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Abstract. Differential privacy is a mathematical technique that pro-
vides strong theoretical privacy guarantees by ensuring the statistical
indistinguishability of individuals in a dataset. It has become the de
facto framework for providing privacy-preserving data analysis over sta-
tistical datasets. Differential privacy has garnered significant attention
from researchers and privacy experts due to its strong privacy guarantees.
However, the accuracy loss caused by the noise added has been an issue.
First, we propose a new noise adding mechanism that preserves (ε, δ)-
differential privacy. The distribution pertaining to this mechanism can
be observed as a generalized truncated Laplacian distribution. We show
that the proposed mechanism adds optimal noise in a global context,
conditional upon technical lemmas. We also show that the generalized
truncated Laplacian mechanism performs better than the optimal Gaus-
sian mechanism. In addition, we also propose an (ε)-differentially private
mechanism to improve the utility of differential privacy by fusing multi-
ple Laplace distributions. We also derive the closed-form expressions for
absolute expectation and variance of noise for the proposed mechanisms.
Finally, we empirically evaluate the performance of the proposed mech-
anisms and show an increase in all utility measures considered, while
preserving privacy.

Keywords: Differential privacy · Generalized truncated Laplacian
distribution · Merging of Laplacian distributions

1 Introduction

In the modern era, there has been a rapid increase in the amount of digital infor-
mation collected by governments, social media, hospitals, etc. Though this data
holds great utility for business and research purposes, inappropriate use of data
can lead to a myriad of issues pertaining to privacy. For example, Target inferred
that a teen girl was pregnant before her family knew and started sending her
coupons related to baby products [8]. Few years ago, Uber’s poor privacy prac-
tices caught news’ attention: their employees misused customer data to track
their customers, including politicians and celebrities, in real time, and blogged
about “Rides of Glory”, where Uber was able to track one night stands [13]. [11]

c© Springer Nature Switzerland AG 2020
J. Domingo-Ferrer and K. Muralidhar (Eds.): PSD 2020, LNCS 12276, pp. 74–90, 2020.
https://doi.org/10.1007/978-3-030-57521-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57521-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-57521-2_6


Utility-Enhancing Flexible Mechanisms for Differential Privacy 75

used the Internet Movie Database as a source of prior knowledge to re-identify
the anonymized Netflix records of users, unveiling their alleged political prefer-
ences and other sensitive information. Due to these and other similar incidents,
governments and policymakers start to recognize the importance of protecting
personal data. The European Union (EU) recently proposed the General Data
Protection Regulation (GDPR) to protect all EU citizens from privacy breaches
in today’s data-driven world [17] and other countries are contemplating simi-
lar regulation meanwhile. Unfortunately, the gaps in current privacy preserving
techniques make it difficult for data collectors to support this kind of privacy reg-
ulation. However, differential privacy helps organizations to comply with these
regulations. The key idea of differential privacy is to reduce the privacy impact
on individuals whose information is available in the dataset. Hence, it is not
possible to identify individual records and sensitive information pertaining to a
particular user.

Many possible approaches can be taken to preserve the privacy of datasets.
Early techniques included simple mechanisms for anonymizing datasets by
redacting or removing certain fields from datasets and operating on them nor-
mally. However, it quickly became apparent that an adversary with auxiliary
information could learn significant information from these anonymized datasets.
This led to the development of k-anonymity, which generalizes quasi-identifiers
(pieces of data that by themselves are not unique identifiers but can be combined
with others to act like one) and ensures that a particular user’s data is indis-
tinguishable from that of at least (k − 1) other users [16]. Though k-anonymity
can protect against identity disclosure, it is susceptible against homogeneity and
background-knowledge based attacks [14]. l-diversity overcomes this problem
and protects against inference-based attacks [10]. However, the semantic rela-
tionship between the sensitive attributes makes l-diversity prone to skewness
and similarity-based attacks as it is inadequate to avoid attribute exposure [14].
Differential privacy, which provides strong theoretical privacy guarantees, was
proposed to provide statistical indistinguishability of datasets.

Differentially private mechanisms are used to release statistics of a dataset as
a whole while protecting the sensitive information of individuals in the dataset.
Basically, differential privacy guarantees that the released results reveal little or
no new information about an individual in the dataset. As an individual sample
cannot affect the output significantly, the attackers thus cannot infer the private
information corresponding to a particular individual.

Though there has been a myriad of significant contributions in the field of
differential privacy, the reasons that it has not yet been adopted by many in the
industry are: first, lack of flexibility in the existing mechanisms due to dearth of
configurable parameters, second, concerns over reduced utility and privacy. In
this paper, we address these issues and offer solutions. Our contributions are as
follows:

1. First, we propose the generalized truncated Laplacian mechanism. We also
derive the upper bounds on noise amplitude and noise power for the pro-
posed mechanism. We also show that the generalized truncated Laplacian
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mechanism offers better flexibility than existing (ε, δ)-differentially private
mechanisms and performs better than the optimal Gaussian mechanism by
reducing the noise amplitude and noise power in all valid privacy regimes [1].

