
Josep Domingo-Ferrer
Krishnamurty Muralidhar (Eds.)

LN
CS

 1
22

76

UNESCO Chair in Data Privacy, International Conference, PSD 2020
Tarragona, Spain, September 23–25, 2020
Proceedings

Privacy in 
Statistical Databases



Lecture Notes in Computer Science 12276

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409


Josep Domingo-Ferrer •

Krishnamurty Muralidhar (Eds.)

Privacy in
Statistical Databases
UNESCO Chair in Data Privacy, International Conference, PSD 2020
Tarragona, Spain, September 23–25, 2020
Proceedings

123



Editors
Josep Domingo-Ferrer
Rovira i Virgili University
Tarragona, Catalonia, Spain

Krishnamurty Muralidhar
University of Oklahoma
Norman, OK, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-57520-5 ISBN 978-3-030-57521-2 (eBook)
https://doi.org/10.1007/978-3-030-57521-2

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2020
Chapter “Explaining Recurrent Machine Learning Models: Integral Privacy Revisited” is licensed under the
terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/). For further details see licence information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-57521-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Preface

Privacy in statistical databases is a discipline whose purpose is to provide solutions to
the tension between the social, political, economic, and corporate demands of accurate
information, and the legal and ethical obligation to protect the privacy of the various
parties involved. In particular, the need to enforce the EU General Data Protection
Regulation (GDPR) in our world of big data has made this tension all the more
pressing. Stakeholders include the subjects, sometimes a.k.a. respondents (the indi-
viduals and enterprises to which the data refer), the data controllers (those organiza-
tions collecting, curating, and to some extent sharing or releasing the data) and the
users (the ones querying the database or the search engine, who would like their queries
to stay confidential). Beyond law and ethics, there are also practical reasons for data
controllers to invest in subject privacy: if individual subjects feel their privacy is
guaranteed, they are likely to provide more accurate responses. Data controller privacy
is primarily motivated by practical considerations: if an enterprise collects data at its
own expense and responsibility, it may wish to minimize leakage of those data to other
enterprises (even to those with whom joint data exploitation is planned). Finally, user
privacy results in increased user satisfaction, even if it may curtail the ability of the data
controller to profile users.

There are at least two traditions in statistical database privacy, both of which started
in the 1970s: the first one stems from official statistics, where the discipline is also
known as statistical disclosure control (SDC) or statistical disclosure limitation (SDL),
and the second one originates from computer science and database technology. In
official statistics, the basic concern is subject privacy. In computer science, the initial
motivation was also subject privacy but, from 2000 onwards, growing attention has
been devoted to controller privacy (privacy-preserving data mining) and user privacy
(private information retrieval). In the last few years, the interest and the achievements
of computer scientists in the topic have substantially increased, as reflected in the
contents of this volume. At the same time, the generalization of big data is challenging
privacy technologies in many ways: this volume also contains recent research aimed at
tackling some of these challenges.

Privacy in Statistical Databases 2020 (PSD 2020) was held in Tarragona, Catalonia,
Spain, under the sponsorship of the UNESCO Chair in Data Privacy, which has pro-
vided a stable umbrella for the PSD biennial conference series since 2008. Previ-
ous PSD conferences were held in various locations around the Mediterranean, and had
their proceedings published by Springer in the LNCS series: PSD 2018, Valencia,
LNCS 11126; PSD 2016, Dubrovnik, LNCS 9867; PSD 2014, Eivissa, LNCS 8744;
PSD 2012, Palermo, LNCS 7556; PSD 2010, Corfu, LNCS 6344; PSD 2008, Istanbul,
LNCS 5262; PSD 2006 (the final conference of the Eurostat-funded CENEX-SDC
project), Rome, LNCS 4302; and PSD 2004 (the final conference of the European
FP5 CASC project) Barcelona, LNCS 3050. The nine PSD conferences held so far are
a follow-up of a series of high-quality technical conferences on SDC which started



22 years ago with Statistical Data Protection-SDP 1998, held in Lisbon in 1998 with
proceedings published by OPOCE, and continued with the AMRADS project SDC
workshop, held in Luxemburg in 2001 with proceedings published by Springer in
LNCS 2316.

The PSD 2020 Program Committee accepted for publication in this volume 25
papers out of 49 submissions. Furthermore, 10 of the above submissions were reviewed
for short oral presentation at the conference. Papers came from 14 different countries
and 4 different continents. Each submitted paper received at least two reviews. The
revised versions of the 25 accepted papers in this volume are a fine blend of contri-
butions from official statistics and computer science. Covered topics include privacy
models, microdata protection, protection of statistical tables, protection of interactive
and mobility databases, record linkage and alternative methods, synthetic data, data
quality, and case studies.

We are indebted to many people. Firstly, to the Organization Committee for making
the conference possible, and especially to Jesús Manjón, who helped prepare these
proceedings. In evaluating the papers we were assisted by the Program Committee and
by Weiyi Xia, Zhiyu Wan, Chao Yan, and Jeremy Seeman as external reviewers. We
also wish to thank all the authors of submitted papers and we apologize for possible
omissions.

July 2020 Josep Domingo-Ferrer
Krishnamurty Muralidhar
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Pα,β-Privacy: A Composable Formulation
of Privacy Guarantees for Data Publishing

Based on Permutation

Nicolas Ruiz(B)

Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira
i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain

nicolas.ruiz@urv.cat

Abstract. Methods for Privacy-Preserving Data Publishing (PPDP) have been
recently shown to be equivalent to essentially performing some permutations of the
original data. This insight, called the permutation paradigm, establishes a common
ground uponwhich anymethod can be evaluated ex-post, but can also be viewed as
a general ex-ante method in itself, where data are anonymized with the injection
of suitable permutation matrices. It remains to develop around this paradigm a
formal privacy model based on permutation. Such model should be sufficiently
intuitive to allow non-experts to understand what it really entails for privacy to
permute, in the same way that the privacy principles lying behind k-anonymity
and differential privacy can be grasp by most. Moreover, similarly to differential
privacy thismodel should ideally exhibit simple composition properties, which are
highly handy in practice. Based on these requirements, this paper proposes a new
privacy model for PPDP called Pα,β -privacy. Using for benchmark a one-time
pad, an absolutely secure encryption method, this model conveys a reasonably
intuitive meaning of the privacy guarantees brought by permutation, can be used
ex-ante or ex-post, and exhibits simple composition properties. We illustrate the
application of this new model using an empirical example.

Keywords: Privacy-Preserving Data Publishing · Permutation paradigm ·
Privacy model · One-time pad

1 Introduction

Statistical disclosure control (SDC), that is anonymization techniques for Privacy-
Preserving data publishing (PPDP), has a rich history in providing the analytical appa-
ratus through which the privacy/information trade-off can be assessed and implemented
[1]. The overall goal of SDC is to provide to data releasers tools for modifying the orig-
inal data set in some way that reduces disclosure risk while altering as little as possible
the information that it contains. Overall, SDC techniques can be classified into two main
approaches:

• Privacy-first: the method is applied with the primary goal of complying with some
privacy models, judged as acceptable and under which data exchange can take place.

© Springer Nature Switzerland AG 2020
J. Domingo-Ferrer and K. Muralidhar (Eds.): PSD 2020, LNCS 12276, pp. 3–20, 2020.
https://doi.org/10.1007/978-3-030-57521-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57521-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-57521-2_1
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• Utility-first: the method is applied with the primary goal of complying with some
pre-requisites on the level of information, judged as valuable enough to make data
exchange worthwhile.

Over the years, SDC has burgeoned in many directions. Such diversity is undoubt-
edly useful but has one major drawback: a lack of a comprehensive view across the
relative performances of the techniques available in different context. A step toward the
resolution of this limitation has been recently proposed [2, 3], by establishing that any
anonymization method can be viewed as functionally equivalent to a permutation of the
original data, plus eventually a small noise addition. This insight, called the permutation
paradigm, unambiguously establishes a common ground uponwhich any anonymization
method can be used. This paradigm was originally considered by its authors as a way
to evaluate any method applied to any data, but can in fact also be viewed as a general
anonymization method where the original data are anonymized with the injection of
permutation matrices [4].

While appealing, it remains however to develop around those insights a formal pri-
vacy model. Clearly, differentially private or k-anonymous published data sets can be
seen through the lens of permutation [5]. Thus, it is always possible to assess a posteriori
which parametrizations of permutations are compliant with k-anonymity or differential
privacy. Nevertheless, given the fact that the very nature of SDC is permutation, it seems
natural enough to require a privacy model based on permutation directly, not least for the
practical purpose of being able to define privacy guarantees a priori, build the according
permutation matrices, and anonymize the original data with them.

At a general level, a privacymodel is a condition, based on one or a set of parameters,
that guarantees an upper-bound on the disclosure risk in the case of an attack from an
intruder [6], andwhichmust be linked to a large extent to a set of tools able to enforce this
model. Moreover, to be widely used it should comply with a non-formal but nonetheless
essential requirement, in the sense that it must be easy to understand by non-experts.
The two current mainstream privacy models, k-anonymity and ε-differential privacy,
fulfil these two conditions [1]. In particular, they provide intuitive guarantees that can be
readily understood by a large audience: in k-anonymity, the intuition is that an individual
is hidden in a crowd of k identical individuals; in ε-differential privacy, the intuition is,
at least for small ε, that the presence or absence of one individual cannot be noticed
from the anonymized data.

An additional and desirable requirement for a privacy model relates to its compos-
ability. If several blocks of an anonymized data set are proven to fulfill the privacy model
selected, each for some parameters’ levels, then it seems natural, and very convenient in
practice, to require that the privacy guarantees fulfil by the overall anonymized data set
can be assessed from the guarantees of the blocks, and that the parameters’ levels of the
overall data set be expressed as a function of the levels of each block. Composability
could appear stringent at first glance, but it is a condition also satisfied by differential
privacy [7], which allows notably splitting computational workloads into independent
chunks that can be independently anonymized.

Over the years, several privacy models have been proposed, all different along the
type and strength of the privacy guarantee that they propose [1]. To the best of the
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author’s knowledge, only one privacy model based on permutation is available in the lit-
erature, which in fact has been proposed in the same paper establishing the permutation
paradigm [3]. This model, called (d , v, f )-permuted privacy, relies on the identifica-
tion of constraints on absolute permutation distances plus a diversity criterion. Being
essentially an ex-post privacy model, (d , v, f )-permuted privacy offers the possibility
of verifiability by each subject, which is an appealing property, and obviously also by
the data protector. However, its elaborate definition clearly lacks of intuitiveness and is
also not composable. Moreover, it does not lean against some intuitive benchmark to
assess the privacy guarantees.

Based on this state of affairs, the purpose of this paper is to establish a new privacy
model based on permutation calledPα,β -privacy, thatwe believe can be easily understood
by the layman, that is composable, and can be used both ex-ante (for the calibration
of permutation matrices) or ex-post (for assessing the privacy guarantees of any SDC
method on any data set from the permutation perspective). Moreover, this model leans
back against the equivalent in anonymization of a one-time pad, a procedure which
offers absolute privacy guarantees. The rest of the paper proceeds as follow. Section 2
gives some background elements on the permutation paradigm and its consequences,
needed later on. Section 3 introduces Pα,β -privacy and identifies its key functioning
and properties. Section 4 presents some empirical results based on this new model.
Conclusions and future research directions are gathered in Sect. 5.

2 Background Elements

2.1 The Permutation-Based Paradigm in Anonymization

The permutation paradigm in data anonymization starts from the observation that any
anonymized data set can be viewed as a permutation of the original data plus a non-rank
perturbative noise addition. Thus, it establishes that all masking methods can be thought
of in terms of a single ingredient, i.e. permutation. This result clearly has far-reaching
conceptual and practical consequences, in the sense that it provides a single and easily
understandable reading key, independent of the model parameters, the risk measures or
the specific characteristics of the data, to interpret the utility/protection outcome of an
anonymization procedure.

To illustrate this equivalence, we introduce a toy example which consists (without
loss of generality) of five records and three attributes X = (X1, X2, X3) generated by
sampling N(10, 102), N(100, 402) and N(1000, 20002) distributions, respectively. Noise
is then added to obtain Y= (Y1, Y2, Y3), the three anonymized version of the attributes,
fromN(0, 52), N(0, 202) and N(0, 10002) distributions, respectively. One can see that the
masking procedure generates a permutation of the records of the original data (Table 1).

Now, as the attributes’ values of a data set can always be ranked (see below), it is
always possible to derive a data set Z that contains the attributes X1, X2 and X3, but
ordered according to the ranks of Y1, Y2 and Y3, respectively, i.e. in Table 1 re-ordering
(X1, X2, X3) according to (Y1R, Y2R, Y3R). This can be done following the post-masking
reverse procedure outlined in [2]. Finally, the masked data Y can be fully reconstituted
by adding small noises to each observation in each attribute. By construction, Z has the
same marginal distributions as X, which is an appealing property. Moreover, under a
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Table 1. An illustration of the permutation paradigm

X1 X2 X3 Y1 Y2 Y3

13 135 3707 8 160 3248
20 52 826 20 57 822
2 123 -1317 -1 122 248
15 165 2419 18 135 597
29 160 -1008 29 164 -1927

X1R X2R X3R Y1R Y2R Y3R

4 3 1 4 2 1
2 5 3 2 5 2
5 4 5 5 4 4
3 1 2 3 3 3
1 2 4 1 1 5

Original dataset X Masked dataset Y

Rank of the original attribute Rank of the masked attribute

maximum-knowledge intruder model of disclosure risk evaluation, the small noise addi-
tion turns out to be irrelevant [8]: re-identification via record linkage can only come from
permutation, as by construction noise addition cannot alter ranks. Reverse mapping thus
establishes permutation as the overarching principle of data anonymization, allowing the
functioning of any method to be viewed as the outcome of a permutation of the original
data, independently of how the method operates. This functional equivalence leads to
the following result (see [9] for the original and full proposal):
Result 1: For a dataset X with n records and p attributes (X1, …, Xp), its anonymized
version Y can always be written, regardless of the anonymization methods used, as:

Y = (
P1X1, . . . ,PpXp

) + E (1)

where P1 = AT
1D1A1, . . . ,Pp = AT

p DpAp is a set of p permutation matrices and E
is a matrix of small noises. A1, . . . ,AP is a set of p permutation matrices that sort the
attributes in increasing order, AT

1 , . . .AT
p a set of p transposed permutation matrices

that put back the attribute in the original order, and D1, . . .DP is a set of permutation
matrices for anonymizing the data.

This proposition characterizes permutation matrices as an encompassing tool for
data anonymization. Proceeding attribute by attribute, each is first permuted to appear
in increasing order, then the key is injected, and finally it is re-ordered back to its
original form by applying the inverse of the first step (which in the case of a permutation
matrix is simply its transpose). This formalizes the common basis of comparison for
different mechanisms that the permutation paradigm originally proposed, but is also an
anonymization method in itself. Whatever the differences in the natures of the methods
to be compared and the distributional features of the original data, the methods can
fundamentally always be viewed as the application of different permutation matrices to
the original data.
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2.2 Ranks as the Most Basic Level of Information for Anonymization

An immediate consequence of the permutation paradigm is that ranks constitute themost
basic level of information, necessary and sufficient, to conduct anonymization. Data sets
come in a variety of structures and shapes. They can be made of only numerical or
categorical attributes, or more often as a mix of numerical, categorical and nominal
attributes, to which different anonymization methods can be applied [10]. However,
whatever the types of attributes it is always possible to rank individuals. This is obvious in
the cases of numerical or categorical attributes. In the specific case of nominal attributes
this may require some involved methods to come up with a ranking, as for example
when an attribute lists some medical terms in plain text, but it is still always possible
[11]. Moreover, the permutation-based paradigm made it clear that any anonymization
method, whatever its operating principle or the data upon which it is applied, can be
thought of in terms of permutation. As we saw above, the small noises are necessary to
recreate strictly the anonymized version of the numerical attributes for some methods,
but in terms of privacy and information properties they are not required. As intuitively
any information loss should come hand in hand with a security improvement, and as
small noises do not qualify as such, at a fundamental level they are cosmetic and can be
discarded. In particular, the term E in Eq. (1) can be ignored. Moreover, by construction
these noises do not exist in the case of ordinal or nominal attributes.

Rank permutation has thus been shown to be the essential principle lying behind
anonymization. Then, knowing the ranks of each individual is the only information that
is truly necessary. As far as performing anonymization is concerned, one can put the
underlying metrics of each attribute aside, stripping down the data set to its most basic
level, and works with the ranks to anonymize.

To formalize this and introduce some elements that will be used in the rest of this
paper, let N = {1, . . . n} denotes a finite set of individuals with n ≥ 2, let P =
{1, . . . , p} denotes a finite set of attributes with p ≥ 2. ∀j ∈ P, let V j be a non-empty
set of strictly positive integers with #V j ≥ 2.Moreover, let R = (

rij
)
(n,p) be a matrix of

size n × p with rij ∈ V j ∀i ∈ N ,∀j ∈ P. The matrix R is the most basic structure for a
data set and is strictly sufficient to conduct anonymization. Its building blocks are made
of rank strings, i.e. the succession of ranks with which each individual is contributing to
the data. One way to see this is:

R =

⎛

⎜⎜⎜⎜
⎜
⎝

r11 r12 r13 · · · r1p
r21 r22 r23 · · · r2p
r31 r32 r33 · · · r3p
...

...
...

...
...

rn1 rn2 rn3 · · · rnp

⎞

⎟⎟⎟⎟
⎟
⎠

=

⎛

⎜⎜⎜⎜
⎜
⎝

r1.
r2.
r3.
...

rn.

⎞

⎟⎟⎟⎟
⎟
⎠

= (
r.1 r..2 r.3 . . . r.p

)
(2)

ThematrixR can be represented either as a collection of rank strings at the individual
level, i.e. each individual i has a rank in each attributes j ∀j ∈ P, or a collection of rank
strings at the attributes level, i.e. each attribute j is ranking the individual i ∀i ∈ N .
Thus, a data set in its most basic form can be represented by either a collection of
stacked individual rank strings ri., or a collection of collated attribute rank strings r.j.
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An individual rank string ri. is the contribution of individual i in term of information
to the data set. From this perspective, which starts by considering first the individual,
it is clear that anonymization must alter individual rank strings. If this is not the case,
then the individual is left untouched and is not protected. In what follows, we use the
comparison of individual rank strings before and after anonymization as the starting
point to build a new privacy model based on permutation.

3 Pα,β-Privacy

The fact that anonymization appears to rely on the single principle of permutation can be
phrased under the following casual statement: “to be protected, become someone else”.
Indeed, for an individual to be protected she must inherit the attributes’ values of other
individuals in the original data set, for some attributes if not all. This is obviously what
permutation is about.

Note that a trivial consequence is that one cannot be anonymized alone. For
anonymization to take place, other individuals are necessary. For instance, if some noise
is added to some of the attributes’ values of one individual taken in isolation, but that the
noise magnitude is not enough to switch ranks with other individuals, then anonymiza-
tion did not really take place and inEq. (1) D1,…,Dp will turn to be the identitymatrices.
In that case, no permutation happened. Thus, to be anonymized you need to consider at
the same time other individuals and exchange values with them.

Because anonymization means for an individual to inherit the values of others, this
raises two natural questions: “are these changes common in what defines me?” and “if
some changes happened, are they important?What are their depths?”. Wewill call these
two casual questions the “frequency” and the “deepness” questions, respectively. The
“frequency” question may be of lesser relevancy for data sets with a small number of
attributes. However, when this number is very large all attributes may not be altered by
anonymization and this question may turn relevant.

Naturally, an individual will rightly feel more protected than otherwise the more
attributes have been changed and if her new values for the modified attributes come from
individuals that are far from her in the original data set. Thus, in principle protection
happens, and can be gauged, according to the frequency of the transformation of an
individual along her attributes, as well as the depth of these changes.

Along these two intuitive considerations we will consider a third, may be slightly
less intuitive but we believe nonetheless relevant, one: “do my modified characteristics
receive the same treatment? Among my values that have been changed, has everything
been changed the sameway?”.Wewill call it the “balance in treatment” question. Indeed,
among the attributes that have been changed, some may have been changed more deeply
than others may. Thus, an individual may be interested in knowing if all her modified
attributes received the same treatment or not. For example, if a large number of attributes
are deeply changed the same way, then the individual can reasonably consider herself
more protected in comparison to a situation where some attributes have been changed
deeply and other not so much.

At this stage, we are fully aware that the reader may be surprised by such casual
formulations and considerations in a supposedly scientific paper. However, we believe
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that they are key. As we outlined above, the success of mainstream privacy models
such as ε-differential privacy and k-anonymity relies on the fact that a solid analytical
framework can be expressed as casual principles understandable bymost. And insofar as
anonymization is a field practiced by experts who deal with questions that non-experts
are very interested in, any privacy model should have an easy interpretation. As a result,
our objective is to build a privacy model to reply to the casual questions asked above.
Thus, this paper is about a formal treatment of some casual questions, an approach that
is generally better than the opposite.

3.1 The Pα Aggregator

Consider the following quantity:

zij =
abs

(
rij − r′ij

)

max
(
r1j, . . . , rnj

) − 1
(3)

where rij is the rank of individual i in attribute j in the original data set, as defined in Eq.
(2), and r′ij is the rank of individual i in attribute j in the anonymized data set. Thus, zij is
simply a measure of absolute rank differences between the original and the anonymized
data set for the individual i in attribute j, normalized, without loss of generality, by the
maximum number of ranks that an individual can be switched in the attribute. For a
numerical attribute collected over n individuals, generally max

(
r1j, . . . , rnj

) = n, but
for an ordinal attribute it can be much smaller, and the normalization is a way to align
the possibility of rank changes on a comparable scale, here expressed in percentages.

Next, we introduce the following aggregator:

Pα,i
(
zi1, . . . , zip

) = 1

p

q∑

j= 1

(
zij

)α∀α ≥ 0 (4)

Remark that Pα,i(.) is a norm on a Fréchet space [12]. It aggregates the normalized
absolute rank distances of the q attributes that have been modified by the anonymization
process, thus q ≤ p. By construction, Pα,i

(
zi1, . . . , zip

)
is bounded between zero and

one.
Let Ci = q/p be the share of attributes that have been modified for individual i, and

Di = ∑q
j=1 zij/q the average of the absolute normalized rank distances taken over the

modified attributes. Clearly, we have:

P0,i
(
zi1, . . . , zip

) = q

p
= Ci (5)

and

P1,i
(
zi1, . . . , zip

) = Ci × Di (6)

Forα=0, Pα,i(.)brings a reply to the “frequency”question about howmanyattributes
have been changed, as a percentage of all the attributes in the data set. For α = 1, it brings
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a reply to the “deepness” question, by measuring the average depth of the changes taken
over all the attributes, which can be decomposed further as the product of the share
of the changes multiplied by the depth of the changes only for the attributes that have
been modified. The case α = 2 squares the normalized absolute rank differences and
thus weighs the rank differences by the rank differences. It can be straightforwardly
demonstrated that for α = 2, the following result holds:
Result 2: For α = 2, Pα,i(zi1, . . . , zim) satisfies the following decomposition:

P2,i
(
zi1, . . . , zip

) = Ci

[
D2
i + (1 − Di)

2V 2
i

]
(7)

where V 2
i is the squared coefficient of variation of the absolute normalized rank distances

among the attributes that have been modified.
Suppose that all modified attributes have the same absolute normalized rank dis-

tances. Then P2,i
(
zi1, . . . , zip

) = CiD2
i as V

2
i = 0. However, if the modified attributes

did not receive the same treatment, then P2,i
(
zi1, . . . , zip

)
is larger by Ci(1 − Di)

2V 2
i .

When Ci and Di are held constant, then P2,i
(
zi1, . . . , zip

)
varies with V 2

i , the difference
in treatment on the changed attributes. Thus, P2,i

(
zi1, . . . , zip

)
and its decomposition

brings a reply to the “balance in treatment”, allowing to evaluate if each attributes have
been treated the same way or not.

Finally, assume that the p attributes are divided into L collections of attributes l = 1,
…, L of size p(l) and denotes by z(l) the vector of normalized absolute rank differences
for the lth collection. Then we have the following result:
Result 3: For an individual i and any set of attributes broken down into subgroups with
associated normalized absolute rank differences vectors z(1), . . . , z(L):

Pα,i
(
zi1, . . . , zip

) =
L∑

l=1

p(l)

p
Pα,i

(
z(l)

)
∀α ≥ 0 (8)

Following Eq. (8), Pα,i
(
zi1, . . . , zip

)
is additively decomposable with attribute share

weights for all positive α.
To summarize, the additively decomposable aggregator Pα(.) allows evaluating dif-

ferent quantities to reply to the casual questions asked above, by simply making vary
one parameter. Note that the cases α ≥ 2 can also be considered. In fact, as α tends
to infinity, the value of the largest normalized absolute rank difference is all that mat-
ters. However, the larger the α, the smaller Pα,i

(
zi1, . . . , zip

)
for a given distribution(

zi1, . . . , zip
)
. As a result, and taking into account some tentative concerns about the

“psychology of numbers”, in the rest of this paper we will focus mainly on α = 0, 1, 2.
As we saw, those cases display some interesting decomposition properties, andwill yield
some “healthier-looking” values with magnitude easy to grasp and relatively intuitive.

