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Chapter 6
Feature Extraction Based on Wavelet 
Transform for Classification of Stress Level

Djamel Bouchaffra , Faycal Ykhlef , and Yamina Bennamane

6.1  Introduction

Traditionally, the definition of stress consists of a reaction from a restful state to an 
excited state in order to protect the cohesion of the organism. Classification of stress 
levels into different ranges (low, medium, and high) can be conducted using differ-
ent sensors or instruments such as (1) galvanic skin response (GSR), (2) photople-
thysmography (PPG), (3) electroencephalography (EEG), and (4) electrocardiogram 
(ECG). Sometimes, this task is also achieved through facial expression and speech. 
In the ECG domain, many approaches are proposed to classify stress. Most of these 
methods are based on P, QRS, and T waves due to the importance of characterizing 
the ventricular contractions in the human heart. The number of QRS complexes, the 
QRS durations, the RR distances, and the signal peak amplitudes have often been 
considered as relevant features for representing ECG signal. Discrete wavelet trans-
form (DWT)-based heart rate (HR) detection algorithm is exploited for deriving 
HRV signals from the preprocessed ECG signal to improve stress detection 
(Karthikeya et al. 2013). Nimunkar et al. proposed an empirical mode decomposi-
tion (EMD) for R-peak detection [1]. A weighted total variation (WTV) denoising 
technique has been studied in [2] for QRS detection by preprocessing ECG signals. 
A regular grammar method for extracting QRS complexes has been laid out in [3]. 
A similar method based on DWT or identifying QRS waveforms has been intro-
duced in [4]. The first derivative method-based Hamilton–Tompkins function and 
Hilbert transform for QRS identification are studied in [5]. The mother wavelet used 
in this latter context is the Haar function. To detect driver stress, multiple features 
have been utilized in [6] to achieve higher performance. In [7], after the signal 
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denoising phase based on Savitzky–Golay filters, the authors relied on the isoelec-
tric level, P wave, ST level, and QRS complex as main features for stress detection. 
In [8], statistical and frequency domain features of HRV have been combined seam-
lessly for classification of stress levels within a workplace. A sequential minimal 
optimization algorithm using EEG signals has been introduced in [9] to classify 
human stress with respect to music tracks. EEG signal-based maximum likelihood 
framework has also been exploited for the classification of stress at multiple levels 
in [10]. Another approach based on head pose features invoking different classifica-
tion schemes (k-nearest neighbor, generalized likelihood ratio, and support vector 
machine classifiers) has been introduced in [11]. A fuzzy classifier is proposed 
in [12].

Furthermore, three levels of stress are detected through a fuzzy logic classifier 
based on features such as heart rate, skin conductance, and skin temperature infor-
mation. Keshan et al. have devised different machine learning methods and algo-
rithms to detect three levels of stress from ECG signals in automobile drivers [13]. 
The accuracy obtained in this latter design approaches 88.24%.

Unlike major traditional approaches cited above that are based on electrocardio-
gram specificities and clues such as QRS waves for feature extraction, our method-
ology relies on the seamless fusion of DWT analysis and statistical measures. It in 
fact captures the details of this type of signal. These details are indicators of abrupt 
changes in the ECG signals. Our approach for the classification of ECG physiologi-
cal signals is novel. These latter signals represent an essential metric for getting 
feedback about a driver’s state because they are often gathered continuously and 
without impeding the driver’s task performance. To achieve this classification goal, 
we first removed noise from the original signals and then invoked discrete wavelet 
transform to extract a broad set of discriminative features based on the detail coef-
ficients and statistical measures. We further applied principal component analysis 
(PCA) to perform feature space dimensionality reduction [14, 15]. This smaller set 
of features represents the input pattern to different classifiers, which are support 
vector machines (SVM), weighted k-nearest neighbors (WKNN), and linear dis-
criminant analysis (LDA) for driver stress classification (refer to Fig. 6.1).

The logical organization of the manuscript is as follows: The materials and meth-
ods proposed in this research are laid out in Sect. 6.2. The obtained results and the 
discussion appear, respectively, in Sects. 6.3 and 6.4. Finally, Sect. 6.5 covers the 
conclusion and perspectives.

6.2  Materials and Methods

There are five steps that are performed to classify driver stress levels: (1) database 
collection, (2) signal preprocessing, (3) feature extraction, (4) feature dimensional-
ity reduction, and (5) classification.
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Step 1. Database We have used the Stress Recognition in Automobile Drivers 
(SRAD) database, which is relevant for stress detection in drivers [6]. This dataset 
contains a set of several physiological reactions emanating from people driving on 
specified roads and highways, and in the following situations:

 a. Low stress state or when the driver is at rest
 b. Medium stressed state or when the driver is on the highway
 c. High stress state or when the driver enters the city

In this experiment, we have considered only ECG information. The total driving 
time varies from approximately 50 min to 1.5 h, depending on road conditions.

