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Preface

The 14th International Conference on Algorithmic Aspects in Information and Man-
agement (AAIM 2020), was held online during August 10–12, 2020. The conference
was held virtually due to the COVID-19 pandemic.

The AAIM conference series, which started in 2005 in Xi’an, China, aims to
stimulate various fields for which algorithmics has become a crucial enabler, and to
strengthen the ties of various research communities of algorithmics and applications.
AAIM 2020 seeks to address emerging and important algorithmic problems by
focusing on the fundamental background, theoretical technological development, and
real-world applications associated with information and management analysis, mod-
eling and data mining. Special considerations are given to algorithmic research that was
motivated by real-world applications.

We would like to thank the two eminent keynote speakers, Rolf H. Möhring from
Technische Universität Berlin, Germany, and Chandra Chekuri from University of
Illinois, Urbana-Champaign, USA, for their contributions to the conference.

We would like to express our appreciation to all members of the Program
Committee and the external referees whose efforts enabled us to achieve a high sci-
entific standard for the proceedings. We would also like to thank all members of the
Organizing Committee for their assistance and contribution which attributed to the
success of the conference. Particularly, we would like to thank Alfred Hofmann, Celine
Lanlan Chang, Anna Kramer, and their colleagues at Springer for meticulously sup-
porting us in the timely production of this volume. Last but not least, our special thanks
go to all the authors and participants for their contributions to the success of this event.

July 2020 Zhao Zhang
Wei Li

Ding-Zhu Du
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Polynomial-Time Algorithms for the
Touring Rays and Related Problems

Xuehou Tan(B)

Tokai University, 4-1-1 Kitakaname, Hiratsuka 259-1292, Japan
tan@wing.ncc.u-tokai.ac.jp

Abstract. The touring rays problem, which is also known as the travel-
ing salesman problem for rays in the plane, asks to compute the shortest
(closed) route that tours or intersects n given rays. We show that it
can be reduced to the problem of computing a shortest route that inter-
sects a set of ray-segments, inside a circle; at least one endpoint of every
ray-segment is on the circle. Moreover, computing the shortest route
intersecting all ray-segments in the circle is related to the solution of the
well-known watchman route problem. Our method is further extended to
solve the minimum-perimeter intersecting polygon problem, which asks
for a (convex) polygon P of minimum perimeter such that P contains
at least one point of every given line segment. Both of our algorithms
run in O(n5) time, and they solve two long-standing open problems in
computational geometry.

1 Introduction

Shortest paths are of fundamental importance in computational geometry,
robotics and autonomous navigation [6]. For a given set of points, the Euclidean
Traveling Salesman Problem (TSP) asks for a shortest route (closed curve) that
visits each given point. An interesting variant of the problem, called the Trav-
eling Salesman Problem with neighborhoods (TSPN), deals with a given set of
the (possibly disconnected) regions; the tour is asked to visit at least one point
of each region. Since the Euclidean TSP is NP -hard, TSPN is NP -hard, too.

Although TSPN is NP -hard, an interesting result is that the Traveling Sales-
man Problem for n lines in the plane can be solved in polynomial time. Jonsson
[7] showed that it can be reduced to the watchman route problem, which asks for
a shortest route that can see all points of a simple polygon P and can be solved
in O(n4) time [10]. A data structure, called the last step shortest path maps, has
been developed to solve the watchman route and related problems [3,10].

The polynomial-time result on the TSP for lines is due to the fact that
all neighborhoods (lines) are unbounded. It is then natural to ask whether the
Traveling Salesman Problem for n rays can be solved in polynomial time [4,7].
A ray (half-line) is described by a source point (or an origin) and a direction,

This work was partially supported by JSPS KAKENHI Grant Number 15K00023 and
20K11683.

c© Springer Nature Switzerland AG 2020
Z. Zhang et al. (Eds.): AAIM 2020, LNCS 12290, pp. 1–12, 2020.
https://doi.org/10.1007/978-3-030-57602-8_1
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2 X. Tan

from which the ray emanates. This problem stands open for a long time, while
a linear-time 1.28-approximation algorithm has been reported [4]. As in [3], a
route that intersects n rays is called a touring route for given rays, see Fig. 1.

OPT (R)

C

Fig. 1. A shortest touring tour for six rays.

A related problem, called the minimum-perimeter intersecting polygon prob-
lem (MPIP), has also been studied in the literature [5,8]. For a given set S
of line segments in the plane, it asks for a polygon P of minimum perimeter
such that P contains at least one point of every line segment in S. Rappaport
[8] has given an O(n log n) time algorithm for MPIP when the input segments
are restricted to have a constant number of orientations, but the running time
becomes exponential when segments are arbitrarily oriented.

In this paper, we present the polynomial-time algorithms for the TSP for
rays in the plane and the problem MPIP. Our results solve two long-standing
open problems in computational geometry. Section 2 first reduces the TSP for
rays in the plane to that of computing a shortest route that intersects a set of
ray-segments inside a circle; at least one endpoint of every ray-segment is on
the circle, and then shows that computing the shortest route visiting all ray-
segments in the circle is related to the solution of the watchman route problem
or the TSP for lines in the plane. Section 3 presents an O(n5) time algorithm
for computing a shortest route that intersects all ray-segments inside the circle,
by employing a simplified version of the last step shortest path maps. Section 4
further describes an O(n5) time solution to the problem MPIP.

2 Shortest Touring Routes for Rays in the Plane

Let R be the set of n given rays in the plane. Denote by OPT (R) a shortest
route that intersects or visits all rays.

Lemma 1. (see [7]) OPT (R) consists of straight line segments, and it is convex.

Assume that the given rays are not all parallel; otherwise, OPT (R) can be
found in O(n log n) time (see the proof of Theorem 3). Denote by C the smallest
enclosing circle of the origins of all rays and the intersection points among the
lines through given rays, see Fig. 1. Then, OPT (R) is contained in C.
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Lemma 2. Suppose that the given rays are not all parallel. Then, OPT (R) is
contained in C.

Proof. Omitted in this extended abstract (see also [7, Lemma 2.3]). ��

Denote by S the set of the line segments obtained by cutting off the portions
of all rays, which are outside of C. Every segment of S clearly has at least one
endpoint on the boundary of C, and is thus called a ray-segment of C. Under the
assumption made in Lemma 2, OPT (R) is identical to OPT (S). In the following,
we focus on how to compute OPT (S) in C.

2.1 A Restricted Traveling Salesman Problem for Rays

Let us consider a restricted version of the TSP for rays, in which the touring
route starts at a given point s on C. For a ray-segment R ∈ S, denote by B the
line segment containing R, whose two endpoints are on C. (If the origin of R is
also on C, then R is identical to B.) Then, segment B partitions the interior of
C into two regions, each including B itself. We call the region not containing s,
the pocket of ray-segment R. For the instance of Fig. 2, pocket P8 is shaded.1

Let OPTs(S) be an optimum route that starts at point s and visits all
ray-segments in C. Denote by P1, P2, . . . Pn the sequence of pockets, which are
encountered by a clockwise scan of C, starting at s. Denote by R(Pi) the ray-
segment defining Pi, and B(Pi) (⊇ R(Pi)) the bounding line segment of Pi.2 A
pocket Pi is visited by OPTs(S) if at least one point of Pi is on route OPTs(S).
We say OPTs(S) visits first Pi and then Pj , 1 ≤ i < j ≤ n, if the portion of
OPTs(S) from some visiting point of Pi to the ending point s goes through Pj .
For the instance of Fig. 2, route OPTs(S) visits P1, P2, . . . , P8 in order.

s

P1

P3

P4

C

P5
P6

P7

P8

OPTs(S)

P2

Fig. 2. An instance of OPTs(S).

Lemma 3. OPTs(S) visits P1, P2, . . . Pn in this order.
1 The circle C in Figs. 2, 4 and 5 is not drawn exactly, as it only shows an efficiently

large region that contains OPTs(S).
2 Although the order of pockets is defined, no order of ray-segments is specified.
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Proof. It follows from the definitions of OPTs(S) and pockets [3,10]. ��
We say that OPTs(S) makes a reflection contact with a ray-segment R if it

never enters the interior of the pocket of R; otherwise, OPTs(S) makes a crossing
contact with R. As noted in [3], the local optimality of OPTs(S) is equivalent
to its global optimality. That is, a route is optimum (OPTs(S)) if and only if
its contact point c with every ray-segment R is locally optimal. We can further
distinguish the following contacts of OPTs(S) with R at point c.

R
R

R R

(a) (b)

(c)

c c

c
c R

a

a′

OPTs(S)
OPTs(S)

OPTs(S) OPTs(S)
OPTs(S)

R

OPTs(S)

c

c
R′

R′

α

Fig. 3. Types of contact of OPTs(S) with a ray-segment R.

1. Crossing contacts: Except for the requirement that OPTs(S) enter the pocket
of R, a line segment of OPTs(S) passes R through an interior point c, or two
line segments of OPTs(S) have the origin c of R as their common endpoint
and the interior angle α between them, which does not enclose R, is less than
π. See Fig. 3(a).

2. Perfect reflection contacts: OPTs(S) reflects on R at point c such that the
incoming angle of OPTs(S) with R is equal to the outgoing angle. See
Fig. 3(b). Generally, c is not the origin of R nor an intersection point of
R with some other ray-segment.

3. Bending contacts: It is a special case that OPTs(S) makes an imperfect reflec-
tion on R at its origin c or the intersection point c of R with another ray-
segment R′. See Fig. 3(c). (From the optimality of OPTs(S), a slight move-
ment or change of c on R or R′ makes a longer touring route.) OPTs(S)
may even overlap with a portion of R, because bending contacts occur at two
endpoints of the overlapped portion of R, see Fig. 3(c).

Note that a route visiting all pockets P1, P2, . . . , Pn may not intersect all ray-
segments, because it may just pass through the segments extended from some
ray-segments. How to overcome this difficulty is a major issue of our work.

3 The TSP for Rays in the Plane

In this section, we first present an O(n4) time algorithm for the restricted TSP
for n rays. A known data structure, called the last step shortest path maps [3],
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is used to give a solution to the restricted TSP for rays. Next, we show how to
remove the restriction of a given starting point; it requires to increase the time
complexity of the algorithm by a factor of n.

3.1 A Solution of the Restricted TSP for Rays

A touring route W is said to be adjustable on a ray-segment R if the contact
point of W with R can be moved on R to get a shorter touring route. If W is
adjustable on only one ray-segment, we say that W is one-place-adjustable; in
this case, the only possible adjustment to W directs to the portion of R, with
which optimum touring routes make contacts. Similar to the previous work on
the watchman route problem [9], we have the following result.

Lemma 4. The shortest touring route, which passes through s and intersects n
given ray-segments in C, is unique.

Proof. Omitted in this extended abstract (and see also [9]). ��

The structure of last step shortest path maps was originally presented to solve
the touring polygons problem for a sequence of possibly intersecting convex poly-
gons in the plane (and the watchman route problem as well) [3]. As pointed out
in Sect. 2, the shortest route visiting all convex regions (pockets) P1, P2, . . . , Pn

may not intersect all ray-segments.

s

P1

P3

P4

C

P5
P6

P7

P8

POPTs(S)

s

P1

P3

P4

C

P5
P6

P7

P8

POPTs(S ′)

H

(a) (b)

P2 P2

s

P1

P3

P4

C

P5
P6

P7

P8

POPTs(S)

s

P1

P3

P4

C

P5
P6

P7

P8

POPTs(S ′)

H

(a) (b)

P2 P2

Fig. 4. Routes POPTs(S), H and POPTs(S ′).

The above difficulty can be overcome as follows: First, we require that if the
shortest touring route does not enter the interior of a pocket Pi, then it should
reflect on its ray-segment R(Pi). By placing this restriction in the construction
of the last step shortest path maps, we can find a new type of shortest touring
route for P1, P2, . . . , Pn, denoted by POPTs(S). Still, some ray-segments, whose
pockets are crossed by POPTs(S), may not be visited by POPTs(S). We call
POPTs(S) the shortest pseudo-touring route for all ray-segments, see Fig. 4(a).
By an argument similar to that given for Lemma 4, we also have:

Lemma 5. Route POPTs(S) is unique.



6 X. Tan

Consider now the situation in which some ray-segments are not visited by
POPTs(S). Denote by H the convex hull of the vertices of polygon POPTs(S)
and the origins whose ray-segments are not visited by POPTs(S). So, H is a
touring route for all ray-segments, see Fig. 4(a).

Lemma 6. Let R be a ray-segment, with origin p on H, such that it is not
visited by POPTs(S). Then, OPTs(S) makes a crossing contact with R.

Proof. Let S1 be the set of the ray-segments whose endpoints are on the arc
of C from s to the endpoint of R on C clockwise, and let S2 be the set of rest
ray-segments. Assume that R does not belong to S1 nor S2. Then, one can
consider the following two subproblems: One is asked to start at s, end at p and
visit all ray-segments of S1. And, the other starts at p, ends at s and visits all
ray-segments of S2. As shown in the proof of Lemma 4, the solution to either
subproblem is unique. Denote by OPTs,p(S1) and OPTp,s(S2) the optimum
touring paths obtained for two subproblems, respectively. Let U be the union of
OPTs,p(S1) and OPTp,s(S2). Then, U is a touring route for all ray-segments.

We claim that U makes a crossing contact with R at point p. Assume by
contradiction that U makes a reflection contact with R. Then, OPTs,p(Si) does
not enter the pocket of R. Thus, no ray-segment of Si, i = 1 or 2, is wholly
contained in the pocket of R. So, we can compute the shortest pseudo-touring
path POPTs,p(Si) for all ray-segments of Si. Clearly, POPTs,p(Si) needn’t enter
the pocket of R. Let PUp be the union of POPTs,p(S1) and POPTp,s(S2). Then,
PUp makes a reflection contact with R and is a pseudo-touring route for all ray-
segments of S. Clearly, PUp is either non-adjustable or one-place-adjustable. In
the former case, PUp gives the other shortest pseudo-touring route starting at s,
a contradiction (Lemma 5). In the latter case, there is an unique point q on R
(q �= p) such that the route PUq reflecting on R at point q is optimum (Lemma
5). Again, a contradiction occurs. Our claim is thus proved.

From the above claim, if the interior angle of the polygon, bounded by U , at
vertex p is no more than π, the crossing contact of U with R at point p is locally
optimal. From the optimality of OPTs,p(S1) and OPTp,s(S2), route U is just
OPTs(S). Thus, the lemma follows. If the interior angle at vertex p is strictly
larger than π, then U is adjustable only on R, i.e., U is one-place-adjustable. This
only possible adjustment to U implies that OPTs(S) makes a crossing contact
with R. The lemma follows, too. ��

Lemma 6 tells us that OPTs(S) does not pass through the line segment sp.
So, OPTs(S) can be computed in the difference region between C and sp (i.e., C
−sp). To obtain OPTs(S), it may require to repeatedly perform the procedure
of finding the origin p a few times.

3.2 The Algorithm

A simplified version of the last step shortest path maps can be used to compute
route POPTs(S). We call a path from s to a point of R(Pi) (1 ≤ i ≤ n), a
partial touring path, if it visits in order each of P1, . . ., Pi−1, and reflects only on
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ray-segments. The intersection points between all pairs of ray-segments, which
can be found in O(n2) time, are needed in computing the shortest partial touring
paths to the points on R(Pi). We call two endpoints of a ray-segment R as well
as the intersection points of R with other ray-segments, the artificial vertices of
R. The portion of R between two consecutive vertices is called a fragment of R.

The last step shortest path map of Pi or B(Pi), denoted by Mi, is defined
as a subdivision of circle C into the regions such that the last steps of shortest
partial touring paths to all points (which are points of B(Pi+1) in the following
use) in a region are combinatorially equivalent, i.e., they make the same types
of contacts with B(Pi) [3]. From the definition of crossing contacts, the crossing
region of B(Pi) is just its pocket Pi. For a fragment f of R(Pi), its reflection
region contains all the points to which the shortest partial touring paths make
the last reflection contact with f . The reflection region of f is unbounded and
three-sided. The bending region of a vertex v of R(Pi) contains all the points to
which the shortest partial touring paths lastly bend at v. The bending region of
v is a cone or triangular region with the apex at v.

Lemma 7. A data structure of O(n2) size can be built in time O(n3) such that
POPTs(S) can be reported in time O(n2).

Proof. Omitted in this extended abstract (and see also [10]). ��

We can now give the first result of this paper.

Theorem 1. The restricted TSP problem for n rays can be solved in O(n4)
time.

Proof. First, compute in O(n3) time route POPTs(S) (Lemma 7). If
POPTs(S) happens to visit all ray-segments, then it gives OPTs(S) and we
are done. Otherwise, compute the convex hull H, as described in Sect. 3.1.
Let p1, p2, . . . , pk be the origins on H, whose ray-segments are not visited by
POPTs(S). Delete from S the ray-segments having origins p1, p2, . . . , pk, and
denote by S ′ the resulting set of ray-segments. Also, delete from C the convex
region with vertices s, p1, p2, . . . , pk, and denote by C′ the resulting region. (C′

can still be considered as a simple polygon.) Since OPTs(S) makes crossing
contacts with the ray-segments having origins p1, p2, . . . , pk (Lemma 6), it is
outside of the convex region with vertices s, p1, p2, . . . , pk. Hence, OPTs(S) can
be obtained by computing OPTs(S ′) inside C′ (Fig. 4(b)). This procedure can
repeatedly be performed, until OPTs(S) is obtained. Since the total number
of the ray-segments, which can be deleted from S, is less than n, the theorem
follows. ��

3.3 Removing the Restriction of a Given Starting Point

The idea of removing the restriction of a given starting point follows from that
for solving the watchman route problem without giving any starting point [9].
First, compute a special route OPTs(S) such that s is an artificial vertex of some
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ray-segment A, whose pocket does not wholly contain any other ray-segment.
Since a slight movement of s to one of its incident fragments on A may produce
a shorter touring route, the adjustment to OPTs(S) is then defined. Next, we
show that OPT (S) is unique, except for very special cases where there is an
infinite number of shortest touring routes of equal length. Finally, by noticing
the fact that OPTs(S) is adjustable only on A, OPT (S) can be obtained by
computing and adjusting routes OPTs(S) at most O(n) times [9]. (Note that A
may change to some other ray-segments in the whole process.)

Assume below that the origins of some ray-segments are not on C; otherwise,
the solution for OPT (S) has been known, see [7,9]. First, we find the convex
hull K of the ray-segments’ origins, which are not on C. If K happens to make
crossing contacts with all ray-segments, then all crossing contacts are locally
optimal. Hence, K is just OPT (S), and we are done.

Two other situations are the followings: K visits all ray-segments but makes a
reflection contact with at least one ray-segment, or some ray-segments are wholly
outside of K and thus their two endpoints are on C. In either case, there is a ray-
segment A such that its pocket does not wholly contain any other ray-segment.
Consider now the touring routes that are forced to reflect on A at an artificial
vertex s. So, OPTs(S) is contained in the difference region between C and the
pocket of A. Still, OPTs(S) can be computed using the algorithm described in
Sect. 3.2. Note that if point s is allowed to float on A, then a shorter touring
route can be obtained.

Figure 5 shows four types of adjustments to OPTs(S) on ray-segment A.
The incoming angle of OPTs(S) with A is assumed to be smaller than the
outgoing angle. A possible shorter touring route Rnew is also shown in Fig. 5.
The adjustment to OPTs(S) involves a change of point s to a starting fragment
incident to s, with which the new route Rnew makes a reflection contact. It takes
O(n) time to perform such an adjustment to OPTs(S) [1,2,9].

Rnew
OPTs(S)

Rnew

OPTs(S)

Rnew
OPTs(S)

A A

A

s s

s

(a) (b)

(c)

A
OPTs(S)

Rnew

(d)

s

Fig. 5. Four types of adjustments to OPTs(S) on ray-segment A.
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Theorem 2. There is a unique non-adjustable touring route for n given rays,
except for very special cases where there is an infinite number of non-adjustable
routes of equal length.

Proof. If K happens to give OPT (S), then the theorem follows. Otherwise,
OPT (S) has to make the reflection contacts with some ray-segments A such
that the pocket of A does not wholly contain any other ray-segment. As in [9,
Lemma 4], one can show that the length function of shortest touring routes
reflecting on A is monotone. The theorem can then be proved by an argument
similar to that given in the proof of [9, Theorem 1]. ��

We can now give our algorithm for computing a shortest touring route for n
rays in the plane. If K happens to give OPT (S), then we are done. Otherwise,
find a ray-segment A as described above. Let OPTs(S) be the shortest touring
route forced to reflect on A, at a vertex s of A. If OPTs(S) is not adjustable at
point s, then it is OPT (S) (Theorem 2). Otherwise, an adjustment shown in
Fig. 5 is made to OPTs(S). If the obtained route Rnew is non-adjustable, then it
is the overall shortest touring route (Theorem 2) and we are done. Otherwise,
Rnew is adjustable on at least one ray-segment B at a vertex p such that the
pocket of B (it may be differ from A) does not wholly contain any other ray-
segment. Next, we compute the shortest touring route OPTp(S), which reflects
on B at point p. The overall shortest touring route for all ray-segments can be
obtained by performing this process repeatedly, until a non-adjustable route is
found. As shown in [9], the total number of required adjustments is O(n). So,
the number of shortest (fixed) touring routes, which are computed in the whole
process, is O(n). The time taken to compute OPT (S) is thus O(n5).

Theorem 3. The TSP for n rays in the plane can be solved in O(n5) time.

Proof. If the given rays are all parallel and a line segment perpendicular to the
rays intersects all rays, then OPT (R) can be computed in linear time. Otherwise,
assume that all rays are vertical. Let [y1, y2] be the minimum y-interval such that
all rays have a non-empty intersection with [y1, y2]. Denote by x1 and x2 the
minimal and maximal x-coordinates among all rays, respectively. It is then easy
to see that OPT (R) is contained in the rectangle with vertices (x1, y1), (x1, y2),
(x2, y1) and (x2, y2). Thus, OPT (R) can be computed in O(n log n) time [8].

In the case that the given rays are not all parallel, as described above, an
overall shortest touring route can be computed in O(n5) time. ��

4 An Application to the Problem MPIP

Our algorithm for the TSP for rays in the plane can be used to solve the problem
MPIP. For a given set S of n target (line) segments in the plane, a polygon P
is an intersecting polygon of S if every segment in S intersects the interior or
the boundary of P , or equivalently, P contains at least one point of every target
segment. The minimum-perimeter intersecting polygon problem then asks for an
intersecting (convex) polygon MPIP (S) of minimum perimeter.
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Denote by C(S) the convex hull of all endpoints of target segments of S.
Assume that both endpoints of some segments lie in the interior of C(S); other-
wise, the algorithm presented in Sect. 3 can be used to give a solution.

Observation 1. For a given set S of target segments in the plane, polygon
MPIP (S) is contained in C(S).

As in Sect. 3, we first consider a restricted minimum-perimeter intersecting
polygon of S, which has a starting vertex s on C(S). For a segment T ∈ S,
denote by ET the line segment containing T , whose two endpoints are on C(S).
Then, ET partitions the interior of C(S) into two regions. Also, we call the
region not containing s the pocket of T . Denote by P1, P2, . . . Pn the sequence
of pockets, which are encountered by a clockwise scan of C(S), starting at s.
Denote by Ps(S) an optimum solution to the restricted problem MPIP. Again,
Ps(S) visits all pockets in the order they appear on the boundary of C(S), and
it is unique.

To compute Ps(S), we first find the minimum-perimeter pseudo-intersecting
polygon PPs(S) such that it intersects all pockets, and if PPs(S) makes a reflec-
tion contact with the bounding segment of pocket Pi (1 ≤ i ≤ n), then it reflects
on the target segment defining Pi.

Lemma 8. For a point s on C(S), polygon PPs(S) can be found in O(n3) time.

Proof. As in Sect. 3, the last step shortest path map can be used to compute
PPs(S). Since both endpoints of a target segment T may be in the interior of
C(S), the last step shortest path map for the pocket of T may have two bending
regions at its endpoints. This minor difference between the last step shortest
path maps used for the TSP for rays and for the problem MPIP can easily be
dealt with. Hence, PPs(S) can be computed in O(n3) time, too. ��

Again, some target segments may wholly be outside of PPs(S), because
PPs(S) is allowed to pass through their pockets by going across the segments
extended from them (see Fig. 6(a)). Denote by T the set of target segments,
which are outside of the region bounded by PPs. For the instance of Fig. 6, T
consists of four target segments, whose pockets are P1, P2, P4 and P5. Assume
also that T is not empty; otherwise, PPs(S) is just Ps(S).

We are going to construct an initial intersecting polygon of S, which plays
the same role as H in Sect. 3.1. Let V be the set of segments’ endpoints, which
are not on C(S) and whose segments belong to T . Denote by L the convex hull
of all vertices of PPs(S) and all points of V, see Fig. 6(b).

Lemma 9. No target segment T in T can be an edge of L.

Proof. Omitted in this extended abstract. ��

From the above lemma, there may exist a segment T ∈ T such that one
endpoint a of T is on L and the other endpoint lies in the interior of L. If such
an endpoint a exists, we delete a from V and recompute the new convex hull
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Fig. 6. Illustrating PPs(S), L and IPs(S).

of PPs(S) and V. The operation of deleting a from V is repeatedly performed,
until no endpoint a exists. Denote by IPs(S) the resulting convex hull. Clearly,
IPs(S) is an intersecting polygon of S, see Fig. 6(b). Since only one endpoint of a
target segment in T needs be deleted from V, polygon IPs(S) can be computed,
say, simply in O(n2 log n) time. Then, we have the following results.

Lemma 10. Suppose that segment T is wholly outside of PPs(S) and an end-
point p of T is on IPs(S). Then, Ps(S) makes a crossing contact with T or
wholly contains T .

Proof. From the construction of IPs(S), the other endpoint of T is not con-
tained in IPs(S). Let Q be the polygonal region bounded by segment sp and the
portion of IPs(S) from s to p. Denote by S1 the set of target segments, which
are intersected by region Q, including T itself. Let S2 be the set of rest segments.
(So, S1∩ S2 = φ and S1∪ S2 = S.) By an argument analogous to that given in
the proof of Lemma 6, we can then show that Ps(S) makes a crossing contact
with T or wholly contains T ; the containment of T in Ps(S) may occur in the
case that the interior angle of the polygon bounded by the route U , as described
in the proof of Lemma 6, at vertex p is strictly larger than π. ��

Lemma 11. The polygon Ps(S) can be computed in O(n4) time.

Proof. If no segment T described in Lemma 10 exists, then IPs(S) is just
Ps(S). Otherwise, the lemma follows from Lemmas 8 and 10; the case of the
containment of segments in Ps(S) does not affect our algorithm at all. ��

As in Sect. 3.3, a general solution to the problem MPIP can be obtained by
removing the restriction of a given starting point. Denote by K the convex hull
of the segments’ endpoints, which are not on C(S). If K contains at least one
point of every target segment of S and the contacts with the target segments,
excluding those which are wholly contained in K, are all crossing, then it is just
the minimum-perimeter intersecting polygon of S and we are done.

Again, two other situations are that K makes a reflection contact with at least
one target segment, or some segments are wholly outside of K and thus their two
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endpoints are on C(S). In either case, there is a target segment A such that the
pocket of A does not wholly contain any other segment. As in Sect. 3.3, we then
consider the intersecting polygons of S such that they are forced to reflect on A
at an artificial vertex s. So, Ps(S) is computed in the difference region between
C(S) and the pocket of A. Polygon Ps(S) is said to be adjustable if the starting
point s can be moved on A so as to get a smaller-perimeter intersecting polygon
of S. Also, four types of adjustments on segment A can be defined.

Theorem 4 There is a unique non-adjustable minimum-perimeter intersecting
polygon of S, except for very special cases where there is an infinite number of
polygons MPIP (S) of equal length.

Proof. By an argument similar to that for Theorem 2, the theorem follows.��

Theorem 5. The minimum-perimeter intersecting polygon of a given set of n
target segments can be computed in O(n5) time.

Proof. By an argument similar to that for Theorem 3, the theorem follows. ��
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Abstract. To better compute the volume and count the lattice points
in geometric objects, we propose polyhedral circuits. Each polyhedral
circuit characterizes a geometric region in R

d. They can be applied to
represent a rich class of geometric objects, which include all polyhedra
and the union of a finite number of polyhedron. They can be also used to
approximate a large class of d-dimensional manifolds in R

d. Barvinok [3]
developed polynomial time algorithms to compute the volume of a ratio-
nal polyhedron, and to count the number of lattice points in a rational
polyhedron in R

d with a fixed dimensional number d. Let d be a fixed
dimensional number, TV (d, n) be polynomial time in n to compute the
volume of a rational polyhedron, TL(d, n) be polynomial time in n to
count the number of lattice points in a rational polyhedron, where n is the
total number of linear inequalities from input polyhedra, and TI(d, n)
be polynomial time in n to solve integer linear programming problem
with n be the total number of input linear inequalities. We develop algo-
rithms to count the number of lattice points in geometric region deter-
mined by a polyhedral circuit in O (nd · rd(n) · TV (d, n)) time and to
compute the volume of geometric region determined by a polyhedral cir-
cuit in O (n · rd(n) · TI(d, n) + rd(n)TL(d, n)) time, where rd(n) is the
maximum number of atomic regions that n hyperplanes partition R

d.
The applications to continuous polyhedra maximum coverage problem,
polyhedra maximum lattice coverage problem, polyhedra (1 − β)-lattice
set cover problem, and (1 − β)-continuous polyhedra set cover problem
are discussed. We also show the NP-hardness of the geometric version
of maximum coverage problem and set cover problem when each set is
represented as union of polyhedra.

Keywords: Lattice points · Volume · Polyhedral circuits · Union

1 Introduction

Polyhedra are important topics in mathematics, and have close connection to
theoretical computer science. There are two natural topics in polyhedra, com-
puting the volume and counting the number of lattice points.
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The problem of counting the number of lattice points in a polyhedron has
a wide variety of applications in many areas, for example, number theory, com-
binatorics, representation theory, discrete optimization, and cryptography. It
is related to the following problem: given a polyhedron P, which is given by
a list of its vertices or by a list of linear inequalities, the goal is to compute
the number |P ∩ Z

d| of lattice points in P. Researchers have paid much atten-
tion to this problem. Ehrhart [16] introduced Ehrhart polynomials that were
a higher-dimensional generalization of Pick’s theorem in the Euclidean plane.
Dyer [13] found polynomial time algorithms to count the number of lattice points
in polyhedra when the dimensional number d is 3 or 4. Barvinok [4] designed
a polynomial time algorithm for counting the number of lattice points in ratio-
nal polyhedra when the dimension is fixed. The main ideas of the algorithm
were using exponential sums [7,8] and decomposition of rational cones to prim-
itive cones [29] of the polyhedra. Dyer and Kannan [14] simplified Barvinok’s
polynomial time algorithm and showed that only very elementary properties
of exponential sums were needed to develop a polynomial time algorithm. De
Loera et al. [12] described the first implementation of Barvinok’s algorithm called
LattE to count the number of lattice points in a rational polyhedron. Some other
algebraic-analytic algorithms have been proposed by many authors (for example,
see [2,5,6,22,26,27].)

Computing exactly the volume of a polytope is a basic problem that has
drawn lots of researchers’ attentions [1,3,11,20,23,30]. It is known that this
problem is #P-complete if the polytope is given by its vertices or by its facets [15,
19]. Cohen and Hickey [11] and Von Hohenbalken [30] proposed to compute the
volume of a polytope by triangulating and summing the polytope. Allgower and
Schmidt [1] triangulated the boundary of the polytope to compute the volume
of polytope. Lasserre [20] developed a recursive method to compute the volume
of polytope. Lawrence [23] computed the volume of polytope based on Gram’s
relation for polytope. Barvinok [3] developed a polynomial time algorithm to
compute the volume of polytope by using the exponential integral.

Our work is close to arrangements of hyperplanes. Arrangements of hyper-
planes are basic problems and have a long history [10,21,24,31,32,34,36,37].
There are two natural topics in arrangements of hyperplanes, computing the
number of cells of the arrangements of hyperplanes and constructing arrange-
ments of hyperplanes. In 1826, Steiner [24] perhaps was the first researcher work-
ing on obtaining bounds on the number of arrangements of lines and circles on
the planes and spheres in R

3. Roberts [10], Alexanderson and Wetzel [37], and
Wetzel [21] extended Steiner’s results in other ways. Heintz et al. [17] proved
that the number of d-dimensional cells in an arrangement of n hyperplanes is
(nb)O(d), where b is some constant. Pollack and Roy [35] generalized Warren’s
result [33] on the number of arrangements of n hyperplanes from O((nb/d)d)
to (O(nb)/d)d. Edelsbrunner et al. [38] proposed an incremental algorithm to
construct arrangements of n hyperplanes in R

d in O(nd) time with O(nd) space
complexity. Clarkson and Shor [39] presented an O(n log n+k) time algorithm for
constructing the arrangement of n line segments in the plane, where k is the num-
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ber of vertices. Later, Chazellen and Edelsbrunner [41] developed a deterministic
algorithm to construct the arrangement of n line segments in O(n log n+k) time
using O(n+k) storage. Balaban [40] improved the space complexity from O(n+k)
to O(n) without affecting the asymptotic running time.

Motivation. The existing algorithms related to counting the number of lat-
tice points in a polyhedron and to computing the volume of a polyhedron can
only deal with one polyhedron, and these algorithms can not be applied to
count the number of lattice points and to compute the volume of a complex
geometric object. In order to have broader applications, it is essential to develop
algorithms to deal with geometric objects that can be generated by a list of
polyhedra via unions, intersections, and complementations. In this paper, we
propose polyhedral circuits. Polyhedral circuits can be used to represent a large
class of geometric objects. We propose algorithms to compute the volume of the
geometric objects generated by polyhedral circuits, and to count the number of
lattice points in the geometric objects generated by polyhedral circuits.

Contributions. We have the following contributions to polyhedra. 1. We
introduce polyhedral circuits. Each polyhedral circuit characterizes a geometric
region in R

d. They can be applied to represent a rich class of geometric objects,
which include all polyhedra and the union of a finite number of polyhedra. They
can be also used to approximate a large class of d-dimensional manifolds in R

d. 2.
We develop an algorithm to compute the volume of geometric region determined
by a polyhedral circuit. We also develop an algorithm to count the number
of lattice points in geometric region determined by a polyhedral circuit. Our
method is based on Barvinok’s algorithm, which is only suitable for a rational
polyhedron. 3. We apply the methods for polyhedral circuits to support new
greedy algorithms for the maximum coverage problem and set cover problem,
which involve more complex geometric objects. The existing research results
about the geometric maximum coverage problem and set cover problem only
handle simple objects such as balls and rectangular shapes. All of our algorithms
run in polynomial time in R

d with a fixed d.
Organization. The rest of paper is organized as follows. In Sect. 2, we intro-

duce some basic definitions and some important theorems. In Sect. 3, we propose
polyhedral circuits and develop polynomial time algorithms to compute the vol-
ume of geometric region determined by a polyhedral circuit and to count the
number of lattice points in geometric region determined by a polyhedral cir-
cuit. In Sect. 4, we present the applications of the algorithms, including polyhe-
dra maximum coverage problem, polyhedra maximum lattice coverage problem,
polyhedra (1 − β)-lattice set cover problem, and (1 − β)-continuous polyhedra
set cover problem. Section 5 shows the NP-hardness of the geometric version of
maximum coverage problem and set cover problem when each set is represented
as union of polyhedra. Section 6 gives the conclusions.

2 Preliminaries

In this section, we introduce some definitions and some important theorems,
which play important role in our method. We assume that Rd is the Euclidean d-
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space and the polyhedra that we deal with are rational polyhedra throughout the
paper. In this paper, computing the volume of a polyhedron means computing
the volume of a polytope since the volume of a polyhedron is infinity.

Definition 1 ([28]). A rational polyhedron P ∈ R
d is a set defined by finitely

many linear inequalities:

P =
{

x :
d∑

j=1

aijξj ≤ bi for x = (ξ1, · · · , ξd) and i ∈ I

}

for some finite (possibly empty) set I, where aij and bi are integers.

Theorem 1 ([3]). Let us fix d ∈ N. Then there exists a polynomial time algo-
rithm for computing the volume of one rational polytope in R

d.

Theorem 2 ([4]). Let us fix d ∈ N. Then there exists a polynomial time algo-
rithm for counting the number of lattice points in one rational polyhedron in
R

d.

Definition 2 ([28]). Integer Linear Programming problem is a constrained opti-
mization problem of the form: max

{
cx | Ax ≤ b ; x integral

}
, where A is a given

n × d matrix, b is a n-dimensional vector and c is a d-dimensional vector, and
the entries of A, b and c are rational numbers.

Theorem 3 ([9,25]). Let us fix d ∈ N. Then there exists a polynomial time
Las Vegas algorithm to solve the integer linear programming problem when the
dimension d is small.

Definition 3. Let d ∈ N be a fixed dimensional number. Define TV (d, n) as the
polynomial time in n to compute the volume of a rational polytope by Theorem 1,
TL(d, n) as the polynomial time in n to count the number of lattice points in a
rational polyhedron by Theorem 2, where n is the total number of linear inequal-
ities from input polyhedra, and TI(d, n) as the polynomial time in n to solve
integer linear programming problem by Theorem 3, where n is the total number
of input linear inequalities.

3 Algorithms About Polyhedral Circuits

In this section, we propose the definition of polyhedral circuits and develop algo-
rithms to compute the volume of a geometric region determined by a polyhedral
circuit and to count the number of lattice points in a geometric region deter-
mined by a polyhedral circuit. We assume that the linear inequalities that we
deal with are in R

d with a fixed d and the coefficients of each linear inequalities
are integers throughout the paper.

Definition 4. A hyperplane in R
d can be defined by a linear equation of the

form a1x1 + a2x2 + · · · + adxd = b, where a1, · · · , ad and b are constants.
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Definition 5. For a set of linear inequalities in R
d, a region is atomic if it is

formed by a subset of linear inequalities via intersections, and does not contain
any proper subregion that can be formed by another subset of linear inequalities
via intersections (see Fig. 1).

Fig. 1. Example of atomic regions. S1 and S2 are atomic regions, but S1 ∪ S2 is not
atomic region, although it is formed by a subset linear inequalities via intersections.

Definition 6. Define rd(n) to be the maximum number of atomic regions that
n hyperplanes partition R

d.

The range of rd(n) has been well studied in existing research papers [31,32].
Lemma 1, which has a simple proof, gives a lower bound and upper bound for
rd(n) that are sufficient for its applications to the algorithms of this paper.

Lemma 1. We have rd(n) satisfying
(�n

d �)d ≤ rd(n) ≤ nd

d! + (n + 1)d−1.

Definition 7. A polyhedral circuit is a circuit that consists of multiple layers of
gates:

1. Each input gate are linear inequalities of format
d∑

i=1

aixi ≤ b or
d∑

i=1

aixi < b

(represent a half space in R
d), where a1, · · · , ad and b are integers.

2. Each internal gate is either union or intersection operation.
3. The only output gate is on the top of the circuit.

Example 1. ((−x < −1) ∧ (x ≤ 3)) ∨ ((−x ≤ −2) ∧ (x ≤ 5)) is a polyhedral cir-
cuit in R

1 (see Fig. 2). We have three layers of gates in the polyhedral circuit,
the input gates are linear inequalities −x < −1, x ≤ 3, −x ≤ −2 and x ≤ 5,
the internal gates are intersection, and the output gate is union. Then polyhe-
dral circuit ((−x < −1) ∧ (x ≤ 3)) ∨ ((−x ≤ −2) ∧ (x ≤ 5)) is used to express
the union of (1, 3] and [2, 5]. Its output is the region (1, 5] in R

1.
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Fig. 2. Example of a polyhedral circuit.

Remark. We do not consider the negation operation in our circuit gates, since a
negation operation in a gate can be handled by taking the negation of the input
linear inequalities via De Morgan’s laws. The polyhedral circuit can construct
a complex geometric region in R

d, since the union of multiple polyhedra can
produce very complicate shape in a d-dimensional space for d ≥ 2.

Lemma 2 shows that the output of a polyhedral circuit is a disjoint union of
atomic regions.

Lemma 2. The region generated by a polyhedral circuit is a disjoint union of
atomic regions via the input linear inequalities.

Lemma 3 shows that the volume of rational polytope formed by Ax < b
equals the volume of rational polytope formed by Ax ≤ b.

Lemma 3. The volume of atomic region formed by Ax < b equals the volume
of atomic region formed by Ax ≤ b, where A is a given n × d matrix, and b is
an n-dimensional vector.

Lemma 4 shows that the number of lattice points in rational polyhedron
formed by Ax < b equals the number of lattice points in rational polyhedron
formed by Ax ≤ b−I, where all the elements of n×d matrix A and n-dimensional
vector b are integers, and I is n-dimensional vector with all 1s.

Lemma 4. The number of lattice points in atomic region formed by Ax < b
equals the number of lattice points in atomic region formed by Ax ≤ c, where
A is a given n × d matrix with integer elements, b is an n-dimensional vector
with integer elements and c is an n-dimensional vector with c = b − I for n-
dimensional vector I whose elements are all 1s.

The constructing arrangements of hyperplanes has been well studied in exist-
ing research works [38–41]. Lemma 5 and Lemma 6 not only present constructing
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arrangements of hyperplanes but also show generating interior points and inte-
ger points (if exists) from each of these atomic regions, which are essential for
computing the volume of a geometric region determined by a polyhedral circuit
and counting the number of lattice points in a geometric region determined by
a polyhedral circuit in this paper.

Lemma 5. There is a O (nd · rd(n) · TV (d, n)) time algorithm such that given
a list of n linear inequalities in R

d, it produces all of the atomic regions with one
interior point from each of them.

Lemma 6. There is a O (n · rd(n) · TI(d, n)) time algorithm such that given a
list of n linear inequalities in R

d, it produces all of the atomic regions, and one
integer point from each of them if exists.

Theorem 4 provides an algorithm, which applies Lemma 5, to compute the
volume of a geometric region by a polyhedral circuit.

Theorem 4. There is a O (nd · rd(n) · TV (d, n)) time algorithm such that given
a polyhedral circuit in R

d, the algorithm computes the volume of the region deter-
mined by the input polyhedral circuit.

For a special case, some atomic regions have no integer point pi, the algorithm
still works by ignoring those regions that do not have integer point.

Theorem 5 presents an algorithm, which applies Lemma 6, to count the
number of lattice points in the geometric region determined by a polyhedral
circuit.

Theorem 5. There is a O (n · rd(n) · TI(d, n) + rd(n)TL(d, n)) time algorithm
such that given a polyhedral circuit in R

d, the algorithm counts the number of
lattice points in the region determined by the input polyhedral circuit.

An immediate application of the algorithm is to compute the volume of the
union of a list of polyhedra, and to count the number of lattice points in the
union of a list of polyhedra.

Corollary 1. There is a O (nd · rd(n) · TV (d, n)) time algorithm to compute the
volume of the union of polyhedra when given a list of polyhedra.

Corollary 2. There is a O (n · rd(n) · TI(d, n) + rd(n)TL(d, n)) time algorithm
to count the number of lattice points in the union of polyhedra when given a list
of polyhedra.

Definition 8. Let d ∈ N be a fixed dimensional number. Define TU, L(d, n) as
the running time to count the number of lattice points in the union of rational
polyhedra by Corollary 2 and TU, V (d, n) as the running time to compute the
volume of the union of rational polytopes by Corollary 1 when given a list of
polyhedra with n is the total number of linear inequalities from input polyhedra.

4 Applications

In this section, we present a sample of applications of the algorithms.
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4.1 Application in Continuous Polyhedra Maximum Coverage
Problem

In this section, we show how to apply the method proposed at Sect. 3 to contin-
uous polyhedra maximum coverage problem. Before presenting the algorithm,
we give some definitions about the continuous polyhedra maximum coverage
problem.

Definition 9. Continuous Maximum Coverage Problem: Given an integer k, a
set of regions S1, · · · , Sm, select k regions Si1 , · · · , Sik such that Si1 ∪ · · · ∪ Sik

has the maximum volume of S1 ∪ · · · ∪ Sm.

Definition 10. Continuous Polyhedra Maximum Coverage Problem: It is a con-
tinuous maximum coverage problem when S1, · · · , Sm are all polyhedra.

Theorem 6. There is a O (km · TU, V (d, n)) time approximation algorithm for
the continuous polyhedra maximum coverage problem with approximation ratio(
1 − 1

e

)
.

4.2 Application in Polyhedra Maximum Lattice Coverage Problem

In this section, we show how to apply the method presented at Sect. 3 to poly-
hedra maximum lattice coverage problem. Before presenting the algorithm, we
give some definitions about polyhedra maximum lattice coverage problem.

Definition 11. Maximum Lattice Coverage Problem: Given an integer k, a set
of regions S1, · · · , Sm, select k regions Si1 , · · · , Sik such that Si1 ∪ · · ·∪Sik has
the maximum number of lattice points of S1 ∪ · · · ∪ Sm.

Definition 12. Polyhedra Maximum Lattice Coverage Problem: It is a maxi-
mum lattice coverage problem when S1, · · · , Sm are all polyhedra.

Theorem 7. There is a O (km · TU, L(d, n)) time approximation algorithm
for the polyhedra maximum lattice coverage problem with approximation ratio(
1 − 1

e

)
.

4.3 Application in Polyhedra (1 − β)-Lattice Set Cover Problem

In this section, we show how to apply the method developed at Sect. 3 to poly-
hedra (1 − β)-lattice set cover problem. Before presenting the algorithm, we give
some definitions about polyhedra (1 − β)-lattice set cover problem.

Definition 13. (1 − β)-Lattice Set Cover Problem: For a real β ∈ [0, 1), and
a set of regions S1, · · · , Sm, select k regions Si1 , · · · , Sik such that L(Si1 ∪ · · ·
∪Sik) ≥ (1 − β)L(S1 ∪ · · · ∪ Sm) with L(P ) denotes the number of lattice points
in region P .

Definition 14. Polyhedra (1 − β)-Lattice Set Cover Problem: It is a (1 − β)-
lattice set cover problem when S1, · · · , Sm are all polyhedra.
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Theorem 8. For reals α ∈ (0, 1) and β ∈ [0, 1), there is a O
(
m2 · TU, L(d, n)

)
time approximation algorithm for the polyhedra (1 − β)-lattice set cover problem
with the output k regions Si1 , · · · , Sik satisfying L (Si1 ∪ · · · ∪ Sik) ≥ (1 − α)
(1 − β) L (S1 ∪ · · · ∪ Sm) and k ≤ (

1 + ln 1
α

)
H, where H is the number of sets

in an optimal solution for the polyhedra (1 − β)-lattice set cover problem.

4.4 Application in (1 − β)-Continuous Polyhedra Set Cover
Problem

In this section, we show how to apply the method proposed at Sect. 3 to (1 − β)-
continuous polyhedra set cover problem. Before presenting the algorithm, we
give some definitions about (1 − β)-continuous polyhedra set cover problem.

Definition 15. (1 − β)-Continuous Set Cover Problem: For a real β ∈ [0, 1),
and a set of regions S1, · · · , Sm, select k regions Si1 , · · · , Sik such that vol(Si1 ∪
· · · ∪ Sik) ≥ (1 − β)vol(S1 ∪ · · · ∪ Sm) with vol(P ) denotes the volume of region
P .

Definition 16. (1 − β)-Continuous Polyhedra Set Cover Problem: It is a
(1 − β)-continuous set cover problem when S1, · · · , Sm are all polyhedra.

Theorem 9. For reals α ∈ (0, 1) and β ∈ [0, 1), there is a O
(
m2 · TU, V (d, n)

)
time approximation algorithm for the (1 − β)-continuous polyhedra set cover
problem with the output k regions Si1 , · · · , Sik satisfying vol (Si1 ∪ · · · ∪ Sik) ≥
(1 − α) (1 − β) vol (S1 ∪ · · · ∪ Sm) and k ≤ (

1 + ln 1
α

)
H, where H is the number

of sets in an optimal solution for the (1 − β)-continuous set cover problem.

5 NP-Hardness and Inapproximation

In this section, we show the NP-hardness of the geometric version of maximum
coverage problem and set cover problem when each set is represented as union
of polyhedra.

Definition 17. The maximum region coverage problem is that: given a list
A1, · · · , Am of regions in R

d, and an integer k ≥ 1, to find k regions with the
largest volume for their union.

Definition 18. Let A1, · · · , Ak be a list of axis parallel rectangles. Let A be the
region to be the union A1 ∪ · · · ∪ Ak. Then A is called an axis parallel rectangle
union region.

Definition 19. The maximum region coverage problem with each set to be axis
parallel rectangle union region is called axis parallel rectangle union maximum
region coverage problem.

Definition 20. The lattice set cover problem with each set to be all lattice points
in axis parallel rectangle union region is called lattice axis parallel rectangle union
region maximum coverage problem.
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Theorem 10. The following statements are true:

1. The axis parallel rectangle union maximum region coverage problem is NP-
hard. Furthermore, if there is a polynomial time c-approximation for axis
parallel rectangle union maximum region coverage problem, then there is a
polynomial time c-approximation for classical maximum coverage problem.

2. The axis parallel rectangle union set problem is NP-hard. Furthermore, if there
is a polynomial time c-approximation for lattice axis parallel rectangle union
region set cover problem, then there is a polynomial time c-approximation for
classical set cover problem.

Using reasonable hypothesis of complexity theory, Feige [18] showed that
1− 1

e is the best possible polynomial time approximation ratio for the maximum
coverage problem, and ln n is the best possible polynomial time approximation
ratio for the set cover problem, where n is the number of elements in the universe
set for the classical set cover. Our Theorem 10 shows the connection of inap-
proximation between the classical problems and their corresponding geometric
versions.

6 Conclusions

In this paper, we introduce a concept of polyhedral circuits to study two prob-
lems, computing the volume of a rational polytope and counting the number
of lattice points in a rational polyhedron in R

d with a fixed dimensional num-
ber d. An O (n · rd(n) · TI(d, n) + rd(n)TL(d, n)) time algorithm is developed to
compute the volume of the geometric region determined by a polyhedral circuit,
and an O (nd · rd(n) · TV (d, n)) time algorithm is presented to count the num-
ber of lattice points in the geometric region determined by a polyhedral circuit.
As applications of the algorithms, we develop algorithms to continuous polyhe-
dra maximum coverage problem, polyhedra maximum lattice coverage problem,
polyhedra (1 − β)-lattice set cover problem and (1 − β)-continuous polyhedra
set cover problem. We show the NP-hardness and inapproximation of the geo-
metric version of continuous maximum coverage problem and set cover problem
when each set is represented as union of polyhedra. Due to the limitation of
the pages, we refer the readers to https://arxiv.org/abs/1806.05797 for the full
paper.
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Abstract. In this paper, we investigate the team formation problem to
balance the coverage gained and the cost incurred. This problem can
be formulated as maximizing the difference of two set functions f − l,
where f is non-negative monotone approximately submodular function,
and l is non-negative linear function. We propose three online bicriteria
algorithms. The first two handle the cases where the function f is γ-
weakly submodular, and strictly γ-weakly submodular, respectively. The
last algorithm integrates the first two with more parameters introduced.

Keywords: Approximately submodular · Linear function · Balance ·
Bicriteria algorithm

1 Introduction

Team formation plays an important role in the labor market. According to differ-
ent application backgrounds and solving skills, team formation can be expressed
in various ways [8,13]. In this work, we characterize team formation in two
criteria, including the coverage gained and the cost incurred. The problem of
balancing the coverage and cost in team formation attracts much attention
recently [1,2,12]. Ene [5] firstly introduces the team formation problem in the
following way. For a given job, there is a set of experts N available. The employer
would like to hire some experts S ⊆ N to complete the given job while maximiz-
ing his total profit, i.e., maxS⊆N f(S) − l(S), where function f : 2N → R≥0 is
non-negative monotone submodular, and function l : 2N → R≥0 is non-negative
linear. Functions f and l characterize the coverage ability to the given task and
the cost incurred.

Evidently, the objective function g(S) = f(S) − l(S) is submodular but can
be negative and non-monotone. Extant literature on submodular maximization
c© Springer Nature Switzerland AG 2020
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has been focusing on non-negative and/or monotone submodular functions. Ene
shows that it is NP -hard to determine whether the optimum value of an arbitrary
submodular function g(S) is positive or not. Indeed, it is inapproximable to
maximize a potentially negative submodular function. It is also possible that
there is no multiplicative factor approximation. We focus instead on a weaker
notion of approximation, i.e., bifactor approximation: an algorithm has an (α, β)-
bifactor if the solution S output by the algorithm satisfies that f(S) − l(S) ≥
α · f(OPT ) − βl(OPT ), where OPT is an optimal solution to the problem and
0 ≤ α ≤ 1.

We investigate the model discussed above with or without constraints. With
matroid constraints, Sviridenko et al. [15] reduce the problem maxS∈S f(S)−l(S)
to the one of maximizing f(S) subject to both a knapsack constraint w(S) ≤ B
and the matroid constraint S. They first substitute the knapsack budget B
with the value of l(OPT ). They next run a variant of the continuous greedy
algorithm on the distorted model. They finally obtain a solution S such that
f(S)−l(S) ≥ (1− 1

e )·f(OPT )−l(OPT ). Unfortunately, their algorithm involves
a step guessing the value of l(OPT ) approximately, which significantly affects
algorithm’s time complexity.

Feldman [6] shows that the guessing step can be avoided and presents a
distorted objective function by involving a weight vector w(t) for every time
t ∈ [0, 1): et−1F (x) − 〈w, x〉, where F is the multilinear extension of f and 〈·, ·〉
denotes the dot product. He obtains the same approximation guarantee as that
of Sviridenko et al. by running a modified continuous greedy algorithm.

Ene [5] provides a comprehensive study on this type of problems subject to
matroid and cardinality constraints, under offline, online and streaming mod-
els, respectively. For the offline model with matroid constraints, Ene obtains
a solution set S satisfying f(S) − l(S) ≥ 1

2f(OPT ) − l(OPT ). For the online
model without any constraint, the solution set retains the same weak approxi-
mation ratio. For the streaming model with cardinality constraints, Ene returns
a solution such that f(S) − l(S) ≥ 1

2 (3 − √
5)f(OPT ) − l(OPT ).

Although submodularity has been a ubiquitous property arising in many
fields, there are many non-submodular functions in real-life applications, such as
boosting information spread and k-center clustering in social networks. Extend-
ing submodular function to non-submodular in a parametric manner is a common
practice in the literature [3,7,9,11].

For the problem subject to a cardinality constraint, Harshaw et al. [10] pro-
vide a much more efficient algorithm compared to those by Feldman [6] and
Sviridenko et al. [15], where function f is γ-weakly submodular (cf. Definition 1).
Instead of using the continuous greedy algorithm, they combine the time-
varying distortion technique with the standard greedy algorithm to obtain an
(1 − e−γ − ε) weak approximation ratio, where γ ∈ (0, 1]. Qian [14] considers the
problem of maximizing the difference between a non-negative monotone approx-
imately submodular function and a non-negative modular function subject to a
cardinality constraint, and gives an algorithm with a polynomial time approxi-
mation guarantee of 1 − e−1.
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With the concept of (α, β)-bifactor, existing results are summarized in
Table 1.

Table 1. The bifactors (α, β) of previous related work.

Work Model α β

Sviridenko et al. [15] Offline 1 − e−1 1

Feldman [6] Offline 1 − e−1 1

Ene [5] Online 1/2 1

Harshaw et al. [10] Offline
(
1 − e−γ − ε

)
1

Qian [14] Offline 1 − e−1 1

Our main contribution is to propose a flexible bicriteria [4] online algorithm
to balance the coverage and the cost in the team formation problem, where
we want to maximize the difference of a non-negative normalized monotone γ-
weakly submodular function (cf. Definition 1) and a non-negative linear function.
We propose three online bicriteria algorithms. The first two handle the cases
where the function f is γ-weakly submodular, and strictly γ-weakly submodular,
respectively. The last algorithm integrates the first two with more parameters
introduced. When γ = 1, i.e., function f is submodular, our result coincides with
that of Ene [5].

The rest of this work is organized as follows. Section 2 describes the pre-
liminaries. Section 3 presents three algorithms along with their analyses for the
online model without any constraint, including both special and general cases.
Finally, we present the concluding remarks in Sect. 4.

2 Preliminaries

We introduce the necessary notations and definitions. We are given a ground set
N = {e1, e2, . . . , en} and a family of subsets S ⊆ 2N . A set function f : 2N → R

is monotone if f(S) ≤ f(T ), for any subsets S ⊆ T ⊆ N ; non-negative if
f(S) ≥ 0, for any subset S ⊆ N ; and normalized if f(∅) = 0, respectively.

A set function f : 2N → R is submodular if f(S)+f(T ) ≥ f(S∩T )+f(S∪T ),
for any subsets S, T ⊆ N ; or equivalently f(e|T ) ≤ f(e|S), for any subsets
S ⊆ T ⊂ N, e ∈ N\T , where f(e|S) := f(S∪{e})−f(S) represents the marginal
gain of f when adding any element e to any subset S ⊆ N . Another equivalent
definition about submodular function f is

∑
e∈T\S f(e|S) ≥ f(S ∪T )−f(S), for

any subset S, T ⊆ N . Harshaw et al. [10] modify this definition and generalize
submodular functions to γ-weakly submodular functions:

Definition 1. (γ-weakly submodular function)
A monotone set function f is γ-weakly submodular for γ ∈ (0, 1] if∑

e∈T\S f(e|S) ≥ γ(f(S ∪ T ) − f(S)), for all subsets S, T ⊆ N .
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Function f is submodular when it is γ-weakly submodular and γ = 1. Based
on the definition of γ-weakly submodular function, we call function f strictly
γ-weakly submodular if γ ∈ (0, 1).

From Sect. 1, we know that the goal of balancing the coverage and cost
in team formation is to find a subset S = arg max

S∈S
(f(S) − l(S)), where f

is non-negative normalized monotone γ-weakly submodular function, and l is
non-negative linear function, such that l(S) =

∑
ei∈S l(ei) and l(T \ S) =

l(S ∪ T ) − l(S).

Definition 2. ((α, β)-bicriteria algorithm)
An algorithm is (α, β)-bicriteria if it outputs a solution S to the problem
max
S∈S

[f(S) − l(S)] such that f(S) − l(S) ≥ α · f(OPT ) − β · l(OPT ), where

OPT is an optimal solution to the problem and α ≤ 1.

From the computational complexity perspective, we assume that there are
pre-specified oracles to evaluate the function f and l, and the number of oracle
calls represents the computational complexity of an algorithm.

3 Online Algorithms for Maximizing the Difference
of γ-Weakly Submodular and Linear Function

In this section, we present three online bicriteria algorithms. The first two handle
the cases where the function f is γ-weakly submodular, and strictly γ-weakly
submodular, respectively. The last algorithm integrates the first two with more
parameters introduced. When γ = 1, i.e., function f is submodular, our result
coincides with that of Ene [5].

The main idea of obtaining a good bicriteria factor (α, β) is to construct a
surrogate objective function ĝ.

We focus on online models in this work, where elements arrive one at a time.
When an element arrives, we decide irrevocably whether or not to add it to the
solution.

3.1 An Online Algorithm for Maximizing γ-Weakly Submodular
Minus Linear Function (γS-L)

In this section, we consider the model maxS∈2V [f(S)− l(S)] in the online model,
where the function l is non-negative linear and f is non-negative normalized
monotone γ-weakly submodular, γ ∈ (0, 1]. When γ = 1, function f is submod-
ular. We consider a scaled objective ĝ(S) = (1 − γ

t )f(S) − l(S), where γ ∈ (0, 1]
and t ≥ 1. Note that the function ĝ can be negative and non-monotone. Let S
be the current solution set. We add a newly arrived element e to S whenever
the inequality (t − γ)/tγ · f(e|S) − l(e) > 0 is satisfied. The detailed description
is shown in Algorithm 1.
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Algorithm 1. An online algorithm for γS-L
1: Input:

A non-negative normalized monotone γ-weakly submodular function f , and a non-
negative linear function l, γ ∈ (0, 1].

2: Output:
A solution set S.

3: Process:
4: Initially set S := ∅

For each arriving element e
5: if t−γ

tγ
· f(e|S) − l(e) > 0

6: S := S ∪ {e}
7: Return S

Theorem 1. Algorithm 1 is a
(

tγ−t+γ
tγ , tγ−t+γ

γ(t−γ)

)
-approximation algorithm,

where γ ∈ (0, 1] and t ≥ 1.

Proof. Assume S∗ = {s1, s2, . . . , sp} is an optimal solution set to the online
model, where p = |S∗|, and S = {e1, e2, . . . , eq} is the solution output by
Algorithm 1, where q = |S|. For every item s ∈ S∗ \ S, by the element selection
rule in Algorithm 1 (Line 5), we have 1

γ

(
1 − γ

t

)
f(s|S) − l(s) ≤ 0.

Let S̄ = S∗ \ S and {s1, s2, . . . , s|S̄|} be an arbitrary ordering of S̄. Denote
S̄(i) = {s1, s2, . . . , si}. We have

ĝ(S ∪ S̄) − ĝ(S) =
(
1 − γ

t

)
f(S ∪ S̄) − l(S ∪ S̄) − (

(1 − γ

t
)f(S) − l(S)

)

=
(
1 − γ

t

) (
f(S ∪ S̄) − f(S)

) − (
l(S ∪ S̄) − l(S)

)

=
(
1 − γ

t

) (
f(S ∪ S̄) − f(S)

) − l(S̄)

≤
(
1 − γ

t

)
· 1
γ

∑

s∈S̄

f(s|S) −
∑

s∈S̄

l(s)

=
∑

s∈S̄

((
1 − γ

t

)
· 1
γ

· f(s|S) − l(s)
)

=
∑

s∈S̄

(
t − γ

tγ
· f(s|S) − l(s)

)

≤ 0. (1)

The first inequality follows by the definition of the γ-weakly submodular of
function f , and the second inequality holds by the element selection rule into
the solution S in the algorithm.

By the definition of ĝ, the monotonicity of f and the property of l, we have

ĝ(S ∪ S̄) − ĝ(S) =
(
1 − γ

t

) (
f(S ∪ S̄) − f(S)

) − l(S̄)

≥
(
1 − γ

t

) (
f(S∗) − f(S)

) − l(S∗). (2)
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Combining (1) and (2), we have
(
1 − γ

t

) (
f(S∗) − f(S)

) − l(S∗) ≤ 0,

i.e.,

f(S) ≥ f(S∗) − t

t − γ
l(S∗).

Denote S(i) = {e1, e2, . . . , ei}. From Line 5 of Algorithm 1, for each element
ei ∈ S, we have t−γ

tγ f(ei|S(i−1)) > l(ei). Summing up all elements e ∈ S, we
have

|S|∑

i=1

t − γ

tγ
· f(ei|S(i−1))

=
t − γ

tγ

|S|∑

i=1

f(ei|S(i−1))

=
t − γ

tγ

(
f(S) − f(∅)

)
=

t − γ

tγ
f(S)

>

|S|∑

i=1

l(ei) = l(S).

With this upper bound on l(S) in terms of f(S), we have

f(S) − l(S) > f(S) − t − γ

tγ
f(S) =

(

1 − t − γ

tγ

)

f(S)

≥ tγ − t + γ

tγ
·
(

f(S∗) − t

t − γ
l(S∗)

)

=
tγ − t + γ

tγ
f(S∗) − tγ − t + γ

γ(t − γ)
l(S∗).

Thus Algorithm 1 is a
(

tγ−t+γ
tγ , tγ−t+γ

γ(t−γ)

)
-approximation algorithm. �

When function f is submodular (i.e., γ = 1) and t = 2, the bicriteria factor
is ( 12 , 1), and we obtain the result in Ene [5]. Table 2 shows further bifactors for
varying parameters of t. From Table 2, note that, when t = 1 and γ = 1, the β’s
value is meaningless. At this point, the scaled function ĝ becomes −l(S), which
is no longer the team formation problem. In view of this situation, we propose
a new algorithm, as shown in the following part.

3.2 An Online Algorithm for Maximizing Strictly γ-Weakly
Submodular Minus Linear Function (γSS-L)

In this section, we consider the same online model maxS∈2V [f(S)− l(S)], except
that the function f is strictly γ-weakly submodular compared to that in Sect. 3.1,
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Table 2. The bifactors (α, β) of Algorithm 1 with respect to varying t.

t α = tγ − t + γ
tγ

β = tγ − t + γ
(t−γ)γ

1 2γ − 1
γ

2γ − 1
γ(1−γ)

2 3γ − 2
2γ

3γ − 2
γ(2− γ)

3 4γ − 3
3γ

4γ − 3
γ(3− γ)

5 6γ − 5
5γ

6γ − 5
γ(5−γ)

8 9γ − 8
8γ

9γ − 8
γ(8− γ)

10 11γ − 10
10γ

11γ − 10
γ(10− γ)

30 31γ − 30
30γ

31γ − 30
γ(30− γ)

50 51γ − 50
50γ

51γ − 50
γ(50− γ)

100 101γ − 100
100γ

101γ − 100
γ(100−γ)

500 501γ − 500
500γ

501γ−500
γ(500− γ)

1000 1001γ − 1000
1000γ

1001γ − 1000
γ(1000− γ)

i.e., γ ∈ (0, 1). Due to this restriction, we construct a different scaled objective
ĝ(S) = (1 − γ)f(S) − l(S). Similar to the selection rule in Algorithm 1, we only
select the elements whose marginal gains are positive with respect to the scaled
objective. The detail is as follows.

Algorithm 2. An online algorithm for γSS-L
1: Input:

A non-negative normalized monotone strictly γ-weakly submodular function f , and
a non-negative linear function l, γ ∈ (0, 1).

2: Output:
A solution set S.

3: Process:
4: Initially set S := ∅

For each arriving element e
5: if (1 − γ)f(e|S) − l(e) > 0
6: S := S ∪ {e}
7: Return S

Theorem 2 Algorithm 2 is a
(
γ, 1

1− γ

)
-approximation algorithm, where γ ∈

(0, 1).

Proof. Assume S∗ = {s1, s2, . . . , sp} is an optimal solution set, where p = |S∗|.
For every item s ∈ S∗ \ S, we have ĝ(s|S) = (1 − γ)f(s|S) − l(s) ≤ 0. i.e.,
(1 − γ)f(s|S) ≤ l(s).
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Let S̄ = S∗ \ S and {s1, s2, . . . , s|S∗\S|} be an arbitrary ordering of S̄. Sum-
ming up all elements s ∈ S∗ \ S, we have

∑

s∈S̄

(1 − γ)f(s|S) ≤
∑

s∈S̄

l(s) = l(S̄).

As function f is γ-weakly submodular, we have
∑

s∈S̄

(1 − γ)f(s|S) ≥ (1 − γ) · γ
(
f(S ∪ S̄) − f(S)

)
.

Combining the properties of f and l, we obtain the following inequalities

γ(1 − γ)
(
f(S ∪ S̄) − f(S)

) ≤ l(S̄) ≤ l(S∗),

and

f(S∗) − f(S) ≤ f(S ∪ S̄) − f(S) ≤ l(S∗)
γ(1 − γ)

.

Rearranging the two inequalities, we have

f(S∗) − l(S∗)
γ(1 − γ)

≤ f(S).

By the element selection rule in Line 5 of Algorithm 2, we have ĝ(S) > 0.
In fact, let S = {e1, e2, . . . , e|S|} where the elements are ordered in which they
were added. Denote S(i) = {e1, e2, . . . , ei}. We have

ĝ(S) − ĝ(∅) =
|S|∑

i=1

ĝ(ei|S(i−1))

=
|S|∑

i=1

(
(1 − γ)f(ei|S(i−1)) − l(ei|S(i−1))

)

=
|S|∑

i=1

(
(1 − γ)f(ei|S(i−1)) − l(ei)

)

= (1 − γ)
|S|∑

i=1

f(ei|S(i−1)) −
|S|∑

i=1

l(ei)

= (1 − γ)(f(S) − f(∅)) − l(S)
= (1 − γ)f(S) − l(S) > 0.

With this upper bound l(S) < (1 − γ)f(S) in terms of f , we have

f(S) − l(S) > f(S) − (1 − γ)f(S) = γf(S)

≥ γ ·
(

f(S∗) − l(S∗)
γ(1 − γ)

)

= γf(S∗) − 1
1 − γ

l(S∗).
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Table 3. The bifactors (α, β) of Algorithm 2 with respect to varying γ.

γ α = γ β = 1/(1 − γ)

0.01 0.01 1.0101

0.05 0.05 1.0526

0.10 0.10 1.1111

0.15 0.15 1.1765

0.20 0.20 1.2500

0.25 0.25 1.3333

0.30 0.30 1.4286

0.35 0.35 1.5385

0.40 0.40 1.6667

0.45 0.45 1.8182

0.50 0.50 2.0000

0.55 0.55 2.2222

0.60 0.60 2.5000

0.65 0.65 2.8571

0.70 0.70 3.3333

0.75 0.75 4.0000

0.80 0.80 5.0000

0.85 0.85 6.6667

0.90 0.90 10.0000

0.95 0.95 20.0000

0.99 0.99 100.0000

Thus the bicriteria factor of Algorithm 2 is
(
γ, 1

1−γ

)
. �

Table 3 provides further bifactors for varying parameters of γ, showing that
the second factor increases with γ.

3.3 A General Online Algorithm for Maximizing γ-Weakly
Submodular Minus Linear Function (γGS-L)

Based on the above two sections, we consider a general scaled objective function
ĝ(S) = μ · f(S) − ν · l(S), for any μ, ν > 0. We provide a general algorithm
to analyze the bicriteria approximation ratio of the actual objective function
g(S) = f(S) − l(S) starting with the surrogate objective function ĝ(S). The
general algorithm is shown in Algorithm 3.

Theorem 3 Algorithm 3 is a
(

νγ − μ
νγ , νγ − μ

μγ

)
-approximation algorithm, where

μ > 0, ν > 0 and γ ∈ (0, 1].
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Algorithm 3. An general algorithm for γGS-L
1: Input:

A non-negative normalized monotone γ-weakly submodular function f , a non-
negative linear function l, and γ ∈ (0, 1].

2: Output:
A solution set S.

3: Process:
4: Initially set S := ∅

For each arriving element e
5: if μ

γ
· f(e|S) − ν · l(e) > 0

6: S := S ∪ {e}
7: Return S

Proof Assume S∗ = {s1, s2, . . . , sp} is an optimal solution to the problem, where
p = |S∗|, and S = {e1, e2, . . . , eq} is the solution output by Algorithm 3, where
q = |S|. Denote S(i) = {e1, e2, . . . , ei}. Let S̄ = S∗ \ S and {s1, s2, . . . , s|S̄|} be
an arbitrary ordering of S̄. Denote S̄(i) = {s1, s2, . . . , si}, i ≤ |S∗ \ S|. By the
definition of ĝ, we have

ĝ(S ∪ S̄) − ĝ(S) = μ · f(S ∪ S̄) − ν · l(S ∪ S̄) − (
μ · f(S) − ν · l(S)

)

= μ · (
f(S ∪ S̄) − f(S)

) − ν · (
l(S ∪ S̄) − l(S)

)

= μ · (
f(S ∪ S̄) − f(S)

) − ν · l(S̄)

≤ μ · 1
γ

∑

s∈S̄

f(s|S) − ν ·
∑

s∈S̄

l(s)

=
∑

s∈S̄

(

μ · 1
γ

· f(s|S) − ν · l(s)
)

≤ 0. (3)

The first inequality follows from the definition of γ-weakly submodular of the
function f , and the second inequality holds by the element selection rule in the
algorithm.

On the other hand, we have

ĝ(S ∪ S̄) − ĝ(S) = μ · (
f(S ∪ S̄) − f(S)

) − ν · l(S̄)

≥ μ · (
f(S∗) − f(S)

) − ν · l(S̄)

≥ μ · (
f(S∗) − f(S)

) − ν · l(S∗). (4)

The first inequality follows by the monotonicity of f and the second inequality
holds by the property of l.

Combining inequalities (3) and (4), we obtain

f(S) ≥ f(S∗) − ν

μ
· l(S∗).
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By Line 5 of Algorithm 3, we know that each element ei satisfying μ
γ ·

f(ei|S(i−1)) > ν · l(ei) will be added into the solution set S(i−1). Summing
up all elements e ∈ S, we have

|S|∑

i=1

μ · 1
γ

· f(ei|S(i−1))

= μ · 1
γ

|S|∑

i=1

f(ei|S(i−1))

=
μ

γ

(
f(S) − f(∅)

)

>

|S|∑

i=1

ν · l(ei) = ν ·
|S|∑

i=1

l(ei) = ν · l(S).

With this upper bound on l(S) < μ
νγ f(S) in terms of f , we have

f(S) − l(S) > f(S) − μ

νγ
f(S)

=
νγ − μ

νγ
· f(S)

≥ νγ − μ

νγ
·
(

f(S∗) − ν

μ
· l(S∗)

)

=
νγ − μ

νγ
· f(S∗) − νγ − μ

μγ
· l(S∗).

Thus we complete the proof. �

4 Conclusions

In this paper, we study the team formation problem with the aim to balance
the coverage and the cost incurred. This problem can be formalized as maximiz-
ing the difference of a non-negative normalized monotone γ-weakly submodular
function and a non-negative linear function. We propose three online bicrite-
ria algorithms. The first two handle the cases where the function f is γ-weakly
submodular, and strictly γ-weakly submodular, respectively. The last algorithm
integrates the first two with more parameters introduced. When function f is
submodular, our result coincides with that of Ene [5]. For the future, the prob-
lems with cardinality constraints or matroid constraints under streaming model
are worth considering.
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15. Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular
and supermodular optimization with bounded curvature. Math. Oper. Res. 42(4),
1197–1218 (2017)

https://doi.org/10.1007/s40305-014-0053-z
http://arxiv.org/abs/2002.07782
https://doi.org/10.1007/978-3-030-24766-9_28
https://doi.org/10.1007/s10898-019-00800-2
https://doi.org/10.1007/s10898-019-00800-2
http://arxiv.org/abs/1910.05492


Approximation Algorithm for Stochastic
Set Cover Problem

Haiyun Sheng1, Donglei Du2, Yuefang Sun3, Jian Sun4, and Xiaoyan Zhang1(B)

1 School of Mathematical Science and Institute of Mathematics,
Nanjing Normal University, Nanjing 210023, Jiangsu, People’s Republic of China

zhangxiaoyan@njnu.edu.cn
2 Faculty of Management, University of New Brunswick,

Fredericton, NB E3B 5A3, Canada
3 School of Mathematical Information, Shaoxing University,

Shaoxing 312000, Zhejiang, People’s Republic of China
4 Department of Operations Research and Information Engineering,

Beijing University of Technology, Beijing 100124, People’s Republic of China

Abstract. Cover problem is a typical NP-hard problem, which has com-
prehensive application background and is a hot topic in recent years. In
this paper, we study two stage, finite scenarios stochastic versions of
set cover problem with submodular penalties which is the generalization
of the stochastic vertex cover problem with submodular penalties. The
goal is to minimize the sum of the first stage cost, the expected second
stage cost and the expected penalty cost. By doing some research on the
structural properties of submodular function, we present a primal-dual
2η-approximation algorithm for the stochastic set cover problem with
submodular penalties (4-approximation algorithm for the stochastic ver-
tex cover problem with submodular penalties when η = 2), where η is
the maximum frequency of the element in the family of subsets.

Keywords: Stochastic set cover · Primal-dual · Approximation
algorithm

1 Introduction

Cover problem is a typical example of NP-hard optimization problems, which is
proved by Karp [13] unless P = NP. That is to say, we may not get the optimal solu-
tion in polynomial time. In computer science, the cover problem has been widely
used in various fields including information retrieval, data mining and web host
analysis. Furthermore, it is worth noting that the vertex cover problem is fixed-
parameter tractable and is a central problem in parameterized complexity theory.

Set cover problem is defined in a given finite element set E. Formally, given
a set of elements {e1, e2, ..., en} (called the universe) and a collection S of t sets
whose union equals the universe, each set of S has a cost. The set cover problem is
to find the smallest cost subcollection of S whose union equals the universe. Obvi-
ously, the vertex cover problem is a special case of the set cover problem. Iwata
and Nagano [11] also propose a relevant variant of the set cover, which is called
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submodular set cover problem. Specifically, given a set of elements {e1, e2, ..., en}
(called the universe), a collection S of t sets whose union equals the universe and
a nonnegative submodular function f : 2S → R+. Namely, each subset of S has
a submodular cost. The goal is to choose a minimum submodular cost set cover.
Another variant called set cover problem with submodular penalties is also given
a set of elements {e1, e2, ..., en} (called the universe), a collection S of t sets whose
union equals the universe, each set of S has a cost and each subset T ⊆ E has a
penalty cost h(T ), where h(·) is a submodular function, which is defined in the
power set of E. The goal is to choose the smallest cost subcollection of S to cover
some elements of E and penalize the uncovered elements of E.

The stochastic set cover problem is a relevant variant of the set cover which
can be constructed as a two stage stochastic model as follows. In the first stage,
the information of the clients (elements) is unknown. The possible scenarios and
their probability distribution are given until in the second stage. The cost of sets
in different stages and scenarios are distinct. We can purchase the sets in the
first stage which can serve all clients (elements) in all scenarios and the sets in
the second stage in each scenario can only serve the clients in that scenario. The
goal is to insure that each client in each scenario should be served by purchased
sets either in the scenario of the second stage or in the first stage and minimize
the total expected set purchasing cost.

In this paper, we consider the stochastic set cover problem with submod-
ular penalties and present a primal-dual 2η-approximation algorithm for the
stochastic set cover problem with submodular penalties, where η is the maxi-
mum frequency of the element in the family of subsets.

2 Related Work

In recent years, the vertex cover problem has attracted significant attention,
many relevant variants of the vertex cover problem have been extensively stud-
ied by many scholars [10]. There is no doubt that the relevant approximation
algorithms made great progress such as greedy algorithm, primal-dual algorithm
and linear programming rounding. For the vertex cover problem, Bar-Yehuda
and Even [2] proposed a 2-approximation algorithm by primal-dual method.
Hochbaum [9] firstly presented constant approximation algorithm by applying
the linear programming rounding skill. Dinur et al. [4] proved that there doesn’t
exist an approximation algorithm whose approximation ratio is less than 1.3606
unless P = NP . However, this problem has an approximation algorithm whose
approximation ratio can achieve 2 − o(1) according to the number of vertices
and the maximum degree in a graph [8].

The relevant variants of the vertex cover problem also have many results.
We only introduce a part of results which are relevant to the paper. Firstly,
Hochbaum [9] introduced the generalized vertex cover problem, it is also be
called prize-collecting vertex cover problem [10], and present a 2-approximation
algorithm by linear programming rounding. Iwata and Nagano [11] proposed the
submodular vertex cover problem and designed a 2-approximation algorithm by
the convex programming. For the stochastic vertex cover problem, Gupta et
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al. [7] proposed a 8-approximation algorithm by the boosted sampling skill in
2004 and improved the approximation ratio to 4 in 2008. Ravi and Sinha [16]
proposed a 2-approximation algorithm by primal-dual method for the stochastic
vertex cover problem.

Set cover and its relevant variants have also been a hot topic for research [9].
There are many approximation algorithms for this problem. In 1974, the deter-
ministic version of set cover was among the earliest NP -hard problems to be
approximated with an O(logn)-approximation, which was provided by Johnson
[12]. In 1993, Bellare [3] pointed out the fact that there doesn’t exist any constant
approximation algorithm unless P = NP . In 1997, Raz and Safra [17] presented
that there doesn’t exist any approximation algorithm whose approximation ratio
is less than c · lnn for some constant c unless P = NP . The problem was also
shown to be NP -hard to approximate better than a factor of Ω(logn) by Arora
and Sudan [1] in 2003. For many relevant variants of set cover including the par-
tial set cover [6], the prize-collecting set cover problem [14] and the generalized
set cover problem [14], they are studied by relaxing request, which needs to cover
all the elements. Slavik [18] has presented an H(Δ)-approximation algorithm in
polynomial time for the partial set cover problem, where Δ is the module of max-
imum set, and Ganhhi [6] proposed an f -approximation algorithm in polynomial
time, where f is the maximum frequency of the element of E in the family of
subsets. For the stochastic set cover problem, Ravi and Sinha [16] proved that
it can be reduced to the classical set cover. In 2016, Li et al. [15] presented a
2(lnn + 1)-approximation algorithm, where n is the number of elements.

The remainder of this paper is organized as follows. In Sect. 3, we introduce
the stochastic set cover problem. Furthermore, applying the primal-dual method,
we propose an approximation algorithm for the problem and prove that the ratio
is 2η. We conclude in Sect. 4.

3 Stochastic Set Cover Problem with Submodular
Penalties

In this section, we will introduce the stochastic set cover problem with sub-
modular penalties and present the relevant programs specifically. In fact, this
problem is a generalization of the stochastic vertex cover problem with submod-
ular penalties. In the stochastic vertex cover problem with submodular penalties,
each client-scenario (edge-scenario) can be covered at most two times. In this
paper, we use η to denote the maximum frequency of the element in the family
of subsets in stochastic set cover problem with submodular penalties.

Naturally, the stochastic set cover problems with submodular penalties can
be described as follows. There are two stages in this problem: given a potential
set family in the first stage, it is allowed to purchase some sets for serving any
possible client (element) in advance. The purchasing cost of the set S in the
first stage is c0S . In the second stage, all possible scenarios and the associated
probabilities become known, where we only consider the case of polynomial sce-
narios. That is to say, the number m of the scenarios is polynomial with respect
to the input of the problem. For a scenario k ∈ {1, 2, ...,m} all in the second
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stage, the probability of scenario k is pk, the client (element) set is denoted as
Ek, the penalty cost for the unserved client set Tk ⊆ Ek is hk(Tk) which is a
monotone submodular function, and ckS denotes the purchasing cost of set S in
scenario k. The client (element) in scenario k in the second stage can be covered
by a set purchased in the first stage or in the second stage with respect to the
scenario; otherwise, the client (element) is unserved. For convenience, we present
the following notations. The notation (S, k) (for S ∈ S, k = 0, 1, ...,m) is called a
set-scenario pair and denotes the set-scenario pair set as S. Similarly, each (e, k)
(for k = 0, 1, ...,m, e ∈ Ek) represents a client-scenario (element-scenario) pair
which is active in the k-th scenario. Let C denote the client-scenario (element-
scenario) pair set, in scenario k, the set of the client-scenario (element-scenario)

pair (e, k) is denoted as Ck for e ∈ Ek. Clearly,
m⋃

k=1

Ck = C. The task is to deter-

mine the set of set-client pairs Ŝ0 and Ŝk to be purchased respectively in the
first stage and in the k-th scenario in the second stage (k = 1, ...,m), and the
set of clients T̂k (k = 1, ...,m) that will incur penalties. Finally, the aim is to

minimize the sum of the expected set purchasing cost
∑

S∈̂S0

c0S +
m∑

k=1

∑

S∈̂Sk

ckS , and

the expected penalty cost
m∑

k=1

pkhk(T̂k).

The stochastic set cover problem with submodular penalties can be formu-

lated as the following linear integer program, in which p0 = 1 and
m∑

k=1

pk = 1.

min
∑

(S,k)∈S
pkckSxk

S +

m∑

k=1

∑

Tk⊆Ek

pkhk(Tk)ZTk

(IP ) s.t.
∑

S∈S:e∈S

x0
S +

∑

S∈S:e∈S

xk
S +

∑

Tk⊆Ek:e⊆Tk

ZTk ≥ 1, ∀(e, k) ∈ C,

x0
S , xk

S , ZTk ∈ {0, 1}, ∀S ∈ S, Tk ⊆ Ek,

All the variables are binary in the above formulation, x0
S indicates that whether

set S is purchased in the first stage. If x0
S = 1, set S ∈ S is purchased in the first

stage (i.e. set-scenario pair (S, 0) is purchased); otherwise, x0
S = 0. Similarly, xk

S

represents whether set S is purchased in the k-th scenario of the second stage.
If xk

S = 1, set S ∈ S is purchased in the second stage for the k-th scenario (i.e.
set-scenario pair (S, k) is purchased); otherwise, xk

S = 0. ZTk
indicates whether

a set of clients (elements) Tk ⊆ Ek incurs penalties. The first constraint models
that each client-scenario (element-scenario) pair (e, k) is either covered by a set
or incurs penalty. The set should be purchased either in the first stage or the
corresponding scenario in the second stage.

By relaxing the integrality constraints, we obtain the LP relaxation and the
corresponding dual linear program as follows.
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min
∑

(S,k)∈S
pkc

k
Sx

k
S +

m
∑

k=1

∑

Tk⊆Ek

pkhk(Tk)ZTk

(LP ) s.t.
∑

S∈S:e∈S

x
0
S +

∑

S∈S:e∈S

x
k
S +

∑

Tk⊆Ek:e⊆Tk

ZTk
≥ 1, ∀(e, k) ∈ C,

x
0
S , x

k
S , ZTk

≥ 0, ∀S ∈ S, Tk ⊆ Ek.

max
∑

(e,k)∈C
y
k
e

(DP ) s.t.
∑

(e,k)∈C
y
k
e ≤ c

0
S , ∀S ∈ S,

∑

e∈Ek

y
k
e ≤ pkc

k
S , ∀S ∈ S, k = 1, 2, ...,m,

∑

e∈Tk

y
k
e ≤ pkhk(Tk), ∀Tk ⊆ Ek, k = 1, 2, ...,m,

y
k
e ≥ 0, ∀(e, k) ∈ C.

The variable yk
e can be understood as the budget of client-scenario (element-

scenario) pair (e, k) in the above dual formulation.

3.1 The Primal-Dual Algorithm

In this section, we will present a primal-dual algorithm for the stochastic set cover
problem with submodular penalties. Note that we need to find the element set
to be penalized in our algorithm according to the property of the submodular
function.

In fact, our algorithm can be interpreted as a procedure of the dual ascent.
In our algorithm, we carefully deal with the condition of penalty restriction (the
third restriction in the dual programming) in order to satisfy the feasibility of
duality. Therefore, by the construction of y obtained by Step 2 of Algorithm 1, it
is obviously a dual feasible solution. We further give some intuitively explanation
of Step 2 as follows: Step 2.1 corresponds to the event of purchasing a new set in
the first stage; Step 2.2 corresponds to the event of purchasing a new set in the
second stage; Step 2.3 corresponds to the event in which some clients (elements)
are added to the rejected client set. In Step 2.4, S(e, k) is the purchased set in
which (e, k) is severed by the purchased set.

For convenience, we define the following notations.
T̂k(k = 1, ...,m) denotes the penalty client (element) set in the k-th scenario.
Ŝ0 represents the purchased set in the first stage.
Ŝk corresponds to the purchased set in the second stage with respect to k-th

scenario.
Ck represents the frozen client-scenario (element-scenario) pair set in the k-th

scenario.
Let C :=

m⋃

k=1

Ck be all the frozen client-scenario (element-scenario) pairs set.

N(S, k) ((S, k) ∈ S) denotes the client-scenario (element-scenario) pair set
in which each client-scenario (element-scenario) pair has a positive contribution
to the set-scenario pair (S, k).

In the initial state, all the dual variables are zero. All the client-scenario
(element-scenario) pairs are unfrozen. All the clients (elements) are not punished.
All the sets are not purchased.
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Algorithm 1. Primal-dual algorithm
begin: :
1: Initialization yk

e := 0, T̂k := ∅ (k = 1, ..., m), Ŝk := ∅ (k = 0, 1, ..., m), Ck := ∅
(k = 0, 1, ..., m), and N(S, k) := ∅ ((S, k) ∈ S).

2: Obtain a dual feasible solution
2.1: For each S ∈ S\Ŝ0, assume that τ(S, 0) is the root of the following equation
with respect to τ , ∑

(e,k)∈C
yk
e +

∑

(e,k)∈C\C
τ = c0S .

Set τ1 := τ1(S
∗
1 , 0) := min

S∈S\̂S0

τ(S, 0), N(S∗
1 , 0) := N(S∗

1 , 0)
⋃{(e, k) ∈ C\C : τ1 > 0}.

2.2: For each S ∈ S\Ŝk, τ(S, k) is the root of the following equation with respect
to τ , ∑

(e,k)∈Ck

yk
e +

∑

(e,k)∈Ck\Ck

τ = pkckS .

Set τ2 := τ2(S
∗
2 , k∗

2) := min
k=1,...,m

min
S∈S\̂Sk

τ(S, k) and N(S∗
2 , k∗

2) :=

N(S∗
2 , k∗

2)
⋃{(e, k∗

2) ∈ C\C : τ2 > 0}.
2.3: For each scenario k (k = 1, 2, ..., m), calculate

τ3,k := min
Tk⊆Ek

pkh(Tk) − ∑

e∈Tk
⋂{e:(e,k)∈Ck}

yk
e

|Tk\{e : (e, k) ∈ Ck}| .

Set
τ3 := τ3,k∗

3
= min

k=1,...,m
τ3,k,

and let Tk∗
3

be the optimal solution of the above formula for k = k∗
3 .

2.4: Set τ∗ = min{τ1, τ2, τ3}
Case 1. If τ∗ = τ1, set S(e, k) := S∗

1 , yk
e := τ1 for each client-scenario (element-

scenario) pair (e, k) ∈ N(S∗
1 , 0)\C and each set S. Update Ŝ0 := Ŝ0

⋃{S∗
1} and

Ck := Ck

⋃
N(S∗

1 , 0) for each scenario k = 0, 1, 2, ..., m.

Case 2. If τ∗ = τ2, set S(e, k∗
2) := S∗

2 , y
k∗
2

e := τ2 for each client-scenario

(element-scenario) pair (e, k∗
2) ∈ N(S∗

2 , k∗
2)\Ck∗

2
and each set S. Update Ŝk∗

2
:=

Ŝk∗
2

⋃{S∗
2} and Ck∗

2
:= Ck∗

2

⋃
N(S∗

2 , k∗
2) for each scenario.

Case 3. If τ∗ = τ3, set y
k∗
3

e := τ3 for each client (element) e ∈ Tk∗
3
\{e : (e, k∗

3) ∈
Ck∗

3
} and each set S. Update T̂k∗

3
:= T̂k∗

3

⋃
Tk∗

3
and Ck∗

3
:= Ck∗

3

⋃{(e, k∗
3) ∈ Tk∗

3
}.

Note that if three cases occur simultaneously, execute one of three cases arbitrarily.

2.5: Set C :=
m⋃

k=1

Ck. If C ⋃ C0 := C ⋃ C0, go to Step 3; otherwise, go to Step 2.1.

3: Obtain an integer primal feasible solution.
3.1: The final selected set to purchase in the first stage is Ŝ0, and the final selected
set to purchase in the second stage with respect to the k-th scenario is Ŝk for each
k = 1, 2, ..., m. If S

(i)
k ∈ Ŝk, S

(j)
k ∈ Ŝk, and S

(i)
k ⊆ S

(j)
k , then we delete S

(i)
k for

k = 0, 1, ..., m.
3.2: Let T̂k be the set of unserved clients in the k-th scenario for each k = 1, 2, ..., m.
Serve each client-scenario pair in Ck\{(e, k) : e ∈ T̂k, k = 1, 2, ..., m} in the first
stage or the corresponding scenario in the second stage.
end
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3.2 The Analysis of the Algorithm

In this section, we will analyze the approximation ratio of Algorithm 1. In the
analysis, we still consider purchasing cost of the set obtained by the dual feasible
solution in the algorithm. At the same time, we also consider the penalty cost
in the algorithm. For convenience, we introduce the follow notations.

Let SOL be the solution obtained from Algorithm 1, the total cost consists
of the set purchasing cost SSOL and the penalty cost PSOL. Obviously, Algo-
rithm 1 is a polynomial time combinatorial algorithm, and the corresponding
proof is presented in Lemma 1. To obtain the approximation ratio, we next
bound SSOL and PSOL using the following lemmas. It’s worth noting that
N(S, k)

⋂
N(S′, k′) �= ∅, that is, there are repeated clients which are served

by S and S′, where k, k′ = 0, 1, ...,m, S ∈ Ŝ0, S
′ ∈ Ŝk. Next, we will give the

following lemmas, which are prepared for the approximation ratio.

Lemma 1. Let τ0 be an arbitrary time of incurring one of three cases in Step
2.4 of Algorithm 1, then we can always find the next time τ∗ in polynomial time
such that one of the three cases occurs again.

Proof. Let Ẽ be the frozen element-scenarios, we compute the next time τ∗ of
incurring one of three cases in Algorithm 1.

If Case 1 incurs in the next time τ1, then at any time of time interval (τ0, τ1),
we have ∑

(e,k)∈C ⋂

˜E

yk
e +

∑

(e,k)∈C\ ˜E

τ ≤ c0S , ∀S ∈ S,

and then

τ ≤
c0S − ∑

(e,k)∈C ⋂

˜E

yk
e

∑

(e,k)∈C\ ˜E

1
, ∀S ∈ S, C\Ẽ �= ∅.

Suppose
μk =

∑

(e,k)∈C\ ˜E

1,

μ′
k =

∑

(e,k)∈C ⋂

˜E

yk
e .

Since both μk and μ′
k are modular functions, we can compute

τ1 = min
S∈S:C\ ˜E �=∅

c0S − μ′
k

μk

in polynomial time.
If Case 2 incurs in the next time τ2, then at any time of time interval (τ0, τ2),

we have ∑

e∈Ek

⋂

˜E

yk
e +

∑

e∈Ek\ ˜E

τ ≤ pkc
k
S , ∀S ∈ S,
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and then

τ ≤
pkc

k
S − ∑

e∈Ek

⋂

˜E

yk
e

∑

e∈Ek\ ˜E

1
, ∀S ∈ S, Ek\Ẽ �= ∅.

Suppose
ψk =

∑

e∈Ek\ ˜E

1,

ψ′
k =

∑

e∈Ek

⋂

˜E

yk
e .

Clearly, both ψk and ψ′
k are modular functions. Therefore we can compute

τ2 = min
S∈S:Ek\ ˜E �=∅

pkc
k
S − ψ′

k

ψk

in polynomial time.
If Case 3 incurs in the next time τ3, then at any time of time interval (τ0, τ3),

we have ∑

e∈Tk

⋂

˜E

yk
e +

∑

e∈Tk\ ˜E

τ ≤ pkhk(Tk), ∀Tk ⊆ Ek,

and then

τ ≤
pkhk(Tk) − ∑

e∈Tk

⋂

˜E

yk
e

∑

e∈Tk\ ˜E

1
, ∀Tk ⊆ Ek, Tk\Ẽ �= ∅.

Similar to the proof above, we have

τ3 = min
Tk⊆Ek

pkhk(Tk) − ∑

e∈Tk

⋂

˜E

yk
e

∑

e∈Tk\ ˜E

1
.

In fact, we still deal with the last problem, which is the minimization of a
ratio of a submodular function and modular function, and this can be solved
in polynomial time by a combinatorial algorithm [5]. Therefore, we can also
compute the above inequations in polynomial time.

In summary, τ∗ = min{τ1, τ2, τ3} is the next time of incurring cases, and thus
the lemma holds. 	

Lemma 2.

SSOL =
∑

S∈̂S0

∑

(e,k)∈N(S,0)

yk
e +

m∑

k=1

∑

S∈̂Sk

∑

(e,k)∈N(S,k)

yk
e .
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Proof. Clearly, if each S ∈ Ŝ0, then the first cost constraint of the dual program-
ming is tight. We have

c0S =
∑

(e,k)∈N(S,0)

yk
e ,

then
∑

S∈̂S0

c0S =
∑

S∈̂S0

∑

(e,k)∈N(S,0)

yk
e .

This is the purchasing cost of the sets in the first stage.
Analogously, the second cost constraint is tight for each S ∈ Ŝk in the scenario

k, where k = 1, 2, ..,m. We have

ckS =
∑

(e,k)∈N(S,k)

yk
e ,

then
m∑

k=1

∑

S∈̂Sk

ckS =
m∑

k=1

∑

S∈̂Sk

∑

(e,k)∈N(S,k)

yk
e .

This is the purchasing cost of the sets in the second stage. Then the above lemma
holds. 	

Analogously, we give the following notations. Let Ŝk := {(S, k)|S ∈ Ŝk}
and C

̂Sk
:=

⋃

S∈̂Sk

N(S, k) for each k = 0, 1, 2, ...,m, and partition the client-

scenario (element-scenario) pair into two types which are denoted as C(1) :=

C
̂S0

⋃
(

m⋃

k=1

C
̂Sk

) and C(2) :=
m⋃

k=1

{(e, k) : e ∈ T̂k} respectively. Obviously, C(1)

is the client-scenario (element-scenario) pair set in which each client-scenario
(element-scenario) pair (e, k) has a positive contribution to the set-scenario pair
(S, 0) ∈ Ŝ0 or (S, k) ∈ Ŝk. C(2) is the client-scenario (element-scenario) pair set
in which each client-scenario (element-scenario) pair (e, k) is rejected in the k-
th scenario. Note that C(1) and C(2) may be joint, and a partition of C can be
constructed as follows: {C(1)\C(2), C(2)}.

The following lemma with respect to the penalty cost of SOL is important
for the proof of deterministic set cover problem with submodular penalties. For
completeness, we present the proof for the stochastic set cover problem with
submodular penalties almost the same as in [19].

Lemma 3.

PSOL =
∑

(e,k)∈C(2)

yk
e =

m∑

k=1

∑

e∈ ̂Tk

yk
e .
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Proof. For any iteration in which we get τ∗ = τ3 in Step 2.4. Let T 1
k be the

penalty set before this iteration and T 2
k be the set Tk∗

3
given in this iteration.

We have
∑

e∈T 1
k

yk
e = pkhk(T 1

k ),

∑

e∈T 2
k

yk
e = pkhk(T 2

k ).

We only need to show that for any k = 1, 2, ...,m,

∑

e∈T 1
k

⋃

T 2
k

yk
e = pkhk(T 1

k

⋃
T 2
k ).

From the submodularity of hk(·) and Algorithm 1, we have
∑

e∈T 1
k

⋃

T 2
k

yk
e +

∑

e∈T 1
k

⋂

T 2
k

yk
e =

∑

e∈T 1
k

yk
e +

∑

e∈T 2
k\T 1

k

yk
e +

∑

e∈T 1
k

⋂

T 2
k

yk
e

=
∑

e∈T 1
k

yk
e +

∑

e∈T 2
k

yk
e

= pkhk(T 1
k ) + pkhk(T 2

k )

≥ pkhk(T 1
k

⋃
T 2
k ) + pkhk(T 1

k

⋂
T 2
k ).

Since the following inequations always hold in Algorithm 1, we can get
∑

e∈T 1
k

⋃

T 2
k

yk
e ≤ pkhk(T 1

k

⋃
T 2
k ),

∑

e∈T 1
k

⋂

T 2
k

yk
e ≤ pkhk(T 1

k

⋂
T 2
k ).

By the above formulas, we can obtain
∑

e∈T 1
k

⋃

T 2
k

yk
e +

∑

e∈T 1
k

⋂

T 2
k

yk
e = pkhk(T 1

k

⋃
T 2
k ) + pkhk(T 1

k

⋂
T 2
k ),

which implies that
∑

e∈T 1
k

⋃

T 2
k

yk
e = pkhk(T 1

k

⋃
T 2
k ).

Then the lemma is proved. 	

Next, we present our main result in the paper.
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Theorem 1. Algorithm 1 is a 2η-approximation algorithm for the stochastic set
cover problem with submodular penalties.

Proof. We have presented the bound on the total cost of SOL produced by
Algorithm 1, and let OPT be the optimal solution of the stochastic set cover
problem with submodular penalties. Note that each element appears η times at
most, that is to say, each client (element) can be covered by η times at most
in the corresponding scenario. Clearly, C(1), C(2) may be joint. By Lemma 2 and
Lemma 3, the cost of SOL is at most

cost(SOL) = SSOL + PSOL

=
∑

S∈̂S0

∑

(e,k)∈N(S,0)

yk
e +

m∑

k=1

∑

S∈̂Sk

∑

(e,k)∈N(S,k)

yk
e +

m∑

k=1

∑

e∈ ̂Tk

yk
e

≤ η(
∑

(e,k)∈C1

yk
e +

∑

(e,k)∈C2

yk
e )

≤ 2η(
∑

(e,k)∈C
yk
e )

≤ 2ηOPT.

Therefore, we conclude the proof. 	

As explained previously, the stochastic vertex cover problem with submodular
penalties is a particular case of the stochastic set cover problem with submodular
penalties. Specifically, each client-scenario (edge-scenario) can be covered at most
two times in the stochastic vertex cover problem with submodular penalties. This
is just the case of η = 2 in the stochastic set cover problem with submodular
penalties. Therefore, we have the following corollary.

Corollary 1. There exists a 4-approximation algorithm for the stochastic vertex
cover problem with submodular penalties.

4 Conclusions

Considering the stochastic set cover problem, we present a primal-dual 2η-
approximation algorithm. Many researchers made substantial contribution in
stochastic problems by considering the use of sampling, cost sharing function,
and primal-dual, etc. In the future, we believe that there will be more substantial
progress in approximation algorithms for the stochastic optimization problems,
and it will be interesting to improve the approximation ratios of these problems.
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Abstract. In this paper, we consider the 1-line minimum rectilinear
Steiner tree (1L-MRST) problem, which is defined as follows. Given n
points in the Euclidean plane R

2, we are asked to find the location of a
line l and a Steiner tree T (l), which consists of vertical and horizontal line
segments plus the line l, to interconnect these n points and at least one
point on the line l, the objective is to minimize total weight of T (l), i.e.,
min{∑

uv∈T (l) w(u, v) | T (l) is a Steiner tree as mentioned-above}, where

weight w(u, v) = 0 if two endpoints u, v of an edge uv ∈ T (l) is located
on the line l and weight w(u, v) as the rectilinear distance between u
and v otherwise. Given a line l as an input, we refer to this problem as
the 1-line-fixed minimum rectilinear Steiner tree (1LF-MRST) problem;
In addition, when Steiner points of T (l) are all located on the line l, we
refer to this problem problem as the constrained minimum rectilinear
Steiner tree (CMRST) problem.

We obtain three main results as follows. (1) We design an exact algo-
rithm in time O(n logn) to solve the CMRST problem; (2) We show that
the same algorithm in (1) is a 1.5-approximation algorithm to solve the
1LF-MRST problem; (3) Using a combination of the algorithm in (1)
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for many times and a key lemma proved by using some techniques of
computational geometry, we provide a 1.5-approximation algorithm in
time O(n3 log n) to solve the 1L-MRST problem.

Keywords: 1-line minimum rectilinear Steiner tree · Constrained
minimum rectilinear Steiner tree · Approximation algorithms ·
Complexity

1 Introduction

The minimum spanning tree problem is one of important combinatorial opti-
mization problems, and this problem has many applications in our reality life.
There are many polynomial-time exact algorithms to solve this minimization
problem, for example, the Kruskal algorithm [11] and the Prim algorithm [13].

The Euclidean minimum spanning tree problem is a special version of the
minimum spanning tree problem, and it is defined as follows. Given n points
in the Euclidean plane R

2, the objective is to construct a tree to span these n
points with the minimum total length, where the length of each edge in such a
spanning tree is the Euclidean distance between its two end-points. The exact
algorithms as mentioned-above can be applied to solve the Euclidean minimum
spanning tree problem, each running time of which is at least O(n2). However,
using the Voronoi diagram, Shamos and Hoey [16] presented an exact algorithm
in time O(n log n) to solve the Euclidean minimum spanning tree problem.

The Euclidean minimum rectilinear spanning tree problem is similarly defined
as follows. Given n points in R

2, the objective is to find a tree, which consists
only of vertical and horizontal line segments, to span these n points with the
minimum total length, where the length of each edge in such a spanning tree is
the rectilinear distance (sometimes, referred as the Manhattan distance) between
its two end-points. Usually, the exact algorithms as mentioned-above for general
graphs can be applied to solve this Euclidean minimum rectilinear spanning tree
problem, each running time of which is at least O(n2). Constructing a Delaunay
triangulation and a Voronoi diagram as in [16], Hwang [8] in 1979 presented an
exact algorithm in time O(n log n) to solve the Euclidean minimum rectilinear
spanning tree problem. However, Delaunay triangulation is not easily defined in
the rectilinear distance. Establishing a framework for minimum spanning tree
construction which is based on a general concept of spanning graphs and not
necessarily on a Delaunay triangulation, Zhou et al. [19] in 2002 designed a
sweep-line algorithm in time O(n log n) to construct a Euclidean minimum rec-
tilinear spanning tree without using Delaunay triangulation.

The minimum Steiner tree problem is one of the fundamental combinatorial
optimization problems, and it has many wide applications in our reality life. Bern
and Plassmann [2] showed that the minimum Steiner tree problem is max-SNP-
hard, even for unit weights. Since the 1990s, the minimum Steiner tree problem
and its variations have been studied extensively, and some good approximation
algorithms to solve these NP-hard problems have been found in [9,18].
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The Euclidean minimum Steiner tree (EMST) problem is a new version of the
minimum Steiner tree problem, and it is defined as follows. Given n points in R

2,
it is asked to construct a tree to interconnect these n points with the minimum
total length, where the length of each edge in such a tree is the Euclidean distance
between its two end-points. This tree may contain some extra points, called as
Steiner points, different from these n points so that the total length of such a
tree is minimized. Garey, Graham and Johnson [4] in 1977 showed the EMST
problem is NP-hard. There are some good approximation algorithms to solve
the EMST problem [9,17].

Garey and Johnson [5] in 1977 also reconsidered the Euclidean minimum
rectilinear Steiner tree (MRST) problem, which is modelled as follows. Given n
points in R

2, it is asked to find a tree, which consists only of vertical and horizon-
tal line segments, to interconnect these n points with the shortest possible length,
where the length of each edge in such a tree is the rectilinear distance between
its two end-points. The MRST problem has received many attentions, and it has
potential applications to wire layout for printed circuit boards. Though Garey
and Johnson [5] showed that the MRST problem is NP-complete, this problem
has many applications in making electric wire connections on a control panel
in very large scale integrated layout designs (VLSI layout designs) [14,15] and
communication networks [10,14]. Several heuristics for the MRST problem have
been proposed [9,14]. Many applications of Steiner trees, especially rectilinear
Steiner trees, in industries can be found in the book by Cheng and Du [3].

Finding the addition of a “Steiner line” into Steiner points whose weight is
not counted in the resulting network, Holby [6] in 2017 considered a variation of
the Euclidean Steiner tree problem, which we refer as the 1-line minimum Steiner
tree (1L-MST) problem. Given a set P = {r1, r2, . . . , rn} of n points in R

2, it is
asked to find the location of a line l and a Steiner tree T (l) on the set P such that
at least one Steiner point is located at the line l, the objective is to minimize total
weight of such a Steiner tree T (l), i.e., min{∑uv∈T (l) w(u, v) | T (l) is a Steiner
tree as mentioned-above}, where weight w(u, v) = 0 if two end-points u, v of edge
uv ∈ T (l) are located on the line l and weight w(u, v) as the Euclidean distance
between u and v otherwise. Holby [6] only discussed a heuristic algorithm to
produce a feasible solution for the 1L-MST problem on larger sets and then
presented some related properties.

Motivated by the problems as mentioned-above and some applications in
making electric wire connections on a control panel in VLSI layout designs, we
address the 1-line minimum rectilinear Steiner tree (1L-MRST) problem, which
is defined as follows. Given a set P = {r1, r2, . . ., rn} of n points in R

2, we are
asked to find the location of a line l and a Steiner tree T (l), which consists of
vertical and horizontal line segments plus the line l, to interconnect these n points
in P and at least one point located at the line l, the objective is to minimize
total weight of such a Steiner tree T (l), i.e., min{∑uv∈T (l) w(u, v) | T (l) is a
Steiner tree as mentioned-above}, where weight w(u, v) = 0 if two endpoints u,
v of edge uv ∈ T (l) are located on the line l and weight w(u, v) as the rectilinear
distance between u and v otherwise. Given a fixed line l as an input in R

2, we
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refer to this problem as the 1-line-fixed minimum rectilinear Steiner tree (1LF-
MRST) problem. In addition, when Steiner points of T (l) are all located on the
line l, we refer to this problem as the constrained minimum rectilinear Steiner
tree (CMRST) problem.

The 1LF-MRST problem and the 1L-MRST problem have many applications
in our reality life, respectively, such as transportation, communication, or VLSI
layout designs. In the sequel, we hope to design an exact algorithm to solve the
CMRST problem, and then to approximate the 1LF-MRST problem. We finally
hope to provide an approximation algorithm to solve the 1L-MRST problem.

Our paper is well organized as follows. In Sect. 2, we present a few nota-
tions, terminologies and fundamental lemmas; In Sect. 3, using an exact algo-
rithm to find a constrained minimum rectilinear Steiner tree, we design a 1.5-
approximation algorithm to solve the 1LF-MRST problem; In Sect. 4, using the
algorithm designed-above for many times, a technique of finding linear facility
location and a key Lemma 9 proved by using some techniques of computational
geometry, we provide a 1.5-approximation algorithm to solve the 1L-MRST prob-
lem; In Sect. 5, we give our conclusion and further research.

2 Terminologies and Fundamental Lemmas

We present some notations, terminologies and fundamental lemmas in order to
prove our results in the following sections. And other materials not defined in
this paper can be found in the references [1,15,17].

Consider a set S of some points in R
2 where the distance may be either

the rectilinear distance (sometimes, referred as the Manhattan distance) or the
Euclidean distance. More concretely, if two points p and q are identified by their
Cartesian coordinates, i.e., p = (xp, yp) and q = (xq, yq), we denote by [p, q]r,
simply [p, q], the rectilinear segment between two points p and q, and we define
by rd(p, q) the rectilinear distance between two points p and q as follows

rd(p, q) = |xp − xq| + |yp − yq| (1)

Given a point p = (xp, yp) in S and a fixed line l, whose equation satisfies the
following: y = kx + b, in R

2, we define the rectilinear distance rd(p, l) between
this point p and that fixed line l as follows

rd(p, l) = min{rd(p, q) | q is a point at this fixed line l} (2)

For convenience, we define the Euclidean distance between two points. Given
two points p = (xp, yp) and q = (xq, yq) in R

2, we denote by pq the line seg-
ment, simply segment, between two points p and q, and we define by d(p, q) the
Euclidean distance between two points p and q as follows

d(p, q) =
√

(xp − xq)2 + (yp − yq)2 (3)

Given a point p = (xp, yp) and a fixed line l in R
2, we denote by pl the

perpendicular segment from this point p to that fixed line l, and at the same



On Approximations for 1-Line Minimum Rectilinear Steiner Trees 53

time, we denote by lp the vertical foot from this point p to that fixed line l, i.e.,
lp is the sole point as the intersection of this fixed line l and the vertical line
passing through the point p. Similarly, we may define by d(p, l) the Euclidean
distance between this point p and that fixed line l as follows

d(p, l) = min{d(p, q) | q is a point at this fixed line l} (4)

By the vertical foot lp and the Euclidean distance d(p, l) as mentioned-above,
we immediately obtain the fact d(p, l) = d(p, lp).

In addition, if this fixed line l satisfies the equation: y = kx + b in R
2,

using some techniques of Computational Geometry [1], we obtain the Euclidean
distance d(p, l) between this point p and that fixed line l as follows

d(p, l) =
|yp − kxp − b|√

k2 + 1
(5)

For convenience, given a point p = (xp, yp) and a fixed line l, we denote by
lpX (lpY , respectively) the intersection point of that fixed line l and the x-parallel
line (y-parallel line, respectively) which passes through the point p = (xp, yp),
where we also denote rd(p, lpX) (= d(p, lpX)) = +∞ or rd(p, lpY ) (= d(p, lpY ))
= +∞ if this point lpX or lpY does not exist, respectively. We denote this point
lpX (lpY , respectively) as the x-parallel point (the y-parallel point, respectively)
located at the line l corresponding to the point p, simply, the x-parallel point
lpX (the y-parallel point lpY , respectively) if no confusion. In addition, this line
segment plpX or plpY is called as an x-parallel segment or an y-parallel segment,
respectively.

Using the definition of rectilinear distance rd(p, l), we obtain the following
lemmas in turn, and we omit the proofs in details.

Lemma 1. Given a point p = (xp, yp) and a fixed line l, whose equation satisfies
the form: y = kx + b, in R

2, we can obtain the following

rd(p, l) = min
{
rd(p, lpX), rd(p, lpY )

}
(6)

= min
{
d(p, lpX), d(p, lpY )

}

In addition, (i) only when |k| = 1, this minimum value rd(p, l) is attained at any
point on the line segment lpX lpY , (ii) only when |k| > 1, this minimum value
rd(p, l) is attained at the point lpX , and (iii) only when |k| < 1, this minimum
value rd(p, l) is attained at the point lpY , where lpX and lpY are defined as
mentioned-above.

Lemma 2. Given a point p = (xp, yp) and a fixed line l, whose equation satisfies
the form: y = kx + b, in R

2, we obtain the following

rd(p, l) = min
{d(p, lp)

| cos α| ,
d(p, lp)
| sin α|

}
(7)

= d(p, lp) · min
{ 1

| cos α| ,
1

| sin α|
}
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where lp is the vertical foot from this point p to that fixed line l and α (0 ≤ α ≤ π)
is the inclined angle between that fixed line l and the x-axis, satisfying tan α = k.

Lemma 3. [11] The minimum spanning tree problem can be optimally solved by
the Kruskal algorithm in time O(m log n), where n = |V (G)| and m = |E(G)|.
Lemma 4. [8,19] A minimum rectilinear spanning tree on n points in R

2 can
be constructed by a polynomial-time exact algorithm, denoted by the MRspanT
algorithm, in time O(n log n).

We denote the rectilinear Steiner ratio as the minimum upper-bound for
the ratio between total lengths of a minimum rectilinear spanning tree and a
minimum rectilinear Steiner tree for the same set P of n points in R

2.

Lemma 5. [7] Given a set P of n points in R
2, denote by LM (P ) the total

lengths of a minimum rectilinear spanning tree and by LS(P ) the total lengths
of a minimum rectilinear Steiner tree on the same set P , respectively. Then we
have the fact LM (P ) ≤ 3/2 · LS(P ).

Given a set P = {r1, r2, . . . , rn} of n points and a fixed line l, having its
equation as the form y = kx+ b (where |k| ≥ 1), in R

2 for the CMRST problem,
for each bipartition {P1, P2} of P , we denote δ∗

l (P1) to be the set E1 ∪E2, where
E1 = {[ri, rj ] | ri ∈ P1 and rj ∈ P2 are both located at same side of the line
l} and E2 = {[ri, lriX ] | ri ∈ P1, and lriX is the x-parallel point located at the
line l corresponding to ri}. In this case, we have properties [ri, lriX ] = rilriX for
each point ri ∈ P1. Similarly, when linear equation is as the form y = kx + b
(where |k| < 1), we still denote δ∗

l (P1) to be the set E1 ∪ E2, where E1 and E2

are defined as before, except substituting lriY for lriX in E2 for each ri ∈ P1,
then we have properties [ri, lriY ] = rilriY for each point ri ∈ P1. Finally, we can
obtain the following

Lemma 6. Given a set P = {r1, r2, . . . , rn} of n points and a fixed line l, having
its equation in the form y = kx + b (where |k| ≥ 1), in R

2 for the CMRST
problem, then T (l) is a constrained minimum rectilinear Steiner tree if and only
if, for every edge uv ∈ E(T (l)) which satisfies w(u, v) �= 0, i.e., at least one of
two end-points u and v of this edge uv is not at the line l, there exists a subset
P1 (⊆ P ) consisting of all points in a connected component of T − {uv} such
that [u, v] is a shortest rectilinear segment of δ∗

l (P1).

3 The 1LF-MRST Problem

In this section, we consider the 1-line-fixed minimum rectilinear Steiner tree
(1LF-MRST) problem. We hope to design a polynomial-time exact algorithm
to optimally solve the constrained minimum rectilinear Steiner tree (CMRST)
problem. We may reminder that the CMRST problem is a special version of the
1LF-MRST problem, where Steiner points are all located on the fixed line l.
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The following two results play important roles to find an optimal solution for
solving the CMRST problem and the 1LF-MRST problem, respectively, whose
proofs are simple and clear, and we can omitted the proofs in details.

Lemma 7. Given a set P of n points and a fixed line l, whose equation satisfies
the form: y = kx + b, in R

2, then we obtain the following

(1) If risi is a rectilinear segment in a constrained minimum rectilinear Steiner
tree T for the CMRST problem, where ri is a point in P and si is a point on
the line l, then this point si may be chosen as either the x-parallel point lriX
(for the case |k| ≥ 1) or the y-parallel point lriY (for the case |k| < 1) on the
line l.

(2) If risi is a rectilinear segment in a 1-line-fixed minimum rectilinear Steiner
tree T for the 1LF-MRST problem, where ri is either a point in P or a Steiner
point of T , which is not on the line l, and si is a point on the line l, then
this point si may be chosen as either the x-parallel point lriX (for the case
|k| ≥ 1) or the y-parallel point lriY (for the case |k| < 1) on the line l.

For the case where the line l has its equation in the form y = kx+b to satisfy
|k| ≥ 1, using Lemma 7, we can design an algorithm to solve the CMRST problem
in the following strategies. (1) Use the MRspanT algorithm [8,19] to produce a
minimum rectilinear spanning tree T = (P,ET ) on the set P = {r1, r2, . . . , rn};
(2) Construct a weighted graph G = (P ∪ {r0}, E,w), where r0 is a new vertex
to represent the fixed line l and E = {rir0 | ri ∈ P} ∪ {rirj | [ri, rj ] ∈ ET is
vertex-disjoint from that line l}, and we denote w(ri, rj) = rd(ri, rj) for each
[ri, rj ] ∈ ET and w(ri, r0) = d(ri, lriX) for each ri ∈ P using Lemmas 1 and
7, where the point lriX is the x-parallel point located at the line l; (3) Use the
Kruskal algorithm [11] to find a minimum spanning tree TG in G equipped with
a weighted function w(·), then construct a constrained rectilinear Steiner tree
from this minimum spanning tree TG of G.

For the case where the line l has its equation in the form y = kx+b to satisfy
|k| < 1, we only denote w(ri, r0) = d(ri, lriY ) for each ri ∈ P in the strategy (2)
using Lemmas 1 and 7, where the point lriY is the y-parallel point located at the
line l, and other steps need not be changed. For convenience, we may mention
the same weighted graph G = (P ∪ {r0}, E,w) in both cases.

Our algorithm ACMRST to solve the CMRST problem is described as follows.
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Algorithm:ACMRST

Input: A fixed line l with its equation in form: y = kx + b, and a set
P = {r1, r2, . . . , rn} of n points in R

2.
Output: a constrained minimum rectilinear Steiner tree T (l).
Begin
Step 1 Denote T (l) = (V ∗, E∗), where V ∗ = P and E∗ = ∅.
Step 2 Use the MRspanT algorithm [8,19] to find a minimum rectilinear

spanning tree T = (P,ET ) on the set P .
Step 3 Construct a weighted graph G = (P ∪ {r0}, E, w) as mentioned-

above.
Step 4 Use the Kruskal algorithm [11] to find a minimum spanning tree

TG of G.
Step 5 For each edge e ∈ E(TG) do

If (e = rirj ∈ E(TG), where i ≥ 1 and j ≥ 1) then
we denote E∗ = E∗ ∪ {[ri, rj ]}

If (e = rir0 ∈ E(TG), where i ≥ 1) then
we denote E∗ = E∗ ∪ {[ri, si]} and V ∗ = V ∗ ∪ {si}, where

si is either lriX (if |k| ≥ 1) or lriY (if |k| < 1) on the fixed line l.
Step 6 Output T (l) = (V ∗, E∗ ∪ E∗∗), where E∗∗ = {sisj | si and sj in

V ∗ are successive vertices on the line l}.
End

Using the algorithm ACMRST , we obtain the following

Theorem 1. The algorithm ACMRST optimally solves the CMRST problem in
time O(n log n), where an instance of the CMRST problem consists of a fixed
line l and a set P = {r1, r2, . . . , rn} of n points in R

2.

Proof. Given a set P of n points and a fixed line l to satisfy its equation: y =
kx + b, in R

2, we may assume, without loss of generality, that |k| ≥ 1 holds,
implying that, for each ri ∈ P , we construct an edge rir0 in such a weighted
graph G = (P ∪ {r0}, E,w) to represent the x-parallel segment rilriX , having
w(rir0) = rd(ri, l) = d(ri, lriX) using Lemma 7, where lriX is the x-parallel point
located on the line l of the point ri in the set P .

By Lemma 6, we obtain the fact that T (l) is an optimal solution if and only
if, for every edge uv ∈ E(T (l)) which satisfies w(uv) �= 0, i.e., at least one of two
end-points u, v of this edge uv is not at the line l, [u, v] is a shortest rectilinear
segment of δ∗

l (P1), where P1 is the vertex set of a connected component of T −uv
which contains no point on the line l.

Suppose, to the contrary, that we may assume that there exists one edge
e = [u, v] ∈ E(T (l)), which satisfies w(u, v) �= 0, such that [u, v] is not the
shortest rectilinear segment in δ∗

l (P1). For the choice of P1 and the fact that
there exists some rectilinear segment in δ∗

l (P1) to connect two components of
T (l) − {[u, v]}, we choose [p, q] to be a shortest rectilinear segment in δ∗

l (P1),
which satisfies w(pq) �= 0, then we obtain rd(p, q) < rd(u, v).

If the rectilinear segment [p, q] = [ri, rj ] for two points ri, rj ∈ P , then [ri, rj ]
is a shortest rectilinear segment in δ∗

l (P1). Since T is a minimum rectilinear
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spanning tree on P by Step 2 in the ACMRST algorithm (in fact, the MRspanT
algorithm), using Lemma6, we can assume that [ri, rj ] belongs to ET , implying
[ri, rj ] ∈ E. Then we have w(ri, rj) < w(u, v), and we obtain the fact that
T ′ = (T − [u, v])+ [ri, rj ] is another rectilinear spanning tree on P with w(T ′) =
w(T ) + w(ri, rj) − w(u, v) < w(T ), contradicting the fact that T is a minimum
rectilinear spanning tree on P .

If the rectilinear segment [p, q] = [ri, lriX ], where ri ∈ P and lriX is the
x-parallel point at the line l of ri in P , we obtain rir0 ∈ E. Using Lemma 6 and
the similar arguments as mentioned-above, we can reach a contradiction that TG

is a minimum spanning tree in the weighted graph G.
The complexity of the Algorithm ACMRST can be determined as follows.

(1) By Lemma 4, a minimum rectilinear spanning tree T = (P,ET ) on these
n points in R

2 can be determined in time O(n log n) [8,19]. (2) Step 3 can be
implemented in O(n) time. (3) Since this spanning tree T = (P,ET ) has n − 1
edges, the graph G has exactly n + 1 vertices and at most 2n − 1 edges, then
the Kruskal algorithm can determine a minimum spanning tree of the weighted
graph G in time O(n log n) in this case. (4) Since there are exactly n edges in
E(TG), Step 5 can be implemented to run in O(n). Thus, the whole algorithm
ACMRST can be implemented to run in O(n log n).

This completes the proof of this theorem.

Using Lemma 5 for many times, we obtain the following

Theorem 2. The algorithm ACMRST is a 1.5-approximation algorithm in time
O(n log n) to solve the 1LF-MRST problem.

Proof. Given a fixed line l and a set P of n points for the 1LF-MRST problem,
we may suppose that an optimal 1-line-fixed minimum rectilinear Steiner tree
T ∗
S(l) has exactly q Steiner points located successively at that fixed line l, saying

s1, s2, . . ., sq. (At the same time, we may permit that there are some other
Steiner points (if any) out of the fixed line l).

We should consider all maximal rectilinear Steiner subtrees in the reduced
graph T ∗

S(l) − E(l), i.e., the reduced graph of T ∗
S(l) removing all edges at the

fixed line l. Given each i = 1, 2, . . . , q, we may assume that T ∗
si(l) is a maximal

rectilinear Steiner subtree in T ∗
S(l)−E(l) to contain a sole point si located on the

line l. Now, we can partition the vertex set of each maximal rectilinear Steiner
subtree T ∗

si(l) into three parts: (1) a subset Psi = V (T ∗
si(l)) ∩ (P − {si}), (2) a

subset {si}, and (3) a subset Ssi = V (T ∗
si(l)) − (Psi ∪ {si}).

We can denote by T ∗∗
si (l) a minimum rectilinear spanning tree on the set

Psi ∪ {si} for each i = 1, 2, . . . , q. Using Lemma 5 on the set Psi ∪ {si}, we can
obtain LM (Psi ∪ {si}) ≤ 1.5 · LS(Psi ∪ {si}), i.e., w(T ∗∗

si (l)) ≤ 1.5 · w(T ∗
si(l)).

Using the definition of weight w(si−1si) = 0 for each i = 2, 3, . . . , q, we can have
w(T ∗

S(l)) =
∑q

i=1 LS(Psi ∪ {si}) =
∑q

i=1 w(T ∗
si(l)).

At the same time, we can construct a 1-line-fixed rectilinear spanning tree
T = ∪q

i=1T
∗∗
si (l) ∪ {si−1si | i = 2, 3, . . . , q} on the set P ∪ {s1, s2, . . . , sq}. It is

easy to see that this spanning tree T is actually a constrained rectilinear Steiner
tree to contain all points in P and q Steiner points s1, s2, . . ., sq, where these
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q Steiner points are all successively located on that fixed line l and there are
no other Steiner points out of that fixed line l. By Theorem 1, the algorithm
ACMRST produces a constrained minimum rectilinear Steiner tree T (l), then we
obtain w(T (l)) ≤ w(T ).

Finally, we obtain the following

w(T (l)) ≤ w(T )

= w(∪q
i=1T

∗∗
si (l)) +

q∑

i=2

w(si−1si)

=
q∑

i=1

w(T ∗∗
si (l)) +

q∑

i=2

w(si−1si) (8)

≤ 1.5 ·
q∑

i=1

w(T ∗
si(l)) + 1.5 ·

q∑

i=2

w(si−1si)

= 1.5 · w(T ∗
S(l))

All arguments mentioned-above show that the algorithm ACMRST is a 1.5-
approximation algorithm to solve the 1LF-MRST problem.

The proof Theorem 1 indeed shows that the algorithm ACMRST runs in time
O(n log n).

Thus, we can obtain the conclusion of this theorem.

4 The 1L-MRST Problem

In this section, we consider the 1-line minimum rectilinear Steiner tree (1L-
MRST) problem. We introduce an optimization problem and some fundamental
lemmas, and using the algorithm ACMRST for many times, we hope to design
an approximation algorithm to solve the 1L-MRST problem.

Definition 1. [12] Given m “demand” points Q = {q1, q2, . . . , qm} in R
2 with

coordinates qi = (xi, yi) and weights ci, the linear facility can be described by a
line whose equation is y = kqx+bq, where (kq, bq) is an optimal solution to solve
the following optimization problem

min
q∈Q

fq(k, b) =
m∑

i=1

ci · |yi − kxi − b|√
k2 + 1

(9)

i.e., Formula 9 is equivalent to find a line in R
2, whose equation is y = kqx + bq,

such that the sum of Euclidean distances from these m points q1, q2, . . ., qm to
this line is minimized.

We find the following lemma due to Morris and Norback [12] to solve the
optimization problem in Formula 9.
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Lemma 8. [12] Given m “demand” points Q = {q1, q2, . . . , qm} in R
2 with

coordinates qi = (xi, yi) and weights ci, an optimal solution to the optimization
problem as mentioned-above (seeing Formula 9) exists which is a line satisfying
equation y = kqx + bq to pass through at least two “demand” points in Q.

We have the following result similar to Lemma 8, which plays an important
role to find an optimal solution for the 1L-MRST problem.

Lemma 9. Given a set P of n points in R
2 as an instance of the 1L-MRST

problem, there exists an optimum solution in which we can choose a line l to
pass through at least two points in the set P .

Using Lemma 9, we design an algorithm, referred as the algorithm
A1L−MRST , to solve the 1L-MRST problem.

Algorithm:A1L−MRST

Input: A set P = {r1, r2, . . . , rn} of n points in R
2.

Output: a line l and a Steiner tree T .

Begin
Step 1 For i = 1 to n do:

For j = 1 to n (j �= i) do:
Choose a line lij to pass through the two points ri and rj ;
Use the algorithm ACMRST on the set P − {ri, rj} to con-

struct a constrained minimum rectilinear Steiner tree T (lij).
Step 2 Choose two points ri0 and rj0 to satisfy

w(T (li0j0)) = min{w(T (lij))|1 ≤ i ≤ n, 1 ≤ j ≤ n and j �= i}.
Step 3 Output “the line li0j0 and the 1-line rectilinear Steiner tree

T (li0j0)”.
End

Using the algorithm A1L−MRST , we obtain the following

Theorem 3. The algorithm A1L−MRST is a 1.5-approximation algorithm for
the 1L-MRST problem, and its time complexity is O(n3 log n), where n is the
number of points in R

2.

Proof. We may suppose, for a set P = {r1, r2, . . . , rn} of n points in R
2, that

T (l∗) is an optimal minimum rectilinear Steiner tree in R
2 and T (li0j0) is a 1-line

rectilinear Steiner tree produced by the algorithm A1L−MRST .
By Lemma 9, we may choose an optimal 1-line minimum rectilinear Steiner

tree T (l∗), where this optimal solution contains a line l∗ to pass through at least
two points in P , denoted by ri and rj .

We denote by Trirj the constrained minimum rectilinear Steiner tree for the
line l∗. For the fixed line l∗, using Theorem 2, we obtain the fact w(Trirj ) ≤ 1.5 ·
w(T (l∗)). Since the algorithm A1L−MRST enumerates all possibilities of lines to
pass any two points, and the algorithm A1L−MRST produces a 1-line rectilinear
Steiner tree T (li0j0) with minimum weight, then we obtain the following

w(T (li0j0)) ≤ w(Trirj ) ≤ 1.5 · w(T (l∗)) (10)
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implying that the algorithm A1L−MRST is a 1.5-approximation algorithm for
the 1L-MRST problem.

Since Theorem 1 shows that the algorithm ACMRST runs in time O(n log n),
then we obtain that Step 1 can be implemented in time O(n3 log n), and other
steps run in time at most O(n2). Thus, the whole algorithm A1L−MRST can be
implemented in O(n3 log n) time.

Thus, we can obtain the conclusion of this theorem.

5 Conclusion and Further Research

In this paper, we consider the 1-line minimum rectilinear Steiner tree problem,
and we obtain the following three main results.

(1) We design a polynomial-time exact algorithm in time O(n log n) to solve the
constrained minimum rectilinear Steiner tree (CMRST) problem;

(2) We show that the algorithm designed in (1) is a 1.5-approximation algorithm
to solve the 1-line-fixed minimum rectilinear Steiner tree (1LF-MRST) prob-
lem;

(3) Using the algorithm in (1) for many times and Lemma9, we provide a 1.5-
approximation algorithm in time O(n3 log n) to solve the 1-line minimum
rectilinear Steiner tree (1L-MRST) problem.

A challenging task for further research is to design some approximation algo-
rithms to solve the 1L-MRST problem either with smaller performance ratios or
in lower time complexity.
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Abstract. Let G = (V, E, w, ρ, T ) be a weighted connected graph,
where V is the vertex set, E is the edge set, T ⊆ V is a terminal subset,
w : E → R

+ is an edge-weight function and ρ : V → R
+ is a vertex-

weight function. The weighted diameter of a Steiner tree T in G spanning
T is referred to as the longest weighted tree distance on T between ter-
minals. The objective of the Minimum Diameter Vertex-Weighted
Steiner Tree Problem (MDWSTP) is to construct a Steiner tree in
G spanning T to minimize the weighted diameter.

In this paper, we study the MDWSTP in two classes of parameterized
graphs, 〈T , μ〉-PG and (T , λ)-PG, which are introduced from the perspec-
tive of the parameterized upper bound on the ratio of two vertex-weights,
and a weaker version of the parameterized triangle inequality, respec-
tively, and achieve simple approximation algorithms. For the MDWSTP
in edge-weighted 〈T , μ〉-PG, we obtain a μ+1

2
-factor approximation algo-

rithm where μ+1
2

is tight. For the MDWSTP in vertex-weighted (T , λ)-
PG, we first obtain a λ-factor approximation algorithm where λ is tight,
and then develop a slightly improved approximation algorithm.

Keywords: Steiner tree · Diameter · Vertex-weighted · Approximation

1 Introduction

Let G = (V,E,w, T ) be a weighted connected graph, where V is the set of
n vertices, E is the set of m edges, T ⊆ V is a subset of p terminals, and
w : E → R

+ is an edge-weight function. A Steiner tree is an acyclic connected
subgraph of G spanning T . The Steiner Minimum Tree Problem (SMTP)
in G seeks a minimum cost connected subgraph of G spanning T . It is one of
the well-known combinatorial optimization problems and has many applications
in a variety of fields [7,12], such as communication networks and computational
biology. It has been proved to be NP-hard in the strong sense [8].
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1.1 Related Works

Let T be a tree and L(T ) denote the subset of leaves of T . For any pair of vertices
of T , v and u, the unique v-u path on T is denoted by πT (v, u), and the length
of πT (v, u) is defined as the v-u tree distance on T and denoted by dT (v, u). The
longest tree distance on T between vertices must be one between leaves. It is
called the diameter of T and denoted by diam(T ), i.e.,

diam(T ) = max
v,u∈L(T )

dT (v, u). (1)

The problems involving the diameter of tree have been widely studied in the
past decades, including the Minimum Diameter Spanning Tree Problem
(MDTP) and the Minimum Diameter Steiner Tree Problem (MDSTP).
Given a set of n points in the Euclidean plane, Ho et al. [11] first studied the
geometrical MDSTP and MDTP. They proved that the geometrical MDSTP
is reducible to the minimum enclosing circle problem and admits a linear-time
algorithm. For the geometrical MDTP (equal to MDTP in the Euclidean graph
induced by the n points), they proved that a minimum diameter spanning tree is
monopolar or dipolar and shown a Θ(n3)-time algorithm. In general, this result
applies to MDTP in complete graphs with a metric edge-weight function. Chan
[2] proposed an o(n3)-time algorithm which is the first sub-cubic time algorithm
for the problem. Gudmundsson et al. [9] presented a 1.2-approximation algorithm
with a time complexity of O(n2 log n) and a (1 + ε)-approximation algorithm
with a time complexity of O(ε−5 + n), for any ε > 0, and later Spriggs et al.
[16] presented a (1 + ε)-approximation algorithm with a lower time complexity
of O(ε−3 + n). Furthermore, Ihler et al. [13] considered the minimum diameter
spanning tree problem with classes and obtained an O(n3)-time algorithm by
generalizing the results of Ho et al. [11].

In weighted connected graphs, MDSTP is equal to MDTP when T = V . For
MDTP in G = (V,E,w) where the edge-weight function w(·) is not necessary
metric, Hassin and Tamir [10] proved that MDTP is equivalent to the absolute
1-center problem, and gave an O(mn + n2 log n)-time exact algorithm. Later,
Bui et al. [1] developed a distributed algorithm with a time complexity of O(n)
and a message complexity of O(mn). In the last few years, we have worked on
MDSTP and some related problems in graphs. In [5], we studied MDSTP in
G = (V,E,w, T ), which asks for a Steiner tree in G spanning T to minimize the
diameter, and gave an O(mp+np log p)-time exact algorithm. Also, we considered
the restricted version of MDSTP, called the Minimum Diameter Terminal
Steiner Tree Problem (MDTSTP), where each terminal appears as a leaf of
tree [5]. We designed an O(p(n−p)2)-time exact algorithm for the metric version
of MDTSTP, as well as an O((n − p) log p)-time 2-approximation algorithm and
an O(np(n − p))-time exact algorithm for the nonmetric version of MDTSTP.
In [6], we proposed the Minimum Diameter k-Steiner Forest Problem
(MDkSFP), which seeks a k-Steiner forest, i.e., a collection of k disjoint Steiner
trees, such that the maximum diameter of the k Steiner trees is minimized. We
established the relationship between MDkSFP and the absolute k-Steiner center
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problem, and first achieved a 2-approximation algorithm and further developed
a slightly improved approximation algorithm by perturbing facilities and re-
clustering terminals. Besides, some bicriteria Steiner tree problems involving
the cost and diameter of tree in double-weighted connected graphs have been
studied [3,4,15].

1.2 Our Results

Let G = (V,E,w, ρ, T ) be a weighted connected graph, where V is the vertex
set, E is the edge set, T ⊆ V is a terminal subset, w : E → R

+ is an edge-weight
function and ρ : V → R

+ is a vertex-weight function, and let T be a Steiner tree
in G spanning T . The longest weighted tree distance on T between terminals is
called the weighted diameter of T . This paper deals with the Minimum Diam-
eter Vertex-Weighted Steiner Tree Problem (MDWSTP), the goal of
which is to construct a Steiner tree in G spanning T to minimize the weighted
diameter.

In this paper, we propose two classes of parameterized graphs (PG), 〈T , μ〉-
PG and (T , λ)-PG, from the angle of the parameterized upper bound on the
ratio of two vertex-weights, and a weaker version of the parameterized triangle
inequality, respectively. This paper focuses on the MDWSTP in these parameter-
ized graphs and achieves approximation algorithms. For the MDWSTP in edge-
weighted 〈T , μ〉-PG, we obtain a μ+1

2 -factor approximation algorithm where μ+1
2

is tight. For the MDWSTP in vertex-weighted (T , λ)-PG, we first obtain a λ-
factor simple approximation algorithm where λ is tight, and then develop a
slightly improved approximation algorithm.

Organization. The rest of this paper is organized as follows. In Sect. 2, we
define some notations used frequently and MDWSTP formally. In Sect. 3, we
introduce two classes of parameterized graphs (PG), 〈T , μ〉-PG and (T , λ)-PG.
In Sect. 4, for the MDWSTP in edge-weighted 〈T , μ〉-PG, we achieve a μ+1

2 -
factor approximation algorithm. In Sect. 5, for the MDWSTP in vertex-weighted
(T , λ)-PG, we achieve a λ-factor approximation algorithm where λ is tight as
well as a slightly improved approximation algorithm. In Sect. 6, we present some
concluding remarks.

2 Preliminaries

2.1 Notations

Let G = (V,E,w, ρ, T ) be a weighted undirected connected graph, where V is
the vertex set, E is the edge set, T ⊆ V is a terminal subset, w : E → R

+ is
an edge-weight function and ρ : V → R

+ is a vertex-weight function. All the
vertices in V are numbered in sequence by 1, 2, . . . , |V |. For any vertex subset,
U ⊆ V , we let I(U) denote the index set of U . Clearly, I(V ) = {1, 2, . . . , |V |}.
For each i ∈ I(V ), we let vi denote the vertex with index i. Specifically, we let
ti denote the terminal with index i, for each i ∈ I(T ).
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For any index pair, i, j ∈ {1, 2, . . . , |V |}, we let π∗(vi, vj) denote a shortest
path in G between vi and vj , abbreviated as a vi-vj shortest path. The length
of π∗(vi, vj) is called the shortest path distance (SPD) in G between vi and vj ,
abbreviated as the vi-vj SPD and denoted by d(vi, vj). Let p(e) be the set of all
the continuum points on e, for any edge e ∈ E, and p(G) be the set of all the
continuum points on the edges of G. Likewise, for any point pair, x, y ∈ p(G),
we also use π∗(x, y) and d(x, y) to denote the x-y shortest path and SPD in
G, respectively. All the shortest paths from a point x to terminals form a tree,
called the shortest path tree (SPT) and denoted by Tx, which roots at x and
spans all the terminals in T . So, Tx must be a Steiner tree. Specifically, we let
Tk denote the SPT rooted at vk, k ∈ I(V ).

For any point x ∈ p(G), the maximum distance from x to T , r(x, T ), is called
the x-to-T radius, and a point of G, x∗, minimizing the x-to-T radius is called
an absolute 1-Steiner center (A1SC) of G. We have

r(x, T ) = max
i∈I(T )

d(x, ti), (2)

and
r(x∗, T ) = min

x∈p(G)
r(x, T ). (3)

Moreover, we define the x-to-vi weighted distance as ρ(vi) · d(x, vi), for any
x ∈ p(G) and i ∈ I(V ). The maximum weighted distance from x to T , rρ(x, T ),
is called the x-to-T weighted radius, and a point of G, x�, minimizing the x-to-
T weighted radius is called a weighted absolute 1-Steiner center (WA1SC). We
have

rρ(x, T ) = max
i∈I(T )

{ρ(ti) · d(x, ti)} , (4)

and
rρ(x�, T ) = min

x∈p(G)
rρ(x, T ). (5)

2.2 Problem Definition

Let T = (V ′, E′) be a Steiner tree of G = (V,E,w, ρ, T ) spanning T . For any
index pair, i, j ∈ I(V ′), the vi-to-vj weighted tree distance on T is defined as
ρ(vj) · dT (vi, vj). The maximum weighted tree distance on T between terminals
is called the weighted diameter of T and denoted by diamρ(T ), and accordingly a
path on T between terminals with the weighted tree distance equal to diamρ(T )
is called a longest weighted path on T . Let T∗ denote a Steiner tree of minimum
weighted diameter. We have

diamρ(T ) = max
i,j∈I(T )

{ρ(ti) · dT (ti, tj)} , (6)

and
diamρ(T∗) = min

T
{diamρ(T )}. (7)
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For ease of presentation, we let INPUT represent an input as follows: an
undirected connected graph, G = (V,E,w, ρ, T ), where V is the vertex set, E is
the edge set, T ⊆ V is a terminal subset, w : E → R

+ is an edge-weight function
and ρ : V → R

+ is a vertex-weight function.

Problem 1. Given an INPUT, the goal of Minimum Diameter Vertex-
Weighted Steiner Tree Problem (MDWSTP) is to construct a Steiner
tree, T∗, spanning T of minimum weighted diameter.

3 Parameterized Graphs

In this section, we will introduce two classes of parameterized graphs (PG), both
of which arise from the real-world problems.

First, we consider such instances where the given vertex-weighted graph sat-
isfies that the ratio of any two vertex weights is always no more than a fixed
parameter. This inspires us to introduce the following vertex-weight parameter-
ized graph.

Definition 1. Given a vertex-weighted undirected connected graph, G =
(V,E, ρ), where ρ : V → R

+ is a vertex-weight function, a vertex subset U ⊆ V ,
and a real number, μ > 1, if G satisfies that ρ(vi)

ρ(vj)
≤ μ, for any i, j ∈ I(U), i �= j,

then G is called a 〈U, μ〉-parameterized graph and abbreviated as 〈U, μ〉-PG.

Given an edge-weighted connected graph, G = (V,E,w), the SPD func-
tion d : V × V → R

+ ∪ {0} in G is a metric, i.e., d(vi, vk) + d(vk, vj) ≥
d(vi, vj),∀i, j, k ∈ I(V ) and d(vi, vi) = 0. Let Gc = (V,E, d) denote the short-
est path graph (SPG) induced by G. Furthermore, we consider a class of graphs
whose SPG’s also satisfy that d(vi, vk) + d(vk, vj) ≤ λ · d(vi, vj),∀i, j, k ∈ I(V ),
where λ > 1 is a fixed parameter. This inequality is called a parameterized tri-
angle inequality. Using a weaker version of this inequality, we define a class of
edge-weight parameterized graphs as follows.

Definition 2. Given an edge-weighted undirected connected graph, G =
(V,E,w), where w : E → R

+ is an edge-weight function, a vertex subset U ⊂ V ,
and a real number, λ > 1, if the SPG, Gc = (V,E, d), induced by G satisfies that
d(vi, vk) + d(vk, vj) ≤ λ · d(vi, vj), for any i, j ∈ I(U), i �= j and k ∈ I(V \ U),
then G is called a (U, λ)-parameterized graph and abbreviated as (U, λ)-PG.

4 Approximating MDWSTP in 〈T , μ〉-PG

In this section, we suppose that the input graph in INPUT of MDWSTP is an
edge-weighted 〈T , μ〉-PG, denoted as G〈T ,μ〉 = (V,E,w, ρ, T , μ), where μ > 1 is
a real number and T is the terminal set in INPUT.

Recall that x� is a WA1SC of G and Tx� is the SPT in G with x� as the origin
spanning T . In this section, we will prove that Tx� is a good approximation to
MDWSTP in 〈T , μ〉-PG, and accordingly propose an approximation algorithm.
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4.1 Preliminary Lemmas

In this subsection, we show three preliminary lemmas which will play an impor-
tant role in design and analysis of our approximation algorithm for MDWSTP
in 〈T , μ〉-PG.

For a Steiner tree T of G = (V,E,w, ρ, T ) spanning T , we let rρ
T (x, T ) denote

the x-to-T weighted radius in T , and x�
T denote a WA1SC of T , likewise. We

have
rρ
T (x, T ) = max

i∈I(T )
{ρ(ti) · dT (x, ti)} , (8)

and
rρ
T (x

�, T ) = min
x∈p(T )

rρ
T (x, T ). (9)

Lemma 1. x� is also a WA1SC of Tx� .

Lemma 2. In Tx� , there exist at least two terminal indices, i, j ∈ I(T ), such
that

(1) ρ(ti) · d(x�, ti) = ρ(tj) · d(x�, tj) = rρ(x�, T );
(2) πTx� (ti, tj) passes through x�.

The following lemma shows a lower bound on the diameter of an optimal
solution tree to MDWSTP.

Lemma 3. diamρ(T∗) ≥ 2 · rρ(x�, T ).

For general edge-weighted trees, the following lemma always holds.

Lemma 4. Given an edge-weighted tree, T = (VT , ET , wT ), it always holds that

dT (v1, v2) ≤ dT (v1, x) + dT (x, v2), ∀v1, v2 ∈ VT ;x ∈ p(T ), (10)

and “=” holds iff πT (v1, v2) passes through x.

4.2 An Approximation Algorithm

In this subsection, we present an approximation algorithm, called Approx-VPG,
for MDWSTP in 〈T , μ〉-PG. The main idea of it is described as follows: we first
compute a WA1SC, x�, of 〈T , μ〉-PG, and then output the SPT, Tx� , as the
solution tree. Note that Kariv and Hakimi’s exact algorithm [14] can be easily
adapted to compute x� by restricting computation to all the terminals instead of
all the vertices, whose time cost is certainly not beyond the original Kariv and
Hakimi’s algorithm, i.e., no more than O(mn log n) when the distance matrix
is known as well as O(mn log n + n3) when the distance matrix is unknown.
Moreover, we use Dijkstra’s algorithm to compute Tx� and it terminates once
all x�-to-terminal SPD’s are obtained.
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Approx-VPG(G〈T ,μ〉): Approximation in 〈T , μ〉-PG.

Input: G〈T ,μ〉 = (V, E, w, ρ, T , μ).
Output: a solution tree TA.

1: Adapt Kariv and Hakimi’s exact algorithm [15] to
compute a WA1SC, x�, of G〈T ,μ〉;

2: Use Dijkstra’s algorithm to compute the SPT, Tx� ,
in G〈T ,μ〉 spanning T ; Return Tx� ;

Theorem 1. Given G〈T ,μ〉 = (V,E,w, ρ, T , μ) with n vertices and m edges,
where μ > 1 and T ⊆ V is a subset of s terminals, Approx-VPG can produce
a 1+μ

2 -approximation to MDWSTP in G〈T ,μ〉, where the factor of 1+μ
2 is tight,

within O(mn log n) time when the distance matrix is known and O(mn log n+n3)
time when the distance matrix is unknown.

For the special case of μ = 1, G〈T ,1〉 = (V,E,w, ρ, T , 1) is equivalent to a
vertex-unweighted graph, G = (V,E,w, T ), in essence. Accordingly, MDWSTP
(resp. WA1SC) in G〈T ,1〉 is equal to MDSTP (resp. A1SC) in G, and so Approx-
VPG is just an exact algorithm for the classic MDSTP.

5 Approximating MDWSTP in (T , λ)-PG

In this section, we suppose that the input graph G in INPUT of MDWSTP is a
vertex-weighted (T , λ)-PG, denoted as G(T ,λ) = (V,E,w, ρ, T , λ), where λ > 1
is a real number and T is the terminal set in INPUT.

Recall that x∗ is an A1SC of G and Tx∗ is the SPT in G with x∗ as the
origin spanning T . In this section, we will discover that the SPT (including Tx∗)
with any vertex as the origin is always an approximation to MDWSTP in (T , λ)-
PG with a uniform performance factor guarantee, and accordingly design two
approximation algorithms.

5.1 A Simple Approximation Algorithm

In this subsection, we design a simple approximation algorithm for MDWSTP
in (T , λ)-PG. First, we show two important lemmas.

Lemma 5. diamρ(T∗) ≥ max
i,j∈I(T )

{ρ(ti) · d(ti, tj)}.

Lemma 6. In G(T ,λ), it always holds that, for each k ∈ I(V ),

diamρ(Tk) ≤ λ · max
i,j∈I(T )

{ρ(ti) · d(ti, tj)}. (11)

Essentially, Lemma5 shows a lower bound on the diameter of an optimal
solution tree to MDWSTP, and Lemma6 shows an upper bound on the diameter
of each SPT, Tk, k ∈ I(V ). The combination of them inspires us to design a
simple approximation algorithm, called Approx1-EPG, for MDWSTP in (T , λ)-
PG, whose performance analysis is presented in Theorem2. Let TA1 denote the
output tree of Approx1-EPG. Its main idea is to select a vertex index k◦ ∈ I(V )
arbitrarily and then take the SPT, Tk◦ , as the solution tree.
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Approx1-EPG(G(T ,λ)): Approximation in (T , λ)-PG.

Input: G(T ,λ) = (V, E, w, ρ, T , λ).
Output: a solution tree TA1 .

1: Select an index k◦ ∈ I(V ) arbitrarily;
2: Use Dijkstra’s algorithm to compute the SPT, Tk◦ ,

in G(T ,λ) spanning T ; Return Tk◦ ;

Theorem 2. Given G(T ,λ) = (V,E,w, ρ, T , λ) with n vertices and m edges,
where λ > 1 and T ⊆ V is a subset of s terminals, Approx1-EPG can produce a
λ-approximation to MDWSTP in G(T ,λ) within O(m + n log n) time, where the
factor of λ is tight.

5.2 A Slightly Improved Approximation Algorithm

In this subsection, based on Approx1-EPG, we select a minimum weighted diam-
eter SPT starting at a vertex as a solution tree. As a result, we obtain a slightly
improved algorithm, called Approx2-EPG, whose performance analysis is shown
in Theorem3.

Let T = (V ′, E′) be a Steiner tree of G = (V,E,w, ρ, T ) spanning T . Since
each leaf of T is a terminal and a terminal may be a nonleaf of T , all the weighted
tree distances between terminals can be divided into two types: terminal-to-
nonleaf and terminal-to-leaf. In order to compute the weighted diameter of T ,
we need to compute all the weighted tree distances on T between terminals. The
following lemma shows a property that helps to reduce the amount of computa-
tion to some extent.

Lemma 7. The weighted diameter of a Steiner tree, T = (V ′, E′), of G =
(V,E,w, ρ, T ) spanning T cannot be a terminal-to-nonleaf weighted tree distance
on T .

It is implied by Lemma 7 that the weighted diameter of a tree must be a
terminal-to-leaf weighted tree distance. As a result, we can rewrite Eq. (6) to be

diamρ(T ) = max
i∈I(T )

{
ρ(ti) · max

j∈I(L(T ))
dT (ti, tj)

}
. (12)

According to Eq. (12), we design a procedure, called DIAM, to compute the
weighted diameter of a Steiner tree. The input of DIAM includes a Steiner tree
T and a terminal subset T . The idea of DIAM can be described as follows:
we use DFS (depth first search) to traverse T with ti as the origin, for each
terminal ti, i ∈ I(T ). Note that only terminal-to-leaf weighted tree distances,
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dT (ti, tj), j ∈ I(L(T )), are computed and recorded during the traversing, and
DFS terminates once all the leaves are visited. We use Mi to record the maximum
of all dT (ti, tj), j ∈ I(L(T )). After DFS runs |I(T )| times, the maximum of all
the products, ρ(ti) · Mi, i ∈ I(T ), is determined and output as the weighted
diameter of T .

DIAM(T, T ): Compute the weighted diameter.

Input: T = (VT , ET , wT ) and T ⊆ VT .
Output: the diameter of T .

1: for each i ∈ I(T ) do
2: Use DFS to traverse T with ti as the origin to

compute all dT (ti, tj), j ∈ I(L(T ));
3: Mi ← max

j∈I(L(T ))
dT (ti, tj);

4: endfor
5: diamρ(T ) ← max

i∈I(T )
ρ(ti) · Mi; Return diamρ(T );

Applying DIAM as a sub-procedure, we present a slightly improved approx-
imation algorithm, called Approx2-EPG, for MDWSTP in (T , λ)-PG. Its main
body can be described as follows: we first use Dijkstra’s algorithm to compute
the SPT, Tk, in G(T ,λ) spanning T , and then call DIAM(Tk, T ) to compute the
diameter of Tk, for each vertex index k ∈ I(V ). Finally, the SPT having a min-
imum weighted diameter is output as a solution tree of Approx2-EPG, denoted
by TA2 . In addition, we let

LB = min
k∈I(V )

diamρ(Tk), UB = max
k∈I(V )

diamρ(Tk). (13)

Approx2-EPG(G(T ,λ)): Improved Approximation in (T , λ)-PG.

Input: G(T ,λ) = (V, E, w, ρ, T , λ).
Output: a solution tree TA2 .

1: for each k ∈ I(V ) do
2: Use Dijkstra’s algorithm to compute the SPT, Tk, in G(T ,λ)

spanning T ;
3: Call DIAM(Tk, T ) to compute the weighted diameter of Tk;
4: endfor
5: k∗ ← arg mink∈I(V ) diamρ(Tk); Return Tk∗ ;

Theorem 3. Given G(T ,λ) = (V,E,w, ρ, T , λ) with n vertices and m edges,
where λ > 1 and T ⊆ V is a subset of s terminals, Approx2-EPG can produce a
new approximation to MDWSTP in G(T ,λ) within O(mn + n2(log n + s)) time,
which improves the output of Approx1-EPG by a factor of λΔ, where Δ is a real
number satisfying that

0 ≤ Δ ≤ 1 − LB
UB

. (14)
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6 Conclusions

This paper studied the minimum diameter vertex-weighted Steiner tree problem
(MDWSTP) in weighted connected graphs. We proposed two classes of param-
eterized graphs, 〈T , μ〉-PG and (T , λ)-PG, from the angle of the parameter-
ized upper bound on the ratio of two vertex-weights, and a weaker version of
the parameterized triangle inequality, respectively. For the MDWSTP in edge-
weighted 〈T , μ〉-PG, we presented an approximation algorithm with a tight per-
formance factor of μ+1

2 . For the MDWSTP in vertex-weighted (T , λ)-PG, we first
designed a λ-factor simple approximation algorithm where λ is tight, and then
developed a slightly improved approximation algorithm. As for these parame-
terized graphs, our approximation algorithms can be adapted to the Minimum
Diameter Vertex-Weighted Spanning Tree Problem (MDWTP). The
intractability of MDWSTP remains open. We conjecture that it is NP-complete
and MAX SNP-hard.
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Abstract. Even though the widespread use of social networks brings a
lot of convenience to people’s life, it also cause a lot of negative effects.
The spread of misinformation in social networks would lead to pub-
lic panic and even serious economic or political crisis. We study the
community-based rumor blocking problem to select b seed users as pro-
tectors such that expected number of users eventually not being influ-
enced by rumor sources is maximized, called Community-based Rumor
Blocking Maximization Problem (CRBMP). We consider the community
structure in the social network and solve our problem in two stages, in
the first stage, we allocate budget b for all the communities with the
technique of submodular function maximization on an integer lattice,
which is different from most of the existing work with the submodular
function over a set function. We prove that the objective function for
the budget allocation problem is monotone and DR-submodular, then a
greedy algorithm is devised to get a 1 − 1/e approximation ratio; then
we solve the Protector Seed Selection (PSS) problem in the second stage
after we obtained the budget allocation vector for communities, we greed-
ily choose protectors for each communities with the budget constraints
to achieve the maximization of the influence of protectors. The greedy
algorithm for PSS problem can achieve a 1

2
-approximation guarantee. At

last, we verified the effectiveness and superiority of our algorithms on
three real world datasets .

Keywords: Social network · Community structure · Influence
maximization · Rumor blocking

1 Introduction

Social networks are booming rapidly in recent years, it becomes an important
platform for people to communicate with each other and generate a lot of infor-
mation at any time. For example, there are at most 2.5 billion monthly active
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users and more than 1 billion registered accounts in the most popular network
Facebook according to the latest statistics in January 2020. The photo-sharing
app Instagram which ranks sixth has 1 billion monthly active accounts [1]. Infor-
mation spreads very fast in social network, it brings a lot of convenience to our
life, for example, businesses advertise products through social networks in viral
marketing; we can exchanging information and ideas in online social network. On
the other hand, it also bring us many negative influence, such as rumors prop-
agate quickly in social networks, which may cause public panic and economic
or politic crisis. For example, during the coronavirus (COVID-19) pandemic,
there are many rumors related with it spreading in the social network recently.
On March, 2020, someone in China posts a rumor say that the outbreak of the
COVID-19 may trigger a global grain crisis, we should hoard grain for at least
three month as china is a big importer of grain, which caused panic among pub-
lic. Thousands of people in china went to the supermarket and scrambled for
grain after the rumor got out [2]. In England, also on March 2020, some people
said that 5G is accelerating the spread of the new coronavirus. Some criminals in
England went to damage the phone masts and telecoms engineers abused their
power, which happen apparently as inspired by the rumor circulating online
[3]. Therefore, effective methods to restrain the spread of rumors have been a
popular topic.

Information spreads in social networks through diffusion cascade. There are
two classical cascades in social networks: Independent Cascade (IC) and Linear
Threshold (LT), which are proposed by Kemp et al. in [4]. The influence propa-
gation process in social networks is also firstly formulated In [4]. They propose
the Influence Maximization (IM) problem which aims at selecting an initial set
of seed users to maximize the expected influence propagation in the given diffu-
sion model. The rumor blocking problem which is proposed by Budak et al. in
[5]. Existing works on rumor blocking in social networks mainly focusing on the
goal of minimizing the influence of rumors or maximizing the influence of posi-
tive information [6,7]. Usually they would construct a monotone and submodular
objective function which can get a 1-1/e approximation ratio with greedy method
directly [8,9]. For a non-submodular objective function, it is more challenging to
solve it. Let X with |X| = n be a ground set. A set function on X is a function
h: 2X → R. A set function h: 2X → R is submodular if for any A ⊆ B ⊆ X and
u ∈ X\B, we have h(A∪{u})−h(A) ≥ h(B∪{u})−h(B). There is another equiv-
alent definition for submodularity, that is h(A ∩ B) − h(A ∪ B) ≤ h(A) + h(B).
For supermodularity, the inequality is reversed to submodularity.

In this paper, we consider a strategy that initiates a set of users whose number
of elements is b as protectors to spread the opposite view in social networks, we
use IC diffusion model as the fundamental model, so both protectors and rumors
spread in IC model, and we call the IC with two competing diffusion models in
our problem as competitive Independent Cascade (CIC) model.

As we know that the social network has the feature of community structure
[10]. An important property of the community structure is that the nodes within
a community is dense and sparse with nodes in other communities [11]. Accord-
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ing, the influence propagates much faster within a community than spreading out
its own community [12]. We partition a social network into disjoint communities
based on influence before solving our problem, then we study the Community-
based Rumor Blocking Maximization Problem (CRBMP), which aims at select-
ing a set of protectors with budget b to maximize the rumor blocking.

We summarize the main contributions in this paper as follows:

– We formulate the Community-based Rumor Blocking Maximization Problem
(CRBMP) into two subproblems under the CIC model in social networks: 1.
Allocation problem; 2. Protector Seed Selection (PSS) problem.

– We consider the general situation where rumors are distributed in differ-
ent communities, we get the community budget allocation vector for all the
communities with the method of submodular function maximization on an
interger lattice in the first stage. We prove that the objective function for the
budget allocation problem is monotone and DR-submodular, then a greedy
algorithm is devised to get a 1− 1/e approximation ratio. Then we propose a
greedy algorithm for PSS problem to select protectors within each community
to maximize the blocked nodes by protectors, which obtains a 1

2 approxima-
tion ratio.

– We evaluate our algorithms on three real-world datasets. The results show
the effectiveness of the proposed algorithms.

The result of the paper is organized as follows. Section 2 devoted to the exist-
ing work. In Sect. 3, we construct network model and formulate the Community-
based Rumor Blocking Problem as two subproblems: Allocation problem and
Protector Selection Seed Selection (PSS) problem. In Sect. 4 we solve our prob-
lems in two stages under general situation, and give properties of the objective
function. Section 5 presents the simulation results, while finally, the conclusion
is presented in Sect. 6.

2 Related Work

In this paper, we focus on community-based rumor blocking problem in social
networks. Below we discuss recent related work on the related topics and clas-
sified them to three categories, there is some community-based related work in
each category.

Removing a set of the most influential nodes to minimize the spread of
rumors. We should notice that when we remove a node from the network, the
relationship that this node with its incoming node and outgoing nodes are bro-
ken. If a node has very high degree, it would cause a dramatically change for the
network structure. Moreover, removing nodes from a social network takes high
cost and not easy to operate. In [13], J. Zheng et al. study the Least Cost Rumor
Community Blocking Optimization (LCRCBO) problem. It aims at select a min-
imal set of nodes to remove from the social network such that rumors within the
rumor community can be blocked, their method can also ensure that the expected
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number of nodes infected by rumors is less than K. They propose a Minimum
Vertex Cover Based Greedy (MVCBG) algorithm to solve the problem.

Removing a certain number of edges to restrain rumors’ propagation. Remov-
ing an edge needs to broke the relationship between two nodes, which also
changes the structure of the network, but this method is easier to deal with
than deleting nodes. J. Guo et al. [14] study a target protection maximization
(TPM) problem which aims at protecting the expected ration of nodes in tar-
geted set influenced by rumors is at most β through blocking the least edges.
They propose a simple Greedy algorithm which gets a theoretical bound and
General-TIM algorithm which reduces the running time. They also consider the
community structure in social networks which can help them improved the per-
formance by removing some unrelated communities when running the proposed
two algorithms.

Spreading positive information to compete with rumors such that the positive
influence is maximized. Most of the existing works consider that there are just
one misinformation cascade and one positive cascade, ln [15], they propose a
reverse-tuple based randomized (RBR) algorithm for the rumor blocking prob-
lem, in which one rumor is detected, the target is to select k positive seed users
to maximize the influence of positive information. They show that the proposed
algorithm is superior the existing algorithms in running time. X. Chen et al.
[16] study a centralized rumor blocking problem which the objective function
is proved to be non-decreasing and submodular, which can obtain a 1 − 1/e
approximation with a greedy algorithm. They further propose a decentralized
rumor blocking problem with two protectors who compete each other to limit
the spread of rumors to maximize their own profits.

3 Network Model and Problem Formulation

3.1 The Network Model

A social network is modeled as a directed graph G(V,E), where each vertex
v ∈ V represents a user, and each edge (u, v) ∈ E is the relationship between
user u and v. There are two cascades evolving simultaneously in the network:
R (for “rumor”) and P (for “protector”). Each node has three states: infected
by rumor nodes, protected by protector nodes, inactive. There is a rumor node
set T exists in the social network for cascade R and initial protector seed D
for cascade P . Supposing that the rumor spreads in cascade R is detected with
a delay r, then the protector seeds are selected and begin to spread. Protector
nodes and rumor nodes spread simultaneously in the network, when R and P
reach a node v at the same time, P has the priority to activate v. Once a node
v is protected or infected, it stays the status forever. In the social network, the
incoming neighbors set and the outgoing neighbors set of a node v is denoted as
N−(v) and N+(v), respectively. Next we extend the IC model for our problem.

Competitive Independent Cascade (CIC) model : Each edge (u, v) ∈ E is
associated with one probability puv ∈ [0, 1]. No matter a protector or a rumor
reach a node v, the probability that they activate v is the same. If there are
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two or more nodes trying to activate v at the same time, at most one of them
can succeed. Each newly influenced user u in step t only has a single chance to
influence his uninfluenced outgoing neighbors in step t+1. After time step t+1,
u could not activate any of its outgoing neighbors. The diffusion completes until
there is no new user can be influenced.

3.2 Problem Formulation

In this section, we introduce our problem based on aforementioned CIC model.
As we all know, social networks have the feature of containing community struc-
ture, and the influence propagation is rarely across different communities. We
take into account this advantage of social networks which have the community
structure. Ni et al. [17] proposed a influence-based community partition method
under IC model, and we adopt it to partition our network preliminarily.

A social network G = (V,E) with m disjoint communities S =
{
S1, S2,

· · · , Sm

}
that satisfying

⋃m
i=1 V (Si) = V , where V (Si) denotes node set in

community Si. This community is partitioned by using influence propagation as
the metric. Then, our Community-based Rumor Blocking Maximization Problem
(CRBMP) is formulated, which can be divided into two stages.

Problem 1 ((CRBMP)). Given a graph G = (V,E, S) and budget b, in the
first stage, we need to allocate this budget into each community, thus we can get
an allocation x = (x1, · · · , xm) where

∑
xi = b. In the second stage, we aim

to select an optimal nodes set D such that protect nodes from being infected by
rumor as much as possible, where we have |D ∩ Si| ≤ xi for all Si ∈ S.

Thus, our CRBMP can be divided into two subproblems, Allocation problem in
the first stage and Protector Seed Selection (PSS) problem in the second stage.

Define θS,T (∅) as the expected number of nodes that are infected by rumor
seed set T in the social network when there is not any protector. Let θS,T (D)
be the expected number of nodes that are infected by rumor seed set T when
the protector seed set D coexists with rumor set T . Let f(D) be the expected
protected nodes when protector seed nodes are selected as D. So

f(D) = θS,T (∅) − θS,T (D)

Our PSS problem in the second stage can be formulated as follows: Given a
social network G = (V,E, S), given a rumor node set T , and allocation vector
x = (x1, · · · , xm) where

∑
xi = b for the protectors. The PSS problem aims

at selecting a set of protectors under the allocation vector to protect the most
nodes from being infected by rumor nodes. I.e., find the optimal allocation D∗

which maximizes f(D), where |D| is the cardinality of protector seed set D and
{|D ∩ Si| ≤ xi,D ⊆ {V (G)\T}}. In [9], they proved that the community-based
rumor blocking problem can be reduced to a set cover problem which is a NP-
hard problem proved in [18]. So our community-based rumor blocking problem
is NP-hard.
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4 Solution for CRBMP in Two Stages

We assume that the rumor nodes have already detected by us. As we already par-
tition communities for the social network, we can easily detect the communities
which contain the rumor nodes.

In this section, we solve the CRBMP in two stages. In the first stage, we
use the technique of submodular function on integer lattice [19] to find a budget
allocation for each community. Most of the existing work about the influence
maximization problem consider the submodular function over a set-submodular
function which selecting a subset of seed users and return the value of influence
propagation. We consider the submodular function maximization over a multiset
integer lattice in this problem. In the second stage, we select protectors in each
community based on the protector seed allocation constraint which is obtained
in the first step.

4.1 Allocation Problem

In the first stage, we begin to find a budget allocation for each community. We
define a protector allocation vector for the m communities as x = (x1, · · · , xm)
where

∑
xi = b, i.e., if we allocate xi to community Si, at most xi protectors

could be selected from community Si. Let φS,T (x) be the expected infected nodes
after we choose x as protector allocation vector, where it selects xi nodes from
Si\T uniformly and randomly. Let g(x) be the expected protected nodes given
the allocation vector x. So

g(x) = φS,T (0) − φS,T (x)

where φS,T (0) denotes the expected influence of rumor nodes when the protector
allocation vector is empty. Here, g(x) is defined on integer lattice. We can not use
the submodularity property for g(x) and the greedy algorithm for this problem
is also cannot be used directly. For a vector function over integer lattice, it has
a similar condition like submodularity: the diminishing return submodular (DR-
submodular). A function h: Zm → R is diminishing return submodular (DR-
submodular) if h(x+ ei)− h(x) ≥ h(y + ei)− h(y) for any x ≤ y ∈ Z

m, where
ei is the i-th unit vector and i ∈ {1, 2, · · · ,m}. Another important property
is monotonicity for function h. Function h is monotone if h(x) ≤ h(y) for any
x ≤ y ∈ Z

m. If our objective function g(x) is monotone and DR-submodular,
the greedy algorithm can be applied to get a good performance [20]. Then we
begin to prove the properties of g(x).

Let D(x) ⊆ 2V be the collection that contains all set D satisfying |D ∩ Si| =
xi. Let Ĝ be a realization which is a subgraph of G = (V,E), for each edge
(u, v) ∈ E, the probability that this edge appears in realization Ĝ is puv and the
edges which appear in realization Ĝ are live-edges. From [4], we can know the
expected number of infected nodes given the allocation vector x is

φS,T (x) =
∑

Ĝ

Pr[Ĝ]
∑

D∈D(x)

Pr[D] · θS,T (Ĝ,D)



Community-Based Rumor Blocking Maximization in Social Networks 79

Algorithm 1. Greedy Community Budget Allocation Algorithm
Input: Graph G = (V,E, S), m, and g.
Output: x
1: Initialize x ← 0
2: while j=1 to b do
3: i ∈ argmax{k=1,··· ,m} g(x + ek) − g(x)
4: x = x + ei

5: end while
6: return community budget allocation vector x

where
∑

Ĝ Pr[Ĝ] is all the possible live-edge subgraphs Ĝ of G, Pr[D] is the
probability that set D is selected as protector set according to allocation x,
θS,T (Ĝ,D) is the number of nodes infected by rumors in graph Ĝ at the end of
the CIC propagation process when the protector set is D. We rewrite φS,T (x)
as φS,T (x) =

∑
Ĝ Pr[Ĝ] · φS,T (Ĝ,x), where Pr[Ĝ] is the probability of sampling

Ĝ, and φS,T (Ĝ,x) =
∑

D∈D(x) Pr[D] · θS,T (Ĝ,D).

Theorem 1. The objective function g(x) for the problem of protector allocation
for each community is monotone non-decreasing and DR-submodular.

Proof. We omitted the proof due to the limitation of conference pages.

