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Abstract. Often data analysts use probabilistic record linkage tech-
niques to match records across two data sets. Such matching can be the
primary goal, or it can be a necessary step to analyze relationships among
the variables in the data sets. We propose a Bayesian hierarchical model
that allows data analysts to perform simultaneous linear regression and
probabilistic record linkage. This allows analysts to leverage relationships
among the variables to improve linkage quality. Further, it enables ana-
lysts to propagate uncertainty in a principled way, while also potentially
offering more accurate estimates of regression parameters compared to
approaches that use a two-step process, i.e., link the records first, then
estimate the linear regression on the linked data. We propose and eval-
uate three Markov chain Monte Carlo algorithms for implementing the
Bayesian model, which we compare against a two-step process.

1 Introduction

Increasingly, data analysts seek to link records across data sets to facilitate sta-
tistical analyses. As a prototypical example, a health researcher seeks to link
data from a previously completed study to patients’ electronic medical records
to collect long-term outcomes, with the ultimate goal of estimating relation-
ships between the long-term outcomes and baseline covariates. Such linkages are
performed readily when unique identifiers, such as social security numbers, are
available for all records in all data sets.

Often, however, one or more of the data sets do not have unique identifiers,
perhaps because they were never collected or are not made available due to
privacy concerns. In such cases, analysts have to link records based on indirect
identifiers, such as name, date of birth, and demographic variables [1,2]. Gen-
erally, such indirect identifiers contain distortions and errors. As a result, they
can differ across the data sets, which can make it difficult to determine the cor-
rect record linkages. This uncertainty should be quantified and propagated to
statistical inferences, although typically this is not done.

In the statistics literature, the most popular method for linking records via
indirect identifiers is based on the probabilistic record linkage (RL) approach
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of Newcombe et al. [15], which was later extended and formalized by Fellegi
and Sunter [4]. Many extensions to the Fellegi-Sunter (FS) model have been
proposed [e.g., 18,23,24]. A common drawback of these and other probabilistic
RL methods [e.g., 7,12] is the difficulty in quantifying linkage uncertainty, and
propagating that uncertainty to statistical inferences. These limitations have led
to developments of RL approaches from Bayesian perspectives [e.g., 3,5,6,9–
11,14,16,17,19–21,25,26].

In this article, we propose a Bayesian model for performing probabilistic RL
and linear regression simultaneously. The proposed model quantifies uncertainty
about the linkages and propagates this uncertainty to inferences about the regres-
sion parameters. We focus on bipartite RL—that is, the analyst seeks to merge
two data sets—assuming that individuals appear at most once in each data set.
As we illustrate, the model can leverage relationships among the dependent and
independent variables in the regression to potentially improve the quality of the
linkages. This also can increase the accuracy of resulting inferences about the
regression parameters.

We use a Bayesian hierarchical model that builds on prior work by Sadinle
[17], who proposed a Bayesian version of the FS model for merging two data
sets. In fact, one of our primary contributions is to turn the model in [17] into
a procedure for jointly performing probabilistic RL and fully Bayesian inference
for regression parameters. We also propose and evaluate the effectiveness of
three algorithms for fitting the Bayesian hierarchical model, focusing on both
the quality of the linkages and on the accuracy of the parameter estimates.

2 Review of Bayesian Probabilistic Record Linkage

In this section, we review the Bayesian bipartite RL model of [17]. Consider two
data sets A1 and A2, containing n1 and n2 records, respectively. Without loss
of generality, assume n1 ≥ n2. Our goal is to link records in A1 to records in
A2. We further assume that A1 and A2 do not contain duplicate records; that
is, each record in A1 corresponds to a single individual, as is the case for A2.
We assume that some of the same individuals are in A1 and A2.

To characterize this, we define the random variable Z = (Z1, . . . , Zn2) as the
vector of matching labels for the records in A2. For j = 1, . . . , n2, let

Zj =

{
i, if record i ∈ A1 and j ∈ A2 refer to the same entity;
n1 + j, if record j ∈ A2 does not have a match in A1.

Analysts determine whether a pair of records (i, j) is a link, i.e., whether or
not Zj = i, by comparing values of variables that are common to A1 and A2.
Suppose we have F common variables, also known as linking variables or fields.
For f = 1, . . . , F , let γf

ij represent a score that reflects the similarity of field f
for records i and j. For example, when field f is a binary variable, we can set
γf

ij = 1 when record i agrees with record j on field f , and γf
ij = 0 otherwise.