3.2 Pα,β -Privacy at the Individual Level

To bring meaningful replies to the casual questions asked above, one needs a proper
benchmark. For instance, one can reply to the “deepness” question by computing
P1,i

(
zi1, . . . , zip

)
and the higher the value, the better the protection. However, up to
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which level can it be really qualified as better? Of course, if P1,i
(
zi1, . . . , zip

)
is close to

100% undoubtedly strong anonymization has been applied and one can reasonably think
that in that case the task of an intruder for re-identifying individual i will be arduous.
However, this cannot be the case for all individuals in the data set, as not all can be
permuted maximally. Moreover, we believe as desirable to reason with a benchmark that
brings some sense and intuition to the whole exercise. In this paper, we propose to reply
to the following question: “how do my anonymized values differ compare to absolutely
secure modifications?”.

Coming back to Eq. (1), one can observe that, theoretically speaking, and if the
permutation matrices are truly selected randomly, it is a one-time pad [13]. Indeed, con-
sidering the attributes as the plaintext, the anonymized attributes as the ciphertext and the
permutation matrices as encryption keys, which are of the same size than the plaintext,
then for a truly random generation of keys Eq. (1) describes a one-time pad [14]. Of
course, while in cryptography a truly random generation of keys is acceptable, in data
anonymization it is not. In addition to providing some privacy guarantees to individuals,
anonymized data should also meet data users’ needs by offering some information. As
a result, some structures and constraints must be applied to the permutation keys for
the released data to be meaningful. The fact that in data anonymization the keys selec-
tion must be guided with both protection and information in mind precludes randomly
generating them.

Still, while not acceptable in data anonymization it provides an interesting bench-
mark. Being information-theoretically secure, a one-time pad is impossible to decrypt
as the ciphertext provides absolutely no information to an intruder about the plaintext
(except the length of the message) and a ciphertext can be translated into any plaintext
of the same length, with all being equally likely. In data anonymization, this means
that if D1, …, Dp are truly random, then an intruder can never plausibly claim to have
re-identified any individual or learn some of her attributes’ values. It must be noted
that, without being named, one-time pads have been used in one occurrence in the SDC
literature to conduct attacks by a maximum-knowledge intruder [8].

The simple idea ofPα,β -privacy is thus to comparePα’s valueswith the ones achieved
by a one-time pad. Stated otherwise, Pα,β -privacy aims at delivering the following state-
ment: “you have been changed at Pα%, and this change is at most β percentage points
different compared to the case of an absolutely secure change”. We believe such state-
ment vehicles an intuitive understanding for most people. To formalize it, we introduce
the following quantity:

zSij =
abs

(
rij − rSij

)

max
(
r1j, . . . , rnj

) − 1
(9)

where rSij is the rank of individual i in attribute j in the one-time pad anonymized data set,
i.e. where all attributes have been permuted randomly. The definition of Pα,β -privacy
follows:
Definition 1: An individual i is Pα,β -private if:

∣∣
∣Pα,i

(
zi1, . . . , zip

) − Pα,i

(
zSi1, . . . , z

S
ip

)∣∣
∣ ≤ β (10)
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Pα,β -privacy requires that the difference between Pα,i
(
zi1, . . . , zip

)

and Pα,i

(
zSi1, . . . , z

S
ip

)
must be contained in an interval centered around zero, and for

which the narrowness is driven by β. Stated otherwise, it requires a degree of proximity
between the changes incurred, in terms of permutation, by an anonymizationmethod and
a one-time pad. The proximity is controlled by the parameter β, with by construction
0 ≤ β ≤ 1, and which can be interpreted as a maximum tolerance to departure from
absolute security: the smaller (resp. larger) is β, the greater (resp. lesser) is the required

proximity. For instance, if P0,i
(
zi1, . . . , zip

) = 0.4 and P0,i
(
zSi1, . . . , z

S
ip

)
= 0.5, then

the individual i is P0,0.1-private. In plain words, the individual can make the following
claim: “40% of my attributes have been changed, which is at most 10% points differ-
ent from the situation offering me absolute security”. If P1,i

(
zi1, . . . , zip

) = 0.25 and

P1,i
(
zSi1, . . . , z

S
ip

)
= 0.40, then the individual is P1,0.15-private and the claim becomes:

“I have been transformed into other individuals that were originally and on average
25% far from me; this transformation departs by at most 15 percentage points from a
transformation offering me absolute security”.

β also offers a direct link to the amount of information provided by the anonymized
data set. Clearly, the narrower it is, the likelier the permutation matrices are to be gener-
ated randomly. For an anonymized data set to be useful and worthwhile disseminating, it
must preserve information to a certain extent. Stated otherwise, the permutations applied
to the original data must be constrained, e.g. it is forbidden to permute some attributes
more than a certain distance, which means that one must depart from randomness. Thus,
the narrower is β, the lesser information is preserved. An additional consequence is that
Pα,β -privacy can be used ex-ante to guide the calibration of permutation matrices.

Remark that we consider that Pα,i
(
zi1, . . . , zip

)
can depart from Pα,i

(
zSi1, . . . , z

S
ip

)

by above or below. Generally, applying random permutations at the data set level will
tend to break the rank-dependencies among attributes. However, in practice all config-
urations can occur (even having as random permutations the identity matrices, leaving
the data untouched [8]). This is even truer at the individual level, where the values of

Pα,i

(
zSi1, . . . , z

S
ip

)
will depend on the original rank strings and the redundancy in each

rank. In the absence of clear directions for the changes for each individual after hav-
ing been randomly permuted, we assess the possible changes from above or below. In
addition, it is advisable in practice to generate several random permutations and take the

average of Pα,i

(
zSi1, . . . , z

S
ip

)
across the permutations to avoid the privacy assessment

being driven by a peculiar random draw in the permutation matrices.
Now, from the additive decomposability of Pα,i

(
zi1, . . . , zip

)
it can be demonstrated,

after some manipulations, that:
Result 4: For any set of p attributes broken down into subgroups with associated nor-
malized absolute rank differences vectors z(1), . . . , z(L) and with each subgroups l being
Pα,β(l)-private, i.e.

∣
∣Pα,i

(
z(l)

) − Pα,i
(
zS,(l)

)∣∣ ≤ β(l), it holds that:

∣∣∣Pα,i

(
z(1), . . . , z(L)

)
− Pα,i

(
zS,(1), . . . , zS,(L)

)∣∣∣ ≤
L∑

l=1

p(l)

p
β(l) (11)
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Pα,β -privacy is horizontally composable. If an individual i is anonymized separately
over some different sets of attributes (each with different Pα,β -privacy guarantees) and
then the sets aremerged, the overall set is alsoPα,β -private,with as guarantee the attribute
shares weighted average of each sub-set’s guarantee.

3.3 Pα,β -Privacy at the Data Set Level

So far, we focused on the individuals. Indeed, the very nature of anonymization is about
individuals and the protection of their information, so it seems only natural that privacy at
the data set level must be designed from basic building blocks which are the assessment
at the individual level. In fact, it can be proved that any coherent approach for evaluating
some anonymization outcomes can only start from an assessment at the individual level
[15].

To evaluate the privacy guarantees at the data set level, one possible path is to slot
the Pα(.) aggregators at the individual level within a Pα aggregator that will deliver an
evaluation at the data set level. That is, we propose the following, where D denotes the
data set:

Pα,D
(
Pα,1

(
z11, . . . , z1p

)
, . . . ,Pα,n

(
zn1, . . . , znp

))

= 1

n

s∑

i=1

(
Pα,i

(
zi1, . . . , zip

))α∀α ≥ 0 (12)

Pα,D(.) aggregates the individual Pα,i
(
zi1, . . . , zip

)
of the s individuals that have been

modified by the anonymization process, thus s ≤ n. Its interpretation is the same than
for the aggregator at the individual level, also inheriting de facto its properties outlined
above. By construction, Pα,D(.) is also bounded between zero and one.

For α = 0, P0,D(.) measures the share of individuals that have been altered by the
anonymization process. For α = 1, it measures the depth of the changes averaged over all
individuals, which can be decomposed further as the product of the share of the modified
individuals multiplied by the average depth of the changes only on the individuals that
have been modified. The case α = 2 squares the Pα,i

(
zi1, . . . , zip

)
’s and thus weighs

the Pα,i
(
zi1, . . . , zip

)
by the Pα,i

(
zi1, . . . , zip

)
. Using the decomposition in Eq. (7), one

can assess if all individuals have been treated equally or not during the anonymization
process.

We can now define Pα,β -privacy at the data set level:
Definition 2: A data set D is Pα,β -private if

∣∣Pα,D
(
Pα,1

(
z11, . . . , z1p

)
, . . . ,Pα,n

(
zn1, . . . , znp

))

−Pα,D

(
Pα,1

(
zS11, . . . , z

S
1p

)
, . . . ,Pα,n

(
zSn1, . . . , z

S
np

))∣∣∣

≤ β (13)

Using the decomposability property of Pα(.) and assuming that we consider individ-
uals equally for anonymization, i.e. they have the same weight and none deserves more
care than another ex-ante anonymization, we can express the Pα,β -privacy guarantee of
a data set as a function of the Pα,β -privacy guarantees at the individual level:
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Result 4: For a data set D made of n individuals and p attributes, if∣∣
∣Pα,i

(
zi1, . . . , zip

) − Pα,i

(
zSi1, . . . , z

S
ip

)∣∣
∣ ≤ βi ∀i = 1, . . . , n, then it holds that:

∣∣Pα,D
(
Pα,1

(
z11, . . . , z1p

)
, . . . ,Pα,n

(
zn1, . . . , znp

))−
Pα,D

(
Pα,1

(
zS11, . . . , z

S
1p

)
, . . . ,Pα,n

(
zSn1, . . . , z

S
np

))∣∣∣ ≤ 1

n

∑n

i=1
βi (14)

ThePα,β -privacy guarantee of a data set is the average of thePα,β -privacy guarantees
at the individual level. A direct corollary of this result is that Pα,β -privacy is vertically
composable. For a given set of attributes, if one anonymizes separately different groups
of individuals, whatever the method used in each, then the privacy guarantee of the
stacked data set will simply be the group shares weighted average of each sub-data set’s
guarantee:
Result 5: For a set of n individuals broken down into subgroups n(1), . . . , n(L) and with
each observed over the same p attributes, if each sub-data sets l is Pα,β(l)-private, i.e.∣∣∣Pα,D(l)

(
Pα,1

(
z11, . . . , z1p

)
, . . . ,Pα,n(l)

(
zn(l)1, . . . , zn(l)p

))
−

Pα,D(l)

(
Pα,1

(
zs11, . . . , z

s
1p

)
, . . . ,Pα,n(l)

(
zsn(l)1, . . . , z

s
n(l)p

))∣∣∣ ≤ β(l)
, then

it holds that:
∣∣∣∣∣
∣
Pα,D

⎛

⎝
Pα,D(1)

(
Pα,1

(
z11, . . . , z1p

)
, . . . ,Pα,n(1)

(
zn(1)1, . . . , zn(1)p

))
,

. . . ,Pα,D(L)

(
Pα,1

(
z11, . . . , z1p

)
, . . . ,Pα,n(L)

(
zn(L)1, . . . , zn(L)p

))

⎞

⎠

− Pα,D(1)

(
Pα,1

(
zs11, . . . , z

s
1p

)
, . . . ,Pα,n(1)

(
zs
n(1)1

, . . . , zs
n(1)p

))
,

. . . ,Pα,D(L)

(
Pα,1

(
zs11, . . . , z

s
1p

)
, . . . ,Pα,n(L)

(
zs
n(L)1

, . . . , zs
n(L)p

))

∣∣∣∣∣
∣

≤
L∑

l=1

n(l)

n
β(l) (15)

4 Empirical Illustrations

The objective of this section is to illustrate how Pα,β -privacy operates. The experiment
is based, without loss of generality, on a small data set of 20 observations and three
attributes. In particular, this simple example will allow to display in a tractable way
Pα,β -privacy at the individual level.

We generate the original data set by sampling N(50, 102), N(500, 502) and N(2500,
2502) distributions, respectively. All attributes are then anonymized with additive noise
under three scenario with some standard deviations equal to 10%, 50% and 100% of the
standard errors of the original values, respectively. Regarding the generation of the one-
time pad, to avoid the problems mentioned above we generate five randomly permuted

data sets and take the average of Pα,i

(
zSi1, . . . , z

S
ip

)
over those sets. Tables 2 and 3 show

the values obtained under the three scenario plus the one-time pads averaged values,
Table 4 shows P0,β -privacy guarantees and Table 5 P1,β -privacy guarantees.
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Table 2. Pα aggregators: scenario 1 & 2

ID Scenario 1 Scenario 2

P0 P1 P2 of
which V

P0 P1 P2 of which
V

1 33% 2% 0% 141% 100% 11% 1% 41%

2 67% 5% 0% 82% 33% 2% 0% 141%

3 67% 7% 1% 71% 67% 9% 1% 75%

4 33% 2% 0% 141% 33% 2% 0% 141%

5 67% 4% 0% 71% 100% 19% 5% 46%

6 67% 4% 0% 71% 100% 9% 1% 28%

7 33% 2% 0% 141% 33% 7% 1% 141%

8 0% 0% 0% 0% 67% 5% 0% 82%

9 0% 0% 0% 0% 67% 23% 13% 125%

10 33% 2% 0% 141% 100% 14% 2% 18%

11 0% 0% 0% 0% 67% 9% 2% 102%

12 33% 2% 0% 141% 100% 9% 1% 28%

13 67% 5% 0% 82% 67% 5% 0% 82%

14 67% 4% 0% 71% 67% 14% 3% 77%

15 0% 0% 0% 0% 33% 2% 0% 141%

16 33% 5% 1% 141% 67% 19% 6% 78%

17 33% 4% 0% 141% 0% 0% 0% 0%

18 67% 9% 2% 102% 67% 11% 2% 108%

19 67% 4% 0% 71% 67% 11% 2% 71%

20 33% 2% 0% 141% 67% 11% 2% 71%

Data set 40% 3% 0% 88% 65% 9% 2% 80%

As expected, the higher the noise injected, the higher Pα for all α, which is rather
intuitive. Consider for example the first individual. Under scenario 1, she can claims that
one-third of her attributes have been changed, while she became someone else by 2%,
i.e. on average across her attributes she inherited values from other individuals that were
originally 2% far from her. Under scenario 2 she can claim higher values; for instance,
she inherited values from other individuals that were originally 11% far from her. Under
scenario 3, the magnitudes are clearly more pronounced: all her attributes have been
altered and she became someone else at 42%. Moreover, according to the coefficient of
variation V, which following Eq. (7) is one of the components of P2, the second and
third scenario applies similar balanced treatment to each attribute.

Overall, the average individual in the data set can claim that 40%, 65% and 87% of
her attributes have been changed and that with anonymization she inherited new values
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Table 3. Pα aggregators: scenario 3 & one-time pads averaged values

ID Scenario 3 One-time
pads
average

P0 P1 P2 of which
V

P0 P1

1 100% 42% 18% 18% 100% 38%

2 100% 40% 22% 61% 87% 45%

3 100% 19% 5% 56% 93% 24%

4 100% 18% 3% 14% 93% 31%

5 100% 47% 34% 73% 93% 36%

6 0% 0% 0% 0% 100% 41%

7 100% 19% 4% 34% 93% 30%

8 67% 11% 2% 108% 93% 36%

9 100% 21% 8% 89% 100% 36%

10 100% 30% 11% 44% 93% 25%

11 100% 21% 6% 54% 93% 29%

12 100% 18% 3% 28% 100% 39%

13 100% 12% 2% 53% 93% 38%

14 67% 12% 2% 73% 100% 32%

15 67% 7% 1% 94% 100% 35%

16 100% 33% 12% 32% 100% 44%

17 67% 19% 6% 72% 100% 33%

18 67% 16% 4% 82% 93% 36%

19 100% 32% 15% 68% 93% 46%

20 100% 25% 9% 71% 87% 24%

Data set 87% 22% 8% 56% 95% 35%

coming from individuals that were originally at 3%, 9% and 22% far from her, according
to scenario 1, 2 and 3, respectively.

By comparing these results to the outcomes obtained from a one-time pad, we can
measure if they are indeed important in magnitude, and conclude on the Pα,β -privacy
guarantees of each scenario. ForP1,β -privacy, themodifications on the first individual are
38% points different from a situation of absolute security in scenario 1, 28% in scenario
2 and 4% in scenario 3 (Table 5). That is, in scenario 3 her inherited values depart only
by 4% points from a situation where she would have been absolutely secure. Overall,
with the third scenario she can make the following claim: “all my attributes have been
changed and I metamorphosed on average into individuals that were originally 42%
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Table 4. P0,β -privacy

ID Scenario 1 Scenario 2 Scenario 3

1 67% 0% 0%

2 20% 53% 13%

3 27% 27% 7%

4 60% 60% 7%

5 27% 7% 7%

6 33% 0% 100%

7 60% 60% 7%

8 93% 27% 27%

9 100% 33% 0%

10 60% 7% 7%

11 93% 27% 7%

12 67% 0% 0%

13 27% 27% 7%

14 33% 33% 33%

15 100% 67% 33%

16 67% 33% 0%

17 67% 100% 33%

18 27% 27% 27%

19 27% 27% 7%

20 53% 20% 13%

Data set 55% 32% 17%

far from me; such transformation departs only by 4% points from an ideal situation of
absolute security”. Regarding the privacy guarantees of the whole anonymized data set,
here again they produce an ordering conform to intuition (Table 5): scenario 1 delivers
P1,0.33-privacy guarantees, scenario 2 P1,0.26-privacy guarantees and scenario 3 P1,0.15-
privacy guarantees; for instance, in scenario 3 the anonymized data set is only 15%
points different from a one-time pad.
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Table 5. P1,β -privacy

ID Scenario 1 Scenario 2 Scenario 3

1 38% 28% 4%

2 43% 43% 5%

3 19% 15% 5%

4 27% 29% 13%

5 36% 17% 11%

6 36% 33% 41%

7 27% 23% 11%

8 27% 31% 26%

9 33% 13% 15%

10 23% 11% 5%

11 26% 21% 8%

12 39% 31% 22%

13 38% 33% 26%

14 32% 18% 20%

15 35% 34% 28%

16 44% 24% 10%

17 33% 33% 14%

18 36% 26% 20%

19 46% 35% 14%

20 24% 14% 0%

Data set 33% 26% 15%

5 Conclusions and Future Work

This paper introduced a new privacy model for data publishing based on permuta-
tion, Pα,β -privacy. Following the insight proposed by the permutation paradigm, which
showed that anySDC techniques can be thought of in terms of permutations,Pα,β -privacy
aims at providing a formal treatment of what it really means for privacy to be permuted
and leans against an absolutely private benchmark. This treatment is also designed to
be translatable into casual statements understandable by most people, so that a wide
audience can grasp what Pα,β -privacy means.

Moreover, and because it is based on permutations, it can be applied ex-post to assess
the privacy guarantees of any data set anonymized through any methods, but can also
be used ex-ante to tune permutation matrices. Pα,β -privacy is also composable, both
horizontally and vertically. This means that if two Pα,β -private data sets comprising the
same individuals (resp. attributes), and anonymized through different techniques, are
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merged (resp. stacked), the resulting overall data set will also be Pα,β -private, with as
parameters a function of the parameters of the two first data sets.

InPα,β -privacy,α stands for the different types of transformation that the information
provided by an individual contributing to a data set undergoes. For α = 0, one is
monitoring the frequencies of the modified attributes. For α = 1, one is measuring how
an individual has been converted, as a result of permutations, into someone else and
how far this someone else was in the original data. Finally, for α = 2 more weight is
given to the largest transformations, which allows to assess if the attributes’ values of
an individual received in fact the same transformation. As for β, it measures how an
individual is far from absolute secure changes in her characteristics, as conveyed by a
one-time pad, a well-known cryptographic protocol that provides absolute secrecy and
that this paper brought to use in the context of anonymization.

We leave as future works the deeper exploration of Pα,β -privacy. First of all, the
generationof permutationmatrices through the ex-ante settingofPα,β -privacy conditions
should be explored. Second, establishing, through the lens ofPα,β -privacy guarantees, an
inventory of popular SDC methods under different parametrizations and data contexts,
is warranted. Finally, the links between Pα,β -privacy and k-anonymity and ε-differential
privacy should be investigated, both theoretically and empirically.
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Abstract. Differential privacy (DP) is a privacy model that was
designed for interactive queries to databases. Its use has then been
extended to other data release formats, including microdata. In this
paper we show that setting a certain ε in DP does not determine the con-
fidentiality offered by DP microdata, let alone their utility. Confidential-
ity refers to the difficulty of correctly matching original and anonymized
data, and utility refers to anonymized data preserving the correlation
structure of original data. Specifically, we present two methods for gener-
ating ε-differentially private microdata. One of them creates DP synthetic
microdata from noise-added covariances. The other relies on adding noise
to the cumulative distribution function. We present empirical work that
compares the two new methods with DP microdata generation via prior
microaggregation. The comparison is in terms of several confidential-
ity and utility metrics. Our experimental results indicate that different
methods to enforce ε-DP lead to very different utility and confidential-
ity levels. Both confidentiality and utility seem rather dependent on the
amount of permutation performed by the particular SDC method used
to enforce DP. Thus suggests that DP is not a good privacy model for
microdata releases.

Keywords: Anonymized microdata · Differential privacy · Synthetic
data · Confidentiality · Analytical utility

1 Introduction

Traditional anonymization by national statistical institutes consists of applying a
statistical disclosure control (SDC) method with a heuristic choice of parameters
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and then assessing the disclosure risk and the analytical utility of the anonymized
data. If the risk is deemed too high, the SDC method is run again with more
stringent parameters, which is likely to reduce the risk and the utility as well.

Privacy models, originated in the computer science community, take a differ-
ent view of anonymization. A privacy model is an ex ante parameterized condi-
tion that is meant to guarantee a pre-specified level of disclosure protection—that
is, confidentiality—regardless of the impact on utility. If the utility loss is deemed
too high, then the privacy model parameter must be made less strict. Privacy
models are enforced using SDC methods whose parameters depend on the privacy
model parameter. The earliest privacy model instance was k-anonymity [10], and
the most talked about privacy model these days is differential privacy (DP, [4]).
Privacy models are usually enforced by using one or more SDC methods: in the
case of k-anonymity, one uses generalization, local suppression or microaggrega-
tion. In the case of DP, there are several options, the most usual being Laplace
noise addition.

The initial formulation of DP was for the interactive setting. A randomized
query function κ (that returns the query answer plus some noise) satisfies ε-DP
if for all data sets D1 and D2 that differ in one record and all S ⊂ Range(κ),
it holds that Pr(κ(D1) ∈ S) ≤ exp(ε) × Pr(κ(D2) ∈ S). In plain English, the
presence or absence of any single record must not be noticeable from the query
answers, up to an exponential factor ε (called the privacy budget). The smaller
ε, the higher the protection. The most usual SDC method employed to enforce
differential privacy is Laplace noise addition. The amount of noise depends on ε
(the smaller ε, the more noise is needed) and, for fixed ε, it increases with the
global sensitivity of the query (defined as the maximum variation of the query
output when one record in the data set is changed, added or suppressed).

Differential privacy offers a neat privacy guarantee for interactive queries, at
least for small values of ε. Unlike k-anonymity, its privacy guarantee does not
require any assumptions on the intruder’s background knowledge. Very soon,
researchers proposed extensions of DP for the non-interactive setting, that is,
to produce DP microdata sets that could be used for any analysis, rather than
for a specific query. Based on that, Google, Apple and Facebook are currently
using DP to anonymize microdata collection from their users, although in most
cases with ε values much larger than 1 [6] (which is against the recommendations
of [5]).

Unfortunately, as noted in [9], generating DP microdata is a very challenging
task. A DP microdata set can be viewed as a collection of answers to identity
queries, where an identity query is about the content of a specific record (e.g. tell
me the content of the i-th record in the data set). Obviously, the sensitivity of an
identity query is very high: if one record is changed the value of each attribute
in the record can vary over the entire attribute domain. This means that a lot
of noise is likely to be needed to produce DP microdata, which will result in
poor utility. This should not be surprising, because by design, DP attempts to
make the presence or absence of any single original record undetectable in the
DP output, in this case, the DP microdata set.
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The usual approach to obtain DP microdata is based on histogram
queries [12,13]. In [11], a method to generate DP microdata that uses a prior
microaggregation step was proposed. Microaggregation replaces groups of simi-
lar records by their average record. Since the average record is less sensitive than
individual original records, if one takes the microaggregation output as the input
to DP, the amount of Laplace noise required to enforce a certain ε is smaller than
if taking the original data set as input. This yields DP microdata with higher
utility than competing approaches.

1.1 Contribution and Plan of This Paper

Our aim in this paper is to demonstrate that a certain privacy budget ε can
result in very different levels of confidentiality and utility. In fact, we show that
the achieved confidentiality and utility depend on the particular SDC methods
used to enforce DP.

Specifically, we present two new methods for generating DP microdata. One
of them creates DP synthetic microdata from noise-added covariances. The other
relies on adding noise to the cumulative distribution function (CDF). We present
empirical work that compares the two new methods with the microaggregation-
based method [11]. The comparison is in terms of several confidentiality and
utility metrics. It becomes apparent that different methods to enforce ε-DP lead
to very different utility and confidentiality levels.

Section 2 describes the synthetic data method. Section 3 describes the CDF-
based method. Empirical work comparing the two new methods among them
and with the microaggregation-based method is reported in Sect. 4. Conclusions
and future research issues are gathered in Sect. 5.

2 A Method for Generating Synthetic DP Microdata

In this method, a DP synthetic microdata set is generated based on the original
data. The approach is to add Laplace noise to: i) the sum of each attribute; ii) the
sum of squared values of each attribute; and iii) the sum of the product of each
pair of attributes. This allows obtaining DP versions of the attribute means
and covariances. Finally, the synthetic microdata are obtained by sampling a
multivariate normal distribute with parameters the DP mean vector and the
DP covariance matrix. Therefore, the synthetic data thus obtained are DP by
construction.