Since the objective function is monotone non-decreasing and DR-submodular,
then we can devise our greedy algorithm. The pseudo-code is in Algorithm 1. We
increase budget for the community which can bring the maximum marginal
gain for the objective function g until the total budget b is exhausted. Next,
we analyze the performance and time complexity of the Algorithm1, which is
shown as follows:

Lemma 1. Let y = {yi, · · · , ym} where yi ∈ Z
∗ and

∑
i yi = b, then we have

g(x+ y) − g(x) ≤ ∑
i yi(g(x+ ei) − g(x)).

Proof. We omitted the proof due to the limitation of conference pages.

Theorem 2. Algorithm1 returns a (1 − 1
e )-approximation (in expectation) for

the problem of maximizing g(x) subject to
∑

i xi ≤ b.

Proof. We omitted the proof due to the limitation of conference pages.

Theorem 3. The complexity of Algorithm1 is upper bounded by O(bn|β||
η||E|π).
Proof. In [21], T. Soma et al. prove that for a monotone submodular function
maximization over integer lattice, if f is the DR-submodular, and the cost is
uniform, then we can get the solution in O(bnα) time, where α is the running
time for evaluating f . In our problem, we prove that f is DR-submodular and the
cost is uniform. Then we need to get the value of α. As the protectors in each
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Algorithm 2. Greedy Protector Selection Algorithm
Input: Graph G = (V,E, S), x, and f .
Output: D
1: Initialize D ← ∅, D =

⋃
i∈{1,··· ,m} Di

2: while b > 0 do
3: I = {i ∈ {1, 2, · · · ,m} : |Di| ≤ xi}
4: select (v, i) = argmaxv∈Si\(Di∪T ),i∈[I] f(D ∪ (v, i)) − f(D)
5: D ← D ∪ (v, i); b ← b − 1
6: end while
7: return protector seed selection set D.

communities are selected uniformly at random, we estimate θS,T (x) with the
sample average approximation (SAA) method which is an approach for solving
the stochastic optimization problems by Monte Carto simulation [22]. Let η ⊂
D(x) be a sample set from all possible protector selection sets and π be the
number of Monte Carlo simulation. θS,T (Ĝ,D) is estimated with the method
proposed by Kempe et al. [4]: sampling from the set of live-edge graphs. For
each node v ∈ V , we generates a live-edge graph by selecting at most one of
its incoming edges u with the probability puv. We use β to denote this sample
set. It takes O(|β||η||E|π) time to estimate θS,T (x). So the time complexity for
Algorithm1 is O(bn|β||η||E|π).

4.2 Protector Seed Selection (PSS) Problem

After we obtained the protector allocation vector x = (x1, x2, · · · , xm), where∑
i xi = b, we begin to select protector seed for each community. In each commu-

nity Sk, the number of selected protector seed is constrained by xk. We assume
the protector seed set D = {D1,D2, · · · ,Dm}, where Di is the protector seed set
in community Si and |Di| ≤ xi. Here, we select the protector seed node for each
community based on that which node can bring the maximum marginal gain
to f . The iteration stops until the budget b is reduced to 0. The pseudo-code
of proposed greedy algorithm for the second step of PSS problem is shown in
Algorithm2.

Theorem 4. Given the allocation x, Algorithm 2 returns a 1
2 -approximation

(in expectation) for the problem of maximizing f(D) subject to |D ∩ Si| ≤ xi for
any i ∈ {1, · · · ,m}.
Proof. We omitted the proof due to the limitation of conference pages.

5 Experimental Results

In this section, we verify the efficiency and effectiveness of the proposed algo-
rithms on three real world datasets, we also compare our algorithms with three
baseline algorithms.
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5.1 Experimental Setup

Datasets: The first two datasets we used in the experiments are from net-
workrepository.com [23], which is an online repository including different kinds
of networks. The dataset 1 is a small co-authorship network, namely coauthor-
ship of scientists in the field of network theory and experiment. It has 379 nodes
and 914 edges. The dataset 2 is a medium Wiki-vote network, which is Wikipedia
who-votes-on-whom network. It includes 914 nodes and 2914 edges. Dataset 3 is
from [24], which is a large bitcoin alpha trust weighted signed network of people
who trade using Bitcoin on a platform called Bitcoin Alpha. It has 3783 nodes
and 24186 edges.

Experiment setup: In this paper, we adopt the IC model as the influence
model. The propagation probability of each directed edge e is assigned as p(e) =
1/|N−(v)|. This setting method of p(e) is widely used in previous literatures
[25]. We set the number of community as m = 3, the number of rumor node
as |T | = 25, who have the maximum out-degree in given network. The budget
changes from 1 to 25. The number of Monte Carlo simulation is set as 100 to
estimate the number of expected influenced nodes and the running time, where
the running time is measured in second.

Baseline Methods: Random. It randomly selects nodes as protectors, which
is a classical baseline algorithm.

Proximity. It selects protector seed node set which are the out-neighbours with
the maximum out-degree of the rumor seed nodes. We select these neighbors with
high out-degree in priority.

5.2 Experimental Results

In this section we evaluate the performance of our proposed algorithms. In
Fig. 1, the three sub-figures show the changing of the expected nodes that are
protected by protectors when we vary the budget b. In sub-figure (a), it shows
the result in dataset 1, we can observe that our greedy method is superior to the
proximity method and random method. The expected protected nodes increases

(a) Dataset1 (b) Dataset2 (c) Dataset3

Fig. 1. Performance comparision achieved by different algorithms with the changing
of budget under 3 datasets
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with the increasing of the budget b with our greedy method since we can select
more protectors, and we can also find that the growth rate of the greedy method
curve is gradually getting smaller which makes the curve flatter, this phenomenon
verifies the submodularity of the objective function f(D), the marginal gain will
be smaller and smaller with the increasing of protectors in the social networks.
The above results is also can be found in sub-figure (2) and (3). Comparing
the three sub-figures, we can also find that the advantages of our algorithm are
more and more obvious with the growth of dataset size. In a small dataset 1, our
algorithm just a little more than the proximity method, when the dataset changes
to a medium dataset 2, the performance gap between our greedy algorithm and
the proximity is big which shows in subfigure (b), the gap becomes bigger when
the dataset changes to a large dataset 3. We can observe from the three subfigures
in Fig. 1 that the larger the dataset, the greater the expected protected nodes,
and the random method has very bad performance in all the three datasets.

(a) Dateset1 (b) Dataset2 (c) Dataset3

Fig. 2. Running time comparision used by different algorithms with the changing of
budget under 3 datasets

In Fig. 2, the three sub-figures show the changing of the running time that
takes by different methods when we vary the budget from 1 to 25. In the three
sub-figures, the running time of proximity method and random method is very
small since these two methods select protectors trivially, they do not need much
computational cost. In sub-figure (a) of Fig. 2, it shows the running time in
dataset 1, we can observe that our greedy method takes much more time than
the random method and proximity method, and running time linearly increases
with the increasing of budget b since it takes much more time to choose more
protectors. The same results are shown in sub-figure (b) and (c). Comparing
the results in sub-figure (a) with (b) and (c), we can get that when the dataset
becomes larger, the running time of our greedy method also becomes larger, it is
because that in a larger dataset, the candidate set becomes larger for our algo-
rithm, which increases the computational cost. From the experimental results,
we can conclude that although the high performance advantage of our algorithm
is obvious, its disadvantages of high time complexity is also obvious.
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6 Conclusion

In this paper, we have studied the rumor blocking problem based on the com-
munity structure of social networks. We first partition the social network into
communities based on the influence, then we aim to selecting the number of
protectors with budget b to protect the most nodes in social networks from
being influenced by rumors. We first propose budget allocation algorithm with
the technique of submodular function maximization on an integer lattice, which
obtains a 1 − 1/e performance guarantee since the objective function is mono-
tone and DR-submodular; then we devise a greedy algorithm to solve the PSS
problem which can achieve a 1

2 performance guarantee. Finally, experiments
show the effectiveness and efficiency of the rumor blocking effect of the proposed
algorithms.
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Abstract. Given a metric graph G = (V, E, w) and an integer k, we aim
to find a single allocation k-hub location, which is a spanning subgraph
consisting of a clique of size k and an independent set of size |V |−k, such
that each node in the independent set is adjacent to exactly one node
in the clique. For various optimization objective functions studied in the
literature, we present improved hardness and approximation results.

Keywords: Hub location · NP-hard · Inapproximability ·
Approximation algorithm

1 Introduction

We study the single allocation hub location (SAHL) problem on metric graphs.
A metric graph denoted by G = (V,E,w) is an edge-weighted complete graph,
where the edge weight function w(·) satisfies the triangle inequality. Mostly due
to the important application background in transportation and telecommunica-
tion systems, in this context graphs are often referred to as networks and the
vertices of V are referred to as nodes.

Given a metric graph G = (V,E,w) and an integer 0 < k < |V |, a spanning
subgraph H of G is called a single allocation k-hub location (or simply k-hub
location) if it contains a clique of k nodes so that all the nodes outside the clique
are pairwise non-adjacent (i.e., form an independent set) and each of them is
adjacent to exactly one node inside the clique [7,9]. In other words, a k-hub
location is a clique-star with the clique size k. With respect to a k-hub location
H in G, the nodes in the clique C are called hub nodes or hub facilities, the nodes
in V \ C are called client nodes or demand nodes, each is hung on C or hung on
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a hub node in C, and the fact that each demand node is hung on (i.e., adjacent)
to exactly a hub node is referred to as the single allocation rule.

Hub location is one of the novel and thriving research problems in facility
location theory. It has many practical applications in airline, transportation
and telecommunication systems [3,10,12]. The SAHL problem concerns how to
locate a set of hub facilities and allocate client demands to the facilities so as
to project a service path between each origin-destination pair. Many variants
of the SAHL problem have been proposed and widely studied, see for example
surveys [1,6,12,14] and the references therein. Among them, single allocation is
a simple but important construction rule.

Several different optimization objective functions have been proposed for
the SAHL problem. Some of them aim to minimize the total transportation
distance/cost (i.e., min-sum) while others are to minimize the maximum trans-
portation distance/cost (i.e., min-max), between pairs of nodes in the entire
network or in a certain part of the network.

The SAHL problem with the min-sum objective is often recognized as the
k-hub median problem, for which the first linear integer program was formulated
by Compbell [4]. Compbell also proposed two heuristics for the problem [5].
The k-hub median problem is NP-hard when k ≥ 3, even the hub nodes are
fixed [16,19]; most of the research is on (exponential time) exact algorithms or
heuristic algorithms, see for example [1,6,12,14].

Approximation algorithms with theoretical quality guarantee have been
designed, but limited to subproblems. For example, Iwasa et al. [15] studied a
subproblem of the k-hub median problem in hub-and-spoke networks where the
hub nodes are fixed, and the required amount of flow and the transportation cost
per unit flow between each pair of nodes are given; in particular, they presented
a deterministic 3-approximation algorithm and a randomized 2-approximation
algorithm, and when the number of hub nodes is equal to three, the problem
remains NP-hard [20] and the authors provided a better 5/4-approximation
algorithm. Chen et al. [9] studied a variant called the at most k-hub median
problem on a class of generalized so-called Δβ-metric graphs 1, in which the
solution subgraph contains less than or equal to k hub nodes; they presented a
2β-approximation algorithm for any β ≥ 1/2 and showed that the problem is
already strongly NP-hard when the edge weights are from {1, 2, 3} (the so-called
{1, 2, 3}-weighted metric graphs).

In an optimal solution to the k-hub median problem, the maximum dis-
tance/cost between two nodes can be arbitrarily large. Compbell [4] also intro-
duced the SAHL problem with the min-max objective, also known as the k-hub
center problem [1,12]. Kara and Tansel [17] gave a combinatorial formulation of
the k-hub center problem too, for which there are several exact and heuristic
methods [2,11,18].

From the approximation algorithm perspective, Chen et al. [7] studied the
SAHL problem to minimize the diameter of the k-hub location. They first

1 The Δβ metric uses the parameterized triangle inequality w(v1, v2) ≤ β(w(v1, u) +
w(u, v2)), for all nodes v1, v2, u ∈ V .
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showed that, for any ε > 0, the problem cannot be approximated within the fac-
tor 4/3−ε unless P = NP, even on {1, 2, 3}-weighted metric graphs; then designed
a 5/3-approximation algorithm for any metric graphs. In [8], Chen et al. extended
both the inapproximability and approximation results to the more general Δβ-
metric graphs. They showed that the problem admits an r(β)-approximation
algorithm while cannot be approximated within the factor g(β) − ε, where r(β)
and g(β) are functions in β; in particular, for the classic metric graphs, r(1) = 2
and g(1) = 3/2.

In this paper, we study the SAHL problem with both the min-max and
min-sum objectives, on the classic metric graphs. The input consists of a metric
graph G = (V,E,w) and a positive integer k < |V |. For a k-hub location H, let
dH(u, v) denote the shortest distance between a pair of nodes u and v in H; the
following defines six different objective functions for minimization:

D(H) = max
u,v∈V

dH(u, v), (1)

D(H \ C) = max
u,v∈V \C

dH(u, v), (2)

wmax(H) = max
(u,v)∈E(H)

w(u, v), (3)

dis(H) =
∑

u,v∈V

dH(u, v), (4)

dis(H \ C) =
∑

u,v∈V \C

dH(u, v), (5)

w(H) =
∑

(u,v)∈E(H)

w(u, v); (6)

and we have correspondingly six SAHL problems. We show that it is NP-hard
to approximate the SAHL problem to minimize D(H) (D(H \ C), wmax(H),
respectively) within the factor 4/3−ε (4/3−ε, 2−ε, respectively), for any ε > 0;
and we propose 2-approximation algorithms for the SAHL problem to minimize
D(H \ C) and wmax(H), respectively. We lastly prove that the SAHL problem
to minimize any of the three min-sum objectives is strongly NP-hard. These and
the previously best hardness and approximation results on the SAHL problems
are summarized in Table 1, in which our improved results are marked with ∗.

2 Hardness Results

In this section, we prove several complexity and inapproximability results
through polynomial reductions from the Exact Cover by 3-Sets (X3C),
which is known strongly NP-complete [13]. Recall that the SAHL problem to
minimize D(H) has been shown not approximable within the factor 4/3 − ε on
{1, 2, 3}-weighted metric graphs, for any ε > 0, unless P = NP [7], and the
at most k-hub median problem has been shown strongly NP-hard on {1, 2, 3}-
weighted metric graphs [9]. Our new results in the second column of Table 1 are
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Table 1. The state-of-the-art hardness and approximation results on SAHL. A ‘∗’
indicates a result achieved in this paper; a ‘-’ suggests no known result, to the best
of our knowledge; a ‘+’ suggests an implied result from another cell in the table; ‘s.
NP-hard’ means ‘strongly NP-hard’.

Objective {1, 2}-weighted metric graphs General graphs

D(H) (4/3 − ε)-inapprox∗ 4/3-approx∗ (3/2 − ε)-inapprox [8] 5/3-approx [7]

D(H \ C) (4/3 − ε)-inapprox∗ 4/3-approx∗ + 2-approx∗

wmax(H) (2 − ε)-inapprox∗ + + 2-approx∗

dis(H) s. NP-hard∗ + + 2-approx [9]

dis(H \ C) s. NP-hard∗ 2-approx∗ + -

w(H) s. NP-hard∗ 2-approx∗ + -

all on {1, 2}-weighted graphs (which are surely metric and are special cases of
{1, 2, 3}-weighted metric graphs), and thus they are improvements over the prior
results.

Definition 1. Exact Cover by 3-Sets (X3C)
Input: A universe U of 3q elements and a collection S of m 3-subsets of U .
Query: Is there a sub-collection S∗ ⊂ S with |S∗| = q such that S∗ covers all

elements, i.e.,
⋃

S∈S∗ S = U?

Theorem 1. For any ε > 0, it is NP-hard to approximate the SAHL problem
to minimize D(H) or D(H \ C) within the factor 4/3 − ε, even restricted on
{1, 2}-weighted graphs.

Proof. Given an instance I of X3C (without loss of generality, we suppose m ≥
q ≥ 4), we construct the following instance I ′ of SAHL.

Let k = q and let G = (V,E,w) be a complete graph, where V consists of
all the elements and subsets in I, i.e., V = U ∪ S. Each edge connecting two
elements has a weight 2. Each edge connecting two subsets has a weight 1 if they
do not intersect each other or 2 otherwise. If an element is included by a subset,
then their edge has a weight 1; otherwise, their edge has a weight 2.

On one hand, if the X3C instance I admits a sub-collection S∗ ⊂ S with
|S∗| = q such that S∗ covers all elements, then a solution to the SAHL instance
I ′, i.e., a spanning subgraph H of G with D(H) = D(H \ C) = 3 can be
constructed as follows. Let S∗ be the set of hub nodes. Each element is hung on
the subset in S∗ that covers it, and each subset outside S∗ is hung on one of
the subsets in S∗ that has no intersection with it. Since all elements are covered
by S∗ and notice that at most three subsets in S∗ might have intersection with
a subset outside S∗ (hence, at least one subset in S∗ does not intersect with it
due to q ≥ 4), the spanning subgraph H is a k-hub location. Moreover, each
edge of H must have a weight 1 by the construction of I ′. Hence we obtain
D(H) = D(H \ C) = 3.
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On the other hand, if the SAHL instance I ′ has a k-hub location H with
D(H) = 3 or D(H\C) = 3, then we claim the clique C of hub nodes must consist
of q subsets in S and cover all elements. In fact, if there are two elements each
of which is either hung on a subset that does not cover it or on an element in C,
then their distance must be greater than 3. Moreover, if C covers all elements
but one, then it must consist entirely of subsets in S. Consider the subset that
hangs the element not covered by C, at most two other elements are hung on it.
Thus there must be an element which is not hung on this subset. The distance
between this element and the element not covered by C must be greater than 3
too. Hence, we can deduce that all elements must be covered by C. That is, C
gives a YES answer to the X3C instance I.

By the above argument, the X3C instance I answers YES if and only if the
SAHL instance I ′ has a k-hub location H with D(H) = 3 or D(H \ C) = 3.
Hence, for any ε > 0, if there is a (4/3 − ε)-approximation algorithm for the
SAHL problem to minimize D(H) or D(H \ C), then it can answer whether
the corresponding instance of X3C answers YES or not, which cannot be true
unless P = NP . This proves the theorem. ��

By the same reduction, we have the following two results.

Theorem 2. For any ε > 0, it is NP-hard to approximate the SAHL problem
to minimize wmax(H) within the factor 2 − ε, even restricted on {1, 2}-weighted
graphs.

Theorem 3. It is strongly NP-hard to approximate the SAHL problem to min-
imize w(H), even restricted on {1, 2}-weighted graphs.

Theorem 4. It is strongly NP-hard to approximate the SAHL problem to min-
imize dis(H), even restricted on {1, 2}-weighted graphs.

Proof. Given an instance I of X3C, we first add N new elements to U and
add the set N containing all these N elements to S, where N � mq (precisely,
N = m2 + (9q + 2)m + 13q2 + 7q + 8). For convenience, the set N is referred
to as a ’subset’ too. Now I contains N + 3q elements and m + 1 subsets. We
construct the following instance I ′ of SAHL.

Let k = q + 1 and let G = (V,E,w) be a complete graph, where V consists
of all the elements and subsets in I, i.e., V = U ∪ N ∪ S ∪ {N}. The weights
of edges are set in the same way as in the proof of Theorem 1. Denote Y =
N2 + (2m + 9q)N + m2 + 9qm + 10q2 − 4q.

On one hand, if the X3C instance I admits a sub-collection S∗ ⊂ S with
|S∗| = q such that S∗ covers all elements in U , then a solution to the SAHL
instance I ′, i.e., a k-hub location H with dis(H) ≤ Y , can be constructed as
follows. Let C = S∗ ∪{N} be the set of hub nodes. Each element is hung on the
subset in C that covers it, and each subset outside C is hung on N . Accordingly,
we see that ∑

u,v∈C

dH(u, v) =
q(q + 1)

2
,
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∑

u∈V \C,v∈C

dH(u, v) = (N + m − q + 3q)(2q + 1),

and

∑

u,v∈V \C

dH(u, v) = 6q+(N+m−q)(N+m−q−1)+3×
(
9q(q − 1)

2
+ 3q(N + m − q)

)
.

Hence,

dis(H) =
∑

u,v∈C

dH(u, v) +
∑

u∈V \C,v∈C

dH(u, v) +
∑

u,v∈V \C

dH(u, v)

= N2 + (2m + 9q)N + m2 + 9qm + 10q2 − 4q = Y.

On the other hand, if the SAHL instance I ′ has a k-hub location H with
dis(H) ≤ Y , then we have the following four claims.

Claim 1. N ∈ C.
If N /∈ C, then the distance of any two elements in N \ C must be at least

4. We thus derive a contradiction:

dis(H) >
∑

u,v∈N\C

dH(u, v) ≥ 2(N − q − 1)(N − q − 2) > Y.

Claim 2. Any element of N must be connected to the subset N .
If an element of N is not connected to the subset N , then it must be hung

on a node in C \ {N}. Hence it is at least 4 away from all elements in N \ C
and all elements but possibly one (which hangs it) in N ∩ C. Let N0 denote the
number of elements in N that are not connected to N . Let Nin = |N ∩ C| and
let Nout be the number of elements in N which are hung on N . Thus we have
N = N0 + Nout + Nin, implying that N0 + Nout ≥ N − q. Suppose that N0 ≥ 1,
then we have

∑

u,v∈N
dH(u, v) ≥ (N − N0)(N − N0 − 1) + 4N0(N − 1) ≥ N2 + N − 2,

∑

u=N ,v∈N
dH(u, v) ≥ Nout + Nin + 3N0 ≥ N + 2,

and

∑

u∈U∪S,v∈N
dH(u, v) ≥ 3N0(|U| + |S| − 1) + 2N0 + 2Nin(|U| + |S|) + 2Nout|S| + 3Nout|U|

= 2N(|U| + |S| − 1) + (N0 + Nout)|U| + 2N0 + 2Nin + 2Nout

≥ 2N(m + 3q − 1) + 3q(N − q) + 2N = (2m + 9q)N − 9q
2
.

Hence we again derive a contradiction:

dis(H) >
∑

u,v∈N
dH(u, v) +

∑

u=N ,v∈N
dH(u, v) +

∑

u∈U∪S,v∈N
dH(u, v)
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≥ N2 + (2m + 9q + 2)N − 9q2 > Y.

Claim 3. All subsets in S \C must be hung on N , and all elements in U \C
must be hung either on a subset of S ∩ C that covers it, or on N .

By Claim 2, we know that N0 = 0 and hence Nout = |N \ C| = N − Nin ≥
N − q. By a similar calculation, we have

∑

u,v∈N
dH(u, v) = N(N − 1),

∑

u=N ,v∈N
dH(u, v) = N.

Note that a subset of S \ C not hung on N must be at least 3 away from each
element in N \C, and an element of U \C that is not hung on a subset of S ∩C
that covers it or on N must be at least 4 away from each element in N \ C.
Therefore, if the claim is false, then we must have

∑

u∈U∪S,v∈N
dH(u, v) ≥ 2Nin(|U| + |S|) + 2Nout|S| + 3Nout|U| + Nout

= 2N(|U| + |S|) + Nout(|U| + 1)
≥ 2N(m + 3q) + (N − q)(3q + 1)
= (2m + 9q + 1)N − 3q2 − q.

Hence we derive a contradiction:

dis(H) >
∑

u,v∈N
dH(u, v) +

∑

u=N ,v∈N
dH(u, v) +

∑

u∈U∪S,v∈N
dH(u, v)

≥ N2 + (2m + 9q + 1)N − 3q2 − q > Y.

Denote S = |S| = m and U = |U| = 3q. Let Sin = |S ∩C| and Sout = |S \C|,
then Sin +Sout = S. Let Uin = |U ∩C| and Uout = |U \C|, then Uin +Uout = U
and Uin + Sin + Nin = q. Moreover, suppose there are U1

out elements of U \ C
hung on S ∩C and U2

out elements of U \C hung on N . Thus Uout = U1
out +U2

out.
By Claim 1–3, the connection between nodes must be as shown in Fig. 1. Then
we have another claim.

Claim 4. U2
out = 0, Nin = 0 and Uin = 0.

By a more careful calculation, we have
∑

u∈N ,v∈V

dH(u, v) = N + S + 2U,
∑

u,v∈N
dH(u, v) = N(N − 1),

∑

u∈S,v∈N
dH(u, v) = 2NS,

∑

u∈U,v∈N
dH(u, v) = 3NUout + 3NoutUin + 2NinUin

= 3N(U − Uin) + 3(N − Nin)Uin + 2NinUin

= 3NU − NinUin,

and ∑

u,v∈S
dH(u, v) ≥ S(S − 1) − 1

2
Sin(Sin − 1),
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2

1

ℵ

1 2 {1,2}

Fig. 1. An illustration of the k-hub location H meeting Claims 1–3.

∑

u∈U,v∈S
dH(u, v) ≥ 3SU2

out + 3(Uin + U1
out)Sout + (Uin + U1

out)[1 + 2(Sin − 1)]

= 3SU2
out + (Uin + U1

out)Sout + 2S(Uin + U1
out) − (Uin + U1

out)
= 3SU − (Uin + U1

out)(S − Sout + 1)
= 3SU − (U − U2

out)(Sin + 1).

Note that any subset of S covers at most three elements of U , each of the U1
out

elements that are hung on a subset of S ∩ C must be at least 3 away from at
least U1

out − 3 elements of them, and at least 2 away from the others of them.
Hence, we obtain
∑

u,v∈U
dH(u, v) ≥ 2U2

out(U
2
out − 1) + 4U2

out(Uin + U1
out) + Uin(Uin − 1)

+2UinU1
out +

1
2
U1

out[4 + 3(U1
out − 3)]

= 2U2
out(U − 1) + 2U2

out(Uin + U1
out)

+(Uin + U1
out)(Uin + U1

out − 1) +
1
2
U1

out(U
1
out − 3)

= 2U2
out(U − 1) + (Uin + U1

out)(U + U2
out − 1) +

1
2
U1

out(U
1
out − 3)

= U(U − 1) + U2
out(2U − U2

out − 1) +
1
2
U1

out(U
1
out − 3).

Summing up the above, we have

dis(H) ≥ N2 + (2S + 3U)N + S2 + 3SU + U2 + Δ
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= N2 + (2m + 3q)N + m2 + 9qm + 9q2 + Δ,

where

Δ = U − NinUin − 1

2
Sin(Sin − 1) − (U − U2

out)(Sin + 1) + U2
out(2U − U2

out − 1)

+
1

2
U1

out(U
1
out − 3)

= U2
out(2U + Sin − U2

out) +
1

2
U1

out(U
1
out − 3) − 1

2
Sin(Sin − 1) − USin − NinUin

= U2
out(2U + Sin − U2

out) +
1

2
(U − U2

out − Uin)(U − U2
out − Uin − 3)

−1

2
(q − Nin − Uin)(q − Nin − Uin − 1) − U(q − Nin − Uin) − NinUin

=
U(U − 3)

2
− q(q − 1)

2
− Uq + U2

out(U + Uin + Sin − U2
out

2
+

3

2
)

+
1

2
(Nin + Uin)(2U + 2q − Nin − Uin − 1) − UUin +

Uin(Uin + 3)

2
− NinUin

≥ q2 − 4q +
U2

out(U
2
out + 3)

2
+ U(Nin + Uin) − UUin +

Uin(Uin + 3)

2
− NinUin

≥ q2 − 4q +
U2

out(U
2
out + 3)

2
+ 2qNin +

Uin(Uin + 3)

2
.

Therefore,

dis(H) ≥ Y +
U2

out(U
2
out + 3)
2

+ 2qNin +
Uin(Uin + 3)

2
,

which leads to U2
out = 0, Nin = 0 and Uin = 0 by the assumption dis(H) ≤ Y .

By Claims 1–4, we conclude that S ∩ C covers all elements of U . Hence it
gives a “YES” answer to the X3C instance. This proves the theorem. ��

The same reduction also gives the following result.

Theorem 5. It is strongly NP-hard to approximate the SAHL problem to min-
imize dis(H \ C), even restricted on {1, 2}-weighted graphs.

3 Approximation Algorithms

Chen et al. [7] have introduced several ideas for constructing a k-hub location H
to minimize D(H), among which, we are most interested in the one that hangs
all demand nodes on a common hub node. We call such a solution a star-like
k-hub location below.

Let H∗ be an optimal k-hub location and C∗ be the set of hub nodes in
H∗. Firstly, if G is a {1, 2}-weighted graph, then whether D(H∗) = 2 (resp.
D(H∗ \C∗) = 2) or not can be determined in polynomial time. In fact, D(H∗) =
2 (resp. D(H∗ \ C∗) = 2) if and only if there is a node that is unit weight away
from all the other n − 1 nodes (resp. at least n − k other nodes) of V . Thus we
only need to check the star-like k-hub locations, which can be done in O(n2) time
(see Approx-1). If D(H∗) ≥ 3 (resp. D(H∗ \C∗) ≥ 3), then any star-like k-hub
location H must have D(H) ≤ 4 ≤ 4

3D(H∗) (resp. D(H \ C) ≤ 4
3D(H∗ \ C∗)).
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Theorem 6. Given a {1, 2}-weighted graph G, the algorithm Approx-1 outputs
a star-like k-hub location H with D(H) ≤ 4

3D(H∗) (resp. D(H \ C) ≤ 4
3D(H∗ \

C∗)) (Fig. 2).

Approx-1 for SAHL to minimize D(H) (resp. D(H \ C)):

1. For any node v ∈ V , construct a star-like k-hub location Hv by adding v and
k − 1 furthest neighbors of v to C and hanging all nodes in V \ C on v.

2. Return the best star-like k-hub location H from {Hv | v ∈ V }.

Fig. 2. A description of Approx-1.

On general metric graphs, any star-like k-hub location is a 2-approximation
for minimizing D(H) [7]. However, it can be extremely bad if the objective is to
minimize D(H \ C). We show next that Approx-1 remains a 2-approximation
for minimizing D(H \ C).

Theorem 7. The algorithm Approx-1 is a 2-approximation algorithm for the
SAHL problem on general metric graphs to minimize D(H \ C).

Proof. Assume H∗ is an optimal k-hub location in which C∗ is the set of hub
nodes. Let v∗ be a hub node in C∗ which has at least one leaf u∗ ∈ V \ C∗, and
consider the star-like k-hub location Hv∗ . Suppose that u is the k-th furthest
neighbor of v∗, then u ∈ V \ C and D(Hv∗ \ C) ≤ 2w(u, v∗). If w(u∗, v∗) ≥
w(u, v∗), then

D(H \ C) ≤ D(Hv∗ \ C) ≤ 2w(u, v∗) ≤ 2w(u∗, v∗) ≤ 2D(H∗ \ C∗).

Otherwise, u∗ ∈ V \ C. Since v∗ ∈ C∗ and |C \ {v∗} ∪ {u}| = k, at least one
node of C \ {v∗} ∪ {u} must be outside C∗. Denote one such node by v, then
dH∗(v, v∗) ≥ w(v, v∗) ≥ w(u, v∗). Thus the distance between the two leaves, v
and u∗ of H∗, must satisfy

dH∗(v, u∗) ≥ dH∗(v, v∗) + w(u∗, v∗) > w(u, v∗),

which leads to D(H\C) ≤ D(Hv∗\C) ≤ 2w(u, v∗) < 2dH∗(v, u∗) ≤ 2D(H∗\C∗).
This proves the theorem. ��

For minimizing wmax(H) = max(u,v)∈E(H) w(u, v), any feasible k-hub loca-
tion is a trivial 2-approximation on {1, 2}-weighted graphs. Our next algorithm
Approx-2 on general metric graphs also picks a star-like k-hub location, but in
an alternative way (Fig. 3).
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Approx-2 for SAHL to minimize wmax(H):

1. For any node v ∈ V , construct a star-like k-hub location Hv by adding v and
k − 1 nearest neighbors of v to C and hanging all nodes in V \ C on v.

2. Return the best star-like k-hub location H from {Hv | v ∈ V }.

Fig. 3. A description of Approx-2.

Theorem 8. The algorithm Approx-2 is a 2-approximation algorithm for the
SAHL problem on general metric graphs to minimize wmax(H).

Proof. Assume H∗ is an optimal k-hub location in which C∗ is the set of hub
nodes. For each v ∈ V \C∗, let f∗(v) denote its unique neighbor in C∗. Let v∗ =
arg maxv∈V \C∗ w(f∗(v), v) and � = w(f∗(v∗), v∗). Let γ = maxu∈C∗{w(v∗, u)}.
Then wmax(H∗) ≥ max{�, γ}. For any v ∈ V \ C∗, w(v, v∗) ≤ w(v, f∗(v)) +
w(v∗, f∗(v)) ≤ � + γ.

Consider the star-like k-hub location Hv∗ . Clearly, wmax(H) ≤ wmax(Hv∗).
Since Approx-2 adds the k−1 nearest neighbors of v to C, we have w(v∗, u) ≤ γ
for any u ∈ C, and w(v, v∗) ≤ � + γ for any v ∈ V \ C. Moreover, for any
u1, u2 ∈ C\{v∗}, w(u1, u2) ≤ w(v∗, u1)+w(v∗, u2) ≤ 2γ. Hence, we can conclude
that wmax(Hv∗) ≤ max{� + γ, 2γ} ≤ 2wmax(H∗). This proves the theorem. ��

For minimizing dis(H \ C) or w(H), any star-like k-hub location is a 2-
approximation for the SAHL problem on {1, 2}-weighted graphs; we leave it
open on how to approximate the problem on general metric graphs.

4 Conclusions

We studied the single allocation k-hub location problem on metric graphs,
and obtained several improved negative hardness results and several positive
approximation algorithms. We showed that the SAHL problem is either strongly
NP-hard or APX-hard for all six objectives, even restricted on {1, 2}-weighted
graphs; some of the same conclusions were previously established on the larger
class of {1, 2, 3}-weighted metric graphs [7,9]. The presented approximation algo-
rithms aim to find the best star-like k-hub location, and they were proved to
have solid performance. With respect to Table 1, the SAHL problem to minimize
wmax(H) has now been completely solved; but for the other five objectives there
are gaps, some bigger than the other, between the lower bound of inapprox-
imability and the state-of-the-art approximation ratio, each of which deserves
further research.

Acknowledgements. XW, GC, YC and AZ are supported by the NSFC Grants
11771114 and 11971139; YC and AZ are supported by the CSC Grants 201508330054
and 201908330090, respectively. GL is supported by the NSERC Canada.



96 X. Wang et al.

References

1. Alumur, S.A., Kara, B.Y.: Network hub location problems: The state of the art.
Eur. J. Oper. Res. 190, 1–21 (2008)

2. Brimberg, J., Mladenović, N., Todosijević, R., Urošević., D.: General variable
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Abstract. In this paper, we consider the balanced 2-correlation clus-
tering problem on well-proportional graphs, which has applications in
protein interaction networks, cross-lingual link detection, communica-
tion networks, among many others. Given a complete graph G = (V,E)
with each edge (u, v) ∈ E labeled by + or −, the goal is to parti-
tion the vertices into two clusters of equal size to minimize the num-
ber of positive edges whose endpoints lie in different clusters plus the
number of negative edges whose endpoints lie in the same cluster. We
provide a (3,max{4(M + 1), 16})-balanced approximation algorithm for
the balanced 2-correlation clustering problem on M -proportional graphs.
Namely, the cost of the vertex partition {V1, V2} returned by the algo-
rithm is at most max{4(M + 1), 16} times the optimum solution, and
min{|V1|, |V2|} ≤ 3max{|V1|, |V2|}.

Keywords: Balanced · k-correlation clustering · Well-proportional
graphs · Approximation algorithm

1 Introduction

Clustering problems arise in many applications such as machine learning, com-
puter vision, data mining and data compression. These problems have been
widely studied in the literature [2,7,11,12,22,23].

The correlation clustering problem, introduced by Bansal et al. [8], has appli-
cations in protein interaction networks, cross-lingual link detection, communica-
tion networks, and so on. This problem has two versions: minimizing disagree-
ment and maximizing agreement. In the minimizing disagreement version, we
are given a complete graph G = (V,E), where each edge (u, v) ∈ E is labeled by
c© Springer Nature Switzerland AG 2020
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+ or − depending on whether vertex u and vertex v are similar or different. The
positive edges whose endpoints lie in different clusters and the negative edges
whose endpoints lie in the same cluster are called the error edges. The goal of
this version is to partition the vertex set V into disjoint clusters so as to min-
imize the total number of error edges. In other words, the goal is to partition
the vertices into clusters such that the vertices lie in the same cluster are as
similar as possible and the vertices between the different clusters are as dissim-
ilar as possible. In the maximizing agreement version, the negative edges whose
endpoints are in different clusters and the positive edges whose endpoints are
within the same cluster are called the right edges. The goal of this version is
to partition the vertex set V into disjoint clusters so as to maximize the total
number of right edges.

Bansal et al. [8] prove that the correlation clustering problem is NP-hard, that
is, one cannot obtain an optimal solution in polynomial time unless P = NP .
There are many existing work on approximation algorithms for this problem
[1,10,15,17,26].

For the minimizing disagreement version, Bansal et al. [8] give the first
constant-factor approximation algorithm. Demaine et al. [15] design an O(log n)-
approximation algorithm for general graphs. Charikar et al. [13] prove that the
minimizing disagreement problem is APX-hard. They provide a 4-approximation
algorithm on complete graphs as well as an O(log n)-approximation algorithm
for general graphs based on the LP-rounding technique. Ailon et al. [5] provide
a randomized 3-approximation algorithm and further improve the ratio to 2.
Chawla et al. [14] provide a 2.06-approximation algorithm based on the LP-
rounding technique, which is the best deterministic approximation algorithm for
this problem. When the graph is a complete bipartite graph, Amit [6] provides
an LP-rounding 11-approximation algorithm. Ailon et al. [4] give a deterministic
LP-rounding 4-approximation algorithm as well as a randomized LP-rounding
4-approximation algorithm based on [5].

For the maximizing agreement version, Bansal et al. [8] give a polynomial
time approximation scheme. Charikar et al. [13] provide a 0.766-approximation
algorithm by the semidefinite programming technique. Swamy [30] gives a 0.75-
approximation algorithm for the weighted maximizing agreement problem based
on the technique of [18], and the number of clusters returned by this algorithm
is at most 4. Furthermore, he improves the approximation ratio from 0.75 to
0.766 by the technique of [16], and the maximum number of clusters returned
by the latter algorithm is 6.

There are many variants of the correlation clustering problem [3,17,20,25–
28].

One particular problem that is relevant to our problem in this paper is the
correlation clustering problem with a fixed number of clusters [8], where the
maximum number of clusters that we are allowed to use is k. We use Max-
Agree[k] and MinDisAgree[k] to denote the minimizing disagreement version
and the maximizing agreement version of the correlation clustering with a fixed
number of clusters, respectively. Shamir et al. [29] prove both the MaxAgree[k]
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and MinDisAgree[k] are NP-hard for every k ≥ 2 by using a rather complicated
reduction. Giotis and Guruswami [17] provide a much simpler NP-hardness proof
and prove that both MaxAgree[k] and MinDisAgree[k] admit a polynomial time
approximation scheme for every k ≥ 2.

Balanced clustering arise in many application such as wireless sensor net-
works, routing and resource allocation problem. It emphasizes the concept of
the average and fairness. The balanced clustering problems have been widely
studied in the literature [9,19,21,24,31]. There is no requirement for the num-
ber of vertices in each cluster in the previous study of correlation clustering
problems. For this reason, we introduce the balanced concept into the correla-
tion clustering problem.

In this paper, we study the minimizing disagreement version of the balanced
k-correlation clustering problem. In this problem, the number of clusters equals k
and each cluster contains the same number of vertices. In particular, we consider
the balanced 2-correlation clustering problem on M -proportional graphs and give
a polynomial time (3,max{4(M +1), 16})-balanced approximation algorithm for
this problem. Namely, the solution C = {V1, V2} returned by the algorithm has
the cost that is at most max{4(M + 1), 16} times the optimum solution and
min{|V1|, |V2|} ≤ 3max{|V1|, |V2|}.

The rest of this paper is organized as follows. In Sect. 2, we provide some
definitions as well as the formulation of the balanced k-correlation clustering
problem. The algorithm is provided in Sect. 3 and the theoretical analysis is
presented in Sect. 4. Some discussions are given in Sect. 5.

2 Preliminaries

In this section, we provide the definitions of the minimization version of the
k-correlation clustering problem and the minimizing disagreement version of the
balanced k-correlation clustering problem. Furthermore, we give the formulation
for the minimizing disagreement version of the balanced k-correlation cluster-
ing problem. The problem we studied in this paper are all for the minimizing
disagreement version.

Definition 1 (k-correlation clustering problem). In this problem, we are
given a labeled complete graph G = (V,E) together with a positive integer k, and
each edge (u, v) ∈ E is labeled by + or −. We use set E+ and set E− to denote
the sets of positive and negative edges, respectively. The goal of this problem is
to partition the vertices into k clusters so as to minimize the number of positive
edges whose endpoints lie in different clusters plus the number of negative edges
whose endpoints lie in the same cluster.

Definition 2 (Balanced k-correlation clustering problem). In this prob-
lem, we are given a labeled complete graph G = (V,E) together with a positive
integer k, and each edge (u, v) ∈ E is labeled by + or −. We use set E+ and set
E− to denote the set of positive edges and the set of negative edges, respectively.
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The goal of this problem is to partition the vertices into k clusters so as to min-
imize the number of positive edges whose endpoints lie in different clusters plus
the number of negative edges whose endpoints lie in the same cluster. Moreover,
each cluster contains the same number of vertices.

Definition 3 ((t,r)-balanced approximation algorithm). Algorithm is a
(t,r)-balanced approximation algorithm for the balanced k-correlation clustering
problem if for any instance, it returns a solution C = {V1, V2, . . . , Vk} whose
cost is at most r times the optimum solution and min{|V1|, |V2|, . . . , |Vk|} ≤
tmax{|V1|, |V2|, . . . , |Vk|}.
For each vertex v, denote

Pv := {(v, t) ∈ E+ : t ∈ V },
Nv := {(v, t) ∈ E− : t ∈ V }.

Definition 4 (Well-proportional graph). A graph is a well-proportional
graph if there exists a constant M satisfying

min{|Pv|, |Nv||} ≤ M max{|Pv|, |Nv||},∀v ∈ V. (1)

A well-proportional graph is M -proportional if M is the minimum constant that
satisfies (1).

Let even number N be the number of vertices. For each edge (u, v) ∈ E, we
introduce a binary decision variable xuv to denote whether the vertices u and v
are in the same cluster. Variable xuv = 0 if u and v are in the same cluster, and
xuv = 1 otherwise. Then the balanced k-correlation clustering problem can be
formulated as follows:

min
∑

(u,v)∈E+

xuv +
∑

(u,v)∈E−
(1 − xuv)

s. t. xuv + xvw ≥ xuw, ∀u, v, w ∈ V,∑

v∈V

(1 − xuv) = N/k, ∀u ∈ V,

xuu = 0, ∀u ∈ V,

xuv ∈ {0, 1}, ∀u, v ∈ V. (2)

The objective function contains two parts, the first part is the number of posi-
tive edges whose endpoints lie in different clusters, while the second part is the
number of negatives edges whose endpoints lie in the same cluster. The first
constraint ensures that the solution returned by the formulation is a feasible
solution of the correlation clustering problem. The second constraint ensures
that each cluster contains the same number of vertices. The LP relaxation of (2)
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is given as follows:

min
∑

(u,v)∈E+

xuv +
∑

(u,v)∈E−
(1 − xuv)

s. t. xuv + xvw ≥ xuw, ∀u, v, w ∈ V,∑

v∈V

(1 − xuv) = N/k, ∀u ∈ V,

xuu = 0, ∀u ∈ V,

0 ≤ xuv ≤ 1, ∀u, v ∈ V. (3)

3 Algorithm

In this paper, we present an algorithm for the balanced 2-correlation clustering
problem on well-proportional graphs.

We give a high level description of our algorithm. The algorithm consists of
two main steps. The first step is a computational process. First, we solve (3) to
obtain a fractional optimal solution x∗. For each vertex v ∈ V , we sort all the
vertices in a non-decreasingly order of x from v. Let Tv be the set of the first
|V |/2 vertices according to this order. Note that the value of xvw is the distance
between the vertices w and v. Then, we calculate the average distance Evgv of
the first |V |/2 vertices to vertex v. The second step is a clustering process. First,
we find the vertex u with the minimum average distance Evgu. If Evgu is large
enough, then we let Tu be a cluster and V \Tu be a cluster. This solution satisfies
|Tu| = |V \Tu|. It is a feasible solution of the balanced 2-correlation clustering
problem. Otherwise, we put all the vertices that are no more than 1/2 away
from vertex u into one cluster and assign the rest of the vertices to another
cluster. This solution may be infeasible to the balanced 2-correlation clustering
problem and we need to establish the relationships between the vertices in the
two clusters in order to construct a feasible solution. The detailed algorithm is
shown as follows:

4 Analysis

The clusters returned by Algorithm 1 is either a type 1 cluster or a type 2 cluster.
In Subsect.4.1, we analyze the upper bound for error edges of type 1 cluster. In
Subsect.4.2, we analyze the upper bound for error edges of type 2 cluster.

4.1 Type 1 Cluster

In this case, the clusters V1 and V2 returned by the algorithm is a feasible
partition of the balanced 2-correlation clustering problem. There are two types
of error edges produced by the partition. As shown in Fig. 1, one is the positive
edges (v, p) ∈ E+, where v ∈ V1, and q ∈ V2, and the other is the negatives
(v, w) ∈ E−, where v, w ∈ Vi, i = 1, 2.

We analyze the upper bound of error edges produced by the positive edges
in the following three lemmas.
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Algorithm 1
Input: A labeled M -proportional complete graph G = (V,E) with even number of

vertices, k = 2.
Output: A partition of vertices V1, V2.
1: Initialize V1 = V2 = ∅.
2: Solve the LP relaxation of (2) to obtain an optimal solution x∗.
3: for each vertex v ∈ V do
4: Sort the vertices in V (including vertex v ) in a nondecreasing order of x from v.

Let Tv be the set of the first |V |/2 vertices in V according to this order. Denote

Evgv =

∑
w∈Tv

x∗
vw

|Tv| .

5: end for
6: Choose the vertex u with the minimum Evgu.
7: if Evgu ≥ 1

4
then

8: Update V1 := Tu, and V2 := V \V1 (Type 1 cluster)
9: else

10: Update V1 := {v ∈ Tu : x∗
uv ≤ 1

2
}, and V2 := V \V1 (Type 2 cluster)

11: end if
12: return the partition V1, V2.

Fig. 1. Partition of V

Lemma 1. For each v ∈ V1, if for any q ∈ V2, edge (v, q) is a positive edge,
then the number of error edges can be bounded by

4
∑

(v,q)∈E,q∈V2

x∗
vq.

If there exists an edge (v, p), where p ∈ V2 is a negative edge, then we analyze
the upper bound of error edges produced by the positive edges by Lemma 2–3.

Lemma 2. For each v ∈ V1, if |Pv| > |Nv|, then there exists a set S ⊆ Pv with
|S| = N/2 and the number of error edges can be bounded by

4
∑

(v,q)∈E,q∈S

x∗
vq.
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Lemma 3. For each v ∈ V1, if |Pv| < |Nv|, then there exist a set S ⊆ Nv with
|S| = N/2 and the number of error edges can be bounded by

4
∑

(v,w)∈E,q∈S

(1 − x∗
vw).

Corollary 1. Recall Lemma 1–Lemma 3. In the upper bound of all the error
edges produced by positive edges, each edge appears at most twice in the objective
function.

Next, we analyze the error edges produced by the negative edges. The analysis
of the upper bounds of error edges in cluster V1 and V2 are similar. We only
consider V1.

Lemma 4. For each v ∈ V1, if for any w ∈ V1, edge (v, w) is a negative edge,
then the number of error edges can be bounded by

4
∑

(v,w)∈E,w∈V1

(1 − x∗
vw).

If there exists a positive edge (v, q) (q ∈ V1), then we analyze the upper
bound of the error edges produced by the negative edges in Lemmas 5–6.

Lemma 5. For each v ∈ V1, if |Pv| > |Nv|, then there exists a set S ⊆ Pv with
|S| = N/2 and the number of error edges can be bounded by

4
∑

(v,q)∈E,q∈S

x∗
vq.

Lemma 6. For each v ∈ V1, if |Pv| < |Nv|, then there exists a set S ⊆ Nv with
|S| = N/2 and the number of error edges can be bounded by

4
∑

(v,w)∈E,w∈S

(1 − x∗
vw).

Corollary 2. Recall Lemma 4–Lemma 6. In the upper bound of all the error
edges produced by the negatives edges, each edge appears at most twice in the
objective function.

Corollary 3. From Corollaries 1–2. In the upper bound of all the error edges,
each edge appears at most four times in the objective function.

Combining Lemmas 1–6 and Corollary 3, we obtain the following theorem.

Theorem 1. If the clusters returned by Algorithm1 is a type 1 cluster, then we
have |V1| = |V2| and the upper bound of the error edges is bounded by

16

⎡

⎣
∑

(u,v)∈E+

x∗
uv +

∑

(u,v)∈E−
(1 − x∗

uv)

⎤

⎦ ,

where x∗ is the optimal fractional solution of (3).
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4.2 Type 2 Cluster

In this case, we have

Evgu =

∑
v∈Tu

x∗
uv

|Tu| <
1
4
. (4)

There are two kinds of errors in this type of cluster. One is the positive
edges (v, q) ∈ E+, where v ∈ V1, q ∈ V2, and the other one is the negatives
(v, w) ∈ E−, where v, w ∈ Vi, i = 1, 2. First, we analyze the error edges produced
by the positive edges.

Lemma 7. In any type 2 cluster, we have

(i) |V1| > N
4 ;

(ii) |V2| > N
4 .

We relabel the vertices (other than u) so that p < w if x∗
up < x∗

uw by breaking
ties arbitrarily. Then, we have the following lemmas to analyze the upper bound
of the error edges.

Lemma 8. [13] The upper bound of the errors produced by the positive edges
satisfies the following two properties:

(1) For each vertex q ∈ V2, if x∗
uq ≥ 3/4, then for each positive edge (v, q) ∈ E+

where v ∈ V1, the error can be bounded by

1
4
x∗
vq;

(2) For each vertex q ∈ V2, if 1/2 ≤ x∗
uq < 3/4, then the number of error

associated with q can be bounded by

4

⎡

⎣
∑

(v,q)∈E+,v∈V1

x∗
vq +

∑

(v,q)∈E−,v∈V1

(1 − x∗
vq)

⎤

⎦ .

Lemma 9. [13] The upper bound of the errors produced by the negative edges
in V1 satisfies the following two properties:

(1) For each negative edge (w, p) with w, p ∈ V1, if x∗
uw, x

∗
up ≤ 1/4, then the

number of error edges can be bounded by

2(1 − x∗
wp);

(2) For each vertex p ∈ Tu, if 1/4 < x∗
up ≤ 1/2, then the total error produced by

all the negative edges (w, p) with w < p can be bounded by

4

⎡

⎣
∑

(w,p)∈E+,w<p

x∗
wp +

∑

(w,p)∈E−,w<p

(1 − x∗
wp)

⎤

⎦ .
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In the following, we use Lemma 10 to analyze the upper bound of errors
produced by the negative edges in V2. For each q ∈ V2, we have |Pq| = |Nq|.
Furthermore, for each q ∈ V2, the error edges produced by the negative edges is
no less than |Nq|, which implies that error edges produced by the negative edges
is no less than |Pq|. Then, the next thing we need to do is to analyze the upper
bound of |Pq|, q ∈ V2.

We partition the set Pq into P 1
q and P 2

q as follows:

P 1
q := {(v, q) ∈ E+ : v ∈ V1};

P 2
q := {(w, q) ∈ E+ : w ∈ V2}.

The upper bound of |P 1
q | has been analyzed by Lemma 8. Now, we use Lemma

10 to analyze the upper bound of |P 2
q |.

Lemma 10. The upper bound of |P 2
q | can be bounded by

2
∑

w∈P 2
q

x∗
wq.

Corollary 4. Recall that graph is a M -proportional graph. In the upper bound
of all the error edges, each edge appears at most M + 1 times in the objective
function.

Combining Lemmas 7–10 and Corollary 4, we obtain Theorem 2.

Theorem 2. If the clusters returned by Algorithm1 is a type 2 cluster, then we
have min{|V1|, |V2|} ≤ 3max{|V1|, |V2|} and the upper bound of the error edges
is bounded by

4(M + 1)

⎡

⎣
∑

(u,v)∈E+

x∗
uv +

∑

(u,v)∈E−
(1 − x∗

uv)

⎤

⎦ ,

where x∗ is the optimal fractional solution of (3).

From Theorems 1–2, we obtain our main result.

Theorem 3. Algorithm1 is a (3,max{4(M + 1), 16})-balanced approximation
algorithm for the balanced 2-correlation clustering problem on M -proportional
graphs.

5 Discussions

In this paper, we introduce the balanced k-correlation clustering problem and
provide a (3,max{4(M +1), 16})-balanced approximation algorithm for the bal-
anced 2-correlation clustering problem on M -proportional graphs. There are
several research directions for this problem in the future:
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– Study the balanced 2-correlation clustering problem on general complete
graphs based on the local search technique.

– Study the balanced k-correlation clustering problem on complete graphs
based on the LP-rounding technique.

– Study the maximization version of the balanced k-correlation clustering prob-
lem by using semidefinite programming relaxation.
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Abstract. This paper is motivated by designing bike sharing systems
that flourish in many large cities. Such systems should locate bike sta-
tions allowing users to pick up and drop off bicycles. Considering the
interests of both station investors and bike users, we propose an opti-
mization model for determining the locations of bike stations at two
levels, and solve it in polynomial time of a randomized approximation
algorithm with expected approximation ratio 3.

Keywords: Bike sharing · Facility location · Approximation
algorithm · Randomized rounding.

1 Introduction

Bike sharing systems have become one of important means to solve the first or
last mile problem in people transportation planning and lessen the impact of
traffic pollution on environment in many large cities [7]. These systems provide
short-term shared bike usage services for citizens. Bicycles are parked at various
stations in the city. The registered user of the system can walk from his origin
to a bike station, pick up a bicycle from the station, ride it for a short journey,
drop off it at another bike station, and then walk to his destination. The user
will pay for the ride depending on how much time he spends in the journey. The
first bike sharing system was installed in Amsterdam in 1965. In recent years,
the number of bike sharing systems is rising at a very high rate in urban cities
around the world [10]. The algorithmic research on designing and managing bike
sharing systems has sprung up like mushrooms in the last decade [4]. Zhang et
al. studied the bike sharing systems expansion [13]. Quilliot and Sarbinowski [9]
discussed a strategic related vehicle sharing station location model. Lin et al.
[6] presented a survey of formulations and solution procedures for hub location

Supported in part by NNSF of China under Grant No.11901544, No. 11531014, and
No.11971349.

c© Springer Nature Switzerland AG 2020
Z. Zhang et al. (Eds.): AAIM 2020, LNCS 12290, pp. 108–118, 2020.
https://doi.org/10.1007/978-3-030-57602-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57602-8_10&domain=pdf
http://orcid.org/0000-0002-3075-0246
http://orcid.org/0000-0002-9378-7660
http://orcid.org/0000-0002-6742-8816
https://doi.org/10.1007/978-3-030-57602-8_10


2-Level Station Location for Bike Sharing 109

models with performance constraints. Dell’Amico et al. [8] considered the bike
sharing rebalancing problem. Despite the extensive research on various aspects of
bike sharing, little literature has been known for their approximation algorithm
design.

Locate the stations for the bike sharing system is actually an extension of
classical facility location problem, which has been extensively investigated in the
field of combinatorial optimization. In the facility location problem, the inputs
are a facility set F , a client set C, a nonnegative facility opening cost for every
facility in F , and a nonnegative service cost for connecting each pair of a facility
in F and a client in C. The connection cost is often assumed to be metric. The
objective is to open (locate) some facilities in F , and connect (allocate) each
client in C to one of the open facilities, in such a way that the sum of opening
and connection costs is minimized. The problem has two widely investigated
versions. In the uncapacitated version, each facility can serve an unlimited num-
ber of clients while in the capacitated version, each facility can serve at most a
certain number of clients. Shmoys et al. [11] developed the first constant factor
approximation algorithm for the metric uncapacitated facility location problem.
They used the LP-rounding technique to obtain the approximate ratio 3.16. The
ratio was improved later by Chudak and Shmoys [2] who provided a random-
ized rounding based 1.736-approximation algorithm. For the capacitated version,
Chudak and Williamson [3] obtained a 3-approximation algorithm in the soft case
that there is no limit on the number of copies of a facility which can be opened
at a location. Shmoys et al. [11] studied the problem of 2-level facility location,
obtaining a 3.16-approximation algorithm. The approximation ratio was later
improved to 3 by Aardal et al. [1], based on randomized rounding of an LP solu-
tion to an integer one. Furthermore, the (randomized) LP-rounding techniques
have been successfully used to design several algorithms for the facility location
problem and its variants (see [5,12] and reference therein).

This paper studies the problem of how bike stations (which are partitioned
into two groups) in a bike sharing system are located. Our objective is to min-
imize the sum of investment costs for setting up stations and user costs for
traveling. We propose a model of 2-level station location, and solve the cost
minimization problem by a randomized approximation algorithm with approxi-
mation ratio 3 in expectation.

Our algorithm is a slight adaptation of the randomized approximation algo-
rithm for the 2-level uncapacitated facility location problem by Aardal et al.
[1] (referred to as ACS Algorithm henceforth), where we think of the origin-
destination pair of each bike user as an “imaginary” client in the facility location
problem (see Remark 2(i) in Sect. 2 and Remark 3 in Sect. 3). The major con-
tribution of this paper is to show that the algorithm of Aardal et al. [1] can be
easily adapted to solve the 2-level station location problem, attaining the same
expected approximation ratio 3. Since the “imaginary” replacements of origin-
destination pairs with clients have no direct corresponding projections from the
metric space for bike sharing to the one for facility location, the analysis on
service costs for the ACS Algorithm [1] cannot be applied here (see Remark 2(ii)
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in Sect. 2). By exploring the structural properties exclusively associated with
the 2-level station location problem, we successfully get around the difficulties
of directly fulfilling the metric requirement on service costs which is indispens-
able to the approximation ratio 3 of the ACS Algorithm [1]. This is our main
technical contribution (see Remark 4 in Sect. 3).

The remainder of this paper is organized as follows. In Sect. 2, we present the
mathematical model of the problem. In Sect. 3, we make use of the randomized
rounding technique to design the algorithm for the problem, and analyze its
correctness and performance. In Sect. 4, we conclude the paper with discussions
on future works.

2 The 2-Level bike-Station Location Problem

Given a finite set N of locations, the travel costs between locations s and t,
cst ≥ 0, s, t ∈ N , are symmetric and satisfy the triangle inequality. There is a
demand set D of origin-destination (a.k.a. demand) pairs (i, j), where i, j ∈ N
are distinct, i is the origin and j is the destination. Each demand pair (i, j) ∈ D
corresponds to a bike user who wants to travel from i to j. Two levels of bike
stations are to be opened to serve the user demands (i, j) ∈ D. A user will walk
from his origin i to an open station at the first level where he will rent a bike.
Then the user will ride the bike to an open station at the second level where he
will return the bike. After that, he will walk to his destination j. It is assumed
that the travel cost of walking from i directly to j is much larger than that of
walking from i to any level-1 station and than that of walking from any level-2
station to j. In the 2-level bike-station location problem (2L-BSL), there are a set
S1 of locations where stations at level 1 may be opened, and a set S2 of locations
where stations at level 2 may be opened, where S1 ∩ S2 = ∅. Each demand pair
in D must be assigned to precisely one open station at each of the two levels, i.e.,
assigned to exactly one pair of stations in S1 ×S2. For each location b ∈ S1 ∪S2,
the nonnegative cost of opening a bike station at b is sb. The total connection
cost incurred by assigning demand pair (i, j) ∈ D to bike stations k ∈ S1 and
l ∈ S2 is equal to cijkl = cik + ckl + clj . The aim of the 2L-BSL is to minimize
the total cost of setting up (opening) the bike stations and of connecting the
demand pairs and their assigned open stations. The general solution structure
of the 2L-BSL addressed in this study is represented in Fig. 1.

We introduce the following three decision variables: yk, zl and xijkl. If a
station at level 1 is open at location k ∈ S1, then yk = 1, otherwise, yk = 0. If a
station at level 2 is open at location l ∈ S2, then zl = 1, otherwise, zl = 0. If the
(i, j) is assigned to stations k ∈ S1 and l ∈ S2, then xijkl = 1, otherwise, xijkl =
0. The 2L-BSL model is formulated as the following integer linear program.

min
∑

k∈S1

skyk +
∑

l∈S2

slzl +
∑

(i,j)∈D

∑

(k,l)∈S1×S2

cijklxijkl (1)

s. t.
∑

k∈S1

∑

l∈S2

xijkl = 1, ∀(i, j) ∈ D,
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Fig. 1. The solution structure of the 2L-BSL.

∑

l∈S2

xijkl ≤ yk, ∀(i, j) ∈ D, k ∈ S1,

∑

k∈S1

xijkl ≤ zl, ∀(i, j) ∈ D, l ∈ S2,

xijkl, yk, zl ∈ {0, 1}, ∀ (i, j) ∈ D, k ∈ S1, l ∈ S2.

The first set of constraints guarantees that each demand pair (i, j) ∈ D
should be assigned to exactly one pair of level-1 station and level-2 station. The
second (third) set of constraints indicates that if pair (i, j) is assigned to station
k ∈ S1 (l ∈ S2), then the station k (resp. l) must be open.

Remark 1. The essential solution to the 2L-BSL concerns only locations of open
station pairs (once the open station pairs have been determined, the assignment
task to minimize connection costs is trivial). This is similar to the uncapacitated
facility location problem.

Remark 2. It is worth noting the close relation between the 2L-BSL and 2-
level uncapacitated facility location problem (2L-UFL) that demand pairs and
stations in the former problem correspond to clients and facilities in the latter
problem, respectively.

(i) The similar side: Let us think of each demand pair (i, j) in the 2L-BSL as a
client in the 2L-UFL, and connection cost cijkl of assigning (i, j) to station
pair (k, l) ∈ S1 ×S2 in the 2L-BSL as the service cost of using level-1 facility
k and level-2 facility l to serve the client in the 2L-UFL. In this way, the
program (1) for the 2L-BSL is exactly the natural integer linear program
presented by Aardal et al. [1] for the 2L-UFL.

(ii) The different side: To assure constant approximation ratios for the 2L-UFL,
all known research (including [1]) assumes the service costs satisfy the tri-
angle inequality. Although we have the correspondence stated in (i), the
construction of service costs is not complete (i.e., not all the station pairs
can serve the demand pairs), and it is unclear whether the construction
can be completed such that the triangle inequality are satisfied (since it is
unclear whether any two points can be connected, if there are two points
can not be connected, then the triangle inequality does not exist).
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In the rest of this section, we present some preliminaries which are crucial to our
algorithm design and analysis for solving the 2L-BSL, i.e., program (1). Relaxing
the first and the fourth sets of constraints in (1), we have the following linear
programming relaxation.

min
∑

k∈S1

skyk +
∑

l∈S2

slzl +
∑

(i,j)∈D

∑

(k,l)∈S1×S2

cijklxijkl (2)

s. t.
∑

k∈S1

∑

l∈S2

xijkl ≥ 1, ∀ (i, j) ∈ D,

∑

l∈S2

xijkl ≤ yk, ∀ (i, j) ∈ D, k ∈ S1,

∑

k∈S1

xijkl ≤ zl, ∀ (i, j) ∈ D, l ∈ S2,

xijkl, yk, zl ≥ 0, ∀ (i, j) ∈ D, k ∈ S1, l ∈ S2.

Let αij , βijk and γijl denote the dual variables corresponding to the primal
constraints in (2), respectively. The dual program of the above linear program-
ming relaxation (2) is as follows.

max
∑

(i,j)∈D

αij (3)

s. t.αij ≤ cijkl + βijk + γijl, ∀(i, j) ∈ D, k ∈ S1, l ∈ S2,
∑

(i,j)∈D

βijk ≤ sk, ∀ k ∈ S1,

∑

(i,j)∈D

γijl ≤ sl, ∀ l ∈ S2,

αij , βijk, γijl ≥ 0, ∀ (i, j) ∈ D, k ∈ S1, l ∈ S2.

In view of Remark 2(i), we see from [1] that programs (2) and (3) can both
be solved in polynomial time, and the following lemma holds.

Lemma 1 (Aardal et al. [1]). Let (x̂, ŷ, ẑ) and (α̂, β̂, γ̂) be optimal solutions
to the primal and dual linear programs (2) and (3), respectively. Then x̂ijkl > 0
implies that cijkl ≤ α̂ij, for each (i, j) ∈ D, k ∈ S1, l ∈ S2. 	


3 Algorithm and Its Analysis

In this section, we present a polynomial-time randomized approximation algo-
rithm for the 2L-BSL, and prove that the expectation of its approximation ratio
is 3. Our algorithm is a direct adaptation of the ACS Algorithm, i.e., the ran-
domized rounding algorithm for 2L-UFL by Aardal et al. [1]. We first solve the
primal and dual linear programs (2) and (3) to their optimality. Then, based on
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the optimal primal (fractional) solution, we construct mutually disjoint clusters
of stations and demand pairs such that all demand pairs are covered. Finally, we
open in each cluster a pair of stations (according to a probability distribution
defined in the optimal primal solution) to serve all demand pairs in the cluster.
The details of our algorithm are as follows.

Algorithm 1 Input: A 2L-BSL instance as specified in Section 2.
Output: A feasible solution of program (1).
1. Solve the primal and dual linear programs (2) and (3). Denote the optimal

solutions by (x̂, ŷ, ẑ) and (α̂, β̂, γ̂), respectively.
2. Deterministic Clustering: Let Dc denote the set of demand pairs that are

selected as the centers of the clusters, C denote the set of clusters, U denote
the set of demand pairs that have not been clustered. At the beginning of the
clustering, set Dc := ∅, C := ∅, U := D.

- Consider each demand pair (i, j) ∈ U , let ĉij :=
∑

k∈S1,l∈S2
cijklx̂ijkl. Choose

the demand pair (ic, jc) ∈ U such that the sum α̂icjc + ĉicjc is minimum. Set

S(ic,jc) := {(k, l) ∈ S1 × S2 : x̂icjckl > 0},

S
(ic,jc)
1 := {k ∈ S1 : there exists l ∈ S2 with x̂icjckl > 0},

S
(ic,jc)
2 := {l ∈ S2 : there exists k ∈ S1 with x̂icjckl > 0},

D(ic,jc) := {(i, j) ∈ D : x̂ijkl > 0 with k ∈ S
(ic,jc)
1 or l ∈ S

(ic,jc)
2 }.

Define the cluster centered at (ic, jc) as C(ic,jc) := S(ic,jc) ∪ D(ic,jc).
- Update Dc := Dc ∪ {(ic, jc)}, C := C ∪ {C(ic,jc)}, U := U − D(ic,jc).

(Note that the update of U implies that the clusters C(ic,jc) are mutually
disjoint.)

- Iterate over the above clustering process, until U = ∅.
(Note that at the end of clustering, each demand pair belongs to precisely
one cluster in C.)

3. Random Construction: The algorithm constructs a feasible solution of
program (1) based on (x̂, ŷ, ẑ) by considering (processing) all clusters in C
one by one.

- Initially, all stations at both levels are unopened, and all demand pairs are
unassigned, i.e., we set xijkl, yk, zl to be 0 for all (i, j) ∈ D, k ∈ S1, l ∈ S2.

- For each cluster C(ic,jc) ∈ C, we choose a station pair (k, l) ∈ S(ic,jc) with
probability x̂icjckl (note from the optimality of (x̂, ŷ, ẑ) that

∑
k∈S1,l∈S2

x̂icjckl

= 1). Write the chosen station pair as (kc, lc) . We open kc and lc, i.e., reset
ykc := 1 and zlc := 1. Then we assign all the demand pairs (i, j) ∈ D(ic,jc) to
the open station pair (kc, lc), i.e., reset xijkclc := 1 for all (i, j) ∈ D(ic,jc).

Since each demand pair belongs to precisely one cluster in C, and all demand
pairs in every cluster have been assigned to a pair of open stations (at levels
1 and 2 respectively) in the same cluster, we see that all demand pairs in D
have been assigned to open station pairs. Furthermore, since clusters in C are
mutually disjoint, we see that each demand pair in D is assigned to exactly one
pair of open stations. The feasibility of the solution (x, y, z) follows.
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Remark 3. Algorithm 1 is in essence the same as the ACS Algorithm [1]. On
the other hand, two differences from [1] are obvious.

(i) Clients in [1] are replaced with demands pairs.
(ii) The iterative rounding steps in the ACS Algorithm [1] are replaced with

independent constructions within disjoint clusters, which avoids the itera-
tive maintenance of a feasible solution of the LP relaxation as Ardal et al. [1]
did, and yields a more direct argument for the algorithmic correctness as
presented above. Essentially, one iteration in the ACS Algorithm [1] corre-
sponds to our processing of a cluster.

Next, we analyze the approximation ratio of Algorithm 1. We first prove two
lemmas (Lemmas 2 and 3) that bound the expected station (opening) cost and
the expected connection cost of the solution output by Algorithm 1, respectively.
In view of “the same side” stated in Remark 2(i) and the 1-1 correspondence
between iterations in the ACS Algorithm [1] and processing of clusters in our
algorithm as stated in 3(ii), the following lemma has been proved by Aardal et
al. (see inequalities (11) in [1]).

Lemma 2 (Aardal et al. [1]). The expected station cost of the feasible integer
solution (x, y, z) output by Algorithm 1 is no more than the station cost of the
optimal fractional solution (x̂, ŷ, ẑ). 	

Lemma 3. The expected connection cost of the feasible integer solution (x, y, z)
output by Algorithm 1 is no more than

∑
(i,j)∈D(2α̂ij + ĉij).

Proof. According to Step 2 in Algorithm 1, D is the disjoint union of D(ic,jc) for
all (ic, jc) ∈ Dc. We consider any demand pair (i, j) ∈ D(ic,jc), which has been
assigned to open station pair (kc, lc) by Step 3 when processing cluster C(ic,jc).

If (i, j) = (ic, jc) is the center of cluster C(ic,jc), then

E

⎡

⎣
∑

(k,l)∈S1×S2

cijklxijkl

⎤

⎦ = E

⎡

⎣
∑

(k,l)∈S(ic,jc)

cicjcklxicjckl

⎤

⎦

=
∑

(k,l)∈S(ic,jc)

cicjcklx̂icjckl

= ĉicjc

where the second equality is implied by the random opening of the station pair
in S(ic,jc) to which (i, j) is assigned, and the last equality is guaranteed by the
definitions of S(ic,jc) and ĉicjc .

It remains to consider the case that (i, j) ∈ D(ic,jc) − {(ic, jc)}, for which we
will prove that

Λ := E

⎡

⎣
∑

(k,l)∈S1×S2

cijklxijkl

⎤

⎦ =
∑

(kc,lc)∈S(ic,jc)

cijkclc x̂icjckclc
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is bounded above by 2α̂ij + ĉij . This in turn establishes the lemma. Recall that
there exists (k, l) ∈ S1 × S2 with k ∈ S

(ic,jc)
1 or l ∈ S

(ic,jc)
2 such that x̂ijkl > 0.

It follows from Lemma 1 that cijkl ≤ α̂ij .
If (k, l) = (kc, lc), then cijkclc ≤ α̂ij , which implies

Λ ≤
∑

(kc,lc)∈S(ic,jc)

α̂ij x̂icjckclc = α̂ij ,

where the equality is implied by
∑

(kc,lc)∈S(ic,jc) x̂icjckclc = 1 (recall the opti-
mality of x̂).

If (k, l) �= (kc, lc), we distinguish among a couple of cases (Case1 – Case3)
to show Λ ≤ 2α̂ij + ĉij . Recalling the minimality of α̂icjc + ĉicjc , it suffices to
establish Λ ≤ α̂ij + α̂icjc + ĉicjc . Furthermore, as cijkl ≤ α̂ij , we only need to
prove Λ ≤ cijkl + α̂icjc + ĉicjc . The inequality will be implied by the following
claim.

Claim. cijkclc ≤ cijkl + α̂icjc + cicjckclc .

Indeed, assuming the claim, we will have

Λ ≤
∑

(kc,lc)∈S(ic,jc)

(cijkl + α̂icjc + cicjckclc)x̂icjckclc

= (cijkl + α̂icjc)
∑

(kc,lc)∈S(ic,jc)

x̂icjckclc +
∑

(kc,lc)∈S(ic,jc)

cicjckclc x̂icjckclc

= cijkl + α̂icjc + ĉicjc

where the second equality is implied by
∑

(kc,lc)∈S(ic,jc) x̂icjckclc =
1 (recall the optimality of x̂) and

∑
(kc,lc)∈S(ic,jc) cicjckclc x̂icjckclc =

∑
(k̄,l̄)∈S1×S2

cicjck̄l̄x̂icjck̄l̄ = ĉicjc (recall the definitions of S(ic,jc) and ĉicjc).
It remains to verify the claim when {k, l} �= {kc, lc}, for which we distinguish
among three cases according to different outcomes of {i, j} ∩ {ic, jc}: i �= ic and
j �= jc, or i = ic and j �= jc, or i �= ic and j = jc.

Case 1. i �= ic and j �= jc. We consider three subcases as shown in Fig. 2
depending on whether {k, l}∩{kc, lc} is empty or not and whether (k, l) belongs
to S(ic,jc) or not.

Case 1.1. {k, l} ∩ {kc, lc} = ∅ and (k, l) ∈ S(ic,jc) (as depicted in Fig. 2(1.1)).
The claimed inequality is proved by

cijkclc = cikc + ckclc + clcj

≤ (cik + cick + cickc) + ckclc + (clj + cljc + clcjc)
≤ cijkl + cicjckl + cicjckclc

≤ cijkl + α̂icjc + cicjckclc
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Fig. 2. The three subcases of Case 1 with i �= ic and j �= jc.

where the first inequality is implied by the triangle inequality, the second is by
the definitions of cijkl, cicjckl and cicjckclc , and the third is by cicjckl ≤ α̂icjc

(note from (k, l) ∈ S(ic,jc) that x̂icjckl > 0, which along with Lemma 1 implies
cicjckl ≤ α̂icjc).

Case 1.2. {k, l} ∩ {kc, lc} = ∅ and (k, l) �∈ S(ic,jc) (as depicted in Fig. 2(1.2)).
By symmetry we assume w.l.o.g. that l ∈ S

(ic,jc)
2 and x̂icjck′l > 0 for some

k′ ∈ S1 \ {k} as shown in the left part of Fig. 2(1.2). Note that possibly k′ = kc.
By Lemma 1, x̂icjck′l > 0 implies cicjck′l ≤ α̂icjc . It follows that

cijkclc

= cikc + ckclc + clcj
≤ (cickc +cick′ +cik+ckl+ck′l)+ckclc +(clj+cljc +clcjc) (triangle inequality)
= cijkl + cicjck′l + cicjckclc (by the definitions of c)
≤ cijkl + α̂icjc + cicjckclc

as claimed.

Case 1.3. {k, l}∩{kc, lc} �= ∅ (as depicted in Fig. 2(1.3)). By symmetry, we may
assume w.l.o.g. that {k, l} ∩ {kc, lc} = {lc} = {l} as in the left part of (1.3). It
follows that

cijkclc = cikc + ckclc + clcj
≤ (cik + cklc + ckclc) + ckclc + clcj (by the triangle inequality)
≤ cijklc + 2cicjckclc (by the definitions of c)
≤ cijkl + α̂icjc + cicjckclc (by lc = l and cicjckclc ≤ α̂icjc)

as claimed.
Due to space constraints, we omit the proof of Case 2. i = ic and j �= jc, and

Case 3. i �= ic and j = jc, which are similar to the proof of Case 1.
The proof of Lemma 3 has been completed. 	
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Remark 4. Our analysis tool used in Lemma 3 on the linearity of expectation and
the triangle inequality are the same as those in [1] for bounding expected service
cost. However, our situations are much more complicated in that each demand
pair involves two different locations instead of one as its client counterpart in
2L-UFL (recall Remark 2(i)). An even more serious complication occurs when
two different demand pairs intersect at a same location, which never happens
for different clients in the 2L-UFL. The proof of Lemma 3 constitutes our main
technical contribution, which is derived by exploring the structural properties of
the 2L-BSL.

We are now ready to prove the performance of Algorithm 1. Let OPT denote
the total cost of an optimal solution of the given 2L-BSL instance, i.e., the opti-
mal objective value of the integer program (1). Instantly, OPT is lower bounded
by the optimal objective value of program (2), which is the LP relaxation of (1).

Theorem 1. The expected total cost of the feasible integer solution (x, y, z) out-
put by Algorithm 1 is no more than 3 times of the OPT , i.e.,

E

⎡

⎣
∑

k∈S1

skyk +
∑

l∈S2

slzl +
∑

(i,j)∈D

∑

(k,l)∈S1×S2

cijklxijkl

⎤

⎦ ≤ 3OPT.

Proof. Recall that (x̂, ŷ, ẑ) and (α̂, β̂, γ̂) are optimal solutions of primal and dual
linear programs (2) and (3), respectively, whose equal objective value is a lower
bound of OPT , i.e.,

∑

k∈S1

skŷk +
∑

l∈S2

slẑl +
∑

(i,j)∈D

∑

(k,l)∈S1×S2

cijklx̂ijkl =
∑

(i,j)∈D

α̂ij ≤ OPT.

It follows from Lemmas 2 and 3, and the definition of ĉij that proving the
theorem. 	

Remark 5. Recalling Remark 1, we might do better than Algorithm 1 by using
it to randomly open station pairs and assigning each demand pair to a best
available open station pair.

4 Conclusion

In this paper, we study locating bike-stations for cost-effective constructions
of bike sharing systems. We propose the model of 2-level bike sharing station
location, and design an approximation algorithm for the model, achieving an
approximation ratio 3 in expectation. Regarding future research, it might be
interesting to consider the problem with soft capacities, where each location is
associated with a capacity, each open station at the location can serve demand
pairs no more than the capacity, and any number of stations can be opened at
the location to meet the service need. Furthermore, it would be challenging to
design good approximation algorithms for the problems with hard capacities and
time window constraints.
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Abstract. In this paper, we introduce the lower-bounded knapsack
median problem (LB knapsack median). In this problem, we are given a
set of facilities, a set of clients, a budget B and a lower bound L. Every
facility is associated with a weight. Every facility-client pair is associ-
ated with a connection cost. The aim is to select a subset of facilities
to open and connect every client to some opened facility, such that the
total weights of the selected facilities is no more than B, any opened
facility is connected by at least L clients and the total connection costs
is minimized.

As our main contribution, we study the LB knapsack median and
present two approximation algorithms with ratios of 2730 and 1608. The
first algorithm is based on reduction and the improved second algorithm
is based on an intuitive observation. Additionally, we adapt these two
algorithms to the lower-bounded k-median problem (LB k-median) and
obtain the approximation ratios of 610 and 387.

Keywords: Knapsack median · Lower bounds · Approximation
algorithm

1 Introduction

The k-median problem (k-median) has extensive applications from the context
of clustering to data mining. In this problem, we are given a set of facilities,
a set of clients and an integer k. Every facility-client pair is associated with a
connection cost. The goal is to open at most k facilities and connect every client
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to some opened facility so as to minimize the total connection costs. In general,
we assume that the connection costs are non-negative, symmetric and satisfy the
triangle inequality (i.e., the connection costs are metric).

As a well-known NP-hard problem, the k-median has received a lot of atten-
tion on designing approximation algorithm for it as well as its variants [2–
5,7,8,11,16]. For the k-median, based on LP-rounding, Charikar et al. [5] give
the first constant-factor approximation algorithm with a ratio of 6 2

3 and based
on dependent-rounding, Byrka et al. [4] propose the current best (2.675 + ε)-
approximation algorithm. Under the assumption that NP�⊆DTIME(nO(log log n)),
Jain et al. [7] provide the 1.736-hardness of approximation. If we generalize the
cardinality constraint in the k-median to a knapsack constraint, we get the knap-
sack median problem (knapsack median). To be specific, in the knapsack median,
we are given a budget B rather than the integer k and every facility is associated
with a weight. We wish to select a subset of facilities to open and connect every
client to an opened facility, such that the total weights of the selected facili-
ties is no more than B and the total connection costs is minimized. By adding
constraints to strengthen the natural linear program of the knapsack median,
Kumar [10] presents the first constant approximation ratio of 2700. Through
considering a preprocessing step which includes adding randomization and using
sparsification, Byrka et al. [3] give the state-of-art approximation ratio of 17.46.

When every facility in the k-median has an additional opening cost, the cardi-
nality constraint does not need to be satisfied and the objective becomes to open
a subset of facilities and connect every client to an opened facility so as to mini-
mize the total opening as well as connection costs, we obtain the uncapacitated
facility location problem (UFLP). The UFLP is a well-studied NP-hard problem,
which plays an important role in both the field of operations management and
computer science. In general, we have the assumption that the connection costs
are metric. The first constant 3.16-approximation algorithm, which is based on
the technique of LP-rounding, is given by Shmoys et al. [14]. Li [12] applies
the techniques of LP-rounding and dual-fitting to offer the current best 1.488-
approximation algorithm. Recently, the meaningful lower-bounded generaliza-
tion of the UFLP named lower-bounded facility location problem (i.e., LBFLP)
has raised great attention, since the lower bound constraints is motivated from
both the facility location and data privacy perspective. In the LBFLP, a set of
facilities, a set of clients and a lower bound L are given. Every facility is associ-
ated with an opening cost and every facility-client is associated with a connection
cost. We aim to open a subset of facilities and connect every client to an opened
facility such that any opened facility is connected by at least L clients and the
total opening and connection costs is minimized. Guha et al. [6] and Karger
and Minkoff [9] introduce this problem simultaneously and both design an O(1)-
bi-criteria approximation algorithm for the LBFLP. Svitkina [15] reduces the
LBFLP to the capacitated facility location problem (CFLP) and gives the first
true 488-approximation algorithm. Ahmadian and Swamy [1] make improvement
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on solving a structured LBFLP and improve the approximation ratio to 82.6.
For the general case of the LBFLP where every facility is associated with a non-
uniform lower bound, also based on reducing the LBFLP to the CFLP, Li [13]
provide a 4000-approximation algorithm.

Despite the fact that many interesting and meaningful generalizations of the
k-median have been studied, to our knowledge, very little work has been done
for the natural lower-bounded generalization of the k-median or its variants.
This situation stimulates us to introduce and study the lower-bounded knapsack
median problem (LB knapsack median), which generalizes the lower-bounded k-
median problem (LB k-median). Compared with the knapsack median, the LB
knapsack median has extra lower bound constraints that need to be respected.
The main contribution of this paper is to design two approximation algorithms
with ratios of 2730 and 1608 for the LB knapsack median. The first algorithm
is inspired by the works of Svitkina [15] and Ahmadian and Swamy [1] on the
LBFLP and related to their reduction steps. The main idea behind the second
algorithm relies on an observation that simply running an algorithm for the
knapsack median to satisfy the knapsack constraint and then running an algo-
rithm for the LBFLP to satisfy the lower bound constraints works adequately,
rather than a reduction process. Moreover, we adapt the algorithms for the LB
knapsack median to produce algorithms for the LB k-median and obtain the
approximation ratios of 610 and 387.

The remainder of our paper is organized as follows. Section 2 describes the
LB knapsack median and the relevant knapsack facility location problem (knap-
sack FLP) along with their integer programs. Section 3 presents a basic 2730-
approximation algorithm for the LB knapsack median. Section 4 improves the
approximation ratio to 1608. Section 5 adapts the algorithms for the LB knap-
sack median to the LB k-median and obtain the approximation ratios of 610
and 387. Section 6 gives some discussions. Due to space constraint, all proofs are
removed but will further appear in a full version of this paper.

2 Preliminaries

In the LB knapsack median, we are given a set F of facilities, a set D of clients,
a budget B and a lower bound L. Every facility i ∈ F is associated with a
weight wi. Every facility-client pair (i, j) is associated with a connection cost
cij where i ∈ F and j ∈ D. Assume that the connection costs are metric. The
goal is to open a subset S ⊆ F of facilities subject to the knapsack constraint∑

i∈S wi ≤ B, and connect every client to some opened facility, such that any
opened facility is connected by at least L clients and the total connection costs
is minimized.



122 L. Han et al.

The LB knapsack median can be formulated as the following integer program:

min
∑

i∈F

∑

j∈D
cijxij (1)

s. t.
∑

i∈F
xij ≥ 1, ∀j ∈ D, (2)

xij ≤ yi, ∀i ∈ F , j ∈ D, (3)
∑

j∈D
xij ≥ Lyi, ∀i ∈ F , (4)

∑

i∈F
wiyi ≤ B, (5)

xij ∈ {0, 1}, ∀i ∈ F , j ∈ D, (6)
yi ∈ {0, 1}, ∀i ∈ F . (7)

In program (1–7), the variables xij and yi indicate whether client j is connected
to facility i and whether facility i is opened, respectively. The objective function
is the total connection costs. The first constraints state that any client must be
connected to some facility. The second constraints show that any facility that
is connected by some client must be opened. The third constraints say that any
opened facility must be connected by at least L clients. The fourth constraint
guarantee that the sum of weights of the opened facilities is no more than the
budget B.

When every facility i ∈ F in the LB knapsack median is additionally asso-
ciated with an opening cost fi rather than the lower bound L and the objec-
tive is to open a subset S ⊆ F of facilities subject to the knapsack constraint∑

i∈S wi ≤ B, and connect every client to some opened facility so as to minimize
the total opening and connection costs, the LB knapsack median becomes the
knapsack FLP. With the same variables xij and yi as in the program (1–7), the
knapsack FLP can be formulated as the following integer program:

min
∑

i∈F
fiyi +

∑

i∈F

∑

j∈D
cijxij (8)

s. t.
∑

i∈F
xij ≥ 1, ∀j ∈ D, (9)

xij ≤ yi, ∀i ∈ F , j ∈ D, (10)
∑

i∈F
wiyi ≤ B, (11)

xij ∈ {0, 1}, ∀i ∈ F , j ∈ D, (12)
yi ∈ {0, 1}, ∀i ∈ F . (13)

In program (8–13), the objective function is the sum of opening as well as con-
nection costs.

We have the following lemma which deserves to be noticed.
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Lemma 1. When the program (1–7) for the LB knapsack median and the pro-
gram (8–13) for the knapsack FLP have the same inputs of F , D and B, it is
explicit that any feasible solution for the LB knapsack median is also a feasible
solution for the knapsack FLP.

In the rest of this paper, let Di be the set of closest L clients to the facility
i ∈ F and we use binary (S, σ) to denote a solution of some instance of the
LB knapsack median or its relevant problems, where S ⊆ F indicates the set
of opened facilities and σ : D → S indicates a function that maps every client
j ∈ D to some facility i ∈ S. Let σ(j) denote the facility which is connected by
client j in solution (S, σ).

3 A Basic Approximation Algorithm

In this section, we present a basic 2730-approximation algorithm for the LB
knapsack median. The idea behind the algorithm is similar to those for the
LBFLP, namely to reduce the LB knapsack median to the CFLP.

The basic algorithm, which consists of four steps, is formally shown in Algo-
rithm 1. First, from the instance I of the LB knapsack median, we pick a con-
stant α ∈ (12 , 1) and construct an instance I1(α) of the knapsack FLP. Second,
we use the current best approximation algorithm for the knapsack FLP to solve
the instance I1(α) and obtain a solution (S1, σ1) for I1. Based on the solution
(S1, σ1), we construct a bi-criteria solution (Sb, σb), which connects at least αL
clients to any opened facility i ∈ Sb, for I. Third, based on the solution (Sb, σb),
we convert the instance I to a new instance I2(α) of the LB knapsack median,
which is also an instance of some structured LBFLP. For an instance I(α) of the
LBFLP, it is a structured LBFLP instance if it has the following structures: every
client is located at the position of some facility, every facility is co-located with
at least αL clients and its opening cost is zero. Last, we solve the instance I2(α)
with the current existing approximation algorithm for the structured LBFLP in
order to obtain a solution (S2, σ2) for I2(α) as well as I.

The main result of Algorithm 1 is as follows.

Theorem 1. For any instance I of the LB knapsack median, Algorithm 1 can
output a feasible solution (S2, σ2) for I where the total connection costs of
(S2, σ2) is within a factor of 2730 of the total connection costs of the optimal
solution for I.

The feasibility of the solution (S2, σ2) is not hard to see, since Step 2 and
Step 4 in Algorithm 1 guarantee that (S2, σ2) satisfies the knapsack constraint
and the lower bound constraints, respectively. From now on, we will focus on
analyzing the approximation ratio of Algorithm 1. For any instance I of the
LB knapsack median, let (S∗

I , σ∗
I) denote the optimal solution for I and let

OPTI denote the total connection costs of (S∗
I , σ∗

I), i.e., OPTI =
∑

j∈D cσ∗
I(j)j .

Let OPTI1(α) and OPTI2(α) be the total opening and connection costs of the
optimal solution for I1(α) and the total connection costs of the optimal solution
for I2(α), respectively.
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Algorithm 1
Step 1 Convert I to I1(α) of the knapsack FLP.

For the instance I = (F , D, B, L, {wi}i∈F , {cij}i∈F,j∈D) of the LB knapsack
median, pick a constant α ∈ ( 1

2
, 1), get rid of the lower bounds L from I and

set fi :=
2α

1 − α

∑

j∈Di

cij for every i ∈ F ,

to obtain an instance I1(α) = (F , D, B, {fi}i∈F , {wi}i∈F , {cij}i∈F,j∈D) of the
knapsack FLP.

Step 2 Based on I1(α), obtain a bi-criteria solution (Sb, σb) for I.
Step 2.1 Solve the instance I1(α) with the current best ρ-approximation algo-

rithm for the knapsack FLP (see [3]) and obtain a feasible solution (S1, σ1)
where ρ = 17.46.

Step 2.2 Initialize Sb := S1 and σb(j) := σ1(j) for any j ∈ D. Define Ti := {j ∈
D : σb(j) = i} for any i ∈ F and Sr := {i ∈ Sb : |Ti| < αL}.

Step 2.3 While Sr �= ∅ do
Arbitrarily choose some facility i ∈ Sr and close it. Reconnect every
client j with σb(j) = i to its closest facility i′ in Sb \ {i} and update
σb(j) := i′. Update Sb := Sb \ {i}. Update Ti for any facility i ∈ F
and Sr.

end while
Obtain solution (Sb, σb).

Step 3 Based on (Sb, σb), convert I to I2(α) of the LB knapsack median.
From the instance I = (F , D, B, L, {wi}i∈F , {cij}i∈F,j∈D) of the LB knap-
sack median and its bi-criteria solution (Sb, σb), construct a new instance
I2(α) = (F2, D, B, L, {wi}i∈F2 , {c′

ij}i∈F2,j∈D) of the LB knapsack median
where F2 = Sb, c′

ij = ciσb(j) for any i ∈ F2 and j ∈ D (see Fig. 1). Since
the instance I2(α) already satisfies that

∑
i∈Sb

wi ≤ B, it can also be viewed

as (Sb, D, L, {f ′
i}i∈Sb , {c′

ij}i∈Sb,j∈D) where f ′
i = 0 for any i ∈ Sb, which is an

instance of the structured LBFLP.
Step 4 Solve I2(α) and obtain a solution (S2, σ2) for I.

Solve the instance I2(α) with the current best g(α)-approximation algorithm
for the structured LBFLP (see [1]) and obtain a feasible solution (S2, σ2) where

g(α) = 2
α

+ 2α
2α−1

+ 2
√

2
α2 + 4

2α−1
. Output (S2, σ2) as the solution for the

instance I.
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Fig. 1. An illustration of how to convert I to I2(α). The rectangles presents the facil-
ities with lower bound B = 6. The black dots present the clients. For the bi-criteria
solution (Sb, σb), the set of its opened facilities is all the facilities that are touched by
some dotted line and the function of connections is presents by all the dotted lines.

Note that Step 1–2 in Algorithm 1 can be regarded as a bi-criteria algorithm
for the LB knapsack median, which is a contribution in our working paper. For
completeness, we present the main result of it in the following theorem.

Theorem 2. For any instance I of the LB knapsack median, Step 1–2 in Algo-
rithm1 can give a bi-criteria solution (Sb, σb) for I, which connects at least αL
clients to every facility i ∈ Sb and costs within a factor of 1+α

1−αρ of OPTI where
α ∈ ( 12 , 1) and ρ = 17.46.

The following lemma bounds OPTI2(α) in terms of OPTI .

Lemma 2. The total connection costs of the optimal solution for I2(α)is within
a factor of 2( 1+α

1−αρ + 1) of OPTI where α ∈ ( 12 , 1) and ρ = 17.46.

Now we are ready to give the approximation ratio of Algorithm 1.

Lemma 3. The g(α)-approximation solution (S2, σ2) for the structured LBFLP
instance I2(α) is a

(
(2g(α) + 1) 1+α

1−αρ + 2g(α)
)
-approximation solution for the

LB knapsack median instance I, where α ∈ (12 , 1), ρ = 17.46 and g(α) = 2
α +

2α
2α−1 + 2

√
2

α2 + 4
2α−1 . When setting α = 0.64, the approximation ratio is no

more than 2730.

4 An Improved Approximation Algorithm

In this section, we propose an intuitive and dramatically better 1608-
approximation algorithm for the LB knapsack median. The idea of the algorithm
based on an intuitive observation that running an algorithm for the knapsack
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median in order to satisfy the knapsack constraint and then an algorithm for
the LBFLP in order to satisfy the lower bound constraints works well.

The improved algorithm, which comprises four steps, is formally given in
Algorithm 2. First, from the instance I of the LB knapsack median, we con-
struct an instance I ′

1 of the knapsack median. Second, we use the current best
approximation algorithm for the knapsack median to solve the instance I1 and
obtain a solution (S′

1, σ
′
1) for I ′

1. Third, based on the solution (S′
1, σ

′
1), we convert

the instance I to a new instance I ′
2 of the LB knapsack median, which is also

an instance of some special case of the LBFLP. Last, we solve the instance I ′
2

with the state-of-art approximation algorithm for the LBFLP in order to obtain
a solution (S′

2, σ
′
2) for I2 as well as I.

Algorithm 2
Step 1 Convert I to I′

1 of the knapsack median.
For the instance I = (F , D, B, L, {wi}i∈F , {cij}i∈F,j∈D) of the LB knapsack
median, get rid of the lower bounds L from I and obtain an instance I′

1 =
(F , D, B, {wi}i∈F , {cij}i∈F,j∈D) of the knapsack median.

Step 2 Solve I′
1 and obtain a solution (S′

1, σ
′
1) for I′

1.
Solve the instance I′

1 with the current best η-approximation algorithm for
the knapsack median (see [3]) and obtain a feasible solution (S′

1, σ
′
1) where

η = 17.46.
Step 3 Based on (S′

1, σ
′
1), convert I to I′

2 of the LB knapsack median.
From the instance I = (F , D, B, L, {wi}i∈F , {cij}i∈F,j∈D) of the LB knap-
sack median and the solution (S′

1, σ
′
1), construct a new instance I′

2 =
(F ′

2, D, B, L, {wi}i∈F′
2
, {cij}i∈F′

2,j∈D) of the LB knapsack median where F ′
2 =

S′
1 (see Fig. 2). Since the instance I′

2 already satisfies that
∑

i∈S′
1
wi ≤ B, it

can also be viewed as (S′
1, D, L, {f ′

i}i∈S′
1
, {cij}i∈S′

1,j∈D) where f ′
i = 0 for any

i ∈ S′
1, which is an instance of a special case of the LBFLP.

Step 4 Solve I′
2 and obtain a solution (S′

2, σ
′
2) for I.

Solve the instance I′
2 with the current best θ-approximation algorithm for the

LBFLP (see [1]) and obtain a feasible solution (S′
2, σ

′
2) where θ = 82.6. Output

(S′
2, σ

′
2) as the solution for the instance I.

The main result of Algorithm 2 is as follows.

Theorem 3. For any instance I of the LB knapsack median, Algorithm2 can
output a feasible solution (S′

2, σ
′
2) for I where the total connection costs of

(S′
2, σ

′
2) is within a factor of 1608 of the total connection costs of the optimal

solution for I.
The feasibility of the solution (S′

2, σ
′
2) is easy to understand, since Step 2 and

Step 4 in Algorithm 2 guarantee that (S′
2, σ

′
2) satisfies the knapsack constraint

and the lower bound constraints, respectively. The remainder of this section pays
attention on analyzing the approximation ratio of Algorithm 2. Denote OPTI′

1
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Fig. 2. An illustration of how to convert I to I′
2. The rectangles presents the facilities

with lower bound B = 6. The black dots present the clients. For the solution (S′
1, σ

′
1),

the set of its opened facilities is all the facilities that are touched by some dotted line
and the function of connections is presents by all the dotted lines.

and OPTI′
2

as the total connection costs of the optimal solution for I ′
1 and I ′

2,
respectively.

The following lemma bounds OPTI′
2

in terms of OPTI .

Lemma 4. The total connection costs of the optimal solution for I ′
2 is within a

factor of (η + 2) of OPTI where η = 17.46.

Now we are ready to give the approximation ratio of Algorithm 2.

Lemma 5. The θ-approximation solution (S′
2, σ

′
2) for the LBFLP instance I ′

2

is a θ(η + 2)-approximation solution for the LB knapsack median instance I,
where η = 17.46 and θ = 82.6.

5 The Lower-Bounded k-median

In this section, we show that the ideas of algorithms for the LB knapsack median
can be used to produce approximation algorithms for the LB k-median, which
is a special case of the LB knapsack median, and obtain approximation ratios
that are significantly better than 2730 and 1608.

Algorithms 1 and 2 for the LB knapsack median can be adapted to Algo-
rithms 3 and 4 for the LB k-median, respectively. The main results of Algo-
rithms 3 and 4 are also given.

Theorem 4. For any instance I of the LB kmedian, Algorithm3 can output
a feasible solution (S2, σ2) for I where the total connection costs of (S2, σ2) is
within a factor of 610 of the total connection costs of the optimal solution for I.
Theorem 5. For any instance I of the LB k-median, Algorithm4 can output
a feasible solution (S′

2, σ
′
2) for I where the total connection costs of (S′

2, σ
′
2) is

within a factor of 387 of the total connection costs of the optimal solution for I.
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Algorithm 3
Step 1 Convert I to I1(α) of the k-FLP.

For the instance I = (F , D, k, L, {cij}i∈F,j∈D) of the LB k-median, pick a
constant α ∈ ( 1

2
, 1), get rid of the lower bounds L from I and

set fi :=
2α

1 − α

∑

j∈Di

cij for every i ∈ F ,

to obtain an instance I1(α) = (F , D, k, {fi}i∈F , {cij}i∈F,j∈D) of the k-FLP.
Step 2 Based on I1(α), obtain a bi-criteria solution (Sb, σb) for I.

Step 2.1 Solve the instance I1(α) with the current best ρ′-approximation algo-
rithm for the k-FLP (see [16]) and obtain a feasible solution (S1, σ1) where
ρ′ = 2 +

√
3 + ε.

Step 2.2 Same as Step 2.2 in Algorithm 1.
Step 2.3 Same as Step 2.3 in Algorithm 1. At the end of this step, obtain a bi-

criteria solution (Sb, σb).
Step 3 Based on (Sb, σb), convert I to I2(α) of the LB k-median.

From the instance I of the LB k-median and its bi-criteria solution (Sb, σb),
construct a new instance I2(α) = (F2, D, k, L, {c′

ij}i∈F2,j∈D) of the LB k-
median where F2 = Sb, c′

ij = ciσb(j) for any i ∈ F2 and j ∈ D. Since the
instance I2(α) already satisfies the cardinality constraint, it can also be viewed
as (Sb, D, L, {f ′

i}i∈Sb , {c′
ij}i∈Sb,j∈D) where f ′

i = 0 for any i ∈ Sb, which is an
instance of the structured LBFLP.

Step 4 Solve I2(α) and obtain a solution (S2, σ2) for I.
Same as Step 4 in Algorithm 1. At the end of this step, output (S2, σ2) as the
solution for the instance I.

Algorithm 4
Step 1 Convert I to I′

1 of the k-median.
For the instance I = (F , D, k, L, {cij}i∈F,j∈D) of the LB k-median, get rid of
the lower bounds L from I and obtain an instance I′

1 = (F , D, k, {cij}i∈F,j∈D)
of the k-median.

Step 2 Solve I′
1 and obtain a solution (S′

1, σ
′
1) for I′

1.
Solve the instance I′

1 with the current best η′-approximation algorithm for the
k-median (see [4]) and obtain a feasible solution (S′

1, σ
′
1) where η′ = 2.675+ ε.

Step 3 Based on (S′
1, σ

′
1), convert I to I′

2 of the LB k-median.
From the instance I of the LB k-median and the solution (S′

1, σ
′
1), construct

a new instance I′
2 = (F ′

2, D, k, L, {cij}i∈F′
2,j∈D) of the LB k-median where

F ′
2 = S′

1. Since the instance I′
2 already satisfies the cardinality constraint, it

can also be viewed as (S′
1, D, L, {f ′

i}i∈S′
1
, {cij}i∈S′

1,j∈D) where f ′
i = 0 for any

i ∈ S′
1, which is an instance of a special case of the LBFLP.

Step 4 Solve I′
2 and obtain a solution (S′

2, σ
′
2) for I.

Same as Step 4 in Algorithm 2. At the end of this step, output (S′
2, σ

′
2) as the

solution for the instance I.
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6 Discussions

In this paper, we introduce the LB knapsack median, which is a natural gen-
eralization of the LB k-median, and propose approximation algorithms for the
LB knapsack median with approximation ratio of 2730 and 1608. In addition,
these algorithms can be adapted to produce algorithms for the LB k-median
with approximation ratios of 610 and 387. Although the approximation ratios in
this paper are not practical and far from the hardness of approximation, we do
believe them take the first step on providing practical approximation algorithms
and heuristics for the LB knapsack median.
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Abstract. We consider the spherical k-means problem (SKMP), a gen-
eralization of the k-means clustering problem (KMP). Given a data set
of n points P in d-dimensional unit sphere R

d, and an integer k ≤ n,
it aims to partition the data set P into k sets so as to minimize the
sum of cosine dissimilarity measure from each data point to its closest
center. We present a constant expected approximation guarantee for this
problem based on integrating the k-means++ seeding algorithm for the
KMP and the local search technique.

Keywords: Spherical k-means · Cosine dissimilarity · Local search ·
Seeding algorithm · Approximation algorithm

1 Introduction

Clustering problems arise in many different applications, including text clus-
tering, data compression, pattern classification and machine learning. Further
information on clustering and clustering algorithms can be found in [7,8,10].
One of the most popular and widely studied clustering models for points in
Euclidean space is called the k-means problem (KMP), which tries to minimize
the mean squared Euclidean distance from each data point to its closest center
(refer to e.g. [1,2,9–11,15] for more information on KMP).

It is of significant importance to be able to mine valuable information from
large-scale high-dimensional text data, which are becoming more and more com-
mon. Our main interest in this paper is the spherical k-means clustering (SKMP)
problem, one of the most representative approaches to cluster text documents.
The goal is to partition a given set of objects into clusters such that objects
in the same cluster should be similar to each other while objects in different
clusters should be less similar. Specifically, given a data set P in the unit sphere
c© Springer Nature Switzerland AG 2020
Z. Zhang et al. (Eds.): AAIM 2020, LNCS 12290, pp. 131–140, 2020.
https://doi.org/10.1007/978-3-030-57602-8_12
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R
d, and an integer k ≤ n, it aims to partition the data set P into k sets so as

to minimize the sum of cosine dissimilarity measure from each data point to its
closest center. We shall assume that the document vectors have been normalized
to have a unit Euclidean norm, that is, they can be thought of as points on a
high-dimensional unit sphere.

The KMP has been extensively studied in the literature. Perhaps the most
famous heuristic for k-means is the well-known Lloyd’s algorithm [14] (a.k.a.,
the k-means algorithm), which is a very powerful clustering method for KMP
in practice. However one major limitation of this algorithm is that it strongly
depends on the initial value, and hence does not provide any theoretical approxi-
mation guarantee. To decrease the dependence, Arthur and Vassilvitskii propose
an O(ln k)-approximation algorithm, called k-means++ algorithm [2], which
incrementally chooses a set of k centers by sampling the first k centers with
pre-specified probabilities. In practice, k-means++ is easy to implement and it
is often used as a starting solution for Lloyd’s algorithm. However, the approxi-
mation guarantee of the k-means++ is not a constant factor.

For the SKMP, Dhillon and Modha [3] present the primitive spherical k-
means clustering algorithm with cosine similarities based on the KMP. Honik et
al. [6] propose a new spherical k-means clustering algorithm which is based on
[3] and [15]. It is easy to find that the algorithms in both [3] and [6] depend on
the initial value. Inspired by the k-means++ algorithm [2], Endo and Miyamoto
[4] present an algorithm which works well for the SKMP, called the spherical
k-means++ clustering algorithm, and obtain an O(log k)-approximation guar-
antee. Li et al. [13] then prove that the algorithm based on [2] is also an O(log k)-
approximation for the SKMP and has a constant approximation ratio for the
SKMP with separable sets.

Zhang et al. [16] present a (8(2+
√

3)+ ε)-approximation algorithm by using
a direct local search technique based on the work of Kanungo et al. [9] for the
SKMP. In [9], they present a local improvement heuristic based on swapping
centers in and out and prove that it yields a (9 + ε)-approximation algorithm
for the KMP.

Recently, Lattanzi and Sohler [12] develop a random variant of the k-
means++ seeding algorithm that achieves a constant expected approximation
guarantee. They pose the question of whether there exists a simple and practical
approximation algorithm for KMP. This work tries to answer this question by
designing a simple local search algorithm with an expected constant approxi-
mation ratio for the SKMP. We present an approximation algorithm via inte-
grating the k-means++ seeding algorithm and the local search technique. We
obtain a constant approximation for SKMP, which is also a generalization of the
k-means++ seeding approach via local search in [12].

The rest of this paper is organized as follows. In Sect. 2, we describe the for-
mulation for the spherical k-means problem (SKMP) and provide several lem-
mas related to the SKMP, which lead to the proof of Theorem 1. In Sect. 3, we
present a SpheMeans++ algorithm via the local search for the SKMP along with
our main result. In Sect. 4, we provide the analysis of the approximation ratio.



The Spherical k-means++ Algorithm via Local Search 133

Conclusions are given in Sect. 5. In addition, all proofs are omitted due to space
constraints, and will be available in the journal version.

2 Notations, Definitions and Preliminaries

In this section, we formally define the spherical k-means problem (SKMP), as
well as the notations used in the paper. Let X be a data set of n points in
the d-dimensional space R

d. Without loss of generality, we assume that each
point in X is normalized as a unit vector according to the Euclidean norm, i.e,
X = {x ∈ R

d : ‖x‖ = 1}, and hence the norms of all data are normalized as one
and are located on the unit sphere.

For any two points u and v in X , we use the distance d(u, v) to denote their
cosine dissimilarity: d(u, v) = 1−cos(u, v) = 1

2‖u−v‖2, where ‖u−v‖2 measures
their squared Euclidean distance between u and v. So d(u, v) is just a half of their
squared Euclidean distance. Moreover, for any set S ⊆ X and a point x ∈ X ,
the cosine dissimilarity from x to S is defined as d({x},S) = min

s∈S
d(x, s).

For any set S ⊆ X , the point scen(S) =
(∑

s∈S s
)
/‖∑

s′∈S s′‖ is called the
spherical center of the mass of all points in S. In particular, if

∑
s∈S s = 0, then

scen(S) includes all d-dimensional unit vectors in S. Analogously, given a set
C ∈ R

d, the total sum of the cosine dissimilarity over each point of X to the set
C is given by d(X , C) =

∑
x∈X d({x}, C).

We now formally define the spherical k-means problem (SKMP). Suppose
that we are given an integer k, as well as a data points set P = {p1, p2, · · · , pn}
in X . The goal of the SKMP is to find a set C of k data points in X , called
centers, to minimize the sum of cosine dissimilarity measure, or total cost for
short, from each data point in P to its closest center. Namely, find a set C =
{c1, c2, · · · , ck} ⊆ X minimizing the cost function

cost(P, C) :=
n∑

j=1

min
i∈{1,2,··· ,k}

d(pj , ci) =
1
2

n∑

j=1

min
i∈{1,2,··· ,k}

‖pj − ci‖2.

Obviously, for the SKMP, the centers set C partitions the input points P with
unit length into k clusters {P1, · · · ,Pk}, where each Pi := {arg minp d(p, ci)|p ∈
P} is with respect to a cluster center ci. In other words, the cluster Pi is the
set of points assigned to their closest center ci respectively in terms of cosine
dissimilarity. If the closest center is not unique, then p is assigned to one of
them arbitrarily. Assume that the optimal center set is O = {o1, · · · , ok}. Then
P is partitioned into k disjoint subsets {O1, · · · , Ok} induced by these optimal
centers. Denote the cost of the optimal solution as optk.

The following property in [4] is a vital property of spherical centroidal solu-
tions that are similar to the center of the mass in the k-means problem.

Lemma 2.1. For any point c ∈ X , we have

cost (S, {c}) = cost (S, {scen(S)}) +

∥
∥
∥
∥
∥

∑

s∈S
s

∥
∥
∥
∥
∥

· cost ({scen(S)}, {c})
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where cost (S, {scen(S)}) = minc∈X cost(S, {c}). Furthermore, the above equal-
ity is equivalent to

∑

s∈S
‖s − c‖2 =

∑

s∈S
‖s − scen(S)‖2 +

∥
∥

∑

s∈S
s
∥
∥ · ‖scen(S) − c‖2

Hence, by the centroidal property, it is not hard to see that scen(S) is the unique
optimal 1-means of S. In this case, the objective function for the SKMP can also
be represented by

1
2

k∑

i=1

min
p∈Pi

‖p − scen(Pi)‖2.

Based on the definition of the cosine dissimilarity, we know that the cosine
dissimilarity measure always satisfies the triangle inequality within a factor of
two in the following lemma.
Lemma 2.2. For any u, v, w ∈ X we have

d(u, v) ≤ 2d(u,w) + 2d(v, w)

Therefore, ‖u − v‖ ≤ √
2 (‖u − w‖ + ‖v − w‖). The following lemma, a gen-

eralization of the similar result in [5], is crucial to our analysis.
Lemma 2.3. Let ε > 0, u, v ∈ X and C ⊆ X is a set of k centers. Then

| cost({u}, C) − cost({v}, C) |≤ 2εcost({u}, C) +
(

1 +
1
ε

)
‖u − v‖2.

Proof.

| cost({u}, C) − cost({v}, C) |
=| d({u}, C) − d({v}, C) |
=|

√
d({u}, C) −

√
d({v}, C) | ·

(√
d({u}, C) +

√
d({v}, C)

)

≤
√

2
√

d(u, v) ·
(
(1 +

√
2)

√
d({u}, C) +

√
2
√

d(u, v)
)

= 2d(u, v) + (2 +
√

2)
√

d({u}, C) ·
√

d(u, v)

= ‖u − v‖2 + (2 +
√

2)
√

d({u}, C) ·
√

2
2

‖u − v‖
≤ ‖u − v‖2 + 2

√
2
√

d({u}, C) · ‖u − v‖

= ‖u − v‖2 + 2
√

2ε
√

d({u}, C) · ‖u − v‖√
ε

≤ ‖u − v‖2 + 2εd({u}, C) +
‖u − v‖2

ε

=
(

1 +
1
ε

)
‖u − v‖2 + 2εd({u}, C)

where the first inequality is due to the symmetry and Lemmas 2.2, and the last
follows from 2uv ≤ u2 + v2 for u, v ∈ X . ��
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Algorithm 1. SpheMeans++ with local search
Input: A data point set P ⊆ X with n unit length points, integer k, K and C = φ.
Output: An approximate spherical k-means++ C ∈ X for P.
1: Sample the first center c1 uniformly at random from P and set C = C ∪ {c1}.
2: for i = 2 to k do
3: Sample the center ci = p′ ∈ P with probability d({p′},C)

cost(P,C)
.

4: Set C := C ∪ {ci}.
5: end for
6: for i = 1 to k do
7: Set the cluster Pi := {p ∈ P : d(p, ci) ≤ d(p, cj), ∀j ∈ [k], j �= i};
8: end for
9: for i = 1 to K do

10: Sample the center p′ ∈ P with probability d({p′},C)
cost(P,C)

.

11: if ∃ c ∈ C s.t. cost(P, C \ {c} ∪ {p′}) < cost(P, C) then
12: c := arg min

c∈C
cost(P, C \ {c} ∪ {p′}).

13: Set C := C \ {c} ∪ {p′}.
14: end if
15: Break the for loop if C does not change.
16: end for
17: return the set C

3 An Improved k-means++ Approximate Algorithm
via Local Search

In this section, we develop a SpheMeans++ algorithm via the local search tech-
nique with single-swap operations for the spherical k-means problem (SKMP)
as follows. The main idea of our SpheMeans++ algorithm is to swap centers in
a certain way. Initially, we sample k points in P to construct a feasible solution
C, akin to the k-means++ algorithm for the k-means problem [12]. Then we
perform the single-swap local search operations to improve the current solution
repeatedly. Specifically, we iteratively remove one center c ∈ C from C and add
another point p′ ∈ P\C into C. The formal algorithm is presented in Algorithm1.

From Step 1 to Step 5, the initial clustering C from the input data set P is
sampled with given probabilities. We start with an empty solution C and choose
the first cluster center c1 uniformly at random from P. To select an initial
set of k centers, the remaining clustering centers will be iteratively sampled at
random from P where the probability to sample a point p′ ∈ P is proportional
to its cost d({p′}, C) in the current clustering. We use d({p′}, C) to denote the
closest distance from a data point P to the closest center which we have already
chosen. Then one can obtain the current clustering with corresponding partition
{P1, · · · ,Pk} from Step 6 to Step 8.

As mentioned above, our approach is based on two ideas. The first is to con-
struct a feasible solution C similarly to the seeding algorithm, and the second is
based on the local search process from Step 9 to Step 16. The local search pro-
cedure that we shall consider is a natural one. Each current solution is specified
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by a subset C ∈ P of exactly k points and the clustering will be updated by
the single-swap operations. Intuitively, we repeatedly check to see if any swap
operation yields a solution of lower cost: if so, the resulting solution is our new
current solution; otherwise, we discard the sampled center.

Formally, a single-swap operation swap(c, p′) involves swapping two points:
if there exists a point c ∈ C such that cost(P, C \ {c} ∪ {p′}) < cost(P, C), we
find such a new point p′ that reduces the cost function as much as possible from
P and replace the old center c by this point. Afterwards, we reassign each client
to its closest center. It is easy to see that the cost of the new clustering over P
will not increase over iterations because of the local optimal property.

In practical implementations, the local search process is repeated to improve
the current solution until the partition and the centers become stable. For
simplicity, we will assume that the algorithm terminates when no single-swap
reduces the cost function anymore.

4 Analysis

In this section, we show that the Algorithm1 reduces the cost of the current
solution by a O(1/k) factor in every iteration, which means that the solution
returned by the algorithm after polynomial number of iteration is a constant
approximation. For the SKMP, the spherical centroid centers may be placed
anywhere in the spherical space R

d, we impose that all candidate centers are
chosen from X to make sure the algorithm runs in polynomial time. Before
proceeding to the analysis for the approximation guarantee of Algorithm1, we
present some necessary notations and propositions.

4.1 Preliminary Step

Let C = {c1, c2, · · · , ck} and O = {o1, o2, · · · , ok} denote the current feasible
solution and optimal solution, respectively. For each optimal center o ∈ O, let co
denote its closest center among all centers in C, that is co = arg minc∈C d(o, c).
We say that o is captured by co. Without causing confusion, we drop indices
when they are irrelevant. Therefore, there are three cases to be considered.

Case 1. Each optimal center o ∈ O is captured by exactly one center from C,
and the index set of such centers is E;

Case 2. Each center c ∈ C may capture more than one optimal centers, and the
index set of such centers is M ;

Case 3. Some centers in C do not capture any of the optimal centers, called
lonely centers, and its index set is L.

Our analysis is based on constructing a set of k special swap pairs swap(c, o)
for C and O. For a cluster center with index e ∈ E, that is, the center ce in Case
1, we generate a swap pair consisting of the center and its captured center. In this
case, if ce is far away from the center of the optimal cluster, then we are likely to
sample a point near the center with high probability and displace it. For a cluster



The Spherical k-means++ Algorithm via Local Search 137

center in Case 2 with index m ∈ M , we generate swap pairs between the lone
centers and the optimal centers such that each of the optimal centers involves
only one swap pair and each of the lone centers involves at most two swap pairs.
On the other hand, if cl is a lone center, we move it to a different cluster and
replace it by sampling a point from other clusters with high probability.

Now that we analyze the cost change caused by the swap operations. It is
necessary to compute the cost of swapping the new sample point with an old
center. For a center ce ∈ C, where e ∈ E, we assign all points in the cluster of ce
that are not in the captured optimal cluster to a different center. A change in
cost like this is called the reassignment cost. Formally, the reassignment cost of
ce is defined as reas({ce}) = cost(P\Oe, C\{ce}) − cost(P\Oe, C). For a center
cl ∈ C, where l ∈ L, the cost of assigning all points in P to other centers is
denoted as reas({cl}) = cost(P, C\{cl}) − cost(P, C). In fact, we sample such
points with high probability such that the reassignment cost is lower than the
increase for this cluster.

To complete the analysis, we categorize all centers in the set C into three
classes as follows, similar to [12].

Definition 4.1. (Good and Bad Center) Consider a feasible solution C and
the optimal solution O.

– For a center ce ∈ C, if 3
∑

e∈E cost(Oe, C) > cost(P, C), we have

cost(Oe, C) − reas({ce}) − 4cost(Oe, {oe}) >
1

100k
cost(P, C),

and we call it a good center.
– For a center ci ∈ C, i ∈ {1, · · · , k} \ E there exists a center index l ∈ L such

that

cost(Oi, C) − reas({cl}) − 4cost(Oi, {oi}) >
1

100k
cost(P, C).

and we also call it a good center.

Otherwise, we call it a bad center.

4.2 Main Step

We establish an upper bound on the cost of reassignment points in the following
lemma.

Lemma 4.1. For u ∈ E ∪ L, we have

reas({cu}) ≤ 21
100

cost(Pu, C) + 45cost(Pu,O).

Now, we argue that we have a high probability to sample a good cluster and
we have an upper bound on the reassignment cost. From the definition of a good
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center, we have classified all centers in C into three categories, and two of them
are good centers. Next, we analyze the total cost of good clusters.

For e ∈ E, we estimate the cost of replacing ce with a point close to the
center of Oe by considering a cluster that reassigns the points in Pe \ Oe and
assigns all points in Pe ∩ Oe to the new center. For v ∈ M ∪ L, we estimate the
gain of removing l and inserting a new cluster center close to the center of Pi.
In fact, we cannot easily move the cluster center in M without affecting other
clusters. Therefore, we focus on the centers v ∈ M ∪ L and use the centers in L
as candidate centers for a swap, that is, swapping an arbitrary center l ∈ L with
an arbitrary point that is close to an optimal center of a cluster Pv for some
v ∈ M ∪ L.

We use the index g or b of the cluster center to indicate whether the center
is good or bad. Then, the cost can be bounded as follows.

Lemma 4.2. Let cost(P, C) > 500optk. If

3
∑

e∈E

cost(Oe, C) > cost(P, C),

then we have

75
∑

eg∈E

cost(Oeg , C) ≥ cost(P, C);

otherwise, for v ∈ L ∪ M , we have

21
∑

vg∈L∪M

cost(Ovg
, C) ≥ cost(P, C),

where the index eg and vg indicate that the corresponding centers are good,
respectively.

From the above lemma, we know that the total cost of any good cluster is
large. In the following part, we just need to argue that the probability of sampling
a good center is high enough. Consider a (good) cluster G in the optimal solution
and the set of center points C in the current solution.

Lemma 4.3. Let G ⊆ X be a cluster and C ⊆ X be a set of k centers w.r.t the
current solution. If cost(G, C) ≥ δcost(G, {scen(G)}), then

cost(R, C)
cost(G, {scen(G))

≥ δ − 1
8

where δ ≥ 9 and R ⊆ G such that
∥
∥
∥
∥
∥
∥

∑

g∈G

g

∥
∥
∥
∥
∥
∥

cost(R, {scen(G)}) ≤ 2cost(G, {scen(G)}).
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The above lemmas together imply the following important lemma, which
again implies the main theorem.

Lemma 4.4. Let P and C be a set of input data points from Algorithm 1 and
a set of centers with | C |= k and cost(P, C) ≥ 500optk. Let C′ be obtained from
the local search procedure in Algorithm 1 from Step 9 to Step 16. Then

cost (P, C′) ≤
(

1 − 1
100k

)
cost(P, C) with probability

1
1000

.

The main results obtained by SpheMeans++ local search in this paper can
be stated as below.

Theorem 4.1. Let P be a set of data points in X , C is the returned set by
Algorithm 1 with K ≥ 100000k log(log k). For the spherical k-means problem,
Algorithm 1 has an expected constant approximation ratio

E[cost(P, C)] ≤ 517cost(P,O),

where the set O contains k optimal centers. Moreover, the running time of the
algorithm is O(dnk2 log log k).

A full proof will be shown in the journal version.

5 Discussions

In this paper, we present an expected constant approximation algorithm for
the SKMP by employing the local search scheme. There are two possible future
research questions to pursue. One is to study other clustering problems, such as
the robust k-means problem, or the spherical k-means problem with penalties.
Another is to design an algorithm to reduce the number of local search steps in
Algorithm 1.
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Abstract. We study the spherical k-means problem with outliers, a
variant of the classical k-means problem, in which data points are on
the unit sphere and a small set of points called outliers (as a constraint,
the number of outliers can not be greater than a given integer) can be
ignored. Using local search method, we give a constant-factor approxima-
tion algorithm that may violate slightly the constraint about the number
of outliers.

Keywords: Spherical k-means · k-Means with outliers · Local search ·
Approximation algorithm

1 Introduction

In the classical k-means problem, given a set of n sample points in the Euclidean
space, we need to select at most k points in the space as cluster centers, and
assign each sample point to the nearest center according to the Euclidean dis-
tance, minimizing the sum of squares of distances of each sample point to its
center. However, the Euclidean distance is not suitable to measure the dissimi-
larity of two points for textual data, since the Euclidean distance of a long text
and a short text is great but their meanings may be similar. To address this
issue, Dhillon and Modha [5] present the spherical k-means problem that uses
the so-called cosine dissimilarity based on the angle between two points(vectors),
or equivalently, uses the Euclidean distance of the projections of vectors onto
the unit sphere.

We consider the spherical k-means problem with outliers, in which a small
set of sample points can be ignored, that is, we can choose at most z sample
c© Springer Nature Switzerland AG 2020
Z. Zhang et al. (Eds.): AAIM 2020, LNCS 12290, pp. 141–148, 2020.
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points as outliers, and these outliers need not to be clustered. The motivation of
clustering problems with outliers is to handle the noise and error data (seen as
outliers). By removing outliers, we can reduce the clustering cost dramatically
and improve the quality of the clustering consequently.

As a classical clustering problem, the k-means problem has been studied
widely for several decades. The most popular algorithm for the k-means prob-
lem is the well-known Lloyd’s algorithm [13] (it is also called k-means algorithm
in many literatures). Although Lloyd’s algorithm has a good performance in
practice, its approximation ratio can not be bounded [11] (we say an algorithm
has an approximation ratio α if it can produce a solution with the objective
value that is not worse than α times the optimum for any instance). Arthur
and Vassilvitskii [2] provide the so-called k-means++ algorithm with a special
random seeding method to find the initial solution, together with Lloyd’s itera-
tion, resulting in a O(8 ln k + 2)-approximation. Jain and Vazirani [10] present
the first constant 108-approximation algorithm for the k-means problem using
the primal-dual method and Lagrangian relaxation. Kanungo et al. [11] give a
(9+ε)-approximation using local search scheme. The best known approximation
ratio of the k-means problem is 6.357 proposed by Ahmadian el al. [1].

Based on the primitive spherical k-means [5], Hornik et al. [9] present the
standard and extended spherical k-means problems, and discuss some heuris-
tic algorithms. Endo et al. [6] present a generalized problem called α-spherical
k-means that extends the cosine dissimilarity to satisfy the triangle inequal-
ity. Utilizing this extended dissimilarity and based on the k-means++ algo-
rithm, they provide the spherical k-means++ algorithm which is a O(4 ln k+2)-
approximation. Li et al. [12] study a special case called spherical separable k-
means problem, a special case of spherical k-means problem. They present a
constant factor approximation algorithm for this problem and generalize it to
the α-spherical separable k-means problem. Zhang et al. [14] use the local search
method to provide a (2(4 +

√
7) + ε)-approximation algorithm.

The clustering problem with outliers is firstly introduced by Charikar et al.
[3]. They study the outlier version of the facility location problem and k-median
problem. For the former, a 3-approximation algorithm is presented. For the lat-
ter, a bi-criteria (4(1 + 1/ε), 1 + ε)-approximation algorithm is presented, where
4(1 + 1/ε) is the approximation ratio and 1 + ε is the factor of violating the
outlier constraint, that is, there are at most (1 + ε)z outliers in the solution.
Chen [4] uses Lagrangian relaxation and local search technique to give the first
true approximation algorithm with a large approximation ratio for the k-median
problem with outliers. Gupta et al. [8] provide a bi-criteria (274, O(k log nΔ))-
approximation algorithm for the k-means with outliers, where Δ is the maxi-
mal distance between sample points. Recently, Friggstad et al. [7] consider the
cases where the distance is doubling metric, a generalization of fixed dimensional
Euclidean metrics. They firstly show that a multi-swap local search algorithm is
a PTAS for the uniform-cost facility location problem with outliers on doubling
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metric. Then, they extend this result to k-median and k-means problems with
outliers, to obtain a bi-criteria (1 + ε, 1 + ε)-approximation algorithm where the
first 1+ε is the approximation ratio and the second is the factor of violating the
k constraint. Furthermore, a (25+ ε, 1+ ε)-approximation algorithm is obtained
for the k-means with outliers on general metrics. They also show that a natural
local search algorithm satisfying both the k and outlier constraint can not yield
a bounded approximation ratio, even in Euclidean metrics.

In this paper, we give a bi-criteria approximation algorithm for the spherical
k-means problem with outliers, using the local search scheme inspired by the
works of [8,14]. In Sect. 2, we give the formulation of the problem, the local
search algorithm and the corresponding analysis. The conclusion is given in
Sect. 3.

2 The Local Search Algorithm for the Spherical k-means
Problem with Outliers

2.1 Problem

Given a set of sample points U in the d-dimensional unit sphere S
d = {s ∈

R
d| ‖s‖ = 1} (we use ‖ · ‖ to denote the l2-norm in this paper), the spherical

k-means with outliers problem can be formulated as follows:

min
C⊆Sd,Z⊆U :|C|≤k,|Z|≤z

∑

u∈U\Z

d(u,C)2, (1)

where d(u, v) = ‖u − v‖, d(u,C) = minv∈C d(u, v). Let outlier(C,R) be the set
of z farthest points from C ⊆ U \ R, and let outlier(C) = outlier(C, ∅). If the
center set C is fixed, then set Z = outlier(C) minimizes the cost. Thus, the
formulation (1) is equivalent to

min
C⊆Sd:|C|≤k

∑

u∈U\outlier(C)

d(u,C)2.

2.2 Algorithm

Gupta et al. [8] present a single-swap local search algorithm for the k-means
problem with outliers. Based on their work, we present a constant factor approx-
imation algorithm for the problem of spherical version. Let cost(C,Z) be the cost
of the solution (C,Z) (we use (C,Z) to denote a solution with the center set C
and outlier set Z). We call our algorithm as LS-Single-Swap-Outlier. The formal
description of LS-Single-Swap-Outlier is given in Algorithm 1.

From an arbitrary feasible solution, the algorithm improves the cost by
adding outliers and single-swap operation iteratively, until the cost can not be
improved (as shown in Proposition 1). In the phase of adding outliers without
swap (lines 6–8 in Algorithm 1), it adds z outliers if the cost will be reduced
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by a factor after this operation. In the phase of single-swap (lines 9–12 in Algo-
rithm1), the algorithm improves the cost by searching solution from the neigh-
borhoods {C \ {a} ∪ {b}|a ∈ C, b ∈ U} of the current center set C and adding z
additional outliers. We denote the swap operation C \ {a} ∪ {b} by swap(a, b).

From the description of LS-Single-Swap-Outlier, we can obtain Proposi-
tion 1(1) due to the outliers adding operation and Proposition 1(2) due to the
single-swap operation.

Proposition 1. Let C be the center set and Z be the outlier set returned by
LS-Single-Swap-Outlier(U, k, z, p, ε). We have

(1) cost(C,Z ∪ outlier(C,Z)) ≥ (1 − ε
k )cost(C,Z),

(2) cost(C \ {a}∪{b}, Z ∪ outlier(C \ {a}∪{b}, Z)) ≥ (1− ε
k )cost(C,Z) for any

a ∈ C and b ∈ U .

Algorithm 1. LS-Single-Swap-Outlier(U, k, z, ε)
Input: Sample set U ⊆ S

d, positive integer k as the maximal number of centers,
positive integer z as the maximal number of outliers, real number ε > 0.

Output: Center set C ⊆ S
d and outlier set Z ⊆ U .

1: C ← an arbitrary set of k points from U
2: Z ← outlier(C)
3: α ← +∞
4: while cost(C, Z) < α(1 − ε

k
) do

5: α ← cost(C, Z)
6: if cost(C, Z ∪ outlier(C, Z)) < (1 − ε

k
)cost(C, Z) then

7: Z ← Z ∪ outlier(C, Z)
8: end if
9: if ∃a ∈ C and b ∈ U s.t. cost(C \ {a} ∪ {b}, Z ∪ outlier(C \ {a} ∪ {b}, Z)) <

(1 − ε
k
)cost(C, Z) then

10: C ← C \ {a} ∪ {b}
11: Z ← Z ∪ outlier(C \ {a} ∪ {b}, Z)
12: end if
13: end while
14: return C and Z

2.3 Analysis

We first give the time complexity of LS-Single-Swap-Outlier as shown in the
following theorem.

Theorem 1. Let δ be the maximal value of the distance between two points
in U , i.e. δ = maxu,v∈U d(u, v). The time complexity of LS-Single-Swap-
Outlier(U, k, z, ε) is O(k2n2

ε log(nδ)).
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Proof. The proof is similar to that in [8], with loss of generality, we give it here.
From the objective function of the problem we study, the cost of any feasible
solution is at most nδ2. The cost is reduced by at least 1 − ε

k factor after each
iteration, so the number of iterations is at most O(log1−ε/k(nδ2)) = O(k

ε log(nδ))
under the assumption that the optimal value OPT ≤ 1 (this assumption is easy
to be satisfied by scaling the distances). In each iteration, the outlier adding
operation takes time O(1), and the single-swap operation takes time O(kn).
Thus, the total time is O(k2n2

ε log(nδ)). �

Next, we analyze the approximation ratio and the bound of the number
of outliers returned by LS-Single-Swap-Outlier. To analyze the approximation
ratio, we will construct some swap operations between the optimal solution
denoted by (C∗, Z∗) and the solution (C,Z) returned by the algorithm, and
then use Proposition 1 to get an inequality for each swap, finally combining
these inequalities we can bound cost(C,Z) by cost(C∗, Z∗).

Here, we use the same method in [14] to construct the swap operations. Firstly
we introduce the notion of capture defined as follows. For each center o ∈ C∗, let
π(o) = argminc∈Cd(o, c). We say that π(o) captures o. Let capture(c) be the set
of points captured by the center c. If capture(c) = ∅, we call c as a good center,
otherwise, we call c as a bad center.

With loss of generality, assume that |C| = |C∗|. We partition C and C∗ by
the following procedure. Let C∗

i = capture(ci) and Ci = {ci} for each bad center
ci. Since any center o ∈ C∗ is captured by exactly one center in C, we get the
partition of C∗ = ∪̇m

i=1C
∗
i . Put arbitrary good centers into Ci until |Ci| = |C∗

i |
for each i = 1, . . . ,m. Because |C| = |C∗|, this procedure is feasible, and we get
the partition of C = ∪̇m

i=1Ci.
For a no-outlier point v, let vc and vo be v’s center in the solution (C,Z) and

(C∗, Z∗) respectively. For a center a ∈ C, let Na be the set of points in U \ Z
assigned to the center a, i.e.

Na = {v ∈ U \ Z|vc = a}.

Similarly, let
N∗

b = {v ∈ U \ Z∗|vo = b}.

Note that the points a and b for swap in our algorithm are contained in U .
Thus, to use Proposition 1, we define

b̂ = argmin
u∈N∗

b

d(u, b).

Then, we construct the swap operations in each pair (Ci, C
∗
i ) for each i =

1, . . . ,m. We consider the following two cases.

Case 1: |Ci| = 1. Let Ci = {ai} and C∗
i = {bi}. We construct swap(ai, b̂i).

Case 2: |Ci| > 1. Let Ci = {a1
i , a

2
i , . . . , a

mi
i } and C∗

i = {b1i , b
2
i , . . . , b

mi
i },

where a1
i is the unique bad point. We construct swap(a2

i , b̂
1
i ), swap(a2

i , b̂
2
i ),

swap(a3
i , b̂

3
i ), ..., swap(ami

i , b̂mi
i ).
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Let P be the set of all swap operations we construct. It is obvious that
|P| = k. Denote the cost after swap(a, b) in LS-Single-Swap-Outlier by cost(a, b),
i.e.

cost(a, b) = cost(C \ {a} ∪ {b}, Z ∪ outlier(C \ {a} ∪ {b}, Z)).

The following lemma shows the upper bound of the cost after a swap operation.

Lemma 1. For each swap(a, b̂) in P, we have

cost(a, b̂) − cost(C,Z) ≤
4

∑

v∈N∗
b

d(v, vo)2 −
∑

v∈N∗
b \Z

d(v, vc)2 +
∑

v∈Na\(N∗
b ∪Z∗)

(
d(v, π(vo))2 − d(v, vc)2

)
.

(2)

Proof. The proof is deferred to the journal version.

Also, we need to the following two results to proceed the analysis.

Lemma 2. ([14])
∑

v∈N∗
b

d(v, b̂)2 ≤ 4
∑

v∈N∗
b

d(v, b)2.

Lemma 3. ([11])

(1)
∑

v∈U\(Z∪Z∗)
d(v, vc)d(v, vo) ≤ √

cost(C,Z)cost(C∗, Z∗),

(2) d(v, π(vo)) ≤ d(v, vc) + 2d(v, vo), ∀v ∈ U \ (Z ∪ Z∗).

Note that each a ∈ C appears at most twice and each b ∈ C∗ appears exactly
once in P. So, summing the inequality (2) for all swaps and using Lemma 3(2),
we have

∑

(a,b̂)∈P

(
cost(a, b̂) − cost(C,Z)

)

≤
∑

(a,b̂)∈P

⎛

⎝4
∑

v∈N∗
b

d(v, vo)2 −
∑

v∈N∗
b \Z

d(v, vc)2

+
∑

v∈Na\(N∗
b ∪Z∗)

(
d(v, π(vo))2 − d(v, vc)2

)
⎞

⎠

≤4
∑

v∈U\Z∗
d(v, vo)2 −

∑

v∈U\Z

d(v, vc)2 +
∑

Z∗\Z

d(v, vc)2

+ 2
∑

v∈U\(Z∪Z∗)

(
4d(v, vo)2 + 4d(v, vc)d(v, vo)

)
.

≤12cost(C∗, Z∗) − cost(C,Z) +
∑

Z∗\Z

d(v, vc)2 + 8
∑

v∈U\(Z∪Z∗)

d(v, vc)d(v, vo).

(3)
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From Proposition 1(1), we know
ε

k
cost(C,Z) ≥ cost(C,Z) − cost(C,Z ∪ outlier(C,Z)) =

∑

v∈outlier(C,Z)

d(v, vc)2.

(4)
Recalling the definition of outlier(C,Z), this set contains z most expensive points
out of Z as additional outliers. Thus, we have

∑

Z∗\Z

d(v, vc)2 ≤ ε

k
cost(C,Z), (5)

since the inequality (4) and |Z∗ \ Z| ≤ z.
Combining the inequalities (3), (5), Lemma 3(1), and Proposition 1(2), we

have

− ε · cost(C,Z)

≤
∑

(a,b̂)∈P

(
cost(a, b̂) − cost(C,Z)

)

≤ 12cost(C∗, Z∗) − (1 − ε

k
)cost(C,Z) + 8

√
cost(C,Z)cost(C∗Z∗) (6)

By factorization of (6), we have

0 ≤
(√

12cost(C∗, Z∗) + β
√

cost(C,Z)
)(√

12cost(C∗, Z∗) − γ
√

cost(C,Z)
)

(7)
where

β =
2
√

3
3

+

√
7
3

− ε

k
− ε, γ = −2

√
3

3
+

√
7
3

− ε

k
− ε.

From the inequality (7) and
√

12cost(C∗, Z∗) + β
√

cost(C,Z) ≥ 0, we have
√

12cost(C∗, Z∗) − γ
√

cost(C,Z) ≥ 0.

After a simple calculation, we get

cost(C,Z) ≤ 36
11 − 3(ε/k + ε) − 4

√
7 − 3(ε/k + ε)

· cost(C∗, Z∗).

Since 36/(11 − 3(ε/k + ε) − 4
√

7 − 3(ε/k + ε)) → 4(11 + 4
√

7) as ε → 0, we
get a (4(11 + 4

√
7) + ε′)-approximation where ε′ is a sufficiently small positive

number.
Finally, we estimate the upper bound of the number of outliers. In each

iteration of LS-Single-Swap-Outlier, it puts at most 2z additional outliers into
Z. From the proof of Theorem 1, we know that the number of iterations is
O(k

ε log(nδ)). So, the number of outliers is bounded by O( zk
ε log(nδ)).

Through above analysis, we obtain the following theorem.
Theorem 2. For the spherical k-means problem with outliers, LS-Single-Swap-
Outlier is a bi-criteria (4(11+4

√
7)+ε,O(k

ε log(nδ)))-approximation algorithm,
where 4(11 + 4

√
7) + ε is the approximation ratio and O(k

ε log(nδ)) is the factor
violating the outlier constraint.
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3 Conclusion

In this paper, we study the spherical k-means problem with outliers. Based on the
local search technique with single-swap, we present a bi-criteria approximation
algorithm that yields an approximation ratio 4(11 + 4

√
7) + ε and may violate

the outlier constraint by a factor O(k
ε log(nδ)). In the future, it has two possible

improvement of the algorithm. One is extending the single-swap to multi-swap.
Another is to reduce the number of outliers.
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Abstract. Fuzzy C-means problem has a broad application prospect
as a branch of clustering problem. This paper deeply explores the fuzzy
C-means bi-criteria problem in two different algorithms and extends the
previous known O(k2ln k) and O(kln k) performance guarantee. It is
shown that for any constant β ≥ 1, selecting βk cluster centers can
achieve O(k2) and O(k) approximation. Preliminary numerical experi-
ments are proposed to support the theoretical results of the paper, in
which we run these algorithms on real data sets with different parameter
values.

Keywords: Fuzzy C-means problem · Bi-criteria analysis · Fuzzy
C-means algorithm · Seeding algorithm

1 Introduction

Partitional cluster analysis is defined as the problem of dividing a group of
objects into clusters with similar characteristics [15]. As a class of classical prob-
lems, partitional cluster analysis originates from taxonomy and is widely used in
data mining, machine learning, anomaly detection and other fields. At present,
there are many different clustering problems [6,18,19]. According to whether
each observation point definitely belongs to one cluster, these problems can be
divided into hard and fuzzy clustering problems [4,7,20].

The k-means problem is one of the most well-known hard clustering problems.
Given an input observation set X and a positive integer k, the task is to select
k cluster centers, and the data samples are arranged to k clusters such that the
sum of distances between any points and their corresponding cluster centers is
minimized.

The Lloyd’s algorithm [10] is widely applied to the k-means problem because
of its advantage of simplicity and rapidity. Arthur and Vassilvitskii propose a
k-means++ algorithm [3] based on the Lloyd’s algorithm and prove that this
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algorithm is O(ln k) approximation with optimum k-clustering. This seeding
algorithm, which is also known as D2-weighting, selects k centers according to
the contribution of observation points to the potential function.

Many researchers also study the bi-criteria approximation for k-means prob-
lem [1,2,8,11]. In many cases, the clustering number k is often unknown or even
difficult to predict. Thus the bi-criteria analysis is introduced and we study the
solution of the problem with relaxation the restriction of the number of candi-
dates [1,5]. In particular, Wei studies the Dl-sampling (l ≥ 2) algorithm that
k-means++ algorithm belongs to [17], which shows that a bi-criteria approxima-
tion can be maintained. It is also shown that for any k, at most 20% oversampling
is required to guarantee a better approximation.

Due to the property of strict clustering of each observation point, it is hard
to adjust the result of clustering. For example, a famous butterfly problem shows
that the uncertainty of which cluster the point belongs to [13]. Fuzzy C-means
(FCM) problem is one of the most popular fuzzy clustering problems, which
is proposed based on the fuzzy set theory [21]. In the fuzzy C-means problem,
the degree of membership between each point and some clusters determines the
affiliation strength of sample points, so as to achieve the purpose of automatic
classification. Fuzzy C-means problem can also be regarded as a generalization
of the k-means problem with membership degree of 0 or 1.

Bezdek [16] proposes the standard fuzzy C-means algorithm. Compared with
k-means++ algorithm, the fuzzifier parameter m and the nonzero membership
degree μij are introduced [22]. Currently, there are some research efforts on
the selection of parameter and the general used value is m = 2 in applications
[12,14]. Stetco [15] proposes the fuzzy C-means++ (FCM++) algorithm to ame-
liorate the FCM algorithm, in which the seeding strategy of k-means++ is used
to improve the effectiveness of the standard algorithm. Then, the theoretical
analysis and performance guarantee O(k2ln k) are provided by Liu et al. [9]. In
addition, they also propose a O(kln k)-approximation seeding algorithm (NFCM)
in which the centers are chosen by a probability distribution μ2-weighting based
on the contribution to the potential function of the fuzzy C-means problem.

In this paper, we consider the bi-criteria setting of the fuzzy C-means prob-
lem by invoking two improved FCM++ [15] and NFCM [9] algorithms. We select
βk centers (β ≥ 1, for any constant), and approximate the optimum k-clustering,
which is applicable to all data sets. The contribution of this paper is that for any
constant β ≥ 1, selecting βk cluster centers can achieve O(k2) and O(k) approx-
imation by the two algorithms. Meanwhile, it can be concluded that in order to
obtain a better approximation than O(k2ln k) and O(kln k) with high proba-
bility, we only need to sample more than 20 percentage experimentally. We also
propose some numerical experiments as a support on these theoretical results, in
which we run these algorithms on real data sets with different parameter values.

The structure of the paper is as follows. In Sect. 2, we present the fuzzy C-
means problem with its classical algorithm and two seeding algorithms, FCM++
and NFCM. Some existing lemmas related to this paper is also introduced. In
Sect. 3, we prove the performance guarantee of the expected potential func-
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tion. Numerical experiments about the bi-criteria approximation are proposed
in Sect. 4.

2 Preliminaries

2.1 Problem Description

Given a positive integer k and a set of observation points X = {x1, . . . , xn}, the
fuzzy C-means problem is to find a clustering set C = {c1, . . . , ck} that minimize
the potential function

φm(X,C) =
n∑

i=1

k∑

j=1

μm
ij ||xi − cj ||2, m ≥ 1,

where m denotes the fuzzifier parameter and μij ∈ [0, 1](i = 1, 2, . . . , n; j =
1, 2, . . . , k) denotes the degree of membership between the i-th point and j-th
center, satisfying

∑k
j=1 μij = 1 for i = 1, 2, . . . , n. We can also limit the potential

function to an arbitrary subset A of X,

φm(A,C) =
∑

xi∈A

k∑

j=1

μm
ij ||xi − cj ||2, m ≥ 1.

The k-means problem can be seen as the special case of the fuzzy C-means
problem as m = 1. When m is close to 1, the solution of the fuzzy C-means
algorithm is similar to the one of k-means. On the contrary, when m is large,
fuzziness is also large and clusters are blurred. Typical values for the parameters
m are between 1 and 2. In addition, we take m = 2 in the following discussion. By
deriving the first order optimality condition of φ, it is easy to obtain that μij =

1
∑k

l=1

( ‖xi−cj‖
‖xi−cl‖

)2 , i = 1, 2, . . . , n; j = 1, 2, . . . , k for a given set C = {c1, . . . , ck},

we can then rewrite the potential function as

φ(X,C) := φ2(X,C) =
n∑

i=1

1
∑k

j=1
1

‖xi−cj‖2

.

Throughout this paper, we denote φ∗ as the optimum value of the potential
function corresponding to the optimum clustering C∗ with k cluster centers.
Meanwhile, each cluster is implicitly defined as a subset of X which is closer
to this center than others. The aim of this paper is to select βk cluster centers
where β ≥ 1 for any constant, and approximate the optimum k-clustering in
expectation.

2.2 Algorithms and Main Results

In this part, we present the standard fuzzy C-means algorithm and two kinds of
seeding algorithms. In the fuzzy C-means algorithm, as Algorithm 1 in the fol-
lowing, we randomly determine k initial centers, and compute the initial degrees
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of membership of each observation point xi to clustering cj . The centers and
degrees of membership are then updated alternatively until the process is sta-
ble.

The seeding strategy to find a good initial center set is introduced to improve
the performance of the above algorithm. The first seeding algorithm is fuzzy C-
means++ (FCM++) algorithm, which is the seeding procedure in k-means++
algorithm. It samples the initial centers with probabilities proportional to the
current k-means problem potential function [17]. The second seeding algorithm
NFCM innovates in the probability distribution of selecting the initial centers by
adding the membership degree as an indicator. In the other word, it proposes an
effective probability which depends on the contribution of the potential function
in the fuzzy C-means problem.

Hereafter we call the probability distribution used in Algorithm1 (FCM++)
as D2-weighting, and the one in Algorithm2 (NFCM) as μ2-weighting. When
we focus on the bi-criteria analysis, the number of centers in these algorithm
becomes βk accordingly. We denote Φ(X,C) =

∑
xi∈X mincj∈C ‖ xi − cj ‖2 as

the potential function of the k-means problem for convenience.

Algorithm 1. Fuzzy C-means algorithm for fuzzy C-means problem
Input: A set of observation points X = {x1, . . . , xn}, the clusters number k, the initial
centers C = {c1, . . . , ck} and the initial null matrix of degree of membership μn×k.

1: for i from 1 to n and j from 1 to k do
2: Update the degree of membership μij := 1

∑k
l=1

( ‖xi−cj‖
‖xi−cl‖

)2 ;

3: end for
4: for j from 1 to k do

5: Update the centers cj :=
∑n

i=1 μ2
ijxi

∑n
i=1 μ2

ij
;

6: end for
7: Repeat Steps 1 to 6 until φ changes less than 1e-5;

Output: the clustering set C and matrix of degree of membership μn×k.

Algorithm 2. Bi-criteria seeding procedure of k-means++ algorithm
Input: A set of observation points X = {x1, . . . , xn}, the clusters number k, a constant
β ≥ 1 and null clustering set C.

1: C ←− C ∪ {c1}, which is selected uniformly at random from X;
2: for i from 2 to βk do
3: Choose the i-th center ci ∈ X with probability Φ(ci,C)

Φ(X,C)
;

4: C ←− C ∪ {cj};
5: end for

Output: the clustering set C.
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Algorithm 3. Novel bi-criteria seeding algorithm for fuzzy C-means problem
Input: A set of observation points X = {x1, . . . , xn}, the clusters number k, a constant
β ≥ 1 and null clustering set C.

1: C ←− C ∪ {c1}, which is selected uniformly at random from X;
2: for i from 2 to βk do
3: Choose the i-th center ci ∈ X with probability φ(ci,C)

φ(X,C)
;

4: C ←− C ∪ {ci};
5: end for

Output: the clustering set C.

Theorem 1. Let φ be the potential value after selecting βk centers in Algo-
rithm2 or 3. And φ∗ denotes the optimum value with respect to the optimum
k-clustering.

(I) If the cluster centers are selected with D2-weighting by Algorithm2, then

E[φ]
φ∗ ≤ 16k2(1 + min{ ϕ(k − 2)

(β − 1)k + ϕ
,Hk−1}) − Θ(

1
n

);

(II) If the cluster centers are selected with μ2-weighting by Algorithm3, then

E[φ]
φ∗ ≤ 16k(1 + min{ ϕ(k − 2)

(β − 1)k + ϕ
,Hk−1}) − Θ(

1
n

).

Here, n and Hk denote the number of points in input observation set X and the
harmonic number, respectively. ϕ = 1+

√
5

2 ≈ 1.618 is the golden section ratio.

Corollary 1. With the same definitions as in Theorem 1, we can obtain

(I)
E[φ]
φ∗ ≤ 16k2(1 +

ϕ

β − 1
);

(II)
E[φ]
φ∗ ≤ 16k(1 +

ϕ

β − 1
).

By combining Theorem 1 with Corollary 1, we can confirm that there is an
approximation dependent on two input parameters k and β. Also note that, the
parentheses of the bound in Theorem 1 means that we reduce the series Hk−1

and the other term. Obviously, it improves the previous O(k2ln k) and O(kln k)
results. As k increases, we can simplify it even more.

2.3 Existing Lemmas Relating to FCM++ and NFCM

The first lemma shows why the performance guarantee of fuzzy C-means problem
is O(kln k).

Lemma 1. Assume A to be an arbitrary cluster, C = {c1, . . . , ct} to be a clus-
tering set. Then

Φ(A,C) ≤ tφ(A,C).
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The following lemmas in [9] give some results on the upper bound of the
potential function in expectation through selecting exactly one center from an
arbitrary optimum cluster.

Lemma 2 ([9]). Assume that A is an arbitrary optimum cluster, and C is the
clustering with only one center, which is selected uniformly at random from A.
Then

E[φ(A,C)] ≤ 4kφ∗(A).

Lemma 3 ([9]). Assume that A is an arbitrary optimum cluster, and C =
{c1, . . . , ct} is an arbitrary clustering. C ′ represents the resulting clustering after
we add a random center to C from A with D2-weighting (or μ2-weighting). Then

E[φ(A,C ′)] ≤ 16kφ∗(A).

3 Proof of Main Results

In this Section, we present our main results and demonstrate the theoretical
analysis.

In fact, no matter which algorithm is considered, the potential function will
not increase after initialization, so we only need to judge the performance guar-
antee after initialization.

We will show the most critical intermediate results below. Our analysis con-
sists of two parts. First of all, Lemma 4 shows that the change of the function
value when the number of added centers is smaller. Lemma 4 also appears as a
stronger result than the original lemma [9], reducing the coefficient from 1+Ht to
1+Ht−1. In the following content, we say that an optimum cluster A is uncovered
if no center is selected from A.

Lemma 4. Assume that C is an arbitrary clustering with corresponding poten-
tial φ, and u > 0 be the number of uncovered optimum clusters, Xu denotes the
set of points in these clusters. Also let Xv = X − Xu. Now we add t ≤ u cluster
centers to C. And C ′ be the resulting clustering with corresponding potential φ′.

(I) If the cluster centers are selected with D2-weighting, then

E[φ′ | φ] ≤ (1 + Ht)Φ(Xv, C) + (1 + Ht−1)16k2φ∗(Xu) +
u − t

u
Φ(Xu, C);

(II) If the cluster centers are selected with μ2-weighting, then

E[φ′ | φ] ≤ (1 + Ht)φ(Xv, C) + (1 + Ht−1)16kφ∗(Xu) +
u − t

u
φ(Xu, C).

Here, Ht denotes the harmonic number. Without loss of generality, assume
H−1 = −1,H0 = 0.

The following lemma is closer to the conditions of the bi-criteria analysis.
When more centers are selected, we can get inspiration from Lemma 5.
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Lemma 5. Assume that C is an arbitrary clustering with corresponding poten-
tial φ, and u > 0 be the number of uncovered optimum clusters, Xu denotes the
set of points in these clusters. Also let Xv = X − Xu. Now we add t ≥ u cluster
centers to C. And C ′ be the resulting clustering with corresponding potential φ′.

(I) If the cluster centers are selected with D2-weighting, then

E[φ′ | φ] ≤ ϕv(t, u)Φ(Xv, C) + ϕu(t, u)16k2φ∗(Xu);

(II) If the cluster centers are selected with μ2-weighting, then

E[φ′ | φ] ≤ ϕv(t, u)φ(Xv, C) + ϕu(t, u)16kφ∗(Xu).

Where ϕv(t, u) = 1 + ϕu
t−u+ϕ ; ϕu(t, u) =

{
1 + ϕ(u−1)

t−u+ϕ , u > 0
0, u = 0.

The main proof way is similar to Wei [17]. Here we present a simple sketch of
this proof by induction. And we substitute φ(Xv), φ(Xu) and �(Xu) for φ(Xv, C),
φ(Xu, C) and 16kφ∗(Xu) for convenience. First of all, it is easy to check that
the conclusion is true for (t, 0), t ≥ 0. As for t = u, t ≥ 1, it can be deduced from
the special case of Lemma 4.

Assume that the conclusion holds for (t, u) and (t, u + 1). We can complete
the proof as long as proving that it also holds for (t+1, u+1). This can be shown
by three intermediate results. Each of these outcomes is a known condition for
the next outcome.

The first result considers selecting centers from the covered clusters Xv or
uncovered clusters Xu. Then the E[φ′ | φ] is at most:

min
{

ϕv(t, u)φ(Xu) + ϕv(t, u + 1)φ(Xv)
φ(Xu) + φ(Xv)

φ(Xv)

+
ϕv(t, u)φ(Xu) + ϕu(t, u + 1)φ(Xv)

φ(Xu) + φ(Xv)
�(Xu), φ(Xu) + φ(Xv)

}
.

As noted above, the expected potential function is determined not only by �(Xu),
φ(Xv), but also by the bounds of φ(Xu). Therefore, we regard the above formula
as a monotone function of the variable φ(Xu), and eliminate this influence by
taking the derivative and the extremum with respect to φ(Xu). Then the E[φ′ | φ]
is at most:

1
2
ϕv(t, u)[φ(Xv)+�(Xu)]+

1
2

max{ϕv(t, u)[φ(Xv)+�(Xu)],
√

Δ},

where

Δ =[ϕ2
v(t, u) − 4ϕv(t, u) + 4ϕv(t, u + 1)]φ2(Xv)

+ 2[ϕ2
v(t, u) − 2ϕv(t, u) + 2ϕu(t, u + 1)]φ(Xv)�(Xu) + ϕ2

v(t, u)�2(Xu).
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However, subsequently, it turns out that this result is nonlinear. So our next goal
is to bound the quadratic function Δ′ by the square [aφ(Xv) + bφ(Xu)]2. Then
the E[φ′ | φ] is at most:

1
2
[ϕv(t, u)+

√
ϕ2

v(t, u)+4max{ϕv(t, u+1)−ϕv(t, u), 0}]φ(Xv)+ϕv(t, u)�(Xu).

Finally, directly replacing ϕv(t, u) and ϕu(t, u) in Lemma 5, and we can obtain:
⎧
⎨

⎩
ϕv(t + 1, u + 1) ≥ 1

2
[ϕv(t, u) +

√
ϕ2

v(t, u) + 4max{ϕv(t, u + 1) − ϕv(t, u), 0}],

ϕu(t + 1, u + 1) ≥ ϕv(t, u).

So far, the inductive process of Lemma 5 is proved successfully.

Proof of Theorem 1
We just prove the second result, and the first can be obtained in the same

way. Let A denote the optimum cluster from which we select the first center, n
denote the number of points in X and nA denote the number of points in the
optimum cluster A. By applying Lemma 2 and Lemma 5 (II) with u = k − 1,
t = βk − 1, Xv = A, Xu = X − A, we have

E[φ
′ |φ] ≤ ϕv(βk − 1, k − 1)φ(A) + ϕu(βk − 1, k − 1)16kφ∗(X − A)

≤ 4kϕv(βk − 1, k − 1)φ∗(A) + ϕu(βk − 1, k − 1)16kφ∗(X − A).

Further, we can still obtain

E[φ
′
] ≤

∑

A⊆X

nA

n
E[φ

′ |φ]

≤
∑

A⊆X

nA

n
4kϕv(βk − 1, k − 1)φ∗(A)

+
∑

A⊆X

nA

n
16kϕu(βk − 1, k − 1)φ∗(X − A)

≤ 16kϕu(βk − 1, k − 1)φ∗ − C
∑

A⊆X

nA

n
φ∗(A)

≤ 16kϕu(βk − 1, k − 1)φ∗ − 2C

n
φ∗.

The last inequality can be obtained by

∑

A⊆X

nA

n
φ∗(A) ≥ 2

n
φ∗.

By replacing the φv(t, u) and φu(t, u) in Lemma 5, we can obtain

E[φ
′
]

φ∗ ≤ 16k(1 +
ϕ(k − 2)

(β − 1)k + ϕ
) − 2C

n
,
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where C = 16kϕu(βk − 1, k − 1) − 4kϕv(βk − 1, k − 1) ≥ 0. By combining with
the known bound 16k(1 + Hk−1) [9] and minimizing the two terms, we now get
the desired bound,

E[φ
′
]

φ∗ ≤ 16k(1 + min{ ϕ(k − 2)
(β − 1)k + ϕ

,Hk−1}) − Θ(
1
n

).

Proof of Corollary 1
As k increases, the first term in parentheses approaches ϕ

β−1 , and the second
term approaches infinity. At this point, by taking the minimum value, we can
get the result. And notice that the 1

n term can be ignored when n is big enough.

4 Numerical Experiment

In this section we show the numerical experiments and evaluate the feasibility of
bi-criteria approximation, as well as consider the impact of β. The experiments
are implemented in Matlab 2015b.

A common data set Spambase from UC Irvine Machine Learning Repository
is used in this section for numerical experiments. The complete Spambase con-
tains information from 4,601 e-mails, each marked as spam or non-spam. Each
data also has 57 features, representing the length and number of letters, the
frequency of certain words, etc. The last feature indicates whether the e-mail is
considered spam and is excluded from the numerical experiment.

Although we have theoretically proposed the approximation guarantee of the
bi-criteria in the previous content, it is difficult to design the numerical exper-
iment from this perspective. However, we would like to notice that both the
original fuzzy C-means problem and the bi-criteria exploration are based on
the optimum k-clustering. We also know that the FCM++ and NFCM algo-
rithms can guarantee O(k2ln k) and O(kln k) approximation ratio respectively,
in expectation. Therefore, there is a more measurable way to study this problem.
The way is that we compare the potential function values when k centers are
selected and βk centers are selected by the FCM++ (or NFCM) algorithm.

First we give some new notations. Fβ,k denotes the potential target value of
βk centers obtained by applying the FCM++ algorithm, while Nβ,k is that of
NFCM algorithm. According the theoretical analysis in this paper, it is expected
that rF,β,k = Fβ,k

F1,k
and rN,β,k = Nβ,k

N1,k
are proportional with a ratio O( 1

ln k ). For
each algorithm, we record and analyze the experimental results by changing the
values of parameters k and β, in which k is increased from 10 to 150 by 10 as
steps, and β takes 1.2, 1.5, 2, 2.2.

Figure 1 and Fig. 2 separately plot the variation tendency of rF,β,K and
rN,β,K with respect to the two parameters k, β. First it is natural to see that for
fixed k, both rF,β,k and rN,β,k go smaller by increasing β, which means that the
potential function will decrease by increasing the number of centers. It can also
be seen from the figures that for the case β = 2 and 2.2 the rF,β,k and rN,β,k

slightly decrease with the increase of k, which can be seen as a partial evidence
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Fig. 1. Numerical results of rF,β,k =
Fβ,k

F1,k
using FCM++ Algorithm with Spambase

data set.

Fig. 2. Numerical results of rN,β,k =
Nβ,k

N1,k
, using NFCM Algorithm with Spambase

data set.



A Bi-criteria Analysis for Fuzzy C-means Problem 159

that the two ratios are of O( 1
ln k ). Therefore, we illustrate the feature of β from

the perspective of analysis and numerical experiment.

5 Conclusion and Future Work

This paper shows that applying FCM++ and NFCM algorithms to optimize
optimum k-clustering will produce a bi-criteria approximation ratio in expecta-
tion. The result further generalizes the previous conclusion [9,15].

It is worth studying whether we can improve the approximate ratio by reduc-
ing the coefficient in Lemma 1 to 3. We are also working on extending the results
with arbitrary fuzzifier parameter m. To sum up, the content of the article needs
to be further improved.
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Abstract. TheMax k-Uncut problem arose from the study of homophily
of large-scale networks. Given an n-vertex undirected graph G = (V, E)
with nonnegative weights defined on edges, and a positive integer k,
the Max k-Uncut problem asks to find a partition {V1, V2, · · · , Vk} of
V such that the total weight of edges that are not cut is maximized.
Max k-Uncut can also be viewed as a clustering problem with the measure
being the total weight of uncut edges in the solution. This problem is
the complement of the classic Min k-Cut problem, and was proved to
have surprisingly rich connection to the Densest k-Subgraph problem. In
this paper, we give approximation algorithms for Max k-Uncut using a
non-uniform approach combining LP-rounding and the greedy strategy.
With a limited violation of the constraint k, we present a good expected
approximation ratio 1

2
(1 + (n−k

n
)2) for Max k-Uncut.

Keywords: Max k-Uncut · Densest k-Subgraph · Approximation
algorithm · Combinatorial optimization

1 Introduction

The Max k-Uncut problem was recently proposed by Zhang et al. [18] when the
authors [18] studied the homophily law [7, Chapter 4] of large scale networks.
Being one of the most important basic laws governing the structures of large
scale networks, the homophily law states that edges in a network tend to connect
vertices with the same or similar attributes, just as an old proverb says, “birds
of a feather flock together”.

To simplify the situation, we consider the case that there is one attribute
for vertices in a network. For this attribute, we may assume that the number of
its values, denoted by k, is known. For example, for a paper-citation network in
computer science, it can be assumed known that how many research directions
there are in the network. So, a natural question is, given a network and an integer
k, how to partition the network into k parts such that the number of uncut
c© Springer Nature Switzerland AG 2020
Z. Zhang et al. (Eds.): AAIM 2020, LNCS 12290, pp. 161–172, 2020.
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edges is maximized? This is precisely the Max k-Uncut problem. Intuitively,
the Max k-Uncut problem asks for a flat clustering of a network such that the
resulting partition reflects the homophily property to the most degree, where
the measure is the number of uncut edges.

Viewing attribute values as colors, we say that an edge in a network is happy
if its two endpoints have the same color. That is, an edge is happy if and only
if it is uncut. The Max k-Uncut problem can also be equivalently stated as a
coloring problem: Given a graph and a color set {1, 2, . . . , k}, how to color the
vertices in k colors so that the number of happy edges in the resulting graph is
maximized?

We define the Max k-Uncut problem in a more generalized weighted case.

Definition 1. The Max k-Uncut Problem [18].
(Instance) We are given an undirected graph G = (V,E) with nonnegative

edge weights {we | e ∈ E}, and a positive integer k.
(Goal) The problem asks to find a partition {V1, V2, · · · , Vk} of V such that

the total weight of happy edges is maximized.

In the definition of Max k-Uncut, the k-partition {V1, V2, · · · , Vk} can also
be called a k-coloring, which means a coloring scheme using exactly k colors,
in which Vi is the set of vertices whose color is i. We will interchangeably use
k-coloring and k-partition. Note that the requirement of exactly k colors is nec-
essary, otherwise (if we allow at most k colors) we can color all vertices in one
color and all edges are happy.

Some common notations and terms are listed here. Given a graph G = (V,E),
let n be the number of its vertices. Given an optimization problem, let OPT
denote the value of its optimal solution. For simplicity, let MkU be the abbrevia-
tion of Max k-Uncut. Given k being an positive integer, the notation [k] denotes
the set {1, 2, · · · , k}.

The MkU problem is NP-hard since it is the complement of the classic
Min k-Cut problem [8]. Whereas Min k-Cut has been proposed for a long time (see
Sect. 1.2), MkU is a new problem. There are two known approximation results
for MkU. Zhang et al. [18] gave a simple randomized greedy algorithm for MkU
with approximation ratio (1 − k

n )2. This ratio is good when k is not too large.
For example, if k ≤ n/2, then (1− k

n )2 ≥ 1/4. However, when k approaches n−1,
(1 − k

n )2 becomes worse and worse, and equals to 1
n2 finally. This observation

suggests that the most difficult case of approximating Max k-Uncut should be
the case when k is close to n, say, k = n−O(log n). Zhang et al. [18] also showed
that for any constant ε > 0, MkU can be approximated within Ω(1/n

1
4+ε) by

reducing it to the Densest k-Subgraph problem (DkS for short) [3].

1.1 Our Results

In this paper, we give a bicriteria approximation algorithms for MkU. The MkU
algorithm partitions the vertices of the input graph into at least (1 − 1

e )k ≥
0.6321k parts in expectation, and obtains expected total weight of happy edges
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at least 1
2 (1 + α)OPTMkU, where α = (1 − k

n )2 and OPTMkU is the value of an
optimal solution to MkU. Note that the approximation ratio 1

2 (1+α) is always at
least 1/2. It is much better in contrast with the previously known ratios (1− k

n )2

and Ω(1/n
1
4+ε) [18]. So, we obtain a good ratio at least one half for MkU, at the

cost of cutting down the part number k by a fraction of at most 0.3679.
Our method to approximate MkU is a non-uniform approach combining LP-

rounding and greedy strategy. To round the fractional optimal solution to a
natural LP-relaxation for MkU, we use the Kleinberg-Tardos rounding (KT-
rounding) method [10]. The KT-rounding method has been successfully applied
in approximating many combinatorial optimization problems, including the Met-
ric Labeling problem [10], the Multiway Uncut problem [11], the Maximum Happy
Edges problem, and the Maximum Happy Vertices problem [19]. Our novelty is
that the KT-rounding method is applied to an LP-relaxation with a color num-
ber constraint (see (2) of (LP-U)). To the best of our knowledge, this is the first
time that KT-rounding is applied in such a situation.

The approximation ratio of the solution produced by KT-rounding is 1/2.
This ratio, is further improved to 1

2 (1 + α) by combining KT-rounding with a
randomized greedy strategy for MkU (whose ratio is α). In general, the ratio
1
2 (1 + α) is better both than 1/2 and α. When k is near to 1, the ratio 1

2 (1 + α)
is much better than 1/2. When k is near to n, the ratio 1

2 (1 + α) is much better
than α.

It was known that if MkU can be approximated within ρ, then DkS (recall
that DkS denotes Densest k-Subgraph) can be approximated within ρ/2 [18].
Building upon the approximation results for MkU introduced above, we design
an approximation algorithm for DkS which finds in expected polynomial time
a subgraph such that its total edge weight is at least 1

4 (1 + (k−1
n )2)OPTDkS

in expectation, where OPTDkS is the optimum of DkS, and that it contains in
expectation at most 1

e (n−k +1) extra vertices beyond k. We must say that this
is a weak result for DkS. However, it has its own meaning for which the reasons
are twofold.

First, note that 1
4 (1 + (k−1

n )2) is a good ratio since it is always at least 1/4.
One would point out that this is obtained at the cost of using too many extra
vertices. We should say that when k ≥ αn for some constant α, the number
of extra vertices in our result is only ≤ 1

e ( 1
α − 1)k. When α ≥ 1

e+1 ≈ 0.269,
we have 1

e ( 1
α − 1) ≤ 1. Note that the case when k ≥ αn for DkS deserves to

be studied. For example, Ye and Zhang [16] studied DkS when k = 1
2n. They

obtained the approximation ratio 0.586 for DkS using the semidefinite program-
ming technique. Han et al. [9] studied DkS for various values of α. Moreover,
note that the number of extra vertices (i.e., 1

e (n−k +1)) in our result is a worst
case upper bound. The real number in the solution may be small and far away
from this upper bound. At last, note that the upper bound becomes worse when
k is near to one. It is known that the case when k is near to one is the most
difficult case of DkS.

Second, to the best of our knowledge, our method is a new approximation
approach for DkS. We hope that this new approach may develop further and
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open a door in the way tackling DkS, as DkS has been a notorious difficult
problem in approximation algorithms for a long time.

Our algorithm for DkS (Algorithm B in Sect. 3) may find applications in the
situations that there is no rigorous requirement on the subgraph vertex number,
e.g., finding a community whose size is around some number in a social network.
On the other hand, Algorithm B actually finds a dense core with guaranteed
performance from an input graph. This can be used as a promising starting
point to deal with DkS. Based on the dense core found by Algorithm B, one can
continue to design heuristics in practice for DkS, or to design further improved
algorithms.

1.2 Related Work

The MkU problem has rich connection to existing problems. Max k-Uncut is
just the complement of the classic Min k-Cut problem. The Min k-Cut problem
asks for a k-partition such that the total weight of cut edges is minimized. The
Min k-Cut problem is strongly NP-hard [8], and its current best approximation
ratio is 2 [15]. Manurangsi [14] proved this is the optimal one under the Small
Set Expansion hypothesis. Downey et al. [6] proved that Min k-Cut is W[1]-hard
when k is used as the parameter. When k is a constant, the Min k-Cut problem
can be optimally solved in polynomial time [8]. Obviously, Max k-Uncut with
constant k is also polynomial time solvable.

In literature, the “uncut” problems have also been studied extensively.
Besides Max k-Uncut, other examples include Min Uncut [1], Multiway Uncut
[11,19], and the complement of Min Bisection [16].

We would like to indicate that the Maximum Happy Edges problem (MHE for
short) [17], which is also obtained from the study of homophily of networks, is
closely related to MkU. MHE can be approximated within 1

2 +
√
2
4 f(k) ≥ 0.8535

for some function f(k) ≥ 1 [19]. As a new coloring problem, MHE (as well as
Maximum Happy Vertices, its companion problem) attracts much attention of
researchers after it was proposed (see, e.g., [2,4,12]).