When field f is a string variable like name, we can calculate a similarity metric
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like the Jaro-Winkler distance [8,22] or the Levenshtein edit distance [13]. We can
convert these string metrics to γf

ij by categorizing the scores into a multinomial
variable, where the categories represent the strength of agreement. We illustrate
this approach in Sect. 4.

For each record (i, j) in A1 × A2, let γγγij = (γ1
ij , . . . , γ

F
ij). We assume γγγij is a

realization of a random vector Γij distributed as

Γij |Zj = i
iid∼ M(m), Γij |Zj �= i

iid∼ U(u), where

M(m) represents the model for comparison vectors among matches, and U(u)
represents the model for comparison vectors among non-matches. For each field
f , we let mf� = P(Γ f

ij = �|Zj = i) be the probability of a match having level �

of agreement in field f , and let uf� = P(Γ f
ij = �|Zj �= i) be the probability of

a non-match having level � of agreement in field f . Let mf = (mf1, . . . , mfLf
)

and uf = (uf1, . . . , ufLf
); let m = (m1, . . . ,mF ) and u = (u1, . . . ,uF ).

For computational convenience, it is typical to assume the comparison fields
are conditionally independent given the matching status of the record pairs. Let
Θ = (m,u). The likelihood of the comparison data can be written as

L(Z|Θ, γγγ) =
n1∏
i=1

n2∏
j=1

F∏
f=1

Lf∏
�=0

[
m

I(Zj=i)
f� u

I(Zj �=i)
f�

]I(γf
ij=�)

, (1)

where I(·) = 1 when its argument is true and I(·) = 0 otherwise.
Sometimes, there are missing values in the linking variables. Although we

do not consider this possibility in our simulations, we summarize how to handle
missing values in the model, assuming ignorable missing data. With conditional
independence and ignorability, we can marginalize over the missing comparison
variables. The likelihood of the observed comparison data can be written as

L(Z|Θ, γγγobs) =
F∏

f=1

Lf∏
�=0

m
af�(Z)
f� u

bf�(Z)
f� , where (2)

af�(Z) =
∑

i,j Iobs(γ
f
ij)I(γf

ij = �)I(Zj = i) and bf�(Z) =
∑

i,j Iobs(γ
f
ij)I(γf

ij =
�)I(Zj �= i). For a given Z, these represent the number of matches and non-
matches with observed disagreement level � in field f . Here, Iobs(·) = 1 when its
argument is observed, and Iobs(·) = 0 when its argument is missing.

To define the prior distributions for m and u, for all fields f , let αf =
(αf0, . . . , αfLf

) and βf = (βf0, . . . , βfLf
). We assume that mf ∼ Dirichlet(αf )

and uf ∼ Dirichlet(βf ), where αf and βf are known parameters. In our simu-
lation studies, we set all entries of αf and βf equal to 1 for every field.

We use the prior distribution for Z from [17]. For j = 1, . . . , n2, let the
indicator variable I(Zj ≤ n1) | π

iid∼ Bernoulli(π), where π is the proportion of
matches expected a priori. Let π ∼ Beta(απ, βπ), where the prior mean απ/(απ+
βπ) represents the expected percentage of overlap. Let n12(Z) =

∑
j I(Zj ≤ n1)
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be the number of matches according to Z. The prior specification implies that
n12(Z) ∼ Beta-Binomial(n2, απ, βπ) after marginalizing over π. That is,

P(n12(Z)) =
(

n2

n12(Z)

)
B(n12(Z) + απ, n2 − n12(Z) + βπ)

B(απ, βπ)
. (3)

We assume that, conditional on the value of n12(Z), all the possible bipartite
matchings are equally likely a priori. There are n1!/(n1 −n12(Z))! such bipartite
matchings. Thus, the prior distribution for Z is

P(Z|απ, βπ) = P(n12(Z)|απ, βπ)P(Z|n12(Z), απ, βπ) (4)

=
(n1 − n12(Z))!

n1!
B(n12(Z) + απ, n2 − n12(Z) + βπ)

B(απ, βπ)
. (5)

3 The Bayesian Hierarchical Model for Simultaneous
Regression and Record Linkage

In this section, we present the Bayesian hierarchical model for regression and RL,
and propose three Markov chain Monte Carlo (MCMC) algorithms for fitting the
model in practice. Throughout, we assume the explanatory variables X are in
A1, and the response variable Y is in A2.

