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Abstract. Differential privacy (DP) is a privacy model that was
designed for interactive queries to databases. Its use has then been
extended to other data release formats, including microdata. In this
paper we show that setting a certain ε in DP does not determine the con-
fidentiality offered by DP microdata, let alone their utility. Confidential-
ity refers to the difficulty of correctly matching original and anonymized
data, and utility refers to anonymized data preserving the correlation
structure of original data. Specifically, we present two methods for gener-
ating ε-differentially private microdata. One of them creates DP synthetic
microdata from noise-added covariances. The other relies on adding noise
to the cumulative distribution function. We present empirical work that
compares the two new methods with DP microdata generation via prior
microaggregation. The comparison is in terms of several confidential-
ity and utility metrics. Our experimental results indicate that different
methods to enforce ε-DP lead to very different utility and confidential-
ity levels. Both confidentiality and utility seem rather dependent on the
amount of permutation performed by the particular SDC method used
to enforce DP. Thus suggests that DP is not a good privacy model for
microdata releases.

Keywords: Anonymized microdata · Differential privacy · Synthetic
data · Confidentiality · Analytical utility

1 Introduction

Traditional anonymization by national statistical institutes consists of applying a
statistical disclosure control (SDC) method with a heuristic choice of parameters
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and then assessing the disclosure risk and the analytical utility of the anonymized
data. If the risk is deemed too high, the SDC method is run again with more
stringent parameters, which is likely to reduce the risk and the utility as well.

Privacy models, originated in the computer science community, take a differ-
ent view of anonymization. A privacy model is an ex ante parameterized condi-
tion that is meant to guarantee a pre-specified level of disclosure protection—that
is, confidentiality—regardless of the impact on utility. If the utility loss is deemed
too high, then the privacy model parameter must be made less strict. Privacy
models are enforced using SDC methods whose parameters depend on the privacy
model parameter. The earliest privacy model instance was k-anonymity [10], and
the most talked about privacy model these days is differential privacy (DP, [4]).
Privacy models are usually enforced by using one or more SDC methods: in the
case of k-anonymity, one uses generalization, local suppression or microaggrega-
tion. In the case of DP, there are several options, the most usual being Laplace
noise addition.

The initial formulation of DP was for the interactive setting. A randomized
query function κ (that returns the query answer plus some noise) satisfies ε-DP
if for all data sets D1 and D2 that differ in one record and all S ⊂ Range(κ),
it holds that Pr(κ(D1) ∈ S) ≤ exp(ε) × Pr(κ(D2) ∈ S). In plain English, the
presence or absence of any single record must not be noticeable from the query
answers, up to an exponential factor ε (called the privacy budget). The smaller
ε, the higher the protection. The most usual SDC method employed to enforce
differential privacy is Laplace noise addition. The amount of noise depends on ε
(the smaller ε, the more noise is needed) and, for fixed ε, it increases with the
global sensitivity of the query (defined as the maximum variation of the query
output when one record in the data set is changed, added or suppressed).

Differential privacy offers a neat privacy guarantee for interactive queries, at
least for small values of ε. Unlike k-anonymity, its privacy guarantee does not
require any assumptions on the intruder’s background knowledge. Very soon,
researchers proposed extensions of DP for the non-interactive setting, that is,
to produce DP microdata sets that could be used for any analysis, rather than
for a specific query. Based on that, Google, Apple and Facebook are currently
using DP to anonymize microdata collection from their users, although in most
cases with ε values much larger than 1 [6] (which is against the recommendations
of [5]).