2. Second, we propose how different Laplacian distributions can be merged based
on different breakpoints and we also prove that the resulting distribution
is differentially private. We also show how it can enhance the utility while
guaranteeing privacy.

The proposed mechanisms enable data controllers to fine-tune the perturba-
tion that is necessary to protect privacy for use case specific distortion require-
ments. This also mitigates the problems pertaining to inaccuracy and provides
better utility in bounding noise.

The paper is organized as follows. Section 2 compares and contrasts our
work with related work in the field of differential privacy. Section 3 provides
background on differential privacy. In Sect. 4 and Sect. 5, we present the gener-
alized truncated Laplacian mechanism and the merging of Laplacian distribution
mechanism, respectively. In Sect. 6 we conclude with a summary and a discussion
of our future work.

2 Related Work

For numeric queries, ε-differential privacy [3] is achieved by adding Laplacian
noise to the query result. It has been the de facto approach in a number of works
pertaining to differential privacy [4,9] and [5]. [2] proposed (ε, δ)-differential pri-
vacy, which can be interpreted as ε-differential privacy “with probability 1−δ”. In
spite of its near-ubiquitous use, the Laplacian mechanism has no single substanti-
ation of its optimality. [6] proposes a truncated Laplacian mechanism which draw
noises from truncated Laplacian distribution. They have shown that the mech-
anism is more optimal than the optimal Gaussian mechanism as it significantly
reduces the noise amplitude and noise power in a myriad of privacy regimes.
[6] offers approximate differential privacy and is defined for the symmetric trun-
cated region, that is, [−A,A]. [15] propose piecewise mixture distributions that
preserve differential privacy and elucidate the importance of flexibility. Most
mechanisms and algorithms in differential privacy uses probability distribution
with density functions where ε is the only variable, a predefined and fixed sen-
sitivity, and minimal amount of additional flexibility for the query-mechanism
designer. In this paper, we propose other mechanisms that offer greater flexi-
bility and provide better privacy guarantees than the existing mechanisms. In
order to make use of the perturbed query outputs, we have to understand the
trade-off between accuracy and privacy. ε plays a significant role in determining
this trade-off. It is inversely proportional to the scale parameter in the Laplacian
distribution. If the value of ε is close to zero, the response to two queries made
on neighboring datasets is virtually indistinguishable. However, this makes the
queries useless as a large amount of noise would have been added to the result
and make it futile. In prior literature pertaining to the accuracy and privacy
of differentially private mechanisms, the metric of accuracy is in terms of the
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amount of noise added to the output of a query or in terms of variance. [7]
studied the trade-off between privacy and error for answering a group of lin-
ear queries in a differentially private manner, where the error is defined as the
lowest expectation of the �2-norm of the noise among the query outputs. They
also derived the boundary conditions on the error given the differential privacy
constraint. [12] were able to extend the result on the trade-off between privacy
and error to the case of (ε, δ)-differential privacy.

3 Background

In this section, we will provide an overview of differential privacy, describe the
privacy-accuracy trade-off under (ε)-differential privacy and (ε, δ)-differential pri-
vacy, and provide the cost functions that are commonly used in evaluating the
utility and privacy trade-off of mechanisms that satisfy differential privacy.

3.1 Differential Privacy

Consider a query function,
q : D → R,

where D denotes the set of all possible datasets. The query function q is applied
to a dataset or subsets of datasets and returns a real number. Any two datasets
D1 ∈ D and D2 ∈ D are called neighboring datasets if they differ by at most one
element. In other words, one dataset is a subset of the other and |D1 − D2| ≤ 1.
We denote two neighboring datasets D1, D2 as D1 ∼ D2. A randomized query-
answering mechanism A is a function of the query function q, and will randomly
output a real number with certain probability distribution P depending on q(D),
where D is the dataset.

A more relaxed notion of ε-differential privacy is (ε, δ)-differential privacy,
which can be interpreted as the algorithm that is mostly ε-differentially private
with the factor δ denoting the probability that it fails to be. Formally, we have
the following definition.

Definition 1 ((ε, δ)-Differential Privacy). A randomized mechanism A : D →
O preserves (ε, δ)-differential privacy ((ε, δ)-DP) when there exists ε > 0, δ > 0
such that,

Pr [A(D1) ∈ T ] ≤ eεPr [A(D2) ∈ T ] + δ

holds for every subset T ⊆ O and for any two neighboring datasets D1 ∼ D2.

Definition 2 (Global Sensitivity). For a real-valued query function q : D → R,
where D denotes the set of all possible datasets, the global sensitivity of q, denoted
by Δ, is defined as

Δ = max
D1∼D2

|q(D1) − q(D2)|,

for all D1 ∈ D and D2 ∈ D.

