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Abstract. Recently, there has been much progress on improving
approximation for problems of maximizing monotone (nonsubmodular)
objective functions, and many interesting techniques have been devel-
oped to solve these problems. In this paper, we develop approximation
algorithms for maximizing a monotone function f with generic submod-
ularity ratio γ subject to certain constraints. Our first result is a simple
algorithm that gives a (1− e−γ − ε)-approximation for a cardinality con-
straint using O(n

ε
log n

ε
) queries to the function value oracle. The second

result is a new variant of the continuous greedy algorithm for a matroid
constraint. We combine the variant of continuous greedy method and
contention resolution schemes to find a solution with approximation ratio
(γ2(1 − 1

e
)2 − O(ε)), and the algorithm makes O(rnε−4log2 n

ε
) queries to

the function value oracle.

Keywords: Nonsubmodular function · Maximization · Cardinality
constraint · Matroid constraint · Approximation algorithm

1 Introduction

In these years, optimization problems involving maximization of a set function
have attracted much attention. Many combinatorial optimization problems can
be formulated as the maximization of a set function. For example, the wel-
fare maximization problem is a submodular function maximization problem.
Although submodular functions have some good properties, such as diminishing
marginal returns, and they also have important applications, many objective
functions in practical problems are not submodular. In these settings, we turn
to study the problem of maximizing nonsubmodular functions.

The problems of maximizing a submodular function subject to combinato-
rial constraints are generally NP-hard, so we turned to find approximation algo-
rithms for solving these problems. The greedy approach is a basic technique for
these problems: start from an empty set; iteratively add to the current solution
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set one element that results in the largest marginal gain of the objective function
while satisfying the constraints. Meanwhile, the continuous greedy approach is
basic technique for maximizing a submodular function under a matroid con-
straint. We should note that a continuous greedy algorithm is always combined
with some rounding methods in order to get the feasible solution, such as pipage
rounding and swap rounding.

Given a ground set N = {1, 2, ..., n}, a set function f is nonnegative if f(S) ≥
0 for any S ⊆ N . The function f is monotone if f(S) ≤ f(T ) whenever S ⊆ T .
Moreover, f is called submodular if f(S ∪ {j}) − f(S) ≥ f(T ∪ {j}) − f(T ) for
any S ⊆ T ⊆ N , j ∈ N \T . Without loss of generality, for any pair of S, T ⊆ N ,
denote by fS(T ) = f(S ∪ T )−f(S) the marginal gain of the set T in S. Specially,
denote by fS(j) = f(S ∪ {j}) − f(S) the marginal gain of the singleton set {j}
in S, for any S ⊆ N and any j ∈ N . Moreover, we assume there is a value oracle
for the function f .

In this paper, we deal with the following two optimization problems:

Problem (1): max{f(S) : |S| ≤ k, S ⊆ N}
Problem (2): max{f(S) : S ∈ I, S ⊆ N}

where f : 2N → R+ is a monotone (nonsubmodular) function, k is a positive
integer, and (N, I) is a matroid.

In the previous studies, it is proved that, when f is nonnegative, monotone
and submodular, the greedy approach yield a (1 − 1

e )-approximation for a car-
dinality constraint [14], which is also proved to be optimal [13]. After that, lots
of results obtained for maximizing a submodular function subject to different
constraints. But for nonsubmodular functions, there are only a few results. On
the purpose of using known results or methods for maximizing submodular func-
tions, one can define some parameters, such as submodularity ratio, to deal with
the maximization of nonsubmodular functions. Das and Kempe [5] first defined

the submodularity ratio γ̂ = minS,T⊆N

∑
j∈T \S fS(j)

fS(T ) , which describes how close
a function is to being submodular. Afterwards, Bian et al. [3] proved that the
greedy approach gives a 1

α (1− e−αγ̂)-approximation for maximizing a monotone
nonsubmodular function with curvature α and submodularity ratio γ̂ under a
cardinality constraint. Recently, Nong et al. [15] proposed the generic submod-
ularity ratio which is the largest scalar γ that satisfies fS(j) ≥ γfT (j), for any
S ⊆ T ⊆ N. What’s more, they showed that the greedy algorithm can achieve
a (1 − e−γ)-approximation and a γ

1+γ -approximation for maximizing a strictly
monotone nonsubmodular function with generic submodularity ratio γ under a
cardinality constraint and a matroid constraint respectively.