A (slightly) surprising result proved in [18] states that MkU and DkS are
actually equivalent in approximability. More precisely, if MkU can be approxi-
mated within a factor of ρ, then DkS can be approximated within ρ/2. Moreover,
the converse direction is also true: If DkS can be approximated within a factor
of ρ, then MkU can be approximated within ρ/2. The relation between DkS and
MkU suggests that not like what it looks at the first glimpse, MkU is actually a
difficult problem.

2 Approximating Max k-Uncut

The algorithm for MkU is based on a non-uniform approach consisting of LP-
rounding and a greedy strategy. We first show the LP-rounding algorithm in
Sect. 2.1, then show the final non-uniform approach for MkU in Sect. 2.2.
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2.1 LP-rounding

The following linear program (LP-U) is an LP-relaxation for the MkU problem.
To see this, let us consider the corresponding integer program of (LP-U), in
which every variable takes value in {0, 1}. Variable yi

v indicates whether vertex
v is colored in i, xi

e indicates whether edge e is happy by color i (i.e., its two
endpoints are both colored in i), and xe indicates whether edge e is happy.

max
∑

e∈E

wexe (LP-U)

s.t.
k∑

i=1

yi
v = 1, ∀v (1)

∑

v∈V

yi
v ≥ 1, ∀i (2)

xi
e = min{yi

u, yi
v}, ∀i,∀e = (u, v) (3)

xe =
k∑

i=1

xi
e, ∀e (4)

xe, x
i
e, y

i
v ≥ 0, ∀i,∀v,∀e

Constraint (1) says that each vertex has exactly one color. Constraint (2)
says that every color must be used by at least one vertex, guaranteeing that the
solution is a k-coloring. Constraint (3) says that edge e is happy by color i only
when both its two endpoints are colored in i. Note that constraint (3) is linear
since it can be replaced by two constraints xi

e ≤ yi
u and xi

e ≤ yi
v. Furthermore,

by constraint (1), it is impossible that an edge is simultaneously satisfied by two
different colors. Finally, the objective function is to maximize the total weight
of happy edges. Therefore, the integer version of (LP-U) formulates the MkU
problem.

A Straightforward Rounding Strategy. Let (x, y) be an optimal fractional
solution to (LP-U). It can be easily seen from constraint (1) that {yi

v} just con-
stitutes a probability distribution for vertex v. Thus, a straightforward strategy
to obtain an integral solution is to color vertex v in i with probability yi

v. How-
ever, the expected value of the resulting solution can be as bad as 1/k times
OPTf (LP-U), where OPTf (LP-U) denotes the fractional optimum of (LP-U).

Therefore, instead of using the straightforward randomized rounding app-
roach described above, we use the Kleinberg-Tardos rounding technique [10] to
round a fractional optimal solution to (LP-U). The algorithm is shown as Algo-
rithm R.

Let us call an iteration of the while loop of Algorithm R a round. Due to
space limitation, some lemmas are given in the following without proofs. The
proofs will be given in the full version.

Lemma 1. Fix a round of Algorithm R. The probability that a vertex v is colored
in this round is 1/k.
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Algorithm 2.1 (Algorithm R for MkU)
1 Solve (LP-U) to obtain an optimal solution (x, y).
2 while there exists some uncolored vertex do
3 Pick a color i ∈ [k] uniformly at random.
4 Pick a parameter ρ ∈ [0, 1] uniformly at random.
5 For each uncolored vertex v, if yi

v ≥ ρ, then color v in i.
6 end while

Lemma 2. Let v be a vertex and i be a color. In Algorithm R, the probability
that vertex v is colored in i is yi

v.

Lemma 3. The probability that there exists a vertex which is colored in color i
is at least 1 − 1

e .

Proof. By Lemma 2, the probability that vertex v is not colored in color i is
(1 − yi

v). By Algorithm R, the events that vertex v1 is colored in i, vertex v2 is
colored in i, ..., and vertex vn is colored in i are mutually independent. Therefore,
the probability that there exists a vertex which is colored in color i is

1 −
∏

v

(
1 − yi

v

)
= 1 − e

∑
v ln(1−yi

v) ≥ 1 − e− ∑
v yi

v ≥
(2)

1 − 1
e
,

where
∑

v ln
(
1 − yi

v

) ≤ −∑
v yi

v since ln x ≤ x − 1 when x ∈ [0, 1].

Lemma 4. In expectation, the solution produced by Algorithm R uses at least
(1 − 1

e )k colors.

Proof. Let i be a color. Define random variable Xi as follows.

Xi =

{
1, there exists a vertex which is colored in color i.

0, otherwise.

Then the random variable X = X1 +X2 + · · ·+Xk is the number of colors used
in the final solution found by Algorithm R. By Lemma 3, for variable X we have
E[X] =

∑
i E[Xi] ≥ (1 − 1

e )k.

Lemma 4 indicates that Algorithm R may produce an infeasible solution.
However, we can guarantee that the expected number of parts of the partition
obtained by Algorithm R is at least (1− 1

e )k. Note that the same thing happens
to the straightforward randomized rounding strategy given after (LP-U).

Next, we will analyze the approximation ratio of the solution produced by
Algorithm R.

Lemma 5. Let e = (u, v) be an edge. Suppose that u and v are not colored
before the current round. Then, the probability that in this round both u and v
are colored (hence in the same color) is 1

kxe.
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Lemma 6. Let e = (u, v) be an edge. Suppose that u and v are not colored before
the current round. Then, the probability that in this round u or v are colored is
1
k (2 − xe).

Lemma 7. The probability that an edge e is happy in Algorithm R is at least
xe

2−xe
.

Proof. Let e = (u, v) be the edge. By the coloring strategy of Algorithm R, the
probability that edge e is happy is the sum of (i) the probability that u and
v are colored simultaneously in some one round and (ii) the probability that u
and v are colored in the same color in two different rounds. We omit the latter
probability. The former probability is

∞∑

r=1

Pr[both u and v are not colored before the r-th round] ·

Pr[u and v are colored in the r-th round,
conditioned on that u and v are not colored].

By Lemma 5 and Lemma 6, this probability is equal to
∑∞

r=1

(
1 − 2−xe

k

)r−1 ·
1
kxe = xe

2−xe
.

So far, we actually obtain the following result.

Theorem 1. Algorithm R is a randomized (12 , 1 − 1
e )-approximation algorithm

for Max k-Uncut. That is, the algorithm finds a partition of the vertices of graph
G in expected polynomial time, such that the expected total weight of happy edges
produced by the partition is at least 1

2OPTMkU, and that the partition contains
at least (1 − 1

e )k parts in expectation.

Proof. By Lemma 7, the expected solution value of Algorithm R is at least∑
e we

xe

2−xe
≥ 1

2

∑
e wexe. By Lemma 4, the solution output by Algorithm R

using at least (1− 1
e )k colors in expectation. Finally, it is not hard to see that the

expected running time of Algorithm R is polynomial, concluding the theorem.

In the following, we use a non-uniform approach combining Algorithm R and
a greedy algorithm to further improve the approximation ratio of MkU.

2.2 A Non-uniform Approach

A Greedy Algorithm. Intuitively, if we can make a subgraph as large as
possible, then we may get a large weight of happy edges in this subgraph. So, a
simple but clever greedy strategy is to pick k − 1 vertices as singleton sets, and
to put all the remaining vertices in a separate set, obtaining a subgraph with
the largest possible size (number of vertices). This idea leads to the following
greedy Algorithm G for MkU, which was given in [18].

Theorem 2 ([18]). The expected approximation ratio of Algorithm G is(
1 − k

n

)2
.
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Algorithm 2.2 (Algorithm G for MkU [18])
1 Pick randomly k − 1 vertices from V , and color them respectively in colors 1 to

k − 1.
2 Color all the remaining vertices in color k.

Let α =
(
1 − k

n

)2
be the (expected) approximation ratio of Algorithm G.

A Non-uniform Approach. The following Algorithm A is a non-uniform app-
roach dealing with MkU. The algorithm just combines Algorithms R and G with
appropriate probabilities. In the algorithm, λ is a parameter which will be fixed
in the subsequent analysis (see Theorem 3).

Algorithm 2.3 (Algorithm A for MkU)
1 With probability λ, run Algorithm R; with probability 1 − λ, run Algorithm G.
2 return the solution found by either R or G.

Theorem 3. In expected polynomial time, Algorithm A finds a partition of the
vertices of graph G, such that the expected total weight of happy edges produced
by the partition is at least 1

2 (1 + α)OPTMkU, where α =
(
1 − k

n

)2
, and that the

partition contains at least (1 − 1
e )k parts in expectation.

Proof. Let random variables WA, WR, and WG be the total weights of the happy
edges found by Algorithms A, R, and G, respectively. Then we have

E[WA] = (1 − λ)E[WG] + λE[WR]

= (1 − λ)
∑

e

we Pr[e is happy in G] +

λ
∑

e

we Pr[e is happy in R]. (5)

By Theorem 2 and Lemma 7, we have

RHS of (5) ≥ (1 − λ)
∑

e

weα + λ
∑

e

we
xe

2 − xe

=
∑

e

[
(1 − λ)αwe +

λwexe

2 − xe

]

≥
∑

e : xe>0

[
(1 − λ)α

xe
+

λ

2 − xe

]
wexe. (6)

By calculus, function f(x) = (1−λ)α
x + λ

2−x is always ≥ 1
2 [λ + α − αλ +

2
√

αλ(1 − λ)] when x ranges from 0 to 1. So, we get

RHS of (6) ≥
∑

e : xe>0

1
2

[
λ + α − αλ + 2

√
αλ(1 − λ)

]
wexe. (7)
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Function g(λ) = λ+α−αλ+2
√

αλ(1 − λ) is a concave function of 0 ≤ λ ≤ 1.
When λ = 1

α+1 , g(λ) gets its maximum. So, we set λ = 1
α+1 in Algorithm R.

Consequently, we have

RHS of (7) =
∑

e : xe>0

1
2
(1 + α)wexe =

1
2
(1 + α)

∑

e

wexe. (8)

Combining (5), (6), (7), and (8) together, we get that E[WA] ≥ 1
2 (1 +

α)OPTMkU.
Algorithm G partitions the vertex set V (G) into exactly k parts, while Algo-

rithm R partitions V (G) into at least (1− 1
e )k parts in expectation. So, no matter

which algorithm is run in Algorithm A, the solution output by A contains at
least (1 − 1

e )k parts in expectation. Finally, it is not hard to see that Algorithm
A runs in expected polynomial time. The theorem follows.

3 Approximating Densest k-Subgraph

In this section, we show that the approximation results of MkU in Sect. 2 can
be extended to the Densest k-Subgraph problem, thus giving a new result to this
famous optimization problem.

Definition 2. The Densest k-Subgraph Problem.
(Instance) We are given an undirected graph G = (V,E) with nonnegative

edge weights {we | e ∈ E}, and a positive integer k.
(Goal) The problem asks to find a k-vertex subgraph G′ such that the total

weight of edges in E(G′) is maximized.

DkS is known as a notorious hard problem in approximation algorithms. In
2010, Bhaskara et al. [3] gave an Ω(n−(1/4+ε))-approximation algorithm for DkS
for any small constant ε > 0. This is the current best approximation ratio of DkS.
When k = αn, where α ∈ (0, 1) is a constant, Han et al. [9] proved much better
approximation ratios for DkS using the semidefinite programming technique.
Recently, Chen et al. [5] considered the connected DkS problem (in which the
subgraph to be found should be connected) and gave an Ω(n−0.4)-approximation
algorithm for it. There are also several hardness results for DkS which are based
on different complexity assumptions. Manurangsi [13] proved that assuming ETH
is true, there is a constant c > 0 such that no polynomial time algorithm can
approximate DkS within n−1/(log log n)c . Further, if one assumes Gap-ETH is
true, then there is no polynomial time algorithm which can approximate DkS
within n−f(n) for any function f satisfying f(n) ∈ o(1).

Our Idea of Approximating DkS. Our overall idea of approximating DkS is
to view it as a cut problem. It is not new to view DkS as a 2-cut problem. That
is, the k-vertex subgraph forms one part of the 2-cut (i.e., bipartition) and the
remaining subgraph forms another part.

Let
k̄ = n − k + 1. (9)
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Our new idea is to view DkS as a k̄-cut problem. In our perspective, the k-vertex
subgraph forms one part of the k̄-partition of V (G), and each of the remaining
vertices forms a separate part. See Fig. 1 for an illustration.

Fig. 1. An illustration of (n − k + 1)-partition.

An immediate question is that, what is the merit of k̄-cut, after all k̄ may be
much larger than two? The reasons are the following. If we view DkS as a 2-cut
problem, then it is difficult to define the objective function in the 2-cut problem.
This is because what we want is to maximize the total weight of edges only in
one part of the 2-partition (the k-subgraph part). These edges are uncut edges.
However, according to the 2-cut, there are still uncut edges lying in the other
part. We cannot define the objective function as to maximize the total weight
of uncut edges in the viewpoint of 2-cut.

If we view DkS as a k̄-cut problem satisfying an additional size constraint
that in the k̄-partition there are one part of size k and n−k parts of size one, then
the edges that we want are all uncut edges. In this way, we reduce DkS to Mk̄U
with additional size constraints. Note that Mk̄U and MkU are the same problem
with different input parameters. We use the name Mk̄U to emphasize that when
we reduce DkS to Mk̄U, we get an input parameter k̄ (see (9)) different to k.

Zhang et al. [18] proved that if MkU can be approximated within ρ, then DkS
can be approximated within ρ/2. We extend the idea in this result to the bicri-
teria approximation algorithm A for MkU, obtaining a bicriteria approximation
algorithm for DkS, shown as Algorithm B.

In step 4 of Algorithm B, if we scatter the removed k̄′ − 1 vertices into
singleton sets V ′

1 , · · · , V ′̄
k′−1

, then we actually obtain a new k̄′-partition P ′ =
{V ′

1 , V ′
2 , · · · , V ′̄

k′−1
, V ′}. Step 4 actually converts partition P to partition P ′.

For a vertex subset S, let w(S) denote the total weight of happy edges whose
two endpoints are both in S. For Algorithm B we have Theorem 4. Its proof will
be given in the full version.
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Algorithm 3.1 (Algorithm B for DkS)
Input: A DkS instance (G, w, k).
Output: A vertex subset V ′ ⊆ V (G).
1 k̄ ← n − k + 1.
2 call Algorithm A on the Mk̄U instance (G, w, k̄), obtaining a k̄′-partition P =

{V1, V2, · · · , Vk̄′} of V (G) for some integer k̄′.
3 Without loss of generality, we may assume that w(V1) ≤ w(V2) ≤ · · · ≤ w(Vk̄′).

Find � ∈ [k̄′] such that |V1| + · · · + |V�| ≥ k̄′ − 1 and |V1| + · · · + |V�−1| < k̄′ − 1.
4 Remove arbitrary k̄′ − 1 vertices from V1 ∪ · · · ∪ V�. The remaining vertices in

V1 ∪ · · · ∪ V�, together with all vertices in V�+1 ∪ · · · ∪ Vk̄′ , form a single set V ′.
5 return V ′.

Theorem 4. In expected polynomial time, Algorithm B finds a vertex subset V ′

such that

(i) E [w(V ′)] ≥ 1
4 (1+(k−1

n )2)OPTDkS (that is, the expected total weight of edges
in the induced subgraph G′ = G[V ′] is at least 1

4 (1 + (k−1
n )2)OPTDkS), and

(ii) E [|V ′|] ≤ k + 1
e (n − k + 1) (that is, the number of extra vertices used in G′

is at most 1
e (n − k + 1)).

4 Conclusions

In this paper, we give approximation algorithms for MkU using a non-uniform
approach combining LP-rounding and the greedy strategy. With a limited vio-
lation of the constraint k, we present a good expected approximation ratio
1
2 (1 + (n−k

n )2) for MkU. We also illustrate how this result extends to DkS. Hope
that the methods presented in this paper could inspire new results for MkU and
(especially) DkS.
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Abstract. The BP problem maximizes the sum of a suBmodular func-
tion and a suPermodular function(BP) subject to some constraints,
where both functions are nonnegative and monotonic. This type of prob-
lems arises naturally in many applications in machine learning, data sci-
ence and artificial intelligence. We consider two online BP problems. The
first is a BP maximization problem subject to a uniform matroid con-
straint when the items arrive one-by-one, for which we offer an online
algorithm with constant competitive ratio. The second is a BP maxi-
mization problem subject to a partition matroid constraint where items
arrive in a random order, for which we present a randomized linear-time
approximation algorithm with constant competitive ratio.

Keywords: Online BP maximization · Partition matroid ·
Submodular term · Supermodular term · Competitive ratio ·
Approximation algorithm

1 Introduction

Submodular function maximization has been widely studied under various con-
straints and models in recent years. Submodular functions play an important
role in various fields, including machine learning and algorithmic game theory. In
machine learning applications, maximization of submodular functions has been
used for information gathering [8,9], document summarization [12,13], string
alignment [14] and sensor placement [7,10,11]. In algorithmic game theory, the
problems in calculating market expansion [5] and calculating the core value of
certain types of games [15] can be simplified to submodular maximization.

However, some subset selection issues in data science are not just submodular.
For instance, when selecting a subset of training data in a machine learning
system [16], there may be both redundancies and complementarities between
certain subsets of elements, where the full collective utility of these elements
can be achieved only when bundled together. Submodular functions can only
reduce, rather than enhance, the utility of data items in the presence of other
data items, whereas supermodular functions can model this phenomena.
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Given a ground set V = {1, . . . , n} along with its power set 2V = {X :
X ⊆ V }, a normalized non-decreasing submodular function f : 2V → R+, and a
normalized non-decreasing supermodular function g : 2V → R+, consider the fol-
lowing suBmodular+suPermodular (BP) maximization problem, first proposed
in [2]

max
X∈I

h(X) := f(X) + g(X), (1.1)

where I is the family of the independent sets of a matroid M = (V, I). A matroid
satisfies three properties: (M0) Ø ∈ I; (M1) If J ′ ⊆ J ∈ I, then J ′ ∈ I; and
(M2) ∀A ⊆ V , every maximal independent subset of A has the same cardinality.

A set function f : 2V → R+ is normalized if f(Ø) = 0. It is non-decreasing if
f(S) ≤ f(T ),∀S ⊆ T ⊆ V . It is submodular if f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪
T ),∀S, T ⊆ V . It is supermodular if its negative is submodular.

The objective function h = f + g is called the suBmodular+suPermodular
(BP) function in [2]. The BP maximization problem (1.1) arises naturally in the
field of machine learning, data mining and artificial intelligence.

In this work, we focus on two online BP problems: (i) a BP maximization
problem subject to a uniform matroid constraint; (ii) a BP maximization prob-
lem subject to a (binary) partition matroid constraint.

For both problems, we design competitive algorithms whose competitive
ratios depends on the curvatures of the two functions involved. For a given
set function f : 2V → R+, its curvature [4] is defined as follows

k(f) = 1 − min
v∈V

f(V ) − f(V \{v})
f(v)

. (1.2)

Online Problem. The first problem addresses an online version of the BP
maximization problem subject to a uniform matroid constraint; namely, in (1.1),
the feasible set I = {X ⊆ V : |X| ≤ k} is the family of all independent sets of
the uniform matroid M = (V, I) for a given cardinality parameter k which is
a natural number. The elements of the ground set V = {1, . . . , n} arrive one-
by-one over a list. Whenever an element arrives, an online algorithm must make
an irrevocable decision on whether or not to include this newly arrived element
into the final solution without violating the cardinality constraint. In contrast to
the offline version of the problem, at any time, we can only call upon the value
oracle who returns function values over the elements that have been revealed.

To measure the performance of an online algorithm, we utilize the concept of
competitive ratio which is defined to be the supremum of ratio h(ON)/h(OFF )
over all problem instances, where ON ∈ F and OFF ∈ F are the solutions
returned by the online and the optimal offline algorithms, respectively.

Our first contribution is to present a (1−kf )(1−kg)3

(2−kg)2 -competitive algorithm for
this problem, where kf = k(f) is the submodular curvature as in (1.2), and
kg = k(ĝ) is the supermodular curvature as in (1.2), where ĝ : 2V → R+ is a
derived set function from g such that ĝ(X) = g(V ) − g(V \X),∀X ⊆ V .
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In terms of relevant work, online submodular function maximization prob-
lems have been investigated in the literature. [1] studies an online Max-SAT
problem, for which they give a 2

3 -competitive algorithm. [6] considers an online
version of maximizing a non-negative non-monotone submodular function and
proposes a double-sided myopic algorithms. [3] considers an online preemptive
version of maximizing a non-negative monotone submodular function and offers
a 1/e-competitive algorithm for the unconstrained case and a 1/4-competitive
algorithm for the cardinality constrained model, respectively.

Partition Matroid Constrained Problem. The second problem is a BP max-
imization problem subject to a partition matroid constraint. Firstly, we consider
the binary partition matroid, namely, in (1.1), the feasible set

I = {X ⊆ V : |X ∩ Pt| ≤ 1,∀t = 1, . . . ,m}

is the family of all independent sets of a binary partition matroid M = (V, I),
where the ground set V = {a1, b1, a2, b2, . . . , am, bm} consists of n = 2m ele-
ments, and Pt = {at, bt} (t = 1, . . . , m) is a partition of the ground set V . Sec-
ondly, we generalize the case to the (1, �)-partition matroid where Pt contains �
elements.

Our second contributions are to offer a 2−2kg

3−2kg -approximation algorithm for
this problem under the binary partition matroid case and offer a �−�kg

2�−1−�kg -
approximation algorithm for this problem under the (1, �)- partition matroid
case, where kg = k(ĝ) is the supermodular curvature as in (1.2), where ĝ : 2V →
R+ is a derived set function from g such that g(X) = g(V ) − g(V \X),∀X ⊆ V .

In terms of relevant work, BP maximization problems have been investigated
in the past. In [2], they consider the BP maximization problem (offline case)
subject to two types of constraints, either a cardinality constraint or kg ≥ 1
matroid independence constraints.

The remainder of our paper is organized as follows. Section 2 introduces some
preliminaries. Sections 3 and 4 present the algorithms along with their analysis
for these two problems, respectively. Finally, we offer concluding remarks in
Sect. 5.

2 Preliminaries

In this section, we introduce some results that will be used later. The first prop-
erty says that the curvature of any submodular function can be computed effi-
ciently under value oracle (hence the supermodular curvature can also be com-
puted efficiently).

Proposition 1 ([2]). The curvature kf can be computed with at most 2|V | + 1
oracle queries of f .

The next result concerns some facts of BP functions.
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Lemma 1 ([2]). Given a BP function h(X) = f(X) + g(X), where f and g are
non-negative, monotonic non-decreasing submodular and supermodular functions
respectively, we have

(i) h(v|Y ) ≥ (1 − kf )h(v|X), ∀X ⊆ Y ⊂ V and v �∈ Y ;
(ii) h(v|Y ) ≤ 1

1−kg h(v|X), ∀X ⊆ Y ⊂ V and v �∈ Y ;
(iii) h(X|Y ) ≥ (1 − kf )

∑
v∈X\Y h(v|Y ), ∀X,Y ⊆ V ;

(iv) h(X|Y ) ≤ 1
1−kg

∑
v∈X\Y h(v|Y ), ∀X,Y ⊆ V ,

where h(v|Y ) = h(Y + v) − h(Y ) is the marginal contribution of an element v
to a set Y and h(X|Y ) = h(X ∪ Y ) − h(Y ) is the marginal contribution of a set
X to a set Y .

3 Online BP Maximization

We present a greedy algorithm in Sect. 3.1 and analyze its competitive ratio in
Sect. 3.2.

3.1 Algorithm

The main idea of Algorithm 1 is as follows. We first choose a parameter c > 0.
Assume the elements of V are revealed in the order of 1, . . . , n. Let Si−1 be
the solution generated by the algorithm when elements 1, . . . , i − 1 have been
revealed. When the element i arrives, if i ∈ {1, . . . , k}, then include i into Si−1;
otherwise, swap i with an element selected greedily from Si−1 whenever some
threshold is reached.

Algorithm 1: Greedy for online BP maximization
Let S0 = Ø.
foreach element ui revealed do

if i ≤ k then
Let Si ← Si−1 + ui.

else
Let u′

i be the element of Si−1 maximizing h(Si−1 + ui − u′
i)

if h(Si−1 + ui − u′
i) − h(Si−1) ≥ c·h(Si−1)

k(1−kg) then
Let Si ← Si−1 + ui − u′

i.
else

Let Si ← Si−1.

For convenience, we define the following notations. Let h(u|S) = h(S + u) −
h(S) be the marginal contribution of an element u to a set S. Let Ai =

⋃i
j=1 Sj

for every 0 ≤ i ≤ n. In fact, Ai is the set of elements of {u1, u2, . . . , ui} originally
accepted by Algorithm 1, regardless of whether they are preempted or not.
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3.2 Analysis

To analyze the competitive ratio of Algorithm 1, we need the following lemma.

Lemma 2 ∀i = k + 1, . . . , n, we have

h(Si−1 + ui − u′
i) − h(Si−1) ≥ (1 − kf )(1 − kg)h(ui|Ai−1) − h(Si−1)

(1 − kg)k
.

Proof. We have

h(Si−1 + ui − u′
i) − h(Si−1)

≥
∑

u′
i∈Si−1

[h(Si−1 + ui − u′
i) − h(Si−1)]

k

=

∑
u′

i∈Si−1
[h(Si−1 + ui − u′

i) − h(Si−1 + ui) + h(Si−1 + ui) − h(Si−1)]

k

≥
∑

u′
i∈Si−1

(1 − kf )[h(Si−1 + ui − u′
i) − h(Si−1 − u′

i)]

k

+

∑
u′

i∈Si−1
[h(Si−1 + ui − u′

i) − h(Si−1 + ui)]

k

=

∑
u′

i∈Si−1
(1 − kf )h(ui|Si−1 − u′

i)

k︸ ︷︷ ︸
a

−
∑

u′
i∈Si−1

h(u′
i|Si−1 + ui − u′

i)

k︸ ︷︷ ︸
b

,

where the second inequality follows from Lemma 1 in [2].
The first term a in the last quantity can be bounded as follows. Note

that Si−1 − u′
i ⊆ Ai−1. From Lemma 1 in [2], we have h(ui|Si−1 − u′

i) ≥
(1 − kg)h(ui|Ai−1). Thus,

a ≥ (1 − kf )(1 − kg)h(ui|Ai−1). (3.1)

The second term b can be bounded via Lemma 1 in [2] and the non-negativity
of h as follows

∑
u′

i∈Si−1
h(u′

i|Si−1 + ui − u′
i)

k
≤ h(Si−1) − h(Ø)

(1 − kg)k
≤ h(Si−1)

(1 − kg)k
. (3.2)

Together, (3.1) and (3.2) imply the desired bound.
�

The following lemma is related to Si and Ai.

Lemma 3. ∀i = 0, . . . , n, we have

h(Si) ≥ c

c + 1
(1 − kf )(1 − kg)h(Ai).
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Proof. For i = 0, the lemma follows from h(A0) = h(Ø) = h(S0). Thus, it suffices
to show that for every i ∈ {1, . . . , n},

h(Si) − h(Si−1) ≥ c

c + 1
(1 − kf )(1 − kg)[h(Ai) − h(Ai−1)].

If the algorithm never accepts ui, the claim is trivial since then Si = Si−1 and
Ai = Ai−1. Hence, we only consider the case when the algorithm accepts ui.

If i ≤ k, then h(Si) − h(Si−1) = h(ui|Si−1) ≥ (1 − kg)h(ui|Ai−1) = (1 −
kg)[h(Ai) − h(Ai−1)], where the inequality follows from Lemma 1 in [2] since
Si−1 ⊆ Ai−1.

If i > k, then the quantity h(Si) − h(Si−1) = h(Si−1 + ui − u′
i) − h(Si−1)

have two lower bounds (1 − kf )(1 − kg)h(ui|Ai−1) − h(Si−1)/[(1 − kg)k] from
Lemma 2, and c · h(Si−1)/[k(1 − kg)] from the algorithm since ui is accepted.
With both lower bounds, we have

h(Si) − h(Si−1) ≥ max
{

(1 − kf )(1 − kg)h(ui|Ai−1) − h(Si−1)
(1 − kg)k

,
ch(Si−1)
k(1 − kg)

}

≥
c
(
(1 − kf )(1 − kg)h(ui|Ai−1) − h(Si−1)

(1−kg)k

)

c + 1
+

c h(Si−1)
k(1−kg)

c + 1

≥ c

c + 1
(1 − kf )(1 − kg)h(ui|Ai−1)

=
c

c + 1
(1 − kf )(1 − kg)[h(Ai) − h(Ai−1)].

�
We are now ready to prove the competitive ratio of Algorithm 1.

Theorem 1. The competitive ratio of Algorithm 1 is at least c(1−kf )(1−kg)3

(c+1)((1−kg)2+c) .

Hence, for c = 1−kg the competitive ratio of Algorithm 1 is at least (1−kf )(1−kg)3

(2−kg)2 .

Proof. Let OPT be the optimal solution. Consider an element ui ∈ OPT \ Ai.
Since ui was rejected by Algorithm 1, the following inequality must hold

ch(Si−1)
k(1 − kg)

> h(Si) − h(Si−1) ≥ (1 − kf )(1 − kg)h(ui|Ai−1) − h(Si−1)
(1 − kg)k

,

where the second inequality follows from Lemma 2. Rearranging the above yields

h(ui|Ai−1) <
c + 1

k(1 − kg)2(1 − kf )
h(Si−1) ≤ c + 1

k(1 − kg)2(1 − kf )
h(Sn),

where the second inequality uses the monotonicity of h(si) (as a function of i).
In conclusion, Lemma 1 in [2], Lemma 3 and the monotonicity of h together
imply the desired result
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h(OPT ) ≤ h(OPT ∪ An)

≤ h(An) +
1

1 − kg

∑

u∈OPT\An

h(u|An)

< h(An) +
1

1 − kg

∑

u∈OPT\An

(
c + 1

k(1 − kg)2(1 − kf )
h(Sn)

)

≤ h(An) +
c + 1

(1 − kg)3(1 − kf )
h(Sn)

≤
(

c + 1
c(1 − kf )(1 − kg)

+
c + 1

(1 − kg)3(1 − kf )

)

h(Sn)

=
(c + 1)

(
(1 − kg)2 + c

)

c(1 − kf )(1 − kg)3
h(Sn).

�

4 BP Maximization Under a Partition Matroid

We present a proportional selecting algorithm in Sect. 4.1 and analyze its com-
petitive ratio in Sect. 4.2.

4.1 Algorithm

The main idea of the proportional selecting algorithm below is to consider the
partition subsets of the matroid in an arbitrary order and select one element from
each partition subset. The algorithm randomly selects one of the two elements
in proportion to their marginal contribution, different from the natural greedy
algorithm.

Algorithm 2: Proportional selecting
Input:

A monotone submodular function f : 2V → R+

A monotone supermodular function g : 2V → R+

A binary partition matroid M
Output:

A set S ⊆ V approximating the maximum of h = f + g under M
1: S0 ← Ø
2: for t ← 1 to m do
3: wt ← h(at|St−1) + h(bt|St−1)
4: Pat

= h(at|St−1)
wt

5: Pbt
= h(bt|St−1)

wt

6: Pick st from {at, bt} with respective probabilities (Pat
, Pbt

)
7: St ← St−1 ∪ {st}
8: end for
9: S ← Sm



180 L. Chen et al.

For convenience, we define the following notations. Let h(a|S) = h(S + a) −
h(S) be the marginal contribution of an element a to a set S. Let A ⊆ V be
an independent set of a matroid M. Let OA ⊆ V be an optimal solution to
the problem of maximizing h under M that satisfies A ⊆ OA. Namely, OA =
arg maxT∈I,A⊆T h(T ). Also, we let OPTA = h(OA) be the value that h assigns
the set OA. Note that the value of the optimal solution that maximizes h under
M is OPT = OPTØ.

4.2 Analysis

In this section, we analyze the competitive ratio of Algorithm 2.

Lemma 4. Let A ⊆ V be an independent set of a matroid M such that A∩Pt =
Ø. Moreover, let xt be the element of Pt that belongs to OA and yt the element
of Pt that does not appear in OA. Then,

OPTA − OPTA+yt
≤ 1

1 − kg
h(xt|A).

Proof. We can easily obain that

OPTA = h(OA) ≤ h(OA + yt)
= h(OA + yt) − h(OA + yt − xt) + h(OA + yt − xt)
= h(xt|OA + yt − xt) + h(OA + yt − xt),

where the inequality is due to the monotonicity of h. Note that A ⊆ OA+yt−xt,
and according to Lemma 1 in [2], we know that h(xt|OA+yt−xt) ≤ 1

1−kg h(xt|A).
Furthermore,

h(OA + yt − xt) ≤ h(OA+yt
) = OPTA+yt

,

where the inequality follows as OA+yt
is optimal with respect to A + yt ⊆ OA −

xt + yt. Therefore, we conclude that OPTA ≤ 1
1−kg h(xt|A) + OPTA+yt

.

We denote Lt = OPTSt−1 − OPTSt
as the loss of the algorithm at Step t

of the main loop. The following observation relates the sum of these losses over
all steps in the main loop to the difference between the optimal value and the
solution value.

Lemma 5.
∑m

t=1 Lt = OPT − h(S).

Proof. Note that

m∑

t=1

Lt =
m∑

t=1

(OPTSt−1 − OPTSt
) = OPTS0 − OPTSm

= OPTØ − h(Sm) = OPT − h(S).

�
We are ready to prove the main result of this section.
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Theorem 2.
E[h(S)] ≥ 2 − 2kg

3 − 2kg
OPT.

Proof. Consider Step t of the algorithm, where one element of the partition
subset Pt is selected. Note that only one element xt ∈ Pt ∩ OSt−1 , while the
other element yt ∈ Pt but yt /∈ OSt−1 .

We first bound the expected loss of the algorithm at Step t, given the set of
elements selected before Step t−1. Recall that st is the element selected at Step
t of the algorithm.

E[Lt|St−1] = P (st = xt|St−1)(OPTSt−1 − OPTSt−1+xt
)

+P (st = yt|St−1)(OPTSt−1 − OPTSt−1+yt
)

= P (st = xt|St−1) · 0 + P (st = yt|St−1)(OPTSt−1 − OPTSt−1+yt
)

≤ P (st = yt|St−1) · 1
1 − kg

h(xt|St−1)

=
1

1 − kg
· h(yt|St−1)h(xt|St−1)
h(yt|St−1) + h(xt|St−1)

,

where the inequality is due to Lemma 4, and the last equality is attained because
the algorithm selects yt with probability h(yt|St−1)/(h(yt|St−1) + h(xt|St−1)).

We now calculate the expected gain of the algorithm at Step t, given the set
of elements selected up to Step t − 1.

E[h(st|St−1)|St−1] = P (st = xt|St−1) · h(xt|St−1) + P (st = yt|St−1) · h(yt|St−1)

=
h(xt|St−1)

h(yt|St−1) + h(xt|St−1)
· h(xt|St−1)

+
h(yt|St−1)

h(yt|St−1) + h(xt|St−1)
· h(yt|St−1)

=
h(yt|St−1)2 + h(xt|St−1)2

h(yt|St−1) + h(xt|St−1)
.

Together the expected gain loss rate is

E[Lt|St−1]
E[h(st|St−1)|St−1]

≤ 1
1 − kg

· h(yt|St−1)h(xt|St−1)
h(yt|St−1)2 + h(xt|St−1)2

≤ 1
2(1 − kg)

,

where the last inequality holds since 2ab ≤ a2 + b2, for any a, b ∈ R. We can now
bound the expected loss of the algorithm at Step t as follows

E[Lt] =
∑

St−1⊆V

E[Lt|St−1] · P

(
the algorithm selects
St−1 up to Step t − 1

)

≤ 1
2(1 − kg)

∑

St−1⊆V

E[h(st|St−1)|St−1] · P

(
the algorithm selects
St−1 up to Step t − 1

)

=
1

2(1 − kg)
E[h(st|St−1)].
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Consequently, we have

OPT − E[h(S)] = E

[
m∑

t=1

Lt

]

=
m∑

t=1

E[Lt]

≤ 1
2(1 − kg)

m∑

t=1

E[h(st|St−1)]

=
1

2(1 − kg)
E

[
m∑

t=1

h(st|St−1)

]

=
1

2(1 − kg)
E[h(S)].

Thus, E[h(S)] ≥ 2−2kg

3−2kg OPT .
�

4.3 Algorithm for BP Maximization Under a (1, �) Partition
Matroid

In this section, we generalize the binary matroid in problem 2 to the (1, �) par-
tition matroid. The following algorithm modifies Algorithm 2.

Algorithm 3: Proportional selecting
Input:

A monotone submodular function f : 2V → R+

A monotone supermodular function g : 2V → R+

A binary partition matroid M
Output:

A set S ⊆ V approximating the maximum of h = f + g under M
1: S0 ← Ø
2: for t ← 1 to m do

3: wt ←
�∑

i=1

(h(ai
t|St−1))�−1

4: Pai
t
← (h(ai

t|St−1))
�−1

wt
(1 ≤ i ≤ �)

5: Pick st from {a1
t , a

2
t , . . . , a

�
t} with respective probabilities

(Pa1
t
, Pa2

t
, . . . , Pa�

t
)

6: St ← St−1 ∪ {st}
7: end for
8: S ← Sm

Theorem 3. Algorithm 3 returns a set S with

E[h(S)] ≥ � − �kg

2� − 1 − �kg
OPT.

The proof of this result is deferred to the full version of the paper.
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5 Discussions

In this paper, we introduce two online BP maximization problems. The first is
an online BP maximization problem subject to a uniform matroid constraint
when the items arrive one-by-one. We present a greedy algorithm with a con-
stant competitive ratio. The other consider an online BP maximization problem
subject to a partition matroid constraint where items arrives online in a random
order. We present a proportional selecting algorithm with a constant compet-
itive ratio. As one of the future research directions, it is interesting to further
improve the competitive ratios for the two problems. While extensive work has
been devoted towards submodular maximization problems in the literature, only
a few results exist for online BP maximization problems and we believe more
research is needed for this fertile filed.
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Abstract. Constrained submodular maximization has been extensively
studied in the recent years. In this paper, we study adaptive robust opti-
mization with nearly submodular structure (ARONSS). Our objective
is to randomly select a subset of items that maximizes the worst case
value of several reward functions simultaneously. Our work differs from
existing studies in two ways: (1) we study the robust optimization prob-
lem under the adaptive setting, i.e., one needs to adaptively select items
based on the feedback collected from picked items, and (2) our results
apply to a broad range of reward functions characterized by ε-nearly sub-
modular function. We first analyze the adaptivity gap of ARONSS and
show that the gap between the best adaptive solution and the best non-
adaptive solution is bounded. Then we propose an approximate solution
to this problem when all reward functions are submodular. In particular,
our algorithm achieves approximation ratio (1 − 1/e) when considering
a single matroid constraint. At last, we present two heuristics for the
general case with nearly submodular functions. All proposed solutions
are non-adaptive which are easy to implement.

1 Introduction

Constrained submodular maximization has attracted growing attention recently
[4–6]. Most existing work on submodular maximization focuses on selecting a
subset of items subject to given constraints so as to maximize a submodular
objective function [13]. In this paper, we study adaptive robust optimization
with nearly submodular structure (ARONSS). This study belongs to the cate-
gory of robust submodular maximization. Our objective is to randomly select
a subset of items that performs well over several reward functions. Although
robust submodular maximization has been well studied [1,9,12,15,19], most of
existing studies assume a non-adaptive setting, i.e., one has to select a subset
of items all at once in advance, and submodular reward function. However, in
many applications from artificial intelligence [10,16,18,20,21], the outcome of
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Z. Zhang et al. (Eds.): AAIM 2020, LNCS 12290, pp. 185–194, 2020.
https://doi.org/10.1007/978-3-030-57602-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57602-8_17&domain=pdf
http://orcid.org/0000-0001-9261-5210
https://doi.org/10.1007/978-3-030-57602-8_17


186 S. Tang and J. Yuan

an objective function is often uncertain, one needs to make a sequence of deci-
sions adaptively based on the outcomes of the previous decisions. Moreover, the
reward function is not necessarily submodular. This motivates us to study the
adaptive robust optimization problem with general reward functions.

The main contribution of this paper is three-fold:

– We extend the previous studies on robust submodular maximization in two
directions: (1) we consider the robust optimization problem under the adap-
tive setting, i.e., one can select one item at a time and observe the outcome
of picked items, before selecting the next item, and (2) our results apply
to a broad range of reward functions characterized by ε-nearly submodular
function.

– We first analyze the adaptivity gap of ARONSS and show that the gap
between the best adaptive solution and the best non-adaptive solution is
bounded. This enables us to focus on designing non-adaptive solutions which
are much easier to work with.

– Then we propose an approximate solution to this problem with submodular
reward functions subject to many practical constraints. In particular, our
algorithm achieves a 1 − 1/e approximation ratio when considering a single
matroid constraint. We also present two algorithms that achieve bounded
approximation ratios for the general case. All algorithms are non-adaptive
and easy to implement.

2 Preliminaries and Problem Formulation

We first introduce some notations, then formulate our problem.

2.1 Submodular Function

A set function h(S) that maps subsets of a finite ground set Ω to non-negative
real numbers is said to be submodular if for every S1, S2 ⊆ Ω with S1 ⊆ S2 and
every v ∈ Ω\S2, we have that

h(S1 ∪ {v}) − h(S1) ≥ h(S2 ∪ {v}) − h(S2)

A submodular function h is said to be monotone if h(S1) ≤ h(S2) whenever
S1 ⊆ S2.

2.2 Items and States

Let E = {e1, e2, . . . , en} denote a finite set of n items, and each item is in a
particular state from a set O = {o1, o2, . . . , om} of m possible states. Each item
ei ∈ E is associated with a random variable Yi ∈ O that represents a random
realization of ei’s state. We use Y = {Yi | i ∈ [n]} to denote the collection of
all variables. We assume there is a known prior probability distribution p(i) =
{Pr[Yi = oj ] | j ∈ [m]} over realizations O for each item ei ∈ E. For notation



Adaptive Robust Submodular Optimization and Beyond 187

simplicity, let pij = Pr[Yi = oj ] for all i ∈ [n], j ∈ [m]. We further assume that
the states of all items are decided independently from each other [2], i.e., Y is
drawn randomly from the product distribution

∏
i∈[n] p(i). Let y : E → O denote

a realization of item states. After picking an item ei, we are able to observe its
state yi ∈ O.

2.3 ε-nearly Submodular Reward Functions

We are given a family of L reward functions F = {f1, f2, . . . , fL}, where each
fl ∈ F : 2E×O → R≥0 maps a set of items and their states X ⊆ E × O to
some reward R≥0. In this work, we assume each function fl is monotone, i.e.,
fl(A) ≤ fl(B) for all A ⊆ B, and ε-nearly submodular, i.e., for any fl ∈ F , there
is a submodular function gl such that for any X ⊆ E × O, we have εgl(X) ≤
fl(X) ≤ 1

ε gl(X) where ε ∈ (0, 1]. It is clear that any submodular function is
1-nearly submodular.

2.4 Adaptive Policies

We model the adaptive strategy of picking items through a policy π [10]. For-
mally, a policy π is a function that specifies which item to pick next under the
observations made so far: π : 2V ×O → E. Note that π can be regarded as some
decision tree that specifies a rule for picking items adaptively. Assume that when
the items are in state Y = y, the policy π picks a set of items (and corresponding
states), which is denoted by S(π,y) ⊆ E ×O, then the expected reward received
π from function fl is U(π, fl) := Ey[fl(S(π,y))] where the expectation is taken
over y with respect to

∏
i∈[n] p(i). In the context of robust optimization, our goal

is to pick a set of items (and corresponding states) that achieves high reward in
the worst case over reward functions in F . Thus, we define the utility U(π,F)
of π as

U(π,F) = min
l∈[L]

U(π, fl)

Let I be a downward-closed family of subsets of E, i.e., a family of subsets
I is downward-closed if for any U ∈ I and any W ⊆ U , we have W ∈ I. We
use E(π,y) to refer to the subset of items picked by policy π given state y. We
say a policy π is feasible if for any y, E(π,y) ∈ I. This downward-closed family
generalizes many useful systems which give rise to natural constraints such as
matroid and knapsack constraints. Our goal is to identify the best feasible policy
that maximizes its expected utility.

max
π

U(π,F) subject to E(π,y) ∈ I for any y.

3 Analysis on Adaptivity Gap

We say a policy is non-adaptive if it always picks the next item independent
of the states of the picked items. Clearly adaptive polices obtain at least as
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much utility as non-adaptive policies. Perhaps surprisingly, building on recent
advances in stochastic submodular probing [3], we show that this adaptivity gap
is upper bounded by a constant (given that ε is a constant). Based on this result,
we can focus on designing non-adaptive polices which are much easier to work
with.

Theorem 1. Given any adaptive policy π, there exists a non-adaptive algorithm
σπ such that U(σπ,F) ≥ ε2

2 U(π,F).

Proof: Given any adaptive policy π, we follow the idea in [11] and define a non-
adaptive policy σπ: randomly draw a state vector y from the product distribution∏

i∈[n] p(i) (this step is done virtually), pick E(π,y) ⊆ E, i.e., pick all items
picked by π given y. Let y′

E be the state of all items drawn virtually by σπ and
y be the true state of all items when picked by σπ.

Now consider any l ∈ [L], the expected value of fl obtained by σπ is

U(σπ, fl) = Ey′
E

⎡

⎣Ey[fl(
⋃

ei∈E(π,y′
E)

(ei, yi))]

⎤

⎦ (1)

Because fl is ε-nearly submodular, for some submodular function gl, we have

Ey′
E

⎡
⎣Ey[fl(

⋃
ei∈E(π,y′

E
)

(ei, yi))]

⎤
⎦ ≥ Ey′

E

⎡
⎣Ey[εgl(

⋃
ei∈E(π,y′

E
)

(ei, yi))]

⎤
⎦ = εU(σπ, gl)

(2)
(1) and (2) together imply that

U(σπ, fl) ≥ εU(σπ, gl) (3)

We next analyze the utility of π. The expected value of fl obtained by π is

U(π, fl) = Ey[fl(S(π,y))] (4)

Because fl is ε-nearly submodular, we have

Ey[fl(S(π,y))] ≤ Ey[
1
ε
gl(S(π,y))] =

1
ε
U(π, gl) (5)

(4) and (5) together imply that

U(π, fl) ≤ 1
ε
U(π, gl) (6)

Because gl is submodular, the ratio between U(π, gl) and U(σπ, gl) is upper
bounded by 2 [3], i.e., U(π, gl) ≤ 2U(σπ, gl). This together with (4) and (6)
implies that

U(σπ, fl) ≥ ε2

2
U(π, fl) (7)
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It follows that

U(σπ,F) = min
l∈[L]

U(σπ, fl) (8)

≥ min
l∈[L]

ε2

2
U(π, fl) (9)

=
ε2

2
U(π,F) (10)

�
It was worth noting that Theorem 1 holds when I is a prefix-closed family of

constraints, where a family of subsets I is prefix-closed if for any subsequence
in I, its prefix also belongs to I.

4 Robust Continuous Greedy for Submodular Reward
Function

We first focus on the case when ε = 1, i.e., all reward functions are submodular.
We propose a constant approximate non-adaptive policy to this special case
subject to many practical constraints. In the rest of this paper, we use σ to
denote a non-adaptive policy.

Before introducing our algorithm, we first introduce some important nota-
tions. For a independence system I, the polytope of I is defined as P (I) =
conv{1I : I ∈ I} where 1I ∈ [0, 1]n denotes the vector with entries I one and
all other entries zero. Abusing notation, let f(X) denote the expected utility of
X for any X ⊆ E over

∏
i∈[n] p(i): f(X) = Ey[f(∪ei∈X(ei, yi))]. Given a vector

x ∈ [0, 1]n, the multilinear extension F of f is defined as

F (x) =
∑

X⊆E

f(X)
∏

i∈X

xi

∏

i/∈X

(1 − xi)

We further introduce a matrix z ∈ [0, 1]n×m. Given a matrix z, the expanded
multilinear extension F ′ of f is defined as

F ′(z) =
∑

Z⊆E×O

f(Z)
∏

(ei,yj)∈Z

zij

∏

(ei,yj)/∈Z

(1 − zij)

Define the marginal of (ei, yj) for F ′ as F ′((ei, yj) | z) = F ′(z∨ 1(ei,yj))− F ′(z)
where 1(ei,yj) denotes a matrix with entry (i, j) one and all other entries zero,
and z ∨ 1(ei,yj) denotes the component wise maximum.

We next propose a Robust Continuous Greedy Policy, denoted by σrg, that
achieves a constant approximation ratio for ARONSS (with ε = 1) subject many
practical constraints such as matroid and knapsack constraints. Our design is
inspired by [7], and we generalize their idea to the adaptive setting. In particular,
we first compute a fractional solution x1/δ ∈ P (I) from Algorithm 1. Then
we round it to an integer solution using some existing techniques. Note that
Algorithm 1 can be viewed as a variant of the classic continuous greedy algorithm
[6], and we adapt it to the robust and adaptive setting.
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Algorithm 1. Robust Continuous Greedy
1: Set δ = 1

9(nm)2
, t = 0; z0 = [0]n×m, x0 = [0]n.

2: while t < 1 do
3: For each (ei, yj) ∈ E × O, estimate F ′((ei, yj) | zt)
4: Find a feasible solution x∗ to P1 or terminates the algorithm and outputs a

certificate that no feasible solution is found
5: P1: Maximize 0

subject to: x∈PI ; ∀l ∈ [L] :
∑

(ei,yj)∈E×O F ′
l ((ei, yj) | zt)pijxi ≥γ;

6: For all i ∈ [n], j ∈ [m]: zt+δ
ij = zt

ij + δpijx
∗
i ; xt+δ

i = xt
i + δx∗

i ;
7: Increment t = t + δ;
8: return x1/δ;

Lemma 1. Given L submodular functions f1, f2, . . . , fl, a value γ, and an
independence system I, Algorithm 1 finds a point x1/δ ∈ P (I) such that
Fl(x1/δ) ≥ (1 − 1/e)γ,∀l ∈ [L] or outputs a certificate that there is no such
an adaptive policy π with U(π,F) ≥ γ.

Proof: First, if our algorithm can not find a feasible solution to P1, it stops and
outputs a certificate that there is no adaptive policy with U(σ,F) ≥ γ.

Fix a matrix z. If there exists an adaptive policy, say πopt, such that
U(πopt, fl) ≥ γ,∀l ∈ [L], we have

γ ≤ U(πopt, fl) =
∑

Z∈E×O

βopt
Z fl(Z) (11)

≤
∑

Z∈E×O

βopt
Z (F ′(z) +

∑

(ei,oj)∈Z

F ′((ei, oj) | z))

= F ′(z) +
∑

(ei,oj)∈E×O

(
∑

(ei,oj)∈Z

βopt
Z )F ′((ei, oj) | z) (12)

= F ′(z) +
∑

(ei,oj)∈E×O

xopt
i pijF

′((ei, oj) | z) (13)

where βopt
Z denotes the probability that Z is being observed and selected by

running πopt, and xopt
i is the probability that ei is selected by πopt. Because

xopt ∈ P (I), (13) implies that for any fractional solution z, there exits a direction
z∗ = {z∗

ij = xipij | x ∈ P (I)} such that z∗ · ∇F ′
l (z) ≥ γ − F ′

l (z),∀l ∈ [L]. This
direction can be found using linear program P1. Based on the same analysis of
the classic continuous greedy algorithm [6] and the above discussion, we have

F ′
l (z

1/δ) ≥ (1 − 1/e)γ,∀l ∈ [L] (14)

through induction.
We next show that Fl(x1/δ) ≥ F ′

l (z
1/δ),∀l ∈ [L]. Note that F ′

l (z
1/δ) is the

expected utility of fl when each realization (ei, oj) ∈ E × O is selected inde-
pendently with probability x

1/δ
i pij . On the other hand, Fl(x1/δ) is the expected
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utility of fl with respect to the following selection process: for each i ∈ [n],
we randomly select one realization from {(ei, oj) ∪ {∅} | j ∈ [m]} such that
(ei, oj) ∈ E ×O is being selected with probability x

1/δ
i pij and ∅ is being selected

with probability 1 − ∑
j∈[m] x

1/δ
i pij . Note that the above constraint that only

one realization can selected from {(ei, oj) ∪ {∅} | j ∈ [m]} can be viewed as a
(basic) partition matroid constraint. Based on the above discussion and Lemma
3.7 in [6], we have

Fl(x1/δ) ≥ F ′
l (z

1/δ),∀l ∈ [L] (15)

(14) and (15) imply that Fl(x1/δ) ≥ (1 − 1/e)γ,∀l ∈ [L]. �
Based on Lemma 1, we can perform a binary search on γ to find a (1− 1/e)-

approximate fractional solution. At last, depending on the type of I, we use an
appropriate technique to round the fractional solution to an integral solution.
In particular, for a single matroid constraint, using swap rounding [7] achieves
ζ = 1. Many other useful constraints such as knapsack and the intersection of
knapsack and matroid constraints admit good rounding techniques [8].

Theorem 2. σrg returns a solution that achieves approximation ratio (1−1/e)ζ,
where ζ ∈ [0, 1] is the performance loss due to rounding.

Remark: The runtime of Algorithm 1 is dependent on m, the number of possible
states. When m is a constant or a polynomial of n, Algorithm 1is a polynomial-
time algorithm. When m is exponential or even infinity, Theorem 2 implies that
there exists a non-adaptive policy whose approximation ratio is bounded by
(1− 1/e)ζ. This can be viewed as an enhanced bound on the adaptivity gap, as
compared with the adaptivity gap (whose value is 1/2 when ε = 1) derived for
the general prefix-closed family of constraints (Theorem 1).

5 Two Heuristics for Nearly Submodular Reward
Functions

In this section, we introduce two non-adaptive policies for the general case. In
the rest of this paper, assume πopt is the optimal adaptive policy.

5.1 A 1/L-approximate Solution

Algorithm 2. 1/L-approximate Non-Adaptive Policy σ1/L

1: Set l = 1.
2: while l ≤ L do
3: El ← APPROX(maxS∈I fl(S))
4: l ← l + 1
5: Randomly pick an index l ∈ [L]
6: return El



192 S. Tang and J. Yuan

The basic idea of our first 1/L-approximate Non-Adaptive Policy (Algorithm
2), denoted by σ1/L, is very simple: First solving maxσ U(σ, fl) for each l ∈ [L],
then randomly pick one among L outputs as solution. One can verify that solving
maxσ U(σ, fl) is equivalent to solving maxS∈I fl(S).

To carry out these steps, σ1/L requires one oracle APPROX(maxS∈I fl(S))
which returns an approximate solution to maxS∈I fl(S) for each l ∈ [L]. Assume
for each l ∈ [L], the approximation ratio of APPROX(maxS∈I fl(S)) is αl and
the time complexity of APPROX(maxS∈I fl(S)) is dl, we have

Theorem 3. Let α = minl∈[L] αl, our first policy σ1/L achieves ε2α
2L approxima-

tion ratio for ARONSS, i.e., U(σ1/L,F) ≥ ε2α
2L U(πopt,F). The time complexity

of σ1/L is O(Ld) where d = maxl∈[L] dl.

Proof: First,

max
S∈I

fl(S) = max
σ

U(σ, fl) ≥ max
σ

min
l∈[L]

U(σ, fl) = max
σ

U(σ,F) (16)

Recall that APPROX(maxS∈I fl(S)) is returned as the final solution with
probability 1/L. Because APPROX(maxS∈I fl(S)) achieves approximation ratio
α, we have U(σ1/L, fl) ≥ α

L maxS∈I fl(S), it follows that U(σ1/L, fl) ≥
α
L maxσ U(σ,F). Thus,

U(σ1/L,F) = min
l∈[L]

U(σ1/L, fl) ≥ α

L
max

σ
U(σ,F)

due to (16). Since maxσ U(σ,F) ≥ ε2

2 U(πopt,F) due to Theorem 1, we have
U(σ1/L,F) ≥ ε2α

2L U(πopt,F). This finishes the proof of the first part of this
theorem. The proof of time complexity is trivial since σ1/L calls APPROX L
times. �

Discussion on the Value of α.We next briefly discuss how to solve maxS∈I fl(S).
Consider a special case when all reward functions in F are submodular, i.e., ε = 1,
and I is a family of subsets that satisfies a knapsack constraint or a matroid
constraint [6], there exist algorithms that achieve 1 − 1/e approximation ratio,
i.e., α = 1−1/e. For more complicated constraints such as intersection of a fixed
number of knapsack and matroid constraints, [8] provide approximate solutions
via the multilinear relaxation and contention resolution schemes.

5.2 Double-Oracle Algorithm

We next present a double-oracle-based solution [14] to the non-adaptive opti-
mization problem. Without loss of generality, assume that double oracle algo-
rithm σDO finds a β approximate solution to the non-adaptive optimization
problem, i.e., U(σDO,F) ≥ β maxσ U(σ,F), we have U(σDO,F) ≥ ε2β

2 U(πopt,F)
due to the adaptivity gap proved in Theorem 1.
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Theorem 4. Assume σDO finds a β approximate solution to the non-adaptive
robust ε-nearly submodular maximization problem, then σDO achieves ε2β

2

approximation ratio for ARONSS, i.e., U(σDO,F) ≥ ε2β
2 U(πopt,F).

As compared with σ1/L, we remove 1/L from the above approximation ratio,
however, the time complexity of σDO could be exponential.

6 Conclusion

To the best of our knowledge, we are the first to systematically study the problem
of adaptive robust optimization with nearly submodular structure. We analyze
the adaptivity gap of ARONSS. Then we propose an approximate solution to this
problem when all reward functions are submodular. In particular, our algorithm
achieves a (1− 1/e) approximation ratio when considering a single matroid con-
straint. At last, we develop two algorithms that achieve bounded approximation
ratios for the general case. In the future, we would like to relax the assumption
that all items are independent, and analyze the adaptivity gap in the presence
of dependent items [17].
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1 Introduction

In this paper, we devise adaptivity algorithms for the following optimization
problem:

max
S⊆N

{f(S) : |S| ≤ k} , (1)

where f : 2N → IR+ is a nonnegative monotone nonsubmodular set function,
N = {1, ..., n} is a ground set, and the aim is to find a subset S ⊆ N with its
size bounded by k and the objective value f(S) maximized.

In past decades, submodularity has received considerable research interest
in theoretical computer science [1], machine learning [2], and computer net-
works [3], because submodular function has wide applications in these fields
[4,5]. There are several algorithms based on greedy approach [6,7] and local
search [8], achieving constant factor approximation guarantees for maximizing a
submodular function. Among them, the most famous one is designated for maxi-
mizing a non-decreasing submodular function subject to a cardinality constraint.
The algorithm is with the key idea of iteratively adding the element of maximum
marginal gain and achieves a 1−1/e approximation [9]. The approximation ratio
is already optimal due to Feige [10].

Because the applications of bigdata impose parallelization requirement of
submodular optimization methods, adaptability has been attracting research
interest in recent years where an algorithm with low adaptability can be sig-
nificantly speeded up by parallel computing. However, the above greedy algo-
rithms suffer high adaptivity, and hence can not be efficiently parallelized. In the
context, Balkanski and Singer [7] began to study the adaptability of submodu-
lar maximization. They discussed the adaptability of maximizing the monotone
submodular function with the cardinality constraints and eventually gave an
1/3 − ε approximation algorithm with O((log(n))/ε2) adaptivity rounds. Later,
the research on adaptive algorithms for maximizing monotone submodular func-
tion with cardinality constraints has borne fruits. In the same year, three groups
Balkanski et al. [11], Ene et al. [12], Fahrbach et al. [13] used different tech-
niques to improve the approximation ratio of 1/3 − ε, and obtain an adaptive
algorithm with the same approximation ratio of 1 − 1/e − ε in O((log(n))/ε2)
adaptivity rounds. Later, Ene et al. [16] study the adaptive algorithm of max-
imizing submodular non-monotone function obtain the 1/2 − ε-approximation
in O((log(n))2/ε2) adaptivity rounds. Recently, Chekuri et al. [14,15] and Ene
et al. [16] had studied more complicated constraints in the adaptive complexity
model.

Compared to submodular functions, the nonsubmodular function is some-
times more realistic and has broader applications. Bian et al. [17] combined
and generalized the ideas of curvature α and submodularity ratio ξ [9], and
consequently derived the first tight constant-factor approximation guarantee of
1
α (1 − e−ξα) for maximizing a non-submodular nondecreasing set function with
a cardinality constraint. Kuhnle et al. [18] provided approximation algorithms
for maximizing a nonsubmodular function on the integer lattice with cardinality
constraints. These are the first algorithms with polynomial query complexity,
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based on combining Greedy approach and Threshold-based Greedy to improve
the performance ratio to 1 − e−νξ − ε for ν not smaller than ξ. Gong et al.
[19] proposed a more practical measurement γ which is called generic submod-
ularity ratio and is used to characterizes how close a nonnegative monotone set
function is to be submodular. Nong et al. [20] make a systematic analysis of
greedy algorithms for maximizing a monotone and normalized set function with
a generic submodularity ratio γ under cardinality constraints that the approxi-
mation ratio is 1− e−γ − ε and the oracle queries is O(nk). However, to the best
of our knowledge, there exist no adaptive algorithms for maximizing a monotone
nonsubmodular function with cardinality constraint k.

Contribution. In the paper, we present the first parallel algorithm for max-
imizing a monotone nonsubmodular function with a cardinality constraint. In
expectation, our algorithm achieves an approximation ratio of 1 − e−γ2 − ε,
with O(log(n/η)/ε2) adaptive rounds and O(nlog(k)/ε3) oracle queries. To this
end, we combine the high-level idea of Fahrbach et al. [13] and the definition
Generic submodularity ratio. We first present an algorithm called Lower-Bound-
Sampling. For a given threshold (according to the guessed value of OPT), the
algorithm returns a subset of the ground set in which each element has an
expected marginal contribution at least the generic submodularity ration times
the bound in O(log(n/η)/ε) adaptive rounds. Then employing Lower-Bound-
Sampling algorithm as a subroutine, we propose the Enumeration algorithm
which constructs a solution by gradually reducing the threshold. Note that the
subroutine Lower-Bound-Sampling can run in parallel subject to many different
initial threshold values, so consequently the adaptivity complexity is reduced.

Organization. The remainder of the paper is organized as below: Sect. 2
gives preliminaries of the paper; Sect. 3 presents the subroutine Lower-Bound-
Sampling algorithm and its analysis; Sect. 4 proposes the main algorithm as well
as the related lemmas; Sect. 5 lastly concludes the paper. All formal proofs in
the paper are given in the journal version.

2 Preliminaries

Let N be the ground set and |N | = n. We assume that function f : 2N → IR+

is a monotone nonsubmodular set function with f(∅) = 0 throughout the paper.
We say a set function is monotone if and only if

T ⊆ S ⊆ N ⇒ f(T ) ≤ f(S) (2)

The marginal gain of f at T ⊂ N respect to S ⊂ N can be defined as ρT (S) =
f(S∪T )−f(S). Let S be a set output as a solution to the maximization problem
max
S⊆N

{f(S) : |S| ≤ k}, S∗ be the optimum solution, and U(X, t) represents the

uniform distribution on all subsets of X of size t.
Next, we introduce a concept to describe how close is a set function to be

submodular.
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Definition 1. (Generic submodularity ratio [19]) Given a ground set N and
a nondecreasing set function f : 2N → IR+, the generic submodularity ratio of
f is the largest scalar γ such that for any A ⊆ T ⊆ N and any x ∈ 2N \ T , we
have:

ρx(A) � γ · ρx(T ) (3)

Proposition 1. (Property of generic submodularity ratio [19]) For an increas-
ing set function f : 2N → R+ with generic submodularity ratio γ, it holds that

a) γ ∈ (0, 1];
b) The function f is submodular iff γ = 1;
c)

∑
ω∈T\A ρω(A) ≥ γ · ρT (A) holds for any pair of A, T ⊆ N

The adaptability of the algorithm is essentially the minimum number of con-
secutive rounds in which queries for the evaluation oracle of the function. In
each round, the algorithm allows polynomially-many parallel queries. In our
algorithm, the evaluation oracle of f proceeds as below: for any query S ⊆ N ,
it returns the value f(S) in O(1)time. For the given evaluation oracle, the adap-
tivity of our algorithm is the minimum number of rounds, in each of which
the algorithm performs polynomially-many independent queries by calling the
evaluation oracle. In our algorithm, the performance of the algorithm needs
to consider both the query and the adaptive complexity. For briefness, we set
η−1 = Ω(poly(n)).

3 Lower-Bound-Sampling Algorithm

In this section, we develop the Lower-Bound-Sampling algorithm with respect
to a given bound and show that it can effectively maximize a monotone non-
submodular function subject to a cardinality constraint. For the input lower
bound β, the algorithm constructs the solution A by repeatedly adding a subset
until either the number of elements in A attains k or the marginal gain of the
remaining elements is less than β.

In the beginning of the algorithm, the solution A is an empty set and all
elements in ground set N are recorded as C. In each round, the algorithm filters
set C at first and keeps the elements whose marginal benefit is no less than
lower bound. We denote the filtered set by H, which is essentially the set of
element candidates. Then, the algorithm seeks z∗, the maximum number of the
set elements which guarantees the marginal gain expectation of elements in the
set is no less than γ(1 − ε)β in expectation. Then the algorithm samples T from
H uniformly with size z∗, adds T into A, and updates the set C with C \T . The
procedure repeats until the algorithm stops when |A| = k or H = ∅.

Next, we define the distribution Dz that is used to sample and to estimate the
maximum set size z∗. Sampling in the distribution can be simulated by calling
evaluation oracle twice.
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Algorithm 1. Lower-Bound-Sampling
Input: evaluation oracle f : 2N → IR+, constraint k, lower bound β,generic submod-
ularity ratio γ, error ε, failure probability η
Output: a solution A that E[f(A)/ | A |] ≥ γ(1 − ε)β

1: Set smaller error bound ε̂b ←− ε/3
2: Set iteration bounds rb ←− �logγ·(1−ε̂)−1(3n/η)�, mb ← �log(k)/ε̂�
3: Set smaller failure probability η̂b ← 2η/(3rb(mb + 1))
4: Initialize A ← ∅, C ← N
5: for rb rounds do
6: Filter H ← {x ∈ C : ρx(A) ≥ β}
7: if |H| = 0 then
8: break
9: for i = 0 to mb do
10: Set z ← min{	(1 + ε̂)i
, |H|}
11: Set number of samples l ← 16�log(3/η̂b/ε̂b

2�
12: Sample X1, X2, ..., Xl � Dz

13: Set μ ← 1
l

∑l
j=1 Xi

14: if μ � 1 − 1.5ε̂b then
15: break
16: Set z∗ ← min{z, k− | A |}
17: Sample T � U(H, z∗)
18: Update A ← A ∪ T , C ← C \ T
19: if | A |= k then
20: break
21: return A

Definition 2. (Distribution [13]) Conditioned on the current state of the algo-
rithm, consider the process where the set T ∼ U(H, z − 1) and then the element
x ∼ H \ T are drawn uniformly. Let Dz denote the probability distribution over
the indicator random variable

Iz = 1[ρx(A ∪ T ) � β] (4)

E[Iz] can be regarded as the probability that the marginal benefit of the z-th
element is at least the lower bound β.

3.1 Analysis of Lower-Bound-Sampling Algorithm

First, we give the exact guarantee of the inner loop lines 10–15 of Algorithm 1 is
a standard unbiased estimator for the mean of Dz. Then we show after sampling
T � U(H, z∗) and adding the elements of T to A, the expected marginal gain
of the randomly sampled subset T is at least γ(1 − ε)β. In each round, the
elements in the candidate set can be filtered by ε̂b -fraction. At last, we show if
the number of elements in solution is less than the constraint, the selection of
number of rounds ensures that the marginal gain of unchosen elements is less
than β with high probability.



200 M. Cui et al.

Lemma 1. For any Bernoulli distribution Dz, lines 10–15 of the Lower-Bound-
Sampling algorithm hold one of the following properties with a high probability
of at least 1 − η̂b:

1. If μ ≤ 1 − 1.5ε̂b, then the mean of Dz is μ ≤ 1 − ε̂b;
2. If μ > 1 − 1.5ε̂b, then the mean of Dz is μ � 1 − 2ε̂b;

Lemma 2. In each round of the Lower-Bound-Sampling algorithm, we have
1. E[Ip] ≤ E [Iq ]

γ , ∀p ≥ q ≥ 1, p = 1, 2, 3, ..., |H|;
2. There are ε̂b-fraction of candidate elements filtered with probability at least

1 − η̂b.

Lemma 3. If the number of elements in output A of the Lower-Bound-Sampling
algorithm is less than cardinality constraint k, then with probability at least 1−η
H is empty set.

Theorem 1. The Lower-Bound-Sampling algorithm outputs the A ⊆ N with
|A| ≤ k in O(log(n/η)/ε) adaptive rounds such that with probability at least
1 − η the following properties hold:

1. There are O(n/ε) oracle queries in expectation.
2. E[f(A)/ | A |] ≥ γ(1 − ε)β.
3. If |A| ≤ k, then ρx(A) < β for all x ∈ N .

Due to length limitation, the full proofs of Lemma 1–3 and Theorem 1 are given
in the appendix.

4 Enumeration Algorithm

In this section, we put the Lower-Bound-Sampling algorithm into a greedy frame-
work for maximizing monotone non-submodular function with a cardinality con-
strain, namely Enumeration algorithm. First, we give a general overview of the
Enumeration algorithm. In every round, given an initial bound β, the Enumera-
tion algorithm at a decreasing bound (1−ε)jβ repeatedly calls subroutine Lower-
Bound-Sampling algorithm and obtains a candidate solution. The operation of
calling the Lower-Bound-Sampling is greedy, the expected average marginal gain
of the elements of the return set is at least γ(1−ε)β, the individual contribution
of other elements in ground set is less than β. At last, the algorithm compares
the function value of all candidate solutions and chooses the maximum as the
output.

To guarantee the quality of the solution, let λ∗
0 = max

x∈N
ρx(∅) = max{f(x) :

x ∈ N} denote the upper bound for marginal contributions of all individual
elements in the empty set. From the definition of generic submodularity ratio:
for any T ⊆ N and any x ∈ 2N \ T , we have ρx(T ) ≤ ρx(∅)

γ ≤ λ∗
0

γ , so the upper
bound for all marginal contributions is λ∗ := λ∗

0/γ. Hence, λ∗
0 ≤ OPT ≤ kλ∗ =

kλ∗
0/γ. The bound which the algorithm desires is β∗ = OPT/k, and the expected
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Algorithm 2. Enumeration
Input: evaluation oracle f : 2N → IR+, constraint k, generic submodularity ratio γ,

error ε, failure probability η
Output: the solution S

1: Set upper bounds λ∗
0 ← max{f(x) : x ∈ N}

2: Set iteration bound r ← �2log(k/γ)/ε�, m ← �log(3/γ)/ε�
3: Set smaller failure probability η̂ ← η/(r(m + 1))
4: Initialize S ← ∅
5: for i = 0 to r in parallel do
6: Set β ← (1 + ε)iλ∗

0/k
7: Initialize A ← ∅
8: for j = 0 to m do
9: Set T ← Lower-Bound-Sampling (fA, k − |A|, (1 − ε)jβ, ε, η̂)
10: Update A ← A ∪ T
11: if | A |= k then
12: break
13: if f(A) > f(S) then
14: Update S ← A

15: return S

average marginal gain of the elements is at least γ(1 − ε)β. So beginning with
the initial bound (1 + ε)iλ∗

0/k, the algorithm has O(log(k)/ε) rounds that can
suffice to approximate OPT . We try all the computed bounds in parallel such
that the adaptivity complexity of the algorithm is retained.

4.1 Analysis of Enumeration Algorithm

By constructing the average random process, we analyse the expected approxi-
mation factor of Enumeration algorithm.

Lemma 4. For the fixed input β and the size of output set S is k, then the

E[f(A)] ≥ (1 − e−γ2 − ε)OPT. (5)

Theorem 2. For any monotone, nonnegative non-submodular function f , Enu-
meration Algorithm outputs a set S ⊆ N with |S| ≤ k in O(log(n/η)/ε2) adaptive
rounds such that with probability at least 1 − η, the following properties hold:

1. There are O(nlog(k)/ε3) oracle queries in expectation
2. E[f(S)] ≥ (1 − e−γ2 − ε)OPT

5 Conclusion

In the paper, we devised the first parallel algorithm for maximizing a monotone
nonsubmodular function with a cardinality constraint. The key idea of our algo-
rithm is to divide the range that possibly contains OPT into logarithmical parts,



202 M. Cui et al.

and then uses the threshold-based greedy approach against each part in parallel.
Provided the generic submodularity ratio γ for the monotone set function, we
show that the algorithm deserves an approximation ratio (1−e−γ2 −ε) in expec-
tation. In particular, the algorithm achieves an approximation ratio (1−1/e−ε)
when the set function is submodular, coinciding with the state-of-art approxi-
mation ratio due to Fahrbach et al. [13].

Acknowledgements. The first two authors are supported by National Natural Sci-
ence Foundation of China (No. 11531014, 11871081). The third author is supported
by National Natural Science Foundation of China (No. 61772005) and Natural Science
Foundation of Fujian Province (No. 2017J01753). The fourth author is supported by
National Natural Science Foundation of China (No. 11701150).

References

1. Bian, A., Levy, K.Y., Krause, A., Buhmann, J.M.: Continuous DR-submodular
maximization: structure and algorithms. In: 31st International Proceedings Con-
ference on Neural Information Processing Systems, pp. 486–496. Curran Associates
Inc., Red Hook (2017)

2. Kulesza, A., Taskar, B.: Determinantal point processes for machine learning.
Found. Trends Mach. Learn. 5(2–3), 123–286 (2012)

3. Ito, S., Fujimaki, R.: Large-scale price optimization via network flow. In: 30th
International Proceedings on Neural Information Processing Systems, pp. 3862–
3870. Curran Associates Inc., Red Hook (2016)

4. Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset
selection, sparse approximation and dictionary selection. In: 28th International
Proceedings on International Conference on Machine Learning, pp. 1057–1064.
Omnipress, Madison (2011)

5. Parotsidis, N., Pitoura, E., Tsaparas, P.: Centrality-aware link recommendations.
In: 9th International Proceedings on Web Search and Data Mining, pp. 503–512.
Association for Computing Machinery, New York (2016)

6. Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM J. Comput.
44(5), 1384–1402 (2015)

7. Feige, U., Mirrokni, V., Vondrak, J.: Maximizing non-monotone submodular func-
tions. SIAM J. Comput. 40(4), 1133–1153 (2011)

8. Balkanski, E., Singer, Y.: The adaptive complexity of maximizing a submodular
function. In: 50th Annual ACM SIGACT Symposium on Theory of Computing,
pp. 1138–1151. Association for Computing Machinery, New York (2018)

9. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions—I. Math. Program. 14(1), 265–294 (1978)

10. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 314–318
(1999)

11. Balkanski, E., Rubinstein, A., Singer, Y.: An exponential speedup in parallel run-
ning time for submodular maximization without loss in approximation. In: 30th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 283–302. Society for
Industrial and Applied Mathematics, USA (2019)



Guarantees for Nonsubmodular Maximization with Cardinality Constraints 203

12. Ene, A., Nguyen, H.L.: Submodular maximization with nearly-optimal approxima-
tion and adaptivity in nearly-linear time. In: 30th Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 274–282. Society for Industrial and Applied Mathe-
matics, USA (2019)

13. Fahrbach, M., Mirrokni, V., Zadimoghaddam, M.: Submodular maximization with
nearly optimal approximation, adaptivity and query complexity. In: 30th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 255–273. Society for Indus-
trial and Applied Mathematics, USA (2019)

14. Chekuri, C., Quanrud, K.: Submodular function maximization in parallel via the
multilinear relaxation. In: 30th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 303–322. Society for Industrial and Applied Mathematics, USA (2019)

15. Chekuri, C., Quanrud, K.: Parallelizing greedy for submodular set function maxi-
mization in matroids and beyond. In: 51st Annual ACM SIGACT Symposium on
Theory of Computing, pp. 78–89. Association for Computing Machinery, New York
(2019)

16. Ene, A., Nguyn, H.L., Vladu, A.: Submodular maximization with matroid and
packing constraints in parallel. In: 51st Annual ACM SIGACT Symposium on
Theory of Computing, pp. 90–101. Association for Computing Machinery, New
York (2019)

17. Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy
maximization of non-submodular functions with applications. In: 34th Interna-
tional Proceedings on International Conference on Machine Learning - Volume 70,
pp. 498–507. JMLR.org (2017)

18. Kuhnle, A., Smith, J., Crawford, V.G., Thai, M.T.: Fast maximization of non-
submodular, monotonic functions on the integer lattice. In: Proceedings on Inter-
national Conference on Machine Learning, pp. 2786–2795 (2018)

19. Gong, S., Nong, Q., Liu, W., Fang, Q.: Parametric monotone function maximiza-
tion with matroid constraints. J. Global Optimiz. 75(3), 833–849 (2019). https://
doi.org/10.1007/s10898-019-00800-2

20. Nong, Q., Sun, T., Gong, S., Fang, Q., Du, D., Shao, X.: Maximize a monotone
function with a generic submodularity ratio. In: Du, D.-Z., Li, L., Sun, X., Zhang,
J. (eds.) AAIM 2019. LNCS, vol. 11640, pp. 249–260. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-27195-4 23

https://doi.org/10.1007/s10898-019-00800-2
https://doi.org/10.1007/s10898-019-00800-2
https://doi.org/10.1007/978-3-030-27195-4_23


Fast Algorithms for Maximizing
Monotone Nonsubmodular Functions

Bin Liu(B) and Miaomiao Hu

School of Mathematical Sciences, Ocean University of China,
Qingdao 266100, China
binliu@ouc.edu.cn

Abstract. Recently, there has been much progress on improving
approximation for problems of maximizing monotone (nonsubmodular)
objective functions, and many interesting techniques have been devel-
oped to solve these problems. In this paper, we develop approximation
algorithms for maximizing a monotone function f with generic submod-
ularity ratio γ subject to certain constraints. Our first result is a simple
algorithm that gives a (1− e−γ − ε)-approximation for a cardinality con-
straint using O(n

ε
log n

ε
) queries to the function value oracle. The second

result is a new variant of the continuous greedy algorithm for a matroid
constraint. We combine the variant of continuous greedy method and
contention resolution schemes to find a solution with approximation ratio
(γ2(1 − 1

e
)2 − O(ε)), and the algorithm makes O(rnε−4log2 n

ε
) queries to

the function value oracle.

Keywords: Nonsubmodular function · Maximization · Cardinality
constraint · Matroid constraint · Approximation algorithm

1 Introduction

In these years, optimization problems involving maximization of a set function
have attracted much attention. Many combinatorial optimization problems can
be formulated as the maximization of a set function. For example, the wel-
fare maximization problem is a submodular function maximization problem.
Although submodular functions have some good properties, such as diminishing
marginal returns, and they also have important applications, many objective
functions in practical problems are not submodular. In these settings, we turn
to study the problem of maximizing nonsubmodular functions.

The problems of maximizing a submodular function subject to combinato-
rial constraints are generally NP-hard, so we turned to find approximation algo-
rithms for solving these problems. The greedy approach is a basic technique for
these problems: start from an empty set; iteratively add to the current solution
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set one element that results in the largest marginal gain of the objective function
while satisfying the constraints. Meanwhile, the continuous greedy approach is
basic technique for maximizing a submodular function under a matroid con-
straint. We should note that a continuous greedy algorithm is always combined
with some rounding methods in order to get the feasible solution, such as pipage
rounding and swap rounding.

Given a ground set N = {1, 2, ..., n}, a set function f is nonnegative if f(S) ≥
0 for any S ⊆ N . The function f is monotone if f(S) ≤ f(T ) whenever S ⊆ T .
Moreover, f is called submodular if f(S ∪ {j}) − f(S) ≥ f(T ∪ {j}) − f(T ) for
any S ⊆ T ⊆ N , j ∈ N \T . Without loss of generality, for any pair of S, T ⊆ N ,
denote by fS(T ) = f(S ∪ T )−f(S) the marginal gain of the set T in S. Specially,
denote by fS(j) = f(S ∪ {j}) − f(S) the marginal gain of the singleton set {j}
in S, for any S ⊆ N and any j ∈ N . Moreover, we assume there is a value oracle
for the function f .

In this paper, we deal with the following two optimization problems:

Problem (1): max{f(S) : |S| ≤ k, S ⊆ N}
Problem (2): max{f(S) : S ∈ I, S ⊆ N}

where f : 2N → R+ is a monotone (nonsubmodular) function, k is a positive
integer, and (N, I) is a matroid.

In the previous studies, it is proved that, when f is nonnegative, monotone
and submodular, the greedy approach yield a (1 − 1

e )-approximation for a car-
dinality constraint [14], which is also proved to be optimal [13]. After that, lots
of results obtained for maximizing a submodular function subject to different
constraints. But for nonsubmodular functions, there are only a few results. On
the purpose of using known results or methods for maximizing submodular func-
tions, one can define some parameters, such as submodularity ratio, to deal with
the maximization of nonsubmodular functions. Das and Kempe [5] first defined

the submodularity ratio γ̂ = minS,T⊆N

∑
j∈T \S fS(j)

fS(T ) , which describes how close
a function is to being submodular. Afterwards, Bian et al. [3] proved that the
greedy approach gives a 1

α (1− e−αγ̂)-approximation for maximizing a monotone
nonsubmodular function with curvature α and submodularity ratio γ̂ under a
cardinality constraint. Recently, Nong et al. [15] proposed the generic submod-
ularity ratio which is the largest scalar γ that satisfies fS(j) ≥ γfT (j), for any
S ⊆ T ⊆ N. What’s more, they showed that the greedy algorithm can achieve
a (1 − e−γ)-approximation and a γ

1+γ -approximation for maximizing a strictly
monotone nonsubmodular function with generic submodularity ratio γ under a
cardinality constraint and a matroid constraint respectively.

Continuous greedy algorithm is always combined with some rounding meth-
ods in solving the problem of maximizing a submodular function under a matroid
constraint. In the previous studies, Vondrák [17] showed that there exists a
(1−e−α)

α -approximation algorithm for any monotone submodular function with
curvature α and matroid constraints, achieving by the continuous greedy app-
roach and the pipage rounding technique [1]. Later, Badanidiyuru et al. [2] pro-
posed an accelerated continuous greedy algorithm for maximizing a monotone
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submodular function under a matroid constraint using the multilinear exten-
sion and swap rounding, and they achieved a (1 − 1

e − ε)-approximation. The
pipage rounding and swap rounding technique are effective methods, but it
depends on the submodularity of the objective function. In addition, Chekuri
et al. [4] proposed the contention resolution schemes, another framework for
rounding, and showed a (1− 1

e )-approximation for rounding a fractional solution
under a matroid constraint. Recently, Gong et al. [9] combined the continu-
ous greedy algorithm and contention resolution schemes technique to achieve a
γ(1 − e−1)(1 − e−γ − O(1))-approximation.

For nonsubmodular functions optimization, there are other research efforts in
application-driving, such as supermodular-degree [7,8], difference of submodular
functions [10,12,18], and discrete difference of convex functions [11,19].

Our Result. In this paper, our main contribution is to develop algorithms
that have both theoretical approximation guarantees, and fewer queries of the
function value oracle. We use simple decreasing threshold algorithm to solve the
problem of maximizing a nonsubmodular function under a cardinality constraint.
The following Theorem 1 implies the result in [2] for submodular functions (the
case that γ = 1 in Theorem 1). Besides, we use the continuous greedy approach
and contention resolution schemes to resolve the nonsubmodular maximizing
problem under a matroid constraint. In Theorem 2, we improves the query times
of a former result in [15], from O(n2) to O(rnε−4log2 n

ε ). Formally, we obtain
the following two theorems.

Theorem 1. There is a (1 − e−γ − ε)-approximation algorithm for maximizing
a monotone function with generic submodularity ratio γ subject to a cardinality
constraint, using O(n

ε log n
ε ) queries to the function oracle.

Theorem 2. There is a (γ2(1−e−1)2−O(ε))-approximation algorithm for max-
imizing a monotone function with generic submodularity ratio γ subject to a
matroid constraint, using O(rnε−4log2 n

ε ) queries to the function oracle.

2 Preliminary

In this section, we propose some definitions and properties that we will use in
the following of the paper.

Definition 1 (Generic Submodularity Ratio [15]).
Given a ground set N and a monotone set function f : 2N → R+, the generic
submodularity ratio of f is the largest scalar γ such that for any S ⊆ T ⊆ N
and any j ∈ N \ T, fS(j) ≥ γfT (j).

Definition 2 (The Multilinear Extension [2]).
For a function f : 2N → R+, we define the multilinear extension of f is F (x) =
E[f(R(x))], where R(x) is a random set where element i appears independently
with probability x.
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Definition 3 (Matroid [6]).
A matroid M = (N, I) can be defined as a finite N and a nonempty family
I ⊂ 2N ,called independent set, such that:
(i) A ⊂ B,B ∈ I, then A ∈ I;
(ii) A,B ∈ I, |A| ≤ |B|, then there is an element j ∈ B\A, A + j ∈ I.

Definition 4 (Matroid Polytope [9]).
Given a matroid (N, I), the matroid polytope is defined as PI = conv{1I : I ∈
I} = {x ≥ 0 : for any S ⊂ N ;

∑
j∈S xj ≤ rI(S), where rI(S) = max{|I| : I ⊂

S, I ⊂ I} is the rank function of matroid (N, I)(hereinafter called r).

Definition 5 (Contention Resolution Schemes (CR Schemes) [4]).
For any x ∈ PI and any subset A ⊂ N , a CR scheme π for PI is a removal
procedure that returns a random set πx(A) such that πx(A) ⊂ A ∩ support(x)
where support(x) = {j ∈ N |xj > 0} and πx(A) ∈ (I) with probability 1.

Afterwards, Gong et al. [9] proved that the CR schemes have a γ(1 − 1
e )-

approximation in the nonsubmodular setting, where γ is the generic submodu-
larity ratio of the objective function.

Lemma 1 (Property of the generic submodularity ratio [9]).

(a) γ ∈ [0, 1];
(b) f is submodular iff γ = 1;
(c)

∑
j∈T\S fS(j) ≥ γfS(T ), for any S, T ⊆ N

Lemma 2 ([16]).
Let M = (N, I) be a matroid, and B1, B2 ∈ B be two bases. Then there is a
bijection φ : B1 → B2 such that for every b ∈ B1, we have B1 − b + φ(b) ∈ B.

Lemma 3 ([2]). (Relative + Additive Chernoff Bound) Let X1,X2, ...,Xm be
independent random variables such that for each i, Xi ∈ [0, 1], and let X =
1
m

∑m
i=1 Xi and μ = E[X]. Then

Pr[X > (1 + α)μ + β] ≤ e− mαβ
3 ,

and
Pr[X < (1 − α)μ − β] ≤ e− mαβ

2 .

Note that the generic submodularity ratio of a strictly monotone function
is greater than 0. In the following of the paper, we consider the problem of
maximizing a nonnegative strictly monotone and normalized set function under
certain constraints.
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Algorithm 1. Simple Decreasing Threshold Algorithm
Input: f : 2N → R+, k ∈ {1, 2, ..., n}.
Output: A set S ⊂ N satisfying |S| ≤ k.
1: S ← ∅;
2: d ← maxj∈Nf(j);
3: for (w = d

γ
; w ≥ εd

nγ
; w ← 1−ε

γ
w) do

4: for all i ∈ N do
5: if |S ∪ {j}| ≤ k and fS(j) ≥ w then
6: S ← S ∪ {j}
7: end if
8: end for
9: end for

10: return S

3 Cardinality Constraint

First we present a simple algorithm, Algorithm 1, for Problem (1): max{f(S) :
|S| ≤ k, S ⊆ N}, where f is a monotone function with generic submodularity
ratio γ. Our goal is to develop an algorithm that have both theoretical approxi-
mation guarantee, and fewer queries of function value oracle.

Next we prove Theorem 1. Firstly, we check the number of queries of Algo-
rithm 1. Obviously, there are two loops in Algorithm 1. Each inner loop executes
n queries of value oracle. According to the termination condition of the outer
loop, we get the query numbers of per outer loop is O(1ε log n

ε ). Therefore the
algorithm using O(n

ε log n
ε ) queries of the value oracle. For the approximation

ratio, it is necessary to prove the following claim.

Claim 1. Let O be an optimal solution. Given a current solution S at the
beginning of each iteration, the gain of the element added to S is at least
1−ε
k

∑
a∈O\S fS(a).

Proof. Suppose that the next element chosen is a and the current threshold value
is w. Then it implies the following inequalities

{
fS(x) ≥ w, if x = a;
fS(x) ≤ w

1−ε , if x ∈ O \ S ∪ {a}.

The above inequalities imply that fS(a) ≥ (1 − ε)fS(x) for each x ∈ O\(S ∪
{a}). Taking an average over these inequations, we have

fS(a) ≥ 1 − ε

|O\S|
∑

x∈O\S

fS(x) ≥ 1 − ε

k

∑

x∈O\S

fS(x).

Now we finish the proof of Claim 1. 
�
Then it is straightforward to finish the proof of Theorem 1.
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Proof. Consider on a solution Si = {a1, a2, ..., ai}. After i steps, by Claim 1, we
have

fSi
(ai+1) ≥ 1 − ε

k

∑

a∈O\Si

fSi
(a).

Then ∑

a∈O\Si

fSi
(a) ≥ γfSi

(O) ≥ γ(f(O) − f(Si)).

Therefore,

f(Si+1) − f(Si) = fSi
(a + 1) ≥ 1 − ε

k
γ(f(O) − f(Si)).

We have

f(Sk) ≥ (1 − (1 − (1 − ε)γ
k

)k)f(O)

≥ (1 − e−γ(1−ε))f(O)

≥ (1 − e−γ − ε)f(O).

So we complete the proof of Theorem 1. 
�

4 Matroid Constraint

In this section we give a (γ2(1− 1
e )2 −O(ε))-approximation algorithm for Prob-

lem (2): max{f(S) : S ∈ I, S ⊆ N}, where f is a monotone function with
generic submodularity ratio γ, using O(rnε−4log2 n

ε ) queries to the value oracle.
The general outline of our algorithm follows from the continuous greedy algo-
rithm in [2]. With a fractional solution being built up gradually from x = 0, and
finally using the contention resolution schemes from [4] to convert the fractional
solution to an integer one.

Notation. In the following, for x ∈ [0, 1]N , we denote by R(x) a random set
that contains each element i ∈ N independently with probability xi. We denote
R(x+ ε1S) as R(x, S). Before we analyse the approximation of Algorithm 2, we
give and analyse a subroutine, which is used in Algorithm 2. This subroutine
takes a current fractional solution x and adds to it an increment corresponding
to an independent set B, to obtain x+ ε1B . The way we find B in Algorithm 3
is similar to that in Algorithm 1.

Claim 2. Let O be an optimal solution. Given a fractional solution x, Algorithm
3 produces a new fractional solution x′ = x + ε1B such that

F (x′) − F (x) ≥ ε(γ(1 − ε) − 2ε

γ
)f(O) − F (x′).
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Algorithm 2. Revised Continuous Greedy Algorithm
Input: f : 2N → R+, I ⊆ 2N .
Output: A set S ⊆ N satisfying S ∈ I.
1: x ← 0;
2: for (t ← ε; t ≤ 1; t ← t + ε) do
3: B ← the output of Algorithm 3
4: x ← x + ε1B

5: end for
6: S ← contention resolution schemes (x, I)
7: return S

Algorithm 3. Decreasing Threshold procedure
Input: f : 2N → R+, x ∈ [0, 1]N , ε ∈ [0, 1], I ⊆ 2N .
Output: A set B ⊂ N satisfying B ∈ I
1: B ← ∅;
2: d ← maxj∈Nf(j);
3: for (w = d

γ
; w ≥ εd

rγ
; w ← 1−ε

γ
w) do

4: for all e ∈ N do
5: we(B,x) ← estimate of E[fR(x+ε1B)(e)] by averaging rlogn

ε2
random samples.

6: if B ∪ {e} ∈ I and we(B,x) ≥ w then
7: B ← B ∪ {e}
8: end if
9: end for

10: end for
11: return B

Proof. Suppose that Algorithm3 returns r elements, B = {b1, b2, ..., br}(indexed
in the order in which they were chosen). In fact, Algorithm 3 might return fewer
than r elements if the threshold w drops below εd

r before termination. In this
case, we formally add dummy elements of value 0 so that |B| = r.

Let O = {o1, o2, ..., or} be an optimal solution, with φ(bi) = oi as specified
by Lemma 2. Additionally, let Bi denote the first i elements of B, and let Oi

denote the first i elements of O.
Note that by Lemma 3, we get that there is an error while using we(Bi,x) to

estimate E[fR(x,Bi)(e)], with high probability we have the following inequality

|we(Bi,x) − E[fR(x,Bi)(e)]| ≤ εf(O)
γr

+ εE[fR(x,Bi)(e)]. (1)

When an element bi is chosen, oi is a candidate element which could have
been chosen instead of bi. Thus, according to Algorithm 3, and because either
oi is a potential candidate of value within a factor of 1 − ε of the element we
chose instead, or the algorithm terminated and all remaining elements have value
below εd

γr , we have

wbi
(Bi−1,x) ≥ (1 − ε)woi

(Bi−1,x) − εd

γr
. (2)
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Combining (1) and (2), and the fact that f(O) ≥ d, we have

E[fR(x,Bi−1)(bi)] ≥ (1 − ε)E[fR(x,Bi−1)(oi)] − 2
εf(O)

γr
. (3)

Then at each step in Algorithm 2:

F (x′) − F (x) = F (x + ε1B) − F (x)

=
r∑

i=1

(F (x + ε1Bi
) − F (x + ε1Bi−1))

=
r∑

i=1

ε
∂F

∂xbi

∣
∣
∣
x+ε1Bi−1

≥
r∑

i=1

εE[fx+ε1Bi−1 )
(bi)]

≥
r∑

i=1

ε((1 − ε)E[fx+ε1Bi−1 )
(oi)] − 2

εf(O)
γr

)

≥
r∑

i=1

ε((1 − ε)γE[fR(x+ε1B∪{o1,o2,...,oi−1})(oi)] − 2
εf(O)

γr
)

= ε((1 − ε)γE[f(R(x′) ∪ O) − f(R(x′))] − 2
εf(O)

γ

≥ (γε(1 − ε) − 2ε2

γ
)f(O) − εF (x′)

= ε((γ(1 − ε) − 2ε

γ
)f(O) − F (x′)).

The second inequality follows from that oi is a candidate element when bi is
chosen. The first and last inequalities are due to monotonicity, and the third
inequality is due to the definition of generic submodularity ratio γ. 
�
Claim 3. Algorithm 3 makes O( 1

ε3 nrlog2 n
ε ) queries to the function oracle.

Proof. Obviously, there are two loops in Algorithm 3. According to the termi-
nation condition of the outer loop, we get the query numbers of per outer loop
is O(1ε log n

ε ). The number of iterations in the inner loop is n, and the number of
samples per evaluation of F is 1

ε2 rlogn in per inner loop. Therefore, Algorithm
3 makes O( 1

ε3 nrlog2 n
ε ) queries to the value oracle. 
�

Claim 4. Algorithm 2 has an approximation ratio of γ2(1 − 1
e )2 − O(ε).

Proof. Define Ω = (γ(1 − ε) − 2ε
γ )f(O). Substituting this in the result of Claim

2, we have
F (x(t + ε)) − F (x(t)) ≥ ε(Ω − F (x(t + ε))).
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Add Ω − F (x(t + ε)) to the inequation we have

Ω − F (x(t + ε)) ≤ Ω − F (x(t))
1 + ε

.

Using induction to this inequation, we have

Ω − F (x(t)) ≤ Ω

(1 + ε)
t
ε

.

Substituting t = 1 and rewriting the inequation, we have

F (x(t)) ≥ (1 − 1
(1 + ε)

1
ε

)Ω

= (1 − 1
(1 + ε)

1
ε

)(γ(1 − ε) − 2ε

γ
)

≥ γ(1 − 1
e
) − O(ε).

Besides, when we use CR schemes to convert the fractional solution to the
integer one, there also have an approximation ratio which is γ(1 − 1

e ).
Therefore, the approximation ratio of Algorithm 2 is γ2(1 − 1

e )2 − O(ε). 
�
Claim 5. Algorithm 2 makes O( 1

ε4 nrlog2 n
ε ) queries to the function oracle.

Proof. Observe that in Algorithm 2, the queries to the function oracle is only
related to Algorithm 3. Therefore the total number of oracle calls to the func-
tion is equal to the number of the loop multiplied with the number of oracle
calls in one iteration. So we get the queries to the function oracle are at most
O( 1

ε4 nrlog2 n
ε ). 
�

References

1. Ageev, A.A., Sviridenko, M.I.: Pipage rounding: a new method of constructing
algorithms with proven performance guarantee. J. Comb. Optimiz. 8(3), 307–328
(2014). https://doi.org/10.1023/B:JOCO.0000038913.96607.c2
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Abstract. Extracting representative elements from a large stream of
data is an important and interesting problem. Such problem can be for-
mulated as maximizing a normalized monotone non-submodular set func-
tion subject to a cardinality constraint. In this paper, we first present
an algorithm called Non-SubModular-Sieve-Streaming++ for solv-
ing this problem by utilizing the concept of diminishing-return ratio,
which requires only one pass over the data and obtain tight approxi-
mation ratio and minimum memory complexity. Then, for reducing the
number of adaptive complexity, we propose an algorithm called Non-
SubModular-Batch-Sieve-Streaming++ by buffering a small frac-
tion of the stream and applying a filtering procedure. We analyze the
approximation ratios of the two algorithms, which generalize the results
of Sieve-Streaming++ and Batch-Sieve-Streaming++ to the non-
submodular case. Finally, we illustrate the feasibility and effectiveness
of the two algorithms through a numerical example and compare the
corresponding results with the existing algorithms.

Keywords: Streaming algorithm · Non-submodular functions ·
Cardinality constraint

1 Introduction

With the development of science and technology, there are massive data coming
from social networks, sensor data, videos, etc. In such cases, the amount of input
data is much larger than the main memory capacity of individual computers. It
is necessary to extract useful information from the massive data. Therefore,
the study on the data streaming models is meaningful (cf. [30] and references
therein). That is to say, we consider the situation where each item in the ground
set arrives sequentially, and we are allowed to keep only a small number of the
items in memory at any point. In general, the memory is restricted to be limited
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space which is sublinear with respect to the input size. Data streaming models
have many applications in lots of aforementioned fields (cf. [1,13,14,16,22,23,36]
and references therein). For data summarization, a systematic way is to turn the
problem into selecting a subset of data elements optimizing a utility function that
quantifies “respectiveness” of the selected set. These objective functions often
satisfy submodularity. Hence, many data streaming models require maximizing
submodular set functions subject to cardinality constraints [12,21,22,25].

Many interesting results obtained about the submodular optimization, such
as [4,5,18,31] subject to a cardinality constraint, [3,15,27,33] subject to a knap-
sack constraint, [7,20,34] subject to a matroid, etc. On the data streaming sum-
marization, Badanidiyuru et al. [2] provided the first efficient method called
Sieve-Streaming for monotone submodular function maximation, subject to
the constraint that at most k points are selected. It requires only a single pass
over the data, in arbitrary order, and presented a (12 − ε) approximation ratio,
O(log k/ε) update time and O(k log k/ε) memory cost for any ε > 0. Then, Buch-
bider et al. [6] proposed an improved algorithm with a 1

4 approximation ratio, but
the memory complexity being Θ(k). Norouzi-Fard et al. [32] introduced an algo-
rithm for random order stream with 1

2 approximation ratio. Following the results
in [2], Kazemi et al. [24] presented an algorithm called Sieve-Streaming++

with (12 − ε) approximation ratio, O(log k/ε) update time and O(k/ε) mem-
ory cost for any ε > 0. The memory cost is superior to the result of Sieve-
Streaming in [2]. Furthermore, the Sieve-Streaming++ requires at least one
query to the oracle for each incoming element of the stream, which increases
its adaptive complexity. To reduce the adaptive complexity, Kazemi et al. [24]
designed an hybrid algorithm called Batch-Sieve-Streaming++ with (12 − ε)
approximation ratio, O(B+k/ε) memory complexity, and O(N log B log k/(Bε))
adaptive complexity, where ε is a constant smaller than 1

3 , N is the total number
of elements in the stream and B is the buffer size. The other references on the
data streaming models, readers can see [8–10,19,29], etc.

However, for many applications, including experimental design and sparse
Gaussian processes [28], objective function is in general not submodular [26].
To explain the good empirical performance, Das and Kempe [11] proposed the
submodularity ratio, a quantity characterizing how close a set function is to be
submodular. Following the idea of [2], Elenberg et al. [17] proposed the first
streaming algorithm for weakly submodular case with constant approximation
ratio being γf (1 − ε)(3 − e−γf /2 − 2

√
2 − e−γf /2)/2 where ε > 0 and γf is the

weak submodularity ratio. Recently, Wang et al. [35] designed and analyzed
four dimishing-return sieve-streaming algorithms for non-submodular function
utilizing the concept of diminishing-return ratio.

In this paper, we consider the problem

max
S⊆V

f(S)

s.t. |S| ≤ k,
(1)
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where f : 2V → R+ is a non-negative and normalized monotone nonsubmodular
function with the diminishing-return ratio γ, V is a data stream and k is a
positive integer.

In order to overcome (1), we propose two new algorithms which generalize
the Sieve-Streaming++ algorithm and Batch-Sieve-Streaming++. Using
the diminishing-return ratio, we analyze the approximation ratios of these algo-
rithms and illustrate the feasibility and effectiveness of the algorithms through
numerical experiment.

The rest of this paper is organized as follows. In Sect. 2, we introduce some
definitions and results about submodular and non-submodular set function. In
Sect. 3, we present two algorithms with the analysis of the approximation ratios.
In Sect. 4, we give a numerical example to illustrate the effectiveness of the two
algorithms and compare them with the corresponding algorithms. We give some
conclusions in Sect. 5. In addition, the formal proofs are omitted due to the
length limitation but are nevertheless given in the appendix.

2 Preliminaries

In this section, we give some definitions and results.
A set function f : 2V → R+ on a ground set V is called submodular if it

satisfies the diminishing marginal return property, i.e., for any subsets S ⊆ T ⊆
V and e ∈ V \ T, we have

f(S ∪ {e}) − f(S) ≥ f(T ∪ {e}) − f(T ).

An equivalent definition is

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ),

for any subsets X,Y ⊆ V.
The marginal gain of f with respect to e and S is defined as

f({e}|S) = f(S ∪ {e}) − f(S)

for any given e ∈ V and S ⊆ V.
Similarly, for any subsets S, T ⊆ V , we define the marginal gain of f with

respect to S and T is
f(S|T ) = f(S ∪ T ) − f(T ).

We say that f is monotone if f(X) ≤ f(Y ) for any X ⊆ Y and f is non-
negative and normalized if f(S) ≥ 0 for any S ⊆ V and f(∅) = 0.

Now we introduce the definitions of Diminishing-Return Ratio and Weak
Submodularity Ratio.

Definition 1. (Diminishing-Return Ratio) [35] The diminishing-return ratio of
a normalized nonnegative monotone set function f is the largest scalar γ ∈ [0, 1]
such that for any S ⊆ T, e /∈ T,

γf(e|T ) ≤ f(e|S).
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This γ can be reformulated as

γ = min
S⊆T,e/∈T

f(e|S)
f(e|T )

.

Definition 2. (Weak Submodularity Ratio) [17] A monotone non-negative set
function f : 2V → R+ is called γf -weakly submodular for an integer k if

γf ≤ γk := min
T,S⊆G:|T |,|S\T |≤k

∑
v∈S\T f(v|T )

f(S|T )
.

When both the numerator and denominator are equal to 0, the ratio is defined
as 1.

It is worth noting that we consider the function f as an oracle. For (non-)
submodular optimization, the number of calls to the oracle is widely used as the
time complexity measurement.

3 Main Results

In this section, we propose two algorithms for solving (1), which generalize the
Sieve-Streaming++ and Batch-Sieve-Streaming++. The main observation
of Sieve-Streaming++ is that in the process of guessing OPT, the previous
algorithm (cf. Sieve-Streaming) uses Δ as a lower bound for OPT, where
Δ is the maximum value of singleton elements observed so far. In fact, it has
OPT ≥ LB = max

τ
f(Sτ ) and as a result, there is no need to keep thresholds

smaller than LB/2k. Also, for a threshold τ , there is at most LB/τ elements in
set Sτ . These two important observations can reduce the memory complexity.
Based on the idea of Sieve-Streaming++, we present the following Algorithm
for non-submodular function with diminishing-return ratio γ ∈ [0, 1].

Now we analyze the approximation ratio of Algorithm 1.

Algorithm 1. Non-SubModular-Sieve-Streaming++

Input: Non-submodular function f along with diminishing-return ratio γ ∈ [0, 1],
data stream V , cardinality constraint k, and error term ε.
1: τmin ← 0, Δ ← 0 and LB ← 0
2: while there is an incoming item e from V do
3: Δ ← max {Δ, f({e})}
4: τmin = max{LB,Δ}

2γ ·k
5: Discard all sets Sτ with τ < τmin

6: for τ ∈ Tε =
{
(1 + ε)i | τmin/1 + ε ≤ (1 + ε)i ≤ Δ/γ

}

7: if τ is a new threshold then Sτ ← ∅
8: if |Sτ | < k and f({e}|Sτ ) ≥ γ · τ then
9: Sτ ← Sτ ∪ {e} and LB ← max{LB, f(Sτ )}
10: return argmaxSτ

f(Sτ )
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Lemma 1. Consider any iteration of Algorithm 1 with subset Sτ , we have

f(Sτ ) ≥ γ · τ · |Sτ |. (2)

Let τ∗ = OPT
2γ ·k , where OPT is the optimal value of (1). We have the following

result.

Lemma 2. For any given ε > 0, there exists a value τ ∈ Tε such that

(1 − ε) · τ∗ ≤ τ < τ∗. (3)

From the above lemmas, we can obtain the following theorem.

Theorem 1. For any given ε ∈ (0, 1), and non-submodular function f with
diminishing-return ratio γ ∈ [0, 1]. Algorithm 1 produces a set S such that |S| ≤
k and f(S) ≥ min

{
(1−ε)γ

2γ , 1 − 1
2γ

}
OPT , where OPT is the optimal value of (1).

As follows, we introduce the second algorithm for solving (1), which is the
generalization of Batch-Sieve-Streaming++. The main difference of two algo-
rithms is that Batch-Sieve-Streaming++ is used to maximizing the submod-
ular function, but Algorithm 2 proposed in this section is used to maximizing the
nonsubmodular function with diminishing-return ratio γ ∈ [0, 1]. Batch-Sieve-
Streaming++ has two important properties: (i) the number of adaptive rounds
is near-optimal, and (ii) it has an optimal memory complexity (by adopting an
idea similar to Sieve-Streaming++). In algorithm 2, we persist the two merits.

Algorithm 2. Non-SubModular-Batch-Sieve-Streaming++

Input: Stream of data V , non-submodular set function f along with diminishing-r-
eturn ratio γ ∈ [0, 1], cardinality constraint k, buffer B with a memory B, Threshold,
error term ε.
1: Δ ← 0 , τmin ← 0 , LB ← 0 and B ← ∅
2: while there is an incoming element e from V do
3: Add e to B
4: if the buffer B is Threshold percent full then

5: Δ ← max{Δ, maxe∈B f(e)} , τmin = max{LB,Δ}
2γk(1+ε)

6: Discard all sets Sτ with τ < τmin

7: for τ ∈ Tε =
{
(1 + ε)i | τmin ≤ (1 + ε)i ≤ Δ/γ

}

8: If τ is a new threshold then assign a new set Sτ to it , i.e., Sτ ← ∅
9: if |Sτ | < k then
10: T ← Non-SubModular-Threshold-Sampling (fSτ , B, k − |Sτ |, τ, ε, γ)
11: Sτ ← Sτ ∪ T
12: LB = maxSτ f(Sτ ) and B ← ∅
13: return argmaxSτ

f(Sτ )

In the process of implementing Algorithm 2, we should call Algorithm 3
several times. Now we give the detailed description of Algorithm 3.

In the following, we put forward the analysis on the approximation ratio of
Algorithm 2.



N-SSM with Minimum Memory and Low Adaptive Complexity 219

Algorithm 3. Non-SubModular-Threshold-Sampling

Input: Non-submodular set function f along with diminishing-return ratio γ ∈ [0, 1],
set of buffer items B, cardinality constraint k, threshold τ , error term ε.
1: S ← ∅
2: while |B| > 0 and |S| < k do
3: update B ← {x ∈ B : f({x}|S) ≥ γ · τ} and filter out the rest.
4: for i = 1 to � 1

ε
	 do

5: Sample x uniformly at random from B \ S
6: if f({x} | S) ≤ (1 − ε) · γ · τ then
7: break and go to Line 2
8: else
9: S ← S ∪ {x}
10: if |S| = k then return S
11: for i = �log1+ε(1/ε)	 to �log1+ε k	 − 1 do
12: t ← min{
(1 + ε)i+1 − (1 + ε)i�, |B \ S|, k − |S|}
13: Sample a random set T of size t from B \ S
14: if |S ∪ T | = k then
15: return S ∪ T

16: if f(T |S)
|T | ≤ (1 − ε) · γ · τ then

17: S ← S ∪ T and break
18: else
19: S ← S ∪ T
20: return S

Theorem 2. For any given ε ∈ (0, 1
3 ), and non-submodular function f with

diminishing-return ratio γ ∈ [0, 1], Algorithm 2 produces a set S such that
|S| ≤ k and f(S) ≥ min

{
(1−3ε)γ

2γ , 1 − 1
2γ

}
OPT , where OPT is the optimal

value of (1).

Similar to the Sieve-Streaming++ and Batch-Sieve-Streaming++,
Algorithm 1 can obtain O(k/ε) memory complexity and O(log(k/γ)/ε) update
time. Algorithm 2 can obtain O(B+k/ε) memory complexity and O(N log B log
(k/γ)/(Bε)) adaptive complexity. Table 1 gives a comparison of Algorithms 1-2
in this paper with the Algorithms 3-4 in [35].

Table 1. Comparison of Algorithms 1-2 in this paper with Algorithms 3-4 in [35]

Indexes Algorithm 1 Algorithm 2 Algorithms 3-4

Appro. ratio min
{

(1−ε)γ
2γ , 1 − 1

2γ

}
min

{
(1−3ε)γ

2γ , 1 − 1
2γ

}
min

{
αγ
2γ , 1 − 1

2γ

}

Memory O( k
ε
) O(B + k

ε
) O( k log(k/γ)

ε
)

Update time O( log(k/γ)
ε

) −−−− O( log(k/γ)
ε

)
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4 Numerical Examples

In this section, we apply Algorithms 1-2 to support selections for sparse linear
regression. And we compare the calculating results with the results in [35] and
[17]. The whole codes are written in Matlab R2018b. All the numerical results
are carried out on a desktop computer with Intel(R) Core(TM) i7-8700, CPU
3.20 GHz and RAM 8.00 GB. The example is similar to that in [35]. For the
convenience of readers, we give a detailed description as follows.

Given the feature matrix X ∈ Rn×d with n samples and d features, and
the response vector y ∈ Rn, we need to select k features to maximize the R2

statistic. Let S be the set of selected features, XS be the columns of X indexed
by S, and PS := XS(XT

S XS)−1XT
S . Then the problem can be formulated as the

non-submodular maximization (1) with f(S) := ‖PSy‖22.
Consider the distributed setting for sparse linear regression. The feature

matrix X is generated by the following process:

Xi,t+1 =
√

1 − α2Xi,t + αεit,

where α = 0.5 and εit is i.i.d. Gaussian variable with mean 0 and variance α2.
Set the response vector y to

y = Xb + z,

where b is a k-sparse vector (there are k non-zero elements in a k-sparse vector)
and zi is i.i.d. Gaussian variable with mean 0 and variance ‖Xb‖22/100. The
entries of non-zero elements of the vector b are random, and the value of each
non-zero element is set to

bs = (−1)Bern(0.5) · (5

√
log d

n
+ δ),

where δ is a standard Gaussian variable, and Bern(p) is a random number which
equals 1 with the probability p or −1 with the probability 1 − p. We normalize
y and each column of X, and reset the order of features randomly.

Similar to [35], we enumerate the diminishing-return ratio γ: γ = i/20 for
all i = 1, . . . , 20. And we set n = d = 500. Consider two different values of k,
which are 50 and 100 respectively. For each value of k, we test 10 instances and
compute average running times and average total number of querying oracle.
Furthermore, we test the relationship between memory complexity and ε or k
for Algorithms 1-2. Especially, Algorithm 1 and Algorithm 2 in this paper are
named N-SMSS++ and N-SMBSS++, respectively. And the Streak algorithm
in [17] is named Streak. The numerical results are shown in Fig. 1, 2 and 3. It is
easy to see that the Streak does not depend on γ, so we use a horizontal line to
show its running time and total number of queries in the corresponding figures.

From Fig. 1(a) and (b), it can be observed that Algorithm 1 in this paper
and Algorithms 3-4 in [35] become faster as the value of γ increases, and Algo-
rithm 1 is faster than Algorithms 3-4 with the same value of γ. This result is



N-SSM with Minimum Memory and Low Adaptive Complexity 221

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
8

10

12

14

16

18

20

R
un

ni
ng

 T
im

e 
(s

)

N-SMSS ++
Algorithm 3
Algorithm 4
Streak

(a) Running time for k = 50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

15

20

25

R
un

ni
ng

 T
im

e 
(s

)

N-SMSS ++
Algorithm 3
Algorithm 4
Streak

(b) Running time for k = 100

Fig. 1. Performance comparison of running time over all values of γ
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Fig. 2. Performance comparison of total number of querying oracle over all values of γ
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Fig. 3. The relationship between memory and ε or k

consistent with the theoretical result. Moreover, both Algorithm 1 in this paper
and Algorithms 3-4 in [35] are faster than the Streak algorithm as long as γ is
large enough.
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From Fig. 2 (a) and (b), we can see that the total number of querying oracle
of Algorithm 1 in this paper and Algorithms 3-4 in [35] become less as the value
of γ increases, and Algorithm 1 is less than Algorithms 3-4 with the same value
of γ. The main reason of this result is that the selection of τmin is related to
the value of f(Sτ ). Moreover, Algorithms 3-4 are exactly overlapping. And both
Algorithms 1 in this paper and Algorithms 3-4 in [35] are less than the Streak
algorithm as long as γ is large enough.

From Fig. 3 (a), we can observe that the memory decreases as the value of ε
increases. And for the same ε, the memory of Algorithm 1 is less than Algorithm
2. From Fig. 3 (b), we can obtain that the memory increases as the value of
k increases. And for the same k, the memory of Algorithm 1 is also less than
Algorithm 2.

5 Conclusions

In this paper, we study the problem of maximizing a normalized monotone non-
submodular set function subject to a cardinality constraint in the streaming
model. Utilizing the diminishing-return ratio, we present two algorithms which
are called Non-SubModular-Sieve-Streaming++ and Non-SubModular-
Batch-Sieve-Streaming++. The two algorithms require only a single pass
through the data.

Algorithm 1 is the generalization of Sieve-Streaming++ to non-
submodular set function. We obtain the approximation ratio is min{

(1−ε)γ
2γ , 1 − 1

2γ

}
, which is related to the diminishing-return ratio of the objec-

tive function. The memory complexity is O(k
ε ) and the update time per element

is O( log(k/γ)
ε ), which is also related to the diminishing-return ratio of the objec-

tive function. Comparing Algorithm 1 with the Algorithms 3-4 in [35], we can
see that they have the same approximation ratio and update time per element.
But the memory complexity of Algorithm 1 is improved significantly.

The performance of Algorithm 2 is first to buffer a fraction of the data stream
and then filtering procedure through a parallel threshold. It is the generaliza-
tion of Batch-Sieve-Streaming++ to non-submodular set function. Through
utilizing the diminishing-return ratio of the objective function, the approxima-
tion ratio is min

{
(1−3ε)γ

2γ , 1 − 1
2γ

}
, the memory complexity is O(B + k

ε ) and the
adaptive complexity is O(N log B log(k/γ)/(Bε)).

To illustrate the numerical effect of these algorithms, we give a numerical
example in Sect. 4. The running time and the total number of querying oracle
of Algorithm 1 in this paper are superior to Algorithms 3-4 in [35]. At the same
time, they are all superior to the Streak algorithm in [17] when γ is large enough.
Furthermore, the memory of Algorithm 1 is less than Algorithm 2 for the same
ε or k.

There are many interesting problems about the streaming model. Further,
we will study the streaming non-submodular maximization over sliding windows
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utilizing the diminishing-return ratio. We will also study the non-submodular
maximization using submodularity ratio and curvature for streaming model.
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Abstract. Given a graph G = (V, E) and a fixed linear order ≺ of
V , the problem fixed-order book thickness asks whether there is a
page assignment σ such that 〈≺, σ〉 is a k-page book embedding of G.
Recently, Bhore et al.(GD2019) presented an algorithm parameterized by
the pathwidth of the vertex ordering (denoted by κ). In this paper, we
first re-analyze the running time for Bhore et al.’s algorithm, and prove

a bound of 2O(κ2)· |V | improving on Bhore et al.’s bound of κO(κ2)· |V |.
We further show that this parameterized problem does not admit a poly-
nomial kernel unless NP ⊆ coNP/poly. Finally, we show that the general
fixed-order book thickness problem, in which a budget of at most c
crossings over all pages was given, admits an algorithm running in time

(c + 2)O(κ2)· |V |.

1 Introduction

A book embedding of a graph G consists of placing the vertices of G in a line
(called spine) in an order specified by a linear ordering ≺ of V (G) and assigning
edges of the graph to pages so that the edges assigned to the same page do
not intersect. The minimum number of pages in which the graph G can be
embedded is called the book thickness of G, denoted by bt(G) [1]. When the
ordering of vertices in V (G) along the spine is predetermined and fixed, the book
thickness of G is specially called the fixed-order book thickness of G, denoted by
fo-bt(G,≺) [2].

The problem fixed-order book thickness asks, given a graph G = (V,E)
and a positive integer k, whether fo-bt(G) ≤ k. It is NP-complete in general [3].
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fixed-order book thickness is equivalent to determining whether a given cir-
cle graph can be properly vertex-colored by at most k colors [1], which was inten-
sively studied in graph coloring [4–6]. Moreover, fixed-order book thickness
originally arises in the context of sorting with parallel stacks, which has close
relations and applications to VLSI design [7].

Pathwidth, as an important structural parameter of graphs, has been used
to study parameterized complexity for many difficult problems [8–10]. For the
problem fixed-order book thickness, Bhore et al. [2] considered the path-
width of the vertex ordering, denoted by κ, as the parameter, and presented
an algorithm running in time κO(κ2)· |V |. Bhore et al. [2] also posed a general
version of fixed-order book thickness, which concerns the setting where
edges are allowed to cross on the same page and the number of crossings over
all pages is at most c. They mentioned the techniques in their algorithm can be
extended to solving this general problem, but they did not elaborate further.

Our Results. Following the work recently done for fixed-order book thick-
ness with respect to the vertex-cover number [11], our aim is to establish
improved bound on algorithm also for its sister problem fixed-order book
thickness parameterized by the pathwidth of the vertex ordering (abbreviated
by BTPW). Our specific work includes three parts as follows.

(1). We re-analyze Bhore et al.’s algorithm in [2] and obtain an improved upper
bound on its running time. By constructing an auxiliary graph, we re-
estimate the size of the record set in that algorithm and prove that it can
be reduced from (κ + 2)κ2

to 2κ2
. This means that Bhore et al.’s algorithm

can be done in time 2O(κ2)· |V |. Although the basic strategy used is similar
to that of Liu et al. [11], the implementation tactics are quite distinct from
those in [11].

(2). We show that fixed-order book thickness parameterized by the path-
width of the vertex ordering does not admit a polynomial kernel unless NP ⊆
coNP/poly. This kernel lower bound is derived from the framework called
AND-cross-composition defined by Bodlaender et al. [12].

(3). We also investigate the general version of fixed-order book thickness
(abbreviated by BTPW-CROSS). By expanding our analysis approach used
in BTPW, we show that the problem BTPW-CROSS admits a parameter-
ized algorithm running in time (c + 2)O(κ2)· |V |.

2 Terminology and Notations

We consider only undirected graphs. Given a graph G = (V,E), we use V (G) to
denote its vertex set and let n = |V |. For two vertices u, v in V , let uv denote
the edge between u and v. For r ∈ N, we use [1, r] to denote the set {1, . . . , r}.

Given a graph G = (V,E) with a linear order ≺ of V such that v1 ≺ v2 ≺
. . . ≺ vn, the pathwidth of (G,≺) is the minimum number κ such that for each
vertex vi (i ∈ [1, n]), there are at most κ vertices left of vi that are adjacent to vi

or a vertex right of vi. Formally, for each vi we call the set Pi = {vj | j < i,∃q ≥ i
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such that vjvq ∈ E} the guard set for vi, and the pathwidth of (G,≺) is simply
maxi∈[1,n]|Pi|. The elements of the guard set are called the guards for vi.

Let v0 be a vertex with degree 0 and let v0 be placed to the left of v1 in ≺.
For a vertex vi, let P ∗

vi
= {gi

1, g
i
2, . . . , g

i
m} where for each j ∈ [1,m − 1], gi

j is the
j-th guard of vi in reverse order of ≺, and gi

m = v0. For a vertex vi, let Ei =
{vavb | vavb ∈ E, b > i} be the set of all edges with at least one endpoint to the
right of vi and let Si = {gi

jvb | gi
j ∈ P ∗

vi
, gi

jvb ∈ Ei} be the restriction of Ei to
edges between a vertex to the right of vi and a guard in P ∗

vi
.

For ease of presentation, we define a special planer graph. A graph G is
a restricted plane graph with spine L and head h if G satisfies the following
properties: (1) all vertices lie in a horizontal line L with a fixed-order ≺; (2)
all edges lie in the half-plane above L and are incident to the rightmost vertex
(denoted as h) in ≺.

Some proofs are omitted due to space constrains; they will be given in the
complete version of the paper.

3 Improved Upper-Bound on Bhore et al.’s Algorithm

In this section, we re-analyze Bhore et al.’s [2] algorithm for BTPW, and obtain
an improved upper-bound on its running time.

We first restate some notations introduced in [2]. Let i ∈ [1, n]. A page
assignment α : Ei → [1, k] is called a valid partial page assignment if α maps
the edges in Ei to pages in a non-crossing fashion. Let α be a valid partial page
assignment of Ei, va be a vertex with a ≤ i. A vertex vx (x < a) is α-visible to
va on a page p if it is possible to draw the edge vavx in page p without crossing
any other edge mapped to p by α.

Let a ≤ i ≤ n, p ∈ [1, k], and α be a valid partial page assignment of Ei.
The edge vcvd ∈ Si (if exists) is a (α, i, p)-important edge of va if it satisfies
the following properties: (1) α(vcvd) = p; (2) c < a; and (3) |a − c| is mini-
mum among all such edges in Si. Correspondingly, the vertex vc is called the
(α, i, p)-important guard of va. Bhore et al.’s [2] algorithm traverses vertices in
a right-to-left order along ≺, and for each vertex, the algorithm stores a set
of records containing some representative visibility vectors. More precisely, the
visibility vector Ui(va, α) is defined as follows: the p-th entry is the (α, i, p)-
important guard of va, and 	 if va has no (α, i, p)-important guard. The record
set Qi = {(Ui(vi, α), Ui(gi

1, α), Ui(gi
2, α), . . ., Ui(gi

m−1, α)) | ∃ valid partial page
assignment α : Ei → [1, k] }. A mapping Λi from Qi to a valid partial page
assignments of Ei maps each tuple ω ∈ Qi to some α such that ω = (Ui(vi, α),
Ui(gi

1, α), Ui(gi
2, α), . . ., Ui(gi

m−1, α)). Since there are at most (κ + 2)κ visibility
vectors for each guard of vi, |Qi| ≤ (κ + 2)κ2

[2].
In Bhore et al.’s algorithm, the size of Qi dominantly determines its running

time. In the following, we focus on re-estimating |Qi| by another approach.
Observe that the p-th components Ui(g, α)[p] for g ∈ {vi} ∪ P ∗

vi
\ {gi

m} are
not “independent”, instead, they are uniformly determined by the guards of the
vertex vi. Observe further that the edges whose endpoints all lie on the right of
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vi have nothing to do with computing Ui(x, α)[p]. Hence, we globally consider
the combinations of edges that incident to the guards of vi, and deduce a new
function of κ bounding on |Qi|. For this target, we define a procedure called
Edge-Pruning-1 to adjust the edges on each page in α.

Let i ∈ [1, n], α : Ei → [1, k] be a valid partial page assignment, and p ∈ [1, k].
Let g ∈ P ∗

vi
, and let E(p, g) be the set of edges in Ei that are incident to g and

assigned on page p by α. The steps in Edge-Pruning-1 are described as follows
(Fig. 1).

Procedure Edge-Pruning-1(α)

1. for p = 1 to k do
2. for each g ∈ P ∗

vi \ {gi
m} do

2.1 if E(p, g) �= ∅ then
2.2 { if gvi+1 /∈ E(p, g) then add edge gvi+1 such that α(gvi+1)=p;
2.3 if E(p, g)\{gvi+1}�= ∅ then delete edges in E(p, g)\{gvi+1}; }
3. if vivi+1 ∈ Ei and α(vivi+1) = p then delete the edge vivi+1;
4. delete all vertex vx for x ≥ i + 2;
5. output(α′).

Fig. 1. The main steps in Edge-Pruning-1 procedure

After executing the procedure Edge-Pruning-1 on a given assignment α, we
obtain a simplified assignment α′ such that there are at most κ edges with
one common endpoint vi+1 on each page. Figure 2 shows an example of Edge-
Pruning-1.

(a) (b)

Fig. 2. An example on Edge-Pruning-1 from an original 2-page assignment of E4 (a)
to a simplified 2-page assignment (b).

Next, we show that each visibility vector for α′ is equal to that for α, respec-
tively.

Lemma 1. For each g ∈ {vi} ∪ P ∗
vi

\ {gi
m}, Ui(g, α) = Ui(g, α′).

Proof. According to the definition of visibility vector, it is sufficient to consider
the visibility from g to vx for vx ≺ g. Without loss of generality, we argue that
Ui(g, α)[p] = Ui(g, α′)[p] on page p (for p ∈ [1, k]).
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(⇒) Assume that Ui(g, α)[p] = vh (vh ∈ P ∗
vi

∪{	}). We distinguish two cases
based on whether vh = 	 or not. Case (1): vh = 	. Then every vertex vx with
vx ≺ g is α-visible to g. In other words, for any vertex vx with vx ≺ g, the set
E(p, vx) = ∅. During the procedure Edge-Pruning-1, steps 2.1–2.3 will not be
executed for the vertex vx. Hence, every vertex vx with vx ≺ g is still α′-visible to
g, that is, Ui(g, α′)[p] = 	. Case (2): vh = 	. Without loss of generality, assume
that vh is incident to t (t > 0) edges in Ei, denoted as vhw1, vhw2, . . . , vhwt.
Since the edges incident to the vertex vh are all in Ei, the vertex vh must be one
guard of vi. During the procedure Edge-Pruning-1, steps 2.1–2.3 will be executed
and the edges in E(p, vh) will be adjusted. After executing Edge-Pruning-1, the
edge vhw1 either remains unchanged (in the case w1 = vi+1) or is replaced by
vhvi+1 (in the case w1 = vi+1). Hence, the edge vhvi+1 must exist. It holds that
Ui(g, α′)[p] = vh.

(⇐) Assume that Ui(g, α′)[p] = vh (vh ∈ P ∗
vi

∪ {	}). We also distinguish two
cases based on whether vh = 	 or not. Case (1): vh = 	. Then every vertex vx

with vx ≺ g is α′-visible to g. We can infer that every vertex vx with vx ≺ g
is α-visible to g. Assume towards a contradiction that there exists one vertex
vz ≺ g such that vz is not α-visible to g. Then there must be a vertex va between
vz and g that is incident to at least one edge in Ei separating vz and g. Note
that the vertex va is also one guard of vi. During the procedure Edge-Pruning-
1, steps 2.1–2.3 will be executed and the edges in E(p, va) will be adjusted. In
the simplified assignment α′, the edge vavi+1 separates vz and g on page p,
contradicting the assumption that Ui(g, α′)[p] = 	. Case (2): vh = 	. Then for
any vertex vx (vx ≺ vh), the edge vhvi+1 on page p in α′ separates vx from g.
Note that vh is also one guard of vi since vi ≺ vi+1. By the description of Edge-
Pruning-1, the existence of edge vhvi+1 in α′ is due to the fact that E(p, vh) = ∅
in α. So, in the original assignment α, vx is separated from g by at least one
edge in E(p, vh). It holds that Ui(g, α)[p] = vh. ��

Based on Lemma 1, we re-estimate |Qi| with an improved upper bound.

Lemma 2. The size of Qi can be bounded by 2κ2
.

Proof. Let L be a straight line joining κ+1 vertices with a fixed order ≺, in which
the rightmost vertex is denoted by h. Let A = {B |B is a restricted plane graph
with spine L and head h}. We estimate the size of A according to the number
of different combinations of its edges. For each vertex u lying on L except h,
there are only two possible cases to be considered: (1) it is adjacent to the head
h by one edge; (2) it is not adjacent to the head h. Hence, |A| = 2κ. Let D =
A1 × A2 × · · · × Ak, where Ar = A for r ∈ [1, k]. It follows that |D| = 2kκ.

Let Pi = {α| α = Λi(ω) and ω ∈ Qi}. Let α1 and α2 be two distinct
assignments in Pi. By the definition of Qi, there exists at least one vertex
g ∈ {vi} ∪ P ∗

vi
\ {gi

m} such that Ui(g, α1) = Ui(g, α2). In the following, we
show that there exists an injective function f from Pi to D. (1) Let α ∈ Pi.
The assignment α is a k-page book embedding which includes k half-planes.
After executing the procedure Edge-Pruning-1 on α, the vertex vi is an isolated
vertex and each half-plane is translated into a restricted plane graph with spine
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L and head h. Hence, there exists a unique tuple (B1, B2, . . . , Bk) in D such
that f(α) = (B1, B2, . . . , Bk). (2) For any two distinct assignments α1 and α2

in Pi, it holds that f(α1) = f(α2). Otherwise, for each g ∈ {vi} ∪ P ∗
vi

\ {gi
m}),

Ui(g, f(α1)) = Ui(g, f(α2)). By Lemma 1, it follows that Ui(g, α1) = Ui(g, α2)
for g ∈ {vi}∪P ∗

vi
\ {gi

m}), contradicting the fact that α1 and α2 are two distinct
assignments in Pi.

As a consequence, the size of Qi is no larger than that of D. Note that k < κ
(In the case of k ≥ κ, the problem BTPW is trivial [2]). Therefore, the size of
Qi can be bounded by 2κ2

. ��
Based on Lemma 2 and the fact that κκ < 2κ2

, we arrive at our first result.

Theorem 1. There is an algorithm which takes as input a graph G = (V,E)
with a vertex order ≺ and computes a page assignment σ of E such that (≺, σ)
is a (fo-bt(G,≺))-page book embedding of G. The algorithm runs in 2O(κ2)· |V |
where κ is the pathwidth of (G,≺).

4 On Kernel Lower Bound

In this section, we show that no polynomial kernel is possible for the problem
BTPW unless NP ⊆ coNP/poly by employing the framework named AND-cross-
composition.

Definition 1. (AND-cross-composition)([12]) Let L ⊆ Σ∗ be a set and let Q ⊆
Σ∗ ×N be a parameterized problem. We say that L AND-cross-composes into Q
if there is a polynomial equivalence relation R and an algorithm which, given t
strings x1, x2, . . . , xt belonging to the same equivalence class of R, computes an
instance (x∗, k∗) ∈ Σ∗ × N in time polynomial in Σt

i=1|xi| such that:

(1). (x∗, k∗) ∈ Q if and only if for all i, 1 ≤ i ≤ t, xi ∈ L;
(2). k∗ is bounded by a polynomial in maxt

i=1|xi| + log t.

Lemma 3. ([13]) Assume that an NP-hard language L AND-cross-composes
into a parameterized language Q. Then Q does not admit a polynomial compres-
sion, unless NP ⊆ coNP/poly.

Theorem 2. Book Thickness parameterized by the pathwidth of the vertex
ordering does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We prove this theorem by showing fixed-order book thickness AND-
cross-composes into Book Thickness parameterized by the pathwidth of the ver-
tex ordering; by Lemma 3 this is sufficient to establish this theorem. As we
known, the problem fixed-order book thickness is NP-hard in general [3].
In the following, we show that there exists one AND-cross-composition algorithm
from the former to the latter.

First of all, we define a polynomial equivalence relation R. An instance of
fixed-order book thickness is a tuple ((G,≺), k) and asks whether G admits
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a book embedding with k pages. The relation R is defined as follows: all pairs
((Gi,≺i), ki), ((Gj ,≺j), kj) go to the same equivalence class if |V (Gi)| = |V (Gj)|
and ki = kj . The instance is malformed if either it is not the right format or if
|V (G)|2 < 2k. All the malformed instances were put into one equivalence class.
We show that this relation meets the conditions in the polynomial equivalence
relation. (1) Given two well-formed instances ((Gi,≺i), ki), ((Gj ,≺j), kj), we
can check in polynomial time if |V (Gi)| = |V (Gj)| and ki = kj . (2) the number
of equivalence classes is at most n3/2 + 1 since 2ki ≤ |V (Gi)|2 in a well formed
instance, where n = maxt

i=1|V (Gi)|.
Next, we give an AND-cross-composition algorithm for instances belonging

to the same equivalence class. Given a bunch of malformed instance, we output a
trivial NO-instance. So, we assume that ((G1,≺1), k), ((G2,≺2), k), . . ., ((Gt,≺t

), k) are the instances in the same equivalence class and |V (Gi)| = n for all
i ∈ [1, t]. A composition algorithm is as follows. After being input with ((G1,≺1

), k), ((G2,≺2), k), . . ., ((Gt,≺t), k), it outputs an instance ((G,≺), κ, k′). In
the following, we give some annotation for elements in the output instance.
(1). G is a disjoint union of G1, G2, . . . , Gt. To ease of presentation, we assume
that G1, G2, . . . , Gt are arranged in a row from left to right according to their
subscript indices. (2). The linear order ≺ of V (G) is the union of ≺1,≺2, . . . ,≺t

in a left-to-right fashion. Since the order ≺i of V (Gi) for i ∈ [1, t] is fixed, the
order ≺ of V (G) is fixed. (3). The pathwidth of ((G,≺), denoted as κ, can be
computed in time O(tn3). More precisely, for each vertex vi ∈ V (G) (i ∈ [1, tn]),
we compute the number of vertices left of vi that are adjacent to vi or a vertex
right of vi in time O(n2) and denote it by nvi

. It holds that κ = maxi∈[1,tn]nvi
.

Let κi be the pathwidth of ((Gi,≺i) for i ∈ [1, t]. By the structure of (G,≺), it
follows that κ = maxi∈[1,t]κi. Since κi ≤ |V (Gi)| for i ∈ [1, t], κ is bounded by
a polynomial in maxt

i=1|V (Gi)|+logt. (4). We set k′ = k.
Finally, we show that ((G,≺), κ, k) is a YES instance of BTPW, if and only

if ((Gi,≺i), k) was a YES instance of fixed-order book thickness for all
i ∈ [1, t].

(⇒) Let ((G,≺), κ, k) be a YES instance of BTPW. Then there exists a k-
page book embedding 〈≺, σ〉 for G. Since G is a disjoint union of G1, G2, . . . , Gt,
the k-page book embedding 〈≺, σ〉 can be decomposed into t disjoint parts 〈≺1

, σ1〉, 〈≺2, σ2〉, . . . , 〈≺t, σt〉 such that 〈≺i, σi〉 is a k-page book embedding of
Gi (for i ∈ [1, t]). Hence, ((Gi,≺i), k) is a YES instance of fixed-order book
thickness for all i ∈ [1, t].

(⇐) Let ((Gi,≺i), k) be a YES instance of fixed-order book thickness
for all i ∈ [1, t]. Then for each graph Gi, there exists a k-page book embedding
〈≺i, σi〉. Since G is a disjoint union of G1, G2, . . . , Gt, any two k-page book
embedding 〈≺i, σi〉 and 〈≺j , σj〉 are disjoint. Let pi

h denote the h-th page in
〈≺i, σi〉 for i ∈ [1, t] and h ∈ [1, k]. We can construct a k-page book embedding
〈≺, σ〉 of G by setting a disjoint union of p1h, p2h,. . . , pt

h as its the h-th page ph

for h ∈ [1, k]. Hence, ((G,≺), κ, k) is a YES instance of BTPW. ��
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5 A Parameterized Algorithm for the General Problem

A general version of fixed-order book thickness parameterized by both the
pathwidth of the vertex order κ and the number c of crossings over all pages
(i.e., BTPW-CROSS) is formally defined as follows.

Input: A tuple (G,≺), a non-negative integer c;

Parameters: κ, c;

Question: Can we find a k-page book drawing (≺, σ) of G such that the number
of crossings over all pages is no more than c ?

We first briefly present a specific algorithm for BTPW-CROSS by extending
the techniques in [2], whose feasibility was mentioned by Bhore et al. [2]. Then,
we pay more attention to employing our approach to analyze its running time.

5.1 Design of the Algorithm

We begin with expanding the notion of valid page assignment. Let i ∈ [1, n]. An
assignment α : Ei → [1, k] is a valid page assignment if α assigns the edges in
Ei to pages such that the number of crossings over all pages is at most c. For
ease of presentation, we introduce the notion of potential edge. Given a valid
partial page assignment α of edges in Ei and two vertices vx, va with x < a ≤ i,
we draw an edge between vx and va on page p. The added edge vxva is called a
potential edge with respect to the edges in Ei assigned on page p by α.

To capture the information on the number of crossings generated by the
potential edges, we also introduce the notion of crossing number matrix, which
is originated from the notion of visibility vector in [2]. Given a valid partial page
assignment α and a vertex va with a ≤ i, we define a crossing number matrix
Mi(va, α) with k rows and c + 1 columns. The entry (p, q) in Mi(va, α) is set by
the following rule.

If there exists a guard vz ∈ P ∗
vi

(z < a) such that the potential edge vzva

on page p exactly crosses q edges in Ei assigned to page p by α, then the entry
(p, q) = vz. Once there are at least two guards that satisfy this condition, we
only choose the utmost guard to the left of va. Otherwise, (p, q) = “null”.

Note that for a given tuple (i, va, α), it is straightforward to compute
Mi(va, α) in polynomial time. Figure 3 shows a crossing number matrix for a
2-page assignment of E5, where c = 3.

Fig. 3. A partial 2-page assignment of the edges in E5 (left) and the corresponding
crossing number matrix (right).
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We also introduce a crossing number vector Ni(α) as follows: the p-th com-
ponent of Ni(α) is the number of crossings on the p-th page mapped by α (for
p ∈ [1, k]).

For some consecutive vertices in V (G), the corresponding crossing number
matrices are actually the same one. Thus, we can obtain the following statement,
which expanding Lemma 3 in [2].

Lemma 4. Let α be a valid partial assignment of Ei, va ≺ vi, and assume
va /∈ P ∗

vi
. Let vb ∈ P ∗

vi
∪ {vi} such that b > a and b − a is minimized. Then

Mi(va, α) = Mi(vb, α).

By Lemma 4, we can use κ + 1 crossing number matrices to capture the
complete information about all of crossings on each page. Moreover, the infor-
mation stored in the crossing vector is an important factor in distinguishing
different page assignments. Hence, we define one expanded record set as follows:
Q′

i = {(Ni(α), Mi(vi, α), Mi(gi
1, α), Mi(gi

2, α), . . ., Mi(gi
m−1, α)) | ∃ valid partial

page assignment α : Ei → [1, k] }. For ease of presentation, the tuple (Ni(α),
Mi(vi, α), Mi(gi

1, α), Mi(gi
2, α), . . ., Mi(gi

m−1, α)) is also called a matrix queue
for α, and is denoted by ωi(α) in the rest of this paper. Along with Q′

i, we
also store a mapping Λ′

i from Q′
i to valid partial page assignments of Ei which

maps each record ωi(α) ∈ Q′
i to some α such that ωi(α) = (Ni(α), Mi(vi, α),

Mi(gi
1, α), Mi(gi

2, α), . . ., Mi(gi
m−1, α)).

Adapting the framework on dynamic programming for solving BTPW in [2],
we can obtain an algorithm for solving BTPW-CROSS, denoted by ALPW.
Specifically, the main steps in ALPW can be described as follows.

The basic strategy is to dynamically generate some k-book drawing contain-
ing at most c crossings along the order ≺ in a right-to-left fashion. Let Fi−1 =
Ei−1 \Ei. Assume that the record set Q′

i has been computed. Each page assign-
ment β of edges in Fi−1 and each record ω ∈ Q′

i are branched. For each such β
and α = Λ′

i(ω), the combined assignment α ∪ β is tested under two conditions:
(1) the number of crossings on each page is no more than c; (2) the number of
crossings over all page is no more than c. If α∪β forms a valid partial page assign-
ment, the corresponding record is computed and stored. The mapping Λ′

i−1 is
set to map this record to α ∪ β. Otherwise, the pair (α, β) is discarded.

Let α1 and α2 be two valid page assignments of Ei, β be a page assignment
of edges in Fi−1, and let α1 ∪ β and α2 ∪ β be the intermediate assignments
generated during the algorithm ALPW.

Lemma 5. If ωi(α1) = ωi(α2), then ωi−1(α1 ∪ β) = ωi−1(α2 ∪ β).

Based on Lemma 5, we can obtain the following conclusion.

Theorem 3. If ((G,≺), κ, c) contains at least one valid assignment, then the
algorithm ALPW((G,≺), κ, c) returns a valid page assignment.
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5.2 Analysis on the Running Time

We adapt the approach used for BTPW to analyze its running time. First of all,
we expand the notion of edge pruning and re-define a procedure Edge-Pruning-
2. Let i ∈ [1, n], α : Ei → [1, k] be a valid partial page assignment, and p ∈ [1, k].
Let g ∈ P ∗

vi
and let E(p, g) be the set of edges in Ei that are incident to g and

assigned on page p by α. Assume that E(p, g)\{gvi+1}={gw1, gw2, . . . , gwt} and
g ≺ w1 ≺ w2 ≺ . . . ≺ wt in ≺. The description of Edge-Pruning-2 is identical to
that for Edge-Pruning-1 in Sect. 3, except that step 2.3 becomes:

for r = 1 to t do: (1) delete the edge gwr; (2) if the number of edges between
g and vi+1 is less than c + 1, then add one multiple edge gvi+1.

Given a valid partial assignment α, we execute the procedure Edge-Pruning-2
on it. After pruning some edges, we obtain a simplified assignment α′ such that
the edges on each page are incident to the common vertex vi+1. Figure 4 gives
an example of Edge-Pruning-2.

(a) (b)

Fig. 4. An example of Edge-Pruning-2 from an original 2-page assignment of E5 (a)
to the simplified 2-page assignment, in which c = 3 (b).

Let Mi(vx, α) be a crossing number matrix for an original assignment α and
let Mi(vx, α′) be that for the simplified assignment α′ (vx ∈ {vi} ∪ P ∗

vi
\ {gi

m}).

Lemma 6. For each vx ∈ {vi} ∪ P ∗
vi

\ {gi
m}, Mi(vx, α) = Mi(vx, α′).

Proof. By the definition of crossing number matrix, we only need to argue that
any entry in Mi(vx, α) is equal to the corresponding entry in Mi(vx, α′).

(⇒) Assume that an entry (p, q) in Mi(vx, α) is equal to z. Our aim is to show
that (p, q) in Mi(vx, α′) is also equal to z. We distinguish two cases based on
whether z = “null” or not. Case (1): z =“null” (let z = vb). Then, the potential
edge vbvx exactly generates q crossings on page p. Without loss of generality,
assume that there are r (r ≥ 1) guards of vx lying between vb and vx, denoted as
vb ≺ vx

1 ≺ vx
2 ≺ . . . ≺ vx

r ≺ vx. Assume further that the vertex vx
h (for h ∈ [1, r])

is incident to nx
h edges in Ei that enclose vx on page p. By the assumption that

(p, q) = vb, it follows that Σr
h=1n

x
h=q. Since q ∈ [0, c], it holds that nx

h ≤ c.
Note that the vertex vx

h (for h ∈ [1, r]) is also a guard of vi. During executing
the procedure Edge-Pruning-2, the edges incident to vx

h will be adjusted. After
pruning edges, there are nx

h multiple edges between vx
h and vi+1. It still holds

that Σr
h=1n

x
h=q. Thus, the potential edge vbvx still exactly crosses q edges on

page p, which means that the entry (p, q) in Mi(x, α′) is also equal to vb. Case
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(2): z = “null”. We first locate the entry (p, j) in Mi(vx, α) such that (p, j) has
the following properties: 1© (p, j) =“null”, 2© j < q, and 3© q − j is minimized.
Assume that (p, j) = vw, and that vw is incident to nw edges in Ei on page p. By
the assumption that (p, q) = “null”, it holds that nw = 1. After pruning edges,
the number of edges between vw and vi+1 is either nw (in the case nw ≤ c + 1)
or c + 1 (in the case nw > c + 1). Hence, in the simplified assignment α′, it still
holds that nw = 1, which means that the entry (p, q) = “null” in Mi(vx, α′).

(⇐) Assume that an entry (p, q) in Mi(vx, α′) is equal to z. Our aim is to
show that (p, q) in Mi(vx, α) is also equal to z. We also distinguish two cases
based on whether z = “null” or not. Case (1): z =“null” (let z = vb). Without
loss of generality, assume that there are r (r ≥ 1) guards of vx between vb and
vx, denoted as vb ≺ vx

1 ≺ vx
2 ≺ . . . ≺ vx

r ≺ vx. Assume further that, for each
guard vx

h of vx (h ∈ [1, r]), there are nx
h multiple edges between vx

h and vi+1.
By step 2.3 in Edge-Pruning-2, we can infer that the vertex vx

h is incident to nx
h

edges in Ei that enclose the vertex vx on page p in the assignment α. Hence,
the potential edge vbvx exactly generates q crossings on page p, which means
(p, q) in Mi(vx, α) is also equal to vb. Case (2): z = “null”. Similarly, we first
locate the entry (p, j) in Mi(vx, α′) such that (p, j) has the following properties:
1© (p, j) =“null”, 2© j < q, and 3© q − j is minimized. Assume that (p, j) =
vw, and that the number of multiple edges between vw and vi+1 is nw. By the
assumption that (p, q) = “null” in Mi(vx, α′), it holds that nw = 1. By step 2.3
in Edge-Pruning-2, we also can infer that the number of edges in Ei incident to
vw is either nw or at least c + 2 on page p in the assignment α. Hence, the entry
(p, q) = “null” in Mi(vx, α). ��

Based on Lemma 6, we obtain a bound for the size of Q′
i.

Lemma 7. The size of Q′
i can be bounded by (c + 1)k(c + 2)kκ.

Proof. Let L be a straight line joining κ+1 vertices with a fixed order, in which
the rightmost vertex is denoted by h, and let H = {B |B is a restricted plane
graph with spine L and head h}. We first estimate the size of H according to the
number of different combinations of its edges. For each vertex u lying on L except
h, there are (c + 2) possible cases to be considered: (1) u is not adjacent to the
head h; (2) there is one edge between u and h; (3) there are t (for t ∈ [2, c + 1])
multiple edges between u and h. Hence, |H| = (c + 2)κ.

Let N be a k×1 matrix, and for each i ∈ [1, k], assume that N [i] ∈ [0, c]. Let
D′ = N×H1×H2×· · · ×Hk (Hr = H for r ∈ [1, k]). Then, |D′| = (c+1)k(c+2)kκ.

Let P ′
i = {α | α = Λ′

i(ω) and ω ∈ Q′
i}. Based on Lemma 6, we can show that

there exists an injective function f from P ′
i to D′ along the same lines in the

proof of Lemma 2.
As a consequence, the size of Q′

i is no larger than that of D′. Therefore, the
size of Q′

i can be bounded by (c + 1)k(c + 2)kκ. ��
Based on Lemma 7, we obtain the flowing conclusion.

Theorem 4. The algorithm ALPW for the problem BTPW-CROSS runs in
time (c + 1)k(c + 2)kκκκ· |V |.
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Let fo-bt(G,≺, c) be the minimum k such that (G,≺, c) is a YES instance of
the problem BTPW-CROSS. Since fo-bt(G,≺, c) ≤ fo-bt(G,≺) and fo-bt(G,≺
) < κ, it follows that fo-bt(G,≺, c) < κ. Now, we arrive at our third result.

Theorem 5. There is an algorithm which takes as input a graph G = (V,E)
with a vertex order ≺, and an integer c, runs in time (c+2)O(κ2)· |V |, and com-
putes a page assignment σ such that (≺, σ) is a (fo-bt(G,≺))-page book drawing
of G.

6 Conclusions

We further study parameterized algorithms for the problem fixed-order book
thickness with respect to the pathwidth of the vertex ordering. We prove an
improved running time bound for the algorithm given by Bhore et al. in [2], derive
that this parameterized problem does not admit a polynomial kernel unless NP⊆
coNP/poly, and show that the general fixed-order book thickness problem
admits a parameterized algorithm running in time (c + 2)O((κ2)· |V |.

Acknowledgements. The authors thank the anonymous referees, whose comments
improved the presentations of this paper.
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4. Gyárfás, A.: On the chromatic number of multiple interval graphs and overlap
graphs. Discret. Math. 55(2), 161–166 (1985)

5. Ageev, A.A.: A triangle-free circle graph with chromatic number 5. Discret. Math.
152(1–3), 295–298 (1996)

6. Kostochka, A., Kratochv́ıl, J.: Covering and coloring polygon-circle graphs. Discret.
Math. 163(1–3), 299–305 (1997)

7. Chung, F., Leighton, F., Rosenberg, A.: Embedding graphs in book: a layout prob-
lem with applications to VLSI design. SIAM J. Alg. Discr. Meth. 8(1), 33–58 (1987)

8. Gutin, G., Jones, M., Wahlström, M.: The mixed Chinese postman problem param-
eterized by pathwidth and treedepth. SIAM J. Discret. Math. 30(4), 2177–2205
(2016)

9. Cygan, M., Kratsch, S., Nederlof, J.: Fast Hamiltonicity checking via bases of
perfect matchings. J. ACM 65(3), 12:1–12:46 (2018)

10. Belmonte, R., Lampis, M., Mitsou, V.: Parameterized (approximate) defective col-
oring. In: Niedermeier, R., Vallée, B. (eds.) STACS 2018, LIPICS, pp. 11:1–11:24
(2018)

https://doi.org/10.1007/978-3-030-35802-0_28
https://doi.org/10.1007/978-3-030-35802-0_28
https://doi.org/10.1007/3-540-55210-3_199


On Fixed-Order Book Thickness Parameterized by the Pathwidth 237

11. Liu, Y., Chen, J., Huang, J.: Fixed-order book thickness with respect to vertex-
cover number: new observations and further analysis. In: Chen, J., Feng, Q., Xu,
J. (eds.) TAMC 2020. LNCS. Springer, Heidelberg (2020, to appear)

12. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by
cross-composition. SIAM J. Discret. Math. 28(1), 277–305 (2014)

13. Drucker, A.: New limits to classical and quantum instance compression. SIAM J.
Comput. 44(5), 1443–1479 (2015)



Selfish Bin Packing with Parameterized
Punishment

Weiwei Zhang1, Alin Gao1, and Ling Gai2(B)

1 School of Management, Shanghai University,
Shanghai 201444, People’s Republic of China
zthomas@shu.edu.cn, alin.gao@foxmail.com

2 Glorious Sun School of Business and Management, Donghua University,
Shanghai 200051, People’s Republic of China

lgai@dhu.edu.cn

Abstract. In this paper we consider the problem of selfish bin packing
with parameterized punishment. Different from the classical bin packing
problem, each item to be packed belongs to a selfish agent, who wants
to maximize his utility by selecting an appropriate bin. The utility of
the agent is defined as the total size of the items sharing the same bin
with its item. If an item moves unilaterally to another bin, it may have
to pay the punishment. A parameter is defined such that the items are
classified whether or not they are fit for the punishment. We study three
versions of punishment-full, expansile and partial punishment, and prove
the corresponding bounds of PoA1 (Price of Anarchy).

Keywords: Selfish bin packing · Price of Anarchy · Nash equlibrium ·
Punishment

1 Introduction

The selfish bin packing problem was first introduced by Bilò [2] in 2006. He pre-
sented a noncooperative version of the classical Minimum Bin Packing problem,
each item is charged a cost according to the percentage of the bin used. So the
selfish items are interested in being packed in one of the bins such that their cost
are minimized. They proved that such a game always converges to a pure Nash
equilibrium starting from any initial packing of the items. They also studied the
bounds of PoA (Price of Anarchy), which is the ratio between the objective value
of the worst Nash Equilibrium and that of the classical optimization problem.

Motivated by the One Belt One Road, a large economic union could benefit
its every member, and the members together contribute to the whole union’s
utility. Any unilateral deviation or betrayal would hurt the other members, and
more deviations maybe incurred because of it. A Nash Equilibrium is a state
of profile that no member would like to deviate his economic union unilaterally,
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so the union numbers are fixed and stable. Some economic unions tried to pre-
vent, or reduce the happening of deviations, by setting the rules of high tariff
or other punishment methods. Such as Van Rompuy’s speaking in the city of
London in 2nd March 2013, reported by Reuters, pointed out that from a legal
point of view, it is “not impossible for Britain to leave the EU.”, but he also
warned the Cameron administration that “it would be impossible to leave the
EU without paying”. Whether or not the punishment can help to get a better
Nash Equilibrium has not been proved by formal methodology yet.

In this paper, we try to study the effect of punishment for the performance
of Nash Equilibrium. Three kinds of punishment are to be considered, the first
one is called full punishment, which means that the deviation member has to
pay the sum of all his previous contribution to the union (other members) if he
moves unilaterally; the other two kinds of punishment are directly related to the
item size, we use a constant α to time with size si, to represent the punishment
item i has to pay. The second version with α ≥ 1 is called expansile punishment;
The third version is with α < 1, we call it as partial punishment, the amount
that the “betrayer” has to pay is a part of his contribution (affection) to the
economy. We define the maximum utility version of selfish bin packing with
different punishment rules, study the existence of Nash Equilibria, and consider
the price of anarchy.

Formally, there are m items to be packed, si is the size of the item i, i =
1, . . . ,m. As in the classical bin packing problem, item sizes 0 ≤ si ≤ 1, and the
bin size is 1. For a bin Bh, we use |Bh| to denote the number of items packed
in bin Bh and S(Bh) to denote the load of bin. Define the item’s utility to be
the bin load that it is packed in, ui = Si∈Bh

(Bh). If an item i moves to another
bin unilaterally, it has to pay the punishment of pi. We are interested to know
if there is a stable state that no item wants to move unilaterally, and how about
the performance (number of bins used) of the stable states. Related definitions
are interpreted below:

Nash Equilibrium. In game theory, the Nash equilibrium, named after the
mathematician John Forbes Nash Jr., is a proposed solution of a non-cooperative
game involving two or more players in which each player is assumed to know the
equilibrium strategies of the other players, and no player has anything to gain
by changing only their own strategy [1].

Price of Anarchy. The Price of Anarchy (PoA) [8] is a concept in economics
and game theory that measures how the efficiency of a system degrades due to
selfish behavior of its agents. The Price of Anarchy measures the ratio between
the worst equilibrium and the optimal centralized solution.

Our definition for the item utility ui represents a situation that each member
can enjoy the whole group benefit. The idea is very natural. For example, mem-
bers do not have to share the tariff concession brought by their economic union;
all students from a well-known university can benefit the high prestige of their
university and previous graduates, they do not have to “share” the reputation,
either.



240 W. Zhang et al.

Before proceeding our study on the selfish bin packing with punishment, we
have to look at the following instance:

Instance 1. Suppose there are 2n items to be packed, each of them is with size
of 1/n. We can see for the profile {(1/n, 1/n), . . . , (1/n, 1/n)}, no item has the
motivation to change his bin, since the utility remains 2/n unchanged. So this
profile is a Nash Equilibrium with n

2 bins used, while an optimal packing just
use 2 bins. The Price of Anarchy is unlimited when n → ∞.

Note that this instance is also applied for the punishment with α ≥ 1. Too
much punishment makes the world worse. Motivated by this, in the following we
introduce a parameter k, to separate the items deserving or not deserving the
punishment. And the problem studied becomes selfish bin packing with parame-
terized punishment.

There are lots of results published since the selfish bin packing problem was
introduced in 2006 [2]. Epstein [9] gave a survey on the previous results. In [4]
each item has a positive weight, and costs are based on cost sharing proportional
to the weights of items that share a bin. The PoA is equal to 1.7 in the case of
general weights. Cristina et al. [3] studied the selfish 2-dimensional bin packing
game, where the items to be packed are rectangles, and the bins are unit squares.
The cost of an item is defined as the ratio between its area and the total occupied
area of the respective bin. They showed that this game always converges to a
Nash equilibrium, and for the selfish square packing case, the price of anarchy
is at least 2.3634 and at most 2.6875. In [11] Zhang et al. found a more efficient
mechanism for selfish bin packing, narrowed the performance gap between the
optimization problem and a game model. They proposed a simple mechanism
with PoA = 1.5, then showed that for a large class of mechanisms for the selfish
bin packing problem, 1.5 is a lower bound of PoA. And they proposed a new
mechanism with PoA ≤ 1.467. Wang et al. [10] studied the bin packing game
with an interest matrix, where aij stands for how much item i likes item j. The
payoff of item i is the sum of aij over all items j in the same bin with item i,
and each item wants to stay in a bin where it can fit and its payoff is maximized.
They showed that if the matrix is symmetric, a Nash Equilibrium (NE) always
exists. However the Price of Anarchy (PoA) may be very large, they gave some
bounds for PoA in several special cases. [5] studied the case with proportional
cost sharing selfish bin packing and present a new lower bound of PoA. [6] studied
the strong equilibria of selfish bin packing and show the SPoA is between 1.69103
and 1.611824. [7] considered the case that each item is with a nonnegative weight
and they gave a general lower bound of PoA holds for all possible weights.
[12] studied the cost-sharing mechanisms for selfish bin packing in decentralized
environments and proposed a new mechanism with PoA ≤ 22/15.

The rest of the paper is organized as follows. The selfish bin packing with
parameterized full punishment is studied in Section 2. In Sect. 3 we study the
selfish bin packing with parameterized expansile punishment, then in Sect. 4 the
version of partial punishment is studied. Conclusion is presented in Sect. 5.
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2 The Selfish Bin Packing with Parameterized Full
Punishment

In the case of selfish bin packing with parameterized punishment, we let the
punishment pi only be applicable when the item is big enough. That is, for
a given parameter k, items with size bigger or equal to 1/k should pay pi for
deviating to other bins unilaterally; the small items are free to move. Specifically,
if item i in bin Bh wants to move to other bins, then the punishment pi for its
unilaterally moving is defined as follows:

pi =

⎧
⎨

⎩

(|Bh| − 1) si si ≥ 1
k

0 si < 1
k

2.1 The Existence of Nash Equilibrium

Define the potential function as P =
∑

j∈n[S(Bj)]2 ≤ n, where n is the number
of bins used. It means that the potential function is upper-bounded and its value
strictly increases with the item’s deviation for higher utility. Specifically, if the
item i deviates to bin t from bin h, no matter it is a big item or small item, we
have:

Δ = P ′ − P

= [S(Bt) + si]2 + [S(Bh) − si]2 − S2(Bh) − S2(Bt)
= [S(Bt)]2 + s2i + 2siS(Bt) + [S(Bh)]2 + s2i − 2siS(Bh) − [S(Bt)]2 − [S(Bh)]2

= 2si[si + S(Bt) − S(Bh)] > 0

The existence of an Equilibrium is proved. For the number of convergence
steps, let R > 0 be the minimal integer such that Rsj is integer for all sj ,
j = 1, . . . , m. Then R[si + s(Bt) − s(Bh)] � 1, thus the potential function will
increase at least 2si/R after any deviation step. Consequently, after at most
Rn/2si steps a configuration where no item has incentive to deviate anymore
could be achieved, which means a Nash Equilibrium is reached.

2.2 The Upper Bound of the Price of Anarchy

Let B∗
i denote the largest bin that item si can move to from its current bin, for

i = 1, . . . ,m. Let sBh
denote the size of the smallest item in bin Bh.

From the definition of the full punishment, we know that a profile π is a Nash
Equilibrium as long as for any item i

⎧
⎨

⎩

S(B∗
i ) ≤ S(Bh) + (|Bh| − 2)si, si ≥ 1

k

S(B∗
i ) ≤ S(Bh) − si, si < 1

k

In order to fulfill the proof, we define a bin Bh as big if S(Bh) ≥ 1/2, other-
wise it is called small. Suppose n bins are used in some given Nash Equilibrium π.
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Sort the bins in non-increasing order, such that S(B1) ≥ S(B2) ≥ · · · ≥ S(Bn).
Let nl be the number of big bins and ns be the number of small bins. Denote
Opt as the optimum solution of the bin packing problem.

Lemma 1. For any bin Bh containing some small items, it has S(Bh) = S(B1)
or S(Bj)j<h > k−1

k .

Proof. For a small item with si < 1
k , if it has the motivation to deviate from

its current bin Bh, then S(B∗
h) > S(Bh) − si. So in any NE packing, if bin Bh

contains item i, then either Bh is one of the largest bin or, item i cannot fit
other bins Bj with j < h.

Lemma 2. In any NE packing, if ns ≥ 2, there are at least two items in each
small bin.

Proof. For any small bin Bh, suppose |Bh| = 1. If sBh
≥ 1

k , then S(B∗
h) ≤ 0,

which means there could not be any other bin can pack this item, so Bh is the
only small bin. Similarly, if sBh

< 1
k , we still have S(B∗

h) ≤ 0, a contradiction.
So we know that each small bin contains at least two items.

Theorem 1. The Price of Anarchy is smaller or equal to max{4, k/2}.
Proof. Case 1. nl ≥ ns. We know Opt ≥ nl

2 , then n = nl + ns ≤ 2nl ≤ 4Opt;
Case 2. nl < ns.
If there are small items in the small bin, they can only be packed in the

biggest small bin. So the size of any big bins are at least k−1
k . According to

Lemma 2, the size of each small bin is larger than 2
k , so we have

Opt(π) ≥ k − l

k
nl +

2
k

ns

then

n = nl + ns ≤ nl + ns

k−1
k nl + 2

kns

Opt =

(
k2−3k
k−1

(k − 1) nl

ns
+ 2

+
k

k − 1

)

Opt ≤ k

2
Opt

If there is no small item in the small bins,

Opt ≥ 1
2
nl +

2
k

ns

then

n = nl + ns ≤ nl + ns
1
2nl + 2

kns

Opt =

(
2k − 8
k nl

ns
+ 4

+ 2

)

Opt ≤ k

2
Opt

Above all, the upper bound of PoA is max{4, k/2}. If let k = 8, we can get
a constant ratio of PoA ≤ 4.

��
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2.3 The Lower Bound of Price of Anarchy

Instance 2. Suppose there are n bins, each of them contains two items. The
size of each item is 1

k . It is easy to prove that this is a NE packing and the Price
of Anarchy is k

2 .

3 The Selfish Bin Packing with Parameterized Expansile
Punishment

Here for item i in bin Bh, the punishment pi for its unilaterally moving is defined
as

pi =

⎧
⎨

⎩

αsi si ≥ 1
k

0 si < 1
k

3.1 The Lower Bound of the Price of Anarchy

Instance 3. Suppose there are n bins each of which contains only one item, the
size of each item equals to 1

k . Then this is a NE packing with k bins used. We
can see that an optimal packing just use one bin for these items, so the lower
bound of PoA is k.

3.2 The Upper Bound of the Price of Anarchy

From the definition of punishment, we know that a profile π is a Nash Equilib-
rium as long as for any item i

⎧
⎨

⎩

S (B∗
i ) ≤ S (Bh) + (α − 1) si si ≥ 1

k

S (B∗
i ) ≤ S (Bh) − si si < 1

k

for the case of sh < 1
k , it is the same as the former case, Lemma 2 is still

valid here.

Theorem 2. The Price of Anarchy is smaller or equal to max{4, k}.
Proof. If nl ≥ ns, we know that Opt ≥ nl

2 , then

n = nl + ns ≤ 2nl ≤ 4Opt

If nl < ns, similarly, the small items can only be packed in the largest small
bins. So we know that the size of all the small bins is at least 1

k and that of the
big bins is larger than k−1

k .
Since

Opt ≥ k − 1
k

nl +
1
k

ns
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then

n = nl + ns ≤ nl + ns

k−1
k nl + 1

kns

Opt =

(
k2−2k
k−1

(k − 1) nl

ns
+ 2

+
k

k − 1

)

Opt ≤ kOpt.

If there is no small item in small bins, then the size of small bins should be
larger than 1

k and the size of big bins should be larger than 1
2 . We can know that

Opt ≥ 1
2
nl +

1
k

ns

then

n = nl + ns ≤ nl + ns
1
2nl + 1

kns

Opt =

(
2k − 4
k nl

ns
+ 2

+ 2

)

Opt ≤ kOpt.

To sum up, the upper bound of PoA is max{4, k}. Let k equal to 4, PoA = 4.
��

4 The Selfish Bin Packing with Partial Punishment

For the case with α < 1, each item has the same motivation to move or not no
matter its size is larger or smaller than 1

k . So in this section we just define the
punishment of item i for its unilaterally moving as

pi = αsi(α < 1).

4.1 The Lower Bound of the Price of Anarchy

Fig. 1. The packing in a nash equilibrium
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Instance 4. Figure 1 shows a NE packing with 8 bins, including 3 big bins and
5 small bins. First, we suppose that ε < 1

102 , then 1
6 + ε + 1 − 18ε > 1. For the

size of item equals to 1
6 −3ε, we get 1−18ε > 2

3 +4ε+ 1
6 −3ε, 1

6 −3ε+ 5
6 +5ε > 1

and 1−18ε > 2
3 +4ε+ 1

6 −3ε. Therefore, for the items with size 1
6 −3ε, they have

no motivation to move. Similarly, we can get same conclusion for other items.
So the packing is a Nash Equlibrium.

Fig. 2. The optimal packing

Figure 2 shows the optimal packing for these items. Thus, we get the lower
bound of PoA as 8

5 .

4.2 Weight Function for Special Condition

Define a bin as mixed bin, if it contains at least 2 items. It is a single bin, if
the bin contains one single item. It is clearly that the single bin always effects
the efficiency of the packing. Let NE to denote a Nash equlibrium packing, and
also the number of bins used in this equilibrium. OPT as the classical optimal
packing, and also denotes the bins number.

Theorem 3. The upper bound of the PoA is (1− b+a)b, if except t special bins
(single and mixed), the load of other bins are all larger than b.

Assume that there are some single bins with loads between a and b (a < b), and
some bins with load at least b. Then let t be the number of rest bins, the single
bins with load less than a and the mixed bins with load less than b.

The weight function is defined as

w(si) =
{

si + δ(1 − si) Bh is a single bin and si ∈ (a, b)
si others
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To make each bin’s weight larger than b, si + δ(1− si) ≥ b ,then δ ≥ b−si
1−si

. Since
si ∈ (a, b), then δ ≥ b−a

1−a . It is obvious that when δ ∈ (0, 1), the weight of each
bin is less than 1. So OPT > W (OPT ), W (NE) > bNE − t. The change of
the weight is caused by some single bins, therefore the weight of OPT plus all
single bins’ additional weights are larger than the weight of NE. Moreover, if the
number of single bin is greater than bNE, then OPT > bNE, which implies that
W (OPT )+(1−a)δbNE > W (NE). Above all, OPT > (1− (1−a)δ)bNE − t >
(1 − b + a)bNE − t. ��

4.3 The Upper Bound of the Price of Anarchy

The weight function is designed to prove PoA under the condition that most
bins are with load larger than b. To satisfy this condition, the parameters a and
b should be identified.

Lemma 3. There is at most one bin whose size is less than 1
2 in a NE packing.

Proof. Suppose there are two bins Bh and Bj whose sizes are less than 1
2 in a

NE packing and S(Bh) ≥ S(Bj). Consider an item si in the bin Bj , it fits bin
Bh but it chooses not move. We can know that S(Bj)+αsi ≥ S(Bh)+ si. Since
α < 1, So S(Bh) < S(Bj), a contradiction. The lemma is proved.

Lemma 3 implies that there is at most one single bin with the load less than
1
2 . Therefore, parameter a is equal to 1

2 .

Lemma 4. There is at most one mixed bin whose size is less than 2
3 .

Proof. Suppose there are two mixed bins whose sizes are less than 2
3 . Apparently

such mixed bin contains at less one item i whose size is less than 1
3 . Suppose

the bin S(Bh) ≥ S(Bj), for the item i according the definition of the Nash
Equilibrium, here is S(Bj) + αsi > S(Bh) + si, which is a confliction. ��

Lemma 4 indicates that there is at most one mixed bin with load less than
2
3 , which shows that the parameter t is at most 2, composed of one single bin
with load less than 1

2 and one mixed bin with load less than 2
3 . Hence parameter

b equals to 2
3 .

Theorem 4. The upper bound of the selfish bin packing with partial punishment
is 9

5 .

Proof. According to Theorem 3, Lemma 3 and Lemma 4, a = 0.5, b = 2
3 , then

OPT > 9
5ALG − 2.