Note when the query function q is a counting query or a histogram query, the
global sensitivity Δ = 1 because removing one user from the dataset D only
affects the output of the query by at most 1.
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3.2 Utility Model

In this section, we discuss the way that we will be using to evaluate the utility and
privacy of a differentially private mechanism. Consider a cost function L : R →
R, which is a function of the random additive noise in the mechanism A. Given
a random additive noise x, the cost function for it is defined as L(x). Therefore,
we can derive the expectation of the cost over the probability distribution P by
solving: ∫

x∈R

L(x)P(x)dx

Upper bounds on the minimum noise amplitude and noise power, correspond
to the l1 cost function L(x) = |x| and l2 cost function L(x) = x2, respectively.
Our objective is to minimize such expectation of the cost over the probability
distribution for preserving differential privacy.

3.3 Differentially Private Mechanisms

For the case of real output, introducing noise in an additive manner is a standard
technique to preserve differential privacy. Thus, we will be discussing mechanisms
A that preserves ε or (ε, δ)- differential privacy by adding a random noise X
drawn from a probability distribution P. So we will reserve the notation A for
mechanisms that take the standard formula:

A(D) = q(D) + X.

We will also reserve the variable X for the additive random noise drawn from
the probability distribution P from now on unless stated otherwise.

One of the most well-known differentially private mechanism is the Laplacian
mechanism, which uses random noise X drawn from the symmetric Laplacian
distribution. The zero-mean Laplacian distribution has a symmetric probability
density function f(x) with a scale parameter λ defined as:

f(x) =
1
2λ

e− |x|
λ .

Given the global sensitivity, Δ, of the query function q, and the privacy parame-
ter ε, the Laplacian mechanism A uses random noise X drawn from the Laplacian
distribution with scale λ = Δ

ε . The Laplacian mechanism preserves ε-differential
privacy [2].

A variant of the symmetric Laplacian mechanism is the truncated Laplacian
mechanism, which uses a random noise generated from the truncated Laplace
distribution. The zero-mean truncated Laplace distribution has a symmetric-
bounded probability density function f(x) with scale λ defined as:

f(x) =

{
Be− |x|

λ , for x ∈ [−A,A]
0, otherwise



Utility-Enhancing Flexible Mechanisms for Differential Privacy 79

where
A =

Δ

ε
ln(1 +

eε − 1
2δ

) and B =
1

2Δ
ε (1 − 1

1+ eε−1
2δ )

.

Given the global sensitivity Δ of the query function q, and the privacy parameters
ε, δ, the truncated Laplacian mechanism A uses random noise X drawn from
the truncated Laplacian distribution with scale λ = Δ

ε . It has been proven to be
(ε, δ)-differentially private for δ < 1

2 [6].

Remark 1. Note that an ε or (ε, δ)-differential private mechanism A with addi-
tive noise X drawn from probability distribution P will still be ε or (ε, δ)-
differential private when the mean μ of P is any finite real number instead
of 0. Therefore, we will just be discussing and proving the μ = 0 case in this
paper. However, the proof for any real number μ is similar.

4 Generalized Truncated Laplacian Mechanism

In this section, we propose an (ε, δ)-differentially private mechanism that offers
better flexibility than the symmetrically bounded truncated Laplacian mecha-
nism [6] and better accuracy than the optimal Gaussian mechanism [1]. First,
we state the probability density function and the cumulative distribution func-
tion of the generalized truncated Laplacian distribution. Then, we elucidate the
(ε, δ)-differentially private mechanism. Finally, we evaluate the upper bound on
noise amplitude and noise power.

4.1 Generalized Truncated Laplace Distribution

The probability distribution can be viewed as a generalized truncated Laplace
distribution. Such a probability distribution is motivated by the symmetrically
bounded Laplace distribution proposed by [6]. The proposed distribution in this
paper is a more general version as it is asymmetrically bounded.

To construct such a distribution, we set the privacy parameter ε and δ. In
contrast to most of the existing (ε, δ)-differential private mechanisms, where ε
and δ are the only two variables in the algorithm design, the generalized trun-
cated Laplacian distribution allows another parameter to specify the upper or
lower bound of the probability density function. Therefore, with the additional
bounding parameter, not depending on the value of ε or δ, the proposed gener-
alized truncated Laplace distribution provides more flexibility.

Definition 3. The zero-mean generalized truncated Laplace distribution has a
probability density function f(x) with scale λ, and is asymmetrically bounded by
A and B where A < 0 < B, defined as:

f(x) =

{
Me− |x|

λ for x ∈ [A,B]
0 otherwise

where, M =
1

λ(2 − e
A
λ − e− B

λ )
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Fig. 1. Laplacian mechanism vs Generalized truncated Laplacian mechanism

Figure 1 depicts a zero-mean Laplace distribution and generalized truncated
Laplacian distribution with a scale factor of 2.