Continuous greedy algorithm is always combined with some rounding meth-
ods in solving the problem of maximizing a submodular function under a matroid
constraint. In the previous studies, Vondrák [17] showed that there exists a
(1−e−α)

α -approximation algorithm for any monotone submodular function with
curvature α and matroid constraints, achieving by the continuous greedy app-
roach and the pipage rounding technique [1]. Later, Badanidiyuru et al. [2] pro-
posed an accelerated continuous greedy algorithm for maximizing a monotone
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submodular function under a matroid constraint using the multilinear exten-
sion and swap rounding, and they achieved a (1 − 1

e − ε)-approximation. The
pipage rounding and swap rounding technique are effective methods, but it
depends on the submodularity of the objective function. In addition, Chekuri
et al. [4] proposed the contention resolution schemes, another framework for
rounding, and showed a (1− 1

e )-approximation for rounding a fractional solution
under a matroid constraint. Recently, Gong et al. [9] combined the continu-
ous greedy algorithm and contention resolution schemes technique to achieve a
γ(1 − e−1)(1 − e−γ − O(1))-approximation.

For nonsubmodular functions optimization, there are other research efforts in
application-driving, such as supermodular-degree [7,8], difference of submodular
functions [10,12,18], and discrete difference of convex functions [11,19].

Our Result. In this paper, our main contribution is to develop algorithms
that have both theoretical approximation guarantees, and fewer queries of the
function value oracle. We use simple decreasing threshold algorithm to solve the
problem of maximizing a nonsubmodular function under a cardinality constraint.
The following Theorem 1 implies the result in [2] for submodular functions (the
case that γ = 1 in Theorem 1). Besides, we use the continuous greedy approach
and contention resolution schemes to resolve the nonsubmodular maximizing
problem under a matroid constraint. In Theorem 2, we improves the query times
of a former result in [15], from O(n2) to O(rnε−4log2 n

ε ). Formally, we obtain
the following two theorems.

Theorem 1. There is a (1 − e−γ − ε)-approximation algorithm for maximizing
a monotone function with generic submodularity ratio γ subject to a cardinality
constraint, using O(n

ε log n
ε ) queries to the function oracle.

Theorem 2. There is a (γ2(1−e−1)2−O(ε))-approximation algorithm for max-
imizing a monotone function with generic submodularity ratio γ subject to a
matroid constraint, using O(rnε−4log2 n

ε ) queries to the function oracle.

2 Preliminary

In this section, we propose some definitions and properties that we will use in
the following of the paper.

Definition 1 (Generic Submodularity Ratio [15]).
Given a ground set N and a monotone set function f : 2N → R+, the generic
submodularity ratio of f is the largest scalar γ such that for any S ⊆ T ⊆ N
and any j ∈ N \ T, fS(j) ≥ γfT (j).

Definition 2 (The Multilinear Extension [2]).
For a function f : 2N → R+, we define the multilinear extension of f is F (x) =
E[f(R(x))], where R(x) is a random set where element i appears independently
with probability x.
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Definition 3 (Matroid [6]).
A matroid M = (N, I) can be defined as a finite N and a nonempty family
I ⊂ 2N ,called independent set, such that:
(i) A ⊂ B,B ∈ I, then A ∈ I;
(ii) A,B ∈ I, |A| ≤ |B|, then there is an element j ∈ B\A, A + j ∈ I.

Definition 4 (Matroid Polytope [9]).
Given a matroid (N, I), the matroid polytope is defined as PI = conv{1I : I ∈
I} = {x ≥ 0 : for any S ⊂ N ;

∑
j∈S xj ≤ rI(S), where rI(S) = max{|I| : I ⊂

S, I ⊂ I} is the rank function of matroid (N, I)(hereinafter called r).