5 Conclusion

In this paper, we study a new version of selfish bin packing problem. We define
three versions of punishment for item unilaterally moving. A parameter is given
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to classify the items that deserve or not punishment. The existence of Nash
Equlibrium is proved and the bounds of PoA for three kinds of punishment
mechanism are studied. For the full punishment version, the PoA is proved to be
k/2, where k is a given parameter to separate the items to be punished or not.
For the expansile punishment version, PoA is showed to be k. As for the partial
punishment version, we do not separate the items and let them all be punished if
they move unilaterally, the lower bound of PoA is proved to be 8

5 and the upper
bound is 9

5 . We may realize that punishment does not always work, comparing
with the selfish bin packing without punishment.
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Abstract. We study deterministic mechanism design without money for
k-facility location games with envy ratio on a real line segment, where a
set of strategic agents report their locations and a social planner locates k
facilities for minimizing the envy ratio. The objective of envy ratio, which
is defined as the maximum over the ratios between any two agents’ util-
ities, is derived from fair division to measure the fairness with respect to
a certain facility location profile.

The problem is studied in two settings. In the homogeneous k-facility
location game where k facilities serve the same purpose, we propose a
2k

2k−1
-approximate deterministic group strategyproof mechanism which

is also the best deterministic strategyproof mechanism. In the hetero-
geneous k-facility location game where each facility serves a different
purpose, when k is even, we devise the optimal and group strategyproof
mechanism; when k is odd, we provide a k+1

k−1
-approximate deterministic

group strategyproof mechanism.

Keywords: Mechanism design · Facility location · Strategyproof ·
Fairness · Envy ratio

1 Introduction

In this paper, we study k-facility location games with envy ratio on a real line
segment. The objective of envy ratio, which is derived from fair division [6,9,13,
21], is defined as the maximum over the ratios between any two agents’ utilities
and can be used to measure the fairness with respect to a certain facility location.
In k-facility location games with envy ratio, a social planner is going to build
k facilities based on the reported locations from a set of agents and aims to
minimize the envy ratio. However, each agent who has her location as private
information, is strategic and may misreport her location to minimize her own
cost. Thus, the social planner seeks to design mechanisms that can minimize the
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envy ratio while guaranteeing truthful report from agents (i.e., strategyproof or
group strategyproof).

The k-facility location game with envy ratio models well the real life scenario
where a social planner taking fairness into account needs to locate multiple
facilities to serve agents. For example, three shopping malls are to be built in a
district based on the ideal locations reported by local residents. It is natural to
assume that each resident only concerns her own distance to the malls and may
lie if necessary. Meanwhile, for the consideration of fairness, the local government
hopes that the three malls will be located while keeping the distance differences
among residents as small as possible. To deal with issues similar to the above,
mechanism design for k-facility location games with envy ratio is studied.

We discuss the problem in two settings. The fist one is the homogeneous
k-facility location, where the k facilities serve the same purpose and the cost
of each agent is her Euclidean distance to the nearest facility. For fitting this
setting, consider the scenario that the local government plans to build k public
parking lots in a street. All the agents in the street prefer living close to the
parking lot and can park their cars at the nearest one. The second one is the
heterogeneous k-facility location, where each facility serves a different purpose
and the cost of each agent is the sum of her Euclidean distances to the k facilities.
For fitting this setting, consider the scenario that the local government plans to
build several public facilities in a street, such as a library, a park, a bus stop and
so on. Then the cost of each agent in the street is the sum of her distances to
the k facilities since she needs to read in the library, to walk in the park, to wait
for a bus at the bus stop, etc.

For both settings, we are interested in designing deterministic strategyproof
or group strategyproof mechanisms that can perform well in minimizing the envy
ratio.

1.1 Our Results

This paper studies deterministic mechanism design without money for k-facility
location games on the real line segment [0, 1] with the objective of minimizing
the envy ratio. The problem is considered in two settings which are described
above.

Our key innovations and results are summarized as follows.
In Sect. 2, we formulate the k-facility location games with the objective of

minimizing the envy ratio. To the best of our knowledge, it is the first time that
the envy ratio is considered in the multiple facility location games for strate-
gyproof mechanism design.

In Sect. 3, we concentrate the homogeneous k-facility location game with
envy ratio, where the cost of each agent is her distance to the nearest facility.
We show a lower bound of 2k

2k−1 for the approximation ratio of any determin-
istic strategyproof mechanism and propose a 2k

2k−1 -approximate deterministic
group strategyproof mechanism, which implies that the best deterministic strat-
egyproof mechanism has been obtained.
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In Sect. 4, we consider the heterogeneous k-facility location game with envy
ratio, where the cost of each agent is the sum of her distances to the k facilities.
When k is even, we devise an optimal and deterministic group strategyproof
mechanism. When k is odd, we devise a k+1

k−1 -approximate deterministic group
strategyproof mechanism.

1.2 Related Work

Approximate mechanism design without money for facility location games was
introduced by Procaccia & Tennenholtz [18]. They studied the facility location
games on the real line with the social cost objective and the maximum cost
objective in three settings: 1-facility, 2-facility and multiple locations per agent.
Before them, Moulin [17] and Schummer & Vohra [19] provided a complete
characterization of strategyproof mechanisms for the facility location game with
the single peaked preference on line, tree and cycle networks. So far, mechanism
design without money for facility location games has been well studied.

For the one-facility location game, Alon et al. [1] extended the facility location
game to other networks for the maximum cost objective. Many variants of the
problem have also been studied to adapt more realistic scenarios. Cheng et al.
[5] introduced an obnoxious facility game on networks where every agent wants
to stay far away from the facility. Zhang & Li [23] extended the facility location
and the obnoxious facility location to games with weighted agents on a line.
Feigenbaum & Sethuraman [8] and Zou & Li [24] studied the dual or hybrid
preference game where some agents want to stay close to the facility while the
others want to stay away from the facility. Mei et al. [16] introduced a happiness
factor to measure the agent’s satisfaction degree with respect to the facility
location and Li et al. [12] studied the facility game with externalities where
every agent’s utility is affected by others.

For the multiple facility location game, Lu et al. [14,15] improved the results
of [18] for the 2-facility location game. Fotakis & Tzamos [11] provided a
complete characterization of deterministic strategyproof mechanisms for the 2-
facility location game on a real line with the social cost objective. From then
on, heterogeneous multiple facility location games where each facility serves a
different purpose have been studied. Serafino & Ventre [20] and Yuan et al. [22]
considered heterogeneous 2-facility location games with public location informa-
tion but private optional preference. Zou & Li [24] and Chen et al. [4] studied
2-opposite-facility location game with limited distance. Fong et al. [10] proposed
a fractional preference model for the facility location game with two facilities
serving the same purpose on a line segment. Anastasiadis & Deligkas [2] stud-
ied strategyproof mechanism design for heterogeneous k-facility location games
with the minimum utility objective. Duan et al. [7] introduced the minimum
distance requirement to heterogeneous 2-facility location games with the social
cost objective.

The work mentioned above mainly focused on the objective of minimizing
the social cost or the maximum cost, where the former represents the utilitari-
anism and the latter represents the egalitarianism. Recently, motivated by fair
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division, several new objectives have been adopted to measure the fairness of
the facility location, such as maximum envy and envy ratio. Cai et al. [3] stud-
ied one-facility location game with the objective of minimizing the maximum
envy. Ding et al. [6] introduced the envy ratio to one-facility location games,
devised the best deterministic strategyproof mechanism and gave a lower bound
for randomized strategyproof mechanisms. This paper can be considered as an
expanding direction of the work of [6], in which deterministic mechanism design
for k-facility location games with envy ratio is studied.

2 Preliminaries

In this section, we introduce some definitions and notations used in the k-facility
location games with envy ratio on the real line segment I = [0, 1].

Let N = {1, 2, . . . , n} be a set of agents. Each agent i ∈ N has a location
xi ∈ I, which is i’s private information. The collection x = (x1, x2, . . . , xn)
is referred to as a location profile or an instance. For i ∈ N , denote x−i =
(x1, . . . , xi−1, xi+1, . . . , xn), then x = (xi,x−i). For a nonempty set S ⊆ N ,
denote xS = (xi)i∈S and x−S = (xi)i/∈S , then x = (xS ,x−S). For an instance
x, if there are q different locations x1, . . . , xq and N can be partitioned into q
nonempty coalitions such that all agents in Ni occupy a same location xi, x is
called a q-location instance and is denoted as (x1 : N1, · · · , xq : Nq).

Suppose the k facilities are located at y1, . . . , yk respectively, then the location
profile of k facilities is denoted by y = (y1, . . . , yk) ∈ Ik. For any agent i ∈ N
at location xi, let cost(y, xi) denote the cost of agent i. In the homogeneous k-
facility location, cost(y, xi) = min1≤j≤k |yj −xi|. In the heterogeneous k-facility
location, cost(y, xi) =

∑k
j=1 |yj − xi|.

Definition 1. A (deterministic) mechanism f is a function that maps a loca-
tion profile of n agents to that of k facilities, i. e., f : In → Ik.

Given a mechanism f and a location profile x ∈ In, the cost of agent i ∈ N
at location xi is denoted as cost(f(x), xi).

In the k-facility location game, the social planner announces a mechanism,
then asks each agent to report her location and output the k facility locations.
Agents may misreport their locations to decrease their own costs. Therefore,
it is important to ensure strategyproofness or group strategyproofness of the
mechanism, which are defined as follows.

Definition 2. A mechanism f is strategyproof if no agent can benefit from
misreporting her location, regardless of the other agents’ strategies.

Formally, for every location profile x ∈ In, every agent i ∈ N , and every
x′

i ∈ I, cost(f(x′
i,x−i), xi) ≥ cost(f(x), xi).

Definition 3. A mechanism f is partial group strategyproof if for any
coalition of agents that occupy the same location, none of them can benefit from
misreporting their locations simultaneously.

Formally, for every location profile x, every coalition of agents S occupying
a same location x, and every x′

S ∈ I |S|, cost(f(x′
S ,x−S), x) ≥ cost(f(x), x).
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Definition 4. A mechanism f is group strategyproof if for any coalition of
agents misreporting their locations, at least one of them can not benefit.

Formally, for every location profile x, every coalition of agents S ⊆ N , and
every x′

S ∈ I |S|, there exists some agent i ∈ S such that cost(f(x′
S ,xS), xi) ≥

cost(f(x), xi).

Remark. By the definitions, any group strategyproof mechanism is also par-
tial group strategyproof, and any partial group strategyproof mechanism is also
strategyproof. Furthermore, in the k-facility location game, any strategyproof
mechanim is also partial group strategyproof [15]. Therefore, strategyproofness
will be regarded as equivalent to partial group strategyproofness in the following
analysis.

In this paper, we are interested in pursuing locations of the k facilities that
take fairness among agents into account. To capture the notion of fairness, we
employ the concept of envy ratio, which is derived from fair division. In the
context of fair division, agent i is said to envy agent j if she prefer the bundle
allocated to j to her own and the envy ratio is defined by the utility of one
agent for another agent’s bundle over her utility for her own bundle [13]. Here,
we define the utility of each agent as a constant minus her cost and use utilities
to define the envy ratio [6]1.

Definition 5. For a location profile x ∈ In, the envy ratio of the location
profile of k facilities y ∈ Ik is defined as

ER(y,x) = max
1≤i�=j≤n

u(y, xi)
u(y, xj)

, (1)

where u(y, xi) is the utility of agent i. Specifically, u(y, xi) = 1 − cost(y, xi) in
the homogeneous k-facility location and u(y, xi) = k − cost(y, xi) in the hetero-
geneous k-facility location.

For a location profile x ∈ In, let OPT (x) be the optimal solution to the
minimization problem miny∈Ik ER(y,x) and ER(OPT,x) be the optimal envy
ratio. The envy ratio of mechanism f is denoted as ER(f(x),x). Without confu-
sion, we denote ER(f(x),x) as ER(f,x) for simplicity. Note that ER(y,x) ≥ 1
for any y ∈ Ik.

Now we present the approximation ratio which was introduced by [18] to
measure the performance of a mechanism.

1 Analogically, in the facility location setting, we can say agent i envies agent j if
her cost is greater than j’s, or equivalently her utility is less than j’s. It seems that
defining the envy ratio as the maximum over ratios between any two agents’ cost can
also represent fairness. We simply follow the way of [6] and give the utility version
of the envy ratio. Besides, we conjecture there might not exist any positive results
for the cost version of the envy ratio, although without verification.
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Definition 6. A mechanism f is said to have an approximation ratio of γ (γ ≥
1), if it satisfies

γ = sup
x∈In

ER(f,x)
ER(OPT,x)

. (2)

For the k-facility location game with envy ratio, we are interested in strate-
gyproof or group strategyproof mechanisms that also perform well in minimizing
the envy ratio, i. e., with a small approximation ratio.

Notations. For a location profile x ∈ In, denote lm(x) = mini∈N xi which is
the leftmost point of x, rm(x) = maxi∈N xi which is the rightmost point of x,
and L(x) = rm(x) − lm(x) which is the length of x.

3 Homogeneous Facility Location Game

In this section, we consider the homogeneous k-facility location game (k ≥ 2),
where cost(y, xi) = min1≤j≤k |yj − xi| and u(y, xi) = 1 − cost(y, xi).

We first show that any deterministic strategyproof mechanism has an approx-
imation ratio of at least 2k/(2k − 1), then provide a group strategyproof mecha-
nism with approximation ratio of 2k/(2k−1). This implies that the best possible
deterministic strategyproof mechanism has been obtained.

We start with an optimal solution of minimizing the envy ratio for any (k+1)-
location instance, which will be used in the following analysis.

Lemma 1. For any (k + 1)-location instance x = (x1 : N1, . . . , xk+1 : Nk+1),
ER(OPT,x) = 1.

Proof. Without loss of generality, assume that x1 < · · · < xk+1. Choose an
l ∈ arg min1≤i≤k(xi+1 − xi) and denote δ = (xl+1 − xl)/2.

Let y� = (y�
1 , . . . , y

�
k), where

y�
j =

⎧
⎨

⎩

xj + δ, j < l
(xj + xj+1)/2, j = l
xj − δ, j > l + 1

(3)

It is straightforward that for any i ∈ N , cost(y�, xi) = δ. Thus, ER(y�,x) =
1 and y� is the optimal solution. ��
Theorem 1. For k-facility location game with n ≥ k + 1 agents, any determin-
istic strategyproof mechanism has an approximation ratio of at least 2k/(2k − 1)
for minimizing the envy ratio.

Proof. Let f be any deterministic strategyproof mechanism for k-facility location
with n ≥ k + 1 agents. It suffices to show that f has an approximation ratio of
at least 2k/(2k − 1).

Consider the (k + 1)-location instance x = (0 : N1, 1/k : N2, · · · , (k − 1)/k :
Nk, 1 : Nk+1). Denote f(x) = (y1, y2, · · · , yk) and without loss of generality
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assume that y1 ≤ y2 ≤ · · · ≤ yk. We analyze the approximation ratio of f through
the following four cases.

Case 1: yk ∈ [0, k−1
k ]. In this case, we have

min{cost(f(x), 0), cost(f(x), 1/k), · · · , cost(f(x), (k − 1)/k)} ≤ 1/k, (4)

then

max{u(f(x), 0), u(f(x), 1/k), · · · , u(f(x), (k − 1)/k)} ≥ 1 − 1/k. (5)

In addition, u(f(x), 1) = 1 − cost(f(x)) ≤ 1 − 1/k. Thus, we have

ER(f,x) ≥ 1 − 1/(2k)
1 − 1/k

=
2k − 1
2k − 2

>
2k

2k − 1
. (6)

Case 2: yk ∈ (k−1
k , 2k−1

2k ].
Consider x′ = (yk : Nk,x−Nk

). Denote f(x′) = (y′
1, · · · , y′

k) with y1 ≤ · · · ≤
y′

k. Then yk ∈ {y′
1, · · · , y′

k}; otherwise, all the agents of Nk at location yk in x′ can
benefit from misreporting location (k − 1)/k simultaneously, which contradicts
f ’s strategyproofness. Thus, u(f(x′), yk) = 1.

Case 2.1: y′
k = yk. u(f(x′), 1) = yk ≤ (2k − 1)/(2k). Thus,

ER(f,x′) ≥ u(f(x′), yk)
u(f(x′), 1)

≥ 2k

2k − 1
. (7)

Case 2.2: For some j ∈ {1, · · · , k − 1}, y′
j = yk.

In this case, either agents at location (k − 2)/k occupy the facility location
y′

j = yk or agents at k −1 different locations 0, 1/k, · · · , (k −2)/k jointly occupy
no more than j − 1(≤ k − 2) facility locations. In either case, it holds that

max{cost(f(x′), 0), · · · , cost(f(x′),
k − 2

k
} ≥ 1

2k
. (8)

Then,

min{u(f(x′), 0), · · · , u(f(x′),
k − 2

k
} ≤ 1 − 1

2k
. (9)

Thus, we have

ER(f,x′) ≥ 1
1 − 1/(2k)

=
2k

2k − 1
. (10)

Case 3: yk ∈ ( 2k−1
2k , 1).

Consider x′′ = (yk : Nk+1,x−Nk+1). Denote f(x′′) = (y′′
1 , · · · , y′′

k ) with y′′
1 ≤

· · · ≤ y′′
k . By f ’s strategyproofness, yk ∈ {y′′

1 , · · · , y′′
k}. Thus, u(f(x′′), yk) = 1.

Either agents at location (k − 1)/k occupy the facility location yk, or agents
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at k different locations 0, 1/k, · · · , (k − 1)/k jointly occupy less than k facility
locations. In either case, it holds that

max{cost(f(x′′), 0), · · · , cost(f(x′′),
k − 1

k
)} ≥ 1

2k
. (11)

Then,

min{u(f(x′′), 0), · · · , u(f(x′′),
k − 1

k
)} ≤ 1 − 1

2k
. (12)

Thus, we have

ER(f,x′′) ≥ 1
1 − 1/(2k)

=
2k

2k − 1
. (13)

Case 4: yk = 1. In this case, u(f(x), 1) = 1 and

max{cost(f(x), 0), · · · , cost(f(x),
k − 1

k
)} ≥ 1

2k
. (14)

Then,

min{u(f(x), 0), · · · , u(f(x),
k − 1

k
)} ≤ 1 − 1

2k
. (15)

Thus, we have

ER(f,x) ≥ 1
1 − 1/(2k)

=
2k

2k − 1
. (16)

By Lemma 1, the optimal envy ratio for any (k + 1)-location instance is 1.
Therefore, f has an approximation ratio of 2k/(2k − 1). ��

Mechanism 1. Given a location profile x ∈ In, output

f(x) = (
1
2k

,
3
2k

, · · · ,
2k − 1

2k
). (17)

Theorem 2. For k-facility location game with n ≥ 2 agents, Mechanism 1 is
group strategyproof with approximation ratio of 2k/(2k − 1) for minimizing the
envy ratio.

Proof. f(x) = ( 1
2k , 3

2k , · · · , 2k−1
2k ) is group strategyproof since it does not depend

on any information from the agents.
For every x ∈ In and every i ∈ N , it holds that 1−1/(2k) ≤ u(f(x), xi) ≤ 1.

Thus,

ER(f,x) ≤ 1
1 − 1/(2k)

=
2k

2k − 1
. (18)

Note that ER(OPT,x) ≥ 1, and we obtain

sup
x∈In

ER(f,x)
ER(OPT,x)

≤ 2k

2k − 1
. (19)

Furthermore, consider a 2-location instance x′ = (0 : N1, 1/(2k) : N2). It is
obvious that ER(f,x′) = 2k/(2k − 1) and ER(OPT,x′) = 1.

Therefore, f has an approximation ratio of 2k/(2k − 1). ��
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Combining Theorem 1 with Theorem 2, we observe that Mechanism 3 is the
best deterministic strategyproof mechanism for homogeneous k-facility location
game with envy ratio. Specifically, we obtain the following result for the 2-facility
location setting.

Corollary 1. For the homogeneous 2-facility location game with n ≥ 3 agents,
any deterministic strategyproof mechanism has an approximation ratio of at least
4/3 for minimizing the envy ratio and f(x) = (1/4, 3/4) for all x ∈ In is the
best deterministic strategyproof mechanism, with approximation ratio of 4/3.

Mechanism 2. Given a location profile x ∈ In, output f(x) = (lm(x), rm(x)).

Remark 1. Recall that Mechanism 2 is a well known group strategyproof mech-
anism and has been shown the best possible deterministic strategyproof mech-
anism for the homogeneous 2-facility location game with the objective of min-
imizing the social cost or the maximum cost [11,18]. But in our setting, this
mechanism performs worse than simply locating at 1/4 and 3/4, with approxi-
mation ratio of 2. However, Mechanism 2 can be extended to the heterogeneous
k-facility location setting.

4 Heterogeneous Facility Location Game

In this section, we consider the heterogeneous k-facility location game, where
cost(y, xi) =

∑k
j=1 |yj − xi| and u(y, xi) = k − cost(y, xi).

Mechanism 3. Given a location profile x ∈ In, if k is even, the first k/2 facilities
are located at lm(x) and the last k/2 facilities are located at rm(x); if k is odd,
the first (k + 1)/2 facilities are located at lm(x) and the last (k − 1)/2 facilities
are located at rm(x).

Theorem 3. For the heterogeneous k-facility location game with envy ratio,
Mechanism 3 is group strategyproof. Furthermore, if k is even, Mechanism 3
is optimal; if k is odd, Mechanism 3 has an approximation ratio of k+1

k−1 .

Proof. Denote Mechanism 3 as f . We first concentrate on f ’s group strate-
gyproofness. Let S ⊆ N be any nonempty set and x = (xS ,x−S). We shall show
that for any x′

S ∈ I |S|, there exists agent i ∈ S, such that

cost(f(x′
S ,x−S), xi) ≥ cost(f(xS ,x−S), xi). (20)

Denote x′ = (x′
S ,x−S), Δ1 = lm(x)− lm(x′) and Δ2 = rm(x′)−rm(x). The

group strategyproofness of f will be verified through the following four cases.

Case 1: Δ1 ≥ 0,Δ2 ≥ 0.
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If k is even, for every i ∈ S, it holds that

cost(f(x′), xi) =
k

2
(rm(x′) − lm(x′)) (21)

= cost(f(x), xi) +
k

2
(Δ1 + Δ2) (22)

≥ cost(f(x), xi). (23)

If k is odd, for every i ∈ S, it holds that

cost(f(x′), xi) =
k

2
(rm(x′) − lm(x′)) + (xi − lm(x′)) (24)

= cost(f(x), xi) +
k

2
(Δ1 + Δ2) + Δ1 (25)

≥ cost(f(x), xi). (26)

Case 2: Δ1 ≥ 0,Δ2 < 0. The rightmost agent must be a member of S. It
is obvious that whether k is even or odd, this agent cannot benefit from the
deviation, since the rightmost location and possibly the leftmost location move
away from her.

Case 3: Δ1 < 0,Δ2 ≥ 0. This case is symmetric to Case 2.

Case 4: Δ1 < 0,Δ2 < 0. Both the leftmost agent and the rightmost must be
members of S.

Whether k is even or odd, it holds that

cost(f(x′), lm(x)) + cost(f(x′), rm(x)) (27)
= k(rm(x) − lm(x)) (28)
= cost(f(x), lm(x)) + cost(f(x), rm(x)). (29)

Thus, either the leftmost agent or the rightmost agent cannot benefit from
the deviation, whether k is even or odd.

Now let us turn to proving the approximation ratio of f .
If k is even, for every x ∈ In and every i ∈ N , it holds that

cost(f(x), xi) =
k

2
(rm(x) − lm(x)) =

k

2
L(x), (30)

which implies that ER(f,x) = 1. Thus, f is optimal.
If k is odd, for every x ∈ In and every i ∈ N , it holds that
k − 1

2
L(x) ≤ cost(f(x), xi) =

k − 1
2

L(x) + (xi − lm(x)) ≤ k + 1
2

L(x). (31)

Thus,

ER(f,x) ≤ k − k−1
2 L(x)

k − k+1
2 L(x)

(32)

≤ k − (k − 1)/2
k − (k + 1)/2

(33)

=
k + 1
k − 1

, (34)
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where the second inequality holds because g(t) = k− k−1
2 t

k− k+1
2 t

monotonically increases

on [0, 1].
Note that ER(OPT,x) ≥ 1 and we have

sup
x∈In

ER(f,x)
ER(OPT,x)

≤ k + 1
k − 1

. (35)

Consider x′ = (0 : N1, 1 : N2). It is obvious that ER(OPT,x′) = 1 and
ER(f,x′) = k+1

k−1 . Thus, f has an approximation ratio of k+1
k−1 . ��

5 Conclusions and Future Work

In this paper, we studied deterministic mechanism design without money for
k-facility location games with envy ratio on the line interval, where a set of
strategic agents report their locations and a social planner locates k facilities to
minimize the envy ratio. We discuss the problem in two settings: the homoge-
neous k-facility location where k facilities serve the same purpose and the hetero-
geneous k-facility location where each facility serves a different purpose. In the
homogeneous location game, we devised a 2k

2k−1 -approximate group strategyproof
mechanism which is also the best deterministic strategyproof mechanism. In the
heterogeneous location game, when k is even, we proposed the optimal and group
strategyproof mechanism; when k is odd, we obtained a k+1

k−1 -approximate group
strategyproof mechanism.

There are at least three directions for future research. The first is a deter-
ministic lower bound for heterogeneous k-facility location game when k is odd.
The second is randomized mechanism design for multiple facility location games
with envy ratio. The third is the formulation of heterogeneous k-facility location
game with envy ratio which can adapt more realistic scenarios, such as locations
combined with fractional preferences [10].
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Abstract. We study a fairness-based model for 2 -facility location games
on the real line where the social objective is to minimize the maximum
envy over all agents. All the agents seek to minimize their personal costs,
and the envy between any two of them is the difference in their personal
costs. We consider two cases of personal costs, called min-dist and sum-
dist cost. We are interested in investigating strategyproof mechanisms
for 2 -facility location games in both cases.

In the case of min-dist personal cost, we prove that a lower bound of
the additive approximation for any deterministic strategyproof mecha-
nism is 1/4; then we propose a 1/2-additive approximate deterministic
group strategyproof mechanism and a 1/4-additive approximate random-
ized strategyproof mechanism. In the case of sum-dist personal cost, we
design an optimal and group strategyproof deterministic mechanism.

Keywords: Facility location game · Mechanism design · Minimax
envy

1 Introduction

Facility location games [13,14,17], motivated by the social choice, has been
extensively studied in algorithmic mechanism design [16]. In these settings, the
problem input is a set of strategic agents with private location information and
the agents might lie about their private locations. At the beginning, the social
planner (or mechanism designer) announces an algorithm, which outputs facil-
ity locations by collecting all the agents’ reported location information. All the
agents proceed to strategically reporting their locations, based on the algorithm
(or mechanism), to benefit themselves. Naturally, the mechanism designer wishes
to encourage each agent’s truthful report while optimizing a certain social objec-
tive. Thus, how to design efficient and truthful (or strategyproof) mechanisms
has been the central topic in facility location games.
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Previous Work. Procaccia and Tennenholtz [17] initiated approximate mecha-
nism design without money for facility location games. They studied approxi-
mate strategyproof mechanisms for 1 -facility location games under two social
objective functions: the social cost and the maximum cost, and extended the
results to two settings: 2 -facility location and multiple locations per agent. Sub-
sequently, Lu et al. [10,11] improved the lower and upper bounds of approxima-
tion under the social cost objective. Fotakis and Tzamos [7] studied k -facility
location games and provided an elegant characterization of deterministic strat-
egyproof mechanisms for 2 -facility location games. Zou and Li [20] explored
the property of dual preference in facility location games and proposed two
extended games, called the dual character facility location game and the two
opposite-facility location game with limited distance. Mei et al. [12] introduced
the happiness factor of each agent, which considers the agent’s degree of satis-
faction for the facility location. Duan et al. [5] studied the requirement of the
minimum distance between two facilities and established several strategyproof
mechanisms. Li et al. [9] proposed the optional preference model for the facility
location games with two heterogeneous facilities on a line. Other extended work
of classic facility location games can be referred to [2,4,6,18,19].

Motivations. Our work is motivated by the social objective of minimax-envy for
facility location games. Prior to this work, Cai et al. [3] introduced a fairness
criterion, called minimax-envy [8,15] to 1 -facility location games and proposed
desirable strategyproof mechanisms.

We study a fairness-based model for 2 -facility location games on the real line
where the social objective is to minimize the maximum envy over all the agents.
All the agents seek to minimize their personal costs, and the envy between any
two of them is the difference in their personal costs. We consider two cases of
personal costs, called min-dist cost and sum-dist cost. Intuitively, suppose that
the government plans to build two homogeneous facilities (e.g. two supermarkets)
on the central avenue and customers prefer to go to the nearest market from their
home, which leads to the min-dist cost where each agent’s personal cost is the
minimization of her distances to both facilities. On the other hand, suppose that
our government plans to build two heterogeneous facilities (e.g. one hospital and
one pharmacy), customers are concerned about the sum of their distances to
both facilities, which leads to sum-dist cost where agent’s personal cost is the
sum of her distances to both facilities.

Contributions. In this paper, we are interested in investigating strategyproof
mechanisms for 2 -facility location games with minimax-envy objective. In
Sect. 2, we formulate the 2 -facility game with minimax-envy objective. For any
two agents, we define the envy as the difference of their personal costs, resulting
in the maximum-envy objective. In Sect. 3, we focus on studying the case of min-
dist personal cost. On the side of deterministic strategyproof mechanisms, we
firstly show a lower bound of 1/4-additive approximation, then propose a 1/2-
additive approximate group strategyproof mechanism. On the side of randomized
strategyproof mechanisms, we propose a 1/4-additive approximate strategyproof
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mechanism. In Sect. 4, we study the case of sum-dist cost and we propose an opti-
mal and group strategyproof mechanism. The last section concludes the results
of this paper and discusses several open problems.

2 Preliminaries

2.1 The Basic Setting

Instances. Let N = {1, 2, . . . , n} be a collection of agents where each agent
i ∈ N has a location xi ∈ R as her private information. The vector x =
(x1, x2, . . . , xn) ∈ R

n is referred to as an instance (or a location profile). Spe-
cially, an instance x = (x1 : N1, . . . , xk : Nk) with ∪k

i=1Ni = N is referred to as
a k-location instance if all the n locations (which could be the same) distributed
at exactly k different locations.

For any instance x ∈ R
n, let lm(x) (or rm(x)) be the leftmost (or the

rightmost) location of x, and let L(x) = rm(x) − lm(x) be the length of x.

Mechanisms. A deterministic mechanism for 2 -facility location game is a func-
tion f : R

n → R
2, which maps an instance to the locations of two facilities.

A randomized mechanism is a function f : R
n → Δ(R2) where Δ(R2) is the

set of all probability distributions over R
2, that is, the output of a random-

ized mechanism f(x) is a probability distribution P over location profiles of two
facilities.

Personal Objective. Given an instance x ∈ R
n, if f is deterministic, denote

f(x) = (f1(x), f2(x)). Agent i aims to minimize her personal cost which is
defined as

(i) Min-dist Cost: agent i’s distance to the nearest facility, i.e.,

cost(f(x), xi) = min{|f1(x) − xi|, |f2(x) − xi|}.

(ii) Sum-dist Cost: the sum of agent i’s distances to the two facilities, i.e.,

cost(f(x), xi) = |f1(x) − xi| + |f2(x) − xi|.

Remark. If f is randomized, agent i’s min-dist cost is her expected distance to
the nearest facility; agent i’s sum-dist cost is the expected sum of her distances
to the two facilities.

Strategyproofness. The social planner hopes to design mechanisms that have
no incentive for agents to strategically misreport locations. Here, we introduce
three types of strategyproofness.

(i) A mechanism f is strategyproof if no agent can achieve less cost by misre-
porting her truthful location, regardless of the other agents’ reports.
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(ii) A mechanism f is group strategyproof if no coalition (which controls at least
one location) of agents can simultaneously misreport such that every agent
in the coalition achieves strictly less cost, regardless of the other agents’
reports.

(iii) A mechanism f is partial group strategyproof if no coalition (which controls
exactly one location) of agents can simultaneously misreport such that every
agent in the coalition achieves strictly less cost, regardless of the other
agents’ reports.

Remark. By definitions and Lu et al. [10], we have the following:

– In a k-facility game, a group strategyproof mechanism is also partial group
strategyproof.

– In a k-facility game, a mechanism is partial group strategyproof if and only
if it is strategyproof.

Minimax-Envy Objective. Given an instance x ∈ R
n, let y = (y1, y2) be

the locations of two facilities. The envy of agent i w.r.t. agent j is defined
as cost(y, xi) − cost(y, xj) and the maximum envy of y w.r.t. x is defined as
me(y,x) = maxi�=j{cost(y, xi) − cost(y, xj)}/L(x) if L(x) > 0, me(y,x) = 0 if
L(x) = 0. We will concentrate on the case of L(x) > 0, unless specified. Taking
account of the fairness between agents, the social planner aims to minimize
the maximum envy w.r.t x over all possible y ∈ R

2. In addition, let opt(x) =
miny∈R2{me(y,x)} be the optimal value and y∗ be an optimal solution w.r.t. x.

On the other hand, from the perspective of mechanism design, let f be any
mechanism. If f is deterministic, the maximum envy w.r.t. x is defined as

me(f,x) =
maxi�=j{cost(f(x), xi) − cost(f(x), xj)}

L(x)
.

If f is randomized, the expected maximum envy w.r.t. x is defined as

me(f,x) =
Ey∼f(x)[maxi�=j{cost(y, xi) − cost(y, xj)}]

L(x)
.

Our objective is to seek strategyproof mechanisms that minimize the maximum
envy for 2 -facility location games.

2.2 The Performance of Strategyproof Mechanisms

In the previous literatures [6,11,17], the approximation ratio is typically used to
quantify the performance of a mechanism in facility location games. However,
in homogeneous 2 -facility location games with min-dist cost, the approximation
ratio is no longer suitable to measure the performance of mechanisms. In fact,
it can be verified that no deterministic strategyproof mechanism can achieve a
finite approximation ratio.

To show this negative result, we start with the optimal solution for minimiz-
ing the maximum envy on 3 -location instances.
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Lemma 2.1. Given any 3-location instance x = (x1 : N1, x2 : N2, x3 : N3),
the optimal value opt(x) = 0 holds for minimizing maximum envy w.r.t. either
min-dist cost or sum-dist cost.

Lemma 2.2. In homogeneous 2-facility location games with min-dist cost, no
deterministic strategyproof mechanism has a finite approximation ratio for min-
imizing the maximum envy.

Proof. Let f be any deterministic strategyproof mechanism. Recall that the min-
dist cost of each agent i is cost(f(x), xi) = min{|f1 − xi|, |f2 − xi|}. Consider
a 3 -location instance x = (x1 : N1, x2 : N2, x3 : N3), where x1 = 0, x2 = 1/2,
x3 = 1. Notice that L(x) = 1. Based on Lemma 2.1, the optimal value opt(x) = 0
(with y∗ = (1/4, 3/4)).
Let f(x) = (f1, f2), f1 ≤ f2.

(i) If f2 = xi, for some i ∈ {1, 2, 3}, it is obvious that

cost(f(x), xi) = 0;maxj �=i{cost(f(x), xj)} ≥ 1/4.

Thus, the maximum envy me(f,x) ≥ 1/4. Combined with opt(x) = 0, the
approximation ratio γ0 ≥ me(f,x)/opt(x) = +∞.

(ii) If f2 �= xi, i = 1, 2, 3, we consider another 3 -location instance x′ =
(x′

1 : N1, x
′
2 : N2, x

′
3 : N3) where x′

1 = x1 = 0, x′
2 = f2, and x′

3 = x3 = 1.
By Lemma 2.1, the optimal value is opt(x′) = 0. Let f(x′) = (f ′

1, f
′
2). By f ’s

strategyproofness, we have f2 ∈ {f ′
1, f

′
2}; otherwise, agents in N2 with location

f2 can benefit by deviating from x′
2 to x2. Thus, cost(f(x′), f2) = 0, and it

implies that max{cost(f(x′), 0), cost(f(x′), 1)} > 0. Hence, the maximum envy
me(f,x′) > 0, and the approximation ratio γ0 ≥ me(f,x′)/opt(x′) = +∞.

	

In this paper, we introduce the additive approximation [1] to measure the

performance of mechanisms, which is defined as follows.

Additive Approximation. A mechanism f is said to have an additive approx-
imation of ρ (ρ ≥ 0) if sup{me(f,x) − opt(x) | x ∈ R

n} = ρ, where opt(x) is the
optimal value for minimizing the maximum envy.

3 Min-Dist Personal Cost

In this section, we study homogeneous 2 -facility location games with min-dist
cost (i.e., cost(f(x), xi) = min{|f1 − xi|, |f2 − xi|}, ∀i ∈ N), and design deter-
ministic and randomized strategyproof mechanisms.

3.1 Deterministic Strategyproof Mechanisms

In this subsection, we firstly show a lower bound of additive approximation of 1/4
for any deterministic strategyproof mechanisms. Then, we design a deterministic
group strategyproof mechanism with additive approximation of 1/2.
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Theorem 3.1. In homogeneous 2-facility location games, any deterministic
strategyproof mechanism has an additive approximation of at least 1/4 for min-
imizing the maximum envy.

Proof. Consider an 3 -location instance x = (0 : N1, 1/2 : N2, 1 : N3) with
x1 = 0, x2 = 1/2, x3 = 1. Notice that L(x) = 1. Based on Lemma 2.1, the
optimal value opt(x) = 0. Let f be any deterministic strategyproof mechanism.
Denote f(x) = (f1, f2) with f1 ≤ f2.

Case 1. f1 ≥ 1/2.
In this case, we observe that the envy of agent 1 w.r.t. agent 2 in x is

cost(f(x), x1) − cost(f(x), x2) = |f1 − 0| − |f1 − 1/2| = 1/2,

which implies that the maximum envy me(f,x) ≥ (1/2)/1 > 1/4.

Case 2. f2 ≤ 1/2. This case is symmetric to Case 1.

Case 3. f1 < 1/2 and f2 > 1/2.

Case 3.1. f1 ≤ 0 and f2 > 1/2.

Case 3.1.1. cost(f(x), 1/2) = |f1−1/2|. Observe that cost(f(x), 0) = |f1−0|.
Thus, the maximum envy

me(f,x) ≥ (|f1 − 1/2| − |f1 − 0|)/1 = 1/2 > 1/4.

Case 3.1.2 cost(f(x), 1/2) = |f2 − 1/2|.
(i) If f2 ≥ 1, we get that cost(f(x), 1) = |f2 −1|, cost(f(x), 1/2) = |f2 −1/2|.

Thus, the maximum envy

me(f,x) ≥ (|f2 − 1| − |f2 − 1/2|)/1 = 1/2 > 1/4.

(ii) If 1/2 < f2 < 3/4, we assume that f2 = 3/4 − ε, ε ∈ (0, 1/4).
Consider another 3 -location instance x′ = (x′

1 : N1, x
′
2 : N2, x

′
3 : N3) with

x′
1 = x1 = 0, x′

2 = 3/4 − ε and x′
3 = x3 = 1. Let f(x′) = (f ′

1, f
′
2), f ′

1 ≤ f ′
2. It can

be verified that cost(f(x′), x′
2) = 0. Otherwise if cost(f(x′), x′

2) > 0, agents in
N2 under x′ can benefit by misreporting 1/2 (which leads to cost(f(x), x′

2) = 0),
in contradiction to f ’s strategyproofness.

When f ′
1 = 3/4 − ε, we have cost(f(x′), x′

1) = |f ′
1 − 0| = 3/4 − ε. Thus, the

maximum envy

me(f,x′) ≥ cost(f(x′), x′
1) − cost(f(x′), x′

2) = 3/4 − ε > 1/4.

When f ′
2 = 3/4 − ε, we have cost(f(x′), x′

3) = |f ′
2 − 1| = 1/4 + ε. Thus, the

maximum envy

me(f,x′) ≥ cost(f(x′), x′
3) − cost(f(x′), x′

2) = 1/4 + ε ≥ 1/4.
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(iii) If 3/4 ≤ f2 < 1, we assume that f2 = 3/4 + ε, ε ∈ [0, 1/4).
Consider another instance x′′ = (x′′

1 : N1, x
′′
2 : N2, x

′′
3 : N3) with x′′

1 =
x1 = 0, x′′

2 = x2 = 1/2 and x′′
3 = 3/4 + ε. Notice that L(x′′) = 3/4 + ε. Let

f(x′′) = (f ′′
1 , f ′′

2 ), f ′′
1 ≤ f ′′

2 . It can be verified that cost(f(x′′), x′′
3) = 0 by f ’s

strategyproofness.
When f ′′

1 = 3/4 + ε, we have cost(f(x′′), x′′
1) = |f ′′

1 − 0| = 3/4 + ε. Thus,

me(f,x′′) = (3/4 + ε − 0)/(3/4 + ε) = 1 > 1/4.

When f ′′
2 = 3/4 + ε. we have maxi=1,2,3{cost(f(x′′), x′′

i )} ≥ 1/4. Thus,

me(f,x′′) ≥ (1/4 − 0)/(3/4 + ε) > 1/4.

Case 3.2. 0 < f1 < 1/2 and f2 > 1/2.
(i) If f1 < 1/4, we assume that f1 = 1/4 − ε, ε ∈ [0, 1/4).
Consider another instance x′ = (x′

1 : N1, x
′
2 : N2, x

′
3 : N3) with x′

1 = 1/4 − ε,
x′
2 = x2 = 1/2, and x′

3 = x3 = 1. Notice that L(x′) = 3/4 + ε. Let
f(x′) = (f ′

1, f
′
2), f ′

1 ≤ f ′
2. By the strategyproofness of f , we can verify that

cost(f(x′), x′
1) = 0.

When f ′
2 = 1/4 − ε, we have that cost(f(x′), x′

3) = |f ′
2 − 1| = 3/4 + ε. Thus,

me(f,x′) ≥ (3/4 + ε − 0)/(3/4 + ε) = 1.

When f ′
1 = 1/4 − ε, we get that maxi=1,2,3{cost(f(x′), x′

i)} ≥ 1/4. Thus,

me(f,x′) ≥ (1/4 − 0)/(3/4 + ε) > 1/4.

(ii) If 1/4 ≤ f1 < 1/2, we assume that f1 = 1/4 + ε, ε ∈ (0, 1/4).
Consider another instance x′′ = (x′′

1 : N1, x
′′
2 : N2, x

′′
3 : N3) with x′′

1 = x1 = 0,
x′′
2 = 1/4 + ε, and x′′

3 = x3 = 1. Notice that L(x′′) = 1. Let f(x′′) = (f ′′
1 , f ′′

2 ),
f ′′
1 ≤ f ′′

2 . We can verify that cost(f(x′′), x′′
2) = 0 by strategyproofness.

When f ′′
2 = 1/4 + ε, we have cost(f(x′′), x′′

3) = |f2 − 1| = 3/4 − ε. Thus,

me(f,x′′) = (3/4 − ε − 0)/1 = 3/4 − ε ≥ 1/2 > 1/4.

When f ′′
1 = 1/4 + ε, we have cost(f(x′′), x′′

1) = |f1 − 0| = 1/4 + ε. Thus,

me(f,x′′) ≥ (1/4 + ε)/1 ≥ 1/4.

Considering the fact that opt(x) = 0 for any 3 -location instance x, f has an
additive approximation of at least 1/4.

	


We now concentrate on the upper bound of deterministic strategyproof mech-
anisms for the minimax envy objective. Specifically, we design a simple deter-
ministic group strategyproof mechanism with additive approximation of 1/2.

Mechanism 1. For any instance x ∈ R
n, select the leftmost location lm(x) and

the rightmost location rm(x).

Theorem 3.2. In homogeneous 2-facility location games with min-dist cost,
Mechanism 1 is a deterministic group strategyproof mechanism with additive
approximation of 1/2.
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3.2 Randomized Strategyproof Mechanisms

In this section, we turn to designing randomized strategyproof mechanisms for
minimizing the maximum envy in homogeneous 2 -facility location games.

Mechanism 2. For any instance x ∈ R
n, place two facilities at:

(i) lm(x) and rm(x) with probability 1/6;

(ii) lm(x) + 1/4 · L(x) and rm(x) − 1/4 · L(x) with probability 2/3;

(iii) lm(x) − 3 · L(x) and rm(x) + 3 · L(x) with probability 1/6.

Theorem 3.3. In homogeneous 2-facility location games with min-dist cost,
Mechanism 2 is a randomized strategyproof mechanism with additive approxi-
mation of at most 1/4 for minimizing the maximum envy.

Proof. Let us first tackle the additive approximation of Mechanism 2. Let f
denote Mechanism 2. Given an instance x ∈ R

n, let cen(x) = 1/2 · (lm(x) +
rm(x)) be the center of x. Consider any agent i ∈ N and assume w.l.g. that
xi ∈ [lm(x), cen(x)]. By Mechanism 2, agent i’s cost in x is

cost(f(x), xi) = 1/6 · (xi − lm(x)) + 2/3 · |xi − (lm(x) + 1/4 · L(x))| (3-2)
+ 1/6 · (xi − (lm(x) − 3 · L(x))).

To be detailed, if xi ∈ [lm(x), lm(x) + 1/4 · L(x)], we have

cost(f(x), xi) = −1/3 · xi + 1/3 · lm(x) + 2/3 · L(x),

which implies that cost(f(x), xi) ∈ [7/12 · L(x), 8/12 · L(x)]. Otherwise if xi ∈
(lm(x) + 1/4 · L(x), cen(x)], we have

cost(f(x), xi) = xi − lm(x) + 1/3 · L(x),

which implies that cost(f(x), xi) ∈ (7/12 · L(x), 10/12 · L(x)].
To be concluded, for any agent i ∈ N , cost(f(x), xi) ∈ [7/12 · L(x), 10/12 ·

L(x)], and the maximum envy me(f,x) ≤ 1/4. Thus, the additive approximation
ρ = sup{me(f,x) − opt(x) | x ∈ R

n} ≤ 1/4.

Let us now turn to proving the strategyproofness. Consider any agent i ∈ N
and assume w.l.g that xi ∈ [lm(x), cen(x)]. For any x′

i ∈ R, consider another
instance x′ = (x′

−i,x−i). We wish to prove that agent i can not benefit by
deviation (from xi to x′

i), i.e.,

cost(f(x′), xi) ≥ cost(f(x), xi). (3-3)

In fact, Eq. (3-3) can be proved by a case analysis.

Case 1. x′
i ∈ (−∞, lm(x)).
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In this case, lm(x′) < lm(x), rm(x′) = rm(x) and L(x′) > L(x). Denote Δ =
lm(x) − lm(x′), we have L(x′) = L(x) + Δ.

Case 1.1. xi ≤ cen(x′).

cost(f(x′), xi) = 1/6 · (xi − lm(x′)) + 2/3 · |lm(x′) + 1/4 · L(x′) − xi|
+ 1/6 · (xi − lm(x′) + 3 · L(x′))

≥ cost(f(x), xi) + 1/6 · Δ + 2/3 · (−Δ−1/4 · Δ)+1/6 · (Δ+3Δ)
≥ cost(f(x), xi),

where the first inequality holds from Eq. (3-2).

Case 1.2 xi > cen(x′).

cost(f(x′), xi) = 1/6 · (rm(x′) − xi) + 2/3 · |rm(x′) − 1/4 · L(x′) − xi| (3-4)
+ 1/6 · (rm(x′) + 3 · L(x′) − xi).

By the initial assumption that xi ≤ cen(x), we get that

|rm(x′) − 1/4·L(x′) − xi| ≥ |rm(x) − 1/4 · L(x) − xi| − 1/4 · Δ (3-5)
≥ |xi − lm(x) − 1/4 · L(x)| − 1/4 · Δ

Combining Eq. (3-2) with Eq. (3-4), we have

cost(f(x′), xi) − cost(f(x), xi)
= 1/6 · [(rm(x′) − xi) − (xi − lm(x))]

+ 2/3 · [|rm(x′) − 1/4 · L(x′) − xi| − |xi − lm(x) − 1/4 · L(x)|]
+ 1/6 · [(rm(x′) + 3 · L(x) − xi) − (xi − lm(x) + 3 · L(x))]

≥ 2/3 · (−1/4 · Δ) + 1/6 · 0 + 1/6 · 3Δ

= 1/3 · Δ

> 0,

where the first inequality holds from Eq. (3-5) and xi ≤ cen(x), the second
inequality holds from Δ > 0.

Case 2. x′
i ∈ [lm(x), rm(x)].

Case 2.1. xi = lm(x).

In this subcase, lm(x′) ≥ lm(x), rm(x′) = rm(x) and L(x′) ≤ L(x). Denote
Δ = lm(x′) − lm(x) ≥ 0, we have L(x′) = L(x) − Δ. Notice that xi = lm(x) ≤
lm(x′) ≤ cen(x′). By Mechanism 2,

cost(f(x′), xi) = 1/6 · (lm(x′) − xi) + 2/3 · (lm(x′) + 1/4 · L(x′) − xi)
+ 1/6 · (xi − lm(x′) + 3 · L(x′))

= cost(f(x), xi)+1/6 · Δ+2/3 · (Δ−1/4 · Δ) + 1/6 · (−Δ − 3 · Δ)
= cost(f(x), xi),

where the second equality holds from Eq. (3-2).
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Case 2.2. xi ∈ (lm(x), cen(x)].

In this subcase, lm(x′) = lm(x), rm(x′) = rm(x) and L(x′) = L(x). It follows
that f(x′) = f(x). Thus, cost(f(x′), xi) = cost(f(x), xi).

Case 3. x′
i ∈ (rm(x),+∞).

Case 3.1 xi = lm(x).

In this subcase, lm(x′) ≥ lm(x), rm(x′) > rm(x). Denote Δ1 = lm(x′)− lm(x),
Δ2 = rm(x′) − rm(x), we have Δ1 ≥ 0, Δ2 > 0, L(x′) = L(x) − Δ1 + Δ2.

cost(f(x′), xi) = 1/6 · (lm(x′) − xi) + 2/3 · (lm(x′) + 1/4 · L(x′) − xi) (3-6)
+ 1/6 · |xi − lm(x′) + 3 · L(x′)|.

(i) If xi ≥ lm(x′) − 3 · L(x′), Eq. (3-6) can be rewritten as

cost(f(x′), xi) = 1/6 · (lm(x′) − xi) + 2/3 · (lm(x′) + 1/4 · L(x′) − xi)
+ 1/6 · (xi − lm(x′) + 3 · L(x′))

= cost(f(x), xi) + 1/6 · Δ1 + 2/3 · (Δ1 + 1/4 · (−Δ1 + Δ2))
+ 1/6 · (−Δ1 + 3 · (−Δ1 + Δ2)

= cost(f(x), xi) + 2/3 · Δ2

> cost(f(x), xi),

where the last inequality holds since Δ2 > 0.

(ii) If xi < lm(x′)−3·L(x′), we observe that Δ1 ≥ 3/4·(L(x)+Δ2). Otherwise if
Δ1 < 3/4 ·(L(x)+Δ2), then lm(x′)−3 ·L(x′) = lm(x)+4 ·Δ1−3 ·(L(x)+Δ2) <
lm(x) = xi. which contradicts the assumption of this case. Thus,

cost(f(x′), xi) = 1/6 · (lm(x′) − xi) + 2/3 · (lm(x′) + 1/4 · L(x′) − xi)
+ 1/6 · (−xi + lm(x′) − 3 · L(x′))

= cost(f(x), xi) + 1/6 · Δ1 + 2/3 · (Δ1 + 1/4 · (−Δ1 + Δ2))
+ 1/6 · (Δ1 − 3 · (−Δ1 + Δ2)) − L(x)

= cost(f(x), xi) + 4/3 · Δ1 − 1/3 · Δ2 − L(x)
≥ cost(f(x), xi) + 2/3 · Δ2

> cost(f(x), xi)

where the first inequality holds since Δ1 ≥ 3/4 · (L(x) + Δ2) and the second
inequality holds since Δ2 > 0.

Case 3.2. xi ∈ (lm(x), cen(x)].
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In this subcase, lm(x′) = lm(x), rm(x′) ≥ rm(x). Let rm(x′) = rm(x) + Δ,
Δ > 0. Notice that L(x′) = L(x) + Δ. By Mechanism 2,

cost(f(x′), xi) = 1/6 · (xi − lm(x′)) + 2/3 · |lm(x′) + 1/4 · L(x′) − xi|
+ 1/6 · (xi − lm(x′) + 3 · L(x′))

≥ cost(f(x), xi) + 2/3 · (−1/4 · Δ) + 1/6 · 3 · Δ

= cost(f(x), xi) + 1/6 · Δ

≥ cost(f(x), xi),

where the first inequality holds from Eq. (3-2), and the second inequality holds
since Δ ≥ 0. 	


4 Sum-Dist Personal Cost

In this section, we focus on designing strategyproof mechanisms for heteroge-
neous 2 -facility location games with sum-dist cost.

Given an instance x ∈ R
n, a deterministic mechanism f and each agent i’s

sum-dist cost is the sum of its distances to both facilities, i.e.,

cost(f(x), xi) = |f1(x) − xi| + |f2(x) − xi|. (4-1)

Let us review Mechanism 1, i.e., select the leftmost location lm(x) and the
rightmost location rm(x) for any instance x ∈ R

n. We can verify that Mechanism
1 is an optimal strategyproof mechanism for the heterogeneous case.

Theorem 4.1. In heterogeneous games with sum-dist cost, Mechanism 1 is opti-
mal and group strategyproof for minimizing maximum envy.

5 Conclusions

In this paper, we studied 2 -facility location games with minimax-envy on the
real line. As for personal cost, we discussed two natural cases, called min-dist
cost and sum-dist cost. For both cases, we proposed several desirable strate-
gyproof mechanisms. In the case of min-dist cost, we propose a deterministic
group strategyproof mechanism with 1/2-additive approximation and we show
that any deterministic strategyproof mechanism has an additive approximation
of at least 1/4; then we propose a randomized strategyproof mechanism with
1/4-additive approximation. In the case of sum-dist cost, we find an optimal
and group strategyproof mechanism.

However, there still exist some open problems for further research. Firstly,
on the case of min-dist, there still exists a gap between the upper bound of 1/2
and the lower bound of 1/4, over all deterministic approximate strategyproof
mechanisms. Secondly, can we find a desirable lower bound for randomized strat-
egyproof mechanisms in the min-dist case? At last, it would be interesting to
investigate facility location games with other fairness criteria.
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Abstract. We consider the contract design problem where a princi-
pal designs a contract to incentivize an agent to undertake n indepen-
dent tasks. In the contract, the principal decides the payment w =
{w0, w1, ..., wn}. The principal is associated with a non-decreasing rev-
enue function f(k), where k is the number of successful tasks. The
objective of the contract design problem is to maximize the principal’s
expected profit, i.e., maxs,w {F (s) − W (s,w)}, where s is the agent’s
strategy set, F (s) is the expected revenue of the principal and W (s,w)
is the expected payment to the agent. Given the payment w, the agent
will choose her strategy from s to maximize her expected utility. For each
task, the agent may work hard or shirk and her strategy is to decide the
number of tasks to work hard on. If the principal knows the strategy
set s, the optimum contract can be found by linear programming. In [7],
a more complicated model where the strategy set s is unknown to the
principal is considered, they showed that the linear contract is robust
and presented an 1/N -approximation algorithm given N ≤ n dominat-
ing strategies. In this paper, we further analyze this model and prove
the approximation factor can be upper bounded by (1 − αN )/(1 − αN

N ),
where αN ∈ [0, 1) is a given constant.

1 Introduction

The classic principal-agent model in contract theory is one of the most funda-
mental problems in economics and it gradually becomes a hot topic in the field of
optimization. We consider the principal-agent problem that the principal wants
an agent to undertake his n independent tasks so as to maximize the expected
profit. To achieve this target, the principal will design a contract to incentivize
the agent, who will also select the best strategy in response to the contract.
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Such principal-agent problem has been well studied for many years. Contract
design for explicit computational methods has appeared in [1,9]. Babaioff et
al. [1] discussed a combinatorial variant of the classical principal-agent problem
from economic theory. Unlike the classical principal-agent problem, the principal
must incentivize a group of strategic agents, whose actions are hidden from
the principal and each agent takes some cost with respect to her action. The
main challenge of this new model is to determine the optimal amount of effort
required for each agent and their focus is how the complex mix of agents’ efforts
affect the outcome. Ho et al. [9] studied the dynamic adjustment of task quality
compensation for the principal. They considered a multi-round version of the
principal-agent model, in which the agent makes strategic choices on the work
levels that the principal cannot directly observe. They proposed a new algorithm
with sublinear regret in the time horizon.

Following the above principal-agent problems, there are a lot of works on the
variants and extensions of the principal-agent model. Schosser [12] analyzed how
to allocate the risk so that the principal and the agent have the consistant incen-
tive and he also pointed out this can be measured by performance indicators. In
addition, Grant et al. [8] considered various dispute settlement mechanisms and
analyzed how the best dispute settlement mechanism depends on the ambiguous
attitudes of the parties. Under the condition of risk and ambiguity, various types
of optimal contracts had been discussed. Under the incentive scheme, Cvitanić
et al. [5] studied the general form of the principal-agent problem of lump-sum
payment and provided a systematic method to solve this kind of problem. They
reduced a nonzero sum stochastic differential game to a stochastic control prob-
lem that could be solved by a standard tool of the control theory. Corgent et
al. [4] discussed the setting of the optimal contract under the condition of both
monetary and non-monetary incentives. The model shows how a labor contract
with a combination of weak monetary incentives and targets unrelated to wages
can be optimal. When the demand distribution is continuous, Singham [10] and
Cai [11] introduced the method of sample average approximation by solving a
discrete distribution problem. The contract contains one or more options, under
each of which the quantity of products transferred to the quantity received by
the agent who may have hidden preferences that affect their demand for prod-
ucts. Different from the above demand distribution continuity, when the actions
satisfy the continuity condition, Dai et al. [6] studied a model to describe the
two-way principal-agent problem with asymmetric information. Bichler et al. [2]
introduced a principal-agent model of enterprises participating in multi-unit auc-
tion. In each company, the agent bids on behalf of the principal. The agent hides
her valuation of the goods and wants to maximize the utility, while the unwitting
principal aims to maximize the profit by assigning goods to the agent with the
budget constraints.

Recently, there are some interesting models introduced by Carroll [3] and
Dütting et al. [7]. Carroll [3] considered a simple moral hazard problem in the
case of risk-neutral and limited liability, in which the principal is uncertain about
the techniques used by the agent. The principal is aware of some actions that the
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agent may take, however, there may exist some actions unknown to the principal.
The principal evaluates the performance of the contract under the worst-case
analysis. In general cases, they proved that the unique optimal contract must be
linear. This model provides a new interpretation of the linear contract that is
widely used in practice, and also provides a flexible and easily handled method
for the moral hazard under non-quantified uncertainty. Dütting et al. [7] proved
the robustness of the linear contract, roughly speaking, the linear contracts is
no worse than the worst-case contract in different settings. In addition, under
conditions of limited liability, individual-rational agent and incentive compatible,
they analyzed the ratio between the linear contract and the optimal contract with
respect to different parameters.

If the principal wants to maximize his expected revenue F (s), intuitively, he
might incentivize the agent to work hard on more tasks. However, more rev-
enue may not lead to more profit. The objective is to maximize the principal’s
expected profit. In this paper, we further analyze the linear contract in algorith-
mic point of view. We firstly prove the robustness of the linear contract, i.e., the
linear contract is no worse than the worst-case contract in achieving the prin-
cipal’s expected profit by a simple analysis. Furthermore, we prove the approx-
imation factor can be upper bounded by (1 − αN )/(1 − αN

N ), which improves
Dütting et al.’s result [7], where αN ∈ [0, 1) is a given constant.

2 Problem Statement

There is one principal who wants to find an agent to undertake his n tasks.
These tasks are independent and each task only has two states: success and
failure. When the agent works hard, the success probability for each task is π,
i.e., pw = π and when the agent work shirk, the success probability for each task
is ε, i.e., pl = ε which satisfies 0 ≤ ε < π ≤ 1. For the agent, she has different
strategies to finish these tasks. We use pn

s to denote the strategy set of the agent
which indicates that the agent will work hard on arbitrary s tasks in the total
n tasks. Sometimes, we abbreviate the strategy set pn

s to s. The strategy set
of the agent is hidden from principal. With the strategy set, the agent finally
returns expected revenue F (pn

s ) =
∑n

k=0 f(k) ·An,k(pn
s ) to the principal, where

f(k) is the principal’s revenue function and An,k(pn
s ) represents the probability

that in the strategy set pn
s the agent could achieve success exactly k tasks.

For the probability expression An,k(pn
s ), it satisfies that if k > n or k < 0

then An,k(pn
s ) = 0. In addition, in the course of performing the task, the agent

will incur corresponding cost e(pn
s ), which is hidden from the principal and

related to the strategy set pn
s . For the principal, his revenue function f(k) is non-

decreasing, where k represents the number of successful tasks and the revenue
function f(k) is common information. When the agent returns the expected
revenue F (pn

s ) to the principal, the principal pays the agent expected payment
W (pn

s ,w) =
∑n

k=0 wk · An,k(pn
s ) where wk represents the agent’s wage in k

successful tasks.
Due to the relationship between the principal and the agent, we consider

the system is limited liability (LL), i.e. wk ≥ 0 for all k = 0, 1, . . . , n. For the
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agent, her expected utility can be represented as E[Uw ] = W (pn
s ,w) − e(pn

s )
and she is individual-rational (IR) which means the agent’s expected utility
satisfies E[Uw ] ≥ 0. In addition, the agent is incentive compatible (IC) which
means the agent always choose the strategy to maximize her expected utility
according to the principal’s payment w. For the principal, his expected profit
can be represented as E[Rpn

s ,w ] = F (pn
s )−W (pn

s ,w) and he pays the agent wage
only depending on the expected revenue F (pn

s ). In addition, F (pn
s ), W (pn

s ,w)
and the cost e(pn

s ) increase as the size of the strategy set pn
s increasing. And

An,k(pn
s ) is the total probability of k, i.e.,

∑n
k=0 An,k(pn

s ) = 1.
Based on the above, the goal of this problem is to maximize the principal’s

expected profit without knowing the agent’s strategy set. We give the model as
following:

max
s,w

F (pn
s ) − W (pn

s ,w)

s.t. pn
s ∈ arg maxs′ W (pn

s′ ,w) − e(pn
s′) (IC)

W (pn
s ,w) − e(pn

s ) ≥ 0 (IR)
wk ≥ 0 ∀ k = 0, 1, . . . n (LL)

Before analyzing the objective of the problem, we give some helpful defini-
tions as following.

Definition 1. We say that the probability expression An,k(pn
s ) is convertible

between different strategy set, if

An,k(pn
s ) = pw · An−1,k−1(p

n−1
s−1 ) + (1 − pw) · An−1,k(pn−1

s−1 )

An,k(pn
s−1) = pl · An−1,k−1(p

n−1
s−1 ) + (1 − pl) · An−1,k(pn−1

s−1 ).

Definition 2. We say F (pn
s ) − e(pn

s ) is the First-Best (FB) solution, if

F (pn
s ) − e(pn

s ) = max
s′

{
F (pn

s′) − e(pn
s′)

}
.

Definition 3. We say the strategy set is distribution-ambiguous if the principal
only gets the expected revenue F (pn

s ) without knowing the agent’s clear successful
probability {ε, π}n ∈ [0, 1]n in the case that IC, IR and LL satisfied.

Definition 4. We say the contract is worst-case contract if the principal’s
expected profit is minimized with the distribution-ambiguous strategy, subjected
to the constraints IC, IR and LL.

Definition 5. We say the linear contract is optimal if the linear contract wk =
α ·f(k), α ∈ [0, 1] maximizes the principal’s expected profit from all the incentive
linear contract, i.e.:

α = arg max
α′

{F (pn
s ) − W (pn

s ,w)} = arg max
α′

{(1 − α
′
) · F (pn

s )}
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Definition 6. We say incentive strategy set AN includes some strategies which
maximize the agent’s expected utility within some range of the α, α ∈ [0, 1],
where N represents the number of incentive strategies of the AN and N ≤ n.

In addition, we give one important assumption for this paper.

Assumption 1. ∀ pn
s ,pn

s′ , if F (pn
s ) ≤ F (pn

s′), there must exist e(pn
s ) ≤ e(pn

s′).

We give the Assumption 1 to show that the agent’s cost increases as the
expected revenue increases.

Based on the above definitions and assumption, we discuss the robustness of
the linear contract and the performance ratio of the optimal linear contract.

3 Robustness of the Linear Contract

In this section, we discuss the linear contract’s robustness. Before analyzing
robustness of the linear contract, there are some helpful information about the
principal’s expected revenue and profit.

Lemma 1. Principal’s expected revenue F (pn
s ) increases with the strategy pn

s

increasing.

Proof.

F (pn
s ) − F (pn

s−1) =
n∑

k=0

f(k) · An,k(pn
s ) −

n∑

k=0

f(k) · An,k(pn
s−1) (1)

=
n∑

k=0

f(k) · [An,k(pn
s ) − An,k(pn

s−1)] (2)

= (π − ε) ·
n∑

k=0

f(k) · [An−1,k−1(p
n−1
s−1 ) − An−1,k(pn−1

s−1 )](3)

= (π − ε) ·
n−1∑

k=0

[f(k + 1) − f(k)] · An−1,k(pn−1
s−1 ) (4)

≥ 0 (5)

The Eq. (1) comes from the definition of the expected revenue and Eq. (3) is
from the probability expression which is convertible between different strategy
set. Recall that if k > n or k < 0, then An,k(pn

s ) = 0, Eq. (4) comes from
rearranging the Eq. (3). In addition, f(k + 1) ≥ f(k) and π > ε, then F (pn

s ) ≥
F (pn

s−1), i.e., if the agent works in more tasks, the principal’s expected revenue
is higher. �

According to the Lemma 1, we give a theoretical analysis of that the principal
has to incentivize the agent to work on more tasks in order to obtain higher
expected revenue. However, our goal is to maximize the principal’s expected
profit rather than his expected revenue. Then, the important and difficult one
is how to pay the agent’s wage. Based on the First-Best solution, we give one
observation as following.
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Observation 1. When the First-Best solution is decided, we can solve the fol-
lowing linear programming to maximize the principal’s expected profit.

min
w

W (pn
s ,w) − e(pn

s )

s.t. W (pn
s ,w) ≥ W (pn

s′ ,w) − e(pn
s′), ∀ pn

s′ �= pn
s (IC)

W (pn
s ,w) − e(pn

s ) ≥ 0 (IR)
wk ≥ 0, ∀k = 0, 1, . . . , n (LL)

In general, the result of this linear programming may be tight, i.e., E[Uw ] =
W (pn

s ,w) − e(pn
s ) = 0. Thus, the agent’s expected payment just equals to her

cost and the principal undertakes the total cost. However, in order to solve this
linear programming, the principal needs to know all the strategies of the agent
which is the important and difficult point for this problem.

In order to solve the problem of the information asymmetry, based on the
previous work, we introduce the affine contract and prove that the principal’s
expected profit achieved by the affine contract is no worse than the worst-case
contract.

Lemma 2. The principal gives the agent wage subjecting to the constraints of
IC, IR and LL. For arbitrary distribution-ambiguous strategy, there always exists
an affine contract α1, α0 ≥ 0, wk = α1 · f(k) + α0, which can achieve the princi-
pal’s expected profit, and then it is no worse than the worst-case contract w.

Proof. There are two case for this problem.

– Case 1: w0 > wn: Without loss of generality, we assume that An,i(pn
s ) =

0,∀i ∈ [n]/ {0, n} i.e., An,0(pn
s ), An,n(pn

s ) �= 0. Suppose that two strategies
pn
s ,pn

s′ satisfy F (pn
s ) < F (pn

s′), e(pn
s ) < e(pn

s′). Since F (pn
s ) < F (pn

s′), we
can get the following

F (pn
s ) − F (pn

s′) =
∑

k={0,n}
f(k) · An,k(pn

s ) −
∑

k={0,n}
f(k) · An,k(pn

s′)

=
∑

k={0,n}
f(k) · [An,k(pn

s ) − An,k(pn
s′)] (6)

= [f(n) − f(0)] · [An,n(pn
s ) − An,n(pn

s′)] (7)
< 0 (8)

Recall An,k(pn
s ) is the total probability of k, then An,0(pn

s ) + An,n(pn
s ) =

1. Equation (7) comes from An,0(pn
s ) − An,0(pn

s′) = An,n(pn
s′) − An,n(pn

s ).
Clearly, Eq. (8) is from F (pn

s ) < F (pn
s′). Because the revenue function satisfies

f(k + 1) > f(k), we have An,n(pn
s ) < An,n(pn

s′) and An,0(pn
s ) > An,0(pn

s′).
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Based on the above, we have,

W (pn
s ,w) − W (pn

s′ ,w) =
∑

k={0,n}
wk · An,k(pn

s ) −
∑

k={0,n}
wk · An,k(pn

s′)

=
∑

k={0,n}
wk · [An,k(pn

s ) − An,k(pn
s′)] (9)

= (w0 − wn) · [An,n(pn
s′) − An,n(pn

s )] (10)
> 0 (11)

Equation (10) is the same as Eq. (7) which comes from An,0(pn
s )−An,0(pn

s′) =
An,n(pn

s′) − An,n(pn
s ). Due to w0 > wn and An,n(pn

s′) > An,n(pn
s ), Eq. (11)

holds. Then, we have W (pn
s ,w) > W (pn

s′ ,w). Recall assumption 1, e(pn
s ) ≤

e(pn
s′) when F (pn

s ) < F (pn
s′). Therefore,

W (pn
s ,w) − e(pn

s ) > W (pn
s′ ,w) − e(pn

s′)

That means the strategy pn
s is incentived. The agent’s expected utility and the

principal’s expected profit can be presented as E[Uw ] = W (pn
s ,w) − e(pn

s ),
E[Rpn

s ,w ] = F (pn
s )−W (pn

s ,w) respectively. Based on the case 1, we analyze
the special affine contract, i.e., linear contract wk = α1 ·f(k) is no worse than
the worst-case contract w.

(1) F (pn
s ) − e(pn

s ) ≥ F (pn
s′) − e(pn

s′): Because the linear contract wk =
α1 · f(k), the agent’s expected utility can be written as

E[Uw ] =
n∑

k=0

wk · An,k(pn
s ) − e(pn

s )

= α1

n∑

k=0

f(k) · An,k(pn
s ) − e(pn

s )

= α1 · F (pn
s ) − e(pn

s ) (12)

And the principal’s expected profit is represented as

E[Rpn
s ,w ] =

n∑

k=0

f(k) · An,k(pn
s ) −

n∑

k=0

wk · An,k(pn
s )

=
n∑

k=0

f(k) · An,k(pn
s ) − α1

n∑

k=0

f(k) · An,k(pn
s )

= (1 − α1) · F (pn
s ) (13)

According to the Eq. (12), when α1 = 1, we have the agent’s expected
utility E[Uw ] = F (pn

s ) − e(pn
s ). And when α1 = 0, the agent’s expected

utility is E[Uw ] = −e(pn
s ). The change trend of the agent’s expected

utility with linear contract α1 can be seen in Fig. 1 (a). The strategy pn
s
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(a) pn
s completely dominates pn

s′ (b) pn
s partly dominates pn

s′

Fig. 1. The change trend of the agent’s expected utility with linear contract α1.

completely dominates the strategy pn
s′ , i.e. the strategy pn

s is incentived.
Recall the payment w, the strategy pn

s is as well as incentived and it
achieves the principal’s expected profit E[Rpn

s ,w ] = F (pn
s ) − W (pn

s ,w).
For the linear contract, there exists α′ ∈ (0, 1) which achieves the prin-
cipal’s expected profit E[Rpn

s ,w ∼ α
′
] = F (pn

s ) − e(pn
s ). According

to the constraint IR, i.e. W (pn
s ,w) ≥ e(pn

s ), thus, the linear contract
achieves the principal’s expected profit no worse than the payment w,
i.e. E[Rpn

s ,w ∼ α′] ≥ E[Rpn
s ,w ].

(2) F (pn
s ) − e(pn

s ) < F (pn
s′) − e(pn

s′): We also show the change trend of the
agent’s expected utility in Fig. 1 (b).
Recall the payment w incentives the strategy pn

s which corresponds to
the red line, i.e., α1 ∈ [α′, α′′] in the Fig. 1 (b). In the linear contract
α1 ∈ [α′, α′′], there exists one α′ satisfying E[Rpn

s ,w ∼ α′] = (1 − α′) ·
F (pn

s ) = F (pn
s )− e(pn

s ). By the constraint IR, we have F (pn
s )− e(pn

s ) ≥
F (pn

s ) − W (pn
s ,w) i.e., E[Rpn

s ,w ∼ α′] ≥ E[Rpn
s ,w ].

Based on the above, when w0 > wn, the linear contract achieves the
principal’s expected profit which is no worse than the payment w.

– Case 2: w0 < wn it : In this part, we prove this problem from three aspects.
(1) When the payment w and the revenue function satisfy wk = α1 ·f(k)+α0

and α1, α0 ≥ 0, the Lemma 2 naturally formed.
(2) Without loss of generality, as shown in the Fig. 2 (a), there is a payment

wk strictly above the affine function of w0 and wn.
We assume the k-th payment of the linear contract is wk′ . Since
W (pn

s ,w) =
∑n

k=0 wk · An,k(pn
s ) and wk > wk′ , the agent’s expected

payment between the worst-case contract w and the linear contract
w′ satisfies W (pn

s ,w) ≥ W (pn
s ,w′). When the strategy pn

s is incen-
tive, the principal’s expected profit between the worst-case contract w
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(a) wk ≥ wk′ (b) wk ≤ wk′

Fig. 2. The payment wk is strictly above (a) and below (b) the affine function of w0

and wn

and the linear contract w′ satisfies E[Rpn
s ,w ′ ] = F (pn

s ) − W (pn
s ,w′) ≥

F (pn
s ) − W (pn

s ,w) = E[Rpn
s ,w ].

Thus, the principal’s expected profit achieved by the affine function is no
worse than the worst-case contract w.

(3) Without loss of generality, there is a payment wk strictly below the affine
function of w0 and wn shown in the Fig. 2 (b).

We also assume the k-th payment of the linear contract is wk′ .
Since W (pn

s ,w) =
∑n

k=0 wk · An,k(pn
s ) and wk < wk′ , we have

W (pn
s ,w) ≤ W (pn

S ,w′). Recall the worst-case contract, i.e., E[Rpn
s ,w ] =

minw ′′ E[Rpn
s ,w ′′ ]. Then, there exists one strategy pn

s′′ which satisfies
F (pn

s′′) − W (pn
s′′ ,w′′) ≥ F (pn

s ) − W (pn
s ,w). According to the constraint

IR, we have W (pn
s′′ ,w′′) ≥ e(pn

s′′). Therefore F (pn
s′′) − W (pn

s′′ ,w′′) ≤
F (pn

s′′) − e(pn
s′′). When the strategy pn

s′′ is incentive, we can find the lin-
ear contract α′ just like the Fig. 1 (a) or 1 (b) which achieving the principal’s
expected profit equals to F (pn

s′′) − e(pn
s′′). It implies that the principal’s

expected profit achieved by the affine contract is no worse than the worst-
case contract.In conclusion, there is always an affine contract α1, α0 ≥ 0, which makes the

principal’s expected profit no worse than the worst-case contract w. �

Theorem 1. In the distribution-ambiguous strategy, there exists an optimal lin-
ear contract to maximize the worst-case contract’s expected profit with all the IC,
IR and LL constraints.

Proof. According to the Lemma 2, there always exists an affine contract α1, α0 ≥
0 to make the principal’s expected profit no worse than the worst-case contract.
We assume that the linear contract is wk′ = α1 · f(k). Because of α1, α0 ≥ 0, we
have wk = α1 · f(k) + α0 ≥ α1 · f(k) = wk′ . Besides, W (pn

s ,w) ≥ W (pn
s ,w′).

And in the same strategy, F (pn
s ) is consistent. Then, the principal’s expected

profit satisfies F (pn
s ) − W (pn

s ,w) ≤ F (pn
s ) − W (pn

s ,w′).
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Therefore, the linear contract is better than the affine contract. In addition,
according to the Definition 5, the optimal linear contract maximizes the worst-
case contract’s expected profit. �

4 The Ratio Between the Optimal Linear Contract and
the Optimal Contract

In this section, we discuss the approximate ratio of the optimal linear con-
tract. We present the optimal contract solution as OPT which satisfies OPT =
maxs′,w{F (pn

s′) − W (pn
s′ ,w)}. Recall the definition of the First-Best solution

and the constraint IR, we have

FB = max
s′

{F (pn
s′) − e(pn

s )}
≥ max

s′,w
{F (pn

s′) − W (pn
s′ ,w)}

= OPT

Then, we have that the OPT is no more than the First-Best solution (FB).
Recall the definition of the incentive strategy set AN which includes some

strategies maximizing the agent’s expected utility within some range of the
α ∈ [0, 1]. Because only the agent’s strategy is incentive, the principal can obtain
his expected profit. Then, the incentive strategy set AN must include the opti-
mal linear contract which means if the strategy pn

s maximizes the principal’s
expected profit, it is incentive i.e. pn

s ∈ AN .

Lemma 3. ∀ pn
s ,pn

s′ ∈ AN , if they satisfy F (pn
s ) ≤ F (pn

s′) and e(pn
s ) ≤ e(pn

s′).
There must have F (pn

s ) − e(pn
s ) ≤ F (pn

s′) − e(pn
s′).

Proof. Let’s prove it by contradiction. ∀ pn
s ,pn

s′ ∈ AN , we suppose that they
satisfy F (pn

s ) ≤ F (pn
s′) and e(pn

s ) ≤ e(pn
s′). If F (pn

s )−e(pn
s ) ≥ F (pn

s′)−e(pn
s′),

the strategy pn
s will completely dominant the strategy pn

s′ in the linear contract,
just like the Fig. 1 (a). Then, the strategy pn

s′ will not be in the incentive strategy
set AN . Contradiction! �

Without loss of generality, ∀ pn
s ∈ AN we redefine F (pn

s ) as F (pn
si

) and sort
F (pn

si
) by increment, i.e. ∀ i ∈ {1, 2, . . . , N}, F (pn

s1
) ≤ F (pn

s2
) ≤ · · · ≤ F (pn

sN
).

And according to the assumation 1, we have e(pn
s1

) ≤ e(pn
s2

) ≤ · · · ≤ e(pn
sN

).
Then,

F (pn
s1

) − e(pn
s1

) ≤ F (pn
s2

) − e(pn
s2

) ≤ · · · ≤ F (pn
sN

) − e(pn
sN

)

Theorem 2. For arbitrary distribution-ambiguous strategy, the approximation
ratio of the optimal linear contract is at least 1−αN

1−αN
N

, αN ∈ [0, 1).

Proof. For the linear contract wk = α1 ·f(k), α1 ∈ [0, 1), the principal’s expected
profit and the agent’s expected utility are respectively E[Rpn

s ,w ] = (1 − α1) ·
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F (pn
s ) and E[Uw ] = α1·F (pn

s )−e(pn
s ). For any two adjacent strategies psn

i−1
,pn

si

in the incentive strategy set AN , there always exists one linear contract αi−1,i ∈
[0, 1), ∀ i ∈ {1, 2, . . . , N} to incentivize both strategies, i.e.,

αi−1,i · F (pn
si−1

) − e(pn
si−1

) = αi−1,i · F (pn
si

) − e(pn
si

)

We propose that when the agent’s expected utility is the same in different
strategies, she will choose the strategy to maximize the principal’s expected
profit. Because of pn

si−1
,pn

si
∈ AN , we have F (pn

si−1
) ≤ F (pn

si
), e(pn

si−1
) ≤ pn

si

and F (pn
si−1

)−e(pn
si−1

) ≤ F (pn
si

)−e(pn
si

). Therefore, we abbreviate αi−1,i to αi

which incentivizing the agent to adopt the strategy pn
si

to maximize the princi-
pal’s expected profit. In addition, let OPT and ALG be the principal’s expected
profit of the optimal contract and the optimal linear contract respectively, i.e.,
OPT ≤ maxpn

s
{F (pn

s )−e(pn
s )} and ALG = maxpn

s i
{(1−αi)F (pn

si
)}. Recall the

definition of the incentive strategy set, it includes the strategies which maximize
the agent’s expected utility. Then, only when the agent selects the strategy, the
principal can obtain the corresponding expected profit. Therefore, we can only
consider the strategies in AN and then OPT ≤ maxpn

s i
{F (pn

si
) − e(pn

si
)}.

For ∀ pn
si

∈ AN , because of αi · F (pn
si

) − e(pn
si

) = αi · F (pn
si−1

) − e(pn
si−1

),
there is a recursive expression:

F (pn
si

) − e(pn
si

) = (1 − αi) · F (pn
si

) + [αi · F (pn
si−1

) − e(pn
si−1

)] (14)

Therefore, we have

FB = F (pn
sN

) − e(pn
sN

) (15)
= (1 − αN )F (pn

sN
) + [αNF (pn

sN −1
) − e(pn

sN −1
)] (16)

≤ (1 − αN )F (pn
sN

) + αN [F (pn
sN −1

) − e(pn
sN −1

)] (17)

≤ (1 − αN )F (pn
sN

) + αN (1 − αN−1)F (pn
sN −1

) + . . .

+αN · · · · · α2(1 − α1)F (pn
s1

) (18)

≤ (1 + αN + α2
N + · · · + αN−1

N )max
pn
s i

{
(1 − αi)F (pn

si
)
}

(19)

≤ 1 − αN
N

1 − αN
ALG (20)

We have F (pn
sN

) − e(pn
sN

) = maxpn
s i

{F (pn
si

) − e(pn
si

)} in the incentive set.
Recall the definition of the First-Best solution and the agent’s expected utility
E[Uw ] = α1F (pn

s ) − e(pn
s ) in the linear contract, the strategy of the First-

Best solution must be in the incentive strategy set. Therefore, we have FB =
F (pn

sN
)−e(pn

sN
) and the Eq. (15) holds. Equation (16) comes from the recursive

expression (14). Because of αi ∈ [0, 1), we relax the Eq. (16) to the inequation
(17). Inequation (18) comes from the recursive expression (14) and the inequation
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(17). In addition, in the linear contract just like the Fig. 3, there is αi−1 < αi.
Then, we have αN = maxi αi and we relax the inequation (18) to the inequation
(19). As the sum of equal ratio sequence, the inequation (20) holds.

Thus OPT ≤ [(1 − αN
N )/(1 − αN )]ALG and the approximation ratio of the

optimal linear contract is at least (1 − αN )/(1 − αN
N ), αN ∈ [0, 1). �

Fig. 3. The tendency of the agent’s expected utility in the incentive strategy set.

5 Conclusion

In this paper, we consider the classic principal-agent problem of the contract
design theory, and the objective is to maximize the principal’s expected profit.
Compared with the various contract design models in previous work, we discuss
the robustness of the linear contract with a simple method. Moreover, we prove
the linear contract is no worse than the worst-case contract. Our greatest con-
tribution is that we prove the approximation factor can be upper bounded by
(1−αN )/(1−αN

N ), which improves Dütting et al.’s result [7], where αN ∈ [0, 1) is
a given constant. A further study may start with the application of the optimal
linear contract which includes the mechanism design of the truthfulness.
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Abstract. Machines usually require maintenance after a fixed period.
We need to perform a calibration before using the machine again. Such
an operation requires a non-negligible cost. Thus finding a schedule min-
imizing the total cost of calibrations is of great importance.

This paper studies the following scheduling problem. We have a sin-
gle machine, n jobs where each job j is characterized by its release time
rj , deadline dj , and processing time pj . Moreover, there are K types
of calibrations, i.e., when the machine performs a calibration of type
k ∈ {1, . . . , K} instantaneously, it can maintain calibrated for a fixed
length Tk with a corresponding cost fk. Jobs can only be processed when
the machine is in the calibrated state. Our goal is to find a feasible sched-
ule that minimizes the total cost of calibrations.

We consider two classes of models: the costs of the calibrations are
arbitrary, and the costs of the calibrations are equal to their length.
For the first model, we propose a pseudo-polynomial time algorithm and
a (2 + ε)-approximation algorithm when jobs have agreeable deadlines
(later release time implies a later deadline). For the second model, we
give a 2-approximation algorithm.

Keywords: Scheduling · Calibration · Approximation algorithms

1 Introduction

Scheduling is one of the most classical and important problems in combinatorial
optimization. Recently a class of scheduling problems related to calibrations has
been brought up by Bender et al. in their seminal paper [3]. The motivation of
the problem comes from the Integrated Stockpile Evaluation (ISE) problem [4].
ISE is a program to test nuclear weapons so that they can function normally.
Operating these tests needs precision, or safety mistakes can produce a significant
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loss. Meanwhile, there are testing machines for testing weapons. The testing
machines need to be calibrated after running a fixed period to ensure that the
testing tasks are processed smoothly.

Similarly, the calibration scheduling problem can be seen as a multi-agents
game. For example, during a game, the agents may have abrasion resulting in the
inaccurate shooting and need to be calibrated after using for a while. Generally,
every agent can decide to charge after some time, and every charging has its
corresponding cost and working time.

We formally define the ISE problem as follows: we are given a set J of n
jobs (weapons) and m identical machines (testing machines). Each job j ∈ J
is defined by its release time rj , its deadline dj and its processing time pj . We
calibrate a machine instantaneously, and the machine can stay valid for T ≥ 2
time units. The scheduling of all jobs must be feasible, i.e., (1) each job must
be scheduled on one of the m identical machines and must be scheduled during
pj calibrated slots, (2) each job must be entirely scheduled between its release
time rj and its deadline dj and (3) one machine can only process one job at the
same time. The goal is to find a feasible schedule using the minimum number
of calibrations, where a feasible schedule requires that the scheduling of all jobs
should be feasible, and the calibrations used are non-overlapping.

Using the 3-field notation developed in [10], the problem can be denoted as
P |rj , dj , pj , T |#(calibrations).

Related Work
Bender et al. [3] studied the problem in which jobs have unit processing time.
They gave a polynomial time algorithm to compute the optimal solution, while a
2-approximation algorithm is given for the multiple machine case. They pointed
out that the complexity of the problem remained unknown. Recently, Chen et al.
[8] proved that when the number of machines m is constant, the problem can be
solved polynomially with dynamic programming. On the other hand, when m is
part of the input, they gave a PTAS (polynomial-time approximation scheme).

Later, Fineman and Sheridan [9] considered the case in which jobs have
arbitrary processing time, and the preemption of jobs is not allowed1. Note
that it is NP-hard to decide whether a feasible schedule exists since it can be
reduced from the decision version of the bin packing problem. They considered a
resource-augmentation version of the problem, and they related it to the classical
machine minimization problem [13]. When preemption of jobs is allowed, Angel
et al. [1] generalized the algorithm from [3] and showed that it could be solved
in polynomial time.

Chau et al. [5] considered the flow time problem with calibrations. They
focused on the online version whose objective is to minimize the total flow time,
the elapsed time between the release time of a job until its completion, as well
as the calibration cost. They aimed to find a tradeoff between the flow time
and the cost of the calibrations, and they gave several constant competitive
online algorithms for different settings. Wang [14] studied the time-slot cost

1 A job is not allowed to be interrupted once it has been started.
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variant of the scheduling problem with calibrations. The cost of scheduling a job
depends on the starting time. The goal is to compute a schedule of minimum
cost with at most B calibrations. Wang [14] proposed dynamic programmings
for different scenarios of this variant. Chau et al. [6] investigated the throughput
variant of this scheduling problem: the goal is to maximize the total profit of
scheduled jobs. They showed that the problem admits a constant approximation
algorithm for arbitrary processing time jobs. Finally, Chau et al. [7] considered
that calibrations could only occur simultaneously. They showed that the problem
could be solved in polynomial time by giving a dynamic programming algorithm.
They also proposed some fast approximation algorithms depending on the cost
function of a batch of calibrations.

All the above problems considered one type of calibration. When there are
K types of calibrations with respective length Tk and respective cost fk for
k ∈ {1, . . . , K}, Angel et al. [1] proved that when jobs have unit processing
time, the problem can be solved in polynomial time by providing a dynamic
programming algorithm. However, when jobs have arbitrary processing time,
the problem becomes NP-hard. They showed for the particular case in which
all the jobs have the same release time and the same deadline. This particular
case is similar to the Knapsack Cover Problem for which there exists a (1 + ε)-
approximation algorithm [11].

Scheduling with calibrations has similarities with some other well-known
scheduling problems, such as minimizing idle periods [2], and scheduling on
cloud-based machines which must be rented to perform work [12].

Our Contributions
In this paper, we study the scheduling problem with K types of calibrations
on a single machine. We have n jobs where each job j is characterized by its
release time rj , deadline dj , and processing time pj . Moreover, there are K
types of calibrations, i.e., when the machine performs a calibration of type k ∈
{1, . . . , K} instantaneously, it can maintain calibrated for a fixed length Tk with
a corresponding cost fk. Jobs can only be processed when the machine is in the
calibrated state. Our goal is to find a feasible schedule that minimizes the total
cost of calibrations.

The problem is NP-hard even if all the jobs have common release time and
common deadline. We investigate the following two generalized cases:

– arbitrary calibration cost : the cost of the calibrations does not depend on
its length. In this work, we assume that every single job can entirely be
scheduled into a single calibration, i.e., maxj pj ≤ mink Tk, and jobs have
agreeable deadline, i.e., for every pair of jobs i, j, we have ri ≤ rj , if and only
if di ≤ dj . In particular, we establish:

• a pseudo-polynomial time algorithm whose running time is O(n5

K2P 2f2
min) where P =

∑n
j=1 pj and fmin = mink fk in Sect. 2.1.

• a (2 + ε)-approximation algorithm in Sect. 2.2.
– uniform calibration cost : the cost of the calibrations is equal to its length.

For this case, we give a 2-approximation algorithm in Sect. 3.
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In the sequel, we suppose without loss of generality that jobs are sorted in
non-decreasing order of their deadlines, i.e., d1 ≤ d2 ≤ . . . ≤ dn. Similarly,
we sort the calibration types in the non-decreasing order of their length, i.e.,
T1 < T2 < . . . < TK . Without loss of generality, we also have f1 < f2 < . . . < fK .

2 Arbitrary Calibration Cost

In this section, we investigate the problem with arbitrary calibration cost by
proposing dynamic programming algorithms. We first give a pseudo-polynomial
time algorithm, then we show how to adapt it into a polynomial running time
by losing a constant factor on the objective function.

2.1 A Pseudo-Polynomial Time Algorithm

We first define several time points that are pertinent in any schedule. In [1], they
showed some properties for the unit processing time jobs case. We obtain the
following by dividing the jobs into unit processing time jobs, i.e., for each job j,
we replace by pj jobs with unit processing time.

Let Φ := {dj − h|j = 1, . . . , n;h = 1, . . . , P}.

Proposition 1 (Proposition 1 [1]). There exists an optimal schedule in which
calibrations start at a time in Φ.

In the sequel, we only consider schedules satisfying Proposition 1. Moreover,
since jobs have agreeable deadlines, we have the following proposition.

Proposition 2 (Lemma 1 [14]). There exists an optimal solution in which
jobs are scheduled in the non-decreasing order of their deadline.

Let F := {fmin, fmin + 1, . . . , nfmin} be the set of cost of any schedule where
fmin = mink fk.

Because each job can fit into a single calibration, we know that the cost of
the optimal solution OPT is at least fmin and at most nfmin, so OPT ∈ F . We
are now ready to describe our dynamic programming.

Dynamic Programming. Let c(j, f, t, k) be the minimum completion time of job
j in a feasible schedule whose cost is at most f , such that:

– the first j jobs ({1, . . . , j}) are scheduled into the opened calibrations;
– the starting time of the last calibration is t;
– the type of the last calibration is k.

The idea of our dynamic programming is to compute the number of available
time slots in the last calibration. Because jobs have agreeable deadline, we know
that the job j will be scheduled after the job j − 1. The idea is to schedule the
job j as early as possible in order to get the minimum completion time. We
distinguish three cases (See Fig. 1 for an illustration of the different cases):
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1. Job j is scheduled in the same calibration as the completion time of job j −1.
(a) The job j starts immediately after the completion of the job j − 1. The

job j will be scheduled from c(j − 1, f, t, k) to c(j − 1, f, t, k) + pj .
(b) There are some idle time slots between the completion time of the job j−1

and the release time of the job j. Then, the job j is scheduled from rj to
rj + pj .

2. Job j is scheduled in two calibrations: it starts in the same calibration as the
completion of job j − 1, and ends in another calibration.

(a) The job j starts immediately after the completion of the job j − 1. The
job j will be executed from c(j − 1, f ′, t′, k′) to t′ + Tk′ , then from t to
t + pj − (t′ + Tk′ − c(j − 1, f ′, t′, k′)).

(b) There are some idle time slots between the completion time of the job j−1
and the release time of the job j. Then, the job j starts from rj to the end
of the calibration at t′ + Tk′ , then from t to t + pj − (t′ + Tk′ − rj).

3. Job j is scheduled in a different calibration as job j − 1.
(a) The job j starts in a different calibration containing the job j − 1 and it

starts at time t. The job j is executed from t to t + pj .
(b) The job j is executed in a different calibration containing the job j − 1

and starts at its release time rj > t. Thus, the job j is executed from rj

to rj + pj .

Fig. 1. Illustration of different cases for scheduling job j in the dynamic programming.
cj−1 denotes the completion time of job j −1. In 1(a) and 1(b), cj−1 := c(j −1, f ′, t, k).
In the remaining cases, we have cj−1 := c(j − 1, f ′, t′, k′).

Hence, we have the following recursive function.
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Proposition 3. By convention, if the schedule is not feasible, the completion
time of such a schedule is +∞. We have c(j, f, t, k)

= min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{cj | cj = pj + max{c(j − 1, f, t, k), rj}, cj ≤ min{dj , t + Tk}}

min
{

cj

∣
∣
∣

cj = pj − t′ − Tk′ + max{c(j − 1, f ′, t′, k′), rj} + t, cj ≤ dj ,
rj < t′ + Tk′ , f ′ + fk ≤ f, f ′ ∈ F , t′ ∈ Φ, k′ ∈ {1, . . . , K}

}

min{cj | cj = max{t, rj} + pj , cj ≤ dj , rj ≥ t′ + Tk′ , f ′ + fk ≤ f}

+∞

We initialize the table as follows:

c(1, f, t, k) = min
{

max{t, r1} + p1, if f ≥ fk and max{t, r1} + p1 ≤ d1,
+∞, otherwise.

The objective is to find the minimum cost f∗ such that c(n, f∗, t, k) ≤ dn for
f∗ ∈ F , t ∈ Φ, k ∈ {1, . . . , K}.

Theorem 1. The dynamic programming algorithm in Proposition 3 computes
an optimal solution for the arbitrary calibration cost scheduling problem.

Proof. If the jobs {1, . . . , j} cannot be scheduled into the opened calibrations
whose total cost is at most f , then the schedule is not feasible, and we have
c(j, f, t, k) = +∞. In particular, if there are not enough time slots for the job j,
i.e., c(j, f, t, k) > dj , then the of the schedule is +∞. It corresponds to the last
line of the dynamic program.

We prove the claim by showing that in the dynamic program, we have tried
every possibility of scheduling the job j, as well as the starting time of the
calibrations. As described previously, we have six forms in mathematics (We
assume c(j, f, t, k) ≤ dj in the following):

1. Job j is scheduled in the same calibration as the completion of job j − 1.
(a) If rj < c(j − 1, f, t, k), then c(j, f, t, k) = c(j − 1, f ′, t, k) + pj .
(b) If rj ≥ c(j − 1, f, t, k), then c(j, f, t, k) = rj + pj .

2. Job j is scheduled into two calibrations. Since we need to open a new cali-
bration, we need to ensure that the schedule of the first j − 1 jobs is of cost
at most f ′ = f − fk.

(a) If rj < t′ + Tk′ and c(j − 1, f ′, t′, k′) > rj , it means that the job j is
scheduled right after the completion time of job j − 1 until the end of the
current calibration, and then the remaining part of the job j, which is equal
to pj − (t′ + Tk′ − c(j − 1, f ′, t′, k′)), is scheduled in the last calibration
that starts at time t. Hence, c(j, f, t, k) = min

f ′,t′,k′
{pj − (t′ + Tk′ − c(j −

1, f ′, t′, k′)) + t}.
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(b) If rj < t′ +Tk′ and c(j −1, f ′, t′, k′) ≤ rj , which means that the remaining
part of the job, which is equal to pj − (t′ +Tk′ − rj), is scheduled in a new
calibration of type k starting at time t. Hence, c(j, f, t, k) = min

f ′,t′,k′
{pj −

(t′ + Tk′ − rj) + t}.
3. Job j starts in a different calibration as job j − 1. As the previous case, we

need to open a new calibration, and we need to ensure that the schedule of
the first j − 1 jobs is of cost at most f ′ = f − fk.

(a) If rj ≥ t′ + Tk′ and t > rj , it means that we have to schedule the job j no
earlier than t, and thus c(j, f, t, k) = t + pj .

(b) If rj ≥ t′ + Tk′ and t ≤ rj , which means that the job j starts no earlier
than its release time rj , thus c(j, f, t, k) = rj + pj .

The optimal value is min
{

f
∣
∣
∣
{
c(n, f, t, k) : f ∈ F , t ∈ Φ, k ∈ {1, . . . , K}}}

.
According to the dynamic programming algorithm above, its running time is
O(nK2|Φ|2|F|2) = O(n5K2P 2f2

min), due to |Φ| = O(nP ) and |F| = O(nfmin).
Hence, the running time is pseudo-polynomial. ��

2.2 A Constant Approximation Algorithm

To achieve a polynomial time algorithm, we aim to avoid going through all
different parameter values in the dynamic program. So, we focus on the sets F
and Φ whose sizes are pseudo-polynomial. We aim to reduce the size of such sets.
We define the set of different objective values of the schedules as F ′.

Let F ′ := {fmin · (1+ ε)q|q = 0, . . . , �log1+ε n	}. We have |F ′| = O(log1+ε n).
We now show that considering the values in F ′ can lead to a solution whose cost
is no more than (1 + ε) times of optimal cost OPT .

Lemma 1. If we restrict the cost f to F ′ and assume f∗ attains the minimum
value in all schedules of

{
c(n, f, t, k)|f ∈ F ′, t ∈ Φ, k ∈ {1, . . . ,K}}

after using
the dynamic programming for f ∈ F ′, t ∈ Φ, k ∈ {1, . . . , K}, then we have
f∗ ≤ (1 + ε)OPT .

Proof. We know that fmin ≤ OPT ≤ nfmin. Then there exists a q0 such that
fmin · (1 + ε)q0−1 ≤ OPT ≤ fmin · (1 + ε)q0 . Thus, OPT ≤ fmin · (1 + ε)q0 ≤
OPT · (1 + ε). Since f∗ ≤ fmin · (1 + ε)q0 , we obtain f∗ ≤ (1 + ε)OPT . ��

Similarly, we define the new set of the starting times of the calibrations as
Φ′ := {dj − aT1|j = 1, . . . , n; a = 0, . . . , n}.

Note that we have |Φ′| = O(n2). Next, we show that if we restrict the starting
times of calibrations to Φ′ and do not restrict the costs, then a solution with no
more than twice the optimal cost exists. We initially allow to have overlapping
calibrations (a time slot can be covered by more than one calibration), which
will be handled later without increasing the solution’s cost.

Lemma 2. For the scheduling problem with arbitrary calibration cost, there
exists a 2-approximate solution such that the calibrations start at a time in Φ′.
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Proof. We denote OPT to be the optimal value of the problem. Let O be an
optimal solution verifying Proposition 1, and we denote the sequence of calibra-
tions in O as {CO

i1
, CO

i2
, . . . }, where CO

iu
represents the u-th calibration in O and

its type is iu where iu ∈ {1, . . . , K}.
We show that when we restrict the starting times of the calibrations in S to

Φ′, we can get our desired conclusion. Let CO
iu

be a calibration in O such that
it does not start at a time in Φ′. We replace it by two calibrations of the same
type such that the first one starts at a time in Φ′ and such that they cover (at
least) the same interval as initially.

Since the schedule O verifies Proposition 1, it means that the starting time of
the calibration CO

iu
is at most at a distance of P from a deadline dh. We assume

the distance between dh and the starting time of CO
iu

is �. See Fig. 2.
Moreover, we have minj pj ≤ T1, so we have � ≤ P ≤ nT1, so there is an

integer point t = dh − aT1 ∈ [dh − � − Tiu , dh − �] ∩ Φ′, where a ∈ {0, . . . , n}.
Thus, we can replace such calibration by two calibrations starting respectively
at t and t + Tiu . See Fig. 3.

Fig. 2. Illustration of the calibration CO
iu in O.

Fig. 3. Illustration of relation of O and the constructed S.

We repeat such modification as long as there is a calibration that does not
start at a time in Φ′ in the schedule (except the newly added calibrations).

For every calibration in O, there are two consecutive identical calibrations
whose types are the same, and the starting time of the first one is in Φ′. Then,
all the jobs stay at the same time as in O. Hence, the cost of such schedule is
2OPT . ��
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Note that the schedule is feasible for jobs but not for the calibrations since
there may exist calibrations that overlap each other. To make all calibrations
used be non-overlapping, we need the following observation.

Observation 1. We can transform a schedule with overlapping calibrations into
a schedule without overlapping calibrations in polynomial time without increasing
the cost of the solution.

Indeed, when two calibrations overlap, we can change the starting time of
the one that starts later to start when the first calibration ends. Meanwhile, all
the jobs stay scheduled at their initial time. We modify at most 2n calibrations.
Figure 4 illustrates an example to handle two overlapping calibrations.

Fig. 4. An example of handling the overlapping calibrations.

The running time of the dynamic program is pseudo-polynomial in the num-
ber of choices of cost. Because of Lemma 2, we need to redefine the range of F ′

to F ′′, where F ′′ := {2fmin · (1 + ε)q|q = 0, . . . , �log1+ε n	}.
First, we discretize the choices of the cost to F ′′ instead of F ′. Then, we force

the starting times of calibrations to be in a set Φ′. Finally, we use two calibrations
every time to ensure consistency with the constructed S in Lemma 2.

Now we will show that when we restrict the cost to F ′′ and the starting times
of calibrations to Φ′, there exists a feasible solution whose cost is no more than
(2 + ε)OPT .

Modified Dynamic Programming (MDP). We modify the dynamic programming
proposed in Proposition 3 as follows:

– we restrict the choices of the cost to F ′′;
– we restrict the choices of the starting times of calibrations to Φ′;
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– when a new job comes, there are two possibilities:
• there is not any new calibration to increase;
• increase two new consecutive calibrations whose types are identical.

The objective is to find the smallest f∗ such that c(n, f, t, k) ≤ dn for f ∈ F ′′, t ∈
Φ′, k ∈ {1, . . . , K}.

Theorem 2. For the problem with arbitrary calibration cost, MDP computes
a feasible schedule whose cost is no more than (2+ε) times of the optimal value,
for ε > 0 arbitrarily small. The running time of MDP is polynomial in n and
in 1/ε.

Proof. In order to prove the theorem, we combine Lemma 1 with Lemma 2. Note
that the schedule returned by MDP allows the calibrations to overlap. So the
cost f∗ is a lower bound of the cost of such a schedule. Moreover, we have
f∗ ≤ 2OPT · (1+ ε) by Lemma 1. So we have f∗ ≤ 2(1+ ε)OPT = (2+ ε′)OPT ,
where ε′ = 2ε.

Finally, we perform the same operations according to Observation 1 to make
all calibrations non-overlapping. Thus, we get a feasible schedule of cost no more
than f∗, which completes the proof of the approximation ratio (2 + ε) for ε > 0
arbitrarily small.

Running Time. Since |F ′′| = O(log1+ε n), |Φ′| = O(n2), and |{1, . . . , K}| = K,
the size of the table of MDP is n · |F ′′| · |Φ′| · |{1, . . . , K}| = O(n3K log1+ε n).
When the values of the table are fixed, the minimization is over the values
f ′, t′ and k′, so the running time is O(n2K log1+ε n). Hence, the overall time
complexity is O(n5K2 log21+ε n). ��

3 Uniform Calibration Cost

In this section, we consider the case in which the calibration cost is equal to its
length. We show that there exists a 2-approximation algorithm. In particular,
we use the Preemptive Lazy Binning (PLB) algorithm [1] with the shortest
calibration.

Theorem 3. For the problem 1|rj , dj , pmtn, {T1, · · · , TK}|cost(calibrations)
with fk = Tk for all k ∈ {1, . . . , K}, PLB algorithm with the shortest calibration
is a 2-approximate.

Proof. Suppose we have the optimal sequence of calibrations type O =
{Ti1 , Ti2 , . . .}. Then we construct a feasible solution in which we only use the
type 1.

We replace all the calibrations in O with type 1 such that they cover the initial
calibrations {Ti1 , Ti2 , . . .}, i.e., if a calibration has length Tk, then we replace it
with �Tk/T1	 calibrations of type 1. See S′ in Fig. 5. Jobs stay scheduled at the
same time. Similarly, if some calibrations overlap, then we perform the operations
as in Observation 1. A non-overlapping schedule S shown in Fig. 5 is obtained.
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Fig. 5. Illustration of analysis.

Note that for any Tiu in O, the new constructed schedule S′ above will cover
it by at most Tiu + T1 < 2Tk since T1 < Tk. So the cost of the non-overlapping
schedule S is no more than the cost of S′ whose cost is less than twice of the
optimal value.

We recall that the PLB algorithm proposed in [1] returns a schedule with the
minimum number of calibrations in polynomial time when there is only one type
of calibration. If we are only allowed to use the shortest calibration of length T1,
S is a feasible schedule, while PLB algorithm returns a schedule with at most
as many calibrations as in S.

Hence, by using the PLB algorithm with the shortest calibration, the cost
of the returned schedule is no more than the cost of S and less than twice of the
optimal value. ��

4 Conclusion

In this paper, we studied the scheduling problem with multiple types of calibra-
tion. When jobs have agreeable deadlines, we showed that the problem could be
solved in pseudo-polynomial time, and we gave a (2 + ε)-approximation algo-
rithm. We further studied the case in which the calibration cost is equal to its
length, and we gave a simple 2-approximation algorithm. A natural question is
to improve the approximation ratio. It would be mostly interesting if one can
show a PTAS or exclude its existence.

Moreover, no approximation algorithm is known for the general case of jobs,
a constant approximation algorithm would be of great interest.
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Abstract. As a promising way to replenish energy to sensor nodes,
scheduling the mobile charger to travel through the network area to
charge sensor nodes has attracted great attention recently. Most existing
works study the mobile charger scheduling problem under the scenario
that only the depot can recharge or replace the battery for the mobile
charger. However, for large-scale sensor networks, this may be energy
inefficient, as the mobile charger will travel for a long distance to charge
each sensor node. In this paper, we consider the scenario that there are
some service stations in the network area which can be used to replace
the battery for the mobile charger, and we study the problem of Min-
imizing the number of used Batteries for a mobile chArger to charge a
wireless sensor network (MBA). We first prove that the MBA problem is
NP-hard, and then design an approximation algorithm to address it. We
also give the theoretical analysis for the algorithm. We conduct extensive
simulations to evaluate the performance of our algorithm, the simulation
results show that our proposed algorithm is effective and promising.

Keywords: Mobile charger · Wireless sensor network · Wireless power
transfer

1 Introduction

The recent breakthrough in wireless power transfer technology brings a novel
method to replenish energy to sensor nodes [4]. As a promising way to prolong
the lifetime of WSNs, wireless charging guarantees the continuous power supply
for sensor nodes and is insensitive to surroundings. With the novel technology,
some researchers study the problem of replenishing energy to sensor nodes in
WSNs with a mobile charger (MC) [8,12] so that sensors can achieve continuous
operation. Generally, there is a depot for maintaining the MC, and the MC will
be periodically dispatched to traverse each sensor node and stay near each sensor
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node for a short time to charge it. For large-scale wireless sensor networks, using
a single mobile charger may be very inefficient. The reason is that the energy
capacity of the MC is limited in practice, the MC needs to return to the depot
to charge itself after it charges a part of the sensor nodes, and thus it may take
multiple rounds to charge all the sensor nodes. To address this problem, some
researchers investigate the problem of charging a wireless sensor network with
multiple mobile chargers [3,9], in which they schedule multiple wireless chargers
from the depot to charge sensor nodes.

However, for extremely large-scale wireless sensor networks, it is energy inef-
ficient if we just use the depot to maintain the MCs. It is because all the mobile
chargers are dispatched from the depot, the mobile chargers will consume a lot of
energy on traveling to reach these sensor nodes that are very far from the depot
(or may not even be able to reach these sensors due to the limit energy capacity
of each MC). In this paper, we consider the scenario that there are some service
stations in the network area, which can be used to replace the battery of the
MC with a fully charged battery under the help of some mechanical equipment.
Under such a scenario, the depot dispatch a MC to traverse and charge each
sensor node one by one, when the MC is about to run out of it energy, it will
move to a nearby service station to replace a new battery and then go to traverse
and charge the remaining sensor nodes. These service stations keep the replaced
batteries and fully recharge them to maintain them for the next charging period.
The number of used batteries of the MC during a charging cycle will significantly
affect the total cost of the charging tour. How to design the charging tour for
the MC to fully charge all the sensor nodes with the minimum number of used
batteries, therefore, is a realistic and crucial problem in this scenario.

In this paper, we study the charging tour design problem for achieving the
minimum number of used batteries during a charging cycle. The main contribu-
tions of our work are as follows.

– We consider the scenario that a network area has a set of service stations
and define the MBA problem. We also prove the NP-hardness of the MBA
problem.

– We design an approximation algorithm for the MBA problem, and give the-
oretical analysis for the proposed algorithm.

– We conduct extensive simulations to evaluate our proposed algorithm. The
simulation results demonstrate the effectiveness of our algorithm.

The remainder of this paper is structured as follows. In Sect. 2, we introduce
the related works of this paper. In Sect. 3, we formally define the MBA problem
to be addressed, and prove the NP-hardness of problem MBA. In Sect. 4, we
address the MBA problem and design an approximation algorithm for it. In
Sect. 5, we conduct extensive simulations to evaluate our algorithm. And finally,
we conclude this paper in Sect. 6.
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2 Related Works

With the advance of the efficient wireless power transfer technology, using mobile
chargers to replenish energy to wireless sensors has been widely studied in var-
ious contexts. Ma et al. [10] consider the scenario that multiple sensors can be
charged simultaneously by a single charger, they aim to design a charging tour
for the mobile charger to maximize the charging utility, while the consumed
energy of the mobile charger is limited by its energy capacity. Wu et al. [11]
study how to improve the charging utility by jointly considering the oriented
sensor placement and the mobile charger scheduling problem. Some researchers
investigate multiple mobile chargers scheduling problem. Lin et al. [6] study
the temporal and spatial collaborative charging problem with multiple charg-
ers, in which they focus on maximizing energy usage efficiency and survival rate
simultaneously. Xu et al. [13] consider the problem of scheduling multiple mobile
chargers to collaboratively charge sensors, their objective is to minimize the sum
of traveling distance of these mobile chargers. For improving the overall energy
usage efficiency of mobile chargers, Lin et al. [7] use the game theory model
and propose a game theoretical collaborative charging scheduling method for
on-demand charging architecture.

3 Model and Problem Formulation

3.1 Models and Assumptions

We consider a wireless rechargeable sensor network that contains m rechargeable
sensor nodes S = {s1, s2, . . . , sm} and a stationary base station which is used to
collect data and manage the entire network. All the sensor nodes are deployed
in a 2-D bounded region, and their positions are fixed and can be known in
advance. We assume that all sensor nodes are equipped with identical recharge-
able batteries with energy capacity B. Each sensor node si ∈ S will periodically
report its residual energy REi to the base station, thus the base station knows
the battery status of the whole network.

To maintain a long-time operation of the network, the base station will dis-
patch a MC to charge the sensor nodes at certain time points. We assume there
is a depot denoted by r next to the base station, and there is only one MC in
the depot. The energy capacity of the MC is U which is used for both moving
and charging sensors. The energy consumption rate of the MC for moving per
unit distance is η. Generally, the energy capacity of the MC is limited and it
can not fully charge all sensor nodes by one battery, thus the MC should be
charged or replaced its battery before its energy is exhausted. We assume that
there are a set of service stations V = {v1, v2, . . . , vn} in the network area, at
which the MC can replace its battery with a fully charged battery under the
help of some mechanical equipment. We also assume that the depot also can
be used as a service station. Figure 1 shows an example of such a rechargeable
sensor network.
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In this paper, we consider the scenario that the MC moves to the site of the
sensor nodes one by one and then begins to charge them wirelessly. The MC will
move to the service station to replace its battery if its battery is going to run
out of energy, and the MC must return to the depot after fully charging all the
sensor nodes. We term such a charging process as a charging tour. Note that a
sensor node can be charged multiple times during the charging tour. We ignore
the sensor node energy consumption during a charging tour, as sensor nodes are
low-power devices, the amount of energy consumed by each sensor node during
a charging tour is several orders of magnitude less than its energy capacity.

base station depot mobile charger

sensor node charging tour service station

Fig. 1. Illustration of the rechargeable sensor network.

3.2 Problem Formulation

In this paper, we focus on scheduling a mobile charger equipped with an energy-
limited battery to charge a wireless sensor network, such that all sensor nodes
are fully charged after a charging tour. As mentioned before, the MC can not
fully charge all sensor nodes by one battery, thus it needs to move to the service
station to replace its battery during the charging tour. We aim to design a
charging tour for the MC such that the total number of used batteries of the
MC is minimized. We define the problem to be addressed in this paper as follows.

Problem 1. Minimizing the number of used Batteries for a mobile charger to
chArge a wireless rechargeable sensor network (MBA). Given a wireless recharge-
able sensor network that involves a set S of rechargeable sensor nodes with
energy capacity B and residual energy {RE1, RE2, . . . , REm}, a MC with bat-
tery capacity U located at depot r, and a set V of service stations, we aim to find
a charging tour for the MC and determine when and where to replace its battery
to fully charge all the sensor nodes, such that the number of used batteries is
minimized.

Notice that the battery carried by the MC when it leaves the depot is also
counted.
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In the following, we will prove the NP-hardness of the MBA problem. We first
introduce some problems before proving the NP-hardness of the MBA problem.

The Traveling Salesman Problem (TSP): Given a set S ′ of vertices, and the
distance of each two vertices is known, the TSP problem is to find a closed tour
C ′ that visits all the vertices in S ′, and the length of the tour C is minimized.

The Decision Version of the TSP Problem: Given a positive number l,
does there exist a closed tour C ′ where the length of C ′ is at most l that visits
all the vertices in S ′?

The Decision Version of the MBA Problem: Given an integer k, does there
exist a charging tour C for the MC that fully charge all the sensor nodes, and
the number of the total used batteries is not larger than k?

Theorem 1. The MBA problem is NP-Hard.

Proof. We prove the theorem by reducing the TSP problem to the MBA problem.
Consider such an instance of decision version of the TSP problem: we are

given a positive number l and a vertex set S ′ = {s′
1, s

′
2, . . . , s

′
n}, and the distance

between any two vertices in S ′ is an integer.
we construct an instance of the decision version of the MBA problem as

follows. For each element s′
i ∈ S ′ we generate a sensor node si, the distance

between each two sensor nodes si and sj is equal to the distance between s′
i and

s′
j . We set the energy capacity of each sensor node to an integer B and set the

residual energy of sensor si to an integer REi, where 0 ≤ REi ≤ B, then the
total energy required to fully charge all the sensor nodes can be expressed by
Ec =

∑m
i=1(B − REi), where Ec is also an integer. We set the energy capacity

U of the MC to 1, and the energy consumption rate η of the MC for moving per
unit distance is 1. Besides, we let k = �l�+Ec

U = �l� + Ec. We assume that there
are enough service stations that the MC can replace its battery anywhere once
its energy is exhausted.

If the instance of the decision version of the TSP problem has a “Yes” answer,
i.e., there exists a closed tour C ′ that visits all the vertices in S ′, and the length
of C ′ is no more than l. As the distance between any two vertices in S ′ is an
integer, the length of C ′ must be an integer, and it is no more than �l�. We use
C ′ as the charging tour C for the MC to charge all the sensor nodes, the MC
replace its battery once its energy is exhausted on the tour C. The total energy
consumed by the MC during the charging tour is no more than �l� + Ec, and
thus the total number of used batteries by the MC is no more than �l�+Ec

U = k,
that is, the instance of the decision version of the MBA problem has a “Yes”
answer.

If the instance of the decision version of the MBA problem has a “Yes”
answer, i.e., there is a charging tour C for the MC to fully charge all the sensor
nodes, and the number of used batteries by the MC is at most k. All the used
batteries provide at most k ∗ U energy for the MC, and the energy used for
charging sensors is Ec, and thus the length of the charging tour C is at most
(k ∗ U − Ec)/η = k ∗ U − Ec = �l�. We use C to be the tour C ′ for the decision



Efficient Mobile Charger Scheduling in Large-Scale Sensor Networks 303

version of the TSP problem, combining �l� ≤ l, we know that the instance of
the decision version of the TSP problem also has a “Yes” answer.

It is clear that the reduction can be finished in polynomial time. Since the
TSP problem is a typical NP-Hard problem, we can conclude that the MBA
problem is also NP-Hard.

4 Algorithm for the MBA Problem

In this section we address the MBA problem, we assume that the distance
between any two service stations is no more than U/η. The general case that
without any assumption will be our future work.

4.1 Algorithm Description

In the MBA problem, there is a set of service stations in the network area, we use
v(si) to denote the service station which is the nearest to the sensor node si, and
use L(si) to denote the distance between si and v(si), we use Lmax to denote
the maximum L(si), i.e., Lmax = maxsi∈S L(si). We assumed that Lmax < U

2∗η
in this work, otherwise, there is no feasible solution.

We design an approximation algorithm, named FCMB, for the MBA problem.
Our proposed algorithm mainly has three steps. The first step is to find a closed
tour C on the set S ∪ {r}, we let the MC visits and charge each sensor node
along the anticlockwise direction of the tour, then the tour C can be considered
as a charging path. The second step is to transform the charging path C to a
path C ′ by replacing each sensor node with an edge. The third step is to split
the path C ′ into several sub-paths such that the MC will not exhaust its energy
during each sub-path. In the following, we will describe the algorithm in details.

In the first step, we find a closed tour C by invoking the TSP algorithm [1]
on the set S ∪ {r}. For the convenience of expression, we renumber the sensor
nodes in the anticlockwise direction of the closed tour C beginning at r. Then
the closed tour C can be represent as a path, i.e., C = {r, s1, s2, . . . , sm, r}, as
shown in Fig. 2(a). We let the MC charge the sensor nodes one by one along the
path C.

In the second step, we transform the path C to C ′ by using an edge (s′
i, s

′′
i )

to replace each sensor node si, and set the length of the edge (s′
i, s

′′
i ) to E(si)/η,

where E(si) = B − REi, as shown in Fig. 2(b). Notice that (s′
i, s

′′
i ) is a virtual

edge that represents the sensor node si, thus for any point p on edge (s′
i, s

′′
i ),

its closest service station v(p) is same to v(si), correspondingly, L(p) = L(si).
For the ease of expression, we term these virtual edges as “charging edges”, and
other edges in C ′ as “traveling edges”.

In the third step, we split the path C ′ into several sub-paths such that the
MC can move to the closest service station before exhausting its energy during
each sub-path. The split method is as follows. We let the MC move along the
path C ′, then we try to find the farthest point p1 from the starting point of C ′

on the “charging edges”, where the MC has enough energy move to the closest
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service station v(p1), i.e., L(r, p1) + L(p1) ≤ U
η , where L(r, p1) represents the

distance from r to p1 along the path C ′. We term such a point as “leaving point”
as the MC leaves the tour C ′ at the point. There are two cases for the “leaving
point” p1.

Case I: if we can find such a point p1 on the “charging edge” (s′
i, s

′′
i ), then

we can split the first sub-path as (r, . . . , s′
i, p1, v(p1)), and update the path C ′

to (v(p1), p1, s′′
i , . . . , r).

Case II: we can not find such a point p1 on the “charging edges”, this case
happens when some “traveling edges” are too long that it costs too much energy
for the MC to travel it. Then we let the MC move to the service station v(s1) (the
closest service station of the first sensor of C ′) directly, and we set p1 = s′

1. Then
the first sub-path is (r, v(s1)), and we update the path C ′ as (v(s1), p1, s′′

1 , . . . , r).
It’s worth mentioning that the case II happens only when the last “leaving

point” is on the end of a “charging edge” or when we try to find the first “leaving
point”, otherwise, we can always find a “leaving point” on “charging edges” as
we assumed Lmax < U

2∗η in this work.

Fig. 2. Illustration of the FCMB algorithm.

We iteratively split the path C ′ in this way until the length of C ′ is no more
than U/η. An example is shown in Fig. 2(c), we first find a “leaving point” p1,
and get the “sub-path1”, then we update the C ′ as (v(p1), p1, s′′

1 , . . . , r); then
we find the second “leaving point” p2 and get the “sub-path2”, the path C ′ is
updated to (v(p2), p2, s′

3, . . . , r); however, we can’t find the third “leaving point”
on C ′ as the edge (s′′

2 , s′
3) is too large, i.e., L(p2) + L(s′′

2 , s′
3) + L(s′

3) > U
η ,

then we set the third “leaving point” p3 as s′
3 and let the MC move to v(p3)

directly, we get the “sub-path3” as (v(p2), v(p3)), and the path C ′ is updated to
(v(p3), p3, s′′

3 , . . . , r); as the length of the path C ′ is less than U/η now, so the
split process is terminated, and we get “sub-path4”.
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After these three steps, we get a set of sub-paths of C ′, We can easily calculate
the charging energy for sensor nodes in each sub-path, for example, in Fig. 2(c),
the charging energy for sensor s1 in “sub-path1” is η ∗ L(s′

1, p1). We can also
easily get a closed tour T beginning and ending at r for the MC by combining
these sub-paths together, as shown in the Fig. 2(c), the closed tour T of the MC
is (r → s1 → v(s1) → s1 → s2 → v(s2) → v(s3) → s3 → s4 → r).

Algorithm FCMB is described in Algorithm 1.

Algorithm 1. Find a closed Charging tour that used Minimum Batteries for
the mobile charger(FCMB)
Input: S, V, B, U, η, service station r, and the residual energy REi for any si ∈ S .
Output: A closed charging tour T including r and some service stations for the MC.
1: for each sensor node si ∈ S, find its closest service station from V∪{r} and denoted

it by v(si).
2: find a closed tour C for S ∪ {r} by invoking the TSP algorithm proposed by

Christofides [1];
3: renumber the sensor nodes in the anticlockwise direction of the closed tour C

beginning at r, i.e., C = {r, s1, s2, . . . , sm, r};
4: compute E(si) for each si ∈ S, E(si) = B − REi;
5: transform C to the path C′ by using an edge (s′

i, s
′′
i ) to replace each sensor node

si, and the weight of the edge equals E(si)/η;
6: split the path C′ into several sub-paths as Fig. 2 shows;
7: calculate the charging energy for each sensor node in each sub-path;
8: combining these sub-paths together to get a closed tour T for the MC beginning

and ending at r .
9: return the closed tour T ;

4.2 Performance Analysis

Here we analyze the approximation ratio of the FCMB algorithm. In the MBA
problem, we have assumed that Lmax < U

2∗η , otherwise there’s no feasible solu-
tion, we assume that Lmax = α ∗ U

2∗η , where 0 ≤ α < 1. We have the following
theorem.

Theorem 2. The FCMB algorithm achieves a 	 3
1−α
-approximation ratio for

the MBA problem.

Proof. We first analyze the lower bound of the optimal solution. We use Lopt to
denote the distance of the optimal solution for the TSP problem on set S ∪ {r},
and use Eopt to denote the total consumed energy of the MC for both traveling
and charging, clearly, we have

Eopt ≥ η ∗ Lopt +
∑m+1

i=0
E(si). (1)
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Assume the optimal solution uses Nopt batteries in total, where Nopt is a
positive integer. Note that each battery provides at most U energy for the MC,
and thus we have the following inequality.

Nopt ≥
⌈

Eopt

U

⌉

≥
⌈

η ∗ Lopt +
∑m

i=1 E(si)
U

⌉

. (2)

In the following, we analyze the property of the solution obtained by FCMB.
We use LC to denote the length of the closed tour C we found in the first step
of FCMB, as we get C by invoking the 3

2 -approximation algorithm, thus we have
LC ≤ 3

2 ∗ Lopt. The length of the path C ′ we get in the second step of FCMB is
LC′ = LC +

∑m
i=1(E(si)/η).

Without loss of generality, we assume that we totally find t “leaving points”
in the third step of algorithm FCMB, where t is a positive integer. For the ease
of expression, we label the beginning and ending point of the path C ′ as p0 and
pt+1 respectively, i.e., r = p0 = pt+1, and set that L(p0) = L(pt+1) = 0. Notice
that L(pi) + L(pi, pi+2) + L(pi+2) > U/η for any 0 ≤ i ≤ t − 1, otherwise the
“leaving point” pi+1 can be dropped. Thus we have the following inequality,

L(pi, pi+2) >
U

η
− L(pi) − L(pi+2) ≥ U

η
− 2 ∗ Lmax, (3)

where L(pi, pi+2) is the distance between the two “leaving points” pi and pi+2

along the path C ′. Accumulating all the inequalities for any 0 ≤ i ≤ t − 1, we
have,

∑t−1

i=0
L(pi, pi+2) > t ∗

(
U

η
− 2 ∗ Lmax

)

. (4)

Notice that all the “leaving points” are selected on the path C ′, thus we have∑t−1
i=0 L(pi, pi+2) ≤ 2 ∗ LC′ , combining inequality (4), we have,

t <
2 ∗ LC′

U
η − 2 ∗ Lmax

=
2 ∗ (LC +

∑m
i=1 (E(si)/η))

U
η − 2 ∗ Lmax

≤ 2 ∗ (
3
2η ∗ Lopt +

∑m
i=1 E(si)

)

U − 2η ∗ Lmax
<

3 ∗ (η ∗ Lopt +
∑m

i=1 E(si))
(1 − α)U

.

(5)

As t is an positive integer, inequality (5) can be rewritten as

t ≤
⌈

3 ∗ (η ∗ Lopt +
∑m

i=1 E(si))
(1 − α)U

⌉

− 1. (6)

We use NA to denote the number of used batteries by the MC in the solution
got by FCMB, as the battery carried by the MC when it leaves the depot is also
counted, thus NA = t + 1, then we can rewritten inequality (6) as follows.
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NA ≤
⌈

3 ∗ (η ∗ Lopt +
∑m

i=1 E(si))
(1 − α)U

⌉

≤
⌈

3
1 − α

⌉

∗
⌈

η ∗ Lopt +
∑m

i=1 E(si)
U

⌉

≤
⌈

3
1 − α

⌉

∗ Nopt.

(7)

Thus the theorem holds.

5 Simulation Results

In this section, we conduct extensive simulations to evaluate the performance of
our proposed algorithm. We compare our proposed algorithm with a lower bound
of the optimal solution, which is used as a benchmark. All the data points plotted
in this section are the average of 100 runs.

5.1 Experimental Settings

In our experiments, the basic parameters for the model are set as follows. The
battery capacity B of theses sensor nodes is set to be 10.8 kJ [5], the residual
energy of each sensor node is generated randomly within (0, 10.8] kJ. The energy
capacity of the mobile charger U is set to be 400 kJ. According to [2], an electric
bike with 750 W power has a maximum speed of 32 km/h, we can calculate that
the energy consumption rate of the electric bike is 93.75 J/m. In our simulations,
we set the energy consumption rate η of the MC to be 100 J/m. We assume that
there are 200 rechargeable sensor nodes randomly distributed over a 2000 ×
2000 m2 square area, and the depot r located at the left bottom of the network
area.

Note that, the energy capacity U of the MC is 400 kJ, and the energy con-
sumption rate η of the MC is 100 J/m. Then in a 2000 × 2000 m2 square area,
the distance of any two service stations is less than U/η, which means that our
experimental settings are suitable for the MBA problem.

5.2 Performance Comparison

To evaluate the performance of our proposed algorithm, we use a lower bound of
the optimal solution as the benchmark. According to the analysis in Theorem2,
we know that

⌈
η∗Lmst+

∑m
i=1 E(si)

U

⌉
is a lower bound of the optimal solution, where

Lmst is the distance of the minimum spanning tree of set S ∪ {r}, we denote
it as LB OPT . Next, we compare our proposed algorithm with the benchmark
under various settings.

1) Impact of the number of sensors (m): As shown in Fig. 3(a), with the increase
of the number of sensors, both the FCMB and the LB OPT will use more batter-
ies, and the gap between our algorithm and the lower bound LB OPT is stable,
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Fig. 3. Comparison between FCMB and the benchmark.

the number of used batteries obtained by our algorithm is about 60% more than
that of the lower bound of the optimal solution.
2) Impact of the energy capacity of the MC (U): Figure 3(b) depicts the impact
of the energy capacity U of the MC. We can see that the larger the U is, the less
the number of batteries will be used. It also can be seen that with the increase
of the energy capacity of the MC, the gap between our algorithm and the lower
bound of the optimal solution becomes smaller and smaller, which implies that
our algorithm achieves better performance when the energy capacity of the MC
is large.
3) Impact of the energy consumption rate of the MC ( η): As depicted in Fig.
3(c), when the energy consumption rate η increases from 50 J/m to 150 J/m,
both of our algorithm and the LB OPT will use more batteries, and the gap
between our algorithm and the low bound grows up. This is because the MC will
exhaust more energy for traveling. This observation also responds to the analysis
of our algorithm FCMB in Theorem 2. The performance ratio of our algorithm
is a function of α, where α = 2ηLmax

U , a larger η will cause a larger α, and then
it will decrease the performance of our algorithm.
4) Impact of the number of service stations: Figure 3(d) indicates that with the
increase of the number of service stations, the number of used batteries delivered
by our algorithm decreases, and the gap between our algorithm and LB OPT
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also become smaller. The reason is that with the increase of the number of
service stations, the MC is more easier to find a closer service station to replace
it battery, and thus it will save more energy for charging sensors.

6 Conclusions

In this paper, we study the problem of minimizing the number of used batteries
for a mobile charger to charge a wireless rechargeable sensor network (MBA). We
prove the NP-hardness of the problem, and propose an approximation algorithm
named FCMB for the MBA problem. We also give the theoretical analysis of our
proposed algorithm. To evaluate the performance of our proposed algorithm, we
conduct extensive simulations. Simulation results demonstrate that our proposed
algorithm is effective and promising.
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Abstract. In the paper, we revisit the scheduling problems with inte-
grated production and delivery on parallel batching machines. There are
n jobs and m identical and parallel batching machines. The machines
have identical capacities and the jobs have identical processing time.
When a job is processed and delivered to customers in time, the com-
pany earns profit; otherwise, it earns nothing. A third party logistic (3PL)
provider will be used to deliver the jobs. It provides certain vehicles with
identical capacities at some certain time points. In the paper [Kai Li,
Zhao-hong Jia, Joseph Y.-T. Leung (2015) Integrated production and
delivery on parallel batching machines, European Journal of Operational
Research, 247(3), 755-763.], the authors considered the scheduling prob-
lems and designed the algorithms to deal with them. But unfortunately,
there are some wrong conclusions. Specifically, we construct counterex-
amples to show that both of Theorem 4 and Theorem 5 are invalid.
Furthermore, we provide two faster algorithms than Algorithm Sch-Id-
Size.

Keywords: Production and delivery · Total profit · Third party
logistic · Scheduling · Batching machines

1 Introduction

Batching machine scheduling problems, as one of the important research areas
in scheduling problems, have received more and more attention from researchers.
Generally, one job has two variable parameters: size and processing time. For con-
venience, most researchers fix one of the parameters to be identical and make the
other parameter arbitrary. Brucker et al. [2] and Potts et al. [13] have reviewed
batching machine scheduling problems for a survey.

Ikura et al. [8] firstly studied these problems with jobs of identical processing
time and sizes and presented an O(n2) algorithm to find a feasible schedule on
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a single machine. During the last 20 years, Wang et al. [17] developed a genetic
algorithm with a random keys encoding scheme. Computational experiments
showed that the algorithm has great average performance within reasonable
computation time. Malve et al. [10] studied a similar problem as Wang et al.
[17]. In their batch model, the jobs in the same family have the same processing
time. Meanwhile, they presented a genetic algorithm and an improved heuristic.
Computational experiments showed that the result is better than the iterative
heuristic algorithm. Dupont et al. [6] proposed a branch-and-bound procedure
for minimizing the makespan on a single-batch processing machine.

Recently, scheduling problems on identical and parallel machines have
aroused increasing interest. Ma et al. [11] presented a 4(1+ε)-competitive online
algorithm to minimize total weighted completion time on uniform parallel
machines. Experimental results showed that the algorithm for identical machines
is efficient. Tian et al. [14] also considered online scheduling on m parallel-batch
machines to minimize the makespan. They provided a new lower bound on the
competitive ratio for dense-algorithms. Wan et al. [15] studied the problem of
minimizing the maximum total completion time per machine on m parallel and
identical machines. If m is a part of the input, they proved that the problem is
strongly NP-hard; if m is fixed, they proposed a pseudo-polynomial time dynamic
programming. Xu et al. [19] proposed a genetic algorithm to schedule a set of
jobs on a set of machines with different capacities.

Production and delivery operations are two crucial steps in a supply chain.
Very recently, scheduling problems with production and job delivery also received
a lot of attention, but these researchers only dealt with job scheduling for classical
models. Wang et al. [18] studied the issue of coordinating mail processing and
distribution plans at mail processing centers. They showed that the problem was
unary NP-hard, and designed some scheduling rules and heuristics. Wan et al.
[16] considered coordinated scheduling on parallel identical machines with batch
delivery to minimize the sum of job arrival time. They proved the problem is
NP-hard and proposed the first approximation algorithm with the worst case
ratio no more than 2.

Therefore, it is important to integrate the two operations for making profits.
For many companies, there exists cost for holding inventories. The companies
hope that the goods once produced can be distributed to the customers imme-
diately. This situation is extensively applicable to the industries with the Make-
To-Order (MTO) business model. In the MTO business model, products must be
delivered to costumers with no delay. This calls for a closer link between produc-
tion operation and delivery operation. Chen and Vairaktarakis [3] first formally
introduced the integration of production and delivery to scheduling research.
They combined customer service with delivery cost to produce a combinatorial
objective which must be minimized. Since then, more and more researchers pay
attention to the integration of production and delivery, see Chen [4] for a survey.
However, these studies are only involved in classical scheduling models, where
only a job can be processed by one machine.
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Li et al. [9] first considered production-delivery scheduling on parallel batch-
ing machines. The model is stated as follows. There are m (m ≥ 1) identical
and parallel batching machines, we use M = {M1,M2, . . . , Mm} to denote the
machine set. Each machine has an identical capacity K (K ≥ 1). There are n
jobs which must be processed on the machines. We use J = {J1, J2, . . . , Jn} to
denote the job set. Each job Jj has a processing time pj , a batch size s

(1)
j and

a delivery size s
(2)
j , a due date dj and a profit Rj . Several jobs can be packed

into a batch and processed by a single machine simultaneously with no violation
of the rule that the total batch size of all the jobs in the batch doesn’t exceed
the capacity of the machine. If a job Jj can be processed and delivered to cus-
tomers by its due date dj , then a profit Rj will be made; otherwise, there will
be no profit. As to delivery, a third party logistic (3PL) company will provide
the delivery service to customers. The 3PL company will send certain vehicles
at fixed time. At time Tk, the 3PL company provides vk vehicles of capacity C
(C ≥ 1), k = 1, 2, . . . , z. And each vehicle can deliver jobs with the total deliver
size no more than the capacity of the vehicle. We assume that each job can’t be
split into pieces to process and deliver. The goal is to find a production-delivery
schedule so that the profit is maximized. In other words, you must select a job
subset J ′ ⊆ J and decide how to batch, processing and delivering the jobs of
J ′

to maximize the total profit
∑

Jj∈J ′ Rj .
We introduce the five-field notation formulated by [4] and [5] to represent the

scheduling problem under consideration: γ1|γ2|γ3|γ4|γ5. γ1 represents machine
model and γ2 represents production information and γ3 represents vehicle config-
uration. γ3 is usually in a form of (η1, η2), η1 denotes the information of number
and delivery time of vehicles and η2 denotes the capacity of a vehicle. γ4 repre-
sents the number of customers and γ5 represents the objective function. Under
the description above, the three problems we investigate can be formulated as
below.

P1: P |p-batch, pj = p, s
(1)
j , s

(2)
j = 1, dj , Rj = 1|(v1, v2, . . . , vz), (T1, T2, . . . ,

Tz), C|1|
∑

Rj . Where {P} means parallel machines, {p-batch} means that jobs
can be batched together, {pj = p} means that all the jobs have the identical
processing time p, {s

(1)
j } means that the jobs may have the different batch sizes,

{s
(2)
j = 1} means that the jobs have the identical deliver sizes equal to 1; {dj}

means that the jobs may have the different due dates; {Rj = 1} means that
the jobs have the identical profits 1, {(v1, v2, . . . , vz), (T1, T2, . . . , Tz)} means
that the 3PL company will provide v1, v2, . . . , vz vehicles at time T1, T2, . . . , Tz

respectively, {C} means that each vehicle has a identical capacity C, {1} of the
fourth field means that there is only one customer and {

∑
Rj} of the fifth field

means that the objective is to maximize the profit function.
P2: P |p-batch, pj = p, s

(1)
j , s

(2)
j = 1, dj , Rj |(v1, v2, . . . , vz), (T1, T2, . . . ,

Tz), C|1|
∑

Rj . Where {P} means parallel machines, {p-batch} means that jobs
can be batched together, {pj = p} means that all the jobs have the identical
processing time p, {s

(1)
j } means that the jobs may have the different batch sizes,

{s
(2)
j = 1} means that the jobs have the identical deliver sizes equal to 1, {dj}
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means that the jobs may have the different due dates, {Rj} means that the jobs
may have the different profits, {(v1, v2, . . . , vz), (T1, T2, . . . , Tz)} means that the
3PL company will provide v1, v2, . . . , vz vehicles at time T1, T2, . . . , Tz respec-
tively, {C} means that each vehicle has a identical capacity C, {1} of the fourth
field means that there is only one customer and {

∑
Rj} of the fifth field means

that the objective is to maximize the profit function.
P3: P |p-batch, pj = p, s

(1)
j = s

(2)
j = 1, dj , Rj |(v1, v2, . . . , vz), (T1, T2, . . . ,

Tz), C|1|
∑

Rj . Where {P} means parallel machines, {p-batch} means that jobs
can be batched together, {s

(1)
j = s

(2)
j = 1} means that all the jobs have the

identical batch sizes 1 and the identical deliver sizes 1, {pj = p} means that all
the jobs have the identical processing time p, {dj} means that the jobs may have
the different due dates, {Rj} means that the jobs may have the different prof-
its, {(v1, v2, . . . , vz), (T1, T2, . . . , Tz)} means that the 3PL company will provide
v1, v2, . . . , vz vehicles at time T1, T2, . . . , Tz respectively, {C} means that each
vehicle has a identical capacity C, {1} of the fourth field means that there is
only one customer and {

∑
Rj} of the fifth field means that the objective is to

maximize the profit function.
By definition, we know that both of Problems P1 and P3 are two particular

subproblems of Problem P2.
By a simple reduction from the well-known bin-packing problem which is

stated as NP-hard in [7], we can easily show P1 is NP-hard, which means P2
is also NP-hard. Li et al. [9] considered the three problems and made some
conclusions. In detail, they showed that there exists a 4

3 -approximation algorithm
for P1 (Theorem 4 of [9]), 3-approximation algorithm for P2 (Theorem 5 of [9])
and an optimal algorithm within the running time of O(n(z2 + log n)) for P3.
But regrettably, Theorems 4 and 5 of [9] are wrong. And for P3, we will design
two faster algorithms with the running time of O(nz + n log n) and O(n log n)
respectively.

This paper is organized as follows. In Sect. 2, we present some preliminaries.
Section 3 points out the errors of Theorems 4 and 5 of [9] by counterexample.
We design two faster algorithms for P1 in Sect. 4.

2 Preliminaries

Given an arbitrary instance I of problem P2, there are m machines and n jobs.
M = {M1,M2, . . . , Mm} and J = {J1, J2, . . . , Jn}. Each machine has a identical
capacity K (K ≥ 1). Job Jj has a processing time pj (pj = p), a batch size s

(1)
j

and a delivery size s
(2)
j = 1, a due date dj and a profit Rj , j = 1, 2, . . . , n. There

are v1, v2, . . . , vz vehicles of capacity C delivering processed jobs to customers
at time T1, T2, . . . , Tz respectively, T1 < T2 < · · · < Tz. Generally, we let T0 = 0
and Tz+1 = +∞. For any non-dominated feasible schedule of Instance I, since
all the jobs have the identical processing time p, the completion time of each
job on machines must be an integral multiple of p. When vehicles arrive at T
and deliver jobs immediately, these vehicles can only deliver jobs completed at
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time p, 2p, . . . , �T
p �p. Hence, we can set the arriving time T as �T

p �p without
changing the problem. Without loss of generality, we can assume that Ti and
dj are integral multiples of p, i = 1, 2, . . . , z and j = 1, 2, . . . , n. Otherwise, we
can modify Ti to �Ti

p �p and dj to Tk if Tk ≤ dj < Tk+1 without change of the
optimal solution, i = 1, 2, . . . , z and j = 1, 2, . . . , n. If a job can be processed and
delivered before its due date, then we call the job as early job (E-job for short).
Otherwise, we call the job as late job (L-job for short). The objective is to find
a subset J ′ ⊆ J of E-jobs so that

∑
Jj∈J ′ Rj is maximal.

Now, we can characterize an optimal schedule of Problem P2. Suppose J ′ ⊆
J is the set of E-jobs in an optimal solution of Problem P2. By simple pairwise
interchange, we can easily have the following lemma.

Lemma 1. For Problem P2, there exists an optimal schedule such that the jobs
in J ′ fulfilling the following properties:
• If E-job Jj of J ′

is processed earlier than E-job Jk of J ′
, then E-job Jj is

delivered earlier than E-job Jk.
• All the jobs of J ′

are processed and delivered according to the nondecreasing
order of the due dates (EDD order for short).

3 Pointing Out of Errors

In the paper [9], the errors exist in section 5. Specifically, Theorem 4 for Problem
P1 and Theorem 5 for Problem P2 are both wrong.

In the following, we construct instances to show that the two theorems are
wrong.

For Theorem 4 in [9], counterexamples are constructed as follow. Without
loss of generality, we assume t is an integral multiple of C. There are only two
delivery time T1 = p and T2 = (t + 1)p. And at each time we are provided t

C
vehicles, where C is the capacity of each vehicle, i.e., each vehicle can deliver
at most C jobs. Moveover, we have m = 2 machines and n = 2t jobs with due
date T2, where t jobs have size ε (ε is sufficiently small) and the other t jobs
have size 1. The capacity of each batch is K = 2. Obviously, by algorithm Heu1,
at time interval [T1, T2], we first process and deliver the t small jobs, and at
time interval [0, T1] = [0, p], since each batch can process 2 jobs and m = 2,
there are 4 jobs to be processed and delivered. So we have PF (h1) = t + 4. But
obviously PF (opt) = 2t, since we can process and deliver the t large jobs in
time interval [T1, T2] and the t small jobs in time interval [0, T1] = [0, p]. Then
PF (opt)
PF (h1) = 2n

t+4 → 2 when t → ∞.
For Theorem 5 in [9], counterexamples are constructed as follow. There are

only one delivery time T1 = p. And at this time we are only provided one vehicle
of capacity C = 2. Moveover, we have m = 2 machines and 4 jobs with due
date T1, 2 jobs have size ε and profit 2ε, the other 2 jobs have size 1 and profit
1. Obviously, the ratio of profit to size of small jobs is 2 and the ratio of the 2
large jobs is 1. By algorithm Heu1, we process and deliver the 2 small jobs. So
we have PF (h1) = 4ε. But obviously PF (opt) = 2, since we can process and
deliver the 2 large jobs. Then PF (opt)

PF (h1) = 2
4ε → +∞ when ε → 0.
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4 Two Faster Algorithms

Given an arbitrary instance I of problem P3, there are m machines and n jobs.
M = {M1,M2, . . . , Mm} and J = {J1, J2, . . . , Jn}. Each machine has a identical
capacity K (K ≥ 1). Job Jj has a processing time pj = p, a batch size s

(1)
j = 1

and a delivery size s
(2)
j = 1, a due date dj and a profit Rj , j = 1, 2, . . . , n. There

are v1, v2, . . . , vz vehicles of capacity C delivering processed jobs to customers
at time T1, T2, . . . , Tz respectively, T1 < T2 < · · · < Tz. Generally, we let T0 = 0
and Tz+1 = +∞. By the discussion of Sect. 2, and P3 is a subproblem of P2,
we can assume that Ti is integral multiple of p and dj is some delivery time Tk,
i = 1, 2, . . . , z and j = 1, 2, . . . , n.

In the paper [9], Algorithm Sch-Id-Size is designed to solve Problem P3 and
the running time is O(n(z2 + log n)). The algorithm is constructed backwards.
This idea is feasible, but the design of the algorithm procedure is a bit clumsy. In
fact, we can improve the realization of the idea by using better data structure.

In order to demonstrate the two algorithms clearly, we introduce some proper
notations. For each i = 1, 2, . . . , z, let J (i) denote the job set of all the jobs with
due date Ti and ti = |J (i)|. We rearrange the jobs of J (i) as J

(i)
1 , J

(i)
2 , . . . , J

(i)
ti

according to the non-increasing order of their profits. To break the tie, we select
the job of the smallest job index. Let R

(i)
j denote the profit of J

(i)
j , i = 1, 2, . . . , z

and j = 1, 2, . . . , ti. Let Ni = mK Ti−Ti−1
p and Hi = viC, i = 1, 2, . . . , z. Let

J
(i)
ti+1 be a null job, i = 1, 2, . . . , z.

Algorithm Backwards: For problem P3
Input: An instance J = {J1, J2, . . . , Jn}, M = {M1,M2, . . . , Mm} with

machine capacity K and the delivery data {(v1, v2, . . . , vz), (T1, T2, . . . , Tz)} with
vehicle capacity C of P3.

Step 1: Modify delivery time T1, T2, . . . , Tz and due dates d1, d2, . . . , dn as
stated in Sect. 2. And set T0 := 0, Tz+1 := +∞, Ni = mK Ti−Ti−1

p and Hi = viC,
i = 1, 2, . . . , z.

Step 2: According to the modified due dates, we partition J into
J (1),J (2), . . . ,J (z). And rearrange the jobs of J (i) as J

(i)
1 , J

(i)
2 , . . . , J

(i)
ti accord-

ing to the non-increasing order of their profits, i = 1, 2 . . . , z.
Step 3: Initialize rj := 1, j = 1, 2, . . . , z, s := z and d := z, N := Ns and

H := Hd, J ′
:= ∅ and R := 0.

Step 4: If s ≤ 0 or d ≤ 0, then Stop.
Step 5:

– If N > 0 and H > 0, we consider two cases.
• Case 1: {J

(s)
rs , J

(s+1)
rs+1 , . . . , J

(z)
rz } has a non-null job. Then we select the job

J
(k)
rk of the maximal profit out of {J

(s)
rs , J

(s+1)
rs+1 , . . . , J

(z)
rz }, to break the tie,

we select the job of the smallest job index. Schedule job J
(k)
rk to process

in [Ts−1, Ts] and deliver in time Td. J ′
:= J ′ ∪ {J

(k)
rk }, R := R + R

(k)
rk ,

rk := rk + 1, N := N − 1 and H := H − 1. Go to Step 4.
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• Case 2: {J
(s)
rs , J

(s+1)
rs+1 , . . . , J

(z)
rz } has no non-null job. Then s := s − 1,

N := Ns.
– If N > 0 and H = 0 and s < d, then d := d − 1, H := Hd. Go to Step 4.
– If N > 0 and H = 0 and s = d, then s := s − 1 and d := d − 1, N := Ns and

H := Hd. Go to Step 4.
– If N = 0 and H > 0, then s := s − 1, N := Ns, Go to Step 4.
– If N = 0 and H = 0, then s := s − 1 and d := d − 1, N := Ns and H := Hd.

Go to Step 4.

Output: J ′
and R.

Explanation of Algorithm Backwards: during the implementation of Algo-
rithm Backwards, s represents the interval time [Ts−1, Ts] that the current job
will be processed and d represents the delivery time Td that the current job
will be delivered. Ns represents the remain processable capacity of interval time
[Ts−1, Ts] and Hd represents the remain deliverable capacity of delivery time Td.
rj represents the job of the maximal profit in the unconsidered jobs of J (j),
j = 1, 2, . . . , z. J ′

represents the current job set of scheduled jobs and R repre-
sents the current total profit. s ≤ d holds thoroughly.

Algorithm Backwards is actually a variant of Algorithm Sch-Id-Size in [9].
For Algorithm Backwards, it takes O(n) time to complete Step 1. It takes O(n+∑z

i=1 tilog ti) time to complete step 2. Note that
∑z

i=1 log ti = n, we takes at
most O(n log n) time to fulfil Step 2. Step 3 can be implemented in O(n) time.
In Step 5, since {J

(s)
rs , J

(s+1)
rs+1 , . . . , J

(z)
rz } has at most z jobs, we can select the job

J
(k)
rk of the maximal profit out of {J

(s)
rs , J

(s+1)
rs+1 , . . . , J

(z)
rz } in O(z). Therefore, it

takes O(nz) time to implement Step 4 and Step 5. In conclusion, the running
time of Algorithm Backwards is O(nz + n log n) which is less than the running
time of Algorithm Sch-Id-Size.

Theorem 1. Algorithm Backwards solves Problem P3 in the running time of
O(nz + n log n).

In the following, let us start to design the other faster algorithm. The algo-
rithm is very different to Algorithm Backwards. In Algorithm Backwards, the
schedule is constructed backwards. On the contrary, we build the schedule for-
wards in the following new algorithm.

Given an arbitrary instance I of problem P3, by Lemma 1, we sort the jobs
of J such that d1 ≤ d2 ≤ · · · ≤ dn.

Algorithm Forwards: For problem P3
Input: An instance J = {J1, J2, . . . , Jn}, M = {M1,M2, . . . , Mm} with

machine capacity K and the delivery data {(v1, v2, . . . , vz), (T1, T2, . . . , Tz)} with
vehicle capacity C of P3.

Step 1: Modify delivery time T1, T2, . . . , Tz and due dates d1, d2, . . . , dn as
stated in Sect. 2. And set T0 := 0, Tz+1 := +∞, Ni := mK Ti−Ti−1

p and Hi :=
viC, i = 1, 2, . . . , z.

Step 2: Sort the jobs of J such that d1 ≤ d2 ≤ · · · ≤ dn.
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Step 3: Initialize i := 1, s := 1 and d := 1, N := Ns and H := Hd, J ′
:= ∅

and R := 0.
Step 4: If s > z or d > z or i > n, then Stop.
Step 5:

– If N > 0 and H > 0, we consider two cases.
• Case 1: di ≥ Td. Then we schedule job Ji to process in [Ts−1, Ts] and

deliver in time Td. J ′
:= J ′ ∪ {Ji}, R := R + Ri, i := i + 1, N := N − 1

and H := H − 1. Go to Step 4.
• Case 2: di < Td. Then we find the job Jh of the minimal profit in J ′

and
substitute Jh by Ji in the process-delivery schedule. J ′

= {J ′ \ {Jh}} ∪
{Ji}, R := R + Ri − Rh, i := i + 1. Go to Step 4.

– If N > 0 and H = 0, then d := d + 1, H := Hd. Go to Step 4.
– If N = 0, H > 0 and s < d, then s := s + 1, N := Ns, Go to Step 4.
– If N = 0, H > 0 and s = d, then s := s + 1 and d := d + 1, N := Ns and

H := Hd. Go to Step 4.
– If N = 0 and H = 0, then s := s + 1 and d := d + 1, N := Ns and H := Hd.

Go to Step 4.

Output: J ′
and R.

Explanation of Algorithm Forwards: during the implementation of Algorithm
Forwards, s represents the interval time [Ts−1, Ts] that the current job will be
processed and d represents the delivery time Td that the current job will be deliv-
ered. Ns represents the remain processable capacity of interval time [Ts−1, Ts]
and Hd represents the remain deliverable capacity of delivery time Td. i repre-
sents the current job Ji considered. J ′

represents the current job set of scheduled
jobs and R represents the current total profit. s ≤ d holds thoroughly.

We try to schedule jobs to process and deliver. Once the current job can
not be processed and delivered by its due date, we substitute the scheduled job
of the minimal profit by the current job. This is feasible, since we proceed to
schedule the jobs according to the non-decreasing order of their due dates. This
idea is similar to the idea of the algorithm presented to cope with 1||

∑
Uj in

[12]. You can also see the algorithm in Chapter 4 of [1].
If all the jobs of W ⊆ J are E-jobs in some feasible schedule, then we call W

feasible. That is, by the Lemma 1, the jobs of W can be processed and delivered
according to the EDD order.

Lemma 2. Let J ′
be the feasible job set returned by Algorithm Forwards, then

J ′
is the feasible set of maximal cardinality. That is, |J ′ | ≥ |W| for any feasible

set W ⊆ J .

Proof. We complete the proof by contradiction. Assume that J is the job set of
minimal cardinality violating the lemma and J ′

is the feasible job set returned
by Algorithm Forwards. Let U ⊆ J denote a feasible set of maximal cardinality,
L = J \ {Jn} and L′

be the feasible job set returned by Algorithm Forwards on
the instance with job set L. Then |U| > |J ′ |. We discuss two cases.
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Case 1: Jn /∈ U . Obviously, U is a feasible subset of L of maximal cardinality
and |U| > |J ′ | ≥ |L′ |, which means that the instance with job set L is also an
instance violating the lemma. This breaks the minimal cardinality of set J .

Case 2: Jn ∈ U . Let H = U \ {Jn}. Since J has the minimal cardinality
violating the lemma, |H| = U − 1 ≥ |J ′ | ≥ |L′ |. Combined with Lemma 1, we
know that Jn ∈ J ′

and J ′
= L′ ∪ {Jn}. Therefore, |H| > |L′ |. Note that H

is a feasible set of L, we can infer that the instance with L is also an instance
violating the lemma. This breaks the minimal cardinality of set J . �

Let J ′
be the feasible job set returned by Algorithm Forwards on job set J

and h be the maximal cardinality of feasible sets of J . By Lemma 2, |J ′ | = h.
For each k = 1, 2, . . . , h, we construct a new Problem P3(k) which is to find

a feasible job set of maximum profit out of the job set of the cardinality at most
k. That is, we must find a feasible set T of the cardinality at most k in J such
that the objective

∑
Jj∈T ,|T |≤k Rj is maximized.

In order to cope with Problem P3(k), we add a counter of the cardinality of
J ′

during the implementation of Algorithm Forwards.

Algorithm Forwards (k): For problem P3(k)
Input: An instance J = {J1, J2, . . . , Jn}, M = {M1,M2, . . . , Mm} with

machine capacity K and the delivery data {(v1, v2, . . . , vz), (T1, T2, . . . , Tz)} with
vehicle capacity C of P3(k).

Step 1: Modify delivery time T1, T2, . . . , Tz and due dates d1, d2, . . . , dn as
stated in Sect. 2. And set T0 := 0, Tz+1 := +∞, Ni := mK Ti−Ti−1

p and Hi :=
viC, i = 1, 2, . . . , z.

Step 2: Sort the jobs of J such that d1 ≤ d2 ≤ · · · ≤ dn.
Step 3: Initialize t := 0, i := 1, s := 1 and d := 1, N := Ns and H := Hd,

J ′
:= ∅ and R := 0.
Step 4: If s > z or d > z or i > n, t > k, then Stop.
Step 5:

– If N > 0 and H > 0, we consider two cases.
• Case 1: di ≥ Td. Then we schedule job Ji to process in [Ts−1, Ts] and

deliver in time Td. J ′
:= J ′ ∪ {Ji}, R := R + Ri, t := t + 1, i := i + 1,

N := N − 1 and H := H − 1. Go to Step 4.
• Case 2: di < Td. Then we find the job Jh of the minimal profit in J ′

and
substitute Jh by Ji in the process-delivery schedule. J ′

= {J ′ \ {Jh}} ∪
{Ji}, R := R + Ri − Rh, i := i + 1. Go to Step 4.

– If N > 0 and H = 0, then d := d + 1, H := Hd. Go to Step 4.
– If N = 0, H > 0 and s < d, then s := s + 1, N := Ns, Go to Step 4.
– If N = 0, H > 0 and s = d, then s := s + 1 and d := d + 1, N := Ns and

H := Hd. Go to Step 4.
– If N = 0 and H = 0, then s := s + 1 and d := d + 1, N := Ns and H := Hd.

Go to Step 4.

Output: J ′
and R.
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Explanation of Algorithm Forwards (k): during the implementation of Algo-
rithm Forwards (k), 1 ≤ k ≤ h. s represents the interval time [Ts−1, Ts] that
the current job will be processed and d represents the delivery time Td that
the current job will be delivered. Ns represents the remain processable capacity
of interval time [Ts−1, Ts] and Hd represents the remain deliverable capacity of
delivery time Td. i represents the current job Ji considered. J ′

represents the
current job set of scheduled jobs and R represents the current total profit, t
represents the current cardinality of J ′

and the terminal number of t is k. t ≤ k
and s ≤ d hold thoroughly.

For each i = 1, 2 . . . , h, we define Ji,k as the current job set J ′
of scheduled

jobs after job Jk is considered during the implementation of Algorithm Forwards
(i) and let e(i, k) is the minimum job index so that Je(i,k) is a job of minimal
profit in Ji,k. The following observation is crucial.

Lemma 3. For each i = 2, 3, . . . , h and each k = 1, 2, . . . , n, we have

Ji,k =
{

Ji−1,k, |Ji,k| < i,
Ji−1,k + {Je(i,k)}, |Ji,k| = i.

Proof. If |Ji,k| < i, neither before or after job Jk is considered, the implemen-
tation of Algorithm Forwards (i) is exact the the implementation of Algorithm
Forwards (i − 1). Therefore Ji,k = Ji−1,k.

If |Ji,k| = i. Let r is the maximum index so that Ji,r = Ji−1,r before job
k is considered. We know that |Ji,r| = |Ji−1,r| = i − 1, e(i, r) = e(i − 1, r),
|Ji,r+1| = i and |Ji−1,r+1| = i − 1, Ji,r+1 = Ji,r ∪ {Jr+1}. If Rr+1 ≥ Re(i−1,r),
then Ji−1,r+1 = {Ji−1,r \ {Je(i−1,r)}} ∪ {Jr+1}, e(i − 1, r) = e(i, r) = e(i, r +
1) and Ji,r+1 = Ji−1,r+1 ∪ {Je(i,r+1)}. If Rr+1 < Re(i−1,r), then Ji−1,r+1 =
Ji−1,r, e(i, r + 1) = r + 1 and Ji,r+1 = Ji−1,r+1 ∪ {Je(i,r+1)}. We complete
the proof by induction on t = r + 1, r + 2, . . . , k. When t = r + 1, the theorem
apparently holds. Assume that the theorem holds for t = u with r + 1 ≤ u < k,
which means that Ji,u = Ji−1,u + {Je(i,u)}. If Ru+1 < Re(i,u), then Ji,u+1 =
Ji,u, Ji−1,u+1 = Ji−1,u and e(i, u + 1) = e(i, u). Hence, Ji,u+1 = Ji−1,u+1 +
{Je(i,u+1)}, the theorem holds. If Re(i,u) ≤ Ru+1 < Re(i−1,u), then Ji,u+1 =
{Ji,u \ {Je(i,u)}} ∪ {Ju+1}, Ji−1,u+1 = Ji−1,u and e(i, u + 1) = u + 1. Hence,
Ji,u+1 = Ji−1,u+1 + {Je(i,u+1)}, the theorem holds. If Ru+1 ≥ Re(i−1,u), then
Ji,u+1 = {Ji,u \ {Je(i,u)}} ∪ {Ju+1}, Ji−1,u+1 = {Ji−1,u \ {Je(i−1,u)}} ∪ {Ju+1}
and e(i, u+1) = e(i−1, u). Hence, Ji,u+1 = Ji−1,u+1 +{Je(i,u+1)}, the theorem
holds. �

For any job set K, we define f(K) =
∑

Jj∈K Rj .

Theorem 2. Algorithm Forwards (k) solves Problem P3(k), k = 1, 2, . . . , h.

Proof. When k = 1 and the cardinality of the job set under consideration is
arbitrary, the theorem obviously holds.

In the following, let w denote the cardinality of the job set under considera-
tion. We complete the proof of the theorem by induction on k+w = 2, 3, . . . , n+h.
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When k + w = 2, that is, k = 1 and w = 1 which means that the job set
under consideration has only one job. The theorem obviously holds.

Assume that the theorem holds when k + w ≤ l − 1. We consider Algorithm
Forwards (i) and the instance of t jobs with i + t = l. Let J = {J1, J2, . . . , Jt}
with d1 ≤ d2 ≤ · · · ≤ dt be the job set under consideration. Let L = J \ {Jt}.
We denote the returned job sets of Algorithm Forwards (i) on J and L by J ′

and L′
respectively. Let U be an optimal job set of the instance with job set J

of P3(i) and W be an optimal job set of the instance with job set L of P3(i).
We discuss two cases.

Case 1: Jt /∈ U . Then U is also an optimal job set of the instance with job
set L of P3(i), f(U) = f(W). Consider Algorithm Forwards (i) and the instance
of job set L, note that i + |L| = l − 1, we know that f(L′

) = f(W). Obviously,
f(L′

) ≤ f(J ′
) and f(J ′

) ≤ f(U). So we have f(J ′
) = f(U), the theorem holds.

Case 2: Jt ∈ U . |U| ≤ i. If |U| ≤ i − 1, Consider Algorithm Forwards (i − 1)
and the instance of job set J note that i − 1 + |J | = l − 1, let Q be the
returned job set of Algorithm Forwards (i − 1) on J , f(Q) = f(U). Obviously,
f(Q) ≤ f(J ′

) and f(J ′
) ≤ f(U). So we have f(J ′

) = f(U), the theorem holds.
If |U| = i, let H = U \ {Jt}. We know that f(U) = f(H) + Rt and H is a
feasible job set of the instance L of P3(i − 1). Let H′

be the returned job sets
of Algorithm Forwards (i − 1) on L. Since i − 1 + |L| = l − 2 < l − 1, by
induction, we know that f(H) ≤ f(H′

). If |L′ | < i, then J ′
= L′ ∪ {Jt}. And

by Lemma 3, we have L′
= H′

. Therefore, f(J ′
) = f(L′

) + Rt ≥ f(H′
) + Rt ≥

f(H) + Rt = f(U). So we have f(J ′
) = f(U), the theorem holds. If |L′ | = i,

let q is the minimum job index so that Jq is a job of minimal profit in L′
. By

Lemma 3, L′
= H′ ∪ {Jq}. By the Algorithm Forwards (i) on J , we can infer

that f(J ′
) = max{f(L′

), f(H′
) + Rt} ≥ f(H′

) + Rt ≥ f(H) + Rt = f(U). So
we have f(J ′

) = f(U), the theorem holds. �

Apparently, Problem P3(h) is equivalent to Problem P3 and the implemen-
tation of Algorithm Forwards (h) is the exact implementation of Algorithm For-
wards. And for the running time of Algorithm Forwards, it takes O(n log n) time
to fulfil Step 2 and O(n) time to fulfil Step 1, Step 3, Step 4 and Step 5. So the
running time of Algorithm Forwards is O(n log n) which is less than the running
time of Algorithm Sch-Id-Size. The following theorem follows.

Theorem 3. Algorithm Forwards solves Problem P3 in O(n log n) time.
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Abstract. Range partitioning is a popular method for processing mas-
sive data, whose task is to divide the input N data items into k ranges
of the same size. To avoid accessing the whole input, in the RAM model,
sampling based (ε, δ)-approximation algorithms with O( k log(N/δ)

ε2
) time

cost have been well studied. However, massive data may be too large
to be maintained in the main memory. Usually, they are stored in the
external memory devices and need to design I/O efficient algorithms in
the external memory model. Then, a natural question is whether or not
there are efficient range partitioning algorithms with O( k log(N/δ)

Bε2
) I/O

cost. To answer the above question, this paper studies the range par-
titioning problem in the external memory model. Two lower bounds of
the sampling cost required by the external sublinear range partitioning
algorithms are proved, which show that it needs to make a full scan of
the input in the worst case. Motivated by the hard instances utilized in
the proof of lower bounds, a model for describing the inputs of the range
partitioning problem in practical applications is proposed. Finally, for
the special case that input data are generated by the proposed model, a
nearly optimal algorithm with O( k log(N/δ)

wBε2
) I/O cost is introduced.

1 Introduction

Horizontal data partitioning is a wildly utilized strategy when processing mas-
sive data. It provides the ability of dividing the data into several physical parts
in massive data applications, which can lead to many benefits such as improving
the performance of complexity analytical queries, enhancing the storage abil-
ity by distributing data, tolerating the system failures and so on. The most
commonly used data partitioning methods include: range partitioning, hash par-
titioning, round-robin partitioning and so on [14]. Compared with the other two
approaches, range partitioning is semantics related and commonly used when
the data need to be partitioned under the premise of clustering properties.

This paper focuses on the problem of range partitioning in the external mem-
ory model. Different from the classical RAM model, data is organized into blocks
which are the unit of external memory access. The external memory model is
more proper for massive data computing, since the most common case is that
data is too large to be maintained in main memory.
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Given N data items admitting a total order and an integer k, the range
partitioning problem is to partition data into a set of continuous ranges such that
each range is of size N/k. The exact version of the range partitioning problem can
be solved efficiently based on an O(N

B logM/B
N
B ) sorting algorithm in external

memory model, where B is the block size and M is the main memory size.
Although such an algorithm is nearly optimal, it will still cause a huge I/O cost
which is unacceptable for massive data.

Therefore, the approximation version of the range partitioning problem is
studied by previous works [6,18]. It is shown that, in the RAM model, randomly
selecting a sample set of size larger than O( k

ε2 log N
δ ) is enough to guarantee an

(ε, δ)-approximation.
However, as shown by [6], simply applying the classical sampling methods in

external memory model will make an I/O cost as large as O( k
ε2 log N

δ ). Gener-
ally speaking, if there is an O(f(n)) algorithm in the RAM model, it is often
expected that an external algorithm with O(f(n)/B) I/O cost exists. Thus, a
natural question is whether or not it is possible to design a more efficient external
approximate range partitioning algorithm.

In this paper, to answer the above challenging question, based on the exter-
nal memory model, the lower bounds of the sampling size required are studied
first. It is shown that in general case the lower bound can be Ω(N/B), which
means that we need to scan all input data items in worst case. Motivated by the
lower bounds, the partial dependent model describing the data distributions in
practical applications are proposed, and an O(k log(N/δ)

wBε2 ) external range parti-
tioning algorithm is designed. Since the current best sublinear range partitioning
algorithm in the RAM model is bounded by O(k log(N/δ)

ε2 ), the propose external
algorithm is nearly optimal.

2 Preliminaries

2.1 The Range Partitioning Problem

The input of the range partitioning (RP for short) problem is supposed to be a
multiset D of N data items admitting a total order. In the followings, w.l.o.g.,
it is assumed that all data items come from the integer set Z.

Definition 1 (k-Partition). Given the input D, a k-partition, denoted by PD,
is a set {P1, . . . , Pk} of disjoint subsets of D, such that the union of all subsets
in PD is equal to D, that is

⋃{P1, . . . , Pk} = D. ��
Definition 2 (k-Range-Partition). A k-range-partition PD = {P1, . . . , Pk}
for the input D is a k-partition defined by a splitter set {s1, . . . , sk−1} satisfying
s1 < s2 < · · · < sk−1. Here, the partitions in PD can be defined as follows.

Pi =

⎧
⎨

⎩

{x|x < s1, x ∈ D}, when i = 1
{x|si−1 ≤ x < si, x ∈ D}, when 2 ≤ i ≤ k − 1

{x|x ≥ sk−1, x ∈ D}, when i = k
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Usually, it is also assumed that the input D is essentially a list which is proper
for many real applications since D is often stored in a linear storage device such
as disks. In this case, the input is also denoted by L, and a partition can be
called a sublist or range r, and r can be represented by the pair (lr, ur) of lower
and upper bounds of the partition. Then, the corresponding partition Lr can be
also denoted by L[lr,ur) or [lr, ur). Moreover, given a splitter si, index(si) is the
smallest index in L whose item is si.

Example 1. Suppose the input list L is {1,2,2,4,5,5,6,6,7}. Let k be 3, that is
we need to partition L into three parts. A splitter set is {s1 = 4, s2 = 6},
and L is partitioned into 3 sublists: {1, 2, 2}, {4, 5, 5} and {6, 6, 7}. Moreover,
index(s1) = 4 and index(s2) = 7, which are the corresponding position index of
s1 and s2. ��

Given an input list L of size N , without loss of generality, it is assumed
that N can be divided by k, then we can define the range partitioning problem
studied by this paper.

Definition 3 (The k-Range Partitioning Problem, k-RP for short).
Given an input list L and an integer k, the k-range partitioning problem is
to find k − 1 splitters {s1, . . . , sk−1} such that all partitions have the same size
N/k. ��

Obviously, if L contains no duplicate items, there is always a feasible solution
for the k-RP problem.

2.2 Approximation Notions

Obviously, a sort based algorithm can be utilized to solve the k-RP problem
trivially, which will produce an algorithm with O(N log N) time cost in the RAM
model and an algorithm with O(N

B log M
B

N
B ) I/O cost in the external memory

model [17]. To exactly solve the k-RP problem, the sort based algorithms have
nearly matched the lower bound, since at least one full scan is needed.

This paper focuses on solving the approximation version of the k-RP problem
by sampling based methods. The followings will introduced the related approx-
imation notions, where some of them are adopted from previous works like [2].

In general, a computing problem can also be modelled as a function. For
example, the k-RP problem essentially defines a function N

N → N
k. Given a

general function f : X n → Y, an approximation notion of f is a family of
subsets {Af,ε(x)}x∈X n of Y. Here, Af,ε(x) is the ε-approximation set of x, which
includes both f(x) and the ε-approximations of f(x). For more, the meaning of
ε-approximation can adopt any reasonable definitions of approximation, and it
should be satisfied that Af,ε(x) ⊆ Af,ε′(x) for any 0 ≤ ε ≤ ε′.

