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Chapter 14
Adaptive Specular Reflection Detection 
in Cervigrams (ASRDC) Technique: 
A Computer-Aided Tool for Early 
Screening of Cervical Cancer

Brijesh Iyer  and Pratik Oak

14.1  Introduction

Cervical cancer (CC) is the fourth most recurrent women’s cancer worldwide. In 
line with the WHO health report, every fifth woman in the world will be impacted 
by it in 2050 [1]. Nearly 90% of the 270,000 deaths from CC in 2015 took place in 
low- and middle-income countries. Noteworthy progress in disease screening and 
treatment supports prevention, and prompt diagnosis may drastically reduce the CC 
mortality rate [1].

CC begins with abnormal modifications in the cervical tissue. The risk of having 
these unusual changes is concomitant with infection by the human papillomavirus 
(HPV). Moreover, early sexual interaction, manifold sexual partners, usage of oral 
contraceptives (birth control pills), unhygienic lifestyle, and misinformation are the 
critical factors for spreading this disease. If spotted early, CC can be cured reason-
ably. The most prevalent CC detection method is the Pap smear.

Nonetheless, it has inherent limitations such as sample quality, slide quality, and 
effectiveness of screeners. The CAD systems can help to treat this disease by ana-
lyzing an input image and, with the assistance of various image-processing algo-
rithms, predict or detect abnormalities. The earliest and challenging step in medical 
image exploration is to pre-process the input image for the uncovering and removal 
of noise. Specular reflection (SR) is a variety of prominent noise that appears in 
photography and medical imaging. Once a ray of light strikes the surface, a portion 
of the ray is straightaway reflected from the interface amid the surface and the air, 
thanks to their different refractive indices. This reflected light is called SR [2]. The 
humidity on the cervix surface engenders the SR, which hampers early CC 
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detection by computational systems [3]. Figure  14.1 illustrates the initial cervix 
image with the SR region (black box in the middle) and cropped SR region near it 
so that these regions undergo automatic detection, correction, and deletion accord-
ing to the specialist’s needs.

The rest of the manuscript goes as follows: Sect. 14.2 talks over the state-of-the- 
art methods for SR detection and its removal. Section 14.3 describes the compo-
nents of the ASRDC scheme. The experimental outcomes appear in Sect. 14.4. 
Section 14.5 closes this work with remarks on the ASRDC methodology and 
its future.

14.2  State-of-the-Art Technology

Automatic recognition and removal of SR experimented a few contributions lately. 
The correlated literature generally embraces four categories as (i) the dichromatic 
reflection model (DRM) usage, (ii) kernel filtering, (iii) SR cast as classification, 
and (iv) thresholding procedures.

The DRM principle states that a reflection combines specularity and diffusion 
linearly. Yoon et al. appraised the value of the specularity-invariant pixels as well as 
their ratio to set apart diffuse components. Still, this maneuver suits textured imag-
eries, and approximation in the normalization procedure bounds the accuracy of SR 
detection [4]. Tao et al. introduced a new metric termed line consistency for depth 
estimation of specular regions. They had estimated colors from multiple light 
sources. However, this strategy failed to distinguish saturated specularity [5]. J Suo 
et al. applied the DRM rationale perceiving the problem as a signal separation for 
SR detection and removal.

In contrast, the procedure overlooked smooth color alterations, and it failed to 
discern the pixels with identical hue and different saturation [6–8]. Das et al. advised 
kernel-based filters for SR detection and exclusion, e.g., filling, dilation, multiscale 
morphology, and IS-histogram [3]. Kudva et al. utilized morphological kernels as 

Fig. 14.1 Example of an SR affected cervix image with cropped SR region
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filters to acquire features from color images [9]. Xue et al. predefined the structuring 
element (SE) as a kernel. The top-hat transform treated the intensity image I (whose 
entries hold brightness values within some range) of input cervigrams [10]. Yet, all 
these schemes rest on the size and shape of the kernel applied to the database. Gao 
et al. proposed SR detection as a classification problem using SVM classifiers. This 
method’s caveat is the requirement of training every time for SR detection [11].