Definition 5 (Contention Resolution Schemes (CR Schemes) [4]).
For any x ∈ PI and any subset A ⊂ N , a CR scheme π for PI is a removal
procedure that returns a random set πx(A) such that πx(A) ⊂ A ∩ support(x)
where support(x) = {j ∈ N |xj > 0} and πx(A) ∈ (I) with probability 1.

Afterwards, Gong et al. [9] proved that the CR schemes have a γ(1 − 1
e )-

approximation in the nonsubmodular setting, where γ is the generic submodu-
larity ratio of the objective function.

Lemma 1 (Property of the generic submodularity ratio [9]).

(a) γ ∈ [0, 1];
(b) f is submodular iff γ = 1;
(c)

∑
j∈T\S fS(j) ≥ γfS(T ), for any S, T ⊆ N

Lemma 2 ([16]).
Let M = (N, I) be a matroid, and B1, B2 ∈ B be two bases. Then there is a
bijection φ : B1 → B2 such that for every b ∈ B1, we have B1 − b + φ(b) ∈ B.

Lemma 3 ([2]). (Relative + Additive Chernoff Bound) Let X1,X2, ...,Xm be
independent random variables such that for each i, Xi ∈ [0, 1], and let X =
1
m

∑m
i=1 Xi and μ = E[X]. Then

Pr[X > (1 + α)μ + β] ≤ e− mαβ
3 ,

and
Pr[X < (1 − α)μ − β] ≤ e− mαβ

2 .

Note that the generic submodularity ratio of a strictly monotone function
is greater than 0. In the following of the paper, we consider the problem of
maximizing a nonnegative strictly monotone and normalized set function under
certain constraints.
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Algorithm 1. Simple Decreasing Threshold Algorithm
Input: f : 2N → R+, k ∈ {1, 2, ..., n}.
Output: A set S ⊂ N satisfying |S| ≤ k.
1: S ← ∅;
2: d ← maxj∈Nf(j);
3: for (w = d

γ
; w ≥ εd

nγ
; w ← 1−ε

γ
w) do

4: for all i ∈ N do
5: if |S ∪ {j}| ≤ k and fS(j) ≥ w then
6: S ← S ∪ {j}
7: end if
8: end for
9: end for

10: return S

3 Cardinality Constraint

First we present a simple algorithm, Algorithm 1, for Problem (1): max{f(S) :
|S| ≤ k, S ⊆ N}, where f is a monotone function with generic submodularity
ratio γ. Our goal is to develop an algorithm that have both theoretical approxi-
mation guarantee, and fewer queries of function value oracle.

Next we prove Theorem 1. Firstly, we check the number of queries of Algo-
rithm 1. Obviously, there are two loops in Algorithm 1. Each inner loop executes
n queries of value oracle. According to the termination condition of the outer
loop, we get the query numbers of per outer loop is O(1ε log n

ε ). Therefore the
algorithm using O(n

ε log n
ε ) queries of the value oracle. For the approximation

ratio, it is necessary to prove the following claim.

Claim 1. Let O be an optimal solution. Given a current solution S at the
beginning of each iteration, the gain of the element added to S is at least
1−ε
k

∑
a∈O\S fS(a).

Proof. Suppose that the next element chosen is a and the current threshold value
is w. Then it implies the following inequalities

{
fS(x) ≥ w, if x = a;
fS(x) ≤ w

1−ε , if x ∈ O \ S ∪ {a}.

The above inequalities imply that fS(a) ≥ (1 − ε)fS(x) for each x ∈ O\(S ∪
{a}). Taking an average over these inequations, we have

fS(a) ≥ 1 − ε

|O\S|
∑

x∈O\S

fS(x) ≥ 1 − ε

k

∑

x∈O\S

fS(x).

Now we finish the proof of Claim 1. 
�
Then it is straightforward to finish the proof of Theorem 1.
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Proof. Consider on a solution Si = {a1, a2, ..., ai}. After i steps, by Claim 1, we
have

fSi
(ai+1) ≥ 1 − ε

k

∑

a∈O\Si

fSi
(a).