3.1 Model Specification

We assume the standard linear regression, Y|X,V,Z ∼ N(Xβ, σ2I). Here, V are
linking variables used in the RL model but not in the regression model. Analysts
can specify prior distributions on (β, σ2) that represent their beliefs. A full spec-
ification of the joint distribution of (Y,X|V) requires analysts to specify some
marginal model for X, written generically as f(X|V). In some contexts, however,
it is not necessary to specify f(X|V), as we explain in Sect. 3.2. Critically, this
model assumes that the distribution of (Y,X|V) is the same for matches and
non-matches. Finally, for the RL component of the model, we model Z using the
Bayesian FS approach in Sect. 2.

For the simulation studies, we illustrate computations with the Bayesian
hierarchical model using univariate Y and univariate X. Assume X ∼ N(μ, τ2).
As a result, in the simulations, the random variable (X,Y ) follows a bivariate
normal distribution with[

X
Y

]
∼ N

( [
μ

β0 + β1μ

]
,

[
τ2 β1τ

2

β1τ
2 σ2 + β2

1τ
2

] )
.

We assume a normal-Gamma prior on the regression parameters. Letting φ =
1/σ2, we have φ ∼ G(.5, .5) and β|φ ∼ N(b0, Φ0φ

−1) where b0 = [3, 1]T and Φ0 is
a 2×2 identity matrix. When needed, we assume Jeffrey’s prior p(μ, τ2) ∝ 1/τ2.
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3.2 Estimation Strategies

Even in the relatively uncomplicated set-up of the simulation study, it is not
possible to compute the posterior distribution of the model parameters in closed
form. Therefore, we consider three general strategies for MCMC sampling in
order to approximate the posterior distribution.

First, we propose an MCMC sampler that uses only the linked records when
estimating the full conditional distribution of the regression parameters in each
iteration of the sampler. This method generates potentially different samples of
linked records at each iteration. A key advantage of this method is that it does
not require imputation of X; hence, analysts need not specify f(X|V). We call
this the joint model without imputation, abbreviated as JM. Second, we propose
an MCMC sampler that imputes the missing values of X for those records in A2

without a link, and updates the regression parameters in each iteration using
the linked pairs as well the imputed data. We call this the joint model with
imputation, abbreviated as JMI. Third, we propose an MCMC sampler that is
similar to JMI but uses an extra step when imputing the missing values of X.
Specifically, at each iteration, we (i) sample values of the regression parameters
from a conditional distribution based on only the linked records, (ii) use the
sampled parameters to impute missing values in X, and (iii) update regression
coefficients based on linked as well as imputed pairs. By adding step (i), we aim
to reduce potential effects of a feedback loop in which less accurate estimates
of regression parameters result in less accurate estimates of the conditional dis-
tribution of X, and so on through the MCMC iterations. We call this the joint
model with imputation and reduced feedback (JMIF).

For JMI and JMIF, inferences are based on every entity in A2, whereas for
JM inferences are based on the subsets of linked pairs, which can differ across
MCMC iterations. Analysts should keep these differences in mind when selecting
an algorithm that suits their goals.

3.3 Details of the MCMC Samplers

In this section, we present the mathematical details for implementing the three
proposed MCMC samplers. Before doing so, we present an algorithm for a two-
step approach, where we perform RL and then use the linked data for regression.
The three proposed MCMC samplers for the Bayesian hierarchical model utilize
parts of the algorithm for the two-step approach.

3.3.1 Two Step Approach (TS)
Given the parameter values at iteration t of the sampler, we need to sample
new values m[t+1]

f = (m[t+1]
f0 , . . . , m

[t+1]
fLf

) and u[t+1]
f = (u[t+1]

f0 , . . . , u
[t+1]
fLf

), where

f = 1, . . . , F . We then sample a new value Z[t+1] = (Z [t+1]
1 , . . . , Z

[t+1]
n2 ). The

steps are as follows.