Typically, there are two kinds of definition of approximation algorithms for
the range partitioning problem.
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Definition 4 (ε-Approximation of Range Length). Given an input list L
and an integer k, the ε-approximation of range length of the k-RP problem is
AkRP,ε(L) = {Si}, where each Si is a set of k − 1 splitters {si,1, . . . , si,k−1} and
we have (1 − ε)N/k ≤ |Lr| ≤ (1 + ε)N/k for each range r obtained by Si. ��
Definition 5 (ε-Approximation of Splitter Position). Given an input
list L and an integer k, the ε-approximation of splitter position of the k-RP
problem is AkRP,ε(L) = {Ii}, where each Ii is a set of k − 1 splitter posi-
tions {ii,1, . . . , ii,k−1} and we have −εN/k ≤ ii,j − index(si,j) ≤ εN/k for
j ∈ [1, k − 1]. ��

Obviously, if there are no duplicate items, the above two definitions of the
range partitioning problem are the same, otherwise, they are different.

3 The Hardness of Designing External Sublinear
Partitioning Algorithms

3.1 External Memory Model and External Sampling Algorithms

To design efficient algorithms for massive data, it is highly required to study
algorithms in external memory model, since massive data usually are not stored
in main memory, but on the external memory devices (e.g. hard disks).

In the external memory model (or the I/O model) [17], the data is stored
in blocks of fixed size B, which are further organized in a sequential way. The
main difference between the classic RAM model and the I/O model is that each
external memory access will return one block of data but not one word or data
item. For a problem admitting a RAM algorithm with cost T , it is often expected
to design an external memory algorithm with T/B I/O costs. Most of current
sublinear algorithms, especially for sampling based methods, do not consider the
external memory model, and it is usually challenging to design external sublinear
algorithms [1]. For the k-RP problem, sampling based approximation algorithms
in the RAM model have been studied well. In [6], the problem is studied in the
name of equi-height histogram construction, and a sufficient large sample size
SampleRAM = 4k ln(2N/δ)

ε2 is given. As a consequence, it is highly expected that
an external partitioning algorithm with O(SampleRAM/B) = O(k log(N/δ)

ε2B ) can
be found.

However, trivially executing the RAM sampling based algorithm on the exter-
nal memory model, will cause an I/O cost as large as 4k ln(2N/δ)

ε2 , whose perfor-
mance is extremely terrible in the aspect of external algorithms.

Does there exist external memory partitioning algorithms smart enough to
reduce the high I/O cost? The following analysis will give negative answers by
searching the lower bounds of the sample size for the k-RP problem in external
memory model.
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3.2 A Sampling Lower Bound for Large Block Cases

In this part, considering the case that only relatively large blocks are allowed,
a lower bound of the sampling size is given for the situation that there are no
duplicate items in the list, which will induce a lower bound for the general case
in consequence.

Intuitively, when the block size B is large enough to cover at least 2εN/k
items, to make sure that only ε-approximations are outputted, enough external
memory accesses are needed to gurantee special blocks are sampled, which will
help us to build the lower bound.

To show the lower bound, the techniques introduced by [2] are utilized here.
First, we introduce the related concepts.

Definition 6 (Disjoint Inputs). Let f : X n → Y be a function with approx-
imation notion Af,ε. Two inputs x and x′ are called disjoint or ε-disjoint, if
Af,ε(x) ∩ Af,ε(x′) = ∅. ��

To illustrate how many items of the input we change are needed to affect the
output significantly, the concept of ε-sensitive is needed.

Definition 7 (ε-sensitive). A function f : X n → Y is ε-sensitive to a subset
of variables I ⊆ [n] on input x, if there is a value combination Q ∈ X |I| and x′

is obtained by replacing the data items in I of x with Q which satisfy that x and
x′ are ε-disjoint. ��

Then, we introduce the concept of block sensitivity, which can be used to
describe the characteristics of special functions.

Definition 8 (Block Sensitivity). The ε-block sensitivity of a function f on
input x, denoted by bsε(f, x), is the maximum number t of pairwise disjoint
subsets I1, . . . , It ⊆ [n], such that f is ε-sensitive to each of them on x. Then,
the ε-block sensitivity of f , denoted by bsε(f), is maxx∈X n bsε(f, x). ��

Then, by analyzing the block sensitivity of functions, the following theorem
is introduced by [2] to obtain a lower bound of the sampling size.

Theorem 1 ([2]). For every ε ≥ 0, 0 ≤ δ ≤ 1/2, and f : X n → Y, the
expected sampling size needed by an (ε, δ)-approximation algorithm for f is at
least (1 − 2δ)bsε(f). ��

Finally, utilizing Theorem1, we can obtain the following result about the
lower bound of the expected sampling size. It should be note that this result is
much stronger than a lower bound for the worst case.

Theorem 2. When the block size B satisfies B ≥ 2εN/k, the expected sampling
size needed by an external memory (ε, δ)-approximation algorithm for the k-RP
problem is at least (1 − δ)N/B. If δ is considered to be a constant enough small,
the lower bound of sampling size is Ω(N/B). ��
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1 N

B. . . . . . . . . . . . . . . . . .
εN/k

BN/k

k − 1 splitters

Fig. 1. An Example of the Proof of Theorem 2

Proof. Without loss of generality, it can be assumed that the length N can be
divided by the block size B and the number of partitions k, and the length
(1 − ε)N/k can be divided by B also.

First, we will construct the worst case input x, and define the sensitive blocks
and the corresponding values Q.

Since there is a further restriction that no duplicate items appear in L, let x be
the list 1, 2, . . . , N . As shown in Fig. 1, since N/k is an integer, let s1, s2, . . . , sk−1

be the k − 1 splitters which can perfectly partition L into ranges of size N/k.
For some ε-approximation solution S′ of the k-RP problem on L defined

by the range length, let s′
1, . . . , s

′
k−1 be the splitters in S′. By observing the

relations between S and S′, we can find out the set of ε-sensitive blocks by
two parts I1 and I2 as follows. For each integer i ∈ [2, N

B ], the ith ε-sensitive
block is defined to be Ii =

(
(i − 1)B, iB

]
, and let I1 = [1, B]. For the integers

within [1, u = N−(1−ε)N/k
B ], where u is obviously an integer according to the

assumptions, the corresponding blocks are called I1, while other blocks belong
to I2.

Obviously, for any different i, j, we have Ii ∩ Ij = ∅, that is I1 ∪ I2 is a set of
pairwise disjoint blocks. Next, we will show that all blocks built are ε-sensitive.

– The k-RP problem can be represented by a function f : ZN → Z
k−1, where

we can use the item value to represent the splitter since each item has an
unique value. Let ZB be the set of value combinations of B items, which can
be defined by ZB = Z × Z × · · · × Z

︸ ︷︷ ︸
B times in total

. The function can be reformed to be a

function g : ZN/B
B → Z

k−1. Naturally, as a consequence, each input x of the
k-RP problem can be transformed to an input xg of g by separating the input
using blocks of size B.

– Each block in I1 ∪ I2 built above can be treated to be a block of size 1 for
the function g.

– For each block Ii ∈ I1, let the exchanging value Q be (N + 1, . . . , N + B),
and the input x′

g is obtained by replacing the values in Ii of xg with Q. Now,
let us consider the output of ε-approximation of g on xg and x′

g. As shown in
Fig. 1, the distance between last splitters of xg and x′

g must be B, since all
Q items must be behind all current items of x. According to the definition of
ε-approximation, for xg the output Ag,ε(xg) ⊆ [sk−1 − εN/B, sk−1 + εN/B],
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while for x′
g the output Ag,ε(x′

g) ⊆ [s′
k−1 − εN/B, s′

k−1 + εN/B]. Obviously,
Ag,ε(xg) ∩ Ag,ε(x′

g) = ∅. That is, Ii is a ε-sensitive block of g on xg.
– For each block Ii ∈ I2, let the exchanging value Q be (−B, . . . ,−1), and the

input x′
g is obtained by replacing the values in Ii of xg with Q. Similarly, by

checking the first splitter, we can obtain that Ii is also a ε-sensitive block of
g on xg.

Then, it can be known that the ε-block sensitivity of g bsε(g) is at least
|I1 ∪ I2|, that is N/B.

Finally, by Theorem1, the expected sampling size needed by an external
memory (ε, δ)-approximation algorithm for k-RP is at least (1 − δ)N/B. ��

3.3 Bounding the Sampling Size for Small Block Cases

Since for the case of large block sizes the sampling lower bound of partitioning
algorithms has been as large as Ω(N/B), a natural question is whether we can
achieve a better case by considering only the small block sizes.

In the following of this part, it is assumed that εN/k = cB where c ≥ 1 is
a constant. Also, we need several important concepts from [2]. A function f is
ε-symmetric if for each input x and a permutation π of x, Af,ε(x) = Af,ε(π(x)),
that is the ε-approximation of function f is invariant under permutations of the
input items.

To introduce the lower bound, we still need a probabilistic view of the input.
Given an input list L ∈ Z

n, it can induces a distribution PL on Z defined by
picking the elements of L uniformly. Since we only consider the non-duplicate
cases in this part, the distribution can be obtained by setting PL(e) = 1

|L| for
e ∈ L and PL(e) = 0 otherwise. The Hellinger distance between two distributions

P and Q can be defined by h(P,Q) =
(

1
2

∑
e∈Φ(

√
P (e) − √

Q(e))2
) 1

2 .

Definition 9 (Minimum Hellinger Distance). The ε-minimum Hellinger
distance of a function f is hε(f) = min{h(Px, Py) |x, y are ε-disjoint}. ��
Theorem 3 ([2]). For all ε ≥ 0, 0 ≤ δ < 1/4, and every ε-symmetric function
f : X n → Y with worst case sampling size Sε,δ(f) ≤ n/4 and hε(f) ≤ 1/2, we
have Sε,δ(f) ≥ 1

4h2
ε(f) ln 1

4δ+O(1/n) . ��

Theorem 4. When the block size B satisfies εN/k = cB, where c is a constant
larger than 1, the worst case sampling size needed by an external memory (ε, δ)-
approximation algorithm for the k-RP problem is at least (1 − δ)N/B. ��
Proof. First, we will show that the RP problem defines a symmetric function
essentially, which will let the lower bounds obtained by Theorem3 can be gener-
alized to the general sampling based algorithms. Intuitively, a symmetric func-
tion will keep invariant under permutations of the inputs.

Again, let the function corresponding the k-RP problem be fk
RP : Z

N →
Z

k−1. It can be observed that the output of the k-RP problem can always be
computed by first sorting the N input items and then selecting the proper k − 1
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splitters. Obviously, the above computing procedure is independent from the
input order, and the function fk

RP is symmetric.
Then, to use Theorem 3, we will build a pair of disjoint inputs x and y.

– Let x be the list of (1, 2, . . . , N).
– Let y be the list obtained by removing (1, 2, . . . , 2εN/k) and adding (N +

1, N + 2, . . . , N + 2εN/k).

Similar with what is done in Theorem 2, x and y can be proved to be ε-disjoint.
Again, we transform the function f into g, where the function g is defined

by g : ZN/B
B → Z

k−1, and the inputs x and y can be transformed to xg and
yg by using block size B. Obviously, under such a transformation, the obtained
function g is still symmetric.

Considering the worst case sampling size Sε,δ(g), we can use the trivial sam-
pling algorithm of f using at most 4k ln(2N/δ)

ε2 I/O costs. Obviously, taking enough
large N value, the cost will be smaller than N

4B .
Then, we can calculate the minimum Hellinger distance hε(g) as follows.

h2
ε(g) ≥ h(Px, Py)2

=
1
2

∑

e∈[1,N+2εN/k]B

(
√

Px(e) −
√

Py(e))2

=
1
2

· 4εN

kB
(

√
1

N/B
−

√
0)2

=
2ε

k

Utilizing the Theorem 3, we can obtain a lower bound k
16ε ln 1

4δ+O(B/N) of
Sε,δ(g). Combining with εN/k = cB, we have Sε,δ(g) ≥ N

16cB ln 1
4δ+O(B/N) . ��

4 External Sublinear Range Partitioning Algorithm

Motivated by the results of sampling lower bounds, a special model for describing
the input distributions is introduced first, then an efficient external sublinear
range partitioning algorithm is designed.

4.1 The Model of Generating Hard Inputs

There are two extreme cases when considering the correlations between items
in the list. As shown in [6], if all items are totally independent, an optimal
algorithm with O(SampleRAM/B) I/O cost can be obtained trivially, and if all
items are dependent a natural extension of RAM based algorithm may cause
O(SampleRAM ) I/O cost in the worst case. Moreover, according to Theorem2,
it is impossible to design efficient external sublinear partitioning algorithms for
the general setting.
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However, if more common and practical correlations between items are con-
sidered, there are still some typical cases which may admit I/O efficient solutions.

Intuitively, all hard results obtained above are based on exploiting the cor-
relations between items in the list, that is the items in the input list depends on
each other. There are two kinds of correlations, which are the one among blocks
and within blocks respectively. The correlation between blocks can be resolved
by randomly selecting blocks to access usually, and it is highly implied that the
mainly hardness is oriented from the correlations within blocks.

Therefore, this part considers a special kind of inputs of the k-RP problem,
which is also referred by [6]. They can be described by the partial dependent
model which explains what the distribution of data in blocks is like and works as
follows. Imagine that we have an ordered list L̂ large enough, under the partial
dependent model, to build the input list L of blocks, the data items in each block
Bi are obtained by the followings.

(1) Assume a global parameter 0 ≤ w ≤ 1 is known, which is a ratio explaining
how to mix two kinds of data to build Bi.

(2) Randomly select a continuous part in L̂ of size (1 − w)B, and add them to
the block Bi.

(3) Randomly select wB data items from L̂ in an independent way, and add
them to Bi.

According to the construction steps introduced above, essentially, under the
partial dependent model, within each block, there are wB data items highly
correlated and the other data items are independent.

Algorithm PartitioningPDM (Partitioning for Partial Dependent Model)

Input: The input list L of blocks B1, . . . , BN/B and an integer k.
Output: A splitter set S = {s1, . . . , sk−1}.
1. Let (ε, δ) be the approximation quality parameters;

2. Compute the total sample size r = 4k ln(2N/δ)

ε2
;

3. R = ∅;
4. while r > 0 do
5. Pick two random blocks B′ and B′′ without replacement;
6. Let T = B′ ∪ B′′;
7. Sort T and obtain a list LT ;
8. for each continuous sublist ΔL in LT s.t. |ΔL| > α do
9. Remove ΔL;
10. Insert all data items in LT to R;
11. r = r − |LT |;
12.Sort R;
13.Select k − 1 splitters of R into S, s.t. each partition size is at most |R|/k;
14.return S;

Fig. 2. The PartitioningPDM Algorithm.
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4.2 The PartitioningPDM Algorithm

Assuming the inputs are generated by the partial dependent model, the Par-
titioningPDM algorithm is designed. As shown in Fig. 2, the main idea is to
select two random blocks and eliminate the highly dependent parts by checking
the relations between the two blocks. Firstly, the approximation parameters are
collected and the general sampling size for approximating the range partition
problem is calculated (line 1–2). Then, a sample set of enough large size is built
by iteratively selecting pairs of blocks and eliminating the useless parts (line
4–10). Let α be a constant smaller than (1 − w)B. After each pair of blocks
are selected, the related items are sorted, and the continuous sublists of size at
least α in LT are removed (line 7–9). Here, a continuous sublist is composed of
data items all from B′ or B′′. Finally, when enough samples are collected, they
are sorted and k − 1 splitters for balance partitioning them are extracted and
returned. (line 12–14).

Theorem 5. If α < (1 − w)B and w = Ω(
√

1
B log 1

B ), PartitioningPDM is an
(ε, δ)-approximation algorithm of the k-RP problem with high probability, and
the I/O cost can be bounded by O(k log(N/δ)

wBε2 ) with high probability. ��
Proof. Intuitively, all we need to do is to show that the continuous part built by
the step (2) in the partial dependent model will be removed and all other parts
will be kept in a high probability.

First, we will show that the probability that the continuous sublist of size
larger than α is built by the random part of the partial dependent model in very
a low probability. Let L′ be the list obtained by sorting all items in B′, suppose
a1, . . . , aα is a sublist in L′ built by the random selections. Then, consider the
whole input list L and let pa1, . . . , paα be the corresponding positions of all ai in
L. The process of selecting wB random samples is approximately equivalent to
the process of selecting each item independently with probability wB

N . We will
show the result by proving that for a length l = cαN

wB (c < 1) the probability that
it is produced by a1, . . . , aα is very low. Let Xi (1 ≤ i ≤ l) be the random variable
identifying whether the ith item behind pa1 is selected, and let X =

∑
Xi.

Obviously, we have

E[X] = l · E[Xi] = l · wB

N
= cα.

Then, the event we focus on is equivalent to the fact that X ≥ α.

Pr[X ≥ α] = Pr[X ≥ E[X]
α

cα
] ≤ e− (1/c−1)2

3 E[X] ≤ e− c(1/c−1)2α
3

Assume a small probability like p = c′
B , if we require Pr[X ≥ α] ≤ p, we only

need to choose α ≥ 3 ln(c′/B)
c(1/c−1)2 . Since there are at most B different continuous

sublist in each block, the probability that there is a continuous sublist of size
larger than α is built by the random part of the partial dependent model is at
most c′.
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Obviously, since α < (1−w)B, we only need to show that the parts generated
by random selection will be kept in high probability. Considering the process of
merging B′ and B′′, it is equivalent to randomly insert every random generated
item of B′′ into B′. Then, for a special continuous sublist ΔL, it is removed is
equivalent with the fact that there are no items in B′′ are inserted into ΔL.

Pr[ΔL is removed.] ≤ (1 − l

N
)wB ≤ (

1
e
)wB N

l = e−w2B B
cα ≤ e−w2B

Requiring Pr[ΔL is removed.] ≤ q, where q = c′′
B , we only need w >

√
ln(c′′/B)

B .
Based on the above two facts, all samples collected by the PartitioningPDM

algorithm can be guaranteed to be selected randomly, the obtained algorithm is
an (ε, δ)-approximation obviously. ��

5 Related Works

Range partitioning is one of the most commonly used partitioning methods in
massive data computing [14], and has increased lots of research interests which
focus on how to optimize the practical application goal by using range partition-
ing [4,8,11,13,15]. The most relevant work is studied in the name of approxi-
mation histogram [6], which essentially studies both the record level and page
level sampling methods, and [5] exploits the idea of adaptive block sampling
further. However, neither of them considers the problem focusing by us. Usually,
the duplicate items in the input will let the partitioning problem much harder,
therefore, [16] and [18] further study the more general range partitioning prob-
lem, and give a similar sampling size bound O( 1

(ε−φ)2 · log Nk
δ ) where φ is the

upper bound of frequency of a data item. Another series of related research
works is sampling based sort algorithm, such as [3,7,9] and so on. Actually, the
approximation requirements are usually more relax than the one used by the
range partitioning problem. A typical sampling size is determined to be larger
than k ln(Nk), which will guarantee that each range obtained is of size O(N/k).
The range partitioning problem is also related to the problem of computing
quantiles. Most of these works focus on the data stream model [10,12], which
needs to make at least a full scan. Comparing with them, our work focuses on
solving the problem by accessing data as little as possible. Our work is also
motivated by the work of external sampling [1], which studies the possibility of
efficient external sampling. The essential idea of this paper can be treated as
investigating whether the sampling based range partitioning algorithms can be
adapted to the external memory model.

6 Conclusion

In this paper, the range partitioning problem is studied in the external memory
model, and sampling based sublinear partitioning algorithms are our interests.
For the general case, two lower bounds of the sampling sizes are proved, which
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shows that in the worst case we need to scan the whole input at least once. For
the case that data is partially dependent within each block, a nearly optimal
external range partitioning algorithm is designed.
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Abstract. The problem of deletion propagation in relational database
has been studied in database community for decades, where tuples are
deleted from the source database in order to realize a desired removal
of tuples from the result of a certain query. The deletion may result in
unexpected view and source side effects. To minimize the side effects,
we study two problems: MaxDP which is to seek a deletion of source
tuples that maximizes query result remaining after deleting some view
tuples, and MinSD which is to seek a minimum set of source tuples
that should be deleted. Two problems have been proved that they are
polynomially tractable for conjunctive queries without existential vari-
ables (∀-CQs). However, for ∀-CQs, the complexity of MaxDP is still
unknown for deletion forbidden restriction, and so does MinSD in the
presence of inclusion dependencies. In this paper, new complexity results
are obtained on both problems for ∀-CQs. MaxDP is turned out to be not
only NP-complete, but also NP-hard to approximate within O(n1/5−ε)
for any constant ε > 0 when the deletion of some tuples is forbidden.
We then show that even for linear queries, MinSD is no longer polyno-
mially tractable in the presence of inclusion dependencies. The results
shows that the complexity of deletion propagation is very sensitive to
the presence of some simple constraints.

Keywords: Deletion propagation · Database · Complexity

1 Introduction

Deletion propagation is a class of view update problem raised in database area.
Unfettered access to the database is sometimes not allowed in practice. In this
case, database accesses are typically performed through the views [1,2]: a deletion
on the view should be translated into a deletion on the source database. As a
result, deletion propagation became the most essential problem that how to do
the translation properly.

The reason why deletion propagation becomes non-trivial is the ambiguity
caused by underspecification. A deletion on the view can be realized by possibly
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very different deletions on the source database. Therefore, a great deal of research
has been devoted to disambiguate the translation for updates through views [1,
2,5]. However, in some scenarios, disambiguate the translation is not necessary.
Instead, the goal is to translate the deletion with as little as possible side effect [4,
7,8,10–12,15,16]. As we mentioned, a deletion on source database may result in
the side effect which is the deletion of additional tuples from the source database
or the view, besides the intentionally deleted tuples. Intuitively, an appropriate
translation (deletion on source data) should be those with minimum the side
effect on the source data or the view. Therefore, two problems are formally
defined and widely studied for deletion propagation: MinSD (minimizing source
deletion) and MaxDP (maximizing deletion propagation).

Firstly, the problem MinSD is to minimize the number of tuples deleted from
the source data, which can be formulated as follows,

Minimizing Source Deletion MinSD(S, Q)
Fixed Database schema S and query Q.
Input A source database I, the view Q(I), an integer k > 0.
Output A subset J ⊆ I such that Q(J) = ∅ and |I \ J | ≤ k.

Secondly, the problem MaxDP is to maximize the number of tuples that
remain in the view after removing intentionally deleted tuples, which can be
stated as follows,

Maximizing Deletion Propagation MaxDP(S, Q)
Fixed Database schema S and query Q.
Input A source database I, the view Q(I), view deletion X ⊆ Q(I),

an integer k > 0.
Output A subset J ⊆ I such that X ⊆ Q(I) \ Q(J) and |Q(J)| ≥ k.

MinSD is shown to be NP-hard for a large fragment of CQs, only polyno-
mial solvable for those very restricted classes of CQs [4,6–8]. Especially, Freire et
al. [8] identified the triad structure of CQs, and stated that MinSD is poly-
nomial solvable for linear conjunctive queries which are CQs excluding triads.
Moreover, even in the presence of database constraints, such as functional depen-
dencies, linear conjunctive queries are still not able to make MinSD polynomial
intractability.

Similarly, existing results on MaxDP also imply that it is polynomial solvable
only for a very restricted class of CQs [12]. Kimelfeld et al. [12] introduced the
level-k head-domination (hd) structure, and show that MaxDP is polynomial
tractable if inputting level-1 hd -CQs, but NP-hard for other k > 1.

However, the complexities of MinSD and MaxDP are still open when incor-
porating integrity constraints and forbidding certain source deletions. Such two
questions were asked in [11] and have not been answered yet. They are motivated
by some requirements of modern database applications, like data cleaning [17]
and provenance [3,5]. View deletions are always specified prior to source data
deletions and even to guide how to clean the source data. In such scenarios, some
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tables in the input source database are correct, hence, any deletion on them are
not allowed. On the other hand, the updated database should satisfy a set of
given integrity constraints. Therefore, we revisit the two problems in this paper.

We try to answer the two questions in terms of inclusion dependencies and
tuple-level deletion forbidden. In practice, inclusion dependencies are widely-
used. Consider in the case of inclusion dependencies, like foreign keys, deletion
of tuples may incur the consequent deletion of other tuples in the related table,
we need to investigate if it will increase the hardness of deletion propagation.
Moreover, some source deletions are not permitted, that is, not every tuple in
the given source database is a candidate of source tuple deletion. The deletion
of certain facts is not allowed, like data from the English or country-name dic-
tionary.

Observe that, in the presence of integrity constraints and forbidden deletions,
MinSD and MaxDP will definitely turn to be NP-hard when inputting linear
CQs or level-k hd-CQs. Therefore, to help delineating the boundary between
intractable and tractable cases, we focus on ∀-CQs without existential variables
which a subclass of both linear CQs and level-k hd-CQs. In next section, we
formally define ∀-CQs and study the complexity of MinSD and MaxDP for ∀-
CQs when the database is restricted with inclusion dependencies and forbidden
deletions.

2 Formal Settings

We introduce notations used in this section. Throughout the paper, we use the
datalog-style notations for simplicity.

Database Schemas, Instances. We fix an infinite set Const of constants like
a, b and c. A database schema S is a finite sequence (R1, . . . , Rd) of distinct
relation symbols, where each Ri has an arity ri > 0. A database instance I
(over S) is a sequence (RI

1, . . . , R
I
d), such that each RI

i is a relation of arity ri

over Const. For simplicity, we use Ri to denote both the relation symbol and
the relation RI

i that interprets it. Ri(a) is said to be a fact if a ∈ Constri . An
instance is a set of its facts, thus R(a) ∈ I for every fact R(a) of I. We say that
J is a sub-instance of I over S, denoted J ⊆ I, if RJ

i ⊆ RI
i for all i ∈ [d].

CQs, sjf-∀-CQs, Linear Queries. Let Var be a set of variables which ar
disjoint with Const, and variables in it are also denoted as lower-case letters like
x, y and z. A conjunctive query (CQ) over a schema S is written as the form
of Q(y) :− ϕ(x,y,a) where x and y are disjoint tuples of variables from Var,
a is a tuple of constants from Const, and ϕ(x,y,a) is a conjunction of atoms
ϕi(x,y,a), e.g., Q(y) :− R1(x, y, a) ∧ R2(y, z). In the datalog style, we use ‘,’
instead of ‘∧’, so that it can be rewritten as Q(y) :− R1(x, y, a), R2(y, z). Here,
the LHS of a query is called head, and the RHS of a query is called body. For
example, Q(y) is the head of the query shown above, and R1(x, y, a), R2(y, z) is
the body.

A conjunctive query Q is said to be self join free if any relation symbol
occurs at most once. Any variable not contained in the head of a query is called
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an existential variable of the query. Since all the existential variables are in the
tuple x, any conjunctive query Q without existential variables can be written in
the form of

Q(y) :− R1(y1,a1), . . . , Rm(ym,am).

If the tuple y is exactly (y1, . . . ,ym), then Q is called ∀-CQ, that is, it can be
written in the form of Q(y) :− ϕ(y,a). For example,

Q∗(y1, y1, y2, y3) :− R1(y1, a), R2(y1, y2, b), R3(y3, c)

is an sjf -∀-CQ, since all the variables in the body are contained in the head. For
convenience, we ignore the variables in the head of any sjf -∀-CQ. For example,
Q∗ could be written as

Q∗ :− R1(y1, a), R2(y1, y2, b), R3(y3, c).

An sjf -∀-CQ Q is linear if its atoms may be arranged in a linear order
such that each variable occurs in a contiguous sequence of atoms. Intuitively,
let each variable be vertex, and each atom be a hyperedge, then a query can be
drawn as a hypergraph which is called the dual hypergraph of the query. Then,
geometrically, a query is linear if all the vertices of its dual hypergraph can
be drawn along a straight line, and all the hyperedges can be drawn as convex
regions. For example, the following query is linear: Q :− R(w, x), S(x, y), T (y, z),
since its dual hypergraph can be drawn along a line w, x → x, y → y, z.

Views. To formally define views, we begin with an assignment of a (conjunctive)
query. An assignment μ for a query Q is a mapping from Var(Q) to Const,
such that μ(y) is a tuple created by substituting each variable y in y with the
constant μ(y). An assignment μ for an atom R of Q, μ(Ri) is a fact obtained by
substituting every variable y with the constant μ(y).

Given a database instance I over schema S, a match for Q in I is an assign-
ment μ for Q where μ(R) is a fact from I for each atoms R of Q. If μ is a match
for Q of I, then μ(y) is called an answer for Q. The set of all the answers for Q
in I is called query result or view Q(I).

Inclusion Dependencies. An inclusion dependency (IND) over a schema S is
an expression in the form of φ : R.x ⊆ S.y where R and S are relations in S,
while x consists of some variables in R and y consists of some variables in S
respectively. A database instance I is said to satisfy the IND φ if Q1(I) ⊆ Q2(I)
such that Q1(x) :− R(x) and Q2(y) :− S(y).

Deletion Forbidden. We follow the way expressing deletion forbidden used in
modelling query answer causality [14]. A relation R is said to be exogenous if
the deletion of any fact in R is not allowed. We use the footnote ‘×’ to label any
exogenous relation, e.g., R×. Otherwise, the relation R is said to be endogenous.

Next, we investigate MinSD and MaxDP for linear queries in the presence
of inclusion dependencies and deletion forbidden.
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3 Complexity Results

We found that MinSD become NP-hard for linear queries if incorporating only
one simple inclusion dependence, foreign key constraint in fact. Concretely, in
the presence of inclusion dependencies, any feasible solution of MinSD should
satisfy all the given INDs. Our next theorem shows this requirement increases
the complexity of MinSD even for linear queries.

Theorem 1 (inclusion dependency makes linear query hard). Let φ be
an inclusion dependency defined on I, MinSD is NP-complete even if query Q
is a linear query with respect to φ.

Proof. We build a polynomial reduction from the hitting-set problem. Let H =
{S1, S2, . . . , Sn} be the given sets and U =

⋃
1≤i≤n Si = {e1, e2, . . . , em} be the

union of all the given sets. Given a number k > 0, the decision problem of the
hitting set problem states whether there exists a set U ′ ⊆ U with k elements
such that at least one element of each set Si is contained in U ′. We denote an
instance of hitting-set problem as 〈H, U〉. We build the corresponding instance
〈S, I,Q, φ, k′〉 of MinSD problem where Q is linear query from 〈H, U〉 of hitting
set problem.

Schema and Database Instance. The schema S can be fixed with three binary
relations in it: A is exogenous that is deletion forbidden while B and C are
endogenous. Then we build the database instance I in the following way. For
each relation, we add facts as follows,

– For each set Si, add a tuple (H, Si) into A,
– For each set Si and every ej ∈ Si, add a tuple (Si, ej) into B,
– For each element ej ∈ U , add nm tuples (ej , jl) into C where l = 1, . . . , nm.

It is clear that I can be made in polynomial time of O(nm2) since there are
exactly n facts in A, at most nm facts in B, and exactly nm2 facts in C.

Inclusion Dependency. An inclusion dependency φ :- B.x ⊆ A.y where B.x is
the first attribute of B and A.y is the second attribute of A.

Linear Query. Let Q is a linear query defined as the following form

Q :- A×(w, x), B(x, y), C(y, z)

It is easy to verify that the result of boolean query Q(I) is true, i.e., I |= Q.

Size of Source Side Effect. Let the size of |X| be at most

k′ = knm + r

where r =
∑

1≤i≤n(|si| − 1).
One can simply verify the correctness of proof. �
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Due to the inclusion dependency, a feasible deletion from the source data is
restricted such that, after deleting some source tuples, the active domain of the
endogenous variable is required to be a subset of the exogenous variable which it
depends on. This motivates a concern on the relationship of variable domination,
we formalize it as follows.

Active Domination ≤a. Given two atoms A× and B, if A×.x ⊆ B.y, we say
that x actively dominates y, i.e., x ≤a y.

Theorem 1 shows the hardness is caused by the existence of active domina-
tion, that is, there exists an endogenous atom actively dominated by an exoge-
nous atom.

Let A and B be two endogenous relations such that A.x ≤a B.y and B.y ≤a

A.x, then they are said to be an inclusion dependency cycle. We next show that,
even without active domination, the problem MinSD is still NP-hard if there
exists inclusion dependency cycle in linear queries.

Theorem 2. Inclusion dependency cycles make the problem MinSD hard even
for linear queries.

Proof. Consider a linear query Q :- V (x), E(x, y), U(y) and two inclusion depen-
dencies V.x ⊆ U.y and U.y ⊆ V.x. We build a reduction from vertex cover prob-
lem in which input a graph G(V,E), it is to decide if there is a vertex set C
such that |C| ≤ k and for every (u, v) ∈ E, either u or v is in C. Given a graph
G(V,E), we do the following two steps:

(1) for each vertex vi, insert two unary tuples V (i) and U(i),
(2) for each edge (vi, vj), insert two tuples E(i, j) and E(j, i).

The reduction can be done in polynomial time. And we claim that there is a
vertex cover of size at most k if and only if there is a solution of size at most 2k
for MinSD problem.

⇒ Let C be a vertex cover of at most size k, for each vertex vi ∈ C, we delete
V (i) and U(i), then query on the data left will be evaluated as false, note that
there are at most 2k deletions.

⇐ Let S be a solution of at most size 2k The inclusion dependency cycle
requires that, if there is a tuple V (i) in S, then there should be a tuple U(i) in
it. Therefore, if V (i) in S, then add vi to C. For tuple E(i, j) ∈ S, we delete
V (i) and U(i), then query on the data left will be evaluated as false, note that
there are at most 2k tuple deletions. �

Therefore, the polynomial tractable condition of the problem MinSD should
be very restricted when incorporating database constraints no matter the exis-
tence of deletion forbidden.

Our second major result is for the lower bound of the problem MaxDP. The
problem MaxDP is extremely hard in terms of combined complexity. In fact,
the hardness is mainly caused by the unbounded size of queries. To be more
practical, we focus on the data complexity of the problem MaxDP instead of
the combined complexity. The analysis to the complexity of MaxDP gives a
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way to study the problem where the size of the query is bounded by a certain
constant. We next investigate the data complexity of this problem. We show
that this problem does not admit constant approximation ratio even for a very
simple setting.

Theorem 3. MaxDP cannot be approximated within O(n1/5−ε) even for ∀-CQs
and any constant ε > 0, unless P=ZPP.

We here show the gap-reserving reduction, and then finish the proof of this
theorem. Given a graph G(V,E) having n vertices and m edges, w.l.o.g., suppose
there is no isolated vertex in G, the maximum independent set problem is to find
a set of vertices in G of the largest possible size such that no two of which are
adjacent.

Schema S and Instance I. Six relations R1, S1, T , S1, R2 are fixed, and the
corresponding instance I is constructed as follows.

(a) For each edge (i, j) ∈ E, add tuple (i, j) into R1 and R2;
(b) For each vertex i ∈ V , add tuples (i, e1), . . . , (i, el) into R1 and R2, where l

is an integer depending on the size of G;
(c) For each vertex i ∈ V , add tuples (i,=) and (i, �=) into S1 and S2;
(e) For each pair of vertices i, j ∈ V , add tuple (i,=, i) into T if i = j, otherwise,

add (i, �=, j) into T ;

Query. Define the fixed ∀-CQ as the following query

Q :− R1(x, z1), S1(x,w), T (x,w, y), S2(y, w), R2(y, z2)

Views. Let the view set V be {V1, V2}, such that V1 = Q1(I) and V2 = Q2(I).
The sizes of V1 and V2 are both polynomial of |I|.
View Deletion . Let the view deletion X consists of only deletions on V1, which
is defined as

X = {(i, �=, j, �=),∀(i, j) ∈ E}
The following example shows the result built for an instant G(V,E) of inde-

pendent set problem, The inapproximability could be derived by the following
claims, then the theorem follows. Observe that, any deletion not on S1(x, �=)
and S2(x, �=) is unnecessary due to the monotonicity of conjunctive queries, thus
implying the following claim.

Claim. Any minimal solution should be a subset of {S1(x, �=)} ∪ {S2(x, �=)}.

In the following content, we only consider minimal solutions, which are subsets of
S1(x, �=)∪S2(x, �=). In any minimal solution ΔI, let S′

1 and S′
2 be the resultants

after a deletion ΔI applied to S1 and S2, then the intersection S′
1 ∩ S′

2 contains
tuples of the forms (i,=) and (i, �=). Let S = {(i,=),∀i ∈ V }, assume P is the
set of tuples of the form (i, �=), i.e.,

P = (S′
1 ∩ S′

2) \ S,

then the following lemmas follows.
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Lemma 1. |P | ≥ k if and only if G has an independent set α with size k.

Proof. Suppose G has an independent set α with size k. In I, we remove the
tuples (i, �=) from S1 and S2 where i /∈ α, then we claim all results in X are
removed. Otherwise, if some tuple (i, j) in R1 is still joined with tuple (j, i) in
R2, R1 and R2 must be joined by (i, �=) and (j, �=). According to the construction
of I \ ΔI, i and j are incident to each other. This is a contradiction.

If |P | ≥ k, the claim stated above implies the incident witnesses of the
corresponding k vertices do not intersect in G, which implies these vertices are
independent in G, otherwise there are still some results of X left, i.e., Q1(I \
ΔI) ∩ X �= ∅.

Lemma 2. If G must has an independent set α with size k, there is a solution
for the database instance I with size Ω(k2l2).

Proof. By Lemma 1, we have |P | ≥ k. Therefore, there are at least k vertices
such that any two of them, say i, j ∈ V , are not incident with each other, i.e.,
(i, j) /∈ E, thus S′

1 contains tuples (i, �=) and (j, �=), and so does S′
2. Then, for

every such pair (i, �=) ∈ S′
1 and (j, �=) ∈ S′

2, there are at least l + 1 tuples in R1

need to joined with it, and with at least another l + 1 tuples in R2. The number
of results survived is at least

(
k(l+1)

2

)
, which is Ω(k2l2).

Lemma 3. If there is a solution ΔI for database instance I with a size of
Ω((n2 + k · n

3
2 )2), G must has an independent set α with size at least k.

Proof. In the resultant instance I \ ΔI after applying the deletion, R1 (also, for
R2) can be partitioned into group as follows,
P0 the set of tuples in the form of (i, z) such that i ∈ V and (i, �=) is preserved

in S′
1

Pi the set of tuples in the form of (i, z) such that i ∈ V and (i, �=) is removed
from S′

1

then let ci denote the size of Pi, we have

ci ≤
{

m + kl, i = 0;
n − 1 + l, i = 1, . . . , N.

since there is no loss in R1, then
n∑

i=0

ci ≤ 2m + nl

let N denote the size of resultant view Q(I \ ΔI), since each Pi contributes c2i
to N , then we have

N ≤
n∑

i=0

c2i

≤
n∑

i=0

ci · (n − 1 + l) + c20 − c0 · (n − 1 + l)

≤ (2m + nl) (n − 1 + l) + c20 − c0 · (n − 1 + l)

≤ (2m + nl) (n − 1 + l) + (m + kl)2 − (m + kl) · (n − 1 + l)
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Since m ∼ O(n2) and k ∼ O(n), let l = n
3
2 , then we could know that

N ∼ O
(
n

5
2 · n

3
2 + (n2 + k · n

3
2 )2 − (n2 + k · n

3
2 ) · n

3
2

)

i.e.,
N ∼ O

(
(n2 + k · n

3
2 )2

)

So that c0 dominates the value of query result preserved Q(I \ ΔI) for the
database instance I. Therefore, if there is a solution preserving Ω((n2 +k ·n 3

2 )2)
results, there should be an independent set of a size at least k in G.

Now we finish the proof of Theorem 3.

Proof. Let N opt the size of result preserved by optimal data deletion, and Mopt

the size of maximum independent set. Since there is no n1−2ε-approximation for
the maximum independent set problem for any constant ε < 0.5, unless P=ZPP,
it can not be distinguished whether Mopt ≥ n1−ε or Mopt ≤ nε.

Assume Mopt = k∗, then, (1) if k∗ ≥ n1−ε, by Lemma 2, N opt is Ω(k∗2l2),
which is Ω(n5−2ε) under setting of l = n

3
2 ; (2) if k∗ ≤ nε, by Lemma 3, N opt is

O((n2 + k∗ · n
3
2 )2) which is O(n4).

Therefore, it also can not be distinguished whether N opt is Ω(n5−2ε) or
O(n4).

Suppose there is an O(n
1
5−ε)-approximation for our problem. Since the size

of instance is O(n5), we have the following two claims,

(1) it is able to obtain a solution preserving Ω(n4+3ε) results when N opt is
Ω(n5−2ε);

(2) a trivial solution preserves O(n4) results when N opt is Ω(n4);

This means it is distinguished whether N opt is Ω(n5−2ε) or O(n4).
It contradicts, so that Theorem 3 follows immediately. �

4 Conclusions

New complexity results are obtained on problems MinSD and MaxDP for ∀-
CQs in this paper. For linear queries, MinSD is no longer polynomially tractable
in the presence of inclusion dependencies. MaxDP is NP-hard to be approxi-
mated within O(n1/5−ε) for any constant ε > 0 in the presence of deletion
forbidden. Our results shows that the complexity of deletion propagation is very
sensitive to the presence of some simple integrity constraints or operation require-
ments.
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Abstract. We considered the situations when search is performed in
the structured spaces. In order to isolate the effort of reducing the uncer-
tainty about the information of the space structure from the implementa-
tion cost of processing the acquired knowledge, we introduced the concept
of search complexity, which describes the quantity order of the informa-
tion that is necessary to discover the optimum. Furthermore, the pro-
posed concept has been extended to the cases when an approximation
to the optimum is acceptable, and we have investigated a situation, in
which a solution with the multiplicative error 0 ≤ δ ≤ 1 and the additive
error ε ≥ 0 can be found in a relatively low search complexity.

Keywords: Search complexity · Search space · Approximation

1 Introduction

Optimization is everywhere in engineering applications [7]. In some cases, the
objective to optimize is given in the analytical expressions, and the attributes
can be changed freely or under some constraints of specific forms, which makes
it possible to derive the optimal objective value (and usually the correspond-
ing configuration of attributes as well) without exhaustively exploring all the
possibilities. However, there are still a lot of cases in which we only know some
properties of the objective, not including the exact expressions. In such cases, the
optimum can not be derived by directly solving the equations, and one have to
make the sufficient use of the known properties, in order to avoid the unnecessary
explorations.

It is common that the knowledge provides some clues, and before the opti-
mum is correctly claimed, more than one configurations (of the attributes) should
be checked and the uncertainty is reduced due to the checking results. Generally,
such kind of searching processes alternates between checking if an optimum can
be claimed based on the current knowledge and exploring to further reduce the
uncertainty. While some searching strategies are guided with the solid theory
about the space structures [1], the others are just heuristics [4], in which sit-
uation it is often difficult or impractical (if not impossible) to acquire enough
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information to significantly reduce the amount of the exploring effort, and the
optimal objective value can not be determined before checking every or almost
every configurations.

In this work, to measure the computing cost that is necessary to discover
the optimum, different from the classical complexity analysis (e.g. the time com-
plexity and the space complexity) that considers all the operations during the
searching process, we would like to focus on the structural properties of the
search space, and isolate the effort of reducing the information uncertainty from
the implementation cost. Inspired by the communication complexity [5] that
quantitates the amount of necessary information to reveal some particular fea-
ture of a system, we introduce the concept of search complexity, in order to
measure the quantity of the information (about the space structure) that is nec-
essary to claim the optimal element. With this concept, it only focus on whether
a piece of information is required, but not including the calculation cost to dis-
cover or to make use of such information. Thus the search complexity provides
a lower bound for the time complexity of any search algorithm running with the
same space. This fact will be claimed formally at the end of Sect. 3.

Although there are techniques (e.g. branch and bound) to avoid the unnec-
essary explorations in the exhaustive searching processes, e.g. tree-based depth-
first search and breadth-first search [2], the time complexity cannot be reduced
in general. Therefore for large search spaces, a compromise on the result quality
is sometimes necessary to finish the searching process in the tolerable time. If
the requirement to find the exact optimum is not strict, which means an error
is acceptable to some degree, then the knowledge of the objective’s properties
could be used to search for a configuration close to the optimal one, which is
known as an approximation [8].

To cover such cases, we extend the search complexity for deciding the exact
optimum to the cases when an approximation is acceptable, and introduce the
idea of (δ, ε)-approximate search complexity. In Theorem 7, we have shown a
situation when a solution with the multiplicative error 0 ≤ δ ≤ 1 and the
additive error ε ≥ 0 can be found in a (relatively) low search complexity.

Main Contributions. Considering the ubiquity of optimization problems, devel-
oping more efficient solving techniques is theoretically and practically meaning-
ful. The proposed concept of search complexity provides another perspective to
measure the effort devoting to exploration of the search space, and it gives some
clues about what kind of property is useful to save the unnecessary searching
effort, which is especially important when the calculation burden is heavy.

2 Preliminaries

In the arguments through this paper, we represent the set of numbers in
blackboard-bold uppercase letters. In particular, Z denotes the set of all the
integers and R denotes the set of all the reals. Attaching the superscripts ∗
and + exclude the negative values and the non-positive values respectively. For
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example, Z∗ is the set of all the non-negative integers, and Z
+ is the set of all

the positive integers.
Note that the notation | · | has two meanings in our arguments. For a real

number, we use | · | to take the absolute value. That is, |r| = r if r ≥ 0 and
|r| = −r if r < 0. For a set S, we use | · | to take the size of S, i.e. the number
of elements in S.

Recall that given a set S, the powerset of S is the set of all S’s subsets, and
it is denoted by 2S .

3 Search Complexity

Definition 1 (Utility Oracle). A utility oracle U is defined by a pair 〈fU , CU 〉,
where

– the utility function fU maps the elements from a universal set N to the non-
negative reals, i.e. fU : N �→ R

∗;
– the utility context CU is a set of the finite subsets of N , i.e. CU ⊆ 2N and

|S| < ∞ for all S ∈ CU .

Definition 2 (Search Complexity). Consider a utility oracle U = 〈fU , CU 〉.
Assume that for any set S ∈ CU , calling fU for T (|S|) times is sufficient and
necessary to claim (correctly and deterministically) the element s∗ ∈ S of the
maximum value, i.e. fU (s∗) = maxs∈S fU (s). Then T (·) is called the search
complexity of U . As the exact form of T (·) contains too much details in many
cases, it is usually represented in the big-O notation.

When we say “calling fU for T (|S|)” times, it is assumed that query to the
oracle is the only way to get the utility value fU (s) of any element s ∈ S,
and for each element s, calling fU for once is enough. However, in many cases,
the expression of fU is analytical or the utility value of some element s can be
inducted based on the value (or values) of another element (or elements). In such
cases, “calling fU for element s” should be understood as “deriving the value
fU (s)”. Furthermore, for any element s ∈ S, there is no need to call fU (s) for
more than once during an independent single run of the searching process, as
the value can be stored and accessed again after the first call of fU (s).

Consider a simple example of utility oracle U = 〈fU , CU 〉, in which fU is
defined on N = Z, and the context CU is defined as the set of the finite subsets
of R such that the following conditions hold for S

– S always contains elements s ∈ R and s ∈ R with s < s;
– for every element s ∈ S, it holds that s < s < s and fU (s) <

max{fU (s), fU (s)}.

It is easy to check that for any set S ∈ CU of size k, the element of maximum
value in S can be determined with the knowledge of the values fU (s) and fU (s).
Thus the search complexity of U is T (k) = 2 = O(1). See Fig. 1 for a set S ∈ CU
of size 10.
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fU (s)
fU (s)

N

fU

2 3 4 5 6 7 8 9s s

Fig. 1. A set S ∈ CU of size 10.

Although it is easy to give a search algorithm of time complexity O(1) for
this simple example, there are examples for which the search complexity is lower
than the time complexity of any search algorithm. Consider a utility oracle
U = 〈fU , CU 〉, in which fU is defined on a universal set of elements N , and the
context CU is defined as the set of the finite subsets of N , such that in a set S ∈ CU
of size k, there are at most O(log k) elements of positive values. Consequently,
the search complexity of this utility oracle is O(log k). However, as there is no
additional information about how fU is defined, any search algorithm should
call fU (s) for every s ∈ S to identify all the elements of positive values. Hence,
the time complexity of the search algorithm is Ω(k). Note that the gap between
the search complexity and the time complexity is not rare. Consider the longest
increasing subsequence (LIS) problem for another example. In an instance of
LIS problem, a sequence of unique integers A = {a1, a2, . . . , an} is given. An
increasing subsequence is a sequence A′ = {ai1 , . . . , aim} with aip < aiq and
ip < iq for any p < q. It is well known that the longest increasing subsequence can
be determined in O(n2) time by a dynamic programming algorithm [2], in which
we can define L[i] as the longest increasing subsequence of Ai = {a1, a2, . . . , ai},
and it is sufficient to determine the longest one over A, with the knowledge of the
length of n subsequences (the subsequences of length L[i] for i ∈ {1, . . . , n}). As
there are k = 2n subsequences in total, the search complexity is O(n) = O(log k).

Formally, the following theorems (Theorems 1 and 2) conclude the general
connection between the search complexity and the time complexity of the search
algorithms.

Theorem 1. Given a utility oracle U = 〈fU , CU 〉, if there is a search algorithm
that can return the element s ∈ S of the maximum value in T (k) time, for any
set S ∈ CU of size k, then the search complexity of utility oracle U is upper
bounded by T (k).

Proof. The proof is direct. Since for any set S ∈ CU of size |S| = k, there is a
search algorithm that can find the element of the maximum value with time cost
T (k). Therefore, during the running of the algorithm, fU (·) is called for at most
T (k) times, which gives a upper bound for the search complexity. �
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Theorem 2. Given a utility oracle U = 〈fU , CU 〉, if the search complexity of
utility oracle U is T (k), then for any search algorithm that can return the element
s ∈ S of the maximum value, the running time is at least T (k), where k = |S|.

Proof. Assume that the conclusion is not true. Then there is a search algorithm
that can return the element s ∈ S of the maximum value for any set S ∈ CU of
size k with time cost T ′(k) < T (k), then it follows that the search complexity
is upper bounded by T ′(k) due to the conclusion of Theorem 1, and hence there
is a contradiction. �

4 Approximate Search Complexity

Definition 3 ((δ, ε)-Approximate Search Complexity). Consider a util-
ity oracle U = 〈fU , CU 〉. Assume that there exist 0 ≤ δ ≤ 1 and ε ≥ 0,
such that for any set S ∈ CU , calling fU for T (|S|) times is sufficient and
necessary to claim (correctly and deterministically) an element ŝ ∈ S with
fU (ŝ) ≥ δ · maxs∈S fU (s) − ε. Then T (·) is called the (δ, ε)-approximate search
complexity of U , where δ is called the approximation ratio and ε is called the
approximation error.

To investigate the situations where an approximation can be made in rela-
tively low search complexity, we at first introduce an idea to characterize how the
utility value changes from element to element, when the distance is well defined
for all the pairs.

Definition 4 (Bound of The Difference Quotient). Given a utility function
f defined on the universal set N and a distance function � defined between every
pair p, q ∈ N , the difference quotient of f is bounded by ρ > 0 if it holds that

|f(p) − f(q)| ≤ ρ · �(p, q),

for all p, q ∈ N .

Definition 5 (Bounding Grid for A Set). Consider the points in R
d with

d ∈ Z
+. A grid with anchor a = (a0, a1, . . . , ad−1) ∈ R

d and side length l > 0 is
defined as the area gl

a with

gl
a := {(x0, x1, . . . , xd−1) ∈ R

d | ai ≤ xi < ai + l, ∀i ∈ {0, 1, . . . , d − 1}}.

Given a set S ⊂ R
d, a bounding grid gS for S is a grid that covers all the points

in S, i.e. S ⊆ gS.

Consider a utility oracle U = 〈fU , CU 〉, in which fU is defined on R
d with

d ∈ Z
+, and the context CU is defined as the set of the finite subsets of Rd, such

that for any set S ∈ CU , there is a bounding grid gS of side length O(log |S|).
See Fig. 2 for an example of S ∈ R

2. Define the distance between points
p = (px, py), q = (qx, qy) ∈ R

2 by

�(p, q) = ‖p − q‖2 =
√

(px − qx)2 + (py − qy)2.
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Fig. 2. A set of 25 points placed in a square of side length 5.

Assume that the difference quotient of fU is bounded by ρ > 0, then it holds
that

|fU (p) − fU (q)| ≤ O(ρ · log k),

for any points p, q ∈ S, as ‖p − q‖2 ≤
√

2 · O(log k) = O(log k). Thus for any
element s ∈ S, it satisfies

fU (s) ≥ max
s∈S

fU (s) − O(ρ · log k),

which implies the (1, O(ρ · log k))-approximate search complexity is O(1). Fur-
thermore, a better approximation can be achieved if more effort has been
devoted.

Note that for any points p, q with |px − qx| ≤ 1 and |py − qy| ≤ 1, it holds
that ‖p − q‖2 ≤

√
2. Since the difference quotient of fU is bounded by ρ > 0, it

implies that
|fU (p) − fU (q)| ≤

√
2ρ,

for any points p, q with |px − qx| ≤ 1 and |py − qy| ≤ 1. Thus after dividing
the bounding grid of S into disjoint small grids of side length 1, we can select
a representative for each small grid from its intersection with S, as long as the
intersection is not empty. Let S′ be the set of all the representatives. Then for
any element s ∈ S, there exists a representative s′ ∈ S′ with ‖s − s′‖2 ≤

√
2.

Consequently, we have
|fU (s) − fU (s′)| ≤

√
2ρ,

and hence
max
s′∈S′

fU (s′) ≥ max
s∈S

fU (s) −
√

2ρ.

Note that |S′| ≤ O(log k)2, and it follows that the (1,
√

2ρ)-approximate search
complexity is O(log k)2.

It is direct to extend the argument above to the general form, as shown in
Theorem 3.
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Theorem 3. Consider a utility oracle U = 〈fU , CU 〉, in which fU is defined on
R

d with d ∈ Z
+, and the context CU is defined as a set of finite subsets of Rd,

such that for any set S ∈ CU , there is a bounding grid gS of side length O(|S|).
If the difference quotient of U is bounded by ρ > 0, then with any ε > 0, the

(1, ε)-approximate search complexity of U is O
(

ρ·√d·log k
ε

)d

, where the distance

between any points p = (p0, p1, . . . , pd−1), q = (q0, q1, . . . , qd−1) ∈ R
d is defined

by

�(p, q) = ‖p − q‖2 =

⎛
⎝ ∑

i∈{0,1,...,d−1}
(pi − qi)2

⎞
⎠

1
2

.

Proof. Consider a set S ∈ CU of size k. Let gS be the bounding grid of S with
side length Δ = O(log k), and denote its anchor by α = (α0, . . . , αd−1). Divide
gS into the disjoint small grids of side length η, where

η = max
{

l | Δ

l
∈ Z

+, l ≤ ε

ρ ·
√

d

}
.

For i0, . . . , id−1 ∈ {0, 1, . . . , Δ
η −1}, let gi0,...,id−1 denote the grid that is anchored

at ai0,...,id−1 = (xi0 , . . . , xid−1) with xij = αj + j · η, for all j ∈ {0, 1, . . . , d − 1}.
For each grid gi0,...,id−1 that satisfies gi0,...,id−1 ∩ S �= ∅, select a representative
si0,...,id−1 ∈ gi0,...,id−1 ∩ S. Let S′ be the set of all the representatives. Then it
follows that

|S′| ≤
(

Δ

η

)d

.

By the definition of η, it holds that

Δ

η
<

Δ · ρ ·
√

d

ε
+ 1.

Consequently, we have

|S′| = O

(
ρ ·

√
d · log k

ε

)d

,

which gives the (1, ε)-approximate search complexity of U , since for any element
s ∈ S, there exists a representative s′ ∈ S′ such that

‖s − s′‖2 ≤ η ·
√

d ≤ ε

ρ
,

which implies
|fU (s) − fU (s′)| ≤ ρ · ‖s − s′‖2 ≤ ε,

and consequently
max
s′∈S′

fU (s′) ≥ max
s∈S

fU (s) − ε.

�
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Furthermore, we can relax the assumptions in Theorem 3, and derive a similar
conclusion (Theorem 4).

Theorem 4. Consider a utility oracle U = 〈fU , CU 〉, in which fU is defined on
R

d with d ∈ Z
+, and the context CU is defined as a set of finite subsets of Rd, such

that for a set S ∈ CU , there is a bounding grid of S with side length O(|S|). Define
the distance between any points p = (p0, p1, . . . , pd−1), q = (q0, q1, . . . , qd−1) ∈ R

d

by
�(p, q) = max

i∈{0,1,...,d−1}
|pi − qi|,

and assume that there exists η > 0 and ρ > 0, such that it holds

|fU (p) − fU (q)| ≤ ρ,

for all p, q ∈ R
d with �(p, q) ≤ η. Then the (1, ρ)-approximate search complexity

of U is O
(

log k
η

)d

.

Proof. The argument is similar to the one for Theorem 3. Consider a set S ∈ CU
of size k. Let gS be the bounding grid of S of side length Δ = O(log k). Divide
gS into the disjoint small grids of side length η, and select a representative for
each grid if it has a non-empty intersection with S. Let S′ be the set of all the
representatives. Without loss of generality, we can assume that Δ

η ∈ Z
+, as for

any η′ < η, it holds that
|fU (p) − fU (q)| ≤ ρ,

for all p, q ∈ R
d with �(p, q) ≤ η′ < η. Consequently, it follows that

|S′| ≤
(

Δ

η

)d

= O

(
log k

η

)d

,

which gives the (1, ρ)-approximate search complexity of U , since for any element
s ∈ S, there exists a representative s′ ∈ S′ with

�(s, s′) ≤ η and |fU (s) − fU (s′)| ≤ ρ,

which implies
max
s′∈S′

fU (s′) ≥ max
s∈S

fU (s) − ρ.

�

Next, we consider the universal set N in which the elements are sets as well.
Formally, let I be a set of items, and define N as the set of all the subsets of I,
i.e. N = 2I . Then any function defined on N is a function of a set of items from
I.

Definition 6 (Monotone Function). Given a function f defined on N = 2I ,
f is monotone if and only if for any subset A ⊆ I and any item a ∈ I, it holds
that

f(A ∪ {a}) ≥ f(A).
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Definition 7 (Submodular Function). Given a function f defined on N =
2I , f is submodular if and only if for any subsets A ⊆ A′ ⊆ I and any item
a ∈ I, it holds that

f(A ∪ {a}) − f(A) ≥ f(A′ ∪ {a}) − f(A′).

Theorem 5 ([3,6]). Given a non-negative monotone and submodular function
f defined on N = 2I , construct a set A of size K > 0 by selecting items one
by one, and let Ai be the intermedia set after the first i items have been selected
and A0 := ∅. For i = {0, 1, . . . ,K − 1}, the (i + 1)-th item ai+1 is selected by
taking

ai+1 = arg max
a∈I\Ai

(f(Ai) ∪ {a} − f(Ai)) .

Then it holds that

f(A) ≥
(

1 − 1
e

)
· max

A′⊆I,|A′|≤K
f(A′),

where e is the base of the natural logarithm.

Theorem 6. Consider a utility oracle U = 〈fU , CU 〉, in which fU is a non-
negative monotone and submodular function defined on N = 2I where I is a set
of d ∈ Z

+ items, and the context CU is defined as the set of finite subsets of 2I ,
such that for each S ∈ CU , there exists I ′ ⊆ I and S := {s ⊆ I ′ | |s| ≤ K} for
an integer constant K ≥ d. Then the (1 − 1

e , 0)-approximate search complexity
of U is O(d · K).

Proof. Consider a set S ∈ CU of size k. Let I ′ be the subset of I such that
S := {s ⊆ I ′ | |s| ≤ K}. To find the element of the maximum value, it is
required to find a subset A∗ ⊆ I ′ with |A∗| ≤ K and

fU (A∗) = max
A⊆I′,|A|≤k

fU (A).

Next, we construct an approximation to A∗, in an approach similar to the
one described in Theorem 5. Initially, let A0 = ∅. To construct Ai+1 with
i ∈ {0, 2, . . . ,K − 1}, define Ai+1 := Ai ∪ {ai+1}, where

ai+1 := arg max
a∈I′\Ai

(fU (Ai) ∪ {a} − fU (Ai)) .

Note that Ai and Ai+1 are all elements in S, and it is equivalent to find Ai+1 by

Ai+1 := arg max
s∈S,|s|=i+1,Ai⊂s

(fU (s) − fU (Ai)) .

Then let A := AK . Following the conclusion of Theorem 5, it holds that

fU (A) ≥
(

1 − 1
e

)
· max

A′∈S
fU (A′).

It is direct to check that fU is called for at most d times to find each Ai with
i = {1, 2, . . . ,K}. Thus the conclusion follows. �
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In addition to the monotonicity and submodularity, we will discovery more
into the relation between the utility function and the context. At first, consider
encoding the subsets of items into the binary numbers. Given a set of d items,
say I = {a0, a1, . . . , ad−1}, we can encode the subsets of I in the binary numbers
of d bits. In details, for a subset s ⊆ I, it can be encoded into a binary number
bI
s = b0b1 · · · bd−1 of d bits, where bi = 1 if and only if ai ∈ s. Call bI

s as the
binary coding of set s under I.

Definition 8 (η-Variance). Given a function f defined on the subsets of a set
I of d items, and a subset S ⊆ 2I . For any η ∈ Z

+, the η-variance of f with
respect to S is defined by

V η
f (S, I) := max

s,s′∈S,|bI
s −bI

s′ |<η
|f(s) − f(s′)|.

Theorem 7. Consider a utility oracle U = 〈fU , CU 〉, in which fU is a non-
negative monotone and submodular function defined on N = 2I where I is a set
of d ∈ Z

+ items, and the context CU is defined as a set of finite subsets of 2I ,
such that for each S ∈ CU , there exists I ′ ⊆ I and S := {s ⊆ I ′ | |s| ≤ K} for
an integer constant K ≥ d. For ε > 0, if there exists η > 1 satisfying

max
S∈CU

V η
fU (S, I) < ε,

then the
(
1 − 1

e ,
(
1 − 1

e

)
· ε

)
-approximate search complexity of U is O((d− log η) ·

K).

Proof. The proof combines the ideas used in the arguments for Theorems 3 and
6. Consider a set S ∈ CU and I ′ = {a′

0, a
′
1, . . . , a

′
d′−1} be the subset of I such

that S = {s ⊆ I ′ | |s| ≤ K}. Let k = |S| =
∑

i≤K

(
d′

i

)
. Define L = �log η� and

K ′ = d′ − L. Let S′ ⊆ S be the set of all the subsets not containing any element
from {a′

i ∈ I ′ | i ≥ K ′} (Fig. 3).

0
1

0
1

0
1

0
1

0
1

0
1

0 0 0 0

at most K 1’s

a′
0 a′

1 a′
K′−1 a′

d′−1· · · · · ·

Fig. 3. S′: subset of I′ corresponding to binary codes with 1’s only appearing before
the K′-th bit.

Therefore, for any element s′ ∈ S′, the last L bits of its binary coding bI′
s

(under I ′) are all 0. Furthermore, for any element s ∈ S, there exists s′ ∈ S′

with
|bI′

s − bI′
s′ | < 2L ≤ η and |fU (s) − fU (s′)| < ε.
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Thus we know
max
s′∈S′

fU (s′) ≥ max
s∈S

fU (s) − ε.

If K ′ ≤ K, selecting all the first K ′ items of I ′ achieves maxs′∈S′ fU (s′), since
fU is non-negative monotone. Otherwise (i.e. K ′ > K), a set A of size K among
the first K ′ items of I ′ can be constructed to satisfy

fU (A) ≥
(

1 − 1
e

)
· max

s′∈S′
fU (s′) ≥

(
1 − 1

e

)
· max

s∈S
fU (s) −

(
1 − 1

e

)
· ε.

Following an analysis similar to the one used in Theorem 6, we know that during
the construction of A, it calls fU for at most K ′ · K times. Then the conclusion
follows since K ′ = d′ − L ≤ d − log η + 1. �

Following the conclusion of Theorem 7, we can pay less effort to approximate
maxs∈S fU (s) with an additive error, if η is large enough.

5 Discussions

It is clear that the usefulness of Theorem 7 lays on the existence of η. With a
large η, it means some items can be ignored when selecting a subset with the
good enough evaluation. Thus the connection between the utility function and
the binary coding of its input reveals the priorities among the items. Intuitively,
with a collection of items, the marginal value is small if one or more items of low
priorities are added. Thus it may results in a good enough result by considering
only the items of high priorities, especially when the cost of exploration is an
issue. In applications, to be inspired by the idea behind Theorem 7, it suggests
to investigate if there are some items that always cause small variance of the set
utilities.

On the other hand, as some people may noticed, it is also convenient to
alternatively define the search complexity with respect to an algorithm, and
then the problem difficulty can be revealed with the search complexity of the
best known algorithms, as what have been done with the time complexity and
the space complexity. This alternating definition is generally equivalent to the
one proposed in this work, and we will make a further investigation in the future
to see if there are situations in which one definition is preferred to the other.
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Abstract. In recent years, automated guided vehicle (AGV) is becom-
ing increasingly important for logistic center, which usually has tens of
thousands of express packages to sort and transport every day. In order
to achieve higher transportation and sorting throughput, we need to
plan a feasible path for every AGV, so that sorting tasks can be finished
with high performance. In this paper, we therefore study a lifelong ver-
sion of the MAPF problem, called the multi-agent pickup and delivery
(MAPD) problem. In the MAPD problem, one agent has to first move
to a given pickup location and then to a given delivery location while
avoiding collisions with other agents. We present an algorithm named
Improved Jump Point Search which contains two stages. Offline phase
computes all jump points and online phase plans conflict-free path for
every AGV. Furthermore, we propose a strategy called Congestion Con-
trol which can guide AGVs in local congestion situations and reduce
overlapping between paths. Compared with existing work like Coopera-
tive A* and Jump Point Search, experimental results demonstrate that
our algorithm has a higher throughput and fewer waiting steps.

Keywords: Multi-AGVs · Path planning · Jump point search

1 Introduction

With the rapid development of e-commerce, more and more commodities will be
transported through express mails, bringing a new challenge for express compa-
nies to sort such large number of packages. Automated Guided Vehicle (AGV)
is currently utilized in logistics systems, with the features of high flexibility and
easy configurability. In order to apply AGVs to auto-sorting in logistics cen-
ter, we need to plan collision-free paths for multiple AGVs and minimize the
cost of the paths. This problem is known as the famous multi-agent path find-
ing(MAPF) problem, which is hard to handle. Finding an optimal solution to
such a problem is NP-hard and intractable [10].
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To solve this problem, existing work can be classified into centralized and
decentralized approaches. The main advantage of centralized methods lies in that
it can calculate the optimal schedule of AGV plan in theory and the bottleneck
is that the central computer runs very slow with the scale of AGV grows. The
centralized strategies include the following methods. In [11] the authors propose
an approach called prioritized path planning, which assigns different priorities
to the robots and plans the paths in sequence according to the allocated priority.
Time window based dynamic routing is used in paper [9], which manages conflict-
free routing by operations of AGVs. Paper [5] gives a method of generating
the hierarchical roadmap which has a multi-layered structure and solves a path
planning problem in a home environment. Paper [7] adopts a conflict-free method
by using a new data structure called conflict tree. Every conflict can be solved
well in branches of conflict tree but it costs too much with the large scale of
AGVs. Paper [6,14] develops the algorithm based on pathfinding algorithms to
find shortest paths and solve conflicts.

For the consideration of running speed in large-scale working scenario, decen-
tralized algorithms are often adopted, in which each AGV determines their
paths and avoids conflicts with others through information exchange and nego-
tiate with nearby AGVs [1,12,13]. Therefore, there is no need for the central
unit, which is replaced by several distributed controllers. Collective behaviors
for groups of robots rely on distributed simultaneous estimation and control.
An effective approach with cooperative path planning is discussed in [4]. These
multi-AGVs coordinate their path effectively to accomplish complex and critical
tasks for various applications.

The MAPF problem does not capture important characteristics of many
real-world domains, such as automated warehouses, where agents are constantly
engaged with new tasks [3]. In this paper, we therefore study a lifelong version
of MAPF problem with pickup tasks and delivery tasks, called the multi-agent
pickup and delivery (MAPD) problem. We mainly focus on finding feasible paths
with higher throughput and fewer waiting times. Tasks can enter the system at
any time and the assignment of tasks is controlled by the algorithm. Each AGV
travels from starting port to pickup port, then delivers the cargo to delivery port.
If one AGV finishes a delivery task, it can execute next pickup task immediately
or move to a buffer port. For the consideration of running speed and throughput
with multi-AGVs in large scenario, we propose an Improved Jump Point Search
which includes two stages. Offline phase travels each node in each reachable
direction and stores all the jump points into Jump Point Table(JPT). Online
phase computes successors by JPT and generates feasible paths by waiting and
replanning. After that, we use Congestion Control strategy to reduce times of
local congestion. We evaluate the performance of our approach by transporta-
tion throughput and waiting times. Experiment results show that our method
outperforms existing work.

The rest of this paper is organized as follows. In Sect. 2, we describe the
MAPD problem. After that, we outline our approach in Sect. 3. In Sect. 4, we
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setup experiments and analyze the results. Finally, conclusions and future work
are drawn in Sect. 5.

2 Problem Description

The problem consists of m agents A = (a1, a2, ...am) and a grid map G =
(V,E) whose vertices V correspond to grids and whose edges E correspond to
connections between grids that the agents can move along. Let li (t) ∈ V denote
the location of agent ai in discrete timestep t. Agent ai starts in its initial location
li (0). In each timestep t, the agent either stays in its current location li (t) or
moves to an adjacent location, that is li (t + 1) = li (t) or (li (t) , li (t + 1)) ∈ E.
Agents need to avoid collisions with each other: two agents cannot be in the
same location in the same timestep, that is for all agents ai and aj with ai �= aj
and timestep t:li (t) �= lj (t).

Consider a task Set Q that contains the set of unexecuted tasks. In each
timestep, the system can add all new tasks to the task set. Each task qj ∈ Q
is characterized by a pickup location sj ∈ Sload and a delivery location gj ∈
Sunload. The agent with the task qj has to move from its current location via
the pickup location sj to the delivery location gj . Then the agent moves to a
buffer point or executes the next task. The objective is to finish each task with
higher throughput and fewer waiting times. Consequently, the effectiveness of a
MAPD algorithm is evaluated by the throughput, the total number of waiting
steps and the total number of moving steps.

3 Algorithm Improvement

As we discuss in Sect. 2, our goal is finding feasible paths with more throughput
and fewer waiting times in the given logistic center. Standard Jump Point Search
algorithm must recursively calculate jump points and overlapping paths are gen-
erated. In some scenarios, the recursion cost is greater than direct search and
the overlapping paths may cause conflicts between AGVs. Therefore, we separate
the calculation process of jump points from the process of path planning, and
resolve conflicts during the path planning stage. Congestion Control strategy is
proposed to reduce the overlapping paths. In this Section, we will describe the
detail of the algorithm. The notations and definitions to be used are shown in
Table 1.

3.1 Offline Phase

In pathfinding algorithms, it is a key operation to expand from one node to
the surrounding to find the optimal successor node. Jump Point Search are
proposed for speeding up optimal search by selectively expanding only certain
nodes on a grid map which are termed jump points [2]. Standard Jump Point
Search algorithm must recursively calculate jump points with start points and
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Table 1. Notations and definitions

Notations Definitions

A The set of all AGVs

Q The set of unexecuted tasks

qj The unexecuted task with index j

sj The pickup point of the unexecuted task with index j

gj The delivery point of the unexecuted task with index j

Sload The set of pickup points

Sunload The set of delivery points

G = (V,E) The grid map of logistic center

p(v) The parent node of node v

f(v) The estimated cost from start point to the goal by node v

h(v) The regular estimated cost from node v to the goal

q(v) The overlapping estimated cost to represent density of paths
through node v

pathi Feasible path for AGVi

dirsnode Reachable directions in the node

Wmax The maximum value of estimated overlapping cost

JPT Jump Point Table that stores all the jump points which can be used
in online phase

goal points, so the recursive calculation of jump points and path planning are
performed simultaneously. There is an essential property that jump points are
only related to the positions of obstacles. It is worth noting that there is no start
node and goal node of the task in the offline phase, that is, no path planning
has been started. In the absence of a given start point and end point, we can
use the property of jump points to calculate all the jump points which can be
used for pathfinding in online phase.

In the given logistic center, the start node of delivery task is in Sload and the
goal node is in Sunload. In order to reduce repeated calculation of pathfinding,
we compute all the jump points and store them into Jump Point Table(JPT) in
offline phase. For the constraints of AGVs, AGVs can not move diagonally and
only straight moves are allowed. So the definitions about jump points can be
simplified in our situations.

Definition 1. A node n ∈ neighbours(x) is a forced neighbour if n is not a
obstacle, and the following condition is satisfied.

len(< p(x), x, n >) < len(< p(x), ..., n > \x) (1)
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where < p(x), x, n > represents a path through p(x) and x to node n which is
a neighbour of x. < p(x), ..., n > \x represents a path that passes from p(x) to
node n through some nodes which do not include x.

Definition 2. A node n is the jump point if n has at least one neighbour whose
evaluation is a forced neighbour.

Fig. 1. The jump example in a 4 × 4 map.

Figure 1 shows the jump example in a 4 × 4 map. The character F represents
that this node is a forced neighbour and grey node means that this node is an
obstacle. In the left of Fig. 1, we perform the jump process in the order of up,
down, left, and right. The current node is v and the jump process is recursive,
so it keeps recursing down until it finds a jump point as the red arrow describes.
In our situation, moving from p(x) to point marked F is not allowed, so the
left node of x is a forced neighbour according to Definition 1. This means that
passing point x to point F is the shortest path currently and there is no shorter
path if we do not pass point x to point F. The neighbours of node marked x are
jump points according to Definition 2, so we add suc(v,DOWN) = x to JPT. It
means that we can use this information to jump to x from v in the online phase
and reduce the search for intermediate nodes. When the direction is left, the
jump process reaches the border of the map and we also add suc(v, LEFT ) =
a. Although there are 2 obstacles in the figure on the right, the jump point
situation is the same. Offline phase algorithm is described in Algorithm1. In
offline phase, the algorithm travels every reachable direction of each node to
compute jump points(Line1∼Line3). Then the set of jump points (v, dir) will
be added to JPT. In online phase, given v and jump direction, we can get the
successors immediately.

3.2 Online Phase

In online phase, we need to plan a feasible path for each AGV. When apply
Jump Point Search, we always use the heuristic function f(v) = g(v) + h(v),
where g(v) and h(v) denote the real cost from the start point to the node v and
the estimated cost from node v to the goal point. h(v) represents the heuristic
value that guides the AGV to the goal point in each step and influences the
speed of pathfinding.
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Algorithm 1: Offline Phase
Input: G(V,E), dirsj
Output: Jump Point Table

1 foreach node ⊂ G do
2 foreach dir ⊂ dirsnode do
3 points ← jump(node, dir);

4 JPT
add←−− points;

5 return JPT;

In online phase, jump points generated by offline phase can be reused. If the
cost of a jump point is small, it will be selected many times in tasks with similar
paths and paths will have a lot of overlapping parts. So we introduce q(v) to
represent overlapping cost of paths through node v. The heuristic function is
defined as:

f(v) = g(v) + h(v) + q(v) (2)

The details of the calculation of q(v) will be discussed in Sect. 3.3.
In this paper, the online phase of IJPS is described in Algorithm2. In this

algorithm, we will assign AGV tasks and find each feasible path for each AGV.
Then conflicts will be checked and different conflict solutions will be applied.

Firstly, a feasible path will be generated for each AGV by JPT(Line1 ∼
Line19). We search the successors of a node by jump points described as (v, dir)
in JPT(Line6) and try move to the goal by jump points. It is difficult to guaran-
tee global conflict-free situations and we only consider about local conflict-free
situations. It means that we only solve the conflicts that will happen in the next
time slot(Line20∼Line27) and temporarily ignore conflicts that may occur at a
later time. A feasible path described as pathi determines the route of ai and
ai tries to occupy the next node of pathi in the next time slot. For all conflict
situations, there are two cases: 1) AGV tries to occupy the node which is already
occupied by the other AGV. 2) two different AGVs try to occupy the same node
in this time slot. For case 1, conflicts are solved by replan (Line23) and conflicts
are solved by waiting for a step for case 2(Line25).

3.3 Congestion Control

As described in Sect. 3, the overlapping paths may cause conflicts between AGVs.
In this paper, we propose a Congestion Control strategy which changes the
overlapping estimated cost of jump points based on the number of overlapping
in jump points. When the AGV plans the path according to JPT, jump points
with small cost will be selected repeatedly and paths will overlap in the area. It
is necessary to add an overlapping cost in the calculation of the cost. This cost
is related to jump points, so we also store it into JPT and dynamically update



364 Y. Zhang and H. Huang

Algorithm 2: Online Phase
Input: A

1 for ai ∈ A do
2 if pathi = ∅ then
3 ai.task ← TaskPool.next;
4 while Listopen �= ∅ do
5 C ← getMin(Listopen);

6 interP
add←−− getSByJPT (C);

7 if C = ai.end then
8 pathi ← calcPath(end);

9 for node ∈ interP do
10 if node /∈ Listopen then
11 if node /∈ Listclose then
12 node.parent ← C;
13 node.F ← calcF (node);

14 Listopen
add←−− node;

15 else
16 tmpF ← calcF (node, target);
17 if tmpF < node.F then
18 node.F ← tmpF ;
19 node.parent ← C;

20 for ai ∈ A do
21 n ← pathi.next;
22 if n is blocked by aj then
23 Replan pathi by IJPS;

24 else if n = pathj .next then
25 ai wait for one step;
26 else
27 control(ai);

it. The cost is defined by the following equation.

q(v) =

{
q(p(v)) + l(v)

L v is a jump point
q(p(v)) v is not a jump point

(3)

where q(v) represents the overlapping estimated cost and l(v) is the number of
overlapping in node v between all paths. L is the length of pathi. Congestion
Control is described in Algorithm 3 which computes the overlapping cost and
stores the jump points with new cost into JPT. If the cost exceeds maximum,
we change the destination to a buffer point, clean the former path and reset the
cost(Line4∼Line6). The next round of Online Phase will plan the path to the
buffer point. A new cost of this jump point is updated in JPT(Line9) and this
new cost will influence the next path planning of Online Phase.
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Algorithm 3: Congestion Control
Input: ai

1 foreach node ⊂ pathi do
2 if node ∈ JPT then
3 cost ← calcQ(node);
4 if cost > Wmax then
5 set the goal point of ai to a buffer point;
6 pathi ← ∅;
7 updateJPT(node,0);

8 else
9 updateJPT(node,cost);

4 Simulations and Result Analysis

In this section, we compare our IJPS with existing work such as CA* [8] method
and Jump Point Search [2] in different situations. CA* is a typical MAPF prob-
lem solver and the restrictions of pickup points and delivery points are added
to solve MAPD problem. JPS algorithm is a pathfinding method like A* which
can not solve conflicts for AGVs. In order to compare the performances of dif-
ferent algorithms in the same MAPD problem, we add a global conflict table to
standard JPS.

4.1 Experiment Setup

The scale of the logistic center and the number of AGVs will influence the
performance. In this paper, we set the scale of the test map is 30 × 50 and there
are up to 60 AGVs in the warehouse. Our experiments were conducted on an
Inter(R) Core i7-8550u which operates at 1.80 GHz and the computer has 8GB
of RAM. All code for experiments was written in Java and situations of AGVs
are visualized with Java Swing.

Fig. 2. The screenshot of the experiment.
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(a) Throughput. (b) Waiting steps.

(c) Moving steps. (d) Task added strategy.

Fig. 3. The experiment results in the first task added strategy.

4.2 Experiment Results

We compare IJPS with JPS and CA*. Figure 2 is the screenshot of the exper-
iment. There are 5 AGVs which are running delivery tasks and the red lines
show paths which are generated in Online Phase. The number of tasks influence
the results of the experiment, so we use two tasks added strategies to simulate
different situations.

In the first situation, the total number of tasks is fewer than the total number
of AGVs as Fig. 3(d) describes. Some AGVs must be without tasks and these
AGVs which stay at fixed positions are obstacles for other AGVs with tasks.

Figure 3(a) shows the throughput of CA*, JPS and IJPS in 100 time steps.
We note that IJPS is without more throughput than others. It is because that
there are enough spaces to avoid conflicts and it is not necessary to apply Con-
gestion Control in this situation. For waiting times, it represents the number of
stops in response to a conflict and Fig. 3(b) describes the waiting times of three
algorithms. When the number of AGVs is up to 40, IJPS with our Congestion
Control can greatly reduce the waiting times. It can be clearly seen that our
method achieves fewer waiting steps than CA* and JPS. Figure 3(c) shows the
relationship between AGV number and total moving steps. As we can see, the
total number of moving steps is very close between CA* and JPS.

In the second situation, we change the tasks added strategy as Fig. 4(d)
shows. In this situation, the number of tasks is saturated and each AGV will
execute one task. Figure 4(a) shows the throughput of CA*, JPS and IJPS in
100 time steps. We note that IJPS is without particularly great advantages when
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(a) Throughput. (b) Waiting steps.

(c) Moving steps. (d) Task added strategy.

Fig. 4. The experiment results in the second task added strategy.

the number of AGVs is less than 30. When the number of AGVs is up to 40, it
can be clearly seen that our method achieves higher transportation throughput
than CA* and JPS. Figure 4(b) describes the waiting times of three algorithms.
There are tiny waiting time with less 10 AGV because there are lots of nodes
that AGVs can occupy and AGVs can move without waiting. With the growing
of AGV number, the total waiting times increase greatly but our method has
relative fewer waiting times. It is because our method dynamically changes the
weight of jump points and reduces the overlapping of paths. Figure 4(c) shows
the relationship between AGV number and total moving steps. The total number
of moving steps is slightly more than the steps of other algorithms. It is because
that we introduce overlapping cost and the paths generated by IJPS are not
necessarily the shortest paths. On the whole, our method finds feasible paths
with more throughput and fewer waiting times.

5 Conclusion

In this paper, we studied the problem of multi-AGVs pathfinding in a logistic
center. We propose the algorithm called Improved Jump Point Search which is
a two-stage algorithm. In offline phase, jump points are computed and stored.
In online phase, we focus on local conflicts and plan feasible path for each AGV.
Congestion Control is added to reduce overlapping among paths and reduce
local conflicts. Compared with existing work such as JPS and CA*, our method
promotes the transportation throughput with fewer waiting times.
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In the future, we will focus on more actual situations where every task of AGV
not only includes a start point and a goal point, but also has the constraint with
finished time.
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Abstract. Green Pickup-and-Delivery Problem with Time-Windows
(Green-PDPTW) is a new sub-problem of the Capacitated Vehicle Rout-
ing Problem (CVRP). It aims to solve PDPTW in a way that emits the
least amount of greenhouse gases. Adaptive Large Neighborhood Search
(ALNS) is a commonly used algorithm to solve such problems, but usu-
ally, it focuses more on expanding the search range rather than giving
a clear search direction. Therefore, we propose Distance-based ALNS
(DALNS), using the distance between customers as an important factor
when generating initial solution and destroy solutions to searching. We
also add a heuristic on the number of orders to be removed in each iter-
ation of DALNS. From simulation experiments, we draw the conclusion
that DALNS has a significant effect on reducing greenhouse gas emis-
sions and retaining higher economic benefits for the enterprise at the
same time. In addition, we find that DALNS shows great performance
on instances where customers are clustered and a load of vehicles is high.

Keywords: Green-PDPTW · DALNS · Greenhouse gas emission

1 Introduction

Vehicle routing is a significant part of logistics. Challenges to be solved for all
capacitated vehicle routing problems (CVRP) include total distance traveled,
total travel time, and the number of vehicles used. The most classic CVRP is
proposed by Dantzig and Ramser [3] based on these challenges. It’s an NP-hard
problem [16]. Pickup-and-Delivery Problem with Time-Windows (PDPTW) is a
sub-problem of CVRP. In PDPTW, vehicles can only start order service in each
customer during a specific time window varies from all customers. In addition
to the objective of the shortest total distance traveled, solving PDPTW needs
to pay more attention to how to minimize the number of vehicles used.

Green-PDPTW is derived from PDPTW. It focuses on how to reduce
greenhouse gas emissions for protecting the environment. To our knowl-
edge, the research on Green-PDPTW is in its infancy. Kunnapadeelert and
Kachitvichyanukul [7] define Green-PDPTW and using differential evolution
algorithm (DE) to solve. A feasible solution for Green-PDPTW is also a feasible
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solution to PDPTW, but the greenhouse gas emission is less in Green-PDPTW
than in PDPTW.

Heuristic algorithms are commonly used to solve CVRPs (Montoya et al. [9];
Affi et al. [1]; Roberto et al. [12]), and Large Neighborhood Search (LNS) is
one of the popular heuristic algorithms. It creates a large neighborhood search
area by destroying and repairing a feasible solution. Based on LNS, Christiaens
and Vanden [2] propose slack induction by string removals algorithm (SISR).
Hemmelmayr et al. [5] and Prescott-Gagnon et al. [10] also use LNS to solve
CVRP.

ALNS is an improvement of LNS, it comprehensively considers the perfor-
mance of all destroy strategies and repair strategies in the previous iteration,
and adds a heuristic to select the destroy strategy and repair strategy used in
the next iteration [13]. However, the process of search is usually blind. No clear
search guide to the search process.

In order to create a search direction, we propose Distance-based Adaptive
Large Neighborhood Search (DALNS) to make better use of the distance between
customers. We introduce the concept of the order pool when generating the initial
solution. The elements of each pool are determined by the distance and time win-
dows of all customers. The initial solution is easy to be improved greatly because
of the use of distance. What’s more, we add a heuristic in the number of orders
to be removed in each iteration, which can help improve the search efficiency.
Our experiment results show that DALNS effectively reduces the greenhouse
gas emissions. At the same time, we find that DALNS has a better performance
in solving the transportation problem of clustered customers with high load
demands.

2 Problem Description for Green-PDPTW

Minimizing greenhouse gas emission is the objective of Green-PDPTW. As a
mathematic model derived from logistics, the feasible solution of Green-PDPTW
must simultaneously meet the requirements on vehicle capacity and order service
time window. With a reasonable number of vehicles, all orders are distributed
is the basic requirement of this problem. During the transportation, a pickup
order and its corresponding delivery order are distributed to only one vehicle. No
delay and no overload can be tolerated during transportation. Also, each vehicle
can only visit their customers once.

Green-PDPTW is defined as a complete and undirected graph G = (N∗, A),
where N is the union of the pickup customer set P+ = {1, 2, . . . , L} and the
delivery customer set P− = {L + 1, L + 2, . . . , 2L}. N∗ is the union of set N
and the depot. A is a set of arcs, A = {(i, j) : i, j ∈ N∗, i �= j}. Each arc is
associated with a travel distance Dij and emission of greenhouse gas Cij . Speed
of all vehicles is supposed to be a constant. Each vehicle k ∈ M has the same
capacity Q. Zik is the load of vehicle k ∈ M when leaving from node i ∈ N∗.
Each customer i ∈ N has the earliest order service start time ei, the latest order
service start time li and the real order service start time ti. Time spent in each
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customer is Si. Load demand of each order is qi. qi means how much load vehicle
need to carry, and it can be negative. Xijk is the binary variable that defined as
1 if the vehicle k ∈ M travels from node i ∈ N∗ to node j ∈ N∗ and defined as
0 otherwise. Another binary variable is yik, which is defined as 1 if the vehicle
k ∈ M passes by customer i ∈ N∗, otherwise defined as 0.

The mathematical model of Green-PDPTW is shown as follows:

Min
∑

k∈M

∑
i∈N∗

∑
j∈N∗ CijXijk

s.t.
∑

k∈M
yik = 1,∀i ∈ N∗ (1)

∑
k∈M

∑
j∈N∗ Xijk = 1,∀i ∈ N∗ (2)

∑
j∈N∗ Xijk =

∑
j∈N∗ Xjik,∀i ∈ N∗,∀k ∈ M (3)

∑
j∈N∗ Xijk =

∑
j∈N∗ Xj,L+i,k,∀i ∈ P+,∀k ∈ M (4)

∑
i∈P+

X0ik = 1,∀k ∈ M (5)
∑

i∈P− Xi0k = 1,∀k ∈ M (6)

ei ≤ ti ≤ li,∀i ∈ N∗ (7)

ei ≤ tj =
∑

i=j

∑
k∈M

Xjik(ti + tij + Si) ≤ lj ,∀i ∈ N∗ (8)

ti + ti,L+i ≤ tL+i,∀i ∈ P+ (9)
0 ≤ Zik ≤ Q,∀i ∈ N∗ (10)
(Zik + qj)Xijk ≤ Zjk,∀i, j ∈ N∗,∀k ∈ M (11)

Minimizing the greenhouse gas emission is the objective of Green-PDPTW.
Constraint (1) ensures that each customer only be visited once. Constraint (2)
ensures that each arc can only be passed by once. Constraint (3) enforces that
each arc is undirected. Constraint (4) ensures that each order is distributed
by only one vehicle. Constraint (5) enforces that all vehicles depart from the
depot. Constraint (6) ensures that all vehicle eventually return to the depot.
Constraint (7) guarantees arriving time constraint of each customer. Constraint
(8) guarantees order service time constraint of each customer. Constraint (9)
enforces the delivery order must be distributed after the pickup order has been
distributed. Constraint (10) guarantees vehicle capacity feasibility. Constraint
(11) ensures that the load of each vehicle can only be changed at customers.

G(Zik) = 9.4 × Zik/Z + 29.6 (12)

Equation (12) is the formula for the fuel consumed by a 10-ton capacity
vehicle per 100 km. The vehicle k departing from customer i consumes G(Zik)
liters of fuel for every 100 km traveled. The greenhouse gas emission of diesel
is 2.6569 kg per liter. The greenhouse gas emission of Liquefied Petroleum Gas
(LPG) is 1.5301 kg per liter. Table 1 is the estimation of greenhouse gas emission
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factor of diesel and LPG under different vehicle loads. Both Table 1 and Equation
(12) refers from Kunnapapdeelert, S. et al. [7], whose table of greenhouse gas
emission is obtained from Ubeda et al. [17] and Defra [4].

Table 1. Estimation of greenhouse gas emission for a 10 tons capacity trunk

Vehicle state Weight laden (%) Emission factor for
diesel (kg CO2)

Emission factor for
LPG (kg CO2)

Empty 0 0.786442 0.452910

Low loaded 25 0.850208 0.489632

Half loaded 50 0.913974 0.526354

High loaded 75 0.975082 0.561547

Full loaded 100 1.036191 0.596739

3 Distance-Based Adaptive Large Neighborhood Search

Based on Adaptive Large Neighborhood Search (ALNS), we propose Distance-
based Adaptive Large Neighborhood Search (DALNS). DALNS similarly per-
forms destroying and repairing to obtain a better solution, but the distance
between customers will show more influence in each iteration, comparing with
ALNS.

The overall algorithm flow of this paper is shown in Algorithm1. The initial
solution is formed by Poolseperate and Distance-based insert (line 1 and 2).
Then the feasible solution is operated by DALNS repeatedly (line 7 to 17). We
use four strategies to destroy (line 8 to 10), and adaptive regret-k to repair (line
11 to 12). q is the number of orders to be removed. We add the heuristic of q to
improve the efficiency of the search (line 9). The whole algorithm uses simulate
annealing (SA) to judge the newly generated solution for the next iteration (line
13 to 16). In simulate annealing, a worse solution may be accepted in a random
probability, when U(0, 1) represents the continuous uniform distribution (line
13). The initial temperature T is set to T0 (line 5) and updated by a cooling
constant c (line 18), which is introduced by Kirkpatrick, Gelatt and Vecchi [6].
The procedure of DALNS stops when the temperature T is smaller than Tf ,
which relates to the number of cooling iteration f .

3.1 Initial Solution Generation

Considering distance is an important factor that can cause high emissions when
constructing the initial solution, we try to find a way that can easily shorten
the total distance traveled when searching in the solution’s neighborhood. PD-
pair means a pickup order and its corresponding delivery order. The method
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Algorithm 1: Distance-based Adaptive Large Neighborhood Search
Input: Set P , a set of all orders
Output: Best Solution Sbest

1 Pseparate ← PoolSeparate(P );
2 Sinit ← DistanceBasedInsert(Pseparate);
3 Scur ← Sinit;
4 Sbest ← Sinit;
5 T ← T0;
6 initialize removeHeuristic, qHeuristic, kHeuristic;
7 while T > Tf do
8 choose a remove way by removeHeuristic;
9 determine q by qHeuristic;

10 Sremoved ← Remove(Scur, q);
11 determine k by kHeuristic;
12 Snew ← Repair(Sremoved);
13 if emission(Snew) < emission(Scur) − T ln(U(0,1)) then
14 Scur ← Snew;

15 if emission(Snew) < emission(Sbest) then
16 Sbest ← Snew;

17 update removeHeuristic, qHeuristic, kHeuristic;

18 T ← cT ;
19 return Sbest;

of constructing an initial solution is mainly divided into two steps: (1) pre-
processing all orders and divide all PD-pairs; (2) forming solution by using order
pools.

The division is made as follows: To group multiple orders into several order
pools based on the distance of pickup customer and delivery customer, we sort
PD-pairs by Euclidean Distance of pickup customer and delivery customer from
the furthest to the nearest at first. An order pool has only one master PD-pair,
but it can be empty if no PD-pair belongs to it. A master PD-pair cannot belong
to any other order pool, but a PD-pair which is not a master PD-pair can belong
to many different order pools at the same time. PD-pairs in the same order pool
have two characteristics. One is that the time window of each order in the pool
cannot over the earliest service time of the master pickup customer and the latest
service time of the master delivery customer. Another is, any customer of the
PD-pair in the pool can be reached by a vehicle starting from the master pickup
customer and end at the master delivery customer, within the earliest service
time of the master pickup customer and the latest service time of the master
delivery customer. We define TWdist as the longest distance that a vehicle can
run within this time range.

Figure 1 is an example of forming an order pool. Node P is the master pickup
customer and node D is the master delivery customer. The distance of P3P and
P3D in Fig. 1b is shorter than the TWdist of this order pool, and distance of D3P
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Fig. 1. An example of forming pool(P ).

and D3D also shorter than TWdist, so the PD-pair corresponding to customer
P3 and D3 will be added to the pool(P). However, P1D1 and P2D2 in Fig. 1c
and Fig. 1d do not meet the requirements of TWdist, so their PD-pair will not
be added to this order pool.

After gathering geographically adjacent customers, the second step in forming
the initial solution is to use the order pool to form the longest route in each order
pool. A route forming operation performs when there is undistributed PD-pairs.
Only one route is generated per order pool one time, and an order pool may
generate several routes finally. When generating routes, to gather customers
together, we propose distance-based insertion to achieve this purpose and show
the pseudo-code in Algorithm 2.

Distance-based insertion performs when there is undistributed PD-pairs.
Insertion will be repeated in every pool until all PD-pairs are distributed (line
1 to 4). For each undistributed PD-pair, if it can be successfully inserted into a
route, then the new route will be compared with the best route with the largest
number of inserted customers. If there are more customers in the new route,
then the best route will be replaced by the new route (line 12 to 14). If the
PD-pair cannot be inserted into the forming route (line 7), and there have been
n insertion failures (line 8), then one of the PD-pairs in the current forming
route will be randomly removed (line 9), and the insertion will restart from the
first n PD-pairs that fail to insert (line 10). After the route has been formed,
the newly formed route will try to merge with other routes (line 16 to 17). If it
fails to merge, the newly formed route will be added to the initial solution as an
independent route (line 19). After all PD-pairs have been distributed, an initial
solution is formed.

3.2 Destroy Strategies

In this step, we set four strategies, including random removal, worst removal,
Shaw removal [14], and distance-based removal. We propose distance-based
removal to comprehensively consider the distance between a customer and its
neighbor customers.

Algorithm 3 shows how distance-based removal works.
First of all, we need to build an adjacent list for every customer, because

all adjustments are based on distance. Each adjacent list is used to store the
position of m customers near the list owner customer (line 1). A seed customer
is randomly selected to decide which region in the solution will be adjusted (line
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Algorithm 2: Distance Based Insertion
Input: Set Pseparate, a set of separated orders
Output: Initial solution Sinit

1 Initialize Sinit;
2 while Sinit is infeasible do
3 for each order pool pool(p+) do
4 if pool(p+) has undistributed order then
5 for all I undistributed orders in pool(p+) do
6 p′+p′− ← pool(p+)[i];
7 if p′+p′− can’t insert in Routepool(p+) then

8 if this is the nth failure of insertion then
9 remove a pair of customers randomly from Routepool(p+);

10 i ← i − n;

11 else
12 insert p′+p′− in Routepool(p+);

13 if Routepool(p+).length > Routebestpool(p+).length then
14 Routebestpool(p+) = Routepool(p+);

15 for Routes ← Sinit do
16 if Routebestpool(p+) can merge with Routes then
17 Routes = merge(Routebestpool(p+), Routes);

18 else
19 add Routebestpool(p+) in Sinit;

20 return Sinit;

2). After deciding the seed customer, the customer, and its pick up or delivery
customer will be added in the remove list (line 3). The adjacent list of the seed
customer will be traversed (line 4). Starting from the customer closest to the
seed customer, two judgments are performed: (1) whether the route where the
neighbor customer is located has been damaged (line 6); (2) whether there are
other neighbor customers located on the same route (line 8). If more than one
neighbor customer can be found on the same undamaged route, then the first
two neighbor customers of the seed customer are used as the endpoints of a
string, and the entire string of the route will be added into remove list (line 9),
otherwise just remove Nl and its corresponding pickup or delivery customer (line
11). If the remove list stores more than q orders, then randomize the remove list
and remove pairs of customers randomly until the number of orders reaches to
q (line 14 to 15).

Usually, the number of orders needed to be removed is random. However,
when the search range is converging, a large number of removed orders cause
a long time to repair the solution, which decreases the efficiency of searching.
Thus we add a heuristic on deciding how many orders will be removed in this
step. We regard the value range of q as an evaluable object. Evaluation happens
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Algorithm 3: Distance Based Removal
Input: Solution S, solution need to be destroyed; Integer q, number of PD-pairs

need to be removed
Output: Solution Sdestroyed, an infeasible solution

1 Create a list Ladjacent, a set of list of each customer’s m neighbor customers;
2 Nseed = a random customer;
3 insert Nseed into Lremove;
4 while Ladjacent.length < q do
5 for each customer Nl in Ladjacent(Nseed) do
6 if Route(Nl) has not been destroyed then
7 for each customer Nr in Route(Nl) do
8 if Nr is in Ladjacent(Nseed) then
9 return string NlNr and customers associated

10 if no customer of Ladjacent(Nseed) in Route(Nl) besides Nl then
11 return Nl and its pickup or delivery customer

12 add customers that need to be removed in Lremove;

13 if Lremoved.length > q then
14 Randomize(Lremove);
15 keep q PD-pairs in Lremove;

16 return Sdestroyed;

every 100 iterations. We evaluate each range from weights and update weights
for the next 100 iterations. The range of values is the percentage range of the
total number of orders. In our experiment, the percentage ranges are 20%–45%,
35%–65%, 60%–75% and 80%–85%. After the percentage range is determined,
the value of q will be randomly obtained within the value range.

3.3 Repair Strategies

The third step of DALNS is to repair the damaged solution, that is, to insert
the customers removed from the last step back into the solution. The algorithm
used at this step is an adaptive regret-k algorithm [11]. The algorithm is an
improvement based on the optimal insertion. The value of regret-k means the
gap between the customer’s lowest inserting cost and the customer’s kth low
inserting cost. In regret-k, the chosen customer to be inserted in each iteration
is the customer who has the largest regret-k value, and the value of k is usually
a constant. But regret-k heuristic will set k to a value that performs well in the
former iterations. In our repair, the value of k is one of 1, 2, 3, 4, and random.

4 Results and Discussion

Our experiments are executed using the 100-customer instances of Li and Lim’s
benchmark [8], in which the vehicle capacity of each instance is fixed to 200,



DALNS for Green-PDPTW 377

the maximum number of the vehicle used shall not exceed 25, and the vehicle
speed is 1. Vary from the distribution of customers, Li and Lim’s instance can be
divided into three types: half-random and half-clustered distribution, clustered
distribution, and random distribution. NV in each table represents the number of
vehicles used and TD represents the total distance traveled. The experimental
environment is Intel Core i7-8700 (3.20 GHz, 8 GB RAM). The code of the
algorithm is written in C++, and the integrated development environment is
Visual Studio 2017.

4.1 Results for pdp 100 lrc1 Instances

The best results of the DE algorithm is given in the study of Kunnapadeelert
and Kachitvichyanukul [7]. It can be seen from Table 2 that three instances show
a great reduction of CO2 emission. And we can get a conclusion from Table 2
that DALNS is a better choice not only in terms of environmental friendliness
but also in terms of economic benefits.

Table 2. Results for pdp 100 lrc1 instances in Green-PDPTW

Instance Algorithm NV TD CO2 emissions
from diesel (kg.
CO2)

CO2 emissions
From LPG (kg.
CO2)

Gap of
emission

lrc101 DALNS 15 1703.21 1363.17 785.047 21.37%

DE 16 1872.64 1123.19 646.843

lrc102 DALNS 12 1558.07 1249.32 719.48 11.21%

DE 17 2194.68 1123.39 646.965

lrc103 DALNS 11 1258.74 1007.97 580.487 4.38%

DE 13 1629.16 965.699 556.142

lrc104 DALNS 10 1128.40 905.077 521.231 −44.76%

DE 11 1325.74 1638.42 943.563

lrc105 DALNS 13 1637.62 1309.42 754.089 21.93%

DE 15 1859.26 1073.94 618.476

lrc106 DALNS 11 1424.73 1143.41 658.484 4.65%

DE 14 1880.24 1092.57 629.212

lrc107 DALNS 11 1230.14 990.092 570.191 −27.20%

DE 16 2233.55 1360.05 783.245

lrc108 DALNS 10 1147.43 925.184 532.81 −40.71%

DE 13 1648.92 1560.56 898.727

average DALNS 12 1386.04 1111.71 640.23 −10.51%

DE 15 1830.52 1242.23 715.40
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4.2 Results for pdp 100 3large and pdp 100 4large Instances

In the original instance of Li and Lim’s benchmark, the load demand of each
order has little influence on a load of vehicles, while the greenhouse gas emis-
sion of the vehicle is not only affected by the distance, but also by a load of
vehicles. Therefore, based on the original instances, we generate pdp 100 3large
and pdp 100 4large instances. Xlarge means the load demand of each order is
X times of the original instance.

In the former experiments, DALNS gets all the optimal solutions of pdp 100
instances shown on the Sintef website [15], so we use DALNS to obtain the
optimal solutions of pdp 100 3large and pdp 100 4large under PDPTW, which
is the comparison result of DALNS under Green-PDPTW.

Table 3 shows the average results for the newly generated instances. It shows
that the increase of the load demand indeed leads to the increase of greenhouse
gas emissions, and more vehicles are used to meet a larger load demand, which
results in a longer total distance traveled. However, it also shows that the per-
formance of pdp 100 4large is not better than that of pdp 100 3large. In our
analysis, the reason is: When searching for the optimal solution with the short-
est total distance traveled, the algorithm performance in both two models is very
similar. However, if the vehicle is too close to full load, it will limit the adjustable
space of routes, which greatly affects the reduction of carbon emissions.

Table 3. Average results for newly generated instances

Instance Model NV TD Emissions

from diesel

(kg. CO2)

Decrease

from diesel

(kg. CO2)

Emissions

from LPG

(kg. CO2)

Decrease

from LPG

(kg. CO2)

Gap of

emission

3large lc1 PDPTW 11 1136.14 950.63 121.58 547.46 70.02 −11.79%

GPDPTW 13 1013.22 829.05 477.44

3large lr1 PDPTW 13 1264.94 1054.71 4.22 607.41 2.43 −0.37%

GPDPTW 13 1260.22 1050.49 604.98

3large lrc1 PDPTW 13 1448.40 1202.14 13.47 692.31 7.72 −1.13%

GPDPTW 13 1436.59 1188.67 684.55

4large lc1 PDPTW 12 1219.30 1027.20 100.98 591.56 58.16 −8.79%

GPDPTW 14 1121.69 926.22 533.41

4large lr1 PDPTW 13 1332.87 1128.89 11.36 650.12 6.54 −1.00%

GPDPTW 14 1324.65 1117.52 643.58

4large lrc1 PDPTW 13 1531.15 1283.42 8.09 739.12 4.66 −0.58%

GPDPTW 14 1523.67 1275.33 734.46

Another meaningful discovery is that, in clustered-customer instances,
though the number of vehicles used is increasing, the total distance traveled
is shortened. This is more conducive to DALNS to have a good performance on
optimization.

In conclusion, DALNS can achieve good performance in the instances of Li
and Lim’s benchmark. Besides, from the second experiment, we draw the con-
clusion that DALNS is more suitable for the problem with clustered customers
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and high vehicle load. It should be noted that Green-PDPTW does not perform
better with the increase of vehicle load. On the contrary, a full load may make
the reduction of greenhouse gas emissions more difficult due to the difficulty of
vehicle load adjustment.

5 Conclusion and Future Work

Green-PDPTW is an extension of PDPTW and Green-CVRP. As a sub-problem
of CVRP, it takes order distribution, time window, and greenhouse gas emissions
into consideration at the same time. A feasible solution to this problem effectively
guarantees the efficiency of the logistics transportation process and reduces the
negative impact of transportation on the environment. Therefore, research of
Green-PDPTW has a very positive impact on real industrial production.

In this paper, we study Green-PDPTW and use DALNS to obtain the optimal
solution. We introduce the concept of the order pool and propose an initial
solution generation algorithm based on distance. All orders are divided into order
pools at first, and then routes are generated based on order pools. We propose
distance-based insertion to generate routes. The objective of the distance-based
insertion is to provide good modification conditions for subsequent improvement.
When destroying the solution, the concept of the adjacent list is introduced to
help search the neighbor customers of a randomly selected seed customer, which
makes the process of shortening the total distance traveled efficiently. What’s
more, we add a heuristic on the number of orders to be removed to improve the
search efficiency.

Another contribution of this paper is the comparative study of the application
of DALNS. In the simulation experiment, we find that DALNS is more suitable
for solving the problem with clustered customers. Besides, when shortening the
total distance traveled, if the load of the vehicle is too close to full load, it would
be hard to make a significant change.

Compared with other researches, we take more consideration about geograph-
ical factors in solving vehicle routing problems, which is beneficial to decrease
the total distance traveled. What’s more, we form the initial solution for being
improved easily, which helps get the real best solution in searching.

Greenhouse gas emission is not only affected by the distance, but also by
a load of all vehicles. DALNS is a distance-based optimization algorithm, so
it is more sensitive to the change of distance. In the further study of Green-
PDPTW, to reduce greenhouse gas emission by emphasizing the balance of a
load of vehicles is a good entrance.
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Abstract. This paper proposes a novel filled function method for non-
smooth box constrained global optimization. The constructed filled func-
tion contains two parameters, which could be easily adjusted during the
process of terations. The theoretical and numerical properties of the filled
function are studied, and a filled function algorithm is given. Finally,
several numerical results, including the application of the filled function
method in solving nonlinear equations, are reported.
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1 Introduction

Lots of problems in science and engineering fields are increasingly dependent on
the need to find out the global optimizers, and global optimization now becomes
one of the most hot topics in optimization. There are many existing algorithms
could be used to obtain those global optimizers, including stochastic methods
and deterministic methods. One of the favourable deterministic methods is filled
function method, which was firstly proposed by Ge [1] for continuous smooth
global optimization problem (P ) : minx∈Xf (x), where X is a box set. The filled
function method uses an auxiliary function called filled function to escape from
a given local minimizer x∗. It contains two phases. Phase 1 searches for one
local minimizer of (P) by any local minimization procedure. When the phase 1
finished, filled function method switches to phase 2. Phase 2 constructs a filled
function and then minimizes it to obtain an improved starting point for phase
1. These two phases repeated until no better minimizers could be found for the
original problem. The filled function proposed in [1] contains an exponential
term, which might give rise to failure of computation when the values of the
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exponential term increases rapidly. Later, the filled function was reconsidered
in [2–6]. Note that the filled function defined in [2] is an improved version in
[1]. One major issue associated with the filled function method in [2] is that the
minimization of filled function is not performed in the problem domain, but on
a line connecting the current optimizer and a point in some neighborhoods of
the next better optimizer which is unknown. Finding out such a direction will
cause a high degree of computational difficulty. The filled functions given in [3–6]
were originally proposed for smooth global optimization. However, in practice,
many problems are non-smooth global optimization problems. In this paper, we
extend the filled function methods for smooth global optimization to include
non-smooth case.

Generally speaking, there are two difficulties faced by the global optimization,
one issue is how to escape from the current optimizer to locate a better optimizer,
and the another is how to check the current optimizer is a global one. This paper
focuses only on the former issue.

This paper is organized as follows: In Sect. 2, we make some assumptions on
the problem (P), and construct a filled function and discuss its theoretical prop-
erties. In Sect. 3, we give an corresponding filled function algorithm. Finally, we
provide several numerical results, including the application of the filled function
method in solving nonlinear equations.

2 A Filled Function and Its Properties

In this section, we first make some assumptions on the objective function and
then define a filled function for non-smooth global optimization.

Assumption 1. The function f(x) Lipschitz continuous on X with a rank L > 0.

Assumption 2. The problem (P ) has at least one global minimizer and has a
finite number of different minimal function values.

The main tool used in the non-smooth filled function method is Clark gen-
eralized gradient. For more details about its properties, please refers to [9].

Denote L(P ) the set of the minimizers of the problem (P ) and let x∗ ∈ L(P ).

Definition 1. A function P (x, x∗) is called a filled function of f(x) at x∗ ∈
L(P ), if it has the following properties:

1. x∗ is a strictly maximizer of P (x, x∗);
2. Any point x∗ �= x ∈ X satisfying f(x) ≥ f(x∗) cannot be a local minimizer

or a saddle point of P (x, x∗);
3. If x∗ is not a global minimizer, then P (x, x∗) has at least one minimizer in

the set S2 = {x ∈ X : f(x) < f(x∗)}.
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Now, we present an auxiliary function as follows:

P (x, x∗, q, r) = − ln(1 + ‖x − x∗‖2) + q max2(0, f(x) − f(x∗))
+ r arctan(min3(0, f(x) − f(x∗))).

(1)

where q > 0 and r > 0 are two parameters. Let D = maxx1,x2∈X ‖x1 − x2‖.
In the following, we will prove that P (x, x∗, q, r) is a filled function.

Theorem 1. Let x∗ ∈ L(P ). If q ≥ 0 is chosen to be suitable small, then x∗ is
a strict local maximizer of P (x, x∗, q, r).

Proof. Since x∗ ∈ L(P ), there exists a neighborhood N(x∗, σ∗) of x∗ such that
f(x) ≥ f(x∗) for all x ∈ N(x∗, σ∗) ∩ X, where 0 < σ∗ < 1 is a constant.

From the inequality that: − ln(1 + y) ≤ x2

2
− y, for every y ≥ 0.

We have, for x∗ �= x ∈ N(x∗, σ∗) ∩ X, if q <
1 − 0.5(σ∗)2

L2
, then

P (x, x∗, q, r) = q(f(x) − f(x∗))2 − ln(1 + ‖x − x∗‖2)
≤ qL2‖x − x∗‖2 − ‖x − x∗‖2 +

1
2
‖x − x∗‖4

≤ (qL2 − 1 +
1
2
(σ∗)2)‖x − x∗‖2

< 0 = P (x∗, x∗, q, r).

(2)

This shows that x∗ is a strict local maximizer of P (x, x∗, q, r).

Theorem 2. Let x∗ ∈ L(P ). If 0 ≤ q <
1

L2(1 + D2)
, then for any x �= x∗ and

f(x) ≥ f(x∗), we have 0 /∈ ∂P (x, x∗q, r).

Proof. By the conditions, it holds

∂P (x, x∗, q, r) ⊆ 2q(f(x) − f(x∗))∂f(x) − 2(x − x∗)
1 + ‖x − x∗‖2 . (3)

Thus, we have

〈x − x∗ , ∂P (x, x∗, q, r)〉 ≤ − 2‖x − x∗‖2
1 + ‖x − x∗‖2 + 2qL2‖x − x∗‖2

≤ 2‖x − x∗‖2(qL2 − 1
1 + D2

)

< 0.

(4)

Hence, we have 0 /∈ ∂P (x, x∗q, r).

Theorem 3. Let x∗ ∈ L(P ), and suppose that x1 and x2 are two points such
that ‖x1 − x∗‖ < ‖x2 − x∗‖ and f (x2) > f (x1) > f (x∗). If 0 ≤ q <

1
LM(1 + D2)

, where
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M ≥ L
‖x2 − x1‖

‖x2 − x∗‖ − ‖x1 − x∗‖
≥ ‖x2 − x1‖

‖x2 − x∗‖ − ‖x1 − x∗‖ sup
0≤λ≤1

max
ς∈∂f(x1+λ(x2−x1))

∣
∣
∣
∣

〈

ς,
x2 − x1

‖x2 − x1‖
〉∣

∣
∣
∣
.

(5)

Then P (x2, x
∗, q, r) < P (x1, x

∗, q, r) < P (x∗, x∗, q, r).

Proof. By the mean value theorem, there exists a constant θ ∈ (0, 1), such that

ln(1 + ‖x2 − x∗‖2) − ln(1 + ‖x1 − x∗‖2)
=

1
1 + θ‖x2 − x∗‖2 + (1 − θ)‖x1 − x∗‖2 (‖x2 − x∗‖2 − ‖x1 − x∗‖2)

≥ 1
1 + D2

(‖x2 − x∗‖2 − ‖x1 − x∗‖2).
(6)

Thus, we have

P (x2, x∗, q, r) − P (x1, x∗, q, r)

≤ (‖x2 − x∗‖2 − ‖x1 − x∗‖2)(− 1

1 +D2
+ q

f (x2) − f(x1)(f(x2) − f(x∗) + f(x1) − f(x∗))
‖x2 − x∗‖2 − ‖x1 − x∗‖2 )

≤ (‖x2 − x∗‖2 − ‖x1 − x∗‖2)(− 1

1 +D2
+

qL2 ‖x2 − x1‖
‖x2 − x∗‖ − ‖x1 − x∗‖ ).

≤ (‖x2 − x∗‖2 − ‖x1 − x∗‖2)(− 1

1 +D2
+ qLM) < 0

Therefore, the theorem follows from the proof of theorem1.

Theorem 4. Let x∗ ∈ L(p), If q ≥ 0, Then

P (x2,x
∗, q, r) < P (x1,x

∗, q, r) < P (x∗
,x

∗, q, r). (7)

Proof. Since the following holds

P (x2, x
∗, q, r) − P (x1, x

∗, q, r)
= − ln

(

1 + ‖x2 − x∗‖2
)

+ ln
(

1 + ‖x1 − x∗‖2
)

+ q((f(x2) − f(x∗))2 − (f(x1) − f(x∗))2)
< 0

(8)

thus, the theorem follows from the proof of theorem 1.

Theorem 5. Let x∗ ∈ L(p), and x1 be a point such that f(x1) > f (x∗). If
q > 0 is chosen to be suitable small, then for any small ε > 0, there exists d such
that

0 < ‖d‖ ≤ ε, ‖x1 − d − x∗‖ < ‖x1 − x∗‖ < ‖x1 + d − x∗‖ , f (x1 ± d) ≥ f(x1)

and

P (x1+d, x∗, q, r) < P (x1, x
∗, q, r) < P (x1 − d, x∗, q, r) < P (x∗, x∗, q, r) . (9)
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Proof. For a given ε > 0, let d = ε
x1 − x∗

2 ‖x1 − x∗‖ . Then 0 < ‖d‖ ≤ ε, Furthermore,

if ε > 0, is sufficiently small and the condition on M in the Theorem3 is satisfied,
then we have

‖x1 + d − x∗‖ = ‖x1 − x∗‖ (1 + ε/2 ‖x1 − x∗‖) > ‖x1 − x∗‖
‖x1 − d − x∗‖ = ‖x1 − x∗‖ (1 − ε/2 ‖x1 − x∗‖) < ‖x1 − x∗‖

f (x1 ± d) ≥ f(x∗).
(10)

Thus, if q ≥ 0 is chosen to be suitable small, then the following inequality
P (x1+d, x∗, q, r) < P (x1, x

∗, q, r) < P (x1 − d, x∗, q, r) < P (x∗, x∗, q, r) follows
directly from the Theorem 3 and Theorem 4.

Theorem 6. Assume that x∗ ∈ L(p) is not a global minimizer, then there exists
a point x0 ∈ S2 = {x ∈ X : f (x) < f (x∗)} such that x0 is a local minimizer of
P (x, x∗, q, r).

Proof. Let S3 = {x ∈ X : f (x) ≤ f (x∗)} and ∂S2 = {x ∈ X : f (x) = f (x∗)}.
Obviously, both ∂S2 and S3 are compact sets. For any x1 ∈ ∂S2,

P (x, x∗, q, r) = − ln
(

1 + ‖x − x∗‖2
)

. (11)

Since ∂S2 is a compact set, there exists a point x1 ∈ ∂S2, such that

minx∈∂S2 − ln
(

1 + ‖x − x∗‖2
)

= − ln
(

1 + ‖x1 − x∗‖2
)

= P (x1, x
∗, q, r) .

(12)

On the other hand, since x∗ ∈ L(P ) is not a global minimizer, there exists a
point x2 ∈ S2 such that

P (x2, x
∗, q, r) = − ln

(

1 + ‖x2 − x∗‖2
)

+ r arctan (f (x2) − f (x∗))3. (13)

Therefore, when

r >
ln

(

1 + ‖x1 − x∗‖2
)

− ln
(

1 + ‖x2 − x∗‖2
)

arctan (f (x∗) − f (x2))
3 , (14)

We have
P (x2, x

∗, q, r) < P (x1, x
∗, q, r) .

Fix r, since S3 is a compact set, P (x, x∗, q, r) must have a global minimizer x0

on S3. Note that

minx∈S3 P (x, x∗, q, r) = minx∈S2 P (x, x∗, q, r)
= P (x0, x

∗, q, r)
< P (x1, x

∗, q, r) ,
(15)

We have x0 ∈ S2, and x0 is a local minimizer of P (x, x∗, q, r).



386 W. Wang et al.

3 Filled Function Algorithm

Based on the theoretical results of filled function obtained in Sect. 2, we give a
filled function algorithm below.

Filled function algorithm

Initialization step:
Let ql be the lower bound of parameter q, ru the upper bound of parameter
r, x1 the initial point and e1, e2, · · · , e2n the positive and negative coordinate
directions. Set k = 1, and go to the main step.

Main step:

1. Starting from x1, minimize (P ) by any non-smooth local minimization pro-
cedure to find a local minimizer x∗

1 and go to 2;
2. Set q = 1 and r = 1;
3. Construct a filled function P (x, x∗

1, q, r) and go to 3;
4. If k > 2n, then go to 7; otherwise, set x = x∗

1 +0.1ek, and take x as an initial
point to find a local minimizer xk of the following problem:

miny∈X P (y, x∗
1, q, r) ;

5. If xk /∈ X, then set k = k + 1, and go to 4; otherwise, go to 6;
6. If f(xk) < f (x∗

1), then, (a) set x = xk, k = 1. (b) Use x as a new initial point
and minimize (P ) to find its another local minimizer x∗

2 with f(x∗
2) < f (x∗

1).
(c) Set x∗

1 = x∗
2 and go to 2; Else if f(xk) ≥ f (x∗

1), then go to 7;
7. Reduce q by setting q = 0.1q. If q ≥ ql, then set k = 1, and go to 3; otherwise,

go to 8;
8. Increase r by setting r = 10r. If r ≤ ru, then set k = 1, and go to 3; otherwise,

take x∗
1 as a global minimizer, and the algorithm stops.

Remarks:

1. The proposed filled function method can also be applied to smooth box con-
strained global optimization problem.

2. There are two phases in the filled function method: local minimization and
filling. In phase 1, a local minimizer x∗ is located by any non-smooth local
minimization algorithms, such as Hybrid Hooke and Jeeves-Direct Method
for Non-smooth Optimization [8], Mesh Adaptive Direct Search Algorithms
for Constrained Optimization [7], Bundle methods, Powell’s method, etc. In
particular, the Hybrid Hooke and Jeeves-Direct Method is more preferable
to others, since it is guaranteed to find a local minimum of a non-smooth
function subject to simple bounds. In phase 2, the constructed filled function
P (x, x∗, q, r) is minimized. During the minimization, if a point xk is found
such that f(xk) < f (x∗), then phase 2 stops and the algorithm returns
to phase 1 to find a better optimizer for f(x). The aforementioned process
repeats until the global minimizer is identified.
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4 Numerical Experiment

The proposed filled function method has lots of applications. In this section, we
perform a few numerical tests including two applications of the filled function
method in solving nonlinear equations.

Problem 1:

min f(x) =
∣
∣
∣
∣

x − 1
4

∣
∣
∣
∣
+

∣
∣
∣
∣
sin(π(1 +

x − 1
4

))
∣
∣
∣
∣
+ 7, |x| ≤ 10. (16)

The algorithm successfully found a global solution: x∗ = 1 with f(x∗) = 7.
Table 1 records the numerical results of Problem 1.

Table 1. Computational results for Problem 1.

k x0
k f (xk) x∗

k f (x∗
k)

1 6.0000 8.9571 5.0000 8.0001

2 0.9678 7.0333 0.9998 7.0001

Problem 2

min f(x) = max{5x1 + x2,−5x1 + x2, x
2
1 + x2

2 + 4x2},−4 ≤ x1, x2 ≤ 4 (17)

The algorithm successfully found a global solution: x∗ = (0,−3) with f(x∗) =
−3. Table 2 records the numerical results of Problem 2.

Table 2. Computational results for Problem 2.

k x0
k f (xk) x∗

k f (x∗
k)

1 (1, 1) 6.0000 (0.0000, 0.0000) 0.0000

2 (−0.0002, −0.9725) −0.9715 (−0.0002, −0.9725) −0.9715

3 (−0.0003, −2.5644) −2.5487 (0.0000, −3.0000) −3.0000

Problem 3

min f(x) = maxj=1,··· ,10

10∑

i=1

(ixi − 1)2

i + j + 1

+ minj=1,··· ,10
(ixi − 1)2

i + j + 1
, |xi| ≤ 10.

(18)

The algorithm successfully found a global solution: x∗ = (1, 0.5, · · · , 0.1), with
f(x∗) = 0. Table 3 records the numerical results of Problem 3.
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Table 3. Computational results for Problem 3.

k x0
k f (xk) x∗

k f (x∗
k)

1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5

5

5

5

5

5

5

5

5

5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1823.8490

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000

0.5000

0.5000

0.5000

0.5000

0.5000

0.5000

0.5000

0.5000

0.5000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

9.3968

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000

0.4923

0.3714

0.3411

0.4909

0.1613

0.2356

0.1201

0.1981

0.1974

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0.9581

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000

0.5000

0.3333

0.2500

0.2000

0.1667

0.1429

0.1250

0.1111

0.1000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0.0000

Problem 4:

min f(x) =

⎡

⎣

10sin2 (πy1) + (yn − 1)2

+
n−1∑

i=1

(yi − 1)2
(

1 + 10sin2 (πyi+1)
)

⎤

⎦π/n, (19)

The algorithm successfully found a global solution: x∗ = (1, 1, 1, 1, 1, 1, 1), with
f(x∗) = 0 for n = 7. Table 4 records the numerical results of Problem 4.
The application of the filled function method in solving nonlinear equations.

Consider the following nonlinear equations (NE) : G(x) = 0, x ∈ X, where
the mapping G(x) = (f1 (x) , f2 (x) , · · · , fm (x))T : Rn → Rm is continuous, and
X ⊂ Rn is a box set.

Let f(x) =
∑m

k=1 |fk (x)|, then the solution of problem (NE) may be
obtained through solving the following reformulated global optimization prob-
lem (P ) : minx∈X f (x). In particular, suppose that the problem (NE) has at
least one root, then each global minimizer of the problem (P ) with zero function
value corresponds to one root of the (NE).
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Table 4. Computational results for Problem 4.

k x0
k f (xk) x∗

k f
(
x∗
k

)

1

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

6

6

6

6

6

6

6

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

78.5398

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

0.9961

−2.0137

−2.9958

−2.9982

−2.9961

−3.0011

−2.9953

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

39.9687

2

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎝

1.0241

0.9999

0.9898

−0.2180

0.2243

−2.9832

−1.9997

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎠

14.9231

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎝

1.003

0.9999

1.0000

1.0032

0.2284

−2.9343

−1.9997

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎠

11.3654

3

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

0.0099

0.9999

1.0029

1.0024

1.0026

1.0001

1.0078

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

0.4443

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

0.0000

Problem 5:

104x1x2 = 1, e−x1 + e−x2 = 1.001,
s.t 5.49 × 10−6 ≤ x1 ≤ 4.553, 2.196 × 10−3 ≤ x2 ≤ 18.21.

(20)

The algorithm successfully found its solution x∗ = (1.450 × 10−5, 6.8933335).
Table 5 records its numerical results.

Table 5. Computational results for Problem 5.

k x0
k f (xk) x∗

k G (x∗
k)

1

(
3.0000

3.0000

) (
0.00001457

6.87403875

)
7.11982× 10−6

(
−4.6287× 10−6

−2.4911× 10−6

)

2

(
1.4523× 10−5

6.89330451

) (
0.000014509

6.89330448

)
0.00000003

(
0.00000000

0.00000003

)
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Complexity of Tree-Coloring Interval
Graphs Equitably
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Abstract. An equitable tree-k-coloring of a graph is a vertex k-coloring
such that each color class induces a forest and the size of any two
color classes differ by at most one. In this work, we show that every
interval graph G has an equitable tree-k-coloring for any integer k ≥
�(Δ(G)+1)/2�, solving a conjecture of Wu, Zhang and Li (2013) for inter-
val graphs, and furthermore, give a linear-time algorithm for determining
whether a proper interval graph admits an equitable tree-k-coloring for
a given integer k. For disjoint union of split graphs, or K1,r-free interval
graphs with r ≥ 4, we prove that it is W [1]-hard to decide whether there
is an equitable tree-k-coloring when parameterized by number of colors,
or by treewidth, number of colors and maximum degree, respectively.

Keywords: W [1]-hardness · Linear-time algorithm · Equitable
tree-coloring · Interval graph · Communication network

1 Introduction

A minimization model in graph theory so-called the equitable tree-coloring
can be used to formulate a structure decomposition problem on the com-
munication network with some security considerations [17]. Namely, an equi-
table tree-k-coloring of a (finite, simple and undirected) graph G is a mapping
c : V (G) → {1, 2, · · · , k} so that c−1(i) induces a forest for each 1 ≤ i ≤ k,
and

∣
∣|c−1(i)| − |c−1(j)|∣∣ ≤ 1 for each pair of 1 ≤ i < j ≤ k. The notion of

the equitable tree-k-coloring was introduced by Wu, Zhang and Li [14], who
conjectured that every graph G has an equitable tree-k-coloring for any inte-
ger k ≥ �(Δ(G)+1)/2�. This conjecture (equitable vertex arboricity conjecture,
EVAC for short) is known to have an affirmative answer in some cases including:

– G is complete or bipartite [14];
– Δ(G) ≥ (|G| − 1)/2 [16,18];
– Δ(G) ≤ 3 [15];

Supported by the National Natural Science Foundation of China (11871055, 11701440)
and the Youth Talent Support Plan of Xi’an Association for Science and Technology
(2018-6).
X. Zhang—This author shares a co-first authorship.

c© Springer Nature Switzerland AG 2020
Z. Zhang et al. (Eds.): AAIM 2020, LNCS 12290, pp. 391–398, 2020.
https://doi.org/10.1007/978-3-030-57602-8_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57602-8_35&domain=pdf
http://orcid.org/0000-0002-2249-8810
http://orcid.org/0000-0003-1976-4687
http://orcid.org/0000-0001-5250-1657
https://doi.org/10.1007/978-3-030-57602-8_35


392 B. Niu et al.

– G is 5-degenerate [1];
– G is d-degenerate with Δ(G) ≥ 10d [17];
– G is IC-planar with Δ(G) ≥ 14 or g(G) ≥ 6 [12];
– G is a d-dimensional grid with d ∈ {2, 3, 4} [3].

EVAC is still widely open.
Algorithmically, the following EQUITABLE TREE COLORING is NP-

complete [7].

EQUITABLE TREE COLORING
Instance: A graph G and the number of colors k.
Question: Is there an equitable tree-k-coloring of G?

Recently in [10], the last two authors proved that EQUITABLE TREE COL-
ORING problem is W[1]-hard when parameterized by treewidth, and that it is
polynomial solvable in the class of graphs with bounded treewidth, and in the
class of graphs of bounded vertex cover number.

This paper focuses on interval graphs. A graph G is an interval graph if there
exist an interval representation of G, i.e., a family {Tv|v ∈ V (G)} of intervals
on the real line such that u and v are adjacent vertices in G if and only if
Tu ∩ Tv 	= ∅. For any vertex v ∈ V (G), L(v) and R(v) denote the left point and
the right point of its corresponding interval Tv, respectively. For two vertices
u, v ∈ V (G), if L(u) < L(v), or L(u)=L(v) and R(u) ≤ R(v), then we write
u < v. For any three vertices u, v, w ∈ V (G), it is clear that

if u < v < w and uw ∈ E(G), then uv ∈ E(G). (1)

Olariu [13] shows that a graph is an interval graph if and only if it has a lin-
ear order < on V (G) satisfying (1); and that the order can be found in linear
time. Using this fact, we give the following result as a quick start of this paper,
confirming EVAC for interval graphs.

Theorem 1. Every interval graph G has an equitable tree-k-coloring for any
integer k ≥ �Δ(G)+1

2 �, where the lower bound of k is sharp.

Proof. Sort the vertices of G into v0 < v1 < · · · < vn−1 so that (1) holds,
and for each 0 ≤ i ≤ n − 1, let c(vi) = i (mod k). It is clear that c is an
equitable k-coloring of G. If there is a monochromatic cycle in color i, then
there are three vertices vi+αk, vi+βk and vi+γk with 0 ≤ α < β < γ such that
vi+αkvi+βk, vi+αkvi+γk ∈ E(G). By (1), vi+αkvj ∈ E(G) for any i+αk < j ≤ i+
γk, which implies dG(vi+αk) ≥ (γ−α)k ≥ 2k ≥ Δ(G)+1, a contradiction. Hence,
there is no monochromatic cycle under c. This implies that c is an equitable tree-
k-coloring of G. Since the complete graph K2s is an interval graph and it does
not admit an equitable tree-k-coloring for any k ≤ s − 1, the lower bound of k
in this result is sharp.

On the other hand, if we are given an integer k < �Δ(G)+1
2 �, determining

whether an interval graph admits an equitable tree-k-coloring is not easy. Pre-
cisely, the next two theorems will be proved in Sect. 2.
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Theorem 2. EQUITABLE TREE COLORING of the disjoint union of split
graphs parameterized by number of colors is W [1]-hard.

Theorem 3. EQUITABLE TREE COLORING of K1,r-free interval graph with
r ≥ 4 parameterized by treewidth, number of colors and maximum degree is W [1]-
hard.

Here, a split graph is a graph in which the vertices can be partitioned into a
clique and an independent set, and a K1,r-free graph is a graph that does not
contain the star K1,r as an induced subgraph.

However, the situation is much better if we are working with an proper inter-
val graph, that is an interval graph that has an interval representation in which
no interval properly contains any other interval. Actually, we have the following
theorem, which will be proved in Sect. 3.

Theorem 4. There is a linear-time algorithm to determine whether a proper
interval graph admits an equitable tree-k-coloring for a given integer k.

To end this section, we collect some notations that will be used in the next
sections. For any two graphs G and H, their sum G ⊕ H is the graph given by
V (G ⊕ H) = V (G) ∪ V (H) and E(G ⊕ H) = E(G) ∪ E(H) ∪ {uv|u ∈ V (G), v ∈
V (H)}, and their union G ∪ H is the graph given by V (G ∪ H) = V (G) ∪ V (H)
and E(G ∪ H) = E(G) ∪ E(H). By nG, we denote the n disjoint copies of G,
and [k] stands for {1, 2, · · · , k}. Other undefined notations follow [2].

2 W[1]-Hardness: The Proofs of Theorems 2 and 3

All of our reductions involve the following BIN-PACKING problem, which is
NP-hard in the strong sense [5], and is W [1]-hard when parameterized by the
number of bins [8,9].

BIN-PACKING
Instance: A set of n items A = {a1, a2, ..., an} and a bin capacity B.
Parameter: The number of bins k.
Question: Is there a k-partition ϕ of A such that, ∀ i ∈ [k],

∑

aj∈ϕi
aj =

B?

Proof of Theorem 2. Given an instance of BIN-PACKING as above, Our
strategy is to construct a disjoint union of split graph G such that the answer of
the BIN-PACKING is YES if and only if G admits an equitable tree-k-coloring.
Here,

G =
⋃

j∈[n]

H(aj , k),

where a1, a2, · · · , an are arbitrarily given integers in the instance of BIN PACK-
ING, and

H(a, k) = K2k−1 ⊕ (a + 1)K1
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defines a split graph for integers a and k. For j ∈ [n], let Ij be the independent
set of size aj +1 in H(aj , k), and let cj be a fixed vertex in the clique part K2k−1

of H(aj , k).
Suppose that there is a k-partition ϕ of A = {a1, a2, ..., an} such that, ∀

i ∈ [k],
∑

aj∈ϕi
aj = B. For any i ∈ [k] and for any j satisfying aj ∈ ϕi, color

cj and all vertices in Ij with color i. For any j ∈ [n] such that aj ∈ ϕi, color
the 2k − 2 vertices in V (H(aj , k)) \ (Ij ∪ {cj}) with k − 1 distinct colors in
[k] \ i so that each color is used exactly twice. At this moment, for any j ∈ [n],
H(aj , k) has been colored with k colors so that the set of all vertices with color
i (here i is the integer such that aj ∈ ϕi) induces a forest, which is actually a
star with center cj , and each of another k − 1 colors besides i is used for exactly
two vertices. Hence this gives a tree-k-coloring of H(aj , k) for any j ∈ [n], and
thus finally gives a tree-k-coloring of G. To see that this coloring is an equitable
tree-k-coloring of G, we denote the set of vertices with color i as Vi for any color
i ∈ [k]. Clearly,

|Vi| =
∑

aj∈ϕi

(aj + 2) +
∑

aj �∈ϕi

2 =
∑

aj∈ϕi

aj + 2n = B + 2n

for any i ∈ [k], which implies that such a coloring is equitable.
On the other direction, if G admits an equitable tree-k-coloring ψ, then in

the clique part K2k−1 of each H(aj , k) with j ∈ [n], there is a color i appearing
on exactly one vertex, and each of another k − 1 colors appears on exactly two
vertices. It follows that all vertices in Ij of H(aj , k) are colored with i, since
any other color classes contains two vertices in the clique part K2k−1, which are
adjacent to all vertices in Ij . Therefore, taking any one vertex vj ∈ Ij together
with the clique part K2k−1 induces a clique K2k containing exactly two vertices
in each color class. Let ψi be the vertices of G colored with i under the coloring
ψ. We show that

∑

Ij⊆ψi
aj = B, which indicates that the answer for the BIN-

PACKING is YES.
Since there are

n(2k − 1) +
∑

j∈[n]

(aj + 1) = k(2n + B)

vertices in G (note that in BIN-PACKING we always assume that
∑

j∈[n] aj =
kB), each color class of ψ contains exactly 2n + B vertices, which consists of,
for each j ∈ [n], two vertices in the clique K2k of H(aj , k) as chosen above and
aj vertices in Ij\{vj} if Ij ⊆ ψi. So

2n + B = |ψi| = 2n +
∑

Ij⊆ψi

aj ,

which gives
∑

Ij⊆ψi
aj = B.

Lemma 5. [4,11] A graph is an interval graph if and only if its maximal cliques
can be ordered as M1,M2, · · · ,Mk such that for any v ∈ Mi ∩ Mk with i < k, it
holds that v ∈ Mj for any i ≤ j ≤ k.
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Proof of Theorem 3. We prove the theorem for parameter number of colors;
and the theorem for another two parameters can be proved in the same way.
Given an instance of the BIN-PACKING, our strategy is to construct a K1,r-
free interval graph G with r ≥ 4 such that the answer of the BIN-PACKING is
YES if and only if G admits an equitable tree-k-coloring. Here,

G =
⋃

j∈[n]

J(aj , k)

with a1, a2, · · · , an being arbitrarily given integers in the instance of BIN PACK-
ING, and

J(a, k) =
(

⋃

i∈[a]

(

Qi ⊕ yi

)
)

⋃
(

⋃

i∈[a]

(

Q′
i ⊕ yi

)
)

⋃
(

⋃

i∈[a−1]

(

Qi+1 ⊕ yi

)
)

,

where S = {Q1, Q
′
1, · · · , Qa, Q′

a} is a set of cliques such that Qi � Q′
i � K2k−1

and Y = {y1, · · · , ya} is a set of vertices. Note that the vertices of G with largest
degree are the ones contained in Y \{ya}, which have degrees equal to 3(2k−1),
and the treewidth of G is 2k − 1.

We claim first that G is an interval graph. Indeed, it is sufficient to show
that J(a, k) is an interval graph for any positive integer a. By the definition of
J(a, k), one can see that it has 3a − 1 maximal cliques M1,M2, · · · ,M3a−1 such
that

Mi =

⎧

⎪⎨

⎪⎩

Qi ⊕ yi if i ≡ 1 (mod 3)
Q′

i ⊕ yi if i ≡ 2 (mod 3)
Qi+1 ⊕ yi if i ≡ 0 (mod 3).

Since Mi ∩ Mj = ∅ for any i ≡ 1 (mod 3) and j ≥ i + 3, Mi ∩ Mj = ∅ for any
i 	≡ 1 (mod 3) and j ≥ i+2, and Mi ∩Mi+1 = Mi ∩Mi+2 = Mi+1 ∩Mi+2 = {yi}
for any 1 ≤ i ≤ 3a − 5 with i ≡ 1 (mod 3), the ordering M1,M2, · · · ,M3a−1

satisfies the property described by Lemma 5, and therefore, J(a, k) is an interval
graph.

Suppose that there is a k-partition ϕ of A such that, ∀ i ∈ [k],
∑

aj∈ϕi
aj =

B. For any i ∈ [k] and for any j satisfying aj ∈ ϕi, color all vertices of Yj ,
corresponding to the vertex set Y in J(aj , k), with color i. For any j ∈ [n] such
that aj ∈ ϕi, color each (k−1)-clique of Sj , corresponding to the set S of cliques
in J(aj , k), so that the color i is used for exactly one vertex, and each of the
remaining k−1 colors in [k]\i are used for exactly two vertices. Clearly, this gives
a tree-k-coloring of J(aj , k), where 3aj vertices consisting of Yj and one vertex
in each clique in Sj , are colored with color i, and each of another k − 1 colors is
used for exactly two vertices in each clique of Sj . Hence a tree-k-coloring of G
is given now. To see that this is an equitable tree-k-coloring of G, we denote the
set of vertices with color i as Vi for any color i ∈ [k]. The fact that
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|Vi| =
∑

aj∈ϕi

3aj +
∑

aj /∈ϕi

4aj = 3B + 4(kB − B) = (4k − 1)B

for any i ∈ [k] implies the equability of this coloring.
On the other direction, if G admits an equitable tree-k-coloring ψ, then in

each clique of Sj for j ∈ [n], there is a color appearing on exactly one vertex,
and each of another k − 1 colors appears on exactly two vertices. Suppose that
the color i appears on exactly one vertex of the first clique Q1 ∈ Sj for some
j ∈ [n]. It follows that y1 should be colored with i because y1 is adjacent to
every vertices of Q1 and each color in [k]\i already appears on two vertices of
Q1. Consequently, the color being used exactly once for the vertices of the second
clique Q′

1 ∈ Sj and the third clique Q2 ∈ Sj is indeed i, which implies that y2
shall be colored with i. Following this process, we can conclude that each vertex
of Yj is colored with i, and in each clique of Sj , the color i appears on exactly one
vertex, and each of another k − 1 colors in [k]\i appears on exactly two vertices.
Let ψi be the vertices of G colored with i under the coloring ψ. We show that
∑

Yj⊆ψi
aj = B, which indicates that the answer for the BIN-PACKING is YES.

Since there are
∑

j∈[n]

(

aj + 2aj(2k − 1)
)

= kB + (4k − 2)kB = k(4k − 1)B

vertices in G, for each i ∈ [k],

|ψi| = (4k − 1)B,

and by the way of the coloring ψ as described above, we also see that

|ψi| =
∑

Yj⊆ψi

3aj +
∑

Yj∩ψi=∅
4aj =

∑

j∈[n]

4aj −
∑

Yj⊆ψi

aj = 4kB −
∑

Yj⊆ψi

aj .

Combining the two expression gives
∑

Yj⊆ψi
aj = B.

3 Linear-Time Algorithm: The Proof of Theorem 4

Lemma 6. Let G be a proper interval graph with V (G) = {v1, v2, · · · , vn},
where v1 < v2 < · · · < vn. If vivj ∈ E(G), then {vi, vi+1, · · · , vj−1, vj} induces
a clique of size j − i + 1.

Proof. By the definition of the proper interval graph, for any i ≤ s < � ≤ j,
L(vs) < L(v�), and if vivj ∈ E(G), then L(vi) ≤ L(vs) < L(v�) ≤ L(vj) ≤
R(vi) ≤ R(vs) < R(v�) ≤ R(vj). This implies that the interval [L(vs), R(vs)]
intersects the interval [L(v�), R(v�)] and thus vsv� ∈ E(G). Hence any two ver-
tices among {vi, vi+1, · · · , vj−1, vj} are adjacent and such a vertex set induces a
clique.

Lemma 7. A proper interval graph has an equitable tree-k-coloring if and only
if its maximum clique has size at most 2k.
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Proof. If c is an equitable tree-k-coloring of G, then there is no clique on at least
2k + 1 vertices, because otherwise there is a color appearing at least three times
on this clique, implying the existence of a monochromatic triangle, a contradic-
tion. Hence the maximum clique of G has size at most 2k.

On the other direction, if the maximum clique of G has size at most 2k,
then sort the vertices of G into v0, v1, · · · , vn−1 so that vi < vj if i < j. Let
c(vi) = i (mod k). It is clear that c is an equitable k-coloring of G. If there is
a monochromatic cycle under c, then there are two adjacent vertices vi and vj

with j − i = βk with β ≥ 2. By Lemma 6, G contains a clique of size j − i + 1 =
βk + 1 ≥ 2k + 1 as a subgraph, a contradiction. This implies that there is no
monochromatic cycle under c, and thus c is an equitable tree-k-coloring of G.

Algorithm 1: Linear-time Algorithm for proper interval graphs

Input: A proper interval graph G = (V, E) on n vertices; a set of k colors
{0, 1, · · · , k − 1};

Output: Answ;

1 Answ ← Y ES;
2 Sort the vertices of G into v0 < v1 < · · · < vn−1, where < is a linear order on

V (G);
3 for i = 0 to n − 1 do
4 Color vertex vi with the color c(i) = i (mod k);

5 if there is a monochromatic cycle in any color class then
6 Output NO;

7 Output Answ.

Theorem 8. Given a proper interval graph G and an integer k > 0, Algorithm1
outputs YES in linear time if and only if there exists an equitable tree-k-coloring
of G; moreover, if YES, it gives an equitable tree-k-coloring of G.

Proof. From Algorithm 1, one sees that the given coloring is an equitable tree-
k-coloring of G if it outputs YES. If there is an equitable tree-k-coloring of G,
then the size of the maximum clique of G is at most 2k by Lemma 7. In any
iterative step of Algorithm 1, every color class induces disjoint unions of paths,
because if not, there are two adjacent vertices vsv� with � − s ≥ 2k, which gives
a clique of size 2k + 1 by Lemma 6, a contradiction. So the algorithm outputs
YES. The time complexity dominates by Line 3, which takes O(|V | + |E|) time,
see [13, Theorem 6].

Proof of Theorem 4. This is an immediate corollary from Theorem 8.

Remark. Lemma 7 implies that EQUITABLE TREE COLORING of proper
interval graphs is equivalent to determine whether 2k is the upper bound of its
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clique number. We know that to calculate all maximal cliques of a triangulated
graph G = (V,E) (i.e, a graph without induced cycles on at least four vertices)
can be done in O(|V | + |E|) time [6, Theorem 4.17], and any proper interval
graph is a triangulated graph by Lemma6. This also proves Theorem 4, however,
without giving an equitable tree-k-coloring of G if the algorithm outputs YES.
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Abstract. Structural balance theory is an important theory in signed
graphs. We consider the optimization problems: given a signed graph, the
maximum number of edges that needed to be kept to make it balanced
is called K(G). We firstly prove the computation of K(G) is NP-hard.
Next we design four approximation algorithms to compute K(G).

Keywords: Balanced · Signed graph · NP-hard · Approximation
algorithms

1 Introduction

In the area of graph theory in mathematics, a signed graph is a graph in which
each edge has a positive or negative sign. The name “signed graph” and the
notion of balance appeared first in a mathematical paper of Frank Harary in
1953 [7]. Denes Konig had already studied equivalent notions in 1936 under a
different terminology but without recognizing the relevance of the sign group [11].
At the Center for Group Dynamics at the University of Michigan, Dorwin
Cartwright and Frank Harary generalized Fritz Heider’s psychological theory of
balance in triangles of sentiments to a psychological theory of balance in signed
graphs [2].

Signed graphs have been rediscovered many times because they come up
naturally in many unrelated areas [18]. For instance, they enable one to describe
and analyze the geometry of subsets of the classical root systems. They appear
in topological graph theory and group theory. They are a natural context for
questions about odd and even cycles in graphs. They appear in computing the
ground state energy in the non-ferromagnetic Ising model; for this one needs to
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find a largest balanced edge set. They have been applied to data classification
in correlation clustering.

Structural balance theory dated back to the work of Heider in the 1940s [9],
and generalized and extended to the language of graphs beginning with the work
of Cartwright and Harary in the 1950s [2,5,7]. James A. Davis gave the model
some applications and explained the model in detail [3], and proposed a weaker
form of structural balance. Tibor Antal, Paul Krapivsky and Sidney Redner pro-
posed a dynamic structural balance model [1]. Jure Leskovec, Dan Huttenlocher
and Jon Kleinberg applied structural balance model to big data analysis [13,14].
By far, there have been numerous articles on structural balance theory [6,12,15].
David Easley and Jon Kleinberg have introduced and summarized the structural
balance theory systematically in chapter 5 of their monograph [4].

The essential idea of structural balance theory is as follows: Consider a group
in which any two persons are familiar with each other and they are friends
or enemies. Everyone is susceptible to the influence of his friends or enemies.
Therefore, if A and B are friends and B and C are friends, A and C will easily
become friends, that is, a friend’s friend is a friend. If A and B are enemies and
B and C are enemies, A and C will easily become friends, that is, an enemy
of an enemy is a friend. For a stable and balanced structure, it needs to follow
the following rules: a friend of a friend is a friend, and an enemy of an
enemy is a friend. Based on these two basic rules, it is easy to further derive
the following two rules: An enemy of a friend is an enemy, and a friend
of an enemy is an enemy.

The above rules could be further expressed in graph theory. Let us consider
the relationship among three persons. Using a plus sign for friendships and a
minus sign for enemies, according to the number of friends or enemies, there
are four basic situations as shown in Fig. 1 (a) is a stable structure in which
three persons are friends with each other; (b) is an unstable structure because
it violates the basic principle that a friend of a friend is a friend; (c) is a stable
structure, two persons are each other’s friends and they have a common enemy;
(d) is an unstable structure because it violates the basic principle that an enemy
of an enemy is a friend.

Fig. 1. Four basic structures in the classical structural balance model

Our Results: Given a signed graph, the minimum number of edges needed
to be changed to make it balanced is called C(G); the maximum number of
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edges that needed to be kept to make it balanced is called K(G). Obviously, the
minimum number of changed edges and the maximum number of kept edges form
a partition of the edges set. Thus C(G)+K(G) = m where m is the edge number
of graph G. We firstly prove the computation of C(G) or K(G) is NP-hard. Next
we design four approximation algorithms to compute K(G). The first and second
algorithms are deterministic algorithms with approximation ratio 1/2, belonging
to the greedy algorithm and local search algorithm. The third algorithm is a
randomized algorithm with approximation ratio 1/2 in expectation sense. The
last algorithm is a semidefinite programming algorithm with approximation ratio
0.87856. All these approximation algorithms are derived from the approximation
algorithms to compute Max-Cut problem.

2 Characterizing the Structure of Balanced Networks

2.1 Completed Graphs

Given a complete signed graph, Frank Harary has proved the following Balance
Theorem in 1953 [2,7].

Theorem 1 [2,7]. Balance Theorem: If a labeled complete graph is balanced,
then either all pairs of nodes are friends, or else the nodes can be divided into
two groups, X and Y, such that every pair of nodes in X like each other, every
pair of nodes in Y like each other, and everyone in X is the enemy of everyone
in Y.

Fig. 2. Characterizing the structure of balanced networks
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2.2 General Graphs

There are many ways to extend the structural balance theory from complete
graphs to general graphs. Here we take the following approach in classical struc-
tural balance theory [2,7]: Treat the missing edges in incomplete graphs as
implicit cases and still follow the structural balance rules of complete graphs:
friends of friends are friends, and enemies of enemies are friends. If a
general graph can be restored to a complete graph with balance structure con-
forming to the structural balance rules, then the general graph is structurally
balanced; otherwise, it is non-structurally balanced. The following two theorems
give the sufficient and necessary conditions for signed general networks to be
structurally balanced.

Theorem 2 [2,7]. The structure balance theorem in general graphs: a general
signed network is structurally balanced if and only if all nodes can be divided
into two sets, the inner edges of the same set are positive, and the edges between
different sets are negative. (See Fig. 2 for an illustration.)

Theorem 3 [2,7]. The structure balance theorem in general graphs: a general
signed network is structurally balanced if and only if it does not contain circles
with odd negative edge labels.

3 Optimization Problems

Given a general signed graph G(V,E), consider the following optimization prob-
lem: how many edges should be changed at least to make the network balanced.
This parameter, called C(G), actually reflects the stability of the network. We
will prove that calculating C(G) in polynomial time is NP-hard problem. First,
we notice another parameter: how many edges should be kept at most to make
the network balanced. This parameter is called K(G). Obviously, the minimum
number of changed edges and the maximum number of kept edges form a par-
tition of the edges set, i.e. K(G) + C(G) = m. Therefore, if we can prove that
calculating K(G) in polynomial time is NP-hard, then calculating C(G) in poly-
nomial time is also NP-hard. Max-Cut problem is one of Karp’s 23 classical NPC
problems and we will reduce Max-Cut problem to calculating K(G).

Max-Cut problem: Given a simple graph G(V,E), partition the vertex set V
into two parts so that the number of edges joining vertices in different parts is
as large as possible.

Theorem 4. Given a general signed graph G(V,E), calculating C(G) and K(G)
is NP-hard.

Proof. We only need to show that calculating K(G) is NP-hard. The method
is to reduce the maximum cut problem to calculating K(G). Given any graph
G(V,E), we label all its edges with negative signs to form a signed network. We
will prove the maximum cut of G(V,E) is exactly K(G) of the signed network.
On one hand, given any partition V1, V2 of V , forming a cut set C. Keep negative
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sign of the edges in the cut set C and change sign of the edges joining vertices
in the same part from negative to positive. According to Theorem 2, the signed
network after the change is balanced. On the other hand, according to Theorem2,
in a balanced structure, the vertices are divided into two sets. The inner edges
of the same set are positive and the edges between different sets are negative.
The two sets form a partition V1, V2 of V and a cut set C. Therefore, the
number of edges in the cut set C is exactly the number of edges that keep the
negative sign unchanged. The maximum number of edges in the cut set is exactly
the maximum number of edges that keep the negative sign unchanged, that is,
K(G). Thus Max-Cut problem is reduced to calculating K(G).

Remark 1. G(V,E) is a signed graph. Give each vertex a value of +1 or −1; we
call this a state of G(V,E). An edge is called satisfied if it is positive and both
endpoints have the same value, or it is negative and the endpoints have opposite
values. An edge that is not satisfied is called frustrated. The smallest number of
frustrated edges over all states is called the frustration index (or line index of
balance) of G(V,E). The largest number of satisfied edges over all states is called
the satisfaction index of G(V,E). The vertex set with value +1 and the vertex
set with value −1 form a partition of all vertex set. The frustrated edges are
exactly the edges which signs needed to be changed to form a balance structure
and the satisfied edges are exactly the edges which signs needed to be kept to
form a balance structure. Thus the frustration index is exactly C(G) and the
satisfaction index is exactly K(G). This is a vertex version of the optimization
problem.

Remark 2. A Hopfield network is a form of recurrent artificial neural net-
work popularized by John Hopfield in 1982. Hopfield networks serve as content
addressable memory systems with binary threshold nodes. They are guaranteed
to converge to a local minimum. Hopfield networks also provide a model for
understanding human memory. Stability and equilibrium are important prop-
erties of Hopfield neural networks, and their relations with structural balance
networks can be discussed and studied.

4 Approximation Algorithms

Given a general signed graph G(V,E), the maximum number of edges whose
signs are kept unchanged to make it balanced is called K(G). This parameter
reflects the balanced degree of a signed graph. The previous section has shown
that calculating K(G) in polynomial time is NP-hard. This section presents four
approximation algorithms for calculating K(G):

– The first approximation algorithm is a deterministic algorithm with an
approximation ratio of 1/2, which belongs to the greedy algorithm. The basic
idea is derived from the greedy algorithm of Max-Cut problem.

– The second approximation algorithm is a deterministic algorithm with an
approximation ratio of 1/2, which belongs to the local search algorithm. The
basic idea is derived from the local search algorithm of Max-Cut problem.
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Algorithm 1. Greedy Algorithm for K(G)

Input: An edge-signed graph G(V,E).

Output: A balanced signed graph Ḡ and the edge set C ⊆ E whose signs are

kept.

1: Take a vertex order v1, . . . , vn arbitrarily.

2: Initialize A = B = ∅.

3: for i = 1 to n do

4: Put vi into A or B such that Ḡ[v1, . . . , vi] is balanced and the edges

5: incident to vi are kept signs unchanged as many as possible.

6: Output Ḡ = Ḡ[A,B] and edge set C ⊆ E whose signs are kept.

– The third approximation algorithm is a randomized algorithm, and the
approximation ratio is 1/2 in the expectation. The basic idea is derived from
the randomized algorithm of Max-Cut problem.

– The fourth approximation algorithm is a randomized algorithm with an
approximation ratio of 0.87856, which belongs to the semidefinite program-
ming algorithm. The basic idea is derived from the semidefinite programming
algorithm of Max-Cut problem.

4.1 Greedy Algorithm

Algorithm 1: Given a general signed graph G(V,E), take a vertex order v1, . . . , vn

arbitrarily and initialize two vertex sets A = B = ∅. Place the vertices one by
one to the set A or B in this order and the rules for placement are as follows:
When a vertex vi is put into one set A or B, choose the set which could keep
the edges’ signs unchanged as many as possible. Each time after the allocation
of a vertex, the two sets A and B are maintained to form a balanced structure,
which satisfies the edges between internal vertices in A or B are positive and
the edges between A and B are negative. Finally, the two vertex sets A and B
form a balanced structure and output a subset of edges C ⊆ E which keep their
signs unchanged. Let Ḡ[A,B] denote a balanced graph with partition (A,B).
The greedy algorithm for K(G) is as shown in Algorithm 1.

Theorem 5. Algorithm 1 output a 1/2-approximation algorithm: For a signed
graph G(V,E), |C| ≥ K(G)/2.

Proof. We just need to explain |C| ≥ |E|/2 ≥ K(G)/2. In fact, each time after
the allocation of a vertex, the two sets A and B are maintained to form a
balanced structure, which satisfies the edges between internal vertices in A or
B are positive and the edges between A and B are negative. When a vertex
vi is put into one set A or B, according to the placement rules: choose the set
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Algorithm 2. Local Search Algorithm for K(G)

Input: An edge-signed graph G(V,E).

Output: A balanced signed graph Ḡ and the edge set C ⊆ E whose signs are

kept.

1: Take a vertex order v1, . . . , vn arbitrarily.

2: Initialize A = V, B = ∅.

3: while there exists vi that convert its set can increase unchanged edges do

4: Convert vi’s set and update A and B.

5: Output Ḡ = Ḡ[A,B] and edge set C ⊆ E whose signs are kept.

which could keep the edges’ signs unchanged as many as possible. So, at least
half of the edges incident to vi stay at the same signs. After n rounds, there
are at least half of edges keeping their signs unchanged. The final set of edges
|C| ≥ |E|/2 ≥ K(G)/2.

4.2 Local Search Algorithm

Algorithm 2: Given a general signed graph G(V,E), take a vertex order v1, . . . , vn

arbitrarily and initialize two vertex sets A = V,B = ∅. Check the vertices one
by one in this order. If a vertex vi could keep more edges’ signs unchanged by
converting its set, then vi is put into another set. This completes a round of
local search. Repeat the local search process several rounds until the two sets A
and B satisfy any vertex vi cannot increase the number of edges keeping their
signs unchanged by converting its set. Finally, the two sets A and B form a
balanced structure satisfying the edges between internal vertices in A or B are
positive and the edges between A and B are negative. Output a subset of edges
C ⊆ E which keep their signs unchanged. Let Ḡ[A,B] be a balanced graph with
partition (A,B). The local search algorithm for K(G) is shown in Algorithm2.

Theorem 6. Algorithm 2 output a 1/2-approximation algorithm: For a signed
graph G(V,E), |C| ≥ K(G)/2.

Proof. First of all, we notice that after each round of conversion, the new two sets
A and B form a balanced structure satisfying the number of edges keeping the
signs unchanged increases strictly. The parameter K(G) ≤ m ≤ n2/2. Therefore,
the algorithm must terminate at most n2/2 rounds. And then we just need to
show |C| ≥ |E|/2 ≥ K(G)/2. The final two sets A and B satisfy any vertex vi

cannot increase the number of edges keeping their signs unchanged by converting
its set. This means that for any vertex vi, at least half of its incident edges keep
their signs unchanged. For any edge e incident to vi, there is exactly one set in
A and B keeping its sign unchanged. Thus Kvi

≥ Cvi
. Here Kvi

, Cvi
are the

number of edges keeping the signs unchanged and the number of edges changing
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Algorithm 3. Randomized Algorithm for K(G)

Input: An edge-signed graph G(V,E).

Output: A balanced signed graph Ḡ and the edge set C ⊆ E whose signs are

kept.

1: Take a vertex order v1, . . . , vn arbitrarily.

2: Initialize A = B = ∅.

3: for i = 1 to n do

4: Put vi into A or B with equal probability 1
2 .

5: Output Ḡ = Ḡ[A,B] and edge set C ⊆ E whose signs are kept.

the signs. They form a partition of the incident edges of vi. Go through all the
vertices and add all n inequalities. Since each edge is computed twice, we have

2|C| =
∑

i∈[n]

Kvi
≥

∑

i∈[n]

Cvi
= 2(|E| − |C|) ⇒ |C| ≥ |E|/2 ≥ K(G)/2.

4.3 Randomized Algorithm

Algorithm 3: Given a general signed graph G(V,E), take a vertex order v1, . . . , vn

arbitrarily and initialize two vertex sets A = B = ∅. Place the vertices one by
one to the set A or B in this order and the rules for placement are as follows:
every vertex vi is put into the set A or B with probability 1/2. Each time
after the allocation of a vertex, the two sets A and B are maintained to form a
balanced structure, which satisfies the edges between internal vertices in A or B
are positive and the edges between A and B are negative. Finally, the two vertex
sets A and B form a balanced structure and output a subset of edges C ⊆ E
which keep their signs unchanged. Let Ḡ[A,B] be a balanced graph with partition
(A,B). The randomized algorithm for K(G) is shown in Algorithm3.

Theorem 7. Algorithm 3 output a 1/2-approximation random algorithm: For a
signed graph G(V,E), E[|C|] ≥ K(G)/2, here E[|C|] is the expectation of |C|.
Proof. We just need to explain E[|C|] = |E|/2 ≥ K(G)/2. In fact, according
to the placement rule: every vertex vi is put into the set A or B with one half
probability. Different vertices are placed independently of each other. For any
edge e(u, v), define a random variable Xe. If the edge e keeps its sign unchanged,
Xe = 1 and if the edge e changes its sign, Xe = 0. Thus we have |C| =

∑
e∈E Xe.

Since the vertices u and v are put into the set A or B with one half probability
independently of each other, therefore, regardless the sign of edge e, the proba-
bility of keeping the sign is 1/2. Thus the expectation of Xe is 1/2. E[Xe] = 1/2.
Therefore E[|C|] =

∑
e∈E E[Xe] = |E|/2.
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4.4 Semidefinite Programming Algorithm

Let us give a strict quadratic program for this optimization problem. Let xi be an
indicator variable for vertex vi which will be constrained to be either +1 or −1.
The partition (A,B) is defined as follows: A = {vi | xi = 1} and B = {vi | xi =
−1}. If edge vivj has a plus sign, then the contribution to the unchanged edge
number is (1 + xi · xj)/2. If edge vivj has a minus sign, then the contribution
to the unchanged edge number is (1 − xi · xj)/2. For ease of presentation, define
E+ = {vivj | vivj has a plus sign } and E− = {vivj | vivj has a minus sign }.
Hence, a strict quadratic program is established as follows:

max
1
2

∑

vivj∈E+

(1 + xi · xj) +
1
2

∑

vivj∈E−

(1 − xi · xj)

s.t. x2
i = 1 vi ∈ V

xi ∈ Z vi ∈ V

(1)

We will relax this program to a vector program. We use n vector variables
in R

n, say v1, . . . ,vn to replace xi, . . . , xn, and replace each product xi ·xj with
the corresponding inner product vi · vj . Then, we obtain the following vector
program for this problem.

max
1
2

∑

vivj∈E+

(1 + vi · vj ) +
1
2

∑

vivj∈E−

(1 − vi · vj )

s.t. vi · vi = 1 vi ∈ V

vi ∈ R
n vi ∈ V

(2)

This vector program is similar to the vector program for Max-Cut problem
in [17], and the vector program (2) is equivalent to a semidefinite program. For
any ε > 0, semidefinite programs can be solved within an additive error of ε, in
polynomial time in n and log(1/ε), using the ellipsoid algorithm [17].

Algorithm 4: Given a general signed graph G(V,E), solve the corresponding
vector program (2). Let a1, . . . ,an be a solution with error ε. Then, pick r to
be a uniformly distributed vector on the unit sphere Sn−1. Place the vertices
one by one to the set A or B in this order and the rules for placement are as
follows: A = {vi | ai · r ≥ 0} and B = {vi | ai · r < 0}. The two sets A and B
are maintained to form a balanced structure, which satisfies the edges between
internal vertices in A or B are positive and the edges between A and B are
negative. Finally, the two vertex sets A and B form a balanced structure and
output a subset of edges C ⊆ E which keep their signs unchanged. Let Ḡ[A,B]
denote a balanced graph with partition (A,B). The semidefinite programming
algorithm for K(G) is as shown in Algorithm 4.

Then we show that performance gurantee α > 0.87856.
Let OPT and OPTv denote the optimal value of program (1) and (2), respec-

tively. It is easy to know that OPT ≥ |E|/2. Let θij be an angle between vectors
ai and aj .
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Algorithm 4. Semidefinite Programming Algorithm for K(G)

Input: An edge-signed graph G(V,E).

Output: A balanced signed graph Ḡ and the edge set C ⊆ E whose signs are

kept.

1: Solve vector program (2). Let a1, . . . ,an be a solution with error ε.

2: Pick r to be a uniformly distributed vector on the unit sphere Sn−1.

3: Let A = {vi | ai · r ≥ 0} and B = {vi | ai · r < 0}.

4: Output Ḡ = Ḡ[A,B] and edge set C ⊆ E whose signs are kept.

Theorem 8. E[|C|] ≥ 0.87856 OPT .

Proof. First, pick ε = 4 × 10−6|E|. Thus, we have give the expression of OPTv:

(1−8×10−6)OPTv ≤ OPTv − ε ≤ 1
2

∑

vivj∈E+

(1+cos θij)+
1
2

∑

vivj∈E−

(1− cos θij)

Define vi and vj are separated if vi and vj are on opposite sides of the partition
(A,B). According to the definition of θij , we have:

Pr[vi and vj are separated] =
θij

π

Then, we get

E[|C|] =
∑

vivj∈E+

Pr[vi and vj are not separated]

+
∑

vivj∈E−

Pr[vi and vj are separated]

=
∑

vivj∈E+

(1 − θij

π
) +

∑

vivj∈E−

θij

π
.

Let α = 2
π min

0≤θ≤π

θ
1−cos θ . We also know that α = 2 min

0≤θ≤π

1− θ
π

1+cos θ . Use elemen-

tary calculus, that α > 0.8785672.
Then we derive the performance ratio as follows:

E[|C|] ≥ α ·
⎡

⎣1
2

∑

vivj∈E+

(1 + cos θij) +
1
2

∑

vivj∈E−

(1 − cos θij)

⎤

⎦

≥ α · (1 − 8 × 10−6)OPTv ≥ 0.87856 OPTv ≥ 0.87856 OPT.
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Remark 3. If the unique games conjecture is true, 0.87856 is almost the best
possible approximation ratio for maximum cut [10]. Without such unproven
assumptions, it has been proven to be NP-hard to approximate the max-cut
value with an approximation ratio better than 16/17 = 0.941... [8,16]. Thus
these inapproximability results are also applied to the computation of K(G).

5 Conclusion and Future Work

Given a signed graph, the maximum number of edges that needed to be kept
to make it balanced is called K(G). We firstly prove the computation of K(G)
is NP-hard. Next we design four approximation algorithms to compute K(G).
All these algorithms are derived from the approximation algorithms of Max-
Cut problem. The best approximation ratio is about 0.87856, which is the best
possible if the unique games conjecture is true.

The balance structure model on the edge weights could be considered. The
weights on the edges represent the degree of the relationship. A balanced struc-
ture is needed to be defined for the weighted case.

Acknowledge. The authors are indebted to Professor Xujin Chen, Professor
Xiaodong Hu and three anonymous referees for their invaluable suggestions and
comments.
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Computing the One-Visibility Copnumber
of Trees
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Abstract. In this paper, we prove a lower bound for the one-visibility
copnumber of trees. We give a linear-time algorithm for computing the
one-visibility copnumber of trees. We also present relations between zero-
visibility and one-visibility copnumbers on trees.

1 Introduction

Graph searching provides mathematical models of many real-world problems.
The cops and robber game was introduced by Nowakowski and Winkler [7] and
Quilliot [8] independently. As a major model in the area of graph searching, it has
received much attention in recent years. In this game, the cops and robber occupy
only vertices, and they move alternatively to their neighbours. Both opponents
have full information about each other’s location as well as the structure of the
graph. The cops move through the graph attempting to capture the robber, while
the robber moves to avoid the cops. A broad overview of many graph searching
models are given in [2] and many aspects of the cops and robber game can be
found in [1].

The zero-visibility cops and robber game was introduced by Tošić [9], which
can be considered as a hybrid of the cops and robber game [7,8] and the edge
searching model [6]. Like the cops and robber game, the cops and robber take
turns alternatively and each individual moves from the current vertex to one of
its neighbours. Like the edge searching model, the robber is invisible. Dereniowski
et al. [4] established a relationship between the zero-visibility copnumber and
the pathwidth of a graph. Dereniowski et al. [5] gave a linear-time algorithm
for computing the zero-visibility copnumber of trees. Recent results on the zero-
visibility cops and robber game can be found in [10,11].

In [3], Clarke et al. considered a variation of cops and robber game, called the
�-visibility cops and robber game. This game has the same setting as the cops
and robber game except that the cops have the information about the location
of the robber only when the distance between the cops and the robber is less
than or equal to �. There are two sub-tasks for cops: seeing and capturing. In the
first phase, the cops move within the distance � of the robber and in the second
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phase, they capture the robber. They used classes of subtrees to characterize
the trees for which k cops can capture the robber for all � ≥ 1. Since each of
those classes contains exponential number of trees, this characterization is not
suitable for designing polynomial time algorithms that can find the minimum
number of cops to capture the robber for any � ≥ 1. The one-visibility cops and
robber game was considered in [13].

In this paper, we investigate the one-visibility cops and robber game on trees.
In Sect. 3, we prove an essential theorem on the lower bound of the copnumber
for trees. In Sect. 4 we propose a linear-time algorithm for computing the one-
visibility copnumber of trees. This bottom-up algorithm allows us to find the
copnumber of all rooted subtrees of a rooted tree. In Sect. 5, we establish relations
between the one-visibility copnumber and zero-visibility copnumber of trees.

2 Preliminaries

Let G be a graph. The vertex set of G is denoted by V (G). We use u1 · · · um to
denote a path with end vertices u1 and um. The length of a path is the number of
edges on the path. The distance between u and v, denoted by distG(u, v), is the
length of the shortest path between u and v in G. Let H be a subgraph of G. The
distance between u and H is defined to be distG(u,H) := min{distG(u, v) | v ∈
V (H)}. The neighbourhood of v is the set NG(v) := {u ∈ V (G) | distG(u, v) = 1}.
The closed neighbourhood of v is the set NG[v] := {u ∈ V (G) | distG(u, v) ≤ 1}.
For k ≥ 0, we generalize this concept to the k-th closed neighbourhood of v,
which is the set

Nk
G[v] := {u ∈ V (G) | distG(u, v) ≤ k} .

The closed neighbourhood of U ⊆ V (G) is defined as the set NG[U ] = {u ∈
V (G) | distG(u,U) ≤ 1}.

The degree of v is the number of edges incident on v, denoted degG(v). A
leaf is a vertex that has degree one. For U ⊆ V (G), we use G[U ] to denote
the subgraph induced by U , which consists of all vertices of U and all of the
edges that connect vertices of U in G. We use G − U to denote the subgraph
G[V (G) − U ]. If U contains a single vertex u, then for simplicity, we use G − u
for G − {u}.