If the original data set has m attributes, there are m sums of attribute values,
m sums of squared attribute values and m(m − 1)/2 sums of products of pairs
of attributes. Hence, the privacy budget ε must be divided among the total
2m + m(m − 1)/2 sums. Let ε∗ = ε/(2m + m(m − 1)/2).

Let xij , for i = 1, . . . , n and j = 1, . . . ,m, represent the value of the j-th
attribute in the i-th record of the original data set. Let μj and σjj denote,
respectively, the mean and the variance of the j-th attribute, and let σjk, for
j �= k, represent the covariance between the j-th and the k-th attributes. On the
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other hand, let Δfj represent the global sensitivity of the j-th attribute. Then
Algorithm 1 formalizes the above-sketched method to generate DP synthetic
microdata.

Algorithm 1. Method 1: DP synthetic microdata generation

Input: Original data set {xij : i = 1, . . . , n; j = 1, . . . , m}
Output: DP data set {x∗

ij : i = 1, . . . , n; j = 1, . . . , m}
1 for j = 1 to m do /* DP-perturb means and variances */

2 Rj =
∑n

i=1 xij + Laplace
(
0,

Δfj
ε∗

)
;

3 Sj =
∑n

i=1 x2
ij + Laplace

(

0,
Δf2

j

ε∗

)

;

4 μ∗
j = Rj/n;

5 σ∗
jj =

Sj− R2
j

n
n−1

;

6 for j = 1 to m do /* DP-perturb covariances */

7 for k = j + 1 to m do

8 Tjk =
∑n

i=1(xijxik) + Laplace
(
0,

Δfj×Δfk
ε∗

)
;

9 σ∗
jk =

Tjk− RjRk
n

n−1
;

10 σ∗
kj = σ∗

jk;

11 for i = 1 to n do /* Draw DP synthetic data from DP-normal */

12 (x∗
i1, . . . , x

∗
im) = Sample(N(μ∗, σ∗)), where μ∗ = (μ∗

1, . . . , μ
∗
m) and

σ∗ = [σ∗
ij ]i,j=1,...m.

Note 1. This method is problematic unless the number of attributes is really
small. Indeed, for fixed ε the Laplace perturbation added to the variances and
covariances quadratically grows with m, because this perturbation has privacy
budget ε/(2m + m(m − 1)/2). Thus, m does not need to be very large to risk
getting a perturbed covariance matrix σ∗ that is no longer positive definite, and
hence not valid as a covariance matrix.

3 A CDF-Based Method to Obtain DP Microdata

This method follows the inspiration of [7] in that it anonymizes by sampling
a distribution adjusted to the original data. Yet, unlike [7], we DP-perturb
the distribution. In this way, rather than drawing from a multivariate normal
distribution with DP-perturbed parameters as in Algorithm 1, we obtain DP
microdata by: i) for each attribute, obtaining DP attribute values by sampling
from a univariate normal distribution with DP-perturbed mean and variance;
ii) replacing each original attribute value with a DP-attribute value whose rank
is a DP-perturbed version of the rank of the original attribute value. The DP-
perturbation of attribute values ensures that the original attribute values are
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unnoticeable in the DP microdata, whereas the DP-perturbation of ranks ensures
that the rank correlation of attribute values within each record is altered enough
for the resulting multivariate data set to be DP.

If we normalize ranks by dividing them by n, adding or suppressing one record
will at most change the CDF (normalized rank) of any other record by 1/n,
and hence the global sensitivity of the CDF is 1/n. Since records are assumed
independent of each other, there is no sequential composition among records in
the DP sense, and therefore the privacy budget ε does not need to be divided
among the number of records. If there are m attributes, ε must just be divided
among the m sums of attribute values, the m sums of squared attribute values
and the m empirical CDFs of the attributes. This yields a budget ε∗ = ε/3m for
the required Laplace perturbations.

Algorithm 2 formalizes the CDF-based method to generate DP microdata.
Note that this approach is not synthetic, because each record in the DP data
set results from a specific record in the original data set. For each attribute j,
each original attribute value xij is replaced by a DP attribute value whose rank
is DP-perturbed version of the rank of xij .

Algorithm 2. Method 2: CDF-based DP microdata generation

Input: Original data set {xij : i = 1, . . . , n; j = 1, . . . , m}
Output: DP data set {x∗

ij : i = 1, . . . , n; j = 1, . . . , m}
1 for j = 1 to m do /* DP-perturb means and variances */

2 Rj =
∑n

i=1 xij + Laplace
(
0,

Δfj
ε∗

)
;

3 Sj =
∑n

i=1 x2
ij + Laplace

(

0,
Δf2

j

ε∗

)

;

4 μ∗
j = Rj/n;

5 σ∗
jj =

Sj− R2
j

n
n−1

;

6 for j = 1 to m do
7 for i = 1 to n do
8 yi = Sample(N(μ∗

j , σ∗
jj)); /* Generate DP attribute values */

ci =

(
Rank(xij)

n

)

+ Laplace
(
0, 1

nε∗
)
; /* Convert the rank of the

original attribute value to real and DP-perturb it */

9 for i = 1 to n do /* Replace original attribute values by DP

attribute values with DP-perturbed ranks */

10 x∗
ij = y

[Rank(ci)]
, where y[k] stands for the value in {y1, . . . , yn} with

rank k.

The following holds.

Proposition 1. If the number of attributes is m is more than 3, for a given
privacy budget ε the method of Algorithm 2 perturbs means and variances less
than the method of Algorithm 1.
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Proof. In both algorithms, the perturbations of means and variances are directly
proportional to the perturbations used to obtain Rj and Sj . On the other hand,
the latter perturbations are inversely proportional to ε∗. In Algorithm 1 we have
ε∗ = ε/(2m + m(m − 1)/2), whereas in Algorithm 2 we have ε∗ = ε/3m. Now
(2m + m(m − 1)/2) > 3m if and only if m > 3.

Note that Proposition 1 does not necessarily imply that for m > 3 the utility
of the output DP microdata is better in Algorithm 2 than in Algorithm 1, because
the ways in which perturbed means and variances are used in both algorithms
differ.

4 Empirical Work

We implemented the two proposed methods and we measured the analytical
utility and the confidentiality they provide. Note that, although DP is a privacy
model specifying an ex ante privacy condition with the ε budget, absolute unno-
ticeability of any particular record only holds when ε = 0. For any other value of
ε it makes sense to measure how protected against disclosure are the data, that
is, what is the confidentiality level being achieved.

Further, to compare the two proposed methods against the state of the art,
we included in the comparison the microaggregation-based DP microdata gen-
eration method [11].

4.1 Utility Metrics

We considered two metrics for generic analytical utility, which do not require
assumptions on specific data uses.

The first one is the sum of squared errors SSE, defined as the sum of squares
of attribute distances between records in the original data set and their versions
in the DP data set. That is,

SSE =
n∑

i=1

m∑

j=1

(xij − x∗
ij)

2. (1)

We took the squared Euclidean distance between xij and x∗
ij because our in

experiments all attributes were numerical. For a version of SSE that works also
with categorical data, see [11]. On the other hand, SSE needs to know which
DP attribute value x∗

ij corresponds to each original attribute value xij . For that
reason, SSE cannot be used to measure the utility of Method 1, because in that
method the DP data are synthetic, which means that no correspondence can be
established between original attribute values and DP attribute values.

The second utility metric is the one proposed in [2]:

UM(X,Y) =

⎧
⎨

⎩

1 if λ̂X
j = λ̂

Y |X
j = 1/m for j = 1, . . . , m;

1 − min
(

1,
∑m

j=1(λ̂
X
j −λ̂

Y |X
j )2

∑m
j=1(λ̂

X
j −1/m)2

)
otherwise.

(2)
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In Expression (2), X is the original microdata set, Y is the DP microdata set,
λ̂X

j are the eigenvalues of the covariance matrix CXX of X scaled so that they

add to 1, and λ̂
Y |X
j are scaled versions of

λ
Y |X
j = (vX

j )TCY Y vX
j , j = 1, . . . , m,

where CY Y is the covariance matrix of Y and vX
j is the j-th eigenvector of

CXX .
The rationale of UM is as follows. Each eigenvalue λ̂X

j represents the pro-
portion of the variance of the attributes in X explained by the corresponding
eigenvector vX

j . On the other hand each λ
Y |X
j represents the proportion of the

variance of the attributes in Y explained by vX
j . Then we have:

– The highest level of utility (UM(X,Y) = 1) occurs when λ̂X
j = λ̂

Y |X
j for

j = 1, . . . ,m, which occurs when CXX = CY Y .
– The lowest level of utility (UM(X,Y) = 0) occurs if λ̂X

j and λ̂
Y |X
j differ at

least as much as λ̂X
j and the eigenvalues of an uncorrelated data set (which

are 1/m).

Note that an advantage of UM over SSE is that the former also applies for
synthetic data, and hence for Method 1. However, both metrics view utility as the
preservation of variability, more precisely as the preservation of the correlation
structure of the original data set.

4.2 Confidentiality Metrics

We used four confidentiality metrics. First, the share of records in the origi-
nal data set that can be correctly matched from the DP data set, that is, the
proportion of correct record linkages

RL =

∑
xi∈X Pr(x∗

i )
n

, (3)

where Pr(x∗
i ) is the correct record linkage probability for the i-th DP record x∗

i .
If the original record xi from which x∗

i originates is not at minimum distance
from x∗

i , then Pr(x∗
i ) = 0; if xi is at minimum distance, then Pr(x∗

i ) = 1/Mi,
where Mi is the number of original records at minimum distance from x∗

i .
The three other confidentiality metrics CM1, CM2 and CM3 are those pro-

posed in [2], based on canonical correlations. We have:

CM1(X,Y) = 1 − ρ21, (4)

where ρ21 is the largest canonical correlation between the ranks of attributes in
X and Y. The rationale is that:

– Top confidentiality (CM1(X,Y) = 1) is reached when the ranks of the
attributes in X are independent of the ranks of attributes in Y, in which
case anonymization can be viewed as a random permutation.
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– Zero confidentiality (CM1(X,Y) = 0) is achieved then the ranks are the
same for at least one original attribute Xj and one DP attribute Xj . Note
that this notion of confidentiality is quite strict: leaving a single attribute
unprotected brings the confidentiality metric down to zero.

The next confidentiality metric is similar CM1 but it considers all canonical
correlations:

CM2(X,Y) =
m∏

i=1

(1 − ρ2i )
[
= e−I(X;Y)

]
. (5)

The second equality between brackets in Expression (5) can only be guaranteed
if the collated data sets (X,Y) follow an elliptically symmetrical distribution (a
generalization of the multivariate Gaussian), in which case Expression (5) can
be rewritten in terms of the mutual information I(X;Y) between the original
and the DP data sets.

Regardless of the distributional assumptions, CM2(X,Y) can be computed
from the canonical correlations and the following holds:

– Top confidentiality CM2(X,Y) = 1 is reached when the anonymized data
set and the original data sets tell nothing about each other, which is the same
as saying that mutual information between them is I(X;Y) = 0.

– Zero confidentiality CM2(X,Y) = 0 occurs if at least one of the canonical
correlations is 1. This occurs if at least one original attribute is disclosed
when releasing Y. Since ρ1 is the largest correlation, this means that we have
CM2(X,Y) = 0 if and only if ρ1 = 1, in which case we also have that the
metric of Expression (4) is CM1(X,Y) = 0.

Note that RL, CM1 and CM2 cannot be applied to the DP synthetic data
produced by Method 1, because the three metrics need to know the mapping
between original and DP records. The last metric CM3 that we use is mapping-
free and is intended for synthetic data (yet it should not be used when the
mapping between original and DP records is known). Specifically, CM3 is derived
from CM2 as follows:

CM3(X,Y) = min
1≤j≤m

CM2(X−j ,Y−j). (6)

where X−j , resp. Y−j , is obtained from X, resp. Y, by sorting X, resp. Y, by
its j-th attribute and suppressing the values of this attribute in the sorted data
set.

The common principle of RL, CM1, CM2 and CM3 is to view confidentiality
as permutation. The farther the anonymized values from the original values in
value (for RL) or in rank (for the other metrics), the higher the confidentiality.

4.3 Results for Data Sets with Two Attributes

We considered five data sets with two numerical attributes X1, X2 and 10,000
records. In each data set, X1 was drawn from a N(50, 10) distribution and X2
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was also drawn from a N(50, 10) distribution but in such a way that the expected
correlation between X1 and X2 was 0.5.

For each data set, we ran the microaggregation-based DP microdata gen-
eration method of [11] with ε = 1 (higher values are not recommended in [5])
and microaggregation group sizes k = 250, 500, 1000, 2000 and 3000. Since this
method is not synthetic, for each resulting DP microdata set we computed util-
ity metrics SSE and UM , and confidentiality metrics RL, CM1 and CM2. In
Table 1 we report the values of those metrics for each value k averaged over the
five data sets.

We then ran Method 1 for each data set with ε = 1. Since it is a synthetic
method, we computed utility metric UM and confidentiality metric CM3. In
Table 1 we display those metrics averaged over the five data sets.

Finally, we ran Method 2 for each data set with ε = 1. Since this method is
not synthetic, we computed the same metrics as for the microaggregation-based
method. Table 1 reports the averages for the five data sets.

Table 1. Empirical comparison of microaggregation-based DP generation, Method 1
and Method 2. In all cases ε = 1 and all results are averages over five original data sets
with the same distribution. “Micro*” denotes microaggregation-based DP microdata
generation with k = ∗.

SSE UM RL CM1 CM2 CM3

Micro250 26833.22 0.647230517 0.00028 0.639798854 0.57703286 N/A

Micro500 3446.60 0.972413957 0.0008 0.226067842 0.112192366 N/A

Micro1000 2160.91 0.984149182 0.00096 0.164139854 0.057491616 N/A

Micro2000 2855.62 0.959011191 0.0005 0.214820038 0.10679245 N/A

Micro3000 3980.19 0.502650927 0.0003 0.197760886 0.197698071 N/A

Method1 N/A 0.992537652 N/A N/A N/A 0,935883394

Method2 49.74 0.981339047 0.1212 0.000492087 7.43603E-07 N/A

One thing that stands out in Table 1 is that utility metrics SSE and UM
are consistent with each other. Higher values of SSE translate into lower values
of UM , meaning less utility. Also, lower values of SSE result in higher values
for the UM , meaning more utility. Thus, they capture the same utility notion
and it is enough for us to consider one utility metric in what follows. We choose
UM because it can be computed both for non-synthetic and synthetic data.

In terms of UM , we see in Table 1 that Method 1 achieves the highest utility,
while offering a confidentiality metric CM3 that is also high, being close to 1.
Thus, Method 1 seems the best performer.

Method 2 also offers high utility UM , but extremely low confidentiality in
terms of CM1 and CM2. The DP data it produces turn out to be very similar
to the original data.

The microaggregation-based DP microdata generation method can be seen
to offer intermediate performance regarding the trade-off between utility and
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confidentiality. Whatever the choice of k, it achieves better confidentiality met-
rics CM1 and CM2 than Method 2, but its utility UM only beats Method 2
for k = 1000. Thus, microaggregation-based DP generation for k = 1000 is the
second best performer.

The microaggregation-based DP method offers poorer utility for extreme
values of k. The explanation is that for smaller k (250, 500) the prior microag-
gregation step does not reduce the sensitivity of the data as much as k = 1000
and hence still needs sustantial Laplace noise to attain DP with ε = 1. On the
other hand, for large k = 2000, 3000, averaging over such large groups causes a
lot of information loss.

On the other hand, we can see that setting the same ε = 1 for all methods
can lead to very different confidentiality and utility levels.

4.4 Results for Data Sets with 10 Attributes

To check what is said in Note 1 and Proposition 1, we also tested Methods 1 and
2 for data sets with m = 10 attributes. We generated five data sets with normally
distributed attributes and we took ε = 1 as above. We kept running Method 1
for the five data sets until we got positive definite DP covariance matrices. The
results were:

– As expected, the average utility achieved by Method 1 was extremely low,
namely UM = 0.00733781. In contrast, the average confidentiality was high,
CM3 = 0.99752121, even higher than for the two-attribute data sets.

– Method 2 yielded an extremely high average utility UM = 0.99999618.
In contrast, confidentiality was as small as in the two-attribute case, with
CM1 = 0.00076754 and CM2 =2.3331E-13.

5 Conclusions

We have compared three methods for generating DP microdata, two of them new.
The three of them leverage different principles to generate DP microdata with
ε = 1. However, the confidentiality and utility levels they achieve for that value
of ε are extremely different. Hence, setting a certain value of ε does not guarantee
a certain level of confidentiality, let alone utility. The actual confidentiality and
utility offered depend on the specific method used to enforce ε-DP. Our results
complement those obtained in [8] for ε-DP synthetic data. In that paper, DP-
synthetic data were generated with a single method but using several values of
ε; it turned out that ε determined neither the protection against disclosure nor
the utility of the synthetic data.

In our experiments, the methods that result in higher confidentiality seem to
be those that operate a stronger permutation in terms of the permutation model
of SDC [1]. Specifically Method 1, being synthetic, can be viewed as a random
permutation of ranks, whereas Method 2 yields ranks for masked data that are
very close to the ones of original data; this would explain the high confidentiality
offered by Method 1 and the low confidentiality of Method 2.
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In conclusion, the fact that parameter ε does not give any specific confiden-
tiality guarantee for microdata releases suggests that DP should not be used to
anonymize microdata. This adds to the arguments given in [3] in that sense.
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Abstract. The protection of private and sensitive data is an impor-
tant problem of increasing interest due to the vast amount of personal
data collected. Differential Privacy is arguably the most dominant app-
roach to address privacy protection, and is currently implemented in
both industry and government. In a decentralized paradigm, the sensitive
information belonging to each individual will be locally transformed by
a known privacy-maintaining mechanism Q. The objective of differential
privacy is to allow an analyst to recover the distribution of the raw data,
or some functionals of it, while only having access to the transformed
data. In this work, we propose a Bayesian nonparametric methodology to
perform inference on the distribution of the sensitive data, reformulating
the differentially private estimation problem as a latent variable Dirichlet
Process mixture model. This methodology has the advantage that it can
be applied to any mechanism Q and works as a “black box” procedure,
being able to estimate the distribution and functionals thereof using the
same MCMC draws and with very little tuning. Also, being a fully non-
parametric procedure, it requires very little assumptions on the distribu-
tion of the raw data. For the most popular mechanisms Q, like Laplace
and Gaussian, we describe efficient specialized MCMC algorithms and
provide theoretical guarantees. Experiments on both synthetic and real
dataset show a good performance of the proposed method.

Keywords: Differential Privacy · Bayesian Nonparametrics ·
Exponential mechanism · Laplace noise · Dirichlet Process mixture
model · Latent variables

1 Introduction

Recent years have been characterized by a remarkable rise in the size and quality
of data collected online. As the volume of personal data held by organizations
increases, the problem of preserving the privacy of individuals present in the
data set becomes more and more important. In the computer science literature,
Differential Privacy is currently the most dominant approach to privacy protec-
tion and has already been implemented in their protocols by many IT companies
[7,8,17].
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In the non-interactive model, the data curator holds some sensitive data
X1:n = {X1 . . . , Xn} about n individuals, which is of interest to end users in
order to conduct statistical analysis with it and infer either its distribution P or
some functionals of it, e.g. the population mean or median. Under the framework
of differential privacy, the data curator applies a mechanism Q to the sensitive
data set X1:n that returns a sanitized data set Z1:n = {Z1, . . . , Zn} to be released
to the public. The end users have access only to Z1:n, while the raw data X1:n is
kept secret by the curator. Differential Privacy is a property of the mechanism Q
that guarantees that the presence or absence of a specific individual in the raw
data does not remarkably affect the output database Z1:n. As a consequence,
a malicious intruder who has access only to the transformed data is unlikely
to guess correctly whether a specific individual is in the initial data set or not,
and therefore her privacy will be preserved. Different mechanisms have been
proposed in the literature for many statistical problems, e.g. in hypothesis testing
[10,11,23], frequency tables [2,6,9,21] and network modeling [3,4,14,15]. The
most applied mechanism Q is arguably addition of noise to the raw data, with
Laplace or Gaussian noise being the most popular choices.

Inherent in any choice of the mechanism Q, there is a trade-off between pri-
vacy guarantees and statistical utility of the released data set. Specifically, as
more noise is added to X1:n, the achieved level of privacy will be higher, but
so will the deterioration of the statistical utility of the released data set. In an
interesting recent paper [5], the authors discuss minimax optimality within a
framework of differential privacy. For many statistical tasks, optimal choices of
the mechanism Q and estimators T (Z1:n) that attain optimal minimax conver-
gence rates under privacy constraints are presented. However, the choice of the
optimal pair (Q,T (Z1:n)) is strongly dependent on the particular task of interest,
i.e. the particular functional θ(P ) that the end user is interested in estimating.
For two different tasks θ1(P ) and θ2(P ), e.g. mean and median estimation of
P , the two optimal pairs can be completely different. Moreover, the choice of Q
and T occurs separately, with Q being chosen by the curator, while T by the
end users. In the non-interactive setting, where the sanitized data will be used
by multiple end users for different tasks, these facts lead to important practi-
cal challenges: 1) the curator cannot choose a Q that is optimal for all possible
tasks of interests; 2) the end user cannot directly apply the prescribed optimal
T , unless the curator applied the mechanism Q targeted for her specific task. A
further problem is that if the end user tries to apply some naive natural estima-
tor T , without properly accounting for the transformation Q, her results could
be very misleading.

In this work, we solve this practical problem by proposing a “black box”
methodology to make inference on P or any functional θ(P ) of the distribution
of the raw data X1:n, when we have access only to the sanitized data Z1:n. In
order to do so, we apply tools from Bayesian Nonparametrics and reformulate
the problem as a latent variable mixture model, where the observed component
is Z1:n, the latent one is X1:n and we are interested in estimating the mixing
measure P , i.e. the distribution of X1:n. We adapt known Markov Chain Monte
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Carlo (MCMC) algorithms for the Dirichlet Process Mixture (DPM) Model to
our setting of differentially private data and show, both theoretically and empiri-
cally, how the proposed strategy is able to recover P . The proposed methodology
has the following advantages: 1) it is fully nonparametric and it does not require
any assumption on the distribution P of the raw data X1:n; 2) it provides esti-
mates of P , functionals of it and also credible intervals or variance estimates,
all at once, using the same MCMC draws; 3) it is a black box procedure and
does not require a careful analytic study of the problem and can be applied
for every Q; 4) for the general case of Q in the exponential mechanism, it is
shown that the proposed methodology satisfies theoretical guarantees for a large
class of functions, including the important cases of Laplace and Gaussian noise
addition.

This paper is organized as follows. Section 2 briefly reviews the literature on
Differential Privacy and Bayesian Nonparametrics and discusses related work.
Section 3 introduces the proposed approach based on Differential Privacy and
Dirichlet Process Mixtures. In Sect. 3.1, we discuss the MCMC algorithm, while
in Sect. 3.2 present the theoretical results for the proposed methodology. Finally,
in Sect. 4 we present the empirical performances of the algorithm on one syn-
thetic data set and two real data examples. The Appendix contains proofs and
a specialized algorithm for Laplace noise.

2 Literature Review and Related Work

2.1 Differential Privacy

The notion of Differential Privacy was introduced in the computer science lit-
erature in [6] as a mathematical formalization of the idea that the presence
or absence of an individual in the raw data should have a limited impact
on the transformed data, in order for the latter to be considered privatized.
Specifically, let X1:n = {X1 . . . , Xn} be a sample of observations, taking val-
ues in a state space X n ⊆ R

n, that is transformed into a sanitized data set
Z1:n = {Z1, . . . , Zn}, with Zn ⊆ R

n endowed with a sigma algebra σ(Zn),
through a mechanism Q, i.e. a conditional distribution of Z1:n given X1:n. Then
Differential Privacy is a property of Q that can be formalized as follows:

Definition 1 ([6]). The mechanism Q satisfies α-Differential Privacy if

sup
S∈σ(Zn)

Q(Z1:n ∈ S|X1:n)
Q(Z1:n ∈ S|X ′

1:n)
≤ exp(α) (1)

for all X1:n,X ′
1:n ∈ X n s.t. H(X1:n,X ′

1:n) = 1, where H denotes the Hamming
distance, H(X1:n,X ′

1:n) =
∑n

i=1 I(Xi �= X ′
i) and I is the indicator function of

the event inside brackets.

For small values of α the right hand side of (1) is approximately 1. Therefore,
if Q satisfies Differential Privacy, (1) guarantees that the output database Z1:n
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has basically the same probability of having been generated from either one
of two neighboring databases X1:n, X ′

1:n, i.e. databases differing in only one
entry. The two most common choices for the mechanism Q are addition of either
Laplace or Gaussian noise. These two mechanisms are special cases of the general
Exponential Mechanism, which will be reviewed in Subsect. 3.2, where theoretical
guarantees for the proposed methodology will be provided for a large class of
mechanisms, including both Laplace and Gaussian noise.