Step 2. Signals Preprocessing This step often includes the removal of different 
types of noises. It has to differentiate between pure and noisy data. Only pure data 
are left for further analysis. Cancellation of noise has been conducted using the 
Wiener filter. It is well known that Wiener filter achieves noise reduction with some 
integrity loss of the original signal. However, this loss is often not significant in our 
level of analysis.

Step 3. Feature Extraction We have considered features in different domains 
(time, frequency, time-frequency) through the use of linear or nonlinear methods. 
Features normalization is often performed to minimize the inter-driver variance. In 
our setting, a sampled ECG signal at 496 Hz and a segment of the1-min duration 
ECG signal have been analyzed. We processed 120 signals for each class (class 1 
represents low stress, class 2 represents medium stress, and class 3 denotes high 
stress). We applied DWT using the multiresolution method (MRA) on each signal, 
which is further decomposed into ten resolution levels. The mother wavelet that we 
have used is Daubechies 4 (db4). We have obtained coefficients of details and 
approximations. Next, we applied 12 statistical measures, which are mean, standard 
deviation, skewness, kurtosis, variance, root mean square, spectrum energy, Shannon 

ECG Feature Extraction via DWT Detail 

Coefficients and Statistical Measures 

Linear Dimensionality Reduction 

Stress Level Classification using SVM, 

LDA, and WKNN 

Fig. 6.1 The holistic 
flowchart of our 
methodology

6 Feature Extraction Based on Wavelet Transform for Classification of Stress Level



80

entropy, log energy, form factor, and minimum and maximum value of wavelet 
coefficients. The set of detail coefficients capture abrupt changes in ECG signals 
(refer to Fig. 6.2).

We finally built a vector of 12 × 10 = 120 features for the ECG signals. These 
features are grouped and used as inputs for each classifier (refer to Fig. 6.3).

Step 4. Feature Dimensionality Reduction It often improves the performance of 
classifiers and minimizes computation time as well as energy costs. It is worth 
underscoring that some of the features we have selected are correlated: It is the role 
of dimensionality reduction algorithms such as PCA to recover from this issue.

Step 5. Classification After the selection of a validation set, a tenfold cross- 
validation is performed for prediction accuracy. This step allows predicting the class 
associated to a certain stress level of the driver and hence computing the global 
accuracy of our classifiers after averaging (refer to Fig. 6.4).

6.3  Results

As pointed out in Sect. 6.2, ECG signals used were collected from the dataset named 
“Stress Recognition in Automobile Drivers” available from the web repository. 
Training of classifiers is carried out in a MATLAB platform with a balanced dataset 
of 360 patterns partitioned into 120 patterns for each class (360 patterns for 3 
classes). The SVM multiclass (one vs. one) is trained with the RBF kernel with 
optimal parameter values. Tenfold cross-validation is performed for all three classi-
fiers SVM, WKNN, and LDA, and their accuracy is averaged within this fold. The 
following tables (Tables 6.1, 6.2, 6.3, 6.4, 6.5, and 6.6) depict the confusion matri-
ces for the three classifiers with and without the application of PCA. Figures 6.5 and 

Fig. 6.2 Decomposition of the signal into ten levels using DWT: extraction of detail coefficients 
and statistical measures
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ECG Signals Data Set

Dimension reduction using PCA

Preprocessing (Noise Removal)

Computation of 12 statistical features (or measures) 

on each detail coefficient: 120 features are extracted

Decomposition of the Signal into 10 levels using DWT: Extraction of 

detail coefficients

Fig. 6.3 Feature extraction flowchart

Feature Dimensionality Reduction using 

PCA 

10-Fold Cross 

Validation 
Testing Training 

LDA WKNN SVM 

Fig. 6.4 Feature extraction and classification steps
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Table 6.2 Confusion matrix of SVM using PCA with 50 optimum number of components 
showing an accuracy of 95%

Predicted class Rates
Low stress Medium stress High stress TPR FPR

True class Low stress 113 3 4 94.2% 5.8%
94.2% 2.5% 3.3%

Medium stress 0 109 11 90.8% 9.2%
90.8% 9.2%

High stress 0 0 120 100% 0%
100%

Accuracy 95%

Table 6.3 Confusion matrix of LDA with all 120 features showing an accuracy of 98.6%

Predicted class Rates
Low stress Medium stress High stress TPR FPR

True class Low stress 119 1 0 99.2% 0.8%
99.2% 0.8%

Medium stress 2 118 0 98.3% 1.7%
1.7% 98.3%

High stress 0 2 118 98.3% 1.7%
1.7% 98.3%

Accuracy 98.6%

Table 6.4 Confusion matrix of LDA using PCA with 65 optimum number of components 
depicting an accuracy of 98.6%

