎡

⎣
22
20
16

⎤

⎦ ,

⎡

⎣
28
32
25

⎤

⎦ ,

⎡

⎣
40
38
33

⎤

⎦ ,

⎡

⎣
46
50
43

⎤

⎦ .

Notice that, x(5) = 18 ⊗ x(3) which confirms that the local transient for x(0) is
tr(B,x(0)) = 3. It is straightforward to conclude that the global transient for B
does not exist. �
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Fig. 2. Plots of the synthesized sets projected on the plane x3 = 0. The solid and
dashed lines represent ≥ and >, respectively.

5 Computational Benchmarks

We compare the performance of Algorithms 1 and 3, to compute the transient of
MPL systems. The experiments for both procedures are implemented in Python.
For the SMT solver, we use Yices 2.2 [11]. The computational benchmark has been
implemented on an Intel R© Xeon R© CPU E5-1660 v3, 16 cores, 3.0 GHz each, and
16 GB of RAM. For the experiments, we generate 1000 irreducible matrices of
dimension n, with m finite elements in each row, where the values of the finite
elements are rational numbers p

q with 1 ≤ p ≤ 100 and 1 ≤ q ≤ 5. The locations
of the finite elements are chosen randomly. We focus on irreducible matrices to
ensure the termination of the algorithms. Algorithm1 is initialised by setting V
to be a max-plus identity matrix, while for Algorithm3 the set of initial condi-
tions is expressed as X ≡ true. For all experiments, we choose N = 10000 as the
maximum bound. The benchmarks are stored at https://es-static.fbk.eu/people/
amicheli/resources/formats20/, where we have chosen n ∈ {4, 6, 8, 10, 20, 30, 40}
and three different values of m for each n.

Figure 3(a)–(c) illustrate the experiments for n = 40 and m ∈ {20, 30, 40}
(the experiments for other pairs (n,m) are presented in [1]). They show the plots
of the running times of Algorithm1 (dashed lines) and of Algorithm 3 (solid lines)
against the resulting transient k0 and cyclicity c - the scattered plots (in black)
correspond to the resulting k0 + c. If there are several experiments with the same
value of k0+c then we display the average running time among those experiments.
It is evident that most of the experiments result in small k0 + c.

https://es-static.fbk.eu/people/amicheli/resources/formats20/
https://es-static.fbk.eu/people/amicheli/resources/formats20/
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(a) (b)

(c) (d)

Fig. 3. The plots of running time of Algorithms 1 and 3 from 1000 experiments with
n = 40 and m ∈ {20, 30, 40}. A “cross-over point” is the smallest value of k0 + c when
Algorithm 3 is faster.

With regards to the running time, the matrix-multiplication algorithm is faster
when the values of k0+c are quite small. On the other hand, the larger the value of
k0 + c, the better the performance of the SMT-based algorithm is. We argue that
this is because in Algorithm 3 there may be a large increment from the current
guess of transient and cyclicity to the new ones. Whereas in Algorithm1, the next
candidate of transient and cyclicity is increased by one at each iteration.

As depicted in Fig. 3(d), the number of finite elements m clearly affects the
running time of the algorithms. We recall that the running time of Algorithm3
depends on the satisfaction checking of a difference logic formula in line 11. The
more are the finite elements, the more likely the formula is complex, and therefore
the slower is the associated running time. Interestingly, based on the outcomes
of the benchmarks which are presented in [1], the finite elements also affect the
cross-over points, which tend to increase gradually as the number of finite elements
grows larger.
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6 Conclusions and Future Work

In this paper, we have introduced a novel, SMT-based approach to compute the
transient of MPL systems: our technique encodes the problem as a sequence of sat-
isfiability queries over formulae in difference logic, which can be solved by standard
SMT solvers. We have also presented a procedure to partition the state-space of
MPL systems w.r.t. a given transient and cyclicity pair. The procedure has been
thoroughly tested on computational benchmarks and the results show how the
SMT-based algorithm is much faster that state-of-the-art techniques to compute
large values of transient and cyclicity. Furthermore, we highlight that the SMT-
based method can be applied to compute the transient for any initial condition,
as long as it is expressible as an LRA formula.

For future research, we are interested in exploring and developing SMT-based
procedures for the general model checking of MPL systems.
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Abstract. In this paper, we consider the problem of monitoring tempo-
ral patterns expressed in Signal Temporal Logic (STL) over time-series
data in a clairvoyant fashion. Existing offline or online monitoring algo-
rithms can only compute the satisfaction of a given STL formula on the
time-series data that is available. We use off-the-shelf statistical time-
series analysis techniques to fit available data to a model and use this
model to forecast future signal values. We derive the joint probability
distribution of predicted signal values and use this to compute the satis-
faction probability of a given signal pattern over the prediction horizon.
There are numerous potential applications of such prescient detection
of temporal patterns. We demonstrate practicality of our approach on
case studies in automated insulin delivery, unmanned aerial vehicles, and
household power consumption data.

1 Introduction

Safety-critical cyber-physical systems (CPS) such as autonomous ground vehi-
cles, unmanned aerial vehicles and medical devices often operate in highly uncer-
tain and noisy environments. It is often impossible to anticipate all possible
exogenous inputs to such systems at design-time; and most designers typically
test their applications in only a finite number of scenarios. An alternative app-
roach is to perform runtime monitoring to ensure that such systems do not have
catastrophic failures of safety. A key aspect of runtime monitoring is the ability
to raise alarms when the violation of a safety property is detected.

There has been considerable amount of recent work on the use of real-time
temporal logics such as Signal Temporal Logic (STL) to specify correctness prop-
erties of safety-critical CPS applications [1,4,5,15,16,18,19,22]. Essentially, STL
allows specification of properties of real-valued signals defined over dense time.
A basic building block of an STL formula is a signal predicate (i.e. some con-
dition over signal values for a given time), and general STL formulas can be
constructed by combining signal predicates using Boolean (∧,∨,¬) or temporal
(such as always, eventually, etc.) operators. In addition to Boolean satisfaction
of a formula ϕ by a signal trace x(t), quantitative semantics for STL allow us to
define a robust satisfaction value or robustness which can be viewed as a signed
distance between the signal x(t) and the set of signals satisfying (or violating) ϕ,
where a positive (resp. negative) sign indicates that ϕ is satisfied (resp. violated).
c© Springer Nature Switzerland AG 2020
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Existing algorithms for monitoring STL specifications are either offline or
online, and either compute the Boolean satisfaction or the robustness value.
Offline algorithms assume that the entire signal trace is available, while online
algorithms can estimate satisfaction or violation when only a prefix of a given
signal is available. Online algorithms potentially provide early detection of safety
violations of the system; however, by their nature, online algorithms are limited
in identifying violations “as they happen.” In this paper, we propose a new
class of algorithms for clairvoyant monitoring that go beyond existing online
algorithms by predicting future signal values and give probabilistic bounds on
the satisfaction or violation of the STL formula in the future. Our notion of
clairvoyance is derived from literature on statistical techniques for forecasting
signals. In this paper, we focus on signal patterns specified by STL formulas, i.e.,
instead of the traditional use of STL to express formulas that are satisfied or
violated true over an entire trace, we focus on bounded horizon STL formulas
that are evaluated over the given prediction horizon1.

To understand the motivation for clairvoyant monitoring using patterns spec-
ified in STL, consider a weather forecasting system that decides the advent of
winter by checking if the forecasted temperature is lower than a certain thresh-
old for a certain number of days. A single day of forecasted low temperature
can easily be an outlier, and hence we want to estimate the probability of a
certain event repeating for a number of days. Such a specification can be easily
expressed in STL: F[0,10]G[0,5](θ < 40). This specification says that in the next
10 days, there is some 5 day period where the temperature is consistently lower
than 40 ◦F.

Our clairvoyant monitoring framework consists of three main components: (1)
a predictor that uses past values of a signal to produce n predictions of the signal
value at future time-points, (2) an algorithm to enumerate possible scenarios in
which the given STL formula may be satisfied, and, (3) a probability estimator,
that, given a target robustness value of the STL specification, computes the
probability of exceeding that value.

We demonstrate clairvoyant monitoring on three applications: (1) monitoring
hypo- and hyper-glycemia conditions in an automated insulin delivery system
model, (2) monitoring safety of an unmanned aerial vehicle, and (3) monitoring
power consumption.

The main technical contributions of our paper are:

1. For a given STL formula, a technique to automatically enumerate each dis-
tinct conjunction of signal predicates that lead to formula satisfaction.

2. We use statistical time-series analysis techniques to forecast future signal
values, and we derive the joint probability distribution across the predicted
time-points. We assume that the data can be modeled as a realization of
an ARMA or ARIMA process. In case these models are not a good fit, the
methods in this paper are not applicable.

1 We can easily extend clairvoyant monitoring of unbounded horizon STL formulas
over entire traces by considering the notion of nominal robustness [10]. This would
also require us to track the robustness over the signal prefix.
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3. We use basic laws of probability to compute the probability of a signal sat-
isfying or violating a given STL formula ϕ utilizing the above two results.
We can also compute the probability of the robust satisfaction value of the
predicted signal (w.r.t. ϕ) exceeding or falling below a given threshold.

1.1 Illustrative Example

We use scenario depicted in Fig. 1 to illustrate the clairvoyant monitoring tech-
nique presented in this paper.

(a) (b)

Fig. 1. A signal behavior satisfies an STL pattern – expressed as a disjunction over
conjunctions of signal predicates – as long as there exists one satisfying disjunct. Figure
(1a)(1b) shows two different possible scenarios that the signal in future satisfies STL
formula ϕ1 in Eq. (1.1). Each green block indicates one satisfying conjunction of signal
predicates, where four consecutive time steps all have signal values greater than zero.
(Color figure online)

Suppose we are observing a series of data generated by a system and at time
t, we want to know if the formula ϕ1 in Eq. (1.1) is true over a prediction horizon
of length 6.

ϕ1 ≡ F[0,2]G[0,3](x(t) ≥ 0) (1.1)

Figure 1 shows a subset of possible predicate conjunctions that make the inner
formula G true, and in this case ϕ1 also. If we know the joint probability dis-
tribution of signal values within the prediction horizon, we can use marginal
distributions and inclusion-exclusion principle to calculate the probability of the
STL formula to be satisfied.

In order to predict future signal values and also to compute joint probability
distribution over these predictions, we rely on statistical time-series models such
as auto-regressive and moving-average models.

2 Background on Signal Temporal Logic

Definition 2.1 (Univariate Signal, Time Horizon). A time domain T is a
finite set of uniform time instants {t0, t1, . . . , tN} where t0 = 0, and ti ∈ R≥0,
and ti+1 − ti = Δ, for some Δ ∈ R>0.Let D be a bounded subset of R. A signal
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x (also called a trace or time-series is a function2 from T to D. The set D is
also called the value domain. The quantity horizon = max(T) is known as the
time horizon of the signal.

Signal Temporal Logic (STL). STL is a real-time logic, typically interpreted
over a dense-time domain for signals that take values in a continuous metric
space (such as Rm). The basic primitive in STL is a signal predicate μ that is a
formula of the form f(x(t)) > 0, where x(t) is the value of the signal x at time
t, and f is a function from the signal domain D to R. STL formulas are then
defined recursively using Boolean combinations of subformulas, or by applying
an interval-restricted temporal operator to a subformula. The syntax of STL is
formally defined as follows:

ϕ :: = μ | ¬ϕ | ϕ ∧ ϕ | GIϕ | FIϕ | ϕUIϕ | ϕRIϕ (2.1)

Here, I is an interval over R≥0. The precise Boolean semantics of STL can be
defined in recursive fashion (we omit the formal semantics for brevity). The
semantics of Boolean combinations of subformulas define the obvious meaning.
A temporal subformula, for example, ϕU[a,b]ψ holds at time t if there exists a
time t′ in [t+a, t+b] where ψ is satisfied, and for all times t′′ in [t, t′), ϕ must be
satisfied. For some interval I, the formula FIϕ is an abbreviation for trueUIϕ,
and GIϕ is equivalent to ¬FI¬ϕ. Next, we introduce the notion of quantitative
semantics for STL:

The quantitative semantics for STL defines the notion of a degree to which
a given signal satisfies an STL formula ϕ. This is technically done by defining
a function ρ that maps the signal and ϕ to a real value at each time t. This is
defined recursively on the formula structure of STL as follows:

Definition 2.2 (Robust Satisfaction Value or Robustness Value)

ρ(f(x) > c, x, t) = f(x(t)) − c
ρ(¬ϕ, x, t) = −ρ(ϕ, x, t)
ρ(ϕ1 ∧ ϕ2, x, t) = min(ρ(ϕ1, x, t), ρ(ϕ2, x, t))
ρ(GIϕ, x, t) = inf

t′∈t⊕I
ρ(ϕ, x, t′)

ρ(FIϕ, x, t) = sup
t′∈t⊕I

ρ(ϕ, x, t′)

ρ(ϕ1UIϕ2, x, t) = sup
t′∈t⊕I

(
min

(
ρ(ϕ2, x, t′), inf

t′′∈[t,t′)
ρ(ϕ1, x, t′′)

))

ρ(ϕ1RIϕ2, x, t′′) = inf
t′∈t⊕I

(
max

(
ρ(ϕ2, x, t′), sup

t′′∈[t,t′]
ρ(ϕ1, x, t′′)

))

(2.2)

2 When signals are evaluated w.r.t. Signal Temporal Logic formulas, we assume that
the signal is defined at each time point in the interval [0, tN ]. We can do this using
piecewise constant interpolation, i.e. ∀i ∈ [0, N − 1] : (ti ≤ t < ti+1) =⇒ x(t) =
x(ti).
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The robustness of a signal x w.r.t. a formula ϕ is then defined as ρ(ϕ, x, 0) by
convention. Note that if the robustness value is positive, the signal satisfies the
STL formula, and if it is negative, it violates the STL formula. The convention
is to treat the robustness value of 0 as the signal satisfying the formula.

We remark that in this paper, we focus on signal patterns expressed using
STL. A signal pattern is essentially a bounded horizon STL formula, i.e. the scope
of any temporal operator is upper bounded by some (small) finite time constant.
A signal pattern is evaluated in the future of a given time t, and the robustness of
signal pattern ϕ at time t is simply ρ(ϕ, x, t). Examples of signal patterns include:
F[0,3](x < 0), F[0,2]G[0,3](x > 0), F[0,1](x > 0 ∧ F[0,1](x < −1 ∧ F[0,1](x > 0))).

3 Background on Signal Forecasting

In this section, we give basic background on stochastic processes, and some key
results that help us derive some guarantees on monitoring STL formulas in a
predictive fashion in Sect. 4. Most of the definitions in this section have been
adapted from the following reference: [8].

Definition 3.1 (Probability Space, Random Variables). A probability
space is a triple (Ω,F ,P), where Ω is a finite or infinite set describing possible
outcomes, F is the σ-algebra over Ω (i.e. a collection of subsets of Ω including
the empty set, that is closed under complement, countable unions and intersec-
tions), and P is a probability measure. Given a measurable state-space E, a
random variable x is measurable function x : Ω → E.

Definition 3.2 (Stochastic Process, Realizations, and Purely Random
Process). A stochastic process x is a finite or infinite collection of random vari-
ables ordered in (discrete or continuous) time. We denote the random variable at
time t by x(t) if time is continuous, and by xt if time is discrete. A realization
of a stochastic process is a signal that assigns concrete values from the signal
range to each of the random variables x(t). A discrete-time process consisting of
a sequence of random variables zt that are mutually independent and identically
distributed is called a purely random process.

Example 1 (Random Walk). Suppose zt is a discrete, purely random process
with mean μ and variance σ2

z . A process xt is said to be a random walk if
xt = xt−1 + zt

Definition 3.3 (Stationary Processes). A stochastic process x is called
strictly stationary if the joint distribution of x(t1), . . . , x(tn) is the same as the
joint distribution of x(t1+h), . . . , x(tn+h), for all t1, . . . , tn, h. A stochastic pro-
cess is called weakly stationary if its expected value is constant, and its covariance
function only depends on the lag, formally,

E[x(t)] = μ Cov(x(t), x(t + h)) = γ(h) (3.1)
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Definition 3.4 (Autocovariance Function and Autocorrelation Func-
tion). Let xt be a stationary time series. The autocovariance function (ACVF)
denoted γ(h) is defined in Eq. (3.2) and autocorrelation function (ACF) ρ(h) is
defined as γ(h)

γ(0) .

γ(h) = E[x(t) − μ][(x(t + h) − μ] = Cov[x(t), x(t + h)] (3.2)

3.1 Linear Process and ARMA (ARIMA) Process

We first define the notion of a linear process.

Definition 3.5 (Linear Process). A stochastic process x is called a linear
process if it can be represented as: xt =

∑∞
j=−∞ ψjzt−j, where for all t, {zt} ∼

N (0, σ2
z) and ψj is a constant series with

∑∞
j=−∞ |ψj | < ∞.

Linear processes include all of the autoregressive (AR) processes, moving-
average processes (MA), AR with MA (ARMA) processes and AR with inte-
grated moving-average (ARIMA) models. Linear process models provide basic
properties for studying ARMA, ARIMA, SARIMA and any other linear models.
In what follows, it is convenient to define a new operator called the backward
operator B, essentially, Bx(t) = x(t + 1), Bhx(t) = x(t + h), etc. Using this
operator, we can define an AR process with moving average.

Definition 3.6 (ARMA). An ARMA process represents a combination of
an autoregressive process (a process that can be represented as φ(B)xt), and a
moving average process (a process that can be represented as θ(B)zt). Here, φ(B)
and θ(B) are polynomials in the operator B, i.e. φ(B) = 1 − ∑p

i=1 φiB
i, and

θ(B) = 1 +
∑q

j=1 θjB
j. An ARMA process thus has the following form:

φ(B)xt = θ(B)zt (3.3)

ARMA models are one of the most popular models used for forecasting values
of a time-series. ARMA models are used for time-series data that can be viewed
as a realization of a stationary stochastic process. However, ARMA models may
not be adequate when the underlying process is not stationary, i.e. has trends.
In such a case, an ARIMA (AR with integrated moving average) process model
can be used.

Definition 3.7 (ARIMA). An ARIMA model can be described by Eq. (3.4).

φ(B)(1 − B)dxt = θ(B)zt (3.4)

Here, when d = 1, an ARIMA model is suitable to model linear trends in the
data, and for higher values of d, the model can be used to handle higher order
trends (quadratic, cubic, etc.).
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3.2 Forecasting Procedure

Given a signal-prefix up to time tn, a forecasting procedure predict h future
values of the signal, i.e. x(tn+1), . . . , x(tn+h). Here, h is called the prediction
horizon. Forecasting signal values involves several steps. The first step is to
assume that the signal is the realization of a particular stochastic process, and
then estimate the parameters of the stochastic process model from the signal
values. This usually involves estimating the autocovariance and autocorrelation
of the signal, and then using these to do model fitting. Model fitting attempts
to identify the parameters of the chosen model (say ARMA), by solving certain
optimization problems. A popular technique to do model fitting is based on Yule
Walker equations [8].

After fitting the model, we have to forecast a time series. Since either ARMA
or ARIMA model are all linear process, the best linear predictor is the optimal
predictor for forecasting future values for the signal [8]. We now define the best
linear predictor, and explain how it is computed.

Definition 3.8 (Best linear predictor). The best linear predictor based on
observation {x1, x2, . . . , xn} of an ARMA or ARIMA process {xt} is given by
Eq. (3.5). Let xt denote the predicted value of xt.

xn+h = ah
0 +

∑n
i=1 ah

i xn+1−i

where, arg minah
0 ,ah

1 ,...,ah
n

E[xn+h − xn+h]2. (3.5)

The optimized ai is determined by two variables: since {xt} is a stationary
process, denoting γx(h) = Cov(xt+h, xt).

Γn = [Cov(xn−i+1, xn−j+1)]ni,j=1 = [γx(|i − j|)]ni,j=1 (3.6)

γn(h) = [γx(h + i − 1)]ni=1 (3.7)

With these two variables we can define ai as (a1, a2, . . . , an)	 = Γ−1
n γn(h)

and a0 = μx(1 − ∑n
i=1 ai).

Now we see the prediction value for a single time step, in Sect. 4.1 we intro-
duce how to derive a joint distribution for multiple time steps.

4 Clairvoyant Monitoring Procedure

To perform clairvoyant monitoring, we essentially need to forecast signal values
using an appropriate stochastic process model, and more importantly compute
the probability that a signal pattern is satisfied by the predicted signal values.
To do the latter, we need to compute the joint distribution of the predicted
values for the given stochastic process.
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4.1 Deriving the Joint Distribution of Predictions

We first consider this computation for ARMA processes. By Definition 3.6 and
Eq. (3.5), we can see the signal prediction values xn+h produced by the best
linear predictor are linear combinations of xt and a. We show that we can con-
struct the joint distribution of multiple prediction values {xn+1, . . . , xn+h} by a
sequence of linear transformations. First, we recall a standard result on linear
combinations of normally distributed variables in Lemma 1.

Lemma 1. If a random variable X ∼ N (μx, Σx), and Y = CX + D is some
linear transformation of X using matrices C and D, then Y ∼ N (Cμx +
D,CΣxC	).

Theorem 1. The joint distribution of h predicted values using the best lin-
ear predictor for an ARMA process x has a multivariate normal distribution
N (a, Σ), where a is vector [a1

0, . . . , a
h
0 ]	, Σ is given by the following equation:

Σ = AΦ+ Θ Σz Θ	 (Φ+)	 A	. (4.1)

Here, A, Φ and Θ are matrices of coefficients used in the ARMA model
Definition 3.6 and the best linear predictor (3.5). (Precise definitions of each
follow in the proof).

Proof. After using a standard technique to fit an ARMA model with order p
and q [8], we obtain the set of equations in (4.2). This is simply the repeated
application of Definition 3.6.

xp+1 + φ1xp + φ2xp−1 + · · · + φ1px1 = zp+1 + θ1zp + θ2zp−1 + · · · + θqz1+p−q

xp+2 + φ1xp+1 + φ2xp + · · · + φpx2 = zp+2 + θ1zp+1 + θ2zp + · · · + θqz2+p−q

...
xn + φ1xn−1 + φ2xn−2 + · · · + φpxn−p = zn + θ1zn−1 + θ2zn−2 + · · · + θqzn−q

(4.2)
We can write (4.2) as a matrix with appropriate zero padding to get:

Φ

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ = Θ

⎛
⎜⎜⎜⎝

z1+p−q

z2+p−q

...
zn

⎞
⎟⎟⎟⎠ (4.3)

Here, Θ is (n − p) × (n − p + q) matrix, and Φ is a (n − p) × n matrix. For a
matrix M , let M+ denote its Moore-Penrose inverse or its pseduo-inverse. We
can multiply both sides of Eq. (4.3) Φ+ to get Eq. (4.4).

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ = Φ+Θ

⎛
⎜⎜⎜⎝

z1+p−q

z2+p−q

...
zn

⎞
⎟⎟⎟⎠ (4.4)
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Recall the definition of best linear predictor in Definition 3.5:

xn+h = ah
0 +

n∑
i=1

ah
i xn−i+1 (4.5)

Writing this equation for each of the prediction steps from n + 1 to n + h, we
get Eq. (4.6). ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn+1 = a1
nx1 + a1

n−1x2 + · · · + a1
1xn + a1

0

xn+2 = a2
nx1 + a2

n−1x2 + · · · + a2
1xn + a2

0

...

xn+h = ah
nx1 + ah

n−1x2 + · · · + ah
1xn + ah

0

(4.6)

This can be further written compactly as follows:⎛
⎜⎜⎜⎝

xn+1

xn+2

...
xn+h

⎞
⎟⎟⎟⎠ = A

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

a1
0

a2
0
...

ah
0

⎞
⎟⎟⎟⎠ , (4.7)

where A denotes the following coefficient matrix.

A =

⎛
⎜⎜⎜⎝

a1
n a1

n−1 . . . a1
1

a2
n a2

n−1 . . . a2
1

...
...

. . .
...

ah
n ah

n−1 . . . ah
1

⎞
⎟⎟⎟⎠ . (4.8)

Finally, substituting vector [x1, x2, . . . , xn]	 from Eq. (4.4), we achieved in re-
writing the vector of predicted values into a linear transformation of white noise:⎛

⎜⎜⎜⎝
xn+1

xn+2

...
xn+h

⎞
⎟⎟⎟⎠ = AΦ+Θ

⎛
⎜⎜⎜⎝

z1+p−q

z2+p−q

...
zn

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

a1
0

a2
0
...

ah
0

⎞
⎟⎟⎟⎠ (4.9)

As white noise is normally distributed, from Lemma 1 we have the joint proba-
bility distribution of predictions of h steps for an ARMA process. �
Theorem 2. The normalized prediction value in an ARIMA process xh has
a multivariate normal distribution N (0, Σ), where Σ is given by the following
equation:

Σ = T2T1ΣzT
	
1 T	

2 . (4.10)

Here, T2, T1 are matrices representing terms appearing in the best linear predic-
tor expression (3.5) across h predictions and the ARIMA model Definition (3.4).

Proof. (Sketch) We omit the proof due to lack of space, but it follows a very
similar recipe as the proof for the ARMA model. See [21] for details.
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4.2 Enumerating Distinct Conjunctions of Signal Predicates

This is essentially a combinatorial problem. First, we assume that the formula
is in Negation Normal Form (NNF), i.e. all negations are pushed to the signal
predicates. This can always be done, cf. [14]. Further, note that we can replace
negated atomic predicates by new atomic predicates, e.g. ¬(x > 0) ≡ (x ≤ 0).
The basic idea of the algorithm is to expand the evaluation of the satisfaction
probability of the STL formula (over the prediction horizon) into a disjunctive
formula, where each disjunct is a conjunction of atomic predicates. This is an
expensive step because of the complexity of a CNF to DNF conversion, but for
small prediction horizons, this does not become prohibitive. The exact procedure
to do this is through Algorithm 1, which essentially computes an expanded DNF
representation for an STL formula. The above algorithm is invoked with the
value i = n + 1. Each value of i is a time instant for predictions, so i ranges
over [n + 1, n + h]. It essentially recursively travels the STL formula building
the desired expression. We omit the case for the release operator for brevity, but
the expansion follows the definition of the release operator. The following lemma
can be easily proved using properties of Boolean operators ∨ and ∧.

Algorithm 1: Expandh(ϕ,i)
1 switch ϕ do
2 case f(x(ti)) > c
3 return f(x(ti)) > c

4 case ϕ1 ∧ ϕ2

5 A ←Expandh(ϕ,i)
6 B ←Expandh(ϕ,i)
7 Res ←{ };
8 foreach C ∈ A do
9 foreach D ∈ B do

10 Res ←Res ∪ {C ∧ D}

11 case ϕ1U[a,b]ϕ2

12 Res ←{}
13 foreach j ∈ [i, h − horizon(ϕ2)] do
14 Resj ←{}
15 Aj ←Expandh(ϕ1,j)
16 foreach k ∈ [i, j] do
17 Bk ←Expandh(ϕ2, k)

18 Resj ←Expandh(Aj ∧ ∧
k Bk, j)

19 Res ←Expandh(
∧

j Resj , i)

Lemma 2. The result of calling Expandh(ϕ, n+1) on an STL formula results in
a disjunction over terms, where each term is a conjunction of atomic predicates
at some times in [n + 1, n + h].
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4.3 Calculating Probabilistic Guarantees for Monitoring

Now we have the joint distribution (across multiple time steps) for predicted
signal values using Theorem 1 (for ARMA) and Theorem 2 (for ARIMA), and
the disjunction over conjunctions of signal predicates corresponding to the STL-
based signal pattern. The next step is to accumulate probabilities of these con-
junctions of signal predicates. Direct addition will result in parts of joint distri-
bution be integrated more than once. We use the inclusion-exclusion principle
for computing probability of unions shown in (4.11) to solve the problem of
calculating P (∪n

i=1Ai).

n∑
i=1

P (Ai) −
∑
i<j

P (Ai ∩ Aj) +
∑

i<j<k

P (Ai ∩ Aj ∩ Ak) − · · · + (−1)n−1P (∩n
i=1Ai)

(4.11)
Probabilities of each conjunctions of atomic predicates in (4.11) can easily be
done by marginalizing all other variables. Formally, let K indicate the set of
times over which we want to compute the joint PDF. Then, we can compute the
marginal probability using Eq. (4.12).

P (
∧

k∈K

Ak) =
∫

. . .

∫
P (A1; . . . ;Ah)dAj1 . . . dAj�

(4.12)

Here, {j1, . . . , j�} = {1, . . . , h} \ K.

4.4 Complexity of the Algorithm

The complexity of our clairvoyant monitoring procedure depends on the exact
form of STL formula involved. In this section, we list the upper bound of com-
plexity for some formula forms. Assume that querying the marginal probability
from the joint distribution is of complexity O(1).

Consider the signal pattern FI1GI2 . For this pattern, the complexity of
computing the probability bounds is O(2
 |I1|

Δ �), as there are |I1| disjunctive
marginal probability terms, and applying Eq. (4.11) will cost O(2n), where n

equals to  |I1|
Δ �. Similarly, for a formula of the form GI1FI2, the complexity will

be O(2
 |I2|
Δ �� |I1|

Δ
�
). For a general signal pattern, the worst-case complexity will

depend on the number of conjunctions that will be enumerated.

5 Experimental Evaluation

In this section we experimentally demonstrate the power of predictive monitoring
on interesting examples from the cyber-physical systems domain.
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Table 1. The probability of predicted traces satisfying the specified STL pattern and
runtime for computing the probabilities for the case studies on blood glucose prediction
in insulin delivery and velocity prediction for a UAV.

Case Study ψ ϕ1 ϕ2 ϕ3 ϕ4

I P (BG(t) |= ψ) (σ1 = 50, σ2 = ∞) 1 1 1 1

Time (s) 0.1068 0.1107 0.0944 2.9037

P (BG(t) |= ψ) (σ1 = 50, σ2 = 150) 0.3836 0.3838 0.3846 0.8462

Time (s) 0.1067 0.3551 0.0705 26.9337

II P (v(t) |= ψ)(σ1 = −0.5, σ2 = 0.5) 0.1452 0.3446 0.4160 0.2723

Time (s) 0.0615 0.0792 0.0634 2.3367

Case Study I: Automated Insulin Delivery. Monitoring blood glucose lev-
els is a crucial task for diabetes patients. In certain kinds of severe diabetes
(e.g., type I diabetes), patients use automated insulin delivery systems (such as
infusion pumps) to give a basal dose of insulin, and to optionally provide a bolus
if the patient thinks that they are exceeding their usual intake of food (e.g. rich
in carbohydrates). The tricky aspect of such devices is that while the response
of the blood glucose to insulin is very slow, the response to carbohydrates is rel-
atively fast. Thus, a patient upon seeing a high blood glucose level may exceed
their required insulin dose. This can lead to a life-threatening condition called
hypoglycemia. Thus, it is crucially important to monitor the blood glucose level
in a predictive fashion. Similarly, if the blood glucose remains too high for a pro-
longed period of time (also known as prolonged hyperglycemia), then the patient
can suffer long term consequences that can also eventually lead to death.

Fig. 2. BG signal with 5 prediction
steps (Color figure online)

We have developed a simple linear
Simulink R© model representing the blood-
glucose dynamics in a patient. For this exper-
iment, we obtained the blood glucose (BG)
signal by simulating the model with a fixed
eating pattern by the patient. We simulated
the patient behavior for one week, where BG
was monitored at 15 min intervals. We fit
an ARIMA process with order p = 5, d =
2, q = 1 to the BG signal, and used that for
prediction. We checked various requirements
(Eqs. (5.1)-(5.4)) on the blood glucose signal.
For brevity, we write the formulas in a way
that 1 time unit in the formula refers to 15 min of time.