A rooted tree is a tree where a single vertex is marked as the root. Let T [r]

denote a rooted tree T with root r. Every vertex v �= r of the tree is connected
with root r by a unique path where the parent of v is the sole neighbour of v
in the unique path. If u is the parent of v, then v is a child of u. For a vertex
v ∈ V (T [r]), if a vertex u is on the unique path from r to v, then we say that v
is a descendant of u, and u is an ancestor of v. For a vertex v ∈ V (T [r]), we will
use T [v] to denote the subtree of T [r] induced by v and all its descendants, where
v is the root of this subtree. We will extensively use the notation of T [v] − v
in Sect. 4 to denote the forest induced by V (T [v]) − {v}, where T [v] is a rooted
subtree of T [r]. Note that each component in the forest T [v] − v is rooted at the
vertex that is a child of v in T [v].
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The one-visibility cops and robber game is played on a graph by two players:
cop player and robber player. The cop player controls a set of cops and the
robber player controls a single robber. The robber has full information about
the locations of all cops, but the cops have the information about the location of
the robber only when there is a cop whose distance to the robber is at most one.
The game is played over a sequence of rounds. Each round consists of a cops’ turn
followed by a robber’s turn. At round 0, the cops are placed on a set of vertices
and then the robber is placed on a vertex. At each of the following rounds, the
cops move first and the robber move next. At round i, i ≥ 1, each cop either
moves from the current vertex to a neighbouring vertex or stays still, then the
robber does the same. The cops see the robber if the closed neighbourhood of the
cops contains the robber. The cops capture the robber if one of them occupies
the same vertex as the robber. If this happens in a finite number of rounds,
then the cops win; otherwise, the robber wins. The one-visibility cop number of a
graph G, denoted by c1(G), is the minimum number of cops required to capture
the robber on G.

If G is not connected, from the above definition, we know that c1(G) is the
sum of the one-visibility cop number of each component of G. We define c∗

1(G)
to be the largest possible c1(G′), where G′ is a component in G.

The zero-visibility cops and robber game has the same setting as the one-
visibility cops and robber game except that the cops have no information about
the location of the robber at any time, i.e., the robber is invisible to the cops.
However, if a cop occupies the same vertex as the robber at some moment, then
the robber is captured. The zero-visibility cop number of a graph G, denoted by
c0(G), is the minimum number of cops required to capture the robber on G.

We say that a cop vibrates between two adjacent vertices x and y for a
consecutive sequence of rounds if in these rounds, the cop alternates two actions:
“sliding from x to y” and “sliding from y to x”. A subgraph known to not contain
the robber is called cleared ; otherwise, the subgraph is dirty.

3 Lower Bound on c1(T )

The following result is implied by Corollary 2.2 in [3].

Proposition 1. For a tree T and a subtree H of T , c1(H) ≤ c1(T ).

Note that this proposition does not hold for general graphs. Similar to Lemma
4.4 in [3], we can prove the following result for general trees.

Lemma 1. Let T be a tree and v ∈ V (T ). Let H be a component in the forest
T − v. If c1(H) = k, then in any search strategy to clear T , there is a moment
at which at least k cops are on NT [V (H)].

Proof. Let u be the unique neighbour of v in H, and let Hv be the subtree
obtained by adding the vertex v and edge uv to H. Note that NT [V (H)] =
V (Hv). Assume, for the sake of contradiction, that there is a cops’ strategy ST
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for clearing T such that at any moment there are at most k − 1 cops on Hv. We
construct a pseudo strategy S to clear Hv as follows: In ST , whenever a cop is
initially placed in Hv, in S we place the corresponding cop on the same vertex. In
ST , whenever a cop moves within Hv, in S the corresponding cop has the same
action in Hv. In ST , whenever a cop enters Hv, in S we place the corresponding
cop on v. In ST , whenever a cop leaves Hv, in S we remove the corresponding
cop from v. We can easily modify the pseudo strategy S to a cops’ strategy S′

for Hv such that the number of cops used in S′ is the same as that in S. From
the assumption, at any moment in S there are at most k − 1 cops on Hv. So Hv

can be cleared by S′ using at most k − 1 cops. It follows from Proposition 1 that
H is cleared by at most k−1 cops. Thus c1(H) ≤ k−1, which is a contradiction.

Let T be a tree and let S be a cops’ strategy that clears T in m rounds. A
vertex v is dirty at some moment if v is occupied by the robber or the cops do
not know if the robber is on v at the moment. Let V i

b , 1 ≤ i ≤ m, be the set
of dirty vertices of T before the cops’ move in round i, let V i

a , 1 ≤ i ≤ m, be
the set of dirty vertices of T just after the cops’ move in round i. and let V i

c ,
0 ≤ i ≤ m, be the set of vertices of T occupied by cops after the cops’ move in
round i. In the next lemma we show that the robber’s territory is not far away
from the set of vertices occupied by cops.

Lemma 2. Let T be a tree and let S be a cops’ strategy that clears T in m
rounds. Then

(i) for every component H of T [V i
b ], 1 ≤ i ≤ m, there is a vertex v ∈ V i−1

c such
that distT (v,H) ≤ 2; and

(ii) for every component H of T [V i
a ], 1 ≤ i ≤ m − 1, there is a vertex v ∈ V i

c

such that distT (v,H) ≤ 3.

Proof. Let V i
r , 0 ≤ i ≤ m − 1, be the set containing a single vertex that is

occupied by the robber after the robber’s move in round i. At round 0, cops are
placed on vertices of V 0

c , and then the robber is placed on the vertex in V 0
r . So

at round 1, V 1
b = (V (T ) − NT [V 0

c ]) ∪ V 0
r , and thus, statement (i) holds. Since

every cop can move to a neighbouring vertex or stays still, it is easy to see that
statement (ii) also holds. Suppose both statements hold at round i. We will show
that both of them are true at round i + 1.

At round i+1, we have V i+1
b = (NT [V i

a ]−NT [V i
c ])∪V i

r . Let H be a component
of T [V i+1

b ]. Since V i
a ⊆ V i+1

b , there exists a component H ′ in T [V i
a ] such that H ′

is a subgraph of H. By the assumption, there is v ∈ V i
c such that distT (v,H ′) ≤

3. If distT (v,H ′) ≤ 2, then distT (v,H) ≤ 2. If distT (v,H ′) = 3, then there
is a vertex x ∈ NT [V i

a ] such that distT (x, v) = 2, and thus x ∈ V i+1
b . Hence

distT (v,H) ≤ 2 and so statement (i) is true. Just after the cops’ move at round
i + 1, we have V i+1

a = (V i+1
b − NT [V i+1

c ]) ∪ V i
r . Let H be a component in

T [V i+1
a ]. Since V i+1

a ⊆ V i+1
b , there is a component H ′′ in T [V i+1

b ] such that H
is a subgraph of H ′′. By the above, there is v ∈ V i

c such that distT (v,H ′′) ≤ 2.
Then for any vertex x ∈ N(v) ∩ V i+1

c , distT (x, v) ≤ 3. Thus statement (ii) is
true.
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From the above two lemmas, we can show an essential theorem of this section,
which can be considered as an extension of Lemma 4.9 in [3] for general trees in
the 1-visibility cops and robber game.

Theorem 1. Let T be a tree and let k be a positive integer. If there is a vertex
v ∈ V (T ) such that the forest T −N3

T [v] contains three components with copnum-
ber at least k and the path in T connecting any pair of these three components
contains v, then c1(T ) ≥ k + 1.

Proof. Let X1,X2, X3 be three components in T − N3
T [v] with c1(Xi) ≥ k,

1 ≤ i ≤ 3. For 1 ≤ i ≤ 3, let pi ∈ V (Xi) with distT (pi, v) = 4. Let T1 be a
subtree of T which is formed from the disjoint union of Xi, 1 ≤ i ≤ 3, together
with the paths of length four from pi to v. For the sake of contradiction, assume
T1 can be cleared by k cops. Then there is a round t1 such that just after the
cops’ move in this round, only one of the three components, say X1, is cleared
and it remains cleared through the following rounds. There is also a round t2
such that just after the cops’ move, one of the other two components, say X2,
is cleared. Since c1(X2) ≥ k, from Lemma1, there is a round t3 between t1
and t2 such that at the moment t∗ just after the cops’ move in round t3, all k
cops are simultaneously present in NT [V (X2)]. As X3 is contaminated at t∗ and
distT1(v,NT [V (X2)]) = 3, by Lemma2, v is contaminated at t∗. So the robber
will recontaminate X1, which derives a contradiction. Therefore c1(T1) ≥ k +1.
It follows from Proposition 1 that c1(T ) ≥ k + 1.

4 Algorithm for Computing c1(T )

From Sect. 2, we know c∗
1(G) = max{c1(G′) | G′ is a component in G}.

For simplicity, we will use T [v] − N3[v] for T [v] − N3
T [v] [v], which is the forest

obtained from the rooted tree T [v] by deleting the vertices of N3
T [v] [v]. Similarly,

if there is no ambiguity we will simply use dist(u, v), N [v], N2[v] and N3[v]
without subscripts.

Definition 1 (k-pre-branching, k-weakly-branching, k-branching). Let
T [v] be a rooted tree with c1(T [v]) = k ≥ 1. We call v a k-pre-branching vertex if
c∗
1(T

[v] − N2[v]) = k and c1(T
[u]
2v ) = k, where T

[u]
2v is a tree obtained from two

copies of T [v]by connecting each root vto a new root u.
We call va k-weakly-branching vertex if one of the three forests, T [v] − v, or

T [v] − N [v], or T [v] − N2[v], has exactly two components whose root is a k-pre-
branching vertex in the component.

We call va k-branching vertex if c∗
1(T

[v]−N2[v]) = k, the forest T [v]−N2[v]has
exactly one component whose root is a k-weakly-branching vertex in the com-
ponent, and the forest T [v] − N3[v] has no component whose root is a k-weakly-
branching vertex.

Let u be a child of v in T [v]. If uis a k-pre-branching vertex (resp. k-weakly-
branching vertex, k-branching vertex) in T [u], then we say that uis a k-pre-
branching child(resp. k-weakly-branching child, k-branching child) of v. Similarly,
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we can define the k-pre-branching descendant , k-weakly-branching descendant ,
and k-branching descendant of v.

Definition 2. Let T [v]be a rooted tree with c1(T [v]) = k ≥ 1. The k-
pre-branching indicator Ikpb(v) and the k-weakly-branching indicator Ikwb(v)are
defined to be:

Ikpb(v) =

{
1, if v is a k -pre-branching vertex in T [v];
0, otherwise.

Ikwb(v) =

{
1, if v is a k -weakly-branching vertex in T [v];
0, otherwise.

Definition 3. Let T [v]be a rooted tree with c1(T [v]) = k ≥ 1. The k-initial-
counter Jk(v) and the k-weakly-counter Jk

w(v)are defined as follows:

Jk(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, Ikpb(v) = 0 and c∗

1(T
[v] − v) = k − 1;

1, Ikpb(v) = 0, c∗
1(T

[v] − N [v]) = k − 1 and c∗
1(T

[v] − v) = k;
2, Ikpb(v) = 0, c∗

1(T
[v] − N2[v]) = k − 1 and c∗

1(T
[v] − N [v]) = k;

0, otherwise.

Jk
w(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if Ikwb(v) = 1 and v has exactly two k -pre-branching children
and no k -weakly-branching child;

1, if Ikwb(v) = 1 and v has exactly one k -weakly-branching child
and this child u has Jk

w(u) = 0;
2, if Ikwb(v) = 1 and v has exactly one k -weakly-branching child

and this child u has Jk
w(u) = 1 ;

0, otherwise.

Definition 4. (label LT [v](v), value |LT [v](v)|) Let T [v]be a rooted tree. The
label of vin T [v], denoted by LT [v](v), is a sequence

(s1, v1; s2, v2; . . . ; sm, vm; Ismwb (v), J
sm
w (v); Ismpb (v), Jsm(v)),

where si and vi are defined in the following procedure:

1. If T [v] contains only one vertex, then s1 = 1, v1 =⊥, Isiwb(v) = Jsi
w (v) =

Isipb(v) = Jsi(v) = 0, and return LT [v](v) = (1,⊥; 0, 0; 0, 0); otherwise, set

i ← 1 and T
[v]
1 ← T [v].

2. Set si ← c1(T
[v]
1 ). Then we have one of the following cases:

(a) If v is an si-branching vertex in T
[v]
1 , then Isiwb(v) = Jsi

w (v) = Isipb(v) =
Jsi(v) = 0, and return LT [v](v) = (s1, v1; . . . ; si, v; 0, 0; 0, 0).
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(b) If v has an si-branching descendant in T
[v]
1 , let vi be this vertex. Set

T
[v]
1 ← T

[v]
1 − V (T [vi]

1 ), i ← i + 1, and go back to Step 2.
(c) If v is an si-weakly-branching vertex in T

[v]
1 , then Isipb(v) = Jsi(v) =

0, Isiwb(v) = 1, and Jsi
w (v) can be determined by Definition 3; return

LT [v](v) = (s1, v1; . . . ; si,⊥; 1, Jsi
w (v); 0, 0).

(d) If v is an si-pre-branching vertex in T
[v]
1 , then Isiwb(v) = Jsi

w (v) = Jsi(v) =
0, and Isipb(v) = 1; return LT [v](v) = (s1, v1; . . . ; si,⊥; 0, 0; 1, 0).

(e) Isiwb(v) = Jsi
w (v) = Isipb(v) = 0, and Jsi(v) can be determined by Defini-

tion 3; return LT [v](v) = (s1, v1; . . . ; si,⊥; 0, 0; 0, Jsi(v)).

The value of LT [v](v), denoted by |LT [v](v)|, is equal to s1.

Definition 5. Let T [u] be a tree with root u whose children are v1, . . . , vd .
Suppose c∗

1(T
[u] − u) = k ≥ 1. The counters #k

pb(T
[u] − u), #k

wb(T
[u] − u),

#k
c (T

[u] − u), hk(T [u] − u) and hk
w(T

[u] − u) are defined as follows:

#k
pb(T

[u] − u) =
d∑

j=1

Ikpb(vj),

#k
wb(T

[u] − u) =
d∑

j=1

Ikwb(vj),

#k
c (T

[u] − u) =
∣∣∣{j

∣∣ c1(T [vj ]) = k for j ∈ {1, . . . , d}
}∣∣∣ ,

hk(T [u] − u) = max
{
Jk(vj)

∣∣ j ∈ {1, . . . , d}}
,

hk
w(T

[u] − u) = max
{
Jk
w(vj)

∣∣ j ∈ {1, . . . , d}}
.

The labels in Definition 4 have the following properties.

Theorem 2. Let T [u] be a tree with root u whose children are v1, . . . , vd. Suppose
that c∗

1(T
[u] − u) = k ≥ 1 and for 1 ≤ j ≤ d,

L
T [vj ](vj) = (tvj ,⊥; It

vj

wb (vj), J
tvj
w (vj); It

vj

pb (vj), J tvj (vj)).

Then the label LT [u](u) must be of the form (tu, xu, It
u

wb(u), J
tu

w (u); It
u

pb(u), J
tu(u))

which can be determined as follows:

(1) If #k
wb(T

[u] − u) > 1, then LT [u](u) = (k + 1,⊥; 0, 0; 0, 0).
(2) If #k

wb(T
[u] − u) = 1 and #k

c (T
[u] − u) ≥ 2, then

(2.1) if hk
w(T

[u] − u) = 2, then LT [u](u) = (k + 1,⊥; 0, 0; 0, 0).
(2.2) if hk

w(T
[u] − u) = 1 and hk(T [u] − u) ≥ 1, then LT [u](u) = (k + 1,⊥;

0, 0; 0, 0).
(2.3) if hk

w(T
[u]−u) = 1 and hk(T [u]−u) = 0, then LT [u](u) = (k,⊥; 1, 2; 0, 0).

(2.4) if hk
w(T

[u] − u) = 0 and hk(T [u] − u) = 2, then LT [u](u) = (k + 1,⊥;
0, 0; 0, 0).
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(2.5) if hk
w(T

[u]−u) = 0 and hk(T [u]−u) ≤ 1, then LT [u](u) = (k,⊥; 1, 1; 0, 0).
(3) If #k

wb(T
[u] − u) = 1 and #k

c (T
[u] − u) = 1, then

(3.1) if hk
w(T

[u] − u) = 2, then LT [u](u) = (k, u; 0, 0; 0, 0).
(3.2) if hk

w(T
[u] − u) = 1, then LT [u](u) = (k,⊥; 1, 2; 0, 0).

(3.3) if hk
w(T

[u] − u) = 0, then LT [u](u) = (k,⊥; 1, 1; 0, 0).
(4) If #k

wb(T
[u] − u) = 0, then

(4.1) if #k
pb(T

[u] − u) ≥ 3, then LT [u](u) = (k + 1,⊥; 0, 0; 0, 0).
(4.2) if #k

pb(T
[u] − u) = 2, then LT [u](u) = (k,⊥; 1, 0; 0, 0).

(4.3) if #k
pb(T

[u] − u) = 1, then LT [u](u) = (k,⊥; 0, 0; 1, 0).
(4.4) if #k

pb(T
[u] − u) = 0, then

(4.4.1) if hk(T [u] − u) = 2, then LT [u](u) = (k,⊥; 0, 0; 1, 0).
(4.4.2) if hk(T [u] − u) = 1, then LT [u](u) = (k,⊥; 0, 0; 0, 2).
(4.4.3) if hk(T [u] − u) = 0, then LT [u](u) = (k,⊥; 0, 0; 0, 1).

In Algorithm1, we will compute the copnumber of subtrees in the reverse
order sm, sm−1, . . . , s1 of Definition 4. For convenience, in the rest of the paper
we let ti = sm−i+1 and xi = vm−i+1; i.e.,

LT [v](v) = (tvm, xv
m; . . . ; tv1, x

v
1; I

tv1
wb(v), J

tv1
w (v); It

v
1

pb(v), J
tv1 (v)), (1)

where the superscript v in tvi and xv
i are used to refer to the vertex v. So,

|LT [v](v)| = tvm. Note that only xv
1 can be a “⊥” sign, which means that nei-

ther v is an tv1-branching vertex in T [v] −
m⋃
i=2

V (T [xv
i ]) nor it has an tv1-branching

descendant in T [v] −
m⋃
i=2

V (T [xv
i ]). We call the first pair (tvm, xv

m) an item associ-

ated with T [v], and call each pair (tvi , x
v
i ), 1 ≤ i < m, an item associated with

subtree T [v] −
m⋃

j=i+1

V (T [xv
j ]), where tvi is called the key of the item and xv

i is the

attribute.
Algorithm1 is a bottom-up approach for computing 1-visibility copnumber

of a tree. In this algorithm, we first assign labels to each vertex that has no
children. Then for each vertex whose children have been labeled, we compute
the label of this vertex using the rules proved in Theorems 2, 3 and 4. Finally,
the first component in the label of the root is the 1-visibility copnumber of the
tree.

Theorem 3. Let T [u] be a rooted tree and v1, . . . , vd be the children of the root
u. Suppose that L

T [vj ](vj) =⎧⎪⎪⎨
⎪⎪⎩
(tvj

1 ,⊥; It
vj
1

wb (vj), J
t
vj
1

w (vj); I
t
vj
1

pb (vj), J t
vj
1 (vj)), if 1 ≤ j ≤ d1,

(tvj
mj , x

vj
mj ; . . . ; t

vj

1 ,⊥; It
vj
1

wb (vj), J
t
vj
1

w (vj); I
t
vj
1

pb (vj), J t
vj
1 (vj)), if d1 < j ≤ d2,

(tvj
mj , x

vj
mj ; . . . ; t

vj

1 , x
vj

1 ; 0, 0; 0, 0), if d2 < j ≤ d,
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Algorithm 1. Computing the 1-visibility copnumber of a tree
Input: A tree T with n ≥ 3 vertices.
Output: c1(T ).

1: Pick a vertex of T as its root.
2: Sort the vertices of T to a list u1, . . . , un such that every vertex is before its parent

in the list. For each vertex that has no child, set its label as (1, ⊥; 0, 0; 0, 0).
3: If the root un has obtained a label LT [un](un), then return the first component in

this label; otherwise, let u be the first unlabeled vertex in the list currently. Run
Steps 4 to 10 to compute LT [u](u).

4: Let vj , 1 ≤ j ≤ d, be all children of u with labels L
T

[vj ](vj) in the form of Eq. (1).
Let I⊥ be the subset of children whose label contains ⊥ and let Ib be the subset of
children whose label does not contain ⊥.

5: Compute L
T

[u]
1

(u), where T
[u]
1 = T [u] − ⋃

y∈Ib

V (T [x
y
1 ]) − ⋃

y∈I⊥
V (T [x

y
2 ]) and let k =

|L
T

[u]
1

(u)|.
6: For 1 ≤ j ≤ d, if vj ∈ I⊥, let Lj be a list obtained from L

T
[vj ](vj) by deleting the

last six components and items whose key is less than k; if vj ∈ Ib, let Lj be a list
obtained from L

T
[vj ](vj) by deleting the last four components and items whose key

is less than k. Let Ld+1 be a list containing only the first item of L
T

[u]
1

(u).

7: If no key in L1, . . . , Ld, Ld+1 is repeated, then LT [u](u) ← L
T

[u]
1

(u) and insert the

items of L1, . . . , Ld into LT [u](u). Go to Step 3.
8: Find the largest repeated key k∗ in the lists L1, . . . , Ld, Ld+1.
9: Let K = (k1, . . . , k�) be a list containing the distinct keys from L1, . . . , Ld+1 satis-

fying that the keys in K are decreasing and are greater than or equal to k∗.
10: Find the smallest index h in K, where 1 ≤ h ≤ �, such that kh = kh+1 + 1 =

· · · = k� + (� − h). Update K ← (k1, . . . , kh−1, k
′
h) where k′

h = kh + 1. Create a list
X = (Q1, . . . , Qh−1, Qh), where Qi = (ki, xi), 1 ≤ i ≤ h − 1, is an item with key
ki and attribute xi (note that xi, 1 ≤ i ≤ h − 1, is a ki-branching vertex in some
subtree) and Qh = (k′

h, ⊥). Insert (0, 0; 0, 0) at the end of X. Set LT [u](u) ← X.
Go to Step 3.

where x
vj

1 , d2 < j ≤ d, are t
vj

1 -branching vertices of T [u]. Let k = c1(T [u] −
d2⋃

j=d1+1

V (T [x
vj
2 ]) −

d⋃
j=d2+1

V (T [x
vj
1 ])). If t

vj
mj < k for each j ∈ {d1 + 1, . . . , d},

then c1(T [u]) = k.

The following theorem is an extension of Theorem1.

Theorem 4. Let T [u] be a rooted tree and v1, . . . , vd be the children of the root
u. Suppose that for 1 ≤ j ≤ d,

L
T [vj ](vj) = (tvj

mj
, xvj

mj
; . . . ; tvj

1 , x
vj

1 ; 0, 0; 0, 0),

where tv1
m1

≥ tv2
m2

≥ · · · ≥ tvd
md

and x
vj

1 �=⊥. Let k = c∗
1(T

[u] − u). If c1(T [v1]) =
c1(T [v2]) = k, then c1(T [u]) = k + 1.

From Theorems 2, 3 and 4, we can prove the correctness of Algorithm1.
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Theorem 5. For a tree T with at least three vertices, Algorithm1 computes
c1(T ).

In the remainder of this section, we analyze the running time of Algorithm1.

Lemma 3. Suppose that each Si = (timi
, timi−1, . . . , t

i
1), 1 ≤ i ≤ d, is a list of

strictly decreasing positive integers. Let s be the largest number in S1, . . . , Sd

which occurs in at least two lists if one exists; otherwise, let s = 0. Then s can
be determined in O(max{t1m1

, . . . , tdmd
} + d) time.

Lemma 4. Let f(n) be a function defined on the positive integers by the recur-
rence equation

f(n) =

⎧⎪⎨
⎪⎩

c, n = 1
f(n1) + c, d = 1, n ≥ 2,
maxM{∑d

i=1 f(ni) + c(�log n1� + d)}, d ≥ 2, n ≥ 3,

where M = {(n1, . . . , nd) | n1 ≥ · · · ≥ nd ≥ 1, and
∑d

i=1 ni = n − 1}, and c ≥ 1
is a constant. Then f(n) is O(n).

Lemma4 can be proved similarly to Lemma 3.13 in [12].
From Lemmas 3 and 4, we can show the running time of Algorithm1.

Theorem 6. Algorithm1 can be implemented in linear time.

Proof. Let T be a tree with n ≥ 3 vertices. In Algorithm1, Step 2 requires O(n)
time by the topological sort. In each iteration of the loop from Steps 4 to 10,
we compute the label of u in the subtree T [u]. Let v1, . . . , vd be the children of
u whose labels have been calculated. When we calculate those labels, we use
a linked list for each label. We also use a flag associated with every label to
indicate whether the label contains ⊥. So Step 4 requires O(d) time to find I⊥
and Ib.

In Step 5, we construct the subtree T
[u]
1 and compute the label of u in

this subtree from the labels of v1, . . . , vd using Theorem2. In order to save
time for scanning the labels, we compress the label representation. For a sub-
list of items with consecutive keys in a label, we use an interval to represent
them. So by Theorem2, it takes O(d) time to compute L

T
[u]
1

(u). In Step 6, it

takes O(d) time to modify the labels to obtain the lists L1, . . . , Ld+1. Let timi
,

1 ≤ i ≤ d+1, be the largest key in Li. In Steps 7 and 8, from Lemma3, it takes
O(max{t1m1

, . . . , td+1
md+1

}+d) time to determine if all keys in L1, . . . , Ld+1 are dif-
ferent or find the largest repeated key k∗ in the lists. Using the compressed repre-
sentation of labels, the runtime of Steps 9 and 10 is O(max{t1m1

, . . . , td+1
md+1

}+d).
From Lemma 4, the total runtime of the loop from Steps 4 to 10 is O(n).

Thus Algorithm1 can be implemented in linear time.
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5 Relations Between c1(T ) and c0(T )

We first give a relation between c1(T ) and c0(T ) for a general tree T .

Theorem 7. For any tree T , c1(T ) ≤ c0(T ) ≤ 2c1(T ).

A tree is called a caterpillar if removing all degree-one vertices produces
a path or an empty graph. The next lemma shows that the lower bound in
Theorem7 is tight.

Lemma 5. If T is a caterpillar, then c0(T ) = c1(T ) = 1.

Note that adding a pendant edge to a tree may cause the copnumber to
increase by one. The next result gives a case where the copnumber will not
increase after adding a pendant edge.

Lemma 6. Let T be a tree which has a path v1v2v3v4u with degT (v1) = 1 and
degT (vi) = 2, 2 ≤ i ≤ 4. Let H be a tree obtained from T by adding a pendant
edge v0v1 to the vertex v1. Then c1(H) = c1(T ).

From Lemma6, we can show that the lower bound in Theorem7 is tight if
for any two non-degree-2 vertices the distance between them is at least 8.

Lemma 7. Let T be a tree such that the distance between any pair of non-
degree-2 vertices is at least 8. Then c0(T ) = c1(T ).

The following lemma shows that the upper bound in Theorem7 is also tight.

Lemma 8. Let T be a caterpillar with at least one vertex of degree 3. Let H
be a tree obtained from T by replacing every edge by a path of length 3. Then
c0(H) = 2c1(H) = 2.

In a rooted tree, the height of a vertex is the distance from the root to this
vertex. The height of a rooted tree is the largest distance from the root to a leaf.

A perfect k-ary tree is a rooted tree in which every internal vertex has k
children and all leaves have the same height. We use T k

h to denote a perfect
k-ary tree with height h. Notice that the 1-visibility copnumber of a perfect k-
ary tree can be computed by Algorithm1. However, the next two theorems give
formulas for perfect binary trees and k-ary trees.

Theorem 8. Let T 2
h be a perfect binary tree with h ≥ 0. Then c1(T 2

h ) = �h+1
5 �

and c0(T 2
h ) = �h+1

3 �.

Proof. We first show c1(T 2
h ) = �h+1

5 � using induction. If 0 ≤ h ≤ 4, it is easy
to see that one cop can clear the tree, and so the claim holds. Assume that the
claim is true when 5m ≤ h ≤ 5m + 4, m ≥ 0. We only need to show that the
claim is also true when 5m + 5 ≤ h ≤ 5m + 9.

Consider the case where h = 5m + 5. Let v be a child of the root u in
T 2
5m+5. In the forest T 2

5m+5 − N3[v], there are at least two components which
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are isomorphic to T 2
5m and there is at least one component which is isomorphic

to T 2
5m+2 such that the path between any pair of the three components contains

v. From the assumption and Theorem1, we have c1(T 2
5m+5) ≥ m+2. Note that

we can clear T 2
5m+5 with m+2 cops. Thus c1(T 2

5m+5) = m+2. Similarly, we can
show that c1(T 2

5m+i) = m + 2 for 6 ≤ i ≤ 9. Therefore, c1(T 2
h ) = �h+1

5 � for any
h ≥ 0.

Similarly to the above, we can show c0(T 2
h ) = �h+1

3 � by Theorem 3.6 in [5].

Theorem 9. Let T k
h be a perfect k-ary tree with k ≥ 3 and h ≥ 0. Then c1(T k

h )=
�h+1

4 �, and c0(T k
h )= �h+1

2 �.
Proof. We use induction to show c1(T k

h )= �h+1
4 �. It is easy to see that the claim

holds when 0 ≤ h ≤ 3. Assume that the claim is true when 4m−4 ≤ h ≤ 4m−1,
m ≥ 1. We will show that the claim is also true when 4m ≤ h ≤ 4m + 3.
First consider the case where h = 4m. Let u be the root of T k

4m. In the forest
T k
4m−N3[u], there are at least three components which are isomorphic to T k

4m−4

such that the path between any pair of the three components contains u. From
the assumption and Theorem1, we have c1(T k

4m) ≥ m + 1. Since we can clear
T k
4m with m + 1 cops. Thus c1(T k

4m) = m + 1. Similarly, we can show that
c1(T k

4m+i) = m + 1 for 1 ≤ i ≤ 3. Hence c1(T k
h )= �h+1

4 � for any T k
h with k ≥ 3

and h ≥ 0.
Similarly, from Theorem 3.6 in [5], we can show that c0(T k

h )= �h+1
2 �.
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Abstract. For graphs G, F and H, let G → (F, H) signify that any
edge coloring of G by red and blue contains either a red F or a blue
H. Thus the Ramsey number R(F, H) is min{r | Kr → (F, H)}. In this
note, we consider an optimization problem as follows. For an integer
k ≥ 1, let G = {Gk, Gk+1, . . . } be a class of graphs Gn with δ(Gn) ≥ 1.
We define the critical Ramsey number RG(F, H) as max{n | Kr \ Gn →
(F, H), Gn ∈ G}, where r = R(F, H). For some pairs F and H, we shall
determine RG(F, H), where G consists of books, matchings and complete
graphs, respectively.

Keywords: Maximum subgraph · Ramsey number · Critical Ramsey
graph

1 Introduction

For graphs G, F and H, let G → (F,H) signify that any red-blue edge coloring of
G contains either a red F or a blue H. Thus G �→ (F,H) means that there exists
a red-blue edge coloring of G that contains neither a red F nor a blue H. For any
graphs F and H, there is a graph G of large order such that G → (F,H), and
the Ramsey number R(F,H) is the smallest order of such G. Let v(G) denote
the order of G.

Definition 1. For graphs G, F and H, we call G a Ramsey graph for F and H
if G → (F,H) and v(G) = R(F,H).

Let G be a subgraph of Kr, where r = R(F,H). Denote by Kr \G the graph
obtained from Kr by removing an edge set of G from Kr. A natural problem is
to find the maximum G such that Kr \ G → (F,H). To specify the types of the
“maximum” graphs G, let us focus on some families of graphs as follows. Let
Bn = K2 + nK1 and Mn = nK2. Denote

B = {B1, B2, . . . }, M = {M1,M2, . . . }, K = {K2,K3, . . . }.

Supported in part by NSFC.

c© Springer Nature Switzerland AG 2020
Z. Zhang et al. (Eds.): AAIM 2020, LNCS 12290, pp. 424–435, 2020.
https://doi.org/10.1007/978-3-030-57602-8_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57602-8_38&domain=pdf
http://orcid.org/0000-0002-1699-2337
http://orcid.org/0000-0001-8012-7447
http://orcid.org/0000-0002-8721-8488
https://doi.org/10.1007/978-3-030-57602-8_38


Maximum Subgraphs in Ramsey Graphs 425

Definition 2 [16]. Let k ≥ 1 be an integer and G = {Gk, Gk+1, . . . } be a class
of graphs Gn, where each graph Gn ∈ G has minimum degree δ(Gn) ≥ 1. Define
the critical Ramsey number RG(F,H) of F and H with respect to G as

RG(F,H) = max
{
n | Kr \ Gn → (F,H), Gn ∈ G

}
,

where r = R(F,H).

We shall call RB(F,H), RM(F,H) and RK(F,H) the book-critical Ramsey num-
ber, the matching-critical Ramsey number and the complete-critical Ramsey
number, respectively. Note that if G is a class of stars, then RG(F,H) becomes
the star-critical Ramsey number, which was introduced by [12] in a different
form, and it has attracted much attention, see [9–14,18,19].

For vertex disjoint graphs F and H, denote by F + H the join of F and H
that is obtained from F and H by adding edges connecting V (F ) and V (H) com-
pletely, and F ∪ H the union of F and H whose edge set as E(F ) ∪ E(H). Denote
by s(F ) the chromatic surplus of F that is the size of the smallest color class in a
χ(F )-coloring of F . If H is a connected graph and v(H) ≥ s(F ), color the edges of
K(χ(F )−1)(v(H)−1)+s(F )−1 red and blue such that the blue graph is isomorphic to
(χ(F )−1)Kv(H)−1 ∪ Ks(F )−1, which implies K(χ(F )−1)(v(H)−1)+s(F )−1 �→ (F,H),
and thus R(F,H) ≥ (χ(F ) − 1)(v(H) − 1) + s(F ). Call a connected graph H
with v(H) ≥ s(F ) as F -good if

R(F,H) = (χ(F ) − 1)(v(H) − 1) + s(F ).

A path in a graph is called suspended if the degree of each internal vertex
is two. Bondy and Erdős [1] proved that a long cycle Cn (hence a long path) is
Cm-good and Kr(t)-good. Furthermore, Burr [2] showed that H is F -good for
any fixed F if H contains a sufficiently long suspended path. For a graph H, let
Hn be a graph of order n that contains a suspended path of order n − v(H) + 2
obtained from H by adding n − v(H) extra vertices to an edge. In this note, we
have the following results, where star Sn = K1,n.

Theorem 1. Let F be a graph with χ(F ) ≥ 2 and H a connected graph. Then

RB(F,Hn) = n + Cn

for sufficiently large n, where Cn = Cn(F,H) such that |Cn| ≤ v2(F ) + v(H).

It is often to call a vertex with degree greater than 1 as internal vertex, and
we shall call it as non-leaf vertex in the following result to avoid confusion with
that in a suspended path that has degree 2.

Theorem 2. For integers m ≥ 2 and n ≥ 3, it holds

RB(Tn, Km) =

{
n − 4 if any non-leaf vertex of Tn is adjacent to at most one leaf in Tn,

n − 3 otherwise.
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Theorem 3. Let m and n be positive integers. Then

RM(Sm, Sn) =

{
0 if m and n are both even,⌊

m+n−1
2

⌋
otherwise.

Theorem 4. Let m and n be integers with n ≥ m ≥ 1 and n ≥ 2. Then

RM(Mm,Mn) =
⌊2n + m − 1

2

⌋
.

In addition to RK(S1, S1) = 0, we shall determine all other RK(Sm, Sn).

Theorem 5. Let m and n be positive integers with m + n ≥ 3. Then

RK(Sm, Sn) =
{

0 if m and n are both even,
m + n − 1 otherwise.

Theorem 6. Let m and n be integers with n ≥ m ≥ 1 and n ≥ 2. Then

RK(Mm,Mn) = n.

Let us defer the proofs to the following sections.

2 Book-Critical Ramsey Numbers

Before proceeding to proofs, we need some notation. If V (F ) ⊆ V (Kn), let Kn\F
be the graph obtained from Kn by deleting the edges of F from Kn. Slightly
abusing notation, for a graph G and a vertex subset S of G, we write G \ S for
the subgraph of G induced by V (G) \ S.

If there is a red-blue edge coloring of G that contains neither a red F nor
a blue H, we call such a coloring an (F,H)-free coloring and the graph G is
called an (F,H)-free graph. For a red-blue edge colored G, the subgraphs of G
induced by red edges and by blue edges are denoted by GR and GB , respectively.
For a vertex x of G, we denote the set of all neighbors of x in GR and GB by
NR

G (x) and NB
G (x), respectively. Let dG(x) denote the degree of vertex x in G,

and dR
G(x), dB

G(x) denote the degree of vertex x in GR and GB , respectively.
Thus dR

G(x) = |NR
G (x)|, dB

G(x) = |NB
G (x)| and dR

G(x)+dB
G(x) = dG(x). If there is

no confusion, we will write d(x), dR(x) and dB(x) for dG(x), dR
G(x) and dB

G(x),
respectively and simply. Let G[S] be the subgraph of G induced by S ⊆ V (G).
Note that each subgraph of G admits a red-blue edge coloring preserved from
that of G.

Let U1, U2, . . . , Uχ(F ) be the color classes of vertex-coloring of F by χ(F )
colors such that |Uχ(F )| = s(F ), where each Ui is an independent set. Denote by
τ(F ) the minimum degree of vertices of Uχ(F ) among all such vertex-colorings
of F .

Lemma 1. Let F be a graph with χ(F ) ≥ 2 and H a connected graph of order
v(H) ≥ s(F ). If H is F -good, then

RB(F,H) ≤ max{s(F ) − 3, v(H) + s(F ) − δ(H) − τ(F ) − 2}.
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Proof. For convenience, let δ = δ(H), χ = χ(F ), τ = τ(F ) and s = s(F ).
First, we assume s ≥ 2. Consider the graph G = Kr \ Bn, where r = R(F,H) =
(χ − 1)(v(H) − 1) + s. We shall prove that there is a red-blue edge coloring
of G such that G contains neither a red F nor a blue H. Define Kχ(v(H) −
1, . . . , v(H) − 1, s − 2) on vertex set V =

⋃
1≤i≤χ Vi where |Vi| = v(H) − 1 for

1 ≤ i ≤ χ − 1 and |Vχ| = s − 2. Let G1 be the subgraph Kr−2 of G. Color the
edges of G1 such that

GR
1 = Kχ(v(H) − 1, . . . , v(H) − 1, s − 2), GB

1 = Kr−2 \ GR
1 .

Take a subset S ⊆ Vχ−1 of size δ − 1 and a subset T ⊆ Vχ−1 \ S of size min{τ −
1, v(H) − δ}.

Now consider two vertices in V (G) \ V (G1), denoted by v1 and v2. Let GB

be obtained from GB
1 by adding all edges between {v1, v2} and S. Let GR be

obtained from GR
1 by adding all edges between {v1, v2} and V1 ∪ . . . ∪ Vχ−2 ∪ T .

Note that GB contains no H, as any subgraph of GB of order v(H) has the
minimum degree at most δ − 1 and v(H) ≥ s. Furthermore, GR contains no F
as τ(GR) ≤ τ − 1. Thus,

RB(F,H) ≤ s − 2 + v(H) − 1 − (δ − 1) − min{τ − 1, v(H) − δ} − 1
= max{s − 3, v(H) + s − δ − τ − 2}.

If s = 1, let r = R(F,H) = (χ − 1)(v(H) − 1) + 1. Similarly, consider the
graph G = Kr \Bn. Define Kχ−1(v(H)−1, . . . , v(H)−1, v(H)−2) on vertex set
V =

⋃
1≤i≤χ−1 Vi where |Vi| = v(H)−1 for 1 ≤ i ≤ χ−2 and |Vχ−1| = v(H)−2.

Let G1 be the subgraph of Kr−2 of G, and color the edges of G1 such that

GR
1 = Kχ−1(v(H) − 1, . . . , v(H) − 1, v(H) − 2), GB

1 = Kr−2 \ GR
1 .

Take a subset S ⊆ Vχ−1 of size δ − 1 and a subset T ⊆ Vχ−1 \ S of size min{τ −
1, v(H)− δ − 1}. Denote by v1 and v2 the two vertices in V (G) \V (G1). Let GB

be obtained from GB
1 by adding all edges between {v1, v2} and S. Let GR be

obtained from GR
1 by adding all edges between {v1, v2} and V1 ∪ . . . ∪ Vχ−2 ∪ T .

Similarly, G contains neither a blue H nor a red F . Thus,

RB(F,H) ≤ v(H) − 2 − (δ − 1) − min{τ − 1, v(H) − δ − 1} − 1
≤ v(H) − δ − τ − 1,

completing the proof. 	

Recall that Hn is a graph of order n obtained from H that contains a sus-

pended path of order n − v(H) + 2 defined previously.

Lemma 2 [2]. For graph F and connected graph Hn, Hn is F -good when n is
sufficiently large.

For the proof of Theorem 1, we shall employ an algorithmic proof as follows.
Set m = v(F ), s = s(F ), χ = χ(F ) and n ≥ v(H)+(m−2)(m− t)+ t, where t is
the number of vertices in a largest color class among a proper vertex coloring of
F . Let G = Kr \Bp1 , where r = R(F,Hn) and p1 = n−v(H)−s(s+t−2)−t−3.
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Lemma 3. Let F be any bipartite graph on vertex sets V1 and V2 with s = |V1|,
t = |V2| and s ≤ t, and Hn a connected graph of order n containing a suspended
path of order n − v(H) + 2. If n ≥ v(H) + s(s + t − 3) + 4, then

RB(F,Hn) ≥ n − v(H) − s(s + t − 2) − t − 3.

Proof. By Lemma 2, we have r = R(F,Hn) = n + s − 1. Let G = Kr \ Bp1

with p1 = n − v(H) − s(s + t − 2) − t − 3. We shall show that any red-blue edge
coloring of G contains either a red F or a blue Hn.

Let {v1, v2} be the vertices of K2 in the deleted book K2 + p1K1 and Hn−i

a graph from Hn with the suspended path shortening by i. As R(F,Hn−2) =
n + s − 3, we are done unless there is a blue Hn−2 in G \ {v1, v2}. Let Y =
V (G) \ V (Hn−2). Note that v1, v2 ∈ Y , and denote by X1 the vertex set of the
suspended path of length n − v(H) − 1 in the Hn−2 with

X1 = {x1, x2, . . . , xn−v(H)}
in order. Write X2 = {x1, x2, . . . , xn−v(H)−1} ⊆ X1. For any y ∈ Y \ {v1, v2},
consider the n − v(H) − 1 edges between y and X2.

If there are two consecutive blue edges yxi and yxi+1, then there is a blue
Hn−1. Denote by X ′

1 the vertex set of the suspended path in Hn−1 with X ′
1 =

{x′
1, x

′
2, . . . , x

′
n−v(H)+1} in order. Let

Y ′ = V (G) \ V (Hn−1) and X ′
2 = {x′

1, x
′
2, . . . , x

′
n−v(H)} ⊆ X ′

1.

For any y′ ∈ Y ′ \ {v1, v2}, we assume that no two consecutive edges y′xi and
y′xi+1 are both blue, otherwise we have a blue Hn. Furthermore, suppose that
s + t − 1 edges are blue, say y′x′

i1
, y′x′

i2
, . . . , y′x′

is+t−1
. Then for j < k, if

x′
ij+1x

′
ik+1 is blue, then G contains a blue Hn with new suspended path

x′
1 . . . x′

ijy
′x′

ik
x′

ik−1 . . . x′
ij+1x

′
ik+1 . . . x′

n−v(H)+1.

Thus assume that all edges x′
ij+1x

′
ik+1 are red, then x′

i1+1, x
′
i2+1, . . . , x

′
is+t−1+1

and y′ will induce a red Ks+t hence a red F . Consequently, we may assume that
any y′ ∈ Y ′ \ {v1, v2} is adjacent to X ′

2 by at most s + t − 2 blue edges. By
the similar argument, vi is adjacent to X ′

2 by at most s + t − 1 blue edges, for
i = 1, 2. As vi is adjacent to at least n − v(H) − p1 vertices in X ′

2, at least

n − v(H) − p1 − 2(s + t − 1) − (s − 2)(s + t − 2) ≥ t

vertices in X ′
2 are adjacent to each vertex of Y ′ in red completely. As |Y ′| = s,

these vertices and Y ′ yield a red F .
So we assume that there are no two consecutive blue edges yxi and yxi+1.

Suppose there is a vertex y0 ∈ Y \ {v1, v2} such that y0 is adjacent to X2 by at
least s+ t− 1 blue edges, say y0xi1 , y0xi2 , . . . , y0xis+t−1 . Since there is no red F ,
we can find a blue edge xij+1xik+1 with j < k. Then G contains a blue Hn−1

with new suspended path

x1xijy0xikxik−1 . . . xij+1xik+1 . . . xn−v(H).



Maximum Subgraphs in Ramsey Graphs 429

Similarly as above, we can obtain a red F . Thus we may assume that for any
y ∈ Y \ {v1, v2}, y is adjacent to X2 by at most s + t − 2 blue edges. If v1 or v2
has two consecutive blue neighbors in X2, say v1, then we get a blue Hn−1, and
v2 is adjacent to X2 by at most s + t blue edges. As v2 is adjacent to at least
n − v(H) − 1 − p1 vertices in X2 and |Y \ {v1}| = s, at least

n − v(H) − 1 − p1 − (s + t) − (s − 1)(s + t − 2) = t

vertices in X2 are adjacent to each vertex of Y \ {v1} in red completely, yield-
ing a red F . Thus both v1 and v2 have no consecutive blue neighbors in X2.
Furthermore, v1 or v2 is adjacent to X2 by at most s + t blue edges. Other-
wise suppose both v1 and v2 are adjacent to X2 by s + t + 1 blue edges, say
NB

X2
(v1) = {xi1 , xi2 , . . . , xis+t+1} and NB

X2
(v2) = {xi′

1
, xi′

2
, . . . , xi′

s+t+1
} in order.

Since there is no red F , we can find a blue edge xij+1xik+1 for some j < k, and
then V (Hn−2) ∪ {v1} induces a blue Hn−1. Apart from the left neighbor of v1
in the path of Hn−1, we can find a blue edge xi′

j′+1xi′
k′+1 for some j′ < k′, then

V (Hn−1) ∪ {v2} shall induce a blue Hn. So we may assume that v1 is adjacent
to X2 by at most s + t blue edges. Then V (Hn−2) ∪ {v1} induces a blue Hn−1.
Similarly, |Y \ {v2}| = s and at least t vertices in X2 are adjacent to each vertex
of Y \ {v2} in red completely, yielding a red F , completing the proof. 	

Lemma 4. Let F be any graph of order m with χ(F ) ≥ 3 and Hn a connected
graph of order n containing a suspended path of length n−v(H)+1. Let Fχ(F )−1

be a graph from F by deleting all the t vertices in a color class among a proper
vertex coloring of F . If n ≥ v(H) + (m − 2)(m − t) + t, then

RB(F,Hn) ≥ min{RB(Fχ(F )−1,Hn), n − v(H) − (m − 2)(m − t) − t − 2}.

Proof. Set s = s(F ) and χ = χ(F ). By Lemma 2, we have r = R(F,Hn) =
(χ−1)(n−1)+s. Let G be the graph Kr \Bp, where p = min{RB(Fχ−1,Hn), n−
v(H) − (m − 2)(m − t) − t − 2}. We shall show that any red-blue edge coloring
of G contains either a red F or a blue Hn. Let v1 and v2 be the vertices of the
K2 in the deleted book K2 + pK1, and Hn−i the graph obtained from Hn with
the suspended path shortening by i. As R(F,Hn−1) ≤ r − 2, we are done unless
there is a blue Hn−1 in G \ {v1, v2}. Delete n − 1 vertices of this blue Hn−1,
then there are at least r(Fχ−1,Hn) vertices left. As p ≤ RB(Fχ−1,Hn), we may
assume that there is a red Fχ−1. Thus we obtain a blue Hn−1 and a red Fχ−1.
Let X = V (Hn−1) and Y = V (Fχ−1) with |X| = n − 1 and |Y | = m − t. Denote
the vertices of the suspended path of length n − v(H) in Hn−1 by

X1 = {x1, x2, . . . , xn−v(H)+1}
in order. Write X2 = {x1, x2, . . . , xn−v(H)} ⊆ X1. Note that v1, v2 /∈ X1. Now
we consider two cases.

Case 1. If v1 /∈ Y and v2 /∈ Y , by the similar argument as in the proof of Lemma
3, for any y ∈ Y , y is adjacent to X2 by at most m − 2 blue edges, and thus at
least

n − v(H) − (m − 2)(m − t) ≥ t
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vertices in X2 are adjacent to each vertex of Y in red completely, which yields
a red F .
Case 2. If v1 ∈ Y and v2 �∈ Y , similarly, for any y ∈ Y \ {v1}, y is adjacent to
X2 by at most m− 2 blue edges, and v1 is adjacent to X2 by at most m− 1 blue
edges. Then at least

n − v(H) − p − (m − 1) − (m − 2)(m − t − 1) = t + 1

vertices in X2 are adjacent to each vertex of Y in red completely, which yields
a red F .
Case 3. If v1 ∈ Y and v2 ∈ Y , similarly, for any y ∈ Y \ {v1, v2}, y is adjacent to
X2 by at most m − 2 blue edges. Both v1 and v2 are adjacent to X2 by at most
m − 1 blue edges. Then at least

n − v(H) − p − 2(m − 1) − (m − 2)(m − t − 2) = t

vertices in X2 are adjacent to each vertex of Y in red completely. These vertices
and Y yield a red F , completing the proof. 	

Proof of Theorem 1. Set δ = δ(H), m = v(F ), s = s(F ), χ = χ(F ) and τ = τ(F ).
Let V1, V2, . . . , Vχ be the color classes of F under a proper vertex coloring using
χ colors and assume that |V1| ≥ |V2| ≥ . . . ≥ |Vχ|. Choose a vertex coloring such
that |Vχ| is as small as possible, then let |Vχ| = s and |V1| = t. We shall show
that for sufficiently large n, it holds

n−v(H)−(m−2)(m−t)−t−3 ≤ RB(F,Hn) ≤ max{s(F )−3, n+s−δ−τ−2}. (1)

The upper bound in (1) follows from Lemma 1. For the lower bound in (1),
as it is trivial when χ = 2 by Lemma 3, we assume χ ≥ 3. Define Fχ−i =
F \ (V1 ∪ V2 ∪ . . . ∪ Vi), for i = 1, 2, . . . , χ − 2. By Lemma 4, we have

RB(F,Hn) ≥ min{RB(Fχ−1,Hn), n − v(H) − (m − 2)(m − t) − t − 2}.

Let |Vχ−1| = t1. As m ≥ s+t1+t, applying Lemma 4 repeatedly and by Lemma 3,
we have

RB(F,Hn) ≥ min{RB(F2,Hn), n − v(H) − (m − 2)(m − t) − t − 2}
≥ n − v(H) − (m − 2)(m − t) − t − 3,

which yields the claimed lower bound. 	

Let r = R(Tn,Km). Denote by {v1, v2} the vertex set of K2 in the deleted

book. As it is trivial for star, so we focus on the case that Tn is not a star. We
achieve the red Tn in a red-blue edge colored G = Kr \ Bp containing no blue
Km by the following steps. Let p = n − 4 if we want return a tree with non-leaf
vertex being adjacent to at most one leaf in Tn, otherwise p = n − 3.

Step 1: Apply Lemma 8, find m−1 red cliques U1, U2, . . . , Um−1 with |Ui| = n−1
for 1 ≤ i ≤ m − 2 and |Um−1| = n − 2.
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Step 2: If we can find two red common neighbors of v1 and v2 in Um−1, return
a red Tn with any non-leaf vertex being adjacent to at most one leaf in Tn.
Step 3: Otherwise, find one common red neighbor of v1 and v2 in Um−1.
Step 4: Return a red Tn with at least one non-leaf vertex being adjacent to at
least two leaves in Tn.

Lemma 5 [4]. For any tree on n vertices, R(Tn,Km) = (n − 1)(m − 1) + 1.

Lemma 6 [16]. For integers n,m ≥ 2, RK(K1,n,Km) = n.

Lemma 7 [17]. If T is a tree on n vertices and H is a simple graph with δ(H) ≥
n − 1, then T is a subgraph of H.

Definition 3. For integers n,m ≥ 2, let r = R(Tn,Km) = (n − 1)(m − 1) + 1.
Define the graph G to be a red-blue edge colored Kr−2 such that

GR = Km−1(n − 1, . . . , n − 1, n − 2), GB = Kr−2 \ GR.

Lemma 8. For integers n,m ≥ 2, let r = R(Tn,Km) = (n − 1)(m − 1) + 1. If
c is a (Tn,Km)-free coloring of Kr−2 where Tn is not a star, then the resulting
graph must be graph G as in Definition 3.

Proof. We shall proceed the proof by induction. It is trivial for m = 2, and
we may assume m ≥ 3. Let G be a red-blue edge colored Kr−2. For any vertex
v ∈ V (G), if dB(v) ≤ (n − 1)(m − 2) − 2, then dR(v) = r − 3 − dB(v) ≥ n − 1.
By Lemma 7, G contains a red Tn. So assume that there is a vertex u such that
dB

G(u) ≥ (n − 1)(m − 2) − 1.
By induction, as G[NB

G (u)] is (Tn,Km−1)-free, G[NB
G (u)] has the structure

of the graph described in Definition 3. Denote U = NB
G (u) and U = U1 ∪ U2 ∪

. . . ∪ Um−2 with |U1| = |U2| = . . . = |Um−3| = n − 1 and |Um−2| = n − 2. If
V (G)\U induces a red clique, as there is no red Tn, the edges between V (G)\U
and U are all blue, which yields the structure as required. Then we assume that
there is a blue edge v1v2 with v1, v2 ∈ V (G)\U . For any vertex x ∈ Um−2, either
xv1 or xv2 is red, otherwise we have a blue Km. If v1 is adjacent to Um−2 in red
completely, {v1}∪Um−2 induces a red clique of order n−1, then V (G)\(U∪{v1})
induces a red clique of order n − 2, yielding the structure as required. So there
exists x1 ∈ Um−2 such that v1x1 is blue, then v2x1 is red. Similarly, there exists
x2 ∈ Um−2 such that v2x2 is blue, then v1x2 is red. As Tn is not a star, we
can get a red Tn with leaves v1 and v2. Then V (G) \ U induces a red clique
and any vertex in V (G) \ U is adjacent to U by blue completely, completing the
proof. 	

Proof of Theorem 2. Let r = R(Tn,Km) = (n − 1)(m − 1) + 1, and we consider
two cases.

Case 1. Any non-leaf vertex is adjacent to at most one leaf in Tn. For the upper
bound, consider the graph G = Kr \ Bn−3. Let G1 be the Kr−2 in G, and
V (G) \ V (G1) = {v1, v2}. Color the edges of G1 in red and blue such that

GR
1 = Km−1(n − 1, . . . , n − 1, n − 2), GB

1 = Kr−2 \ GR
1 .
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Then denote V (G1) = U1 ∪ U2 ∪ . . . ∪ Um−1 with |U1| = . . . = |Um−2| = n−1 and
|Um−1| = n− 2. Color all the edges between {v1, v2} and U1 ∪ U2 ∪ . . . ∪ Um−2

in blue, and color all the edges between {v1, v2} and one vertex from Um−1 in
red. As any non-leaf vertex is adjacent to at most one leaf in Tn, there is no red
Tn in G, which implies RB(Tn,Km) ≤ n − 4.

For the lower bound, consider the graph G = Kr \ Bn−4. Let G1 be the
Kr−2 in G, and V (G) \ V (G1) = {v1, v2}. By Lemma 8, G1 has the structure in
Definition 3, where V (G1) = U1 ∪ U2 ∪ . . . ∪ Um−1 with |U1| = . . . = |Um−2| =
n−1 and |Um−1| = n−2. As v1 and v2 can only have blue neighbors in Ui where
1 ≤ i ≤ m−2, then v1 and v2 have at least two red common neighbors in Um−1,
yielding a red Tn.

Case 2. There is an non-leaf vertex which is adjacent to at least two leaves in Tn.
By Lemma 1, we have RB(Tn,Km) ≤ n−3. For the lower bound, if Tn is a star, by
Lemma 6, it is easy to see that RB(K1,n−1,Km) ≥ RK(K1,n−1,Km)− 2 = n− 3.
If Tn is not a star, consider the graph G = Kr \Bn−3. Let G1 be the Kr−2 in G,
and V (G) \ V (G1) = {v1, v2}. By Lemma 8, G1 has the structure in Definition
3, where V (G1) = U1 ∪ U2 ∪ . . . ∪ Um−1 with |U1| = . . . = |Um−2| = n − 1 and
|Um−1| = n − 2. Thus we have v1 and v2 has at least one red common neighbor
in Um−1, yielding a red Tn. 	


3 Matching-Critical Ramsey Numbers

Lemma 9 [3,5]. Let m and n be positive integers. Then

R(Sm, Sn) =
{

m + n − 1 if m and n are both even,
m + n otherwise.

Proof of Theorem 3. If m and n are both even, as shown in [8] that Km+n−1 \
K2 �→ (Sm, Sn), then we have RM(Sm, Sn) = 0. If m or n is odd, r =
R(Sm, Sn) = m + n, then we consider two cases.

Case 1. If m + n is odd, for graph G = Kr \ M(m+n−1)/2, then G must contain
a vertex, denoted by v, such that d(v) = m+n− 1. Then we have dR(v) ≥ m or
dB(v) ≥ n, producing a red Sm or a blue Sn. Thus RM(Sm, Sn) = (m+n−1)/2.
Case 2. If m + n is even, for graph G = Kr \ M(m+n−2)/2, then G must contain
a vertex, denoted by v, such that d(v) = m + n − 1, producing a red Sm or a
blue Sn. So we have RM(Sm, Sn) ≥ (m + n − 2)/2. For the upper bound, set
Zm+n = {0, 1, . . . ,m + n − 1},

A1 =
{

±1,±2, . . . ,±m − 1
2

}
, A2 =

{
± m + 1

2
,±m + 3

2
, . . . ,±m + n − 2

2

}
.

For graph H = Kr \ M(m+n)/2, define an (Sm, Sn)-free coloring of H on Zm+n,
in which the edge uv is red if u − v ∈ A1 and the edge uv is blue if u − v ∈ A2.
Then HR is (m − 1)-regular and HB is (n − 1)-regular, yielding H is (Sm,
Sn)-free. 	
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Lemma 10 [6,7,15]. Let m and n be integers with n ≥ m ≥ 1. Then
R(Mm,Mn) = 2n + m − 1.

Claim. K5 \ M2 → (M2,M2).

Proof. Let G = K5 \M2 with V (G) = {v1, v2, v3, v4, v5} and v1v2, v3v4 /∈ E(G).
Suppose that v2v3 is red. Then v1v4 and v4v5 are both blue, otherwise there is
a red M2. Similarly, we have v1v3 and v2v4 are both red, yielding a red M2. 	

Proof of Theorem 4. We shall prove RM(Mm,Mn) = �(2n + m − 1)/2� for n ≥ 2
and n ≥ m ≥ 1. By Lemma 10, r = R(Mm,Mn) = 2n + m − 1 for n ≥ m ≥ 1.
We will prove the claimed equality as follows.

Case 1. m = 1 and n ≥ 2. In this case, as r = R(M1,Mn) = 2n, the claimed
equality can be seen easily.
Case 2. m = n = 2. In this case, by the claim, any edge coloring of K5 \ M2 in
red and blue contains either a red M2 or a blue M2.

Claim. If the claimed equality holds for (Mm,Mn), then it holds for
(Mm+1,Mn+1).

Proof. Let graph G = Kr′ \ M�r′/2� with r′ = R(Mm+1,Mn+1) = 2n + m + 2.
Note that if any vertex in G has no blue neighbors or no red neighbors, there
would be a red Mm+1 or a blue Mn+1 in G, respectively. Then we may assume
that there is a vertex v in G with a red neighbor a and a blue neighbor b. Let
H = G \ {v, a, b}. Since Kr \M�r/2� ⊆ H with r = R(Mm,Mn) = 2n+m− 1, H
contains either a red Mm or a blue Mn. Along with edge va or vb, we get either
a red Mm+1 or a blue Mn+1. 	

Combining Case 1, Case 2 and the above claim, the claimed equality in (Mm,Mn)
can be reduced to that in (M1,Mn−m+1) or (M2,M2), completing the proof. 	


4 Complete-Critical Ramsey Numbers

Proof of Theorem 5. Lemma 9 tells us the Ramsey number R(Sm, Sn). Assume
m or n is odd. As graph G = Km+n \ Km+n−1 = Sm+n−1, for the center vertex
v ∈ V (Sm+n−1), we have dR(v) + dB(v) = m + n − 1. Then dR(v) ≥ m or
dB(v) ≥ n, producing a red Sm or a blue Sn. If m and n are both even, as shown
in [8] that Km+n−1 \ K2 �→ (Sm, Sn), then we obtain RK(Sm, Sn) = 0. 	

Proof of Theorem 6. Lemma 10 yields r = R(Mm,Mn) = 2n+m−1 for n ≥ m ≥
1. For the upper bound, let graph G = K2n+m−1 \Kn+1 = Kn+m−2 + (n+1)K1

with GR = Km−1 + 2nK1 and GB = (m − 1)K1 ∪ (
Kn−1 + (n + 1)K1

)
. It is

easy to see that G is (Mm,Mn)-free.
For the lower bound, we will prove the claimed equality as follows.

Case 1. m = 1 and n ≥ 2. In this case, any red-blue edge coloring of K2n \ Kn

contains either a red M1 or a blue Mn.
Case 2. m = n = 2. In this case, by the claim, any red-blue edge coloring of
K5 \ K2 contains either a red M2 or a blue M2.
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Claim. If the claimed equality holds for (Mm,Mn), then it holds for
(Mm+1,Mn+1).

Proof. Let graph G = K2n+m+2\Kn+1 = Kn+m+1+(n+1)K1. Denote Kn+m+1

by G1 and (n + 1)K1 by G2. Then there must be a vertex v in G1 with two
edges in different colors adjacent to vertex a in G1 and b in G2, respectively.
Otherwise there will be a red Mm+1 or a blue Mn+1. Let H = G\{v, a, b}. Since
H = Kr \ Kn with r = R(Mm,Mn) = 2n + m − 1, the graph H contains either
a red Mm or a blue Mn. Along with edge va or vb, we get either a red Mm+1 or
a blue Mn+1. 	


Combining Case 1, Case 2 and the above claim, the claimed equality in
(Mm,Mn) can be reduced to that in (M1,Mn−m+1) or (M2,M2), completing
the proof. 	
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Independent Perfect Domination Sets
in Semi-Cayley Graphs
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Abstract. An independent perfect domination set in a graph Γ is an
independent set S of V (Γ ) such that every vertex of V (Γ )\S is adjacent
to exactly one vertex in S. In this paper, we first give a necessary and
sufficient condition for the existence of independent perfect domination
sets in Semi-Cayley graph SC(G; R, R, T ) over finite group G. Further,
we obtain a necessary and sufficient condition for Cayley graphs on two
class non-abelian groups to have independent perfect domination sets.

Keywords: Cayley graphs · Semi-Cayley graphs · Independent perfect
domination sets · Dihedral groups · Dicyclic groups

1 Introduction

The operation of a group will be written multiplicatively, unless specifically
stated otherwise. For a graph Γ , denote by V (Γ ) and E(Γ ) its vertex set and edge
set. For any set S, we define |S| to be the cardinality of set S and [n] = {1, . . . , n}.

Let G be a finite group with identity element e and A, B, C be subsets of G
with A = A−1, B = B−1 and e /∈ A∪B. The Cayley graph Cay(G,A) is a graph
with vertex set V (Cay(G,A)) := G and edge set E(Cay(G,A)) :=

{
g ∼ h |

h−1g ∈ Aand g, h ∈ G
}
. A graph is said to be a Semi-Cayley graph of a group

G if it admits G as a semiregular automorphism group with two orbits. Resmini
and Jungnickel [12] gave the structure representation of Semi-Cayley graphs. The
Semi-Cayley graph SC(G;A,B,C) is graph with vertex set G×{0, 1}, and with
vertices (g, i), (h, j) adjacent if and only if one of the following three possibilities
occurs:

(1) i = j = 0 and h−1g ∈ A,
(2) i = j = 1 and h−1g ∈ B,
(3) i = 0, j = 1 and h−1g ∈ C.

It is well known the study of Semi-Cayley graphs is a part of a larger project
which aims at obtaining a deeper understanding of various classes of symmetric
graphs.
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Let Γ be a connected graph. For a vertex v ∈ V (Γ ), denote by N(v) and
N [v] its neighborhood and closed neighborhood. A subset S of V (Γ ) is called
perfect domination set of Γ if for each v ∈ V (Γ ) there exists a unique element
s ∈ S such that v and s are adjacent [7]. If a set S of V (Γ ) is both a perfect
domination set and an independent set, then S is called an independent perfect
domination set or an efficient domination set. In [1,2], Chelvam et al. obtained
efficient domination sets in circulant graphs. Obradovič gave necessary and suffi-
cient conditions for the existence of efficient domination sets in circulant graphs
of degree 3 and 4 [11]. Deng got a necessary and sufficient condition for the
existence of efficient domination sets in Cay(Zn, A) ( n

|A|+1 = p with p is prime
and n = pkq, p2q2, pqr, p2qr, pqrs, p, q, s are distinct primes, k is positive inte-
ger) [3,4]. Kumar and MacGillivray characterized efficient domination sets in
Cayley graph Cay(Zn, A) with n

|A|+1 = 2 and 3 [8].

Let Γ̃ , Γ be two graphs and let φ be a homomorphism from Γ̃ to Γ . A
homomorphism φ from Γ̃ to Γ is a local isomorphism if for each vertex v ∈
V (Γ ), the induced mapping from the set of neighbours of a vertex in φ−1(v)
to the neighbours of v is an bijection. We call φ a covering map if it is a local
isomorphism, in which case we say that Γ̃ covers Γ [6]. If the covering map
φ : Γ̃ → Γ is m-to-one, then φ is called m-fold covering projection. A covering
projection φ : Γ̃ → Γ is called S-covering if there is a subgroup A of the
automorphism group of Γ̃ acting freely on Γ̃ , and there exists an isomorphism
h from the graph Γ to the quotient graph Γ̃ /A such that the quotient map
Γ̃ → Γ̃ /A is the composition h ◦ φ of φ and h. The fiber of an edge or a vertex
is its preimage under φ [6,9]. Lee studied the existence of independent perfect
domination sets in Cayley graphs using covering projections [10].

Domination sets play an important role in the design and computer networks.
For any node, domination sets can be used to decide the placement of limited
resources. Cayley graphs and Semi-Cayley graphs are two class important graphs
in algebraic graph theory. The problem of domination sets of Cayley graph was
investigated by several authors [1–4,8,10,11]. These motivate us to write this
paper.

In this paper, we first consider the Semi-Cayley graph SC(G;R,R, T ) and
obtain that Semi-Cayley graph SC(G;R,R, T ) has an independent perfect dom-
ination set if and only if it is a covering of a complete graph K|R|+|T |+1 (The-
orem 1). When T is a empty set, we can obtain the result given by Lee [10].
Thanks to the Lemmas 4 and 5 (i.e., Lemmas 4.2 and 4.4 in [5]), we obtain
the result that independent perfect domination sets of Cayley graphs on two
non-abelian groups (dihedral groups and dicyclic groups) (Theorems 2, 3).

2 Preliminaries

In this section, we shall list some notation and known results which will be used
in this paper. Let us now get back to results obtained by Lee in [10].
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Lemma 1 [10, Lemma 1]

1. Let S1 and S2 be two independent perfect domination sets of a graph Γ . Then
|S1| = |S2|.

2. Let S1, . . . , Sn be n independent perfect domination sets of a graph Γ which
are pairwise mutually disjoint. Then the subgraph H induced by S1 ∪ · · · ∪ Sn

is an m-fold covering graph of the complete graph Kn, where m =| Si | for
each i = 1, 2, . . . , n.

Lemma 2 [10, Lemma 2]. Let φ : Γ̃ → Γ be a covering and S a perfect domi-
nation set of Γ . Then φ−1(S) is a perfect domination set of Γ̃ . Moreover, if S
is independent, then φ−1(S) is independent.

Lemma 3 [10, Theorem 1]. Let Γ be a graph and n a natural number. Then Γ
is a covering of the complete graph Kn if and only if Γ has a vertex partition
{S1, . . . , Sn} such that Si is an independent perfect domination set for each i =
1, 2, . . . , n.

We now turn our attention to Cayley graphs on two non-abelian groups
(dihedral groups and dicyclic groups). For Semi-Cayley graphs, we have the
following results.

Lemma 4 [5, Lemma 4.2]. Let Dn be a dihedral group and Cay(Dn,H) a Cay-
ley graph over dihedral group Dn with H ′′ = {i | ai ∈ H}.
(1) If H ∩ {aix | 0 ≤ i ≤ n − 1} = ∅, then Cay(Dn,H) ∼= SC(Zn;H ′′,H ′′, ∅);
(2) If H ∩ {aix | 0 ≤ i ≤ n − 1} 
= ∅, let ai0x ∈ H, then Cay(Dn,H) ∼=

SC(Zn;H ′′,H ′′, T ′), where T ′ = {i | ai0−ix ∈ H}.

Lemma 5 [5, Lemma 4.4]. Let DC2n be a dicyclic group and Cay(DC2n,H) a
Cayley graph over dicyclic group DC2n with H ′′ = {i | ai ∈ H}.
(1) If H ∩ {aix | 0 ≤ i ≤ 2n − 1} = ∅, then Cay(DC2n,H) ∼=

SC(Z2n;H ′′,H ′′, ∅);
(2) If H ∩ {aix | 0 ≤ i ≤ 2n − 1} 
= ∅, let ai0x ∈ H, then Cay(DC2n,H) ∼=

SC(Z2n;H ′′,H ′′, T ′), where T ′ = {i | ai0−ix ∈ H}.

For the sake of convenience and familiarity, the following notations are
needed.

For a subset S of a finite group G, we define S0 = S ∪ {e}, where e is the
identity element in G. For any two subsets S, T of G, we define ST = {st | s ∈
S, t ∈ T}. For any set

S = {(s1, i1), . . . , (sm, im)} ∈ V (SC(G;R,R, T )), ij = 0, 1, j = 1, . . . ,m,

we define

S̄ = {(s1, (i1 + 1)(mod 2)), . . . , (sm, (im + 1)(mod 2))}, ij = 0, 1, j = 1, . . . ,m,
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and

S′ = {s1, s2, . . . , sm}.

Obviously, S′ does not have to be a subset of G. For any r ∈ R,

rS = {(rs1, i1), . . . , (rsm, im)} ∈ V (SC(G;R,R, T )), ij = 0, 1, j = 1, . . . ,m,

and

Sr = {(sr1, i1), . . . , (smr, im)} ∈ V (SC(G;R,R, T )), ij = 0, 1, j = 1, . . . ,m.

For any t ∈ T , we have

tS = tS̄ and St = S̄t.

3 Independent Perfect Domination Sets in Semi-Cayley
Graphs SC(G;R,R, T )

In this section, we consider Semi-Cayley graphs SC(G;R,R, T ) where R =
R−1 = {r1, . . . , rm} and T = T−1 = {t1, . . . , tn} are subsets of the group G.

Proposition 1. Let G be a finite group and let S = {(s1, i), . . . , (sk, j)}, i, j =
0, 1, be an independent perfect domination set of SC(G;R,R, T ). Then so is S̄.

Proof. Let S = {(s1, 0), (s2, 0),. . . , (sl, 0), (sl+1, 1), . . . , (sk, 1)} be an independent
perfect domination set. Now, we prove

S̄ = {(s1, 1),(s2, 1),. . . , (sl, 1), (sl+1, 0), . . . , (sk, 0)}

is an independent perfect domination set. If S̄ is not an independent set, then
we have the following cases.

Case 1. (si, 1) ∼ (sj , 1) ∈ S̄ or (si, 0) ∼ (sj , 0) ∈ S̄. Without loss of generality,
we consider (si, 1) ∼ (sj , 1) ∈ S̄. Then sj = sir for some r ∈ R and (si, 0) ∼
(sj , 0) ∈ S. This contradicts to the fact that S is an independent set.
Case 2. (si, 0) ∼ (sj , 1) ∈ S̄. Then sj = sit

−1 for some t−1 ∈ T and (si, 1) ∼
(sj , 0) ∈ S by T = T−1. This contradicts to the fact that S is an independent
set.

For any vertex (g, i) ∈V (SC(G;R,R, T )) \S̄, i = 0, 1, there are the following
cases.

Case 1. (g, i) ∈ S. Then there is (g, 0) ∈ S, (g, 1) /∈ S or (g, 0) /∈ S, (g, 1) ∈
S. Without loss of generality, considered (g, 0) ∈ S, (g, 1) /∈ S. Then (g, 1) ∈
S̄, (g, 0) /∈ S̄. Thus (g, 1) ∈ N((sj , k)) for (sj , k) ∈ S, k = 0, 1 and sj = grk or
sj = gtl. Hence, (g, 0) ∈ N((sj , (i + 1)(mod 2))).
Case 2. (g, 0) ∈ N((si, 0)), for (si, 0) ∈ S.
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Subcase 2.1. (g, 1) ∈ N((si, 0)), for (si, 0) ∈ S. From (g, 0), (g, 1) ∈ N((si, 0)),
we have si = grj , si = gtj for some rj ∈ R, tj ∈ T and s−1

i g = t−1
j by T = T−1.

Thus, (g, 0) ∈ N((si, 1)), for (si, 1) ∈ S̄.
Subcase 2.2. (g, 1) ∈ N((sj , 1)), for (sj , 1) ∈ S. Then si = grk, si = grl for
some rj , rl ∈ R. Thus, (g, 0) ∈ N((si, 1)), for (si, 1) ∈ S̄.
Subcase 2.3. (g, 1) ∈ N((sj , 0)), for (sj , 0) ∈ S. Then si = grk, sj = gtl for
some rk ∈ R, tl ∈ T . Hence, (g, 0) ∈ N((sj , 1)) by T = T−1, for (sj , 1) ∈ S̄.
Case 3. (g, 1) ∈ N((si, 1)), for (si, 0) ∈ S.
Subcase 3.1. (g, 0) ∈ N((si, 1)), for (si, 0) ∈ S. From (g, 0), (g, 1) ∈ N((si, 1)),
there is si = grj , si = gtj for some rj ∈ R, tj ∈ T and s−1

i g = t−1
j by T = T−1.

Thus, (g, 1) ∈ N((si, 0)), for (si, 1) ∈ S̄.
Subcase 3.2. (g, 0) ∈ N((sj , 1)), for (sj , 1) ∈ S. Then si = grk, sj = gtl for
some rk ∈ R, tl ∈ T . Thus, (g, 1) ∈ N((sj , 0)), for (sj , 0) ∈ S̄.

To complete the proof, we need to show that |S̄ ∩ N [(g, i)]| = 1, for any
(g, i) ∈ V (SC(G;R,R, T )). We consider the following cases.
Case 1. (g, 0) ∼ (si, 1) and (g, 0) ∼ (sj , 1), for (si, 1), (sj , 1) ∈ S̄. Then si =
gtk, sj = gtl for some tk, tl ∈ T by T = T−1. Thus, (g, 1) ∼ (si, 0) and (g, 1) ∼
(sj , 0), for (si, 0), (sj , 0) ∈ S.
Case 2. (g, 0) ∼ (si, 0), for (si, 0) ∈ S̄.
Subcase 2.1. (g, 0) ∼ (sj , 0), for (sj , 0) ∈ S̄. Then si = grk, sj = grl for some
rk, rl ∈ R. Thus, (g, 1) ∼ (si, 1) and (g, 1) ∼ (sj , 1), for (si, 1), (sj , 1) ∈ S.
Subcase 2.2. (g, 0) ∼ (sj , 1), for (sj , 1) ∈ S̄. Then si = grk, sj = gtl for some
rk ∈ R, tl ∈ T . Thus, (g, 1) ∼ (si, 1) and (g, 1) ∼ (sj , 0), for (si, 1), (sj , 0) ∈ S.
Case 3. (g, 1) ∼ (si, 1), for (si, 1) ∈ S̄.
Subcase 3.1. (g, 1) ∼ (sj , 1), for (sj , 1) ∈ S̄. Then si = grk, sj = grl for some
rk, rl ∈ R. Thus, (g, 0) ∼ (si, 0) and (g, 0) ∼ (sj , 0), for (si, 0), (sj , 0) ∈ S.
Subcase 3.2. (g, 1) ∼ (sj , 0), for (sj , 0) ∈ S̄. Then si = grk, sj = gtl for some
rk ∈ R, tl ∈ T . Thus, (g, 0) ∼ (si, 0) and (g, 0) ∼ (sj , 1), for (si, 0), (sj , 1) ∈ S.
Case 4. (g, 1) ∼ (si, 0) and (g, 1) ∼ (sj , 0), for (si, 0), (sj , 0) ∈ S̄. Then si =
gtk, sj = gtl for some tk, tl ∈ T . Thus, (g, 0) ∼ (si, 1) and (g, 0) ∼ (sj , 1), for
(si, 1), (sj , 1) ∈ S.

Overall, all cases are contradict to the fact that S is a perfect domination
set. Thus |S̄ ∩ N [(g, i)]| = 1, for any (g, i) ∈ V (SC(G;R,R, T )). The proof is
finished.

Lemma 6. Let G be a finite group and let S be an independent perfect domina-
tion set of SC(G;R,R, T ). Then so are riS and tjS, i = 1, . . . ,m, j = 1, . . . , n.

Proof. Let S = {(s1, 0), . . . , (sl, 0), (sl+1, 1), . . . , (sk, 1)} be an independent per-
fect domination set. Then

riS = {(ris1, 0), . . . , (risl, 0), (risl+1, 1), . . . , (risk, 1)},

and

tjS = {(tis1, 1), . . . , (risl, 1), (risl+1, 0), . . . , (risk, 0)}.
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We only prove that riS is an independent perfect domination set. With the
similar manner as in the proof of riS, we can prove that tjS is an independent
perfect domination set. For this, we consider two cases.

Case 1. (risf , 0) ∼ (rish, 0) or (risf , 1) ∼ (rish, 1), for (sf , i), (sh, i) ∈ S,
i = 0, 1. Without loss of generality, considered (risf , 0) ∼ (rish, 0). Then rish =
risfrt for some rt ∈ R. Thus sh = sfrt and (sf , 0) ∼ (sh, 0).
Case 2. (risf , 0) ∼ (rish, 1), for (sf , 0), (sh, 1) ∈ S. Then rish = risf tt for some
tt ∈ T by T = T−1. Thus sf = shtt and (sf , 0) ∼ (sh, 1).

Cases 1 and 2 contradict to the fact that S is an independent set. For any
(g, l) ∈ V (SC(G;R,R, T )) \ riS, l = 0, 1, we have g = rir

−1
i g. If (r−1

i g, 0) ∈
N((st, 0)), then r−1

i g = strk and g = ristrk. Thus, (g, 0) ∈ N((rist, 0)). With
the similar manner as in the proof of (g, 0) ∈ N((rist, 0)), we can obtain that
riS is domination set.

Thus, for any vertex (g, l) ∈ V (SC(G;R,R, T )), l = 0, 1, we have (g, l) ∈
N [riS] for ri ∈ R, l = 0, 1. To complete the proof, we need to show that |riS ∩
N [(g, l)]| = 1 for l = 0, 1. The following cases are needed.

Case 1. (g, 0) ∼ (risf , 0). Then g = risfrk and r−1
i g = sfrk. Thus,

Subcase 1.1. (g, 0) ∼ (rish, 0). Then g = rishrl and r−1
i g = shrl. Thus,

(r−1
i g, 0) ∼ (sf , 0) and (r−1

i g, 0) ∼ (sh, 0).
Subcase 1.2. (g, 0) ∼ (rish, 1). Then g = rishtl and r−1

i g = shtl. Thus,
(r−1

i g, 0) ∼ (sf , 0) and (r−1
i g, 0) ∼ (sh, 1).

Case 2. (g, 0) ∼ (risf , 1) and (g, 0) ∼ (rish, 1). Then g = risf tk, g = rishtl and
r−1
i g = sf tk, r−1

i g = shtl. Thus, (r−1
i g, 0) ∼ (sf , 1) and (r−1

i g, 0) ∼ (sh, 1).
Case 3. (g, 1) ∼ (risf , 1). Then g = risfrk and r−1

i g = sfrk. Thus,
Subcase 3.1. (g, 1) ∼ (rish, 1). Then g = rishrl and r−1

i g = shrl. Thus,
(r−1

i g, 1) ∼ (sf , 1) and (r−1
i g, 1) ∼ (sh, 1).

Subcase 3.2. (g, 1) ∼ (rish, 0). Then g = risht−1
l and r−1

i g = sht−1
l . Thus,

(r−1
i g, 1) ∼ (sf , 1) and (r−1

i g, 1) ∼ (sh, 0).
Case 4. (g, 1) ∼ (risf , 0) and (g, 1) ∼ (rish, 0). Then g = risf t−1

k , g = risht−1
l

and r−1
i g = sf t−1

k , r−1
i g = sht−1

l . Thus, (r−1
i g, 1) ∼ (sf , 0) and (r−1

i g, 1) ∼
(sh, 0).

All cases are contradict to the fact that S is a perfect domination set. Thus
riS is an independent perfect domination set. This completes the proof.

In [10], Lee gave the partition of Cayley graph. Similarly, we obtain a parti-
tion of Simi-Cayley graph SC(G;R,R, T ).

Lemma 7. Let G be a finite group and let S be an independent perfect domina-
tion set of SC(G;R,R, T ). Then {S, Sr1, . . . , Srm, St1, . . . , Stn} is a partition
of SC(G;R,R, T ).

Proof. If (g, l) ∈ V (SC(G;R,R, T )) \ S, l = 0, 1 and (g, l) ∈ N [S], then (g, l) =
(sri, l) or (g, l) = (sti, (l + 1)(mod 2)) for some (s, l) ∈ S and ri ∈ R, ti ∈ T by
S is an independent perfect domination set. Thus

V (G;R,R, T ) ⊆ S ∪ Sr1 ∪ . . . ∪ Srm ∪ St1 ∪ . . . ∪ Stn.
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To complete the proof, we need to show that S, Sr1, . . . , Srm, St1, . . . , Stn are
pairwise disjoint. Since S is independent set, S ∩ Sri 
= ∅ and S ∩ Stj 
= ∅ for
i = 1, . . . ,m, j = 1, . . . , n. The following cases need to be considered.
Case 1. Sri ∩Srj 
= ∅, for i, j ∈ 1, . . . , n. Then there exist (s, 0), (s′, 0) ∈ S such
that sri = s′rj . This implies that the vertex (sri, 0) = (s′rj , 0) is adjacent to
(s, 0) and (s′, 0). This is a contradiction.
Case 2.Sri ∩ Stj 
=∅, for i ∈ 1, . . . ,m, j ∈ 1, . . . , n. Then there are (s, 0), (s′, 1) ∈
S such that sri = s′tj . This implies that the vertex (sri, 0) = (s′tj , 0) is adjacent
to (s, 0) and (s′, 1). This is a contradiction.
Case 3. Sti ∩ Stj 
= ∅, for i, j ∈ 1, . . . , n. Then there exist (s, 0), (s′, 0) ∈ S
such that sti = s′tj . This implies that the vertex (sti, 1) = (s′tj , 1) is adjacent
to (s, 0) and (s′, 0). This is a contradiction.

We can obtain the following result by Lemmas 1, 3 and 7.

Lemma 8. Let G be a finite group and let S = {(s1, i), . . . , (sk, j)}, i, j = 0, 1, be
an independent perfect domination set of SC(G;R,R, T ). If riS = Sri and tjS =
Stj for every ri ∈ R, tj ∈ T , then there exists a covering φ : SC(G;R,R, T ) →
K|R|+|T |+1 such that S, Sr1, . . . , Srm, St1, . . . , Stn are the vertex fibers of φ.
Moreover, Let G be a finite abelian group and let S = {(s1, i), . . . , (sk, i)}, i =
0, 1, be an independent perfect domination set of SC(G;R,R, T ). If S′ is a sub-
group of G, then the covering φ : SC(G;R,R, T ) → K|R|+|T |+1 is an S-covering.

Proof. From Lemmas 1, 3 and 7, we can obtain the existence of covering φ. Next,
we only need to prove the covering φ is an S-covering. If G is a finite abelian
group and S′ = {s1, . . . , sk} is a subgroup of G, then we have riS = Sri and
tjS = Stj for each i = 1, . . . ,m, j = 1, . . . , n. For any (si, j) ∈ S, i ∈ [k], j = 0, 1,
the vertex (si, j) is an automorphism by

(si, j) : V (SC(G;R,R, T )) → V (SC(G;R,R, T )), (s, l) �→ (sis, j + l), l = 0, 1,

and it is a subgroup of the automorphism group of SC(G;R,R, T ) by normal
subgroup S′. For any vertex v ∈ Km+n+1, without loss of generality, we suppose
φ−1(v) ∈ Sri, ri ∈ R or φ−1(v) ∈ Stj , tj ∈ T and construct

h : V (Km+n+1) → V (SC(G;R,R, T )/S),

by the following

h(v) :=
{

riS, φ(v) ∈ Sri,
tjS, φ(v) ∈ Stj .

(1)

Thus, φ : SC(G;R,R, T ) → Km+n+1 is an S-covering.

Next, we give the main result in this section.

Theorem 1. Let G be a finite group and let S′ = {s1, . . . , sk} be a subset of
G with riS = Sri and tjS = Stj for ri ∈ R, tj ∈ T . Then the following are
equivalent.
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(1) S = {(s1, i), . . . , (sk, j)}, i, j = 0, 1, is an independent perfect domination set
of the Semi-Cayley graph SC(G;R,R, T ).

(2) There exists a covering φ : SC(G;R,R, T ) → K|R|+|T |+1 such that φ−1(v) =
S for any v ∈ V (K|R|+|T |+1).

(3) | S |= 2|G|
|R|+|T |+1 and

S ∩ {S((R0R0) \ {e})} = ∅, S ∩ {S(R0T )} = ∅, S ∩ {S((TT ) \ {e})} = ∅.

Proof. ((1)⇒(2)) It follows from Lemma 8.
((2)⇒(3)) Let φ : SC(G;R,R, T ) → K|R|+ |T |+1 such that φ−1(v) = S.

Then | S |= 2|G|
|R|+ |T |+1 by lemmas 1, 2, 6 and 7. To complete the proof, we

consider the following cases.

Case 1. S ∩ {S((R0R0) \ {e})} 
= ∅. Then there exist (s, i), (s′, i) ∈ S, i = 0, 1,
such that s = s′rr′ for some r, r′ ∈ R0 with r 
= r′−1. It implies that (sr−1, i) =
(s′r, i), i = 0, 1 is adjacent to both (s, i) and (s′, i). This is a contradiction.
Case 2. S ∩ {S(R0T )} 
= ∅. Then there exist (s, i), (s′, j) ∈ S, i 
= j, i, j = 0, 1,
such that s = s′rt for some r ∈ R0, t ∈ T . It implies that (st−1, j) = (s′r, j), j =
1, 2, is adjacent to both (s, i) and (s′, j). This is a contradiction.
Case 3. S ∩ {S((TT ) \ {e})} 
= ∅. Then there exist (s, i), (s′, i) ∈ S, i = 0, 1,
such that s = s′tt′ for some t, t′ ∈ T with t 
= t′−1. It implies that (st′−1, j) =
(s′t, j), i 
= j and i, j = 0, 1, is adjacent to both (s, i) and (s′, i). This is a
contradiction.

((3)⇒(1)) Since S ∩{S((R0R0)\{e})} = ∅, S ∩{S(R0T )} = ∅, S ∩{S((TT )\
{e})} = ∅. Then S is an independent set by S ∩ (Sr) = ∅, S ∩ (St) = ∅ for r ∈ R,
t ∈ T . For every elements (g, i), i = 1, 2, the vertex (g, i), i = 1, 2, can be adjacent
to at most one element in S by (Sr)∩ (Sr′) = ∅, (Sr)∩ (St) = ∅, (St)∩ (St′) = ∅.
To complete the proof, it remains to show that |N [S]| = 2|G|. We have

N [S] =
⋃

s∈S

N [s] =

(
⋃

s∈S

(sR0)

)
⋃

(
⋃

s∈S

(sT )

)

=

⎛

⎝
⋃

ri∈R0

(Sri)

⎞

⎠
⋃

⎛

⎝
⋃

tj∈T

(Stj)

⎞

⎠

and

|N [S]| =
∑

ri∈R0

|Sri| +
∑

tj∈T

|Stj |.

Due to |S| = |Sri| = |Stj | for each ri ∈ R0, tj ∈ T and |S|(|R|+ |T |+1
)

= 2|G|,
there is

|N [S]| =
∑

ri∈R0

|Sri| +
∑

tj∈T

|Stj | = |S||R0| + |S||T | = |S|(|R| + 1 + |S|) = 2|G|.

This completes the proof.

If we suppose T = ∅, then we can obtain the result [10, Theorem 2]. Moreover,
we can obtain the following case.
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Corollary 1. Let G be a finite abelian group and let S′ = {s1, . . . , sk} be a
subgroup of G. Then the following are equivalent.

(1) S = {(s1, i), . . . , (sk, i)}, i = 0, 1, is an independent perfect domination set
of the Semi-Cayley graph SC(G;R,R, T ).

(2) SC(G;R,R, T ) is an S-covering graph of the complete graph K|R|+|T |+1.
(3) | G/S′ |= (|R| + |T | + 1)/2 and

S′ ∩ (R0R0) = {e}, S′ ∩ (R0T ) = ∅, S′ ∩ (TT ) = {e}.

Proof. ((1)⇔(2)⇔(3)) It follows from Lemma 8 and Theorem 1. We only need
to show that

S ∩ {S((R0R0) \ {e})} = ∅, S ∩ {S(R0T )} = ∅, S ∩ {S((TT ) \ {e})} = ∅,

if and only if

S′ ∩ (R0R0) = {e}, S′ ∩ (R0T ) = ∅, S′ ∩ (TT ) = {e}.

For the necessity, we consider three cases,

Case 1. S′ ∩ (R0R0) 
= {e}. Then there exist s′ ∈ S′ and s′ ∈ R0R0. For any
s ∈ S′, ss′ ∈ S′ by S′ is a normal subgroup. Thus there exists (si, i) ∈ S such
that (si, i) = (ss′, i). This contradicts to the fact that S∩{S((R0R0)\{e})} = ∅.
Case 2. S′ ∩ (R0T ) 
= ∅. Then there exist s′ ∈ S′ and s′ ∈ R0T . For any s ∈ S′,
ss′ ∈ S′ by S′ is a normal subgroup. Thus there exists (si, i) ∈ S such that
(si, i) = (ss′, (i+1)(mod 2)). This contradicts to the fact that S∩{S(R0T )} = ∅.
Case 3. S′ ∩ (TT ) 
= {e}. Then there exist s′ ∈S′ and s′ ∈ TT . For any s ∈ S′,
ss′ ∈ S′ by S′ is a normal subgroup. Thus there exists (si, i) ∈ S such that
(si, i) = (ss′, i). This contradicts to the fact that S ∩ {S((TT ) \ {e})} = ∅.

For the sufficiency, we consider the following cases,

Case 1. S ∩ {S((R0R0) \ {0})} 
= ∅. Then there exist (s, i), (s′, i) ∈ S, i,= 1, 2,
such that s = s′rr′ for r, r′ ∈ R0. Since S′ is a subgroup of G, e 
= rr′ 
= ss′−1 ∈
S′, Hence S′ ∩ {S′((R0R0) \ {0})} = ∅.
Case 2. S ∩ {S((R0T ) \ {0})} 
= ∅. Then there exist (s, i), (s′, j) ∈ S, i 
=
j, i, j = 1, 2, such that s = s′rt for r ∈ R0, t ∈ T . Since S′ is a subgroup of G,
e 
= rt = ss′−1 ∈ S′.
Case 3. S ∩ {S((TT ) \ {e})} 
= {e}. Then there exist (s, i), (s′, i) ∈ S, i = 1, 2,
such that s = s′tt′ for t, t′ ∈ T . Since S′ is a subgroup of G, e 
= tt′ = ss′−1 ∈ S′.

4 Some Special Cases

In this section, we consider that the independent perfect domination set of Cayley
graph over dihedral groups Dn and dicyclic groups DC2n, respectively. Through-
out this section, additive notation is used to deal with groups Zn.
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4.1 Independent Perfect Domination Dets of Cayley Graph
over Dihedral Groups

Let Dn = 〈a, x | an = x2 = e, ax = xa−1〉 be the dihedral group and H ⊆
Dn \ {e} with H = H−1. For convenience, we define

H ′ = H ∩ {ai | 0 ≤ i ≤ n − 1},H ′′ = {i | ai ∈ H}, T =H∩{aix | 0 ≤ i ≤ n − 1}.

Denoted by Γ1 the subgraph induced by {ai | 0 ≤ i ≤ n − 1} in Cay(Dn,H).
Obviously, the subgraph Γ1

∼= Cay(Zn,H ′′). In this subsection, we suppose

H = {ai1 , . . . , aip , aj1x, . . . , ajqx},

{aj1x, aj2x, . . . , ajqx} = {aj1x, a2j1−j2x, . . . , a2j1−jqx},

where j1 = min{j1, . . . , jq}. Then H ′ = {ai1 , . . . , aip}, T = {aj1x, . . . , ajqx}.
In this subsection, we give the independent perfect domination set of Cayley

graph over dihedral groups Dn.

Lemma 9. Let Cay(Dn,H) be a connected Cayley graph over dihedral group Dn

and H = H ′ ∪ T . Then the Cayley graph Cay(Dn,H) has an independent perfect
domination set S = {as1 , . . . , asm} with asi , a−si ∈ S if and only if Cay(Zn,H ′′)
has an independent perfect domination set S′ = {s1, . . . , sm} and there exists a
subset T ′ ⊆ Zn such that | T ′ |=| H ′ | +1 and si 
= sj +tr+ts for any si, sj ∈ S′,
tr, ts ∈ T ′, tr 
= −ts.

Proof. Suppose Cay(Dn,H) has an independent perfect domination set S =
{as1 , . . . , asm} with asi , a−si ∈ S. Then {as1 , . . . , asm} is an independent perfect
domination set of subgraph Γ1. Thus, Cay(Zn,H ′′) has an independent perfect
domination set S′ = {s1, . . . , sm} by Γ1

∼= Cay(Zn,H ′′). We have |H ′| = n−m
m =

n
m − 1 and |T ′| = n

m , thus |T ′| = |H ′| + 1. The Cayley graph Cay(Dn,H) ∼=
SC(Zn;H ′′,H ′′, T ′) by Lemma 4, then S′′ = {(s1, 0), . . . , (sm, 0)} is an indepen-
dent perfect domination set of SC(Zn;H ′′,H ′′, T ′) and S′′ is a normal subset.
Thus, si 
= sj + jr − js for any si, sj ∈ S′, jr, js ∈ T by Theorem 1.

(⇐) Assume Cay(Zn,H ′′) has an independent perfect domination set S′ =
{s1, . . . , sm}. Then the Semi-Cayley graph SC(Zn;H ′′,H ′′, T ′) has an indepen-
dent perfect domination set S′′ = {(s1, 0), . . . , (sm, 0)} by Theorem 1. Thus
the Cayley graph Cay(Dn,H) has an independent perfect domination set by
Cay(Dn,H) ∼= SC(Zn;H ′′,H ′′, T ′).

We give a necessary and sufficient condition for the existence of Cayley graph
Cay(Dn,H).

Theorem 2. Let Cay(Dn,H) be a connected Cayley graph over dihedral group
Dn and H = H ′ ∪ T . Then the Cayley graph Cay(Dn,H) has an independent
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perfect domination set S = {as1 , . . . , asl , asl+1x, . . . , asmx} with normal subset S
if and only if m = 2n

|H′|+ |T |+1 and

S ∩ {S((H ′0H ′0) \ {e})} = ∅, S ∩ {S(H ′0T )} = ∅, S ∩ {S(TT ) \ {e}} = ∅.

Proof. The Cayley graph Cay(Dn,H) ∼= SC(Zn;H ′′,H ′′, T ′) by Lemma 4. Then
the Cayley graph Cay(Dn,H) has an independent perfect domination set

S = {as1 , . . . , asl , asl+1x, . . . , asmx}
if and only if the Semi-Cayley graph SC(Zn;H ′′,H ′′, T ′) has an independent
perfect domination set S′ = {(s1, 0), . . . , (sl, 0),(j1 − sl+1, 1),. . . , (j1 − sm, 1)}.
From Theorem 1, the Semi-Cayley graph SC(Zn;H ′′,H ′′, T ′) has an indepen-
dent perfect domination set if and only if m = 2n

|H′|+|T ′|+1 and

S′ ∩ {S′ + ((H ′′0 + H ′′0) \ {e})} = ∅, S′ ∩ {S′ + (H ′′0 + T ′)} = ∅,

S′ ∩ {S′ + ((T ′ + T ′) \ {e})} = ∅.
Thus,

S ∩ {S((H ′0H ′0) \ {e})} = ∅, S ∩ {S(H ′0T )} = ∅, S ∩ {S(TT ) \ {e}} = ∅.

4.2 Independent Perfect Domination Sets of Cayley Graph
over Dicyclic Groups

In this subsection, Independent perfect domination sets of Cayley graph over
dicyclic groups will be considered. Let DC2n = 〈a, x | a2n = e, x2 = an, ax =
xa−1〉 be the dicyclic group and H ⊆ DC2n \ {e} with H = H−1. We define

H ′ = H ∩ {ai | 0 ≤ i ≤ 2n − 1}, H ′′ = {i | ai ∈ H}, T = H∩{aix | 0 ≤ i ≤ 2n − 1}.

Similarly, we suppose

H = {ai1 , . . . , aip , aj1x, . . . , ajqx},

{aj1x, aj2 , . . . , ajqx} = {aj1x, a2j1−j2 , . . . , a2j1−jqx},

where j1 = min{j1, . . . , jq}. Then H ′ = {ai1 , . . . , aip}, T = {aj1x, . . . , ajqx}.
Now we a necessary and sufficient condition for the existence of independent

perfect domination sets of Cay(DC2n,H).

Theorem 3. Let Cay(DC2n,H) be a connected Cayley graph over dicyclic group
DC2n and H = H ′ ∪ T . Then the Cayley graph Cay(DC2n,H) has an inde-
pendent perfect domination set S = {as1 , . . . , asl , asl+1x, . . . , asmx} with normal
subset S if and only if m = 4n

|H′|+ |T |+1 and

S ∩ {S((H ′0H ′0) \ {e})} = ∅, S ∩ {S(H ′0T )} = ∅, S ∩ {S(TT ) \ {e}} = ∅.
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Proof. By Lemma 5, the Cayley graph Cay(DC2n,H) ∼= SC(Z2n;H ′′,H ′′, T ′).
Then the Cayley graph Cay(DC2n,H) has an independent perfect dom-
ination set S = {as1 , . . . , asl , asl+1x, . . . , asmx} if and only if the Semi-
Cayley graph SC(Z2n;H ′′,H ′′, T ′) has an independent perfect domination set
{(s1, 0), . . . , (sl, 0), (j1−sl+1, 1), . . . , (j1−sm, 1)} and from Theorem 1, the Semi-
Cayley graph SC(Z2n;H ′′,H ′′, T ′) has an independent perfect domination set
if and only if m = 4n

|H′|+|T ′|+1 and

S′ ∩ {S′ + ((H ′′0 + H ′′0) \ {e})} = ∅, S′ ∩ {S′ + (H ′′0 + T ′)} = ∅,

S′ ∩ {S′ + ((T ′ + T ′) \ {e})} = ∅.

Thus,

S ∩ {S((H ′0H ′0) \ {e})} = ∅, S ∩ {S(H ′0T )} = ∅, S ∩ {S(TT ) \ {e}} = ∅.
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Abstract. The n-dimensional crossed cube CQn, a variation of the hypercube
Qn, has the same number of vertices and the same number of edges as Qn, but
it has only about half of the diameter of Qn. In the interconnection network,
some efficient communication algorithms can be designed based on edge-disjoint
Hamiltonian cycles. In addition, two edge-disjoint Hamiltonian cycles also pro-
vide the edge-fault tolerant Hamiltonicity for the interconnection network. Hung
[Discrete Applied Mathematics 181, 109–122, 2015] designed a recursive algo-
rithm to construct two edge-disjoint Hamiltonian cycles on CQn in O(n2n) time.
In this paper, we provide an O(n) time algorithm for each vertex in CQn to deter-
mine which two edges were used in Hamiltonian cycles 1 and 2, respectively.With
the information of each vertex, we can construct two edge-disjoint Hamiltonian
cycles in CQn with n ≥ 4.

Keywords: Edge-disjoint Hamiltonian cycles · Crossed cubes · Interconnection
networks

1 Introduction

The design of an interconnection network is an important issue for the multicomputer
system. The hypercube [17, 18] is one of the most popular interconnection networks
because of its attractive properties, including regularity, node symmetric, link symmetric,
small diameter, strong connectivity, recursive construction, partition capability, and small
link complexity. The architecture of an interconnected network is usually modeled by a
graphwith vertices representing processing units and edges representing communication
links. We will use graph and network interchangeably in this paper.

The n-dimensional crossed cube CQn, proposed first by Efe [4, 5], is a variant of an
n-dimensional hypercube. One advantage of CQn is that the diameter is only about one
half of the diameter of an n-dimensional hypercube. Hung et al. [11] showed that CQn

contains a fault-free Hamiltonian cycle, even if there are up to 2n – 5 edge faults. Wang
studied the embedding of the Hamiltonian cycle in CQn [19]. For more properties of
CQn, the reader can refer to [4–6, 12].
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A Hamiltonian cycle is a graph cycle through a graph that visits each node exactly
once. The ring structure is important for the multicomputer system, and its benefits can
be found in [13]. Two Hamiltonian cycles in the graph are said to be edge-disjoint if they
do not share any common edges. Edge-disjoint Hamilton cycles can provide advantages
for algorithms using ring structures, and their application can be found in [16]. Further,
edge-disjoint Hamiltonian cycles also provide the edge-fault tolerant hamiltonicity for
the interconnection network. That is, when one edge in the Hamiltonian cycle fails, the
other edge-disjoint Hamiltonian cycle can be adopted to replace it for transmission.

Previous related works are described below. Barth and Raspaud [3] showed that the
butterfly networks contain two edge-disjoint Hamiltonian cycles. Bae et al. [1] studied
edge-disjointHamiltonian cycles in k-ary n-cubes andhypercubes. Then,Barden et al. [2]
constructed the maximum number of edge-disjoint spanning trees in a hypercube. Petro-
vic and Thomassen [15] characterized the number of edge-disjoint Hamiltonian cycles
in hypertournaments. Hung presented how to construct two edge-disjoint Hamiltonian
cycles in locally twisted cubes [7], augmented cubes [8], twisted cubes [10], transposi-
tion networks, and hypercube-like networks [9], respectively. In [9], Hung designed a
recursive algorithm to construct two edge-disjoint Hamiltonian cycles in CQn. In this
paper, we provide a parallel algorithm to construct two edge-disjoint Hamiltonian cycles
in CQn with n ≥ 4. Each vertex of CQn can simultaneously run this algorithm to know
which two edges were used in Hamiltonian cycles 1 and 2, respectively. The recur-
sive algorithm [9] can be adopted by one vertex to constructs two Hamiltonian cycles
and this vertex must transfer this message to all other vertices. However, according to
our algorithm, each vertex can calculate to get the message, which is more helpful for
implementation.

The rest of the paper is organized as follows: In Sect. 2, the structure of crossed
cubes is introduced and some notations are given. Section 3 presented two edge-disjoint
Hamiltonian cycles in CQ4. Based on this result, we further show a parallel algorithm
to construct two edge-disjoint Hamiltonian cycles in CQn with n ≥ 4. Finally, Sect. 4 is
the concluding remarks of this paper.

2 Preliminaries

Interconnection networks are usually modeled as undirected simple graphs G = (V, E),
where the vertex setV (=V (G)) and the edge setE (=E(G)) represent the set of processing
units and the set of communication links between nodes, respectively. The neighborhood
of a vertex v in a graph G, denoted by N(v), is the set of vertices adjacent to v in G.
A cycle Ck of length k in G, denoted by v0 − v1 − v2 − … − vk−2 − vk-1 − v0, is a
sequence (v0, v1, v2, …, vk−1, v0) of nodes such that (vk−1, v0) ∈ E and (vi, vi+1) ∈ E
for 0 ≤ i ≤ k − 2.

Now, we introduce crossed cubes. A vertex of the n-dimensional crossed cube CQn

is represented by a binary string of length n. A binary string b of length n is denoted by
bn−1bn−2 ······ b1b0, where bn−1 is the most significant bit. Suppose that G is a labeled
graph whose vertices are associated with distinct binary strings, and let Gx be the graph
obtained from G by prefixing the binary string on every node with x. Two binary strings
x = x1x0 and y = y1y0 are pair-related, denoted x–y, if and only if (x, ∈ y{(00, 00), (10,
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10), (01, 11), (11, 01)}. In [5], Efe introduced the notion of pair-related to obtain that
the diameter of CQn is only about one half of the diameter of Qn.

Definition 1 (Efe [5].) The n-dimensional crossed cube CQn is the labeled graph with
the following recursive fashion:

1) CQ1 is the complete graph on two vertices with labels 0 and 1.
2) For n ≥2, CQn is composed of two subcubes CQ0

n−1 and CQ1
n−1 such that two

vertices x = 0xn−2······x1x0 ∈ V (CQ0
n−1) and y = 1yn−2······y1y0 ∈ V (CQ1

n−1) are joined
by an edge if and only if

(i) xn−2= yn−2 if n is even, and
(ii) x2i+1x2i–y2i+1y2i for 0 ≤ i < �(n − 1)/2�,

where x and y are called the (n − 1)-neighbors to each other, and denote as Nn−1(x)
= y or Nn−1(y) = x.

For conciseness, an edge (x, Nj(x)) is denoted as ej(x), and an ej-edge is an edge (x,
Nj(x)) in G. Obviously, there are 8 e3-edges, 8 e2-edges, 8 e1-edges and 8 e0-edges in
CQ4. For example, Fig. 1 shows a 4-dimensional crossed cubeCQ4. ACQ4 is composed
of two subcubesCQ0

3 (the left half in Fig. 1) and CQ
1
3 (the right half in Fig. 1). According

to Definition 1 and the notion of pair-related, there exists an e3-edge connecting vertices
0000 and 1000, and so on. In this paper, sometimes the labels of vertices are changed to
their decimal.
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Fig. 1. A 4-dimensional crossed cube CQ4.
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3 Main Results

3.1 Two Edge-Disjoint Hamiltonian Cycles in CQ4

Hung [9] provided two edge-disjoint Hamiltonian cycles in CQ4. The first cycle C16
is equal to 0100–0000–1000–1001–1111–1101–0111–0101–0011–0001−1011–1010–
0010–0110–1110–1100–0100, and there are 6 e3-edges, 4 e2-edges, 4 e1-edges and 2
e0-edges in it. Since the cycle adopts a different number of edges in each dimension, the
parallel construction algorithm that will be presented in the next section becomes more
complicated. Fortunately, we found another set of two edge-disjoint Hamiltonian cycles
in CQ4, and each cycle has the same number of edges in each dimension. We described
this result in Proposition 2, and its validness can check by Fig. 2.
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Fig. 2. (a) The first Hamiltonian cycle HC1 in CQ4, and (b) the second Hamiltonian cycle HC2
in CQ4, where the thick lines indicate the cycle.

Proposition 2. Let HC1 = 0000–0010–0110–0100–1100–1101–1011–1010–1110–
1111–0101–0111–0001–0011–1001–1000–0000, and HC2 = 0000–0001–1011–1001–
1111–1101–0111–0110–1110–1100–1000–1010–0010–0011–0101–0100–0000. HC1
and HC2 form two edge-disjoint Hamiltonian cycles in CQ4.

3.2 Constructing Two Edge-Disjoint Hamiltonian Cycles in CQ4

Based on the previous results, we now design an algorithm called Algorithm 2HCBase
to construct two edge-disjoint Hamiltonian cycles in CQ4. Each vertex (processing unit)
in CQ4 calls this algorithm and inputs its label to get which two edges are used in
Hamiltonian cycles 1 and 2, respectively.

Algorithm 2HCBase
Input: b3b2b1b0 in B //B : the label of this vertex
Output: H1 and H2 //Hi : edge set of the i-th Hamiltonian cycle
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step 1. if b3 = 0 then H1 ← {e1} else H1 ← {e0};
step 2. if b3 = 0 then
step 3. if b2 = 0 then
step 4. if b1 xor b0 = 0 then H1 ← H1∪{e3} else H1 ← H1∪{e2};
step 5. else
step 6. if b1 = 0 then H1 ← H1∪{e3} else H1 ← H1∪{e2};
step 7. end if
step 8. else
step 9. if b2 = 0 then
step 10. if b1 = 0 then H1 ← H1∪{e3} else H1 ← H1∪{e2};
step 11. else
step 12. if b1 xor b0 = 0 then H1 ← H1∪{e3} else H1 ← H1∪{e2};
step 13. end if
step 14. end if
step 15. H2 ← {e3, e2, e1, e0} \ H1;

In Algorithm 2HCBase, each vertex determines which two edges are used in the
first Hamiltonian cycles H1. In step 1, either e0-edge or e1-edge will be selected into
H1. Then, it will add e2-edge or e3-edge into H1 according to steps 2 to 14. Finally, the
remaining two edges will be adopted in the second Hamiltonian cycle. Since there is no
loop in Algorithm 2HCBase, we have the following lemma.

Lemma 3. The time complexity of Algorithm 2HCBase is O(1).

Lemma 4. By inputting the label of each vertex into Algorithm 2HCBase, we can obtain
2 cycles, which form two edge-disjoint Hamiltonian cycles in CQ4.

Proof. According to step 1 in the algorithm, each vertex selects either e0-edge or e1-
edge intoH1 by b0. Then, we provide the decision tree shown in Fig. 3 to illustrate steps
2 through 14 in the algorithm. The two edges selected for each vertex can be checked
by Fig. 2. �

b3 = 0

b2 = 0

b1 xor b0 = 0b1 = 0

H1 H1 {e3}H1 H1 {e2}H1 H1 {e3} H1 H1 {e2} H1 H1 {e3}

b2 = 0

v0 ~ v15

False                                   True

False                                True

v0 ~ v7v8 ~ v15

False                                True
v0 ~ v3v4 ~ v7v8 ~ v11v12 ~ v15

v0, v3

True

v1, v2v6, v7v4, v5v8, v9v10, v11v13, v14v12, v15

FalseTrueFalseTrue b1 xor b0 = 0 b1 = 0

Fig. 3. A decision tree to illustrate steps 2 through 14 in the Algorithm 2HCBase, where vi
represents the vertex i in CQ4.
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3.3 Constructing Two Edge-Disjoint Hamiltonian Cycles in CQn for n ≥ 5

We all know that CQn+1 is composed of CQ0
n and CQ1

n. As described in the previous
subsection, there exist two edge-disjoint Hamiltonian cycles in CQ4. The construction
method ofHamiltonian cycle inCQn+1 is as follows. First, we have theHamiltonian cycle
HCA in CQ0

n and the Hamiltonian cycle HCB in CQ1
n. Second, remove an edge in HCA

(respectively,HCB) to get the Hamiltonian pathHPA (respectively,HPB). Third, connect
one end vertex of HPA and one end vertex of HPB with an en-edge. Finally, connect the
other end vertex of HPA and the other end vertex of HPB to obtain a Hamiltonian cycle
in CQn+1. Figure 4 illustrates the construction of two such edge-disjoint Hamiltonian
cycles in CQn+1. Base on this method, we design Algorithm 2HC as shown below.

 00(0)n-1

CQn0 CQn1

01(0)n-1

 01(0)n-310 00(0)n-310

11(0)n-1

 11(0)n-310

10(0)n-1

 10(0)n-310

CQn+1

Fig. 4. The construction of two edge-disjoint Hamiltonian cycles in CQn+1 while n ≥ 4, where
thin red lines (respectively, thick blue lines) indicate the first (respectively, the second)Hamiltonian
cycle.

Algorithm 2HC
Input: B(= bn−1bn−2······b1b0) and n //B : the label of this vertex,
n : the dimension
Output: HC1 and HC2 //HCi : edge set of the i-th Hamiltonian cycle
step 1. By calling Algorithm 2HCBase, HC1 ← H1 and HC2 ← H2;
step 2. if b2 = 0 and b1 = 0 and b0 = 0 then
step 3. flag ← 1
step 4. for i = 3 to n – 3 do
step 5. if bi = 1 then
step 6. HC1 ← HC1 \ {e3}∪{ei+1}; flag ← 0; break for;
step 7. end if
step 8. end for
step 9. if flag = 1 then HC1 ← HC1 \ {e3}∪{en-1};
step 10. end if //end if at step 2
step 11. if b2 = 0 and b1 = 1 and b0 = 0 then
step 12. flag ← 1
step 13. for i = 3 to n – 3 do
step 14. if bi = 1 then
step 15. HC2 ← HC2 \ {e2}∪{ei+1}; flag ← 0; break for;
step 16. end if
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step 17. end for
step 18. if flag = 1 then HC2 ← HC2 \ {e2}∪{en-1};
step 19. end if //end if at step 11

In Algorithm 2HC, each vertex will call Algorithm 2HCBase to obtain HC1 and
HC2, where HCi is the edge set of the i-th Hamiltonian cycle. In steps 2 to 10, if this
vertex is one end vertex of the Hamiltonian path, it will modify itsHC1. For example, in
CQ6, vertex 000000 obtains HC1 = {e1, e3} by call Algorithm 2HCBase. Since vertex
000000 is one end vertex of the Hamiltonian path,HC1 = {e1, e3} \ {e3} ∪ {e5}. By the
same way, in steps 11 to 19, if this vertex is one end vertex of Hamiltonian path, it will
modify its HC2. For example, in CQ6, vertex 000010 obtains HC2 = {e1, e2} by call
Algorithm 2HCBase. Since vertex 000010 is one end vertex of the Hamiltonian path,
HC2 = {e1, e2} \ {e2} ∪ {e5}. According to Lemma 3 and steps 4, 13 in Algorithm
2HC, we have the following lemma.

Lemma 5. The time complexity of Algorithm 2HC is O(n).

Theorem 6. By inputting the label of each vertex into Algorithm 2HC, we can obtain 2
cycles, which form two edge-disjoint Hamiltonian cycles in CQn with n ≥ 4 in O(n2n)
time. In particular, it can be parallelized on CQn to run in O(n) time.

Proof. Each vertex of CQn can simultaneously run Algorithm 2HC to know which two
edges were used in Hamiltonian cycles 1 and 2, respectively. By lemma 5, it can be
parallelized on CQn to run in O(n) time.

Without loss of generality, we consider vertex 0 to be the starting vertex in CQn.
By Algorithm 2HC, vertex 0 obtains two edges used in the Hamiltonian cycle. With the
dimension of the edge, we can obtain the next vertex of the Hamiltonian cycle. In the
same way, the vertex sequence of the Hamiltonian cycle can be get. Since there are 2n

vertices inCQn, two edge-disjoint Hamiltonian cycles inCQn can be obtained inO(n2n)
time. �

For the convenience of checking the correctness of all results, we provide an inter-
active verification at the website [14]. It shows the usefulness and efficiency of our
algorithms in practical settings.

4 Concluding Remarks

In this paper, we first present two edge-disjoint Hamiltonian cycles in CQ4, and each
cycle has the same number of edges in each dimension. Then, we provide an O(n)
time algorithm for each vertex in CQn to determine which two edges were used in
Hamiltonian cycles 1 and 2, respectively. It is interesting to see if there are three edge-
disjoint Hamiltonian cycles in CQn for n ≥ 6. So far it is still an open problem.

Acknowledgments. This researchwas partially supported byMOSTgrants 107-2221-E-131-011
from the Ministry of Science and Technology, Taiwan.
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Abstract. Let G be a graph with diameter d and k ≤ d be a positive
integer. A radio k-labelling of G is a function f that assigns to each
vertex with a non-negative integer such that the following holds for all
vertices u, v: |f(u)− f(v)| ≥ k +1−d(u, v), where d(u, v) is the distance
between u and v. The span of f is the absolute difference of the largest
and smallest values in f(V ). The radio number of G is the minimum
span of a radio labelling admitted by G. In this article, we study radio
(d − 1)-labelling problem for full binary trees.

Keywords: Frequency assignment problem · Radio k-labelling · Radio
antipodal number · Span · Tree

1 Introduction

Frequency Assignment Problem (FAP) consists into the assignments of fre-
quencies to the transmitters in a network, ensuring that there are no inter-
ferences, namely close transmitters do not have close frequencies. Radio k-
labelling of a simple connected graph is a variation of FAP. In 1980, Hale [5]
has modeled FAP as a Graph labelling problem (in particular as a general-
ized graph labelling problem) and is an active area of research now. Given
a simple connected graph G = (V (G), E(G)) and a positive integer k with
1 � k � diam(G), a radio k-labelling of G is a mapping f : V (G) → {0, 1, 2, . . .}
such that |f(u) − f(v)| � k + 1 − d(u, v) for each pair of distinct vertices u and
v of G, where diam(G) is the diameter of G and d(u, v) is the distance between
u and v in G. The span of f , denoted by spanf (G), is the absolute difference
of the largest and smallest values in f(V ). Without loss of generality, we may
assume min f(V ) is zero. The radio k-chromatic number of G is the minimum
span among all radio k-labellings of G. Motivated by FM channel assignments
problem, the radio k- labelling problem was introduced in [2,3] and studied fur-
ther in [7,8]. The radio antipodal number, denoted by an(G), is the minimum
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span of a radio (diam(G) − 1)-labeling of G and the radio number, denoted by
rn(G), is the minimum span of a radio diam(G)-labeling of G.

Determining the radio k-chromatic number of a graph is an interesting yet
difficult combinatorial problem with potential applications to FAP. So far it has
been explored for a few basic families of graphs and values of k near to diameter.
The radio number of any hypercube was determined in [10] by using generalized
binary Gray codes. For two positive integers m ≥ 3 and n ≥ 3, the Toroidal
grids TGm, n are the cartesian product of cycle Cm with cycle Cn. Saha et al.
[12] have given exact value for radio number of TGm, n when mn ≡ 0 (mod 2).
For a cycle Cn, the radio number was determined by Liu and Zhu [7], and the
antipodal number is known only for n ≡ 1, 2, 3 (mod 4) (see [4,6]).

Surprisingly, even for paths finding the radio number was a challenging task.
It is envisaged that in general determining the radio number would be difficult
even for trees, despite a general lower bound for trees given in [8,16]. Till now,
the radio number is known for very limited families of trees. For path Pn and
full m-ary trees, the exact values of radio number were determined in [7,18]. The
results for path were generalized [7] to spiders, leading to the exact value of the
radio number in certain special cases. In [9], Reddy et al. gave an upper bound
for the radio number of some special type of trees. For tree structured network
T the antipodal number is known only when T is a path (see, [11]).

In this article, we determine the exact value of antipodal number for full
binary trees Th of any height h. Rest of this paper is organized as follows: In
Sect. 2, we give some preliminary results on tree. In Sect. 3, we give a lower
bound for antipodal number of full binary trees and finally, in Sect. 4 we show
this lower bounds are exactly same as the antipodal number of Th.

2 Preliminaries

A full binary tree Th is a rooted tree such that each vertex of degree greater than
one has exactly two children and all degree-one vertices are of equal distance
(height) to the root.

Definition 1. Let T be any tree. The measure of separability of a vertex v ∈
V (T ), denoted by βT (v), is the size of maximum connected component of T−{v}.
A vertex is called centroid if it has minimal separability over all vertices in T .

Let T be a tree with centroid S. The level of u ∈ V (T ) denoted by L(u), is
the distance of u from S (i.e. L(u) = d(S, u)). A vertex u of T is in level � if
L(u) = �. For distinct u, v ∈ V (T ), the length of the common part of the paths
of T from S to u and v is denoted by φ(u, v).

Lemma 1. Let T be a tree rooted at r. Then for distinct u, v ∈ V (T ) the fol-
lowing (a) − (b) hold.

(a) d(u, v) = L(u) + L(v) − 2φ(u, v)
(b) φ(u, v) = 0 if and only if r ∈ {u, v} or u and v belong to the different

branches.
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Lemma 2. For an n-vertex tree T , the following (a) − (c) hold.

(a) If a vertex v is centroid, then βT (v) � �n
2 �

(b) A tree with odd number of vertices has exactly one centroid.
(c) A tree T with even number of vertices has two centroids S1 and S2 which

are neighbors and
∑

u∈V (T )

d(S1, u) =
∑

u∈V (T )

d(S2, u).

Notation 1. For an n-vertex tree T and a centroid S of T , we call the number∑

u∈V (T )

d(S, u) the weight of T and denoted it by w(T ).

The uv-radio labelling fuv of a tree T is a radio labelling f with minimum
and maximum labels are at u and v, respectively. An uv-radio number of a
tree T , denoted by rnuv(T ), is the minimum span over all uv-radio labellings
of T . Although Liu [8] have presented the following lemma and corollary using
different symbols, here we give a complete proof for better understanding of our
main results.

Lemma 3. Let f be a radio labeling of an n-vertex tree T with first and last
colored vertices u and v. Then

spanuv(T ) ≥ (n − 1)(diam(T ) + 1) − 2w(T ) + d(S, u) + d(S, v)

where w(T ) denotes the weight of T and S denotes a centroid of T .

Proof: Let d be the diameter of T . Since f is a radio labelling of T , f induces
a linear order u0, u1, u2, . . . , un−1 of the vertices of T such that f(u) = f(u0) <
f(u1) < f(u2) < · · · < f(un−1) = f(v). Then uv-span of f is given by

spanuv(T ) = f(v) − f(u) =
n−2∑

i=0

[f(ui+1) − f(ui)]

≥
n−2∑

i=0

[d + 1 − d(ui, ui+1)]

≥ (n − 1)(d + 1) −
n−2∑

i=0

d(ui, ui+1)

≥ (n − 1)(d + 1) −
n−2∑

i=0

[d(S, ui) + d(S, ui+1)]

= (n − 1)(d + 1) − 2w(T ) + d(S, u) + d(S, v).

Corollary 1. Let T be an n-vertex tree with diameter d and centroid S. Then

rn(T ) � (n − 1)(d + 1) − 2w(T ) + 1.

Moreover, the equality holds if and only if there exist a centroid S and a radio
labelling f with f(u0) = 0 < f(u1) < . . . < f(un−1), where all the following hold
(for all 0 � i � n − 2):
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(a) φ(ui, ui+1) = 0, S ∈ {u0, un−1} and d(u0, un−1) = 1.
(b) f(ui+1) = f(ui) + d + 1 − LS(ui) − LS(ui+1).

Proof: From Lemma 3, as f(u0) = 0 and d(S, u0) + d(S, un−1) ≥ 1,

rn(T ) = spanu0un−1
(T ) � (n − 1)(d + 1) − 2w(T ) + 1.

Remark 1. To compute the lower bound presented in above, first we search
for a centroid S and then calculate the distances of other vertices from it. A
linear time algorithm can be presented for finding a centroid and calculating the
distances form this centroid.

Example 1. Even paths P2k have radio numbers equal to the bound in Corol-
lary 1, as one can find a radio labeling satisfying Corollary 1 (cf. [7]).

Example 2. Consequences of Corollary 1 include the radio number for full m-
ary tree Tm, h, m � 3 (which was settled in [18] by a different approach).

3 Lower Bound for Antipodal Number of Full Binary
Trees

Here we present a lower bound of antipodal number of full binary trees Th of
any height h and the sharpness of this lower bound has been presented in next
section. We need the following definitions and results to present a lower bound
for antipodal number of Th,

Definition 2. A subgraph H of a graph G is said to be maximal k-diameteral
subgraph if diameter of H is k and it contains maximum number of vertices of
G.

Definition 3. Let f : E → F be a mapping from a set E to a set F . For a set
A ⊂ E, we call the mapping f |A : A → F as the restriction of f on A.

Lemma 4. Let G be a graph with diameter d and H be a k-diameteral subgraph
of G with k < d. If rck(G) and rn(H) be the radio k-chromatic number of G
and the radio number of H, respectively, then rck(G) ≥ rn(H).

Proof: Let f be a radio k-labelling of G. Here the diameter of H is k with
k < d. Thus V (H) ⊂ V (G). Let g = f |V (H) be the restriction of f on V (H).
Then spanf (G) � spang(H) and this is true for any radio k-labelling of G and
so for restriction g = f |V (H) also. Since the diameter of H is k, we obtain the
required result.

Lemma 5. Let Th be a full binary tree of height h. Then for k = 2h − 1, the
following are hold
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(a) Th has exactly two maximal k-diameteral subgraph (say Tu and T v with
centroid at u and v, respectively)

(b) Each maximal k-diameteral subgraph has 3 · 2h−1 − 1 vertices.
(c) The weight of each maximal k-diameteral subgraph is 3h ·2h−1 −5 ·2h−1 +3.

Proof: Let r be the root vertex of Th and u, v be two children of r. So Th has
two branches with respect to the root r, namely, the left branch L(Th) and the
right branch R(Th).

(a) To reduce diameter of Th by one, we have to delete at least all the pen-
dant vertices of either branch, otherwise the diameter will remains unchanged.
Removing all the pendant vertices of R(Th), we get a maximal k-diameteral sub-
graph Tu with a centroid at u. Similarly, removing all the pendant vertices of
L(Th), we get another maximal k-diameter subgraph T v with a centroid at v.
Thus Th has exactly two maximal k-diameteral subgraphs.

(b) and (c): Note that Tu and T v are identical. The number of vertices of Tu

and T v are |V (Tu)| = |V (T v)| = |V (Th−1)|+ |V (Th−2)|+1 = 2h +2h−1 − 1 and
weights of Tu and T v are w(Tu) = w(T v) = w(Th−1)+w(Th−2)+2 · |V (Th−2)|+
1 = 3h · 2h−1 − 5 · 2h−1 + 3.

Theorem 1. For a full binary tree Th of height h, an(Th) ≥ 5 · 2h − 4h − 4.

Proof: For k = 2h−1, let f be an arbitrary radio k-labelling of Th. Let two maxi-
mal k-diameteral subgraphs of Th are Tu and T v with centroid at u and v, respec-
tively. Let u0 and un−1 be the first and last colored vertex of Th. Also let f |V (T u)

and f |V (T v) are restrictions of f on V (Tu) and V (Tu), respectively. Since diam-
eter of Tu and T v is k, using Lemma 4 we have rck(Th) ≥ max{rn(Tu), rn(T v)}.
Now applying Lemma 3 to both Tu and T v and using the results of Lemma 5,
we have the inequalities

rn(Tu) � 5 · 2h − 4h − 6 + f(xu) + d(u, xu) + d(u, yu); (1)
rn(T v) � 5 · 2h − 4h − 6 + f(xv) + d(v, xv) + d(v, yv); (2)

where xw and yw denote the minimum and maximum colored vertices of Tw

under the restriction f |V (T w) for w ∈ {u, v}. If one of xu and xv is not equal
to u0 or one of yu and yv is not equal to un−1, then the result follows. For
illustration, say xw 	= u0 for some w ∈ {u, v}. Then f(xw) ≥ 1 for some w ∈
{u, v}. Since d(u, xu) + d(u, yu) � 1 and d(v, xv) + d(v, yv) � 1, at least one of
f(xu) + d(u, xu) + d(u, yu) and f(xv) + d(v, xv) + d(v, yv) must be greater than
or equal to 2. Hence the theorem is proved in this case. Similar argument can
be used of the case when yw 	= un−1 for some w ∈ {u, v}. Thus we have consider
the case when f and its restrictions f |V (T u), f |V (T v) attain the minimum color
at same vertex as well as maximum color at same vertex i.e., xw = u0 and
yw = un−1 for w ∈ {u, v}. Then using rck(Th) ≥ max{rn(Tu), rn(T v)} and
inequalities (1) and (2), we have the following

rck(Th) ≥ 5 · 2h − 4h − 6 + f(u0) + max{d(u, u0) + d(u, un−1), d(v, u0) + d(v, un−1)}. (3)
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Fig. 1. Vertex-indices and antipodal labeling of T3.

Now we determine the least value of

max{d(u, u0) + d(u, un−1), d(v, u0) + d(v, un−1)}

depending on the position of minimum colored vertex u0 and maximum colored
vertex un−1. For this we consider the following cases.

Case-I: u0 ∈ {u, v} and un−1 	∈ {u, v}. Let w = {u, v} \ u0. In this
case, d(w, u0) = 2 and d(w, un−1) ≥ 1 and consequently, max{d(u, u0) +
d(u, un−1), d(v, u0) + d(v, un−1)} ≥ 3.

Case-II: u0, un−1 ∈ {u, v}. First we take u0 = u, un−1 = v. In this case,
d(u, u0) = 0,d(v, u0) = 2,d(u, un−1) = 2 and d(v, un−1) = 0 and hence

max{d(u, u0) + d(u, un−1), d(v, u0) + d(v, un−1)} = 2.

Similarly, max{d(u, u0)+d(u, un−1), d(v, u0)+d(v, un−1)} = 2 if u0 = v, un−1 =
u.

Case-III: u0 = r. In this case, d(u, u0) = 1,d(v, u0) = 1 and either d(u, un−1) ≥
2 or d(v, un−1) ≥ 2. Thus max{d(u, u0) + d(u, un−1), d(v, u0) + d(v, un−1)} ≥ 3.

Case-IV: u0 	∈ {r, u, v}. In this case, max{d(u, u0) + d(u, un−1), d(v, u0) +
d(v, un−1)} ≥ 4 because d(v, u0) ≥ 3 and d(v, un−1) ≥ 1.

On account of the four cases above, the inequality in (3) gives

an(Th) ≥ 5 · 2h − 4h − 4.



462 S. Das et al.

4 Antipodal Number of Full Binary Trees

In this section, we present an algorithm for construction of antipodal labelling
of full binary trees. The algorithm has been build up to produce a suitable
arrangement of vertices for Th that facilitate an antipodal labelling.

Theorem 2. For a full binary tree Th there exists an antipodal labelling f with
spanf (Th) = 5 · 2h − 4h − 4.

Proof: In Algorithm 1 produces an antipodal labelling f with spanf (Th) =
5 · 2h − 4h − 4.

For illustration, we give an optimal antipodal labelling f for full binary tree
T3 in Fig. 1 by using Algorithm 1.

Observation 1. From Step-II of Algorithm 1, we have the following

(a) u0 is the root vertex of Th

(b) Lh = {u1, u2, . . . , u2h} and L(uj) < h for j > 2h.

Observation 2. For subsets S1 = {wi : 2h + 2 ≤ i ≤ 2h+1 − 2}, S2 = {wi : 1 ≤
i ≤ 2h−1 − 1} and S3 = {wi : 2h−1 + 1 ≤ i ≤ 2h + 1} following are true

(a) S1 ⊂ Lp for some p ≤ h − 1;
(b) S2 ∪ S3 ⊂ Lh;

where Lt denotes the set of vertices of Th which are at level t.

Proof: (a) Let wj ∈ S1. Then 2h + 2 ≤ j ≤ 2h+1 − 2. Then from Step-III of
Algorithm 1, wj = uj−1 as 2h + 2 ≤ j ≤ 2h+1 − 2. Observation 1 (b) implies that
uj−1 is in level p for some positive p < h. Hence the result is true for wj with
2h + 2 ≤ j ≤ 2h+1 − 2.

(b) Let wi ∈ S2 and wj ∈ S3. Then 1 ≤ i ≤ 2h−1−1 and 2h−1+1 ≤ j ≤ 2h+1,
which implies that wi = ui and wj = uj−1 from Step-III of Algorithm 1. Thus
from Observation 1, both wi and wj are in level h.

Correctness of Algorithm1:

From Theorem 1, an(Th) ≥ 5 · 2h − 4h − 4. Thus to prove Algorithm 1 produces
an optimal antipodal labelling it is sufficient to show f is an antipodal labelling
with span 5 · 2h − 4h − 4.

Lemma 6. The mapping f defined in Algorithm1 has the span 5 · 2h − 4h − 4.
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Algorithm 1: An optimal antipodal labelling of Th.
begin

Input : A full binary tree Th of height h.
Output: An antipodal labelling f of Th with minimum span.
Initialization : Start with the root vertex r of full binary tree Th.
Step-I : Indices the vertices of Th by the following rule :

(a) Denote the two children of r by v0 and v1.
(b) Denote two children of v0 by v00, v01; and two children of v1 by v10, v11.
(c) In general, for 1≤ t≤ � < h and it ∈{0, 1}, two children of a level � vertex

vi1 i2 i3 ... i� of Th are denoted by vi1 i2 i3 ... i� i�+1 , where i�+1 ∈ {0, 1}.

Step-II : Create a new arrangement u0, u1, u2, . . . , un−1 of V (Th) by
changing the suffices of the vertices that are produced in Step-I under the
following rule :

(a) rename r by u0

(b) rename a level � (1 ≤ � ≤ h) vertex vi1 i2 i3 ... i� by uj , where

j = 1 + i1 + i2 · 2 + i3 · 22 + . . . + i� · 2�−1 +
∑

�+1�t�h

2t.

Step-III : Give a modified ordering {w0, w1, w2, . . . , wn−1} of V (Th) by
wi = uσ(i), where σ is a permutation of {0, 1, . . . , 2h+1 − 1} defined as

σ(0) = 2h+1 − 2;

σ(2h−1) = 0;

σ(i) =

{
i, if 1 ≤ i ≤ 2h−1 − 1;

i − 1, if 2h−1 + 1 ≤ i ≤ 2h+1 − 2.

Step-IV : Define a mapping f : {wi : 0 ≤ i ≤ 2h+1 − 2} → {0, 1, 2, . . .} by

f(w0) = 0; f(w1) = h − 1,

f(w2i+1) = f(w2i) = h + 2i − 1, 0 ≤ i ≤ 2h−2 − 1;

f(w2h−1) = 2h−1 + 2h − 3;

f(wa+2) = f(wa+1) = a + 3h − 3, 0 ≤ j ≤ 2h−2 − 1;

f(w2h+1) = 2h + 3h − 3;

f(wi+1) = f(wi) + 2h − {L(wi) + L(wi+1)}, 2h + 1 ≤ i ≤ 2h+1 − 3,

where a = 2h−1 + 2j.

Proof: From definition of f in Algorithm 1, f(wi) ≤ f(wj) for i < j and so from
Algorithm 1,
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spanf (Th) = f(w2h+1−2)

=
[
f(w2h+1−2)− f(w2h+1)

] − f(w2h+1)

=

2h+1−3∑

j=2h+1

[f(wj+1)− f(wj)]− f(w2h+1)

= 2h(2h+1 − 2h − 3)−
2h+1−3∑

j=2h+1

[L(wj) + L(wj+1)]− (2h + 3h − 3)

= 2h(2h+1 − 2h − 3)− 2

2h+1−4∑

j=2h+2

L(wj)− L(w2h+1)− L(w2h+1−3)− (2h + 3h − 3)

= 2h + 3h − 3 + 2h(2h+1 − 2h − 3)− 2{ω(Th−1)− 2} − h − 1

= 2h + 3h − 3 + 2h(2h+1 − 2h − 3)− 2h+1(h − 2)− h − 1

= 5 · 2h − 4h − 4.

Lemma 7. The mapping f defined in Algorithm1 is an antipodal labelling of
Th.

Proof: To prove f is an antipodal labelling of Th, we first partitioned the vertex
set V (Th) into four partite sets S1, S2, S3 and S4, where Si’s are defined as
follow:

S1 = {wi : 2h + 2 ≤ i ≤ 2h+1 − 2}
S2 = {wi : 1 ≤ i ≤ 2h−1 − 1}
S3 = {wi : 2h−1 + 1 ≤ i ≤ 2h + 1}
S4 = {w0, w2h−1}.

Then from the construction of f in Algorithm 1, we have the following

(a) f(wa) = f(wa−1) + 2h − {L(wa) + L(wa−1)} for all wa ∈ S1

(b) For any wa ∈ S2

f(wa) =
{

h + a − 1, if a is even;
h + a − 2, if a is odd.

(c) For any wa ∈ S3

f(wa) =
{

3h + a − 4, if a is odd;
3h + a − 5, if a is even.

(d) f(w0) = 0 and f(w2h−1) = 2h−1 + 2h − 3. From the definition of f our
labelling scheme is

w0 → S2 → w2h−1 → S3 → S1.



Antipodal Radio Labelling of Full Binary Trees 465

Let wa and wb be arbitrary two distinct vertices of Th. We consider the following
cases depending on the position of wa and wb in Si, i = 1, 2, 3, 4.

Case-1: wa ∈ S4 = {w0, w2h−1} andwb ∈ ∪4
i=1Si. First we consider wa = w0.

Note that the position of w0 is the root vertex of right branch of Th. So it is clear
that |f(wa) − f(wb)| ≥ 2h − d(w0, wa) for all wb ∈ S1 ∪ S3 ∪ S4 and wa = w0. If
wb ∈ S2, then

d(w0, wb) =
{

h + 1, if a is odd
h − 1, if a is even

because odd or even index vertices of S2 are the left or right branch pendant
vertices of Th, respectively. Therefore, |f(wb) − f(w0)| ≥ 2h − d(w0, wa) for all
wb ∈ S2. Now we consider wa = w2h−1 , which is the root vertex of Th. Since
f(w2h−1) = 2h−1 + 2h − 3 and d(wb, w2h−1) = h for all wb ∈ S2 ∪ S3, w2h−1

satisfies antipodal conditions over the set S2 ∪ S3. Again from the definition of
f , f(wb) − f(w2h−1 ≥ 2h for all wb ∈ S1.

Case-2: wa, wb ∈ S2. Let η = φ(wa, wb). If exactly one of a and b is even, then
η = 0 and hence antipodal condition is satisfied. If both a and b are either even
or odd then

f(wb) − f(wa) = b − a

≥ 2η

≥ 2η

= 2h − d(wa, wb), since d(wa, wb) = �a + �b − 2η = 2h − 2η.

Case-3: wa, wb ∈ S3. Then by the same argument as Case-2 we can show that

vertices of S3 satisfy antipodal condition.

Case-4: wa, wb ∈ S1. Let φ(wa, wb) = η. From definition of f , we have

f(wb) − f(wa) = 2h(b − a) −
⎧
⎨

⎩
L(wa) + L(wb) + 2

b−1∑

j=a+1

L(wj)

⎫
⎬

⎭

= 2h − d(wa, wb) + δ(a, b);

where

δ(a, b) = 2h(b − a − 1) − 2
b−1∑

j=a+1

L(wj) − 2η. (4)

Since wa, wb ∈ S1 and S1 contains consecutive wi’s, wj ∈ S for a ≤ j ≤ b. Then
Observation 2 gives L(wj) ≤ h − 1 for each j ∈ {a, a + 1, . . . , b} which reduces
the inequality (4) as

δ(a, b) ≥ 2h(b − a − 1) − 2(h − 1)(b − a − 1) − 2η

= 2(b − a − 1) − 2η

≥ 2(2η − η − 1), as b − a ≥ 2η

≥ 0.
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Case-5: wa ∈ S2 andwb ∈ S1. Clearly, b > a. First we consider b = 2h +2. Then
for even integer a, we have

f(wb) − f(wa) = 2h + 3h − 2 − (h + a − 1)
= 2h + 2h − a − 1
= 2h + b − a − 3
≥ (2h − 3) + 2η asb − a ≥ 2η due to Lemma
≥ 2η + 1
= 2h − d(wa, wb).

Similarly, if a is odd, then f(wa) = h+a−2 and f(wb)−f(wa) ≥ 2h−d(wa, wb).
Now we consider b > 2h + 2 and a is even. Then the values of f at the points b
and a are given

f(wb) = f(w2h+2) + (b − 2h − 2)2h − {L(wb) + L(w2h+2) + 2
b−1∑

j=2h+3

L(wj);

f(wa) = h + a − 1.

After simple calculations with the fact L(wa) = h, L(w2h+2) = h − 1 and η =
φ(wa, wb); the difference f(wb) − f(wa) reduces to

f(wb) − f(wa) = 2h − d(wa, wb) + δ(a, b),

where d(wa, wb) = L(wa) + L(wb) − 2η = L(wa) + L(wb) − 2φ(wa, wb) and

δ(a, b) = f(w2h+2) + (b − 2h − 2)2h − 2
b−1∑

j=2h+3

L(wj) − h − a − 2η + 2. As of

our previous cases, here we also show that δ(a, b) > 0. Since w2h+3, wb ∈ S1,
{w2h+3, . . . , wb} ⊂ S1 and Observation 2 gives L(wj) ≤ h − 1 for all j ∈ {2h +
3, . . . , b}. With these highest values of L(wj)’s, we obtain an inequality for δ(a, b)
as

δ(a, b) ≥ 2h + 3h − 2 + 2h(b − 2h − 2) − 2(h − 1)(b − 2h − 3) − h − a − 2η + 2
= 2h + 2h + 2h(b − 2h − 2 − b + 2h + 6) + 2(b − 2h − 3) − a − 2η

= 2h + 10h + 2b − 2.2h − 6 − a − 2η

= 10h + (b − 2h) + (b − a) − 2η − 6
> 0 since b > 2h and b − a > 2η ≥ 2η.

Similarly, we can show that f(wb)−f(wa) ≥ 2h−d(wa, wb) whenever b > 2h +2
and a is an odd integer.

Case-6: wa ∈ S3 and wb ∈ S1. Using similar arguments as used in Case-5, we
can show that the antipodal condition is also satisfied for these two vertices wa

and wb.
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Case-7: wa ∈ S2 andwb ∈ S3. In this case b − a ≥ 2. From the definition of f ,

f(wb) − f(wa) ≥ 3h + b − 5 − (h + a − 1)
≥ 2h + b − a − 4

From the above inequality, it is clear that antipodal conditions are satisfied
whenever b − a ≥ 3. So our remaining case is b − a = 2 and this is true only
when b = 2h−1 + 1 and a = 2h−1 − 1. In this case

f(wb) − f(wa) ≥ 3h + b − 4 − (h + a − 2)
≥ 2h + b − a − 2
= 2h

and hence antipodal conditions are also satisfied when b − a = 2.
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Abstract. A graph is outer-1-planar if it has a drawing in the plane
so that its vertices are on the boundary face and each edge is crossed
at most once. Zhang (2013) proved that the total chromatic number
of every outer-1-planar graph with maximum degree Δ ≥ 5 is Δ + 1,
and showed that there are graphs with maximum degree 3 and total
chromatic number 5. For outer-1-planar graphs with maximum degree 4,
Zhang (2017) confirmed that its total chromatic number is at most 5 if
it admits an outer-1-planar drawing in the plane so that any two pairs
of crossing edges share at most one common end vertex. In this paper,
we prove that the total chromatic number of every Anicop graph with
maximum degree 4 is at most 5, where an Anicop graph is an outer-1-
planar graph that admits a drawing in the plane so that if there are two
pairs of crossing edges sharing two common end vertices, then any of
those two pairs of crossing edges would not share any end vertex with
some other pair of crossing edges. This result generalizes the one of Zhang
(2017) and moves a step towards the complete solving of the cold case.

Keywords: Outer-1-planar graph · Total coloring · Maximum degree

1 Introduction

A total k-coloring of a graph G is an assignment of k colors to all vertices and
edges of G so that no two adjacent or incident elements receive the same color.
The total chromatic number χ′′(G) of a graph G is the minimum integer k so
that G has a total k-coloring. In any total coloring of a graph G with maximum
degree Δ, it is easy to see that we shall use Δ + 1 colors to color the vertex of
degree Δ and its incident edges. This implies that χ′′(G) ≥ Δ(G) + 1 for every
graph G. On the other hand, looking for a general upper bound in terms of Δ(G)
for χ′′(G) seems interesting and challenging. Actually, Behzad [3] and Vizing [10]
independently conjectured at least fifty years ago that χ′′(G) ≤ Δ(G) + 2 for
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every graph G. This conjecture was now confirmed for graphs with maximum
degree at most 3 by Rosenfeld [7] and Vijayaditya [9], 4 and 5 by Kostochka [5,6],
and verified for planar graphs with maximum degree 7 by Sanders and Zhao [8],
8 by Andersen [1], and at least 9 by Borodin [4]. However, the conjecture itself
is still quite open, even for planar graphs with maximum degree 6.

In the literature, there are some well-established subclasses of planar graphs
including

– outerplanar graphs: graphs that can be drawn in the plane so that all the
vertices are on the outer face (equivalently, graphs that do not contain K2,3

or K4 as a minor);
– series-parallel graphs: graphs that do not contain K4 as a minor;
– outer-1-planar graphs: graphs that can be drawn in the plane so that all the

vertices are on the outer face and each edge is crossed at most once.

Outplanar graphs and series-parallel graphs are planar due to the well-known
Wagner’s theorem which says that a graph is planar if and only if it does not
contain K3,3 or K5 as a minor. But the planarity of outer-1-planar graphs is not
trivially proved—such a proof was given by Auer et al. [2], who also pointed out
that the class of outer-1-planar graphs is not minor-closed. A graph is quasi-
Hamiltonian if each of its block is Hamiltonian. Zhang, Liu, and Wu [19] showed
that the intersection of the class of quasi-Hamiltonian outer-1-planar graphs and
the class of series-parallel graphs is indeed the class of outerplanar graphs.

Zhang, Zhang, and Wang [20] showed in 1988 that the χ′′(G) = Δ(G)+1 for
every outerplanar graph with maximum degree at least 3. The same result also
holds for series-parallel graphs, which was proved in 2004 by Wu and Hu [12]. In
2011, Zhang and Liu [18] proved the total coloring conjecture for outer-1-planar
graphs, and moreover, showed that χ′′(G) = Δ(G) + 1 for every outer-1-planar
graph with maximum degree at least 5, and this result was later generalized to
its list version by Zhang [13] in 2013. In [13,18], the authors also pointed out
that there are outer-1-planar graphs G with Δ(G) = 3 and χ′′(G) = 5, and
whether outer-1-planar graphs G with Δ(G) = 4 satisfy χ′′(G) = Δ(G) + 1 = 5
is unknown.

For this cold case, Zhang [15] considered the Nicop graphs, i.e., outer-1-plane
graphs so that any two pairs of crossing edges share at most one common end
vertex. Here, an outer-1-plane graph is a drawing of outer-1-planar graph in the
plane so that its outer-1-planarity is preserved and the number of crossings is as
small as possible. Zhang [15] proved the following

Theorem 1 [15]. If G is a Nicop graph with Δ(G) = 4, then χ′′(G) = 5.

In this paper, we aim to generalize this result to a larger class of graphs G.
Here, a graph G belongs to G if and only if

– G is an outer-1-plane graph, and
– if there are two pairs of crossing edges sharing two common end vertices, then

any of those two pairs of crossing edges would not share any end vertex with
some other pair of crossing edges.
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From now on, a graph G ∈ G is called an outer-1-plane graph with almost-
near-independent crossings, or an Anicop graph for short. Our main result is
stated as follows:

Theorem 2. If G is an Anicop graph with Δ(G) = 4, then χ′′(G) = 5.

Since Nicop graphs are Anicop graphs, Theorem 2 implies Theorem 1. Actu-
ally, we believe that the same conclusion holds for every outer-1-planar graph
with maximum degree 4, so we end this section with the following conjecture.

Conjecture 3. If G is an outer-1-planar graph with Δ(G) = 4, then χ′′(G) = 5.

2 Reducibilities: The Proof of Theorem 2

From now on, when we mention an outer-1-planar graph G, we always refer to
its outer-1-planar diagram, i.e, a drawing of G in the plane so that the outer-
1-planarity of G is preserved and this drawing has the minimum number of
crossings among all such outer-1-planar drawings.

To begin with, we define base graphs Π1
i and Π2

i with 1 ≤ i ≤ 3 by Fig. 1.
In each picture of this figure besides Π1

1 , all vertices are lying consecutively
in an outer-1-planar diagram G as where they are drawn in that picture (i.e.,
the boundary edges incident with the black vertices in that picture form a sub-
drawing of the outer-face of G). The two white vertices in each picture of Fig. 1
are called the handles.

Fig. 1. Base graphs

Given two base graphs, say Πj
i with handles u, v, and Πj′

i′ with handles u′, v′,
we have two operations:

Πj
i ◦ Πj′

i′ Identifying v with v′, see Fig. 2, and in the resulting graph let the degree
of the vertex w corresponding v and v′ be the number of edges incident with
it in this partial drawing. The vertices u and u′ in the resulting graph are
called linking handles;

Πj
i ⊗ Πj′

i′ Adding edges vv′, uv′ and u′v so that uv′ crosses u′v, see Fig. 2, and
in the resulting graph let the degree of the vertex v or v′ be the number of
edges incident with it in this partial drawing. The vertices u and u′ in the
resulting graph are called crossed-linking handles.



472 W. Liu and X. Zhang

Fig. 2. Two operations generated by Πj
i and Πj′

i′

Note that Πj
i ◦ Πj′

i′ or Πj
i ⊗ Πj′

i′ is still an outer-1-planar diagram. We prove
the following

Theorem 4. Every 2-connected Anicop graph with maximum degree at most 4
contains one of the configurations among

(C1) a vertex u of degree 2 adjacent to a vertex v of degree at most 3;
(C2) a cycle of length 4 with two nonadjacent vertices of degree 2;
(C3) a triangle uvw with d(v) = 2 and u adjacent to a vertex x of degree 2;
(C4) Π1

1 ⊗ Π2
1 ;

(C5) Π2
1 ⊗ Π2

1 ;
(C6) Π1

3 ;
(C7) Π1

2 or Π2
2 or Π2

3 , with a handle of degree at most 3;
(C8) Π1

2 or Π2
2 or Π2

3 , with a handle adjacent to a vertex of degree 2;
(C9) Π1

2 or Π2
2 or Π2

3 , with the two handles being adjacent;
(C10) Π1

2 ◦ Π1
2 , or Π1

2 ◦ Π2
2 , or Π2

2 ◦ Π2
2 ;

(C11) Π1
1 ⊗ Π1

2 , or Π1
1 ⊗ Π2

2 , or Π2
1 ⊗ Π1

2 , or Π2
1 ⊗ Π2

2 .

In this section, we apply Theorem 4 to prove the following theorem, which is
slightly stronger than Theorem2.

Theorem 5. If G is an Anicop graph with maximum degree at most 4, then
χ′′(G) ≤ 5.

Proof. (sketch). Let G be a counterexample with the minimum number of ver-
tices. Clearly, G is 2-connected. It is sufficient to prove that G does not contain
the configuration (Ci) for each 1 ≤ i ≤ 11, contradicting Theorem 4. The proof
of each item proceeds as follows. First, we construct a graph G′ with Δ(G′) ≤ 4
and |G′| < |G| via removing some vertices appearing in (Ci) from G (we sup-
pose, to the contrary, that (Ci) occurs), and after that, adding non-crossed edges
inside the outer boundary (this operation applies sometimes, not always). Next,
we prove that a total 5-coloring of G′ can be extended to a total 5-coloring of
G (sometimes the recoloring shall be involved). Note that if we remove vertices
from an Anicop graph, or add non-crossed edges inside the outer boundary of an
Anicop graph, the resulting graph is still an Anicop graph. So, by the minimality
of G, G′ is total-5-colorable, which implies χ′′(G) ≤ 5, a contradiction.
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3 Structures: The Proof of Theorem4

3.1 Preliminaries

We first review some useful notations that were often used in many papers
including [13–19].

Given a 2-connected Anicop graph G, by v1, v2, . . . , v|G| we denote the
vertices of G that lie in a clockwise sequence on the outer boundary. Let
V[vi, vj ] = {vi, vi+1, . . . , vj} and V(vi, vj) = V[vi, vj ]\{vi, vj}, where the sub-
scripts are taken modulo |G|. Set V[vi, vi] = V (G) and V(vi, vi) = V (G) \ {vi}.

A vertex set V[vi, vj ] is a non-edge if j = i + 1 (mod |G|) and vivj �∈ E(G),
and is a path if vivi+1 · · · vj (the subscripts are taken modulo |G|) forms a path.
An edge vivj is a chord if j = i + 1 (mod |G|). By C[vi, vj ], we denote the set of
chords xy with x, y ∈ V[vi, vj ].

Let vivj and vkvl be two chords in an Anicop graph G so that vivj crosses
vkvl and vi, vk, vj and vl lie in a clockwise sequence on the outer boundary
of G. We say that vivj co-crosses vkvl, and vivj , vkvl are co-crossed chords, if
vivk, vkvj , vjvl ∈ E(G), l − j = k − i = 1 (mod |G|), and j − k = 1 and d(vk) =
d(vj) = 3 (see the 1st picture of Fig. 3), or j − k = 2, vkvk+1, vk+1vj ∈ E(G),
d(vk) = d(vj) = 4 and d(vk+1) = 2 (see the 2nd picture of Fig. 3).

Fig. 3. vivj co-crosses vkvl

By the partial drawings of G as showed in Fig. 4, we define different types of
clusters that will be frequently used in the following arguments. In any picture
of this figure, vertices are all distinct, the edges drawn as crossed have to be
crossed in G, and the curving edges are chords. Note that any graph in Fig. 4
contains a base graph as a subgraph.

We call H an I-cluster in G if H is either a left I1-cluster, or a right I1-cluster,
or a left I2-cluster, or a right I2-cluster. The II-cluster, III-cluster and IV-cluster
are defined similarly. The width of a cluster is the value of |V[vL, vR]|, where L
and R are the subscripts of the far left vertex and the far right vertex on the
outer boundary (see in a clockwise direction from left to right). For convenience,
we use {vL, vR}1, {vL, vR}2, {vL, vR}3, and {vL, vR}4 to represent a I-cluster,
II-cluster, III-cluster, and IV-cluster, respectively. For example, the width of the
left I1-cluster {vj , vi+3}1 is (i + 3) − j + 1 = i − j + 4 (mod |G|), and the width
of the right I1-cluster {vi, vj}1 is j − i+1 (mod |G|). Note that for a cluster, say
a III-cluster for example, the left-type can be transferred to the right-type just
by taking inversion.
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Fig. 4. The definitions of different types of clusters

The following three lemmas were originally proved for outer-1-plane graphs
or Nicop graphs, and there is no double that their proofs also work for Anicop
graphs.

Lemma 6 [19, Claim 1]. Let vi and vj be vertices of a 2-connected outer-1-plane
graph (or Anicop graph) G. If there is no crossed chord in C[vi, vj ] and no edge
between V(vi, vj) and V(vj , vi), then V[vi, vj ] is either a non-edge or a path.

Lemma 7. Let vivj and vkvl with i < k < j < l be two crossed chords in a
2-connected outer-1-plane graph (or Anicop graph) G with Δ(G) ≤ 4 so that
vivj crosses vkvl and there is no other pair of crossed chords contained in the
drawing induced by V[vi, vl]. We have

(1) at most one of V[vi, vk],V[vk, vj ] and V[vj , vl] is a non-edge [19, Claim 3];
(2) if one of V[vi, vk],V[vk, vj ] and V[vj , vl] is a non-edge, then G has a subgraph

isomorphic to one of the configurations among (C1), (C2), and (C3) [19,
Claims 2 and 4];

(3) if all of V[vi, vk],V[vk, vj ] and V[vj , vl] are paths, then either vivj co-crosses
vkvl in G, or G has a subgraph isomorphic to one of the configurations
among (C1), (C2), (C3), (C4), and (C5) [19, Claims 2 and 5].

Lemma 8 [15, Lemma 2.2]. Let V[vi, vj ] with j−i ≥ 3 be a path in a 2-connected
Nicop graph (or Anicop graph) G with Δ(G) ≤ 4. If there is no crossed chord in
C[vi, vj ] and no edges between V(vi, vj) and V(vj , vi), then G contains (C1) or
(C2).

3.2 Proofs by Combinatorial Analyses

Let G be a 2-connected Anicop graph with Δ(G) ≤ 4. If G does not contain a
crossing, then G is an outerplane graph, and the following is immediate.
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Lemma 9 [11, Corollary 2.5]. If G does not contain a crossing, then it contains
(C1) or (C3).

If G contains a crossing, then choose one pair of crossed chords vivj and vkvl
such that vivj crosses vkvl, and C[vi, vl] contains no other crossed chord besides
vivj and vkvl. Applying Lemmas 6 and 7, one can conclude that vivj co-crosses
vkvl unless G contains one of the configurations among (C1), (C2), (C3), (C4),
and (C5).

Hence in the following we assume that vivj co-crosses vkvl with 1 = i < k <
j < l, and G does not contain any configurations among (C6)—(C11) (otherwise
we win).

Since (C7) and (C7) are absent, d(vl) ≥ 4 and thus there is a chord vlvs
with l < s ≤ n. In this case the drawing induced by V[vi, vl] and vlvs is a I-
cluster {vi, vs}1. We make the following assumption, otherwise we can choose
the shorter one I-cluster to replace {vi, vs}1.
Assumption 1. {vi, vs}1 is the shortest I-cluster contained in the drawing
induced by V[vi, vs].

Lemma 10. Suppose that va and vb are two vertices with l ≤ a < b ≤ s. If there
is no edge between V(va, vb) and V(vb, va), and there is a pair of chords vi′vj′

and vk′vl′ with a ≤ i′ < k′ < j′ < l′ ≤ b, then there is a II-cluster contained
in the drawing induced by V[va, vb] unless {i′, l′} = {a, b} and vi′vj′ co-crosses
vk′vl′ .

Proof. Suppose that vi′vj′ does not co-cross vk′vl′ . By Lemmas 6 and 7, there
is another pair of crossed chords besides vi′vj′ and vk′vl′ , say vi′′vj′′ and vk′′vl′′
with i′ ≤ i′′ < k′′ < j′′ < l′ ≤ l′, in C[vi′ , vl′ ]. We choose vi′′vj′′ and vk′′vl′′

carefully so that there is no other pair of crossed chords in C[vi′′ , vj′′ ] besides
them. This implies that vi′′vj′′ co-crosses vk′′vl′′ , because otherwise one of the
configurations among (C1), (C2), (C3), (C4), and (C5) would appear by Lemmas
6 and 7. Since {i′′, l′′} �= {i′, l′}, {i′′, l′′} �= {a, b}. By the absences of (C7) and
(C9), and by Assumption 1, there are chords vi′′vt′′ and vl′′vs′′ with l′′ < t′′ ≤ b
and a ≤ s′′ < i′′. Therefore, a II-cluster {vs′′ , vt′′}2 is found in the drawing
induced by V[va, vb].

On the other hand, we assume that vi′vj′ co-crosses vk′vl′ but {i′, l′} �= {a, b}.
Actually, one can see that vi′vj′ and vk′vl′ play the same role as vi′′vj′′ and
vk′′vl′′ in the previous paragraph. Therefore, we can again find a II-cluster in
the drawing induced by V[va, vb].

In the following proofs, we distinguish two major cases.

The First Case: vlvs is Non-crossed

Lemma 11. There exists a II-cluster contained in the drawing induced by
V[vl, vs].
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Proof. If there is no crossed chord in C[vl, vs], then V[vl, vs] is a path by Lemma 6.
If s − l = 2, then d(vl+1) = 2 and (C8) appears. If s − l ≥ 3, then (C1) or (C2)
appears by Lemma 8. Hence there is a pair of crossed chords vi′vj′ and vk′vl′

with l ≤ i′ < k′ < j′ < l′ ≤ s, and by Lemma 10, there is a II-cluster contained
in the drawing induced by V[vl, vs] unless {i′, l′} = {l, s} and vi′vj′ co-crosses
vk′vl′ , which case would not occur because otherwise d(vl) ≥ 5.

By Lemma 11, there are chords vi′vj′ and vk′vl′ with l < i′ < k′ < j′ <
l′ < s so that vi′vj′ co-crosses vk′vl′ , and moreover, there are chords vi′vt′ with
l′ < t′ ≤ s and vl′vs′ with l ≤ s′ < i′. In other words, this structure is indeed a
II-cluster {vs′ , vt′}2. Typically, the following assumption is natural.

Assumption 2. {vs′ , vt′}2 is the shortest II-cluster contained in the drawing
induced by V[vs′ , vt′ ].

Lemma 12. The drawing induced by V[vs′ , vt′ ] has a copy of Π2
3 with handles

vs′ and vt′ .

Proof. By Lemma 10 and by the fact that Δ(G) ≤ 4, there is no crossed chord in
C[vl′ , vt′ ], because otherwise we would find in the drawing induced by V[vs′ , vt′ ]
a shorter II-cluster than V[vs′ , vt′ ], contradicting Assumption 2. By Lemma 6,
V[vl′ , vt′ ] is non-edge or path. If V[vl′ , vt′ ] is a non-edge, then d(vl′) = 3 and (C7)
appears. Hence V[vl′ , vt′ ] is a path. If t′ − l′ ≥ 3, then by Lemma 8, G contains
(C1) or (C2). If t′ − l′ = 2, then d(vl′+1) = 2 and (C8) appears. Hence t′ − l′ = 1
and vl′vt′ ∈ E(G). By symmetry, i′ −s′ = 1 and vs′vi′ ∈ E(G). This implies that
the drawing induced by V[vs′ , vt′ ] contains either Π1

3 or Π2
3 with handles vs′ and

vt′ . However, Π1
3 is forbidden in G, so it must be a copy of Π2

3 with handles vs′

and vt′ .

Since (C7) and (C9) are absent from G, there are chords vt′vp and vs′vq
with p �= s′, i′ and q �= t′, l′. Since s′ �= l and vt′vp cannot cross vs′vq by the
definition of the Anicop graphs, either t′ < p ≤ s or l ≤ r < s′. We assume,
without loss of the generality, the former, and in this case there is a III-cluster,
say {vs′ , vp}3, contained in the drawing induced by V[vs′ , vp]. Again, we do the
following natural assumption.

Assumption 3. {vs′ , vp}3 is the shortest III-cluster contained in the drawing
induced by V[vs′ , vp].

Lemma 13. There is no crossed chord in C[vt′ , vp].

Proof. Suppose, to the contrary, that there is a pair of crossed chords there.
By Lemma 11, there exists a II-cluster contained in the drawing induced by
V[vt′ , vp]. Here one shall note that t′ would not be incident with any crossed
edge in the drawing induced by V[vt′ , vp] by the definition of the Anicop graphs.
Assume that {vs′′ , vt′′} with t′ < s′′ < t′′ is the shortest II-cluster contained
in the drawing induced by V[vt′ , vp]. By similar arguments as in the proof of
Lemma 12, the drawing induced by V[vs′′ , vt′′ ] contains a copy of Π2

3 with handles
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vs′′ and vt′′ . Again, by the absences of (C7) and (C9) and by the definition of the
Anicop graphs, there is a chord vt′′vp′ with t′′ < p′ ≤ p or a chord vs′′vq′ with
t′ ≤ q′ < s′′. In each case we find in the drawing induced by V[vt′ , vp] ⊂ V[vs′ , vp]
a shorter III-cluster than {vs′ , vp}3, contradicting Assumption 3.

By Lemmas 6 and 13, V[vt′ , vp] is a path. If p− t′ = 2, then d(vt′+1) = 2 and
(C8) appears. If p − t′ ≥ 3, then (C1) or (C2) appears by Lemma 8. This is the
end of the discussions for the first case.

The Second Case: vlvs is Crossed. Suppose that vlvs is crossed by a chord
vrvt with l < r < s, where t = i is possible. Recall that when Assumption 1 is
applied (in the proof of Lemma 10, for example), we actually only use the fact
that there is no I-cluster in the drawing induced by V[vl, vs] with width at most
s− l. Therefore, if we assume that there is no I-cluster in the drawing induced by
V[vs, vt] with width at most t − s, then Lemma 10 still holds while l is replaced
by s and s is replaced by t.

Lemma 14.

(1) There is no crossed chord in C[vl, vr];
(2) There is no crossed chord in C[vr, vs];
(3) If there is no I-cluster in the drawing induced by V[vs, vt] with width at most

t − s, then there is no crossed chord in C[vs, vt].

Proof. The proof can be completed by similar arguments as we had presented
in Sect. 3.2. We summary the idea for the readers.

Suppose that there is a pair of crossed chords vi′vj′ and vk′vl′ with i′ < k′ <
j′ < l′ in C[vl, vr] (or C[vr, vs], or C[vs, vt]). If there is a II-cluster contained in the
drawing induced by V[vl, vr] (or V[vr, vs], or V[vs, vt]), then we choose one, say
{vs′ , vt′}2, with the shortest width. Next, we prove that the drawing induced by
V[vs′ , vt′ ] has a copy of Π2

3 with handles vs′ and vt′ (note that by the definition
of the Anicop graphs, s′ �= l, r, s), based on which we can find a III-cluster in
the drawing induced by V[vl, vr] (or V[vr, vs], or V[vs, vt]). Again, choose the
shortest III-cluster, say {vs′ , vp}3, and we can finally find some configuration
that is forbidden in the graph induced by V[vs′ , vp].

On the other hand, if no II-cluster is contained in the drawing induced by
V[vl, vr] (or V[vr, vs], or V[vs, vt]), then by Lemma 10, we conclude that {i′, l′} =
{l, r} (or {i′, l′} = {r, s}, or {i′, l′} = {s, t}) and vi′vj′ co-crosses vk′vl′ , which is
impossible by the definition of the Anicop graphs.

Lemma 15. r − l = 1.

Proof. By Lemmas 6 and 14(1), V[vl, vr] is a non-edge or a path. If V[vl, vr] is a
non-edge, then it is trivial that r − l = 1. If V[vl, vr] is a path, then by Lemma
8 and the absence of (C8), we also have r − l = 1.

Lemma 16. V[vr, vs] is a path such that s− r ≤ 2 and vrvs ∈ E(G). Moreover,
if s − r = 2, then vlvr ∈ E(G).
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Proof. By Lemmas 6 and 14(2), V[vr, vs] is a non-edge or a path. If it is a
non-edge, then vlvr ∈ E(G) by the 2-connectedness of G. Hence d(vr) = 2 by
Lemma 15, and thus (C8) occurs. If V[vr, vs] is a path, then s−r ≤ 2 by Lemma 8.
If s− r = 1, then vrvs ∈ E(G), because otherwise vlvr ∈ E(G) and d(vr) = 2 by
the 2-connectedness of G and by Lemma 15, which implies that (C8) occurs. If
s − r = 2, then d(vr−1) = 2. Since (C1) is forbidden, d(vr) ≥ 4, which implies
that vlvr, vrvs ∈ E(G).

Lemma 17. t �= i = 1.

Proof. Suppose, to the contrary, that t = i. If s − r = 2, then by Lemma 16,
one can see that the drawing induced by V[vi, vs] contains a copy of Π2

1 ⊗Π1
2 or

Π2
1 ⊗ Π2

2 with crossed-linking handles vi and vs. If s − r = 1, then vlvr ∈ E(G),
because otherwise d(vr) = 2. Since vivr ∈ E(G), (C8) appears. In this case, the
drawing induced by V[vi, vs] has a copy of Π1

1 ⊗ Π1
2 or Π1

1 ⊗ Π2
2 with crossed-

linking handles vi and vs. So we say that (C11) occurs.

Until now, we have actually proved the following result, which will be fre-
quently used during the remaining arguments.

Lemma 18. If vivj co-crosses vkvj and vlvs is a chord with i < k < j < l < s
such that {vi, vs}1 is the shortest I-cluster contained in the drawing induced by
V[vi, vs], then vlvs is crossed by a chord vrvt so that

(1) s < t �= i;
(2) r − l = 1;
(3) V[vr, vs] is a path with s − r ≤ 2 and vrvs ∈ E(G), and if s − r = 2, then

vlvr ∈ E(G).

Lemma 19. There is a I-cluster in the drawing induced by V[vs, vt] with width
at most t − s.

Proof. If the opposite holds, then by Lemmas 6 and 14(3), there is no crossed
chord in C[vs, vt], and thus V[vs, vt] is a non-edge or a path. If it is a non-edge,
then s − r = 1 and vrvs ∈ E(G), because otherwise d(vs−1) = 2 and d(vs) = 3,
which implies that (C1) occurs. However, if s − r = 1 and vrvs ∈ E(G), then
d(vr) ≤ 3 and d(vs) = 2 by Lemma 15, again implying the appearance of (C1).
Hence V[vs, vt] is a path, and by Lemma 8, t − s ≤ 2.

Suppose that t − s = 2. It follows that d(vs+1) = 2. If vsvt ∈ E(G), then
s − r = 1 and vrvs ∈ E(G), because otherwise vs−1vs ∈ E(G) and d(vs−1) = 2
by Lemma 16, which implies that (C3) appears. Similarly, vlvr ∈ E(G), because
otherwise d(vr) = 2 and (C3) occurs again. In this case, the drawing induced
by V[vl, vt] has a copy of Π1

1 ⊗ Π2
1 with crossed-linking handles vl and vt, and

thus (C11) occurs. On the other hand, if vsvt �∈ E(G), then s − r = 2 because
otherwise d(vs) = 3 and (C1) occurs. However, if s − r = 2, then vrvs ∈ E(G)
and d(vs−1) = 2, which implies the appearance of (C3).

Hence t − s = 1 and vsvt ∈ E(G). If s − r = 2, then by Lemma 16, the
drawing induced by V[vl, vt] is a copy of Π2

2 with handles vl and vt, and thus
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the drawing induced by V[vi, vt] has a copy of Π1
2 ◦ Π2

2 or Π2
2 ◦ Π2

2 with linking
handles vi and vt. If s−r = 1, then vlvr ∈ E(G) because otherwise d(vr) = 2 and
d(vs) = 3, which implies that (C1) appears. In this case, the drawing induced by
V[vl, vt] is a copy of Π1

2 with handles vl and vt, and thus the drawing induced
by V[vi, vt] has a copy of Π1

2 ◦ Π1
2 or Π1

2 ◦ Π2
2 with linking handles vi and vt. So

we say that (C10) occurs.