The proposed probability distribution is valid, as its probability density func-
tion f(x) is greater than 0 for x in the sample space and

∫ ∞
∞ f(x)dx = 1

Then we present the closed form of the cumulative distribution function,
F (x), for the generalized truncated Laplacian distribution.

The cumulative distribution function is defined as,

F (x) =

⎧⎪⎨
⎪⎩

e
x
λ −e

A
λ

2−e
A
λ −e− B

λ
if x < 0

2−e
A
λ −e− x

λ

2−e
A
λ −e− B

λ
if x ≥ 0

4.2 Mechanism

Given the global sensitivity Δ of the query function q, and the privacy parameters
ε, δ, the Generalized Truncated Laplacian mechanism A uses random noise X
drawn from the generalized truncated Laplacian distribution in Definition 3 with
the following parameters:

λ =
Δ

ε
,A + Δ ≤ 0 ≤ B − Δ

If |A| ≥ |B|,{
A = λ ln

[
2 + (1−δ

δ )e− B
λ − ( 1δ )e− B−Δ

λ

]
B = any positive real number satisfying|A| ≥ |B|

If |A| < |B|,{
A = any negative real number satisfying |A| < |B|
B = −λ ln

[
2 + (1−δ

δ )e
A
λ − ( 1δ )e

A+Δ
λ

] .
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Theorem 1. The generalized truncated Laplacian mechanism preserves (ε, δ)-
differential privacy.

Proof. The proof for Theorem 1 relies on the following two lemmas, and the
proof for those lemmas can be found in Appendix A.

Lemma 1.

max
(∫ A+Δ

A

f(x)dx,

∫ B

B−Δ

f(x)dx
)

= δ

for the probability density function f(x), λ,A and B of the generalized truncated
Laplace distribution.

Lemma 2. A mechanism A(D) = q(D)+X that adds a random noise X drawn
from probability distribution P with probability density function f(x), satisfies
(ε, δ)-differential privacy when

P(S) − eεP(S + d) ≤ δ

holds for any |d| ≤ Δ, and any measurable set S ⊆ R, where Δ is the global
sensitivity for the query function q.

Using Lemma 2, in order to prove that our mechanism is (ε, δ)-differential pri-
vate, we need to show that for the global sensitivity, Δ, of our query function
q,

P(S) − eεP(S + d) ≤ δ

holds for any |d| ≤ Δ, and any measurable set S ⊆ R. Equivalently, it is sufficient
to show that

max(P(S) − eεP(S + d)) ≤ δ

If x ∈ (A + Δ,B − Δ) then,

f(x)
f(x + d)

=
Me− |x|

λ

Me− |x+d|
λ

= e
|x+d|−|x|

λ ≤ e
|d|
λ ≤ eε,

which implies ∀|d| ≤ Δ, f(x) − eεf(x + d) ≤ 0 when x ∈ (A + Δ,B − Δ).
Thus, for measurable set S,

P(S) − eεP(S + d) ≤ P(S ′) − eεP(S ′ + d)

for S ⊆ R and S ′ = S\(A + Δ,B − Δ). Therefore, P(S) − eεP(S + d) is maxi-
mized for some set S ⊆ (−∞, A + Δ] or S ⊆ [B − Δ,∞). Since the distribution
changes exponentially with rate 1

λ = ε
Δ , multiplying the probability distribution

P by eε will result in shifting the probability distribution by Δ. Therefore,

sup
S⊆R

P(S) − e
εP(S + d) ≤ max

( ∫ A+Δ

−∞
f(x)dx,

∫ ∞

B−Δ
f(x)dx

)
= max

( ∫ A+Δ

A
f(x)dx,

∫ B

B−Δ
f(x)dx

)

From Lemma 1, we have the desired inequality

P(S) − eεP(S + d) ≤ δ.
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Remark 2. We claim that

0 < δ ≤ min

(∫ 0

A

f(x)dx,

∫ B

0

f(x)dx

)
.

Proof. If |A| ≥ |B|, then

∫ 0

A

f(x)dx >

∫ B

0

f(x)dx

⇒ min

(∫ 0

A

f(x)dx,

∫ B

0

f(x)dx

)
=

∫ B

0

f(x)dx

Additionally,

max

(∫ A+Δ

A

f(x)dx,

∫ B

B−Δ

f(x)dx

)
=

∫ B

B−Δ

f(x)dx = δ

Since 0 ≤ B − Δ,

δ =
∫ B

B−Δ

f(x)dx ≤
∫ B

0

f(x)dx.

If |A| < |B|, the proof is similar.