ϕ1 ≡ G(F[0,1]G[0,2](σ1 < x(t) < σ2)) (5.1)
ϕ2 ≡ G(x(t) ≤ σ1 =⇒ F[0,1]G[0,2](σ1 < x(t) < σ2)) (5.2)
ϕ3 ≡ G(x(t) ≤ σ1 =⇒ F[0,2](σ1 < x(t) < σ2)) (5.3)
ϕ4 ≡ G(F[0,1](σ1 < x(t) < σ2)) (5.4)
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In formulas (5.1)–(5.4), we assume that x is BG. Formula (5.1) is an artificial
requirement that says that any time, within the next 15 min the BG signal
should remain within the given bounds for 30 min. Formula (5.2) says that if
the BG signal is ever lower than the safe threshold, it should return to the safe
threshold within 15 min, and stay in the threshold for 30 min. Formula (5.3) is a
weaker requirement demanding the BG signal to simply return to the safe region.
Finally, formula (5.4) says that eventually always within 15 min the BG signal
should return to the safe region. We picked these formulas more to highlight
that our algorithm works with different STL formulas with different temporal
operator alternations. Some of these formulas are similar to the ones found in
[9]. We picked a prediction horizon of 5 time steps (i.e. 75 min). In Fig. 2, we
show the predicted blood glucose traces. We conducted two experiments, one
where we picked σ2 to be ∞ and the other where σ2 was 150 mg/dL. σ1 was
fixed to 50 mg/dL. The results are shown in Table 1.

The first row of Table 1 shows that the patient can never become hypo-
glycemic, with very high probability3. From the third row, we can see that the
controller that we implemented for automated insulin delivery does not do a
good job with the hyperglycemia requirements (except for the last formula).
From Fig. 2, we can see that for a small prediction horizon, the decreasing value
of the BG signal (shown in red) gives enough confidence that in the next 15 min,
the patient will not be hyperglycemic.

Case Study II: UAV Vertical Velocity. Now we look into the case of
Unmanned Aerial Vehicle (UAV). We apply our technique to monitor verti-
cal velocity, which is a crucial component affecting how vehicle control system
adjust its rudder angle.

Fig. 3. UAV vertical velocity signal
and predictions

Monitoring Vertical Velocity. Vertical
velocity is hard to directly observe, we obtain
it through the observed acceleration signal
given by gyroscope. The vertical velocity is
vital for UAVs, as if the vertical velocity
exceeds some threshold it will cause the vehi-
cle to be damaged. We observed the auto-
correlation function for the velocity trajec-
tories, and used that to set the parameters
p = 12, d = 4, q = 8 for the ARIMA model
then do a 5 step look-ahead prediction. Con-
ducting 5 steps look-ahead prediction in our
data is equivalent to predicting 1 s ahead.
The transverse velocity of UAV can achieve over 130 m/s, which makes behav-
iors that may happen in future 5 steps meaningful. The prediction results are

3 Our implementation was done in Matlab, and Matlab has a certain precision when
computing probabilities, and the number 1 is actually 1 − δ, where δ is smaller
than the machine precision. This indicates that the probability is so high that it is
practically 1.
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shown in Fig. 3, and the probability guarantees of the predicted trace satisfy the
STL requirement are shown in Table 1.

Case Study III: Monitoring Power Consumption Patterns. Household
power consumption is an important factor that allows utility companies to esti-
mate the overall power demand. In this case study, we study various STL formu-
las representing typical queries a utility company may find valuable. To perform
this study, we use data from the UCI Machine Learning Repository [11]. The
dataset is a multivariate time series dataset that describes the power consump-
tion for a single household over four years. Each time step represents the average
power consumption over a day. We fit an ARIMA model to this data with the
model parameters p = 5, d = 2, q = 1. We are interested in computing the proba-
bilistic guarantees on the STL formulas depicted in Eq. (5.5). In these formulas,
p(t) represents the power consumption at time t in KW, and c represents a
threshold value.

ϕ1 = G[0,n](p(t) > c) ϕ2 = G[0,n](p(t) < c)
ϕ3 = F[0,n](p(t) > c) ϕ4 = F[0,2]G[0,5](p(t) > c) (5.5)

The formula ϕ1 seeks to answer if there are n consecutive future days where
the power consumption exceeds the threshold c. The formula ϕ2 is true if the
expected power consumption over the next n consecutive days is always below
c. The formula ϕ3 checks if it is always true if there is some day within the next
two week period where the power consumption exceeds a threshold. Finally, ϕ4

checks if there is some future time within two time steps where it is true that
starting from that point, the power consumption always exceeds some threshold
c. For each experiment, we assumed that the prediction horizon was 15. Our tool
reads the first 139 samples to fit the ARIMA model, and then does its predictions
on the next 15 time steps. We summarize the results in Fig. 4b.

(a) Power consumption signal and
predictions

Formula Parameters Probability
n c

ϕ1 3 500 1
ϕ1 3 1010 0.4139
ϕ1 3 1120 0

ϕ2 10 500 0
ϕ2 10 1120 0.0531
ϕ2 10 1200 0.3633
ϕ2 10 1400 0.9976

ϕ3 14 500 1
ϕ3 14 1120 0.5468
ϕ3 14 1500 0

ϕ4 – 500 1
ϕ4 – 1100 0.2968
ϕ4 – 1500 0

(b) The probability guarantee of power consumption

Fig. 4. Power consumption case study
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While the results generally agree with the ground truth data shown in Fig. 4a,
in case of the formula ϕ2, the experiments indicate that there is over 99% chance
of never exceeding 1400 KW of power consumption. Clearly, the ground truth
data shows otherwise. The problem here is that the ARIMA model has an effect
of smoothing the data and focussing on the trends. If we were to fit the ARIMA
model to data over a smaller granularity, it is possible that the model would track
sharp local variations more faithfully. In general, if the time-step of the model is
too coarse to capture all meaningful trends, the predictive monitoring algorithm
can give misleading answers. For this case study, the runtime for fitting the
ARIMA model and computing the probabilities was less than 3 s on a standard
laptop machine with a 2.6 GHz processor.

6 Related Work and Conclusion

Related Work. Monitoring techniques for specifications in real-time temporal
logics such as STL, Timed Propositional Temporal Logic (TPTL) and Metric
Temporal Logic (MTL) have received considerable attention recently. See [6]
for a recent survey. In [27], the authors define predictive semantics for LTL:
these are similar to the three-valued semantics for LTL on incomplete traces
and use a system model and model checking over trace suffixes to compute
one of the three values (true, false or unknown). However, this approach does
not compute violation probabilities. In [2,3], the authors define an interesting
predictive monitoring approach. The key idea is to construct an Hidden Markov
Model abstraction of a system and use that to predict satisfaction of a given
temporal property. This is an alternate way of modeling probabilities in the
system, and represents a different take on the same problem. In future work,
we will consider extending our signal predictors to those based on Markovian
assumptions on the underlying process. We note that these papers focus on LTL
with Boolean predicates rather than STL (which has signal predicates).

Also of relevance is the work in the R2U2 monitoring framework [13,20,23,24].
The R2U2 framework uses efficient temporal observers for LTL coupled with
dynamic Bayesian networks to probabilistically estimate the state and health of
system components. The work proposed in [7,17,26] also addresses a similar prob-
lem. In many ways, these are also monitoring problems that are predictive in
nature, but the prediction here is regarding hidden system states, rather than
predictions in time. Seminal work on monitorability of various kinds of stochastic
dynamical models (typically with Markovian assumptions) refers to this problem
as internal monitoring [25], and we distinguish our work in its clairvoyant abilities.

7 Conclusion

In this paper, we present monitoring framework for signal patterns expressed
using Signal Temporal Logic (STL). The main contribution of this paper is an
algorithm for clairvoyant monitoring that computes the probability of a sig-
nal pattern being satisfied/violated by a set of future/unseen signal values. To
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achieve clairvoyance, the algorithm utilizes using statistical time-series modeling
techniques, assuming that observed data is the realization of a linear stochastic
process (such as ARMA or ARIMA). The key technical result is a technique
to compute the joint probability distribution of the predicted values and use it
to compute the satisfaction probability of the given temporal pattern. In future
work, we will consider techniques that help calibrate the prediction result, give
expected value for robustness and also explore techniques based on reachability,
such as those in [12], to compute forward reachable sets to estimate satisfaction
probabilities of STL formulas.
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Abstract. Robonaut2 (R2) is a humanoid robot onboard the Interna-
tional Space Station (ISS), performing specialized tasks in collaboration
with astronauts. After deployment, R2 developed an unexpected emer-
gent behavior. R2’s inability to distinguish between knee-joint faults
(e.g., due to sensor drift versus violated environmental assumptions)
began triggering safety-preserving freezes-in-place in the confined space
of the ISS, preventing further motion until a ground-control operator
determines the root-cause and initiates proper corrective action. Run-
time verification (RV) algorithms can efficiently disambiguate the tem-
poral signatures of different faults in real-time. However, no previous RV
engine can operate within the limited available resources and special-
ized platform constraints of R2’s hardware architecture. An attempt to
deploy the only runtime verification engine designed for embedded flight
systems, R2U2, failed due to resource constraints. We present a signif-
icant redesign of the core R2U2 algorithms to adapt to severe resource
and certification constraints and prove their correctness. We further
define an optimization enabled by our new algorithms and implement the
new version of R2U2. We encode specifications describing real-life faults
occurring onboard Robonaut2 using Mission-time Linear Temporal Logic
(MLTL) and detail our process of specification debugging, validation,
and refinement. We deployed this new version of R2U2 on Robonaut2,
demonstrating successful real-time fault disambiguation and mitigation
triggering of R2’s knee-joint faults without false positives.

Keywords: Online runtime verification · Temporal logic
specification · Steam-based runtime verification · MLTL · R2U2

1 Introduction

Safe integration of autonomous robotic systems necessitates embedding runtime
checks into specialized, domain-specific platforms designed for utility and effi-
ciency. Robonaut2 (R2) [8] is a humanoid robot capable of performing complex
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tasks on-board the International Space Station (ISS) while interacting safely
with humans [12]. Even carefully-designed, formally-verified cyber-physical sys-
tems experience unanticipated emergent behaviors when deployed to complex,
dynamic environments like the ISS. In R2’s case, position sensors within rota-
tional joints can return faulty position data indistinguishable from high-torque
data to the control system. Disambiguating between sensing errors and high-
torque states would enable autonomous operation, rather than freezing for safety
reasons and contacting Houston ground-control for help; choosing the incor-
rect mitigation action can have disastrous consequences. Autonomous operation
demands the real-time reasoning and safety guarantees provided by runtime ver-
ification, on increasingly domain-specific hardware, including post-deployment.

This fault-disambiguation problem poses several challenges that previously
prevented an effective solution. Runtime Verification (RV) could detect the
faults, but R2 is already deployed on the ISS; no new resources will be launched
to run an RV engine. Low-level joint control resides on a heavily-optimized Field
Programmable Gate Array (FPGA) adjacent to the knee with limited remain-
ing space. Consequently, the only available resources in which to implement a
solution are tightly-constrained. RV needs to run in hardware in the remaining
space on that critical FPGA with provable non-interference with the existing
joint controller. The RV engine must be real-time, online, and stream-based to
continuously evaluate faults throughout R2’s operation. RV on R2 must be a
remotely-configurable process; we cannot bring R2 back to Earth or requisition
astronaut time to change the runtime observer specification. Given that systems
on the ISS are frequently repurposed and operate in a continuously-changing
environment, we need to be able to change RV observers without re-synthesizing
hardware, and quickly adapt to updated conditions and requirements.

Most RV tools are implemented in software, require significant resources and
overhead, or have incompatible expression languages. R2 is running the Robot
Operating System (ROS) [20] and some formal verification tools for ROS exist;
however, none of these fit the requirements of the R2 project. Others have devel-
oped a generic approach to formally verify real-time properties of ROS-based
applications [10], at design time, using timed automata and a model checker in an
approach that cannot be scaled to R2’s resource constraints. Similarly, ROSCoq
extends the Coq theorem prover to enable reasoning about the cyber-physical
behavior for developing certified ROS systems [7]. ROSRV [11] and Declarative
Robot Safety (DeRoS) [1] integrate RV into ROS by generating ROS nodes that
monitor properties during execution. But, they are software-based, limited to
data published on the ROS message bus, and incur significant runtime overhead.
EgMon eagerly checks for violations of specifications in a future-bounded, propo-
sitional metric temporal logic that avoids instrumentation of already-certified
components [13]. But, EgMon is a software implementation that would not work
in R2’s architecture: it reads previously-logged inputs, adds significant overhead,
and allows a high level of false positives that would be unacceptable. Formal ver-
ification of autonomous robot systems is a burgeoning research area; see [16] for
a survey.
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R2 requires a hardware-based solution with consideration for resource con-
straints; Table 1 summarizes four options. IoTA considers some resource con-
straints in implementing RV, but for software [5]. RVS is the only other modern
hardware RV implementation; its limited expression language only monitors the
internal behavior of a real-time operating system and RVS requires resynthe-
sis to change monitored properties [27]. The Realizable Responsive Unobtrusive
Unit [22] (R2U2) is the only RV tool that starts an encoding with the resource
constraints and then optimizes the verification configuration to reliably detect as
many faults as possible, rather than, e.g., starting with runtime monitors and cre-
ating resource-consuming implementations. R2U2’s online, stream-based, hard-
ware (FPGA) implementation, provable unobtrusiveness, and ability to change
monitors without resynthesis fit the R2 project. R2U2’s compositional, hierar-
chical design and more flexible specification language made it most likely to fit
in the space left over on R2’s knee joint’s FPGA; these features proved useful
in other case studies on real aerospace systems [9,24–26]. However, an initial
trial proved that even R2U2’s most optimized configuration would not fit; no
currently existing RV tools were capable of on-board, real-time fault detection for
R2’s knee joint. We would have to build a custom tool to bridge that gap.

Table 1. Comparison of hardware monitor tools.

Tool P2V[15] BusMOP[18] HW-CBMC [17] R2U2 [21]

Method Automata synthesis Formula decomposition

Type Hard-coded Programmable

Target Software COTS Peripheral HW-SW Co-design Sensor

Spec logic Past time only Future/past time

Last update 2007 2008 2017 2019

Using R2U2 as a base, we designed and proved correct new observer-encoding
algorithms suitable for R2 and developed an optimization until we were able to
deploy RV on the real Robonaut2 knee joint successfully. A previously unno-
ticed fault syndrome prevented the simple original specification from operating
correctly. Our revised specification set provided the required accuracy but uti-
lized significantly more resources. The new specifications only fit on the FPGA
because of the optimization enabled by our new encoding, resulting in successful
fault disambiguation.

This paper contributes: (1) a significant revision of all asynchronous future-
time MLTL monitor encodings of [21] with new proofs of correctness; (2) an
optimization to online RV for operation under resource constraints using these
encodings; (3) an implementation of these monitors with an empirical evaluation
showing improvement in resource consumption; (4) specification design, debug-
ging, validation, refinement techniques, and lessons learned from the deployment
of RV on an autonomous robot; (5) a case study embedding online, stream-based,
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hardware RV on Robonaut2 hardware on loan from NASA, demonstrating suc-
cessful real-time fault disambiguation in this resource-constrained environment.
Section 2 overviews the logic MLTL and notation used. Sect. 3 gives the new
monitoring encodings with correctness proofs, then implementions with opti-
mization appear in Sect. 4, along with experimental performance characteriza-
tions. Section 5 covers embedding of these observers on Robonaut2 and devel-
opment of specifications for fault disambiguation. Finally, lessons learned and
opportunities for future work appear in Sect. 6.

2 Preliminaries

R2U2 uses Mission-time LTL (MLTL) for future-time temporal specification [14,
21]. MLTL is a bounded variant of MTL [2] with closed natural number interval
bounds on each temporal operator.

Definition 1 (MLTL Syntax). The syntax of an MLTL formula ϕ over a set of
atomic propositions AP is recursively defined as:

ϕ ::= true | false | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | �Iϕ | ♦Iϕ | ϕ1UIϕ2 | ϕ1RIϕ2

where p ∈ AP is an atom, ϕ1 and ϕ2 are MLTL formulas. I is an interval [lb, ub],
lb ≤ ub and lb, ub ∈ N, or simply [ub] if lb = 0. Given two MLTL formulas ϕ1,
ϕ2, we denote ϕ1 ≡ ϕ2 if they are semantically equivalent. In MLTL semantics,
we define false ≡ ¬true, ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2), ¬(ϕ1UIϕ2) ≡ (¬ϕ1RI¬ϕ2)
and ¬♦Iϕ ≡ �I¬ϕ. MLTL keeps the standard operator equivalences from LTL,
including ♦Iϕ ≡ (true UIϕ), (�Iϕ) ≡ (false RIϕ). Notably, MLTL discards the
next (X ) operator, which is essential in LTL, since Xϕ is semantically equivalent
to �[1,1]ϕ (see [14]). Let π be a finite computation and let |π| represent the length
of π (where |π| < +∞). Every position π[i] (where i ≥ 0) is an assignment over
2AP ; let πi represent the suffix of π starting from position i (including i).

Definition 2 (MLTL Semantics). The satisfaction of an MLTL formula ϕ, over
a set of propositions AP, by a computation/trace π starting from position i
(denoted as π, i |= ϕ) is recursively defined as:

• π, i |= p ∈ AP iff p ∈ π[0], • π, i |= ¬ϕ iff π, i 	|= ϕ,
• π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2,
• π, i |= ϕ1U[lb,ub]ϕ2 iff |π| ≥ i + lb and there exists j ∈ [i + lb, i + ub] such that

π, j |= ϕ2 and for every k < j, k ∈ [i + lb, i + ub], π, k |= ϕ1.

2.1 Abstract Syntax Tree and Execution Sequence

As a reconfigurable monitor, R2U2 uses external specification data. This allows
changes to the specification without recompilation or resynthesis of the R2U2
engine. R2U2 executes runtime reconfigurable specifications by constructing an
Abstract Syntax Tree (AST) of logical observers wherein each node produces an
execution sequence as output that can be used by other nodes in the tree.
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Definition 3 (Execution Sequence) (adapted from [21]). An execution
sequence for an MLTL formula ϕ, denoted by 〈Tϕ〉, over computation π is
a sequence of verdict tuples Tϕ = (v, τ) where τ ∈ N0 is a time stamp and
v ∈ {true, false} is a verdict. We use a superscript integer to access a particu-
lar element in 〈Tϕ〉, e.g., T 0

ϕ is the first element in execution sequence 〈Tϕ〉. We
write Tϕ.τ to access τ and Tϕ.v to access v of element Tϕ. We say Tϕ holds if
Tϕ.v is true and Tϕ does not hold if Tϕ.v is false. For a given execution sequence
〈Tϕ〉 = T 0

ϕ, T 1
ϕ, T 2

ϕ, T 3
ϕ, . . . , the tuple accessed by Tn

ϕ represents a non-empty set
of verdicts: for all time stamps i ∈ [Tn−1

ϕ .τ + 1, Tn
ϕ .τ ], π, i |= ϕ in case Tn

ϕ .v
is true and π, i 	|= ϕ in case Tn

ϕ .v is false. Intuitively, if T 0
ϕ = (false, 0) and

T 1
ϕ = (true, 5) then T 1

ϕ represents that ϕ holds from τ = 0 through τ = 1.

2.2 Propagation Delay

Each temporal operator in MLTL is accompanied by a closed natural integer
bound, I = [lb, ub]. A node of the AST is decidable at a given time when sufficient
information is known to determine the verdict at that time. As these observers
chain together, the decidability of a given node becomes a function of its bound
and the bounds of its inputs.

Definition 4 (Propagation Delay). The propagation delay of an MLTL formula
ϕ is the time between when a set of propositions π[i] (i.e., input) arrives at
ϕ, and when it is possible to know if π, i |= ϕ (i.e., output). A node’s worst
propagation delay (wpd) is the maximum propagation delay it can experience,
and the minimum value is the best propagation delay (bpd).

Definition 5 (Propagation Delay Semantics). Let ϕ be an MLTL formula
where ϕ.bpd is the best-case propagation delay of formula ϕ and ϕ.wpd is its
worst-case propagation delay. If ϕ is a unary operator, then let its direct subfor-
mula be ψ; else, if ϕ is a binary operator, then let ψ1, ψ2 be its direct subformulas.
Let Propagation Delay of formula ϕ be defined as follows:

if ϕ ∈ AP :

{
ϕ.wpd = 0

ϕ.bpd = 0
if ϕ = ¬ψ :

{
ϕ.wpd = ψ.wpd

ϕ.bpd = ψ.bpd

if ϕ = �[ϕ.lb,ϕ.ub]ψ or ϕ = ♦[ϕ.lb,ϕ.ub]ψ :

{
ϕ.wpd = ψ.wpd + ϕ.ub

ϕ.bpd = ψ.bpd + ϕ.lb

if ϕ = ψ1 ∨ ψ2 or ϕ = ψ1 ∧ ψ2 :

{
ϕ.wpd = max(ψ1.wpd, ψ2.wpd)

ϕ.bpd = min(ψ1.bpd, ψ2.bpd)

if ϕ = ψ1U[ϕ.lb,ϕ.ub]ψ2 or ϕ = ψ1R[ϕ.lb,ϕ.ub]ψ2 :

{
ϕ.wpd = max(ψ1.wpd, ψ2.wpd) + ϕ.ub

ϕ.bpd = min(ψ1.bpd, ψ2.bpd) + ϕ.lb

3 New Future-Time Algorithms for R2U2

To improve real-time performance and reduce resource usage, we contribute new
encodings of asynchronous, future time MLTL operators. Single-writer, many-
reader, ring buffers called shared connection queues (SCQs) replace the single-
writer, single-reader buffers of the original operators [21]. The SCQ-backed oper-
ators enable a further implementation optimization, discussed in Sect. 4. While
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developed to reduce real-time resource requirements, we found SCQ-backed oper-
ators necessary for other advancements like model-predictive runtime verifica-
tion [29].

3.1 Shared Connection Queues

A SCQ is a circular buffer of verdict tuples with one write pointer and one or
more read pointers that buffers verdicts from a child subformula to be read by
multiple parent expressions. These supplant the synchronization queues utilized
in [21]. Shared Ring Buffers, which are similar structures from multi-threading
software (e.g., [28]), inspired the SCQ. Figure 1 shows how SCQs are embedded
in an MLTL AST, with read pointers for each parent and a write pointer for the
child.

Fig. 1. Representative AST fragment showing a ∧ operation (N3) and it’s chil-
dren/inputs. The output of all three nodes are buffered with SCQs where N3 holds
read pointers to S1 and S2. The SCQs are arranged linearly in memory as shown.

Reading and Writing. Algorithms 1 and 2 show SCQ read and write opera-
tions. Each SCQ manages a write pointer while observers maintain read point-
ers for each child queue. SCQs store verdict intervals using aggregation [21],
wherein the latest tuple’s timestamp is overwritten by subsequent timestamp
values if their truth values (and therefore verdicts) are equal. For example, if the
SCQ contains {(true, 10), (false, 15)}, then during the timestamp interval [11, 15]
the verdicts are all false. If the next input is (false, 16), the content becomes
{(true, 10), (false, 16)}.

Reading from a non-empty SCQ returns verdicts with monotonically increas-
ing time steps. This prevents reprocessing verdicts a reader has already observed.
To enforce monotonic reads, the last timestamp seen by each reader is tracked in
the variable τe. When reading, the first verdict found after the read pointer with
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a timestamp greater or equal to τe is returned; else, it returns empty. The circu-
lar structure of the SCQ is omitted from the algorithms for clarity. In practice,
the pointer increments and decrements by the size of a verdict tuple, modulo
the size of the queue.

Queue Sizing. The required buffer size for each observer is computed a priori by
recursively sizing the SCQs in its MLTL AST based on the best and worst-case
delays of their subexpressions. We call the maximum number of verdicts a SCQ
can hold the depth, and the individual positions we call slots. We compute the
size of the output queue for a node g with sibling nodes Sg that share a common
parent with:

size(g.Queue) = max(max{∀s ∈ Sgs.wpd} − g.bpd, 0) + 1.

The minimum queue size is one because even with no delay the verdict must
be passed between nodes. Sizing queues based on the worst-case delay guaran-
tees that verdicts are consumed by the parent nodes before the write pointer
recirculates, overwriting old data. This safely bounds the memory required to
evaluate each node in the worst case. Software RV monitors can use these pre-
computed bounds to avoid dynamic allocation when desired. In hardware RV,
we build SCQs using Block RAMs (BRAMs), an FPGA memory resource. Each
BRAM can be partitioned into multiple SCQs.

3.2 MLTL Operator Observers with SCQs

Algorithms 3–6 in Fig. 2 demonstrate our new encodings of the four required
future-time MLTL asynchronous observers using SCQs. Whereas [21] used one
of two observers for �[lb,ub] depending on the bounds, this encoding only uses
one observer. Negation (algorithm 3) returns all input verdicts after inverting
their truth values. Until (algorithm 4) tracks the falling edges of ψ and the latest
seen timestamp of ϕ. If ψ is true or ϕ is false, then the output is trivially true or
false, respectively. Additionally, failure by elapsed time is detected from the time
since the falling edge of ψ. And (algorithm 5) considers 4 cases to eagerly eval-
uate false verdicts. If both inputs are true, the output is true up to the smaller
input timestamp. If both inputs are false, the output is false up to the largest
observed timestamp; this is classic Boolean “short-circuiting” behavior. Other-
wise, the verdict is false up to the timestamp of the false input. The Globally
operator (algorithm 6) counts time stamps since the last rising edge. It outputs
true when the length of the true signal meets or exceeds the duration of the
interval. Operators with non-zero lower bounds can be treated as zero-bounded
operators of equivalent duration by offsetting the returned timestamps. This
shift equivalence (a separate operator in [21]) is directly embedded in our new
encoding.
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Fig. 2. Implementations of asynchronous, future-time MLTL observers using SCQs.
For each algorithm: N is the current node, N .SCQ is the output SCQ of N , and
N .iSCQ is input SCQ being read. In binary operators, there are two input queues:
N .iSCQ 0 and N .iSCQ 1

3.3 Correctness of New MLTL Observers

Correctness of algorithm 3 follows immediately from the SCQ read and write
operations.

Theorem 1 (Correctness of the �-operator). Let execution sequence 〈Tϕ〉
be the output of Algorithm 6 with interval [lb, ub] over computation π. Algo-
rithm 6 correctly implements �[lb,ub]ϕ, that is ∀i Tϕ = (i, true) ⇔ π, i |=
�[lb,ub]ϕ.

Proof (Proof of Theorem 1). In [21] the following equivalence with the globally
operator is developed: ∀i : (i− lb ∈ [τ, τ +ub− lb] → π, i |= ϕ) ⇔ π, τ |= �[lb,ub]ϕ

Since (ub − lb) ≮ 0, �lb,ubϕ holds at τ iff π, i |= ϕ where (i − ub) ≤ τ ≤
(i− lb). From these conditions, we see that �[lb,ub]ϕ is equivalent to the verdicts
�[0,ub−lb]ϕ shifted back by lb, i.e., ϕ must hold for ub − lb or longer.
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⇐: In Algorithm 6, a rising edge of ϕ is detected by line 2–5 which account for
aggregation. If ϕ has held for at least ub − lb, then line 7 returns a true verdict,
shifted by ub. Otherwise, a false verdict is returned (line 9) which eagerly fails
all time steps unable to meet the condition π, i |= ϕ for (i − lb) ≥ τ . The check
on line 8 prevents premature output of false verdicts on initialization.

⇒: True verdicts are only returned from line 7, which requires ϕ to have
held for at least ub − lb per the check in line 6. False verdicts are only returned
from line 9, which requires ϕ has not sufficiently held (line 9) but sufficient
information is available (line 8).

Verdicts are returned iff they satisfy the original equivalence. ��
Due to size, proofs for Algorithm 4 and Algorithm 5 are available online.1

4 Optimization and Experimental Performance Analysis

In a set of MLTL formulas, repeated sub-expressions can generate redundant
observer instructions, needlessly increasing required queue space and execution
time. Compilers use common subexpression elimination (CSE) [6] to share the
output of repeated expressions. Figure 3 demonstrates the application of CSE to
MLTL ASTs. CSE is not possible with single-reader buffers and requires SCQs
with multiple readers. Algorithm 7 removes duplicate branches of a formula’s
AST. Sub-expressions are eliminated both within and between formulas.

Fig. 3. Example of CSE on an MLTL formula where nodes 3 and 5 have identical
children. On the left is the AST and resulting R2U2 institution representing the above
formula. The AST and instructions on the right are produced by applying CSE. Sharing
the output of node 3 removes one repetition of this sequence, saving two queues and
two instructions.

1 http://temporallogic.org/research/FORMATS20.

http://temporallogic.org/research/FORMATS20


Embedding Online RV for Fault Disambiguation on Robonaut2 205

Algorithm 7: CSE(T, S)
Input : AST Tree: T , Set: S = {(label, node)}
Output: optimized AST: T

1 // Recuse through T in post-order
2 Let N = root(T )
3 if leftChild(N) �= ∅ then CSE(leftChild(N), S)
4 if rightChild(N) �= ∅ then

CSE(rightChild(N), S)
5 // Build expression label
6 N.label = [′(′]
7 if leftChild(N) then

N.label += leftChild(N).label
8 N.label += N.name
9 if rightChild(N) then

N.label += rightChild(N).label
10 N.label += [′)′]
11 // Trim common subexpressions
12 if (N.label, •) /∈ S then
13 // Unique subtree, store reference
14 S = S ∪ (N.label, N)
15 else
16 // Common subtree, link existing
17 Let M ∈ T such that (N.label,M) ∈ S
18 T = T ∪ (parent(N),M)
19 T = T − (parent(N), N)
20 end

Experimental Dem-
onstration of Impro-
ved Average Perfor-
mance. To measu-
re the impact of
CSE with SCQs,
we tested the 10, 000
random MLTL ben-
chmark formulas
used in [14] by
converting them to
observer trees and
queue configura-
tions with and with-
out CSE enabled.
The benchmark set
formulas vary in
length, number of
variables, and prob-
ability of choosing
the U-operator.

The R2U2 con-
figuration compiler
is a single-threaded
Python application
and was run in
parallel (12 instances
at a time) on a
2019 MacBook Pro with a i9-9880H Intel CPU and 32 GB system RAM. The
duration of each process was measured using the Python 3.7.7 standard time
library process time function which counts system and user CPU (but not
sleep) time with the most precise clock available. In total, the 10,000 runs across
12 parallel processes completed in under 15 s wall clock time.

Over the whole set, the number of R2U2 observer nodes dropped 27.06% from
788, 095 to 574, 822 and the total queue slots required decreased 4.28% from
42, 300, 361 to 40, 491, 507. Adding CSE to the R2U2 configuration compiler
increased the configuration time 10.25% from 57.66 to 63.57 total seconds of
CPU time. Figure 4 shows histograms of AST and SCQ reduction respectively.
Only 30 of the 10,000 saw no improvement.

The reduction in AST nodes is significant and translates proportionally to
execution time. The 24% AST node reduction over random formulas gives hope
for similar or greater reductions in encoding real specifications due to the greater
repetition in human-written specifications. The queue space reduction saved a
median of 100 slots per formula, which is important as BRAMs are less plentiful
on FPGAs. The benchmark formulas use large operator intervals, which limit
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Fig. 4. Reduction in AST nodes (left) and SCQ slots (right) as percentage of unopti-
mized size. The y-axis indicates the number of formulas from MLTL benchmark set [14].

our SCQ reductions by requiring sufficient space for their worst-case propagation
delays. We expect to see increased queue space savings on formulas with shorter
intervals; we will explore this in future work.

5 Theory into Practice: Robonaut2

Robonaut2’s legs are comprised of series-elastic actuators with torsional springs,
causing external force to register on the internal position sensors [19]. Pre-
cise measurements of the spring displacement cap applied force, affording near-
human dexterity while remaining safe in confined spaces with astronauts [3].
After deployment, NASA observed that the Absolute Position Sensors (APSs)
sporadically initialize incorrectly by ≈ 2.1 rad (120◦). In this fault condition,
safety checks fail due to a perceived high torque loading. This is well beyond the
physical hard-stop of the joint, but R2 cannot distinguish it from sensor drift.
To increase availability and resilience, Robonaut2 must be able to automatically
trigger corrective action without compromising existing safety guarantees.

Constraints. The Robonaut2 team requested fault disambiguation directly on
the joint controller FPGA. This provides increased observability, minimizes addi-
tional messages on the control bus, and does not invalidate the flight code certifi-
cation of the paired microcontroller. However, the left-over space on the FPGA is
limited and additional runtime verification logic must not impact the response
time of the existing controller. Additionally, the system’s remote deployment
limits available debug information. We derived our initial specification from a
plain-language description of the fault mechanics by subject-matter experts while
awaiting a real trace.
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Fig. 5. R2U2 observers, encoded on the
FPGA, monitor internal sensor values
passed over the R2 control bus.