Differential Privacy has been studied in a wide range of problems, differing
among them in the way data is collected and/or released to the end user. The
two most important classifications are between Global vs Local privacy, and
Interactive vs Non-Interactive models. In the Global (or Centralized) model of
privacy, each individual sends her data to the data curator who privatizes the
entire data set centrally. Alternatively, in the Local (or Decentralized) model,
each user privatizes her own data before sending it to the data curator. In this
latter model, data also remains secret to the possibly untrusted curator. In the
Non-Interactive (or Off-line) model, the transformed data set Z1:n is released in
one spot and each end user has access to it to perform her statistical analysis.
In the Interactive (or On-line) model however, no data set is directly released
to the public, but each end user can ask queries f about X1:n to the data holder
who will reply with a noisy version of the true answer f(X1:n). Even though all
combinations of these classifications are of interest and have been studied in the
literature, in our work we will focus on the Local Non-Interactive case, which is
used in a large variety of applications.

2.2 Dirichlet Process Mixture Models

In Bayesian Nonparametrics, the most common approach to model observations
from a continuous density is by convolving a Dirichlet Process with a known
kernel K, e.g. a Normal kernel with unknown mean and variance. The result-
ing model is called Dirichlet Process Mixture (DPM) Model [16] (see also, [13],
Chap. 5), and is formulated as follows

Xi|P ∼
∫

K(Xi, θ)P (dθ) i = 1, . . . , n

P ∼ DP (ε, P0).

There is also an equivalent representation in terms of latent variables mixture
models

Xi|θi ∼ K(Xi, θi) i = 1, . . . , n

θi|P iid∼ P i = 1, . . . , n

P ∼ DP (ε, P0).

The DPM model has been used in a variety of applications in statistics and
machine learning both for density estimation and clustering. In density esti-
mation, we are interested in estimating the density of observations through a



36 F. Ayed et al.

mixture model, while in clustering we are interested in grouping observations
into groups having similar distributions. For the latter tasks, the discreteness
property of the Dirichlet Process turns out to be very convenient, since, being
P almost surely discrete, we are going to observe ties in the latent variables θi.
Two observations Xi and Xj having the same value of the latent variables θi and
θj will be assigned to the same cluster and have the same distribution. There are
many computational algorithms to perform inference in DPM models, including
MCMC, variational and Newton recursion algorithms, see Chapter 5 of [13].

3 Methodology

The main idea of this work is to reformulate the statistical problem of estimating
the distribution P of the raw data X1:n, having access only to the sanitized data
Z1:n obtained through a Differential Private mechanism Q, as a latent variables
problem. The observed component is Z1:n, the latent one X1:n, Q is the likelihood
of Zi given Xi and the interest is in estimating the mixing measure P , which
is endowed with a Dirichlet Process prior. Therefore, we are considering the
following DPM model,

Zi|Xi
ind∼ Q(Zi|Xi) i = 1, . . . , n

Xi|P iid∼ P i = 1, . . . , n

P ∼ DP (ε, P0) (2)

The model can be easily extended to the Global Privacy Model by requiring
a joint mechanism Q(Z1:n|X1:n), but, for easiness of presentation, in this work
we will focus on the Local one, in which Q factorizes into the product of the
conditionals of Zi given Xi. In Subsect. 3.1, we describe computational algorithm
to make inference on P , while in Subsect. 3.2, we provide theoretical guarantees
on these estimates when Q belongs to the Exponential Mechanism for a large
class of loss functions.

3.1 Computational Algorithms

The posterior distribution of DPM is a Mixture of Dirichlet Processes [1]. Closed
form formulas for posterior quantities of interest can be derived analytically ([13],
Proposition 5.2), but they involve summation over a large combinatorial number
of terms, which becomes computationally prohibitive for any reasonable sample
size. However, many computational algorithms have been proposed to solve this
problem, see [13], Chapter 5. An estimate of the posterior mean of P ,

E(P |Z1:n) =
∫

X n

E(P |X1:n)P(X1:n|Z1:n)dX1:n.
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can be obtained following this two step procedure:

1. Sample M vectors X
(1)
1:n, ...,X

(M)
1:n from P(X1:n|Z1:n) through Algorithm 2

below;
2. Compute the empirical mean approximation

∫

X n

E(P |X1:n)P(X1:n|Z1:n)dX1:n ≈ 1
M

M∑

m=1

E(P |X(m)
1:n ) = P̂ (Z1:n)

Using the posterior properties of the Dirichlet Process for E(P |X(m)
1:n ), [13]

Chapter 4, the estimator in 2. Can be more conveniently expressed as

P̂ (Z1:n) =
ε

n + ε
P0 +

n

M(n + ε)

M∑

m=1

n∑

i=1

δ
X

(m)
i

.

Step 1 can be carried over by approximating P(X1:n|Z1:n) through a general
MCMC algorithm for DPM models, ([19] Algorithm 8), detailed in Algorithm
2. Because X1:n are sampled from the discrete distribution P , they will dis-
play ties with positive probability. The algorithm resamples the distinct values
(X∗

1 , . . . , X∗
Kn

) in X1:n and the classification variables (c1, . . . , cn) assigning each
data point to one of these Kn distinct values separately. The parameter m is a
free parameter that in our experiments has been set equal to 10, following [19].
If the hyperparameters of the models are endowed with hyperpriors, updates
of ε and the parameters of P0 are included in Algorithm 2 at the end of each
iteration according to standard updating mechanisms, see [19] Section 7 or [13]
Chapter 5.

In our experiments, we have observed that a good initialization of the chain
can improve considerably the mixing of the Markov chain. As initialization of the
algorithm, we suggest to use a generalization of k-means with a predetermined
number of clusters S. Specifically, let S be a given number of clusters, let X∗

1:S

be the cluster centroids and c1:n the cluster allocations. Initialize Algorithm2
using the following Algorithm1.

Algorithm 1: Initialization of Algorithm 2
1 for j in 1:iterations do
2 for i in 1:n do
3 Update ci = argmax

1≤k≤S
Q(Zi|X∗

k)

4 for k in 1:S do
5 Denote Ck = {Zi | ci = k}
6 Update X∗

k = EP0(X|Ck).

Algorithm 2 can be applied to any mechanism Q. When we are updating
X∗

1:Kn
, any update that leaves the distribution P(X∗

k |Ck) invariant can be used.
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In general, this can be achieved by introducing a Metropolis-Hastings step. How-
ever, when possible, it is strongly recommended to update X∗

1:Kn
using directly

a sample from P(X∗
k |Ck). This will improve the mixing of the Markov chain and

produce a more efficient MCMC algorithm. In AppendixA, for the special case of
Laplace noise addition, we derive the exact posterior distribution P(X∗

k |Ck) that
can be expressed in terms of the base measure P0 and can be simulated from in
O(nk) operations, with nk being the size of cluster k. This posterior distribution
can be used in combination with Algorithm 2 to obtain more efficient a MCMC
scheme for Laplace noise. Since the number of clusters of the DP scales as log n,
each iteration of the proposed algorithm scales in O(n log n) for the Laplace and
Gaussian noises for common priors P0.

Algorithm 2: General MCMC scheme [19]
1 for t in 1:number of iterations do
2 for i in 1:n do
3 Let K− be the number of distinct cj for j �= i, labeled {1, . . . , K−}
4 Let h = K− + m.
5 if ∃j �= i such that ci = cj then
6 Draw X∗

K−+1, . . . , X
∗
h indep from P0

7 else
8 Set ci = K− + 1
9 Draw X∗

K−+2, . . . , X
∗
h indep from P0

10 Draw new value ci from

P(ci = c | c−i, Z1:n, X∗
1:Kn

)

∝
⎧
⎨

⎩

n−i,cQ(Zi, X
∗
c ) for 1 ≤ c ≤ K−

ε
m

Q(Zi, X
∗
c ) for K− < c ≤ h

where n−i,c is the number of cj = c for j �= i

11 for k in 1:Kn do
12 Denote Ck = {Zi | ci = k}
13 Perform an update of X∗

k |Ck that leaves the distribution P(X∗
k |Ck)

invariant

3.2 Theoretical Guarantees

In this section, we will show that the proposed methodology is able to recover the
true distribution for a large class of mechanisms. Specifically, we will consider
the Exponential Mechanism proposed by [18] (see also [24] for a theoretical study
of the Exponential Mechanism).
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Definition 2 ([18]). Let L : X × Z → R+ be a loss function. The Local Expo-
nential Mechanism Q is defined as follows,

Q(Z1:n|X1:n) ∝ exp

(

−α

n∑

i=1

L(Xi, Zi)
2Δ

)

(3)

where Δ = sup
X �=X′∈X

sup
Z∈Z

|L(X,Z) − L(X ′, Z)|.

The most popular examples of Exponential Mechanisms are the following:

1. Laplace Mechanism: L(X,Z) = |X − Z|;
2. Gaussian Noise: L(X,Z) = (X − Z)2.

In Proposition 1, we will consider a larger class of loss functions, including
both Gaussian and Laplace noise, having the following form, for some function ρ

L(X,Z) = ρ(X − Z),

and, within this class, we prove that the proposed methodology is able to recover
the true distribution P∗ that generated the data X1:n, under the following mild
assumptions:

1. The modulus of the Fourier transform of exp(−αρ/Δ) is strictly positive;
2. X ⊂ supp(P0) ⊂ [a, b], where supp(P0) is the support of the base measure

P0.

Remark 1. The first assumption ensures that the resulting privacy mechanism
preserves enough information to be able to recover the true distribution (see
proof of Proposition 1 in Appendix B). In order to have Δ < +∞, which is
necessary for defining the Local Exponential Mechanism, it is common to sup-
pose that X ⊂ [a, b] (see [5]). For example this assumption is necessary for the
Laplace and Gaussian noises. Assumption 2 only ensures that the true distribu-
tion is in the Kullback-Leibler support of the Dirichlet Process Prior. This class
corresponds to Exponential mechanisms with additive noise. A level of privacy
α is then achieved with

Q(Z1:n|X1:n) ∝ exp

(

−α
n∑

i=1

ρ(Xi − Zi)
Δ

)

Proposition 1. Let P∗ the unknown true distribution of the unobserved sen-
sitive data X1:n. Then under the previous assumptions, E(P |Z1:n) will almost
surely converge to P∗ in Wasserstein distance, implying in particular convergence
of all moments.

In the case of Gaussian and Laplace kernels, results on rates of convergence
of the proposed estimator can be derived from results of [20] and [12]. More
specifically, logarithmic and polynomial rates can be derived for the Gaussian
and Laplace mechanisms respectively. These rates are however not sharp, and
obtaining better rates is still an open problem.
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Fig. 1. Xi ∼ Beta(2, 3) and Zi Laplace noise α = 1. From left to right: a) Raw vs
Privatized data; b) Estimated and True density of P∗, n = 10.000; c) Estimated and
True density of P∗, n = 50.000.

Table 1. Xi ∼ Beta(2, 3) and Zi Laplace noise α = 1. Posterior estimates of medP∗(X),
E(P∗), Var(P∗) for sample sizes n = 10.000, 25.000, 50.000.

Statistic n = 10.000 n = 25.000 n = 50.000 Raw data

Median 0.383 ± 0.011 0.382 ± 0.034 0.385 ± 0.016 0.386

Mean 0.402 ± 0.011 0.401 ± 0.007 0.399 ± 0.004 0.400

Variance 0.047 ± 0.009 0.043 ± 0.006 0.040 ± 0.003 0.040

4 Experiments

In this section, we will present experiments using one synthetic data set and two
real data sets of Body Mass Index and California Salaries. In the experiments,
we use a truncated Normal distribution as base measure P0.

4.1 Beta Distribution

In this set of simulations, we consider Xi
iid∼ Beta(2, 3) and Zi|Xi generated

using the Laplace mechanism with α = 1. Figure 1a) displays both raw and
noisy data, from which it is clear how the noisy data is much over-dispersed
compared to the original one. We are interested in recovering the distribution
of X1:n, its population mean, median and variance using the noisy data Z1:n

and the proposed methodology. From Fig. 1b-c), we can see that the posterior
approximations obtained through MCMC resemble quite accurately the true
distribution of the data. Also from Table 1, the estimated posterior median,
mean and variance follow very closely their corresponding true values, having
also very narrow and accurate credible intervals.

4.2 Body Mass Index Data-Set

The first data set analyzed collects the Body Mass Index of a random sample
of the approximately 6 million patient records from Medical Quality Improve-
ment Consortium (MQIC) database. These records have been stripped of any
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personal identification and are freely available at https://www.visualizing.org/
mqic-patient-data-100k-sample/. It is important in social and health studies
to estimate the proportions pob and puw of people who suffer of either obesity
(BMI > 45) or underweight (BMI < 16) conditions respectively. Statistical inter-
est therefore lies in estimating accurately the probability mass of the tails of the
distribution of the Body Mass Index. In this experiment, the privatized data
is obtained through a Gaussian mechanism with α = 0.5. This level of α = 0.5
guarantees a very strong level of privacy. This fact is evident in Fig. 2a), in which
the privatized data looks very over dispersed compared to the raw one. However,
from Fig. 2b-c), we can see how the posterior approximation of the true distri-
bution, obtained using the proposed Bayesian Nonparametric approach applied
to the noisy data, seems very accurate. Table 2 displays the estimated and true
values of mean, variance, median, pob and puw, including also the corresponding
credible intervals, obtained using different samples of the noisy data p = n/N .
The true values always fall inside the credible intervals, also when using only a
small fraction of the noisy data.

Fig. 2. Body Mass Index data-set, size N , Gaussian noise α = 0.5. From left to right: a)
Raw vs Privatized data; b) Estimated and True density of P∗, sample size n = 0.1 ∗N ;
c) Estimated and True density of P∗, n = N .

Table 2. Body Mass Index data-set. Guassian Mechanism, α = 0.5. Posterior estimates
and credible intervals P∗(X < 16%), P∗(X > 45%), medP∗(X), E(P∗), Var(P∗).

Statistic p = 0.1 p = 0.5 p = 1 Raw data

% underweight 10.1 ± 6.2% 6.5 ± 3.8% 4.9 ± 2.4% 4.4%

% morbidly obese 6.3 ± 3.6% 3.6 ± 1.9% 2.6 ± 1.4% 2.6%

Median 26.62 ± 1.26 26.62 ± 0.74 26.60 ± 0.92 26.50

Mean 27.58 ± 1.08 27.32 ± 0.36 27.31 ± 0.30 27.32

Variance 119.95 ± 60.04 74.36 ± 38.45 58.56 ± 18.36 59.08

https://www.visualizing.org/mqic-patient-data-100k-sample/
https://www.visualizing.org/mqic-patient-data-100k-sample/


42 F. Ayed et al.

4.3 California Workers Salary

As second real data experiment, we have analyzed the data-set of salaries of Cal-
ifornia workers already considered in [5]. In [5], it is discussed how problematic
it is to recover the population median when data are privatized using additive
Laplace noise. The authors derive a non-trivial specialized mechanism Q and
estimator T for median estimation. As discussed in our Introduction, a problem
is that, in the Non-interactive setting, the data curator cannot choose Q to tar-
get a specific task, because the released data-set will be used by different users
interested in different statistical tasks. In most of the applications, Q will often
consists in noise addition, so the specialized estimator T of [5] will not have the
same theoretical guarantees derived for a different Q. Instead, our methodology
works for every Q, and in this experiment we show how it can approximate well
the true distribution P . Figure 3 a) shows how dramatically Laplace mechanism
deteriorates the raw data in this example. However, in panel b) we can see that
the posterior approximation obtained with our methodology, using only the san-
itized data, approximates the true data distribution reasonably well. Table 3
also shows posterior summaries where it is shown that the true median, mean
and variance always fall within the posterior credible regions.

Fig. 3. California Salary data-set, size N , Gaussian noise α = 0.5. From left to right:
a) Raw vs Privatized data; b) Estimated and True density of P∗, sample size n = N .

Table 3. California Salary data-set. Laplace mechanism, α = 0.5. Posterior estimates
and credible intervals of medP∗(X), E(P∗), Var(P∗), computed with Dirichlet Process
Mixture (DPM) and sample estimators (naive). True values in column 4 (raw data).

Statistic DPM Naive Raw data

Median 24420 ± 2437 35912 26529

Mean 36364 ± 266 36720 36350

Variance 1.10e9 ± 5.45e7 1.51e9 1.19e9
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5 Conclusions

In this work, we have proposed the first Bayesian Nonparametric approach to
Differential Private data. The proposed methodology reformulates the problem
of learning the distribution of the raw data, which has been transformed using a
mechanism satisfying Differential Privacy, as a latent variable mixture models.
The proposed strategy is a “black box” procedure that can be applied to any
mechanism Q and does not require any deep analytic study of the problem.
Moreover, it is fully non-parametric and does not require any assumption on
P . We have described computational algorithms to learn the distribution of the
original data, and functionals of it, and provided theoretical guarantees in terms
of posterior consistency. Finally, the proposed methodology is shown to have
good empirical performance in simulated and real data experiments.

Appendix A: Algorithm for Laplace Mechanism

In this Section, we derive the posterior P(dX∗
k |Zj1:jnk

) in the case of Laplace
Mechanism. Together with Algorithm 2 in the main text, this posterior offers
an efficient MCMC algorithm to perform posterior estimation when the Laplace
mechanism has been applied to the original data. We remark that, even though
the posterior (4) might look complicated at first glance, it is actually just a
mixture distribution. For most choices of P0, it is very easy to compute the
weights of this mixture and sample from it. After the proof of Proposition A, we
will detail a specific example of (4) for P0 being Gaussian, which will be used
in the experiments. The parameters r and λα are chosen as in [5] so that the
Laplace Mechanism satisfies Differential Privacy.

Proposition A (Posterior with Laplace Mech.). Let r > 0 and Π[−r,r]

denote the projection operator on [−r, r], defined as Π[−r,r](x) = (x)min(|x|, r).
Let Zi|Xi ∼ Laplace(Π[−r,r](Xi), λα) i = 1, . . . , n and let Zj1 , . . . , Zjnk

denote
the nk observations currently assigned to cluster k, i.e. with cji

= k, assumed
w.l.o.g. to be ordered increasingly. Let also i− := min{i | Zji

≥ −r} (i− = m+1
if the set is empty) and i+ := max{i | Zji

≤ r} (i+ = 0 if the set is empty)
and Z̃i−−1 = −r, Z̃i++1 = r and for i ∈ [i−, i+], Z̃i = Zji

. Then, the posterior
distribution P(dX∗

k |Zj1:jnk
) is proportional to

∝IX∗
k<−r Ci−−1 e

2i−−nk−2
λα

rP0(dX∗
k) + IX∗

k≥−r Ci+ e− 2i+−nk
λα

rP0(dX∗
k)

+
i+∑

j=i−−1

IX∗
k∈[˜Zj , ˜Zj+1)

Cj e− 2j−nk
λα

X∗
k P0(dX∗

k)
(4)

where Cj = e

1
λα

(

j
∑

i=1

˜Zi−
n
∑

i=j+1

˜Zi

)

for j = {i− − 1, . . . , i+}.
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Normal Base Measure: Let P0(dX) = 1√
2πσ

e− (X−μ)2

2σ2 dX be a Normal dis-

tribution. Let us denote μ̃j = (n−2j)σ2

λα
+ μ. Then the posterior (4) specializes

into

P(X∗
k |Zj1:jnk

) ∝ IX∗
k<−r Ci−−1 e

2i−−nk−2
λα

r 1√
2πσ

e− (X∗
k−μ)2

2σ2

+
i+∑

j=i−−1

IX∗
k∈[˜Zj , ˜Zj+1)

Cj e
μ̃2

j −μ2

2σ2
1√
2πσ

e− (X∗
k−μ̃j)2

2σ2

+ IX∗
k≥r Ci+ e− 2i+−nk

λα
r 1√

2πσ
e− (X∗

k−μ)2

2σ2 ,

where we have used the fact that

2j − nk

λα
X∗

k +
(X∗

k − μ)2

2σ2
=

1
2σ2

(
X∗2

k − 2μ̃jX
∗
k + μ̃2

j

)
+

μ2 − μ̃2
j

2σ2
.

Let us denote, for j = i− − 2, .., i+ + 1,

Πi−−2 = Ci−−1 e
2i−−nk−2

λα
r

[

1 + erf
(−r − μ√

2σ

)]

Πj = Cje
μ̃2

j −μ2

2σ2 [erf

(
Z̃j+1 − μ̃j√

2σ

)

− erf

(
Z̃j − μ̃j√

2σ

)

] for j = i− − 1, .., i+;

Πi++1 = Ci+ e− 2i+−nk−2
λα

r

[

1 − erf
(

r − μ√
2σ

)]

where erf denotes the Gauss error function. Let (πj)j = (Πj/
∑

k Πk)j the nor-
malized weights. The posterior is then a mixture of truncated Normals with
disjoint supports. In order to sample for it, we can proceed in 2 steps. First, we
sample the a categorical variable J such that P(J = j) = πj . If J = i− − 2,
we sample X∗

k from a truncated Normal with mean and variance respectively μ
and σ2 restricted on (−∞,−r). If J = i+ + 1, we sample X∗

k from a truncated
Normal with same mean and variance on (r,∞). Otherwise, sample X∗

k from a
truncated Normal with mean and variance respectively μ̃j and σ2 restricted to
(Z̃j , Z̃j+1).

Appendix B: Proof of Proposition 1

Denote first MP (Zi) =
∫

Q(Zi|Xi)P (dXi), the marginal of the observations
when the sensitive data is distributed according to P . Therefore, denoting P∗
the true distribution of the sensitive data Xi, it comes that the true marginal
distribution of Zi is MP∗ . We will prove Proposition 2, following these steps,

1. Step 1: We show that

∀ε > 0, Π(h(MP ,MP ∗) > ε | Z1:n) → 0 a.s. (5)
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Here, Π denotes the Dirichlet process prior and Π(·|Z1:n) denotes the poste-
rior under the DPM model and h the Hellinger distance.

2. Step 2: We will show that for any δ > 0,

W2(P, P∗)2 ≤ Cδh(MP ,MP ∗)3/4 + Cδ2 (6)

where W2 is the L2 Wasserstein distance.
3. Conclusion: Using step 1 and 2, we will show that for any ε > 0,

Π(W1(P, P∗) > ε | Z1:n) → 0 a.s. (7)

Now, since W1 is convex and uniformly bounded on the space of probability
measures on X ⊂ [a, b], Theorem 6.8 of [13] gives that E(P |Z1:n) converges
almost surely to P∗ for the W1 metric. Since [a, b] is compact, this implies
that it also converges for any Wk for k ≥ 1.

To simplify the reading of the proof, in the following C will refer to constant
quantities (in particular they do not depend on n), that can change from line to
line.

Let us start with the easiest step, which is Eq. (7) of step 3. Let ε > 0, from
Eq. (6), we know that

Π(W2(P, P∗)2 ≤ ε | Z1:n) ≥ Π(Cδh(MP ,MP ∗)3/4 + Cδ2 ≤ ε | Z1:n).

Take δ such that Cδ2 ≤ ε/2. We can hence lower bound the left hand side of
previous inequality by Π(Cδh(MP ,MP ∗)3/4 ≤ ε/2 | Z1:n), which we know from
Eq. (5) converges almost surely to 1, proving convergence in W2, which implies
(7) since X ⊂ [a, b].

Now let us consider Step 1. The Dirichlet prior Π defines a prior on the
marginals of Zi, MP (also denoted Π). Since Zi

iid∼ MP∗ , Schwartz theorem
guarantees that (5) holds as long as MP∗ is in the Kullback-Leibler support of
Π. We will use Theorem 7.2 of [13] to prove it. Let

Q(Zi;X ) = inf
x∈X

Q(Zi|x).

Let Zi ∈ Z, for any Xi ∈ X , the differential privacy condition gives

Q(Zi|Xi) ≤ eαQ(Zi;X ) < +∞,

which corresponds to condition (A1) in the theorem of [13]. We only need to
prove that (A2) holds, i.e.

∫

log
(

MP∗(Zi)
Q(Zi;X )

)

MP∗(dZi) < +∞,

for any probability measure P on X . To see this we rewrite the expression in the
log as follows

MP∗(Zi)
Q(Zi;X )

=
∫

Q(Zi|Xi)
Q(Zi;X )

P (dXi) ≤ eα

∫

P (dXi) = eα



46 F. Ayed et al.

where last inequality is due to the differential privacy property of Q. This proves
Step 1.