4.3 Upper Bound on Noise Amplitude and Noise Power

We apply the generalized truncated Laplacian mechanism to derive upper bounds
on the minimum noise amplitude and noise power, corresponding to the l1 cost
function L(x) = |x| and l2 cost function L(x) = x2, respectively.

When L(x) = |x|, the upper bound on minimum noise amplitude is

2λ − (λ − A)e
A
λ − (λ + B)e− B

λ

2 − e
A
λ − e− B

λ

, where λ =
Δ

ε
, A and B are specified in Theorem 1.

This result is obtained by evaluating

infP∈Pε,δ

∫
x∈R

|x|P(dx) =
∫ B

A

|x|f(x)dx = M

(∫ 0

A

−xe
x
λ dx +

∫ B

0

xe− x
λ dx

)

As the noise with probability density function f(x) satisfies (ε, δ)-differential
privacy, this provides an upper bound on infP∈Pε,δ

∫
x∈R

|x|P(dx).
Similarly, we derive the upper bound on the minimum noise power by having

L(x) = x2, and we get

4λ2 − (2λ2 − 2λA + A2)e
A
λ − (2λ2 + 2λB + B2)e− B

λ

2 − e
A
λ − e− B

λ
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where λ = Δ
ε , and A and B are specified in Sect. 4.2.

As the noise with probability density function f(x) satisfies (ε, δ)-differential
privacy, this provides an upper bound on infP∈Pε,δ

∫
x∈R

x2P(dx).
We performed experiments to compare the performance of the generalized

truncated Laplacian mechanism with the optimal Gaussian mechanism [1]. [1]
calculate the variance of the optimal Gaussian mechanism using the cumulative
density function instead of a tail bound approximation. The ratio of the noise
amplitude and noise power of generalized truncated Laplacian mechanism and
the optimal Gaussian mechanism is always less than 1 for appropriate values
of δ, A and B as shown in AppendixB. Compared to the optimal Gaussian
mechanism, the generalized truncated Laplacian mechanism reduces the noise
power and noise amplitude across all privacy regimes.

5 Merged Laplacian Mechanism

In this section, we propose an ε-differentially private mechanism that merges dif-
ferent Laplacian distributions on different breakpoints. We also evaluate the l1

cost function L(x) = |x| and l2 cost function L(x) = x2 for the proposed mech-
anism, compare it with the Laplacian mechanism and show that our proposed
mechanism achieves better utility.

Definition 4. The zero-mean merged Laplacian distribution has a probability
density function f(x) with n break points 0 < c1 < c2 < · · · < cn = ∞ and n
scale parameters λ1, λ2, ..., λn defined as:

f(x) = fm(x) for x ∈ (−cm,−cm−1] ∪ [cm−1, cm)

Let c0 = 0,∀m ∈ {1, 2, ..., n} where fm(x) = ame− |x|
λm ,

and all am > 0 computed by

n∑
m=1

∫ cm

cm−1

ame− |x|
λm dx =

1
2
, (1)

and fm(cm) = fm+1(cm). (2)

Remark 3. Note that (1) and (2) gives sufficient inputs to calculate am for
m ∈ {1, 2, .., n} as we can write am’s in terms of λ1, λ2, ..., λn and a1 and by
inductively applying

fm(cm) = fm+1(cm) =⇒ ame
− cm

λm = am+1e
− cm

λm+1 =⇒ am+1 = ame
cm

λm+1
− cm

λm .

Then, we can rewrite (1) with a1 as the only variable to solve for the value of
a1. Hence, we can get the values for the rest of the am’s.
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Now we will prove that the probability distributions that we proposed is a valid
one. To do this, we need to show that its probability density function f(x) is
continuous and greater than 0 for x in the domain and the cumulative probability
from −∞ to ∞ is 1.

Proof. First, it is easy to see that f(x) > 0 for x in the domain as e− |x|
λm > 0 for

m ∈ {1, 2, ..., n}, and all am > 0. Thus, fm(x) > 0 ⇒ f(x) > 0.

Additionally, f(x) is continuous on ∪n
m=0(cm−1, cm) as e− |x|

λm is continuous.
At each break point cm, the continuity is ensured by fm(cm) = fm+1(cm). Now
we will show that the cumulative probability from −∞ to ∞ is 1.

∫ ∞

−∞
f(x)dx =

n∑
m=1

(∫ −cm−1

−cm

fm(x)dx +

∫ cm

cm−1

fm(x)dx

)
= 2

n∑
m=1

∫ cm

cm−1

fm(x)dx = 2 · 1

2
= 1

Now we propose a differentially private mechanism which adds noise drawn
from the Merged Laplacian distribution as defined in Definition 4.

Theorem 2. Given the global sensitivity, Δ, of the query function q, and the
privacy parameter ε = ε1, the Merged Laplacian mechanism A uses random noise
X drawn from the merged Laplacian distribution with scale parameter λm = εm

Δ
where λ1 > λ2 > · · · > λn and preserves ε - differential privacy.