Predicted class Rates
Low stress Medium stress High stress TPR FPR

True class Low stress 118 2 0 98.3% 1.7%
98.3% 1.7%

Medium stress 1 118 1 98.3% 1.7%
0.8% 98.3% 0.8%

High stress 0 1 119 99.2% 0.8%
0.8% 99.2%

Accuracy 98.6%

Table 6.1 Confusion matrix of SVM with all 120 features showing an accuracy of 98.6%

Predicted class Rates
Low stress Medium stress High stress TPR FPR

True class Low stress 118 1 1 98.3% 1.7%
98.3% 0.8% 0.8%

Medium stress 1 117 2 97.5% 2.5%
0.8% 97.5% 1.7%

High stress 0 0 120 100% 0%
100%

Accuracy 98.6%
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Table 6.5 Confusion matrix of WKNN with all 120 features showing an accuracy of 98.6% with 
a number of neighbors equal to 3

Predicted class Rates
Low stress Medium stress High stress TPR FPR

True class Low stress 118 2 0 98.3% 1.7%
98.3% 1.7%

Medium stress 0 117 3 97.5% 2.5%
97.5% 2.5%

High stress 0 0 120 100% 0%
100%

Accuracy (AC) 98.6%

Table 6.6 Confusion matrix of WKNN using PCA with 40 components showing an accuracy 
of 89.2%

Predicted class Rates
Low stress Medium stress High stress TPR FPR

True class Low stress 105 13 2 87.5% 12.5%
87.5% 10.8% 1.7%

Medium stress 3 114 3 95.0% 5%
2.5% 95.0% 2.5%

High stress 0 18 102 85.0% 15.0%
15.0% 85.0%

Accuracy (AC) 89.2%

Fig. 6.5 Graph depicting the accuracy variation of WKNN classifier as a function of the number 
of neighbors (the accuracy is 98.6% when considering three neighbors)
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6.6 show the accuracy graphs with respect to some classifier parameters. The met-
rics used are defined as follows:

TP: True positive
TN: True negative
FP: False positive, FN: False negative
TPR: True positive rate
FPR: False positive rate
Accuracy = (TP + TN)/(TP + TN + FP + FN)

6.4  Discussion

This research unravels several crucial clues related to stress classification. First of 
all, the accuracy obtained using all features is 98.6% with all three classifiers (refer 
to Tables 6.1, 6.3, and 6.5). This is quite a remarkable performance when compared 
to the major state-of-the-art techniques. Furthermore, it is important to underscore 
the effectiveness of the features we have generated. It is established in the machine 
learning literature that strong features contribute to a high accuracy independently 
of classifiers’ strengths. Conversely, poor features contribute to a low accuracy even 
if the plugged classifier is strong. It is also clear that PCA degrades the performance 
in the case of SVM. The accuracy fell from 98.6% down to 95% (refer to Table 6.2). 

Fig. 6.6 Graph depicting the variation of the accuracy of all three classifiers (SVM, LDA, and 
WKNN) as a function of the number of PCA components
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We can also point out from these results that some features are linearly correlated 
since PCA with only 65 components (out of 120) has been capable of achieving an 
accuracy of 98.6% in the case of LDA (refer to Table  6.4). Moreover, the non- 
parametric classifier WKNN performed quite remarkably, with only three neighbors 
since it has achieved an accuracy of 98.6% (refer to Fig. 6.5). However, its perfor-
mance degraded when applying PCA dimensionality reduction (refer to Table 6.6 
and Fig. 6.6).

Finally, Fig. 6.6 shows starting from 40 PCA components and above, LDA has 
achieved the best performance among all classifiers. This result highlights the data 
linearity captured keenly by LDA. However, SVM appears to be less affected by 
the variation of the number of PCA components. Indeed, SVM performs better 
than the other two classifiers when the number of components is less than 30. SVM 
performance seems to degrade using PCA, but it remained stable and robust 
globally.

6.5  Conclusion

Our contribution to the field is twofold: (i) feature extraction and (ii) comparison 
between different types of parametric (LDA) and non-parametric (SVM, WKNN) 
classifiers [13, 16, 17]. It appears that the use of DWT in ECG signals is worth it, 
since abrupt signal changes are well captured and taken into account through detail 
coefficients. The application of statistical measures within DWT coefficients pro-
vides an efficient framework for feature extraction. This seamless fusion between 
two different types of information shows promise. In order to optimize the tradeoff 
between computation cost and performance in ECG stress classification, one can 
invoke LDA as the best classifier among SVM and WKNN. However, if computa-
tion resources are available, the three classifiers can be used interchangeably, since 
the three of them achieved the performance of 98.6%.

Our next future work consists of combining these three classifiers seamlessly in 
a single multi-classifier framework to improve the global accuracy further since 
these classifiers do not commit errors on the same signal instances individually.

Future works can also use independent component analysis (ICA) [18, 19]. 
Given the expansion of the Internet of Things in healthcare, the need to combine 
local and global knowledge to deliver better services, the proposed system needs to 
contextualize and converse with others according to the type of stress involved and 
the person’s physical conditions [20–25].
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