Zimmerman et al. suggested multiplying S and I by an arbitrary constant where 
S is the saturation component, which shows how much the white color taints a given 
color. The S component belongs to the range [0, 1] within the HSI plane. The gradi-
ent image outputs on these multiplied regions are SR pixels [12]. Akbar et al. com-
puted the SR pixel via a chaotic clonal selection procedure [13]. The image specular 
degree can function as a thresholding parameter to separate diffused images and for 
SR detection [2, 14]. The choice of arbitrary constants throughout automatic detec-
tion of SR pixels may be contingent on the database under experimentation. 
However, the detection system must be entirely automated and independent of the 
database. Therefore, any imaging modality calls for automatic threshold selection. 
Table  14.1 relates the state-of-the-art SR discovery approaches and the ASRDC 
concept. Automatic thresholding fits in fivefold groups according to the information 
content they rely upon, viz.:

 (i) Histogram-based schemes analyze the primary intensity, decimation in inten-
sity range, and nonlinear nature of the smoothed histogram.

 (ii) Clustering-related strategies split the gray levels from the input image into the 
background and foreground pixels.

 (iii) Entropy-based methods employ local entropy, cross-entropy of the foreground 
and background regions, original and binary images, etc.

Table 14.1 State-of-the-art SR detection categories

Sr. 
No. Category Working principle Remarks

1. Dichromatic 
reflection model 
[4–7]

Reflection is a linear 
combination of specular and 
diffuse components

Limits the identification of saturated 
specularity

2. Use of kernel as a 
filter [3, 9, 10]

Applying a specific mask on 
an input image as a filtering 
operator

The inappropriate selection of size and 
shape of the kernel affects the accuracy

3. SR as a 
classification 
problem [11]

Feature extraction and 
training a system with 
predefined labels as SR pixels

Requires a training system every time 
for SR detection

4. Thresholding [2, 
3, 12, 13]

Collection of pixels falling 
below the predefined 
threshold value, as SR pixels

Arbitrary selection of constant makes 
the system database dependent

5. ASRDC method SR detection using automatic 
thresholding and quality 
enhancement of low- 
resolution images

Fully automatic system, which is 
independent of size and shape of 
kernel and selection of arbitrary 
constant, no need for separate training
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 (iv) Object attribute-based methods focus on the similarity between the gray level 
and its black and white versions.

 (v) Statistical relation-founded schemes rely on higher-order moments and/or the 
correlation among pixels for threshold selection [15].

These threshold-picking strategies can be either bi-modal or multi-modal. 
Nonetheless, the application demands to get SR pixels, which are always bright. 
Hence, bi-modal distribution is the best choice, along with a histogram-based 
approach. Table 14.2 abridges a review of automatic threshold determination prac-
tices built on histograms.

In 2004, Sezgin and Sankur reviewed the performance of thresholding tech-
niques using five quality measures, viz., misclassification error (ME), edge mis-
match (EMM), relative foreground area error (RAE), modified Hausdorff distance 
(MHD), and region nonuniformity (NU). They calculated the average score of each 
scheme, ranked individual quality measures, and, finally, concluded that Kittler and 
Kapura were the superlative adaptive thresholding procedures [15]. Donald Bailey 
also investigated adaptive thresholding techniques for performance analysis and 

Table 14.2 State-of-the-art SR detection categories

Author Criteria function Significance Remarks

Calvard 
and 
Riddler 
[16]

Starts with the histogram 
mean
Updates the threshold with the 
average of the lower and upper 
means of the histogram. Stops 
if the lower and upper 
threshold difference is zero

Simple and speedy
Detected threshold is 
useful for foreground 
separation

SR intensities are always 
brighter
Not suitable for SR 
detection

Otsu [17] Use of kernel [3, 9, 10], 
minimizing intra-class 
variance between the left and 
right regions of the histogram

Best suitable for 
histograms with a clear 
valley between the 
modes

Not suitable for 
histograms where objects 
and b/g are not well 
separated

Kapura 
[18]

Maximization of entropy 
between two regions

Works on actual 
information extraction 
of two modes

SR detection does not 
require to know average 
information of lower- 
intensity pixel region

Kittler 
[19]

Minimum error thresholding 
for the standard deviation of 
both sub-histograms

Moderate threshold 
selection. Suitable for 
proper foreground 
detection

Some changes in 
partitioning required for 
high-intensity threshold 
selection

Carlotto 
[20]

Histogram represented as the 
combination of Gaussian 
mixtures of different modes

Approximation of 
histogram is dependent 
for the selection of the 
number of modes