Proof. To prove that our mechanism preserves ε - differential privacy, we need
to show that for D1 ∼ D2,

Pr[A(D1) ∈ T ] ≤ eεPr[A(D2) ∈ T ]

for any subset T ⊆ O, where O is the set of all outputs of the mechanism. And
the above inequality is equivalent to

Pr[A(D1) = t]
Pr[A(D2) = t]

≤ ekε, ∀t ∈ T ⇔ Pr[X = t − q(D1)]
Pr[X = t − q(D2)]

≤ ekε.

We will prove this inductively. Our base case is when n = 1, then the mechanism
becomes the well-known Laplacian mechanism, which is ε - differentially private
as ε = max(ε1). Now, notice that since λm = εm

Δ and λ1 > λ2 > · · · > λn, then
max(ε1, ε2, ..., εn) = ε1 = ε.

Now, assume with the same break points c1, c2, ..., ck−1 where 0 < c1 < c2 <
· · · < ck = ∞, the merged Laplacian mechanism is ε = ε1 - differentially private.
We want to prove that adding one more break point ck < ∞ to the new merged
mechanism satisfies ε - differential privacy. We will prove the case where t−q(D1)
and t − q(D2) are negative, as the other cases follows the similar proof with a
few sign changes. For m ∈ {1, 2, ..., k − 1}, we have

Pr[X = t − q(D1)]
Pr[X = t − q(D2)]

=
ame

t−q(D1)
λm

ake
t−q(D2)

λk

=
am

ak
· e

t−q(D1)
λm

− t−q(D2)
λk
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We also know that,

ak = ak−1e
ck−1

λk
− ck−1

λk−1 = ak−2e
ck−2
λk−1

− ck−2
λk−2

+
ck−1

λk
− ck−1

λk−1 = ame
∑k−1

i=m−1

(
ci

λi+1
− ci

λi

)

Hence,
am

ak
= e

∑k−1
i=m−1

(
ci
λi

− ci
λi+1

)
.

Notice that

k−1∑
i=m−1

(
ci

λi
− ci

λi+1

)
=

k−1∑
i=m−1

(
ci (λi+1 − λi)

λiλi+1

)
< 0 since λ1 > λ2 > · · · > λn.

Thus,

Pr[X = t − q(D1)]

Pr[X = t − q(D2)]
=

am

ak

· e
t−q(D1)

λm
− t−q(D2)

λk < e

t−q(D1)
λm

− t−q(D2)
λk = e

λk(t−q(D1))−λm(t−q(D2))
λmλk

<e

λm(t−q(D1))−λm(t−q(D2))
λmλk = e

t−q(D1)−t+q(D2)
λk = e

q(D2)−q(D1)
λk = e

εk < e
ε
.

Hence, we have proved that the proposed mechanism is ε - deferentially private.

We evaluate the l1 cost function L(x) = |x| and l2 cost function L(x) = x2, for
the Laplacian, Merged Laplacian with 1 break point and Merged Laplacian with
2 break points as shown in AppendixC. We show that the cost for the Merged
Laplacian with 2 break points is lower than that of the Laplacian mechanism
and hence we achieve better utility for the same privacy loss.

6 Conclusion and Future Work

In this paper, we presented two novel differentially private mechanisms that
provide better accuracy guarantees compared to existing mechanisms. Firstly,
we presented a new noise adding mechanism that preserves (ε, δ)-differential
privacy. The proposed mechanisms provide more scope for customization as they
have more parameters to tune. Due to this customizable and flexible nature,
appropriate values for different parameters in the mechanisms can be set. We
also show that the generalized truncated Laplacian mechanism performs better
than the optimal Gaussian mechanism. Next, we show that the proposed merging
of Laplacian mechanisms demonstrates better in performance in terms of various
metrics for l1 and l2 loss without sacrificing additional privacy. As a part of future
work, we plan to perform an in-depth comparison of all (ε, δ)-differentially private
and ε-differentially private mechanisms and highlight the pros and cons of every
mechanism.
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A Proof for Lemma 1 and Lemma 2

Here, we present the proof for Lemma 1 and Lemma 2 used in Sect. 4.2.

Proof (Proof for Lemma 1). Since the probability density function f(x) is mono-
tonically increasing when x ≥ 0 and is monotonically decreasing when x < 0,

max
( ∫ A+Δ

A

f(x)dx,

∫ B

B−Δ

f(x)dx
)

=

{∫ B

B−Δ
f(x)dx when |A| ≥ |B|∫ A+Δ

A
f(x)dx when |A| < |B|.