Solution Architecture. Figure 5 shows
the desired architecture. During devel-
opment, a serial debug port loads
specifications and returns verdicts. In
flight, Robonaut2’s configuration sys-
tem will handle specification loading.
R2U2 is realizable, responsive, and
unobtrusive [22]; it embeds observers
for Robonaut2’s symptoms in hard-
ware, returns observer verdicts at the
system clock rate, and is adaptable
to the highly-constrained operational
environment without affecting exist-
ing joint control, respectively. We
apply two of R2U2’s reasoning layers: signal processing (which processes incom-
ing signals into Boolean atomics) and temporal observation (which evaluates
MLTL specifications). Our use-case requires early-as-possible identification of
failure, necessitating using R2U2’s asynchronous mode. The existing flight con-
figuration routes all sensors, actuator control, and communications through the
FPGA while a microcontroller runs high-rate model-based control algorithms [4].
Since the FPGA is the nexus of the actuator’s sensors, all required data can be
accessed on-chip.

5.1 Embedding Runtime Verification

Fig. 6. LUT resource usage for timestamp
length LTS . Growth is linear, but the rate
is dependent on FPGA process type.

Fig. 7. BRAM resource usage for
timestamp length LTS where N × T
is the number of binary operators N ,
times T = maxn.wcd ∀n ∈ N i.e. total
queue space.

R2U2 allows runtime configuration of the observer specifications, while the size
and duration limits of these specifications are design-time parameters. For R2U2
to dynamically reconfigure specifications at runtime (without resynthesis or
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recertification), we utilize BRAMs for instruction memory, variable memory, and
queues; see [22]. Memory requirements are driven by queue depth and timestamp
length. We can compute the minimum required resources of a given specifica-
tion, or the maximum parameters that fit within a given design. Figures 6 and 7
show the scaling of FPGA look-up-tables (LUTs) and BRAM required as times-
tamp width is increased, respectively. We selected a max queue depth of 20 and
timestamp length of 16-bits from expert and system operator’s recommenda-
tions. This increased the LUT utilization of the FPGA from 51.2% to 79.81%
and increased the number of BRAMs used from 2 to 27 out of 32. A video demo2

shows R2U2 running live on the R2 platform, reasoning over the joint state, eval-
uating temporal observers, and dynamically configuring specifications without
stopping the robot.

Fig. 8. R2U2 atomic checker. Orange
blocks are configurable online. (Color
figure online)

Boolean Checker Construction. R2U2’s
runtime-configurable Atomic Checkers,
shown in Fig. 8, convert the native sen-
sor format to Boolean variables used
in specification. For example, the Enc-
Pos sensors value indicates the rota-
tion degree of the motor. Robonaut2’s
native encoder format is a 19-bit inte-
ger, where the highest bit is an error

flag and the lower 18 bits represent the encoder count. This presents two chal-
lenges: (1) the EncPos is reset to 0 at initialization regardless of the actual
position; (2) to compare with the APS values, this count must be scaled and
offset. Taken together, R2U2 must reconfigure the offset before using encoder
values. For EncPos, we let sensor 1 take the raw value as input while sensor 2
always returns 1. In this configuration, n1 is the scale factor, and n2 is the con-
figurable offset. The final AP output is the Boolean result of comparison with
the n3 reference value.

5.2 Specification

Design. Our specifications need to disambiguate between three modes (APS1
faulty, APS2 faulty, or no fault) without false positives. We initially encode
Robonaut2’s team’s fault description: If the differences between APSs are larger
than 1 rad, then the APS that disagrees with the encoder by more than 0.01 rad is
at fault. We assume: (1) agreement with the encoder value implies correct APS
position, (2) agreement between any two position sources implies the minority
opinion is incorrect, i.e., sensor voting. To prevent false positives due to sen-
sor outliers, we ensure states hold for at least three timesteps before reporting a
fault. Robonaut2’s existing logic sets an “encoder fault position” signal when the
encoder and APS1 disagree. Our MLTL specifications reason over the APS1 posi-
tion, APS2 position, encoder position, and encoder fault position sensor inputs;

2 http://temporallogic.org/research/R2U2/R2U2-on-R2 demo.mp4.

http://temporallogic.org/research/R2U2/R2U2-on-R2_demo.mp4
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see Table 2. The corresponding R2U2 configuration for this set of specifications
requires 17 instructions, 14 SCQs, and 29 queue slots with a max depth of 4
without CSE. Applying CSE reduces that to 14 instructions, 11 SCQs, and 26
queue slots with a max depth of 4.

Table 2. Fault disambiguation specification – revision 1

Bus Values Temporal Formulas

APS1: Position [ rad ]

APS2: Position [ rad ]

EncPos: Position [ rad ]

EncFaultPos: Encoder Fault [ bool ] Observer Tree

Signal Processing

EncFaultPosAPS1 APS2 EncPos

= |APS1 − APS2| 1 rad

= |APS2 − EncPos| 0.01 rad

Fig. 9. Ground R2: APS fault (Color figure online)

Validation. After initial specification development, a terrestrial Robonaut2
developed the fault of interest. To validate our specifications, we ran R2U2 over
the recorded traces. In Fig. 9 and 10 the top timeline shows the encoder (red),
APS1 (blue, labeled motor), and APS2 (yellow, labeled joint) positions in radi-
ans. The lower timeline shows the R2U2 verdicts of the fault-case specifications.
In Fig. 9 the APS fault occurs at 43 s. The expected > 2.1 rad shift in APS
position is flagged by Vthreshold correctly. Notice that the encoder jumps to an



210 B. Kempa et al.

Fig. 10. Ground R2: unsuccessful recovery (Color figure online)

implausible 998 rad, violating the sensor voting assumption. Figure 10 records
an attempted recovery. While appearing successful, the difference between the
three sensors after time 19 is still too wide to unlock the emergency stop. Addi-
tionally, the Boolean Vthreshold correctly detects that we are not in the failure
mode of interest after time 19. This data reveals an implicit assumption that
encoder values freeze during a fault.

Revision. With our new insight on the fault behavior, we revise the specification
strategy: If there is a sudden, large jump in the encoder and an APS’s position
report, the APS that jumped is at fault. The assumptions of our new strategy
are: (1) a sufficiently large discontinuity in the data is the fault signature, (2)
in the fault case, only the faulty APS “moves.” To compare the APS value
before and after a fault, we must identify the timestep of the fault – which is
when the encoder goes out-of-range. To determine the “moving” APS, we can
divide the joint range into sections and use the signal processing layer to get a
Boolean an indicating the signal from APS1 is in region n (and similarly with
bn and APS2). Now the temporal observers can check if each APS is in the same
region before and after the encoder jump. The size of n dictates the maximum
rotation distance before triggering a region change. We select n such that the
maximum rotation is about half the fault discontinuity: ≈ 1 rad. The range
of the APS is [−π, π], requiring 6 regions, (a1, a2, . . . , a6) and (b1, b2, . . . , b6)
to meet the target region size. The fault only occurs when arming a parked
actuator so we are not concerned with rotation during a fault. Also, encoder
range errors do not register in the EncPos signal stream when an actuator
experiences nominal joint rotation across a boundary, further preventing false
positives. Table 3 lists the MLTL and signal layer specification. The final R2U2
configuration requires 154 instructions, 140 SCQs, and 196 SCQ slots with a max
depth of 3 without CSE. CSE reduces this to 100 instructions, 86 SCQs, and 142
SCQ slots with a max depth of 3. The 33% reduction in instructions shows the
impact of CSE optimization on human-written specifications that necessarily
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contain repeated references to important subsystems. While CSE results in a
38% reduction in SCQ quantity, the significance of this reduction is that the
number of SCQs in the unoptimized R2U2 configuration crosses a power-of-two
boundary, requiring 8 bits to encode but the same specification requires only 7
bits with CSE enabled. When embedding hardware monitors, bus size increases
account for multiplicative jumps in resource requirements (as in Fig. 7). Our RV
specification would not fit in Robonaut2’s knee’s available FPGA space without
SCQ-based encodings reduced by CSE.

Table 3. Fault disambiguation specification – revision 2

Bus Values Temporal Formulas

APS1: Position [ rad ] ϕn = (an ∧ ¬e) ∧ �[1,2](¬an ∧ e) APS1Fault ∀n ∈ [0, 5]

APS2: Position [ rad ] ϕm+6 = (bm ∧ ¬e) ∧ �[1,2](¬am ∧ e) APS2Fault ∀m ∈ [0, 5]

EncPos: Position [ rad ] Observer Tree

Signal Processing ϕ[0,5]

a[0,5] e

ϕ[6,11]

b[6,11]

APS1 APS2 EncPos

e = EncPos > 100

an = π(n
6

− 1) < APS1 < π(n+1
6

− 1)∀n ∈ [0, 5]

bn = π(n
6

1) < APS2 < π(n+1
6

1) n [0, 5]

Verification. Following the best-practices for specification debugging established
in [23], we checked each specification, its negation, and the conjunction of all
specifications for satisfiability. We utilized the MLTL SMT solver from [14] to
prove the specifications were both satisfiable and falsifiable. Finally, we played
back all available recorded traces of both faulty and nominal operation through
the real hardware, with our final R2U2 configuration running, to check that we
successfully catch the fault with no false positives during nominal operation.

6 Conclusion

We have successfully embedded R2U2 to provide trusted fault-disambiguation for
automatic mitigation. Our new encodings enabled CSE optimization, a crucial
step in meeting the resource limitation challenges of the R2 platform. Impor-
tantly, the techniques presented in Sects. 3 and 4 are not exclusive to this appli-
cation or to R2U2, but could be ported to other RV algorithms, tools, and
application domains.

Working with FPGA limitations provided important lessons on the rela-
tion between specification complexity and hardware resources. In Fig. 6 LUT
requirements scale linearly with timestamp length; however, transistor count
(and therefore chip space and power) scales exponential with LUT size. Also,
the discontinuities in Fig. 7 are due to BRAM width alignment. Since both LUT
type and BRAM width are properties of the FPGA, the target hardware can
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drastically change the maximum size of a specification’s encoding, even with
the same amount of LUTs and BRAM free. For a hardware R2U2 deployment,
BRAM will probably be the limiting resource. This may not be true for other RV
engines, but it’s the price of reconfigurability, which allows RV to be embedded,
certified, and deployed flexibly, and which was a requirement of the R2 team.

Future Work. In the current implementation, we utilize the equivalence relations
in Sect. 2 to represent full MLTL semantics; next we plan to implement direct
encodings, e.g., for the R operator. Encoding every operator directly would
reduce the number of negations in the AST and therefore, the amount of SCQ
space required. We will then investigate additional design-time optimizations to
the AST.

On the application side, we are working toward distributing specifications
across RV monitors on multiple FPGAs. This extension has the potential to
increase the number of specifications we can monitor on a given platform, both
by utilizing more of the leftover fabric on the platform, and by allowing observers
to reason over proprieties that cannot by observed from a single location.
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Abstract. Timed Automata (TA) are an appropriate model for specify-
ing timed requirements for Continuous Time Markov Chains (CTMC).
However in order to keep tractable the model checking of a TA over
a CTMC, temporal logics based on TA, like CSLTA, restrict TA to
have a single clock and to be deterministic (DTA). Different variants
of DTAs have been proposed to address the issue of their expressiveness
and conciseness. Here we study the effect of two possible features: (1)
autonomous transitions which are triggered by time elapsing in addition
to synchronized transitions and (2) transitions guarded by propositional
formulas instead of propositional formulas guarding locations. We first
show that autonomous guarded transitions increase the expressiveness
of DTAs (as already shown for guarded locations). Then we identify a
hierarchy of DTAs subclasses all equivalent to DTAs without guarded
autonomous transitions and we analyze their respective conciseness. In
particular we show that eliminating resets in autonomous transitions
implies an exponential blow-up, while eliminating autonomous transi-
tions without reset can be performed in polynomial time if decision dia-
grams are used. Finally we compare TA with guarded transitions to TA
with guarded locations showing that the former model is exponentially
more concise than the latter one.

1 Introduction

Model Checking CTMC. Defining a temporal logic for specifying properties of
a CTMC is a natural goal, since a CTMC can be represented as a (probabilis-
tic) transition system. In fact the first temporal logic that has been proposed,
CSL [3], is a variant of CTL where (1) the ‘for all paths’ and ‘there exists a path’
operators have been replaced by the operator expressing ‘the probability that a
random path is greater (or smaller) than some threshold’ and (2) the ‘until’ oper-
ator is equipped with a time interval. The core of the associated model checking
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procedure consists in building some (formula-dependent) CTMCs and to ana-
lyze their transient behavior. CSL has been extended in several directions [4,5]
and tailored for dealing with CTMCs generated by generalized stochastic Petri
nets [11].

Another approach consists in specifying the formula by a timed automaton
(or even an hybrid automaton) as in [2,7,12]. However without restrictions,
the model checking procedure can (1) either be based on simulation which only
provides an estimation of the probability to be computed or (2) solve numerically
multiple integrals, which do not scale at all. When the Timed Automaton is
restricted to have a single clock and to be Deterministic (DTA), there is an
efficient model checking procedure that exploits Markov regenerative process. In
addition, the logic CSLTA [10] which follows such an approach has be proven [10]
to extend CSL and most of its variants.

Classes of DTAs. The basic family of DTAs only includes synchronized transi-
tions: transition with a clock constraint and a set of synchronizing actions. The
joint evolution (synchronized product) of the CTMC and the DTA is driven by
the CTMC : it evolves when a transition of the CTMC can be matched by a
transition of a DTA (i.e. the clock constraint is satisfied and the action labelling
the transition of the CTMC is included in the set of synchronizing actions of the
DTA transition). In order to increase the expressive power of the basic family,
autonomous transitions can be added: these are transitions with a clock time
threshold, and when the clock reaches this threshold, in the synchronized product
the DTA evolves autonomously. When the CTMC states are labelled with atomic
propositions, it is possible to further restricts the possible joint evolutions, with
different semantics depending on whether the DTA has atomic propositional
formulas associated to locations (DTA class denoted as As) or associated to
transitions (DTA class denoted as At). In As the joint evolution is possible only
when the formula associated to the location is satisfied by the atomic proposition
of the CTMC state, in At each DTA arc has a pair of propositional formulas
and the evolution is possible only when the formulas are satisfied, respectively,
by the source state and the target state of the CTMC transition.

Expressiveness and Conciseness. In order to compare the expressiveness of fam-
ilies of DTAs, the usual qualitative notion is related to their timed languages: a
family A is at least as expressive as a family A

′ if for any DTA in A there is a DTA
in A

′ with the same language. Since the DTAs we study are used for defining the
acceptance probability of a CTMC, we also introduce a quantitative notion: a fam-
ily A is at least as expressive as a family A

′ if for any DTA in A there is a DTA in A
′

such that for any CTMC their acceptance probabilities are equal. When a family
A is at least as expressive as a family A

′, it raises other issues: (1) effectiveness,
does there exist an algorithm for producing an equivalent DTA? (2) cost, what
is the complexity of this algorithm? and (3) conciseness, what is the size of the
equivalent DTA w.r.t. the size of the original one?
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Our Contributions. We first show that in At autonomous transitions strictly
increase expressiveness even w.r.t. the quantitative notion (as already proved for
As in [8]). Then we characterize a large subclass of At, denoted A

rc
t for which

autonomous transitions do not increase expressiveness even w.r.t. the qualitative
notion. This class A

rc
t includes the class of DTAs with no clock reset on autonomous

transitions, denoted A
nra
t , but we prove that A

rc
t is exponentially more concise than

A
nra
t . Furthermore, we establish that one can transform a DTA in A

nra
t into an

equivalent DTA with no autonomous transition in polynomial time. This reduc-
tion requires to encode propositional formulas by decision diagrams. Finally we
compare At and As showing that the former family is exponentially more concise
than the latter one.

Organization. Section 2 introduces the syntax and semantics of DTAs with
autonomous and guarded transitions and defines qualitative and quantitative
notions of expressiveness. Section 3 presents a hierarchy of subclasses of DTAs
with autonomous and guarded transitions and establish a full classification w.r.t.
expressiveness and conciseness. Section 4 establishes that using guarded transi-
tions yields an exponentially more concise model than the one with guarded
locations. Some perspectives for this work are given in Sect. 5.

2 Preliminaries

A DTA can be used to specify requirements on timed paths of a CTMC, so that
we can refer to CTMC paths accepted or rejected by a DTA. The CTMCs we
consider are CTMCs with actions from a set Act and a valuation of a set of
propositions AP associated to the CTMC states.

Definition 1 (CTMC). A continuous time Markov chain M with state and
action labels is represented by the tuple M “ 〈S, s0,Act ,AP , lab,R〉, where S
is a finite set of states, s0 P S the initial state, Act is a finite set of action
names, AP is a finite set of atomic propositions, lab : S → {J, K}AP is a
state-labeling function that assigns to each state s a valuation of the atomic
propositions, R : S ˆ Act ˆ S → R�0 is a rate function. If R(s, a, s′) > 0, we

write s
a,R(s,a,s′)´́ ´́ ´́ →́ s′.

We assume that each state has at least one successor (possibly the state
itself): for all s P S, there exists a P Act, s′ P S such that R(s, a, s′) > 0. CTMC
executions lead to timed paths, and a CTMC is a generator of a random path.

Definition 2 (Timed Path). Given a set AP of atomic propositions and a
set Act of actions, a timed (infinite) path is a sequence (v0, δ0)

a0→́ (v1, δ1)
a1→́

· · · (vi, δi)
ai→́ · · · such that for all i P N : vi P {J, K}AP , ai P Act , δi P R�0.

where vi, the (i ` 1)-th state of the timed path, is a boolean evaluation of the
atomic propositions, δi is the delay before action ai, or equivalently the sojourn
time in state i. A timed path leaves state vi with action ai after a sojourn time
in the state equal to δi. If τi indicates the time elapsed until exiting state i, then:
τi “ δi ` τi´1, with τ´1 “ 0.
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Example 1 (Timed path). In writing timed paths we indicate vi as the set of
elements in AP that evaluate to J. Given AP “ {p, q} and Act “ {a, b} the
timed path ({p, q}, 0.3) a→́ ({p}, 0.2) b→́ ({q}, 1) a→́ · · · , is interpreted as (1) the
system staying in a state fulfilling p ^ q in the time interval [0, 0.3], where at
time 0.3 action a takes place, (2) the system moves to a state fulfilling p ^ �q,
stays there for 0.2 time units and then action b takes place, and (3) the system
moves to a state fulfilling �p ^ q, stays there for 1 time units and then action a
takes place (at the elapsed time τ “ 1.5).

The definition of a DTA includes a clock x and two types of clock constraints
associated with transitions: boundary ones, BoundC = {x “ α, α P N} and inner
ones, InC = {α �� x ��′ β}, with ��, ��′P {<,�, }, α P N, and β P N Y {8}. In
the sequel, C is the largest time constant occurring in a DTA. Transitions also
have an input and an output guard on atomic propositions (indicated with ϕ´
and ϕ` respectively).

Before formally defining the syntax and semantic of a DTA (Definitions 3, 4
and 5), let us introduce its main ingredients. During the execution of a stochastic
discrete event system (e.g. a CTMC), represented by a timed path, the current
location of the DTA, say 	, is matched with the current state of the system, say
s “ (vi, δi). This matching evolves in three ways depending on the delay d � δi

(initially equals to δ0), elapsed until the next transition (vi, δi)
ai→́ (vi`1, δi`1).

– Either after some delay δ � d, there is an outgoing autonomous transition
from 	 which is enabled, meaning that (1) its boundary condition (say x “ α)
is satisfied and (2) vi fulfills ϕ´. Then after delay δ, 	′ is matched with s and
d is decreased by δ.

– Else if there is a synchronizing transition outgoing from 	 after time d has
elapsed is enabled meaning that (1) vi satisfies ϕ´, (2) its inner condition
(say α �� x ��′ β) is satisfied, (3) the action a belongs to the subset of actions
associated with the synchronizing transition, and (4) vi`1 satisfies ϕ`. Then
after delay δi, 	′ is matched with s′ “ (vi`1, δi`1) and d is set to δi`1.

– Otherwise there is no possible matching and the timed path is rejected by
the DTA.

When a transition of the DTA is fired, clock x may keep its current value or may
be reset. In the first two cases above, when 	′ “ 	f (	f being the final location of
the DTA), the timed path is accepted by the DTA whatever its future. This is
ensured by the existence of the unique (looping) synchronizing transition from
	f with no boolean guards, no timing and no action conditions. Observe that
the synchronization may go on forever without visiting 	f : in this case the timed
path is rejected.

Furthermore the synchronization of the stochastic system with the DTA
should not introduce non-determinism. So (1) synchronizing transitions outgo-
ing from the same location are never simultaneously enabled, (2) autonomous
transitions outgoing from the same location are never simultaneously enabled,
and (3) autonomous transitions have priority over synchronizing transitions.
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Definition 3 (DTA). A DTA is defined by a tuple A “ 〈L, 	0, 	f ,AP , Synch,
Aut〉 where L is a finite set of locations, 	0 P L is the initial location, 	f P L is
the final location, Synch Ď L ˆ BAP ˆ InC ˆ 2Actˆ{

∅, ↓ }ˆBAP ˆ L is the set
of synchronizing transitions, and Aut Ď L ˆ BAP ˆ BoundC ˆ {7}ˆ{

∅, ↓ }ˆL
is the set of autonomous transitions.
Furthermore A fulfills the following conditions, where we indicate with

	
ϕ´,γ,B,r,ϕ`´́´́ ´́ ´́→ 	′ the synchronized transition (	, ϕ´, γ, B, r, ϕ`, 	′), and with

	
ϕ´,γ,7,r(,ϕ´)´́ ´́ ´́ ´́ → 	′ the autonomous transition (	, ϕ´, γ, 7, r, 	′) (repeating some-

times the ϕ´ formula for unifying the notation).

– Determinism on actions. @B,B′ Ď Act s.t . B ∩ B′ �“ ∅, @	, 	′, 	′′ P L,

if 	
ϕ´,γ,B,r,ϕ`´́´́ ´́ ´́→ 	′ ^ 	

ϕ′´,γ′,B′,r′,ϕ′`´́ ´́ ´́ ´́ ´́→ 	′′ then
ϕ´ ^ ϕ′´ ⇔ K or ϕ` ^ ϕ′` ⇔ K or γ ^ γ′ ⇔ K.

– Determinism on autonomous transitions. @	, 	′, 	′′ P L,

if 	
ϕ´,x“α,7,r´́ ´́ ´́ →́ 	′ and 	

ϕ′´,x“α′,7,r′´́ ´́ ´́ ´́ → 	′′ then ϕ´ ^ ϕ′´ ⇔ K or α �“ α′.
– Condition on the final location. 	f

J,J,Act,∅,J´́ ´́ ´́ ´́→ 	f P Synch.

At denotes the family of automata identified by Definition 3. We informally write
“a transition with reset” or “a transition without reset” to indicate the condition
r “↓ and r “ ∅ respectively.

Fig. 1. A DTA specification of pU]α,β[q with α > 0.

Example 2 (DTA example). Figure 1 shows a DTA with locations 	0, 	1, 	2,
	3 and 	f . The initial location is 	0. Autonomous transitions are depicted as
dotted arcs, while synchronizing are depicted as solid arcs. For readability and
conciseness we omit in the figures: 1) the symbol 7 on autonomous transitions;
2) the reset indication when there is no reset; 3) Act if a transition accepts all
actions; 4) trivially true clock guards (like x � 0) and input or output guards; 5)
the name x of the clock in x “ α guards of autonomous transitions. As a result

an autonomous transition is depicted as either l
ϕ´,α

� l′, or as l
ϕ´,α,↓

� l′,if
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there is a clock reset. The two dotted arcs out of 	0 correspond to autonomous
transitions, mutually exclusive due to their guards. Note that the self loop on
	0 represents a synchronizing transitions, so it is mutually exclusive with the
other two transitions out of 	0 because of priority. Note that guards of the form
x “ α, typically associated with autonomous transitions, can also be associated
to synchronizing transitions. Figure 1 illustrates how to specify the CSL formula
pU]α,β[q with a DTA A P At. Since the clock is used to count the time elapsed,
no reset occurs. Observe that in the interval [0, α[, the current location can only
be 	0 with the additional requirement that if an action occurs then p has to
be fullfilled inside the whole interval. At time α, the current location can only
be 	1 or 	2 depending on the truth value of q and with the guarantee that p
holds in the interval [0, α]. Considering the first action that occurs after α, there
are three possible cases: (1) p ^ q was satisfied and the formula is satisfied (by
taking transition from 	2 to 	f ), (2) p ^ �q was satisfied, q is now satisfied and
the action occurs before β and so the formula is satisfied (by taking transition
from 	1 to 	f ) (3) or p ^ �q was satisfied and it is still satisfied and the action
occurs before β, and so (by taking transition from 	1 to 	3) there is the same
possibility to satisfy the formula represented by location 	3.

Definition 4 (Run of a DTA).

A run of A P At is a sequence: ρ “ (	0, v0, x̄0, δ0)
ϕ´

0 ,γ0,B0,r0,ϕ`
0´́´́ ´́ ´́ ´́→ (	1, v1, x̄1, δ1)

ϕ´
1 ,γ1,B1,r1,ϕ`

1´́´́ ´́ ´́ ´́→ · · · (	i, vi, x̄i, δi)
ϕ´

i ,γi,Bi,ri,ϕ
`
i´́ ´́ ´́ ´́ →́ · · · such that for all i P N, 	i P L,

vi P {K, J}AP , δi P R�0, 	i
ϕ´

i ,γi,Bi,ri,ϕ
`
i´́ ´́ ´́ ´́ →́ 	i`1 P E “ Synch Y Aut, vi |“ ϕ´

i ,

vi`1 |“ ϕ`
i , x̄i ` δi |“ γi, x̄i`1 “

{
0 if ri “↓
x̄i ` δi otherwise

Let x̄7 “ min{α | D	i
ϕ,x“α,7,r´́ ´́ ´́ → 	′ P E ^ x̄i � α ^ vi |“ ϕ}.

If Bi “ 7 then x̄i ` δi “ x̄7 and vi`1 “ vi else x̄i ` δi < x7.

Example 3 (DTA run). In the run we, again, describe v in terms of the subset
of AP that evaluate to J. Let us describe a possible run of the DTA of Fig. 1,
assuming α “ 1 and β “ 4. The run starts with v0 “ {p}; at time 0.4, it goes
from 	0 to 	0 by performing the synchronizing transition of the self-loop over 	0.
Then at time 1.0, it autonomously goes to location 	2. If the next action happens
at time 6.0 then it goes to 	f . Note that this is a case in which the formula is
satisfied already at time β, since β “ 4, but the run reaches the final location
only at time 5.0 > β, when the first synchronizing transition takes place, and
stays in the final location forever. The run described above corresponds, in more
formal terms, to:
(	0, {p}, x̄0 “ 0.0, δ0 “ 0.4)

p,x�0,Act,∅,p´́ ´́ ´́ ´́ →́ (	0, {p, q}, 0.4, 0.6)
p^q,x“1,7,∅´́´́ ´́ ´́→

(	f , {p, q}, 1.0, 5.0)
J,x>1,Act,∅,J´́´́ ´́ ´́ ´́→ (	f , {p}, 6.0, 2.4)

J,x�0,Act,∅,J´́´́ ´́ ´́ ´́→ (	f , ∅, 8.4,
0.7) · · ·

A timed path σ is recognized by a run ρ of A such that the occurrences of
the actions in σ are matched by the synchronizing transitions in ρ. This requires
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to define a mapping to “couple” the points in the paths in which synchronizing
transitions take place. This can be done by identifying a strictly increasing map-
ping for the indices of the timed path σ to the subset of the indices of the run
ρ that correspond to a synchronizing transition.

Definition 5. Let σ “ (v0, δ0)
a0→́ (v1, δ1)

a1→́ · · · (vi, δi)
ai→́ · · · be a timed path

and ρ “ (	0, v′
0, x̄0, δ

′
0)

ϕ´
0 ,γ0,B0,r0,ϕ`

0´́´́ ´́ ´́ ´́→ · · · (	i, v
′
i, x̄i, δ

′
i)

ϕ´
i ,γi,Bi,ri,ϕ

`
i´́ ´́ ´́ ´́ →́ · · · be a run

of a DTA A. Then σ is recognized by ρ if there is a strictly increasing mapping
κ : N → N (extended to κ(´1) “ ´1), such that for all i P N:

– ai P Bκ(i) and δi “ ∑
κ(i´1)<h�κ(i) δ′h;

– @h, κ(i ´ 1) < h � κ(i) ⇒ v′
h “ vi and h �P κ(N) ⇒ Bh “ 7.

A timed path σ is accepted by A if σ is recognized by a run ρ that visits 	f .
The language L(A) of A is the set of the timed paths accepted by A.

Note that, due to determinism, if such a run exists, it is unique. We define by
PrM(A) the probability that the random path of M is accepted by A (proba-
bility measure of all paths accepted by A as defined in [6]).

Example 4 (Timed path recognized by a DTA run). The timed path σ “
({p}, 0.4) a→́ ({p, q}, 5.6) b→́ ({p}, 2.4) c→́ (∅, 0.7) · · · is accepted by the DTA of
Fig. 1 using the run of Example 3, with the mapping κ. where κ(0) “ 0 and for
all i > 0 κ(i) “ i ` 1.
The (Zeno) timed path σ “ ({p}, 0) a→́ ({p}, 0) a→́ ({p}, 0) · · · is recognized (but

not accepted) by the DTA of Fig. 1 using the run (	0, {p}, 0, 0)
p,x�0,Act,∅,p´́ ´́ ´́ ´́ →́

(	0, {p}, 0, 0)
p,x�0,Act,∅,p´́ ´́ ´́ ´́ →́ (	0, {p}, 0, 0) · · · , with mapping κ being the identity.

Our objective is to compare different classes of DTAs in qualitative terms
(i.e., w.r.t. timed path languages) and in probabilistic terms (i.e., w.r.t. accepting
probabilities of the accepted path in a CTMC). These notions are independent
of the type of DTAs, and they have been already defined in [8].

Definition 6. Let A1 and A2 be families of DTAs. Then:

– A2 is at least as expressive as A1 w.r.t. language, denoted A1 ăL A2,
if for all A1 P A1 there exists A2 P A2 such that L(A2) “ L(A1);

– A2 is at least as expressive as A1 w.r.t. CTMCs, denoted A1 ăM A2,
if for all A1 P A1 there exists A2 P A2

such that for all CTMC M, PrM(A2) “ PrM(A1).

Derived relations are defined as usual and we write „L and „M for equally
expressive and ňL and ňM for strictly more expressive. Observe that by defini-
tion A1 ăL A2 implies A1 ăM A2.
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3 Eliminating Autonomous Transitions in At

This section studies the role of autonomous transitions in At. The role of
autonomous transitions for DTAs in which conditions are associated with loca-
tions (as in [10]) has been investigated in [8], where it was shown that there
are indeed certain subclasses of DTAs for which autonomous transitions can
be removed, but that in general this is not the case. The work in [8] also pro-
vides a construction to eliminate such autonomous transitions, when possible,
together with an analysis of its time and memory cost. In this section we investi-
gate when, and at which cost, it is possible to eliminate autonomous transitions
from DTAs of the At class. We propose the following hierarchy of subclasses
A

na
t Ď A

nc
t Ď A

nra
t Ď A

rc
t Ď At where:

Restricted cycles. A
rc
t is the subclass of DTAs A P At in which all cycles of A

including an autonomous transition with a reset also include a synchronizing
transition (	, ϕ´, γ, B, r, ϕ`, 	′) with either r “↓ or γ “ (x > C).

No reset on autonomous transitions. A
nra
t is the subclass of DTAs A P A

rc
t

in which there is no autonomous transition that resets the clock: A
nra
t “ {A P

At | (	, ϕ, γ, 7, r, 	′) P Aut(A) ⇒ r “ ∅}.
No reset and no cycle of autonomous transitions. A

nc
t is the subclass of

DTAs A P A
nra
t in which there is no cycle of autonomous transitions.