Then ∑

a∈O\Si

fSi
(a) ≥ γfSi

(O) ≥ γ(f(O) − f(Si)).

Therefore,

f(Si+1) − f(Si) = fSi
(a + 1) ≥ 1 − ε

k
γ(f(O) − f(Si)).

We have

f(Sk) ≥ (1 − (1 − (1 − ε)γ
k

)k)f(O)

≥ (1 − e−γ(1−ε))f(O)

≥ (1 − e−γ − ε)f(O).

So we complete the proof of Theorem 1. 
�

4 Matroid Constraint

In this section we give a (γ2(1− 1
e )2 −O(ε))-approximation algorithm for Prob-

lem (2): max{f(S) : S ∈ I, S ⊆ N}, where f is a monotone function with
generic submodularity ratio γ, using O(rnε−4log2 n

ε ) queries to the value oracle.
The general outline of our algorithm follows from the continuous greedy algo-
rithm in [2]. With a fractional solution being built up gradually from x = 0, and
finally using the contention resolution schemes from [4] to convert the fractional
solution to an integer one.

Notation. In the following, for x ∈ [0, 1]N , we denote by R(x) a random set
that contains each element i ∈ N independently with probability xi. We denote
R(x+ ε1S) as R(x, S). Before we analyse the approximation of Algorithm 2, we
give and analyse a subroutine, which is used in Algorithm 2. This subroutine
takes a current fractional solution x and adds to it an increment corresponding
to an independent set B, to obtain x+ ε1B . The way we find B in Algorithm 3
is similar to that in Algorithm 1.

Claim 2. Let O be an optimal solution. Given a fractional solution x, Algorithm
3 produces a new fractional solution x′ = x + ε1B such that

F (x′) − F (x) ≥ ε(γ(1 − ε) − 2ε

γ
)f(O) − F (x′).



210 B. Liu and M. Hu

Algorithm 2. Revised Continuous Greedy Algorithm
Input: f : 2N → R+, I ⊆ 2N .
Output: A set S ⊆ N satisfying S ∈ I.
1: x ← 0;
2: for (t ← ε; t ≤ 1; t ← t + ε) do
3: B ← the output of Algorithm 3
4: x ← x + ε1B

5: end for
6: S ← contention resolution schemes (x, I)
7: return S

Algorithm 3. Decreasing Threshold procedure
Input: f : 2N → R+, x ∈ [0, 1]N , ε ∈ [0, 1], I ⊆ 2N .
Output: A set B ⊂ N satisfying B ∈ I
1: B ← ∅;
2: d ← maxj∈Nf(j);
3: for (w = d

γ
; w ≥ εd

rγ
; w ← 1−ε

γ
w) do

4: for all e ∈ N do
5: we(B,x) ← estimate of E[fR(x+ε1B)(e)] by averaging rlogn

ε2
random samples.

6: if B ∪ {e} ∈ I and we(B,x) ≥ w then
7: B ← B ∪ {e}
8: end if
9: end for

10: end for
11: return B

Proof. Suppose that Algorithm3 returns r elements, B = {b1, b2, ..., br}(indexed
in the order in which they were chosen). In fact, Algorithm 3 might return fewer
than r elements if the threshold w drops below εd

r before termination. In this
case, we formally add dummy elements of value 0 so that |B| = r.