Note that the drawing induced by V[vi, vl] and chords vlvs, vrvt is a IV-
cluster, say {vi, vt}4, such that t �= i, and the drawing induced by V[vl, vs] has
the properties described by Lemmas 15 and 16. We call such a IV-cluster a
determined IV-cluster. We do the following assumption.

Assumption 4. {vi, vt}4 is the shortest determined IV-cluster contained in the
drawing induced by V[vi, vt].

According to Lemma 19, we assume, without loss of generality, that vi′vj′

co-crosses vk′vl′ and vl′vs′ is a chord such that s ≤ i′ < k′ < j′ < l′ < s′ ≤ t
(i.e., there is a I-cluster {vi′ , vs′}1 in the drawing induced by V[vs, vt]). Clearly,
we can carefully choose, in advance, i′, k′, j′, l′ and s′ so that

Assumption 5. {vi′ , vs′}1 is the shortest I-cluster contained in the drawing
induced by V[vi′ , vs′ ].

By Lemma 18, vl′vs′ is crosses by a chord vr′vt′ with l′ < r′ < s′. If s′ < t′ ≤ t,
then there is a determined IV-cluster with width t′−i′+1 < t−i+1, say {vi′ , vt′}4,
contained in the drawing induced by V[vi′ , vvt′ ], contradicting Assumption 4.
Hence s ≤ t′ < i′.

By the absences of (C7) and (C9), there is a chord vq′vi′ with t′ ≤ q′ < i′.
If the I-cluster {vq′ , vl′}1 is the shortest one contained in the drawing induced
by V[vq′ , vl′ ], then by Lemma 18, vq′vi′ is crossed by a chord vy′vp′ with t′ ≤
y′ < q′ < p′ < i′, and furthermore, there is a determined (left) IV-cluster
with width l′ − y′ + 1 < t − i + 1, say {vy′ , vl′}4, contained in the drawing
induced by V[vy′ , vvl′ ], contradicting Assumption 4. Hence there is a shorter I-
cluster contained in the drawing induced by V[vq′ , vl′ ]. Among those I-clusters
contained in the drawing induced by V[vq′ , vl′ ], we choose the shortest one, say
{vi′′ , vs′′}1 for example. Precisely, vi′′vj′′ co-crosses vk′′vl′′ and vl′′vs′′ is a chord
with q′ ≤ i′′ < k′′ < j′′ < l′′ < s′′ ≤ i′. By Lemma 18, vl′′vs′′ is crossed by
a chord vr′′vt′′ with l′′ < r′′ < s′′. If s′′ < t′′ ≤ i′, then there is a determined
IV-cluster with width t′′ − i′′ + 1 < t − i + 1, say {vi′′ , vt′′}4, contained in the
drawing induced by V[vi′′ , vvt′′ ], contradicting Assumption 4. Hence q′ ≤ t′′ < i′′.
We reset {t′, i′, k′, j′, l′, r′, s′} := {t′′, i′′, k′′, j′′, l′′, r′′, s′′} and come back to the
beginning of this paragraph. Since s′′ − t′′ < s′ − t′ and the graph is finite, this
iteration can stop somewhere.
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Abstract. A plane graph G is k-edge-face colorable if the elements of
E(G) ∪ F (G) can be colored with k colors such that any two adjacent
or incident elements receive different colors. G is edge-face L-list col-
orable if for a given list assignment L = {L(x)|x ∈ E(G) ∪ F (G)}, there
exists a proper edge-face coloring π of G such that π(x) ∈ L(x) for all
x ∈ E(G) ∪ F (G). If G is edge-face L-list colorable for any list assign-
ment with |L(x)| = k for all x ∈ E(G) ∪ F (G), then G is edge-face
k-choosable. The edge-face list chromatic number is defined to be the
smallest integer k such that G admits an edge-face k-list coloring.

In this paper, we first use the famous Combinatorial Nullstellensatz to
characterize the edge-face list chromatic number of wheel graphs by using
Matlab. Then we show that every Halin graph G with Δ(G) ≥ 6 is edge-
face Δ(G)-choosable and this bound is sharp. Our proof demonstrates
how edge-face choosability problems can numerically be approached by
the use of computer algebra systems and the Combinatorial Nullstellen-
satz.

Keywords: Combinatorial Nullstellensatz · Halin graph · Wheel
graph · Edge-face list coloring.

1 Introduction

All graphs considered in this paper are finite, loopless, and without multiple
edges unless otherwise stated. A plane graph is a particular drawing in the
Euclidean plane in such a way that its edges intersect only at their endpoints.
For a plane graph G, we denote its vertex set, edge set, face set and maximum
vertex degree by V (G), E(G), F (G) and Δ(G), respectively.

The edge-face colorings of plane graphs were first studied by Jucovič [6]
(1969) and Fiamč́ık [4] (1971). A plane graph G is edge-facek-colorable if the
elements of E(G) ∪ F (G) can be colored with k colors such that any two adjacent
or incident elements receive different colors. The edge-face chromatic number of
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G, denote by χef (G), is defined to be the least integer k such that G is edge-face
k-colorable.

A graph G is edge-faceL-list colorable if for a given list assignment L =
{L(x)|x ∈ E(G) ∪ F (G)}, there is an edge-face coloring π such that π(x) ∈ L(x),
for any x ∈ E(G)∪F (G). If G is edge-face L-list colorable for any list assignment
L with |L(x)| = k for all x ∈ E(G) ∪ F (G), then G is edge-facek-choosable.
The edge-face list chromatic number of G, denoted by χl

ef (G), is the smallest
integer k such that G is edge-face k-choosable. Clearly, χl

ef (G) ≥ χef (G) for any
plane graph G. However, the equivalence dose not always hold. Wang and Lih
[14] showed that there exists a plane graph G such that χl

ef (G) > χef (G). By
considering colorings for V (G) and E(G), we can define analogous notions such
as vertex k-choosability, and edge k-choosability.

In 1975, Mel’nikov [8] conjectured that every plane graph G is edge-face
(Δ(G) + 3)-colorable. Two similar, yet independent, proofs of the Mel’nikov’s
conjecture were given by Waller [12], Sanders and Zhao [9]. Both proofs made
use of the Four-Color Theorem. Without employing the Four-Color Theorem,
Wang and Lih [13] gave a new proof of this conjecture. In [14], Wang and Lih
further extended this result to the edge-face list coloring situation by proving
that every plane graph G is edge-face (Δ(G) + 3)-choosable.

In 2001, Sanders and Zhao [11] proposed a strong conjecture which states
that every plane graph G with Δ(G) ≥ 3 is edge-face (Δ(G) + 2)-colorable.
They confirmed it for the cases Δ(G) = 3 and Δ(G) ≥ 7 in [10] and in [11], and
left for the cases Δ ∈ {4, 5, 6} as a challenging open problem. Recently, Chen,
Raspaud and Wang [3] settled the case Δ = 6 for this conjecture. Now it remains
open when Δ ∈ {4, 5}.

A Halin graph is a plane graph G constructed as follows. Let T be a tree
of order at least 4. All vertices of T are either of degree 1, called leaves, or of
degree at least 3. Let C be a cycle connecting the leaves of T in such a way
that C forms the boundary of the unbounded face. The tree T and the cycle
C are called the characteristic tree and the adjoint cycle of G, respectively. We
usually write G = T ∪ C to make the characteristic tree and the adjoint cycle
of G explicit. For n ≥ 3, the wheel graph Wn is a particular Halin graph whose
characteristic tree is the complete bipartite graph K1,n. As far as we know, there
is no work concerning on the edge-face list chromatic number of wheel graphs
and Halin graphs even with large maximum degree.

In this paper, we shall first characterize the edge-face list chromatic number
of wheel graphs by using the powerful Combinatorial Nullstellensatz. Then we
obtain an upper bound of the edge-face list choosability of Halin graph with
given maximum degree.

2 Preliminaries

Now we collect the notation and basic definitions used in the subsequent sections.
Let G be a plane graph. The unique unbounded face of G is called its outer face,
denote by fo, while other faces are inner faces. Edges of E(fo) are called outer
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edges of G and edges of E(G) − E(fo) are called inner edges. We may similarly
define outer vertices and inner vertices of G. We say that an inner vertex is a
semi-leaf if it is adjacent to an outer vertex. If a semi-leaf is adjacent to exactly
one inner vertex, then it is called good. Two faces of G are said to be adjacent
if they share at least one common boundary edge. We denote by fo

e the inner
face which is adjacent to fo by a common outer edge e. An edge is said to be
incident to a face if it lies on the boundary of the face. For v ∈ V (G), let dG(v)
denote the degree of a vertex v and we use NG(v) to denote the neighborhood
of v in G. For n ≥ 3, we use Cn to denote a cycle on n vertices. A vertex v is
a vertex of maximum degree if |NG(v)| = Δ(G). For S ⊆ V (G), let G[S] denote
the subgraph of G induced by S. All notation not defined in this paper can be
found in the book [2].

Let P (x1, x2, · · · , xn) be a polynomial in n variables, where n ≥ 1. Let
cp(xk1

1 xk2
2 . . . xkn

n ) denote the coefficient of the monomial xk1
1 xk2

2 . . . xkn
n in P (x1,

x2, · · · , xn), where ki (1 ≤ i ≤ n) is a nonnegative integer. To derive our result,
we need the following elegant formulation of the Combinatorial Nullstellensatz,
which has wide application in list coloring, see [7].

Lemma 1 ([1], Combinatorial Nullstellensatz). Let IF be an arbitrary field, and
let P = P (x1, x2, · · · , xn) be a polynomial in IF[x1, x2, · · · , xn]. Suppose the

degree deg(P ) of P equals
n∑

i=1

ki, where each ki is a nonnegative integer, and

suppose cp(xk1
1 xk2

2 . . . xkn
n ) �= 0. If S1, S2, · · · , Sn are subsets of IF with |Si| > ki,

there are s1 ∈ S1, s2 ∈ S2, · · · , sn ∈ Sn so that P (s1, s2, · · · , sn) �= 0.

3 Wheel Graphs

This section is devoted to the study of the edge-face list chromatic number of
wheel graphs.

Theorem 1. For the wheel Wn, we have

χl
ef (Wn) =

{
5, Δ(Wn) ∈ {3, 4, 5};
Δ(Wn), Δ(Wn) ≥ 6.

Proof. Write Wn = K1,n ∪ Cn. Let v denote the inner vertex of Wn, and we
use v1, v2, · · · , vn to denote all outer vertices of Wn in clockwise order. Clearly,
Δ(Wn) = n. For each x ∈ E(Wn) ∪ F (Wn), let L(x) be a list assignment such
that

|L(x)| =

{
5, n ∈ {3, 4, 5};
n, n ≥ 6.

Clearly, |L(x)| ≥ n for each x ∈ E(Wn) ∪ F (Wn). We need to discuss two
cases below in terms of the value of n.
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Case 1. n ≥ 6.

Since χl
ef (Wn) ≥ χef (Wn) ≥ Δ(Wn) = n, it suffices to prove that Wn has

an edge-face L-coloring. First, we choose a possible color ai ∈ L(vvi) for each
inner edge vvi such that ai �= aj for each pair {i, j} ⊂ {1, 2, · · · , n}. Then, we
assign a color b ∈ L(fo) to the outer face fo. In what follows, let L′(vivi+1) =
L(vivi+1)\{ai, ai+1, b}, where i ∈ {1, 2, · · · , n} and the indices are taken modulo
n. Obviously, |L′(vivi+1)| ≥ n− 3 ≥ 3 for each i ∈ {1, 2, · · · , n}. So it enables us
to properly color each outer edge vivi+1 with ci ∈ L′(vivi+1) such that ci �= ci+1.
Next, we write fi = [vvivi+1], and let L′(fi) = L(fi) \ {ai, ai+1, ci, b}. If n ≥ 7,
then |L′(fi)| ≥ 3. If n = 6, then |L′(fi)| ≥ 2. So in each case, we can always find
a proper way to color each fi with a color belonging to L′(fi) such that adjacent
inner faces have distinct colors. Therefore, we obtain an edge-face L-coloring for
Wn.

Case 2. n ∈ {3, 4, 5}.

In each of following case, we will construct a new graph G′ so that the vertex
set of G′ is defined to be V (G′) = {y|y ∈ E(Wn) ∪ F (Wn)} and two vertices,
say yi and yj , are adjacent in G′ if and only if their corresponding elements in
Wn are adjacent or incident. We notice that an edge-face list 5-coloring of Wn

is equivalent to a vertex list 5-coloring of G′.
Next, for each n ∈ {3, 4, 5}, we are firstly going to show that G′ has a vertex

list 5-coloring, which implies that χl
ef (Wn) ≤ 5.

Fig. 1. W3 and the new graph G′.

– n = 3. It is obvious that W3 is isomorphic to the complete graph K4. More-
over, G′ is 6-regular which has 10 vertices, depicted in Fig. 1.
Let i ∈ {1, 2, · · · , 10}. By definition, |L(yi)| = 5 for each yi ∈ V (G′). Let
Si denote the available color set of yi. Thus, |Si| = 5. Associate with yi a
variable xi. Based on the coloring condition, that is, adjacent vertices have
different colors, we obtain the following polynomial Q1:
Q1(x1, x2, · · · , x10) =
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Fig. 2. W4 and the new graph G′.

(x1−x2)(x1−x3)(x1−x4)(x1−x5)(x1−x6)(x1−x7)(x2−x3)(x2−x4)(x2−x5)
(x2 − x8)(x2 − x10)(x3 − x4)(x3 − x6)(x3 − x8)(x3 − x9)(x4 − x7)(x4 − x9)
(x4 − x10)(x5 − x6)(x5 − x7)(x5 − x8)(x5 − x10)(x6 − x7)(x6 − x8)(x6 − x9)
(x7 − x9)(x7 − x10)(x8 − x9)(x8 − x10)(x9 − x10). By Matlab, we cal-

culate that cQ1(x
3
1x

4
2x

2
3x

3
4x

4
5x

3
6x

3
7x

1
8x

4
9x

3
10) = −1. Since ki < |Si| for each

i ∈ {1, 2, · · · , 10}, by Lemma 1, we get a desired vertex list 5-coloring of
G′.

– n = 4. Then G′ is a graph with 13 vertices, depicted in Fig. 2.
Similarly, we use Si to denote the available color set of each yi ∈ V (G′).
Again, |Si| = 5 due to |L(yi)| = 5. Associate with yi a variable xi. By the
coloring condition, we have the following polynomial Q2:
Q2(x1, x2, · · · , x13) =
(x1−x2)(x1−x4)(x1−x5)(x1−x6)(x1−x9)(x1−x13)(x2−x3)(x2−x6)(x2−x7)
(x2 − x10)(x2 − x13)(x3 − x4)(x3 − x7)(x3 − x8)(x3 − x11)(x3 − x13)(x4 − x5)
(x4 − x8)(x4 − x12)(x4 − x13)(x5 − x6)(x5 − x7)(x5 − x8)(x5 − x9)(x5 − x12)
(x6 − x7)(x6 − x8)(x6 − x9)(x6 − x10)(x7 − x8)(x7 − x10)(x7 − x11)(x8 − x11)
(x8 − x12)(x9 − x10)(x9 − x12)(x9 − x13)(x10 − x11)(x10 − x13)(x11 − x12)
(x11 − x13)(x12 − x13)

By Matlab, we are easy to derive that cQ2(x
4
1x

4
2x

4
3x

4
4x

4
5x

3
6x

2
7x

2
8x

4
9x

3
10x

2
11x

2
12x

4
13)

= −2. Therefore, by Lemma 1, we obtain a desired vertex list 5-coloring of
G′.

– n = 5. Then G′ has 16 vertices, depicted in Fig. 3. We may similarly define Si

and know that |Si| = 5, where i ∈ {1, 2, · · · , 16}. Associate with yi a variable
xi. By the coloring condition, we deduce the following polynomial Q3:
Q3(x1, x2, · · · , x16) =
(x1 − x2)(x1 − x5)(x1 − x6)(x1 − x10)(x1 − x11)(x1 − x16)(x2 − x3)(x2 − x6)
(x2 − x7)(x2 − x12)(x2 − x16)(x3 − x4)(x3 − x7)(x3 − x8)(x3 − x13)(x3 − x16)
(x4 − x5)(x4 − x8)(x4 − x9)(x4 − x14)(x4 − x16)(x5 − x9)(x5 − x10)(x5 − x15)
(x5 − x16)(x6 − x7)(x6 − x8)(x6 − x9)(x6 − x10)(x6 − x11)(x6 − x12)(x7 − x8)
(x7 −x9)(x7 −x10)(x7 −x12)(x7 −x13)(x8 −x9)(x8 −x10)(x8 −x13)(x8 −x14)
(x9 − x10)(x9 − x14)(x9 − x15)(x10 − x11)(x10 − x15)(x11 − x12)(x11 − x15)
(x11 − x16)(x12 − x13)(x12 − x16)(x13 − x14)(x13 − x16)(x14 − x15)
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(x14 − x16)(x15 − x16)
By using Matlab, we have that cQ3(x

3
1x

4
2x

4
3x

4
4x

4
5x

3
6x

4
7x

2
8x

2
9x

1
10x

4
11x

4
12x

4
13x

4
14x

4
15

x4
16) = −15. Hence, we obtain a vertex list 5-coloring of G′ by applying

Lemma 1.

Fig. 3. W5 and the new graph G′.

On the other hand, the following proposition tells us that for each n ∈ {3, 4},
Wn cannot be edge-face 4-colorable.

Proposition 1. For n ∈ {3, 4}, χef (Wn) �= 4.

Proof. Noting that each Wn contains a 3-face as a subgraph, say f = [vv1vn], we
see that these four elements vv1, vvn, v1vn and f need four distinct colors. Thus,
χef (Wn) ≥ 4. In what follows, we will make use of contradictions to demonstrate
that Wn cannot be edge-face 4-colorable.

Suppose to the contrary that Wn admits an edge-face 4-coloring π. Let C =
{1, 2, 3, 4} denote its color set. For x ∈ E(Wn) ∪ F (Wn), if n = 3, then we take
a look of the left graph in Fig. 1. W.l.o.g., assume that π(y1) = 1, π(y5) = 2,
π(y6) = 3 and π(y7) = 4. Then π(y3) ∈ {2, 4}. By symmetry, assume that
π(y3) = 2. It follows immediately that π(y9) = 1 and π(y10) = 3, implying that
π(y4) = 2, which is impossible.

Now suppose that n = 4. We look at the left graph in Fig. 2. W.l.o.g., assume
that π(y1) = 1, π(y5) = 2, π(y6) = 3 and π(y9) = 4. So π(y13) ∈ {2, 3}. By
symmetry, assume that π(y13) = 2. Then we obtain that π(y2) = 4, π(y7) = 1
and π(y8) = 4. It follows that π(y3) = π(y11) = 3, a contradiction. 	


Since χl
ef (W5) ≥ χef (W5) ≥ 5, together with Proposition 1, we derive that

χl
ef (Wn) ≥ 5 for each case n ∈ {3, 4, 5}, Combining the previous discussion, we

obtain that χl
ef (Wn) = 5, and therefore we complete the proof of Theorem1. 	
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4 Halin Graphs

Gong and Wu [5] proved that every Halin graph G with Δ(G) ≥ 6 is edge-face
Δ(G)-colorable. Our purpose in this section is to extend this result to the list
edge-face coloring situation. The main theorem is the following.

Theorem 2. Every Halin graph G with Δ(G) ≥ 6 is edge-face Δ(G)-choosable.

Proof. Let G = T ∪ C be a Halin graph with Δ(G) ≥ 6. We prove the theorem
by induction on |V (G)|. Obviously, |V (G)| ≥ 7. Moreover, if |V (G)| = 7, then
G is a wheel graph, and hence χl

ef (G) = Δ(G) by Theorem 1. Next, we assume
that |G| ≥ 8, and Theorem 2 is true for the case that 8 ≤ |V (G)| ≤ k. Now we
consider the case that |V (G)| = k + 1. By Theorem 1, we may further suppose
that G is not a wheel graph.

Proposition 2. There are at least two good semi-leaves in G.

Proof. Let P = z1z2 · · · zm denote the longest path in G−V (C). If z1 is adjacent
to another inner vertex, say z′, then z′ /∈ V (P ) and thus there exists a path
z′z1 · · · zm which is longer than P , a contradiction. Hence, z1 is a good semi-leaf.
Similarly, we may prove that zm is also a good semi-leaf. 	


By Proposition 2, we may choose a good semi-leaf v satisfying that dG(v) <
Δ(G) unless all good semi-leaves are of degree Δ(G). For convenience, denote
its neighbors located on C by v1, v2, · · · , vt in a cyclic order. By definition, we
see that dG(v) = t + 1.

In what follows, for each x ∈ E(G)∪F (G), let L be an assignment of G that
satisfies |L(x)| = Δ(G). To complete the proof of Theorem 2, we need to handle
two cases below depending on the value of t.

Fig. 4. Two configurations (A1) and (A2).

Case 1. G contains the configuration (A1).

Let G∗ = G−{v1, v2}+{xv, yv}. Then G∗ is also a Halin graph with Δ(G∗) =
Δ(G) and |V (G∗)| = |V (G)| − 2 = k − 1 < k. We use f∗ and f∗

e to denote the
outer face of G∗ and the adjacent face to f∗ by a common edge e, respectively.
Now, we define an edge-face list assignment L∗ of G∗ as follows:
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L∗(f∗) = L(fo);
L∗(f∗

xv) = L(fo
xv1

);
L∗(f∗

yv) = L(fo
yv2

);
L∗(xv) = L(xv1);
L∗(yv) = L(yv2);
L∗(s) = L(s), for s ∈ E(G∗) ∪ F (G∗) \ {f∗, f∗

xv, f
∗
yv, xv, yv}.

By inductive hypothesis, G∗ has an edge-face L∗-coloring π∗. Then we will
show how to extend π∗ to G so that G has an edge-face L-coloring π. Let
A = {xv1, f

o
xv1

, yv2, f
o
yv2

, fo} and S = {vv1, v1v2, vv2, f
o
v1v2

}. First, we assign
the colors of f∗, xv, f∗

xv, yv, f∗
yv in G∗ to their corresponding elements fo, xv1,

fo
xv1

, yv2, fo
yv2

in G. For any s ∈ E(G) ∪ F (G) \ (A ∪ S), let π(s) = π∗(s). Next,
we only need to show that the elements in S can also be given proper colors
from their own color list L.

For the sake of discussion, let s1 = vv1, s2 = v1v2, s3 = vv2 and s4 = fo
v1v2

.
Namely, S = {s1, s2, s3, s4}. For each i ∈ {1, 2, 3, 4}, we denote the available
color set of si in G by A(si).

It is straightforward that A(s1) = L(s1) \ {π(xv1), π(fo
xv1

), π(uv)}, A(s2) =
L(s2) \ {π(xv1), π(yv2), π(fo)}, A(s3) = L(s3) \ {π(yv2), π(fo

yv2
), π(uv)}, and

A(s4) = L(s4) \ {π(fo), π(fo
xv1

), π(fo
yv2

)}. Let i ∈ {1, 2, 3, 4}. Since |L(si)| =
Δ(G) ≥ 6, one may deduce that |A(si)| ≥ 3. Obviously, if |A(si)| ≥ 4 for some
fixed i, then we can easily color all the elements of S properly. In subsequent
discussion, it suffices to deal with the case that |A(si)| = 3 for each i ∈ {1, 2, 3, 4}.

Case 1a. There exists a pair {i, j} ⊆ {1, 2, 3, 4} such that A(si) �= A(sj).
W.l.o.g., assume that A(s1) �= A(s2). Then we may color s1 with a ∈ A(s1) \
A(s2), s3 with b ∈ A(s3) \ {a}, s4 with c ∈ A(s4) \ {a, b}, and finally color s2
with d ∈ A(s2) \ {b, c}. It is easy to verify that the resulting coloring of G is
an edge-face L-coloring.

Case 1b. A(si) = A(sj) for each pair {i, j} ⊆ {1, 2, 3, 4}.
For each i ∈ {1, 2, 3, 4}, let A(si) = {c1, c2, c3}. Since xv, yv, uv are mutually
adjacent in G∗, we may set π(xv1) = 1, π(yv2) = 2 and π(uv) = 3. Noting that
f∗, f∗

xv, f∗
yv are also mutually adjacent in G∗, we may set π(fo) = a, π(fo

xv1
) =

b and π(fo
yv2

) = c. It follows that L(s1) = {c1, c2, c3, 1, 3, b}, L(s2) =
{c1, c2, c3, 1, 2, a}, L(s3) = {c1, c2, c3, 2, 3, c} and L(s4) = {c1, c2, c3, a, b, c}.
Note that both x and y are 3-vertices. We denote by x1, x2 the other two
neighbors of x different from v1 and y1, y2 the other two neighbors of y differ-
ent from v2. Firstly, we recolor xv1 by α ∈ L(xv1) \ {1, a, b, π(xx1), π(xx2)}.
Then, color s1 with 1, s2 with β ∈ {c1, c2, c3}\{α}. Afterwards, we may select
two possible colors belonging to {c1, c2, c3} \ {β} to color s3, s4 in succession.

Case 2. G contains the configuration (A2).

At this moment, t ≥ 3. Let G∗ = G − {v2} + {v1v3}. It is clear that G∗ is
a Halin graph with |V (G∗)| = |V (G)| − 1 = k. By the choice of v, we are sure
that Δ(G∗) = Δ(G). Similarly, denote by f∗ and f∗

e the outer face of G∗ and
the adjacent face of f∗ sharing an edge e, respectively.

We define an edge-face list assignment L∗ of G∗ as follows:
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L∗(f∗) = L(fo);
L∗(f∗

v1v3
) = L(fo

v1v2
);

L∗(v1v3) = L(v1v2);
L∗(s) = L(s), for s ∈ E(G∗) ∪ F (G∗) \ {f∗, f∗

v1v3
, v1v3}.

By inductive hypothesis, G∗ has an edge-face L∗-coloring π∗. Then we shall
obtain an edge-face L-coloring π for G. First, we erase both colors of v1v3 and
f∗
v1v3

. Let A = {v1v2, v2v3, vv2, f
o
v1v2

, fo
v2v3

}. Then, let π(fo) = π∗(f∗) and
π(s) = π∗(s) for each s ∈ E(G) ∪ F (G) \ A. In the following, we are going
to show that all elements belonging to A can be given a proper color from their
own color list L.

We first color vv2 with a ∈ L(vv2)\{π(vv1), π(vv3), · · · , π(vvt), π(uv)}. Then
color fo

v1v2
with b ∈ L(fo

v1v2
)\{a, π(vv1), π(fo), π(fo

xv1
)}. Let A(v1v2) = L(v1v2)\

{a, b, π(xv1), π(vv1), π(fo)}, A(v2v3) = L(v2v3)\{a, π(vv3), π(v3v4), π(fo)} and
A(fo

v2v3
) = L(fo

v2v3
) \ {a, b, π(vv3), π(fo), π(fo

v3v4
)}. Note that |A(v1v2)| ≥ 1,

|A(v2v3)| ≥ 2 and |A(fo
v2v3

)| ≥ 1.

– If |A(fo
v2v3

)| ≥ 2, then we can properly color v1v2, v2v3, fo
v2v3

in succession.
– If |A(v1v2)| ≥ 2, then we can properly color fo

v2v3
, v2v3, v1v2 in succession.

– If |A(v2v3)| ≥ 3, then we can properly color v1v2, fo
v2v3

, v2v3 in succession.

So now, we may assume that |A(v1v2)| = |A(fo
v2v3

)| = 1 and |A(v2v3)| =
2. Furthermore, it can be deduced that A(v1v2) �= A(fo

v2v3
) since otherwise it

is possible to properly color v1v2, fo
v2v3

, v2v3 in order. W.l.o.g., assume that
A(v1v2) = {α} and A(fo

v2v3
) = {β}. At this moment, one may deduce that

A(v2v3) = {α, β}. Now L(v1v2) = {a, b, α, π(xv1), π(vv1), π(fo)}, L(fo
v2v3

) =
{a, b, β, π(vv3), π(fo

v3v4
), π(fo)}, and L(v2v3) = {a, α, β, π(vv3), π(v3v4), π(fo)}.

We may color both v1v2 and fo
v2v3

with b, and v2v3 with α, and then reassign a
color belonging to L(fo

v1v2
) \ {a, b, π(fo

xv1
), π(fo), π(vv1)} to fo

v1v2
. It is easy to

verify that the obtained coloring is an edge-face L-coloring of G.
This completes the proof of Theorem 2. 	


Appendix

% Input
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

% Theorem 1 (n = 3)
Q1 = (x1 −x2)∗ (x1 −x3)∗ (x1 −x4)∗ (x1 −x5)∗ (x1 −x6)∗ (x1 −x7)∗ (x2 −x3)∗

(x2 −x4)∗ (x2 −x5)∗ (x2 −x8)∗ (x2 −x10)∗ (x3 −x4)∗ (x3 −x6)∗ (x3 −x8)∗
(x3 − x9) ∗ (x4 − x7) ∗ (x4 − x9) ∗ (x4 − x10) ∗ (x5 − x6) ∗ (x5 − x7)∗
(x5 − x8) ∗ (x5 − x10) ∗ (x6 − x7) ∗ (x6 − x8) ∗ (x6 − x9) ∗ (x7 − x9)∗
(x7 − x10) ∗ (x8 − x9) ∗ (x8 − x10) ∗ (x9 − x10)

c1 = diff(diff(diff(diff(diff(diff(diff(diff(diff(diff(Q1, x1, 3), x2, 4), x3, 2), x4, 3),
x5, 4)

, x6, 3), x7, 3), x8, 1), x9, 4), x10, 3) /factorial(3)/factorial(4)/factorial(2)
/factorial(3)/factorial(4)/factorial(3)/factorial(3)/factorial(1)/factorial(4)
/factorial(3)
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% Input
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

% Theorem 1 (n = 4)
Q2 = (x1−x2)∗(x1−x4)∗(x1−x5)∗(x1−x6)∗(x1−x9)∗(x1−x13)∗(x2−x3)∗

(x2 − x6) ∗ (x2 − x7) ∗ (x2 − x10) ∗ (x2 − x13) ∗ (x3 − x4) ∗ (x3 − x7)∗
(x3 − x8) ∗ (x3 − x11) ∗ (x3 − x13) ∗ (x4 − x5) ∗ (x4 − x8) ∗ (x4 − x12)∗
(x4 − x13) ∗ (x5 − x6) ∗ (x5 − x7) ∗ (x5 − x8) ∗ (x5 − x9) ∗ (x5 − x12)∗
(x6 − x7) ∗ (x6 − x8) ∗ (x6 − x9) ∗ (x6 − x10) ∗ (x7 − x8) ∗ (x7 − x10)∗
(x7 − x11) ∗ (x8 − x11) ∗ (x8 − x12) ∗ (x9 − x10) ∗ (x9 − x12) ∗ (x9 − x13)∗
(x10 − x11) ∗ (x10 − x13) ∗ (x11 − x12) ∗ (x11 − x13) ∗ (x12 − x13)

c2 = diff(diff(diff(diff(diff(diff(diff(diff(diff(diff(diff(diff(diff(Q2, x1, 4), x2, 4),
x3, 4)

, x4, 4), x5, 4), x6, 3), x7, 2), x8, 2), x9, 4), x10, 3), x11, 2), x12, 2), x13, 4)
/factorial(4)/factorial(4)/factorial(4)/factorial(4)/factorial(4)/factorial(3)
/factorial(2)/factorial(2)/factorial(4)/factorial(3)/factorial(2)/factorial(2)
/factorial(4)

% Input
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

% Theorem 1 (n = 5)
A=(x1 − x16) ∗ (x2 − x16) ∗ (x3 − x16) ∗ (x4 − x16) ∗ (x5 − x16) ∗ (x11 − x16) ∗
(x12 −x16)∗ (x13 −x16)∗ (x14 −x16)∗ (x15 −x16)∗ (x5 −x15)∗ (x9 −x15)∗ (x10 −
x15) ∗ (x11 − x15) ∗ (x14 − x15) ∗ (x4 − x14) ∗ (x8 − x14) ∗ (x9 − x14) ∗ (x13 − x14) ∗
(x3 − x13) ∗ (x7 − x13) ∗ (x8 − x13) ∗ (x12 − x13) ∗ (x2 − x12) ∗ (x6 − x12) ∗ (x7 −
x12) ∗ (x11 − x12) ∗ (x1 − x11) ∗ (x6 − x11) ∗ (x10 − x11);
g = diff(A, x16, 4);
f = diff(g, x15, 4);
m = diff(f, x14, 4);
l = diff(m, x13, 4);
q = diff(l, x12, 4);
s = diff(q, x11, 4);
G = (x1 −x5)∗ (x4 −x5)∗ (x5 −x9)∗ (x5 −x10)∗ (x3 −x4)∗ (x4 −x8)∗ (x4 −x9)∗
(x2−x3)∗(x3−x7)∗(x3−x8)∗(x1−x2)∗(x2−x6)∗(x2−x7)∗(x1−x6)∗(x1−x10);
t = diff(s∗G, x5, 4);
r = diff(t, x4, 4);
p = diff(r, x3 ,4);
n = diff(p, x2, 4);
h = diff(n, x1, 3);
N = (x6 − x7) ∗ (x6 − x8) ∗ (x6 − x9) ∗ (x6 − x10) ∗ (x7 − x8) ∗ (x7 − x9) ∗ (x7 −
x10) ∗ (x8 − x9) ∗ (x8 − x10) ∗ (x9 − x10);
k = diff(h∗N , x6, 3);
u = diff(k, x7, 4);
v = diff(u, x8, 2);
w = diff(v, x9 ,2);
y = diff(w, x10, 1);
c3 = y/factorial(3)/factorial(4)/factorial(4)/factorial(4)/factorial(4)/factorial(3)
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/factorial(4)/factorial(2)/factorial(2)/factorial(1)/factorial(4)/factorial(4)
/factorial(4)/factorial(4)/factorial(4)/factorial(4)
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Abstract. An injective k-coloring of a graph G is a mapping f : V (G) →
{1, 2, . . . , k} such that for any two vertices v1, v2 ∈ V (G), if v1 and v2
have a common neighbor, then f(v1) �= f(v2). The injective chromatic
number of a graph G, denoted by χi(G), is the smallest integer k such
that G has an injective k-coloring. In this paper, we prove that for a
Halin graph G, if Δ(G) ≤ 5, then χi(G) ≤ Δ(G) + 2; if Δ(G) ≥ 6, then
χi(G) ≤ Δ(G) + 1.

Keywords: Injective coloring · Halin graph · Maximum degree

1 Introduction

An injective k-coloring of a graph G is a mapping f : V (G) → {1, 2, . . . , k} such
that for any two vertices v1, v2 ∈ V (G), if v1 and v2 have a common neighbor,
then f(v1) �= f(v2). The smallest integer k such that G has an injective k-coloring
is called the injective chromatic number of G, denoted by χi(G). The injective
coloring was introduced by Hahn, Kratochv́ıl, Širáň and Sotteau in 2002 [10].
Injective colorings have their origin in complexity theory, but related concepts
had been studied earlier in [12].

For a graph G, it is trivial that Δ(G) ≤ χi(G) ≤ |V (G)|. Using a greedy
algorithm, Hahn et al. [10] gave a trivial upper bound Δ(Δ − 1)+ 1 on χi(G) in
terms of the maximum degree Δ for general graphs. For planar graphs, the upper
bound can be further strengthened to Δ2−Δ if Δ ≥ 3 [11]. Specially, for a planar
graph with maximum degree 3, χi(G) ≤ 6. Earlier results on planar graphs were
given by Doyon, Hahn and Raspaud [9]. They obtained that for a planar graph G
with maximum degree Δ, χi(G) ≤ Δ+3 if g(G) ≥ 7, χi(G) ≤ Δ+4 if g(G) = 6
and χi(G) ≤ Δ + 8 if g(G) = 5. Later, these upper bound were improved to
Δ+2 by Lužar et al. [6,15], Δ+3 by Dong and Lin [7] and Δ+6 by Dong and
Lin [8], respectively.
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For planar graphs with maximum degree at least 4, Lužar [14] presented some
planar graphs with maximum degree 5 ≤ Δ ≤ 9 and χi(G) = Δ + 5 and planar
graphs with diam(G) = 2, maximum degree Δ ≥ 8 and χi(G) = � 3Δ

2 � + 1.
It is easy to see that χi(G) ≤ χ2(G), where χ2(G) is the smallest integer k

such that G has a 2-distance k-coloring. A 2-distance k-coloring of a graph G is a
mapping f : V (G) → {1, 2, . . . , k} such that for any two vertices v1, v2 ∈ V (G),
f(v1) �= f(v2) if 1 ≤ d(v1, v2) ≤ 2. Lužar [14] posed a variation for the injective
chromatic number of planar graphs following Wegner’s conjecture as follows.

Conjecture 1. Let G be a planar graph with maximum degree Δ. Then χi(G) ≤ 5
if Δ = 3, χi(G) ≤ Δ + 5 if 4 ≤ Δ ≤ 7 and χ2(G) ≤ � 3Δ

2 � + 1 if Δ ≥ 8.

Hahn et al. [10] showed that for any k ≥ 3, it is a NP-complete problem
to decide wether χi(G) ≤ k. For planar graphs, more results can been seen in
[1–5,13]. For a K4-minor-free graph G, Hahn, Raspaud and Wang [11] showed
that χi(G) ≤ 	 3Δ

2 
.
In this paper, we investigate the injective chromatic number of Halin graphs.

A Halin graph G = T ∪ C is a planar graph G constructed as follows. Let T be
a tree of order at least 4. All vertices of T are either of degree 1 or of degree at
least 3. Let C be a cycle connecting the leaves of T in such a way that C forms
the boundary of the unbounded face. The tree T and the cycle C are called the
characteristic tree and the adjoint cycle of G, respectively. We will prove the
following two theorems.

Theorem 1. If G is a Halin graph with maximum degree at most 5, then
χi(G) ≤ Δ(G) + 2.

Theorem 2. If G is a Halin graph with maximum degree at least 6, then
χi(G) ≤ Δ(G) + 1.

2 Halin Graphs with Maximum Degree at Most 5

In a Halin graph G = T ∪ C, v is called an inter vertex if v ∈ T but v /∈ C. Let
Vin(G) be the set of inter vertices of G. Let |F (v)| be the number of colors that
cannot be used for the vertex v. Let |S(v)| be the number of colors that can be
used for the vertex v. If there is a path v1v2 · · · vi (i ≤ k) in G, then we call it
k−-path. We shall prove Theorem 1.1 by three steps as follows.

Lemma 1. If G = T ∪ C is a Halin graph with Δ(G) = 3, then χi(G) ≤ 5.

Proof. We prove the lemma by induction on the number of inter vertices of G.
If |Vin(G)| = 1, then G is a wheel W3 and thus the conclusion is obvious. Now
let |Vin(G)| ≥ 2 and let P = v1v2 · · · vl be a maximum path in T , l ≥ 4. For
convenience, we denote u = v2, v = v3, w = v4 and u1 = v1. Let u1, u2 be two
neighbors of u in V (C). Since P is a maximum path in T , then there exists a
2−-path P1 = vv1 · · · vk (1 ≤ k ≤ 2) between v and C, where E(P )∩E(P1) = ∅,
vk ∈ V (C) is a neighbor of u1 or u2.
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Fig. 1. G of case 1

Fig. 2. Step 1 of case 1: there is a injective 5-coloring c′ of G′ ((k) is the color in
C = {1, 2, 3, 4, 5}) (Color figure online)

Case 1: There exists a 1-path P1 = vv1 between v and C, where E(P ) ∩
E(P1) = ∅.

W.l.o.g, we assume u2v
1 ∈ C, x �= u2 is a neighbor of v1 and y �= u2 is

neighbor of u1, x, y ∈ V (C). Let G′ = (G − {u, u1, u2, v
1})∪{vx, vy}, then G′ is

a Halin graph with Δ(G′) = 3 and with fewer inter vertices than G. By induction,
G′ has an injective 5-coloring c′. Denote C = {1, 2, 3, 4, 5}. Now we shall color
V (G) using the colors in C. First, we erase the color on v and let c(x′) = c′(x′)
for any x′ ∈ V (G) − {v, u, u1, u2, v

1}.
W.l.o.g, we assume c(x) = 1, c(y) = 2. Let c′(u) = 1, then we have that

|F (v1)| ≤ 4, |F (u1)| ≤ 3, |F (v)| ≤ 3, |F (u2)| ≤ 2 and thus we can color v1, u1,
v, u2 in order, see Figs. 1, 2, 3, 4, 5 and 6. Hence, G has an injective 5-coloring.

Case 2: There exists a 2-path P1 = vv1v2 between v and C, where E(P ) ∩
E(P1) = ∅.

W.l.o.g, we assume u2v
2 ∈ C. Since P is a maximum path in T , v1 and v2 has

a common neighbor z in C. Let x �= v2 ∈ V (C) be a neighbor of z and let y �= u2

be a neighbor of u1, x, y ∈ V (C). Let G′ = (G − {u, u1, u2, v
1, v2, z})⋃{vx, vy},

then G′ is a Halin graph with Δ(G′) = 3 and with fewer inter vertices than G.
By induction, G′ has an injective 5-coloring c′. Denote C = {1, 2, 3, 4, 5}. Now
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Fig. 3. Step 2 of case 1: use (1) to color u and use c(v′) ∈ C − (f) − (g) − (c) − (1) to
color v′ (Color figure online)

Fig. 4. Step 3 of case 1: use c(u1) ∈ C − (a) − (b) − c(v′) to color u1 (Color figure
online)

we shall color V (G) using the colors in C. First, we erase the color on v and let
c(x′) = c′(x′) for any x′ ∈ V (G) − {v, u, u1, u2, v

1, v2, z}.
Case 2.1: c′(v) /∈ {c′(x), c′(y)}. W.l.o.g, we assume that c(v) = 1, c(y) =
2, c(x) = 3. Let c′(u) = 3, c′(v1) = 2, c′(u1) = c′(z) = 1, then we have
F (u2) = F (v2) = {1, 2, 3}. Color u2 and v2 by color 4 and then we have
|F (v)| ≤ 4. Thus, we can get an injective 5-coloring of G.

Case 2.2: c′(v) ∈ {c′(x), c′(y)}. By symmetry, we assume that c(v) = c(y) =
1, c(x) = 2. Let c′(u) = 2, c′(u1) = c′(z) = 1, then F (u2) = F (v2) = {1, 2}.
Color u2 and v2 by color 3 and then we have |F (v)| ≤ 4, |F (v1)| ≤ 4. Thus, we
can get an injective 5-coloring of G.

Lemma 2. If G = T ∪ C is a Halin graph with Δ(G) ≤ 4, then χi(G) ≤ 6.

Proof. We prove it by induction on the number of inter vertices of G. If
|Vin(G)| = 1, then G is a wheel W3 or W4. Thus, the conclusion holds. Now
let |Vin(G)| ≥ 2 and let P = v1v2 · · · vl be a maximum path in T , l ≥ 3. For
convenience, we denote u = v2, v = v3, w = v4 and u1 = v1. Let u1, u2, . . . , uk

be neighbors of u in V (C), where k ∈ {2, 3}. Since P is a maximum path in T ,
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Fig. 5. Step 4 of case 1: use c(v) ∈ C − (d) − (e) − c(u1) − (1) to color v (Color figure
online)

Fig. 6. Step 5 of case 1: use c(u2) ∈ C − (1) − (2) − c(u1) − c(v) to color u2 (Color
figure online)

then there exists a 2−-path P1 = vv1 · · · vk (1 ≤ k ≤ 2) between v and C, where
E(P ) ∩ E(P1) = ∅, vk ∈ V (C) is a neighbor of u1 or uk.

Case 1.1: d(u) = 3 and there exists a 1-path P1 = vv1.
W.l.o.g, we assume u2v

1 ∈ C, x �= u2 is a neighbor of u1, x ∈ V (C). Let
G′ = (G − {u1, u2}) ∪ {ux, uv1}, then G′ is a Halin graph with Δ(G′) ≤ 4 and
with fewer inter vertices than G. By induction, G′ has an injective 6-coloring c′.
Denote C = {1, 2, 3, 4, 5, 6}. Now we shall color V (G) using the colors in C. First,
we erase the color on u and let c(x′) = c′(x′) for any x′ ∈ V (G) − {u, u1, u2}.

Since u, v, v1 are in the same 3-cycle, w.l.o.g, we assume c(x) = 1, c(v1) =
2, c(v) = 3, c(u) = k, k ∈ {1, 4, 5}. Let c′(u1) = k, then we have that |F (u)| ≤ 5,
|F (u2)| ≤ 4 and thus we can color u, u2 in order. Hence, G has an injective
6-coloring.

Case 1.2: d(u) = 3 and there exists a 2-path P1 = vv1v2 between v and C.
W.l.o.g, we assume u2v

2 ∈ C, x �= u2 is a neighbor of u1 and y �= u2 is a
neighbor of v2, x, y ∈ V (C). Since P is a maximum path in T , v1y ∈ T . Let
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G′ = (G − {u1, u2}) ∪ {ux, uv2}, then G′ is a Halin graph with Δ(G′) ≤ 4 and
with fewer inter vertices than G. By induction, G′ has an injective 6-coloring c′.
Denote C = {1, 2, 3, 4, 5, 6}. Now we shall color V (G) using the colors in C. First,
we erase the color on u and let c(x′) = c′(x′) for any x′ ∈ V (G) − {u, u1, u2}.

W.l.o.g, we assume c(x) = 1, c(v2) = 2. Since v1, v2, y are in the same 3-
cycle, c(v1), c(v2) and c(y) are distinct. Let c′(u2) = 2, then we have |F (u)| ≤ 5,
|F (u1)| ≤ 4 and thus we can color u, u1 in order. Hence, G has an injective
6-coloring.

Case 2.1: d(u) = 4 and there exists a 1-path P1 = vv1 between v and C.
W.l.o.g, we assume u3v

2 ∈ C, x �= u2 is a neighbor of u1, x ∈ V (C). Let
G′ = (G−{u1, u2, u3})∪{ux, uv1}, then G′ is a Halin graph with Δ(G′) ≤ 4 and
with fewer inter vertices than G. By induction, G′ has an injective 6-coloring c′.
Denote C = {1, 2, 3, 4, 5, 6}. Now we shall color V (G) using the colors in C. First,
we erase the color on u and let c(x′) = c′(x′) for any x′ ∈ V (G)−{u, u1, u2, u3}.

W.l.o.g, we assume c(x) = 1, c(v1) = 2. Now we have |F (u)| ≤ 4, |F (u1)| ≤ 3,
|F (u2)| ≤ 3, |F (u3)| ≤ 2 and thus we can color u, u1, u2, u3 in order. Hence, G
has an injective 6-coloring.

Case 2.2: d(u) = 4 and there exists a 2-path P1 = vv1v2 between v and C.
W.l.o.g, we assume u3v

2 ∈ C, x �= u2 is a neighbor of u1 and y �= u3 is a
neighbor of v2, x, y ∈ V (C). Since P is a maximum path in T , v1y ∈ T . Let
G′ = (G−{u1, u2, u3})∪{ux, uv2}, then G′ is a Halin graph with Δ(G′) ≤ 4 and
with fewer inter vertices than G. By induction, G′ has an injective 6-coloring c′.
Denote C = {1, 2, 3, 4, 5, 6}. Now we shall color V (G) using the colors in C. First,
we erase the color on u and let c(x′) = c′(x′) for any x′ ∈ V (G)−{u, u1, u2, u3}.

W.l.o.g, we assume c(x) = 1, c(v2) = 2. Since v1, v2, y are in the same 3-
cycle, c(v1), c(v2), c(y) are distinct. Let c′(u3) = 2, then we have |F (u)| ≤ 5,
|F (u1)| ≤ 3, |F (u2)| ≤ 3 and thus we can color u, u1, u2 in order. Hence, G has
an injective 6-coloring.

Lemma 3. If G = T ∪ C is a Halin graph with Δ(G) ≤ 5, then χi(G) ≤ 7.

Proof. We prove it by induction on the number of inter vertices of G. If
|Vin(G)| = 1, then G is a wheel and thus the conclusion holds. Now let
|Vin(G)| ≥ 2 and let P = v1v2 · · · vl be a maximum path in T , l ≥ 3. For
convenience, we denote u = v2, v = v3, w = v4 and u1 = v1. Let u1, u2, . . . , uk

be neighbors of u in V (C), where 2 ≤ k ≤ 4. Since P is a maximum path in T ,
then there exists a 2−-path P1 = vv1 · · · vk (1 ≤ k ≤ 2) between v and C, where
E(P ) ∩ E(P1) = ∅, vk ∈ V (C) is a neighbor of u1 or uk.

Case 1: d(u) = 3.
Let G′ = (G − {u1, u2}) ∪ {ux, uy}, then G′ is a Halin graph with Δ(G′) ≤

Δ(G) ≤ 5 and with fewer inter vertices than G. By induction, G′ has an injective
7-coloring c′. Denote C = {1, 2, . . . , 7}. Now we shall color V (G) using the
colors in C. First, we erase the color on u and let c(x′) = c′(x′) for any x′ ∈
V (G)−{u, u1, u2}. Then we have that |S(u)| ≥ 7−4−2 = 1, |S(u1)| ≥ 7−4 = 3,
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|S(u2)| ≥ 7 − 4 = 3 and thus we can color u, u1, u2 in order. Hence, G has an
injective 7-coloring.

Case 2: d(u) = 4.
Let G′ = (G−{u1, u2, u3})∪{ux, uy}, then G′ is a Halin graph with Δ(G′) ≤

Δ(G) ≤ 5 and with fewer inter vertices than G. By induction, G′ has an injective
7-coloring c′. Denote C = {1, 2, . . . , 7}. Now we shall color V (G) using the colors
in C. First, we erase the color on u and let c(x′) = c′(x′) for any x′ ∈ V (G) −
{u, u1, u2, u3}. Then we have that |S(u)| ≥ 7 − 4 − 2 = 1, |S(u1)| ≥ 7 − 3 = 4,
|S(u2)| ≥ 7 − 3 = 4, |S(u3)| ≥ 7 − 3 = 4 and thus we can color u, u1, u3, u2 in
order. Hence, G has an injective 7-coloring.

Case 3: d(u) = 5.
Let G′ = (G − {u1, u2, u3, u4}) ∪ {ux, uy}, then G′ is a Halin graph with

Δ(G′) ≤ Δ(G) ≤ 5 and with fewer inter vertices than G. By induction, G′ has
an injective 7-coloring c′. Denote C = {1, 2, . . . , 7}. Now we shall color V (G)
using the colors in C. First, we erase the color on u and let c(x′) = c′(x′) for
any x′ ∈ V (G) − {u, u1, u2, u3, u4}. Then we have that |S(u)| ≥ 7 − 4 − 2 = 1,
|S(u1)| ≥ 7−3 = 4, |S(u2)| ≥ 7−2 = 5, |S(u3)| ≥ 7−2 = 5, |S(u4)| ≥ 7−3 = 4
and thus we can color u, u1, u4, u2, u3 in order. Hence, G has an injective 7-
coloring.

By the analysis above, we have proven Theorem 1.1.

3 Halin Graphs with Maximum Degree at Least 6

We prove Theorem 1.2 by induction on the number of inter vertices of G. If
|Vin(G)| = 1, then G is a wheel, χi(G) = Δ(G) + 1. Thus, the conclusion holds.
Now let |Vin(G)| ≥ 2 and let P = v1v2 · · · vl be a maximum path in T , l ≥ 3. For
convenience, we denote u = v2, v = v3, w = v4 and u1 = v1. Let u1, u2, . . . , uk

be neighbors of u in V (C) in clockwise, where 2 ≤ k ≤ Δ(G) − 1. Since P is
a maximum path in T , then there exists a 2−-path P1 = vv1 · · · vt (1 ≤ t ≤ 2)
between v and C, where E(P )∩E(P1) = ∅, vt ∈ V (C) is a neighbor of u1 or uk.

Case 1: d(u) = k + 1, k ≥ 2 and there exists a 1-path P1 = vv1 between v and
C.

W.l.o.g, we assume ukv1 ∈ C, x �= u2 is a neighbor of u1, x ∈ V (C). Let
G′ = (G − {u1, u2, . . . , uk}) ∪ {ux, uv1}, then G′ is a Halin graph with Δ(G′) ≤
Δ(G) and with fewer inter vertices than G. By induction, G′ has an injective
(Δ(G)+1)-coloring c′. Denote C = {1, 2, . . . ,Δ(G)+1}. Now we shall color V (G)
using the colors in C. First, we erase the color on u and let c(x′) = c′(x′) for any
x′ ∈ V (G) − {u, u1, u2, . . . , uk}. Then |F (u)| ≤ Δ(G) and thus we can color u.
Now u is colored. If d(u) = 3, then |S(u1)| ≥ Δ(G)+1−5 ≥ 2, |S(u2)| ≥ Δ(G) +
1 − 4 ≥ 3. Thus we can color u1 and u2 in order. If d(u) = 4, then |S(u1)| ≥
Δ(G) + 1 − 4 ≥ 3, |S(u2)| ≥ Δ(G) + 1 − 4 ≥ 3, |S(u3)| ≥ Δ(G) + 1 − 3 ≥ 4.
Thus we can color u1, u2, u3 in order. If d(u) ≥ 5, then |S(u1)| ≥ Δ(G) + 1 − 4 ≥
3, |S(u2)| ≥ Δ(G) + 1− 3 ≥ 4, |S(ut)| ≥ Δ(G) + 1− 2 ≥ Δ(G)−1, 3 ≤ t ≤ k−2,
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|S(uk−1)| ≥ Δ(G) + 1 − 3 ≥ 4, |S(uk)| ≥ Δ(G) + 1 − 3 ≥ 4. Thus we can
color u1, u2, uk−1, uk in order. Now k − 4 ≤ Δ(G)− 5 vertices are uncolored and
each vertex has Δ(G) − 1 − 4 = Δ(G) − 5 colors available. Hence, G has an
injective (Δ(G) + 1)-coloring.

Case 2: d(u) = k + 1, k ≥ 2 and there exists a 2-path P1 = vv1v2 between v
and C.

W.l.o.g, we assume ukv2 ∈ C, x �= u2 is a neighbor of u1, x ∈ V (C). Let
d(v1) = m + 1, m ≥ 2. Since P is a maximum path in T , then all the neighbor
of v1 other that v are 1-vertices. For convenience, we denote v2 = w1. Let
w1, w2, . . . , wm ∈ V (G) be neighbors of v1 and w1, w2, . . . , wm are in clockwise.
Let y �= wm−1 be a neighbor of wm, y ∈ C.

Let G′ = (G − {u, v1, u1, u2, . . . , uk, w1, w2, . . . , wm}) ∪ {vx, vy}, then G′

is a Halin graph graph with Δ(G′) ≤ Δ(G) and with fewer inter vertices
than G. By induction, G′ has an injective (Δ(G) + 1)-coloring c′. Denote C =
{1, 2, . . . ,Δ(G)+1}. Now we shall color V (G) using the colors in C. Let c(x′) =
c′(x′) for any x′ ∈ V (G)−{u, v1, u1, u2, . . . , uk, w1, w2, . . . , wm}. Let c(u) = c(y),
c(v1) = c(x), then |S(u1)| ≥ Δ(G) + 1 − 4 ≥ 3, |S(u2)| ≥ Δ(G) + 1 − 3 ≥ 4,
|S(ut)| ≥ Δ(G) + 1 − 2 ≥ Δ(G) − 1, 3 ≤ t ≤ k − 1, |S(uk)| ≥ Δ(G) + 1 − 4 ≥ 3.
Thus we can color u1, u2, uk in order. Now we have k − 3 ≤ Δ(G) − 4 ver-
tices uncolored and each vertex has Δ(G) − 1 − 3 = Δ(G) − 4 colors available.
Hence, u2, u3, . . . , uk−1 can be colored. Next, we shall color w1, w2, . . . , wm. If
d(v1) = 3, then |S(w1)| ≥ Δ(G) + 1 − 5 ≥ 2, |S(w2)| ≥ Δ(G) + 1 − 5 ≥ 2.
Thus we can color w1, w2. If d(v1) = 4, then |S(w1)| ≥ Δ(G) + 1 − 4 ≥ 3,
|S(w2)| ≥ Δ(G) + 1 − 4 ≥ 3, |S(w3)| ≥ Δ(G) + 1 − 4 ≥ 3. Thus we can
color w1, w2, w3. If d(v1) ≥ 5, then |S(w1)| ≥ Δ(G) + 1 − 4 ≥ 3, |S(w2)| ≥
Δ(G) + 1 − 3 ≥ 4, |S(wh)| ≥ Δ(G) + 1 − 2 ≥ Δ(G) − 1, 3 ≤ h ≤ m − 2,
|S(wm−1)| ≥ Δ(G) + 1− 3 ≥ 4, |S(wm)| ≥ Δ(G) + 1− 4 ≥ 3. Thus we can color
w1, wm, wm−1, w2 in order. Now we have m − 4 ≤ Δ(G) − 5 vertices uncolored
and each vertex has Δ(G)− 1− 4 = Δ(G)− 5 colors available. Hence, G has an
injective (Δ(G) + 1)-coloring.

By the analysis above, we have proven Theorem 1.2.
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Abstract. A list assignment of a graph G is a function L : V (G) −→ 2N

that assigns each vertex v a list L(v) for all v ∈ V (G). We say that G has
an L-L(2, 1)-labeling if there exists a function φ such that φ(v) ∈ L(v)
for all v ∈ V (G), |φ(u)− φ(v)| ≥ 2 if d(u, v) = 1 and |φ(u)− φ(v)| ≥ 1 if
d(u, v) = 2. The list L(2, 1)-labeling number of G, denoted by λl

2,1(G), is
the minimum k such that for every list assignment L = {L(v): |L(v)| =
k, v ∈ V (G)}, G has an L-L(2, 1)-labeling. We prove that for planar
graph G with maximum degree Δ(G) and girth g(G), λl

2,1(G) ≤ Δ(G)+3
holds if Δ(G) = 4 and g(G) ≥ 19 or Δ(G) = 3 and g(G) ≥ 32. Moreover,
there exist planar graphs having λl

2,1(G) = Δ(G)+3 for arbitrarily large
Δ(G).

Keywords: Planar graph · Girth · L(2, 1)-labeling ·
List L(2, 1)-labeling number

1 Introduction

All graphs considered in this paper are finite simple graphs. We denote the ver-
tex set, edge set, face set, maximum degree, minimum degree by V (G), E(G),
F (G),Δ(G), δ(G), respectively. For vertices x and y, let d(x, y) be the distance
between x and y. Two cycles are adjacent if they share at least one edge. Unde-
fined terminologies and notations are referred to [3].

Supported by National Science Foundation of China under Grant Nos.11901243,
11771403 and Zhejiang Provincial Natural Science Foundation of China under Grant
Nos. LQ19A010005, LY18A010014.

c© Springer Nature Switzerland AG 2020
Z. Zhang et al. (Eds.): AAIM 2020, LNCS 12290, pp. 501–512, 2020.
https://doi.org/10.1007/978-3-030-57602-8_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57602-8_45&domain=pdf
http://orcid.org/0000-0003-1561-5772
http://orcid.org/0000-0003-1179-1883
https://doi.org/10.1007/978-3-030-57602-8_45


502 Z. Haiyang et al.

A k-L(2, 1)-labeling of a graph G is a mapping φ:V (G) → {0, 1, 2, . . . , k} such
that |φ(x) − φ(y)| ≥ 2 if d(x, y) = 1 and |φ(x) − φ(y)| ≥ 1 if d(x, y) = 2. The
smallest integer k such that G has such a labeling is called the L(2, 1)-labeling
number of G, denoted by λ2,1(G).

Motivated by the channel assignment problem, Griggs and Yeh [8] inves-
tigated the L(2, 1)-labeling problem of graphs. Using a greedy labelling, they
proved that for every graph G with maximum degree Δ, λ2,1(G) ≤ Δ2 + 2Δ.
Furthermore, for graphs with diameter 2, the upper bound can be decreased to
Δ2 + Δ. In the proof of case Δ ≥ |V |−1

2 , the condition diam(G) = 2 was not
used. Therefore, they proposed the following conjecture.

Conjecture 1. For any graph G with maximum degree Δ ≥ 2, λ2,1(G) ≤ Δ2.

In 1996, Chang and Kuo [5] proposed an algorithm funded on the concept
of 2-stable set of a graph to obtain an L(2, 1)-labeling of a given graph G and
proved that λ2,1(G) ≤ Δ2 + Δ, which remained the best general upper bound
for about a decade. Král’ and Škrekovski [12] brought this upper bound down
by 1. Gonçalves [7] decreased this bound by 1 again. However, there is still a
gap from Δ2. In 2012, Havet et al. [9] settled this conjecture for general graphs
with sufficiently large maximum degree by probabilistic tools.

For planar graph G with maximum degree Δ, Jan van den Heuvel and Sean
McGuinness [10] proved that λ2,1(G) ≤ 2Δ + 34. Bella et al. [2] proved that
λ2,1(G) ≤ 32 if Δ ≤ 6, λ2,1(G) ≤ 25 if Δ ≤ 5 and λ2,1(G) ≤ 16 if Δ ≤ 4. Borodin
et al. [4] improved the upper bound to λ2,1(G) ≤ � 9Δ

5 �+9 if Δ ≥ 47. To the best
of our knowledge, the best known upper bound λ2,1(G) ≤ � 5Δ

3 � + 95 is due to
Molloy and Salavatipour [13]. For planar graph with girth and maximum degree
restriction or without some short cycles, more results can be seen in [6,15–21].

Let L be a list assignment of G, we say that G has an L-L(2, 1)-labeling if
there exists a function φ such that φ(v) ∈ L(v) for all v ∈ V (G), |φ(u)−φ(v)| ≥ 2
if d(u, v) = 1 and |φ(u) − φ(v)| ≥ 1 if d(u, v) = 2. If |L(v)| = k for all v ∈ V (G),
then L is a k-list assignment. The list L(2, 1) labeling number of G, denoted
by λl

2,1(G), is the minimum k such that for each k-assignment L, G has an
L-L(2, 1)-labeling. The list L(2, 1)-labeling problem is a generalization of the
L(2, 1)-labeling problem, and it easy to see λl

2,1(G) ≥ λ2,1(G) + 1 ≥ Δ(G) + 2.
The bound of Van den Heuvel et al. [10] and Bella et al. [4] implies that if G

is a planar graph with maximum degree Δ �= 3, then λl
2,1(G) ≤ Δ2 + 1. In this

paper, we considered the list L(2, 1)-labeling of planar graphs with maximum
degree and girth restrictions and proved that

Theorem 1.1. If G is a planar graph, then λl
2,1(G) ≤ Δ(G) + 3 in each of the

following cases:

(i) Δ(G) = 4 and g(G) ≥ 19;
(ii) Δ(G) = 3 and g(G) ≥ 32.

Wang [14] showed that for any integer t ≥ 3, there exists a tree T with
Δ(T ) = t such that λ2,1(T ) = Δ(T ) + 2 and λl

2,1(T ) = Δ(T ) + 3. This implies
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that there are graphs with Δ(G) ≥ 3 having λl
2,1(G) = Δ(G) + 3. The main

tool used in our proofs in this article is the following famous Combinatorial
Nullstellensatz which is due to Alon [1].

Lemma 1.1 (Alon [1]). Let F be an arbitrary field, and let f =
f(x1, x2, · · · , xn) be a polynomial in F [x1, x2, · · · , xn]. Suppose the degree
deg(f) of f equals

∑n
i=1 ki, where each ki is a nonnegative integer, and sup-

pose the coefficient of xk1
1 xk2

2 · · · xkn
n in f is non-zero. Then if L1, L2, · · · , Ln are

subsets of F with |Li| > ki, there are s1 ∈ L1, s2 ∈ L2, · · · , sn ∈ Ln so that
f(s1, s2, · · · , sn) �= 0.

2 Preliminaries

Let L be a list assignment of G and b = min
⋃

v∈V (G) L(v) > 1. Then there exists
a list assignment L′ = {L′(v)| v ∈ V (G)}, where L′(v) = {n− (b− 1)| n ∈ L(v)}
for all v ∈ V (G) such that G has an L-L(2, 1)-labeling if and only if G has
an L′-L(2, 1)-labeling. Obviously, min

⋃
v∈V (G) L′(v) = 1 and |L′(v)| = |L(v)|

for all v ∈ V (G). In the following, we can assume that the list assignment
L: V (G) −→ 2N of G satisfies that min

⋃
v∈V (G) L(v) = 1. A k-path is a path

Pk+2 = v1v2 · · · vk+2, where d(v1) ≥ 3, d(v2) = d(v3) = · · · = d(vk+1) = 2 and
d(vk+2) ≥ 3. If n ≥ k or n ≤ k, then n-path is also called k+-path or k−-path.

Lemma 2.1. Let L be a list assignment of Pk. If L satisfies one of the following
conditions, then Pk has a L-L(2, 1)-labeling.

(1) k = 2, |L(v1)| = 2 and |L(v2)| = 3;
(2) k = 2, |L(v1)| = |L(v2)| = 2 and L(v1) �= L(v2) or L(v1) = L(v2) = {β, γ},

where |β − γ| ≥ 2;
(3) k = 3, |L(v1)| = 2, |L(v2)| = 4 and |L(v3)| = 3;
(4) k = 4, |L(v1)| = 2, |L(v2)| = 5, |L(v3)| = 5 and |L(v4)| = 2.

Proof.

(1) If 1 ∈ L(v1), then we define an L-L(2, 1)-labeling σ: σ(v1) = 1, σ(v2) ∈
L(v2)\{1, 2}. Otherwise, 1 �∈ L(v1) and 1 ∈ L(v2). Then we can define an
L-L(2, 1)-labeling σ:σ(v2) = 1, σ(v1) ∈ L(v1)\{2}.

(2) If L(v1) = L(v2) = {β, γ}, where |β − γ| ≥ 2, then we define an L-L(2, 1)-
labeling σ:σ(v1) = β, σ(v2) = γ. Now we assume that L(v1) �= L(v2).
W.l.o.g, let 1 ∈ L(v1). If L(v2)\{1, 2} �= ∅, then we define an L-L(2, 1)-
labeling σ: σ(v1) = 1, σ(v2) ∈ L(v2)\{1, 2}. Otherwise, L(v2) = {1, 2}. Since
L(v1) �= L(v2), we can define an L-L(2, 1)-labeling σ: σ(v2) = 1, σ(v1) ∈
L(v1)\{1, 2}.

(3) If 1 �∈ L(v1) ∪ L(v3), then 1 ∈ L(v2). Define an L-L(2, 1)-labeling σ:σ(v2) =
1, σ(v1) ∈ L(v1)\{2}, σ(v3) ∈ L(v3)\{2, σ(v1)}.
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Suppose now that 1 �∈ L(v1) and 1 ∈ L(v3). Let L′(v2) = L(v2)\{1, 2} and
L′(v1) = L(v1). It follows easily that |L′(v1)| = 2, |L′(v2)| ≥ 2. If |L′(v2)| ≥ 3
or L′(v1) �= L′(v2), then by Lemma 2.1(1)(2), P3 − v3 has an L′-L(2, 1)-labeling
and we can extend it to P3 by labeling v3 with 1. Otherwise, we can assume that
L(v1) = {a, b}, L(v2) = {1, 2, a, b}, L(v3) = {1, c, d}, where 3 ≤ a < b, d ≥ 3.
Define an L-L(2, 1)-labeling σ of P3 such that σ(v2) = 1, σ(v3) = d, σ(v1) ∈
L(v1)\{d}.

Suppose finally that 1 ∈ L(v1). Let L′(v2) = L(v2)\{1, 2} and L′(v3) =
L(v3)\{1}. It follows easily that |L′(v2)| ≥ 2, |L′(v3)| ≥ 2. If max

{|L′(v2)|,
|L′(v3)|

} ≥ 3 or L′(v2) �= L′(v3), then by Lemma 2.1(1)(2), P3 − v1 has an L′-
L(2, 1)-labeling and we can extend it to P3 by labeling v1 with 1. Now assume
that L(v2) = {1, 2, a, b}, L(v3) = {1, a, b}, L(v1) = {1, k}, where 3 ≤ a < b. If
k = 2, then we define an L-L(2, 1)-labeling σ of P3 such that σ(v1) = 2, σ(v2) =
b, σ(v3) = 1. If k ≥ 3, then let σ(v1) = k, σ(v2) = 1, σ(v3) ∈ L(v3)\{1, k}.

(4) Suppose that 1 ∈ L(v1)∪L(v4). W.l.o.g, assume that 1 ∈ L(v1). Let L′(v2) =
L(v2)\{1, 2}, L′(v3) = L(v3)\{1}, L′(v4) = L(v4). Note that |L′(v2)| ≥ 3,
|L′(v3)| ≥ 4, and |L′(v4)| = 2, by Lemma 2.1(3), P4 − v1 has an L′-L(2, 1)-
labeling and we can extend it to P4 by labeling v1 with 1.

Suppose now that 1 �∈ L(v1) ∪ L(v4) and 1 ∈ L(v2) ∪ L(v3). W.l.o.g, assume
that 1 ∈ L(v2). Let L′(v3) = L(v3)\{1, 2}, L′(v4) = L(v4)\{1}. If 2 �∈ L(v1),
since |L′(v3)| ≥ 3 and |L′(v4)| = 2, then by Lemma 2.1(1), P4 − {v1, v2} has
an L′-L(2, 1)-labeling φ and we can extend it to P4 by labeling v2 with 1 and
v1 with a label in L(v1)\{φ(v3)}. Otherwise, L(v1) = {2, α}, where α ≥ 3. Let
L′(v3) = L(v3)\{1, 2, α}, L′(v4) = L(v4). Note that |L′(v3)| ≥ 2 and |L′(v4)| = 2.
If |L′(v3)| ≥ 3 or L′(v3) �= L′(v4) or L′(v3) = L′(v4) = {β, γ} with |β − γ| ≥ 2,
then by Lemma 2.1(1)(2), P4 − {v1, v2} has an L′-L(2, 1)-labeling and we can
extend it to P4 by labeling v2 with 1, v1 with α.

Finally, assume that L′(v3) = L′(v4) = {β, β + 1}, L(v3) = {1, 2, α, β, β + 1}
where β ≥ 3. Let L′′(v2) = L(v2)\{1, 2} and L′′(v1) = L(v1). Note that
|L′′(v2)| ≥ 3 and |L′′(v1)| = 2, then by Lemma 2.1(1), P4 − {v3, v4} has an
L′-L(2, 1)-labeling and we can extend it to P4 by labeling v3 with 1, v4 with a
label in {β, β + 1}\{σ(v2)}.

Lemma 2.2. Let Li be a list assignment of tree Ti, 1 ≤ i ≤ 3. If Li satisfies
one of the following conditions, then Ti has an Li-L(2, 1)-labeling.

(1) T1 is a tree with seven vertices, where |L1(v1)| = 7, |L1(v2)| = |L1(v3)| = 6,
|L1(v4)| = 5, |L1(v5)| = 3 and |L1(v6)| = |L1(v7)| = 2;

(2) T2 is a tree with ten vertices, where |L2(v1)| = |L2(v5)| = |L2(v7)| = 6,
|L2(v2)| = |L2(v8)| = |L2(v9)| = 3, |L2(v3)| = |L2(v4)| = 7, |L2(v6)| = 5 and
|L2(v10)| = 2;

(3) T3 = v1v2v3v4v5v6 is a path with six vertices, where |L3(v1)| = |L3(v3)| = 3,
|L3(v2)| = 5, |L3(v4)| = |L3(v5)| = 6 and |L3(v6)| = 2.
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Proof.

(1) For 1 ≤ i ≤ 7, let L1(vi) be the label set assigned to vertex vi and assign vari-
ables xi to vi. Define a polynomial g = g(x1, x2, · · · , x7) ∈ R[x1, x2, · · · , x7]
as follows:

g(x1, x2, · · · , x7) =
4∏

i=2

(x1 − xi)(x1 − xi + 1)(x1 − xi − 1)
4∏

l=2

(xl − xl+3)

(xl − xl+3 + 1)(xl − xl+3 − 1)
∏

2≤k<j≤4

(xk − xj)
7∏

m=5

(x1 − xm).

Delete the constant 1 and −1, we can obtain a homogeneous polynomial
f = f(x1, x2, · · · , x7) as follows:

f(x1, x2, · · · , x7) =
4∏

i=2

(x1 −xi)3
4∏

l=2

(xl −xl+3)3
∏

2≤k<j≤4

(xk −xj)
7∏

m=5

(x1 −xm).

Note that deg(g) = deg(f) = 24, the coefficient of the monomial with degree
deg(g) in g is non-zero if and only if the coefficient of the same monomial in f
is non-zero. By means of a program in MATLAB (see the Appendix in [11]), we
can calculate easily

∂24f

∂x3
1∂x5

2∂x4
3∂x4

4∂x3
5∂x3

6∂x2
7

= 6628884480,

and
∂24f

∂x6
1∂x5

2∂x5
3∂x4

4∂x2
5∂x1

6∂x1
7

= 74649600000,

which implies obviously that the coefficient of the monomial x3
1x

5
2x

4
3x

4
4x

3
5x

3
6x

2
7

and x6
1x

5
2x

5
3x

4
4x

2
5x6x7 in f are non-zero. Since |L1(v1)| = 7 > 6, |L1(v2)| =

|L1(v3)| = 6 > 5, |L1(v4)| = 5 > 4, |L1(v5)| = 3 > 2, |L1(v6)| = |L1(v7)| = 2 > 1,
by Lemma 1.1, there exist s1 ∈ L1(v1), s2 ∈ L1(v2), · · · , s7 ∈ L1(v7) such that
f(s1, s2, · · · , s7) �= 0. Thus, T1 has a L1-L(2, 1)-labeling.
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(2) For 1 ≤ i ≤ 10, Let L2(vi) be the label set assigned to vertex vi and assign
variables xi to vi. Define

f(x1, x2, · · · , x10) =
5∏

i=2

(x1 − xi)3
7∏

l=3

(xl − xl+3)3
∏

2≤k<j≤5

(xk − xj)

8∏

m=6

(x1 − xm)(x3 − x9)(x4 − x10)

Since

∂38f

∂x5
1∂x2

2∂x6
3∂x6

4∂x5
5∂x4

6∂x5
7∂x2

8∂x2
9∂x1

10

= −278628139008000000,

the coefficient of the monomial x5
1x

2
2x

6
3x

6
4x

5
5x

4
6x

5
7x

2
8x

2
9x10 in f is non-zero.

Since |L2(v1)| = |L2(v5)| = |L2(v7)| = 6 > 5, |L2(v2)| = |L2(v8)| =
|L2(v9)| = 3 > 2, |L2(v3)| = |L2(v4)| = 7 > 6, |L2(v6)| = 5 > 4, |L2(v10)| =
2 > 1, by Lemma 1.1, there exist s1 ∈ L2(v1), s2 ∈ L2(v2), · · · , s10 ∈ L2(v10)
such that f(s1, s2, · · · , s10) �= 0. Thus, T2 has an L2-L(2, 1)-labeling.

(3) For 1 ≤ i ≤ 6, Let L3(vi) be the label set assigned to vertex vi and assign
variables xi to vi. Define

f(x1, x2, · · · , x6) =
5∏

i=1

(xi − xi+1)3
4∏

j=1

(xj − xj+2).

Since
∂19f

∂x2
1∂x4

2∂x2
3∂x5

4∂x5
5∂x1

6

= 149299200,

the coefficient of the monomial x2
1x

4
2x

2
3x

5
4x

5
5x6 in f is non-zero. Since

|L3(v1)| = |L3(v3)| = 3 > 2, |L3(v2)| = 5 > 3, |L3(v4)| = |L3(v5)| =
6 > 5, |L3(v6)| = 2 > 1, by Lemma 1.1, there exist s1 ∈ L3(v1), s2 ∈
L3(v2), · · · , s6 ∈ L3(v6) such that f(s1, s2, · · · , s6) �= 0. Thus, T3 has an
L3-L(2, 1)-labeling.

3 Proof of Theorem1.1

Let G be a minimal counterexample with the smallest number of vertices and
edges. Then G has a (Δ(G) + 3)- assignment L such that G has no L-L(2, 1)-
labeling. However, for every proper graph H ⊂ G, H has an L-L(2, 1)-labeling.
Obviously, G is connected and δ(G) ≥ 2. We will show that G does not exist,
which contradicts the assumption.

Using the relation
∑

v∈V

d(v) =
∑

f∈F

d(f) = 2|E|, Euler’s formula can be rewrit-

ten as:
∑

v∈V

(d(v) − 4) +
∑

f∈F

(d(f) − 4) = −8. We define a charge function w by
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w(v) = d(v) − 4 for all v ∈ V ∪ F . We design appropriate rules and redis-
tribute charge accordingly, preserving their sum, produce a new non-negative
charge function w′(x) ≥ 0 for all x ∈ V ∪ F . This leads to the following obvious
contradiction, hence demonstrates that no such a counterexample can exist.

Since G is connected, we define a weight function w by w(v) = n−2
2 d(v) − n

for v ∈ V and w(f) = d(f)−n for f ∈ F . By Euler’s formula |V |− |E|+ |F | = 2
and formula

∑

v∈V

d(v) = 2|E| =
∑

f∈F

d(f), we can derive

∑

v∈V (G)

(
n − 2

2
d(v) − n) +

∑

f∈F (G)

(d(f) − n) = −2n.

To prove the non-existence of G, we first give some structural properties of
G, then we design appropriate discharging rules and redistribute weights accord-
ingly. Once the discharging is finished, a new weight function w′ is produced.
During the process, the total sum of weights is kept fixed. It follows that

∑

x∈V ∪F

w′(x) =
∑

x∈V ∪F

w(x) = −2n.

However, we will show that after the discharging is complete, the new weight
function w′(x) ≥ 0 for all x ∈ V ∪ F . This leads to the following obvious
contradiction

0 ≤
∑

x∈V ∪F

w′(x) =
∑

x∈V ∪F

w(x) = −2n < 0.

3.1 Structure and Properties of a Counterexample to Theorem1.1.

For f ∈ F (G), we use ∂(f) to denote the boundary walk of f and write f =
v1v2 . . . vn if v1, v2, . . . , vn are the vertices of ∂(f) in the clockwise order. If the
degree of a vertex (or face) x is k, at least k, or at most k, then x is called a k-
vertex (k-face), k+-vertex, or k−-vertex, respectively. A (d1, d2, · · · , d+i , . . . , d−

k )-
vertex is a k-vertex incident with k different paths, where the 1th, ith, and kth
of them is a d1-path, d+i -path and d−

k -path, respectively. Let F (x) be the set of
forbidden labels cannot be used for x. Let τ(x → y) be the charge transferred
from x to y. Let F (x) be the set of forbidden labels cannot be used for x.

Lemma 3.1. G has no k-path in each of the following cases:

(1) Δ(G) = 4 and k ≥ 5;
(2) Δ(G) = 3 and k ≥ 6.

Proof.(1) Assume that G has a k-path Pk+2 = v1v2 · · · vk+2, where k ≥ 5.
By the minimality of G, G − v3v4 has a L-L(2, 1)-labeling. Remove the
labels on vertices v3, v4 and v5. Note that |L(vi)\F (vi)| ≥ 3 for i = 3, 5
and |L(v4)\F (v4)| ≥ 5, we can relabel v3, v4 and v5 by Lemma 2.1(3), a
contradiction.
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(2) Assume that G has a k-path Pk+2 = v1v2 · · · vk+2, where k ≥ 6. By the
minimality of G, G − v3v4 has a L-L(2, 1)-labeling. Remove the labels
on vertices v3, v4, v5 and v6. Note that |L(vi)\F (vi)| ≥ 2 for i = 3, 6
and |L(vj)\F (vj)| ≥ 5 for j = 4, 5, we can relabel v3, v4, v5 and v6 by
Lemma 2.1(4), a contradiction.

Lemma 3.2. Let G be a graph with Δ(G) = 4. If v1v2v3v4v5v6 is a 4-path,
then d(v1) = d(v6) = 4.

Proof. Assume that d(v1) = 3. By the minimality of G, G − v3v4 has a
L-L(2, 1)-labeling. Erase the labels on v2, v3, v4. Note that |L(v2)\F (v2)| ≥
2, |L(v3)\F (v3)| ≥ 5, and |L(v4)\F (v4)| ≥ 3, we can relabel v2, v3, v4 by
Lemma 2.1(3), a contradiction. Similarly, d(v6) = 4.

Lemma 3.3. Let G be a graph with Δ(G) = 4, then G does not contain one of
the following configurations, where u is a k-vertex with N(u) = {x1, x2, · · · , xk}
(1) 3-vertex u incident with one 3-path ux1y1z1w1 and two 2+-paths

ux2y2z2 · · · , ux3y3z3 · · · , where max{d(z2), d(z3)} ≤ 3.
(2) 3-vertex u incident with two 3-paths ux1y1z1w1, ux2y2z2w2 and one 1+-path

ux3y3 · · · where d(w1) ≤ 3.
(3) 4-vertex u incident with one 2+-path ux1y1 . . ., one 4-path ux2y2z2w2t2 and

two 3+-paths ux3y3z3w3 · · · , ux4y4z4w4 · · · , where d(w3) ≤ 3.

Proof.(1) Assume G contains such a 3-vertex u. Let Y =
{
u, x1, x2, x3, y1,

y2, y3
}
. Since g(G) ≥ 13, G[Y ] is a tree. By the minimality of G, G−ux1 has

a L-L(2, 1)-labelling. Erase the labels on vertices of V (G[Y ]). For each vertex
x ∈ V (G[Y ]), let L′(x) = L(x)\F (x). Note that |L′(u)| = 7, |L′(xi)| ≥ 6 for
i = 1, 2, 3, |L′(y1)| ≥ 3, |L′(yj)| ≥ 2 for j = 2, 3, by Lemma 2.2(1), we can
relabel the vertices of G[Y ] to get an L-L(2, 1)-labeling of G, a contradiction.

(2) Assume G contains such a 3-vertex. Let Y = {u, x1, x2, y1, y2, z1}. Since
g(G) ≥ 13, G[Y ] is a tree. By the minimality of G, G − ux1 has an L-
L(2, 1)-labelling. Erase the labels on vertices of V (G[Y ]). For each vertex
x ∈ V (G[Y ]), let L′(x) = L(x)\F (x). Note that |L′(u)| ≥ 3, |L′(x1)| ≥ 6,
|L′(x2)| ≥ 5, |L′(y1)| ≥ 6, |L′(y2)| ≥ 3, |L′(z1)| ≥ 2, by Lemma 2.2(3),
we can relabel the vertices of G[Y ] to get an L-L(2, 1)-labeling of G, a
contradiction.

(3) Assume G contains such a 4-vertex. Let Y =
{
u, x1, x2, x3, x4, y2, y3,

y4, z2, z3
}
. Since g(G) ≥ 13, G[Y ] is a tree. By the minimality of G,

G − ux1 has a L-L(2, 1)-labelling. Erase the labels on vertices of V (G[Y ]).
For each vertex x ∈ V (G[Y ]), let L′(x) = L(x)\F (x). Note that |L′(u)| ≥ 6,
|L′(x1)| ≥ 3, |L′(x2)| = |L′(x3)| = 7, |L′(x4)| ≥ 6, |L′(y2)| ≥ 6, |L′(y3)| ≥ 6,
|L′(y4)| ≥ 3, |L′(z2)| ≥ 3, |L′(z3)| ≥ 2, by Lemma 2.2(2), we can relabel the
vertices of G[Y ] to get an L-L(2, 1)-labeling of G, a contradiction.

Lemma 3.4. Let G be a graph with Δ(G) = 3, then G has no (5, 5, 4+)-vertex.
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Proof. Assume G contains a (5, 5, 4+)-vertex u which is incident with two 5-
paths ux1y1z1w1t1v1, ux2y2z2w2t2v2 and one 4+-path ux3y3z3w3t3 · · · . By the
minimality of G, G−ux1 has a L-L(2, 1)-labelling f . Erase the labels on vertices
of u, xi, yi, zi, w1, w2, where 1 ≤ i ≤ 3. Note that |L(u)| = |L(x1)| = 6, then there
exists a label α ∈ L(u) such that |L(x1)\{α ± 1, α}| ≥ 4. Label u by α. Now, we
have that |L(x3)\{α ± 1, α}| ≥ 3, |L(y3)\{α, f(w3)}| ≥ 4 and |L(z3)\{f(w3) ±
1, f(w3), f(t3)}| ≥ 2. By Lemma 2.1(3), we can relabel x3, y3, z3 to get a labeling
f1. After u, x3, y3, z3 are labeled, |L(x2)\{α ± 1, α, f1(x3)}| ≥ 2, |L(y2)\{α}| ≥
5, |L(z2)\{f1(t2)}| ≥ 5 and |L(w2)\{f1(t2) ± 1, f1(t2), f1(v2)}| ≥ 2. By
Lemma 2.1(4), we can relabel x2, y2, z2, w2 to get a labeling f2. Now, we have
that |L(x1)\{α ± 1, α, f2(x3), f2(x2)}| ≥ 2, |L(y1)\{α}| ≥ 5, ||L(z1)\{f2(t1)}| ≥
5, |L(w1)\{f2(t1) ± 1, f2(t1), f2(v1)}| ≥ 2. By Lemma 2.1(4), we can relabel
x1, y1, z1, w1. Thus, we have an L-L(2, 1)-labeling of G, a contradiction.

3.2 Case Δ(G) = 4, g(G) ≥ 18

Let n = 18 and define the discharging rules as follows.

Discharging Rules

(M1). If v1v2v3 is a 1-path, then τ(v1 → v2) = τ(v3 → v2) = 1.

(M2a). If v1v2v3v4 is a 2-path and d(v1) = d(v4) = 3, then τ(v1 → v2) =
τ(v4 → v3) = 2;

(M2b). If v1v2v3v4 is a 2-path and d(v1) = 3, d(v4) = 4, then τ(v1 → v2) =
τ(v4 → v2) = 1;

(M2c). If v1v2v3v4v5 is a 3-path and d(v1) = 3, then τ(v1 → v2) = 2.

(M3a). If v1v2v3v4v5 is a 3-path and d(v1) = d(v5) = 3, then τ(v1 → v3) =
τ(v5 → v3) = 1;

(M3b). If v1v2v3v4v5 is a 3-path and d(v1) = 3, d(v5) = 4, then τ(v1 → v3) =
1
2 , τ(v5 → v3) = 3

2 ;

(M3c). If v1v2v3v4v5 is a 3-path and d(v1) = d(v5) = 4, then τ(v1 → v3) =
τ(v5 → v3) = 1.

(M4a). If v1v2v3v4 · · · is a 2+-path and d(v1) = 4, then τ(v1 → v2) = 2;

(M4b). If v1v2v3v4v5v6 is a 4-path and d(v1) = 4, then τ(v1 → v3) = 2.
It is easy to see that w′(f) = w(f) = d(f) − 18 ≥ 0 for f ∈ F (G).

Checking w′(v) ≥ 0 for each v ∈ V (G)

Case 1. d(v) = 2.
Here, w(v) = −2. By Lemma 3.1(1), G does not contain 5+-path. If

v1v2v3v4v5v6 is a 4-path, then by Lemma 3.2, d(v1) = d(v6) = 4. By (M4a),
τ(v1 → v2) = τ(v6 → v5) = 2. By (M4b), τ(v1 → v3) = τ(v6 → v4) = 2. Thus,
∑5

i=2 w′(vi) ≥ −2 × 4 + 2 × 4 = 0. If v1v2v3v4v5 is a 3-path, then v3 gets 2 from
v1 together with v5 by (M3a), (M3b), (M3c), τ(v1 → v2) = τ(v5 → v4) = 2
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by (M2c) and (M4a). Thus,
∑4

i=2 w′(vi) ≥ −2 × 3 + 2 + 2 × 2 = 0. If
v1v2v3v4 is a 2-path, then by (M2a), (M2b) and (M4a), w′(v2) + w′(v3) ≥
min{−2 × 2 + 2 × 2,−2 × 2 + 2 + 1 + 1} = 0. If v1v2v3 is a 1-path, then by
(M1), w′(v2) ≥ −2 + 1 × 2 = 0.

Case 2. d(v) = 3.
Here, w(v) = 18− 2

2 × 3 − 18 = 6. By Lemma 3.1(1), G does not contain
5+-path. By Lemma 3.2, v is not incident with a 4-path. By (M1), v gives out
1 along each incident 1-path. By (M2a) and (M2b), v gives out at most 2 along
each incident 2-path. By (M2c), (M3a) and (M3b), v gives out at most 2+1 = 3
along each incident 3-path. By Lemma 3.3(1), v is incident with at most two
3-paths.

Subcase 2.1. v is incident with exactly two 3-paths.
If v is incident with two 3-paths vx1y1z1w1, vx2y2z2w2 and one 2-path

vx3y3z3, then d(z3) = 4 by Lemma 3.3(1) and d(w1) = d(w2) = 4 by
Lemma 3.3(2). Thus, v gives out 2+ 1

2 = 5
2 along every incident 3-path by (M2c)

and (M3b) and 1 along vx3y3z3 by (M2b). Hence, w′(v) ≥ 6 − 5
2 × 2 − 1 = 0.

If v is incident with two 3-paths vx1y1z1w1 and vx2y2z2w2, then Lemma 3.3(2),
d(w1) = d(w2) = 4. Thus, by (M2c) and (M3b), v gives out at most 2 + 1

2 = 5
2

along every incident 3-path. Hence, w′(v) ≥ 6 − 5
2 × 2 − 1 = 0. If v is a (3,3,0)-

vertex, then w′(v) ≥ 6 − 3 × 2 = 0.

Subcase 2.2. v is incident with exactly one 3-path.
If v is incident with two 2-paths vx2y2z2 and vx3y3z3, then by Lemma 3.3(1),

max{d(z2), d(z3)} = 4. Thus, by (M2a) and (M2b), v gives out at most 2+1 = 3
along vx2y2z2 together with vx3y3z3. Hence, w′(v) ≥ 6 − 3 − 3 = 0. Otherwise,
then w′(v) ≥ 6 − 3 − 2 − 1 = 0.

Subcase 2.3. v is not incident with any 3-path.
Here, w′(v) ≥ 6 − 2 × 3 = 0.

Case 3. d(v) = 4.
Here, w(v) = 18−2

2 × 4 − 18 = 14. By Lemma 3.1(1), G does not contain 5+-
path. By (M1), v gives out 1 along each incident 1-path. By (M2b) and (M4a),
v gives out at most 1 + 2 = 3 along each incident 2-path. By (M3b), (M3c) and
(M4a), v gives out 3

2 + 2 = 7
2 or 1 + 2 = 3 along each incident 3-path. By (M4a)

and (M4b), v gives out 2 + 2 = 4 along each incident 4-path. By Lemma3.3(3),
v is incident with at most three 4-paths.

Subcase 3.1. v is incident with exactly three 4-paths.
By Lemma 3.3(3), v is a (4, 4, 4, 1−)-vertex. Thus, w′(v) ≥ 14−4×3−1 = 1.

Subcase 3.2. v is incident with exactly two 4-paths.
By Lemma 3.3(3), v is not a (4, 4, 3, 3)-vertex or (4, 4, 3, 2)-vertex. Thus,

w′(v) ≥ min{14 − 4 × 2 − 7
2 − 1, 14 − 4 × 2 − 3 × 2} = 0.

Subcase 3.3. v is incident with exactly one 4-path.
If v is incident with three 3-paths vxiyiziwi for 2 ≤ i ≤ 4, then by

Lemma 3.3(3), d(wi) = 4. Thus, by (M3c) and (M4a), v gives out 1 + 2 = 3
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along each incident 3-path. Hence, w′(v) ≥ 14 − 4 − 3 × 3 = 1. Otherwise,
w′(v) ≥ 14 − 4 − 7

2 × 2 − 3 = 0.

Subcase 3.4. v is not incident with any 4-path.
Here, w′(v) ≥ 14 − 7

2 × 4 = 0.
By the analysis above, we have proven that for each x ∈ V (G) ∪ F (G),

w′(v) ≥ 0.

3.3 Case Δ(G) = 3, g(G) ≥ 32

Let n = 32 and define the discharging rules as follows

Discharging Rules

(N1). Each 3-vertex gives 2 to each adjacent 2-vertex.

(N2). If v1v2v3v4v5 is a 3-path, then τ(v1 → v3) = τ(v5 → v3) = 1.

(N3). If v1v2v3v4v5v6 is a 4-path, then τ(v1 → v3) = τ(v6 → v4) = 2.

(N4). If P = v1v2v3v4v5v6v7 is a 5-path, then τ(v1 → v3) = τ(v7 → v5) = 2
and τ(v1 → v4) = τ(v5 → v4) = 1.

It is easy to see that w′(f) = w(f) = d(f) − 32 ≥ 0 for f ∈ F (G).

Checking w′(v) ≥ 0 for each v ∈ V (G)

Case 1. d(v) = 2.
Here, w(v) = −2. By Lemma 3.1(2), G does not contain 6+-path. If v1v2v3

is a 1-path, then by (N1), w′(v2) = −2 + 2 = 0. If v1v2v3v4 is a 2-path, then by
(N1), w′(v2) + w′(v3) = −2 × 2 + 2 × 2 = 0. If v1v2v3v4v5 is a 3-path, then by
(N1) and (N2),

∑4
i=2 = −2 × 3 + 2 × 2 + 1 + 1 = 0. If v1v2v3v4v5v6 is a 4-path,

then by (N1) and (N3),
∑5

i=2 = −2×4+2×4 = 0. If v1v2v3v4v5v6v7 is a 5-path,
then by (N1) and (N4),

∑6
i=2 = −2 × 5 + 2 × 4 + 1 × 2 = 0.

Case 2. d(v) = 3.
Here, w(v) = 32−2

2 ×3−32 = 13. By (N1) and (N4), v gives out 2+2+1 = 5
along every incident 5-path. By (N1) and (N3), v gives out 2 + 2 = 4 along
every incident 4-path. By (N1) and (N2), v gives out 2 + 1 = 3 along every
incident 3-path. By (N1), v gives out 2 along every incident 2-path or 1-path.
By Lemma 3.1(2), G does not contain 6+-path. By Lemma 3.4, if v is incident
with two 5-paths, then v is a (5, 5, 3−)-vertex and thus w′(v) ≥ 13−5×2−3 = 0.
Otherwise, w′(v) ≥ 13 − 5 − 4 × 2 = 0.

By the analysis above, we have proven that for each x ∈ V (G) ∪ F (G),
w′(v) ≥ 0.
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Abstract. Traveling salesman problem is generally represented as a
complete graph. The complete graph is converted into a frequency graph
where the frequency of each edge is computed with a number of fre-
quency quadrilaterals. The frequency consistency is introduced for deriv-
ing the lower frequency bound for an edge in the optimal Hamiltonian
cycle (OHC). The frequency of the OHC is compared with that of the
other Hamiltonian cycles. Considering the frequency of edges, the OHC
is better cultivated. Finally, the experimental results are provided for
demonstrating the frequency of the OHC edges.

Keywords: Traveling salesman problem · Frequency of optimal
Hamiltonian cycle · Frequency quadrilateral · Frequency consistency

1 Introduction

Traveling salesman problem (TSP ) is one of the well-known combinatorial opti-
mization problems. Given a set of n points {1, 2, · · · , n}, a distance function
d(u, v) > 0 is defined on each pair of distinct points u, v ∈ {1, 2, · · · , n} and
u �= v. A Hamiltonian cycle (HC) visiting each of the points once is denoted
by (v1, v2, · · · , vn), where vi ∈ {1, 2, · · · , n} and 1 ≤ i ≤ n. The HC distance is
computed as d(HC) = d(v1, vn)+

∑n−1
i=1 (d(vi, vi+1)). The objective of TSP is to

compute the shortest cycle, namely the optimal Hamiltonian cycle (OHC). In
this paper, the symmetrical TSP is considered. That is, for any pair of points u
and v, d(u, v) = d(v, u) holds. TSP has been extensively studied in operations
research and computer science in order to find the OHC within an acceptable
computation time [1].

TSP is usually represented as the complete graph Kn. The search space
increases exponentially in proportion to the size of TSP . Karp [2] has shown that
TSP is NP -complete, which means that no exact polynomial-time algorithms
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exist for TSP , unless P = NP . The computation time of current exact algo-
rithms is generally O(an) [3,4], where a > 1. By incorporating additional con-
straints, the branch-and-bound [5] and cutting-plane [6] methods can resolve the
TSP on thousands of points. In 2006, a VLSI problem containing 85,900 points
was resolved by a networked computer system with 128 nodes [7]. Recently, Cook
reported that the OHC through the 109,399 stars was found [8]. The experi-
ments indicated that it was difficult to reduce the computation time of the exact
algorithms for a large-scale TSP .

Numerous approximation algorithms and heuristics are available for various
TSP on Kn. For the metric TSP , the best approximation ratio is 3

2 owing to
Christofides [1]. Moreover, Arora [9] designed the polynomial time approximation
schemes for the constant-dimensional Euclidean TSP . As the approximation
approaches the optimal solution more closely, the computation time required will
increase. Experiments illustrated that the cycle improvement heuristics [10] were
efficient for determining a satisfactory solution. The results also demonstrated
that the edge distances were insufficient to be taken as the heuristic information
for finding the OHC.

The OHC search space is so huge in Kn that the algorithms usually require
a significant amount of time to resolve a big-scale TSP . In order to reduce
the OHC search space, we convert the Kn into a frequency graph by means
of frequency quadrilaterals. In a frequency quadrilateral, the frequency of an
edge is the number of the optimal four-vertex paths containing this edge in
the corresponding quadrilateral, see [11]. As all the frequencies of an edge in
a number of frequency quadrilaterals are added together, the (total) frequency
of this edge is obtained. Experiments have demonstrated that the frequency
of an OHC edge is significantly higher than that of most of the other edges.
Thus, when the TSP is resolved based on the frequency of edges, the edges of
low frequency can be neglected in the search of the OHC. Wang and Remmel
[11] proposed a binomial distribution model for cultivating the OHC based on
frequency quadrilaterals. However, the probability model that they assumed for
the OHC edges was not proven [19]. This is the reason why we present this
paper. The probability model will be proven and the lower frequency bound will
be derived for the OHC edges. Moreover, the frequency of the OHC will be
compared with that of the other HCs. According to the frequency of edges, the
OHC is better cultivated.

The remainder of this paper is organized as follows. In Sect. 2, we shall review
the frequency quadrilaterals and the frequency of edges computed with the fre-
quency quadrilaterals. In Sect. 3, we will discuss the frequency consistency for
an edge in different frequency quadrilaterals. It is found that, if an edge (A,B)
has a frequency f(A,B) ∈ {1, 3, 5} in the first frequency quadrilateral ABCD
in Kn, it will maintain the same frequency with a probability 2

3 in another fre-
quency quadrilateral ABCE or ABDE and E �= {A,B,C,D}. In Sect. 4, we
will study the combinatorics of frequency quadrilaterals for the OHC edges.
When we select N frequency quadrilaterals containing an edge to compute its
frequency, the lower frequency bound will be derived according to the frequency
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consistency. In the 5th section, we shall discuss the total frequency of the OHC
edges, and it is found that the OHC frequency is the maximum among those of
all the HCs. In Sect. 6, we shall give certain experimental results for eliminating
the non-OHC edges before the TSP is resolved. Finally, conclusions of this work
are drawn and possibilities of the future research are proposed.

2 The Frequency Quadrilaterals

Given Kn on a set of n points {1, 2, · · · , n}, it contains
(
n
4

)
quadrilaterals ABCD,

where A,B,C,D ∈ {1, 2, · · · , n}. As we assume a vertex set of {1, 2, · · · , n},
there is a total order on the elements in {A,B,C,D} induced by the natural
ordering on {1, 2, · · · , n}, which we assume to be A < B < C < D. Each quadri-
lateral ABCD contains six optimal four-vertex paths with two given endpoints
[11]. For example, for the two endpoints A and C, there are two four-vertex paths
(A,B,D,C) and (A,D,B,C). The shorter path (A,B,D,C) or (A,D,B,C) is
taken as the optimal four-vertex path for A and C. Since there are six pairs of
endpoints, there are six optimal four-vertex paths. The frequency quadrilateral
is computed with the six optimal four-vertex paths in ABCD. The frequency of
an edge is the number of the optimal four-vertex paths containing this edge.

Wang and Remmel [11] presented the six frequency quadrilaterals for ABCD
according to the orders of the three distance sums d(A,B) + d(C,D), d(A,C) +
d(B,D), and d(A,D) + d(B,C), where each distance sum is the addition of the
distances of two vertex-disjoint edges in ABCD. The six frequency quadrilater-
als are illustrated in Fig. 1. Under each frequency quadrilateral, the inequality
containing the three distance sums is illustrated. It mentions that the frequency
quadrilaterals will change if the three distance sums are equal or two of them
are equal in ABCD. Thus, the following probability model does not hold for all
TSP . This model is only useful for the TSP containing the quadrilaterals in
which the three distance sums are not equal.

It can be seen that the frequency of an edge e = {(A,B), (A,C), (A,D),
(B,C), (B,D), (C,D)} is 1, 3, and 5 in each of the frequency quadrilaterals
ABCD, frequency ABCD for short. Moreover, e has each of the frequencies 1, 3,
and 5 twice in the six frequency ABCDs. Given ABCD in Kn, the corresponding
frequency quadrilateral may be one of the six frequency quadrilaterals illustrated
in Fig. 1. Therefore, they assumed that the probability that e has one frequency
of 1, 3, and 5 in a frequency ABCD is p1(e) = p3(e) = p5(e) = 1

3 . Here,
pi(e) means the probability that e has the frequency i ∈ {1, 3, 5} in a frequency
quadrilateral containing e.

For an OHC edge eo = (A,B), Wang and Remmel [11] constructed the n−3
quadrilaterals with the vertex-disjoint edges (A,B) and (C,D) in the OHC. As
(A,B) and (C,D) are in the OHC, the distance inequality d(A,B) + d(C,D) <
d(A,C) + d(B,D) holds. It can be seen that the inequality holds for the three
cases (1), (2), and (3) in Fig. 1. The frequency of eo = (A,B) in the three
frequency quadrilaterals (1), (2), and (3) in Fig. 1 is 5, 5, and 3, respectively.
Thus, the probability set for eo becomes p5(eo) = 2

3 , p3(eo) = 1
3 , and p1(eo) = 0
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3

3

1
1

5 5
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C

1

1

3
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5 5

(1) (2)

A

B

D

C

5

5

1
1

3 3

(3)

d(A,B)+d(C,D)<d(A,D)+
d(B,C)<d(A,C)+d(B,D)

d(A,D)+d(B,C)<d(A,B)+
d(C,D)<d(A,C)+d(B,D)

A

B

D

C

5

5

3
3

1 1

A

B

D

C

1

1

5
5

3 3

(4) (5)

A

B

D

C

3

3

5
5

1 1

(6)

d(A,D)+d(B,C)<d(A,C)+
d(B,D) )<d(A,B)+d(C,D)

d(A,C)+d(B,D)<d(A,B)+
d(C,D)<d(A,D)+d(B,C)

d(A,C)+d(B,D)<d(A,D)+
d(B,C)<d(A,B)+d(C,D)

d(A,B)+d(C,D) )<d(A,C)+
d(B,D)<d(A,D)+d(B,C)

Fig. 1. Six frequency quadrilaterals for a quadrilateral ABCD.

according to the three frequency quadrilaterals. It should be noted that each
edge is included in

(
n−2
2

)
quadrilaterals in Kn. In addition, for the other

(
n−3
2

)

frequency quadrilaterals containing eo, they assumed the probability p1(eo) =
p3(eo) = p5(eo) = 1

3 . Thus, the probability model (1) [18] is built for eo.

p5(eo) =
1
3

+
2

3(n − 2)
and

p3(eo) =
1
3

and

p1(eo) =
1
3

− 2
3(n − 2)

. (1)

The frequency of an edge is computed with the frequency quadrilaterals. An
edge e is contained in

(
n−2
2

)
quadrilaterals in Kn. e is also included in the same

number of frequency quadrilaterals. One can select N frequency quadrilaterals
containing e for computing its total frequency F (e). In the ith (1 ≤ i ≤ N)
frequency quadrilateral, we note that the frequency of e is fi(e) ∈ {1, 3, 5}. Thus,
the total frequency is computed as F (e) =

∑N
i=1 fi(e). All of the edges e and

their frequencies F (e) form the frequency graph which has the same topological
structure as the weighted graph Kn.

When we select N frequency quadrilaterals containing e to compute F (e), the
expected frequency is 3N as e has the probability of p1(e) = p3(e) = p5(e) = 1

3 .
For an OHC edge, the expected frequency is F (eo) = 3N + 8N

3(n−2) according to
the probability model (1). It says the frequency of an OHC edge will be big-
ger than that of a common edge. Although this property has been verified by
experiments [11], it is not proven in the previous papers. In the next section, we
introduce the frequency consistency which demonstrates the probability that an
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edge maintains the same frequency in different frequency quadrilaterals. Accord-
ing to the frequency consistency, the probability model (1) will be proven.

3 The Frequency Consistency

In this section, we focus on the frequency consistency in order to determine
the probability that an edge (A,B) preserves the same frequency f(A,B) ∈
{1, 3, 5} in different but related frequency quadrilaterals. Here, f(A,B) denotes
the frequency of (A,B) in a frequency quadrilateral containing (A,B). Lemma 1
is stated as follows.

Lemma 1. Given a frequency quadrilateral ABCD in Kn on n points
{1, 2, · · · , n}, if the frequency f(A,B) > f(A,C) (or f(A,B) < f(A,C)) exists,
the inequality f(A,B) > f(A,C) (or f(A,B) < f(A,C)) holds with the proba-
bility 2

3 in another frequency quadrilateral ABCE, where E ∈ {1, 2, · · · , n} and
E �= {A,B,C,D}.

We take this situation as the frequency consistency for (A,B) in two different
but related frequency quadrilaterals.

Proof. As f(A,B) > f(A,C) in the frequency ABCD, the distance inequality
d(A,B) + d(C,D) < d(A,C) + d(B,D) holds in ABCD (see Fig. 1). When
vertex D is replaced by another vertex E �= {A,B,C,D}, we obtain another
quadrilateral ABCE. We are interested in the probability of the event f(A,B) >
f(A,C) in the new frequency ABCE, which is denoted by p. In order to aid
in understanding the frequency consistency, we construct the third quadrilateral
BCDE, so that three quadrilaterals ABCD, ABCE, and BCDE exist. Because
f(C,D) > f(B,D) in the frequency ABCD, the event f(C,D) > f(B,D) has
the same probability p in the frequency BCDE as that for f(A,B) > f(A,C)
in the frequency ABCE.

In BCDE, the two events d(B,D) + d(C,E) < d(B,E) + d(C,D) and
d(B,D) + d(C,E) > d(B,E) + d(C,D) will occur. If d(B,D) + d(C,E) <
d(B,E)+d(C,D), we obtain f(B,D) > f(C,D), and this event occurs with the
probability 1 − p, as we assume that the event f(C,D) > f(B,D) has the prob-
ability p. Plus the distance inequality d(A,B) + d(C,D) < d(A,C) + d(B,D)
according to ABCD, the inequality d(A,B) + d(C,E) < d(A,C) + d(B,E) is
derived for ABCE. In this case, the event f(A,B) > f(A,C) occurs with the
probability 1 − p in the frequency ABCE.

Otherwise, if d(B,D) + d(C,E) > d(B,E) + d(C,D) in BCDE, f(B,D) <
f(C,D) is derived and this event occurs with the probability p. According to the
known inequality d(A,B) + d(C,D) < d(A,C) + d(B,D) (which has a probabil-
ity of 1), the order of d(A,B) + d(C,E) and d(A,C) + d(B,E) cannot be deter-
mined. In this situation, we divide this case into two new cases, namely d(A,B) +
d(C,E) < d(A,C) + d(B,E) and d(A,B) + d(C,E) > d(A,C) + d(B,E). In
the best case, d(A,B) + d(C,E) < d(A,C) + d(B,E) occurs with the proba-
bility p. The total probability that f(A,B) > f(A,C) in the frequency ABCE is
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1−p+p = 1. In the worst case, d(A,B)+d(C,E) < d(A,C)+d(B,E) occurs with
the probability zero. The total probability of f(A,B) > f(A,C) in the frequency
ABCE becomes 1 − p + 0 = 1 − p. Since we assume f(A,B) > f(A,C) has the
probability p in the frequencyABCE, one can derive the equality p = 1−p. Thus,
the minimum probability that f(A,B) > f(A,C) in the frequencyABCE is 1

2 . On
average, we assume each of the two new cases occurs with a probability of p

2 . Thus,
each of the two events f(A,B) > f(A,C) and f(A,B) < f(A,C) occur with the
probability p

2 under the condition f(B,D) < f(C,D), respectively.
A total of three cases of the results f(A,B) vs f(A,C) exist, according

to the orders of the d(A,B) + d(C,E) and d(A,C) + d(B,E) under the pre-
conditions d(A,B) + d(C,D) < d(A,C) + d(B,D) and d(B,D) + d(C,E) <
d(B,E) + d(C,D) or d(B,D) + d(C,E) > d(B,E) + d(C,D). The three cases
are illustrated in Fig. 2. The case d(A,B) + d(C,E) < d(A,C) + d(B,E) occurs
with a total probability of 1 − p

2 . This means that the event f(A,B) > f(A,C)
in the frequency ABCE occurs with the probability 1 − p

2 . As we assume that
f(A,B) > f(A,C) has the probability p, 1 − p

2 = p holds and p = 2
3 . �

It can be seen that, if f(A,B) > f(A,C) in the first frequency ABCD,
f(A,B) > f(A,C) will occur with the probability 2

3 in another frequency
ABCE, where E �= {A,B,C,D}. It mentions that ABCD and ABCE contains
the two edges (A,B) and (A,C). This phenomenon is taken as the frequency
consistency for an edge in two different but related frequency quadrilaterals.

A

D

B

C

d(A,B)+d(C,D)<d(A,C)+d(B,D)

B

E

C

D

d(B,D)+d(C,E)<d(B,E)+d(C,D)

A

E

B

C

d(A,B)+d(C,E)<d(A,C)+d(B,E)Case (1)

d(A,B)+d(C,D)<d(A,C)+d(B,D)

d(B,D)+d(C,E)>d(B,E)+d(C,D)
d(A,B)+d(C,E)<d(A,C)+d(B,E)

Occurs with probability 1-p.

Case (2)
Occurs with probability p/2.

Preconditions Results

d(A,B)+d(C,D)<d(A,C)+d(B,D)

d(B,D)+d(C,E)>d(B,E)+d(C,D)
d(A,B)+d(C,E)>d(A,C)+d(B,E)Case (3)
Occurs with probability p/2.

f(A,B)>f(A,C) with 
probability 1

f(A,B)>f(A,C) with 
probability 1-p/2.

f(C,D) > f(B,D) with 
probability p  

p=1-p/2                         p=2/3

Fig. 2. Illustration of frequency consistency for two adjacent edges (A,B) and (A,C)
in two frequency quadrilaterals ABCD and ABCE.

4 The Lower Frequency Bound for an OHC Edge

In this section, we will estimate the minimum frequency of an OHC edge com-
puted with the frequency quadrilaterals based on frequency consistency.
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According to the known frequency f(eo) ∈ {1, 3, 5} of eo ∈ OHC in an
appropriate number of frequency quadrilaterals, the expected number of fre-
quency quadrilaterals where eo has the frequency of 1, 3, and 5 in Kn can be
evaluated according to the frequency consistency. Then, the probability that eo
has the frequency of 1, 3, and 5 in Kn can be computed. When we select N
frequency quadrilaterals containing eo to compute F (eo), the expected value of
F (eo) will be estimated.

Given the OHC in Kn in Fig. 3, edge (A,B) ∈ OHC is included in the n− 3
frequency ABCDs, where f(A,B) = 5 and 3 since d(A,B)+d(C,D) < d(A,C)+
d(B,D). Moreover, there are 2

3 (n−3) frequency ABCDs where f(A,B) = 5 and
1
3 (n−3) frequency ABCDs where f(A,B) = 3 according to d(A,B)+d(C,D) <
d(A,C)+d(B,D), see Fig. 1. Using the n−3 frequency ABCDs, we will construct
the other frequency quadrilaterals containing (A,B), and compute the expected
frequency of F (A,B) based on the frequency consistency.

A B

D C

E

F

OHC

Fig. 3. ABCD containing two non-adjacent edges (A,B) and (C,D) in OHC.

Theorem 1. As the frequency F (eo) of an edge eo ∈ OHC is computed with N
random frequency quadrilaterals, the inequality F (eo) ≥ 29N

9 holds.

Proof. Given ABCD in Fig. 3, we replace vertex D (or C) with another vertex
E �= {A,B,C,D}. As E moves along the OHC, we obtain n − 4 quadrilaterals
ABCEs (or ABDEs) containing (A,B). Since f(A,B) > f(A,C) and f(A,B) >
f(B,D) in the frequency ABCD, f(A,B) > f(A,C) (or f(A,B) > f(B,D))
occurs with the probability 2

3 in each frequency ABCE (or ABDE).
Moreover, there are n−3 edges (C,D)s for (A,B) in the OHC. According to

the symmetry of the changing quadrilaterals ABCE and ABDE (or vertices C,
D and E), the number of the quadrilaterals ABCEs (or ABDEs) is (n−3)(n−4)

2 .
Based on the frequency consistency and plus the n − 3 quadrilaterals ABCDs,
there will be (n−3)(n−1)

3 frequency quadrilaterals where f(A,B) > f(A,C) (or
f(A,B) > f(B,D)). In each of these frequency quadrilaterals, (A,B) has the
frequency 3 and 5 with the probability 1

3 and 2
3 , respectively.

Since f(A,B) = 3 or 5 in each of the n − 3 frequency ABCDs, it will main-
tain the same frequency in the generated frequency ABCEs with the probability
2
3 . According to the six frequency quadrilaterals in Fig. 1 and frequency consis-
tency, the number of the frequency quadrilaterals in case of f(A,B) = 5 is
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4
9

(
n−3
2

)
+ 2(n−3)

3 = 2(n−3)(n−1)
9 . The number of frequency quadrilaterals in case

of f(A,B) = 3 is 2
9

(
n−3
2

)
+ n−3

3 = (n−3)(n−1)
9 . In each of the residual 1

3

(
n−3
2

)

frequency quadrilaterals containing (A,B), f(A,B) = 1 occurs in the worst
case. In this case, the probability p5(eo) = 4

9 + 4
9(n−2) , p3(eo) = 2

9 + 2
9(n−2) and

p1(eo) = 1
3 − 2

3(n−2) can be derived. As the frequency consistency is considered,
p3(eo) or p5(eo) is not equal to that in formula (1). As we choose N frequency
quadrilaterals containing (A,B) to compute F (A,B), a lower frequency bound
is derived as 29N

9 + 28N
9(n−2) which is bigger than 29N

9 as n goes infinity. �

This lower frequency bound is better than that given in paper [11]. In average
case, (A,B) will have each of the frequencies 1, 3 and 5 with the probability 1

3 in
the residual 1

3

(
n−3
2

)
frequency quadrilaterals. In this case, p5(eo) = 5

9 + 2
9(n−2) ,

p3(eo) = 1
3 and p1(eo) = 1

9 − 2
9(n−2) are derived. It can be seen that p5(eo) is

significantly larger than p1(eo). Therefore, eo will be contained in many more
frequency quadrilaterals where f(eo) = 5 than those where f(eo) = 1 in Kn.
When N frequency quadrilaterals containing eo is used to compute the total
frequency, F (eo) ≥ 35

9 N ≈ 3.89N .
It should be mentioned that p5(eo) → 1 as n is sufficiently large [19]. The

frequency F (eo) → 5N means eo will have the frequency 5 in nearly all of the
frequency quadrilaterals containing eo. For medium and large-size TSP , the
expected frequency 3.89N can be taken as the frequency threshold to eliminate
the edges with F (e) < 3.89N . Thus, a graph with a smaller number of edges can
be generated, and the OHC search space will be reduced.

5 The Frequency of the Optimal Hamiltonian Cycle

Given a frequency graph on n vertices {vi} and vi ∈ {1, 2, · · · , n}, the frequency
of an edge (vi, vj) is F (vi, vj). The frequency of an HC is the sum of frequency
of the n sequential edges (vi, vi+1) in the HC, that is F (HC) = F (v1, vn) +
∑n−1

i=1 F (vi, vi+1). For the OHC, the following theorem is given.

Theorem 2. If there is only one OHC in Kn and each quadrilateral contains
six optimal four-vertex paths of given endpoints, the frequency of the OHC is
the maximum among those of the HCs.

Proof. Given an edge (A,B) ∈ OHC in Fig. 3, it has n − 3 non-adjacent edges
(C,D) ∈ OHC. In ABCD, d(A,B) + d(C,D) < d(A,C) + d(B,D) holds since
there is only one OHC. One sees there are three corresponding frequency quadri-
laterals (1), (2) and (3) in Fig. 1. In the three frequency quadrilaterals, f(A,B) =
f(C,D) > f(A,D) = f(B,C) and f(A,B) = f(C,D) > f(A,C) = f(B,D)
occur two and three times, respectively. In addition, f(A,D) = f(B,C) >
f(A,C) = f(B,D) occurs two times. As d(A,B) + d(C,D) < d(A,C) + d(B,D)
in ABCD, we compute the probability of f(A,B) = f(C,D) > f(A,D) =
f(B,C), f(A,B) = f(C,D) > f(A,C) = f(B,D) and f(A,D) = f(B,C) >
f(A,C) = f(B,D) according to the three frequency ABCDs and note them as
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p(f(A,B) = f(C,D) > f(A,C) = f(B,D)) = 1 and p(f(A,B) = f(C,D) >
f(A,D) = f(B,C)) = p(f(A,D) = f(B,C) > f(A,C) = f(B,D)) = 2

3 .
Firstly, we keep A,B,C and replace vertex D with another vertex E. Based

on the frequency consistency, f(A,B) > f(A,C) occurs with the probability
2
3 in the frequency ABCE. It says d(A,B) + d(C,E) < d(A,C) + d(B,E)
holds with the probability 2

3 in ABCE. If f(A,B) > f(A,C) in the fre-
quency ABCE, f(A,B) > f(A,E) and f(A,E) > f(A,C) occur with the
probability 2

3 , see the frequency quadrilaterals in Fig. 1. On the other hand,
f(A,B) < f(A,E) and f(A,E) < f(A,C) occur with the probability 1

3 in the
frequency ABCE. As f(A,B) < f(A,C) holds in the frequency ABCE, the
probability of f(A,B) < f(A,E) and f(A,E) < f(A,C) is 2

3 whereas the prob-
ability of f(A,B) > f(A,E) and f(A,E) > f(A,C) becomes 1

3 . In summary,
the probability that f(A,B) > f(A,E) and f(A,E) > f(A,C) in the frequency
ABCE is computed as 2

3 × 2
3 + 1

3 × 1
3 = 5

9 .
Secondly, we keep A,B,E and replace vertex C with another vertex F and

a quadrilateral ABEF is obtained, see Fig. 3. Based on the frequency consis-
tency, one can derive the probability of f(A,B) > f(A,E) is 14

27 in the frequency
ABEF . As E and F change, there are

(
n−3
2

)
frequency quadrilaterals where

f(A,B) > f(A,E) with the probability 14
27 . Simultaneously, one can substitute

B with another vertex F in ABCE and construct
(
n−3
2

)
frequency quadrilater-

als ACEF in which f(A,E) > f(A,C) occurs with the probability 14
27 . Thus,

there are
(
n−3
2

)
pairs of frequency ABEF and ACEF where f(A,B) > f(A,E)

and f(A,E) > f(A,C) occur with the probability 14
27 , respectively. Based on

these pairs of frequency ABEF and ACEF , f(A,B) > f(A,C) holds with
the probability 14

27 . Plus the n − 3 frequency quadrilaterals ABCDs where
f(A,B) > f(A,C), f(A,B) > f(A,C) occurs 14

27

(
n−3
2

)
+ n − 3 times accord-

ing to the frequency quadrilaterals containing them.
f(A,B) and f(A,C) take the same frequencies 1, 3, 5 under the conditions

f(A,B) > f(A,C) and f(A,C) > f(A,B), respectively. In this case, F (A,B) >
F (A,C) holds since the probability of f(A,B) > f(A,C) is bigger than 14

27
according to every frequency pairs f(A,B) vs f(A,C). It says the frequency of
an OHC edge is bigger than that of a common edge. As the OHC becomes an
HC by exchanging (two or more) edges, the frequency of the non-OHC edges is
smaller than that of the replaced OHC edges. Thus, the frequency of the OHC
is the maximum. �

6 Experimental Results

In this section, we conduct experiments for certain real-world TSP instances in
order to demonstrate the frequency of the OHC edges. We verify the following
viewpoint: the OHC is better cultivated in the frequency graph than in the
weighted graph. In other words, the frequencies of the OHC edges are signifi-
cantly higher than those of most other edges based on frequency quadrilaterals.

The TSP instances are downloaded from TSPLIB [12]. In order to show
the difference between the OHC edge frequency and that of the other edges, the
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OHC of these TSP instances is computed using the Concorde package [13]. We
use all of the frequency quadrilaterals to compute the frequency graph for each
TSP instance, and record the minimum frequency Fmin(eo) = fmin

(
n−2
2

)
of the

OHC edge eo. In each frequency graph, the number N<fmin
of edges having the

frequency below Fmin(eo) is also recorded. As this computation consumes O(n4)
time, we only did experiments for certain small and medium TSP instances.
Even for medium TSP instances, the value of Fmin and N<fmin

will be very
large. For the sake of convenience, we compute the values fmin = Fmin(eo)

(n−2
2 ) and

N<fmin

(n2)
for comparison. The experimental results are provided in Table 1.

For the various types of TSP instances, it can be seen that fmin is larger than
29
9 for most of these small and medium TSP instances. The case of fmin < 29

9
exists only for two small TSP instances (n ≤ 26). In addition, all the fmin > 3
except for the small TSP instance ulysses16. Therefore, for most TSP instances,
29N
9 can be used as the frequency threshold to eliminate the edges with a smaller

frequency. The elimination of useless edges will speed up the algorithms to find
the OHC for TSP , see the experiments in [14,15].

The value N<fmin

(n2)
illustrates the percentage of edges with the frequency below

Fmin(eo). The percentage is over 0.7 for most TSP instances, and even over 0.8
for most medium TSP instances. This means the frequency of the OHC edges
is much higher than that of most of the other edges. Comparing to the weighted
graph, the OHC edges are better cultivated in the frequency graph.

According to the frequency of edges, we can eliminate the useless edges in
order to reduce the computation time of the algorithms for TSP . Taillard and
Helsgaun [17] have done intensive experiments for resolving large scale of TSP
instances. They argued that it was essential to reduce Kn of large TSP instances
to sparse graphs for treatment. In early stage, Jonker and Volgenant [14] recog-
nized certain useless edges based on 2 − opt rule for the symmetric TSP . The
edge recognition was used to speed up the branch-and-bound method for TSP .
The experiments for several Euclidean TSP instances showed the computation
time of branch-and-bound method was reduced to half. In 2014, Hougardy and
Schroeder [15] eliminated the useless edges according to the 3 − opt, and com-
puted a sparse graph for TSP . Thereafter, they resolved the TSP instances on
sparse graphs using the Concorde. Their experimental results demonstrated that
the Concorde computation time was reduced by 11 times for certain large TSP
instances. We also designed an algorithm to reduce the number of edges that
must be considered based on frequency quadrilaterals [16]. In the algorithm, we
firstly select N frequency quadrilaterals containing an edge to compute its aver-
age frequency. Following this, the edges with a small frequency below a given
threshold are eliminated. The two steps are repeated until the algorithm reaches
the terminal conditions. The experiments conducted on the TSP instances illus-
trated that our algorithm outperforms the edges elimination method [15].
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Table 1. The minimum frequency of the OHC edge (n is the TSP scale).

TSP n fmin
N<fmin

(n2)
TSP n fmin

N<fmin

(n2)
TSP n fmin

N<fmin

(n2)
ulysses16 16 2.9560 0.4667 gr120 120 3.3372 0.6975 att532 532 3.9791 0.8851
gr17 17 3.2667 0.6875 bier127 127 3.9098 0.8651 ail535 535 3.9190 0.8801
gr21 21 3.4912 0.7500 ch130 130 3.7072 0.8062 rat575 575 3.8862 0.8693
gr24 24 3.2510 0.6522 ch150 150 3.6142 0.7852 p654 654 3.4890 0.7810
fri26 26 3.0072 0.5600 kroA150 150 3.7042 0.8188 d657 657 3.8669 0.8506
bays29 29 3.3418 0.7143 u159 159 3.6963 0.8228 gr666 666 4.0929 0.9128
att48 48 3.4946 0.7447 si175 175 4.0371 0.8793 u724 724 3.9748 0.8838
gr48 48 3.5140 0.7447 d198 198 3.5973 0.8071 rat783 783 3.9977 0.8926
eil51 51 3.7397 0.8200 kroB200 200 3.6288 0.7990 pr1002 1002 3.9109 0.8601
berlin52 52 3.7281 0.8235 gr202 202 4.0113 0.8955 u1060 1060 3.9109 0.8772
brazil58 58 3.6766 0.8070 tsp225 225 3.9140 0.8616 vm1084 1084 3.8889 0.8578
st70 70 3.2950 0.6667 gr229 229 3.3836 0.7061 pcb1173 1173 4.0065 0.8857
pr76 76 3.3983 0.7200 pr264 264 3.4532 0.7414 rl1323 1323 4.1215 0.9092
gr96 96 3.6639 0.8105 a280 280 3.6408 0.7993 u1432 1432 4.0468 0.8882
rat99 99 3.3862 0.7143 lin318 318 3.7391 0.8170 fl1577 1577 3.7533 0.8280
kroA100 100 3.3652 0.7071 rd400 400 3.8671 0.8471 d1655 1655 3.6385 0.7872
kroD100 100 3.3644 0.7071 gr431 431 3.6926 0.8163 vm1748 1748 4.0973 0.9027
eil101 101 3.7499 0.8200 pcb442 442 3.8624 0.8503 rl1889 1889 3.9141 0.8549
pr107 107 3.5366 0.7736 d493 493 3.8885 0.8679

7 Conclusions

The frequency graph computed with frequency quadrilaterals is another proper
model to represent TSP . When the frequency of an edge is computed with N
frequency quadrilaterals, the frequency of the OHC edges will be higher than
29N
9 . The time to compute the frequency of all edges is O(Nn2). Moreover,

the OHC has the maximum frequency among those of all HCs. The OHC
is therefore better cultivated in the frequency graph. The edges with a high
frequency are preferred as the candidate OHC edges. The lower frequency bound
for the OHC edges is used to filter out the other edges with a smaller frequency,
so that the OHC search space will be reduced.

We complete this paper with two questions for future research. The first
question is the evaluation of the complexity of the exact or approximation algo-
rithms used to resolve the TSP according to the frequency of edges. The second
question is the exploration of the performance of the frequency graph computed
with the i-vertex frequency subgraphs for TSP , where i > 4. In theory, the
frequency graph computed with frequency subgraphs containing additional ver-
tices will exhibit superior properties for resolving the TSP . We will pursue these
questions in future research.
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Abstract. We consider a scheduling problem where a manufacturer pro-
cesses a set of jobs for a customer and delivers the completed jobs to the
customer. The job sizes and processing times are given. The objective is
to minimize the maximum delivery time to the customer. In the produc-
tion stage, one machine with an unavailability period is used to process
the jobs. The machine has a fixed capacity and the jobs are processed
in batches under the condition that the total size of the jobs in a batch
cannot exceed the machine capacity. The processing time of a batch is
the maximum processing time of the jobs contained in the batch. In
addition, each batch is non-resumable, i.e., if the processing of a batch
cannot be completed before the unavailability period, the batch needs to
be processed anew after the unavailability interval. In the distribution
stage, the manufacturer assigns a vehicle with a fixed capacity to deliver
the completed jobs. The total size of the completed jobs in one delivery
cannot exceed the vehicle capacity. We first consider the case where the
jobs have the same size and arbitrary processing times, for which we pro-
vide a 3/2-approximation algorithm and show that the worst-case ratio
is tight. We then consider the case where the jobs have the same process-
ing time and arbitrary sizes, for which we provide a 5/3-approximation
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1 Introduction

Although production scheduling integrated with logistics is more difficult to deal
with than production scheduling alone from the theoretical research perspective,
there is an abundance of literature on the former because such problems are more
practical in the realistic manufacturing environment.

Potts [1] was probably the first researcher that considered scheduling with job
delivery. Hall and Potts [2] studied integrated scheduling that involves a supplier,
a manufacturer, and a customer. For integrated scheduling with one machine and
one customer, Chen and Vairaktarakis [3] presented a polynomial-time dynamic
programming solution algorithm to minimize the maximum arrival time, under
the condition that the last completed job delivered to the customer and the
total distribution cost do not exceed given bounds. Different from [3] in which
the number of vehicles has no limit, Lee and Chen [4] considered the problem
with a limited number of vehicles and showed that it is polynomially solvable by
dynamic programming. Studying the same problem in [4] where the jobs have
different sizes, Chang and Lee [5] showed that the problem is strongly NP -hard
and provided a heuristic with a worst-case performance bound of 5/3. He et al.
[6] and Zhong et al. [7] studied the same problem in [5], and proposed improved
approximation algorithms with worst-case performance bounds of 53/35 and
3/2, respectively.

However, due to the occurrence of breakdowns or the necessity for mainte-
nance and repair, the machines may become unavailable during the production
stage. There are many studies on integrated scheduling under the constraint of
machine unavailability. When job processing is interrupted by machine unavail-
ability, the interrupted job is often assumed to be non-resumable, which means
that the job needs to processed anew as defined in [8]. For the problem with deliv-
ery using a capacitated vehicle to minimize the maximum arrival time, Wang
and Cheng [9] showed that it is NP -hard, and proposed a 3/2-approximation
algorithm and showed that the worst-case ratio is tight. More details on this
research stream can be found in Chen [10] and Ma et al. [11].

In most models of scheduling with delivery, the machine processes one job
at a time. However, it is noted that batch-processing machines with limited
capacities are also widely used in real production. When a bounded parallel-
batch machine is used for production, the jobs are processed in batches under
the condition that the total size of the jobs in a batch cannot exceed the machine
capacity, and the processing time of a batch is equal to the longest processing
time of the jobs in it. Li et al. [12] and Gong et al. [13] considered several
parallel-batch machine scheduling problems with job delivery. Lu and Yuan [14]
considered unbounded parallel-batch scheduling with job delivery to minimize
the makespan. They provided a polynomial-time algorithm to solve the case
where the jobs have identical sizes, and a heuristic with a worst-case performance
ratio of 7/4 for the case where the jobs have non-identical sizes. Cheng et al.
[15] considered integrated scheduling of production and distribution on parallel
batch-processing machines. They presented a (2−1/m)-approximation algorithm
for the case where the jobs have the same size and arbitrary processing times,
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and provided a 13/7-approximation algorithm for the case where the jobs have
the same processing time and arbitrary sizes.

In this paper we consider scheduling with job delivery for a customer on
a bounded parallel-batch machine with a machine unavailability period, where
a capacitated vehicle is used to deliver the completed jobs to the customer.
The objective is to minimize the time of the last completed job delivered to the
customer. We consider two cases of the problem corresponding to different condi-
tions on the job processing times and sizes, and design approximation algorithms
for them.

2 Description of the Problem

In our problem, there is a manufacturer that processes jobs on a bounded
parallel-batch machine and delivers the completed jobs to a customer. Given
a set of n jobs J = {J1, J2, · · · , Jn}, where job Jj has the processing time pj

and size sj for j = 1, 2, ..., n. In the production stage, the machine has a capacity
B, i.e., it can simultaneously process at most B jobs as a batch. The processing
time of a batch is the maximum processing time of the jobs contained in the
batch. Due to reasons such as maintenance, breakdown etc, the machine has an
unavailability period [t1, t2]. Let I be the length of the unavailability period, i.e.,
I = t2 − t1. The processing of batches is non-resumable, i.e., if there is at least
one job in a batch that is interrupted by the unavailable period [t1, t2], the whole
batch needs to be processed anew after t2. In the delivery stage, there is a vehicle
with a capacity c to deliver the completed jobs to the customer. The transport
time between the machine and the customer is T . Let Dj be the delivery time of
job Jj , i.e., the arrival time of the batch containing job Jj to the customer. The
objective is to minimize the maximum delivery time of all the jobs, denoted by
Dmax.

Chen [10] proposed a five-field notation to denote an integrated schedul-
ing problem as α|β|π|δ|γ, where α represents the facility configuration of the
manufacturer; β represents the production constraints; π represents the vehicle
configuration and is often denoted by (v1, v2), where v1 represents the number
of vehicles and v2 represents the vehicle capacity; δ represents the number of
customers; and γ represents the scheduling objective to be minimized. Using the
above notation, we denote the two cases of the problem under study as follows:

(P1) : 1, h1|nr − a, p − batch, sj = 1, pj |V (1, c)|1|Dmax,

(P2) : 1, h1|nr − a, p − batch, sj , pj = 1|V (1, c)|1|Dmax.

For problem (P1), each job has a unit size but an arbitrary processing time.
On the contrary, for problem (P2), each job has an arbitrary size but a unit
processing time.

We organize the rest of the paper as follows: In Sect. 3 we show that problem
(P1) is NP -hard and propose an approximation algorithm for it. In Sect. 4 we
prove that problem (P2) is strongly NP -hard and present an approximation
algorithm for it.
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3 Algorithm for (P1) : 1, h1|nr − a, p − batch, sj = 1,
pj |V (1, c)|1|Dmax

In this section we study problem (P1), where the jobs have the same size, i.e.,
sj = 1. Similar to [15], we assume that the manufacturer uses appropriate equip-
ment to improve the efficiency of the supply chain. Specifically, we let c = μB,
where μ ≥ 2 and μ is a positive integer.

We first analyze the computational complexity of (P1).

Theorem 1. (P1) : 1, h1|nr−a, p−batch, sj = 1, pj |V (1, c)|1|Dmax is NP-hard.

Proof. Consider the special case (P1′), where B = 1, i.e., each batch contains at
most one job. It is clear that (P1′) is equivalent to 1, h1|nr − a|V (1, c)|1|D′

max,
where D′

max is the maximum of the return time D′
j of the vehicle after delivering

the completed jobs to the customer. Obviously, D′
j = Dj + T for job Jj . Given

that Wang and Cheng [9] have shown that problem (P1′) is NP -hard, we obtain
the conclusion.

Next, we derive some properties of the optimal solution for problem (P1).

Lemma 1. There exists an optimal schedule σ∗ possessing the following prop-
erties:

(1) Let N∗ to be the number of batches, then N∗ = �n/B�;
(2) The batches are processed consecutively before and after the unavailability

period;
(3) The batch that becomes available earlier is delivered earlier.
(4) The first delivery includes b∗ batches, and each of the last a∗ deliveries

includes μ batches, where a∗ and b∗ are two positive integers satisfying
N∗ = a∗μ + b∗ and 0 < b∗ ≤ μ, respectively.

The lemma can be proved similar to the proof in [9]. Because every job has
the same size 1, we construct the following algorithm including the same number
of batches as the optimal schedule.

Algorithm A1

Step 1: Sequence all the jobs in non-increasing order of their processing times.

Step 2: Create the first batch HN∗ and put the first B jobs in HN∗ . Then create
batch HN∗−1 and put the next B jobs in it. Repeat the assignment until there
are y jobs left, where 0 < y ≤ B. Put them in batch H1. The obtained batch
set is {H1,H2, ...,HN∗}. The batches are in non-decreasing order of their batch
processing times.

Step 3: Regard batch Hj as job ˜Jj for j = 1, 2, ..., N∗, whose processing
time is the maximum processing time of the jobs in Hj and the size is 1.
Take the obtained job set { ˜J1, ˜J2, ..., ˜J∗

N} as the job set of problem (P1′) :
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1, h1|nr−a|V (1, c)|1|D′
max. Use the approximation algorithm proposed in Wang

and Cheng [9] to obtain the schedule σ.

Furthermore, we can obtain the following lemma.

Lemma 2. Sorting all the batches of σ and σ∗ in non-decreasing order, we have
P (Hj) ≤ P (H∗

j ) for j = 1, ..., N∗, where P (Hj) and P (H∗
j ) are the processing

times of the j-th batch in schedules σ and σ∗, respectively,

The proof is similar to Cheng et al. [15]. Given that the worst-case ratio of
the approximation algorithm Wang and Cheng [9] proposed for (P1′) is 3/2, we
derive the worst-case ratio of algorithm A1 for (P1) as follows:

Theorem 2. Solving (P1), algorithm A1 has the worst-case ratio of 3/2, which
is tight.

Proof. It suffices to prove that the objective value produced by the optimal
schedule for (P1′), denoted by σ∗(P1′), is not greater than that for (P1), denoted
by σ∗(P1). Otherwise, we construct a new schedule σ̂(P1) by replacing the
corresponding batches of σ∗(P1) with the batches of σ∗(P1′) to process in non-
decreasing order of the batches in the two schedules, and delivering the batches
as σ∗(P1). Because the completion times of the batches in σ̂(P1) are no later
than those in σ∗(P1) by Lemma 2, so are the delivery times. Hence, the new
schedule σ̂(P1) is no worse than σ∗(P1).

Next, consider the following instance: n = 6, B = 2, μ = 2, [t1, t2] = [2, 2+ε],
p1 = p2 = ε, p3 = p4 = 1, and p5 = p6 = 1. The delivery time is T = ε. The
schedule produced by algorithm A1 is as follows: The first delivery including J1

and J2 is delivered at ε, and the second delivery including J3, J4, J5, and J6

is delivered at 3 + ε. Hence, Dmax = 3 + 2ε. However, in the optimal schedule,
there are two deliveries: the first delivery consisting of J3 and J4, and the second
delivery consisting of the others. The optimal objective function value is D∗

max =
2 + 3ε. So, we have Dmax

D∗
max

= 3
2 if ε is sufficiently small.

4 Algorithm for (P2) : 1, h1|nr − a, p − batch, sj,
pj = 1|V (1, c)|1|Dmax

In (P2) : 1, h1|nr − a, p − batch, sj , pj = 1|V (1, c)|1|Dmax, all the jobs have
a unit processing time but arbitrary sizes. First we analyze the computational
complexity of (P2).

Theorem 3. (P2) : 1, h1|nr − a, p − batch, sj , pj = 1|V (1, c)|1|Dmax is strongly
NP -hard.

Proof. Consider the special case (P2′), where t1 = t2 and T = 0, i.e., there is
no unavailability interval on the machine and no delivery is needed. Since each
job has a processing time of 1, every batch has a processing time of 1. Hence,
(P2′) is equivalent to minimizing the number of batches, i.e., the bin-packing
problem, which is a well-known strongly NP -hard problem. Therefore, (P2), as
well as (P2′), is strongly NP -hard.
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Obviously, the optimal schedule for (P2) possesses properties (2)–(4) in
Lemma 1.

In this section we use the same notation and the corresponding meanings,
such as N and N∗, as those used in Sect. 3. Next, we propose the following
approximation algorithm for (P2).

Algorithm A2

Step 1: Sort the jobs in non-increasing order of their sizes. Re-label them as job
J1, J2, · · · , Jn.

Step 2: Use the First Fit Decreasing (FFD) rule to assign the jobs into batches.
Create the first empty batch H1 and put job J1 in it. Check the following jobs
one by one as to whether it can be put in the batch. If so, put the job in H1 and
delete it from the job list. If not, go on to check the next job. When all the jobs
have been assigned, create the second batch H2 and assign the remaining jobs
in the job list. Repeat the assignment until there is no job in the job list. The
obtained batch set is {H1, ...,HN}.

Step 3: Assign the batches in an arbitrary order to the machine for processing.

Step 4: Deliver the first completed b batches in D1. For the following batches,
deliver μ batches immediately in each delivery. If the vehicle is available when the
μ batches are completed, deliver them immediately. If the vehicle is not available
at the time, wait until the vehicle returns to the manufacturer and deliver the
batches. When the last μ batches are delivered to the customer, production and
distribution are finished, and the obtained deliveries are D1, ...,Da+1.

To analyze the performance of algorithm A2, recall that for the bin-packing
problem, the number of bins obtained by FFD is no more than the sum of 6/9
and 11/9 times of the optimal number of bins. In algorithm A2, Steps 1 and 2
assign the jobs to batches by the FFD rule, so we have the following results on
N and a.

Lemma 3. ([16]) N ≤ 11
9 N∗ + 6

9 , where N∗ is the optimal number of batches.

Lemma 4. a∗ ≤ a < 11
9 a∗ + 14

9 .

Proof. It is clear that a∗ ≤ a.
By Lemma 3, we have N ≤ 11

9 N∗ + 6
9 ≤ 11

9 a∗μ + 11b∗+6
9 and N

μ ≤ 11
9 a∗ +

11b∗+6
9μ . Since 0 < b∗ ≤ μ and μ ≥ 2,

a ≤ N

μ
≤ 11

9
a∗ +

11b∗ + 6
9μ

≤ 11
9

a∗ +
11
9

+
6
9μ

≤ 11
9

a∗ +
14
9

.

But if a = 11
9 a∗ + 14

9 , by N ≤ 11
9 N∗ + 6

9 , N = aμ + b, and N∗ = a∗μ + b∗,
we have 11

9 a∗μ + 14
9 μ + b ≤ 11

9 (a∗μ + b∗) + 6
9 , i.e.,

14
9

μ <
11
9

b∗ +
6
9

≤ 11
9

μ +
6
9
.
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So, we deduce that μ < 2, which contradicts the assumption μ ≥ 2.

As a result, we can easily obtain the maximal value of a when a∗ ≤ 4 in
Table 1.

Table 1. The maximal values of a when a∗ ≤ 4.

a∗ 1 2 3 4

Maximal value of a 2 3 5 6

For convenience, we use L and L∗ to denote the numbers of deliveries in
schedules π and π∗, respectively, which means L = a + 1 and L∗ = a∗ + 1.
Meanwhile, we use C(Dj) and C(D∗

j ) to denote the completion times of deliveries
Dj and D∗

j in π and π∗, and Dmax and D∗
max to denote the objective values

of π and π∗, respectively. Because every job has a unit processing time, we can
easily obtain the following relationships between π and π∗.

Lemma 5.(1) λ = λ∗, where λ and λ∗ are the numbers of batches completed
before the unavailability interval [t1, t2] in π and π∗, respectively;

(2) δ ≤ δ∗, where δ and δ∗ are the idle times on the machine before [t1, t2] in π
and π∗, respectively.

The results are obvious and we omit the proof.

Lemma 6. k − 1 ≤ l ≤ k + 1, where l and k are the first deliveries completed
after the unavailability interval [t1, t2] in π and π∗, respectively.

Proof. Because k is the first delivery completed after t2, there are at most kμ
batches completed in the total k deliveries in π∗. We prove the result by contra-
diction.

If l ≥ k + 2, there are at least (k + 1) deliveries before t1 in π, i.e., there are
at least kμ batches completed before t1. So it is a contradiction.

If l ≤ k − 2, there are (k − 1) deliveries before t1 in π∗, i.e., there are no
fewer than (k − 2)μ batches completed before t1, which is a contradiction to the
situation that at most (k − 2)μ batches completed after t2 in π.

In the following we analyze the worst-case ratios of algorithm A2 for (P2)
according to a∗ ≥ 5 and a∗ ≤ 4, respectively.

Lemma 7. When a∗ ≥ 5, the worst-case ratio of algorithm A2 is 5
3 .

Proof. We prove the result in three cases.
Case 1: C(D∗

1) ≥ t2, which means k = 1 and l = 1 or 2.
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• If D∗
max = C(D∗

L∗) + T = N∗ + I + δ∗ + T , then we deduce that μ ≥ 2T .
Moreover, Dmax = C(DL) + T = N + I + δ + T , so

Dmax − D∗
max

D∗
max

≤ N − N∗

N∗ =
N

N∗ − 1.

Since a∗ ≥ 5 and μ ≥ 2, N∗ ≥ 10. Similar to [15], we can find positive integers
α ≥ 1 and 1 ≤ β ≤ 9 such that N∗ = 9α + β, and we can obtain an upper
bound on N

N∗ from Table 2 as follows:

N

N∗ ≤ 9α + 2
11α + 3

≤ 9
11

+
5

9(9α + 2)
≤ 14

11
<

5
3
. (1)

Table 2. The upper bound on N
N∗ .

N∗ 9α+1 9α+2 9α+3 9α+4 9α+5 9α+6 9α+7 9α+8 9α+9

Maximal value of N 11α+1 11α+3 11α+4 11α+5 11α+6 11α+8 11α+9 11α+10 11α+11

Upper bound on N
N∗ 11

9
14
11

5
4

16
13

11
9

19
15

5
4

21
17

11
9

• If D∗
max = C(D∗

1) + (2a∗ + 1)T = b∗ + I + δ∗ + (2a∗ + 1)T , then μ < 2T and
the objective value of schedule π is

Dmax =
{

C(D1) + (2a + 1)T , for l = 1 or 2,
C(Dl) + (2(a − l) + 3)T , for l = 2.

For the first case, Dmax ≤ b+ I + δ +(2a+1)T . By Lemma 5 and b− b∗ ≤ μ,
we have

Dmax − D∗
max

D∗
max

≤ (b − b∗) + 2(a − a∗)T
C(D∗

1) + (2a∗ + 1)T
<

a − a∗ + 1
a∗ + 1

2

.

Moreover, because of a∗ ≥ 5 and Lemma 4, we have

a − a∗ + 1
a∗ + 1

2

≤ 2
9

+
22

9(a∗ + 1
2 )

≤ 2
3
. (2)

For the second case, we have b < b∗; otherwise, C(D1) > t2, which contradicts
l = 2. Hence,

Dmax−D∗
max

D∗
max

≤ (b−b∗)+ (l−1)μ+2(a−a∗−l+1)T
C(D∗

1 )+ (2a∗+1)T

= (b−b∗)+ 2(a−a∗)T+μ−2T
C(D∗

1 )+ (2a∗+1)T

≤ a−a∗

a∗+ 1
2

< 2
3 .

Case 2: C(D∗
k) > t2 for 1 < k < L∗ , where D∗

k is the first delivery completed
after the unavailability interval [t1, t2] in π∗.
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• If D∗
max = C(D∗

L∗) + T = N∗ + I + δ∗ + T and Dmax = C(DL) + T =
N + I + δ + T , we obtain the same result as (1).

• If D∗
max = C(D∗

1) + (2a∗ + 1)T = b∗ + I + δ∗ + (2a∗ + 1)T , then μ < 2T and
2(k − 1)T > (k − 1)μ + I + δ∗. Therefore, the objective vale of schedule π is

Dmax =
{

C(D1) + (2a + 1)T , for l = k − 1, k or k + 1,
C(Dl) + (2(a − l) + 3)T , for l = k − 1.

For the first case, we obtain the same result as (2). For the second case, we
have

Dmax − D∗
max

D∗
max

≤ (b − b∗) + (l − 1)μ + I + δ + 2(a − a∗ − l + 1)T
b∗ + (2a∗ + 1)T

.

Because of b−b∗ ≤ μ and l = k−1, (b−b∗)+(l−1)μ+I+δ+2(a−a∗−l+1)T ≤
2(a − a∗ + 1)T . Moreover, Dmax−D∗

max

D∗
max

≤ 2
3 .

• If D∗
max = C(D∗

k)+(2(a∗ −k)+3)T = b∗ +(k−1)μ+I +δ∗ +(2(a∗ −k)+3)T ,
then μ < 2T and 2(k − 1)T ≤ (k − 1)μ + I + δ∗. Hence, the objective value
of schedule π is

Dmax =
{

C(D1) + (2a + 1)T , for l = k + 1,
C(Dl) + (2(a − l) + 3)T , for l = k − 1, k or k + 1.

For the first case, we have

Dmax−D∗
max

D∗
max

≤ (b−b∗)+ 2(a−a∗)T−((k−1)μ+I+δ∗+(2−2k)T )
b∗+(k−1)μ+I+δ∗+(2(a∗−k)+3)T

≤ (b−b∗)+2(a−a∗)T
b∗+2(k−1)T+(2(a∗−k)+3)T

≤ 2(a−a∗+1)T
2(k−1)T+(2(a∗−k)+3)T

= a−a∗+1
a∗+ 1

2
≤ 2

3 .

For the second case, we have

Dmax−D∗
max

D∗
max

≤ (b−b∗)+ 2(a−a∗)T+(l−k)(μ−T ))
b∗+(k−1)μ+I+δ∗+(2(a∗−k)+ 3)T

≤ (b−b∗)+2(a−a∗)T +(l−k)(μ−T ))
(2a∗+1)T .

When l = k − 1 or k, we easily obtain Dmax−D∗
max

D∗
max

≤ a−a∗+1
a∗+ 1

2
≤ 2

3 . When
l = k + 1, we have b ≤ b∗; otherwise, C(Dl−1) > t2, which contradicts the
definition of l. Hence, we obtain the same result.
Case 3: C(D∗

L∗) ≥ t2, i.e., the last delivery D∗
L∗ is completed after the unavail-

ability interval [t1, t2] in π∗. Obviously, L∗ = a∗ + 1.
• If D∗

max = C(D∗
L∗)+T = b∗ +(L∗ − 1)μ+ I + δ∗ +T = b∗ +a∗μ+ I + δ∗ +T ,

then we deduce that 2a∗T ≤ a∗μ + I + δ∗. Moreover,

Dmax =

⎧

⎨

⎩

C(DL) + T , for l = L∗ − 1, L∗ or L∗ + 1,
C(Dl) + (2(a − l) + 3)T , for l = L∗ − 1, L∗,
C(D1) + (2a + 1)T , for l = L∗ + 1.
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For the first case, we obtain the same result as (1). For the second case, we
have μ < 2T , Dmax = b + (l − 1)μ + I + δ + (2(a − l) + 3)T , and

Dmax−D∗
max

D∗
max

≤ (b−b∗)+(l−L∗)μ+2(a−l+1)T
b∗+(L∗−1)μ+I+δ∗+T

≤ (b−b∗)+(l−L∗)μ+2(a−l+)T

2(L∗− 1
2 )T

.

When l = L∗ − 1, (b − b∗) + (l − L∗)μ + 2(a − l + 1)T ≤ μ − μ + 2(a − a∗ +
1)T = 2(a − a∗ + 1)T . When l = L∗, (b − b∗) + (l − L∗)μ + 2(a − l + 1)T ≤
μ + 0 + 2(a − a∗)T ≤ 2(a − a∗ + 1

2 )T < 2(a − a∗ + 1)T . Therefore,

Dmax − D∗
max

D∗
max

≤ a − a∗ + 1
a∗ + 1

2

≤ 2
3
.

For the third case, since μ < 2T and Dmax = C(D1)+(2a+1)T = b+(2a+1)T ,
we have

Dmax−D∗
max

D∗
max

= (b−b∗)−(a∗μ+I+δ∗)+2aT
b∗+a∗μ+I+δ∗+T

≤ (b−b∗)+2(a−a∗)T
2(a∗+ 1

2 )T

≤ a−a∗+1
a∗+ 1

2
≤ 2

3 .

• If D∗
max = C(D∗

1)+(2a∗+1)T = b∗+(2a∗+1)T , then μ < 2T and 2(L∗−1)T >
(L∗ − 1)μ + I + δ∗, i.e., 2a∗T > a∗μ + I + δ∗. We obtain

Dmax =
{

C(D1) + (2a + 1)T , for l = L∗ − 1, L∗ or L∗ + 1,
C(Dl) + (2(a − l) + 3)T , for l = L∗ − 1.

For the first case, we achieve the same result as (2). For the second case, since
l = L∗ − 1, we have 2(L∗ − 2)T ≤ (L∗ − 2)μ + I + δ∗ and Dmax = b + (l − 1)μ +
I + δ +(2(a− l)+3)T ≤ b+2(L∗ −2)T +2(a−L∗ +1)T +3T = b+(2a+1)T =
C(D1) + (2a + 1)T . Hence, we obtain the inequalities in (2).

Lemma 8. When a∗ ≤ 4, the worst-case ratio of algorithm A2 is 5
3 .

Proof. We prove the result in two cases.
Case 1: b ≤ b∗. In fact, this inequality holds for a∗ ≤ 4 and the values of a

satisfy Lemma 4 except a∗ = 3 and a = 4. Now we show it by contradiction.
If b > b∗, then aμ + b∗ < aμ + b ≤ 11

9 (a∗μ + b∗) + 6
9 = 11

9 a∗μ + 11
9 b∗ + 6

9 , i.e.,
(a − 11

9 a∗)μ < 2
9b∗ + 6

9 ≤ 2
9μ + 6

9 . So

(a − 11
9

a∗ − 2
9
)μ <

6
9
.

Using the corresponding data in Table 1, we obtain μ < 2, contradicting μ ≥ 2.
Most parts of the remaining proof are similar to Lemma 7. Here we discuss

two different situations.
The first situation is that D∗

max = C(D∗
L∗) + T = N∗ + I + δ∗ + T = a∗μ +

b∗ +I +δ∗ +T and Dmax = C(DL)+T = N +I +δ+T = aμ+bI +δ+T . Hence,
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Dmax−D∗
max

D∗
max

= (b−b∗)+(a−a∗)μ
b∗+a∗μ+I+δ∗+T ≤ a−a∗

a∗ . For a∗ = 2, 3, 4 and the corresponding

maximal value of a in Table 1, we obtain Dmax−D∗
max

D∗
max

≤ 2
3 . For a∗ = 1 and

a = 2, we have Dmax−D∗
max

D∗
max

≤ N−N∗
N∗ = N

N∗ − 1. Given the upper bound on N
N∗

for N∗ ≤ 9 in Table 3, we have N
N∗ ≤ 3

2 < 5
3 .

Table 3. The upper bound on N
N∗ .

N∗ 1 2 3 4 5 6 7 8 9

Maximal value of N 1 3 4 5 6 8 9 10 11

Upper bound on N
N∗ 1 3

2
4
3

5
4

6
5

4
3

9
7

5
4

11
9

The second situation corresponds to other combinations of D∗
max and Dmax.

We always obtain

Dmax − D∗
max

D∗
max

≤ (b − b∗) + 2(a − a∗)T
2(a∗ + 1

2 )T
≤ a − a∗

a∗ + 1
2

=
a + 1

2

a∗ + 1
2

− 1.

The upper bound on a+ 1
2

a∗+ 1
2

is 5
3 , which we deduce from Table 4.

Table 4. The upper bound on
a+ 1

2
a∗+ 1

2
when a∗ ≤ 4.

a∗ 1 2 3 4

Upper bound on
a+ 1

2
a∗+ 1

2

5
3

7
5

11
7

13
9

Case 2: b > b∗ for a∗ = 3 and a = 4. Note that k − 1 ≤ l ≤ k, i.e., l �= k + 1.
Most parts of the remaining proof are similar to Lemma7. Here we discuss two
different situations.

The first situation is that D∗
max = C(D∗

L∗) + T = a∗μ + b∗ + I + δ∗ + T and
Dmax = C(DL) + T = aμ + b + I + δ + T . Since b − b∗ ≤ μ, Dmax−D∗

max

D∗
max

=
(b−b∗)+(a−a∗)μ
b∗+a∗μ+I+δ∗+T ≤ a−a∗+1

a∗ = 2
3 .

The second situation is that D∗
max = C(D∗

1) + (2a∗ + 1)T = b∗ + (2a∗ + 1)T
and Dmax = C(D1) + (2a + 1)T = b + I + δ + (2a + 1)T for k = 2 and l = 1.
Given that μ+I+δ ≤ 2T in this situation, Dmax−D∗

max

D∗
max

= (b−b∗)+I+δ+2(a−a∗)T
b∗+(2a∗+1)T ≤

μ+I+δ+2(a−a∗)T
b∗+(2a∗+1)T < 4

7 < 2
3 .

From Lemma 7 and Lemma 8, we derive the performance of A2 as follows:

Theorem 4. Solving (P2) : 1, h1|nr − a, p − batch, sj , pj = 1|V (1, v)|1|Dmax,
algorithm A2 has the worst-case ratio of 5

3 , which is tight.
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Proof. It is obvious that the worst-case ratio of algorithm A1 is 5
3 by Lemma 7

and Lemma 8.
Next, consider the following instance: n = 12, B = 7, μ = 2, [t1, t2] = [1, 1+ε],

s1 = s2 = s3 = s4 = 3, and s5 = s6 = ... = s12 = 2. The delivery time is
T > 2+ε

2 . The schedule produced by algorithm A2 is as follows: the first delivery
including J1 and J2 is delivered at time 1; the second delivery including J3, ...,
J7 and the third delivery including J8, ..., J12 are delivered at 1+2T and 1+4T ,
respectively. Hence, Dmax = 1+5T . However, in the optimal schedule, there are
two deliveries: the first delivery consisting of J1, J2, J5, J6, J7, and J8, and the
second delivery consisting of the remaining jobs. The optimal objective value is
D∗

max = 2 + 3T . When T → +∞, Dmax

D∗
max

= 1+5T
2+3T → 5

3 .
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Abstract. This paper studies the batch scheduling problem with incom-
patible job families which can be applied to the automatic drug dispens-
ing of outpatient pharmacies. We prove that the problem is strongly NP-
hard even if the processing time and the weight of each job are same,
and we propose a pseudo-polynomial time algorithm for the special case
where the jobs of each family have a common due date.

Keywords: Drug dispensing · Batch scheduling · Incompatible job
families

1 Introduction

1.1 Automatic Drug Dispensing in Outpatient Pharmacies

An automatic drug dispenser is an automated drug delivery device used for
dispensing drugs in the pharmacy.

The automatic drug dispensing devices in pharmacy popular in Europe and
America are mainly available in four modes: (1) Vertical carousel, with low cost,
but in company with low automation level and speed; (2) Miniload, capable of
handling the packages in different shapes, but unsuitable for the quick-moving
drugs; (3) Commissioning system, applicable for a small amount of drugs in
different types, but needing the drug barcode technology and being characterized
by low speed; (4) Gravity, with low cost, but unable to handle the package of
irregular shape or the fragile drugs.

The demand for automatic drug dispenser in China is much more strin-
gent than that in Europe and America. The reasons are as follows. Reason I:
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the outpatient pharmacy of the Chinese hospitals handles a huge amount of
prescriptions per day. A large-sized tertiary hospital handles more than 6,000
prescriptions per day, and in the peak hours, the hourly quantity is up to 1,500
and even 2,000 prescriptions. Reason II: the pharmacy of the hospital has the
limited space. Most hospitals are situated in the commercial center of the cities
and cannot be expanded, while the pharmacy of the traditional hospital is usu-
ally very small. Reason III: the drug package in the pharmacy of the hospital
varies. Except the square box for drugs, the hospitals have the packages, such
as cylindrical, glass bottle and triangular packages. While the unified package
and barcode for drugs lack in China, and it is very regretted that no automatic
drug dispensing mode popular in Europe and America can address the automa-
tion demand in the pharmacy of the Chinese hospitals. We need to improve and
customize the design.

The automatic drug dispensing devices run online in Shanghai General Hos-
pital have basically met the following characteristics.

– Automatic drug dispensing speed can meet the demand of the patients in the
peak hours.

– Simple and quick process for automatic drug prescription and billing to the
device.

– Capable of handling the drugs in different packages and sizes.
– Capable of handling the drugs in fragile package, for example, glass bottle

and so on.
– The carousel can store sufficient types of drugs.
– The software system can fully interface with the HIS system of the hospital.
– The operating interface of the software is concise and practical.
– There is reasonable emergency response scheme in case of any emergency

event, such as power interruption.
– The machine is convenient for installation, and does not have special require-

ments for the civil construction, and may be dismantled and then reinstalled.
– The hardware system occupies small floor area.
– The machine has low fault rate.

In recent years, a lot of research has been developed to apply scheduling the-
ory and methodology to solve health care management problems. Liu et al. [1]
model the drug dispensing system of outpatient pharmacies as two-person coop-
erative games. Fan and Lu [2] study the supply chain scheduling with periodic
working time in the warehouse of a hospital. Wang et al. [3] address prioritized
surgery scheduling for a single operating room with surgeon tiredness and fixed
off-duty period. Yang et al. [4] design a surgical scheduling method for an oper-
ation room with surgeons preferences considered. Zhang et al. [5] study patients
scheduling problems with deferred deteriorated functions. Zhang et al. [6] explore
a two-stage medical supply chain scheduling problem with an assignable common
due date and shelf life. Li and Chai [7] discuss an on-line scheduling problem
arising from medical laboratory.

This paper discusses the drug dispensing system from the point of view of
batch scheduling with incompatible job families. For a given period of time, there
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are many electronic prescriptions that arrive in the drug dispensing system. They
have different processing times, different weights, and different due dates. The
drug dispensing system can process several electronic prescriptions at the same
time. For a given scheduling objective function, we try to optimize it by assigning
the electronic prescriptions into different batches and ordering these batches.

1.2 Batch Scheduling with Incompatible Job Families

Batch scheduling is originally motivated by the burn-in operation of the final
testing stage in the very large-scale integrated circuit manufacturing, in which
a machine can process several jobs at the same time. The processing time of a
batch is equal to the largest processing time among all the jobs in the batch. If
the jobs with different processing times cannot be processed at the same time,
batch scheduling with incompatible job families is brought about. Generally, jobs
having identical processing times belong to the same family.

We first briefly describe some notations that will be used in this paper. There
are n jobs that have to be processed on a single batch processing machine.
These jobs have t different processing times, that is, there are totally t job
families. For i = 1, · · · , t, the processing time of family i is denoted by pi, and
the number of jobs of family i by ni. For i = 1, · · · , t; j = 1, · · · , ni, job Jij of
family i is associated with a weight wij , the importance of job Jij compared
to the other jobs, and a due date dij , the time that job Jij should be finished
(completion of a job after its due date is allowed, but a penalty is incurred). A
batch processing machine can process up to B jobs at the same time and B is
called the machine capacity. Given a schedule, for job Jij(i = 1, ..., t; j = 1, ...ni),
we use Cij to denote its completion time, and Uij its unit penalty which is defined
as Uij = 1 if Cij > dij and zero otherwise. This paper considers the objective of
the total weighted number of tardy jobs

∑
wjUj , which indicates the efficiency

of medication dispensing system and the patient satisfaction.
For the problem of scheduling jobs with incompatible job families on a sin-

gle batch processing machine, Uzsoy [8] first considers batch scheduling with
incompatible job families. He provides polynomial time algorithms or heuristic
algorithms for several problems. Mehta and Uzsoy [9] prove that the problem
of minimizing total tardiness is strongly NP-hard, and a dynamic programming
algorithm and several heuristic algorithms are presented. Jolai [10] shows that
the problem of minimizing the number of tardy jobs is NP-hard with respect to
id-encoding and presents a dynamic programming algorithm for this problem.
Perez et al. [11] develop several heuristic algorithms for the strongly NP-hard
problem of minimizing total weighted tardiness.

This paper is organized as follows. In Sect. 2 we show that the problem
of scheduling jobs with incompatible job families on a single batch processing
machine to minimize the total weighted number of tardy jobs is strongly NP-
hard even if the processing time and the weight of each job are same. In Sect. 3
we propose a pseudo-polynomial time dynamic programming algorithm for the
special case where the jobs of each family have a common due date.
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2 The Strong NP-hardness of a Special Case

Liu et al. [12] prove that the problem of scheduling jobs with incompatible job
families on a single batch processing machine to minimize the total weighted
number of tardy jobs is strongly NP-hard. In this section we show that it is
strongly NP-hard even if the processing time and the weight of each job are
same.

3-Partition: Given 3m positive integers {a1, . . . , a3m} and an integer A such
that

∑3m
i=1 ai = mA and A

4 < ai < A
2 for i = 1, . . . , 3m, is there a partition

of the index set {1, . . . , 3m} into A1, A2, . . . , Am such that
∑

i∈Aj
ai = A for

j = 1, . . . , m?

Theorem 1. The problem of minimizing the total weighted number of tardy jobs
with incompatible job families on a single batch processing machine is strongly
NP-hard even if the weight and the processing time of each job are same.

Proof. Given a 3-Partition instance, we construct the following scheduling
instance with n = 3m2 + m jobs and the machine capacity is B = m. Let
L = m(m+1)

2 A. For j = 1, . . . ,m, there is a job Lj with processing time pLj
= jL,

weight wLj
= jL, and due date dLj

= jA + j(j+1)
2 L. For i = 1, . . . , 3m and

j = 1, . . . , m, there is a job Sij with processing time pSij
= ai, weight wSij

= ai,
and due date dSij

= jA + j(j−1)
2 L.

Clearly, the scheduling instance can be constructed in polynomial time and
there are totally 4m different job families in this instance. Set the threshold
value of the total weighted number of tardy jobs as m(m−1)

2 A. We will show that
there is a solution for the scheduling instance such that

∑
wjUj ≤ m(m−1)

2 A if
and only if there is a solution for the 3-Partition instance.

Suppose that there is a solution A1, . . . , Am for the 3-Partition instance.
For j = 1, . . . ,m, assign job Lj to batch BLj

. For i = 1, . . . , 3m, assign jobs
Si1, Si2, · · · , Sim to batch BSi

. Construct the following schedule:

σ = {{BSi
: i ∈ A1}, BL1 , {BSi

: i ∈ A2}, BL2 , . . . , {BSi
: i ∈ Am}, BLm

}.

In schedule σ, for i = 1, · · · , 3m; j = 1, . . . ,m, batches BSi
(i ∈ Aj) finish at time

jA + j(j−1)
2 L, and batch BLj

finishes at time jA + j(j+1)
2 L. Hence, the jobs in

batches BLj
(j = 1, · · · ,m) are on time since dLj

= jA + j(j+1)
2 L, the jobs Sij

in batches BSl
(l ≤ j) are on time since dSij

= jA + j(j−1)
2 L, and only the jobs

Sij in batches BSl
(l > j) are tardy. We have,

∑
wjUj =

∑

i∈A2

ai + 2
∑

i∈A3

ai + . . . + (m − 1)
∑

i∈Am

ai

= A + 2A + . . . + (m − 1)A

=
m(m − 1)

2
A.

On the other hand, if the scheduling instance has a solution σ such that
∑

wjUj ≤ m(m−1)
2 A. For j = 1, · · · ,m, job Lj must be assigned to one batch
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and processed in increasing order of their processing times since wLj
= jL >

m(m−1)
2 A(j = 1, · · · ,m) and each of them must be completed on time, denote

the batch containing job Lj as BLj
. Without loss of generality, for i = 1, · · · , 3m,

we assume that the m jobs with processing time pSij
(j = 1, · · · ,m) are assigned

to one batch in σ. Otherwise, if there are jobs of the same family are assigned to
different batches, move jobs with the same processing time from the subsequent
batch(es) to the precedent batch and the completion times of all the jobs do not
increase. Therefore, the total weighted number of tardy jobs does not increase.
For i = 1, · · · , 3m, following the above procedure, we get a full batch with
processing time ai, and this batch is denoted by BSi

. For j = 1, . . . ,m, let
TPj be the total processing time of the batches with processing times pSij

(i =
1, · · · , 3m) processed after batch BLj

. Since the job in batch BLj
cannot be

tardy, we have TPj ≥ (m − j)A. According to the definition of instance, we
know that jobs Sil (i = 1, . . . , 3m; l = 1, . . . , j) processed after batch BLj

must
be tardy. Since pSij

= wSij
= ai, it follows that

∑
wjUj ≥

m∑

j=1

TPj ≥
m∑

j=1

(m − j)A.

Suppose that there is 1 ≤ j ≤ m such that TPj > (m − j)A. Then

∑
wjUj >

m∑

j=1

(m − j)A = m2A − m(m + 1)
2

A

=
m(m − 1)

2
A.

It’s a contradiction. Thus, for j = 1, . . . ,m, we have TPj = (m−j)A. This implies
that the sum of processing times of batches processed before batch BLj

(j =
1, . . . ,m) is exactly A. For i = 1, · · · , 3m, since A

4 < ai < A
2 , there are exactly

three batches of BSi
are scheduled before batch BLj

. Denote the batch indices set
of batches BSi

processed before BLj
as Aj , which is a solution of the 3-Partition

instance.

3 A Pseudo-polynomial Time Solvable Case

From the last section, we know that even if the jobs of each family have a same
weight, the problem under consideration is strongly NP-hard. In this section, we
consider a special case where the jobs of each family have a common due date.
It is at least binary NP-hard since the classical problem of scheduling jobs with
a common due date on a single machine to minimize the total weighted number
of tardy jobs is NP-hard [13]. We develop a dynamic programming algorithm
for the special case of incompatible batch scheduling problem where the jobs of
each family have a common due date, which runs in pseudo-polynomial time and
indicates that this special case cannot be strongly NP-hard unless P = NP.
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Lemma 1. If the jobs of each family have a common due date, there exists an
optimal schedule in which the batches of each family are full except possibly the
last one.

Proof. Consider an optimal schedule containing two partial batches of same
family, move jobs from the subsequent batch to the precedent batch until the
precedent batch is full or the subsequent batch is empty. The completion times
of the moved jobs decrease and the completion times of the other jobs do not
increase, hence the schedule remains optimal. Repeating this procedure for the
jobs of each family, we get an optimal schedule in which the batches of each
family are full except possibly the last one.

We say that a schedule is in the batch LWF-order if for any two batches P
and Q, batch P is processed before batch Q and there does not exist two jobs
Jk, Jl such that Jk ∈ P, Jl ∈ Q and their weights wJk

< wJl
.

Lemma 2. If the jobs of each family have a common due date, there exists an
optimal schedule in which the batches of each family are in batch LWF-order.

Proof. Consider an optimal schedule in which there are two batches P and Q of
same family, where P is processed before Q and there exist two jobs Jk, Jl such
that Jk ∈ P, Jl ∈ Q and wJk

< wJl
. Exchange jobs Jk and Jl by moving Jk to Q

and Jl to P . Since the two jobs belong to the same family, they have the same
processing times and same due dates. The completion times of the batches after
the exchange will not increase. Hence, the total weighted number of tardy jobs
will not increase, too.