No autonomous transitions. A
na
t the subclass of DTAs A P A

nc
t with no

autonomous transitions.

The DTA of Fig. 1 belongs to A
nc
t \ A

na
t and the DTA in Fig. 2 to At \ A

rc
t .

Let us explain why we introduce the intermediate subclasses between At and
A

na
t . A

rc
t points out which syntactical restrictions must be satisfied by automata

in At in order not to extend the expressive power of A
na
t . A

nra
t which forbids

the clock reset by autonomous transitions disables the capacity to combine time
constants depending on the execution. A

nc
t which in addition forbids loops of

autonomous transitions is mainly introduced for simplifying the translations as
we will show that it is equivalent to A

nra
t w.r.t. conciseness.

Our results are summarized in the frame below. Let us emphasize the main
result: the elimination of autonomous transitions without reset can be performed
in polynomial time. This is particularly interesting considering that the same
elimination for DTAs with guarded locations, according to [8], requires expo-
nential time. When referring to the size of a DTAt we consider the number of
locations and transitions and the size of the formulas associated with transitions.

A
na
t „L A

nc
t „L A

nra
t „L A

rc
t ňM At

with A
rc
t exponentially more concise than A

nra
t and a quadratic translation

from A
nra
t to A

nc
t and a polynomial translation from A

nc
t to A

na
t .

In the framework of DTAs with guarded locations, the main result (Theo-
rem 1 in [8]) is that autonomous transitions strictly increase the expressiveness
w.r.t. ăM, and therefore also w.r.t. ăL. The adaptation to At is immediate,
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since the automaton A� of Fig. 2 that is used as a counterexample in [8], does
not include any boolean expression over atomic propositions. It then immediately
follows that:

Proposition 1. There exists A� P At such that for all A P A
na
t there exists a

CTMC M with PrM(A) �“ PrM(A�). Therefore A
na
t ňM At.

Fig. 2. The DTA A�, counterexample for Proposition 1.

From A
rc
t to A

nra
t . Observe that due to the loop around location 	0, A� does

not belong to A
rc
t . The remaining results of the section simultaneously establish

that: (1) A
rc
t characterize the DTAs for which autonomous transitions can be

eliminated and (2) characterize the cost of this elimination in terms of time
complexity and size of produced automata. First we establish that eliminating
autonomous transitions with reset induces an unavoidable exponential blow-up.

Proposition 2. There exists an algorithm operating in exponential time that
takes as input A P A

rc
t and outputs A′ P A

nra
t with L(A′) “ L(A).

There exists a family {An}nPN in A
rc
t such that the size of An belongs to O(n2)

and for all A P A
nra
t with L(A) “ L(An), (|Aut(A)| ` 1) · |Synch(A)| � 2n.

Proof. The proof is given in [9]. Here we exhibit the family {An}nPN emphasizing
that depending on the initial valuation there are 2n different delays before a
sequence of autonomous transitions reaches the final location.

· · ·
p1, 1↓

�p1, 0↓

0↓

0↓

p2, 2↓

�p2, 0↓

pn, 2n´1↓

�pn, 0↓

0↓

0↓

From A
nra
t to A

nc
t . Observe that when autonomous transitions do not reset

the clock, if a run visits twice the same autonomous transition without visiting
synchronized transitions, then no time has elapsed and it will diverge infinitely
repeating a cycle of autonomous transitions. The idea of the transformation
corresponding to the next proposition consists in duplicating locations by asso-
ciating a counter to them. This counter represents the number of autonomous
transitions visited since the last visit to a synchronized transition (or the begin-
ning of the run). When the counter exceeds the number of autonomous tran-
sitions of the DTA, then a cycle has been detected and the run ends up in a
deadlock location. The proof of this proposition can be found in [9].
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Proposition 3. There exists an algorithm operating in quadratic time that takes
as input A P A

nra
t and outputs A′ P A

nc
t with L(A′) “ L(A).

From A
nc
t to A

na
t . An interesting feature of specifying propositional formulas

on transitions is that the final transformation can be performed in polynomial
time. To this aim we introduce a particular case of decision diagram (DD) for
representing formulas as follows. Let DG be a directed acyclic graph rooted in
u0 including a final vertex uf such that all vertices are reachable from u0 and
can reach uf as depicted in Fig. 3. Every transition is labelled by a formula and
the formulas labeling outgoing transitions from a vertex are mutually exclusive
(for each variable valuation at most one formula is true). Given a valuation v,
v |“ DG if there is a path from u0 to uf such that v |“ ϕ for all ϕ labeling
the transitions of the path. Observe that there is at most one such path. Thus
deciding whether v |“ DG can be performed in linear time (assuming that the
satisfaction of a formula labeling a transition by a valuation can be performed
in linear time which is the case for standard representation of formulas).

Fig. 3. A DD for formula (�p1 ^p2 ^p4 ^p5)∨ (p1 ^ (p2∨p3)^p5)∨ (p1 ^ �p2 ^ �p3).

The following proposition eliminates autonomous transitions when they do
not reset the clock and there is no cycle made only of autonomous transitions.
The associated transformation which is polynomial makes use of DDs for the
formulas of the transitions.

Proposition 4. There exists an algorithm operating in polynomial time that
takes as input A P A

nc
t and outputs A′ P A

na
t with L(A′) “ L(A).

Proof. The transformation proceeds in three stages

• The first stage consists in duplicating the locations w.r.t. time regions. Let
0 “ α0 < . . . < αm “ C be the time constants occurring in A (adding 0 if
necessary). The set of time regions is {α0}, ]α0, α1[, {α1}, . . . , {αm}, ]αm, 8[.
For all location 	 and all region rg, one creates a location 〈	, rg〉. The initial
location is 〈	0, {α0}〉 with 	0 the initial location of A.

For all synchronized transition 	
ϕ´,γ,B,r,ϕ`´́´́ ´́ ´́→ 	′ and all regions rg and rg′ one

creates a transition 〈	, rg〉 ϕ´,γ^xPrg′,B,r,ϕ`´́ ´́ ´́ ´́ ´́ ´́ → 〈	′, rg′〉. For all autonomous tran-

sition 	
ϕ,x“i,7,∅´́ ´́ ´́ → 	′ and all region rg, one creates a transition 〈	, rg〉 ϕ,x“i,7,∅´́ ´́ ´́ →

〈	′, {i}〉. This step is polynomial.
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• Let A1 be the DTA produced by the first stage, the second stage produces a
DTA A2 where the priority of the autonomous transitions is made explicit by
restricting the temporal formulas of outgoing transitions. Let 〈	, rg〉 be a loca-

tion and {tk “ 〈	, rg〉 ϕk,x“αk,7,∅´́ ´́ ´́ ´́ → 〈	k, {αk}〉}k�K be the autonomous transi-
tions outgoing from 〈	, rg〉 with rg � α1 � · · · � αK (the other autonomous
transitions are useless and are assumed to be deleted).
For all k, one creates an autonomous transition

.
For all synchronized transition 〈	, rg〉 ϕ´,γ,B,r,ϕ`´́´́ ´́ ´́→ 〈	′, rg′〉, one creates a tran-
sition

.
Also this step is polynomial.

• Since in A2 the priority of autonomous transitions becomes irrelevant, A2

can be treated as a DTA with no priority for autonomous transitions, so
the final stage consists in removing autonomous transitions by aggregating
in a single synchronized transition a path of autonomous transitions fol-
lowed by a synchronized one. The resulting DTA A′ is therefore produced
from A2 by deleting the autonomous transitions and adding new synchro-
nized transitions as follows. For all 〈	, rg〉 and 〈	′, {i}〉 such that there is a
path of autonomous transitions from 〈	, rg〉 to 〈	′, {i}〉, and a synchronized
transition out of 〈	′, {i}〉, one specifies the formula ϕ�′,i

�,rg by a DD whose
vertices are locations both reachable from 〈	, rg〉 by autonomous transitions
and can reach 〈	′, {i}〉 by autonomous transitions. The edges of the DD are
the autonomous transitions between such vertices, and the edges are labeled
by the formulas of the autonomous transitions (remember that autonomous
transitions only have input guards).The DD is directly obtained from the
subgraph of A2 that includes all paths of autonomous transitions from 〈	, rg〉
to 〈	′, {i}〉, and the DD size is the size of such subgraph. Then for all syn-

chronized transition 〈	′, {i}〉 ϕ´,γ,B,r,ϕ`´́´́ ´́ ´́→ 〈	′′, rg′′〉, one creates a transition

〈	, rg〉 ϕ�′,i
�,rg^ϕ´,x�i^γ,B,r,ϕ`

´́ ´́ ´́ ´́ ´́ ´́ ´́ →́ 〈	′′, rg′′〉.
A new final location 	′f (with its loop) is added to A′, and, for all 〈	f , rg〉

the transition 〈	f , rg〉 true,x�o,Act,∅,true´́ ´́ ´́ ´́ ´́ ´́ →́ 	′f . is added to A′.

Illustration of Proposition 4. Figure 1 illustrates how to specify the temporal
formula pU]α,β[q with a DTA A P A

nra
t (and therefore also P A

nc
t ) Observe that

in the interval [0, α[, the current location can only be 	0 with the additional
requirement that if an action occurs then p has to be fullfilled inside the whole
interval. At time α, the current location can only be 	1 or 	2 depending on
the truth value of q and with the guarantee that p holds in the interval [0, α].
Considering the first action that occurs after α, there are three possible cases:
(1) p ^ q was satisfied and the formula is satisfied, (2) p ^ �q was satisfied, q is
now satisfied and the action occurs before β and so the formula is satisfied (3)
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p ^ �q was satisfied and it is still satisfied and the action occurs before β and so
there is the same possibility to satisfy the formula represented by location 	3.

Figure 4 depicts the DTA A′ P A
na
t obtained by applying the transformation

of Proposition 4 to the DTA A P A
nc
t depicted in Fig. 1. W.r.t. the defined

transformation, we have done some simplifications. Since 	1 and 	2 can only be
entered at time α there is no need to duplicate them. Since 	3 can only be entered
in interval ]α, β[ there is no need to duplicate it. In addition we have merged
〈	0, 0〉 and 〈	0, ]0, α[〉 since their outgoing transitions are identical (up to the
merging). We have also omitted locations that cannot reach the final location.
Finally, no DD is necessary since there are no path of two autonomous transitions
in the original DTA.

Fig. 4. Another DTA specification of pU]α,β[q with α > 0.

4 DTAt Versus DTAs

This section compares the conciseness of guarded transitions versus guarded
locations, i.e. comparing At with As. We show that a DTA in As can be converted
into a DTA in At in a quadratic time, while it takes an exponential time to
convert a DTA in At into a DTA in As, due to an (unavoidable) exponential
growth of locations. A DTA in As has conditions associated only with locations.
A transition (vi, δi)

ai→́ (vi`1, δi`1) of a timed path is recognized by a transition
from location 	 to 	′ of a such a DTA only if, given that all the time and
action requirements are satisfied (as for At) only if vi`1 |“ Λ(	′), where Λ(	′)
is the boolean condition associated with location 	′. We briefly recall here the
definition of a DTA in As, its runs, acceptance of timed path by a run. More
explanations and examples can be found in [8].



Guarded Autonomous Transitions Increase Conciseness and Expressiveness 227

Definition 7 (DTA). A P As is defined by a tuple A “ 〈L,Λ, L0, 	f ,AP ,
Synch, Aut〉 where L is a finite set of locations, L0 Ď L is the set of initial
locations, 	f P L is the final location, Λ : L → BAP is a function that assigns
to each location a boolean expression over the set of propositions AP, Synch Ď
L ˆ InC ˆ 2Actˆ{

∅, ↓ }ˆL is the set of synchronizing transitions, and Aut Ď
L ˆ BoundC ˆ 7ˆ{

∅, ↓ }ˆL is the set of autonomous transitions, with E “
Synch Y Aut. 	

γ,B,r´́ →́ 	′ denotes the transition (	, γ,B, r, 	′).
Furthermore A fulfills the following conditions.

– Initial determinism. @	, 	′ P L0, Λ(l) ^ Λ(l′) ⇔ K.
– Determinism on actions. @B,B′ Ď Act s.t . B ∩ B′ �“ ∅, @	, 	′, 	′′ P L,

if 	
γ,B,r´́ →́ 	′ and 	

γ′,B′,r′´́ ´́ →́ 	′′ then Λ(	′) ^ Λ(	′′) ⇔ K or γ ^ γ′ ⇔ K.
– Determinism on autonomous transitions. @	, 	′, 	′′ P L,

if 	
x“α,7,r´́´́ →́ 	′ and 	

x“α′,7,r′´́´́ ´́→ 	′′ then Λ(	′) ^ Λ(	′′) ⇔ K or α �“ α′.
– Conditions on the final location 	f . Λ(	f ) “ J and (	f , J,Act , ∅, 	f ) P

Synch.

Definition 8 (Run of A). A run of A P As is a sequence:

(	0, v0, x̄0, δ0)
γ0,B0,r0´́ ´́ →́ (	1, v1, x̄1, δ1) · · · (	i, vi, x̄i, δi)

γi,Bi,ri´́ ´́ →́ · · · such that for
all i P N: 	i P L, l0 P L0, vi P {J, K}AP , δi P R�0:

	i
γi,Bi,ri´́ ´́ →́ 	i`1 P E , vi |“ Λ(	i) , x̄i `δi |“ γi , x̄i`1 “

{
0 if r “↓
x̄i ` δi otherwise

To enforce priority of autonomous transitions,
let x̄7 “ min{α | D	i

x“α,7,r´́´́ →́ 	 P E ^ x̄i � α ^ vi |“ Λ(	)} (min(∅) “ 8)
If Bi “ 7 then x̄i ` δi “ x̄7 and vi`1 “ vi else x̄i ` δi < x7.

Definition 9 (Path recognized by A and L(A)). Let σ “ (v0, δ0)
a0→́

(v1, δ1)
a1→́ · · · (vi, δi)

ai→́ · · · be a timed path and ρ “ (	0, v′
0, x̄0, δ

′
0)

γ0,B0,r0´́ ´́ →́
· · · (	i, v

′
i, x̄i, δ

′
i)

γi,Bi,ri´́ ´́ →́ · · · be a run of a DTAs A, according to Definition 8.
Then σ is recognized by ρ if there is a strictly increasing mapping κ : N → N

(extended to κ(´1) “ ´1), such that for all i P N

– ai P Bκ(i) and δi “ ∑
κ(i´1)<h�κ(i) δ′h

– @h, κ(i ´ 1) < h � κ(i) ⇒ v′
h “ vi and h �P κ(N) ⇒ Bh “ 7

A timed path σ is accepted by A if σ is recognized by a run ρ and ρ visits 	f .
The language L(A) of A is the set of the timed paths σ accepted by A.

We first consider the translation from As to At, which mainly consists in
shifting the formula of a location to its incoming transitions with a particular
handling of the initial locations.

Proposition 5. There exists an algorithm operating in quadratic time that takes
as input As P As and outputs At P At with L(As) “ L(At).
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Proof. At has the same structure as As except that it has an additional location
	0 which is taken as the initial one.
For all synchronized transition 	

γ,B,r´́ →́ 	′ in As, At includes the synchronized

transition 	
J,γ,B,r,Λ(�′)´́ ´́ ´́ ´́ → 	′ and if 	 P L0 then At includes the synchronized

transition 	0
Λ(�),γ,B,r,Λ(�′)´́ ´́ ´́ ´́ ´́ → 	′.

For all autonomous transition 	
x“α,7,r´́´́ →́ 	′ in As, At includes the autonomous

transition 	
Λ(�′),x“α,7,r´́ ´́ ´́ ´́ → 	′ and if 	 P L0 then At includes the autonomous

transition: 	0
Λ(�)^Λ(�′),x“α,7,r´́ ´́ ´́ ´́ ´́ ´́ → 	′.

The quadratic factor is due to the substitution of the |L| formulas of As by at
least |E| formulas in At.

The reverse translation is more costly and consists in duplicating a location
w.r.t. the guards of the incoming and outgoing transitions.

Proposition 6. There exists an algorithm operating in exponential time that
takes as input At P At and outputs As P As with L(At) “ L(As).

Proof. Given 	 P L, let ϕ�
1, . . . ϕ

�
n�

be the formulas of entering guards of transi-
tions incoming 	 and exiting guards of transitions outgoing 	. Then Ls “ {〈	, I〉 |
	 P L ^ I Ď {1, . . . , n�}} Y {	∗f} where 	∗f is the final state (fulfilling the require-
ments of a DTA in As) and for all 〈	, I〉, .

For all synchronized transition 	
ϕ�

i ,γ,B,r,ϕ�′
i′´́ ´́ ´́ ´́→ 	′ in At and all I, I ′ such that i P I

and i′ P I ′, As includes the synchronized transition: 〈	, I〉 γ,B,r´́ →́ 〈	′, I ′〉.
For all autonomous transition 	

ϕ�
i ,x“α,7,r´́´́ ´́ →́ 	′ in At and all I, I ′ such that i P I

and i′ P I ′ with ϕ�
i “ ϕ�′

i′ , As includes the autonomous transition: 〈	, I〉 x“α,7,r´́´́ →́
〈	′, I ′〉.
For all 〈	f , I〉, there is a transition 〈	f , I〉 J,Act,∅´́ ´́ →́ 	∗f .

Proposition 5 and 6 above can be trivially extended to sub-classes of As and
At, because the proofs are general and do not involve creation of autonomous
transitions.

The exponential blow-up due to the duplication of locations is unavoidable
even without timing considerations, as shown by the next proposition.

Proposition 7. There exists a family of automata {Ak
t }kPN in A

na
t such that

the size of Ak
t belongs to O(k log(k)) and for all As P As with L(As) “ L(Ak

t )
the number of its locations is at least 2k ´ 1.

Proof. Consider the automaton Ak
t described below.

...

p1, a1

pk, ak
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This automaton accepts timed paths whose first action may be ai only if the
initial state fullfills pi. Consider in As the locations reached at time 0 by the
runs before the first action is performed. At least 2k ´ 1 initial valuations must
reach such a location. Assume that As has less than 2k ´ 1 locations. Then two
initial valuations reach the same location. Let pi be some proposition on which
they differ. Thus there exists a initial valuation v with v(pi) “ K such that a
timed path starting with ai is accepted which yields a contradiction.

5 Conclusions and Future Work

The results of this paper, together with those of a companion paper [8] allows
to build a better understanding of DTAs and of the various CSLTA definitions.

We have established that DTAs with autonomous transitions are more expres-
sive that DTAs without autonomous transitions when there are cycles made only
of autonomous transitions on which there is at least a reset, irrespectively of
whether guards are associated to locations or to transitions.

Secondly, even when autonomous transitions do not enhance expressiveness,
they improve conciseness: if feasible, removing autonomous transitions may lead
to an exponential blow-up of the DTA.

Finally, removing autonomous transitions from a DTA in At is less expensive
than doing it for a DTA in At. In particular to remove autonomous transitions
from a DTA with no reset on autonomous transitions (i.e. belonging to A

nra
t )

is polynomial if decision diagrams are used to represent propositional formulas,
while the analogous operations for a DTA belonging to A

nra
t is exponential.

This result has motivated a throughout comparison of DTAs and DTAt, that
has shown that guards on transitions may lead to more concise DTAs: indeed
the translation from At to As is exponential, while the opposite translation is
quadratic.

Various types of DTAs have been used for the definition of the stochastic
logic CSLTA. We can now assert that CSLTA definitions that include autonomous
transitions are more expressive than CSLTA that do not. The counter-example
of the proof of Proposition 1 has a clear interpretation in terms of periodic
behaviour, showing that CSLTA without autonomous transitions are not ade-
quate to express certain periodicity properties. We can also state that CSLTA

specifications that include guarded transitions can be more concise than CSLTA

that considers guarded locations.
Future work includes the model-checking algorithms and the presence of mul-

tiple clocks. Since the number of locations may significantly affect the complex-
ity of model-checking CSLTA, we plan to investigate how the component-based
model-checking of CSLTA [1] can take advantage of the results of this paper to
lower the cost of CSLTA model-checking.

DTAs with multiple clocks have also been used for CTMC model-checking,
at the cost of a significant increase of the complexity of the model-checking
procedure. The classes of DTAs used do not include autonomous transitions: it
is our plan to investigate which are the classes of DTAs with multiple clocks for
which the introduction of autonomous transitions increases the expressiveness.
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Abstract. Deep reinforcement learning has been successfully applied
to many control tasks, but the application of such controllers in safety-
critical scenarios has been limited due to safety concerns. Rigorous test-
ing of these controllers is challenging, particularly when they operate in
probabilistic environments due to, for example, hardware faults or noisy
sensors. We propose MOSAIC, an algorithm for measuring the safety of
deep reinforcement learning controllers in stochastic settings. Our app-
roach is based on the iterative construction of a formal abstraction of
a controller’s execution in an environment, and leverages probabilistic
model checking of Markov decision processes to produce probabilistic
guarantees on safe behaviour over a finite time horizon. It produces
bounds on the probability of safe operation of the controller for different
initial configurations and identifies regions where correct behaviour can
be guaranteed. We implement and evaluate our approach on controllers
trained for several benchmark control problems.

1 Introduction

Deep reinforcement learning is the application of deep neural networks to solve
reinforcement learning tasks. This technique has been shown to solve many
complex control tasks successfully [5,28,31]. However, real-world applications of
these methods, especially in safety-critical scenarios such as autonomous driving,
is limited because it is difficult to establish guarantees on their safety.

Formal verification is a rigorous approach to checking the correctness of
computerised systems. It is particularly appealing for systems that are based
on neural networks, because the training process often yields models that are
large, complex and opaque. Furthermore, the input space is typically too large to
allow exhaustive testing, and there now exist a variety of approaches to construct
adversarial attacks, i.e., small and imperceptible perturbations to the inputs of
the neural network that cause it to produce erroneous outputs.

In recent years, there has been growing interest in verification techniques
for neural networks [15,18,21], with a particular focus on the domain of image
classification. These aim to prove the absence of particular classes of adversarial
attack, typically those that are “close” to inputs for which the correct output is
known. Methods proposed include mapping the verification to an SMT (satisfi-
ability modulo theories) problem and the use of abstract interpretation.
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There are also various approaches to tackling safety in reinforcement learn-
ing. For example, safe reinforcement learning [14] factors in safety objectives
into the learning process. Using formal specifications of the objectives has also
been proposed, such as maximising the probability of satisfying a temporal logic
objective [6,13,17] or restricting learning to a set of verified policies [19]. More
recently, formal verification of deep reinforcement learning systems has been
considered [22], by leveraging existing neural network verification methods.

A further challenge for verifying the safe operation of controllers synthesised
using deep reinforcement learning is the fact they are often developed to func-
tion in uncertain or unpredictable environments. This necessitates the use of
stochastic models to train, and to reason about, the controllers. One source of
probabilistic behaviour is dynamically changing environments and/or unreliable
or noisy sensing. Another source, and the one we focus on here, is the occurrence
of faults, e.g., in the hardware for actuators in the controller.

In this paper, we propose novel techniques to establish probabilistic guaran-
tees on the safe behaviour of deep reinforcement learning systems which can be
subject to faulty behaviour at runtime. Our approach, which we call MOSAIC
(MOdel SAfe Intelligent Control) uses a combination of abstract interpretation
and probabilistic verification to synthesise the guarantees.

Formally, we model the runtime execution of a deep reinforcement learning
based controller as a continuous-space discrete-time Markov processes (DTMP).
This is built from: (i) the neural network specifying the controller; (ii) a controller
fault model characterising the probability with which faults occur when attempt-
ing to execute particular control actions; and (iii) a deterministic, continuous-
space model of the physical environment, which we assume to be known.

We concern ourselves with finite-horizon safety specifications and consider
the probability with which a failure state is reached within a specified number
of time steps. More precisely, our main aim is to identify “safe” regions of the
possible initial configurations of the controller, for which this failure probability
is guaranteed to be below some specified threshold.

One key challenge to overcome, due to the continuous-space model, is that the
number of initial configurations is infinite. We construct a finite-state abstrac-
tion as a Markov decision process (MDP), comprising abstract states (based
on intervals) that represent regions of the state space of the concrete controller
model. We then use standard probabilistic model checking techniques on the
MDP abstraction, and show that this yields upper bounds on the step-bounded
failure probabilities for different initial regions of the controller model.

A second challenge is that constructing the abstraction requires extraction
of the controller policy from its neural network representation. We perform a
symbolic analysis of the neural network, for which we design a branch-and-
bound algorithm, and an abstraction process that explores the reachable abstract
states of the environment. We also iteratively refine the abstraction to yield
more accurate bounds on the failure probabilities. We evaluate our approach by
applying it to deep reinforcement learning controllers for two benchmark control
problems: a cartpole and a pendulum.
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Related Work. As discussed above, various verification techniques for neu-
ral networks exist, including those based on abstract interpretation. Some use
abstractions based on intervals [1,29,33], as we do; others use more sophisticated
representations such as polyhedra and zonotopes [15]. Recently, correctness for
Bayesian neural networks has been considered, using probabilistic notions of
robustness, e.g., [9]. Mostly, these approaches focus on supervised learning, often
for image classification, but they have also been built upon for verified deep rein-
forcement learning [22], where (non-probabilistic) safety and liveness properties
are checked. Other, non-neural network based, reinforcement learning has also
been verified, e.g., by extracting and analysing decision trees [3].

In the context of probabilistic verification, neural networks have been used
to find POMDP policies with guarantees [10,11], but with recurrent neural net-
works and for discrete, not continuous, state models. Also related are techniques
to verify continuous space probabilistic models, e.g., [25,32] which build finite-
state abstractions as Markov chains or interval Markov chains. Finally, there is
a large body of work on abstraction for probabilistic verification; ours is perhaps
closest in spirit to the game-based abstraction approach for MDPs from [20].

2 Preliminaries

We will use Dist(X) to denote the set of discrete probability distributions over
the set X, i.e., functions μ : X → [0, 1] where

∑
x∈X μ(x) = 1. The support of

μ, denoted Supp(μ), is defined as Supp(μ) = {x ∈ X |μ(x) > 0}. In some cases,
we will use distributions where the set X is uncountable but where the support
is finite. We also write P(X) to denote the powerset of X.

We use two probabilistic models: discrete-time Markov processes (DTMPs)
to model controllers, and Markov decision processes (MDPs) for abstractions.

Definition 1 (Discrete-timeMarkovprocess). A(finite-branching) discrete-
timeMarkovprocess is a tuple (S, S0,P,AP , L), where:S is a (possibly uncountably
infinite) set of states;S0 ⊆ S is a set of initial states;P : S×S → [0, 1] is a transition
probability matrix, where

∑
s′∈Supp(P(s,·)) P(s, s′) = 1 for all s ∈ S; AP is a set of

atomic propositions; and L : S → AP is a labelling function.

The process starts in some initial state s0 ∈ S0 and then evolves from state
to state in discrete time steps. When in state s, the probability of making a
transition to state s′ is given by P(s, s′). We assume that the process is finite-
branching, i.e., the number of possible successors of each state is finite, despite
the continuous state space. This simplifies the representation and suffices for the
probabilistic behaviour that we model in this paper.

A path is an infinite sequence of states s0s1s2 . . . through the model, i.e.,
such that P(si, si+1) > 0 for all i. We write Path(s) for the set of all paths
starting in a state s. In standard fashion [23], we can define a probability space
Prs over Path(s). Atomic propositions from the set AP will be used to specify
properties for verification; we write s |= b for b ∈ AP if b ∈ L(s).
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Definition 2 (Markov decision process). A Markov decision process is a
tuple (S, S0,P,AP , L), where: S is a finite set of states; S0 ⊆ S are ini-
tial states; P : S × N × S → [0, 1] is a transition probability function, where∑

s′∈S P(s, j, s′) ∈ {0, 1} for all s ∈ S, j ∈ N; AP is a set of atomic proposi-
tions; and L : S → AP is a labelling function.

Unlike discrete-time Markov processes above, we assume a finite state space.
A transition in a state s of an MDP first requires a choice between (finitely-
many) possible probabilistic outcomes in that state. Unusually, we do not use
action labels to distinguish these choices, but just integer indices. Primarily, this
is to avoid confusion with the use of actions taken by controllers, which do not
correspond directly to these choices. The probability of moving to successor state
s′ when taking choice j in state s is given by P(s, j, s′).

As above, a path is an execution through the model, i.e., an infinite sequence
of states and indices s0j0s1j1 . . . such that P(si, ji, si+1) > 0 for all i. A policy
of the MDP selects the choice to take in each state, based on the history of its
execution so far. For a policy σ, we have a probability space Prσ

s over the set of
paths starting in state s. If ψ is an event of interest defined by a measurable set
of paths (e.g., those reaching a set of target states), we are usually interested in
the minimum or maximum probability of the event over all policies:

Prmin
s (ψ) = inf

σ
Prσ

s (ψ) and Prmax
s (ψ) = sup

σ
Prσ

s (ψ)

3 Controller Modelling and Abstraction

In this section, we formalise the problem of modelling and verifying deep rein-
forcement learning controllers, and then describe the MDP abstraction that
underlies our MOSAIC approach to performing the verification.

3.1 Controller Execution Model

We consider controllers acting over continuous state spaces systems with a dis-
crete action space. We assume a set of n real-valued state space variables and
denote the state space by S = R

n. There is a finite set A = {a1, . . . , am} of m
actions that can be taken by the controller. For simplicity, we assume that all
actions are available in every state.

To describe the execution of a controller, we require three things: (i) a con-
troller policy ; (ii) an environment model ; and (iii) a controller fault model. Each
is described in more detail below.

Definition 3 (Controller policy). A controller policy is a function π : S →
A, which selects an action π(s) for the controller to take in each state s ∈ S.

We restrict our attention to policies that are memoryless (choosing the same
action in each state s) and deterministic (selecting a fixed single action, with
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no randomisation). In this work, policies are represented by neural networks,
and generated through deep reinforcement learning. However, for the purposes
of this section, we treat the policy simply as a function from states to actions.

Definition 4 (Environment model). An environment model is a function
E : S × A → S that describes the state E(s, a) of the system after one time step
if controller action a is (successfully) taken in state s.

The environment represents the effect that each action executed by a con-
troller has on the system. We assume a deterministic model of the environment;
probabilistic behaviour due to failures is introduced separately (see below).

We also extend E to define the change in system state when a sequence of
zero or more actions are executed, still within a single time step. This will be
used below to describe the outcome of controller execution faults. Re-using the
same notation, for state s ∈ S and action sequence w ∈ A∗, we write E(s, w)
to denote the outcome of taking actions w in s. This can be defined recursively:
for the empty action sequence ε, we have E(s, ε) = s; and, for a sequence of k
actions a1 . . . ak, we have E(s, a1 . . . ak) = E(E(s, a1 . . . ak−1), ak).

Definition 5 (Controller fault model). A controller fault model is a func-
tion f : A → Dist(A∗) that gives, for each possible controller action, the
sequences of actions that may actually result and their probabilities.

This lets us model a range of controller faults. A simple example is the case
of an action a failing to execute with some probability p: we have f(a)(ε) = p,
f(a)(a) = 1−p and f(a)(w) = 0 for all other action sequences w. Another
example, is a “sticky” action [26] a which executes twice with probability p, i.e.,
f(a)(aa) = p, f(a)(a) = 1−p and f(a)(w) = 0 for any other w.

Now, given a controller policy π, an environment model E and a controller
fault model f , we can formally define the behaviour of the execution of the
controller within the environment. We add two further ingredients: a set S0 ⊆ S
of possible initial states; and a set Sfail ⊆ S of failure states, i.e., states of the
system where we consider it to have failed. We refer to the tuple (π,E, f, S0, Sfail)
as a controller execution. Its controller execution model is a (continuous-space,
finite-branching) discrete-time Markov process defined as follows.

Definition 6 (Controller execution model). Given a controller execution
(π,E, f, S0, Sfail), the corresponding controller execution model describing its
runtime behaviour is the DTMP (S, S0,P,AP , L) where AP = {fail}, for any
s ∈ S, fail ∈ L(s) iff s ∈ Sfail and, for states s, s′ ∈ S:

P(s, s′) =
∑

{f(π(s))(w) | w ∈ A∗ s.t. E(s, w) = s′} .