It remains to prove Step 2. We remark first that since the noise is additive in
our setting, Q(Zi|Xi) = CQe−αρ(Xi−Zi)/Δ where CQ is a constant (independent
of Xi). Denote f : t �→ CQe−αρ(t)/Δ and L(f) its Fourier transform. Denote P ∗f
the convolution of P and f . We also recall that

L(MP ) = L(P ∗ f) = L(P )L(f)

This part follows the same strategy as the proof of Theorem 2 in [20], the main
difference being that here we are not interested in rates and hence need weaker
conditions on f . In a similar way, we define a symmetric density K on R whose
Fourier transform L(K) is continuous, bounded and with support included in
[−1, 1]. Let δ ∈ (0, 1) and Kδ(x) = 1

δ K(x/δ). Following the lines of the proof of
Theorem 2 in [20], we find that

W 2
2 (P, P∗) ≤ C(||P ∗ Kδ − P∗ ∗ Kδ||3/4

2 + δ2), (8)

where C is a constant (depending only on K), and that

||P ∗ Kδ − P∗ ∗ Kδ||2 ≤ 2dTV (MP ,MP∗)||gδ||2
where gδ is the inverse Fourier transform of L(Kδ)

L(f) and dTV the total variation
distance. Now, using Plancherel’s identity it comes that

||gδ ||22 ≤ C

∫ ∣∣∣∣L(Kδ)
2(t)

L(f)2(t)

∣∣∣∣
2

dt ≤ C

∫
[−1/δ,1/δ]

∣∣∣∣L(Kδ)
2(t)

L(f)2(t)

∣∣∣∣
2

dt ≤ C sup
[−1/δ,1/δ]

|L(f)|−2

where second line comes from the fact that the support of L(Kδ) is in [−1/δ, 1/δ],
and third line from the fact that it is bounded. Since |L(f)| is strictly positive
(from assumptions) and continuous, it comes that C2

δ = C sup
[−1/δ,1/δ]

|L(f)|−2 <

+∞. Using the bound dTV ≤ √
2 h, we can write

||P ∗ Kδ − P∗ ∗ Kδ||2 ≤ Cδh(MP ,MP∗), (9)

which together with (8) gives

W 2
2 (P, P∗) ≤ Cδh(MP ,MP ∗)3/4 + Cδ2

Convergence of moments follows directly from [22] (Theorems 6.7 and 6.8).
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14. Karwa, V., Slavković, A., et al.: Inference using noisy degrees: differentially private
β-model and synthetic graphs. Ann. Stat. 44(1), 87–112 (2016)

15. Kasiviswanathan, S.P., Nissim, K., Raskhodnikova, S., Smith, A.: Analyzing graphs
with node differential privacy. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
457–476. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-
2 26

16. Lo, A.Y.: On a class of Bayesian nonparametric estimates: I. Density estimates.
Ann. Stat. 12, 351–357 (1984)

17. Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., Vilhuber, L.: Privacy: the-
ory meets practice on the map. In: Proceedings of the 2008 IEEE 24th International
Conference on Data Engineering, pp. 277–286. IEEE Computer Society (2008)

18. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS
2007, pp. 94–103 (2007)

19. Neal, R.M.: Markov chain sampling methods for Dirichlet process mixture models.
J. Comput. Graph. Stat. 9(2), 249–265 (2000)

20. Nguyen, X., et al.: Convergence of latent mixing measures in finite and infinite
mixture models. Ann. Stat. 41(1), 370–400 (2013)

21. Rinott, Y., O’Keefe, C.M., Shlomo, N., Skinner, C., et al.: Confidentiality and
differential privacy in the dissemination of frequency tables. Stat. Sci. 33(3), 358–
385 (2018)

https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/978-3-642-15838-4_17
http://arxiv.org/abs/1709.07155
https://doi.org/10.1007/978-3-642-36594-2_26
https://doi.org/10.1007/978-3-642-36594-2_26


48 F. Ayed et al.

22. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-71050-9

23. Wang, Y., Lee, J., Kifer, D.: Revisiting differentially private hypothesis tests for
categorical data. arXiv preprint arXiv:1511.03376 (2015)

24. Wasserman, L., Zhou, S.: A statistical framework for differential privacy. J. Am.
Stat. Assoc. 105(489), 375–389 (2010)

https://doi.org/10.1007/978-3-540-71050-9
http://arxiv.org/abs/1511.03376


A Partitioned Recoding Scheme for
Privacy Preserving Data Publishing

Chris Clifton1, Eric J. Hanson2, Keith Merrill2, Shawn Merrill1(B),
and Amjad Zahraa1

1 Department of Computer Science and CERIAS Purdue University,
West Lafayette, IN 47907, USA

clifton@cs.purdue.edu,smerrill@purdue.edu
2 Department of Mathematics, Brandeis University, Waltham, MA 02453, USA

{ehanson4,merrill2}@brandeis.edu

Abstract. There is growing interest in Differential Privacy as a disclo-
sure limitation mechanism for statistical data. The increased attention
has brought to light a number of subtleties in the definition and mech-
anisms. We explore an interesting dichotomy in parallel composition,
where a subtle difference in the definition of a “neighboring database”
leads to significantly different results. We show that by “pre-partitioning”
the data randomly into disjoint subsets, then applying well-known anony-
mization schemes to those pieces, we can eliminate this dichotomy. This
provides potential operational benefits, with some interesting implica-
tions that give further insight into existing privacy schemes. We explore
the theoretical limits of the privacy impacts of pre-partitioning, in the
process illuminating some subtle distinctions in privacy definitions. We
also discuss the resulting utility, including empirical evaluation of the
impact on released privatized statistics.

1 Introduction

The main approaches to sanitizing data in the computer science literature have
been based on either generalization (i.e., replacing quasi-identifiers such as birth-
date with less specific data such as year of birth), or randomization (i.e., changing
the birthdate by some randomly chosen number of days). There are a variety
of privacy definitions based on these methods; many generalization definitions
build on k-anonymity [10,11] and many randomization definitions are based on
(ε-)differential privacy [1,2].

Often we work on subsets of the overall population as a result of sampling,
to address computational limitations, or for other reasons. This raises a question
- should privatization be applied to the entire data, or can it just be done on
the subset? This turns out to be a complex question, impacting the privacy
guarantees in subtle ways. In the setting of differential privacy, amplification [5]
can be used to reduce the noise needed to obtain differential privacy on a sample.
This only works, however, when it is unknown whether any given individual is
in the sample.
c© Springer Nature Switzerland AG 2020
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https://doi.org/10.1007/978-3-030-57521-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57521-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-57521-2_4


50 C. Clifton et al.

In the present paper we present a random partitioning approach that can
be applied with many existing schemes. In many cases, this provides the same
privacy guarantee as treating the entire dataset as a whole. We focus in particular
on differential privacy. In this setting, depending on how the partitioning is done,
there can be subtle differences in how privacy budgets from different partition
elements are combined under differential privacy. We explore and clarify these
issues, in particular emphasizing the difference between bounded and unbounded
neighboring databases. We also show that when the differentially private results
computed on each partition element are released to distinct, non-colluding data
users, the secrecy of which individuals fall into which partition elements allows
us to make use of amplification.

The layout of this paper is as follows: In Sect. 2, we give an overview of basic
definitions and necessary background. In Sect. 3, we formally define partitioned
preprocessing and show that under differential privacy, this provides equivalent
privacy to treating the dataset as a whole. We give both analytical and compu-
tational examples using counting and proportion queries in Sect. 4. Finally, we
extend the results of amplification to bounded differential privacy and discuss
their significance to partitioned preprocessing in Sect. 5.

2 Background and Definitions

We begin with the definition of differential privacy, which has emerged as a
baseline for formal privacy models.

Definition 1 (Differential Privacy). Let ε > 0 be a real number. Let A be
a randomized algorithm that takes as input a dataset D from some universe D
and assigns a value in Range(A). We say that A is an ε-differentially private
mechanism (or satisfies ε-DP) if for any two datasets D,D′ ∈ D with d(D,D′) =
1 (that is, there exist tuples t ∈ D and t′ ∈ D′ with (D \ {t}) ∪ {t′} = D′) and
for any (measurable) subset S ⊆ Range(A), we have

P (A(D) ∈ S) ≤ eε · P (A(D′) ∈ S).

We emphasize that we are taking as our definition the bounded version of
differential privacy. That is, the datasets D and D′ contain the same number
of entries. This can be thought of as changing an entry to move from D to D′.
The alternative is the unbounded version of differential privacy. In this case, the
dataset D is the same as the dataset D′ with one entry added, or vice versa.
This can be thought of as adding or deleting an entry to move from D to D′.
As we will see, this distinction leads to a subtle but important difference that is
narrowed by this paper.

Bounded differential privacy is well suited for dealing with a dataset where
the population size is known. An example would be a census where the total
count is released, but characteristics of individuals should be protected.

We now recall a feature of certain sanitization schemes that plays a central
role in what follows.
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Definition 2 (Parallel Composition). We say that a privacy guarantee P
satisfies parallel composition if, for all sanitization schemes A1, ...,An meeting
P and disjoint datasets D1, ...,Dn (i.e., any individual appearing in any of the
Di appears in only that dataset), the union

⋃n
i=1 Ai(Di) satisfies the privacy

guarantee P.

ε-differential privacy is known to satisfy parallel composition [2]:

Lemma 1. Let D1, . . . , Dn be disjoint datasets, that is, datasets that can be
assumed to have no individual in common. Let A satisfy ε-DP. Let D =
(D1, . . . , Dn), considered as a vector of datasets, and let D′ be any other vector
with ‖D − D′‖1 = 1. Then for any outcome S ⊆ Range(A)n,

P (A(D) ∈ S) ≤ eε · P (A(D′) ∈ S).

There is a subtle caveat to the above parallel composition statement for
differential privacy: The datasets must be given as disjoint datasets. Specifically,
a change to one of the datasets is not allowed to affect the others. This is not
quite the same as being able to partition a dataset along the input domain and
then apply the anonymization technique. In the latter case, the following shows
that the privacy parameter doubles.

Lemma 2. Let Si, i = 1, . . . , n be a partitioning of the input domain, and let
Mi, i = 1, ..., n satisfy ε-DP. Given a dataset D, the mechanism that returns the
sequence Mi(D ∩ Si) satisfies 2ε-DP.

It is again important to note that the reason for the 2ε term is that we
are using bounded differential privacy. This means two of the subdatasets Si

can change with a single change to the dataset D. For example, if we partition
based on whether each tuple represents a minor, an adult under 65, or a senior
citizen, we could impact two partition elements by replacing a minor with a senior
citizen. On the other hand, with unbounded differential privacy, the addition or
deletion of a tuple only impacts a single partition element, meaning ε-differential
privacy is satisfied as in Lemma 1. This key distinction lead to two of the earlier
papers on differential privacy giving two different parallel composition theorems
corresponding to Lemmas 1 [7] and 2 [2] due to different definitions of neighboring
databases.

3 Partitioned Preprocessing

The main contribution of this work is to establish a random partitioning scheme
(partitioned preprocessing) that leads to ε-differential privacy in the bounded
case (see Theorem 1). In other words, we show the result of Lemma 1 also
applies to bounded differential privacy when the distinction between partition
elements is not data-dependent.

We note that this is not the first work to look at partitioning in a mecha-
nism for differential privacy. Ebadi, Antignac, and Sands propose partitioning-
based approaches to deal with limitations in PINQ [3]. Their work assumes the
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unbounded case (where Lemma 1 applies); their approach could be a poten-
tial application of our work in the case where we cannot assume unbounded
sensitivity.

We start with our definition.

Definition 3 (Partitioned preprocessing). Let D be a dataset of size n.
Choose a random decomposition n = {ni} of n into positive integers from any
distribution, and choose a permutation π on n letters uniformly at random. Let
Dπ denote the dataset whose �-th entry is the π−1(�)-th entry of D. Denote by
Dπ,1 the first n1 elements of Dπ, by Dπ,2 the next n2 elements, and so on. We
refer to the collection of datasets {Dπ,i}i as the partitioned preprocessing of D.

We remark that this definition is consistent for any distribution on the decom-
positions of n. For example, the sizes of the partition elements, n, can be fixed
ahead of time. This corresponds to taking the distribution that selects n with
probability 1.

The idea behind partitioned preprocessing is to apply a mechanism (or set of
mechanisms) A that satisfies some privacy definition to each partition element
separately. When the definition satisfies parallel composition, it is often the case
that this preserves the original privacy guarantee.

3.1 Differential Privacy Under Partitioned Preprocessing

As we have seen in Lemma 2, under bounded differential privacy, naively par-
titioning a dataset and ensuring that the use of each partition element satisfies
ε-differential privacy only guarantees 2ε-differential privacy. We now show that
under partitioned preprocessing, if we satisfy ε-DP for each partition element,
we still satisfy ε-DP overall.

Theorem 1 (Partitioned Preprocessing for ε-DP). Let D be a data-set
with n elements and let j be a positive integer. Choose a decomposition n of
n with j elements based on any distribution and choose a permutation π on
n elements uniformly at random. Consider the partitioned preprocessing of the
dataset Dπ into j pieces {Dπ,i}1≤i≤j. For 1 ≤ i ≤ j, let Ai be a mechanism
which satisfies εi-DP. Apply Ai to the piece Dπ,i, and return the (ordered) list
of results. Then the scheme A returning (A1(Dπ,1), . . . ,Aj(Dπ,j)) satisfies ε-DP,
where ε := max

1≤i≤j
εi.

We note that when j = 1, this reduces to applying the mechanism A1 to the
dataset as a whole with (total) privacy budget ε1.

Proof. Let D = (x1, . . . , xn) be a dataset with n elements. For convenience,
set t := x1 and let t′ be another tuple that is not necessarily in D. Let D′ :=
(t′, x2, ..., xn). For a fixed positive integer j, we denote by Pn,j the set of all
decompositions of n into j pieces, i.e., all choices {n1, . . . , nj} satisfying that ni ∈
Z>0 and

∑j
i=1 ni = n. Let μ denote a probability measure on Pn,j , and represent

an arbitrary element by n. Let Sn denote the collection of all permutations on n
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elements, so that |Sn| = n!. Given n ∈ Pn,j and an index 1 ≤ � ≤ j, let S�
n denote

the set of permutations π which place t in the partition elements Dπ,�. We note
that S�

n is precisely the set of π ∈ Sn for which n1 + n2 + ... + n�−1 < π−1(1) ≤
n1 + n2 + ... + n�, that the collection {S�

n}1≤�≤n gives a disjoint decomposition
of Sn, and that |S�

n| = (n − 1)!n�.
Now fix intervals T1, . . . , Tj in R. Then

P (A(D) ∈ T1 × · · · × Tj) =
∑

n∈Pn,j

μ(n)
n!

∑

π∈Sn

P

(
j⋂

k=1

Ak(Dπ,k) ∈ Tk

)

=
∑

n∈Pn,j

μ(n)
n!

∑

π∈Sn

j∏

k=1

P (Ak(Dπ,k) ∈ Tk)

=
∑

n∈Pn,j

μ(n)
n!

j∑

�=1

∑

π∈S�
n

j∏

k=1

P (Ak(Dπ,k) ∈ Tk).

Now for a fixed n ∈ Pn,j , π ∈ S�
n, and a fixed index k, if k �= � we have

Dπ,k = D′
π,k, and hence

P (Ak(Dπ,k) ∈ Tk) = P (Ak(D′
π,k) ∈ Tk).

On the other hand, if k = �, by the definition of ε-differential privacy, we have

P (A�(Dπ,�) ∈ T�) ≤ eε�P (A�(D′
π,�) ∈ T�).

Therefore, returning to our formula,

P (A(D) ∈ T1 × · · · × Tj) ≤
∑

n∈Pn,j

μ(n)
n!

j∑

�=1

∑

π∈S�
n

eε�

j∏

k=1

P (Ak(D′
π,k) ∈ Tk)

≤ eε
∑

n∈Pn,j

μ(n)
n!

∑

π∈Sn

j∏

k=1

P (Ak(D′
π,k) ∈ Tk)

= eε
∑

n∈Pn,j

μ(n)
n!

∑

π∈Sn

P

(
j⋂

k=1

Ak(D′
π,k) ∈ Tk

)

= eεP (A(D′) ∈ T1 × · · · × Tj).

The crucial difference between the above theorem and Lemma 2 is that the
partitioning is done in a data-independent manner. This is what allows us to
preserve the privacy parameter ε instead getting 2ε. The key is that the parti-
tioning of the data is completely determined by the sizes of the partition elements
n and the permutation π used to order the elements; once we condition on those
choices, replacing t 	→ t′ therefore only affects a single partition element, and
hence introduces only a single factor of eε.
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We note that because the preprocessed extension of any differentially pri-
vate mechanism is again differentially private, all the usual results about post-
processing, sequential and parallel composition, and the like still hold for this
extension.

4 Detailed Examples

In this section, we provide analytical and computational examples of results
obtained from using partitioned preprocessing and differential privacy. This aims
to enlighten both the process of our method and the utility of the noisy query
results it generates.

For differentially private mechanisms, the notion of utility is frequently mea-
sured by the amount of noise the mechanism needs to add in order to satisfy
the definition. We will focus here on the variance of the noise, the idea being
that the smaller the variance the more faithful the statistics, and hence the more
useful for data analysis and data mining.

For specificity, fix a positive integer n. We recall that the (global) sensitivity
of a query f at size n is

Δnf := max
d(D,D′)=1

|f(D) − f(D′)|, |D| = |D′| = n.

In other words, Δnf represents the maximum impact that any one individual
can have on the answer to the query f between an arbitrary dataset of size n
and its neighbors. We note that for the purposes of computing sensitivities at
two different sizes, the set of possible tuples of the datasets are taken to be the
same, but the size of such allowed datasets has changed.

We will focus for the remainder of this section on the well-known Laplace
mechanism [2], a differentially private mechanism that returns for a query f
on a dataset D (with |D| = n) the answer f(D) plus some noise, drawn from a
Laplace (also called a double exponential) distribution with mean 0 and variance
2(Δnf/ε)2, where ε is our privacy budget.

We recall that in differential privacy, one needs to set the number of queries
allowed on the dataset ahead of time, since the amount of noise added to each
query must compensate for the total number of queries (otherwise by asking the
same query repeatedly, one could appeal to the (Weak) Law of Large Numbers
to obtain an accurate estimate of f(D), since the noise has mean 0 and would
“cancel out” in the long run). Traditionally, if we are going to allow k queries
on the dataset, we would add noise corresponding to ε/k.

One way to interpret our expansion is the following: Instead of immediately
splitting the privacy budget ε, we first prepartition (at random) the dataset
D into j pieces, Dπ,1, ...,Dπ,j , for some permutation π ∈ Sn and sizes n =
(n1, . . . , nj). We then ask some number of queries on each piece. The motivating
idea is that each piece of the dataset can be used to answer the queries of a
different data user. For example, suppose a data user wishes to know the answer
to k′ < k queries. Then on that data user’s piece of the data, we add only ε/k′

noise to the query responses.
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For example, suppose a data user has been ‘assigned’ the partion element
Dπ,i and that they wish to run only some query f . The mechanism then returns
f(Dπ,i) + Lap(Δni

f/ε) and the data user is free to use this information as
they wish. This includes sharing this information with other data users, as the
guarantee of Theorem 1 makes no assumption that a data user is given access
to only the results of the queries asked on a single partition element. When this
is the case, we can leverage amplification, as detailed in Sect. 5.

We observe that the noise added to satisfy differential privacy is smaller
under partitioned preprocessing than when all queries are answered on the entire
dataset. This is primarily because partitioning the data is effectively the same
as sampling, which introduces noise that may outweigh the benefit of having
larger ε. We will demonstrate this in Sect. 4.2. Another potential complication
comes from the need to account for query responses being computed on a smaller
sample than D. For example, counting queries will need to be scaled by a factor
of |D|/|Dπ,i|. This has the impact of scaling the sensitivity by the same factor.
Since we are using bounded differential privacy, the value of |D| and |D′| are the
same, and under partitioned processing, the size of the partitions |Dπ,i| do not
change. As a result, these values are sensitivity 0 and can be released without
compromising privacy.

The remainder of this section is aimed at understanding the variance (both
analytically and empirically) of proportion queries answered under partitioned
preprocessing.

4.1 Variance of Proportion Queries

Suppose that f is a proportion query, that is, f(D) is the proportion of records
that satisfy some attribute. Then we have Δmf = 1/m for all m. As in the pre-
vious section, we suppose |D| = n and we have partitioned D into Dπ,1, . . . , Dπ,j

with |Dπ,i| = ni. For simplicity, we assume we are running a total of j queries.
If we run f on the entire dataset D, we return f(D) + Lap(Δnf/(ε/j)),

whereas under partitioned preprocessing, we would run f on only Dπ,i, and
return f(Dπ,i) + Lap(Δni

f/ε). Since probabilistically we expect that f(Dπ,i) ≈
f(D), we compare the variances in each of these cases.

In the former, we have variance equal to 2(Δnf/(ε/j))2 = 2 j2

|D|2ε2 . In the
latter case, we recall that we have two independent sources of noise: that coming
from the partitioning (hypergeometric) and that coming from differential privacy
(Laplacian). The total variance is the sum of the two:

σ2 =
p(1 − p)
|Dπ,i|

|D| − |Dπ,i|
|D| − 1

+ 2(Δni
f/ε)2

=
p(1 − p)
|Dπ,i|

|D| − |Dπ,i|
|D| − 1

+
2

|Dπ,i|2ε2 ≈ p(1 − p)
|Dπ,i|

|D| − |Dπ,i|
|D| − 1

+
2j2

|D|2ε2 .
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We see that in this case, the variance under partitioned preprocessing is always
slightly larger than in the traditional scheme by an additional factor of

p(1 − p)
|Dπ,i|

|D| − |Dπ,i|
|D| − 1

≈ p(1 − p)
|Dπ,i|

(j − 1)|Dπ,i|
|D| − 1

=
p(1 − p)(j − 1)

|D| − 1
≤ j − 1

4(n − 1)
.

Even though the partitioned preprocessing has greater variance than the
original mechanism in the proportion case, we note that the noise coming from
partitioning (sampling) is identical for our method and the traditional method
of partitioning. Thus when a data curator has opted for the use of partitioning
and bounded differential privacy, using partitioned preprocessing rather than the
traditional method effectively doubles the privacy budget without changing the
noise coming from partitioning.

4.2 Empirical Demonstration

Perhaps an easier way to understand the utility of random partitioning is through
the impact on real queries. We give an example of a proportion query on a 1940
U.S. Census dataset released for disclosure avoidance tests [9]. This dataset con-
sists of over 100M individuals, and avoids the complex use methods (and conse-
quent difficulty of determining sensitivity) of many other public use microdata
sets.

We use a typical proportion query, the proportion of adult males to all males.
This is run on a 10% sample of the data, and then on an element of a partition
of that sample into 10 pieces (essentially a 1% sample) with a correspondingly
higher privacy budget (Fig. 1); the box plots show the distribution of results over
1000 runs.

The idea is that if we had other queries, they could be run on other partition
elements without affecting this query – but if run on the full dataset, they would
need shares of the total privacy budget to achieve the same privacy level, thus
requiring a smaller value of epsilon.

We see that as expected, for small values of ε, the impact of partitioning is
small relative to the noise added to protect privacy. The distribution of results for
the partitioned data and the full 10% sample is basically the same for ε ≤ 0.001.
(Note that even at ε = 0.0005, the majority of the time the error is less than
0.5%.) For larger values of ε, little noise is required for differential privacy, and
the sampling error dominates – but even so, at a 90% confidence interval, the
error is well under 0.5% for the partitioned approach.

5 Amplification

We now give an overview of the amplification technique of [5] and discuss its
relationship with partitioned preprocessing. We prove a version of amplification
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Fig. 1. Distribution of query results with and without differential privacy on a 10%
sample database (left) vs. partition of the 10% sample into 10 pieces with correspond-
ingly higher budget (right): Proportion of Adult Males to All Males in the 1940 Census.
The outer/left box at each value of ε represents the result with differential privacy and
the inner/right box at each value of ε represents the result without differential privacy
(sampling error only).

for bounded differential privacy; the original paper is for unbounded differential
privacy and the proof does not easily generalize.

The idea behind amplification is that sampling with known probability before
answering queries greatly increases the privacy budget for queries answered
on the sample. More precisely, we have the following, which we prove in the
appendix.

Theorem 2 (Amplification for bounded ε-DP). Let A satisfy ε-DP. Let D
be a dataset with |D| = n and choose an integer n′ < n. We denote β = n′/n.
Choose a subdataset D′ ⊂ D with |D′| = n′ uniformly at random. Then the
mechanism which returns A(D′) satisfies ε′-DP, where

ε′ = ln
(

eεβ + 1 − β

1 − β

)

.

Our statement differs from that in [5] by the factor of 1 − β in the denom-
inator, which comes from our use of bounded differential privacy. It also adds
the assumption that the size n′ of the subdataset is fixed for a given β and
n, which will be subtly used in the proof. Moreover, it is possible that ε′ > ε,
in which case the mechanism still satisfies the original ε-DP guarantee. Table 1
shows some examples of this as well as examples where amplification significantly
increases the privacy budget.
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Table 1. Examples of maximum values of β for amplification to provide savings and
values of ε′ when β = 1/10 for various values of ε.

ε .1 .5 1 2 5 10

max. β for ε′ < ε .087 .282 .387 .464 .498 .499

ε′ at β = 1/10 N/A .17 .26 .60 2.86 7.80

As an immediate consequence of Theorem 2, we have the following.

Corollary 1. Let A satisfy ε-DP. Let D be a dataset with n elements and let j
be a positive integer. Fix a decomposition n of n with j elements and choose a
permutation π on n elements uniformly at random. Choose an index 1 ≤ i ≤ j
and let Dπ,i be the i-th partition element of the partitioned preprocessing of D.
Then the mechanism that returns A(Dπ,i) satisfies ε′-DP, where ε′ is as defined
in Theorem 2 with β = ni/n.

The caveat to this result is that the mechanism is only returning the result
computed on Dπ,i. Indeed, if we return (A(Dπ,i1), . . . ,A(Dπ,ik

)), we have effec-
tively changed our parameter β to 1

n (ni1 + · · · + nik
). Amplification could still

provide a benefit in this case, but only if this new sampling rate is still much
smaller than 1. Overall, amplification with partitioned preprocessing is most
appropriate when the results of queries run on different partition elements are
released to distinct data users who do not share their results.

6 Conclusion

Independently sanitizing subsets of a dataset raises a number of challenges.
By introducing partitioned preprocessing, we have provided an expansion of
the tighter bound on the differential privacy parallel composition theorem for
unbounded neighboring datasets to support bounded differential privacy in cer-
tain cases. Moreover, when the sizes of the partition elements are known and
the results of the mechanisms run on different elements are given to distinct,
non-colluding data users, we can leverage amplification to increase the privacy
budget.