Unfortunately, as noted in [9], generating DP microdata is a very challenging
task. A DP microdata set can be viewed as a collection of answers to identity
queries, where an identity query is about the content of a specific record (e.g. tell
me the content of the i-th record in the data set). Obviously, the sensitivity of an
identity query is very high: if one record is changed the value of each attribute
in the record can vary over the entire attribute domain. This means that a lot
of noise is likely to be needed to produce DP microdata, which will result in
poor utility. This should not be surprising, because by design, DP attempts to
make the presence or absence of any single original record undetectable in the
DP output, in this case, the DP microdata set.
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The usual approach to obtain DP microdata is based on histogram
queries [12,13]. In [11], a method to generate DP microdata that uses a prior
microaggregation step was proposed. Microaggregation replaces groups of simi-
lar records by their average record. Since the average record is less sensitive than
individual original records, if one takes the microaggregation output as the input
to DP, the amount of Laplace noise required to enforce a certain ε is smaller than
if taking the original data set as input. This yields DP microdata with higher
utility than competing approaches.

1.1 Contribution and Plan of This Paper

Our aim in this paper is to demonstrate that a certain privacy budget ε can
result in very different levels of confidentiality and utility. In fact, we show that
the achieved confidentiality and utility depend on the particular SDC methods
used to enforce DP.

Specifically, we present two new methods for generating DP microdata. One
of them creates DP synthetic microdata from noise-added covariances. The other
relies on adding noise to the cumulative distribution function (CDF). We present
empirical work that compares the two new methods with the microaggregation-
based method [11]. The comparison is in terms of several confidentiality and
utility metrics. It becomes apparent that different methods to enforce ε-DP lead
to very different utility and confidentiality levels.

Section 2 describes the synthetic data method. Section 3 describes the CDF-
based method. Empirical work comparing the two new methods among them
and with the microaggregation-based method is reported in Sect. 4. Conclusions
and future research issues are gathered in Sect. 5.

2 A Method for Generating Synthetic DP Microdata

In this method, a DP synthetic microdata set is generated based on the original
data. The approach is to add Laplace noise to: i) the sum of each attribute; ii) the
sum of squared values of each attribute; and iii) the sum of the product of each
pair of attributes. This allows obtaining DP versions of the attribute means
and covariances. Finally, the synthetic microdata are obtained by sampling a
multivariate normal distribute with parameters the DP mean vector and the
DP covariance matrix. Therefore, the synthetic data thus obtained are DP by
construction.

If the original data set has m attributes, there are m sums of attribute values,
m sums of squared attribute values and m(m − 1)/2 sums of products of pairs
of attributes. Hence, the privacy budget ε must be divided among the total
2m + m(m − 1)/2 sums. Let ε∗ = ε/(2m + m(m − 1)/2).

Let xij , for i = 1, . . . , n and j = 1, . . . ,m, represent the value of the j-th
attribute in the i-th record of the original data set. Let μj and σjj denote,
respectively, the mean and the variance of the j-th attribute, and let σjk, for
j �= k, represent the covariance between the j-th and the k-th attributes. On the
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other hand, let Δfj represent the global sensitivity of the j-th attribute. Then
Algorithm 1 formalizes the above-sketched method to generate DP synthetic
microdata.

Algorithm 1. Method 1: DP synthetic microdata generation

Input: Original data set {xij : i = 1, . . . , n; j = 1, . . . , m}
Output: DP data set {x∗

ij : i = 1, . . . , n; j = 1, . . . , m}
1 for j = 1 to m do /* DP-perturb means and variances */

2 Rj =
∑n

i=1 xij + Laplace
(
0,

Δfj
ε∗

)
;

3 Sj =
∑n

i=1 x2
ij + Laplace

(

0,
Δf2

j

ε∗

)

;

4 μ∗
j = Rj/n;

5 σ∗
jj =

Sj− R2
j

n
n−1

;

6 for j = 1 to m do /* DP-perturb covariances */

7 for k = j + 1 to m do

8 Tjk =
∑n

i=1(xijxik) + Laplace
(
0,

Δfj×Δfk
ε∗

)
;

9 σ∗
jk =

Tjk− RjRk
n

n−1
;

10 σ∗
kj = σ∗

jk;

11 for i = 1 to n do /* Draw DP synthetic data from DP-normal */

12 (x∗
i1, . . . , x

∗
im) = Sample(N(μ∗, σ∗)), where μ∗ = (μ∗

1, . . . , μ
∗
m) and

σ∗ = [σ∗
ij ]i,j=1,...m.