For each state s, the action chosen by the controller policy is π(s) and the action
sequences that may result are given by the support of the controller fault model
distribution f(π(s)). For each action sequence w, the resulting state is E(s, w).
In the above, to define P(s, s′) we have combined the probability of all such
sequences w that lead to s′ since there may be more than one that does so.
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Recall the example controller fault models described above. For an action a
that fails to be executed with probability p, the above yields P(s, s) = p and
P(s,E(s, a)) = 1−p. For a “sticky” action a (with probability p of sticking), it
yields P(s,E(E(s, a), a)) = p and P(s,E(s, a)) = 1−p.

3.2 Controller Verification

Using the model defined above of a controller operating in a given environment,
our aim is to verify that it executes safely. More precisely, we are interested in
the probability of reaching failure states within a particular time horizon. We
write Prs(♦�kfail) for the probability of reaching a failure state within k time
steps when starting in state s, which can be defined as:

Prs(♦�kfail) = Prs({s0s1s2 · · · ∈ Path(s) | si |= fail for some 0 � i � k})

Since we work with discrete-time, finite-branching models, we can compute finite-
horizon reachability probabilities recursively as follows:

Prs(♦�kfail) =

⎧
⎨

⎩

1 if s |= fail
0 if s �|= fail ∧ k=0∑

s′∈Supp(P(s,·)) P(s, s′) · Prs′(♦�k−1fail) otherwise.

For our controller execution models, we are interested in two closely related
verification problems. First, for a specified probability threshold psafe, we would
like to determine the subset Ssafe

0 ⊆ S0 of “safe” initial states from which the
error probability is below the threshold:

Ssafe
0 = {s ∈ S0 | Prs(♦�kfail) < psafe}

Alternatively, for some set of states S′, typically the initial state set S0, or some
subset of it, we wish to know the maximum (worst-case) error probability:

p+S′ = sup{Prs(♦�kfail) | s ∈ S′}
This can be seen as a probabilistic guarantee over the executions that start in
those states. In this paper, we tackle approximate versions of these problems,
namely under-approximating Ssafe

0 or over-approximating p+S′ .

3.3 Controller Execution Abstraction

A key challenge in tackling the controller verification problem outlined above
is the fact that it is over a continuous-state model. In fact, since the model
is finite-branching and we target finite-horizon safety properties, for a specific
initial state, the k-step probability of a failure could be computed by solving a
finite-state Markov chain. However, we verify the controller for a set of initial
states, giving infinitely many possible probabilistic executions.

Our approach is to construct and solve an abstraction of the model of con-
troller execution. The abstraction is a finite-state MDP whose states are abstract
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states ŝ ⊆ S, each representing some subset of the states of the original concrete
model. We denote the set of all possible abstract states as Ŝ ⊆ P(S). In our
approach, we use intervals (i.e., the “Box” domain; see Sect. 4).

In order to construct the abstraction of the controller’s execution, we build
on an abstraction Ê of the environment E : S × A → S. This abstraction is
a function Ê : Ŝ × A → Ŝ which soundly over-approximates the (concrete)
environment, i.e., it satisfies the following definition.

Definition 7 (Environment abstraction). For environment model E : S ×
A → S and set of abstract states Ŝ ⊆ P(S), an environment abstraction is a
function Ê : Ŝ × A → Ŝ such that: for any abstract state ŝ ∈ Ŝ, concrete state
s ∈ ŝ and action a ∈ A, we have E(s, a) ∈ Ê(ŝ, a).

Using interval arithmetic, we can construct Ê for a wide range of functions E.
As for E, the environment abstraction Ê extends naturally to action sequences,
where Ê(ŝ, w) gives the result of taking a sequence w of actions in abstract state
ŝ. It follows from Definition 7 that, for any abstract state ŝ ∈ Ŝ, concrete state
s ∈ ŝ and action sequence w ∈ A∗, we have E(s, w) ∈ Ê(ŝ, w).

Our abstraction is an MDP whose states are abstract states from the set
Ŝ ⊆ P(S). This represents an over-approximation of the possible behaviour of
the controller, and computing the maximum probabilities of reaching failure
states in the MDP will give upper bounds on the actual probabilities in the
concrete model. The choices that are available in each abstract state ŝ of the
MDP are based on a partition of ŝ into subsets {ŝ1, . . . , ŝm}. Intuitively, each
choice represents the behaviour for states in the different subsets ŝj .

Definition 8 (Controller execution abstraction). For a controller execu-
tion (π,E, f, S0, Sfail), a set Ŝ ⊆ P(S) of abstract states and a corresponding
environment abstraction Ê, the controller execution abstraction is defined as an
MDP (Ŝ, Ŝ0, P̂,AP , L̂) satisfying the following:

– for all s ∈ S0, s ∈ ŝ for some ŝ ∈ Ŝ0;
– for each ŝ ∈ Ŝ, there is a partition {ŝ1, . . . , ŝm} of ŝ that is consistent with

the controller policy π (i.e., π(s) = π(s′) for any s, s′ ∈ ŝj for each j) and,
for each j ∈ {1, . . . , m} we have:

P̂(ŝ, j, ŝ′) =
∑ {

f(π(ŝj))(w) | w ∈ A∗ such that Ê(ŝj , w) = ŝ′
}

where π(ŝj) is the action that π chooses for all states s ∈ ŝj;
– AP = {fail} and fail ∈ L̂(ŝ) iff fail ∈ L(s) for some s ∈ ŝ.

The idea is that each ŝj within abstract state ŝ represents a set of concrete states
that have the same behaviour at this level of abstraction. This is modelled by
the jth choice from ŝ, which we construct by finding the controller action π(ŝj)
taken in those states, the possible action sequences w that may arise when taking
π(ŝj) due to the controller fault model f , and the abstract states ŝ′ that result
when applying w in ŝj according to the abstract model Ê of the environment.
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The above describes the general structure of the abstraction; in practice,
it suffices to construct a fragment of at most depth k from the initial states.
Once constructed, computing maximum probabilities for the MDP yields upper
bounds on the probability of the controller exhibiting a failure. In particular, we
have the following result (see [2] for a proof):

Theorem 1. Given a state s ∈ S of a controller model DTMP, and an abstract
state ŝ ∈ Ŝ of the corresponding controller abstraction MDP for which s ∈ ŝ, we
have Prs(♦�kfail) � Prmax

ŝ (♦�kfail).

This also provides a way to determine sound approximations for the two veri-
fication problems discussed in Sect. 3.2, namely finding the set Ssafe

0 of states
considered “safe” for a particular probability threshold psafe:

Ssafe
0 ⊇ {s ∈ ŝ | ŝ ∈ Ŝ0 and Prmax

ŝ (♦�kfail) < psafe}
and the worst-case probability p+S′ for a set of states S′:

p+S′ � max{Prmax
ŝ (♦�kfail) | ŝ ∈ Ŝ such that ŝ ∩ S′ �= ∅}

4 Policy Extraction and Abstraction Generation

Building upon the ideas in the previous section, we now describe the key parts
of the MOSAIC algorithm to implement this. We explain the abstract domain
used, how to extract a controller policy over abstract states from a neural network
representation, and then how to build this into a controller abstraction. We also
discuss data structures for efficient manipulation of abstract states.

Abstract Domain. The abstraction described in Sect. 3.3 assumes an arbitrary
set of abstract states Ŝ ⊆ P(S). In practice, our approach assumes S ⊆ R

n

and uses the “Box” abstract domain, where abstract states are conjunctions of
intervals (or hyperrectangles), i.e., abstract states are of the form [l1, u1] × · · · ×
[ln, un], where lj , ui ∈ R are lower and upper bounds for 1 � i � n.

4.1 Neural Network Policy Extraction

Controller policies are functions π : S → A, represented as neural networks. To
construct an abstraction (see Definition 8), we need to divide abstract states into
subregions which are consistent with π, i.e., those where π(s) is the same for
each state s in the subregion. Our overall approach is as follows. For each action
a, we first modify the neural network, adding an action layer to help indicate the
states (network inputs) where a is chosen. Then, we adapt a branch-and-bound
style optimisation algorithm to identify these states, which builds upon methods
to approximate neural network outputs by propagating intervals through it.

Branch and Bound. Branch and bound (BaB) is an optimisation algorithm
which aims to minimise (or maximise) a given objective function. It works iter-
atively, starting from the full domain of possible inputs. BaB estimates a max-
imum and minimum value for the domain using estimator functions, which are
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Fig. 1. Illustrating branch-and-bound to identify actions. Each box represents an
abstract state and the bar on the right represents upper and lower bounds on the
output of the network. 0) The upper and lower bounds of the domain do not give a
definite answer, the domain is split into two subregions; 1) The boundaries are tighter
than in the previous iteration but the subregion is still undecided; 2) The upper bound
is < 0, the property “action taken is a” is always true in this subregion; 3) The lower
bound is > 0, the property “action taken is a” is always false in this subregion; 4)
The interval between upper and lower bound still contains 0, the action taken in this
interval is still unknown so we continue to branch. (Color figure online)

quick to compute and approximate the real objective function by providing an
upper bound (UB) and a lower bound (LB) between which the real function lies.
The chosen bounding functions must be admissible, meaning we can guarantee
that the real function will always lie within those boundaries.

At each iteration of BaB, the domain is split (or “branched”) into multiple
parts. In the absence of any additional assumptions about the objective function,
the domain is split halfway across the largest dimension. For each part, the upper
and lower bounds are calculated and regions whose lower bounds are higher than
the current global minimum upper bound (the minimum amongst all regions’
upper bounds) are discarded because, thanks to the admissibility property of
the approximate functions, they cannot ever have a value lower than the global
minimum upper bound.

The algorithm proceeds by alternating the branching phase and the bounding
phase until the two boundaries converge or the difference between the bounds is
less than an acceptable error value. After that, the current region is returned as
a solution to the optimisation problem, and the algorithm terminates.

Finding Consistent Regions. In order to frame the problem of identifying
areas of the domain that choose an action a as an optimisation problem, we
construct an additional layer that we call an “action layer”, and append it on
top of the neural network architecture. This is built in such a way that the
output is strictly negative if the output is a, and strictly positive value if not.
We adopt the construction from [8], which uses a layer to encode a correctness
property to be verified on the output of the network.
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Algorithm 1: Finding subregions of abstract state ŝ for action a

1 function find action subregions(net, a, ŝ):
2 queue = {ŝ}, sat = { }, unsat = { }
3 mod net = add action layer (net, a)
4 while queue �= ∅ do
5 curr domain = queue.pop()
6 UB = compute UB (mod net, curr domain)
7 LB = compute LB (mod net, curr domain)
8 if UB < 0 then
9 sat.append(curr domain)

10 else if LB > 0 then
11 unsat.append(curr domain)
12 else
13 dom1, dom2 = split (curr domain)
14 queue.append(dom1)
15 queue.append(dom2)

16 return sat,unsat

The techniques of [8] also adapt branch-and-bound algorithms, using opti-
misation to check if a correctness property is true. But our goal is different:
identifying areas within abstract states where action a is chosen, so we need
a different approach. Rather than minimising the modified output of the neu-
ral network, we continue splitting domains until we find areas that consistently
either do or do not choose action a or we reach a given precision. We do not keep
track of the global upper or lower bound since we only need to consider the local
ones to determine which actions are taken in each subregion. In the modified
branch-and-bound algorithm, after calculating upper and lower bounds for an
interval, we have 3 cases:

– UB > LB > 0: the controller will never choose action a for the interval;
– 0 > UB > LB : the controller will always choose action a;
– UB > 0 > LB : the outcome of the network is still undecided, so we split the

interval and repeat for each sub-interval.

At the end of the computation, we will have a list of intervals which satisfy the
property “the controller always take action a” and intervals which always violate
it. From these two lists we can summarise the behaviour of the controller within
the current region of the state space.

Algorithm 1 shows pseudocode for the overall procedure of splitting an
abstract state ŝ into a set of subregions where an action a is always taken,
and a set where it is not. Figure 1 illustrates the algorithm executing for a 2-
dimensional input domain. The blue subregions are the ones currently being
considered; the orange bar indicates the range between computed lower and
upper bounds for the output of the network, and the red dashed line denotes
the zero line.

Approximating Neural Network Output. The branch-and-bound algorithm
requires computation of upper and lower bounds on the neural network’s output
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for a specific domain (compute UB and compute LB in Algorithm 1). To approx-
imate the output of the neural network, we use the Planet approach from [12].
The problem of approximating the output of the neural network lies in determin-
ing the output of the non-linear layers, which in this case are composed of ReLU
units. ReLU units can be seen as having 2 phases: one where the output is a
constant value if the input is less than 0 and the other where the unit acts as the
identity function. The algorithm tries to infer the phase of the ReLU function
(whether x < 0 or x � 0) by constraining the range of values from the input of
the previous layers. In the case of the algorithm not being able to determine the
phase of the activation function, some linear over-approximation boundaries are
used to constrain the output of each ReLU within the section. The constraints
used are y > 0, y > x and y � (u ·(x−l))/(u−l) where u and l are the upper and
lower bounds inferred from the boundaries of the input domain by considering
the maximum and minimum values of each input variable.

4.2 Building the Abstraction

Section 3.3 describes our approach to defining an abstract model of controller
execution, as an MDP, and Definition 8 explains the structure required of this
MDP such that it can be solved to produce probabilistic guarantees, i.e., upper
bounds on the probability of a failure occurring within some time horizon k.
Here, we provide more details on the construction of the abstraction.

Algorithm 2 shows pseudo code for the overall procedure. We start from the
initial abstract states Ŝ0, which are the initial states of the MDP, and then
repeatedly explore the “frontier” states, whose transitions have yet to be con-
structed, stopping exploration when either depth k (the required time horizon)
or an abstract state containing a failure state is reached. For each abstract state
ŝ to be explored, we use the techniques from the previous section to split ŝ into
subregions of states for which the controller policy selects the same action.

Determining successor abstract states in the MDP uses the environment
abstraction Ê (see Definition 7). Since we use the “Box” abstract domain, this
means using interval arithmetic, i.e., computing the successors of the corner
points enclosing the intervals while the remaining points contained within them
are guaranteed to be contained within the enclosing successors. The definitions
of our concrete environments are therefore restricted to functions that are exten-
sible to interval arithmetic.

4.3 Refining the Abstraction

Although the MDP constructed as described above yields upper bounds on the
finite-horizon probability of failure, we can improve the results by refining the
abstraction, i.e., further splitting some of the abstract states. The refinement step
aims to improve the precision of states which are considered unsafe (assuming
some specified probability threshold psafe), by reducing the upper bound closer
to the real probability of encountering a failure state.
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Algorithm 2: Build MDP

1 function build mdp(net, Ŝ0):

2 Ŝfrontier = Ŝ0, t = 0
3 while t < k do

4 foreach ŝ ∈ Ŝfrontier do
5 foreach a ∈ A do

6 Ŝa, Ŝa = find action subregions (net, a, ŝ)

7 foreach ŝj ∈ Ŝa and pi:wi in f(a) do

8 ŝ′ = Ê(ŝj , wi)
9 store (ŝ, pi, ŝ

′) in MDP

10 add ŝ′ to Ŝfrontier unless ŝ′ ∩ fail �= ∅

11 t = t + 1

Regions of initial abstract states that are considered unsafe are split into
smaller subregions and we then recreate the branches of the MDP abstraction
from these new subregions in the same way as described in Algorithm 2. This
portion of the MDP is then resolved, to produce a more accurate prediction of
their upper bound probability of encountering a failure state, potentially discov-
ering new safe subregions in the initial abstract state. The refinement process is
executed until either there are no more unsafe regions in the initial state or the
maximum size of the intervals are less than a specified precision ε.

4.4 Storing and Manipulating Abstract States

Very often abstract states have a topological relationship with other abstract
states encountered previously. One abstract state could completely encapsulate
or overlap with another, but simply comparing all the possible pairs of states
would be infeasible. For this reason we need a data structure capable of reducing
the number of comparisons to just the directly neighbouring states. A tree-like
structure is the most appropriate and significant progress has been made on tree
structures capable of holding intervals. However, most of them do not scale well
for n-dimensional intervals with n > 3.

R-tree [16] is a data-structure that is able to deal with n-dimensional inter-
vals, used to handle GIS coordinates in the context of map loading where only a
specific area needs to be loaded at a time. This data structure allows us to per-
form “window queries” which involve searching for n-dimensional intervals that
intersect with the interval we are querying in O(logn(m)) time, where m is the
number of intervals stored. R-tree organises intervals and coordinates in nested
“subdirectories” so that only areas relevant to the queried area are considered
when computing an answer.

Here, we use an improved version of R-tree called R*-tree [4] which reduces
the overlapping between subdirectories at the cost of higher computational cost
of O(n log(m)). This modification reduces the number of iterations required dur-
ing the queries effectively speeding up the calculation of the results. When an
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abstract domain is queried for the actions the controller would choose, only the
areas which were not previously visited get computed.

5 Experimental Results

We have implemented our MOSAIC algorithm, described in Sects. 3 and 4, and
evaluated it on deep reinforcement learning controllers trained on two different
benchmark environments from OpenAI Gym [7], a pendulum and a cartpole,
modified to include controller faults. For space reasons, we consider only “sticky”
actions [26]: each action is erroneously executed twice with probability p = 0.2.

Implementation. Our implementation uses a combination of Python and Java.
The neural network architecture is handled through the Pytorch library [38],
interval arithmetic with pyinterval [37] and graph analysis with networkX [35].
Abstract domain operations are performed with Rtree [39], building on the
library libspatialindex [34]. Constructing and solving MDPs is done using
PRISM [24], through its Java API, built into a Python wrapper using py4j [36].

5.1 Benchmarks and Policy Learning

Pendulum. The pendulum environment consists of a pole pivoting around a
point at one of its ends. The controller can apply a rotational force to the left or
to the right with the aim of balancing the pole in its upright position. The pole
is underactuated which means that the controller can only recover to its upright
position when the pole is within a certain angle. For this reason, if the pole goes
beyond a threshold from which it cannot recover, the episode terminates and the
controller is given a large negative reward. Each state is composed of 2 variables:
the angular position and velocity of the pole.

Cartpole. The cartpole environment features a pole being balanced on top of a
cart that can either move left or right. The cartpole can only move within fixed
bounds and the pole on top of it cannot recover its upright state after its angle
exceeds a given threshold. In this problem the size of each state is 4 variables:
the position of the cart on the x-axis, the speed of the cart, the angle of the pole
and the angular velocity of the pole.

Policy Construction. We train our own controller policies for the benchmarks,
in order to take into account the controller failures added. For the policy neural
networks, we use 3 fully connected layers of size 64, followed by an output layer
whose size equals the number of controller actions in the benchmark. The train-
ing is performed by using the Deep Q-network algorithm [27] with prioritised
experience replay [30], which tries to predict the action value in each state and
choosing the most valuable one. For both environments, we train the controller
for 6000 episodes, limiting the maximum number of timesteps for each episode
to 1000. We linearly decay the epsilon in the first 20% of the total episodes
up to a minimum of 0.01 which we keep constant for the rest of the training.
The remaining hyperparameters remain the same as suggested in [27] and [30].
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Fig. 2. Heatmaps of failure probability upper bounds for subregions of initial states
for the pendulum benchmark (x/y-axis: pole angle/angular velocity). Left: the initial
abstraction; Right: the abstraction after 50 refinement steps. (Color figure online)

5.2 Results

We have run the MOSAIC algorithm on the benchmark controller policies
described above. We build and solve the MDP abstraction to determine upper
bounds on failure probabilities for different parts of the state space. Figure 2
(left) shows a heatmap of the probabilities for various subregions of the initial
states of the pendulum benchmark, within a time horizon of 7 steps. Figure 2
(right) shows the heatmap for a more precise abstraction, obtained after 50 steps
of refinement. We do not fix a specific probability threshold psafe here, but the
right-hand part (in blue) has upper bound zero, so is “safe” for any psafe > 0.
The refined abstraction discovers new areas which are safe due to improved (i.e.,
lower) upper bounds in many regions.

Results for the cartpole example are harder to visualise since the state space
has 4 dimensions. Figure 4 shows a scatterplot of failure probability bounds
within 7 time steps for the subregions of the initial state space; the intervals
have been projected to two dimensions using principal component analysis, the
size of the bubble representing the volume occupied by the interval. We also
plot, in Fig. 3, a histogram showing how the probabilities are distributed across
the volume of the subregions of the initial states. For a given value psafe on the
x-axis, our analysis yields a probabilistic guarantee of safety for the sum of all
volumes shown to the left of this point.

Scalability and Efficiency. Lastly, we briefly discuss the scalabilty and effi-
ciency of our prototype implementation of MOSAIC. Our experiments were run
on a 4-core 4.2 GHz PC with 64 GB RAM running Ubuntu 18.04. We success-
fully built and solved abstractions up to time horizons of 7 time-steps on both
benchmark environments. For the pendulum problem, the size of the MDP built
ranged up to approximately 160,000 states after building the initial abstrac-
tion, reaching approximately 225,000 states after 50 steps of refinement. For the
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Fig. 3. Cartpole: Histogram plot of the
volume occupied by the initial state sub-
regions, grouped by their maximum fail-
ure probability.

Fig. 4. Cartpole: probability bounds
for initial state subregions (projection
using principal component analysis; size
denotes the volume occupied by the
interval). We can see that large sections
of the state space have max probability
close to 0.

cartpole problem, the number of states after 7 time-steps ranged up to approxi-
mately 75,000 states. The time required was roughly 50 min and 30 min for the
two benchmarks, respectively.

6 Conclusions

We have presented a novel approach called MOSAIC for verifying deep reinforce-
ment learning systems operating in environments where probabilistic controller
faults may occur. We formalised the verification problem as a finite-horizon anal-
ysis of a continuous-space discrete-time Markov process and showed how to use
a combination of abstract interpretation and probabilistic model checking to
compute upper bounds on failure probabilities. We implemented our techniques
and successfully applied them to two benchmark control problems.

Future work will include more sophisticated refinement and abstraction
approaches, including the use of lower bounds to better measure the precision
of abstractions and to guide their improvement using refinement. We also aim
to improve scalability to larger time horizons and more complex environments,
for example by investigating more efficient abstract domains.
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Abstract. Requirements engineering is a key phase in the development
process. Ensuring that requirements are consistent is essential so that
they do not conflict and admit implementations. We consider the for-
mal verification of rt-consistency, which imposes that the inevitability
of definitive errors of a requirement should be anticipated, and that of
partial consistency, which was recently introduced as a more effective
check. We generalize and formalize both notions for discrete-time timed
automata, develop three incremental algorithms, and present experimen-
tal results.

1 Introduction

In the process of developing computer systems, requirement engineering consists
in defining, documenting and maintaining the requirements. Requirements can
be of different nature, but since we are interested in timed systems, i.e. systems
where time constraints are of importance, we will focus here on timed functional
ones. Requirements are the primary phase of the development process, and are
used to partly drive the testing campaign in order to check that they are indeed
satisfied by the implementation. In a formal approach, it is thus important to
design formal requirements that are consistent, i.e. that are not contradictory
and admit implementations that conform to them.

In this paper, we study two prominent consistency notions studied in the
literature for real-time system requirements, called rt-consistency [PHP11a] and
partial consistency [Bec19]. Partial consistency concentrates the notion of consis-
tency on Simplified Universal Patterns (SUP) [BTES16] which are simple real-
time temporal patterns used to define real-time requirements, essentially com-
prising an assumption (named trigger), a guarantee (named action), together
with timed constraints on delays of these and between them. The advantage of
SUPs is that they define a specification language that is expressive enough yet
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easy to understand, even by non experts. The counterpart is that the notion of
partial consistency is specific to them and tricky.

Rt-consistency requires that all finite executions that do not violate the
requirements, have infinite extensions that satisfy all of requirements. Put differ-
ently, this means that if an implementation produces a finite execution whose all
continuations necessarily lead to the violation of some requirement, then there
must be a requirement that is already violated by the finite execution. In simple
words, inevitability of errors should be anticipated by the set of requirements.
Thus, rt-consistency ensures that the set of requirements is well designed and
sane. This is interesting in that it may reveal conflicts between requirements
and catch subtle problems, but it is rather expensive to check. Several direc-
tions can be investigated to mitigate this complexity: restrict to sub-classes of
requirements, in particular SUPs, restrict to subsets of requirements, examine
alternative and cheaper notions of consistency. However these lead in general to
false positives and false negatives, and avoiding them requires additional condi-
tions or checks.

Partial consistency is one of these alternative notions of consistency that only
considers pairs of SUP requirements. It checks that if there are possibly different
executions that trigger both requirements and satisfy one of them, then there
should be a common execution in which both requirements are triggered and
satisfied. This check is perhaps better understood as a necessary condition for
the rt-consistency of subsets of requirements (but this does not imply the rt-
consistency of the whole set). We formalize this link in this paper. The general
motivation is to gain in efficiency, both by restricting to pairs of requirements,
but also by focusing on particular situations where inconsistencies may arise.
Nevertheless partial consistency can still be costly to check.

Contributions. We address the efficiency issue mentioned above by considering
an incremental approach to checking consistency and finding inconsistencies in
real-time requirements. In fact, rt-consistency and (bounded) partial consistency
are rather expensive to check already on small examples, and because of the state-
space explosion problem (which is a classical problem when composing several
systems or properties), there is no hope that the approaches would scale to large
sets of requirements. Our algorithms improve the scalability of this approach by
allowing one to check larger sets of requirements. We also define a new notion of
incremental consistency, and allow to get different degrees of confidence about
consistency (up to full rt-consistency).

We show that checking rt-consistency can be reduced to CTL model checking
for discrete-time systems, providing an alternative approach to duration calculus
and timed automata model checking of [PHP11a]. Then, we develop incremental
algorithms for checking rt-consistency and a variant of partial consistency gener-
alized for automata. Inconsistencies are searched by starting with small batches
of requirements. Whenever we find a counterexample to consistency, we either
confirm it (by checking that it fulfills the other requirements) or start the anal-
ysis again with more precision by adding a new requirement in the batch. This
helps us to scale our analysis to larger sets of requirements. This idea is applied
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separately for both consistency notions. Moreover, we formalize the rela-
tion between the two notions, showing how to obtain counterexamples to rt-
inconsistency from counterexamples to partial consistency. Due to space con-
straints, all proofs are given in the appendix of the full paper [JMM+20].

Related works. Consistency notions appear naturally in the contract-based
design of systems [BCN+18]. In this setting, consistency is defined as the exis-
tence of an implementation of a contract, which relates environment and system
behaviors via assumptions and guarantees. The related notion of existential con-
sistency is studied in [ESH14], where consistency consists in the existence of an
execution satisfying the requirements.

Simplified Universal Patterns were introduced in [BTES16] to simplify the
writing of requirements by non-experts. The patterns are in the form of an
assumption and guarantee. In this paper, the notion of consistency ensures the
existence of an execution which realizes one requirement (both the assumption
and the guarantee) without violating any other one. In [BTES16], the authors
also use coverage notions to measure sets of consistent executions to give a
quantitative measure of consistency. The notion considered there is thus related
to non-vacuity (see e.g. [PHP11b]).

More reactive notions were studied as in [AHL+17] where consistency
requires that the system should react to uncontrollable inputs along the exe-
cution so as to satisfy all requirements. The notion is thus formalized as a game
between the system and the environment, and an SMT-based algorithm is given
to check consistency within a given bound. This notion thus relies on alterna-
tion of quantifiers at each step. Rt-consistency and partial consistency, which
we consider in this paper, lie between the two extreme approaches (that is sim-
ply existential versus game semantics). In fact, a single quantifier alternation
is needed to define rt-consistency (see Sect. 2.4). The rt-consistency checking
algorithm of [PHP11a] considers systems in a continuous-time setting, and uses
duration calculus and timed automata model checking. We consider discrete-time
systems (with unit delays rather than arbitrary real-valued delays).

2 Definitions

2.1 Computation Tree Logic

We use CTL to characterize certain kinds of inconsistencies. CTL formulas are
defined as CTL � φ ::= p | ¬φ | φ ∨ φ | AXφ | EGφ | EφUφ, where p ranges
over AP . CTL formulas are evaluated at the root of computation trees. We thus
consider computation trees labeled by valuations of atomic propositions: a tree t
is a set of finite non-empty traces, i.e. words over 2AP, closed under prefix, hence
containing exactly one trace of size 1 (called its root, and denoted with r(t)).
We denote ≺p the prefix ordering on traces. Given a node in the tree represented
by a trace σ ∈ t, we write tσ for the subtree of t rooted at σ (i.e., the set of all
traces σ′ such that σ · σ′ ∈ t). We write σ[i] for the prefix of length i of σ. That
a tree t satisfies a formula φ ∈ CTL is defined as follows:
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t |= p ⇐⇒ p ∈ r(t)(p)
t |= ¬φ ⇐⇒ t �|= φ

t |= φ ∨ φ′ ⇐⇒ t |= φ or t |= φ′

t |= AXφ ⇐⇒ ∀σ ∈ t. (tσ[1] |= φ)
t |= EφUφ′ ⇐⇒ ∃σ ∈ t. (tσ |= φ′ and ∀σ′. (r(t) ≺p σ′ ≺p σ) ⇒ tσ′ |= φ)
t |= EGφ ⇐⇒ ∃σ ∈ t. (∀i. tσ[i] |= φ)

Using AX, we can define EX by EXφ ≡ ¬AX¬φ. Similarly, AFφ ≡ ¬EG¬φ
means that φ holds along any infinite branch of the tree, and finally AφUφ′ ≡
AFφ′ ∧¬E(¬φ′)U(¬φ ∧ ¬φ′) means that along all infinite branch, φ′ eventually
holds and φ holds at all intermediary nodes.

2.2 Timed Automata

We consider requirements expressible by a class of timed automata (TA) [AD90].
These extend finite-state automata with variables, called clocks, that can be used
to measure (and impose constraints on) delays between various events along
executions. More precisely, given a set X = {ci | 1 ≤ i ≤ k} of clocks, the set
of clock constraints is defined by the grammar: g ::= c ∼ n | g ∧ g, where c ∈ X,
n ∈ N, and ∼ ∈ {<,≤,=,≥, >}. Let C(X) denote the set of all clock constraints.

We consider integer-valued clocks whose semantics of constraints is defined
in the expected way: given a clock valuation v : X → N, a constraint g ∈ C(X) is
true at v, denoted v |= g, if the formula obtained by replacing each occurrence of c
by v(c) holds. For a valuation v : X → N, an integer d ∈ N, and a subset R ⊆ X,
we define v + d as the valuation (v + d)(c) = v(c)+ d for all c ∈ X, and v[R ← 0]
as v[R ← 0](c) = 0 if c ∈ R, and v[R ← 0](c) = v(c) otherwise. Let 0 be the
valuation mapping all variables to 0.

We consider timed automata as monitors of the evolution of the system
through the observation of values of Boolean variables. We thus consider a set
AP = {bi | 1 ≤ i ≤ n} of atomic propositions, and define the set of Boolean
constraints B(AP) as the set of all propositional formulas built on AP.

Definition 1. A timed automaton is a tuple T = 〈S, S0, AP,X, T, F 〉 where S
is a finite set of states, S0 ⊆ S is a set of initial states, AP is a finite set of
atomic propositions, X is a finite set of clocks, T ⊆ S ×B(AP ) ×C(X) × 2X × S
is a finite set of transitions, and F ⊆ S is the set of accepting states.

We distinguish the following classes of timed automata. A safety timed
automaton is such that there are no transitions from S\F to F . Conversely
a co-safety timed automaton is such that there are no transitions from F to S\F .

For a transition t = (s, c, g, r, s′) ∈ T of a timed automaton, we define
src(t) = s, tgt(t) = s′, bool(t) = c, guard(t) = g, and reset(t) = r. Note that
guards are pairs of Boolean and timed guards that can be interpreted (and
will be noted) as conjunctions since the two types of guards do not interfere.