For i = 1, · · · , t, denote the common due date of jobs in family i as di,
the weights as wi1, wi2, · · · , wi,ni

. Based on Lemma 1 and Lemma 2, first order
the jobs of family i in non-increasing order of their weights, then assign adja-
cent B jobs as a batch from the beginning until all the jobs of family i have
been assigned. The number of batches of family i is �ni

B �, where �r� denotes
the smallest integer larger than or equal to r. Denote the batches of family i
as Bi1, Bi2, · · · , Bi,�ni

B �. For i = 1, · · · , t; j = 1, · · · , �ni

B �, regard batch Bij as
a job with processing pi, due date di and weight Wij , where Wij is the sum of
weights of jobs in batch Bij . Then we obtain a single machine scheduling prob-
lem to minimize the total weighted number of tardy jobs. Apply the dynamic
programming algorithm presented by Brucker [14] to find an optimal schedule
for all the batches. The time complexity of this dynamic programming algorithm

is O(n
t∑

i=1

�ni

B �pi), which is pseudo-polynomial time.

4 Conclusion

In this paper, we study the batch scheduling problem with incompatible job
families on a single batch processing machine, which can be applied to the drug
dispensing system at outpatient pharmacies. We first prove that the problem



A Batch Scheduling Problem of Automatic Drug Dispensing System 543

is strongly NP-hard even if the processing time and the weight of each job are
same, we also develop a pseudo-polynomial time algorithm for the special case
where the jobs of each family have a common due date.

To develop efficient heuristic algorithms for the problem under consideration
and to investigate its special case are very challenging topics for future research.
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Abstract. Under artificial intelligence (AI) environment, medical staff and
patients benefit tremendously from sophisticated AI algorithms in various health-
care activities. In order to enhance diagnosis performance for coronary heart dis-
ease (CHD) inpatients with surgery (e.g. stent), this research presented a two-stage
medical expenses estimation model. Two intelligent modules were integrated into
this model, SVM-based module and SOM-based module, and they were devel-
oped to estimate total medical expenses and detailedmedical expenses. Themodel
was also compared with classic AI techniques, back propagation neural networks
and random forests. The data from a real hospital was introduced. For the tar-
get disease CHD, several attributes were extracted for inputs/outputs. Based on
experimental results, the proposedmodel not only achieved excellent performance
for total medical expenses estimation, but also a powerful tool for detail expenses
estimation. The related managerial insights would assist medical staff and patients
in reliable decision-making.

Keywords: Artificial intelligence algorithm · Healthcare management · Support
vector machine (SVM) · Self-organizing maps (SOM) · Medical expenses
estimation

1 Introduction

The healthcare industry is one of the largest and rapidest developing industries in the
world. Improving the performance of healthcare management is an important but chal-
lengeable task, especially after the global health incident, 2019-nCoV (novel coron-
avirus). Nowadays, artificial intelligence (AI) is bringing a paradigm shift to healthcare
management with the outstanding capabilities of data acquisition and analysis [1]. As a
result, a large amount of healthcare activities have experienced a proliferation of innova-
tions under AI environment. Among a variety of healthcare activities, an excellent med-
ical expenses estimation system would benefit medical staff and patients for accurate
and reliable decisions [2], especially in disease diagnosis process. For instance, medical
staff would provide appropriate therapeutic regimen and equipment for patients, and
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patients would participate in those decisions based on their financial conditions. In fact,
this kind of superiority is more distinct for inpatients with major surgery, like coronary
heart disease (CHD) patients. CHD, or coronary artery disease, is a narrowing of the
blood vessels that supply blood and oxygen to the heart. Usually, most CHD patients
are the elderly rather than young people, and a proper surgery is required (e.g. stent).
Based on these situations, this study concentrates more on CHD inpatients over 60 years
old. However, there are many factors affecting CHD patents’ medical expenses, and the
relationship between these factors and medical expenses is not clear with a non-linear
characteristic. Not only that, there are tremendous history data in healthcare system.
The raw data is chaotic and disorder with various information. Therefore, a novel AI-
based model with multi-function for target disease is on demand. As a result, this study
attempts to investigate the issue of medical expenses estimation from two perspectives,
total medical expenses estimation and detailed medical expenses estimation. Consider-
ing the capability and performance of different AI algorithms, support vector machine
(SVM) [3] and self-organizing maps (SOM) [4] are employed in this study. The former
is well-known for perdition, and the latter is a powerful clustering tool.

2 Literature Review

2.1 Medical Expenses Issues in Healthcare Management

The increasing costs/expenses in healthcare domain is one of the world’s most important
problems [5]. The analysis of medical expenses could help healthcaremanager to control
the cost of healthcare organizations; Meanwhile, the patients would make appropriate
financial decisions based on sufficient medical expenses information.

Kim & Park (2019) focused on high-cost healthcare users [6]. In this study, various
methods and data sources were introduced to build high-cost user prediction model.
Contrarily, Zhou, Zhou, & Li (2016) proposed an AI algorithm that was able to select a
low-cost subset of informative features and achieved better performance than other state-
of-art feature selection methods in medical diagnosis [7]. Cao, Ewing, & Thompson
(2012) concentrated on another aspect of medical expenses, medical cost inflation rates
[8]. They found that AI algorithms resulted in better prediction performance. Among
these previous studies, it is demonstrated that AI-based algorithms are adequate for clus-
tering and prediction in medical expenses issues. However, in terms of CHD expenses,
further research is required for optimization of input/output variables as well as sample
selection, and the comparison of different AI-based algorithms is necessary. From the
perspective of statistics, Liu, Deng, & Wang (2019) estimated the medical costs in dis-
ease diagnosis to a terminal event [9]. The combined scheme of both inverse probability
of censoring weighting (IPCW) technique and longitudinal quantile regression model
was used to develop a novel procedure to the estimation of cumulative quantile func-
tion (CQF) based on history process with time-dependent covariates and right censored
time-to-event variable. In addition, Khazbak et al. (2016) introduced the novel con-
cept of cost-effective mobile healthcare which leverages the multiple wireless interfaces
onboard most mobile phones today, and their proposed method and algorithm achieved
cost saving [10]. The cost of medical equipment is another area in medical expenses,
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and Khalaf, Djouani, Hamam, & Alayli (2015) investigated the failure-cost model for
medical equipment [11].

Based on these related papers, it is found that there are threemain techniques involved
to discussmedical expenses: AI algorithms, statistical methods, and operational research
models. A certain number of papers demonstrated that AI algorithms outperform other
techniques.With suchobservation,AI algorithms are introduced in this study. In addition,
CHD mainly happens in the elderly, and factors affecting expenses differ from other
diseases. Hence, it is essential to optimize input/output variables as well as sample
selection to develop a new model for CHD diagnosis process. Identifying appropriate
AI algorithm is also required based on the comparison of different algorithms. As a
result, this study attempts to investigate the issue of medical expenses estimation for
inpatients during diagnosis process. Different from previous papers, the proposed two-
stage model is integrated of two intelligent modules, total expense estimation module,
and detailed expense estimation module.

2.2 Artificial Intelligence Algorithms in Healthcare Management

Nowadays, AI is gradually changing healthcare practice with numerous breakthroughs
in algorithm [12]. In summary, three main healthcare fields have been explored, basic
biomedical research, translational research, and clinical practice [13]. By observation
of these papers, it is found that SVM and SOM are two powerful algorithms to solve
healthcare management issues.

SVM is one of the pattern recognition approaches, and it constructs a hyperplane
or set of hyperplanes used for classification and regression. Huang, Gao, & Ye (2019)
proposed a data-driven model with SVM. The model intelligently predicted patients’
conditions by 12 assay indexes for the diagnosis of cough variant asthma (CVA) [14].
Gao, Bao,&Zhou (2019) also used SVM to assistmedical staff withCVAdiagnosis [15].
Differently, Zhu, Liu, Lu, & Li (2016) discussed pre-diagnosis with privacy considera-
tion, and they presented an efficient and privacy-preserving onlinemedical pre-diagnosis
framework by using SVM [16]. Recently, Nawaz et al. (2017) investigated the impact of
social media on healthcare management based on SVM [17]. In these previous papers,
SVM technique were widely used in diagnosis process to determine whether patients
were attacked with diseases. However, in disease diagnosis process, expenses infor-
mation is also crucial for decision-making of medical staff and patients. Motivated by
this reality, SVM algorithm is employed to estimate medical expenses of CHD during
diagnosis process in this study.

SOM is an effective tool for the visualization of high-dimensional data. It is actu-
ally a center-based clustering algorithm that preserves density and topology of the data
distribution, and the data is mapped to a topological grid of cluster centers [4]. To solve
outlier detection in healthcare, Elmougy,Hossain, Tolba,Alhamid,&Muhammad (2019)
proposed a new parameter based growing SOM ensemble [18]. By introducing the clus-
tering function of SOM, Orjuela-Cañón, Mendoza, García, & Vela (2018) developed
a technique to help medical staff make decisions about management of subjects under
suspicious of tuberculosis, with limited infrastructure and data [19]. Malek et al. (2018)
investigated the healthcare issue of pediatric fracture healing time of the lower limb,
SOM was then applied for analysis of the relationship between the selected variables
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with fracture healing time [20]. According to these previous studies, it is demonstrated
that SOM is equipped with the effective capability of clustering based on various fea-
tures. As a result, it motivates us to classify patients into different groups based on their
historical medical expenses data. Additionally, individual characteristics are distinc-
tive for each cluster. In consequence, a reliable database would be created by utilizing
these clusters. Obviously, further analysis with such database would affect healthcare
management policies, and a wealth of managerial insights could be acquired.

3 Proposed Two-Stage Model

In this section, a two-stage medical expenses estimation model is developed. Aiming
at estimating both total medical expenses and detailed medical expenses, the model is
integrated of two modules, SVM-based module and SOM-based module.

In the first stage, the module is used for regression prediction with the basic concept
of SVM[14]. Suppose that the data set isD = {(x1, y1), (x2, y2), (x3, y3), · · · , (xm, ym)}.
Here, x indicates the main attributes affecting total CHD medical expenses, and y indi-
cates total expenses. The detailed explanation of these variables is given is Sect. 4. The
module concept is to find a function f (x) that deviates from y by a value no greater than
ε for each training point x, and at the same time is as flat as possible, Fig. 1. Similar
to the classification problem, the purpose here is also to minimize error, individualizing
the hyperplane which maximizes the margin. Notice that, part of the error is tolerated
with epsilon.

Fig. 1. The basic concept of support vector machine (SVM) regression

The problem of this module is initially expressed as follow,

min
1

2
‖w‖2 + C

∑m

i=1
l∈(f (xi) − yi) (1)

l∈(z) =
{

0, |z| < ε

|z|− ∈, otherwise
(2)

The constant C is the box constraint, and it is a positive numeric value. The function
ofC is to control the penalty imposed on observations that lie outside the epsilon margin
as well as help to prevent overfitting. The slack variables ξi and ξ∗

i are then introduced
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based on the “soft margin” concept in classification problem. Including slack variables
leads to the objective function as Eq. (3).

⎧
⎪⎪⎨

⎪⎪⎩

min 1
2‖w‖2 + C

∑m
i=1

(
ξi + ξ∗

i

)

s.t.f (xi) − yi ≤ ε + ξi

yi − f (xi) ≤ ε + ξ∗
i

ξi ≥ 0, ξ∗
i ≥ 0

(3)

The Lagrange function is then developed with Lagrange multipliersμi ≥ 0,μ∗
i ≥ 0,

αi ≥ 0, α∗
i ≥ 0.

L = 1

2
‖w‖2 + C

∑m
i=1

(
ξi + ξ∗

i

)
−

∑m
i=1

μiξi −
∑m

i=1
μ∗
i ξ∗

i +
∑m

i=1
αi

(
f
(
xi

) − yi − ε − ξi
) +

∑m
i=1

α∗
i

(
yi − f

(
xi

) − ε − ξ∗
i

)

(4)

The corresponding dual problem is given in Eq. (5).

⎧
⎪⎨

⎪⎩

max
∑m

i=1 yi
(
α∗
i − αi

)− ∈ (
α∗
i + αi

) − 1
2

∑m
i=1

∑m
j=1(α

∗
i − αi)

(
α∗
j − αj

)
xTi xj

s.t.
∑m

i=1(α
∗
i − αi) = 0

0 ≤ α∗
i , αi ≤ C

(5)

Meanwhile, the problem is constrained by Karush-Kuhn-Tucker (KKT) comple-
mentarity conditions, see Eq. (6), to obtain optimal solutions. The problem is finally
expressed as Eq. (7) based on the results of b and w.

⎧
⎪⎪⎨

⎪⎪⎩

αi(f (xi) − yi − ε − ξi) = 0
α∗
i

(
yi − f (xi) − ε − ξ∗

i

) = 0
αiα

∗
i = 0, ξiξ∗

i = 0
(C − αi)ξi = 0,

(
C − α∗

i

)
ξ∗
i = 0

(6)

f (x) =
∑m

i=1

(
α∗
i − αi

) · 〈xi, x〉 + b (7)

However, some regression problems cannot adequately be described using a linear
model.With this consideration, the nonlinear kernel function is employed that transforms
data into a higher dimensional feature space to make it possible to perform the linear
separation. Therefore, the problem is expressed as Eq. (8) and (9) in the nonlinear
situation, with KKT complementarity conditions.

f (x) =
∑m

i=1

(
α∗
i − αi

) · 〈ϕ(xi), ϕ(x)〉 + b (8)

f (x) =
∑m

i=1

(
α∗
i − αi

) · K(xi, x) + b (9)

In fact, there are various types of kernel function, such as Polynomial kernel function
and Gaussian kernel function.

Polynomial: k
(
xi, xj

) = (
xi, xj

)d (10)
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Gaussian: k
(
xi, xj

) = exp

(
−

∥∥xi − xj
∥∥2

2σ 2

)
(11)

Based on the theory of SOM [21], the SOM-based module of the proposed model
is developed for clustering. In the second stage, the data of detailed medical expenses
is represented by an n-dimensional vector X in the input layer (Fig. 2). X = [X1, X2,
X3, …, Xn], n is the number of attributes (medical expenses items), also the number
of input neurons. It is also assumed that there are j neurons in the output layer (or the
competition layer), and j is related to the maximum number of final clusters.

Fig. 2. The basic concept of self-organizing maps (SOM)

The neurons in the input layer are directly connected to the neurons in the output layer
without hidden layer. Therefore, each output neuron is connected to the input vector X
via an n-dimensional weight vector W = [W1,W2,W3, …,Wn]. Additionally, neurons
in the output layer are arranged in form of a topological architecture, and the two-
dimensional architecture is introduced. Firstly, the module randomly initializes weight
vectors. Meanwhile, the learning rate (αt) and radius of neighbourhood (Rt) are assigned
the starting values. Based on the weight vectors, a best matching unit (BMU) is selected
for input vectors. In other words, the module calculates the Euclidean distance (EUD),
donated as dj, between input neurons and output neuron j by Eq. (12). Here,Wij indicates
the ith weight of the jth output neuron.

dj =
√∑

i

(
Xi − Wij

)2 (12)

According to EUD between input vector and output neuron’s weight vector, the best
matching neuron is defined as winner, represented by j*, that achieves the minimum
distance among dj. It means that the winner is the neuron whose weight vector is most
similar to the input vector. (Cx, Cy) is the topological coordinates of the winner.

dj∗ = min
{
dj

}
(13)

The module then updates the weightW between the input layer and the output layer.
This updating towards the input sample is related to learning rate (αt) and neighborhood
size. The learning rate gradually decreases with the iteration step index t.With theweight
vector Wij(t) of the winning neuron at iteration t, the updated weight vector Wij(t + 1)
at iteration t + 1 is computed by Eq. (14).

Wij(t + 1) = Wij(t) + αt(Xi(t) − Wij(t)
) ∗ Rj

c (14)
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Rj
c = f

(
Rt, rj

)
(15)

rj =
√(

Xj − Cx
)2 + (

Yj − Cy
)2 (16)

In Eq. (14), Rj
c represents the neighborhood coefficient. In Eq. (15), Rt is the neigh-

borhood radius and rj is the neighborhood distance. In Eq. (16), (Xj ,Yj) is the topological
coordinates of the jth output neuron. The above process would continue until conver-
gence (i.e. no noticeable changes in the weights) or the pre-defined number of training
cycles is satisfied. Meanwhile, the learning rate and the neighborhood radius would be
decreased in each iteration by Eq. (17). Here, αc andRc are the corresponding decreasing
coefficients for the learning rate and the neighborhood radius, respectively.

{
αt = αt−1 ∗ αc

Rt = Rt−1 ∗ Rc
(17)

4 Description of Data and Variables

The experimental platform is Intel Core i5-5200U CPU, 4 GB RAM, Windows 10 (64
bit). The data is from a real hospital in Shanghai, China.With the cooperation of medical
staff in cardiology department, the data from 2017 to 2019 is obtained.

4.1 Data and Variables in the First Stage

In the first stage, the total expenses of CHD are estimated by the SVM-based module.
In order to acquire effective and reasonable variables, preliminary work is required,
including several interviews with related medical staff and analysis of previous papers.
As a result, 8 attributes were extracted for this stage. They are explained as follows, and
the descriptive statistics analysis is given in Table 1.

Table 1. The descriptive statistics analysis for the numerical attributes (before normalization)

Attribute Maximum Minimum Mean Median

Total expenses 99958.00 20663.26 57441.51 53927.69

Age 98.00 60.00 72.07 70.00

Hospital length of stay (HLOS) 35.00 1.00 6.38 5.00

Quantity of surgical equipment (QOSE) 4.00 1.00 1.38 1.00

Level of surgical equipment (LOSE) 81672.00 4763.00 21953.18 17200.00

1) Total Expenses. It indicates the expenses patients would afford during CHD treat-
ment. The proposed model attempts to intelligently estimate such expenses in
diagnosis process. It is the single output variable.
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2) Gender. Male and female. The number 1 and 0 are used to distinguish them.
3) Age. Age is a numerical variable. It is noticed that most CHD patients are the elderly.

Hence, this study only collected the data of patients over 60 years old.
4) Hospital length of stay (HLOS). HLOS is a numerical variable. Usually, medical

staff provide CHD patients the possible HLOS information based on their conditions
during diagnosis process.

5) Month. The month when patient is admitted to hospital. Month is the indicator of
season, it therefor affects patient’s condition (especially for the elderly) and expenses
(e.g. hospitalization expenses). There are 12 months in a year, and the number 1 and
0 are used to distinguish them.

6) Type of surgery (TOS). For CHD patients, stent is a common surgery type. Addi-
tionally, CHD is the main factor resulting in arrhythmia (e.g. bradycardia), and
pacemaker is used for such patients. Therefore, two surgery types are involved in
this study, stent and pacemaker. Obviously, TOS is a crucial factor affecting medical
expenses, and number 1 and 0 are used to distinguish them.

7) Quantity of surgical equipment (QOSE). It is a numerical variable. In this research,
stent and pacemaker are the main equipment for CHD surgery, and the quantities of
them are different based on diagnosis.

8) Level of surgical equipment (LOSE). This study also considers LOSE. In fact, there
are different levels of surgical equipment in the market. By discussing with medical
staff, patients could choose the appropriate one based on their financial conditions.
Here, the unit price is used to denote LOSE, and it is a numerical variable.

In terms of experiment samples, there are 2100 samples in total after removing the
samples with incomplete data and outliers. Besides, according to the proposed model,
two datasets are required, training data and testing data. Therefore, all samples were
randomly divided into two groups. Specifically, training dataset with 1600 samples and
testing dataset with 500 samples. Additionally, all data is normalized to avoid the effect
of dimensions and units, see Eq. (18). Where, Dnew is the new data after normalization.
D is the original data. Dmin is the minimum value of the corresponding variable, and
Dmax is maximum value of the corresponding variable.

Dnew = D − Dmin

Dmax − Dmin
(18)

4.2 Data and Variables in the Second Stage

The total medical expenses of CHD are estimated in the first stage, and detailed expenses
are analyzed in the second stage by SOM-based module. With the discussion of medical
staff, 6 main items are involved in the total medical expenses of CHD. Specifically, 1)
Hospitalization fee, 2) Treatment fee, 3) Examination fee, 4) Assay fee, 5) Material fee
and 6) Medicine fee. More importantly, it is found that material fee accounts for a large
proportion of total expenses. Obviously, it has a significant influence on total expenses
with maximum weight. Taking this into consideration, the clustering process by SOM
was implemented in two steps. All samples were clustered with material fee item first,
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resulting in primary clusters. In each primary cluster, the samples were then clustered
with other five items, resulting in secondary clusters. Consequently, total cluster quantity
is the number of primary clusters multiplies the number of secondary clusters. Based on
these precise clusters, more accurate and reliable decision-making insights for medical
expenses would be acquired.

5 Experiments and Results

5.1 Experiments and Results Analysis for the First Stage

In this section, total medical expenses are estimated by SVM-based module, Eq. (1)
to Eq. (11). In order to verify the performance of the proposed model, another two AI
algorithms were employed to make a comparison, back propagation neural networks
(BPNN) and random forests (RF). Besides, RMSE (root mean square error) was intro-
duced to evaluate the estimation performance, Eq. (19). Here,Dr is the real data,De is the
estimated data, m is the sample number. In terms of RMSE value, this study computed
both the normalization value and inverse-normalization value.

RMSE =
√

1

m

∑m

i=1
(Dr − De)

2 (19)

(1) Total medical expenses estimation by SVM-based module
As described above, the inputs of SVM-based module include 7 attributes; the
output of SVM-based module is the data of Total Expenses. The key parameters in
this process are given in Table 2, and the results are shown in Table 3.

Table 2. The key parameters in SVM-based module

Key parameter Value or Type

The set type of SVM nu-SVR

The set type of kernel function radial basis function

The optimal objective value of the dual SVM problem -123.480819

The bias term in the decision function -0.378418

The number of support vectors and bounded support vectors 827 and 773

The number of iterations 2136

(2) Total medical expenses estimation by BPNN and RF
BPNN and RF were introduced to make a comparison with SVM-based module.
The same input data and output data that used in SVM-based module experiment
is employed for BPNN and RF experiments. The key parameters in BPNN and RF
are given in Table 4, and the results are shown in Table 3.
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Table 3. The estimation results by different approaches

SVM-based Module BPNN RF

RMSE (normalization) 0.0459 0.0583 0.0665

RMSE (inverse-normalization) 3636.9459 4624.8852 5273.7238

Table 4. The key parameters in BPNN and RF

Key parameters in BPNN Key parameters in RF

Input neurons 20 The number of mtry 6

Hidden layers 1 The number of trees 500

Hidden neurons 4

Output neurons 1

Optimizer adam

Learning rate 0.001

Loss function mse

Dropout (hidden layer) 0.1

Activation function (hidden layer) relu

Activation function (output layer) sigmoid

Validation split 0.1

Batch size 50

Epochs 10,000

Based on the results obtained above, some conclusions are generated,

1) By comparing the estimation performance of SVM-based module, BPNN and RF, it
is found that SVM-based module outperforms the other two approaches, with both
RMSE (normalization) and RMSE (inverse-normalization) value.

2) Due to the inverse-normalization RMSE value is more appropriate to reflect real
deviation of total medical expenses, then it is compared with the average value and
median value of totalmedical expenses among all samples (see Table 1). The inverse-
normalization RMSE value of SVM-based module (3636.9459) only accounts for
6.33% of average total medical expenses (57441.51) and 6.74% of median value
(53927.69). It is demonstrated that the SVM-based module of the proposed model
achieved satisfied results and it is adaptive for medical expenses estimation.

5.2 Experiments and Results Analysis for the Second Stage

In this section, detailed medical expenses are analyzed by SOM-based module, see
Eq. (12) to Eq. (17). As discussed above, a certain number of clusters would be generated
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based on detailed medical expenses. Besides, this process includes two steps, primary
cluster step and secondary cluster step. As a result, 5 primary clusters were generated
based on material fee, and 4 secondary clusters were generated for each primary cluster
based on the other 5 expenses items, hospitalization fee, treatment fee, examination fee,
assay fee andmedicine fee. Consequently, the total cluster quantity is 20 that is 5 (primary
clusters) multiplies 4 (secondary clusters). The key parameters are shown in Table 5, and
Table 6 illustrates partial results of this module. The values in Table 6 are cluster centers
with corresponding attributes, that means sample values in each cluster are close to their
centers. For instance, the material fee values of each sample are all close to 38956.53
in primary cluster 1, and the hospitalization fee values of each sample are all close to
632.68 in secondary cluster 20. It could be seen that expenses characteristic of each
cluster differ greatly. Meanwhile, detailed medical expenses information is associated
with personal and medical information of inpatients in each cluster, that creating a
database of medical expenses and patients’ information. Specifically, with patients’
information, the corresponding cluster would be identified with expenses characteristic.
In fact, the availability of accurate and reliable databases is important to provide the
right tools for better healthcare decisions [22], especially in diagnosis process. With
increasing inpatient quantity, this databasewould bemore andmore reliable and accurate.
Definitely, it will help medical staff and inpatients make better estimation decisions
during diagnosis process under artificial intelligence environment.

Table 5. The key parameters in SOM-based module

Parameter Value
(Primary cluster step)

Value
(Secondary cluster step)

Input neurons 1 5

Output neurons 1 × 5 1 × 4

Neighborhood 3 1

Learning rate 0.1 0.1

Neighborhood reduction 0.99 0.99

Learning rate reduction 0.99 0.99

The minimum of learning rate 0.001 0.001

Epochs 10 10
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Table 6. Results of SOM-based module (partial)

NO. of
secondary
cluster

Material fee Hospitalization
fee

Treatment fee Examination
fee

Assay fee Medicine fee Quantity

Primary cluster
1

1 38956.53 2603.83 3250.88 3304.82 5022.54 3821.26 104

2 38956.53 1383.94 2570.47 2310.50 3807.64 1936.20 231

3 38956.53 482.91 2097.20 2269.58 3181.67 1460.71 344

4 38956.53 292.43 2035.66 1888.72 2540.70 1248.91 482

…… …… …… …… …… …… …… …… ……

Primary cluster
5

17 65875.12 3629.18 7034.76 5532.20 7155.37 12286.37 34

18 65875.12 1803.93 4417.25 3229.24 4547.50 3877.01 123

19 65875.12 941.47 3401.73 2340.72 3351.80 1980.45 158

20 65875.12 632.68 2605.05 2064.43 2774.09 1235.52 404

6 Conclusions

Focusing on CHD inpatients with surgery, this study developed a two-stage medical
expenses estimation model for diagnosis process. In the first stage, the total medi-
cal expenses were estimated by SVM-based module. The experiment results indicated
that the proposed model achieved satisfied perdition performance. In the second stage,
the SOM-based module of the proposed model was used to analyze detailed medical
expenses. The clustering process successfully divided patients into primary clusters and
secondary clusters. In these clusters, detailed medical expenses information combined
with patients’ information would generate a databased to provide reliable estimation
decisions. With the application of the proposed model to CHD, it is demonstrated that
this model could be a user-friendly estimation tool for medical staff and patients.
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Abstract. The pathologic analysis of gynecological tumor patients is relatively
complex, and the patients without preventive measures after surgery are the high-
risk population of VTE. Based on the inpatient data of patients admitted to a hos-
pital in Shanghai and undergoing gynecological tumor surgery, this paper directly
verified whether patients in the model construction group had VTE according
to the VTE early warning model. Based on direct verification, according to the
coagulation report, medical history and hormone level of the patients in the model
construction group, the WSOM algorithm model was used to construct the VTE
early warning model for gynecological tumor patients after surgery. The study
found that based on the coagulation report, three new indicators of FSH, LH and
E2 of sex hormone levels in patients with gynecological tumors after surgery were
needed to be added to the VTE early warning model after surgery. Meanwhile, the
physical and drug preventive measures of VTE for gynecological tumor patients
after surgery were proposed.

Keywords: Gynecologic tumor · Venous thromboembolism · Early warning
model

1 Introduction

Venous thromboembolism (VTE) includes deep vein thrombosis (DVT) and pulmonary
embolism (PE), is a common vascular disease after gynecologic tumor surgery. Deep
vein thrombosis (DVT) is a condition in which blood clots in a deep vein that partially
or completely block the lumen of the vein, causing an obstruction to venous return.
Pulmonary embolism is a disease caused by pulmonary embolism that blocks blood
flow. In patients without preventive measures after gynecological surgery in China, the
incidence of DVT is as high as 9.2%–40.0%, and the incidence of PE in DVT is as
high as 46.0%. The incidence of VTE is higher in patients with malignant tumors, with
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approximately 20.0% of new cases occurring in cancer patients. By improving the self-
organizing competitive network algorithm for the selection of initial value connection
weights, the project research team established an early warning model based on a total
of 14 factors before and after VTE by deeply mining the relevant pathological data
before and after VTE. Pathological analysis of gynecological tumor patients is more
complicated than that of male tumor patients. The focus of this study is whether the 14
indicators of coagulation report can give early warning of gynecological tumor VTE and
what measures should be taken for the early warning and protection of female VTE.

Patients with gynecological tumor usually have less activities before the preparation
of surgery and need a long period of bed rest after the surgery, which leads to the slowing
of venous blood flow, which is an indirect cause of the occurrence of VTE symptoms.
Intraoperative anesthesia and surgical trauma caused by the patient’s age, weight, tumor
and other factors, leading to hypercoagulable state or thrombosis is the direct cause of
VTE symptoms.

The establishment of VTE after venous thromboembolism is the primary factor for
the life safety of patients after the perioperative operation of gynecological tumors,
which has attracted extensive attention from medical institutions and medical staff, but
its evaluation and corresponding prevention guidelines have not been formed. This paper
refers to the diagnosis and treatment guidelines, based on the existingChinese experience
in the prevention and treatment of gynecological tumors after surgery, based on the
WSOM algorithm for gynecological tumors after surgery VTE early warning model and
protection guidelines.

2 VTE Warning Model Based on WSOM Algorithm

2.1 WSOM Algorithm

SOMalgorithm is to change the parameters and structure of the network by automatically
finding the rules and essential properties of the memory in the sample. The goal of
SOM is to represent all the points in the high-dimensional space by the points in the
low-dimensional (usually two-dimensional or three-dimensional) target space, and to
keep the distance and proximity between the points as much as possible. The typical
SOM structure is input layer and competition layer. The SOM input layer is used to
receive information from the outside world and transmit the input information to the
competition layer, playing the role of “observation”. The competition layer is responsible
for “analyzing and comparing” input information, looking for patterns and categorizing
them.

The competitive learning steps are as follows:

(1) Vector normalization
The current input mode vector X in the self-organizing competition network and
the internal star weight vector wj(j = 1, 2, · · · ,m) corresponding to each neuron

in the competition layer are all normalized,
Λ

X and
Λ
w
j
are obtained.

Λ

X = X

‖X ‖
Λ
w = wj

∥
∥wj

∥
∥
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(2) Identify winning neurons

A similar comparison was made between
Λ

X and all neurons in the competitive layer

with respect to the internal star weight vector and
Λ
w
j
(j = 1, 2, · · · ,m). The most

similar neuron wins, and the weight vector is
Λ
w
j∗
.

(3) Network output and weight vector adjustment
According to the WTA learning rule, the winning neuron outputs “1” and the rest
0, which are:

yi(t + 1) =
{

1, j = j∗
0, j �= j∗

Only the winning neuron has the right to adjust its weight vector ŵj∗, and its weight
vector learning adjustment is as follows:

{

wj∗(t + 1) = ŵj∗(t) + �wj∗ = ŵj∗(t) + α
(

X̂ − ŵj∗
)

wj(t + 1) = wj(t) j �= j∗
0 < α ≤ 1 is the learning efficiency, which generally decreases with the multidi-
mensional progress of learning, that is, the degree of adjustment becomes smaller
and smaller and tends to the clustering center.

(4) renormalization
After the normalized weight vector is adjusted, the resulting new vector is no longer
a unit vector. Therefore, the adjusted learning vector should be normalized again,
and the learning rate should be reduced to 0.

2.2 Improving Algorithm

The advantage of SOM is that it can strengthen the adjacent relation to the center of
mass of the cluster, which is conducive to the interpretation and observability of clus-
tering effect. White SOM also has the problem that the user must choose parameters,
neighborhood function, network type and number of centroid, and lacks specific objec-
tive function. And although it usually converges in practice, SOM does not guarantee
convergence. Based on this, the training speed was improved by initial weight during
the research. The specific steps are as follows:

Set data matrix X = [x1, x2, · · · , xn]T , where xi = (

xi1, xi2, · · · , xip
)

, i =
1, 2, · · · , n.

Step1. Calculate the Euclidean distance between two data:

d
(

xi, xj
) =

((

xi1 − xj1
)2 + (

xi2 − xj2
)2 + · · · (xip − xjp

)2
)1/2

Step 2. Calculate the average distance between sample points:

d̄ =
∑

d
(

xi, xj
)

C2
n
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Step 3. Calculate the density parameters of data object points, which are recorded as
density

(

xi, d̄
)

. That is, with the point xi as the center, the region of radius d̄ is called the
neighborhood of the point, and the number of points in the region is called the density
parameter of point xi based on distance d̄ .

density
(

xi, d̄
) =

n
∑

j=1

u
(

d̄ − d
(

xi, xj
))

where u(z) =
{

1, z ≥ 0
0, other

. Calculate the density parameters of all objects and form the

set D = density(xi).
Step 4. Find the maximum density parameter value Di in D and check the number

of the maximum density parameter maxI .
(i) If maxI = 1, the density parameter value Di corresponds to sample xi in the

sample set S, which is the first weight value w1.
(ii) If maxI > 1, fine the maximum density parameter valueDi ofD, and all samples

xi, i ∈ n corresponding to sample set S, and calculate the following,

sumi =
n

∑

j=1

d
(

xi, xj
)

where d
(

xi, xj
) ≤ d̄(S), j = 1, 2, · · · n, and comprises the set of SUM . sumi =

min(SUM ), the ‘ith’ sample in S, is the first weight, called w1.
Step5. Calculate the distance from other sample points in sample set S to w1, and

select the point with the greatest distance as the second weight w2.
Step6. Calculate the distance between other sample points in sample set S to w1

and w2, which are denoted as di1 and di2. If di = max{min(di, di2)}, i = 1, · · · , n
and di > 1

2d12, the corresponding data point is the third weight w3. d12 is the distance
between w1 and w2.

Step 7. Ifw3 exists, then calculate the distance between other sample points in sample
set S to w1, w2 and w3, denoted as di1,di2 and di3.

If dj = max{min(di1, di2, di3)}, i = 1, · · · , n and dj > 1
2d12, the corresponding data

point is the fourth weight w4. d12 is the distance between w1 and w2.
Step 8. Followed the above steps until the distance is no more than d12.
In this way, a series of network initial weights Wj = [

wj1,wj2, · · ·wjm
]T

, j =
1, 2, · · · , k is obtained. Following the algorithm steps to identify the winning neuron
according to the formula, determine the strengthening center of the winning neuron, and
update the weight vector of the neurons in the topological neighborhood of the winning
neuron on the grid.

2.3 General Warning Indicators

The general early warning model based on the WSOM algorithm as shown in Table 1,
which is to give early warning of VTE to patients according to the abnormal changes of
preoperative and postoperative coagulation report indicators. The experimental results
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in the hospital of case selection show that the accuracy is over 95%. In order to further
explore postoperative VTE early warning, this paper carried out postoperative VTE early
warning research for gynecological tumor patients based on the original research results.

Table 1. VTE warning indicators based on WSOM algorithm.

Before
surgery

D- dimer
(mg/L)

FDP
(mg/L)

PT
(S)

APTT
(S)

TT
(S)

FIB
(g/L)

AT3
(%)

After
surgery

D- dimer
(mg/L)

FDP
(mg/L)

PT
(S)

APTT
(S)

TT
(S)

FIB
(g/L)

AT3
(%)

According to the research on the composition characteristics and changing trend of
inpatients with gynecological tumors since 1995 in Central South Hospital in Wuhan,
the number of inpatients with various gynecological tumors shows an increasing trend,
and the first four are cervical tumor, ovarian tumor, endometrial cancer and malignant
trophoblastic tumor. Their study further analyzed the characteristics of gynecological
tumor patients and male tumor patients, and further supported the study of selecting
gynecological tumor patients for postoperative VTE early warning. In the meanwhile,
VTE early warning after tumor surgery based on computer learning will have a broader
application prospect.

3 Clinical Data and Research Methods

3.1 Clinical Data

According to the domestic gynecological tumor patients VTE general clinical diagnos-
tic criteria, DVT can be diagnosed by diffuse pain appeared in both lower limbs after
the operation, or D-dimer > 500 ηg/L, color doppler ultrasound examination of blood
vessels in both lower extremities revealed strong echo in veins, and the veins could
not retract after being pressurized. The 132 samples were collected from a hospital
in Shanghai, involving uterine body malignant tumor, ovarian benign tumor, uterine
fibroid (adenomyosis), gestation-related diseases, genital prolapse, genital polyps, cer-
vical malignant tumor, and other non-inflammatory uterine diseases. In addition to the
indicators obtained from each case sample, case history and hormone level sample values
of clinical observation of gynecological tumor diseases were collected.

3.2 Data Processing

The collected sample values were preprocessed, and finally 89 available samples were
obtained, of which 10 were recurrent samples after surgery and 79 were non-recurrent
samples, as shown in Table 2.

72 postoperative cases were randomly selected as the model construction group,
among which 7 cases had VTE, 65 cases had no VTE, and the remaining 17 cases were
the model verification group. The age of the patients in the model construction group
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Table 2. Database summary table.

Data type Data volume(cases)

Overall count of clinical cases Summary 89

1 (no recurrence after surgery) 79

0 (recurrence after surgery) 10

was (45± 10.1) years old, including 7 cases of uterine bodymalignant tumor, 10 cases of
ovarian benign tumor, 15 cases of uterine fibroids (adenomyosis), 15 cases of gestation-
related diseases, 5 cases of genital tract prolapse, 8 cases of genital tract polyps, 7 cases
of cervical malignant tumor and 5 cases of other non-inflammatory uterine lesions.
There were 17 cases in the control group, including 3 cases with VTE. The age of the
patients in the model verification group was (46 ± 10.3) years old, including 1 case
of uterine body malignant tumor, 3 cases of ovarian benign tumor, 2 cases of uterine
fibroids (adenomyosis), 2 cases of pregnancy-related diseases, 1 case of genital prolapse,
3 cases of genital polyps, 2 cases of cervical malignant tumors and 3 cases of other non-
inflammatory uterine lesions. There was no statistically significant difference in age and
disease composition between the two groups (p > 0.05), suggesting comparability.

3.3 Application Test and Analysis of General Early Warning Model

All 89 sampleswere studied and evaluated using theVTE earlywarningmodel (as shown
in Table 1), and the results were shown in Table 3.

Table 3. General VTE warning model validation.

Data type Data volume
(cases)

Exact clustering
number (cases)

Clustering
accuracy (%)

Overall count of
clinical cases

Summary 89 74 83.15

1 (no recurrence
after surgery)

79 12 84.81

0 (recurrence after
surgery)

10 7 70.00

It can be seen from Table 4 that the general warning model was used for the test.
Among the 89 samples, there were an average of 12 errors (type A errors) in the test
of no recurrence cases, with the test accuracy of 84.81%, but the error tolerance rate of
some recurrence samples was 30%.

In order to construct a VTE early warning model for gynecological tumors after
surgery, the sample history and gonadal hormone concentrations were selected as addi-
tional indicators for the model, but PRL in the hormone level of cases was further
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Table 4. Gonadal hormone concentrations in the samples after surgery.

Diagnosis E2 LH FSH R PRL T

Cervical
malignancy

100.51 ± 132.16 17.14 ± 14.77 18.91 ± 22.65 2.48 ± 4.21 22..48 ± 14.21 0.74 ± 2.39

Malignant Tumor
of Ovary

160.15 ± 260.89 14.29 ± 12.27 27.67 ± 30.01 3.33 ± 6.72 23.01 ± 16.72 0.28 ± 0.27

Leiomyoma of
uterus

140.51 ± 112.16 12.54 ± 13.79 14.78 ± 17.91 3.31 ± 5.56 21.31 ± 15.56 0.82 ± 2.99

Endometrial
malignancy

142.51 ± 112.16 12.54 ± 13.72 14.25 ± 17.69 3.34 ± 5.53 22.24 ± 16.12 0.18 ± 0.13

Endometrial
polyp

134.51 ± 116.16 13.54 ± 17.18 17.19 ± 20.18 3.31 ± 4.51 20.15 ± 17.15 0.5 ± 3.01

Genital prolapse 140.51 ± 112.16 12.84 ± 17.98 15.51 ± 20.76 3.15 ± 5.02 21.32 ± 15.43 0.27 ± 0.21

Pregnancy related
illness

140.51 ± 112.16 13.54 ± 17.71 14.57 ± 23.21 3.16 ± 4.55 21.92 ± 11.35 0.24 ± 0.20

Other
noninflammatory
lesions

121.71 ± 125.16 10.54 ± 11.5 14.53 ± 21.89 2.19 ± 4.76 20.91 ± 14.21 0.28 ± 0.22

analyzed, and the PRL level of cases was within the normal range (see Table 4). There-
fore, in the construction of the new early warning model, PRL levels of hormones are
preferentially eliminated.

Seven indicators of coagulation report from the common warning indicators were
listed as one group (14 indicators before and after operation), three indicators of medical
history were grouped into one group, the remaining five indexes of gynecological hor-
mone level (10 indicators before and after operation), these seven groups (25 indicators)
were used for computer training and learning of WSOM algorithm to construct a VTE
warning system after gynecological tumor surgery (Table 5).

Table 5. Grouping of sample indicators.

Indicator
group

Group Indicator

1 Coagulation
report

D-dimmer
(mg </L)

FDP
(mg/L)

PT
(S)

APTT
(S)

TT
(S)

FIB
(g/L)

AT3
(%)

2 Medical history Menopause Reproductive
history

Diseased site (uterus/ovary)

3 Gynecological
hormone level

LH

4 R

5 E2

6 FSH

7 T
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3.4 VTE Early Warning Model of Gynecology Was Constructed Based
on WSOM Algorithm

WSOM algorithm is used to establish the VTE early warning model of gynecology,
which consists of three steps: learning and training, index drop and model test.

72 groups of case data were randomly selected for model training from 89 groups of
case samples, and the remaining 17 groups of case datawere used as verification samples.
Among the 72 data sets, there were 65 samples with no postoperative recurrence and
7 samples with postoperative recurrence. A matrix of size is established to represent a
total of 72 groups of sample data, and each group of data includes 25 indicators. Using
the NEWC function in Matlab software, the two categories are postoperative recurrence
(denoted as 1) and postoperative non-recurrence (denoted as 0). To speed up learning,
set the learning rate to 0,1. According to the research objective of postoperative early
warning of gynecological VTE in this paper, the errors in the training results were
divided into type A errors and type B errors. Meanwhile, the selection criteria of optimal
clustering model were determined as follows:

(1) High clustering accuracy.
(2) Relative uniformity in the distribution of misclassified cases.
(3) Under the same conditions, type A errors are easier to accept than type B errors.
(4) If the maximum number of training rounds is reached, the algorithm is terminated,

with the upper limit of training rounds set to 10,000.

We input all the 72 × 25 data to train the iteration. The upper limit of each training
iteration was 100. After 10,000 training rounds, the classification results were still not
ideal, which meant that the consideration of more influencing factors slowed the conver-
gence rate of model optimization, making it difficult to identify the optimal classification
model.

There is no doubt that using all 40 characteristic indicators as early-warning indi-
cators of VTE can realize accurate early warning but based on empirical judgement at
present it is unrealistic for clinical diagnosis and early-warning. Therefore, we adopted
the ‘cluster sampling’ method to improve the value of the research results.

Based on the existing research results of the project, the coagulation report group
was put into one group, the medical history was put into one group, and the five factors
of hormone level were the single element group. A total of 7 groups were obtained, and
the whole group sampling was conducted to improve the learning and training speed.

The number of indexes required by the model was optimized using the dimension-
reduction learning and training method. According to the learning and training method
outlined in the first step, all possible combinations of the index group are traversed,
namely,C1

7,C
2
7, . . . ,C

7
7, for a total of 2

7−1 = 131 possible combinations.
To ensure the stability of the model, the learning data generated each time are not

fixed. Sixty of the 72 groups of case data were randomly selected as learning data, and
the remaining 12 groups were test data. Different learning data with the same indicator
combination generated 100 different prediction models, and we took the average predic-
tion accuracy of these 100 models, namely the ‘average accuracy’ referred to in Table 6.



The Early-Warning Model 565

Then, we selected 10 indicators (7 indicators in the preoperative and postoperative coag-
ulation reports and 3 indicators in the hormone level group) in this model for whom the
average accuracy was highest at 84.28%.

Table 6. Model reference factors.

Coagulation
report

D- dimer
(mg/L)

FDP
(mg/L)

PT
(S)

APTT
(S)

TT
(S)

FIB
(g/L)

AT3
(%)

Hormone
level

FSH LH E2

According to the operation of WSOM algorithm, the final postoperative early
warning model of gynecological tumor was obtained, as shown in Table 6.

The 10 constructed indicators were used to test whether VTE early warning after
gynecological tumor surgery has application and promotion value. The model is tested
twice with the remaining 17 indicators, and the test criteria are the same as the above.
The results are shown in Table 7. Due to the randomness of the remaining indicators and
two type A errors in the secondary test results of the 17 test samples, there were no type
B errors, so the test accuracy was up to 88.24%. The VTE early warning model after
gynecological tumor surgery based on WSOM algorithm has A strong application.

Table 7. Data classification results of secondary test.

Serial
number

Actual
classification

Forecast
classification

Result Serial
number

Actual
classification

Forecast
classification

Result

1 1 1 T 10 1 1 T

2 1 1 T 11 1 1 T

3 1 0 F-A 12 1 1 T

4 1 1 T 13 1 1 T

5 1 1 T 14 1 1 T

6 1 1 T 15 0 0 T

7 1 0 F-A 16 0 0 T

8 1 1 T 17 0 0 T

9 1 1 T
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4 Model Analysis

4.1 Factor Analysis of VTE Prevention Model After Gynecological Tumor
Surgery

The causes of VTE are increased blood solidness, slow blood flow and vein wall dam-
age. Many studies have shown that patients with gynecological tumor surgery are at high
risk of VTE. Gynecologic tumor surgery is mostly radical surgery, surgery can directly
damage the local tissue and vascular wall, promote the activation of platelets. The tumor
cells in the patient can express the pro-coagulant activity of the cells themselves, that
is, excessive tissue factor, pro-coagulant protein and factor V receptor, and activate the
coagulation process. Preoperative preparation of gynecological tumor patients requires
fasting, blood further concentration, increased the chance of thrombosis. Stored plasma
is commonly used intraoperatively and may increase the likelihood of thromboembolic
events due to the high consistency of stored plasma. At the same time, intraoperative
anesthesia causes the veins below the anesthesia plane to dilate and the blood flow rate to
slow down, which increases the risk of intraoperative thrombosis. Although the patient
recovers blood flow after the operation, it is difficult to repair the endothelial damage
caused by the operation. Therefore, targeted early warning can create the best opportu-
nity for prevention and provide scientific evidence for the most reasonable prevention
measures for physicians.

In this study, indicators of coagulation report (d-dimer, FDP, PT, PTT, TT, FIB,
AT3) and hormone levels of FSH, LH, E2 were established as an early warning of VTE
after gynecological tumor, which can more accurately reflect the detection indicators
of t-PA and PAI in body fiber capacity. At the same time, the coagulation reporting
index can detect the postoperative vWFF, DD, and FDP levels of tumor patients, and
the appropriate prevention and treatment measures can help patients improve the ability
of fibrinolytic system correction and avoid the occurrence of postoperative VTE. The
hormone levels of FSH, LH and E2 in patients with gynecological tumors after surgery
can be dynamically detected and help the attending physician to analyze PAP, PAI,
PLI, PLG and PLM, which is conducive to the evaluation of the pre-thrombotic status
of patients after surgery and targeted drug prevention, so as to reduce thrombosis and
improve the therapeutic effect of embolism.

4.2 Prevention of Gynecologic Tumors After Surgery

Gynecological tumor surgery is the most difficult operation in gynecological surgery,
compared with the postoperative complications of other benign diseases, gynecological
tumor surgery postoperative complications will be more. At present, most gynecological
tumor surgery is minimally invasive surgery, the common postoperative complications
are mechanical injury and thermal injury. In the process of puncture, there may also be
vascular injury, especially great vessels injury. In the process of surgical injury, there
may also be vascular injury, intestinal injury, urinary system injury, etc. These compli-
cations are insidious and fatal, which are often serious and even life-threatening in the
later stage. Therefore, appropriate nursing intervention before surgery for gynecological



The Early-Warning Model 567

tumor patients can improve the effect of targeted surgical treatment, reduce the inci-
dence of complications, improve the satisfaction of patients with nursing, and relieve
the patients’ bad mood.

Clinical prevention ofVTEafter gynecological tumor surgery is divided into physical
prevention and drug prevention. And the preventive measures according to the early
warningmodel of the early warning report to choose the immediate preventivemeasures.
Physical prevention mainly adopts GCS, IPC and VFP, which can reduce the formation
of DVT by preventing blood stasis in the calf. Intermittent air pressure treatment can
reduce the incidence of VTE disease. Drug prophylaxis was mainly administered with
low-dose unfractionated heparin (LDUH) and low molecular weight heparin (LMWH),
it is one of the most widely studied methods of thromboprophylaxis. Several control
studies have shown that low-dose heparin is most effective in preventing DVT, and
subcutaneous injection is recommended to start 2 h before surgery and continue every
8 to 12 h after surgery. LDUH can greatly reduce the incidence of VTE in patients with
gynecologic tumors after surgery. Low molecular weight heparin has the same efficacy
as LDUH, with better bioavailability, less adverse reactions, less antithrombotic activity,
lower bleeding risk and lower dose of heparin. It is easy to use in clinical practice, but
costs more than LDUH.

The preventivemeasures for gynecological tumor patients after surgery are generally
to the patient’s complete freedom of movement. The American college of obstetricians
and gynecologists (ACOG) recommends that gynecologic surgeons take precautions
until they leave the hospital. For extremely high-risk patients, including those who
underwent radical tumor resection, aged over 60 years old, and had a previous his-
tory of VTE, continued preventive measures are recommended for 2 to 4 weeks after
discharge. At the same time, special attention should be paid to the mental health care
of patients in the recovery process, to strengthen the effective communication with their
families, to obtain their support and coordination, and to guide patients. In general, it
is recommended that scientific assessment and individualization of preventive measures
be taken.

5 Conclusion

Based on the post-operative early warning model of gynecological tumor proposed by
WSOM clustering algorithm, this paper screened out the characteristic variables that can
be passed and interpreted by all books with higher target variables, and constructed the
VTE early warning model after gynecological tumor surgery. At the same time, based
on the factor analysis of VTE early warning model after gynecological tumor surgery,
physical prevention and drug preventive measures were proposed. In clinical practice,
its prevention is conducted in grades. How to determine the grade of postoperative VTE
in gynecological tumor patients will be the direction of further study in this paper. The
research will further optimize the algorithm to enrich the case samples and improve the
transformation and application of the results.
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Abstract. Malignant tumor is a major disease that seriously threatens the health
of residents, as one of the vital measures to promote treatment of the tumor,
healthcare alliance is widely advocated and adopted. However, conflicting inter-
ests between the involved stakeholders in alliance hinder the implementation of
healthcare alliance effectively.Based ongovernment intervention, this paper inves-
tigated the supply chain of healthcare alliance-patient services at two levels: the
tumor healthcare alliance and tumor patients, comprehensive hospitals (CH) and
member hospitals (MH) that are low utilized (e.g. Primary Hospitals) within the
alliance and respectively constructed the evolutionary game model between the
alliance and patients, and between CH and MH to analyze the main influencing
factors of the evolutionary strategies and study the optimal coordination mech-
anisms of the healthcare alliances to achieve the balance of the supply chain of
alliance-patient services. Finally, numerical experiments are conducted to further
verify the validity and rationality of the model. The results show that: “widen
different reimbursement policy”, “increasing government subsidies”, “enhancing
the reputational impact of the different strategies of the healthcare alliance” and
“reducing the CH’s costs of supporting MH” are effective measures to encourage
patients to follow first diagnosis at MH and the CH support the MH to strengthen
the ability. In addition, “increasing government subsidies” and “reducing the costs
of cooperation” can promote both sides to collaborate with each other. Moreover,
the initial strategy probability of stakeholders would affect the evolutionary tra-
jectories. The conclusions provide managerial insights of much practical value for
the operation of tumor healthcare alliance.

Keywords: Tumor healthcare alliance · Government intervention · Coordinated
decisions · Evolutionary game theory

1 Introduction

As the population ages, the incidence and mortality of malignant tumor in China are
on the rise, and malignant tumor is the second leading common cause of death, accord-
ing to the latest data, patients with malignant tumors accounted for 23.91 percent of
all deaths [1], such as lung, gastrointestinal, colorectal and esophageal cancers [2, 3].
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As the high-quality services provider, the comprehensive hospitals are crowded and
over utilized frequently [4]. Another salient issue is the long treatment cycle, involv-
ing chemotherapy, surgery, and radiation therapy [2], incurring high costs in high-level
hospitals. Hence, there exists the salient problem of “difficult and expensive medical
treatment” for residents.

As an important initiative of the new medical reform, the healthcare alliance has
been effective in vertically integrating the medical resources of different levels of medi-
cal institutions, but there are still some barriers in the actual operation of the healthcare
alliance service supply chain. Firstly, the overwhelming majority of the patients with
malignant tumor prone to go directly to specialist CH for the first diagnosis. Conse-
quently, the CH are frequently over utilized while theMH often remain idle [5]. Besides,
hospitals within the alliance are all self-interest behaviors, simultaneously, patients are
the source of income, which results in inefficient of the referral system [6]. In essence,
the peers in alliance stay independent, every peer pursues maximum profits [7]. Then
we thereby argue that the lack of interest coordination mechanisms, which prevents the
formation of a stable service supply chain. Accordingly, the government should give
full play to its function of propelling new medical reform [8]. By exploring the conflict
of interest and coordination mechanism between the healthcare alliance and patients,
we expect to realize the sinking of superior resources and achieve the standardize and
homogenize tumor treatment, with a view to better serve patients.

2 Literature Review

As the problem of uncoordinated operation of the services supply chain of the healthcare
alliance-patient has become more prominent, many scholars have strived to explore the
causes of the problem and the solutions from different perspectives. Representative stud-
ies on the analysis and coordination of health consortium stakeholders include: Chen
et al. [9] explored game matrixes among various stakeholders of the healthcare alliance,
and discussed some suggestions on the positive operation of healthcare alliance. Lei
[10] pointed that the lack of incentive and restraint mechanisms of basic medical care
insurance is the major factor in the inefficient operation of two-way referral and put
forwards suggestions to improve the process of referral. In addition, scholars have con-
ducted abundant reviews to show that government intervention has played a critical role
in the coordinated operation of the alliance: Lin et al. [11] analyzed the operation mode
of the compact tumor healthcare alliance under the intervention of the government, and
put forward constructive opinions on the possible risks in the later stage of operation. Xu
et al. [12] studied the characteristics of themodel of the government-hospital co-building
healthcare alliance, and analyzed the benefits of this model through the experimental
data. Game theory is potently applied to solve the problem of cooperation and coor-
dination among multiple independent stakeholders, there are some typical researches:
Gao [7] proposed a two-stage game-theoretic approach to study the operations of the
healthcare alliance and further analyze the revenue sharing in the alliance. Gan et al. [13]
constructed a three-stage dynamic gamemodel of medical insurance funds, patients, and
higher and lower hospitals, which showed that medical insurance payment levels should
be used rationally to improve the hierarchical diagnosis and treatment system.
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To sum up, domestic and foreign scholars have conducted many beneficial explo-
rations of the healthcare alliance-patient service supply chain. However, most of the
solutions to the alliance-patient problems lack the perspective of the evolution of events;
The healthcare alliance-patient service supply chain involves multiple stakeholders, and
the above literature does not discuss the balance of interests from the internal and exter-
nal of the alliance. To fill the knowledge gaps, this paper focuses on the conflicts of
interest in the healthcare alliance-patient service supply chain. Under the premise of
government intervention, this paper will strive to explore the evolutionary processes of
the healthcare alliance and tumor patients, the CH and MH of the alliance, and discuss
the stable strategies for them, aiming to provide decision-making references and policy
recommendations for the efficient operation of the healthcare alliance-patient service
supply chain under the new medical reform.

3 Evolutionary Stability Analysis of Tumor Healthcare Alliance
and Patients

In the service supply chain composed of tumor healthcare alliance and patients, hospi-
tals within the alliance provide corresponding treatment plans and medical services to
patients according to the patient’s physical condition and pecuniary condition. Subse-
quently, the patient chooses whether to follow the provided plan for the first diagnosis
and two-way referral behaviors [14]. Owing to the inadequate competence of the MH,
the patients are reluctant to MH for the first diagnosis. On the other hand, the healthcare
alliance is unwilling to spend costs to improve primary medical services. To investigate
the strategies for propelling the service supply chain being operated smoothly, we build a
healthcare alliance-patient evolutionary gamemodel to constantly adjust their respective
strategies for optimizing the dynamic evolution equilibrium.

3.1 A Subsection Sample

Related Hypothesis. In this section, the decision-making behaviors of the participants
in the service supply chain constitute a game system L. Consider two players in the game:
tumor healthcare alliance and patients, meanwhile, both of them are bounded rationality.

The healthcare alliance has two alternative strategies: “helping theMH to strengthen
the ability of the malignant tumor treatment” (strategy S1) with the probability x(0 ≤
x ≤ 1); “not helping theMH to strengthen ability of themalignant tumor treatment” (S2)
with the probability 1 − x; In the meanwhile, the patients also have two pure strategies:
“going to MH for first diagnosis” (strategy P1) with the probability y(0 ≤ y ≤ 1); “not
going to MH for first diagnosis” (P2) with the probability 1 − y.

Based on the above conflicts of healthcare alliance and patients, relevant parameters
of the game models are defined:

(1) For healthcare alliance: If the patients choose strategy P1, the medical alliance
obtains the payoff I1. Under the circumstances, if the healthcare alliance chooses S1,
the healthcare alliance incurs costs C to promote the sinking of medical resources
and improve the MH’s medical capacity. Beyond that, they will obtain the extra
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payoff I0, and the government compensation G(G < C) and increasing in reputa-
tion M1. By contrast, If the healthcare alliance chooses strategy S2, the healthcare
alliance’s reputational loss is qualified as M2. If patients choose strategy P2, the
healthcare alliance obtains the payoff I2. Under the circumstances, if the health-
care alliance chooses strategy S1, the healthcare alliance incurs costs C and obtain
government compensation G.

(2) For patients: On account of the limited treatment level, the patients with malig-
nant tumor who adopt strategy P1 obtain the physical recovery payoff R1 and incur
the lower time and economic cost Q1. Certainly, it contains the cost of patients
with misdiagnosis, illness delay and so on. In addition, the government and the
medical insurance institutions compensate them for their total expenses at a rate
of μ percent (0 < μ < 1). Under the circumstances, if the healthcare alliance
chooses to strategy S1, the patients will get relatively higher-quality treatment lead-
ing extra payoff R0 and save the costs Q0 incurred by mistreatment; The patients
with malignant tumor who adopt strategy P2 obtain the physical recovery payoff
R2 and incur the more costsQ2(R1 < R2; Q1 < Q2). In addition, the government
and the medical institutions compensate them for their total expenses at a rate of
ν percent.(0 < ν < 1, ν < μ). And we suppose that when the patients do not
comply with the primary diagnosis, which strategy the healthcare alliance chooses,
it will not affect the patients’ medical service benefits.

Then, evolutionary game payoff matrix of tumor healthcare alliance and patients
under the government intervention can be obtained. Table 1 shows its payoff matrix:

Table 1. The evolution game model between healthcare alliance and patients

Patients Healthcare alliance

S1 S2

P1 R1 +R0 − (1−μ)(Q1 −Q0) I1 + I0 + M1 + G − C R1 − (1 − μ)Q1 I1 − M2

P2 R2 − (1 − ν)Q2 I2 + G − C R2 − (1 − ν)Q2 I2

Modeling. According to the hypothesis and the matrix (1), it is supposed that US1 and
US2 denote the expected payoff for the healthcare alliance on adopting strategy S1 and S2
respectively, and US represents the average excepted payoff of the healthcare alliance,
all of which are described as follows:

US1 = y(I1 + I0 + M1 + G − C) + (1 − y)(I2 + G − C) (1)

US2 = y(I1 − M2) + (1 − y)I2 (2)

US = xUS1 + (1 − x)US2 (3)
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Based on the Malthusian dynamic equation, from (1) and (3), the constructed
replication dynamic equation of healthcare alliance is F(x):

F(x) = dx

dt
= x(US1 − US)

= x(1 − x)[G − C + (I0 + M1 + M2)y] (4)

Similarly, the constructed replication dynamic equation of patients is F(y):

F(y) = dy

dt
= y(UP1 − UP)

= y(1 − y){R1 − (1 − μ)Q1 − [R2 − (1 − ν)Q2] + [R0 + (1 − μ)Q0]x}
(5)

From (4) and (5), we can build a two-dimensional nonlinear dynamic system L as
follows:{
F(x) = x(1 − x)[G − C + (I0 + M1 + M2)y]
F(y) = y(1 − y){R1 − (1 − μ)Q1 − [R2 − (1 − ν)Q2] + [R0 + (1 − μ)Q0]x}

(6)

3.2 The Strategy Evolution of the System L

The Healthcare Alliance’s Stable Strategy. LetF(x) = dx
dt = 0, we can obtain x∗ =

0x∗ = 1 or y∗ = C −G
I0 +M1 +M2

. From the properties of the evolutionary stable strategy

and the stability theorem of differential equation, when,
dF(x∗)

dx |x=x∗ and then x∗ is an
ESS. Then, the first-order derivative with respect to F(x), leading to

F ′(x) = (1 − 2x)[G − C + (I0 + M1 + M2)y] (7)

Only when F
′
(x) < 0, the evolutionary Stability Strategy (ESS) will be realized.

When y = y∗, F(x) always remains 0, at this point, all x are stable condition; When
y �= y∗, two evolutionary stable strategy equilibrium points, respectively, but whether
the point becomes an evolutionarily stable strategy depends on the plus or minus of
G − C + (I0 + M1 + M2)y. Furthermore, there exists three cases:

(1) When y = y∗, F(x) = 0, all x are stable;
(2) When y < y∗,F ′

(0) < 0, therefore x∗ = 0 is an evolutionary stable strategy;
(3) When y > y∗,F ′

(1) < 0, therefore x∗ = 1 is an evolutionary stable strategy;

The Patients’ Stable Strategy. Let F(y) = dy
dt = 0, we can obtain y∗ = 0y∗ = 1 or

x∗ = R2 − (1− ν)Q2 −[R1 − (1−μ)Q1]
[R0 + (1−μ)Q0] and after similar analysis, we found:

(1) When x = x∗, F(y) = 0, all y are stable;
(2) When x < x∗,F ′

(0) < 0, therefore y∗ = 0 is an evolutionary stable strategy;
(3) When x > x∗,F ′

(1) < 0, therefore y∗ = 1 is an evolutionary stable strategy;
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3.3 Analysis of the Influence of Parameters on Evolutionary Equilibrium

From the proceeding analysis, we obtained five equalization points: (0, 0), (0, 1), (1, 0),
(1, 1) and (x∗, y∗). And it can be known from the above hypothesis: 0 < x∗ < 1
0 < y∗ < 1. The evolution analysis of portfolio strategy of healthcare alliance and
patients with malignant tumor under the government intervention is shown in Fig. 1.

*x

*y

x

y

0 (1,0)

(1,0) (1,1)

E

A

B

C

(0,0)

Fig. 1. The phase diagrams of the system L

As depicted in Fig. 1, (0, 0) and (1, 1) are evolutionary stable strategies, namely
{S1 , P1} and {S2 , P2}. By enlarging the quadrilateral SAEBC , the evolutionary game is
more prone to converge to Pareto optimal equilibrium {S1 , P1}.It can be seen that the
area of SAEBC is negatively related to the value of x∗ and y∗. By analyzing the factors
influencing the value of x∗ and y∗, we found that:

(i) ∂x∗
∂μ

< 0, ∂x∗
∂ν

> 0, ∂x∗
∂(R2−Q2)

> 0, ∂x∗
∂(R1−Q1)

< 0, ∂x∗
∂R0

< 0;

(ii) ∂y∗
∂C > 0, ∂y∗

∂G < 0, ∂y∗
∂(M1+M2)

< 0, ∂y∗
∂I0

< 0;

To obtain the minimum value of x∗ and y∗: (1) The government ought to improve
the incentive mechanism and increase financial subsidies to alleviate the cost of the
healthcare alliance’s assistance to primary hospitals; (2) Medical insurance institutions
should formulate relevant differential payment policies within the alliance, and increase
the proportion of reimbursement under the strategy of patients going to MH for the
first diagnosis and not going to MH for the first diagnosis; (3) The publicity should be
intensified to enhance the influence of the strategy of choosingwhether to support theMH
of alliance on their reputation, so as to effectively influence the strategic choice of the
alliance; (4) Formulate effective guidance measures to improve the players’ spillover
benefits of optimal decisions; (5) Besides, the ultimate ESS depends not only on the
saddle point (x∗, y∗), but also on the initial proportion chosen by the participants. The
ESS converges to Pareto optimal equilibrium {S1 , P1} with a greatest probability only
if the initial proportion of peers’ choices is in the upper right of O(x∗, y∗), where
x > x∗, y > y∗. Hence, it is needful to develop effective measures to increase the
initial possibilities of the participants.
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4 Evolutionary Stability Analysis of CH and MH in the Healthcare
Alliance

Within the healthcare alliance, hospitals at different levels propose referral suggestions
to the tumor patients according to their conditions. Some prime factors that hinder the
implementation of two-way referral: (1) The CH lack the incentive to divert patients
to lower-level hospitals for healing treatment, because it may sacrifice their revenues.
Besides, the MH loath to easily access transferred patients due to the lack of high-
quality medical service resources, contributing to the failure of the implementation of
standardized treatment plans. Therefore, the evolutionary game model between CH and
MH is established to explore a cooperative mechanism to form a community of interests
between CH and MH, like establishing the green referral channel.

4.1 Hypothesis and Model

Related Hypothesis. In this section, we divide the healthcare alliance into two levels:
CH andMH.And the decision-making behaviors of the players constitute a game system
L’. Meanwhile, both of them are bounded rationality.

The CH have two pure strategies: “cooperation (strategy H1)” and “non-coperation
(H2)” with the probability γ (0 ≤ γ ≤ 1) and 1 − γ . Meanwhile, the MH can also
play two pure strategies: “cooperation (strategy J1)” and “non-coperation (J2)” with the
probability η(0 ≤ η ≤ 1) and 1 − η.

Based on the above conflicts of CH and MH, relevant parameters of the game model
are defined:

(1) For CH:D is the CH’s payoff when the cooperation strategy between the CH and
MH is not reached;D0 is the CH’s spillover payoff when the cooperation strategy
is reached;F is the CH’s input the cost for cooperating with MH, the cooperation
cost includes the information platform construction, green channel construction in
patients with malignant tumor, and so on; MH invest part of their cooperation cost
βL into the CH as incentive cost (0 < β < 1), since the CH play an dominating
role in the medical alliance, and it is more inclined to maintain the exclusive right
to its own resources;G1 is the financial subsidies for the MH who adopt strategy
J1(G1 < F).

(2) For MH:M is the MH’s payoff when the cooperation strategy between the CH and
MH is not reached;M0 is the MH’s spillover payoff when the cooperation strategy
between the CH and MH is reached;L is the MH’s input the cost for cooperating
with CH;G2 is the financial subsidies for theMHwho adopt strategyH1(G2 < L).

From the preceding definitions, evolutionary game payoff matrix of CH and MH
under the government intervention can be obtained. Table 2 shows its payoff matrix (2):

Modeling. It is supposed that UH1 and UH2 signify the expected payoff for the CH on
adopting strategy H1 and H2, and UH represents the average excepted payoff:

UH1 = η(D + D0 + G1 + βL − F) + (1 − η)(D + G1 − F) (8)
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Table 2. The evolutionary game model between MH and CH

MH CH

H1 H2

J1 M + M0 + G2 − L D + D0 + G1 + βL − F M + G2 − L D + βL

J2 M D + G1 − F M D

UH2 = η(D + βL) + (1 − η)D (9)

UH = γUH1 + (1 − γ )UH2 (10)

From (8) and (10), the constructed replication dynamic equation of CH is F(γ ):

F(γ ) = dγ

dt
= γ (1 − γ )(G1 − F + D0η) (11)

Similarly, the constructed replication dynamic equation of patients is F(η):

F(η) = dη

dt
= η(1 − η)(G2 − L + M0γ ) (12)

Furthermore, we can build a two-dimensional nonlinear dynamic system L′ as
follows: {

F(γ )= γ (1 − γ )(G1 − F + D0η)

F(η)= η(1 − η)(G2 − L + M0γ )
(13)

UH1 = η(D + D0 + G1 + βL − F) + (1 − η)(D + G1 − F) (8)

UH2 = η(D + βL) + (1 − η)D (9)

UH = γUH1 + (1 − γ )UH2 (10)

From (8) and (10), the constructed replication dynamic equation of CH is F(γ ):

F(γ ) = dγ

dt
= γ (1 − γ )(G1 − F + D0η) (11)

Similarly, the constructed replication dynamic equation of patients is F(η):

F(η) = dη

dt
= η(1 − η)(G2 − L + M0γ ) (12)

Furthermore, we can build a two-dimensional nonlinear dynamic system L′ as
follows: {

F(γ )= γ (1 − γ )(G1 − F + D0η)

F(η)= η(1 − η)(G2 − L + M0γ )
(13)
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4.2 The Strategy Evolution of the System L’

The CH’ Stable Strategy. Let F(γ ) = dγ
dt = 0, we can obtain γ ∗ = 0; γ ∗ = 1 and

η∗ = F−G1
D0

. From the properties of the evolutionary stable strategy and the stability

theorem of differential equation, when, dF(γ ∗)
dγ

|γ=γ ∗ and then γ ∗ is an ESS.
The first-order derivative with respect to F(γ ), leading to

F ′(γ ) = (1 − 2γ )(G1 − F + D0η) (14)

When η = η∗,F(γ ) always remains 0, at this point, all γ are stable condition;When
η �= η∗, two evolutionary stable strategy equilibrium points, respectively, but whether
the point becomes an evolutionarily stable strategy depends on the plus or minus of
(G1 − F + D0η). Furthermore, there exists three cases:

(1) When η = η∗, F(γ ) = 0, all γ are stable;
(2) When η < η∗, F ′

(0) < 0, therefore γ ∗ = 0 is an evolutionary stable strategy;
(3) When η > η∗, F ′

(1) < 0, therefore γ ∗ = 1 is an evolutionary stable strategy;

The MH’s Stable Strategy. Let F(η) = dη
dt = 0, we can obtain η∗ = 0η∗ = 1 or

γ ∗ = L−G2
M0

. And after the similar analysis, we found:

(1) When γ = γ ∗, F(η) = 0, all η are stable;
(2) When γ < γ ∗, F ′

(0) < 0, therefore η∗ = 0 is an evolutionary stable strategy;
(3) When γ > γ ∗, F ′

(1) < 0, therefore η∗ = 1 is an evolutionary stable strategy;

4.3 Analysis of the Influence of Parameters on Evolutionary Equilibrium

From the proceeding analysis, we obtained five equalization points:(0, 0), (0, 1), (1, 0),
(1, 1) and (γ ∗, η∗). And it can be known from the above hypothesis: 0 < γ ∗ < 1
0 < η∗ < 1. The evolution analysis of portfolio strategy of CH and MH under the
government intervention is shown in Fig. 2.

0 (1,0)

(1,0) (1,1)

*

*

'E

'A

'B

'C

(0,0)

Fig. 2. The phase diagrams of the system L
′
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As depicted in Fig. 2, {H1 , J1} and {H2 , J2} are evolutionary stable strategies.
Similar to the analysis in Sect. 3.3, we found that:

(i) ∂γ ∗
∂G2

< 0, ∂γ ∗
∂L > 0, ∂γ ∗

∂M0
< 0; (ii) ∂η∗

∂F > 0, ∂η∗
∂G1

< 0, ∂η∗
∂D0

< 0;
To obtain the minimum value of γ ∗ and η∗: (1) The government should optimize the

policies to reduce the cooperation costs of different levels of hospitals within the health-
care alliance; (2) In addition, it is also recommended to reduce the cooperation costs by
simplifying the referral process, scale effect and other measures to promote collabora-
tion and cooperation between each other; (3) Formulate effective guidance measures to
improve the players’ spillover benefits of optimal decisions; (4) Additionally, the inital
proportion of strategies of participants exercises a great influence on the evolution tra-
jectories. The higher the initial proportion, the greater probability the game converges
to Pareto optimal equilibrium.

5 Numerical Simulations

In this section, a simulation of the model is conducted through MATLAB for the pur-
pose of verifying the accuracy and effectiveness of the above results of the model and
intuitively observe the dynamic evolutionary trajectories of the evolutionary system. The
parameters of the system L are assigned as follows: G = 14; C = 20; I0 = 5M1 = 7;
M2 = 2;Q0 = 1; Q1 = 5; Q2 = 5; μ = 0.7; ν = 0.5; R0 = 3; R1 = 8; R2 = 10.
Simultaneously, the parameters of system L′ are assigned as follows: G1 = 9; G2 = 6;
D0 = 12; M0 = 10; F = 14; L = 13.

The trend of the dynamic evolutionary are displayed in Fig. 3 and Fig. 4, it thus
appears that the evolutionary trajectory will eventually tend to the ESS (0, 0) and
(1, 1), it means that {S1,P1} and {S2,P2}, {H1 , J1} and {H2 , J2} are evolutionary stable
strategies, which accords with the above model analysis.

x

y

Fig. 3. The dynamic of the system L

γ

η

Fig. 4. The dynamic of the system L
′

In order to simulate and verify the influences of the initial selective probability of
the healthcare alliance and tumor patients on the ESS, we assume that the initial strategy
of x and y are (0.2, 0.2) and (0.8, 0.8) respectively. Subsequently, the detailed results
are displayed in Fig. 5, it can be easily found that the initial probabilities of the two
peers are all 0.8, the ultimate ESS will tend to (1, 1), namely {S1,P1}. Similar to the



The Coordinated Decisions of Service Supply Chain 579

above assumption and analysis, Fig. 6 also prove that when the initial probabilities are
all 0.8, the ESS will tend to {H1 , J1}. Accordingly, it is necessary to formulate effective
measures to increase the possibility of participants choosing the optimal strategy, which
has important guiding significance for the coordinated operation of the tumor healthcare
alliance.

x
y

x
y

Fig. 5. Dynamic evolutionary paths under various initial probabilities of the system L

γ
η

γ
η

Fig. 6. Dynamic evolutionary paths under various initial probabilities of the system L
′

6 Conclusion

The construction of the medical alliance of tumor specialists is a long-term work, which
requires the government to play a dominating role, deepening the medical insurance
policy, increasing the investment in primary hospitals, coordinating the interests of all
stakeholders and making high-quality medical resources can better serve the people. To
address this challenge, our paper concentrated on the issue of aligning the self-interest
of the stakeholders related to the healthcare alliance. In particular, this paper constructs
the evolutionary game model of the healthcare alliance and the patients with malignant
tumor, CHandMHunder government intervention.And then it analyzes the evolutionary
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game equilibrium strategy and the factors affecting the optimal strategy. By exploring
reasonable incentive and compensation mechanisms, coordinating the interests of the
game participants, the construction of healthcare alliance can be effectively promoted.
What’s more, the tumor defense and treatment mode of “primary hospital first diagnosis,
two-way referral, triage treatment, and linkage up and down” can be realized. Finally,
the healthcare alliance can better benefit the people, which is also conducive to forming
a long-term stable healthcare alliance-patient relationship.
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Abstract. Cloud service provides distributed storage spaces and avoids comput-
ing bottlenecks of centralized database storage, but it cannot provide secure data
storage and sharing. How to store and share medical data efficiently and reli-
ably is an important issue to ensure the safety of medical data in the process
of medical data management of multi-regional hospitals. The public access of
blockchains and the non-modifiable characteristics of the stored data make it an
effective implementation scheme for medical data sharing. Meanwhile, with the
continuous transactions in blockchains, the data of the blockchains are bound to
be larger and larger, which leads to serious issues for the use and storage of data.
Based on the LZW (Lemple-Ziv-Welch) algorithm, this paper presents a lossless
compression technology for Chinese text compression with a compression storage
and sharing scheme for medical data using blockchains to provide safer and more
efficient access services for medical data.

Keywords: Blockchain ·Medical data · Text compression · Data storage · Data
sharing

1 Preface

Medical information is the valuable information from patients. However, in the current
medical system of Chinese domestic hospitals, most information cannot be shared by all
the hospitals, so the patients sometimes should apply for a new medical card to record
the medical information of themselves, making the previous medical information of
the patients useless or easily wrong. Although most hospitals use paper-based medical
records, these records are very easy to be damaged or lost, which is a very unreliable way
for medical information recording. On the other hand, with the development of cloud
computing, distributed databases can realizemedical information sharing, but may cause
losses to patients because of the leakage of patients’ information. Therefore, medical
staff and patients need a system that can share medical information among hospitals and
ensure the safety and reliability of stored medical data. As a distributed database system
with multiple independent nodes, a blockchain is the ideal way to realize this system at
present due to the advantages of decentralization, no trust, strong tamper resistance, etc.
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A blockchain is expected to solve the common problems of low data security or poor
sharing in the existing medical system. At the same time, with the continuous expansion
of transactions in a blockchain, the amount of data it stores is also increasing. In order
to improve the efficiency of a blockchain, this paper proposes the following solutions
based on blockchains and text lossless compression technology:

1. Hospitals build a blockchain to jointly manage and maintain the stable operation of
the blockchain, ensuring data security and reducing the cost of data protection;

2. The LZW (Lemple-Ziv-Welch) algorithm is used to compress the original medical
data, compress and store the medical text data and realize the effective compression
of medical information to relieve the storage pressure;

3. Based on the idea of text data compression given in this paper, the realization ofmed-
ical data management and sharing under the blockchain is discussed, which provides
a new idea for the effective management of medical data under the blockchain.

Section 2 of this paper introduces the related work of text compression algorithm and
blockchain technology. Section 3 introduces the blockchain, text lossless compression
and other related technologies involved in this method. Section 4 introduces the specific
design of the method, and finally the work is summarized in Sect. 5.

2 Research Progress

2.1 Blockchain

In recent years, many researchers and institutions at home and abroad use blockchain
technology to explore and practice in the fields of data protection and sharing [1]. In
2013, Araoz et al. realized the authenticity protection of electronic files by storing hash
values in fields in blockchain transactions [2]. Based on the blockchain, Vaughan et al.
proposed a general file protection framework, which computes the file hash values and
builds the Merkel tree to reduce the cost of data protection [3, 4]. In 2016, Azaria and
others constructed a decentralizedmedical data access and authoritymanagement system
by using smart contracts to realize patients’ ownership of their medical data and enable
them to independently share and manage medical records [5]. In November of the same
year, Weide Cai and others put forward the development method of application system
based on blockchain, including the design model of account chains and transaction
chains, as well as the application principle of parallel code execution model on the chain
[6].

In China, ant financial services carried out tracking management of donation and
donation flow based on blockchain technology in 2017, improving the transparency,
traceability and nonmodifiable characteristics of its system and data [7]. In 2018, Baidu
applied the blockchain technology to the data protection of Baidu Encyclopedia, record-
ing the historical version of each update of the encyclopedia entry, the author, editing
time and other information on the blockchain, achieving the purpose of data protection
and storage [8]. In October 2017, Zhang Ning et al. realized a solution framework of per-
sonal privacy data protection by using blockchain, database, asymmetric encryption and
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other technologies, initially realizing the protection of personal privacy in the Internet
car rental scene [9].

In the field of medical treatment, American scholar Kevin Peterson et al. used
blockchain technology to realize medical information sharing, and proposed a novel
consensus mechanism, which uses the accuracy of semantics as proof to mine and gen-
erate blocks [10]. Researchers such as Ekblaw fromMITMedia Laboratory in theUnited
States, used Ethereum as the platform to write smart contracts to realize a distributed
information management system “MedRec”, realizing the information security of sen-
sitive medical information through identity authentication, encryption, sharing and dis-
tributed storage of data [11]. At the same time, a proof of concept mechanism was
proposed to ensure the normal operation and maintenance of the system. Researchers at
the University of California, San Diego, proposed a blockchain-based privacy protec-
tion framework for decentralized medical information “ModelChain”, which analyzes
the data in the context of the private chain with artificial intelligence, and can design the
information certificate without explicitly displaying the patient’s medical information
The algorithm is used to determine the processing order, which provides a good solution
to protect the sensitive data of patients by combining the related technology of artificial
intelligence [12].

InChina, XiaQi and others from theUniversity of Electronic Science and technology
proposedMeDShare scheme, which uses blockchain to realize medical data sharing, and
completes the verification, audit and information sharing control of medical data [13]. In
the scheme, smart contract is also introduced to track data information and realize data
traceability. If there is an illegal transaction, smart contract can automatically revoke
the access rights of illegal users to improve the security of the system. In 2018, Daiying
Dong and XuemingWang proposed to let the nodes in the hospital alliance service group
register the public key on the network, and then add the public key to the header of each
item of transaction data. The client uses the API interface provided by Web3 to interact
with the node, and encrypts the user’s private key once through the user’s password,
so as to ensure that patients can query cases through identity documents [14]. Yanhui
Ren from Xi’an University of Electronic Science and technology proposed a scheme
of medical information privacy protection and sharing based on blockchain. On the
basis of ensuring the dense storage of archive data, the scheme enables users to achieve
fine-grained access control for each record, and verifies the feasibility and performance
overhead of the scheme [15].

2.2 Data Compression Algorithm

In the early 19th century, researchers replaced the characters commonly used in text
using the code named MC (Morse Codex’s), that is, using shorter characters to encode
commonly used characters to achieve the compression effect. Then, the S-F (Shannon
fan) coding algorithm appeared. According to the probability of symbol occurrence, the
algorithm uses shorter coding symbols to replace the original symbols. In 1952, David
A. Huffman proposed Huffman coding, which was monopolized from 1960s to 1980s
[16]. Although Huffman coding has some advantages in data compression compared
with the compression algorithm before 1952, it also has a fatal weakness, that is, when
the algorithm compresses the data, it needs to scan the original data twice [17]. In
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1977, Abraham Lempel and Jacob Ziv used dynamic dictionaries to replace the repeated
strings in the text with shorter symbols, which greatly improved the compression ratio.
In 1978, they published the improved LZ78 algorithm, whose idea is to generate a static
dictionary set based on the input data. The algorithm is more stable and effective.

According to the requirements of application background, there are more and more
improved algorithms based on LZ77 and LZ78 compression algorithms [18], among
which LZW algorithm is the most popular. LZW algorithm is an optimized version of
LZ78 algorithm proposed by Terry Welch in 1984 [19]. In addition to inheriting the fast
compression and decompression characteristics of LZ78 algorithm, the compression
ratio of this algorithm is higher. LZW can dynamically generate a dictionary set to
save the processed historical data when compressing and decompressing the data. When
“prefix, character” cannot correspond to each other in the algorithm dictionary, the prefix
is encoded and output to realize data compression. For medical data, this paper presents
a dictionary-based LZW Chinese compression method in the process of blockchain
management and sharing to reduce the increasing pressure of transaction data storage
and improve the transaction efficiency in blockchains.

3 Related Technologies

3.1 Main Idea of Blockchain

Blockchain technology can safely store bitcoin transactions or other data, and ensure the
security of these data or information to prevent tampering and forgery. Different from
the common relational database and the non-relational database, the core of blockchain
is decentralization. By using encryption algorithms such as digital signatures, hash algo-
rithms and distributed consensus algorithms, the stored data are very difficult to be tam-
pered with, destroyed or erased from the database operation log. Under the premise that
peer-to-peer nodes do not need trust, the decentralized point-to-point transaction, coor-
dination and cooperation are realized to solve the problems of high cost, low efficiency
and insecure data storage in the centralized database application system.

Blockchain system is divided into six layers: the data layer, the network layer, the
consensus layer, the incentive layer, the contract layer and the application layer. Among
them, the data layer encapsulates the underlying block of a blockchain, hash function,
data encryption and time stamp; the network layer includes point-to-point technology,
propagation mechanism and verification mechanism; the consensus layer encapsulates
various consensus algorithms of network nodes; the incentive layer mainly includes the
distribution mechanism; the contract layer mainly encapsulates various scripts, algo-
rithms and smart contracts, which is the basis of the programmable characteristics of
the blockchain; the application layer is the application of the blockchain in various sce-
narios. Smart contract is the core element of blockchain, which is triggered by events
and runs on the blockchain data ledger. It is used to realize the interaction between a
blockchain and contract application.

Each node in the blockchain can encapsulate the transaction data into a data block
with time stamp, and link to themain block to form the latest block, and then synchronize
the block information into the whole blockchain network. The data block includes block
head and block body. The block header encapsulates the address of the previous block
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and a series of hash values, which are used to link the front block and the back block;
the block body mainly contains the main information of the block. The composition of
a blockchain is shown in Fig. 1.

Fig. 1. The composition of a blockchain

3.2 LZW Algorithm

LZW algorithm is improved by Terry A. Welch on the bases of LZ78 and LZ78. It
is a compression algorithm based on dictionary. The idea of dictionary compression
algorithm is to store the strings appearing in the data as entries in the dictionary, and
code these entries to replace the relatively long strings in the data with the encoding
of entries. Its characteristic is that the dictionary does not need to be stored in the
compressed file with the compressed data.

LZW algorithm initializes the dictionary at the beginning of compression. After
initialization, the dictionary contains 256 single characters. After the compression starts,
read the strings and match the entries in the dictionary one by one in order. If the match
is successful, continue to read in the next character to form a new string and continue
to match until the match fails. Number the string and add it to the dictionary as a
new entry. Output the last matching to the number corresponding to the string. In this
way, the number of entries in the dictionary will automatically increase as the data are
compressed. Then the matching probability of strings in the data will be increased to
achieve the purpose of data compression.

LZW algorithm is independent of the statistical characteristics of probability with
compressed data. Therefore, this algorithm can be used in real-time data compression,
which is very important because sometimes it is impossible to know the probability and
statistical characteristics of each character in the compressed data in advance. For the
data sourcewith a high repetition rate, LZWalgorithm can get a satisfactory compression
rate.

LZW algorithm is a compression algorithm based on dictionary. The dictionary is
built dynamically in the process of data compression. In the process of compressed
data transmission and storage, the dictionary does not need to be transferred and stored
together with the compressed data.When the data is decompressed, the dictionary can be
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generated dynamically in the process of decompressing. The dictionary constructed dur-
ing compression is exactly the same with the dictionary constructed during decompress-
ing. The capacity of the dictionary is not large, and the compression and decompression
speed is high.

4 Method Design

4.1 Lossless Compression of Chinese Based on LZW

(1) Chinese coding method based on LZW
The core of LZW compression algorithm is a conversion table maintained in the
process of compression, which is a dictionary. Because the basic processing unit of
the general LZW algorithm is bytes for English characters, if it is directly applied
to Chinese characters, the hidden semantic information in Chinese data coding will
be lost artificially. Therefore, in this paper, the original LZW algorithm is improved
to make it more suitable for the actual application scenarios.
In the improved algorithm given in this paper, GB2312 standard is used to obtain
the code value of Chinese characters. In order to avoid too large initial dictionary,
only common Chinese characters are added to the basic code set of the dictionary in
advance, and space is reserved for undefined code words that may be encountered
in the compression process. Through this dictionary, the longer Chinese string
in the input data can be converted into shorter encoding as entry to achieve the
compression goal instead of the relatively longer strings in the input data. The
process of algorithmcompression is shown inTable 1. In theprocess of compression,
according to certain rules, the algorithm adds the first Chinese string encountered
in the encoder to the dictionary, and assigns a unique flag value called code value
to the added string.

Table 1. Chinese coding process based on LZW

Step 1 Initialize dictionary 
Step 2 Input a Chinese character c, prefix string P=c 
Step 3 Encoding conversion: 
(1) While c is not an end character do 
(2)     If  P+c is in the dictionary 
(3) Then P=P+c 
(4) Else 
(5) Find the code of P in the dictionary; 
(6)  Add P and c to the dictionary; 
(7)     P=c;  
(8) Output the encoding of P 
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(2) Chinese decoding method based on LZW
Compared with the compression process, the restoration process of LZW algo-
rithm is shown in Table 2. The key to the restoration process is that the initialized
dictionary must be consistent with the compression program, and the dictionary
maintained during the restoration process is almost synchronized with the com-
pression process. In a blockchain, this process is mainly used for data users to
decode the acquired data information.

Table 2. Chinese reduction and decoding process based on LZW

Step 1 Initialize dictionary 
Step 2 Input the first encoding num and assign it to the reserved string O 

Step 3 Output O 
Step 3 Decoding conversion: 
(1) While num is not an end character do 
(2)    Find the string N corresponding to the encoding num in the dictionary; 
(3)     If  N is Null  
(4) Then N=O+N; 
(5) Output N 
(6) Add O+N to the dictionary; 
(7) O=N  

4.2 Sharing and Acquisition of Medical Compressed Data

(1) Blockchain model
The compressed blockchain model proposed in this paper mainly includes three
entities: a data owner, a data manager and a data demander. The details are as
follows:

1. Data owner: the owner of data, responsible for the collection and provision
of data. Here it mainly refers to patients or scientific research institutions or
hospitals authorized by patients. The data owner needs to ensure the authenticity
and reliability of data.

2. Data manager: responsible for compressed data storage and publishing. The
data manager encrypts the compressed medical data and saves them on the
cloud server. Only authorized users can download them.

3. Data demanders: entities that need to retrieve and usemedical data. In the paper,
theymainly refer to scientific research institutions or hospitals. Data demanders
can query the medical data they are interested in from the blockchain network,
record the hash values and download the complete data from the cloud server.

(2) Blockchain sharing process of medical data
The sharing of medical data refers to the sharing of safe and reliable medical data
within the owner of the medical blockchain or outside the blockchain by using the



588 Y. Du and H. Yu

demanders through intelligent contracts and hybrid encryption mechanisms, and
can ensure the safe and efficient storage of data in the blockchain. It includes:

1. Building a data sharing model: in this stage, build a medical data sharing model
on each sharing node, which includes data processing module;

2. Data processing stage: in this stage, the data owners participating in the sharing
use the data processing module to collect, compress and store the data under
their jurisdiction, make classification marks on the data as the sharing labels,
and sign the data information using the private key;

3. Data communication stage: in this stage, the data users participating in data shar-
ing perform node initialization configuration, and generate index data blocks
containing the unique identity of the node in each node of the blockchain;

4. Data acquisition: the data demander applies for obtaining encrypted data infor-
mation, and obtains the decryption key by sending his/her own identity; the data
sharing module checks the authenticity of the shared record through the smart
contract to determine whether the shared information matches successfully;

5. Data operation: each node in the area chain determines whether to allow this
operation. If the number of nodes allowed for this sharing request is less than half
of the total number of nodes, the data sharing requestwill be rejected.Otherwise,
the operation will be allowed, and the operation will be time-stamped to record,
generating a data operation block.

5 Performance Analyses

The mixed compression method including Chinese and English characters is imple-
mented using Java. The experimental environment is given as follows:

• CPU: Intel (R) Cor e(TM) i7-5600U CPU @ 2.60 GHz;
• Memory: 12 GB;
• Operating system: Windows 7 professional (64 bit);

In order to test the effectiveness of the improved LZWalgorithm, five groups ofmed-
ical data files were randomly selected as experimental data to test the compression effect.
The code length of the Chinese dictionary is 16 bit and the number of entries is 64K.
Due to the fact that both Chinese and English characters are included in the conventional
medical data information, the compression effects of Chinese medical data, English
medical data and mixed medical data were tested and compared in the experiment. In
the compression process of Chinese and English medical data, the experiment is com-
pleted by separating Chinese characters and English characters, and then compressing
them respectively. The experimental results record the data compression ratio (data size
after compression/data size before compression) and the compression time. The exper-
imental results of compression performance are shown in Figs. 2, 3 and 4, respectively.
Through the comparison of the three figures, it is not difficult to find that although the
amount of mixed data changes, the compression rate of the algorithm remains constant,
which continues the better compression performance of LZW compression algorithm.
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Tables 3, 4 and 5 show the time taken to compress different data files. It can be seen that
the compression time increases with the increase of data volume, but the compression
time is also within the acceptable range for users.

Fig. 2. The compression effect of mixed medical data

Fig. 3. The compression effect of Chinese medical data
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Fig. 4. The compression effect of English medical data

Table 3. The compression effect and time of mixed medical data

File size Mixed medical data

Compression ratio (%) Compression time (ms)

222 61.56 136

305 66.36 181

441 68.24 253

568 65.73 320

635 65.72 337

Table 4. The compression effect and time of Chinese medical data

File size Chinese medical data

Compression ratio (%) Compression time (ms)

288 67.38 123

309 69.10 162

423 65.22 242

520 67.91 297

618 68.37 318
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Table 5. The compression effect and time of English medical data

File size English medical data

Compression ratio (%) Compression time (ms)

223 49.04 117

328 49.75 156

455 49.82 235

518 49.2 308

641 49.33 347

6 Conclusions

At present, the sharing of medical data among medical related institutions is always a
hot research issue, so it is of great significance to ensure the privacy of medical data and
realize the sharing of electronic medical compressed records based on blockchains. In
this paper, based on the characteristics of blockchains, such as decentralization and non-
modifiable characteristics, and in view of the increasing data volume with blockchain
transactions, a medical data compression and sharing scheme based on blockchain is
proposed. In this paper, a mixed LZW algorithm is proposed. In this experiment, some
medical data information is randomly extracted, and the effectiveness of the algorithm is
analyzed from the aspects of compression effect and compression time. The correspond-
ing blockchain compressed data model and sharing process are given. It provides a tech-
nical idea for realizing the safe and efficient sharing of medical data among authorized
users.
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Abstract. Colorectal Cancer (CRC) is one of themost commonmalignant tumors
of digestive tract in theworld; the incidence ofCRC is increasing year by year.With
the development of early screening, the improvement of surgical technique and the
application of new treatment methods such as targeted therapy and immunother-
apy, the mortality rate of patients with colorectal cancer has decreased obviously,
but the long-term therapeutic effect remains suboptimal. Early detection, early
diagnosis and early treatment are still the main treatment strategies for CRC. Cur-
rently, effective tumor markers are the primary basis for analysis and reference for
clinical decision making in CRC treatment. Due to the large variety and quantity
of data, the sensitivity and specificity between tumor marker data are difficult to
determine, which brings some inconvenience to treatment. We use two-layer neu-
ral network’s self-organizing-mapping (SOM) model and unsupervised learning
algorithms to map high-dimensional data to a two-dimensional topology, allowing
the relationships between the data to be visually represented, which can help doc-
tors better judge the prognosis of CRC and monitor the recurrence and metastasis
of CRC from the relationship between the data.

Keywords: Colorectal cancer · Tumor marker · SOM · Data clustering ·
Statistics

1 Introduction

Colorectal Cancer (CRC) is one of the most commonmalignant tumors of digestive tract
in the world, the incidence of colorectal cancer is increasing year by year. The latest
cancer statistics for the United States in 2020 show that CRC accounts for 9 percent
of all cancers in men and 8 percent in women. It ranks 4th and 3rd in morbidity and
mortality among all malignancies [1]. Cancer Statistics from the National Cancer Center
of China in 2019 show that the morbidity and mortality of colorectal cancer ranked 3rd
and 5th among all malignant tumors respectively, posing a serious threat to the lives
and health of the country’s residents [2]. With the development of early screening, the
improvement of surgical technique and the application of new treatment methods such
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as targeted therapy and immunotherapy, the mortality of patients with colorectal cancer
has decreased obviously, but the long-term effect remains suboptimal [3]. Our group has
long been devoted to the basic and clinical research of colorectal cancer, putting forward
new opinions on the mechanism of the occurrence and development of colorectal cancer,
the progress of minimally invasive surgical treatment of colorectal cancer, the principles
of management of obstructive colorectal cancer, the differences between left and right
colorectal cancer and the principles of management [4–7]. At present, early detection,
early diagnosis and early treatment are still the main treatment strategies for CRC. With
the development of early screening, the improvement of surgical technique, and the
application of targeted therapy and immunotherapy, the mortality rate of patients has
been decreasing, but the long-term effect remains suboptimal.

At present, screening of effective and sensitive tumor marker in the existing diag-
nostic methods is of great significance for CRC evaluation, prognosis and recurrence
monitoring. Common tumor markers for CRC include CEA, CA199, CA724, CA125,
and CA50. Recent studies by Gao et Al have shown that in CRC serum tumor markers
the sensitivity ranges of single markers from high to low are CEA, CA724, CA19-9 and
CA125. The patients who are positive for preoperative serum CEA, CA199 and CA724
are more likely to have lymph node metastasis; CA125-positive patients are more likely
to have vascular infiltration; CEA-positive and CA125-positive patients are more likely
to have nerve infiltration. In addition, positive CA199, CA724 and CA125 are associated
with poorly differentiated tumors, while the levels of CEA, CA199, CA72-4 and CA125
are positively correlated with staging of lymph node metastasis [8]. Therefore, the com-
bined serum markers can be used not only in the diagnosis of colorectal cancer, but also
in the evaluation of tumor status, guiding treatment, evaluation of efficacy and progno-
sis. However, the sensitivity and specificity of each single index in the first-visit patients
are relatively low, so it is necessary to conduct optimized combination and matching of
these tumor markers to improve the sensitivity and specificity of diagnosis.

In this study, by evaluating the co-expression levels of CRCfive serum tumormarkers
and based on differentweights,we constructed amathematicalmodel forCRCfive serum
tumor markers, patient’s pathologic staging and prognosis. It is used to simulate clinical
prognosis judgment and monitor recurrence in CRC patients.

Because of the complexity of the correspondence between tumor marker level and
CRC prognostic status, it is difficult to address the issue with conventional approaches.
This study combines medical, mathematical, information, and computational science
methods to optimize the combination ofCRC tumormarker in order to provide earlymore
effective information of disease evaluation, prognosis judgment and relapse monitoring
for clinical treatment of CRC.

2 Basic Principles and Methods

In clinical tests, a tumor marker is usually positive in a variety of tumors, and a tumor
can also be positive in a variety of tumor marker, so the optimized combination of
sensitive and specific markers is a very practical and meaningful issue in clinical work.
Some literature evaluated the association between seven tumor markers and colorectal
cancer and constructed an optimal combination for identifyingCRC.Considering that the
sensitivity and specificity of single-item test in the first-time patients are relatively low,
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the combined test of differentmethods can significantly improve the diagnostic efficiency
and is worthy to be popularized. We intend to integrate the co-expression levels of CEA,
CA199, CA50, CA125 and CA724 and construct a model of co-expression levels of
five markers, CRC pathologic staging and prognosis based on different weights, which
is used to evaluate the relationship between five serum tumor markers and pathological
staging aswell as prognosis in patients with CRC. It is expected to providemore effective
informationof disease evaluation, prognosis judgment and relapsemonitoring for clinical
treatment of CRC.

Recently, the department of gastroenterology at Shanghai General Hospital collected
data on tumor marker, the clinicopathologic features and prognosis of 365 CRC patients.
But the sensitivity and specificity of any single item of tumor marker data is not visually
apparent, and the informationprovided tomedical staff is incomplete. In order to facilitate
the analysis of clinical data, we only made a two-dimensional data sample table for the
marker data set obtained during treatment for eachCRCpatient, listing fivemeasurement
data indexes and two related state indexes. The actual data set contains values for 365
patients, and this paper presents a sample of data for only five patients, for example, as
shown in Table 1. To save space in this article, only five sample data are presented, all
of which are drawn from a total database sample of 365 CRC patients. In Table 1, the
first column of symbols, such as I, IIA, IIB, IIIC, represents the developmental stages of
CRC status; the second column represents the patient’s postoperative survival; and the
remaining columns represent the measurements of the corresponding tumor markers.

Table 1. For example: positive level of CRC markers in 5 samples.

Staging Days CEA CEA199 CA50 CA125 CA724

I 998 3.31 0.6 0.01 15.19 1.27

IIA 287 2.49 4.28 2.98 11.47 1.68

IIA 287 1.45 5.71 6.35 3.4 2.15

IIB 312 5.97 7.4 6.93 5.31 0.57

IIIC 298 215 76.88 33.64 25.56 3.52

Doctors at ShanghaiGeneralHospital analyzed data collected from365CRCpatients
to determine the sensitivity and specificity of the tumor markers. The data analysis of
sensitivity and specificity basically belongs to clustering analysis. For example, for a
data sample {2, 4, 6, 16, 18, 20, 50} clustering analysis, generally a well-known k-
means clustering method will be used [15]. But when the sample size is n and the cluster
number k and the spatial dimension d are fixed values, all the Euclidean Distance must
be calculated repeatedly. The computational complexity at this point is O(ndk+1 log n).
It is still possible to converge to a local optimal solution using the k-means algorithm.
This is essentially an NP-hard problem when trying to analyze the relationship between
different vector samples as the number of patient samples increases [16].

Artificial Neural Networks (ANNs)are powerful and efficient data analysis tools. An
important property of neural networks is their ability to learn from their sample dataset
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and, through training, to improve classification performance in some statistical sense
[9].

In order to present more information, we useKohonen SOMmodel and unsupervised
learning algorithm in artificial neural network. The feature of SOMalgorithm is that it can
map the input vector data in the high-dimensional space to the low-dimensional space.
In the process of feature mapping, the network is self-learning the features of the input
vector data, and then re-clustering the input data according to the similarity between the
vector data. SOM method can be used to map data to two-dimensional space, and the
relationship between data types can be visualized, which can provide useful information
for CRC treatment. It is a self-learning training process for finding clusters in data. This
algorithm is mainly for their interactive ensemble clustering monitoring [14].

3 Neural Network Model and Algorithm

There are two main types of artificial neural network model and algorithm. One is
multilayer neural network, which adopts supervised learning algorithm. The other is
two-layer neural network, which uses unsupervised learning algorithm. The Kohonen
Self-Organizing Map (SOM) is an unsupervised neural network. The SOM clustering
should be fast, robust and intuitive method in fact.

Kohonen SOMnetwork topological structure consists of two layers of neurons: input
layer and output layer. See Fig. 1. The principal goal of the self-organizing map (SOM)
is to transform an input signal pattern of arbitrary dimension into a two-dimensional
discrete map. Each neuron in the input vector is fully connected with each neuron in the
output layer through the weight vector. This network represents a feedforward structure
with a two-dimensional computation layer consisting of neurons arranged in rows and
columns. The neurons in the output layer are arranged according to two-dimensional
lattice points, which can be either rectangular or hexagonal.
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Fig. 1. Two-dimensional SOM topology

Definition. A real number set is Euclidean n-dimensional space, denoted by R
n, as

the set

R
n := {(x1, x2, . . . , xn) | xi ∈ R for i = 1, 2, . . . , n}.
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Definition. A function f : X → Y is a relation between X and Y , such that for each
x ∈ X , there is a unique y such that (x, y) ∈ f . We write this as y = f (x). Functions are
also called maps. A function can be injective and surjective. It is bijective if both.

Definition. A vector is called an ordered finite data set of numbers. The data set of
all real number is written as R, and the data set of all real number n-vectors is expressed
R
n. A collection of n-vectors in a d-dimensional Euclidean space, that are the columns

of matrix X ∈ R
d×n, X = {

(x1, x2, . . . , xn) | xi ∈ R
d for i = 1, 2, . . . , n

}
, then the

Euclidean Distance of vector is the squared distance between xi and xj, that is given as

di,j = d(xi, xj) = ∥∥xi − xj
∥∥2, where ‖ . ‖ denotes the Euclidean norm.

Definition. A topological mapping is said to be topology preserving, if it maps
neighboring intervals from the topology space in Rn to the other 2D space nearby cells.

Algorithm description [9]:
Let n-dimensional vectors X1,X2, · · · ,Xm are needed to applied in the input space,

the components of these input vectors are xk = {
xk1, x

k
2, · · · , xkn

}
, k = 1, 2, · · ·m,

where m is the number of the sample data vectors, n-dimensional number is equal to
the same number of components of the vectors. At one time learning, an input vec-
tor Xp ∈ {X1,X2, · · · ,Xm} is applied to SOM. On map of the two-dimension out-
put space, this neuron position (i, j) corresponds to the weight vector W(i, j), where
W(i, j) = {w1(i, j),w2(i, j), · · · ,wn(i, j)}, i, j = 1, · · · ,N , N is map size. The learn-
ing process is to find a weight vector matrix W(i, j), in order to minimal Euclidean
distance

∥∥Xp − W (i, j)
∥∥. The neuron c with the minimal Euclidean distance to Xp is

called a winner. According to the ability of topology protection, an input vector xk is
projected to the two-dimensional space.

When clustering data in the two-dimensional output space, by calculating the
Euclidean distance Dp between vectors, compared with other neurons in the lattice,
the weight vector ww(i, j) of the neuron c winning in the competition algorithm is the
best matches to the input vector xk , formula (1). The t th iterative training process of the
first neuron is expressed as formula (2), where t is the number of iterations, hb(t) is the
neighborhood function of the neuron c, and the simplest is the definition of the bubble,
such as formula (3), where α(t) is the learning rate and the value range 0 < α(t) < 1.
In addition, a Gaussian neighborhood function is defined as formula (4), σ is standard
deviation. Last projection to output space [11]. When the SOM algorithm has converged
on a solution, the feature map shows important statistical characteristics of the input
space. The final result has significantly reduced the uncertainty of clustering data accu-
racy. The computational complexity is linearly with the number of data samples, and is
quadrative with number of grid [12].

Dp(x
k ,ww(i, j)) =

∥∥∥xk − ww(i, j)
∥∥∥ =

p
min

1≤i,j≤N

∥∥∥xk − w(i, j)
∥∥∥ (1)

wt+1(i, j) = wt(i, j) + hb(t)
[
xk(t) − wt(i, j)

]
(2)

{
hb(t) = α(t), if b ∈ R
hb(t) = 0, if b /∈ R

(3)

hb(t) = α(t) exp

(

−Dp(xk ,ww(i, j)

2σ 2(t)

)

(4)
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Algorithm 1:
Input:   Data Matrix: data set containing n objects. (N,N) grid of 2-dimensional MAP.     
Output: Obtained a set of data clustering.                                          
Begin:                                                                      

Initialization of the SOM weights with random number. learning rate: 0 ( ) 1tα< <

repeat:  Draw a column vector X of Data Matrix .                                   

for   all k ,  such that (eq.1) 
1 ,

(x , (i, j)) x (i, j) min x (i, j)
p

kkk
p w w i j N

D w w w
≤ ≤

= − = − do            

determine the winning neurons c in the lattice and neighborhood(eq.3) and (eq.4).  
Update the weights of the SOM using (eq.2).                                           
end

until    all column data of Data Matrix.                                           
1(i, j)tw + = =new weight.                                                  

4 Experiments on Marker Data

Self-Organizing Map is here tried to provide doctors a supplementary tool to visual-
ize easily the evolution of the medical data measured about the CRC patients. Taking
everything into consideration in the experiments, the number of grid on 2-dimensional

is about
√
n
/
2 for a data set of n points. For 500 to 1000 samples data, the map size of

4 × 4 or 5 × 5 rectangle can be taken.
The original data recorded the measurement of the markers of CRC patients during

the clinical treatment. In order to find the rules and relationships between these markers,
we need to process the original data in advance. After desensitization of data, we first
distinguish the type of patients according to the two states of death and living, and two
tables were obtained. Then make a sample table according to the CRC stage of each
patient and the measurement values of five marker types. At last, the SOM learning
classification of five kinds of markers was carried out [10]. See Fig. 2.

Because there are many types of data, this paper aims at CRC data experiment,
mainly using the data of IIB stage of the living for comparison. The simulation results
of these data partition experiments are based on MATLAB software. Their results are
shown in the following figures. Figure 3, Fig. 4, Fig. 5, Fig. 6 and Fig. 7 are preliminary
clustering results about relation of between CEA, CA50, CA724, CA199, CA125 and
survival weeks number (instead of days) respectively with 365CRCpatients in IIB stage.
The horizontal ordinate is survival weeks and the Y-axis ordinate is special tumormarker
amplitudes. These green dots denote the whole tumor marker data of 365 patients. The
black spot are centroids of clustering data. For areas where the green dots are denser,
the number of patients is higher. The sparse green dots indicate a smaller number of
patients. We circle the centroids represented by the corresponding black spot, and these
samples will help doctors treat most patients further.

Figure 8, Fig. 9 and Fig. 10 are the data clustering of three tumor markers IIB-CEA,
IIB-CA199, IIB-CA50 of CRC patients in the stage of state IIB. The figure (a) reflects
the topology distance relationship between the sample values. The similarity features
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data processing1

data processing2

data processing3

Fig. 2. CRC patient marker data type

Fig. 3. CEA vs. s.w Fig. 4. CA50 vs. s.w

values of the input sample data are projected to nearby grids on map. The number in
the figure represents the number of times the similarity sample values occurs within a
cluster. The difference between the samples is expressed by the size of the Euclidean
distance. Because the sample data is extracted according to the tumor development stage
of the patient, the sum of the total number of values in the small grid of figure(a) graph
may be less than or equal to 365. The figure (b) is the size of the weight value of the
sample. The darker the color, the greater the value.

Figure 11 and Fig. 12 are the classification of IIB-CA125 and IIB-CA724 in the
stage of IIB. Figure (a) reflects the relationship between the three sample values and the
number of samples in the data set. Figure (b) shows the weight value of the sample. The
darker the color, the greater the value.

The experiment of data clustering using SOM Algorithm may lead to different loca-
tions of cluster centroids and different locations of neighbor samples. The main reasons
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Fig. 5. CA724 vs. s.w Fig. 6. CA199 vs. s.w Fig. 7. CA125 vs. s.w

Fig. 8. (a) IIB stage CEA. (b) IIB stage CEA weight.

for this change are: First, the initial randomweight will affect the last position of the cen-
troid. Second, thefinal result dependson the training sample data set.Becauseof topology
preservation, statistically speaking, a pair of adjacent data in a dataset or two specific
adjacent data will be projected to the same or adjacent centroids in a two-dimensional
graph with a high probability [13].
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Fig. 9. (a) IIB stage CA199 (b) IIB stage CA199 weight

Fig. 10. (a) IIB stage-CA50 (b) IIB stage-CA50 weight
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Fig. 11. (a) IIB stage-CA50 (b) IIB stage-CA50 weight

Fig. 12. (a) IIB stage-CA724 (b) IIB stage-CA724 weight

5 Conclusion

With the development of diagnosis and treatment technology, the existing examination
tools can provide physicians with more and more information but it can also be more
complex, somultiple diagnosis and treatmentmethods emerge. The self-organizingmaps
have possibilities not only to cluster, but also to visualize multidimensional marker date.
With the rapid development of artificial intelligence technology (AI), AI can improve
the ability of image recognition and natural language extraction [11]. As a difficult part
in cancer research, CRC therapy is expected to be combined with artificial intelligence
to bring more breakthroughs in the diagnosis and treatment of colorectal cancer. In
addition, large amounts of tumor marker are numerical data that can be presented in an
intuitive manner and are of practical importance for physicians to interpret and analyze
pathological stages, judge prognosis and monitor recurrence in CRC patients. With
Kohonen SOM network, input data can be clustered and analyzed, and the relationship
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between the data can be visualized by two-dimensional topological graph. It is vital to
find out if the tumor marker data has cluster structure. This approach of medical care
data visualization provides doctors with good data insight and complete information.
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Abstract. Large hospitals produce a large amount of medical waste in outpatient
and emergency departments. The safety of medical waste is not only a huge prob-
lem faced by large hospitals themselves. Improper disposal will cross infection
and expand the epidemic. The rational lean disposal of outpatient and emergency
medical waste in large hospitals is an importantmeasure, which is helpful to allevi-
ate the problem. In this paper, we use fault tree analysis (FTA) of safety evaluation
for medical waste logistics process in large hospitals with the new crown pneu-
monia for instance. Then we set up the safety evaluation model of this infectious
medical waste and master waste streams of hazards and potential risks of large
hospitals through calculation and analysis for the “discovery” not in time, “the
lack of contingency plans and disposal technology”. The results show that it is of
great significance to adopt lean management method of outpatient and emergency
treatment to solve these two hazard sources for the safety of infectious medical
waste control in outpatient and emergency treatment.

Keywords: Medical waste · Logistics safety evaluation · FTA · Lean
management

1 Introduction

In December 2019, continuous influenza and related disease surveillance was conducted
in Wuhan, Hubei province, and multiple cases of viral pneumonia were found, all of
which were diagnosed as viral pneumonia/pulmonary infection and were infectious. On
January 30, 2020, the World Health Organization declared the outbreak of pneumonia
caused by a novel coronavirus to be a public health emergency of international concern.
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By February 29, 2020, a total of 79,394 cases had been confirmed in China, with 2,838
deaths and 39,090 cures. A sudden outbreak of a new type of coronavirus pneumonia
has roiled Wuhan, roiled the country and disrupted global supply chains. Facing the
outbreak, fromWuhan and nationalmedical emergency guarantee systemof supply chain
operation, there is confusion and regional segmentation, emergency response lag, the
mismatch between supply and demand mismatches, the problem such as low efficiency
and so on. Somany patients with diagnosis ofmedical waste is also extremely dangerous,
generated by themedical staff occupational health risk is great, if inappropriate treatment,
easy to cause cross infection, expand the outbreak. In the early stage of the epidemic, due
to the lack of human resources, the disposal, collection and transportation of medical
waste are not reasonable, and there are also a variety of irregularities, which may lead
to further cross-infection. Effective organization and rapid disposal of hospital medical
waste, scientific exploration of its safe operation of hazards can provide better services
for the new coronary pneumonia epidemic front line.

Medical waste has great risk [1], in the control over transboundary movement of haz-
ardous wastes of the Basel convention, it mentions “from the hospital and clinic medical
service, medical center of clinical waste” as a “category” which should strengthen the
control of thewaste inY1group, the risk characteristics ofGrade 6.2, belong to infectious
material [2]. In the process of classified collection, transportation, loading, unloading
and storage, goods that are likely to cause damage to people, the environment, equipment
and property and require special protection [3].

2 Methods for Logistics Risk Assessment of Infectious Medical
Waste in Outpatient and Emergency Care of Large Hospitals

2.1 Safety Evaluation Method – Fault Tree Analysis (FTA)

Fault Tree Analysis (FTA) [4] is one of the important Analysis methods of safety system
engineering. It can identify and evaluate the danger of various systems, which not only
can analyze the direct cause of the accident, but also can deeply reveal the potential
cause of the Accident.

According to the nature of the object system and the purpose of analysis, there are
some differences in the analysis procedures, but the core analysis procedures are shown
in Fig. 1 [5].

2.2 Safety Evaluation of Infectious Medical Waste in Outpatient and Emergency
Department of Hospitals - a Case Study of Clinical Waste from New
Coronavirus Pneumonia

According to the 2019 annual report on prevention and control of environmental pollution
caused by solid waste released by the ministry of ecology and environment, 200 large
and medium-sized cities in China released information on prevention and control of
environmental pollution caused by solid waste in 2018. According to statistics, the
output of general industrial solid waste in large and medium-sized cities released this
time is 1.55 billion tons, the output of industrial hazardous waste is 46.43 million tons,
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Fig. 1. Flow chart of accident tree analysis program

the output of medical waste is 817,000 tons, and the output of household garbage is
211.473 million tons. The amount of clinical waste produced is smaller than that of
other wastes. The largest amount of medical waste was produced in Shanghai, which
produced 55,000 tons. In the 2014–2018 report, the amount of medical waste produced
in Shanghai ranked the first.

In addition, according to the latest dispatching data of the emergency office of the
ministry of ecology and environment, by February 24, 2020, the national capacity of
medical waste disposal is 5830.8 tons/day, which is 928.0 tons/day more than that before
January 20. Since January 20, a total of 98,508.1 tons of clinicalwaste have been disposed
of nationwide. On February 24, a total of 2,719.1 tons of medical waste were collected,
of which 587.6 tons, or 21.6 percent, were from designated medical institutions. On that
day, 2,749.8 tons of clinical waste was actually disposed of nationwide. All the clinical
wastes from designated medical institutions in the new outbreak of pneumonia were
transferred and disposed in a timely manner. In particular, the medical waste related
to the epidemic situation basically achieved the “daily clear”. Taking Shanghai as an
example, all kinds of medical institutions produce about 130 tons of medical waste,
among which 60–70 tons are generated by designated hospitals and medical institutions
with fever outpatients.

New coronavirus pneumonia clinical waste contamination poses occupational health
risks to public health and healthcare workers. With a greater understanding of the harm
of new coronavirus pneumonia medical waste, on January 28, 2020, China CDC empha-
sized in the notice of the National Health Committee General Office regarding the new
coronavirus infection pneumonia outbreak of medical wastes management of medical
institutions during the period which made a clear emphasis on the new crown pneu-
monia of medical waste, collection, storage, transportation, strict management, the new
coronavirus pneumonia medical waste contact staff must ensure the safety of the condi-
tions. However, in practical operation, irregular operation is inevitable because of limited
human resources, urgent time, heavy task and infection risk. People at risk of infection
are mainly those in direct contact with clinical waste from new coronavirus pneumonia,
such as hospital staff.

The United States ATSDR (the Agency for Toxic Substances and Disease Registry)
has conducted a study on the impact of medical waste on public health, and has given
Suggestions to the department of labor occupational safety and health management, that
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Table 1. Number of risk factors of infectious medical waste pollution accidents

Serial no. The name of the
event

Serial no. The name of the
event

Serial no. The name of the
event

T Infectious clinical
waste
contamination in
hospital

X1 Untimely
discovery

X17 Management
rights and
responsibilities are
not clear

M1 Medical waste
leakage, loss,
pollution

X2 Lack of
contingency plan
and disposal tech

X18 Supervision and
law enforcement
are lax

M2 Not handled in
time

X3 The accident was
beyond control

X19 The rules and
regulations are not
sound

M3 Unsafe behavior
of personnel

X4 The supporting
equipment is not
complete

X20 Lack of
information
system

M4 Management
defect

X5 The signs are not
standard

X21 unreasonable
disposal operation

M5 Facility problem X6 Quality not up to
standard

X22 Lack of funds for
waste disposal

M6 Operational flow
problem

X7 Failing to disinfect
and clean in time

X23 Management
irregularities

M7 Poor professional
awareness

X8 The network
layout is not
reasonable

X24 The management
team is
incompetent

M8 Wrong attitude X9 Nonstandard
operation

X25 Failing to
implement the
handover
registration system

M9 Failure of
remedial
measures

X10 No protective
equipment

X26 Irregular
inspection

M10 Government
departments fail
to supervise

X11 No professional
training

X27 Not finding the
problem in time

M11 Dereliction of
duty in hospital
management

X12 Cognitive
differences among
different people

X28 The environmental
pollution

M12 Equipment
malfunction

X13 Think little X29 Staff infection

(continued)
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Table 1. (continued)

Serial no. The name of the
event

Serial no. The name of the
event

Serial no. The name of the
event

M13 The unsafe nature
of clinical waste

X14 Insufficient
protection
awareness

X30 Infectious acute
instrument injury

M14 infectious X15 No regular
physical
examination

X31 Non-infective
acute injury

M15 The injury X16 The supervision
team is not fully
built

is, measures to reduce injuries and infections of medical waste in the workplace. From
this, we see that sharp instruments, blood and blood products, and the culture medium
of pathogens are the most important medical wastes to harm the visual health.

2.2.1 Establish an Infectious Medical Waste Fault Tree Model

Through literature review and combined with the empirical evidence of new coron-
avirus pneumonia this paper analyzes the direct and indirect causes of infectious medical
waste pollution accidents in outpatient and emergency hospitals. “Hospital outpatient
and emergency infectious medical waste pollution” was taken as the top event, “medical
waste leakage, loss, pollution” and “not treated in time” as the intermediate events. The
accident risk factor number shows in the following Table 1 [6–9].

The Free FTA software was used to draw the accident tree. The accident tree of
infectious clinical waste pollution is shown in Fig. 2.

2.2.2 Analysis and Calculation of Infectious Medical Waste Incident Tree in Out-
patient and Emergency Department of Hospital

(1) Minimum cut set analysis
In this paper, the tree structure of infectious medical waste accident in hospital
outpatient and emergency department was qualitatively analyzed.

We see that there are 54minimum cut sets of possible infection-injury accident trees
for infectious medical waste, and the minimum cut set event combination shows in
Table 2.
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Table 2. Minimum cut set event combination table

The method of finding the minimum cut set is used to find the success tree of the
accident tree.

(2) Minimum path set analysis
The Boolean algebra method can be used to obtain the four minimum cut sets of
the successful tree of the infectious medical waste pollution accident tree. After the
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dual transformation, it can be obtained that there are four minimum path sets of the
accident tree. The shortest path set event combination is shown in Table 3.

Table 3. Shortest path set event combination table

(3) Structural significance analysis
Using the minimum cut set to discharge the order of structural importance:

2.3 Analysis of Safety Risk Assessment Results of Infectious Medical Waste
in Outpatient and Emergency Hospitals

Through the analysis of the possible pollution accident tree during the disposal of infec-
tious medical waste in outpatient and emergency treatment, it is found that there are
many basic events leading to pollution, and the minimum cut set is composed of ternary
events and quaternary events, indicating that there are many ways leading to the con-
tamination of infectious medical waste in outpatient and emergency treatment, and it is
necessary to strengthen prevention.

In addition, from the above basic event structure of fault tree analysis of important
degree, you can see that “found it in a timelymanner to the structure of the highest impor-
tance”, therefore we should strengthen this infectious medical waste regulation in the
hospital, establish hospital infectious medical waste management information system,
tracking of infectious medical waste, the infectious medical waste information trans-
parency of the data network, always grasp the dynamic situation of infectious medical
waste, put an end to disposal, discarded and selling waste. If any problem such as leak-
age and loss of infectious clinical waste is found, timely alert should be issued. “Lack
of emergency plan and disposal technology” is the second important structure, so we
should build a perfect emergency plan system, accident emergency plan. The emergency
treatment should be equal to the safety treatment and the emergency treatment should
be combined with the actual implementation. Actively explore the use of collaborative
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disposal facilities to carry out emergency treatment of infectious medical waste, rational
construction of medical waste emergency treatment facilities.

Minimal path set is a minimum set of basic events which is not necessary to cause
the top event happened. From the above set analysis it shows that in order to make outpa-
tient emergency infectiousmedical waste accident in the hospital not occur there are four
kinds of accident prevention programs, and generally less basic event Set corresponds
to the path of the scheme for the optimal solution. Taking new coronavirus pneumo-
nia outbreak as an example, if the infectious medical waste is improperly disposed, it
will cause great impact and harm, and if the problem is timely found or regulated and
effective emergency measures are taken, the pollution to the environment and the harm
to the population can be reduced. Direct measures can be taken to solve the existing
problems, such as strengthening the knowledge training of medical staff, strengthening
and improving the management and maintenance of medical waste disposal facilities
and other indirect measures that prevent the occurrence of accidents. Infectious medical
waste disposal and contact belongs to high risk industry, we should build corresponding
medical staff occupational health risk regulatory system and correctly handle new infec-
tious pneumonia, reduce the probability of infection to the largest extent according to
“the new coronavirus infection pneumonia outbreak of emergency disposal of medical
waste management and technology guidelines (try out)”.

3 Lean Disposal of Infectious Medical Waste in Outpatient
and Emergency Treatment

Lean management is an efficient management method based on the lean production
of Toyota. Lean management is the integration, enrichment and improvement of basic
management, standard management, standardized management and fine management,
and it pays more attention to management effect and management benefits [15]. On
February 14, 2020, President Xi Jinping presided over the 12th meeting of the com-
mission for deepening overall reform of the CPC central committee, which emphasized
improving the systems and mechanisms for the prevention and control of major epi-
demics and the coordination mechanism for emergency response, and improving the
national public health emergency management system. The types and scope of solid
waste included in clinical waste management during the outbreak of new coronavirus
infection pneumonia as well as the hygiene and epidemic prevention in the process of
collection, storage, transportation and disposal shall be carried out in accordance with
the relevant requirements of the competent sanitation and health authorities.

According to this infectious medical waste in the third section safety evaluation of
the accident tree modeling calculation results of the hospital shows that the X1 “found”
not in time, X2 “lack of contingency plans and disposal technology” is a major hazard of
infectious medical waste disposal [10], we combine leanmanagement method to explore
feasible path of the infectious medical waste disposal for hospitals [11].
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3.1 Establish Epidemic Prevention Instructions for Infectious Medical Waste
in Outpatient and Emergency Hospitals

Take the prevention and control of new coronavirus pneumonia as an example. First,
the prevention and control team of new coronavirus pneumonia was established, and the
outpatient and emergency medical waste prevention and control team was established
under the leadership of the medical waste disposal leader, and the responsibilities of the
members of the outpatient and emergency medical waste prevention and control team
were formulated. The personal information and travel status of outpatient and emergency
medical personnel or cleaning personnel were investigated by the management of each
outpatient and emergency department. Establish communication channels for the whole
staff to timely report the situation of the epidemic. Arrange medical waste disposal
management personnel to supervise, inspect theworking status ofmedicalwaste disposal
personnel every two hours, timely find problems and strengthen their health protection.

As facility management, the leader of the prevention and control team of medical
waste disposal arranged the professional staff of medical waste disposal to conduct dis-
infection in every emergency room according to the hospital site. Logistics departments
shall count the types and quantities of protective equipment for personnel and purchase
them in time. They shall mainly check whether the protective equipment and packag-
ing containers have the certificates and meet the national standards. In the hospital to
set up abnormal personnel isolation area, equipped with the corresponding protective
equipment. Strengthen the training of cleaning personnel to correctly use protective
equipment, hand washing methods, mask wearing, etc.

As information dynamic management, the clinical waste disposal prevention and
control team summarized the regional distribution of employees and the disposal of
clinical waste, and implemented dynamic tracking. Management personnel at all levels
should keep abreast of clinical waste trends.

3.2 Develop the Automatic Intelligent Conveying System for Medical Waste
Treatment in Outpatient and Emergency Hospitals

There is a high risk of staff coming into contact with infectious waste in the clinical waste
disposal link at the centralized disposal sites of hospitals. The emergence of scientific and
technological information technology promotes the development of intelligentization.
The use of automatic intelligent transportation system to conduct harmless treatment of
infectious medical waste can greatly reduce the risk of human infection and realize the
informatization, intelligentization and unmanned treatment of infectious medical waste.
The process shall be strictly implemented in accordance with the relevant regulations
issued by the local epidemic prevention and control team to ensure scientific, efficient
and safe treatment of infectious medical waste.

The lean disposal and transportation process of infectiousmedicalwaste in outpatient
and emergency treatment can be carried out according to the subordinate steps. Load-
ing and unloading infectious medical waste in outpatient and emergency department,
through the transport system in place for discharging operation, the whole barrel into the
incinerator for incineration treatment, the barrel for thorough cleaning and disinfection.
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From the drum feeding to cleaning and disinfection storage completely without manual
operation, we can realize real-time monitoring of all aspects of the processing process.

The key is lifecycle management, leaving nothing to chance. For example, at a fixed
time every morning, the medical waste collection and transportation vehicle starts from
the solidwaste company and goes to themajor hospitals in the city to collect and transport
medical waste. From classification, collector, transport into the incinerator to disposal of
medical wastes from birth to destroy the whole process, clear display on the big screen
of information platform of the whole flow of medical wastes, according to the number
of medical waste of charge at the same time, large data analysis, analysis of the number
of the hospital patients, surgery and prognosis, and then adjust the vehicle scheduling,
ultimately guarantee to daily production daily cleaning of medical waste.

4 Conclusion

The new coronavirus pneumonia outbreak has been classified by WHO as “the highest
level of global risk”. Improper disposal of clinical waste can lead to cross infection and
spread of the outbreak. Taking the new coronavirus pneumonia outbreak as an example,
this paper constructs a safety evaluation model of infectious medical waste in outpa-
tient and emergency department, and concludes that “untimely discovery” and “lack of
emergency plan and disposal technology” are the main risk sources and hidden dangers
through accident tree calculation and analysis. In this paper, it is of practical significance
to adopt lean management method in outpatient and emergency department to control
the two hazard sources for the safety management of medical waste in outpatient and
emergency department.
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Abstract. More and more people like to practice taiji for different pur-
poses. Taiji has been proposed as a treatment for the knee osteoarthritis.
But there have always been different opinions that Taiji can cause knee
injuries. The information on an individual participant is often incom-
plete. When complementary information is integrated, a better profile
of a participant’s knee can be built to explore the tension. This paper
aims to investigate the effects of Taiji on knees. We introduce a method
for buildting a mapping among Taiji participants and their knee health-
care. It consists of three key components: the first component identifies
Taiji participants’ unique behavioral patterns; the second component
constructs features due to these behavioral patterns; and the third com-
ponent exploys machine learning for effective computing. We formally
define the problem and show that our method is effective. This study
paves the way for analysis and mining knee osteoarthritis prevention and
treatment. It also facilitates the creation of novel healthcare services.

Keywords: Taiji · Knees healthcare · Multiple logistic regression
algorithm · Behavioral-modeling

1 Introduction

Taiji has a unique physical fitness effect, and is favored by more and more
people. The number of people practicing Taiji is rapidly increasing. But Knee
osteoarthritis is high ranking and causes disability [1]. It is convincing pointed
out by Osteoarthritis Research Society International (OARSI), which reported
“OA is also responsible for substantial health and societal costs, both directly
and as a consequence of impaired work productivity and early retirement” [5].
Taiji is proposed as a potential option for the management of Knee osteoarthri-
tis. It can reduce pain and improves physical function [3]. In recent years, the
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different report mentions that “there are knee pain problems caused by Taiji
exercises” [7]. In [8], it investigates and analysis the knee pain in middle-aged
and elderly Taiji practitioners in Huai’an City.

In the practice of Taiji, the knees are mainly bent and squatting. The stress
is loose waist, loose shoulders and elbows. Some data shows that the human knee
flexes 30◦, the knee joint bears the same pressure and weight; knee flexion of 60◦,
the knee joint pressure is 4 times the weight; knee flexion of 90◦, the pressure
is 6 times the weight. During the practice of Taiji, the human body is always in
a squatting position. If some of the Taiji practitioners have incorrect movement
techniques, they cannot “stand upright” or make mistakes such as “kneeling on
knees”, or they cannot “open in a round gear” so that the knees and toes are in
the same direction, the knee injury will be more serious. In fact, the problem is
not trival since there exist the following questions:

– Is knees pain caused by practicing Taiji?
– Does Taiji exercise benefit knees healthcare?

This paper proposes a behavioral-modeling approach to research the problem
of effects of Taiji on participants’ knees. In the first stage, we use mathemati-
cal statistics techniques to get the behavioral patterns. Then, we integrate the
attributes to design the features to capture the information generated by these
patterns. Finally, we model the problem of effects of Taiji on knee based multi-
ple features. To match the model better, we design multiple logistic regression
algorithm to optimize model matching parameter. In summary, the main contri-
butions of this paper are fourfold:

– We propose and formalize the definition the problem of effects of Taiji on
participants’ knee.

– Based on the mathematical statistics technique, we model the Taiji partici-
pants behavioral patterns via generating some candidate pairs.

– Based on the feature engineering method, we propose an unsupervised learn-
ing framework to construct the features, and employ multiple logistic regres-
sion algorithm to infer the model parameters.

– We conduct extensive experiments on real data sets, those experiments can
not only verify the rationality of our method, but also indicate that our
method is effective.

The rest of the paper is organized as follows: we review the related work in
Sect. 2. Methodology and technology is shown in Sect. 3. Modeling and comput-
ing are described in Sect. 4. In Sect. 5, we analyze experimental results. Finally,
we conclude and discuss the future work in Sect. 6.

2 Related Work

To the best of our knowledge, the problem of effects of Taiji on knees is novel,
there is however some related work about the research of Taiji in medical field
and healthcare in informatical field.
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2.1 Taiji in the Medical Field

At present, many international scientific research institutions have proved that
Taiji has a very important therapeutic and health care role in many fields such
as medicine, psychology and physiology. In the medical field, some studies have
shown that Taiji may be an effective treatment for fibromyalgia, and it is worth
long-term research (see [4]). Studies have also found that in the treatment of knee
osteoarthritis, Taiji produces as good a therapeutic effect as standard physical
therapy. It can relieve chronic pain in osteoarthritis and is beneficial for back
pain and osteoporosis. In the field of psychology, research has found that peer-
assisted Taiji can improve the mental health and social networks of lonely elderly
people in society. In the area of health care, study has shown that practicing Taiji
is associated with reducing mortality, just like walking and jogging.

A large number of studies have found that practicing does not cause knee
pain. In many sports activities, Taiji has relatively little damage to the knee
joint. The study [11] aims to examine the potential neuromuscular mechanisms
underlying the benefits of Taiji and compare the effects of Taiji and balance and
posture training on dynamic stability for knee osteoarthritis. There’s been a lot
of other medical research on knee, including Epidemiology on knee osteoarthritis
[9], Obesity and knee osteoarthritis [2], Targeted therapy. In contrast, some
studies have pointed out that if knee pain has been diagnosed or osteoarthritis
of the knee has been diagnosed, the majority of people practicing Taiji will
aggravate the symptoms, and a few people will get worse.

2.2 Healthcare in Informatical Field

With the development of artificial intelligence technology, more and more
machine learning algorithms have also been applied to the field of medical
health. Machine learning algorithms include traditional machine learning algo-
rithms (such as clustering algorithms, classification algorithms, regression anal-
ysis algorithms, association rules, etc.) and deep learning algorithms (such as
autoencoders, deep belief networks, volume neural networks, recurrent neural
networks, etc.) (See [10]).

Because traditional machine learning algorithms can achieve relatively accu-
rate results on small data sets by selecting appropriate feature values, research
based on traditional machine learning algorithms has been more applied in
the field of traditional Chinese medicine. The deep learning algorithm usually
requires massive data to support the training and optimization of the model,
so it has a wide range of applications in the field of western medicine. In addi-
tion to machine learning methods, common statistical methods have also been
studied. For example: t-test, chi-square test, analysis of variance, Logistic statis-
tical methods, etc. Aiming at the problem of traditional Chinese medicine pulse
labeling, the pulse diagnosis signal data collected by the instrument is firstly
subjected to double-tree complex wavelet transform, then features are extracted
with Mel cepstrum coefficients, and finally clustered by fuzzy C-means cluster-
ing algorithm. The accuracy of pulse recognition by this method has reached
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78.2%, to a certain extent, it has avoided the influence of doctors’ subjective
body on pulse marking. Guo Hong et al. [6] Used 560 outpatient cases of aller-
gic rhinitis as a research object by Chinese doctors, and used association rule
algorithm to explore the compatibility of allergic rhinitis drugs [?]. Used 1474
patients with chronic hepatitis B as the research object and used binary logis-
tic regression analysis to explore the relationship between chronic hepatitis B
symptoms and symptoms (see [12]). These existing works have presented a deep
study on healthcare. However, these works simply apply in medicine research
but not deliberate the traditional Chinese Taiji.

3 Methodology and Technology

Taiji participants often exhibit different behavioral patterns in the usual practice
exercise. These patterns results can help identify and quanlify the effects of Taiji
on knees. The behavior model contains behavioral patterns, features constructed
to capture the important attributes pairs which can affect the participants’ knees.

3.1 Bevavioral Patterns

Our methodology is outlined in Fig. 1. Different Taiji participants selects different
practise behavior, they exhibit certain behavioral patterns.

Fig. 1. The behavioral-modeling approach

In our paper, these patterns can be captured in terms of Taiji participants’
knees attributes. Following the traditional maching learning and data mining
research, we can learn a behavioral function by employing a supervised learning
framework that utilized these features and prior information. Surpervised learn-
ing in behavioral patterns can be performed via either classification or regres-
sion. Depending on the learning framework, we can learn the probability that
an Taiji participants own the specific attributes, generalizing our binary f func-
tion to a probabilistic model. This probability can help select the most likely
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behavioral attributes that due to the knee injury. The learning component is the
most straightforward. Therefore, we next elaborate how to analyze behavioral
patterns related to Taiji participants and how features can be constructed to
capture attribute information redundancies due to these patterns.

3.2 Feature Construction

There may be a certain correlation between the factors that affect the position
of knee pain and the health of the knee joint of Taiji participants. We calculate
the relationship between the various factors and the knee pain.

• Correlation Analysis
Because knee pain and knee function are classified and analyzed, and there
are many influencing factors for these two variables, from the above corre-
lation analysis, we can see that the correlation between the factors is weak,
but the correlation cannot be ignored. The linear regression analysis cannot
accurately describe the causal relationship between variables, so a multiple
logistic regression analysis is used to fit the model, and its form is as follows:

ln
[

P (y = j|x)
P (y = J |x)

]
= αj +

k∑
k=1

βjkxk(i ≤ j − 1) (1)

In the formula, J is the category, P is the probability of the principal com-
ponent of the class j, and is the principal component of the class K;is the
principal component coefficient of class K; it is a constant term. Where J,
and the last category (I.e. the category J) is used as the reference category.
And because the sum of the probabilities of each category is 1, that is

P(y = 1|x)+P(y = 2|x)+. . .+P(y = J |x) = P(y = J |x)

[
1 +

J+t∑
i=t

eα2+
∑2

n−4 g2=1

]
= 1

(2)
Therefore, the probabilistic formula of each category can be summarized in
the following form:

P (y = f |x) =
ean+

∑n
n=1 gnzn

1 +
∑n+1

n=1 ean+
∑n

n=1 gn−2
(3)

• Decision Making
Probabilities P (ti ∈ M |γi, Θ) and P (ti ∈ U |γi, Θ) can be calculated by the
optimized model parameters. By selecting appropriate scoring function, the
candidate feature is scored and the scoring function is defined as:

Wi = log(
P (ti ∈ M |γi, Θ̂)
P (ti ∈ U |γi, Θ̂)

) ∝
2∑

j=1

wj
i (4)
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Among this,

wj
i = (Θ

′
1,jS1,j(γ

j
i ) − z1,j(Θ1,j)) − (Θ

′
0,jS0,j(γ

j
i ) − z0,j(Θ0,j)) (5)

If P (ti ∈ M |γi, Θ) > P (ti ∈ U |γi, Θ), which is equivalent to Wi > 0, then
ti is a candidate feature, otherwise the opposite. By choosing appropriate
threshold W0 > 0 to improve the accuracy of algorithm.

4 Modeling and Computing

4.1 Sample Data

In order to better understand the current situation of the effects of Taiji on knees
in Shanghai, and to find a better solution based on the status quo and sports
characteristics. The paper data is aimed at the in-depth participation of Taiji
participants in Shanghai. Understand and use the questionnaire survey method
and Irrgang Sports Ability Rating Scale. It is a scale designed for athletes to
assess sports ability. It is divided into two categories of symptoms and exercise
function. There are 10 items in total. The total score is 100 points. The higher
the function, the better. The experimental data statistics of Taiji participants
data are shown in Table 1.

4.2 Modeling

There are three main points of knee pain. The dependent variable is set as the
knee pain which factors will affect the knee pain of Taiji participants. According
to the results of the correlation analysis, we can do regression analysis on the
relevant variables. Among them, all the factors other than the height factor
have a significant contribution to the composition of the model. The logistic
regression model can calculate the probability of where the knee of each Taiji
exerciser will pain, and finally obtain the model prediction classification table
shown in Table 2, where the model predicts the back side of the knee of the Taiji
exerciser The accuracy rate of pain reached 89.80%, and the prediction of pain
on the front side of the knee was low, and even the prediction of pain on the
side of the knee was 0%. The overall prediction accuracy rate of the model was
52.40%, and the performance was average.

The performance of the model is average, and further stepwise regression
analysis is done. It can be seen from the results of the stepwise regression analysis
in the table that the new model retains the duration, gender, weight, and height
as independent variables, and a new prediction model is obtained:

KneePain = 0.074 ∗ duration + 0.107 ∗ gender

+ 0.009 ∗ weight − 0.007 ∗ height + 1.882
(6)

We take exercise frequency, duration of each exercise, posture, whether to
warm up, knee pain position, age, knee joint function status as the characteristic
value, and condition as the classification goal.
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Table 1. Experimental data statistics of Taiji participants

Question Answer option

Taiji routines you
arecurrently exercising
(multiple choices)

(1) Yang-style Taiji
(2) Chen-style Taiji
(3) Wu-style Taiji
(4) Sun-style Taiji
(5) Wu-style Taiji
(6) 24-style simplified routine, 42-style competition routine
(7) Daji sword, Taiji sword
(8) Taiji pusher, vigorous
(9) Other

Your main source of
learning Taiji

(1) Taiji teachers in community parks
(2) Taiji training organized by your school, unit, company
(3) Signing up for Taiji classes in Taiji clubs and fitness clubs
(4) Official Learn from Taiji Masters
(5) Teach yourself from teaching CDs or online

What awards have
you won in Thi

Chi competitions ?

(1) International competitions
(2)National competitions
(3)Provincial and municipal competitions
(4)Not yet won

Frequency of
Taiji exercise

(1) Irregular exercise
(2) 5-7 times per week

The duration of each
time of your extreme

climbing exercise

(1) Is less than half an hour
(2) Half an hour to 1 hour
(3) 1 hour to 2 hours

What are the main
motivations for you
to insist on Taiji?
(Multiple choices)

(1) Can exercise anytime and anywhere
(2) Can lose weight
(3) Make the skin better
(4) Can soothe emotions and release stress
(5) Improve immunity
(6) Improve sleep quality
(7) Enhance muscle strength
(8) Communicate and encourage among teammates
(9) Gradually understand the profound cultural heritage
(10) Other

Your stand posture
for Taiji

(1) Low posture, knee flexion 60-70 degrees
(2) Middle posture, knee flexion greater than 100 degrees
(3) High, knee flexion 90-100 degrees

What is the warm-up
exercise for

the knee joint?

(1) No warm-up exercise
(2) About 5 minutes
(3) 15 minutes or more

The main positions
of knee pain are

(1) Front of knee
(2) Back of knee
(3) Side of knee

How often do
you experience knee
pain after boxing?

(1) 5-15 minutes
(2) 15-30 minutes
(3) 30-60 minutes
(4) After 1 hour

How do you deal
with knee pain?

(1)No more Taiji after knee pain
(2) After keep practicing Taiji for 1 month,knee pain is relieved
(3) After keep practicing Taiji for 3 months,knee pain is relieved
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Table 2. Parameter analysis of stepwise regression

Model Coefficient T-value Sig

Constant 1.882 4.56 0

Duration 0.074 3.726 0

Sex 0.107 3.119 0.002

Weight 0.009 5.34 0

Height −0.007 −2.617 0.009

4.3 Computing

Each factor of the model is significant to the model’s composition. These factors
can effectively predict the dependent variable. Import these effective variables
into the model to get the following Table 3:

Table 3. Knee pain feature classification

Observation Predictive value

1 2 3 Correlation

0 593 205 0 74.30%

1 304 1343 29 80.10%

2 19 173 48 20.00%

Percentage 33.80% 63.40% 2.80% 73.10%

It shows that the accuracy rate of the model in predicting that the knee
joint of Taiji participants will have a slight impact has reached 80.10%, and the
prediction that the knee joint of Taiji participants is very healthy is relatively
low, but it The prediction of serious impact on the knee joint of Taiji participants
is lower than 74.30%. The overall prediction accuracy of the model is 73.10%,
which is better.

We can see in Fig. 2 the relationship of stand posture on knees, the duration
on knees,the warm-up activity time and the location of knee pain can effect the
knee condition separately. Among those surveyed, the duration of each exercise
was between 30 min and 60 min, and the knee condition of these people is mild
knee condition accounting for a large proportion.

About stand posture, there were many people who practiced low- and
medium-strength Taiji. The knees of these people had the mild knee injury.
Among the people surveyed in Taiji, the warm-up activity before each exercise
was most likely to be around 5 min. These people had the largest percentage of
mild knee conditions. Knee pain is the largest proportion of knee pain behind
the knee, followed by the front of the knee, and these people have the largest
percentage of mild knee conditions.
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(a) Stand Posture (b)Exercise
Duration

(c) Warm-up
Time

(d)Location of
Knee Pain

Fig. 2. Exercise duration, stand posture, warm-up time and location of Taiji on knee

Fig. 3. Age distribution of Taiji partic-
ipants

Fig. 4. Stand posture score range

About the age, the correlation is shown in Fig. 3.
It can be seen from the figure that the knee condition of most tai chi prac-

titioners is mildly affected, concentrated between 64–73 years old. Among the
mildly affected people, the number of people aged 66 is the largest, with 171
in total. Among the severely affected people, the number of people aged 73 was
the largest, with a total of 5 people.

The Knee condition statistical results can be shown in Fig. 5.
When assessing knee joint conditions, the status is divided into three levels

of health, mild impact, and severe impact according to the score range. The
proportion of mild impact is the largest.

Figure 4 shows the statistic results of exercise posture among these investi-
gators. When assessing knee joint conditions, the status is divided into three
levels of health, mild impact, and severe impact according to the score range.
The proportion of mild impact is the largest.

Figure 6 is warm-up time statistics results of Taiji participants. It can be seen
from the figure that the warm-up time of most Taijiquan practitioners is about
5 min, accounting for about 49% of the total number. Followed by warm-up time
greater than 15 min, accounting for about 31% of the total number of people. It
can be seen that in these three categories, there are far more people with mildly
affected knee joints than the other two degrees. From this analysis, the warm-up
time before exercise has little effect on the condition of the knee joint.
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Fig. 5. Knee condition Fig. 6. Warm-up times statistics of
Taiji participants

5 Experimental Analysis

In this paper, chi-square test and feature importance calculation based on deci-
sion tree are used for feature selection. After data preprocessing, 9 attributes
including gender, age, BMI, years of practice, exercise frequency, the duration of
exercise, stand posture, warm-up time, and location of knee pain were selected as
feature variables, and the condition of the knee joint as a classification variable.
The results of the chi-square test are shown in Fig. 7.

Fig. 7. The results of the chi-square
test of Taiji participants

Fig. 8. The importance of features of
Taiji participants

From the chi-square test results, it can be seen that the location of knee
pain has the greatest correlation with the condition of the knee joint, while
the correlation between BMI, age, gender and the knee joint condition is the
smallest, especially gender. In the method of calculating feature importance
based on decision tree, the calculation result is shown in Fig. 8. It can be seen
from the figure that the feature importance calculated by the decision tree differs
little among the features, but the importance of the “gender” feature is still the
smallest. Combining the chi-square test results and the results of the feature
importance calculated by the decision tree, the “gender” feature was finally
selected to be removed. We collected 3352 real data samples. The survey content
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is mainly divided into three parts. The first part is the basic information of
the interviewees, including age, gender, height, weight, etc. The second part
is the information of the Taiji exercises of the respondents, including exercise
frequency, stand posture, warm-up time, duration of each time of exercise, main
source of learning Taiji, etc. The third part is a survey of the knee condition
of the practitioner. The survey uses the Irrgang knee function scoring system.
The content includes the degree of knee pain affecting the level of daily activity,
the degree of friction in the knee affecting the level of daily activity, the degree
of knee stiffness affecting the level of daily activity, etc. Based on this scoring
system, we can obtain the overall knee joint condition of the practitioner.

6 Conclusion

In this paper, we proposed a behavioral-modeling approach to computing the
effects of Taiji on participants’ knees. To get the behavioral patterns, we choose
the important attributes pairs by the mathematical statistics techniques. The
results show that

Among the surveyed people who practice Taiji, the proportion of women is
significantly larger than that of men. The age of Taiji practitioners is generally
older, with the largest number of people between the ages of 60 and 70. Most of
those who practice Taiji are low or medium. Few people practice in an elevated
manner. Most people do warm-up exercises for about 5 min before practicing.
The most painful part of the knee is the side of the knee, followed by the front of
the knee and the back of the knee. The pain of the knee is related to the frequency
of Taiji. Too low or too high the impact on the front, back, and sides of the knee.
When assessing knee function, the function is divided into three levels of health,
mild impact, and severe impact according to the range of scores. The proportion
of mild impact is the largest, and the most affected in this population is between
50–70 years old.

To match the attributes pairs better, we design multiple logistic regression
algorithm to optimize model matching parameter. Experiments show the effec-
tiveness of our proposed method.
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Abstract. Timely and effective distribution of relief materials is one of the most
important aspects when fighting with a natural or a man-made disaster. Due to the
sudden and urgent nature of most disasters, it is hard to make the exact prediction
and projection on the demand information. Meanwhile, timely delivery is also
a problem. In this paper, we take the war against COVID-19 as an introductive
example, analyze the process of material distribution hosted by a government
department. We first show a fuzzy decision-making method to proper evaluate the
demand degree of each hospital, then based on the result of it, we propose a mixed
distribution model to improve the efficiency of delivery. Finally, we carry on a
numerical experiment and compare results with the original way that adopted by
the government.

Keywords: COVID-19 · Relief materials · COPRAS · Interval 2-tuple linguistic
variable · Mixed distribution

1 Introduction

At the end of 2019, the emergence of 2019 novel coronavirus (COVID-19) in Wuhan,
China, has caused a large global outbreak and amajor public health issue. As ofMarch 9,
2020, 80890 people have been confirmed being infected by COVID-19 in China.Wuhan,
the region of epidemic, has 49448 people infected, accounting for 61% of total infected
people in China and 73% of total infected people in Hubei province. As the main rescue
force, hospitals need a variety of materials to support their rescue work. However, as
the number of confirmed cases increased, the demand for materials is also increasing
rapidly. The consumption of various materials in each hospital is very large and many
hospitals are under the threat of shortage of materials in the early days of the epidemic.

InWuhan, there is a government department- theRedCross, being responsible for the
distribution of donated relief materials. The relief materials can be mainly sorted into
three types: daily necessities, drug medical material and protection medical material.
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However, the demand of these consumable materials is hard to predict or control, which
makes its distribution being a severe problem in the reality.

Currently, the process of distribution hosted by government can be roughly divided
into 2 stages. Firstly, each hospital reports their demand for materials, then, these materi-
als are distributed from one single supple depot to each hospital. There are mainly three
problems in the process of whole distribution:

a. Due to the situation of each hospital varies every day, government often fails to
make an accurate prediction. Virtual high demand reported by hospitals and unfair
allocation often happen.

b. The work efficiency of single supple depot is low.
c. In the stage of distribution, each hospital is served by one vehicle (belongs to the

hospital or the supple depot). Most of the time vehicles are not fully loaded, which
leads to an inefficient delivery. Furthermore, time and manpower are wasted during
the whole process.

In order to solve the above problems, this paper puts forward an integrated method
from two aspects. We first extend a multi-criteria decision-making method called
COPRAS (COmplex PRoportional ASsessment) to evaluate the demand degree of each
kind of materials for each hospital respectively. As we mentioned before, decision mak-
ers in government often fail to predict the demand of each hospital because the situation
of each hospital is varied every day and cannot be counted precisely. Therefore, in this
paper, a fuzzy approach is adopted instead of using precise number. We use interval
2-tuple linguistic variables as the evaluation language.

Then, based on the demand degree evaluated before, we prorate each kind ofmaterial
to each hospital and take this result as the demand of each kind of material for each
hospital. Finally,we propose amixed distributionmodel to ensure that the reliefmaterials
are efficiently distributed.

The rest of this paper is organized as follows: Sect. 2 briefly reviews the literatures
related to our problem. In Sect. 3, an extended COPRAS approach is proposed to eval-
uate the demand degree of each kind of material to each hospital. Section 4 models
the distribution of materials and gives its mathematical formulation. Section 5 gives a
numerical experiment for the whole process of distribution with 3 kinds of materials and
4 hospitals. Section 6 gives the conclusion of this paper.

2 Literature Review

We now review the literatures related to our problem. As a method of multi-criteria
decision-making problem, COPRAS was first proposed by Zavadskas et al. [1] in 1994.
They used this method to evaluate the building life cycles in order to select an optimal
alternative. After that, many literatures have applied it to some multi-criteria decision-
making problems. For instance, Mulliner et al. [2] used it to make an assessment of
sustainable housing affordability. Kaklauskas et al. [3] used this method to choose the
best option to design an efficient building refurbishment. Mulliner et al. [4] used the
COPRAS method for the evaluation of sustainable housing affordability and compared
it with other multi-criteria decision-making problem approaches. Pitchipoo et al. [5]



Mixed Distribution of Relief Materials 629

implemented theCOPRASdecision-makingmodel tofind the optimal blind spot in heavy
vehicles. Then, Peng et al. [6] extended the COPRAS method into Pythagorean fuzzy
environment, which enriches the abundance of the COPRAS method. Zheng et al. [7]
made a severity assessment of chronic obstructive pulmonary disease based on hesitant
fuzzy linguistic COPRAS method. This paper combines the COPRAS method with
interval 2-tuple linguistic to make an evaluation of each hospital’s demand degree.

The literatures for distribution of materials can essentially be classified as two
main situations: the demand value of each demand point is known and the demand
value of each demand is a decision variable. The first situation is often described as
vehicle routing problem (VRP) like reference [8–10] and the second is often described
as inventory routing problem (IRP). Coelho [11] has made a comprehensive review for
IRP, readers can search it if interested. Based on the number of depots, both of these
two problems have been extended with VRP with multiple depots and IRP with multiple
depots. For example, Zhen et al. [12] formulated the problem of the last mile distribu-
tion in electronic commerce as a multi-depot vehicle routing problem and solved some
large-scale instances. Soeanu et al. [13] described the distribution in a supply chain
management with the consideration of the risk of vehicle breakdown as a multi-depot
vehicle routing problem. Multi-depot inventory was just proposed by Bertazzi et al.
[14] in 2019, they described the problem of optimizing supply chain as a multi-depot
inventory routing problem.

In summary, VRP tends to minimize the travel cost by determining the set of routes
to deliver a given quantity to each customer in a single time period. IRP aims tominimize
the routing cost only or the sum of inventory and routing costs over a time horizon by
determining the quantity to each customer at each time period and the sets of routes at
each time period [14]. This paper also describes the distribution of relief materials as
a single-depot routing problem, but still has two differences with previous literatures:
we additionally consider the consumption of vehicles and the coordination between
vehicles.

3 Extended COPRAS for Evaluation of the Demand Degree

In the process of evaluation, in order to prevent the virtual high demand being reported
by hospitals, the evaluation needs to be rated by experts from government. Meanwhile,
experts from hospitals are also needed for improving the accuracy of the evaluation,
because they often have a better understanding of the situation in hospitals. Therefore,
the set of experts responsible for the evaluation should be composed of experts from
hospitals and the government. It is usual that experts from different departments tend to
use different linguistic term sets to express their judgments on criteria, and sometimes the
experts may make a judgment between two linguistic terms for the uncertainty situation
of each hospital. For example, there are 2 experts from different departments. Linguistic
terms sets used by them and their ratings for a same criterion are respectively shown in
Fig. 1 and Fig. 2.

Similar examples cannot be solved by normal fuzzy number like triangular fuzzy
number, but it can be well handled by interval 2-tuple linguistic variables [15, 16].
Besides, compared to other fuzzy variables, interval 2-tuple linguistic variables have
following advantages: (a) It improves the link between linguistic variables and numer-
ical values. (b) The computational processes of dealing with interval 2-tuple linguistic
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very few        few    medium     large        very large

[few, medium]

Fig. 1. The linguistic term set and rating of the first expert

very few    few              medium few    medium     medium large large very large

medium few

Fig. 2. The linguistic term set and rating of the second expert

variables can avoid loses of information [17]. Therefore, interval 2-tuple linguistic vari-
able is a suitable fuzzy variable for our evaluation. More specific definitions of it are
presented in Appendix 1.

The COPRAS is a method of multi-criteria decision-making problems. Compared
with other multi criteria decision making methods like TOPSIS, TODIM, it is simple
and efficiency, besides, it can process the information when both positive criteria and
negative criteria exist [7]. And in our evaluation, criteria like the number of patients
have a positive relationship with the demand degree; criteria like the materials inventory
level have a negative relationship with the demand degree. Therefore, the COPRAS is an
appropriate way for the evaluation of each hospital’s demand degree. Finally, this paper
uses the COPRAS method based on interval 2-tuple linguistic variable to evaluate each
hospital’s demand degree for different kind of materials respectively.

Suppose that the Evaluation has H decision makers DMh(h = 1, 2, ..,H ), P hos-
pitals Ap(p = 1, 2, ..,P), Q criteria Cq(q = 1, 2, . . . ,Q) and B kind of materials
(b = 1, 2, . . . ,B). Each decision maker DMh is given a weight λh > 0 satisfying∑H

h=1 λh = 1 to reflect the importance of each decision maker. Let S = {
s0, s1, . . . , sg

}

be the linguistic term set, Dh = (dh
pq)P×Q be the linguistic decision matrix of decision

maker h, where dh
pq is the linguistic information provided by DMh on the assessment

of criteria q for hospital p. Let ωhb =
(
ωhb
1 , ωhb

2 , . . . , ωhb
Q

)
be the linguistic weight

vector given by the decision maker h, where ωhb
q is the weight of criteria q under the

evaluation for material b provided byDMh. It is noteworthy that different decision mak-
ers can employ different linguistic term set. Based upon assumptions and notations, the
procedure of interval 2-tuple linguistic COPRAS method for evaluation of material b’s
demand degree for each hospital can be defined as follows:

Step 1: Convert the linguistic decision matrixDh into interval 2-tuple linguistic decision

matrix Rh =
([(

rhpq, 0
)
,
(
thpq, 0

)])

P×Q
, where rhpq, t

h
pqεS, and rhpq ≤ thpq.

Step 2: Convert the linguistic weight vector ωhb into 2-tuple linguistic weight vector

whb =
[(
whb
1 , 0

)
,
(
whb
2 , 0

)
, . . .

(
whb
Q , 0

)]T
, where whb

q εS.
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Step 3: Convert each element in the above two interval 2-tuple linguistic decision matrix
to its equivalent numerical value with the reverse function �−1 and the new matrix are
separately written as R′

h and w′
h.

Step 4: Aggregate the all decision makers’ ratings on each criterion to construct a
collective interval 2-tuple linguistic decision matrix R′ = (

r′
)
P×Q, where

r′ = [
∑H

h=1
λh�

−1
(
rhpq, 0

)
,
∑H

h=1
λh�

−1
(
thpq, 0

)
, p = 1, 2, . . . ,P, q = 1, 2, . . . ,Q

(1)

Step 5: Aggregate the all decision makers ratings on each criteria weights
to construct a collective interval 2-tuple linguistic decision matrix w′ =
[
(w1b, 0), (w2b, 0), . . . ,

(
wQb, 0

)]T , where

(
wqb, 0

) = (
∑H

h=1
λh�

−1
(
whb
q , 0

)
), q = 1, 2, . . . ,Q. (2)

Step 6: Defuzzy the interval by the following equation:

�−1
[(

rhpq, 0
)
,
(
thpq, 0

)]
= [β1, β2] = β1 + β2

2
(3)

the final collective decision matrix is written as R′′ =
[
r′′pq

]

P×Q
, the final collective

weight vector is written as w′′ =
[
w′′
1b,w

′′
2b, . . . ,w

′′
Qb

]T
.

Step 7: Let E = [epq]P×Q be the Normalization matrix of the decision-making, where

epq = w′′
q

∑P
p=1 r

′′
pq

r′′pq (4)

Step 8: Calculate the sums ofweighted normalized criteria for every hospital. The criteria
are always composed of positive criteria and negative criteria, the higher the positive
criteria’s values are, the more demand degree of hospital is. Reversely, the higher the
negative criteria’s values are, themore demand degree of hospital is. The sums of positive
and negative weighted normalized criteria are calculated by the following equation:

S+
p =

∑

zq
= +epq (5)

S−
p =

∑

zq
= −epq (6)

where zq =
{ +, if criteria q is positive

−, if criteria q is negative
Step 9: Calculate the relative significanceQp of each hospital by the following equation:

Qp = S+
p + S−

min

∑P
p=1 S

−
p

S−
p

∑P
p=1

S−
min
S−
p

(7)
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Step 10: Calculate the normalization number Q∼
p by the following equation,

Q∼
p = Qp

∑P
p=1Qp

(8)

This section proposes a COPRAS method based on 2-tuple linguistic variable for
the evaluation of each hospital’s demand degree for each kind of material. On the basis
of it, we solve the problem unfair allocation and inefficient delivery in next section.

4 Mixed Distribution of the Relief Materials

The following subsections will introduce our model for the distribution of relief mate-
rials. In order to match the quantity of each kind of material allocated to each hospital
with the demand degree of the hospital, we first prorate each kind of material to each
hospital on the basis of the demand degree evaluated in Sect. 3 and take the results as the
demand of each hospital. Thenwe propose a distributionmodel to improve the efficiency
in the process of distribution. We make some assumptions for this distribution model as
follows:

a) The definition of unit quantity refers to each undetachable package, so the number of
each material means the number of undetachable package of each kind of material;

b) The volume of each package is same;
c) All the vehicles are homogenous and have a same capacity;
d) We consider the number of supple depot is single in our model. Actually, as we

mentioned in introduction, the working efficiency of single supple depot is lowwhen
the number of relief materials is large. Therefore, multiple supple depots should be
set up in face of a large number of materials. And for each supple depot, our model
is suitable;

e) Each hospital can be served by multiple vehicles;
f) Vehicles must come back to the supple depot that they leave;
g) The distribution time of each vehicle refers to the total time required for each vehicle

to start from the warehouse, visit some hospitals in a certain order, and finally return
to the supple depot;

h) The objective is to minimize the sum of all vehicle distribution time, under the
precondition that the demand of each hospital is satisfied.

4.1 Basic Notations

To avoid confusion with the notations in previous sections, we claim that the notations
used in Sect. 3 are not suitable in Sect. 4 and 5.

Sets

P = {0}: The set of supple depot
I = {1, 2, . . . , I}: The set of hospitals
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V = P ∪ I : The set of supple depots and hospitals
R = {1, 2, . . . , r, . . . ,R}: The type of materials
K = {1, 2, . . . , k, . . .K}: The set of homogeneous vehicles
E = {(i, j)|i, j ∈ V , i �= j}: The set of edges between i and j

Parameters

C: The capacity of each vehicle
wir : The demand degree of hospital i for material r calculated in Sect. 3
tij: The travel time between hospital i and j
Br : The number of material r in supple depot

Decision Variables

qkir : The number of material r to hospital i delivered from supple depot by vehicle k
zkir : 1 if hospital i is served by vehicle k with material r, 0 otherwise
lkij: 1 if hospital i is visited before hospital j by vehicle k, 0 otherwise
yk : 1 if vehicle k is used, 0 otherwise
Qir : The demand of material r for hospital i

4.2 Mixed Distribution Model

Mathematical formulation of our model can be written as follows:

min
∑K

k=1

∑V

i=1

∑V

j=1
lkijtijz

kp
ir (9)

The objective function (9) minimizes the sum of all vehicle distribution time. Com-
pared with traditional vehicle routing problem, our objective function takes vehicle
consumption into account by using a binary variable yk . In traditional vehicle routing
problem, they often consume all the given vehicles and give a solution of vehicle rout-
ing, but don’t have to consider the number of used vehicles. Moreover, the constraint
that a demand point can only be visited once often lead to the result that each vehicle
may finish its task with a relatively high no-load rate and waste of vehicle resources.
During the background of epidemic, the government should not only give a solution of
vehicle routing which aims to reduce the cost time for delivery, but also should reduce
the movement of people to control the spread of the virus and this principle also works
for those drivers of vehicles. Besides, hospitals have been filled with patients who get
COVID-19 infected and all of them are badly in need of materials, tasks for material
delivery are very heavy and it may result the number of vehicles is not enough. Hence,
taking the consumption of vehicles into consideration is necessary.

Constraints of this model are presented in Eq. (10)–(15):

Qir = wirBr (10)
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Qir =
∑K

k=1
qkir (11)

∑R

r=1

∑I

i=1
qkirz

k
ir ≤ C,∀k ∈ K (12)

∑K

k=1
yk ≤ K (13)

∑I

i=1
zkir ≤ 1,∀k ∈ K (14)

∑I

j=1
lkij − lkji = 0,∀k ∈ K, i = 0 (15)

Constraint (10) prorates each kind ofmaterial to each hospital. Constraint (11) shows
the demand of each kind of material r for each hospital should be satisfied by a certain
number of vehicles. Constraint (12) shows the capacity limitation of each vehicle. Con-
straint (13) shows the resource limitation of vehicles. Constraint (14) ensures a vehicle
will visit a hospital not more than once. Constraint (15) ensures vehicles come back to
the supple depot that they leave.

5 Numerical Experiment

This section examines the formulated problem using numerical example. Firstly, this
paper evaluates the demand degree of three typical relief materials for four hospitals in
Wuchang District, Wuhan, China. Then we give the result of mixed distribution model.

5.1 Evaluation of the Demand Degree

This paper chooses four hospitals in Wuchang District, Wuhan City, which are
shortly named as A1,A2,A3,A4. An expert committee composed of four decision
makers,DM1,DM2, DM3,DM4, has been formed to evaluate each hospital’s demand
degree for each kind of material. And DM1,DM2 are from hospitals, DM3,DM4 are
from government. The evaluation is made on the basis of the following four criteria:

(1) The number of hospitalizations who get COVID-19 infected every day.
(2) The proportion of critical patients who get COVID-19 every day.
(3) The overall protection level of hospital.
(4) The inventory level of corresponding materials for COVID-19 every day.

The four decision makers employ different linguistic term sets to make evaluation.
Then they give their assessments of four hospitals on each criterion and theweight of each
criterion for different materials. It is noteworthy that for different kind of materials, the
weight of each criterion given by each expert is also varied. Finally, we use the proposed
ITL-COPRASmethod to calculate the demand degree of hospitals for differentmaterials.
Specific steps of solution are shown in Appendix 2. The demand degree for materials of
four hospitals is shown in Table 1.
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Table 1. The demand degree of each kind of material for each hospital

Hospital, i The demand degree
of hospital i for
material r, wir

1 2 3

1 0.280 0.260 0.267

2 0.189 0.142 0.161

3 0.229 0.186 0.203

4 0.302 0.413 0.369

5.2 Computational Study for Mixed Distribution Model

In this section, we virtually set the number of three kinds of materials in the supple depot
and give a numerical experiment for thismodel.More relative parameters are specifically
shown in Appendix 3.

The results of this instance are shown in Tables 2, 3, 4 and 5, the format of Tables 2,
3, 4 and 5 is as follows: Table 2 shows the demand of each kind of material for each
hospital. Table 3 and Table 4 respectively show the results of distribution by using our
model and the original way. Table 5 is an example of the situation of materials in vehicle
1.

Table 2. Demand of material r for hospital i, Qir

Hospital, i The demand degree of hospital i for
material r, wir

The demand of material r for
hospital i, Qir

1 2 3 1 2 3

1 0.280 0.260 0.267 9 9 9

2 0.189 0.142 0.161 6 5 6

3 0.229 0.186 0.203 7 6 7

4 0.302 0.413 0.369 10 14 13

From Table 2, we can see that a hospital’s demand degree is varied for different kinds
of materials and hospitals with higher demand degree can get more materials in general.
Take the allocation for hospital 4 as an example. Hospital 4 is a mobile cabin hospital
which aims to isolate and give some simple medical treatment for those COVID-19
patients with mild clinical symptom. There are two main characteristics of this hospital:
the number of patients is much larger than those general designated hospitals and the
clinical symptom of these COVID-19 patients is much milder than those designated
hospitals. So it is reasonable that the demand of hospital 4 for daily necessities and drug
medical material are the highest. As for the demand of hospital 4 for protection medical
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Table 3. The routes of each vehicle and distribution time by using our model

Vehicle, k yk Route Distribution time (/min) Total distribution time
(/min)

1 1 0 → 1 → 2 → 0 18

2 1 0 → 4 → 0 24 82

3 1 0 → 2 → 3 → 4 → 0 40

Table 4. The routes of each vehicle and distribution time by using the original way

Vehicle, k yk Route Distribution time (/min) Total distribution time (/min)

1 1 0 → 1 → 0 10

2 1 0 → 2 → 0 14

3 1 0 → 3 → 0 22 94

4 1 0 → 4 → 0 24

5 1 0 → 4 → 0 24

Table 5. The number of each kind of material to each hospital in vehicle 1 in our model

Materials, r Hospitals, i

1 2 3 4

1 9 6 0 0

2 9 2 0 0

3 9 0 0 0

material is also the most, this phenomenon relates to the reason that the inventory level
of this kind of material for newly-built hospital 4 is much lower than other hospitals.

Table 3 and Table 4 are the result of vehicle routing by using our model and original
way respectively. According to the previous government’s way of distribution which is
shown in Table 3, each vehicle was assigned to deliver to one hospital at a time but
without any programming. In our model, for the purpose of improving the efficiency of
distribution, we project the driving path of used vehicles which aims to minimize the
distribution time of all used vehicles. Obviously, the total cost time for distribution in
our model is less than that of the original way.

From Table 5, we can see that all kinds of materials are mixed in vehicle 1 and we
still give a solution about the task assignment of each vehicle for each hospital. Take the
distribution for hospital 4 as an example, the demand of each kind ofmaterial for hospital
4 is satisfied by 2 vehicles, the combination of materials in each vehicle is different and
the route of each vehicle is also different. In another word, the distribution of materials
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for hospital 4 is finished by the coordination of these vehicles with a variety number
of materials. In traditional vehicle routing problem or inventory routing problem, the
service for a hospital is usually satisfied by a single vehicle and can often lead to the
waste of vehicles.

In general, comparedwith the previousmethods adopted currently, ourmodel ensures
the fairness of material distribution and improves the efficiency. Moreover, we reduce
the number of vehicles used.

6 Conclusions

This paper proposed an integrated method for the distribution of relief materials when
facing at an emergency situation. Taking the COVID-19 rescue work as an introductory
example, we first compute the demand degree of each hospital for each kind of relief
material by COPRAS. Based on the degrees, make the decisions of distribution. Dif-
ferent from classical transportation problem and vehicle routing problem, we consider
the consumption of vehicles into accountant, each hospital can be served by different
vehicles, and each vehicle may just satisfy parts of the hospital’s demand. The results
suggest that our evaluation for the demand degree of each hospital for each kind of relief
material is actually feasible and reasonable. For the distribution of various emergency
relieves, our approachwithmixed distribution is effective in reducing the use of vehicles.
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