Note 1. This method is problematic unless the number of attributes is really
small. Indeed, for fixed ε the Laplace perturbation added to the variances and
covariances quadratically grows with m, because this perturbation has privacy
budget ε/(2m + m(m − 1)/2). Thus, m does not need to be very large to risk
getting a perturbed covariance matrix σ∗ that is no longer positive definite, and
hence not valid as a covariance matrix.

3 A CDF-Based Method to Obtain DP Microdata

This method follows the inspiration of [7] in that it anonymizes by sampling
a distribution adjusted to the original data. Yet, unlike [7], we DP-perturb
the distribution. In this way, rather than drawing from a multivariate normal
distribution with DP-perturbed parameters as in Algorithm 1, we obtain DP
microdata by: i) for each attribute, obtaining DP attribute values by sampling
from a univariate normal distribution with DP-perturbed mean and variance;
ii) replacing each original attribute value with a DP-attribute value whose rank
is a DP-perturbed version of the rank of the original attribute value. The DP-
perturbation of attribute values ensures that the original attribute values are
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unnoticeable in the DP microdata, whereas the DP-perturbation of ranks ensures
that the rank correlation of attribute values within each record is altered enough
for the resulting multivariate data set to be DP.

If we normalize ranks by dividing them by n, adding or suppressing one record
will at most change the CDF (normalized rank) of any other record by 1/n,
and hence the global sensitivity of the CDF is 1/n. Since records are assumed
independent of each other, there is no sequential composition among records in
the DP sense, and therefore the privacy budget ε does not need to be divided
among the number of records. If there are m attributes, ε must just be divided
among the m sums of attribute values, the m sums of squared attribute values
and the m empirical CDFs of the attributes. This yields a budget ε∗ = ε/3m for
the required Laplace perturbations.

Algorithm 2 formalizes the CDF-based method to generate DP microdata.
Note that this approach is not synthetic, because each record in the DP data
set results from a specific record in the original data set. For each attribute j,
each original attribute value xij is replaced by a DP attribute value whose rank
is DP-perturbed version of the rank of xij .

Algorithm 2. Method 2: CDF-based DP microdata generation

Input: Original data set {xij : i = 1, . . . , n; j = 1, . . . , m}
Output: DP data set {x∗

ij : i = 1, . . . , n; j = 1, . . . , m}
1 for j = 1 to m do /* DP-perturb means and variances */

2 Rj =
∑n

i=1 xij + Laplace
(
0,

Δfj
ε∗

)
;

3 Sj =
∑n

i=1 x2
ij + Laplace

(

0,
Δf2

j

ε∗

)

;

4 μ∗
j = Rj/n;

5 σ∗
jj =

Sj− R2
j

n
n−1

;

6 for j = 1 to m do
7 for i = 1 to n do
8 yi = Sample(N(μ∗

j , σ∗
jj)); /* Generate DP attribute values */

ci =

(
Rank(xij)

n

)

+ Laplace
(
0, 1

nε∗
)
; /* Convert the rank of the

original attribute value to real and DP-perturb it */

9 for i = 1 to n do /* Replace original attribute values by DP

attribute values with DP-perturbed ranks */

10 x∗
ij = y

[Rank(ci)]
, where y[k] stands for the value in {y1, . . . , yn} with

rank k.

The following holds.

Proposition 1. If the number of attributes is m is more than 3, for a given
privacy budget ε the method of Algorithm 2 perturbs means and variances less
than the method of Algorithm 1.
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Proof. In both algorithms, the perturbations of means and variances are directly
proportional to the perturbations used to obtain Rj and Sj . On the other hand,
the latter perturbations are inversely proportional to ε∗. In Algorithm 1 we have
ε∗ = ε/(2m + m(m − 1)/2), whereas in Algorithm 2 we have ε∗ = ε/3m. Now
(2m + m(m − 1)/2) > 3m if and only if m > 3.