With a timed automaton T , we associate the infinite-state automaton
S(T ) = 〈Q,Q0, Σ,D,QF 〉 that defines its semantics, where
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– the set of states Q contains all configurations (s, v) ∈ S × NX;
– the initial states are obtained by adjoining the null valuation (all clocks are

mapped to zero) to initial states S0, i.e. Q0 = S0 × 0;
– Σ = 2AP is the alphabet of actions, i.e. valuations of all Boolean variables;
– transitions in D are combinations of a transition of the TA and a one-time-unit

delay. Formally, given a letter σ ∈ Σ and two configurations (s, v) and (s′, v′),
there is a transition ((s, v), σ, (s′, v′)) in D if, and only if, there is a transi-
tion (s, c, g, r, s′) in T such that σ |= c and v |= g, and v′ = (v[r ← 0]) + 1.

– QF = F × NX is the set of accepting configurations.

Our semantics thus makes it compulsory to alternate between taking a transi-
tion of the TA (possibly a self-loop) and taking a one-time-unit delay. Self-loops
can be used to emulate invariants in states.

The transition system S(T ) is infinite because we impose no bound on the
values of the clocks during executions. However, as in the setting of TA [AD90],
the exact value of a clock is irrelevant as soon as it exceeds the largest integer
constant with which it is compared. We could thus easily modify the definition
of S(T ) in such a way that it only contains finitely many states.

A run of T is a run of its associated infinite-state automaton S(T ). It can
be represented as a sequence along which configurations and actions alternate:
(s0, v0) · σ1 · (s1, v1) · σ2 · · · (sn, vn) · · ·. A finite run is accepted if it ends in QF .

A trace of a run is its projection on the set of actions. In other terms, it is
a finite or infinite sequence σ = (σi)0≤i<l of actions where l ∈ N ∪ {+∞} is the
length of σ, denoted by |σ|. Finite traces belong to Σ∗ and infinite ones to Σω.
A finite trace is accepted by T if a run on that trace is accepted. We note Tr(T )
the set of accepted traces. For P ⊆ Q we will also note TrP(T ) the set of traces
of runs ending in P .

Consider the following sets, where F is an atomic proposition denoting QF :

– SuccessT = F ∧AGF : accepting configurations from which non-accepting
configurations are unreachable are called success; notice that it is impossible
to escape from SuccessT since SuccessT =⇒ AG SuccessT ;

– ErrorT = ¬F ∧AG¬F : non-accepting configurations from which accepting
configurations are unreachable are called error; notice also that it is impossible
to escape from ErrorT since ErrorT =⇒ AG ErrorT ;

Note that in safety TAs, ¬F =⇒ AG¬F since it is impossible to escape
from the set of non-accepting configurations, thus ErrorT = ¬F ; symmetrically
in co-safety TAs, F =⇒ AG F since it is impossible to escape from the set of
accepting configurations, thus SuccessT = F .

We require that our TAs are complete, meaning that from any (reachable)
configuration (s, v), and for any subset b of AP, there is t = (s, c, g, r, s′) ∈ T
such that b |= c and v |= g. This is no loss of generality since missing transitions
can be directed to a trap state, and self-loops can be added to allow time elapse.

The TAs that we consider are also deterministic: for any two transitions
(s, c1, g1, r1, s1) and (s, c2, g2, r2, s2) issued from a same source s, if both c1 ∧ c2
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and g1 ∧ g2 are satisfiable, then s1 = s2 and r1 = r2. Examples of complete,
deterministic TAs expressing requirements are depicted on Fig. 2, in Example 1.

We consider the product of timed automata, as follows:

Definition 2. Given two TAs T1 = 〈S1, S1,0, AP1,X1, T1, F1〉 and T2 =
〈S2, S2,0, AP2,X2, T2, F2〉 with disjoint clock sets (i.e., X1 ∩X2 = ∅), their prod-
uct T1⊗T2 is a TA T = 〈S, S0, AP,X, T, F 〉 where S = S1×S2, S0 = S1,0×S2,0,
AP = AP1 ∪ AP2, X = X1 ∪ X2, F = F1 × F2 and the set of transitions is
defined as follows: there is a transition ((s1, s2), c, g, r, (s′

1, s
′
2)) in T if there are

transitions (s1, c1, g1, r1, s′
1) in T1 and (s2, c2, g2, r2, s′

2) in T2 with c = c1 ∧ c2,
g = g1 ∧ g2, and r = r1 ∪ r2.

Note that completeness and determinism are preserved by product. The prod-
uct of TAs can be generalized to an arbitrary number of TAs: for a set
R = {Ri}i∈I of requirements, each specified by a TA Ti(Ri), we note ⊗R the
requirement specified by the TA ⊗i∈ITi(Ri).

Note that in this definition, clocks of factor automata are disjoint, while
atomic propositions are not, which may cause conflicts in guards of the product,
and possibly inconsistencies as will be seen later. Also note that the product
of two automata visits its accepting states if both automata do (F = F1 ∧ F2),
while by complementation it visits non-accepting states if one of the automata
does (¬F = ¬F1∨¬F2). For the product automaton, we directly define (without
relying on F ) SuccessT = SuccessT1 ∧SuccessT2 and ErrorT = ErrorT1 ∨
ErrorT2 , and both are trap sets. The definitions of Error and Success thus
depend on the context: these are defined by the formulas ¬Fi ∧AG¬Fi and
Fi ∧AGFi for the TAs Ti representing the given requirements; for the prod-
ucts of these automata, ErrorT (resp. SuccessT ) is the disjunction (resp. con-
junction) of ErrorTi

(resp. SuccessTi
) of their operands. Notice that we have

SuccessT = F ∧AGF , but only ErrorT ⊆ ¬F ∧AG¬F . The inclusion is in
general strict, but becomes an equality when both T1 and T2 are safety TAs.

For the rest of this document, we consider complete deterministic timed
automata (CDTAs for short) with accepting states F .

2.3 Timed Automata as Requirements

We use complete deterministic TAs to encode requirements and identify the
requirements with the CDTAs that define them. Remember that Error (resp.
Success) are sets of configurations from which one cannot escape. Intuitively,
entering an Error (resp. Success) configuration of a CDTA corresponds to
violating (resp. satisfying) the corresponding requirement definitively:

Definition 3. For any requirement R defined by a complete deterministic timed
automaton and any finite or infinite trace σ, we write σ fails R if running σ in
R enters ErrorR, and write σ succeeds R if it enters SuccessR.

Note that for a finite trace σ, it could be the case that it does not hit ErrorR

(resp. SuccessR) but all infinite continuations inevitably do. We are particularly
interested in such cases; we thus define the following notations for finite traces:
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Definition 4. For a finite trace σ, and a requirement R defined by a CDTA,
we write σ I-fails R if for all infinite traces σ′, σ · σ′ fails R. Similarly
σ I-succeeds R if for all infinite traces σ′, σ · σ′ succeeds R.

Clearly, for finite traces, fails (resp. succeeds) is stronger than I-fails (resp.
I-succeeds). Indeed σ fails R (σ succeeds R) means reaching a configuration
in ErrorR (resp. SuccessR), while σ I-fails R (σ I-succeeds R) means reach-
ing a configuration in AF ErrorR (resp. AF SuccessR). And ErrorR implies
AG ErrorR, which implies AF ErrorR (and similarly for SuccessR).

For a given trace σ, and set of timed automata R = {Ti}i∈I , we
write σ fails R (resp σ succeeds R) to mean that σ fails ⊗ R (resp.
σ succeeds ⊗ R). Note the following simple facts: given R′ ⊆ R, for any finite
trace σ, if σ fails R′ then σ fails R, and if σ I-fails R′ then σ I-fails R, while
conversely, if σ succeeds R then σ succeeds R′, and if σ I-succeeds R then
σ I-succeeds R′.

Simplified Universal Patterns (SUP). TAs can be used to express the semantics
of Simplified Universal Pattern (SUP) [TBH16,Bec19], a pattern language that
is used to define requirements. Compared to TAs, SUPs offer a more intuitive
but less expressive way of writing requirements. Since partial consistency was
introduced for SUP, we briefly introduce them. An SUP has the following form:

(TSE,TC,TEE)[Tmin,Tmax]
[Lmin,Lmax]−−−−−−−−→ (ASE,AC,AEE)[Amin,Amax],

where TSE, TC, TEE, ASE, AC, AEE, are Boolean formulas on a set AP of
atomic propositions, Tmin, Tmax, Lmin, Lmax, Amin, Amax are integers.

Trigger phase

Trigger End
Event (TEE)

Trigger Start
Event (TSE)

Trigger Condition (TC)

duration in [Tmin,Tmax]

Action phase

Action Start
Event (ASE)

Action End
Event (AEE)

Action Condition (AC)

duration in [Amin,Amax]

delay in

[Lmin,Lmax]

Fig. 1. Intuitive semantics of SUP

Figure 1 illustrates the intuitive semantics of SUP. A trigger phase (left) is
realized, if TSE is confirmed within a duration in [Tmin;Tmax], that is, if TC
holds until TEE occurs; otherwise the trigger is aborted. For the SUP instance
to be satisfied, following each realized trigger phase, an action phase must be
realized: an action phase starts with ASE within [Lmin; Lmax] time units after
the end of the trigger phase, and then AC must hold until AEE occurs within
[Amin,Amax] time units. Otherwise, the SUP is violated. Following [Bec19], one
can translate SUP instances (and repetitions of them) into complete determin-
istic timed automata. In fact all SUPs can be written as safety or co-safety
CDTAs.
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Example 1. Consider the following two SUPs: R1 : request
[3;4]−−−→ response, and

R2 : repair
[5;5]−−−→ ¬response[3; 3], where an SUP of the form (p, p, p)[0; 0]

[0;1]−−−→
(q, q, q)[0; 0] is written p

[0;1]−−−→ q.
The first requirement models a system that has to respond to any request

within 3 to 4 time units. The second requirement states that if the system enters
a maintenance phase, then it will be off (and cannot respond) after 5 time
units, and for a duration of 3 time units. Figure 2 displays the (safety) automata
encoding these two SUPs where Ei states are non-accepting trap states and all
other ones are accepting.

I1

D1

E1

¬request

(c < 4∧ ¬response)
∨ c < 3

request

c := 0
response∧

3 ≤ c ≤ 4; c := 0

¬response∧ c ≥ 4

I2

D2

A2

E2

¬repair

c < 5

repair

c := 0

¬response∧
c = 5; c := 0

¬response
∧ c < 3

¬r
es
p
o
n
se

∧¬
re
p
ai
r
∧c

=
3;

c
:=

0

response∧
c = 5

re
sp
o
n
se

∨c
=

3¬response∧
repair∧

c = 3; c := 0

Fig. 2. Timed automata encoding R1 and R2

2.4 Consistency Notions

RT-consistency. We reformulate the original rt-consistency notion, introduced
in [PHP11a].

Definition 5. Let R be a set of requirements. Then R is rt-consistent if, and
only if, for all finite traces σ, if σ I-fails R then σ fails R.

Thus the set R is rt-consistent if any finite trace that inevitably fails, imme-
diately fails. This is indeed equivalent to the formulation in [PHP11a], which
says that all finite traces not violating any requirement can be extended to an
infinite trace not violating any of them (i.e. ¬(σ fails R) implies ¬(σ I-fails R)).
Notice that rt-consistency (w.r.t. ErrorR) could be generalized to rt-consistency
w.r.t SuccessR: if σ I-succeeds R then σ succeeds R; and all following results
easily generalize to rt-consistency w.r.t. SuccessR with similar treatment.

Observe that even when all individual requirements are rt-consistent (i.e., for
all R ∈ R and all traces σ, it holds σ I-fails R =⇒ σ fails R) their conjunction
(i.e. the product ⊗R) may not be rt-consistent; for instance, taken individually,
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both requirements R1 and R2 of Example 1 are rt-consistent, but their product
is not, as explained in Example 2). Rt-consistency requires that fails and I-fails
be equivalent for all traces in the product automaton.

Rather than using duration calculus as in [PHP11a], we show that CTL model
checking can be used in a discrete-time setting to check rt-consistency. In CTL,
rt-consistency of R can be expressed by requiring AF ErrorR ⇔ ErrorR at all
reachable states. Since ErrorR is absorbing, a trace ending in a configuration in
¬ErrorR ∧AF ErrorR is a witness to rt-inconsistency. Moreover, only configu-
rations in ¬ErrorR need to be traversed to reach such configurations; and such
a configuration exists if, and only if, configurations exist in ¬ErrorR with all
immediate successors in ErrorR, i.e., AX Error is true. In fact, we obtain the
following property.

Lemma 1. A given set of requirements R has a witness to rt-inconsistency if,
and only if, R |= E(¬ErrorR U (¬ErrorR ∧AX ErrorR)).

Example 2. The requirements in Example 1 are not rt-consistent: consider a
finite trace σ where the repairsignal is received, followed 3 time units later with
a request. Then ¬(σ fails R1 ∧R2); the joint run of the automata are as follows:

(I1, I2, c1=0
c2=0 )

repair−−−−−→
(+delay)

(I1,D2,
c1=1
c2=1 ) �−−−−−→

(+delay)
(I1,D2,

c1=2
c2=2 )

�−−−−−→
(+delay)

(I1,D2,
c1=3
c2=3 )

request−−−−−→
(+delay)

(D1,D2,
c1=1
c2=4 ).

From this last configuration, it can be checked that no continuations of this
trace will avoid reaching E1 or E2: indeed, both automata will first loop in
their current states D1 and D2, reaching configuration (D1,D2), c1 = 2, c2 = 5.
In order to avoid visiting E2, the next two steps must satisfy ¬response, thereby
reaching (D1, A2), c1 = 4, c2 = 2. From there, we have a conflict: if response is
true at the next step, R2 reaches E2, while if response is false, R1 reaches E1.

Now, assume we add the following requirement, which expresses that no
request can be received during maintenance: R3 : repair −→ ¬request[5; 5]. This
rules out the above trace, and it can be checked that the resulting set of require-
ments is now rt-consistent.

Partial Consistency. Partial consistency was introduced in [Bec19] as an
alternative, more efficient check to detect inconsistencies in SUP requirements.
We here generalize this notion to CDTAs. The name partial consistency might be
misleading since it does not directly compare with rt-consistency: partial incon-
sistency identifies risky situations for pairs of requirements that could cause
rt-inconsistency of the whole set. In this paper, we formalize this link, and show
how to lift witnesses of partial inconsistencies to witnesses of rt-inconsistencies.

In a requirement Ri, let us call action configurations those configura-
tions allowing to enter immediately ErrorRi

(i.e. satisfying EX ErrorRi
).1

1 For SUPs, such configurations correspond to action phases, hence the name.
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Then, action configurations that have an infinite continuation that
avoids ErrorRi

are characterized by EX ErrorRi ∧¬AF ErrorRi
. Now,

EX ErrorR1 ∧EX ErrorR2 means we are simultaneously at action configu-
rations of both R1 and R2. In this case, even though there are separate contin-
uations that avoid ErrorR1 and ErrorR2 , there may not be a common one. In
our generalization of partial consistency, we focus our attention to checking that
a common continuation exists for this type of configurations which are seen as
“risky” since they are in the proximity of error.

Let reachk(R) denote the set of configurations of R reachable within k steps.

Definition 6. Consider requirements R1, R2 and a set R′ of requirements.
We say that R1 and R2 are partially consistent w.r.t. R′ if for all k ∈ N,

if, for all i ∈ {1, 2},

∃si ∈ reachk(R1 × R2 × R′). si |= EX ErrorR1 ∧EX ErrorR2 ∧
¬AF(ErrorR′ ∨ ErrorRi

)
then

∃s ∈ reachk(R1 × R2 × R′). s |= EX ErrorR1 ∧EX ErrorR2 ∧
¬AF(ErrorR′ ∨ ErrorR1 ∨ ErrorR2). (1)

Partial consistency requires that for all depths k, if infinite traces for both
requirements can be found leading to an action configuration within k steps, and
neither violate the requirement itself nor R′, then a single infinite trace must exist
that reaches action configurations of both requirements within k steps, and does
not violate any of them, nor R′. Therefore, a witness of partial inconsistency is a
number k ≥ 0 and two infinite sequences σ1 and σ2 such that, σi reaches actions
phases of both requirements within k steps, and never fails Ri or R′, such that
there are no infinite traces that do so without violating one of the requirements
R1, R2 or R′.

We establish that partial consistency is a necessary condition for the rt-
consistency of the subset R′ ∪ {R1, R2}, since counterexamples for the former
provide counterexamples for the latter:

Lemma 2. If R1 and R2 are partially inconsistent w.r.t. R′, then R′ ∪{R1, R2}
is rt-inconsistent.

To efficiently find counterexamples to partial consistency, we consider the
following approximation, which is similar to that of [Bec19] but generalized to
CDTAs. Given bounds α, β > 0, requirements R1, R2 are (α, β)-bounded partially
consistent if for all k ≤ α,

if, for all i ∈ {1, 2},

∃si ∈ reachk(R1 × R2 × R′). si |= EX ErrorR1 ∧EX ErrorR2 ∧
¬AFα−k(ErrorR′ ∨ ErrorRi

)
then
∃s ∈ reachk(R1 × R2 × R′). s |= EX ErrorR1 ∧EX ErrorR2 ∧

¬AFα+β−k(ErrorR′ ∨ ErrorR1 ∨ ErrorR2). (2)
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where AFlφ means the inevitability of φ within l steps, which can be expressed in
CTL as the disjunction of all formulas of the form AX(φ∨AX(· · · φ∨AXφ)) with
l repetitions of AX. Thus the approximation consists in looking for witnesses of
bounded length for the satisfaction of the Eq. 1). But notice that witnesses of
failure of Eq. 2 are not witnesses of failure of Eq. 1 which require infinite traces
(see below).

Example 3. We consider again the requirements of Example 1. Requirements R1

and R2 are not partially consistent under empty R′: as soon as a trace reaches
action configurations of both requirements, error states of any of them can be
avoided, but not both of them. Under requirement R3, requirements R1 and R2

cannot reach their action phases simultaneously, so that with R′ = {R3}, those
two requirements are partially consistent.

There are a few differences with the original definition of partial consistency
of [Bec19]. First, partial consistency of [Bec19] only checks the very first trigger
of the traces. Moreover, it focuses on situations where, after respective triggers,
no timing allows requirements to avoid being simultaneously in action phases.
In our case, EX ErrorR1 ∧EX ErrorR2 does not restrict simultaneous action
phases to such particular ones. Thus we can detect more subtle inconsistencies.

The second difference is that the bounded approximation in [Bec19] checks
for the existence of a lasso-shaped execution in the automata that recognize the
SUP requirements. The advantage of this is that such a lasso describes an infinite
execution, so if partial consistency holds, so does the bounded approximation;
while the converse is not true. In other terms, a witness for bounded partial
inconsistency is a witness for partial inconsistency. In our case, we do not look
for a lasso in the premise of (2), so this implication does not hold. We do prove,
on the other hand, that rt-consistency implies (2); see Lemma 5.

Third, in [Bec19], R′ contains only a specific type of requirements called
invariants. In our case, R′ is an arbitrary subset of the requirement set.

3 Incremental Algorithms

We provide three incremental methods to check rt-consistency of a given set
of requirements R. The first one provides strong guarantees and can assess the
rt-consistency of the whole set R, or that of its subsets, and uses CTL model
checking. The second one uses SAT/SMT solving and scales to larger sets. It can
detect rt-inconsistencies of R, but cannot prove rt-consistency; it can only ensure
partial consistency. The third one can quickly find rt-inconsistencies.

In all algorithms we consider a set R = {Ri}i∈I of requirements, each given
as a CDTA, and their product ⊗R.

3.1 Incremental Rt-consistency Checking

In this section, we present our incremental algorithm for rt-consistency check-
ing. Unlike the previous work of [Hoe06], which uses duration calculus [ZHR91],



260 T. Jéron et al.

Input: A set R of requirements given as CDTAs, 2 ≤ n ≤ |R|
φ(R) ← E[¬ErrorR U(¬ErrorR ∧ AX ErrorR)]
for all pairs {R1, R2} ⊆ R do

R′ ← {R1, R2}
while |R′| ≤ n and R′ |= φ(R′) do

σ ← witness of φ(R′) // σ witnesses rt-inconsistency of R′

if ∃R ∈ R \ R′ s.t. σ fails R then
R′ ← R′ ∪ {R}

else
return σ // σ witnesses rt-inconsistency of R

return ∅ // no witness for the rt-inconsistency of R is found

Algorithm 1: Incremental rt-consistency checking algorithm. In order to avoid
checking the same subsets of R′ several times, one can store the subsets seen
so far and break the while loop when R′ has already been treated.

our algorithm is based on computation tree logic (CTL) model checking. Rt-
inconsistency of R reduces to checking whether a finite trace exists along which
ErrorR remains false such that, from the last configuration, ErrorR is inevitable.
Such a finite trace σ is called a witness for the rt-inconsistency of R. Remember
that, by Lemma 1, this can be written in CTL as E[¬ErrorR U (¬ErrorR ∧
AX ErrorR)] to be checked in ⊗R.

When the size of R is too large for model-checking tools to handle, we consider
subsets R′ of R. Such incomplete checks alone do not provide any guarantee;
indeed if R′ ⊆ R, consistency of R does not imply consistency of R′, nor the
opposite. Nevertheless, they can be used to detect rt-inconsistencies with an
additional check:

Lemma 3. Let σ ∈ Σ∗ be a witness for the rt-inconsistency of R′ ⊆ R.
If ¬(σ fails R), then σ is also a witness for the rt-inconsistency of R.

Let us now describe our procedure summarized in Algorithm 1. Given R and
a bound n ≤ |R|, we consider subsets of R of size up to n, starting with subsets
of size 2. Assume a subset R′ ⊆ R is found to be rt-inconsistent with a witness
trace σ. We check whether σ fails R\R′. If this is the case, we select R ∈ R\R′

such that σ fails R, and restart the analysis with R′∪{R}. Notice that if R′∪{R}
is inconsistent, then σ cannot be a witness trace since it violates R. This ensures
that a new requirement will be added to the set at each iteration. Otherwise,
by Lemma 3, we conclude that R is rt-inconsistent and σ is a witness. If no
confirmed witnesses are found, then we stop and report that no rt-inconsistency
is found. If n ≥ |R|, then one can conclude that R is rt-consistent; otherwise the
check is incomplete.

To increase the precision (to have a better chance to detect rt-inconsistencies),
one can increase the bound n. In order to reduce the number of cases to check,
thus giving up on completeness, one might restrict only to some subsets, for
instance making sure that each requirement is covered by at least one subset.
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Input: A set R of requirements given as CDTAs, parameters α, β > 0
for all pairs {R1, R2} ⊆ R do

R′ ← ∅
while Equation (2) fails do

(σ1, σ2) ← witness traces for the premise of (2) for some k ≤ α
if ∃i ∈ {1, 2}, ¬(σi fails R) then

return σi // witness of rt-inconsistency of R
else

if R = R′ ∪ {R1, R2} then
break // No witness is found for this pair

else
Choose R ∈ R such that σi fails R for some i ∈ {1, 2}
R′ ← R′ ∪ {R}

return ∅ // no counterexample is found

Algorithm 2: Incremental partial consistency checking algorithm.

3.2 Incremental Partial Consistency Checking

We now present an incremental algorithm for checking partial consistency via the
bounded partial consistency checking in the same vein as the previous section.

Ideally, we would like to check Eq. (2) for all pairs {R1, R2} of requirements
with respect to R′ = R\{R1, R2}; in fact, considering the whole set R′ makes
sure that counterexample traces do not trivially violate requirements. This is
costly in general, so we will start with an empty R′ and let it grow incrementally
by adding requirements as needed. The following lemma exhibits when such
counterexamples can be lifted to witnesses of rt-inconsistency:

Lemma 4. Let σ1, σ2 and k be witnesses of bounded partial inconsistency
for R1, R2 ∈ R and R′ ⊆ R, i.e. counterexamples of Eq. 2. If, for some i,
¬(σi fails R), then σi is also a witness for the rt-inconsistency of R.

The procedure is summarized in Algorithm 2. Given pair (R1, R2) and set
R′ ⊆ R\{R1, R2}, integer parameters α, β > 0, checking the (α, β)-bounded
partial-consistency consists in verifying Eq. (2). A negative check is witnessed
by some k ≤ α and a pair of traces σ1, σ2. If ¬(σi fails R) holds for some
i ∈ {1, 2}, the trace is returned as a counterexample by Lemma 4. Otherwise,
a requirement R ∈ R such that σi fails R is added to the set R′ and the
procedure is repeated. Thus, subsequent iterations will discard σi and look for
other traces. The following lemma shows that all counterexamples returned by
Algorithm 2 are witnesses to rt-inconsistency:

Lemma 5. Let R be a set of requirements, and σ be a finite trace returned by
Algorithm2. Then σ is a witness for rt-inconsistency for R.

3.3 Incremental Partial Rt-consistency Checking

We now propose an algorithm for rt-consistency checking, that combines an
incremental approach targeting subsets of requirements (hence the name partial),
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Input: A set R of requirements, parameters α > 0, n ∈ [1, |R|]
for all subsets S ⊆ R such that |S| ≤ n do

R′ ← ∅
while S × R′ |= φp,α do

σ ← witness trace for φp,α

if ¬(σ fails R) then
return σ // Counterexample for R

else
if R = R′ ∪ S then

break // No counterexample is found for this subset

else
Choose R ∈ R such that σ fails R
R′ ← R′ ∪ {R}

return ∅ // no counterexample is found

Algorithm 3: Incremental partial rt-consistency checking algorithm.

and a bounded search, providing an alternative to Algorithm1 amenable to using
SMT solvers. Intuitively, we check for the existence of configurations where all
requirements in a subset S of R immediately conflict i.e. AX ErrorS, meaning
that at the next step they inevitably violate at least one requirement of S.

Let S be a subset of requirements of R. We say that S is partially rt-consistent
with respect to R′ if for all configurations s,

s |= ¬ErrorS∪R′ =⇒ ¬AX ErrorS. (3)

This clearly implies that S is rt-consistent, but also that no immediate conflict
affects the subset S in any configuration. A witness of partial rt-inconsistency
is a trace σ that reaches a configuration s satisfying ¬ErrorS∪R′ ∧AX ErrorS.
Since AX ErrorS implies AX ErrorR (because ErrorS implies ErrorR), if
additionally ¬(σ fails R) it is also a witness of rt-inconsistency by Lemma 3.
Similarly to Lemma 1, the existence of a witness of partial inconsistency reduces
to checking the formula φp = E(¬ErrorS∪R′ U (¬ErrorS∪R′ ∧AX ErrorS)).

Partial rt-consistency can be further restricted by bounding the size of S
and restricting the exploration depth. For integers n and α, we say that R is
α-bounded n-partially rt-consistent if Formula 3 holds for any subset S of size
|S| ≤ n, and configurations s ∈ reachα(R). Checking α-bounded n-partial rt-
inconsistency can be done by replacing U by Uα in φp thus checking φp,α =
E(¬ErrorS∪R′ Uα (¬ErrorS∪R′ ∧AX ErrorS)).

We summarize the procedure in Algorithm 3, where, similarly to Algorithm 2,
the set R′ is augmented by requirements failed by tentative counterexamples.
We easily get the following lemma since a witness of α-bounded n-partial rt-
inconsistency that does not fail R is also a witness of rt-inconsistency.

Lemma 6. Let R be a set of requirements, and σ be a finite trace returned by
Algorithm3. Then σ is a witness for rt-inconsistency.
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Table 1. Experiments on our case study. The size shows the number of timed require-
ments + the number of (non-timed) Boolean requirements of the instance. The param-
eters were chosen as α = 40 and n = 2. The sign � means that no inconsistencies were
found. The experiments were run on a 1.9 Ghz processor with a timeout of 3 h.

Set Size rt-consistency Partial consistency Partial rt-consistency

Algorithm 1 Algorithm 2 Algorithm 3

#1 6 + 9 5 inconsist. (24 s) 4 inconsist. (36 s) 5 inconsist. (39 s)

#2 8 + 10 1 inconsist. (21 s) � (55 s) 1 inconsist. (101 s)

#3 8 + 10 � (24 s) � (61 s) � (115 s)

#4 10 + 16 � (359 s) � (85 s) � (141 s)

#5 12 + 16 � (1143 s) � (133 s) � (227 s)

#6 13 + 16 � (5311 s) � (138 s) � (232 s)

4 Preliminary Experiments

We experimented the different algorithms on a factory automation use case. In
this system, a carriage and an arm cooperate to convey material: objects are
pushed onto the carriage, which brings them to a position where a pushing arm
places them on a conveyor belt. The correctness of this system relies on several
timed requirements between different elements of the system.

Table 1 shows the inconsistencies found with our algorithms on sets of require-
ments of varying sizes. The largest set we considered contained 29 requirements
of which 13 are timed and the other 16 are purely Boolean. We compare the incre-
mental partial consistency and partial rt-consistency algorithms (implemented
using the SMT solver Z3 [Z3]), with the incremental rt-consistency algorithm
(implementing CTL model-checking using NuSMV [NuS]). Inconsistencies were
detected in the first two sets, but partial consistency failed in detecting any in
set #2.

These preliminary experiments show that the incremental method can help
detect inconsistencies quickly. However, since the methods are not complete,
we encourage using several algorithms in parallel.

5 Conclusion

In this paper, we studied the notions of rt-consistency and partial consistency.
We showed how to reduce the problem to CTL model checking on timed automata
models, and presented algorithms that can detect rt-inconsistencies. Our prelim-
inary experiments show encouraging results. As future work, we will extensively
evaluate the ability of these algorithms to capture inconsistencies, and their per-
formances on large realistic use cases. One might investigate other variants of
the (partial) consistency notions, with the goal of detecting more inconsistencies
more efficiently. There is a trade-off to find for such partial consistency algo-
rithms. In fact, they might allow one to examine more potential counterexample
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witnesses, which means that one might detect more inconsistencies, but one
might also have to deal with more false positives. Another interesting question
is how to correct rt-inconsistencies e.g. by adding new requirements.
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test, and trace it. Int. J. Softw. Tools Technol. Transfer 19(4), 409–426
(2017)

[BCN+18] Benveniste, A., et al.: Contracts for system design. Found. Trends Electron.
Des. Autom. 12(2–3), 124–400 (2018)

[Bec19] Becker, J.S.: Analyzing consistency of formal requirements. Electron. Com-
mun. EASST (AVOCS 2018) 76 (2019)

[BTES16] Bienmüller, T., Teige, T., Eggers, A., Stasch, M.: Modeling requirements
for quantitative consistency analysis and automatic test case generation. In:
Workshop on Formal and Model-Driven Techniques for Developing Trust-
worthy Systems at 18th International Conference on Formal Engineering
Methods (2016)

[ESH14] Ellen, C., Sieverding, S., Hungar, H.: Detecting consistencies and inconsis-
tencies of pattern-based functional requirements. In: Lang, F., Flammini, F.
(eds.) FMICS 2014. LNCS, vol. 8718, pp. 155–169. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10702-8 11

[Hoe06] Hoenicke, J.: Combination of Processes, Data, and Time. Ph.D. thesis, Uni-
versity of Oldenburg(2006)
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Abstract. Reachability analysis techniques aim to compute which
states a dynamical system can enter. The analysis of systems described
by nonlinear differential equations is known to be particularly challeng-
ing. Hybridization methods tackle this problem by abstracting nonlinear
dynamics with piecewise linear dynamics around the reachable states,
with additional inputs to ensure overapproximation. This reduces the
analysis of a system with nonlinear dynamics to the one with piecewise
affine dynamics, which have powerful analysis methods. In this paper, we
present improvements to the hybridization approach based on a dynam-
ics scaling model transformation. The transformation aims to reduce the
sizes of the linearization domains, and therefore reduces overapproxima-
tion error. We showcase the efficiency of our approach on a number of
nonlinear benchmark instances, and compare our approach with Flow*.

1 Introduction

A hybrid automaton [26] is a widely used model for dynamical systems
that exhibit complex mixed discrete-continuous behavior. Reachability analy-
sis [12,22,30] computes an envelope on the set of the states the hybrid automa-
ton can visit within a given time frame. While efficient approaches and tools
exist for hybrid automata with affine dynamics [3,10,11,13,23,24,32], reacha-
bility analysis of nonlinear systems remains a challenging problem. The current
approaches to analyze nonlinear systems can be roughly categorized as follows:

– Hybridization based approaches [1,4–7,9,25–27] reduce the analysis of nonlin-
ear systems to the analysis of affine systems with uncertain inputs and thus
leverage the power of reachability algorithms for simpler classes of dynamics.