We will first discuss the case when |A| ≥ |B|,

max
( ∫ A+Δ

A

f(x)dx,

∫ B

B−Δ

f(x)dx
)

=
∫ B

B−Δ

f(x)dx =
∫ B

B−Δ

Me− x
λ dx

= Mλ
(
e− B−Δ

λ − e− B
λ )

)

Plugging in M = 1

λ(2−e
A
λ −e− B

λ )
as in our definition for the generalized trun-

cated Laplacian distribution, A = λ ln
[
2 + (1−δ

δ )e− B
λ − ( 1δ )e− B−Δ

λ

]
as specified

in Theorem 1, we have

∫ B

B−Δ

f(x)dx =
e− B−Δ

λ − e− B
λ

2 − e
A
λ − e− B

λ

=
e− B−Δ

λ − e− B
λ

( 1δ )
(
e− B−Δ

λ − e− B
λ

) = δ

We omit showing the computation for the case when |A| ≤ |B| as the derivation
is very similar to that of the above mentioned case.

Now, we will proceed to prove Lemma 2.

Proof (Proof for Lemma 2). Given two neighboring datasets D1 ∼ D2, we know
that |q(D1) − q(D2)| ≤ Δ, thus the condition P(S) − eεP(S + d) ≤ δ for any
|d| ≤ Δ is equivalent to

P(S) − eεP(S + q(D1) − q(D2)) ≤ δ ⇔ P(S − q(D1)) ≤ eεP(S − q(D2)) + δ

Hence, for any t ∈ S, the condition is equivalent to

Pr(X = t − q(D1)) ≤ eεPr(X = t − q(D2)) + δ

⇔ Pr(q(D1) + X = t) ≤ eεPr(q(D2) + X = t) + δ

⇔ Pr [A(D1) ∈ T ] ≤ eεPr [A(D2) ∈ T ] + δ,

which is the necessary condition for mechanism A to preserve (ε, δ)-differential
privacy.
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B Generalized Truncated Laplacian - Evaluation

We empirically show that the ratio of the noise amplitude L∗
1 and noise power L∗

2

of generalized truncated Laplacian mechanism and the optimal Gaussian mech-
anism is always less than 1 for appropriate values of δ, A and B as described
in Sect. 4. Compared to the optimal Gaussian mechanism, the generalized trun-
cated Laplacian mechanism reduces the noise power and noise amplitude across
all privacy regimes. The implementation can be found in https://github.com/
vaikkunth/DPMechanisms.

ε δ A L∗
1 L∗

2

0.7 2.5e−06 −17.46 0.25 0.13

0.4 4.0e−06 −27.57 0.27 0.15

0.4 2.5e−06 −28.74 0.27 0.14

0.4 9.5e−06 −25.4 0.29 0.17

0.4 3.0e−06 −28.29 0.27 0.14

0.7 6.0e−06 −16.21 0.27 0.14

0.4 8.5e−06 −25.68 0.29 0.16

0.7 3.5e−06 −16.98 0.26 0.13

0.7 4.0e−06 −16.79 0.26 0.14

0.4 2.0e−06 −29.3 0.26 0.14

0.1 4.5e−06 −93.66 0.31 0.19

0.7 3.0e−06 −17.2 0.26 0.13

0.4 5.5e−06 −26.77 0.28 0.15

0.7 9.5e−06 −15.55 0.28 0.15

0.4 6.0e−06 −26.55 0.28 0.16

0.7 1.0e−06 −18.77 0.24 0.12

0.4 6.5e−06 −26.35 0.28 0.16

0.4 7.0e−06 −26.17 0.28 0.16

0.4 4.5e−06 −27.27 0.27 0.15

0.4 9.0e−06 −25.54 0.29 0.17

0.4 3.5e−06 −27.9 0.27 0.15

0.1 9.5e−06 −86.19 0.32 0.21

0.1 5.5e−06 −91.66 0.31 0.19

0.1 5.0e−06 −92.61 0.31 0.19

0.4 1.5e−06 −30.02 0.26 0.13

0.4 8.0e−06 −25.83 0.29 0.16

https://github.com/vaikkunth/DPMechanisms
https://github.com/vaikkunth/DPMechanisms


88 V. Mugunthan et al.

ε δ A L∗
1 L∗

2

0.7 7.0e−06 −15.99 0.27 0.15

0.7 7.5e−06 −15.89 0.27 0.15

0.4 1.0e−06 −31.03 0.25 0.13

0.1 7.0e−06 −89.24 0.32 0.2

0.4 5.0e−06 −27.01 0.28 0.15

C Merging Laplacian Distributions - Evaluation

We evaluate the l1 and l2 cost for the Laplacian, Merged Laplacian with 1 break
point and Merged Laplacian with 2 break points. We show that the cost for
the Merged Laplacian with 2 break points is lower than that of the Laplacian
mechanism and hence we achieve better utility for the same privacy loss. The
implementation can be found in https://github.com/vaikkunth/DPMechanisms.