Computationally complex

Patra [21] Calculated energy of pixel 
over a 3 × 3 neighborhood

Proposed energy curve 
behaving similar to a 
histogram with valleys 
and peaks

Applicable for spatial 
contextual information 
inappropriate for 
multilevel histogram
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found that Kittler’s minimum error is the best [20]. The ASRDC methodology over-
comes the limitations above due to:

 (a) Its complete independence on size and shape of the kernel
 (b) No requirement for the training process
 (c) Fully automatic threshold calculations

The catchline features of the ASRDC methodology are:

 1. Use of the lightness as a no-reference quality measure for selection of appropri-
ate algorithm

 2. Automatic selection of threshold by a modified Kittler’s method
 3. Automatic enhancement of low-quality images before the SR treatment

14.3  The ASRDC Methodology

The ASRDC block diagram appears in Fig. 14.2. The section further describes the 
threefold contribution of the chapter.

14.3.1  Selection of Optimum Threshold Detection Technique

The authors picked the Kittler minimum error thresholding scheme for automatic 
SR detection [19] from the approaches talked over in Sect. 14.1.

14.3.2  Automatic SR Detection

A histogram exemplifies the distribution of the pixel intensities, where an SR is a 
bright spot on an image, which agrees with the maximum part of the intensity range 
(close to white). Nevertheless, few non-SR pixels may also possess high brightness. 
SR pixels occur at the dark side of the S in addition to the bright side of the I images 

Fig. 14.2 Block diagram of the ASRDC system
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[14]. As a consequence, the SR occurrence in the intensity saturation (IS) histogram 
is a foremost ASRDC concern. The automatic SR recognition is carried out by a 
simple variant of the Kittler method to attain the optimum threshold on the S and I 
images. The modified Kittler method (MKM) understands the threshold (T) differ-
ently from the original tactic. This work considers the span going from minimum to 
maximum intensity (i.e., over complete dynamic range) as opposed to starting with 
a random T. An optimum threshold matches the minimum Jaccard Index (JI) value 
(aka criteria function) of the MKM.

The Jaccard Index J is a statistic that explains the similarities between finite 
sample sets. J is defined properly as
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(14.1)

i.e., the size of the intersection |A∩B| divided by the size of the union |A∩B| of the 
sample sets A and B. 

The ASRDC methodology employs half of the intensities for two different 
inputs. The thresholds, starting from 1 to 128, assist in calculating the minimum 
error with the MKM criterion function and are known as the left-side threshold 
(TL). Similarly, the right-side threshold (TR) results from all combinations of pixels 
from 128 to 256. The modified algorithm is given below.

Thresholds generated from step 6 (TL and TR) work on saturation (S) and inten-
sity (I) images, respectively. The SR pixels as given below.

 
SR S i j TL I i j TR= ( ) <( ) ( ) >( ), ,&&

 
(14.2)

where (i, j) symbolizes the pixel location (for row i and column j) in an picture and 
“&&” is the logical AND.

The MKM Algorithm
 1. Go through every possible threshold (T), i.e., grey level from 1 to 128 or 

from 128 to 256.
 2. Consider the groups (i) 1 or T, and (ii) 2 or (T+1), i.e., highest intensity.
 3. Compute the histograms of these groups and mark their sums as P1 and P2.
 4. Determine the mean and standard deviation for the histograms.
 5. Compute the Jaccard Index (J) criterion function for all possible T.
 6. The finishing threshold is the position with minimum J.
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14.3.3  Image Quality Assessment (QA)

The overall input image condition dramatically impacts any algorithm performance. 
Therefore, the input image quality assessment (QA) is vital to the deployment of an 
adaptive system. The objective QA of the examined picture consists of the computa-
tion of the threefold quality metric categories, viz., full reference (FR), reduced 
reference (RR), and no reference (NR). As ground reality images are not available 
when it comes to cervigrams, the NR metric is preferred in input quality testing. 
Several investigators commended many color quality parameters or attributes for 
NR-based QA like brightness, colorfulness, sharpness, contrast, and entropy. The 
colorfulness illustrates the color information perceived by the human eye. The 
sharpness gives the amount of preservation of edges. The contrast addresses the 
emphasis on the foreground and background association. The average image infor-
mation corresponds to the brightness measures, whereas the lightness promotes the 
distortion in intensities of pixels [22].