This does come at some cost in result quality, although not significant for
small values of ε or high sensitivity queries. Even so, there are still logistical
advantages to using random partitioning with differential privacy. One example
is if we are only collecting a subset of the data to begin with (sampling). Ran-
domly partitioning the population before sampling gives us the ability to collect
further samples and treat the privacy budget independently. More structured
partitioning (e.g., stratified sampling based on individual characteristics) can
put us into the 2ε situation, where allowing queries to two partition elements
requires they share a privacy budget. Another example is when a user would
like to employ a differentially private mechanism that is superlinear in runtime;
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in these cases, partitioning off a small portion of the data can enable a differ-
entially private answer with substantial savings on time investment. One place
such mechanisms show up is in the context of smooth sensitivity [8]. This is a
concept that replaces global sensitivity with a weighted maximum of the impact
of a single individual in datasets sufficiently close to the real dataset, which can
often be substantially smaller. As a concrete example, the mechanism used in
[12] to build a Näıve Bayes classifier using smooth sensitivity has a runtime of
O(n2).

The idea of random partitioning also applies to techniques based on general-
ization. For example, assuring k-anonymity, �-diversity [6], or t-closeness [4] on
each partition element provides the same guarantee (with the same parameter)
on the dataset as a whole.1 With techniques based on generalization, the possi-
bility exists that queries may be answerable on some partition element, whereas
the necessarily granularity could be generalized away globally. Further discussion
is left for future work.

Acknowledgments. This work was supported by the United States Census Bureau
under CRADA CB16ADR0160002. The views and opinions expressed in this writing
are those of the authors and not the U.S. Census Bureau.

Appendix: Proof of Theorem 2

We first fix some notation. Let A be a ε-differentially private mechanism. Let D
be a dataset with |D| = n and choose an integer n′ < n. Fix some tuple t ∈ D.
We denote by Yt the set of all subdatasets Ds ⊂ D with |Ds| = n′ and t ∈ Ds

and by Nt the set of all subdatasets Ds ⊂ D with |Ds| = n′ and t /∈ Ds. We
observe

|Yt| =
(

n − 1
n′ − 1

)

|Nt| =
(

n − 1
n′

)

.

For D′ = D \ {t} ∪ {t′} a neighbor of D, we define Y ′
t and N ′

t analogously. We
observe that Nt = N ′

t .
We will need the following lemma.

Lemma 3. Let t ∈ D and S ⊂ range(A). Then

∑

Ds∈Yt

P (A(Ds) ∈ S)
|Yt| ≤ eε

∑

Ds∈Nt

P (A(Ds) ∈ S)
|Nt| .

Proof. For each Ds ∈ Yt, we can replace the tuple t by any of the n − n′ tuples
in D \Ds to create a dataset in Nt that is a neighbor of Ds. Similarly, given any
Ds ∈ Nt, we can replace any of the n′ tuples in Ds with t to create a dataset in
Yt that is a neighbor of Ds.

1 There is some subtlety here, as k-anonymity under global recoding is not assured,
even if each partition element satisfies it.
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Now consider
(n − n′)

∑

Ds∈Yt

P (A(Ds) ∈ S)

as counting each Ds ∈ Yt with multiplicity n − n′. Thus we replace the n − n′

copies of Ds ∈ Yt in this sum with its n − n′ neighbors in Nt. By differential
privacy, each such change causes the probability to grow by no more than eε.
Moreover, each dataset in Nt will occur n′ times in the new sum. Thus

(n − n′)
∑

Dt∈Yt

P (A(Dt) ∈ S) ≤ eεn′ ∑

Dt∈Nt

P (A(Dt) ∈ S).

The result now follows from the observation that n′
n−n′ = |Yt|

|Nt| .

This lemma captures the reason we have assumed the size of the subdataset
to be fixed. In the unbounded case, if we delete a tuple t to pass from dataset
D to D′, then for each Ds ⊆ D with t ∈ Ds, there is a unique D′

s ⊆ D′ with
d(Ds,D

′
s) = 1. Lemma 3 is our generalization of this fact to the unbounded case.

We are now ready to prove Theorem 2, which we restate here for convenience.

Theorem 2. Let A satisfy ε-DP. Let D be a dataset with |D| = n and choose an
integer n′ < n. We denote β = n′/n. Choose a subdataset D′ ⊂ D with |D′| = n′

uniformly at random. Then the mechanism which returns A(D′) satisfies ε′-DP,
where

ε′ = ln
(

eεβ + 1 − β

1 − β

)

.

Proof. Let S ⊂ range(A) and let D′ = D \ {t} ∪ {t′} be a neighbor of D. We
will use the law of total probability twice, conditioning first on whether t ∈ Ds

(i.e. on whether Ds ∈ Yt or Ds ∈ Nt), then on the specific subdataset chosen as
Ds. This gives

P (A(Ds) ∈ S) = β
∑

Dt∈Yt

P (A(Dt) ∈ S)
|Yt| + (1 − β)

∑

Dt∈Nt

P (A(Dt) ∈ S)
|Nt|

≤ βeε
∑

Dt∈Nt

P (A(Dt) ∈ S)
|Nt| + (1 − β)

∑

Dt∈Nt

P (A(Dt) ∈ S)
|Nt|

= (βeε + 1 − β)
∑

Dt∈Nt

P (A(Dt) ∈ S)
|Nt|

= (βeε + 1 − β)
∑

D′
s∈N ′

t

P (A(D′
s) ∈ S)

|N ′
t |

.

by the lemma and the fact that Nt = N ′
t . By analogous reasoning, we have

P (A(D′
s) ∈ S) = β

∑

D′
t∈Y ′

t

P (A(D′
t) ∈ S)

|Y ′
t | + (1 − β)

∑

D′
t∈N ′

t

P (A(D′
t) ∈ S)

|N ′
t |

≥ (1 − β)
∑

D′
t∈N ′

t

P (A(D′
t) ∈ S)

|N ′
t |

.
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Combining these two inequalities yields

P (A(Ds) ∈ S) ≤ βeε + 1 − β

1 − β
P (A(D′

s) ∈ S).
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Abstract. We have recently introduced a privacy model for statistical and
machine learning models called integral privacy. A model extracted from a
database or, in general, the output of a function satisfies integral privacy when
the number of generators of this model is sufficiently large and diverse. In this
paper we show how the maximal c-consensus meets problem can be used to
study the databases that generate an integrally private solution. We also introduce
a definition of integral privacy based on minimal sets in terms of this maximal
c-consensus meets problem.

Keywords: Integral privacy · Maximal c-consensus meets · Clustering ·
Parameter selection

1 Introduction

The output of any function computed from a database can be sensitive. It can contain
traces of the data used. A simple example is the computation of the mean of a set of
salaries. The presence in the database of a person with a high salary may affect the
mean salary so significantly that this person presence can be singled out. When the
data is sensitive, this type of disclosure can be problematic. This situation applies if we
consider an intruder accessing the mean salary of patients in the psychiatric department
of a hospital of a small town.

Data-driven models inherit the same problems. Membership attacks [6] are to infer
that a particular record has been used to train a machine learning or a statistical model.

Data privacy [7] is to provide techniques and methodologies to ensure that disclo-
sure does not take place. Privacy models are computational definitions of privacy.

Differential privacy [1] is one of the privacy models that focus on this type of
attacks. Informally, we say that the output of a function satisfies differential privacy
when this output value does not change significantly when we add or remove a record
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from a database. This means in our case, that the presence or absence of a particular
individual in the database cannot be singled out. That is, the presence or absence of the
person with a high salary does not change much the mean salary. To make differential
privacy possible, outputs are randomized so what needs to be similar is the probability
distribution on the possible outcomes.

We introduced [8] integral privacy as an alternative privacy model that focuses on
the privacy of the generators of the output of a function. Informally, we require that the
set of databases that can produce this output is sufficiently large and diverse. We have
developed solutions for this privacy model to compute statistics as the mean and devi-
ations [3], decision trees [5] and linear regressions [4]. Our results show that integral
privacy can provide in some scenarios solutions with good quality (i.e., good utility)
and that solutions may be better with respect to utility than those of differential privacy.

A solution from an integral privacy point of view is one that can be produced by
different databases. The more databases that can generate the solution the better, and
the more diverse these databases are, the better. Integral privacy formalises this idea.

Our original definition requires databases to be different. In this paper we propose a
formalization based on minimal sets. It permits to strengthen our privacy requirements
on the generators of the model. This new definition is proposed in Definition 4.

1.1 Model Selection and Integral Privacy

Our definitions of integral privacy are proposed as alternatives to differential privacy.
Our goal is to select machine and statistical learning modes that are good from a privacy
point of view. Machine and statistical learning is, in short, a model selection problem
from a set of candidate ones.

When we need to select a model from candidate solutions (a data-driven model) and
we want the model to be integrally private and optimal with respect to other parameters
(e.g., accuracy, fairness, bias-free) we need to navigate among sets of records. This is
so because each candidate solution needs to be generated by at least a database, and
integrally private solutions need to be generated by several alternative databases.

For the sake of explainability we consider that it is appropriate to provide tools to
actually explore and navigate on these sets of databases. While from a formal point of
view, this is not required, and we can just define a methodology to produce integrally
private solutions, as we proceeded in [5], it is convenient to develop techniques to under-
stand the space of databases and, in particular, the databases that generate an integrally
private solution. In this paper we study how the maximal c-consensus meets [9] of a set
of records can be used for this purpose. The new definition of integral privacy is based
on the solution of maximal c-consensus meets. Solutions of this problem represent key
records for a given model.

1.2 Structure of the Paper

The structure of the paper is as follows. In Sect. 2 we review integral privacy and in
Sect. 3 the maximal c-consensus meets. Then, in Sect. 4, we introduce a new definition
for integral privacy based on maximal c-consensus meets. This is the definition on min-
imal sets. In Sect. 5 we prove some results related to the maximal c-consensus meets
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and the related definition for integral privacy. These results explain integrally private
solutions in terms of maximal c-consensus meet solutions. Section 6 describes how we
compute the solutions. The paper finishes with some conclusions and directions for
future research.

2 On Privacy Models: Integral Privacy

In this section we review two privacy models that focus on the privacy of individual
records in a database when this database is used to compute a function. That is, we
consider a data set X and we apply a function, a query, or an algorithm A to this database
and generate an output y. So, y= A(X). Then, we are interested in avoiding inferences
on individual records x in X from the information that we have on y.

Differential privacy [1] is one of the privacy models for this type of scenario. Its
focus is on the presence or an absence of a record in the database, and that this pres-
ence or absence cannot be inferred from y. The definition is based on a comparison
of two probability distributions on the space of outputs of A. We assume that different
executions of algorithm A may lead to different outcomes, and that the distributions
obtained from two databases that differ in only one record, say x, are similar enough.
When the distributions are similar enough we cannot infer from the distributions that
this particular record x was used.

Definition 1. A randomized algorithm A is said to be ε-differentially private, if for all
neighbouring data sets X and X ′, and for all events E ⊂ Range(A),

Pr[A(X) ∈ E]
Pr[A(X ′) ∈ E]

≤ eε .

In this definition we have that X and X ′ are neighboring data sets when they differ
in one record. We represent that X and X ′ are neighboring data sets with d(X ,X ′) = 1.

Integral privacy [8] is similar to differential privacy in that it focuses on the conse-
quences of knowing the output of a function. I.e., on the inferences that can be obtained
from this output. The original definition considered not a single database and a single
output but two databases and their corresponding outputs. Then, inferences are not only
on the databases but also on the modifications (transitions) that have been applied to
one database to transform it into another one. Here we focus on a single database.

The cornerstone of the definition of integral privacy is the concept of generator of
an output. That is, the set of databases that can generate the output. We formalize this
concept as follows.

Let P be the population in a given domainD . Let A be an algorithm that given a data
set S ⊆ P computes an output A(S) that belongs to another domain G . Then for any G
in G and some previous knowledge S∗ with S∗ ⊂ P on the generators, the set of possible
generators of G is the set defined by Gen(G,S∗) = {S′|S∗ ⊆ S′ ⊆ P,A(S′) =G}. We use
Gen∗(G,S∗) = {S′ \S∗|S∗ ⊆ S′ ⊆ P,A(S′) = G}. When no information is known on S∗,
we use S∗ = /0. Note that previous knowledge is assumed to be a set of records present
in the database used to generate G.
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Then, integral privacy is about having a large and diverse set of generators. This is
to avoid inferences on records in the set and, in particular, avoid membership attacks.

Naturally, it is not always possible to achieve integral privacy because if the only
way to generate G from S∗ is to have S∗ ∪ {x}, previous knowldge S∗ implies that
Gen∗(G,S∗) = {{x}}. This is the case if we know all patients in the psychiatric depart-
ment except the rich one. We can infer from G (the mean) that the rich is also in the
set.

Definition 2. Let P represent the data of a population, A be an algorithm to compute
functions from databases S ⊆ P into G . Let G ∈ G , let S ⊆ P be some background
knowledge S∗ on the data set used to compute G, let Gen(G,S∗) represent the possible
databases that can generate G and are consistent with the background knowledge S∗.
Then, i-integral privacy is satisfied when the set Gen(G,S∗) is large and

∩g∈Gen∗(G,S∗)g= /0.

The intersection is to avoid that all generators share a record. This would imply that
there is a record that is necessary to construct G. Following [8] we can distinguish two
definitions of large in the previous definition.

One follows k-anonymity and requires Gen(G,S∗) to have at least k elements. This
means that there are at least k different databases that can be used to build G.

The second definition considers minimal sets in Gen(G,S∗). Let us consider that
there are 10 databases that generate a model G. Then, 5 of them share the record r and
the other 5 share a record r′. Then, the model G would satisfy at least k-anonymous
integral privacy for k = 2. In this paper we formalize this second approach in Defini-
tion 4.

An important concept in privacy is plausible deniability. We can define it for integral
privacy as follows.

Definition 3. Let G,A,S∗,P, Gen(G,S∗) and Gen∗(G,S∗) as in Definition 2. Integral
privacy satisfies plausible deniability if for any record r in P such that r /∈ S∗ there is a
set σ ∈ Gen∗(G,S∗) such that r /∈ σ .

Naturally, integral privacy satisfies by definition plausible deniability for all records
not in S∗. This is so because the intersection of data sets in Gen∗(G,S∗) is the empty
set.

Differential privacy and integral privacy have fundamental differences. They are
due to the fact that the former requires a smooth function, as the addition of any record
does not change much the function (i.e., A(D) ∼ A(D⊕ x) where D⊕ x means to add
the record x to D). In contrast, integral privacy does not require smoothness as we
do not focus on neighbourhoods. We require that the output of the function for any
database results always in what we call recurrent models. If f−1(G) is the set of all
(real) databases that can generate the output G, we require A−1(G) to be a large set for
G. Consider the following example of integrally private function.

Example 1. Let D be a database, let A be an algorithm that is 1 if the number of records
in D is even, and 0 if the number of records in D is odd. That is, f (D) = 1 if and only if
|D| is even.
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If this function is applied to an arbitrary subset of the population in Sweden, then the
function is integrally private and, therefore, satisfies plausible deniability. The function
is not differentially private.

Example 2. Let P = {r1 = 1000,r2 = 1200,r3 = 1400,r4 = 1200,r5 = 1000,r6 =
1000,r7 = 1200,r8 = 1400,r9 = 1800,r10 = 800} salaries of a population, letG= 1200
the mean salary of a database extracted from P. This mean salary will be k-anonymous
integral privacy for at least k = 4 because the following databases {r1 = 1000,r2 =
1200,r3 = 1400}, {r4 = 1200}, {r5 = 1000,r8 = 1400}, and {r9 = 1800,r10 = 800}
generate a mean of 1200, and these databases do not share records.

3 Maximal c-consensus Meets

In the previous section we have discussed that the same model can be obtained from dif-
ferent databases. From a privacy perspective, we are interested in these recurrent mod-
els. Nevertheless, we have also discussed that the recurrence of a model is not enough.
When all databases that generate a model share a record, the model is vulnerable to
membership attacks.

We have recently introduced [9] maximal c-consensus meets, which can be used to
study sets of databases. We show in the next section that this definition permits to define
integral privacy in terms of minimal sets.

Given a reference set, the maximal c-consensus meets problem is about finding a set
of representatives for a collection of subsets of the reference set. Using notation from
lattice theory, we are interested in finding a set of meets that are maximal, in the sense
that they have a large number of elements. The problem has similarities (see [9] for
details) with other combinatorial optimization problems. In particular, it is related to
max-k-intersect, consensus/ensemble clustering, and the minimum set cover problem.

Maximal c-consensus meets is defined in terms of a parameter c, which is the num-
ber of representatives we are looking for. It is similar to the number of clusters in clus-
tering algorithms. E.g., k in k-means, c in fuzzy c-means.

3.1 Formalization of the Problem

Let X be a reference set. Let n = |X | be its cardinality, x1, . . . ,xn be the elements in X
and℘(X) the set of all subsets of X . The subsets of X define a partially ordered set. Let
A,B ⊆ X , we use A ≤ B when A ⊆ B. Therefore, (℘(X),≤) is a partially ordered set.
I.e., this relationship satisfies reflexivity, antisymmetry and transitivity.

For a partially ordered set (L,≤), given a subset Y of L we say that u∈ L is an upper
bound when for all y ∈ Y we have y ≤ u. Similarly, l ∈ L is a lower bound when for all
y ∈Y we have l ≤ y. In lattice theory we have the concepts of least upper bound (or join
or supremum) and greatest lower bound (or meet or infimum). Then, (L,≤) is a lattice
when each a,b ∈ L have a join and a meet. We use ∨ and ∧ to represent, respectively,
the join and the meet as usual. E.g., a∨b is the join of a and b, and a∧b is the meet of
a and b.
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Given a finite reference set X , the partially ordered set (℘(X),≤) is a lattice when
the meet is the intersection and the join is the union. This is the lattice we consider in
this paper.

Maximal c-consensus meets [9] is defined in terms of a collection S of η subsets
of X . Let Si ⊆ X for i = 1, . . . ,η , where η is the number of these sets. Then, S =
{S1, . . . ,Sη}. The goal of the problem is to find c parts of the collection whose meets
are maximal. Let π j be a part of S, then, the size of the corresponding meet is |∩s∈π j S|.
Let Π be the partition of S with elements π j for j = 1, . . . ,c.

Table 1 gives an example with X = {1,2,3,4,5,6,7,8,0} and sets Si ⊆ X for i =
1, . . . ,36.

When we consider that the total size of the meets of Π is ∑c
j=1 | ∩s∈π j S| (i.e., the

addition of all sizes), we can formalize the maximal c-consensus meets problem as the
maximization of the total size of the meets as follows.

maximize
c
∑
j=1

|∩si∈π j Si|

subject to
c
∑
j=1

μ j(Si) = 1 for all i= 1 . . .η

μ j(Si) ∈ {0,1} for all i= 1 . . .η and all j = 1, . . . ,c

(1)

In this formulation μ defines a partition of S. This is so because of the constraints
on μ in the problem.

Solutions of the problem above do not require that all meets are large. A few large
ones (or all but one large ones) can be enough to lead to a good optimal solution.
Because of that, we introduced an alternative definition that we call well-balanced max-
imal c-consensus meets. In this case we consider the size of the meet with the smallest
size. The size of this meet is the one that we want to maximize. The definition follows.

maximize
c

min
j=1

|∩si∈π j Si|

subject to
c
∑
j=1

μ j(Si) = 1 for all i= 1 . . .η

μ j(Si) ∈ {0,1} for all i= 1 . . .η and all j = 1, . . . ,c

(2)

To solve this problem we proposed in [9] the use of a k-means like clustering algo-
rithm and the use of genetic algorithms.

4 Using Maximal c-consensus Meets to Define Integral Privacy

Let P represent the data of a population, A be an algorithm to compute a model (a
statistic or a function). Then, different subsets S ⊂ P will produce models A(S) ∈ G .
Here G is the space of all possible models.

Let us focus on a particular model G ∈ G , then Gen(G,S∗) represents all databases
that can generate G. From an integral privacy perspective, we are interested in obtain-
ing information on the databases in Gen(G,S∗) that can generate G. The maximal c-
consensus meets provide information on this.
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Table 1. Set of records corresponding to the problem BC4.

{1, 2, 3, 4, 5, 6, 8, 0}, {1, 2, 3, 4, 5, 6, 8}, {1, 2, 3, 4, 5, 6, 0},
{1, 2, 3, 5, 6, 8, 0}, {1, 2, 4, 5, 6, 8, 0}, {2, 3, 4, 5, 6, 8, 0},

{1, 2, 3, 4, 5, 6}, {1, 2, 3, 5, 6, 8}, {1, 2, 3, 5, 6, 0}, {1, 2, 4, 5, 6, 8},
{1, 2, 4, 5, 6, 0}, {1, 2, 5, 6, 8, 0}, {1, 3, 4, 5, 8, 0},
{2, 3, 4, 5, 6, 8}, {2, 3, 4, 5, 6, 0}, {2, 3, 5, 6, 8, 0},

{2, 4, 5, 6, 8, 0}, {1, 2, 4, 5, 6}, {1, 2, 5, 6, 8}, {1, 2, 5, 6, 0},
{1, 3, 5, 8, 0}, {1, 4, 5, 8, 0}, {2, 3, 4, 5, 6}, {2, 3, 5, 6, 8},
{2, 3, 5, 6, 0}, {2, 4, 5, 6, 8}, {2, 4, 5, 6, 0}, {2, 5, 6, 8, 0},

{3, 4, 5, 8, 0}, {1, 5, 8, 0}, {2, 4, 5, 6}, {2, 5, 6, 8},
{2, 5, 6, 0}, {3, 5, 8, 0}, {4, 5, 8, 0}, {5, 8, 0}

Observe that with respect to maximal c-consensus meets it is irrelevant whether
we consider Gen(G,S∗) or Gen∗(G,S∗) as the difference of the corresponding two opti-
mization problems will be the same and the objective functions only differ on a constant.

Observe that Table 1 can be seen from this perspective. Let us consider that the ref-
erence set X = {1,2,3,4,5,6,7,8,0} represents the individuals of the whole population
P and each set in Table 1 represents a database. For the sake of illustration we consider
here that when we apply algorithm A to all these databases we obtain the same output.

Then, the maximal c-consensus meets permits us to find clusters of databases that
share a large number of records. We will use this perspective to formalize the second
definition of integral privacy sketched above. The one that is based on minimal sets in
Gen(G,S∗).

Observe that given a set of databasesGen(G,S∗), when we find the optimal partition
Π of these databases (in terms of themaximal c-consensus meets) for given a value c, the
partition permits us to compute the set of common records ∩si∈π j Si for each π j ∈ Π . Let
mj represent this set of common records. Then, from a privacy perspective, a goodmodel
G is the one that mi ∩mj = /0. That is, any pair of meets mi and mj share no elements.

This permits to formalize meet-based integral privacy as follows. The definition is
based on the parameter c. The larger the c, the larger the privacy. Naturally, if we require
a very large c (say 10 or 100) this means that we need to be able to generate the same
output with a large number of databases that do not share any record.

Definition 4. Let P represent the data of a population, A be an algorithm that computes
a function from databases S⊆ P in the set G . Let G∈ G , let S∗ ⊆ P be some background
knowledge on the data set used to compute G, let Gen(G,S∗) represent the possible
databases that can generate G and are consistent with the background knowledge S∗,
and Gen∗(G,S∗) the same set removing S∗ (see definitions above).

Then, G satisfies c-meets-based integral privacy if there is a solution Π of the maxi-
mal c-consensus meets for Gen∗(G,S∗) according to Eq. 2 such that for all πi �= π j ∈ Π
satisfies

mi ∩mj = /0

with mi = ∩S∈πiS and mj = ∩S∈π j S.
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Note that there may be several solutions Π of the optimization problem with the
same objective function. We require only that one of them satisfies mi ∩mj = /0 for all
πi �= π j ∈ Π .

This definition implies that a solution G is c-meets based integral privacy if for each
x �= S∗ there are at least c−1 databases in Gen∗(G,S∗) such that x is not there.

We illustrate this definition with the following example.

Example 3. Note that for c = 4, the 4 generators of Example 2 above will satisfy the
constraint mi ∩mj = /0 as we have m1 = S1, m2 = S2, m3 = S3, and m4 = S4.

5 On the Effects of the Parameter c

Both the maximal c-consensus meets and the definition of integral privacy based on
these meets depend on the parameter c. We can study how different parameters c influ-
ence the solutions of the optimization problem and the effects on the definition of inte-
gral privacy. We first prove results on the objective functions of both optimization prob-
lems.

Proposition 1. For the problem based on addition (Eq. 1), the objective function (OF)
is strictly monotonic (increasing) with respect to increasing c. We have OF1 = |∩η

i=1 Si|
for c= 1, and OFη = ∑η

i=1 |Si| for c= η .

Proof. When c = 1, there is a single π1, and therefore all sets are assigned to it (i.e.,
π1 = S). Therefore, the corresponding meet will be the intersection of all S1, . . . ,Sη and,
thus, OF = |∩η

i=1 Si|.
When c = η , the optimal assignment is to assign each Si to a different part. I.e.,

πi = {Si}. In this case, OF = ∑η
i=1 |Si|.

Then, to prove that it is strictly monotonic consider a given c and a given partition
Π = {π1, . . . ,πc} with c < η with its corresponding objective function OFi. Let us
consider a part πi with at least two S j and Sk assigned to it. As c < η such part exists.
Then, let define π ′

i as πi without S j and π ′′
i as just S j (i.e., π ′

i = πi \{S j} and π ′′
i = {S j}).