Note that Proposition 1 does not necessarily imply that for m > 3 the utility
of the output DP microdata is better in Algorithm 2 than in Algorithm 1, because
the ways in which perturbed means and variances are used in both algorithms
differ.

4 Empirical Work

We implemented the two proposed methods and we measured the analytical
utility and the confidentiality they provide. Note that, although DP is a privacy
model specifying an ex ante privacy condition with the ε budget, absolute unno-
ticeability of any particular record only holds when ε = 0. For any other value of
ε it makes sense to measure how protected against disclosure are the data, that
is, what is the confidentiality level being achieved.

Further, to compare the two proposed methods against the state of the art,
we included in the comparison the microaggregation-based DP microdata gen-
eration method [11].

4.1 Utility Metrics

We considered two metrics for generic analytical utility, which do not require
assumptions on specific data uses.

The first one is the sum of squared errors SSE, defined as the sum of squares
of attribute distances between records in the original data set and their versions
in the DP data set. That is,

SSE =
n∑

i=1

m∑

j=1

(xij − x∗
ij)

2. (1)

We took the squared Euclidean distance between xij and x∗
ij because our in

experiments all attributes were numerical. For a version of SSE that works also
with categorical data, see [11]. On the other hand, SSE needs to know which
DP attribute value x∗

ij corresponds to each original attribute value xij . For that
reason, SSE cannot be used to measure the utility of Method 1, because in that
method the DP data are synthetic, which means that no correspondence can be
established between original attribute values and DP attribute values.

The second utility metric is the one proposed in [2]:

UM(X,Y) =

⎧
⎨

⎩

1 if λ̂X
j = λ̂

Y |X
j = 1/m for j = 1, . . . , m;

1 − min
(

1,
∑m

j=1(λ̂
X
j −λ̂

Y |X
j )2

∑m
j=1(λ̂

X
j −1/m)2

)
otherwise.

(2)
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In Expression (2), X is the original microdata set, Y is the DP microdata set,
λ̂X

j are the eigenvalues of the covariance matrix CXX of X scaled so that they

add to 1, and λ̂
Y |X
j are scaled versions of

λ
Y |X
j = (vX

j )TCY Y vX
j , j = 1, . . . , m,

where CY Y is the covariance matrix of Y and vX
j is the j-th eigenvector of

CXX .
The rationale of UM is as follows. Each eigenvalue λ̂X

j represents the pro-
portion of the variance of the attributes in X explained by the corresponding
eigenvector vX

j . On the other hand each λ
Y |X
j represents the proportion of the

variance of the attributes in Y explained by vX
j . Then we have:

– The highest level of utility (UM(X,Y) = 1) occurs when λ̂X
j = λ̂

Y |X
j for

j = 1, . . . ,m, which occurs when CXX = CY Y .
– The lowest level of utility (UM(X,Y) = 0) occurs if λ̂X

j and λ̂
Y |X
j differ at

least as much as λ̂X
j and the eigenvalues of an uncorrelated data set (which

are 1/m).

Note that an advantage of UM over SSE is that the former also applies for
synthetic data, and hence for Method 1. However, both metrics view utility as the
preservation of variability, more precisely as the preservation of the correlation
structure of the original data set.

4.2 Confidentiality Metrics

We used four confidentiality metrics. First, the share of records in the origi-
nal data set that can be correctly matched from the DP data set, that is, the
proportion of correct record linkages

RL =

∑
xi∈X Pr(x∗

i )
n

, (3)

where Pr(x∗
i ) is the correct record linkage probability for the i-th DP record x∗

i .
If the original record xi from which x∗

i originates is not at minimum distance
from x∗

i , then Pr(x∗
i ) = 0; if xi is at minimum distance, then Pr(x∗

i ) = 1/Mi,
where Mi is the number of original records at minimum distance from x∗

i .
The three other confidentiality metrics CM1, CM2 and CM3 are those pro-

posed in [2], based on canonical correlations. We have:

CM1(X,Y) = 1 − ρ21, (4)

where ρ21 is the largest canonical correlation between the ranks of attributes in
X and Y. The rationale is that:

– Top confidentiality (CM1(X,Y) = 1) is reached when the ranks of the
attributes in X are independent of the ranks of attributes in Y, in which
case anonymization can be viewed as a random permutation.
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– Zero confidentiality (CM1(X,Y) = 0) is achieved then the ranks are the
same for at least one original attribute Xj and one DP attribute Xj . Note
that this notion of confidentiality is quite strict: leaving a single attribute
unprotected brings the confidentiality metric down to zero.