It is essential to use quality measures related to distortion for SR detection. 
Hence, the ASRDC scheme takes account of the lightness parameter together with 
colorfulness (C1), contrast (C2), and sharpness (C3). Their grouping forms a quality 
measure if and only if they are correlated, which, consequently, leads to the calcula-
tion of the correlation between the lightness and the three attributes. The validation 
of the null hypothesis can confirm the possibility of this combination, i.e., the light-
ness is uncorrelated with all three attributes. The Pearson correlation coefficient 
(p-value) gives the acceptance probability of the null hypothesis. In general, the 
significance level of the p-value is 0.05, namely, if the p-value is less than 0.05, 
attributes are correlated with the refutation of the null hypothesis [23]. The tryouts 
from Sect. 14.4 (B) substantiate the dominance of lightness features among the 
color attributes to deal with an eventual image enhancement. The experimental 
investigation of the ASRDC method indicates that if the lightness is greater than 1, 
then image quality amelioration is required.

The low-quality images must be enhanced before applying the ASRDC method-
ology. This scheme has a histogram-based automatic threshold selection (Sect. 14.3 
(B)) that also enhances pictures by altering the histogram shape.

Most prevalent histogram-centered measures to enhance pictures are histogram 
equalization (HE) [17], bi-HE (BHE) [24], adaptive HE (AHE) [32], contrast- 
limited AHE (CLAHE) [33], and brightness preserving BHE (BBHE) [24]. Among 
these approaches, the BBHE scheme preserves the image characteristics after pre- 
processing. Hence, this work treated low-quality images with BBHE before employ-
ing the ASRDC method to manage SR in an input image adaptively as:

 (a) Initial quality check of the input picture utilizing the lightness parameter
 (b) Low-quality image enhancement through BBHE
 (c) Application of the ASRDC technique to the input image
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14.3.4  SR Inpainting

Further SR inpainting is carried out to generate the SR free image. An iterative non-
zero averaging filter creates an SR free image [10]. The complete flow of the 
ASRDC method arises in Fig. 14.3 with its algorithm.

Fig. 14.3 ASRDC workflow
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14.4  Results and Discussions

14.4.1  The Dataset

The present exploration involves digitized uterine cervix pictures collected by the 
National Cancer Institute (NCI) from four epidemiological studies made in the 
USA, e.g., “Costa Rican Natural History Study of HPV and Cervical Neoplasia 
(NHS),” “ASCUS LSIL Triage Study (ALTS),” “Biopsy Study,” and “Costa Rica 
Vaccine Trial (CVT)” on HPV and CC screening [25]. The trials comprise a total of 
612 images from all 4 datasets distributed as NHS (200), ALTS (200), Biopsy (50), 
and CVT (162). This research work selects images randomly from the available 
databases with resolutions for pictures in the ALTS and NHS equal to 2891 × 1973 
and for the Biopsy and CVT, 4256 × 2832.

The acceptance of the image enhancement output entails the evaluation of the 
quality of the input image. As talked over in Sect. 14.3.3, the p-value is calculated 
to obtain the correlation between image attributes. Table 14.3 displays the p-values 
for various arrangements of images from the datasets.

Table 14.3 p-values between C4 and C1, C2, and C3

Dataset
p-value

C4-C1 C4-C2 C4-C3

ALTS + Biopsy (21 images) 0.1577 0.0487 1.29 × 10−6

ALTS + Biopsy + CVT (61 images) 0.1195 0.1401 7.73 × 10−9

All 4 datasets (113 images) 0.006 0.309 1.64 × 10−11

ASRDC Algorithm
 1. Take the input cervix image and calculate the lightness.
 2. If lightness < 1,

 (i) RGB to HSI conversion to separate saturation (S) and intensity 
(I) images

 (ii) Compute left (TL) and right threshold (TR) using the ASRDC method
 (iii) Collect pixels lying between intensities of S less than TL and intensi-

ties of I greater than TR, as SR pixels
 (iv) Perform mask enlargement on the output of step 2 (iii)

 3. If lightness > 1, Apply BBHE on the input image and extract red component

 (i) Calculate TR from BBHE image
 (ii) Collect pixels of the input image which are greater than TR, as 