T.1 For f = 1, . . . , F , sample

m[t+1]
f |γγγobs,Z[t] ∼ Dirichlet(af0(Z[t]) + αf0, . . . , afLf

(Z[t]) + αfLf
), (6)
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u[t+1]
f |γγγobs,Z[t] ∼ Dirichlet(bf0(Z[t]) + βf0, . . . , bfLf

(Z[t]) + βfLf
). (7)

Collect these new draws into Θ[t+1]. Here, each

afl(Z) =
∑
i,j

Iobs(γγγ
f
ij)I(γf

ij = l)I(Zj = i), (8)

bfl(Z) =
∑
i,j

Iobs(γγγ
f
ij)I(γf

ij = l)I(Zj �= i). (9)

T.2 Sample the entries of Z[t+1] sequentially. Having sampled the first j −
1 entries of Z[t+1], we define Z[t+(j−1)/n2]

−j = (Z [t+1]
1 , . . . , Z

[t+1]
j−1 , Z

[t]
j+1,

. . . , Z
[t]
n2). We sample a new label Z

[t+1]
j , with the probability of select-

ing label q ∈ {1, . . . , n1, n1 + j} given by pqj(Z
[t+(j−1)/n2]
−j | Θ[t+1]). This

can be expressed for generic Z−j and Θ as

pqj(Z−j |Θ) ∝

⎧⎪⎨
⎪⎩

exp[wqj ]I(Zj′ �= q,∀j′ �= j), if q ≤ n1

[n1 − n12(Z−j)]
n2 − n12(Z−j) − 1 + βπ

n12(Z−j) + απ
, if q = n1 + j;

(10)
where wqj = log[P(γγγobs

qj |Zj = q,m)/P(γγγobs
qj |Zj �= q,u)] is equivalently

wqj =
F∑

f=1

Iobs(γγγ
f
qj)

Lf∑
l=0

log
(mfl

ufl

)
I(γf

qj = l). (11)

The normalizing constant for pqj(Z−j |Θ) is

n1∏

i=1

n2∏

k=1

F∏

f=1

Lf∏

�=0

[
m

I(Zk=i)
f� u

I(Zk �=i)
f�

]I(γ
f
ij=�)

u
I(Zj �=i)

fl

×
(
n1 − (n12(Z−j) + 1)

)
!

n1!

(n12(Z−j) + απ)!(n2 − (n12(Z−j) + 1) + βπ − 1)!

(n2 + απ + βπ − 1)

(12)

where k �= j.
T.3 We now add the regression parameters to the sampler. For any draw of

Z[t+1], we sample β[t+1] and (σ2)[t+1] = φ−1 from

β[t+1]|φ,Y,Z[t+1] ∼ N(bn, (φΦn)−1) (13)

φ|Y,Z[t] ∼ G
(

n+1
2 , 1

2 (SSE + 1 + β̂T X̃T X̃β̂ + bT
0 φ0b0 − bT

nΦnbn)
)

(14)

where SSE = ỸT [I − X̃(X̃T X̃)−1X̃T ]Ỹ,Φn = X̃T X̃ + Φ0, bn = Φ−1
n (X̃T X̃

β̂ + φ0b0), and β̂ = (X̃T X̃)−1X̃T Ỹ. Here, X̃ and Ỹ are the subsets of X
and Y belonging to only the linked cases at iteration t.
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Steps T.1 and T.2 are the same as those used in [17]; we add T.3 to sample the
regression parameters. Alternatively, and equivalently, analysts can run T.1 and
T.2 until MCMC convergence, then apply T.3 to each of the resulting draws of
Z[t] to obtain the draws of the regression parameters.

3.3.2 Joint Method Without Imputation (JM)
The sampler for the JM method uses T.1, but it departs from T.2 and T.3. As
we shall see, in JM we need the marginal density f(Y). This can be approximated
with a standard univariate density estimator. Alternatively, one can derive it
from f(Y|X) and extra assumptions about f(X), although these extra assump-
tions obviate one of the advantages of JM compared to JMI and JMIF. In the
simulations, for convenience we use the fact that (Y,X) are bivariate normal
when computing the marginal density of Y, as evident in step J.2. Step J.2
can be omitted when using means to compute f(Y) that do not leverage a joint
model for (Y,X).