The next confidentiality metric is similar CM1 but it considers all canonical
correlations:

CM2(X,Y) =
m∏

i=1

(1 − ρ2i )
[
= e−I(X;Y)

]
. (5)

The second equality between brackets in Expression (5) can only be guaranteed
if the collated data sets (X,Y) follow an elliptically symmetrical distribution (a
generalization of the multivariate Gaussian), in which case Expression (5) can
be rewritten in terms of the mutual information I(X;Y) between the original
and the DP data sets.

Regardless of the distributional assumptions, CM2(X,Y) can be computed
from the canonical correlations and the following holds:

– Top confidentiality CM2(X,Y) = 1 is reached when the anonymized data
set and the original data sets tell nothing about each other, which is the same
as saying that mutual information between them is I(X;Y) = 0.

– Zero confidentiality CM2(X,Y) = 0 occurs if at least one of the canonical
correlations is 1. This occurs if at least one original attribute is disclosed
when releasing Y. Since ρ1 is the largest correlation, this means that we have
CM2(X,Y) = 0 if and only if ρ1 = 1, in which case we also have that the
metric of Expression (4) is CM1(X,Y) = 0.

Note that RL, CM1 and CM2 cannot be applied to the DP synthetic data
produced by Method 1, because the three metrics need to know the mapping
between original and DP records. The last metric CM3 that we use is mapping-
free and is intended for synthetic data (yet it should not be used when the
mapping between original and DP records is known). Specifically, CM3 is derived
from CM2 as follows:

CM3(X,Y) = min
1≤j≤m

CM2(X−j ,Y−j). (6)

where X−j , resp. Y−j , is obtained from X, resp. Y, by sorting X, resp. Y, by
its j-th attribute and suppressing the values of this attribute in the sorted data
set.

The common principle of RL, CM1, CM2 and CM3 is to view confidentiality
as permutation. The farther the anonymized values from the original values in
value (for RL) or in rank (for the other metrics), the higher the confidentiality.

4.3 Results for Data Sets with Two Attributes

We considered five data sets with two numerical attributes X1, X2 and 10,000
records. In each data set, X1 was drawn from a N(50, 10) distribution and X2
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was also drawn from a N(50, 10) distribution but in such a way that the expected
correlation between X1 and X2 was 0.5.

For each data set, we ran the microaggregation-based DP microdata gen-
eration method of [11] with ε = 1 (higher values are not recommended in [5])
and microaggregation group sizes k = 250, 500, 1000, 2000 and 3000. Since this
method is not synthetic, for each resulting DP microdata set we computed util-
ity metrics SSE and UM , and confidentiality metrics RL, CM1 and CM2. In
Table 1 we report the values of those metrics for each value k averaged over the
five data sets.

We then ran Method 1 for each data set with ε = 1. Since it is a synthetic
method, we computed utility metric UM and confidentiality metric CM3. In
Table 1 we display those metrics averaged over the five data sets.

Finally, we ran Method 2 for each data set with ε = 1. Since this method is
not synthetic, we computed the same metrics as for the microaggregation-based
method. Table 1 reports the averages for the five data sets.

Table 1. Empirical comparison of microaggregation-based DP generation, Method 1
and Method 2. In all cases ε = 1 and all results are averages over five original data sets
with the same distribution. “Micro*” denotes microaggregation-based DP microdata
generation with k = ∗.