SR pixels

 4. Inpaint detected SR pixels by mean color replacement.

14 Adaptive Specular Reflection Detection in Cervigrams (ASRDC) Technique…
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C1, C2, C3, and C4 represent the colorfulness, sharpness, contrast, and lightness 
attributes, respectively. The p-values of C3 are very low (i.e., <0.05 for all combina-
tions of the dataset). However, C1 and C2 show significant p-values concerning the 
significance level. This implies a correlation between lightness and contrast. Thus, 
the lightness can be combined with contrast to test the image quality. The present 
analysis selected 80 images (20 from each dataset) to determine the dominant fea-
ture between lightness and contrast. This experiment aims to confirm the necessity 
of image enhancement through no-reference image attribute. The contrast of all 80 
images ranges between 0.45 and 0.5, which did not give a noteworthy threshold as 
a decision parameter. However, a significant change in the value of lightness is 
observed for all 80 images, as below and above value 1. Thus, lightness is chosen as 
a dominant feature of the cervix color image to decide the input quality. 
Experimentation concluded the adaptability condition as if the lightness is less than 
1, input image quality is satisfactory, and the ASRDC algorithm should get applied 
without image enhancement. For an image with lightness greater than 1, it should 
be enhanced before applying the ASRDC algorithm.

14.4.2  Experiments

The S and I images are normalized to the original grayscale range of 0 to 255. TL is 
calculated for the S image, and TR is calculated for I the image, as explained in Sect. 
14.3.2. The original Kittler method and the MKM are applied to normalized S and 
I images. The final SR pixels are detected using Eq. 14.2. Table 14.4 compares the 
average threshold for S and I images using both methods. The thresholds given by 
the original Kittler method show nonuniformity over different sets of cervix images 
and detect a very less number of SR pixels. This affects the accuracy of SR pixel 
detection. However, the approximate range of difference between TL and TR by the 
suggested modification (TR-TL = dynamic range of intensities of non-SR pixels) is 
constant for all four datasets under experimentation. This, in turn, increases the 
accuracy of SR as well as non-SR pixel detection.

The SR is detected using the recommended modification explained in Sect. 
14.3.2 (Fig. 14.4) that contemplates the fact that the SR pixels are heterogeneous 
regarding other image pixels and that they can be easily observed by the human eye. 
The performance of enhancement relying on SR detection for low-quality images 

Table 14.4 Average left-side and right-side threshold

Database
Threshold for S image (TL) Threshold for I image (TR)
Original image Proposed method Original image Proposed method

ALTS 16.4 63.38 253 165.4
Biopsy 68 69.78 88.85 157.7
CVT 73.05 45.11 107.8 163
NHS 24.4 28.5 227.9 179.1

B. Iyer and P. Oak



225

corroborates the prerequisite of adaptability from Sect. 14.3.4. Figure 14.5b shows 
the detected SR pixels from the original low-quality image, whereas accurate SR 
detection from the enhanced high-quality image after the ASRDC application 
appears in Fig.  14.5c showing that the SR detection is effective to the adaptive 
enhancement of the low-quality image.

14.4.3  SR Inpainting

The iterative mean color replacement from Sect. 14.3.2 takes away the detected SR 
pixels (refer to Fig. 14.6). The ASRDC method adaptively selects the SR detection 
tactic to be applied with or without input image enhancement based on the lightness 

Fig. 14.4 SR pixel detection

Fig. 14.5 Performance of enhancement-based SR detection for low-quality image
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measure of an image. The enhancement initiates automatically for low-quality 
images before applying the ASRDC technique.

14.4.4  Quantitative Evaluation of Proposed Method

Most of the reported literature spoke about visual comparisons of various SR detec-
tion and removal methods [3–5, 13, 14, 17]. Due to the unavailability of ground 
reality images captured with proper illumination, the quantitative evaluation is 
complicated.

However, the ASRDC system compares results utilizing NR image quality attri-
butes of the original and inpainted image on the dataset under experimentation. 
Table  14.5 provides the average calculations of mean and standard deviation, 
respectively. It proves that an inpainted image has a low mean as compared to the 
original image that is to say SR (bright intensity pixels) are removed. The SR free 
image is homogeneous due to uniformity in image intensities and has less deviation 
from the mean, i.e., a decrease in the standard deviation. Table 14.6 illustrates the 
attributes of color image, viz., colorfulness, sharpness, and standard deviation. The 
SR removal decreases the colorfulness due to mean color replacement, makes the 
input image sharper, and decreases the proportion of distortion present in the input 
image, i.e., decrease in lightness. These observations depict a close agreement with 
the theoretical concepts of NR color image quality metrics.