J.1 Sample m[t+1]
f and u[t+1]

f using T.1.
J.2 Sample μ[t+1] and (τ2)[t+1] using 1/τ2 ∼ G((n − 1)/2,

∑
(Xi − X̄)2) and

μ|τ2 ∼ N(X̄, τ2). We use all of X in this step.
J.3 Given Z[t], sample β[t+1] and (σ2)[t+1] from (13) and (14).
J.4 Sample Z[t+1] sequentially. Having sampled the first j − 1 entries of Z[t+1],

we define Z[t+(j−1)/n2]
−j = (Z [t+1]

1 , . . . , Z
[t+1]
j−1 , Z

[t]
j+1, . . . , Z

[t]
n2). Then we sam-

ple a new label Z
[t+1]
j with probability pqj(Z

[t+(j−1)/n2]
−j | Θ[t+1],X,Y) of

selecting label q ∈ {1, . . . , n1, n1 + j}. For generic (Z−j ,Θ,X,Y), we have
f(Z−j |Θ,X,Y) ∝ f(Y,X|Θ,Z−j)f(Z−j |Θ). For q ≤ n1, and using the
definition for wqj in (11), we thus have

pqj(Z−j |Θ,X,Y) ∝ exp[wqj ]I(Zj′ �= q,∀j′ �= j)
∏

i�=q,i∈A12

f(Xi, Yi|Z−j)

×
∏

i�=q,i∈A1−

f(Xi)
∏

i�=q,i∈A2−

f(Yi)f(Yj ,Xq) (15)

∝ exp[wqj ]I(Zj′ �= q,∀j′ �= j)
f(Yj ,Xq)

f(Yj)f(Xq)
(16)

= exp[wqj ]I(Zj′ �= q,∀j′ �= j)
f(Yj |Xq)

f(Yj)
. (17)

Here, A12 is the set of matched records, A1− is the set of records in A1

without a match in A2, and A2− is the set of records in A2 without a match
in A1.
For q = n1 + j, after some algebra to collect constants, we have

pqj(Z−j |Θ,X,Y) ∝ [n1 − n12(Z−j)]
n2 − n12(Z−j) − 1 + βπ

n12(Z−j) + απ
.
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3.3.3 Joint Method with Imputation (JMI)
The sampler for JMI is similar to the sampler for JM, except we impute X
for non-matches in A2. Thus, we require a model for X, which we also use to
compute f(Y). In accordance with the simulation set-up, we present the sampler
with X ∼ N(μ, τ2).

I.1 Sample m[t+1]
f and u[t+1]

f using J.1.
I.2 Sample μ[t+1] and (τ2)[t+1] using J.2.
I.3 Impute Xmis for those records in A2 without a matched X. For the sampler

in the simulation study, the predictive distribution is

Xmis ∼ N
(
μ +

β1τ
2

σ2 + β2
1τ

2
(Y − β0 − β1μ), τ2 − β2

1τ
4

σ2 + β2
1τ

2

)
. (18)

In JMI, we use the values of (β[t], (σ2)[t], (τ2)[t+1]) in (18). Once we have
X[t+1]

mis , in the full conditional distributions for (β[t+1], (σ2)[t+1]) we use both
the matched and imputed data for all records in A2, with the priors in
Sect. 3.3.1. As a result, we draw β[t+1] and (σ2)[t+1] based on (13) and (14),
but let (X̃, Ỹ) include both the linked pairs and imputed pairs in A2.

I.4 Sample Z[t+1] sequentially using J.4.

3.3.4 Joint Method with Imputation and Reduced Feedback (JMIF)
The sampler for JMIF is like the sampler for JMI, but we use a different predic-
tive model for Xmis. We again present the sampler with X ∼ N(μ, τ2).

F.1 Sample m[t+1]
f and u[t+1]

f using J.1.
F.2 Sample μ[t+1] and (τ2)[t+1] using J.2.
F.3 Given Z[t], take a draw (β∗, σ2∗) from the full conditional distributions in

(13) and (14), using only the linked cases at iteration t. We impute Xmis for
those records in A2 without a matched X using (β∗, σ2∗). For the sampler
in the simulation study, we use (18) with (β∗, σ2∗) and (τ2)[t+1]. Once we
have X[t+1]

mis , in the full conditional distributions for (β[t+1], σ[t+1]) we use
both the matched and imputed data for all records in A2, with the priors
in Sect. 3.3.1. As a result, we draw β[t+1] and (σ2)[t+1] based on (13) and
(14), but let (X̃, Ỹ) include both the linked pairs and imputed pairs in A2.

F.4 Sample Z[t+1] sequentially using (J.4).