SSE UM RL CM1 CM2 CM3

Micro250 26833.22 0.647230517 0.00028 0.639798854 0.57703286 N/A

Micro500 3446.60 0.972413957 0.0008 0.226067842 0.112192366 N/A

Micro1000 2160.91 0.984149182 0.00096 0.164139854 0.057491616 N/A

Micro2000 2855.62 0.959011191 0.0005 0.214820038 0.10679245 N/A

Micro3000 3980.19 0.502650927 0.0003 0.197760886 0.197698071 N/A

Method1 N/A 0.992537652 N/A N/A N/A 0,935883394

Method2 49.74 0.981339047 0.1212 0.000492087 7.43603E-07 N/A

One thing that stands out in Table 1 is that utility metrics SSE and UM
are consistent with each other. Higher values of SSE translate into lower values
of UM , meaning less utility. Also, lower values of SSE result in higher values
for the UM , meaning more utility. Thus, they capture the same utility notion
and it is enough for us to consider one utility metric in what follows. We choose
UM because it can be computed both for non-synthetic and synthetic data.

In terms of UM , we see in Table 1 that Method 1 achieves the highest utility,
while offering a confidentiality metric CM3 that is also high, being close to 1.
Thus, Method 1 seems the best performer.

Method 2 also offers high utility UM , but extremely low confidentiality in
terms of CM1 and CM2. The DP data it produces turn out to be very similar
to the original data.

The microaggregation-based DP microdata generation method can be seen
to offer intermediate performance regarding the trade-off between utility and
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confidentiality. Whatever the choice of k, it achieves better confidentiality met-
rics CM1 and CM2 than Method 2, but its utility UM only beats Method 2
for k = 1000. Thus, microaggregation-based DP generation for k = 1000 is the
second best performer.

The microaggregation-based DP method offers poorer utility for extreme
values of k. The explanation is that for smaller k (250, 500) the prior microag-
gregation step does not reduce the sensitivity of the data as much as k = 1000
and hence still needs sustantial Laplace noise to attain DP with ε = 1. On the
other hand, for large k = 2000, 3000, averaging over such large groups causes a
lot of information loss.

On the other hand, we can see that setting the same ε = 1 for all methods
can lead to very different confidentiality and utility levels.

4.4 Results for Data Sets with 10 Attributes

To check what is said in Note 1 and Proposition 1, we also tested Methods 1 and
2 for data sets with m = 10 attributes. We generated five data sets with normally
distributed attributes and we took ε = 1 as above. We kept running Method 1
for the five data sets until we got positive definite DP covariance matrices. The
results were:

– As expected, the average utility achieved by Method 1 was extremely low,
namely UM = 0.00733781. In contrast, the average confidentiality was high,
CM3 = 0.99752121, even higher than for the two-attribute data sets.

– Method 2 yielded an extremely high average utility UM = 0.99999618.
In contrast, confidentiality was as small as in the two-attribute case, with
CM1 = 0.00076754 and CM2 =2.3331E-13.

5 Conclusions

We have compared three methods for generating DP microdata, two of them new.
The three of them leverage different principles to generate DP microdata with
ε = 1. However, the confidentiality and utility levels they achieve for that value
of ε are extremely different. Hence, setting a certain value of ε does not guarantee
a certain level of confidentiality, let alone utility. The actual confidentiality and
utility offered depend on the specific method used to enforce ε-DP. Our results
complement those obtained in [8] for ε-DP synthetic data. In that paper, DP-
synthetic data were generated with a single method but using several values of
ε; it turned out that ε determined neither the protection against disclosure nor
the utility of the synthetic data.

In our experiments, the methods that result in higher confidentiality seem to
be those that operate a stronger permutation in terms of the permutation model
of SDC [1]. Specifically Method 1, being synthetic, can be viewed as a random
permutation of ranks, whereas Method 2 yields ranks for masked data that are
very close to the ones of original data; this would explain the high confidentiality
offered by Method 1 and the low confidentiality of Method 2.
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In conclusion, the fact that parameter ε does not give any specific confiden-
tiality guarantee for microdata releases suggests that DP should not be used to
anonymize microdata. This adds to the arguments given in [3] in that sense.
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