Finally define a new partition with c+ 1 parts as the previous one replacing πi by the
two new sets π ′

i and π ′′
i . That is, Π ′ = {π1, . . . ,πc}\{πi}∪{π ′

i ,π ′′
i }. The cardinality of

the meets of π ′
i and π ′′

i is at least as the same as the cardinality of πi. Therefore as we
add these numbers, the objective function will be larger. ��
Proposition 2. For the problem based on the minimum (Eq. 1), the objective function
(OF) is monotonic (increasing) with respect to increasing c. We have OF1 = | ∩η

i=1 Si|
for c= 1, and OFη =minη

i=1 |Si| for c= η .

Proof. The proof of this proposition is similar to the previous one. We can prove the
monotonicity of the objective function using the same sets. Nevertheless, as when we
build π ′

i and π ′′
i from πi and we include them in the objective function, this objective

function just takes the min of the cardinality, the objective function may not strictly
increase. E.g., if we have πi = {{1,2,3},{1,2,3,4},{1,2,3,5}} and we define π ′′

i =
{1,2,3} and π ′

i = {{1,2,3,4},{1,2,3,5}}, the objective function will not increase. ��
These two results show that the larger the number of parameters, we have, in gen-

eral, a larger value of the objective function.
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Fig. 1. Values of the objective function for the problem BC4. The figure on left corresponds to the
maximal c-consensus meets and the one on the right corresponds to the well-balanced maximal c-
consensus meets. Minimum, mean and maximum values of the objective function in each iteration
are displayed.

5.1 Open Research Questions

With respect to the definition for integral privacy, it is clear that the larger the c, the more
difficult will be to have a model that is compliant with the definition. Nevertheless, an
open question is whether a model G that is integrally private for c is also integrally
private for any c′ such that c′ < c.

Another open question is whether when a model G with generators Gen(G,S∗) is
integrally private for a parameter c, the model is also integrally private when another
database is added into the set. That is, if we have two sets of generators Gen(G,S∗) and
Gen(G′,S′∗) such that Gen(G,S∗) ⊆ Gen(G′,S′∗), if integral privacy for Gen(G,S∗)
ensures integral privacy for Gen(G′,S′∗). We can show with an example that the objec-
tive function can decrease when a database is added. It is left as an open problem if this
can cause that there is no integrally private solution.

Example 4. Let A1 = {a1,a2,a3}, A2 = {a1,a2,a3,a4}, B1 = {b1,b2,b3}, B2 = {b1,
b2, b3, b4}, C1 = {c1,c2,c3,b1,b2}, and C2 = {c1,c2,c3,a1,a2}. An optimal solution
for this problem with c= 3 is π1 = {A1,A2}, π2 = {B1,B2}, π3 = {C1,C2}. Therefore,
|π1| = |π2| = |π3| = 3 and the objective function is 3.

If we consider S′ = {a1,a2,b1,b2,c1,c2} we have that we cannot reach an objective
function equal to 3. The assignment π1 = {A1,A2,C2}, π2 = {B1,B2,C1}, π3 = {S′}
results into an objective function equal to 2.
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Fig. 2.Values of the objective function for another problem consisting on computing an integrally
private mean of a file with 1080 records by means of rounding and sampling (following [3]).

6 Solutions Using Genetic Algorithms

In [9] we proposed the use of genetic algorithms to find solutions for the optimization
problem described above. We illustrate here the solutions obtained for different values
of c. We show the performance of our solution using genetic algorithms when compared
with the theoretical results obtained in the previous section. We show that when the
objective function uses addition, we obtain results that are consistent with the theoretical
ones, but that this is not the case when the objective function uses minimum.

We have considered the solutions obtained for different values of c for the same
problems BC1-BC9 considered in [9]. We describe in detail the results of problem BC4.
This problem consists of the sets of records listed in Table 1. There are 36 sets with at
most 9 elements.

We have used 60 iterations with 20 chromosomes each, with a probability of 0.4 for
structural mutation and 0.4 for structural crossover. We have used a c that ranges from
1 to η , where η is the number of sets. For BC4 we have η = 36. Each problem is solved
10 times and the minimum, mean, and maximum values of the objective function are
recorded. These results for BC4 are displayed in Fig. 1.

It is important to note that while the results above apply for the optimal solutions,
solutions found by genetics algorithms are not necessarily optimal. Therefore they do
not necessarily satisfy monotonicity. In particular, it is possible that due to structural
mutation and structural crossover some of the parts of S are empty, which affects dras-
tically the value of the objective function. Figure 1 gives (left) the results for the first
formulation (i.e., Eq. 1) and (right) the results for the second formulation (i.e., Eq. 2).

It can be seen the genetic algorithm is able to obtain results that follow the results in
Proposition 1 for the first formulation. That is, the objective function is monotonic with
respect to the number of clusters c (except for a few cases). In contrast, our implemen-
tation with genetic algorithms does not lead to solutions fully consistent with Propo-
sition 2 for the second formulation. For c > 15 the genetic algorithms are not always
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able to find the optimal, and for c > 25 the genetic algorithms are never able to find
the optimal. The second objective function is quite sensitive to parts that are empty and
they lead to an objective function with a value equal to zero. Recall that the objective
function is the size of the smallest set. In fact, when the number of parts is relatively
large there are several parts with no sets associated to them. In addition, the meets of
the other parts are still rather small. See e.g., for c = 23 we have that the best solution
has objective function because there are three parts with zero sets assigned to it, and in
addition, even removing these parts the minimum meet is of size only 2. Such optimal
solution is given in Table 2.

Figure 2 shows another example based on the results explained in [3]. There are 33
sets each consisting of up to 1080 records. These sets are obtained from the computation
of an integrally private mean of the file by means of rounding and sampling. The details
on the file and the computation are found in [3]. We can observe that the results obtained
by the algorithms are similar for both problems. In the case of using the objective func-
tion with the minimum, the optimal is not achieved for c larger than 20.

Table 2. Optimal solution found for c= 23 with the problem BC4.

{1 2 3 5 6 } {} {2 5 6 8 } {0 4 5 8 } {0 3 5 8 }
{} {2 5 6 8 } {0 1 2 4 5 6 } {2 4 5 6 } {0 2 5 6 }
{0 2 3 4 5 6 8 } {0 1 3 5 8 } {0 5 } {1 2 4 5 6 8 }
{5 8 } {} {0 4 5 }{2 5 6 }{0 1 2 5 6 8 }{2 3 5 6 }

{1 5 }{1 2 4 5 6 }{2 3 4 5 6 }

7 Conclusions and Future Work

In this paper we have shown how the maximal c-consensus meets can be used in the
context of integral privacy to find the common records of sets of databases that can
produce the same solution. We have proven some results related to the monotonicity of
the optimal value of the objective function with respect to the number of parts. We have
also seen that our approach based on genetic algorithms for solving the optimization
problem is not successful for large values of c.

For understanding sets of databases, a smaller c is preferable. How to select a small
c with a high objective function is an open problem. We plan to use multiobjetive opti-
mization for this problem.

The maximal c-consensus meets have also been used to formalize a definition for
integral privacy. We plan to develop methods to find integrally private models (e.g.,
decision trees) and statistics (e.g.,means and variances) using the new definition. These
solutions need to be evaluated with respect to their utility. Our definition is based on
intruder’s background knowledge, represented by means of S∗. Further work is needed
to analyse what kind of background knowledge can be available.
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Abstract. Differential privacy is a mathematical technique that pro-
vides strong theoretical privacy guarantees by ensuring the statistical
indistinguishability of individuals in a dataset. It has become the de
facto framework for providing privacy-preserving data analysis over sta-
tistical datasets. Differential privacy has garnered significant attention
from researchers and privacy experts due to its strong privacy guarantees.
However, the accuracy loss caused by the noise added has been an issue.
First, we propose a new noise adding mechanism that preserves (ε, δ)-
differential privacy. The distribution pertaining to this mechanism can
be observed as a generalized truncated Laplacian distribution. We show
that the proposed mechanism adds optimal noise in a global context,
conditional upon technical lemmas. We also show that the generalized
truncated Laplacian mechanism performs better than the optimal Gaus-
sian mechanism. In addition, we also propose an (ε)-differentially private
mechanism to improve the utility of differential privacy by fusing multi-
ple Laplace distributions. We also derive the closed-form expressions for
absolute expectation and variance of noise for the proposed mechanisms.
Finally, we empirically evaluate the performance of the proposed mech-
anisms and show an increase in all utility measures considered, while
preserving privacy.

Keywords: Differential privacy · Generalized truncated Laplacian
distribution · Merging of Laplacian distributions

1 Introduction

In the modern era, there has been a rapid increase in the amount of digital infor-
mation collected by governments, social media, hospitals, etc. Though this data
holds great utility for business and research purposes, inappropriate use of data
can lead to a myriad of issues pertaining to privacy. For example, Target inferred
that a teen girl was pregnant before her family knew and started sending her
coupons related to baby products [8]. Few years ago, Uber’s poor privacy prac-
tices caught news’ attention: their employees misused customer data to track
their customers, including politicians and celebrities, in real time, and blogged
about “Rides of Glory”, where Uber was able to track one night stands [13]. [11]
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used the Internet Movie Database as a source of prior knowledge to re-identify
the anonymized Netflix records of users, unveiling their alleged political prefer-
ences and other sensitive information. Due to these and other similar incidents,
governments and policymakers start to recognize the importance of protecting
personal data. The European Union (EU) recently proposed the General Data
Protection Regulation (GDPR) to protect all EU citizens from privacy breaches
in today’s data-driven world [17] and other countries are contemplating simi-
lar regulation meanwhile. Unfortunately, the gaps in current privacy preserving
techniques make it difficult for data collectors to support this kind of privacy reg-
ulation. However, differential privacy helps organizations to comply with these
regulations. The key idea of differential privacy is to reduce the privacy impact
on individuals whose information is available in the dataset. Hence, it is not
possible to identify individual records and sensitive information pertaining to a
particular user.

Many possible approaches can be taken to preserve the privacy of datasets.
Early techniques included simple mechanisms for anonymizing datasets by
redacting or removing certain fields from datasets and operating on them nor-
mally. However, it quickly became apparent that an adversary with auxiliary
information could learn significant information from these anonymized datasets.
This led to the development of k-anonymity, which generalizes quasi-identifiers
(pieces of data that by themselves are not unique identifiers but can be combined
with others to act like one) and ensures that a particular user’s data is indis-
tinguishable from that of at least (k − 1) other users [16]. Though k-anonymity
can protect against identity disclosure, it is susceptible against homogeneity and
background-knowledge based attacks [14]. l-diversity overcomes this problem
and protects against inference-based attacks [10]. However, the semantic rela-
tionship between the sensitive attributes makes l-diversity prone to skewness
and similarity-based attacks as it is inadequate to avoid attribute exposure [14].
Differential privacy, which provides strong theoretical privacy guarantees, was
proposed to provide statistical indistinguishability of datasets.

Differentially private mechanisms are used to release statistics of a dataset as
a whole while protecting the sensitive information of individuals in the dataset.
Basically, differential privacy guarantees that the released results reveal little or
no new information about an individual in the dataset. As an individual sample
cannot affect the output significantly, the attackers thus cannot infer the private
information corresponding to a particular individual.

Though there has been a myriad of significant contributions in the field of
differential privacy, the reasons that it has not yet been adopted by many in the
industry are: first, lack of flexibility in the existing mechanisms due to dearth of
configurable parameters, second, concerns over reduced utility and privacy. In
this paper, we address these issues and offer solutions. Our contributions are as
follows:

1. First, we propose the generalized truncated Laplacian mechanism. We also
derive the upper bounds on noise amplitude and noise power for the pro-
posed mechanism. We also show that the generalized truncated Laplacian
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mechanism offers better flexibility than existing (ε, δ)-differentially private
mechanisms and performs better than the optimal Gaussian mechanism by
reducing the noise amplitude and noise power in all valid privacy regimes [1].

2. Second, we propose how different Laplacian distributions can be merged based
on different breakpoints and we also prove that the resulting distribution
is differentially private. We also show how it can enhance the utility while
guaranteeing privacy.

The proposed mechanisms enable data controllers to fine-tune the perturba-
tion that is necessary to protect privacy for use case specific distortion require-
ments. This also mitigates the problems pertaining to inaccuracy and provides
better utility in bounding noise.

The paper is organized as follows. Section 2 compares and contrasts our
work with related work in the field of differential privacy. Section 3 provides
background on differential privacy. In Sect. 4 and Sect. 5, we present the gener-
alized truncated Laplacian mechanism and the merging of Laplacian distribution
mechanism, respectively. In Sect. 6 we conclude with a summary and a discussion
of our future work.

2 Related Work

For numeric queries, ε-differential privacy [3] is achieved by adding Laplacian
noise to the query result. It has been the de facto approach in a number of works
pertaining to differential privacy [4,9] and [5]. [2] proposed (ε, δ)-differential pri-
vacy, which can be interpreted as ε-differential privacy “with probability 1−δ”. In
spite of its near-ubiquitous use, the Laplacian mechanism has no single substanti-
ation of its optimality. [6] proposes a truncated Laplacian mechanism which draw
noises from truncated Laplacian distribution. They have shown that the mech-
anism is more optimal than the optimal Gaussian mechanism as it significantly
reduces the noise amplitude and noise power in a myriad of privacy regimes.
[6] offers approximate differential privacy and is defined for the symmetric trun-
cated region, that is, [−A,A]. [15] propose piecewise mixture distributions that
preserve differential privacy and elucidate the importance of flexibility. Most
mechanisms and algorithms in differential privacy uses probability distribution
with density functions where ε is the only variable, a predefined and fixed sen-
sitivity, and minimal amount of additional flexibility for the query-mechanism
designer. In this paper, we propose other mechanisms that offer greater flexi-
bility and provide better privacy guarantees than the existing mechanisms. In
order to make use of the perturbed query outputs, we have to understand the
trade-off between accuracy and privacy. ε plays a significant role in determining
this trade-off. It is inversely proportional to the scale parameter in the Laplacian
distribution. If the value of ε is close to zero, the response to two queries made
on neighboring datasets is virtually indistinguishable. However, this makes the
queries useless as a large amount of noise would have been added to the result
and make it futile. In prior literature pertaining to the accuracy and privacy
of differentially private mechanisms, the metric of accuracy is in terms of the
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amount of noise added to the output of a query or in terms of variance. [7]
studied the trade-off between privacy and error for answering a group of lin-
ear queries in a differentially private manner, where the error is defined as the
lowest expectation of the �2-norm of the noise among the query outputs. They
also derived the boundary conditions on the error given the differential privacy
constraint. [12] were able to extend the result on the trade-off between privacy
and error to the case of (ε, δ)-differential privacy.

3 Background

In this section, we will provide an overview of differential privacy, describe the
privacy-accuracy trade-off under (ε)-differential privacy and (ε, δ)-differential pri-
vacy, and provide the cost functions that are commonly used in evaluating the
utility and privacy trade-off of mechanisms that satisfy differential privacy.

3.1 Differential Privacy

Consider a query function,
q : D → R,

where D denotes the set of all possible datasets. The query function q is applied
to a dataset or subsets of datasets and returns a real number. Any two datasets
D1 ∈ D and D2 ∈ D are called neighboring datasets if they differ by at most one
element. In other words, one dataset is a subset of the other and |D1 − D2| ≤ 1.
We denote two neighboring datasets D1, D2 as D1 ∼ D2. A randomized query-
answering mechanism A is a function of the query function q, and will randomly
output a real number with certain probability distribution P depending on q(D),
where D is the dataset.

A more relaxed notion of ε-differential privacy is (ε, δ)-differential privacy,
which can be interpreted as the algorithm that is mostly ε-differentially private
with the factor δ denoting the probability that it fails to be. Formally, we have
the following definition.

Definition 1 ((ε, δ)-Differential Privacy). A randomized mechanism A : D →
O preserves (ε, δ)-differential privacy ((ε, δ)-DP) when there exists ε > 0, δ > 0
such that,

Pr [A(D1) ∈ T ] ≤ eεPr [A(D2) ∈ T ] + δ

holds for every subset T ⊆ O and for any two neighboring datasets D1 ∼ D2.

Definition 2 (Global Sensitivity). For a real-valued query function q : D → R,
where D denotes the set of all possible datasets, the global sensitivity of q, denoted
by Δ, is defined as

Δ = max
D1∼D2

|q(D1) − q(D2)|,

for all D1 ∈ D and D2 ∈ D.

Note when the query function q is a counting query or a histogram query, the
global sensitivity Δ = 1 because removing one user from the dataset D only
affects the output of the query by at most 1.
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3.2 Utility Model

In this section, we discuss the way that we will be using to evaluate the utility and
privacy of a differentially private mechanism. Consider a cost function L : R →
R, which is a function of the random additive noise in the mechanism A. Given
a random additive noise x, the cost function for it is defined as L(x). Therefore,
we can derive the expectation of the cost over the probability distribution P by
solving: ∫

x∈R

L(x)P(x)dx

Upper bounds on the minimum noise amplitude and noise power, correspond
to the l1 cost function L(x) = |x| and l2 cost function L(x) = x2, respectively.
Our objective is to minimize such expectation of the cost over the probability
distribution for preserving differential privacy.

3.3 Differentially Private Mechanisms

For the case of real output, introducing noise in an additive manner is a standard
technique to preserve differential privacy. Thus, we will be discussing mechanisms
A that preserves ε or (ε, δ)- differential privacy by adding a random noise X
drawn from a probability distribution P. So we will reserve the notation A for
mechanisms that take the standard formula:

A(D) = q(D) + X.

We will also reserve the variable X for the additive random noise drawn from
the probability distribution P from now on unless stated otherwise.

One of the most well-known differentially private mechanism is the Laplacian
mechanism, which uses random noise X drawn from the symmetric Laplacian
distribution. The zero-mean Laplacian distribution has a symmetric probability
density function f(x) with a scale parameter λ defined as:

f(x) =
1
2λ

e− |x|
λ .

Given the global sensitivity, Δ, of the query function q, and the privacy parame-
ter ε, the Laplacian mechanism A uses random noise X drawn from the Laplacian
distribution with scale λ = Δ

ε . The Laplacian mechanism preserves ε-differential
privacy [2].

A variant of the symmetric Laplacian mechanism is the truncated Laplacian
mechanism, which uses a random noise generated from the truncated Laplace
distribution. The zero-mean truncated Laplace distribution has a symmetric-
bounded probability density function f(x) with scale λ defined as:

f(x) =

{
Be− |x|

λ , for x ∈ [−A,A]
0, otherwise
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where
A =

Δ

ε
ln(1 +

eε − 1
2δ

) and B =
1

2Δ
ε (1 − 1

1+ eε−1
2δ )

.

Given the global sensitivity Δ of the query function q, and the privacy parameters
ε, δ, the truncated Laplacian mechanism A uses random noise X drawn from
the truncated Laplacian distribution with scale λ = Δ

ε . It has been proven to be
(ε, δ)-differentially private for δ < 1

2 [6].

Remark 1. Note that an ε or (ε, δ)-differential private mechanism A with addi-
tive noise X drawn from probability distribution P will still be ε or (ε, δ)-
differential private when the mean μ of P is any finite real number instead
of 0. Therefore, we will just be discussing and proving the μ = 0 case in this
paper. However, the proof for any real number μ is similar.

4 Generalized Truncated Laplacian Mechanism

In this section, we propose an (ε, δ)-differentially private mechanism that offers
better flexibility than the symmetrically bounded truncated Laplacian mecha-
nism [6] and better accuracy than the optimal Gaussian mechanism [1]. First,
we state the probability density function and the cumulative distribution func-
tion of the generalized truncated Laplacian distribution. Then, we elucidate the
(ε, δ)-differentially private mechanism. Finally, we evaluate the upper bound on
noise amplitude and noise power.

4.1 Generalized Truncated Laplace Distribution

The probability distribution can be viewed as a generalized truncated Laplace
distribution. Such a probability distribution is motivated by the symmetrically
bounded Laplace distribution proposed by [6]. The proposed distribution in this
paper is a more general version as it is asymmetrically bounded.

To construct such a distribution, we set the privacy parameter ε and δ. In
contrast to most of the existing (ε, δ)-differential private mechanisms, where ε
and δ are the only two variables in the algorithm design, the generalized trun-
cated Laplacian distribution allows another parameter to specify the upper or
lower bound of the probability density function. Therefore, with the additional
bounding parameter, not depending on the value of ε or δ, the proposed gener-
alized truncated Laplace distribution provides more flexibility.

Definition 3. The zero-mean generalized truncated Laplace distribution has a
probability density function f(x) with scale λ, and is asymmetrically bounded by
A and B where A < 0 < B, defined as:

f(x) =

{
Me− |x|

λ for x ∈ [A,B]
0 otherwise

where, M =
1

λ(2 − e
A
λ − e− B

λ )
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Fig. 1. Laplacian mechanism vs Generalized truncated Laplacian mechanism

Figure 1 depicts a zero-mean Laplace distribution and generalized truncated
Laplacian distribution with a scale factor of 2.

The proposed probability distribution is valid, as its probability density func-
tion f(x) is greater than 0 for x in the sample space and

∫ ∞
∞ f(x)dx = 1

Then we present the closed form of the cumulative distribution function,
F (x), for the generalized truncated Laplacian distribution.

The cumulative distribution function is defined as,

F (x) =

⎧⎪⎨
⎪⎩

e
x
λ −e

A
λ

2−e
A
λ −e− B

λ
if x < 0

2−e
A
λ −e− x

λ

2−e
A
λ −e− B

λ
if x ≥ 0

4.2 Mechanism

Given the global sensitivity Δ of the query function q, and the privacy parameters
ε, δ, the Generalized Truncated Laplacian mechanism A uses random noise X
drawn from the generalized truncated Laplacian distribution in Definition 3 with
the following parameters:

λ =
Δ

ε
,A + Δ ≤ 0 ≤ B − Δ

If |A| ≥ |B|,{
A = λ ln

[
2 + (1−δ

δ )e− B
λ − ( 1δ )e− B−Δ

λ

]
B = any positive real number satisfying|A| ≥ |B|

If |A| < |B|,{
A = any negative real number satisfying |A| < |B|
B = −λ ln

[
2 + (1−δ

δ )e
A
λ − ( 1δ )e

A+Δ
λ

] .
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Theorem 1. The generalized truncated Laplacian mechanism preserves (ε, δ)-
differential privacy.

Proof. The proof for Theorem 1 relies on the following two lemmas, and the
proof for those lemmas can be found in Appendix A.

Lemma 1.

max
(∫ A+Δ

A

f(x)dx,

∫ B

B−Δ

f(x)dx
)

= δ

for the probability density function f(x), λ,A and B of the generalized truncated
Laplace distribution.

Lemma 2. A mechanism A(D) = q(D)+X that adds a random noise X drawn
from probability distribution P with probability density function f(x), satisfies
(ε, δ)-differential privacy when

P(S) − eεP(S + d) ≤ δ

holds for any |d| ≤ Δ, and any measurable set S ⊆ R, where Δ is the global
sensitivity for the query function q.

Using Lemma 2, in order to prove that our mechanism is (ε, δ)-differential pri-
vate, we need to show that for the global sensitivity, Δ, of our query function
q,

P(S) − eεP(S + d) ≤ δ

holds for any |d| ≤ Δ, and any measurable set S ⊆ R. Equivalently, it is sufficient
to show that

max(P(S) − eεP(S + d)) ≤ δ

If x ∈ (A + Δ,B − Δ) then,

f(x)
f(x + d)

=
Me− |x|

λ

Me− |x+d|
λ

= e
|x+d|−|x|

λ ≤ e
|d|
λ ≤ eε,

which implies ∀|d| ≤ Δ, f(x) − eεf(x + d) ≤ 0 when x ∈ (A + Δ,B − Δ).
Thus, for measurable set S,

P(S) − eεP(S + d) ≤ P(S ′) − eεP(S ′ + d)

for S ⊆ R and S ′ = S\(A + Δ,B − Δ). Therefore, P(S) − eεP(S + d) is maxi-
mized for some set S ⊆ (−∞, A + Δ] or S ⊆ [B − Δ,∞). Since the distribution
changes exponentially with rate 1

λ = ε
Δ , multiplying the probability distribution

P by eε will result in shifting the probability distribution by Δ. Therefore,

sup
S⊆R

P(S) − e
εP(S + d) ≤ max

( ∫ A+Δ

−∞
f(x)dx,

∫ ∞

B−Δ
f(x)dx

)
= max

( ∫ A+Δ

A
f(x)dx,

∫ B

B−Δ
f(x)dx

)

From Lemma 1, we have the desired inequality

P(S) − eεP(S + d) ≤ δ.
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Remark 2. We claim that

0 < δ ≤ min

(∫ 0

A

f(x)dx,

∫ B

0

f(x)dx

)
.

Proof. If |A| ≥ |B|, then

∫ 0

A

f(x)dx >

∫ B

0

f(x)dx

⇒ min

(∫ 0

A

f(x)dx,

∫ B

0

f(x)dx

)
=

∫ B

0

f(x)dx

Additionally,

max

(∫ A+Δ

A

f(x)dx,

∫ B

B−Δ

f(x)dx

)
=

∫ B

B−Δ

f(x)dx = δ

Since 0 ≤ B − Δ,

δ =
∫ B

B−Δ

f(x)dx ≤
∫ B

0

f(x)dx.

If |A| < |B|, the proof is similar.

4.3 Upper Bound on Noise Amplitude and Noise Power

We apply the generalized truncated Laplacian mechanism to derive upper bounds
on the minimum noise amplitude and noise power, corresponding to the l1 cost
function L(x) = |x| and l2 cost function L(x) = x2, respectively.