3.4 MCMC Starting Values

Sadinle [17] starts the MCMC sampler by assuming none of the records in file
A2 have a link in file A1. We do not recommend this starting point for the
hierarchical model, as it is beneficial to specify an initial set of links to determine
sensible starting values for the linear regression parameters. Instead, we employ
a standard FS algorithm—implemented using the RecordLinkage package in
R—to determine a set of links to use as a starting point.



Bayesian Modeling for Simultaneous Regression and Record Linkage 217

4 Simulation Studies

We generate simulated data sets using the RLdata10000 data set from the
RecordLinkage package in R. The RLdata10000 contains 10,000 records; 10%
of these records are duplicates belonging to 1,000 individuals. The RLdata10000
includes linking variables, which the developers of the data set have distorted
to create uncertainty in the RL task. To create A2, we first randomly sample
n12 = 750 individuals from the 1,000 individuals with duplicates. We then sam-
ple 250 individuals from the remaining 8,000 individuals in RLdata10000. This
ensures that each record in A2 belongs to one and only one individual. To create
A1, we first take the duplicates for the 750 records in A2; these are true matches.
Next, we sample another 250 records from the individuals in RLdata10000 but
not in A2. Thus, we have 750 records that are true links, and 250 records in
each file that do not have a match in the other file. We repeat this process
independently in each simulation run.

In both files, in each simulation run, we generate the response and explana-
tory variables, as none are available in the RLdata10000. For each sampled record
i, we generate xi ∼ N(0, 1) and yi ∼ N(β0 + β1xi, σ

2) in each simulation run.
We set β0 = 3 and σ2 = 1. We consider β1 ∈ {.4, .65, .9}, to study how the
correlation between X and Y affects performance of the methods.

We use four linking variables: the first name and last name, and two con-
structed binary variables based on birth year and birth day. For the constructed
variables, we create an indicator of whether the individual in the record was
born before or after 1974, and another indicator of whether the individual in the
record was born before or after the 16th day of the month.

To compare first and last name, we use the Levenshtein edit distance (LD),
defined as the minimum number of insertions, deletions, or substitutions required
to change one string into the other. We divide this distance by the length of
the longest string to standardize it. The final measure is in the range of [0, 1],
where 0 represents total agreement and 1 total disagreement. Following [17], we
categorize the LD into four levels of agreement. We set f = 1 and γf

ij = 3 when
the first names for record i and j match perfectly (LD = 0); γf

ij = 2 when these
names show mild disagreement (0 < LD ≤ .25); γf

ij = 1 when these names show
moderate disagreement (.25 < LD ≤ .5); and, γf

ij = 0 when these names show
extreme disagreement (LD ≥ .5). The same is true for last names with f = 2.
For the constructed binary variables based on birth day and year, we set γf

ij = 1
when the values for record i and j agree with each other, and γf

ij = 0 otherwise.
We create two scenarios to represent different strengths of the information

available for linking. The strong linkage scenario uses all four linking variables,
and the weak linkage scenario uses first and last name only.

4.1 Results

Table 1 displays averages of the estimated regression coefficients over 100 simu-
lation runs. Across all scenarios, on average the point estimates of β1 from the
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(a) β1 = 0.9. (b) β1 = 0.65. (c) β1 = 0.4.

Fig. 1. Posterior density of β1 in one arbitrarily chosen data set for each value of β1

under the strong linking information scenario. Posterior distribution for the two-step
approach is in solid green, for JM is in dashed red, for JMI is in dotted blue, and for
JMIF is in dotdash black. Vertical lines are estimates of β1 when using all the correct
links.

Bayesian hierarchical model, regardless of the MCMC algorithm, are at least
as close to the true β1 as the point estimates from the two-step approach. The
hierarchical model offers the largest improvements in accuracy over the two-step
approach when the correlation between X and Y is strongest and the information
in the linking variables is weakest. In this scenario, the model takes advantage
of information in the relationship between the study variables that the two-step
approach cannot. In contrast, when the correlation between X and Y is weakest
and the information in the linking variables is strongest, there is little difference
in the performances of the hierarchical model and two-step approach. These
patterns are illustrated in Fig. 1.