– Taylor model based approaches [15,16] approximate nonlinear dynamics using
a Taylor expansion, i.e. a combination of polynomials and an interval remain-
der. The computation of Taylor models is done by iteratively applying Picard
operator.
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– Constraint solving based approaches [21,29] encode the reachability problem
as a satisfiability modulo theory (SMT) problem. Note that such approaches
normally do not provide an explicit representation of the reachable set.

– Simulation based approaches compute the reachable set by simulating a hybrid
automaton multiple times and then enclosing these simulations into reacha-
bility tubes. For example, the tool C2E2 [20] uses annotations to computes
reachability tubes. Similarly, the tool Breach [19] employs sensitivity analysis
for the same purpose.

In the rest of the paper, we focus on hybridization based approaches for purely
continuous nonlinear dynamical systems. We note that the existing hybridization
approaches can be mainly classified into static and dynamic approaches. Static
approaches [5,7,9,26,27] partition the continuous state space and abstract non-
linear dynamics with its linear approximation in each of the partitions. The
resulting model is then forwarded for further analysis to a reachability analysis
tool which supports affine dynamics. Such approaches suffer from the follow-
ing two limitations. First, as the partition and thus all the abstraction domains
are fixed prior to the reachability analysis, the analysis cannot make use of any
information about the system behavior. Therefore, the partition strategy can be
ineffective and inaccurate. Second, state space partitioning usually leads to an
exponential number of discrete modes in the resulting hybrid automaton, which
might make the reachability analysis computationally infeasible for large dynam-
ical systems. In contrast, in dynamic approaches [1,4,6,25], the construction of
abstraction domains is performed on-the-fly and namely is interleaved with the
reachability analysis. In particular, a dynamic approach ensures that, for each
time moment, the abstraction domain encloses the currently-tracked set of states,
i.e. the set of states the system is currently at. As a larger domain normally
results in a larger linearization error, the effectiveness of dynamic hybridization
approaches crucially depends on the choice of the abstraction domains.

Due to system nonlinearity, individual system states can evolve in quite differ-
ent ways. As a result, the currently-tracked set of states, can stretch in course of
the analysis. Thus, the abstraction domain can quickly grow as well, which might
lead to the drastic increase of the noise to be added to ensure conservativeness
of the linearized dynamics. In order to mitigate this issue, in our approach, we
combine a hybridization scheme with a model transformation technique named
dynamics scaling, which works by manipulating the dynamics of the original sys-
tem and aggregating reachable states over a time segment. We have implemented
the proposed techniques and benchmarked them against Flow* [15], a state-of-
art reachability analysis tool for nonlinear hybrid automata, on a number of
challenging benchmarks. We observe that on the majority of the benchmarks
our techniques show superior precision and runtime (of 1–2 orders of magni-
tude). As a consequence, our tool succeeds in verifying more safety properties
within a given time limit.

The main contributions of the paper are as follows:

1. We present a novel dynamic hybridization approach to perform reachability
analysis of nonlinear continuous dynamical systems, which relies on support-
function set representation. As part of our approach, we employ an enhanced
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error model for linear time-invariant systems which uses the input set decom-
position.

2. We embed into our workflow a dynamic scaling technique, which helps to
flatten the reachable sets, and in this way leads to reduction of the hybridiza-
tion errors. We propose a scaling function that is particularly suitable in
the hybridization context. In addition, we automate the process of dynamics
scaling using a heuristic.

3. We implement the proposed techniques and evaluate their effectiveness in
comparison to Flow* on a number of challenging benchmarks with 2–30 state
variables.

The rest of the paper is organized as follows. Section 2 presents the necessary
mathematical background to introduce our approach. Section 3 describes the
hybridization reachability algorithm and the improved error model based on
support functions. We present the enhancement of hybridization using dynamics
scaling transformation in Sect. 4. In Sect. 5, we report the evaluation results. We
conclude the paper in Sect. 6.

2 Preliminaries

In order to describe our method, we first review hybrid automata (Sect. 2.1) and
reachability analysis of affine systems using support functions (Sect. 2.2).

2.1 Hybrid Automaton

Definition 1 (Hybrid automaton). A hybrid automaton H is defined as a
tuple, H = (M,X , Inv , Init ,Flow ,Trans), where M = {m1, ...,mk} is a finite
set of modes; X is a finite set of n-dimensional real-valued variables; Inv is a
mapping M → 2R

n

, and Inv(mi) defines the invariant condition for the mode
mi ∈ M; Init ⊆ M×R

n defines the initial condition for variables and the initial
mode; Flow is a mapping of the locations to differential equations in the form
of ẋ = f(x), which defines how variables within a location evolve; Trans is a
finite set of discrete transitions t = (m, g, reset,m′) that may change the mode
of H from m to m′ and update the variables according to reset when the guard
condition g is satisfied. A state of H is a tuple s ∈ M × R

n.

The behaviors of a hybrid automaton are formally described as runs, which are
alternating sequences of time elapse, during which X evolves according to Flow ,
and discrete transitions Trans, which updates X on reset. A state s is reachable
if there exists a run that starts from s0 ∈ Init and ends at s.

2.2 Reachability Analysis Using Support Functions

We consider bounded-time reachability analysis problem, which aims at comput-
ing an over-approximation of the set of reachable states upon time T originat-
ing from a set of initial states X0, denoted as R[0,T ](X0). Efficient reachability
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analysis algorithms using support functions [22,30,32] were proposed for hybrid
systems with Flow of the affine form ẋ = Ax(t) + u(t), u(t) ∈ U , where U is the
uncertain input to the system. These algorithms establish the basis of our work
on nonlinear systems.

Support Functions. The support function [14] of a compact continuous set
S ⊂ R

n given a direction vector � ∈ R
n is defined as

ρ(�,S) = max
x∈S

� · x

and a set S is uniquely defined by its support functions on all the directions:
S =

⋂
�∈Rn{x | �·x ≤ ρ(�,S)}. In the case where S is defined as the intersection of

hyperplanes, its support function can be computed by calling linear programmes
(LP). Support functions enable efficient implementation of the majority of set
operations used in reachability analysis:

– linear map: For a linear map A ∈ R
n × R

n, ρ(�, AS) = ρ(AT �,S)

– Minkowski sum: For sets S, S ′, denote their Minkowski sum as S ⊕ S ′, then
ρ(�,S ⊕ S ′) = ρ(�,S) + ρ(�,S ′)

– convex hull : For sets S, S ′, denote their convex hull as CH(S,S ′), then
ρ(�,CH(S,S ′)) = max(ρ(�,S), ρ(�,S ′))

Checking emptiness of the intersection between a convex set with a halfspace
using support functions is straightforward [31]. Given a set S and a halfspace
G = {x ∈ R

n | a · x ≤ d}, where a ∈ R
n and d ∈ R, S ∩ G 	= ∅ if and only if

d ≥ −ρ(−a, S).

Affine Reachability Algorithms. The reachability algorithm for affine
dynamics adopts the time discretization scheme with a fixed time step. Given a
time step δ, the algorithm overapproximates the reachable states with the union
of convex sets Ω0, . . . , ΩN−1, called a flowpipe, where �N = T/δ. The approxima-
tion relies on the error model operating on X0, U and δ, which mainly constitutes
two operators Ψ[0,δ](·) and Ψδ(·):
– Ψ[0,δ](·) overapproximates the reachable states originating from X0 over the

time interval [0, δ], i.e. R[0,δ](X0) ⊆ Ψ[0,δ](X0,U),
– Ψδ(·) overapproximates the disturbance of the system due to the uncertain

input, i.e. R[δ,δ]({0}) ⊆ Ψδ(U).

Each convex set of the flowpipe is computed as follows:

Ω0 = Ψ[0,δ](X0,U) (1)

Ωi+1 = eAδΩi ⊕ Ψδ(U) (2)

The instantiation of Ψ[0,δ](·) and Ψδ(·) differs among different error models.
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3 Hybridization with Support Functions

In this section, we describe the hybridization process, and improve one of the
essential steps that causes overapproximation error during hybridization.

A nonlinear continuous system can be modeled as a single-mode hybrid
automaton with nonlinear dynamics:

ẋ = f(x), x ∈ X (3)

where f(·) is a locally Lipschitz continuous vector function. For a single-mode
hybrid automaton, we mainly refer to its continuous component of its state.
Given an initial set of states X0 defined by a hyperbox, i.e. Cartesian product of
intervals, and a time horizon T , we aim at computing the set of reachable states
of f(·) originating from X0 over time interval [0, T ].

3.1 Overview of Hybridization Scheme

To compute an overapproximation of the time-bounded set of reachable states of
a nonlinear system in Eq. 3, the hybridization approach first overapproximates
the nonlinear dynamics with affine dynamics, and then performs reachability
analysis on the resultant affine system. The overapproximation is performed
multiple times, each time restricted to a portion of the state space, which in our
case is a hyperbox. The process uses two concepts: (i) abstraction domain and
(ii) linearization function.

Definition 2 (Abstraction domains and linearization functions). An
abstraction domain D ⊂ R

n is a hyperbox enclosing the reachable sets. We denote
the center of D as c. Given an abstraction domain D and nonlinear dynamics
f(·), a linearization function L(·) applies Jacobian linearization on f(·) with an
additive input set:

L(f(·)) =

{
ẋ(t) = Ax(t) + u(t)
u(t) ∈ U (4)

where A is the evaluation of Jacobian matrix at the domain center c, i.e. Jf (c).
U is the set of conservative inputs such that ∀x(t) ∈ D, f(x(t)) − Ax(t) ∈ U .

One can show that L(f(·)) simulates f(·) in D and therefore proves the
soundness of the hybridization approach.

In addition to Definition 2, our algorithm uses two procedures next discrete
and next dense. The procedure next discrete takes a sequence of linearized
dynamics and computes an overapproximation of R[t,t](X0), i.e. the set of reach-
able states at t time instance. The procedure next dense takes a sequence of
linearized dynamics and a reachable set Xi at discrete time t and computes an
overapproximation of R[0,δ](Xi), i.e. the set of reachable states over the time
interval [t, t + δ]. The details of these procedures are described in Sect. 3.2.

The general hybridization algorithm is shown in Algorithm1. At each step,
we first compute a minimal enclosing box of the reachable sets (line 11) and
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enlarge it by pushing the boundaries outwards for μ distance (line 12). We
then take the enlarged enclosing box as the abstraction domain D and com-
pute linearized dynamics within the domain (line 13). After we have the lin-
earized dynamics, we attempt to compute the dense-time reachable set at step
i + 1 (line 15). Importantly, we need to ensure that the abstraction domain
always contains the reachable sets to maintain the conservativeness (line 16). If
Ω′ ⊆ D holds, we compute an overapproximation of R[(i+1)δ,(i+1)δ](X0), which
is required by next dense for further computations (line 18). At the end of the
step, we reset μ and advance time (line 19, 20). In case the containment check
fails, we increase μ (line 22) and compute a new abstraction domain by creat-
ing a box containing both Ωi and Ω′ (line 11) and redo the computation for
Ω′. Note that for a readability reason we have omitted checking whether Ω0

stays within D in Algorithm 1, although we have implemented this containment
checking practically. Correctness of the algorithm follows from the following two
observations: (i) R[iδ,iδ](X0) ⊆ next discrete(X0, Θ), where Θ is the sequence
of 〈Aj ,Uj〉, 0 ≤ j < i and (ii) R[iδ,(i+1)δ](X0) ⊆ next dense(Xi, Θ) = Ωi.
Therefore, R[0,T ](X0) = ∪N−1

i=0 R[i,(i+1)δ](X0) ⊆ ∪N−1
i=0 Ωi.

Algorithm 1 differs from [17,35] mainly in two aspects. Firstly, we construct a
new abstraction domain at each time step. In principle, it might be beneficial to
avoid doing so as long as the reachable set does not leave the current domain, in
order to reduce the runtime cost in computing new linearized dynamics. However,
since the domain is constructed by enclosing the reachable sets and enlarged by
a small amount, the domain is rarely large enough for multiple steps in practice.
Moreover, constructing domains tightly confining reachable sets helps to reduce
the linearization errors and consequently improves the precision. Secondly, when
there happens a switch in the linearized dynamics, existing approaches [17,35]
take the set of reachable states over a time interval (Ωi in our notation) as the
new initial set for the sebsequent computation, which is, however, not neces-
sary since the switch always happens on a time instance. In contrary, at the
(i + 1)th step, instead of taking Ωi as the initial set of states, we compute Xi

which overapproximates the reachable set at the time instance iδ. Therefore, the
approximation error in the computation of Ωi does not propagate. Additionally,
as we will see later in Sect. 3.2, because support functions provide an exact rep-
resentations for Xi, we do not introduce wrapping effects when switching the
abstraction domain.

3.2 Support Functions Computations

Since the hybridization approach uses affine reachability operators, the approxi-
mation quality is dependent on the accuracy of the error model. In this section,
we present the error model we use for affine reachability analysis and describe
the extension to the hybridization context through a recurrent formulation.

Improved Affine Reachability Error Model. We use the same error model
to compute the dense-time reachable sets (next dense) as [32] and present
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an improved error model over [22] to compute the discrete-time reachable
(next discrete) sets by better approximating the input sets.

Algorithm 1: Hybridization Reachability Algorithm
Input: Initial state: X0, dynamics: f(·), total steps: N , time step: δ
Output: Sequence of reachable sets: {Ω0, . . . , ΩN−1}

1 i ← 0;
2 μ0 ← 10−9;
3 μ ← μ0;
4 D ← enclosing box({X0});
5 〈A0, U0〉 ← L(f(·), D);
6 Θ ← List(〈A0, U0〉);
7 Ω0 ← next dense(X0, Θ);
8 Ω′ ← Ω0;
9 X1 ← next discrete(X0, Θ);

10 while i < N do
11 D ← enclosing box({Ωi, Ω′});
12 D ← bloat(D, μ);
13 〈Ai, Ui〉 ← L(f(·), D);
14 Θ.append(〈Ai, Ui〉);
15 Ω′ ← next dense(Xi+1, Θ);
16 if Ω′ ⊆ D then
17 Ωi+1 ← Ω′;
18 Xi+1 ← next discrete(X0, Θ);
19 i ← i + 1;
20 μ ← μ0;

21 else
22 μ ← 2μ;
23 Θ.remove(〈Ai, Ui〉);

Lemma 1 (adapted from [32]). Assuming Xi overapproximates the reachable
set at time iδ, A is the a linear map of the linearized dynamics during the time
interval [iδ, (i + 1)δ], let Ωi be the convex set defined by:

Ωi = CH(Xi, e
AδXi ⊕ δU ⊕ αδB) (5)

where αδ = (e‖A‖δ − 1 − δ‖A‖)(RXi
+ RU

‖A‖ ), B denotes the unit ball for the
considered norm, RXi

= maxx∈Xi
‖x‖ and RU = maxu∈U ‖u‖. Then

R[iδ,(i+1)δ](Xi) ⊆ Ωi (6)

We refer readers to [32] for the proof. Lemma1 can be roughly understood as
follows. eAδXi ⊕δU is an overapproximation of the reachable set at time (i+1)δ;
the bloating operation and the convex hull operation give the overapproximation
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of the reachable set over the time interval [iδ, (i + 1)δ]. The bloating factor αδ

is computed such as to ensure the overapproximation.
The support function of Ωi on � is computed as follows:

ρ(�, Ωi) = max(ρ(�, Xi), ρ((eAδ)T �, Xi) + δρ(�, U) + αδρ(�, B) (7)

Before we present the improved error model on the computation of discrete-
time reachable sets, we introduce the following notations: �(S), which denotes
the symmetric interval hull of a set S ⊂ R

n, is defined as [−|x1|; |x1|] × . . . ×
[−|xn|; |xn|] where ∀i : 1 ≤ i ≤ n, |xi| = max{|xi| | x ∈ S}. |·| is the element-wise
absolute operation over a matrix or vector. The model relies on the following
matrices:

Φ1(A, δ) =
∞∑

i=0

δi+1

(i + 1)!
Ai, Φ2(A, δ) =

∞∑

i=0

δi+2

(i + 2)!
Ai (8)

If A is invertible, Φ1 and Φ2 can be computed as Φ1(A, δ) = A−1(eAδ − I),
Φ2(A, δ) = A−2(eAδ − I −Aδ). Otherwise they can be computed as sub-matrices
of a block matrix exponential [22].

The rationale behind the improvement is as follows. Since the error model
on the input relies on �(AU), the symmetric interval hull operation can be too
coarse if the input set is not centered around the origin. From this observation,
we decompose U into {uc} ⊕ W, where uc is the geometric center of U and W is
a set that centers around the origin. This way, we reduce the overapproximation
introduced during the symmetric hull operation. The improved error model is
formalised by the following lemma:

Lemma 2. Assuming A is the linear map of the linearized dynamics during the
time interval [iδ, (i + 1)δ], Xi overapproximates the reachable set at time iδ, let
Xi+1 be the set defined by

Xi+1 = eAδXi ⊕ Ψδ(U) (9)
Ψδ(U) = δW ⊕ εW ⊕ Φ1(A, δ) · uc (10)

εW = �(Φ2(|A|, δ) � (AW)) (11)

Then R[(i+1)δ,(i+1)δ] ⊆ Xi+1.

Proof. See a technical report [34].
Lemma 2 provides a way to compute the discrete-time reachable set of the

next time instance given that of the current time instance and the linearized
dynamics. As opposed to [22], our model improves the accuracy of the approxi-
mation by better handling the uncertainty in the input set. The support function
of Xi+1 on � is computed as follows:

ρ(�, Xi+1) = ρ(�, (eAδ)T Xi) + ρ(�, Ψδ(U)) (12)
ρ(�, Ψδ(U)) = δρ(�, W) + ρ(�, εW) + � · Φ1(A, δ) · uc (13)
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Support Function Computations for Nonlinear Systems. As described
in Procedure 1, the reachability analysis of a nonlinear system is reduced to
analyzing a sequence of linearized systems with uncertain inputs. Since we create
a hybridization domain for each step, after k steps we have k pairs of 〈Ai,Ui〉,
using which we can extend the error model for the discrete reachable sets to the
nonlinear systems.

Lemma 3. Given the initial states X0 and a sequence of linearized dynamics
Θ = {〈Ak, Uk〉} (0 ≤ k < i), let Xi+1 be the set defined by:

Xi+1 =
( i∏

r=0

eAi−rδ
)
X0 ⊕

i⊕

r=1

( i−r∏

m=0

eAi−mδ
)
Ψδ(Ur−1) ⊕ Ψδ(Ui) (14)

Then it follows that R[(i+1)δ,(i+1)δ] ⊆ Xi+1.

Proof. See a technical report [34].
The support function of Xi+1 on the direction � is as follows:

ρ(�, Xi+1) = ρ
( i∏

r=0

(eArδ)T �, X0

)

+
i∑

r=1

ρ(
i∏

m=r

(eAmδ)T �, Ψδ(Ur−1)) + ρ(�, Ψδ(Ui)) (15)

The support function of Ψδ(Up−1) and Ψδ(Ui) can be computed according to
Eq. 13. In Eq. 15, the number of linear programs to solve grows linearly in the
number of steps i. As a result, the total number of linear programs to solve is
quadratic in relation to the number of steps �T/δ, which can be several thou-
sands in typical cases. Although the result from the computation perspective is
polynomial, the number of calls needed to an LP solver is a source of signifi-
cant slowdown. Nevertheless, by restricting X0 to be the Cartesian product of
intervals of an n−dimensional space, all the convex sets involved in Eq. 15 are
hyperboxes. And the following well-known property of hyperboxes allows us to
compute ρ(�, Xi+1) without calling an LP solver.

Proposition 1 (Support function of a hyperbox). Given a hyperbox B =
[a1, b1]× . . .× [an, bn], the support function of B on the direction � = (�1, . . . , �n)
is given by:

ρ(�,B) =
n∑

i=1

�i · hi, where hi =

{
ai, if li ≤ 0
bi, otherwise

(16)

Proposition 1 enables the computation of support functions for a set of hyper-
boxes in a batch by properly vectorizing the matrix multiplication operations,
which leads to some performance gains in practice.
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4 Dynamics Scaling for Hybridization

The main source of overapproximation error in hybridization methods comes
from the overapproximation of the nonlinear dynamics within the abstraction
domains. Instead of hyperboxes, some methods have used simplices [18] or other
polyhedra [3] as abstraction domains. However, since individual trajectories may
evolve quite differently and end up with reaching different states given a specific
time instance, domains may need to stretch out irrespective of the domain shape,
in order to contain all the reachable states within one step. In this section,
we propose a dynamics scaling technique applied to the hybridization context,
which helps to reduce the error in the reachable sets by properly manipulating
the dynamics of the system. The dynamics scaling technique was first proposed
in [8] to reduce the error during the conversion of guard conditions for affine
systems. The main idea behind dynamics scaling is to create an additional mode
in the automaton that multiplies the original dynamics by a scaling function.
It is also shown in [8] that if the scaling function always outputs a nonnegative
number for any states considered, the set of reachable states computed for time-
bounded reachability does not change.

We employ the dynamics scaling technique for nonlinear system analysis and
extend it in two aspects. Firstly, we propose a new scaling function so that the
trajectories lagged behind is sped up while others in front are slowed down,
therefore, the reachable set is flattened (Fig. 1). As a consequence, the size of
abstraction domains is reduced, which eventually leads to less approximation
errors and better reachability precision. Secondly, we propose a heuristic app-
roach to select the dwelling time in the scaling mode. To our best knowledge, this
is the first attempt to exploit and automate dynamics scaling for reachability
analysis of nonlinear systems.

Dynamics Scaling Function. Given nonlinear dynamics f(·) and the cur-
rently tracked set of states Ω, the scaled dynamics h(·) is detailed as below:

h(x) = m · d(x) · f(x) (17)

d(x) =
1

‖a‖ (−ax + b) (18)

h(·) scales the original nonlinear dynamics by the scaled distance function d(·),
which measures the signed distance from the point x to the hyperplane defined
by ax ≥ b. Note that d(·) is nonnegative for any x that satisfies ax ≤ b. The
signed distance is scaled by a constant multiplier m, as we will explain later. We
call m · d(x) the dynamics scaling function.

Now we describe how we choose the hyperplane ax ≥ b. At each scaling
step, we first evaluate the gradient of f(·) at the center of Ω, denoted as l′ =
df(x)
dx |x=cΩ

, cΩ is the geometric center of Ω. Then we use the complementary
halfspace of the supporting hyperplane of Ω in the direction l′, i.e. l′·x ≥ ρ(l′, Ω),
as the hyperplane. By scaling dynamics using a signed distance function, the
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speed of trajectories that are far from the hyperplane is increased while the speed
of those near the hyperplane is decreased. As a result, the size of abstraction
domains is reduced which in turn leads to smaller linearization errors.

Different from affine systems, the linear map A in our approach is the eval-
uation of the Jacobian matrix of f(·) at the center of the abstraction domain.
The addition of the dynamics scaling function modifies the system dynamics
and consequently its Jacobian matrix. Since the error model relies on ‖A‖, such
linearization brings two possible downsides: i) as e‖A‖δ grows exponentially in
‖A‖, a linear map A of a large norm may result in a prohibitively large αδ and
leads the flowpipe to diverge; ii) a linear map A of a small norm slows down the
progression of the trajectories and takes more steps to achieve the scaling effect.
Therefore, we propose to add a multiplier m = ‖Af ‖

‖Ah‖ which equates the norm
of the scaled and unscaled linearized dynamics, where Af is the linear map of
linearized dynamics of f(·) and Ah is the linear map of the linearized dynamics
of d(·) · f(·). We observed in practice that i) the addition of m helps maintain-
ing the magnitude of bloating factors in a reasonable order and ii) a moderate
amount of steps in the scaling mode leads to a decent scaling effect.

Heuristics for Dynamics Scaling. We apply dynamics scaling periodically
during the reachability analysis. To this end, we introduce a parameter scaling
period p ∈ (0, 1) to indicate that we perform dynamics scaling after each �p · T 
time segment. A smaller period enables dynamics scaling more often and provides
a stronger scaling effect. On the other hand, because dynamics scaling introduces
more nonlinearity by adding a polynomial term, the time cost of computing the
linearization errors could arise. Therefore, p balances the trade-off between a
stronger scaling effect and additional nonlinearity and computation runtime.

In order to decide when to enter into a scaling mode and to revert to the
original dynamics, we introduce a heuristic to measure the effect of dynamics
scaling. The heuristic relies on the following operation: �(S) denotes the interval
hull of a set S ⊂ R

n, defined as [|x1|; |x1|] × . . . × [|xn|; |xn|]. For a reachable set
Ω, we approximate the volume of S by the volume of its interval hull: σ(Ω) ∼
σ(�(Ω)) =

∏n
i=1(|xi| − |xi|). When �p · T  time segments passes, we enable

dynamics scaling and check whether the volume of the Ω would decrease. The
system then alters to the scaling mode if the check succeeds, otherwise, it remains
in the original mode for the next �p · T  segments. Similarly, when dynamics
scaling does not help to decrease the volume of the reachable set, the system
exits the scaling mode and reverts to the normal, i.e. unscaled, dynamics.

5 Evaluation

We implemented our techniques in a prototypical tool in Python. We employ
NumPy [39] to perform matrix operations. Linearization errors are computed
using Kodiak library [38], which provides rigorous bounds for nonlinear global
optimization problems using interval arithmetic and Bernstein enclosure. All
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the experiments were run on a laptop running Ubuntu 16.04 equipped with Intel
i7-7600U CPU (2.80 GHz, 4 cores) and 16 GB RAM.

5.1 Benchmark Evaluation

We evaluate our tool on a number of nonlinear benchmark instances featuring
from 2 to 30 dimensions with the aim to assess efficiency and precision of our
approach. We compare our tool with the recent version of Flow* that partici-
pated in the ARCH competition [2].

Fig. 1. Effect of dynamics scaling. For the illustration purpose, we apply dynamics
scaling towards a hyperplane at y = 1.35. In the normal mode (left), the flowpipe
passes the hyperplane while the reachable set stretches over y axis. In the dynamics
scaling mode (right), the flowpipe contracts to the hyperplane (red). As a result, the
size of the abstraction domain reduces. (Color figure online)

Experimental Setting. Our goal is to verify safety properties of considered
benchmark instances. For each benchmark, we first considered a weak safety
condition, for which the system can be proven safe easily upon finishing the
reachability analysis over the time horizon. In case the condition is too weak
to show the difference in precision, we either strengthened the safety condition
or increased the time horizon until one or both tools failed to verify the safety.
We tuned the parameters of both tools and reported the configurations with
the minimal runtime on success, otherwise, the best possible configuration with
which the flowpipe still contract. The timeout is set to 900 s.

Benchmarks. We use the following benchmarks in our evaluation:

Brusselator. The Brusselator is a theoretical model for a class of autocatalytic
reaction [36]. The dynamics are given by ẋ = 1 + x2 · y − 0.5x, ẏ = 1.5x − x2y.
We use the same initial set as [15], i.e. (x, y) ∈ [0.8, 1] × [0, 0.2].
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Lotka-Volterra. The Lotka-Volterra describes the dynamics of population
changes of two species that interact in a predator-prey relation. The dynam-
ics are given by ẋ = x(1.5 − y), and ẏ = −y(3 − x). We use the same initial set
as [15], i.e. (x, y) ∈ [4.8, 5.2] × [1.8, 2.2].

Biological Models. Biology I, Biology II are benchmarks presented in [15] mod-
eling biological systems from [28]. The dynamics of Biology I (7 dimensions)
are given by ẋ0 = −0.4x0 + 5x2x3, ẋ1 = 0.4x0 − x1, ẋ2 = x1 − 5x2x3, ẋ3 =
5x4x5 −5x2x3, ẋ4 = −5x4x5 +5x2x3, ẋ5 = 0.5x6 −5x4x5, ẋ6 = −0.5x6 +5x4x5.
We consider the initial set1 xi ∈ [0.99, 1.01]. The dynamics of Biology II (9
dimensions) are given by ẋ0 = 3x2 − x0x5, x1 = x3 − x1x5, ẋ2 = x0x5 − 3x2,
ẋ3 = x1x5 −x3, ẋ4 = 3x2 +5x0 −x4, ẋ5 = 5x4 +3x2 +x3 −x5(x0 +x1 +2x7 +1),
ẋ6 = 5x3 + x1 − 0.5x6, ẋ7 = 5x6 − 2x5x7 + x8 − 0.2x7, ẋ8 = 2x5x7 − x8. We
consider the same initial set as [15], i.e. xi ∈ [0.99, 1.01].

(Coupled) Van der Pol Oscillator. The model of a two-dimensional Van der Pol
oscillator arises in the study of circuits containing vacuum tubes and is known
to exhibit a limit cycle. The dynamics are given by ẋ = y, ẏ = (1 − x2) · y − x.
We scaled up the benchmark up by coupling more oscillators in the way similar
to the two-coupled Van der Pol oscillators (4 dimensions) [37]. The dynamics
of N -coupled Van der Pol Oscillators (N ≥ 2) are given as ẋi = yi, ẏ0 =
(1 − x2

0)y0 − x0 + (x1 − x0), ẏi = (1 − x2
i )yi − xi + (xi−1 − xi) + (xi+1 − xi)

(1 < i < N − 1), ẏN−1 = (1 − x2
N−1)yN−1 − xN−1 + (xN−2 − xN−1). We use

the same initial set as [15] and extends it to the high-dimensional instances, i.e.
xi, yi ∈ [1.25, 1.55] × [2.25, 2.35].

(Coupled) Oscillator. We considered the model used in [16] to measure the scal-
ability of the reachability analysis approaches. The model was adapted from
[33] that describes the dynamics of synchronization among genetic oscillators.
The model consists of N oscillators, each of which is described by five con-
tinuous variables. The dynamics are given by ẋi = 0.1ui − 3xi + 10

N

∑N−1
j=0 vj ,

ẏi = 10xi − 2.2yi, żi = 10yi − 1.5zi, v̇i = 2xi − 20vi, u̇i = −5u2
i z

4
i (10yi − 1.5zi).

We use the same initial set as [16], i.e. xi ∈ [−0.003 + 0.002i,−0.001 + 0.002i],
yi ∈ [0.197 + 0.002i, 0.199 + 0.002i], zi ∈ [0.997 + 0.002i, 0.999 + 0.002i],
vi ∈ [−0.003 + 0.002i,−0.001 + 0.002i], ui ∈ [0.497 + 0.002i, 0.499 + 0.002i].

Tuning of the Tools. We tuned parameters of both tools to minimize the run-
time. For our tool, we fixed the dynamics scaling period as 0.1 for all benchmarks
except for (coupled) oscillators. We disabled dynamics scaling on (coupled) oscil-
lators due to two observations: i) without dynamics scaling, the precision is suf-
ficient to verify the safety; ii) the benefit of applying dynamics scaling did not
always payoff the loss in the runtime on this particular benchmark. For each
benchmark, we searched for a minimal time step until i) it is sufficiently small
to verify the safety, then we increased it until the safety is violated and reported
the largest safe time step; ii) it is so small that the tool timed out, we then

1 https://ths.rwth-aachen.de/research/projects/hypro/biological-model-i/.

https://ths.rwth-aachen.de/research/projects/hypro/biological-model-i/
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reported TO. We used hypy [9] to script a grid-search strategy to identify the
optimal tuning parameters for Flow* . Hypy is a Python library that is able to
automatically run Flow* with a given configuration and parse the result. We
first specified a minimal time step, an increment for time step and a subset of
Taylor model orders such that Flow* could complete the analysis. Our script
then exhaustively tried various combinations of Taylor model orders and time
step. The time step was increased until safety is violated. We reported the set-
ting that proved the safety with a minimal runtime if one existed. The cut-off
threshold in Flow* was fixed as 10−9 in all the experiments.

Table 1. Comparison results on benchmarks. Dim.: Dimension of benchmarks; Hori-
zon: time horizon. Safe: safety property; TM: Taylor model order; δ: time step; t:
runtime, TO: The tool/approach timed out after 900 s.