Let O = {o1, o2, ..., or} be an optimal solution, with φ(bi) = oi as specified
by Lemma 2. Additionally, let Bi denote the first i elements of B, and let Oi

denote the first i elements of O.
Note that by Lemma 3, we get that there is an error while using we(Bi,x) to

estimate E[fR(x,Bi)(e)], with high probability we have the following inequality

|we(Bi,x) − E[fR(x,Bi)(e)]| ≤ εf(O)
γr

+ εE[fR(x,Bi)(e)]. (1)

When an element bi is chosen, oi is a candidate element which could have
been chosen instead of bi. Thus, according to Algorithm 3, and because either
oi is a potential candidate of value within a factor of 1 − ε of the element we
chose instead, or the algorithm terminated and all remaining elements have value
below εd

γr , we have

wbi
(Bi−1,x) ≥ (1 − ε)woi

(Bi−1,x) − εd

γr
. (2)



Fast Algorithms for Maximizing Monotone Nonsubmodular Functions 211

Combining (1) and (2), and the fact that f(O) ≥ d, we have

E[fR(x,Bi−1)(bi)] ≥ (1 − ε)E[fR(x,Bi−1)(oi)] − 2
εf(O)

γr
. (3)

Then at each step in Algorithm 2:

F (x′) − F (x) = F (x + ε1B) − F (x)

=
r∑

i=1

(F (x + ε1Bi
) − F (x + ε1Bi−1))

=
r∑

i=1

ε
∂F

∂xbi

∣
∣
∣
x+ε1Bi−1

≥
r∑

i=1

εE[fx+ε1Bi−1 )
(bi)]

≥
r∑

i=1

ε((1 − ε)E[fx+ε1Bi−1 )
(oi)] − 2

εf(O)
γr

)

≥
r∑

i=1

ε((1 − ε)γE[fR(x+ε1B∪{o1,o2,...,oi−1})(oi)] − 2
εf(O)

γr
)

= ε((1 − ε)γE[f(R(x′) ∪ O) − f(R(x′))] − 2
εf(O)

γ

≥ (γε(1 − ε) − 2ε2

γ
)f(O) − εF (x′)

= ε((γ(1 − ε) − 2ε

γ
)f(O) − F (x′)).

The second inequality follows from that oi is a candidate element when bi is
chosen. The first and last inequalities are due to monotonicity, and the third
inequality is due to the definition of generic submodularity ratio γ. 
�
Claim 3. Algorithm 3 makes O( 1

ε3 nrlog2 n
ε ) queries to the function oracle.

Proof. Obviously, there are two loops in Algorithm 3. According to the termi-
nation condition of the outer loop, we get the query numbers of per outer loop
is O(1ε log n

ε ). The number of iterations in the inner loop is n, and the number of
samples per evaluation of F is 1

ε2 rlogn in per inner loop. Therefore, Algorithm
3 makes O( 1

ε3 nrlog2 n
ε ) queries to the value oracle. 
�

Claim 4. Algorithm 2 has an approximation ratio of γ2(1 − 1
e )2 − O(ε).

Proof. Define Ω = (γ(1 − ε) − 2ε
γ )f(O). Substituting this in the result of Claim

2, we have
F (x(t + ε)) − F (x(t)) ≥ ε(Ω − F (x(t + ε))).
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Add Ω − F (x(t + ε)) to the inequation we have

Ω − F (x(t + ε)) ≤ Ω − F (x(t))
1 + ε

.

Using induction to this inequation, we have

Ω − F (x(t)) ≤ Ω

(1 + ε)
t
ε

.

Substituting t = 1 and rewriting the inequation, we have

F (x(t)) ≥ (1 − 1
(1 + ε)

1
ε

)Ω

= (1 − 1
(1 + ε)

1
ε

)(γ(1 − ε) − 2ε

γ
)

≥ γ(1 − 1
e
) − O(ε).

Besides, when we use CR schemes to convert the fractional solution to the
integer one, there also have an approximation ratio which is γ(1 − 1

e ).
Therefore, the approximation ratio of Algorithm 2 is γ2(1 − 1

e )2 − O(ε). 
�
Claim 5. Algorithm 2 makes O( 1

ε4 nrlog2 n
ε ) queries to the function oracle.

Proof. Observe that in Algorithm 2, the queries to the function oracle is only
related to Algorithm 3. Therefore the total number of oracle calls to the func-
tion is equal to the number of the loop multiplied with the number of oracle
calls in one iteration. So we get the queries to the function oracle are at most
O( 1

ε4 nrlog2 n
ε ). 
�
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