Generally, all the algorithms tend to underestimate β1 in these simulations.
It is practically impossible to identify all the true links. Therefore, the regression
is estimated with some invalid pairs of (xi, yi). This attenuates the estimates of
β1. The hierarchical model tends to overestimate β0 slightly. The difference is
most noticeable when the correlation between X and Y is strong. Generally, on
average the two-step approach offers more accurate estimates of β0, although
the differences are practically irrelevant.

Among the hierarchical models, JM outperforms JMI and JMIF, with JMIF
slightly better than JMI. This is because inaccuracies in the estimated distribu-
tion of Xmis in JMI and JMIF are propagated to the estimated distributions of
(β0, β1). To illustrate this, suppose in a particular MCMC iteration the value of
β1 is somewhat attenuated, which in turn leads to inaccuracy in the parameters
of the imputation model for X|Y . As a result, the imputed values of Xmis are not
samples from an accurate representation of f(X|Y ). Thus, the full conditional
distribution of (β0, β1) is estimated from completed-data that do not follow the
relationship between X and Y . The inaccurate samples of (β0, β1) then create
inaccurate imputations, and the cycle continues. In contrast, in any iteration,
JM samples coefficients using only the records deemed to be links (in that itera-
tion), thereby reducing the effects of feedback from imprecise imputations. This
also explains why JMIF yields slightly more accurate estimates of β1 than JMI
when the correlation between X and Y is strong.
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Table 1. Summary of simulation results for regression coefficients. Results based on
100 runs per scenario. The true β0 = 3 in all scenarios. For each reported average, the
Monte Carlo standard errors are smaller than .01. “Strong” refers to scenarios where
we use all four comparison fields, and “Weak” refers to scenarios where we use only
two comparison field’s.

Results for β1 Results for β0

TS JM JMIF JMI TS JM JMIF JMI

Strong

β1 = .90 .73 .85 .80 .79 3.01 3.05 3.04 3.04

β1 = .65 .52 .60 .56 .55 3.00 3.02 3.01 3.01

β1 = .40 .32 .36 .33 .32 2.99 3.00 3.00 3.00

Weak

β1 = .90 .60 .82 .78 .76 3.00 3.05 3.04 3.03

β1 = .65 .42 .57 .53 .53 3.00 3.03 3.02 3.02

β1 = .40 .27 .34 .32 .32 3.00 3.01 3.01 3.01

Table 2 displays averages across the 100 simulation runs of six standard met-
rics for the quality of the record linkages. These include the average numbers
of correct links (CL), correct non-links (CNL), false negatives (FN), and false
positives (FP), as well as the false negative rate (FNR) and false discovery rate
(FDR). These are formalized in AppendixA. The results in Table 2 indicate
that the hierarchical model offers improved linkage quality over the two-step
approach, regardless of the estimation algorithm. In particular, the hierarchical
model tends to have smaller FP and larger CNL than the two-step approach.
The difference in CNL is most apparent when the information in the linking
variables is weak and when the correlation between X and Y is strong. The
hierarchical model tends to have higher CL than the two-step approach, but the
difference is practically important only when the linkage information is weak and
the correlation is relatively strong (β1 = .9, β1 = .65). Overall, the hierarchical
model has lower FDR compared to the two step approach.

5 Discussion

The simulation results suggest that the Bayesian hierarchical model for simulta-
neous regression and RL can offer more accurate coefficient estimates than the
two-step approach in which one first performs RL then runs regression on linked
data. The hierarchical model is most effective when the correlation between
the response and explanatory variable is strong. The hierarchical model also can
improve linkage quality, in particular by identifying more non-links. This is espe-
cially the case when the information in the linking variables is not strong. In all
scenarios, the relationship between the response and explanatory variable com-
plements the information from the comparison vectors, which helps us declare
record pairs more accurately.
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Table 2. Summary of linkage quality across 100 simulation runs. Averages in first four
columns have standard errors less than 3. Averages in the last two columns have Monte
Carlo standard errors less than .002.