(ε1, ε2, ε3) (c1, c2) L∗
1 L∗

2

(0.2, 0.25, 0.33) (1, 3) (3.0, 3.03, 1.12) (18.0, 18.22, 3.94)

(0.17, 0.25, 0.33) (1, 3) (3.0, 3.03, 1.12) (18.0, 18.22, 3.96)

(0.17, 0.2, 0.33) (1, 3) (3.0, 3.05, 1.13) (18.0, 18.35, 4.07)

(0.14, 0.25, 0.33) (1, 3) (3.0, 3.03, 1.12) (18.0, 18.22, 3.97)

(0.14, 0.2, 0.33) (1, 3) (3.0, 3.05, 1.13) (18.0, 18.35, 4.08)

(0.14, 0.17, 0.33) (1, 3) (3.0, 3.06, 1.13) (18.0, 18.43, 4.15)

(0.14, 0.17, 0.2) (1, 3) (5.0, 5.01, 1.96) (50.0, 50.15, 16.26)

(0.12, 0.25, 0.33) (1, 3) (3.0, 3.03, 1.13) (18.0, 18.22, 3.98)

(0.12, 0.2, 0.33) (1, 3) (3.0, 3.05, 1.13) (18.0, 18.35, 4.08)

(0.12, 0.17, 0.33) (1, 3) (3.0, 3.06, 1.13) (18.0, 18.43, 4.16)

(0.12, 0.17, 0.2) (1, 3) (5.0, 5.01, 1.96) (50.0, 50.15, 16.28)

(0.12, 0.14, 0.33) (1, 3) (3.0, 3.07, 1.14) (18.0, 18.49, 4.21)

(0.12, 0.14, 0.2) (1, 3) (5.0, 5.02, 1.98) (50.0, 50.26, 16.5)

(0.11, 0.25, 0.33) (1, 3) (3.0, 3.03, 1.13) (18.0, 18.22, 3.98)

(0.11, 0.2, 0.33) (1, 3) (3.0, 3.05, 1.13) (18.0, 18.35, 4.09)

(0.11, 0.17, 0.33) (1, 3) (3.0, 3.06, 1.14) (18.0, 18.43, 4.16)

(0.11, 0.17, 0.2) (1, 3) (5.0, 5.01, 1.96) (50.0, 50.15, 16.3)

(0.11, 0.14, 0.33) (1, 3) (3.0, 3.07, 1.14) (18.0, 18.49, 4.21)

(0.11, 0.14, 0.2) (1, 3) (5.0, 5.02, 1.98) (50.0, 50.26, 16.52)

(0.11, 0.12, 0.33) (1, 3) (3.0, 3.08, 1.14) (18.0, 18.53, 4.25)

(0.11, 0.12, 0.2) (1, 3) (5.0, 5.03, 1.99) (50.0, 50.34, 16.68)

(0.11, 0.12, 0.14) (1, 3) (7.0, 7.01, 3.28) (98.0, 98.12, 42.57)

(0.2, 0.25, 0.33) (1, 5) (3.0, 3.03, 1.61) (18.0, 18.22, 5.17)

https://github.com/vaikkunth/DPMechanisms


Utility-Enhancing Flexible Mechanisms for Differential Privacy 89

(ε1, ε2, ε3) (c1, c2) L∗
1 L∗

2

(0.17, 0.25, 0.33) (1, 5) (3.0, 3.03, 1.61) (18.0, 18.22, 5.19)

(0.17, 0.2, 0.33) (1, 5) (3.0, 3.05, 1.63) (18.0, 18.35, 5.4)

(0.14, 0.25, 0.33) (1, 5) (3.0, 3.03, 1.61) (18.0, 18.22, 5.2)

(0.14, 0.2, 0.33) (1, 5) (3.0, 3.05, 1.63) (18.0, 18.35, 5.41)

(0.14, 0.17, 0.33) (1, 5) (3.0, 3.06, 1.64) (18.0, 18.43, 5.55)

(0.14, 0.17, 0.2) (1, 5) (5.0, 5.01, 1.85) (50.0, 50.15, 10.69)

(0.12, 0.25, 0.33) (1, 5) (3.0, 3.03, 1.62) (18.0, 18.22, 5.21)

(0.12, 0.2, 0.33) (1, 5) (3.0, 3.05, 1.63) (18.0, 18.35, 5.42)

(0.12, 0.17, 0.33) (1, 5) (3.0, 3.06, 1.64) (18.0, 18.43, 5.56)

(0.12, 0.17, 0.2) (1, 5) (5.0, 5.01, 1.85) (50.0, 50.15, 10.7)

(0.12, 0.14, 0.33) (1, 5) (3.0, 3.07, 1.65) (18.0, 18.49, 5.65)

(0.12, 0.14, 0.2) (1, 5) (5.0, 5.02, 1.86) (50.0, 50.26, 10.98)
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