Benchmarks Dim. Horizon Safe Flow* Ours

TM δ t δ t

Brusselator 2 10 y ≤ 2 6 0.04 6.49 0.02 5.35

Brusselator 2 25 y ≤ 2 9 0.001 TO 0.01 22.46

Lotka-Volterra 2 3 y ≤ 6 5 0.01 2.34 0.01 5.14

Lotka-Volterra 2 3 y ≤ 5.6 5 0.01 2.32 0.0001 TO

Biology I 7 2 x3 ≥ 0.9 4 0.02 28.26 0.005 9.30

Biology I 7 2 x3 ≥ 0.92 4 0.01 49.99 0.002 16.38

Biology II 9 2 x6 ≥ 10 7 0.02 TO 0.001 236.79

Vanderpol 2 7 y ≤ 3 5 0.02 2.42 0.04 2.83

Vanderpol 2 7 y ≤ 2.7 12 0.001 TO 0.02 4.17

2-coupled Vanderpol 4 7 y0 ≤ 3 6 0.02 100.41 0.02 5.25

2-coupled Vanderpol 4 7 y0 ≤ 2.75 7 0.015 227.76 0.01 11.48

3-coupled Vanderpol 6 7 y0 ≤ 3 5 0.01 TO 0.005 72.31

4-coupled Vanderpol 8 7 y0 ≤ 3 5 0.025 TO 0.005 158.51

Oscillator 5 3 y1 ≥ 0.08 4 0.02 4.17 0.005 5.99

Oscillator 5 3 y1 ≥ 0.085 4 0.02 3.98 0.0015 31.86

2-coupled oscillator 10 3 y1 ≥ 0.08 4 0.02 32.26 0.005 12.30

2-coupled oscillator 10 3 y1 ≥ 0.085 4 0.02 31.63 0.0015 63.97

3-coupled oscillator 15 3 y1 ≥ 0.08 4 0.02 140.39 0.005 22.04

3-coupled oscillator 15 3 y1 ≥ 0.085 4 0.02 136.99 0.0015 146.91

4-coupled oscillator 20 3 y1 ≥ 0.08 4 0.015 291.88 0.005 32.46

4-coupled oscillator 20 3 y1 ≥ 0.085 4 0.005 TO 0.0015 284.61

5-coupled oscillator 25 3 y1 ≥ 0.08 4 0.01 603.98 0.005 50.03

5-coupled oscillator 25 3 y1 ≥ 0.085 4 0.005 TO 0.0015 398.5

6-coupled oscillator 30 3 y1 ≥ 0.08 4 0.025 TO 0.005 73.98
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(a) Hybridization with
dynamics scaling.

(b) Hybridization without
dynamics scaling.
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Fig. 2. Flowpipes using different approaches/tools on brusselator (above) and
2-coupled Van der Pol oscillators (below) benchmarks. (Color figure online)

Results. We show results in Table 1, which leads to the following observations:
i) On Brusselator, Biology I, II, (coupled) Van der Pol oscillators benchmarks,
our approach was superior in both runtime and precision. In particular, on (cou-
pled) Van der Pol oscillators benchmark, our approach was 10–20 times faster
than Flow* (2-coupled Vanderpol) and on high dimensional cases (3-coupled
Vanderpol, 4-coupled Vanderpol), Flow* cannot finish within the time limit.
Further investigations showed that these benchmarks are also the ones where
the effect of dynamics scaling was significantly beneficial. The projections of the
flowpipe (red) and the numerical simulations (dark blue) of Brusselators (hori-
zon = 25 s) and 2-coupled Van der Pol oscillators are shown in Fig. 2. We showed
the best result Flow* produced without exceeding the time limit. ii) On (cou-
pled) oscillators, our tool usually proved the weak safety property faster and
scaled better than Flow*. By using smaller time steps, our approach can prove
the strengthened safety properties using a runtime that is comparable (within 1
order) to Flow* on instances with 2 or 3 oscillators. Flow* again failed on high
dimensional cases while our approach succeeded in a reasonable amount of time;
iii) Flow* showed better precision and speed on Lotka-Volterra model while our
approach failed to prove the strengthened property. A possible explanation is
that the imprecision due to nonlinearity introduced by applying the dynamics
scaling outweighs the benefits of the flattening. This raises the question of how
to best use dynamics scaling to improve the precision of flowpipe computation,
which we will investigate in the future.
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6 Conclusion

In this paper, we have proposed a novel hybridization approach which employs
the dynamics scaling model transformation. In this way, we can reduce the size
of abstraction domains, which in turn leads to better analysis precision. Our
approach uses an enhanced error model to handle affine dynamics based on the
input set decomposition. We have shown the effectiveness and precision of our
approach by a comparative evaluation against the tool Flow* on a number of
challenging nonlinear system benchmarks which feature 2 to 30 state variables.
In the future, we plan to explore further strategies to guide dynamics scaling.
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Abstract. Fail-awareness is the ability of a system to detect an upcom-
ing failure before it actually happens. In this paper, we propose a weak-
ness monitoring approach for observing a complex system during its
operation, identifying possible degradation of its behavior, and finally
raising an alarm in case of an estimated upcoming failure before the
system actually goes out of its specification. Our procedure uses online
linear regression to monitor trends over time – it is used to optimize the
system service. We evaluate our approach on three case studies from the
automotive and avionics domains.

1 Introduction

Cyber-physical systems (CPS) combine heterogeneous physical, mechanical and
computational elements that continuously interact with their environment via
sensors and actuators. CPS applications are often safety-critical where malfunc-
tions can result in catastrophes involving important material damage or even
loss of human lives. A failure of a single component can propagate and cause the
entire system to fail. As a result, system reliability is an important goal in the
development of safety-critical CPS, where components are typically designed to
achieve very long operation lifetime.

In spite of tremendous advances in reliable design, components do sometimes
fail. Many safety-critical systems are used in rough environments that can result
in slow but continuous degradation of components. In addition, every component
has a certain (possibly low, but strictly positive) probability of having a small
defect that can deteriorate over time. Reliable operation of safety-critical CPS is
typically ensured with redundancy of software and hardware components. The
redundancy-based approach achieves high reliability, though at high costs, also
when sudden failures occur.

Fail-aware concept is a complementary approach for further improving safety
and reliability of CPS in presence of components that can degrade over time. The
fail-aware concept can minimize costs through a well-tuned on-demand (instead
of regularly scheduled) maintenance process. More specifically, the fail-aware
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concept allows one to detect an upcoming failure of a component or a sub-
system before it actually happens. The main ingredient in the fail-aware concept
is a weakness monitor, a program that continuously observes different system
parameters over time, detects gradual deviations from the expected behavior
and identifies negative trends that can result in an imminent failure (see Fig. 1).
That is, the fail-aware concept can (1) avoid expensive hardware and software
redundancy mechanisms when sudden failures are not critical or unlikely to
occur, and (2) replace periodic service with preventive maintenance triggered by
detected weaknesses.

Fig. 1. Monitoring trends over time.

We propose in this paper a weakness monitoring solution that uses online
linear regression to estimate the health status of the system and analyze trends
over time. The proposed approach assumes that the weakness model is linear.
We show that this is a reasonable assumption for many systems of interest. This
simple, yet powerful approach can be effectively instantiated along several axes:
(1) at a component, sub-system or system level, (2) during design and operation,
and (3) in presence or absence of formal specification describing the intended
behavior. We demonstrate the versatility of our approach on three case studies
from the automotive and avionics domains: (1) a rotor position sensor, (2) the
motor of a powertrain sub-system and (3) an aircraft elevator control model.

2 Related Work

In classical sense, fail-awareness is a systematic method which aims to allow
asynchronous distributed system to notify the affected clients in case of perfor-
mance failures [10]. However, in our work we focus on enabling an independent
system to predict an upcoming failure before it happens. Such related work can
be roughly classified in several groups: physics-based model, data-driven prog-
nostics and hybrid approaches [12]. System health monitors can be constructed
based on a physical model of the device using the physics-of-failure (PoF) app-
roach [14,16,17]. The reasoning behind this method is that the initial cause for
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the failures originates from physical characteristics of component materials [8].
By knowing physics-of-failure and by identifying a failure precursor event [5] it is
possible to estimate device remaining lifetime. In our work, we do not explicitly
model physics of a system but rather use declarative specifications or learn the
model from observations.

Periodic loading of material with stress such as voltage or current amplitude
cycles weakens the device. Efficient counting of these load cycles is achieved
with rainflow algorithm [26]. Thermal cycle counting for evaluating remaining
lifetime of power converter systems was reported in [19]. Since our stress tests
apply permanent load, we are interested in identifying value trends over a longer
time interval rather than counting occurrences of value cycling.

In the spectrum of data-driven approaches, Kalman filters (KF) are used to
estimate the state of a system and predict the future state [4,7,24,25]. The KF
algorithm is based on a recursive relation for an optimal state estimate which
runs in real-time. On the other hand, KF estimates only a single state of a sys-
tem, and it is still necessary to use the system model to provide predictions [7].
Predicting Remaining Useful Life (RUL), a complementary topic to trend mon-
itoring, was demonstrated using particle filtering and kernel smoothing in [18].
Celaya et al. have used Gaussian Process Regression (GPR) [4,5] to predict
future fault degradation based on measurement data. Kalajdzic et al. propose
another approach of using particle filtering to estimate the system’s state from its
partial observations [20]. However GPR and particle filtering are less favorable
in our real-time monitoring setting due to high computational cost.

Model predictive control (MPC) [11] implements an iterative, finite-horizon
optimization of a plant model and its input in order to satisfy a given constraint.
The models used in MPC are typically used to represent the behavior of com-
plex dynamical systems and predict their behavior over a typically short time
horizon. Specifications can be used to encode the MPC constraints [15,23,29].
In our approach, we compare the observed behavior of the systems against the
specification or the learned model to detect trends over long periods of time.

One of the latest approaches by Bortolussi et al. demonstrates runtime pre-
dictive monitoring for Hybrid Automata, based on deep neural networks [3]. By
measuring prediction uncertainty and augmenting the training set with uncertain
predictions, this method is able to significantly reduce prediction errors. Another
recently developed framework, based on Hidden Markov Models, provides proba-
bilities that the certain behavior prefix will satisfy the requirement [2]. Monitors
which evaluate the probability of keeping a system in a safe state regardless
of the influence from the environment, so-called viability monitors, are defined
in [30] and evaluated on an Unmanned Aerial Vehicle (UAV) case study.

3 Weakness Monitoring

In this section, we present our approach for monitoring weaknesses in fail-aware
systems. We first introduce definitions that we use to develop our procedure. A
signal w : T → R is a mapping from time instants t in some time domain T to
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values w(t) in R. We call the signals with time domain T = R+ analog and signals
with time domain T = N digital. We abuse the notation and allow a(n analog or
digital) signal w to take negative time indices as argument, with w(t) = 0 for
all t < 0. Given a sampling period Δ, the digital signal wΔ is obtained from the
analog signal w, by periodically sampling it such that wΔ(i) = w(iΔ). In this
paper, we consider digital signals that are obtained by sensing and observing
physical quantities at periodic rates.1

The procedure wmon, shown in Algorithm1 takes as input: (1) the input
signal w, (2) the safety margin λ that would be considered sufficiently close to
a failure, (3) the size of the sliding window T , and (4) the sampling period Δ
of w. The method wmon monitors trends in w over (long) time periods defined
by the size of the sliding window T . The procedure continuously observes the
digital signal wΔ, obtained by sampling the analog signal w with period Δ.
The algorithm waits for the new sample i of wΔ to become available (line 3),
computes the linear regression linreg over the window [i−T, i] of wΔ, estimating
the slope a and the offset b of that signal segment. It then checks whether the
weakness condition cond over the estimated signal parameters and safety margin
is met (line 6), and if it is the case, an alert is raised (line 7).

Algorithm 1: Weakness monitor wmon

Input : w - input signal, λ - safety margin, T - sliding window size, Δ -
sampling period

1 i ← 0
2 while true do
3 wait wΔ(i)
4 u ← wΔ[i − T, i]
5 (a, b) ← linreg(u)
6 if cond(a, b, λ, iΔ) then
7 raise alert
8 end
9 i ← i + 1

10 end

The functionality of this simple monitoring procedure depends to a large
extent on the exact definition of cond.

We can see that for each new sample i of wΔ, we need to compute the linear
regression over the [i − T, i] segment of the signal, an operation that has linear
time complexity in the size of the window. This computational cost is not accept-
able in a real-time implementation of a weakness monitor, especially in the case
of large T/Δ. To address this issue, we propose an efficient implementation of
wmon that has a time complexity that is constant in the size of the window.

1 Perfectly periodic sampling is not required for our approach, but we use it to simplify
the presentation of the procedure.
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The efficient variant of wmon uses Welford’s online linear regression algo-
rithm [28] to reduce the time complexity of the procedure. The main idea is
based on the following observation – the linear regression over the segment
[i−T +1, i+1] of wΔ can reuse the computations done for the linear regression
over [i − T, i].

We now shortly describe the online regression procedure. Let x = x1, x2, . . .
be an infinite sequence of real values and xk,T = xk, . . . , xk+T its restriction
to the values indexed in the range [k, k + T ]. In linear regression, the model
inferred from a sequence of observations yk,T is of the form yi = axi + b + εi,
where i ∈ [k, k + T ] and εi is the discrepancy between the estimated and the
observed value. The process of calculating linear regression parameters consists
in finding the values of the parameters a and b that minimize the discrepancy
over all εi. We denote by ak,T and bk,T the estimates of the slope and offset over
yk,T , respectively. We recall that the slope ak,T can be expressed in terms of
variance and covariance:

ak,T =
Cov(x, y)k,T

Var(x)k,T
=

∑k+T
i=k (xi − xk,T )(yi − yk,T )

∑k+T
i=k (xi − xk,T )2

where xk,T = 1
T+1Σk+T

i=k xi is the mean of xk,T .
Mean, variance and covariance all admit an incremental form, also enabling

incremental computation of the slope and the offset:

xk+1,T = xk,T + xk+1+T −xk

T+1

Var(x)k+1,T = Var(x)k,T − (xk+T+1−xk)
2

(T+1)2 + (xk+T+1−xk,T )2−(xk−xk,T )2

T+1

Cov(x, y)k+1,T = Cov(x, y)k,T − (xk+T+1−xk)(yk+T+1−yk)
(T+1)2 +

(xk+T+1−xk,T )(yk+T+1−yk,T )−(xk−xk,T )(yk−yk,T )

T+1

ak+1,T =
Cov(x, y)k+1,T

Var(x)k+1,T

bk+1,T = yk+1 − ak+1,T xk+1

Example 1. We illustrate our approach with two examples shown in Fig. 2. Each
example depicts a behavior that deteriorates over time and ultimately leads to
a property violation. In Fig. 2 (a), the linear regression model is used to detect a
negative trend directly on the signal. This may not always be sufficient to identify
a weakness. The behavior in Fig. 2 (b) has a constant slope close to zero and
increasing oscillations. To detect this negative trend, we can use Algorithm1 to
monitor the evolution of the Mean Absolute Error (MAE) over time and detect
the deterioration of the signal.
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Fig. 2. Two types of weak behaviors, their linear models and normalized MAE.

4 Instantiation and Application of Weakness Monitors

In this section we instantiate and demonstrate our weakness monitoring on three
use-cases from automotive and avionics industries. We first consider monitoring
weaknesses of a motor angle sensor component. This use case allows us to instan-
tiate our monitors in a setting with clearly defined safety margins. Second, we
analyse a motor control circuit with measurements from a test bench and with-
out any specification of its intended behavior. We use this second use case to
show how to instantiate our approach in a pure data-driven setting. Finally, we
demonstrate the monitoring approach on an aircraft elevator control system for
which the functional requirements are formalized in a rich temporal specification
language.

4.1 Magnetic Angle Sensor

In this section, we apply our approach to the signal traces obtained from a
simulation model of Infineon® Giant Magneto Resistance (GMR) angle sensor
which is typically used in automotive applications [13]. This sensor can be used
to measure the rotor position for electric motor commutation or to sense the
steering angle. The angle value is encoded using two orthogonal components
Vx = Ax · sin(ϕ + ϕx) + Ox and Vy = Ay · cos(ϕ + ϕy) + Oy, and is obtained
using the following relation: ϕ = arctan(Vy/Vx) [1].

Due to the long expected operating lifetime of these sensors, they must be
tested for reliability. Testing teams subject physical devices to different kinds of
stress, according to the common electrical component qualification requirements
defined in the AEC-Q100 specification [6]. By exposing a set of devices to extreme
conditions stress tests accelerate the aging process and allow the manufacturers
to efficiently estimate device’s potential degradation.

GMR angle sensors are extremely reliable and fully compliant to require-
ments specified in AEC-Q100 document [6]. In order to evaluate our weakness
monitoring approach, we used an artificial degradation model to generate traces,
which in normal operation would never be observed. Hence, all the traces in this
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Fig. 3. Change of absolute angle error
for a 360◦ rotation.

Fig. 4. Absolute angle error.

section were obtained solely by simulating the degradation model, and do not
reflect the real measurement data.

In Fig. 3 we can observe the data collected from the degradation model in
order to understand how the angle error evolves over time. The experiment
consists in evaluating sensor angle error, based on a full 360◦ rotation. We can
observe that the angle error is not equally distributed across the angles and the
model deviates more for certain angle values. In Fig. 4 we observe the behavior
of the absolute angle error for specific angle inputs: 90◦, 180◦, 270◦ and 360◦. In
our simulations, we will use similar sensitive angle value intervals to maximize
the angle error produced by the model.

Fig. 5. Weakness monitoring of a degradation model.

We use the weakness monitoring procedure wmon as follows to detect weak-
nesses in the sensor degradation model. The inputs to the monitoring procedure
are: the input signal w that represents the absolute difference between the input



290 W. Granig et al.

angle and the observed angle, the safety margin λ obtained as a percentage of
the specification2 τ = 0.15 (in this case λ = 0.85τ), the sliding window size
T = 500h (corresponding roughly to 3 weeks of observation time), the sampling
period Δ = 6 min and the condition cond. The condition cond is defined as follows
– the weakness alert is triggered at time t if the linear regression model over the
window [t− 500h, t] of observed values predicts that within the next [t, t+500h]
window the safety margin λ will be reached. Formally, we have

cond(a, b, λ, t) =
λ − b

a
≤ t + 500h.

We run our tests to cover the time interval of a lab stress test as specified in
the AEC-Q100 document [6]. The monitor starts by filling the data window with
data samples and then continues to calculate the linear model in an incremental
fashion, using the recurrence relations from Sect. 3. The monitor continuously
checks whether the condition cond evaluates to true. A weakness alert would
allow the user to get a warning when the device shows serious signs of degradation
but (an estimated three weeks’ time) before it actually fails, thus enabling taking
an action and preventing the failure. The monitor can in addition calculate MAE
in order to estimate the reliability of the verdict.

In Fig. 5 we see that between time units 1500 and 2000 the monitor reports
a weakness. The safe slopes are plotted and compared to slopes that would
reach the angle error predicted by the linear model. Although in the beginning
the behavior shows a strong increasing trend, it is still far away from the safety
threshold. The magnetic field strength was set to 100 mT and the input angle was
periodically varied and linearly increased, starting from [45◦, 75◦] to [65◦, 95◦].
In our simulation, the monitor provides a warning that in three weeks time the
system is likely to fail, which does occur at around approximately t = 3300. The
criteria for detecting a weakness is based on the safety margin λ which allows
enough time to react before safety threshold is crossed.

We finally note that in this experiment, we analyzed the sensor simulation
model. It allowed us to directly compare the input angle to the output measure-
ment. In reality, the input angle is not accessible. However, there are typically
two GMR sensors on the same chip. Hence, the weakness monitoring problem
of the sensor chip would consist in continuously comparing the measured angles
between the two chips, and their evolution over time.

4.2 Motor Weakness Monitoring

In this section we instantiate our approach to a purely data-driven setting to
detect weaknesses from measurements of a motor control circuit performed on
a test bench. We emphasize that although the weakness monitoring concept
is demonstrated here on the special case of the motor data, the same monitor

2 The specification of the sensor defines the safety threshold to be equal to 2.2◦ or 3◦

depending on the model of the sensor. We set this tolerance to a much lower limit
for the purpose of evaluation.
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concept can be generalized to other systems monitored through sensors of various
types with high sampling rates.

In contrast to the magnetic angle sensor, the motor control circuit does not
have explicit specifications with a safety threshold that could be used to assess
the correctness of the observed measurement data. Instead, we follow a machine
learning approach in which we first collect signal data that we know behaves as
expected and we use semi-supervised learning to infer a predictive model of the
nominal system behaviour and to trigger an alarm when the trend of the predic-
tions continuously deviates in time from the observations. This approach is to
large extent inspired by [27] and adapted to our weakness monitoring procedure
presented in Algorithm 1. In the remainder of the section, we present the details
of the approach.

Data Exploration and Preprocessing. The motor control circuit consists of
3 sub-systems (denoted by abc1, abc2 and abc3) with 3 phases each (suffixed
with A, B and C). Measurements corresponding to the sin/cos values of an
angle sensor (PHI COS and PHI SIN) as well as the computed rotor position
(phi) and velocity (omega) are also collected. This results into a total of 15 time
series which represent the properties of the system.

The analyzed data is obtained from an experiment where a constant motor
rotation speed is maintained for 60 s and measurements are sampled at 10 kHz.
Figure 6a depicts just one of the 15 time series in the time domain. To identify
relevant signal components, we translate the signals to frequency domain with
Discrete Fourier Transform (DFT) (Fig. 6b).

Although frequency domain analysis provides useful insights, (e.g. around
the frequencies 2 kHz and 4 kHz), we still need the time component to be able
to monitor the signals over time. Thus we conduct our analysis in the time/fre-
quency domain by applying the Short-Time Fourier Transform (STFT). The ini-
tial time series consisting of 600,000 data points in the time domain will result
into a sequence of 958 data points. In the frequency domain, the frequency step
will be ranging from 0 Hz to 5 kHz in the positive values range, yielding 12,800
positive frequencies. We collapse the number of components of a signal in the
frequency dimension by binning the frequencies into 100 Hz-wide bands, span-
ning the range from 0 to 4.5 kHz, and by averaging the spectral amplitude over
each frequency band at each time step; all frequencies above 4.5 kHz are grouped
into an additional (wider) band.

(a) Time (b) Frequency (c) Time/Frequency

Fig. 6. Illustration of the time series i abc1 A in various domains
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Each of the 15 original signals yields 46 time series, one for each frequency
band which makes 690 time series in total. Each of these time series contains 958
data points on the time axis. These are the time series that represent inputs for
our weakness monitors. Figure 6c illustrates exemplarily in form of a spectrogram
the 46 time series obtained from the transformation of the time series i abc1 A
by following the STFT-based technique explained above.

Approach. For each time series (frequency band) we train an auto-regressive
model on a time window using history samples. The length of the time window,
i.e. the number of lags, is optimized e.g. with help of (partial) autocorrelation dia-
grams, by adopting the one which maximizes the model performance measured
with the selected metric, e.g. coefficient of determination, on a test set. Once
the model is trained, we compute the mean and standard deviation statistics of
the absolute values of the residuals on the training data. In this example, we set
the time window parameter equal to 10. We then learn the distribution of the
residuals on the training data. We assume that prediction errors on the training
data to be normally distributed (a fair assumption for non-biased models).

During the monitoring phase, the signal w that is the input to our weakness
monitor wmon is not the measured signal itself, but a multidimensional signal
that represents the residual error of the measured data compared to the nominal
behavior per frequency band predicted by the auto-regressive models learned
from the nominal history data. We expect that a healthy system will have its
mean behavior similar to the predicted one with the same normal distribution of
the residuals. The weakness monitor follows the evolution of the residual errors
over time and detects if it has a trend of deviating from the mean and the residual
distribution learned from the training data. This is achieved by setting cond to
raise an alarm if the slope of the residuals grows above some threshold amax.

Experimental Results with Anomaly Injection. Since the available motor
data sets do not seem to contain anomalies, we inject an anomaly to evaluate the
weakness monitoring approach. We define an anomaly as a sinusoidal function
y(t) = ρ + Asin(2πft + φ), where the offset ρ, the amplitude A, the frequency
f and the phase φ are all linear functions of time with some additive Gaus-
sian noise. For instance, the offset ρ could be specified as ρ(t) = ρ0 + αρt + ε,
ε ∼ N (0, σ2

ρ), meaning that the value ρ(t) at any time t is drawn from the
parameterized normal distribution N (ρ0 + αρt, σ2

ρ), where ρ0, αρ and σρ are
given by the user.

A signal s(t) injected with an anomaly y(t) is given by sa(t) = s(t) + y(t).
We select the signal i abc1 A from the motor dataset to be injected with an
anomaly of the form y(t) = Asin(2πft) starting from second 40 until the end
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of the experiment time window.3 The anomaly amplitude A is drawn from the
normal distribution N (μA, σ2

A) where we set (i) μA to linearly increase over
[0, 0.5 × max(i abc1 A)], yielding μA(t) = 0.076 × t, and (ii) σA = 0.3 × μA.
The anomaly frequency f is set to linearly increase over [450,800] Hz with no
additive Gaussian noise.

(a) Time (b) Frequency (c) Time/Frequency

Fig. 7. Signal i abc1 A with injected anomaly

Figure 7 illustrates the signal i abc1 A with the injected anomaly in the time,
frequency and time/frequency domains, respectively. In the simulated scenario
the motor behaves properly in the first 40 s, so we use the data from this time
window to train the weakness monitor. We then run the learned weakness mon-
itor on the remaining ca. 20 s of data which actually contains the simulated
anomaly. Strictly speaking, we learn one weakness monitor for each averaged
STFT time series, resulting into an ensemble of 690 monitors in total, defined
as a multidimensional monitor above, which can be combined in various ways
to fire an alarm (e.g. if at least one monitor fires, only if all monitors fire, etc.),
depending on the use case; here, we consider the monitors individually, i.e. each
one fires an alarm on its own.

(a) Overlapped Mode (b) Stacked Mode

Fig. 8. Evolution in time of residual errors per frequency bin.

Figure 8a shows an overlap of residual errors evolving in time per frequency
bin. Figure 8b shows the same information that is accumulated over all bins.
3 The parameters of the injected anomaly y(t) have been selected in order to fit it

to the short period of time in which the data have been collected. In practice, the
anomaly might evolve at a different time scale but the handling approach remains
the same.
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We can see that while individual residual errors can vary quite a lot, there is a
visible linear trend for the cumulated residual error to increase over time. This
increase is shifting from one frequency bin to another over time. The continuous
increase in the cumulated residual error gives a good indication that the observed
behavior deteriorates over time and deviates more and more from the learned
nominal behavior.

4.3 Aircraft Elevator Control System

In the last case study, we study the application of weakness monitors in the
Model Based Development (MDB) process, where the functional requirements
of the studied model are formalized in a rich temporal specification language.
We study the Aircraft Elevator Control System (AECS), a MATLAB Simulink
model of a redundant actuator control system (see Fig. 9). It has two elevators,
one on the left side and one on the right side, each equipped with two hydraulic
actuators. The actuators can position the elevator, but only one shall be active
at any point in time. There are 3 hydraulic systems that drive the 4 actuators.
In Fig. 9 we can observe the architecture of the aircraft elevator control system
, with different actuators: left outer actuator (LIO), right outer actuator (RIO),
left inner actuator (LDL) and right inner actuator (RDL), organized in 2 Primary
Flight Control Units (PFCU).

The system uses state machines to coordinate the redundancy and make
sure that it remains fail-operational at all times. To evaluate our approach, we
injected a weakness into one of the sensors in the form of a linear deterioration
of the measurement error.
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Fig. 9. Architecture of the aircraft elevator control system.
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AECS has one input, the Pilot Command, and two observable outputs, the
position of left and right actuators (as measured by the sensors). The intended
position of the aircraft required by the pilot must be achieved within a predeter-
mined time limit and with a certain accuracy. This can be captured with several
requirements. One of them says that whenever Pilot Command (PC) goes above
a threshold m, the left and the right actuator position (LEP and REP) measured
by the sensor must stabilize (become at most n units away from the command
signal) within T + t time units.

We express this type of requirements in Signal Temporal Logic (STL) [21,22].
STL is a formal specification language for describing dynamic properties of CPS.4

The following sentence in STL describes the bounded stabilization requirement
relating the pilot command and the left elevator position (the specification relat-
ing the pilot command and the right elevator position is symmetric):

always ( r i s e (PC >= m) imp l i e s ( even tua l l y [ 0 : t ] always [ 0 :T]
( abs (PC − LEP) <= n ) ) )

Given a behavior of the model and an STL formula, we can use quantitative
semantics of the logic [9] to measure how robust is the behavior with respect to
its requirement, i.e. how far it is from satisfying or violating the specification.
The robustness degree is evaluated at every point in time t and takes a value
in R ∪ {∞,−∞} – the positive (negative) robustness degree indicates that the
observed behavior satisfies (violates) the specification. In this scenario, weakness
monitoring consists in observing the evolution of robustness over time and raising
an alert when the observed behavior still satisfies the specification, but comes
close to the violation.

Fig. 10. Monitoring weaknesses in AECS: (top-left) Pilot Command (PC), (bottom-
left) Right Elevator Position (REP), (top-right) Left Elevator Position (LEP), (bottom-
right) | LEP - PC |.

Figure 10 shows the simulation results of the model with degradation of the
left sensor. We can see that in contrast to the right sensor, the measurements
from the left sensor deviate more and more from the expected reading, provid-
ing inaccurate position to the control system. As a consequence, the absolute
difference between the command and the actual position grows linearly in time,
gradually approaching the violation of the bounded stabilization specification.

4 We refer to the cited papers for the definition of STL syntax and semantics.
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5 Discussion

In this section, we discuss several important aspects of the proposed approach.

Assumptions: the major assumption that we have in our work is that the degra-
dation of the observed system grows reasonably slowly and approximately lin-
early over time. That is, the weakness monitoring approach cannot anticipate
sudden failures which are not caused by some other gradual degradations; such
failures are better handled by e.g. the redundancy-based approach. However,
there could be situations where we could detect anomalies such as vibrations
that do not grow over time, but that can cause gradual deterioration of another
system that we cannot directly observe. In that case, we would need to adapt
the data-driven approach and to simply detect deviations (in a statistical sense)
from the learned nominal behavior, instead of monitoring the trend.

Applicability: Algorithm 1 is a simple procedure that exposes the gradual dete-
riorations in the observed behaviors. The instantiation of this procedure can be
nonetheless sophisticated. It is often the case that deterioration is not directly
visible in the observed signals, and that raw signals need to be pre-processed and
transformed to a suitable domain where the negative trends can be detected.
While for some applications the intended behavior is defined by a clearly spec-
ified safety margin, in other applications there is no formal specification of
the expected behavior. In these cases, our weakness monitoring approach must
be combined with the inference of the reference (nominal) model by using for
instance machine learning methods. We illustrate the applicability of Algorithm1
by instantiating it to several automotive case studies. Since our method is based
on online linear regression of a sliding window, the selection of a proper window
size is crucial to obtain a valid result. A small window will render the method
prone to outliers and sensitive to local behavior trends. A very large window size
increases the influence of non-weak behavior on the overall evaluation, which
then introduces a delay in identifying a weakness (an alarm may be raised too
late). Choosing the right size of the time window can be part of the engineer’s
domain knowledge, but it can also be derived using statistical methods in the
data-driven approach.

Properties of Online Linear Regression: While the online linear regression algo-
rithm is attractive in terms of computational complexity, it has the potential
issue of numerical instability when (1) the number of data points on which the
regression is computed is large, and (2) the time values are high. The second
aspect can be especially problematic in our applications, where the monitor is
expected to work over very large time scales. However, this problem can be over-
come by resetting the time origin to 0 and recomputing a full linear regression
from time to time, when the time values get too large. After each time origin
resetting and the corresponding full linear regression computation, the online
linear regression proceeds as usual, benefiting from re-scaled time values.
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6 Conclusion

In this paper we proposed a methodology for detecting weaknesses based on a
simple linear model of degradation. Our approach, based on online linear regres-
sion, is resource-efficient and can be applied to real-time systems. The procedure
treats the system as a black-box and is therefore independent of its level of the
complexity. The proposed monitoring approach can play the central role in devel-
oping a fail-aware concept. We demonstrate the applicability of our approach on
three case studies from automotive and avionics domains, showing how it can be
used both at design time and during operation of the system, both in presence
and absence of specifications.
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