CL CNL FN FP FNR FDeR

Strong

β1 = .90 JM 702 152 47 128 .06 .15

JMIF 702 155 48 125 .06 .15

JMI 702 155 48 125 .06 .15

TS 697 123 53 167 .07 .19

β1 = .65 JM 702 139 48 144 .06 .17

JMIF 701 143 49 140 .06 .16

JMI 701 143 49 141 .06 .17

TS 698 119 52 172 .07 .20

β1 = .40 JM 698 131 52 158 .07 .18

JMIF 698 133 52 155 .07 .18

JMI 698 133 52 155 .07 .18

TS 697 121 53 170 .07 .20

Weak

β1 = .90 JM 636 114 114 223 .15 .26

JMIF 636 116 114 222 .15 .26

JMI 636 115 114 223 .15 .26

TS 620 53 130 315 .17 .34

β1 = .65 JM 632 93 118 256 .16 .29

JMIF 631 94 119 255 .16 .29

JMI 631 92 119 256 .16 .30

TS 621 51 129 317 .17 .34

β1 = .40 JM 625 69 125 291 .17 .32

JMIF 624 69 126 291 .17 .32

JMI 625 69 125 291 .17 .32

TS 620 50 130 319 .17 .34

As with any simulation study, we investigate only a limited set of scenarios.
Our simulations have 75% of the individuals in the target file as true matches.
Future studies could test whether the hierarchical model continues to offer gains
with lower overlap rates, as well as different values of other simulation param-
eters. We used a correctly specified linear regression with only one predictor.
AppendixB presents a simulation where the linear regression is mis-specified; the
model continues to perform well. We note that the hierarchical model without
imputation for missing X extends readily to multivariate X. When outcomes are
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binary, analysts can use probit regression in the hierarchical model. The model
also can be modified for scenarios where one links to a smaller file containing
explanatory variables. In this case, we use the marginal distribution of X and
conditional distribution of X|Y rather than those for Y and Y|X in (17).

A Record Linkage Evaluation Metrics

Here, we review the definitions of the average numbers of correct links (CL),
correct non-links (CNL), false negatives (FN), and false positives (FP). These
allow one to calculate the false negative rate (FNR) and false discovery rate
(FDR) [19]. For any MCMC iteration t, we define CL[t] as the number of record
pairs with Zj ≤ n1 and that are true links. We define CNL[t] as the number
of record pairs with Zj > n1 that also are not true links. We define FN[t] as
the number of record pairs that are true links but have Zj > n1. We define
FP[t] as the number of record pairs that are not true links but have Zj ≤ n1.
In the simulations, the true number of true links is CL[t]+FN[t] = 750, and the
estimated number of links is CL[t]+FP[t]. Thus, FNR[t] = is FN[t]/(CL[t]+FN[t]).
The FDR[t] = FP[t]/(CL[t]+FP[t]), where by convention we take FDR[t] = 0
when both the numerator and denominator are 0. We report the FDR instead
of the FPR, as an algorithm that does not link any records has a small FPR,
but this does not mean that it is a good algorithm. Finally, for each metric,
we compute the posterior means across all MCMC iterations, which we average
across all simulations.

B Additional Simulations with a Mis-specified Regression

As an additional simulation, we examine the performance of the hierarchical
model in terms of linkage quality when we use a mis-specified regression. The
true data generating model is log(Y)|X,V,Z ∼ N(Xβ, σ2I), but we incorrectly
assume Y|X,V,Z ∼ N(Xβ, σ2I) in the hierarchical model. Table 3 summarizes
the measures of linkage quality when the linkage variables have weak information.
Even though the regression component of the hierarchical model is mis-specified,
the hierarchical model still identifies more correct non-matches than the two-step
approach identifies, although the difference is less obvious than when we use the
correctly specified regression. We see a similar trend when the information in the
linking variables is strong, albeit with smaller differences between the two-step
approach and the hierarchical model.



222 J. Tang et al.

Table 3. Results for simulation with mis-specified regression component in the hierar-
chical model. Entries summarize the linkage quality across 100 simulation runs. Aver-
ages in first four columns have standard errors less than 3. Averages in the last two
columns have Monte Carlo standard errors less than .002.

CL CNL FN FP FNR FDeR

β1 = .90 JM 3625 69 125 292 .17 .32

JMIF 624 70 126 291 .17 .32

JMI 624 69 126 292 .17 .32

TS 619 51 131 318 .17 .34

β1 = .65 JM 626 62 124 299 .17 .32

JMIF 626 62 124 299 .17 .32

JMI 626 62 124 299 .17 .32

TS 622 49 128 319 .17 .34

β1 = .40 JM 623 56 127 309 .17 .33

JMIF 623 56 127 309 .17 .33

JMI 623 57 127 309 .17 .33

TS 622 50 128 318 .17 .34
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