Fig. 14.6 SR Inpainting using mean color replacement
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14.4.5  Qualitative Analysis for State-of-the-Art Methods

Figure 14.7 illustrates the comparative visual difference between the ASRDC 
method and other state-of-the-art implementations aiming at SR detection and miti-
gation suggested in [9, 12, 14]. It follows that the novel ASRDC technique out-
smarts the reported practices in terms of SR detection for images collected from 
different databases. Kudva et al. suggested the use of the Jaccard Index (JI) to mea-
sure the quantitative performance of SR detection techniques with manually marked 
SR pixels for images having practically visible SR pixels [9]. The JI value must be 
higher for the selected image to have accurate detection.

Table 14.7 parallels outcomes for the maximum JC for the ASRDC scheme and 
other state-of-the-art techniques to validate the new approach. The present analysis 
considered only four images for the JC evaluation. However, the method can be 
extended for the entire database assessment. Recently, efforts relying on artificial 
intelligence (AI), data mining, and fuzzy-based methodologies addressed the SR 
detection issue [26, 27]. Health 4.0 protocols have also provided new insights 
regarding the usage of medical resources to handle various medical emergencies 
[28–31]. These lines of attack may lead to a revolution in CC detection and 
treatment.

Table 14.5 Comparison of statistical characteristics of original and inpainted image

Database
Mean Standard deviation

Original image Inpainted image Original image Inpainted image

ALTS 66.7 55.31 57.49 39.99
Biopsy 73.52 72.56 42.06 40.58
CVT 81.82 71.35 42.59 40.58
NHS 75.38 64.13 60.8 48.8

Table 14.6 Comparison of color image attributes of original and inpainted image

Quality 
measure/
database

Colorfulness Sharpness Lightness
Original 
image

Inpainted 
image

Original 
image

Inpainted 
image

Original 
image

Inpainted 
image

ALTS 1.378 1.276 0.415 0.662 1.28 1.08
Biopsy 1.564 1.512 0.475 0.748 1.002 0.97
CVT 1.373 1.272 0.392 0.689 1.002 0.94
NHS 1.588 1.496 0.489 0.619 1.22 1.09
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Fig. 14.7 Comparative analysis of state-of-the-art methods for SR detection. (a) Original image; 
(b) SR detection with [12]; (c) SR detection using [14]; (d) SR detection via [9]; (e) SR detection 
using the ASRDC method

Table 14.7 Qualitative analysis with state-of-the-art methods of SR detection

Image JC using [12] JC using [14] JC using [9] JC for the ASRDC method

1 0.0033 0.0413 0.0099 0.1005
2 0.0041 0,1737 0.0852 0.4923
3 0.0012 0.1334 0.0282 0.3571
4 0.0029 0.2208 0.0421 0.4695
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14.5  Conclusions

This research puts forward the ASRDC as an adaptive method for detection and 
removal of SR from input cervix image, i.e., cervigrams. Experimentation was car-
ried out on 612 images collected from NCI. The ASRDC method overcomes signifi-
cant limitations of current SR detection techniques, i.e., dependency on shape and 
size of the kernel, selection of arbitrary constant, and every time training of the 
system. The ASRDC methodology uses the lightness as an NR quality measure to 
check the necessity of image enhancement, automatic enhancement of low-quality 
images before SR detection technique, and automatic selection of threshold by the 
MKM. Subjective and objective quality evaluation over different datasets highlights 
the ASRDC significance. Noise and resolution of the biomedical image largely 
depend on the quality of the equipment used for the capture and the skills of the 
expert (human intervention). In general, noise content and resolution of any bio-
medical images can be improved by using equipment that is more sophisticated. In 
addition to this, the ASRDC methodology will be an additional tool to enhance the 
grade of the biomedical images under study.

The inpainted images generated by the ASRDC adaptive system can be passed to 
further stages of early CC detection for additional feature extraction, segmentation, 
and classification techniques.

The authors are aware that when it comes to analyses of 3D images and 2D or 3D 
video, other shortcomings may affect SR detection as well as correction. For the 
cases when the dimensionality is high and several imaging modalities become nec-
essary, soft computing strategies may lessen the processing time, help with more 
challenging settings, and work with other objective metrics [32–42]. It should be 
pointed out that SR detection and removal can benefit from the knowledge obtained 
in other similar image-processing tasks that share some characteristics and caveats 
with this problem.
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