When L(x) = |x|, the upper bound on minimum noise amplitude is

2λ − (λ − A)e
A
λ − (λ + B)e− B

λ

2 − e
A
λ − e− B

λ

, where λ =
Δ

ε
, A and B are specified in Theorem 1.

This result is obtained by evaluating

infP∈Pε,δ

∫
x∈R

|x|P(dx) =
∫ B

A

|x|f(x)dx = M

(∫ 0

A

−xe
x
λ dx +

∫ B

0

xe− x
λ dx

)

As the noise with probability density function f(x) satisfies (ε, δ)-differential
privacy, this provides an upper bound on infP∈Pε,δ

∫
x∈R

|x|P(dx).
Similarly, we derive the upper bound on the minimum noise power by having

L(x) = x2, and we get

4λ2 − (2λ2 − 2λA + A2)e
A
λ − (2λ2 + 2λB + B2)e− B

λ

2 − e
A
λ − e− B

λ
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where λ = Δ
ε , and A and B are specified in Sect. 4.2.

As the noise with probability density function f(x) satisfies (ε, δ)-differential
privacy, this provides an upper bound on infP∈Pε,δ

∫
x∈R

x2P(dx).
We performed experiments to compare the performance of the generalized

truncated Laplacian mechanism with the optimal Gaussian mechanism [1]. [1]
calculate the variance of the optimal Gaussian mechanism using the cumulative
density function instead of a tail bound approximation. The ratio of the noise
amplitude and noise power of generalized truncated Laplacian mechanism and
the optimal Gaussian mechanism is always less than 1 for appropriate values
of δ, A and B as shown in AppendixB. Compared to the optimal Gaussian
mechanism, the generalized truncated Laplacian mechanism reduces the noise
power and noise amplitude across all privacy regimes.

5 Merged Laplacian Mechanism

In this section, we propose an ε-differentially private mechanism that merges dif-
ferent Laplacian distributions on different breakpoints. We also evaluate the l1

cost function L(x) = |x| and l2 cost function L(x) = x2 for the proposed mech-
anism, compare it with the Laplacian mechanism and show that our proposed
mechanism achieves better utility.

Definition 4. The zero-mean merged Laplacian distribution has a probability
density function f(x) with n break points 0 < c1 < c2 < · · · < cn = ∞ and n
scale parameters λ1, λ2, ..., λn defined as:

f(x) = fm(x) for x ∈ (−cm,−cm−1] ∪ [cm−1, cm)

Let c0 = 0,∀m ∈ {1, 2, ..., n} where fm(x) = ame− |x|
λm ,

and all am > 0 computed by

n∑
m=1

∫ cm

cm−1

ame− |x|
λm dx =

1
2
, (1)

and fm(cm) = fm+1(cm). (2)

Remark 3. Note that (1) and (2) gives sufficient inputs to calculate am for
m ∈ {1, 2, .., n} as we can write am’s in terms of λ1, λ2, ..., λn and a1 and by
inductively applying

fm(cm) = fm+1(cm) =⇒ ame
− cm

λm = am+1e
− cm

λm+1 =⇒ am+1 = ame
cm

λm+1
− cm

λm .

Then, we can rewrite (1) with a1 as the only variable to solve for the value of
a1. Hence, we can get the values for the rest of the am’s.
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Now we will prove that the probability distributions that we proposed is a valid
one. To do this, we need to show that its probability density function f(x) is
continuous and greater than 0 for x in the domain and the cumulative probability
from −∞ to ∞ is 1.

Proof. First, it is easy to see that f(x) > 0 for x in the domain as e− |x|
λm > 0 for

m ∈ {1, 2, ..., n}, and all am > 0. Thus, fm(x) > 0 ⇒ f(x) > 0.

Additionally, f(x) is continuous on ∪n
m=0(cm−1, cm) as e− |x|

λm is continuous.
At each break point cm, the continuity is ensured by fm(cm) = fm+1(cm). Now
we will show that the cumulative probability from −∞ to ∞ is 1.

∫ ∞

−∞
f(x)dx =

n∑
m=1

(∫ −cm−1

−cm

fm(x)dx +

∫ cm

cm−1

fm(x)dx

)
= 2

n∑
m=1

∫ cm

cm−1

fm(x)dx = 2 · 1

2
= 1

Now we propose a differentially private mechanism which adds noise drawn
from the Merged Laplacian distribution as defined in Definition 4.

Theorem 2. Given the global sensitivity, Δ, of the query function q, and the
privacy parameter ε = ε1, the Merged Laplacian mechanism A uses random noise
X drawn from the merged Laplacian distribution with scale parameter λm = εm

Δ
where λ1 > λ2 > · · · > λn and preserves ε - differential privacy.

Proof. To prove that our mechanism preserves ε - differential privacy, we need
to show that for D1 ∼ D2,

Pr[A(D1) ∈ T ] ≤ eεPr[A(D2) ∈ T ]

for any subset T ⊆ O, where O is the set of all outputs of the mechanism. And
the above inequality is equivalent to

Pr[A(D1) = t]
Pr[A(D2) = t]

≤ ekε, ∀t ∈ T ⇔ Pr[X = t − q(D1)]
Pr[X = t − q(D2)]

≤ ekε.

We will prove this inductively. Our base case is when n = 1, then the mechanism
becomes the well-known Laplacian mechanism, which is ε - differentially private
as ε = max(ε1). Now, notice that since λm = εm

Δ and λ1 > λ2 > · · · > λn, then
max(ε1, ε2, ..., εn) = ε1 = ε.

Now, assume with the same break points c1, c2, ..., ck−1 where 0 < c1 < c2 <
· · · < ck = ∞, the merged Laplacian mechanism is ε = ε1 - differentially private.
We want to prove that adding one more break point ck < ∞ to the new merged
mechanism satisfies ε - differential privacy. We will prove the case where t−q(D1)
and t − q(D2) are negative, as the other cases follows the similar proof with a
few sign changes. For m ∈ {1, 2, ..., k − 1}, we have

Pr[X = t − q(D1)]
Pr[X = t − q(D2)]

=
ame

t−q(D1)
λm

ake
t−q(D2)

λk

=
am

ak
· e

t−q(D1)
λm

− t−q(D2)
λk
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We also know that,

ak = ak−1e
ck−1

λk
− ck−1

λk−1 = ak−2e
ck−2
λk−1

− ck−2
λk−2

+
ck−1

λk
− ck−1

λk−1 = ame
∑k−1

i=m−1

(
ci

λi+1
− ci

λi

)

Hence,
am

ak
= e

∑k−1
i=m−1

(
ci
λi

− ci
λi+1

)
.

Notice that

k−1∑
i=m−1

(
ci

λi
− ci

λi+1

)
=

k−1∑
i=m−1

(
ci (λi+1 − λi)

λiλi+1

)
< 0 since λ1 > λ2 > · · · > λn.

Thus,

Pr[X = t − q(D1)]

Pr[X = t − q(D2)]
=

am

ak

· e
t−q(D1)

λm
− t−q(D2)

λk < e

t−q(D1)
λm

− t−q(D2)
λk = e

λk(t−q(D1))−λm(t−q(D2))
λmλk

<e

λm(t−q(D1))−λm(t−q(D2))
λmλk = e

t−q(D1)−t+q(D2)
λk = e

q(D2)−q(D1)
λk = e

εk < e
ε
.

Hence, we have proved that the proposed mechanism is ε - deferentially private.

We evaluate the l1 cost function L(x) = |x| and l2 cost function L(x) = x2, for
the Laplacian, Merged Laplacian with 1 break point and Merged Laplacian with
2 break points as shown in AppendixC. We show that the cost for the Merged
Laplacian with 2 break points is lower than that of the Laplacian mechanism
and hence we achieve better utility for the same privacy loss.

6 Conclusion and Future Work

In this paper, we presented two novel differentially private mechanisms that
provide better accuracy guarantees compared to existing mechanisms. Firstly,
we presented a new noise adding mechanism that preserves (ε, δ)-differential
privacy. The proposed mechanisms provide more scope for customization as they
have more parameters to tune. Due to this customizable and flexible nature,
appropriate values for different parameters in the mechanisms can be set. We
also show that the generalized truncated Laplacian mechanism performs better
than the optimal Gaussian mechanism. Next, we show that the proposed merging
of Laplacian mechanisms demonstrates better in performance in terms of various
metrics for l1 and l2 loss without sacrificing additional privacy. As a part of future
work, we plan to perform an in-depth comparison of all (ε, δ)-differentially private
and ε-differentially private mechanisms and highlight the pros and cons of every
mechanism.
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A Proof for Lemma 1 and Lemma 2

Here, we present the proof for Lemma 1 and Lemma 2 used in Sect. 4.2.

Proof (Proof for Lemma 1). Since the probability density function f(x) is mono-
tonically increasing when x ≥ 0 and is monotonically decreasing when x < 0,

max
( ∫ A+Δ

A

f(x)dx,

∫ B

B−Δ

f(x)dx
)

=

{∫ B

B−Δ
f(x)dx when |A| ≥ |B|∫ A+Δ

A
f(x)dx when |A| < |B|.

We will first discuss the case when |A| ≥ |B|,

max
( ∫ A+Δ

A

f(x)dx,

∫ B

B−Δ

f(x)dx
)

=
∫ B

B−Δ

f(x)dx =
∫ B

B−Δ

Me− x
λ dx

= Mλ
(
e− B−Δ

λ − e− B
λ )

)

Plugging in M = 1

λ(2−e
A
λ −e− B

λ )
as in our definition for the generalized trun-

cated Laplacian distribution, A = λ ln
[
2 + (1−δ

δ )e− B
λ − ( 1δ )e− B−Δ

λ

]
as specified

in Theorem 1, we have

∫ B

B−Δ

f(x)dx =
e− B−Δ

λ − e− B
λ

2 − e
A
λ − e− B

λ

=
e− B−Δ

λ − e− B
λ

( 1δ )
(
e− B−Δ

λ − e− B
λ

) = δ

We omit showing the computation for the case when |A| ≤ |B| as the derivation
is very similar to that of the above mentioned case.

Now, we will proceed to prove Lemma 2.

Proof (Proof for Lemma 2). Given two neighboring datasets D1 ∼ D2, we know
that |q(D1) − q(D2)| ≤ Δ, thus the condition P(S) − eεP(S + d) ≤ δ for any
|d| ≤ Δ is equivalent to

P(S) − eεP(S + q(D1) − q(D2)) ≤ δ ⇔ P(S − q(D1)) ≤ eεP(S − q(D2)) + δ

Hence, for any t ∈ S, the condition is equivalent to

Pr(X = t − q(D1)) ≤ eεPr(X = t − q(D2)) + δ

⇔ Pr(q(D1) + X = t) ≤ eεPr(q(D2) + X = t) + δ

⇔ Pr [A(D1) ∈ T ] ≤ eεPr [A(D2) ∈ T ] + δ,

which is the necessary condition for mechanism A to preserve (ε, δ)-differential
privacy.



Utility-Enhancing Flexible Mechanisms for Differential Privacy 87

B Generalized Truncated Laplacian - Evaluation

We empirically show that the ratio of the noise amplitude L∗
1 and noise power L∗

2

of generalized truncated Laplacian mechanism and the optimal Gaussian mech-
anism is always less than 1 for appropriate values of δ, A and B as described
in Sect. 4. Compared to the optimal Gaussian mechanism, the generalized trun-
cated Laplacian mechanism reduces the noise power and noise amplitude across
all privacy regimes. The implementation can be found in https://github.com/
vaikkunth/DPMechanisms.

ε δ A L∗
1 L∗

2

0.7 2.5e−06 −17.46 0.25 0.13

0.4 4.0e−06 −27.57 0.27 0.15

0.4 2.5e−06 −28.74 0.27 0.14

0.4 9.5e−06 −25.4 0.29 0.17

0.4 3.0e−06 −28.29 0.27 0.14

0.7 6.0e−06 −16.21 0.27 0.14

0.4 8.5e−06 −25.68 0.29 0.16

0.7 3.5e−06 −16.98 0.26 0.13

0.7 4.0e−06 −16.79 0.26 0.14

0.4 2.0e−06 −29.3 0.26 0.14

0.1 4.5e−06 −93.66 0.31 0.19

0.7 3.0e−06 −17.2 0.26 0.13

0.4 5.5e−06 −26.77 0.28 0.15

0.7 9.5e−06 −15.55 0.28 0.15

0.4 6.0e−06 −26.55 0.28 0.16

0.7 1.0e−06 −18.77 0.24 0.12

0.4 6.5e−06 −26.35 0.28 0.16

0.4 7.0e−06 −26.17 0.28 0.16

0.4 4.5e−06 −27.27 0.27 0.15

0.4 9.0e−06 −25.54 0.29 0.17

0.4 3.5e−06 −27.9 0.27 0.15

0.1 9.5e−06 −86.19 0.32 0.21

0.1 5.5e−06 −91.66 0.31 0.19

0.1 5.0e−06 −92.61 0.31 0.19

0.4 1.5e−06 −30.02 0.26 0.13

0.4 8.0e−06 −25.83 0.29 0.16

https://github.com/vaikkunth/DPMechanisms
https://github.com/vaikkunth/DPMechanisms
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ε δ A L∗
1 L∗

2

0.7 7.0e−06 −15.99 0.27 0.15

0.7 7.5e−06 −15.89 0.27 0.15

0.4 1.0e−06 −31.03 0.25 0.13

0.1 7.0e−06 −89.24 0.32 0.2

0.4 5.0e−06 −27.01 0.28 0.15

C Merging Laplacian Distributions - Evaluation

We evaluate the l1 and l2 cost for the Laplacian, Merged Laplacian with 1 break
point and Merged Laplacian with 2 break points. We show that the cost for
the Merged Laplacian with 2 break points is lower than that of the Laplacian
mechanism and hence we achieve better utility for the same privacy loss. The
implementation can be found in https://github.com/vaikkunth/DPMechanisms.

(ε1, ε2, ε3) (c1, c2) L∗
1 L∗

2

(0.2, 0.25, 0.33) (1, 3) (3.0, 3.03, 1.12) (18.0, 18.22, 3.94)

(0.17, 0.25, 0.33) (1, 3) (3.0, 3.03, 1.12) (18.0, 18.22, 3.96)

(0.17, 0.2, 0.33) (1, 3) (3.0, 3.05, 1.13) (18.0, 18.35, 4.07)

(0.14, 0.25, 0.33) (1, 3) (3.0, 3.03, 1.12) (18.0, 18.22, 3.97)

(0.14, 0.2, 0.33) (1, 3) (3.0, 3.05, 1.13) (18.0, 18.35, 4.08)

(0.14, 0.17, 0.33) (1, 3) (3.0, 3.06, 1.13) (18.0, 18.43, 4.15)

(0.14, 0.17, 0.2) (1, 3) (5.0, 5.01, 1.96) (50.0, 50.15, 16.26)

(0.12, 0.25, 0.33) (1, 3) (3.0, 3.03, 1.13) (18.0, 18.22, 3.98)

(0.12, 0.2, 0.33) (1, 3) (3.0, 3.05, 1.13) (18.0, 18.35, 4.08)

(0.12, 0.17, 0.33) (1, 3) (3.0, 3.06, 1.13) (18.0, 18.43, 4.16)

(0.12, 0.17, 0.2) (1, 3) (5.0, 5.01, 1.96) (50.0, 50.15, 16.28)

(0.12, 0.14, 0.33) (1, 3) (3.0, 3.07, 1.14) (18.0, 18.49, 4.21)

(0.12, 0.14, 0.2) (1, 3) (5.0, 5.02, 1.98) (50.0, 50.26, 16.5)

(0.11, 0.25, 0.33) (1, 3) (3.0, 3.03, 1.13) (18.0, 18.22, 3.98)

(0.11, 0.2, 0.33) (1, 3) (3.0, 3.05, 1.13) (18.0, 18.35, 4.09)

(0.11, 0.17, 0.33) (1, 3) (3.0, 3.06, 1.14) (18.0, 18.43, 4.16)

(0.11, 0.17, 0.2) (1, 3) (5.0, 5.01, 1.96) (50.0, 50.15, 16.3)

(0.11, 0.14, 0.33) (1, 3) (3.0, 3.07, 1.14) (18.0, 18.49, 4.21)

(0.11, 0.14, 0.2) (1, 3) (5.0, 5.02, 1.98) (50.0, 50.26, 16.52)

(0.11, 0.12, 0.33) (1, 3) (3.0, 3.08, 1.14) (18.0, 18.53, 4.25)

(0.11, 0.12, 0.2) (1, 3) (5.0, 5.03, 1.99) (50.0, 50.34, 16.68)

(0.11, 0.12, 0.14) (1, 3) (7.0, 7.01, 3.28) (98.0, 98.12, 42.57)

(0.2, 0.25, 0.33) (1, 5) (3.0, 3.03, 1.61) (18.0, 18.22, 5.17)

https://github.com/vaikkunth/DPMechanisms
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(ε1, ε2, ε3) (c1, c2) L∗
1 L∗

2

(0.17, 0.25, 0.33) (1, 5) (3.0, 3.03, 1.61) (18.0, 18.22, 5.19)

(0.17, 0.2, 0.33) (1, 5) (3.0, 3.05, 1.63) (18.0, 18.35, 5.4)

(0.14, 0.25, 0.33) (1, 5) (3.0, 3.03, 1.61) (18.0, 18.22, 5.2)

(0.14, 0.2, 0.33) (1, 5) (3.0, 3.05, 1.63) (18.0, 18.35, 5.41)

(0.14, 0.17, 0.33) (1, 5) (3.0, 3.06, 1.64) (18.0, 18.43, 5.55)

(0.14, 0.17, 0.2) (1, 5) (5.0, 5.01, 1.85) (50.0, 50.15, 10.69)

(0.12, 0.25, 0.33) (1, 5) (3.0, 3.03, 1.62) (18.0, 18.22, 5.21)

(0.12, 0.2, 0.33) (1, 5) (3.0, 3.05, 1.63) (18.0, 18.35, 5.42)

(0.12, 0.17, 0.33) (1, 5) (3.0, 3.06, 1.64) (18.0, 18.43, 5.56)

(0.12, 0.17, 0.2) (1, 5) (5.0, 5.01, 1.85) (50.0, 50.15, 10.7)

(0.12, 0.14, 0.33) (1, 5) (3.0, 3.07, 1.65) (18.0, 18.49, 5.65)

(0.12, 0.14, 0.2) (1, 5) (5.0, 5.02, 1.86) (50.0, 50.26, 10.98)
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Abstract. From the perspective of responsible data release, simulation is a useful
tool for estimating risk from adversaries with an unknown amount of identified
auxiliary information. We present a simple approach to simulation of attack on
sampled datasets, along with an implementation, and demonstrate how a data
stewardmightmake use of it to evaluate the privacy risk of release for data gathered
about students in the University of California system.
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1 Introduction

Data stewards are eager to have a trustworthy and useful measure of privacy risk as they
prepare the release of a publicly accessible research database. This paper advances a
theory of plausible deniability as a measure of database privacy with several distinctive
strengths:

• Ease of interpretability
• Ease of use, with released code1

• Scalability to large datasets
• Suitability for evaluation of sampling techniques

The basic idea of plausible deniability is that, when a released dataset that is known
to be a random sample of the relevant population is attacked, some of the apparent
matches that are found between identified auxiliary data and the research data will be
false matches.2

We show for a particular educational dataset that plausible deniability remains quite
high even when heroic assumptions are made about the attacker—viz., that they have
quite complete and accurate data about many of the variables in identified form, and are
able to impute some of the values they lack.

We conclude with discussion of our results in the light of recent work that has argued
sampling does a poor job of protecting plausible deniability.

1 The project repository is https://codeberg.org/bavajadas.de.benadam/PrivacySim.
2 We use the terms ‘attacker’ and ‘intruder’ interchangeably throughout.
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Fig. 1. Model for risk of correctmatching.Beyond the estimation of the likelihood that an apparent
match correctly identifies an individual, which is separately modeled by Rocher et al. (2019),
the model includes factors for the likelihood of an attempt with particular auxiliary information
resulting in an apparent match, and the probability of the attempt with those resources happening
at all.

2 What Is Plausible Deniability?

Records that are unique in a sample may not be unique in the broader population, and
attributes that apply to some number in a sample may apply to a greater number in the
population. A consequence of these simple facts is that without auxiliary information
about the entire population, an attacker can only do so well against sampled data: even
if a match or an attribute disclosure is correct, the attacker cannot be certain that it is, in
fact, correct.3

Consider a paradigmatic example: an attacker knows his target Alice is represented
in a database, and the attacker is able to uniquely match several attributes to Alice in a
released subsample. A consequent revelation of a sensitive attribute can be denied on the
grounds that the match to Alice is false, explained by the fact that only a random sample
of the full dataset has been released. More concretely, suppose Alice is a 67-year-old
black femalewho lives in theUS in zip code 85719, but that there ismore than one person
with those same demographics. The intruder can’t be sure that Alice is the person who
is apparently matched; perhaps a different 67-year-old black female from the same zip
code is the one described in the matching record.

3 Plausible Deniability Is Useful and Underdeveloped

Plausible deniability can be used prospectively to evaluate a data steward’s options for
deidentification. The risk (or estimated costs) borne by research subjects are a product
of several factors: the probability that an attack will be attempted, the probability that an
attempted attack will yield a unique match to the data subject,4 the probability that the
match is accurate, and the harm that the research subject would suffer from successful
reidentification (see Fig. 1).5

3 In communications anonymity, a similar point is made by pointing out that “usability is a
security property;” that is, that increased adoption of an anonymity system increases the total
set of individuals that an attacker must individuate (as well as those individuals’ diversity, but
that is a separate point). See Serjantov et al. (2003), and discussion of “degree of anonymity” in
Berthold et al. (2001).

4 The insights in this paper can also be extended to attacks that seek out attribute disclosure,
without unique reidentification to a single research subject.

5 We could add to this model the harm that could arise from incorrect matches that are presumed
by the attacker and others to be accurate, but with increased attention on the likelihood of false
matches, this problem should be marginalized. (Put differently, every form of deidentification
runs the risk that a careless or fraudulent intruder might claim that they have reidentified a
research subject when the chance that they have actually done so is very low.)
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Plausible deniability provides significant privacy protection to research subjects.
Plausible deniability creates two layers of protection—first and most directly by driving
down the probability that an apparent match is correct; and second and more indirectly
by making the research dataset a less desirable target for intruders to attack in the first
place.

The variety of database privacy represented by PlausibleDeniability has been lurking
in the background of many technical papers and real-world practices (indeed, it is one
of the main reasons that data stewards release subsamples instead of full datasets), but
it has not been adequately theorized and recognized as a rigorous way to substantially
reduce reidentification risk without the complexity of other popular options (Federal
Committee on Statistical Methodology 2005).

Consider, for example, an internal study produced by the U.S. Census Bureau in
which a group of researchers attempted to attack the data from an individual-level pub-
lic use dataset on over two million data subjects. The subjects were selected from three
counties that were specifically chosen because of their vulnerability (residents in these
counties are less transient, and therefore less likely to have noisy or stale data.) Next, the
researchers purchased identified data on 700,000 people in the selected counties from a
data aggregator and used all available overlapping key variables such as age, ethnicity,
gender, and income. Out of the more than 2 million records in the research data files, the
researchers’ matching algorithm accurately linked 87 of the 700,000 identified records
to records in the Census Bureau dataset. The study’s preferred method of measuring rei-
dentification risk was to report the proportion of records accurately matched: 87/700,000
– or 0.012%. But muchmore significant from the standpoint of this paper is that the algo-
rithm had made apparent matches on 389 individuals. Of those 389 apparent matches,
only 87 were actually correct—an accuracy rate of 22% (Ramachandran et al. 2012).
The vast majority of apparent matches were wrong. These false matches would taint the
value of the accurate matches for an intruder who lacks access to the Census Bureau’s
dataset. A more recent internal study found that outside commercial datasets allowed
for a greater number of matches to Census Bureau records but that these matches were
again predominantly erroneous—only 39% of the putative matches were in fact correct
(Abowd 2020). Since the intruder would not know which of their matches are correct
and which are not, all of the apparent matches are highly suspect and of low value.

The efficacy of sampling for preserving privacy has come under acute attack from
Rocher et al. (2019), which showed that an intruder could accurately estimate an indi-
vidual’s uniqueness likelihood from sample data alone—that is, that an intruder could
estimate the likelihood that a record unique in the sample was also unique in the
broader population. The approach develops a probabilistic generative model by esti-
mating marginal distributions for the variables separately from the covariance, then
combining the estimates using a Gaussian copula. The model is applied to several large
datasets.

Rocher et al. (2019) claims that its “results reject [that]… sampling or releasing par-
tial datasets provide plausible deniability.” The authors do not give ‘plausible deniability’
a precise definition, but a straightforward interpretation of their study suggests that plau-
sible deniability for an individual requires an individual’s uniqueness likelihood to be
below a threshold. Plausible deniability for a sample would require that some proportion
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of the individuals in the sample have plausible deniability, on this view.6 The thresholds
for individual uniqueness likelihood and sample proportion would, presumably, be left
to the judgment of a data steward in a particular context.

Our work supplements individual likelihood estimation by representing it in the con-
text of uncertainty about an attack: in our simple graphical model, individual uniqueness
likelihood is represented by the likelihood of correct match given an apparent one, but its
ultimate impact on privacy is also dependent on both the likelihood of an apparent match
given an attack, and the probability of the attack itself (Fig. 1). The individual likeli-
hood estimation of uniqueness is a good measure of plausible deniability only under the
assumption that the intruder has auxiliary information about all of the variables used to
render the data subject unique. Indeed, the results from the illustrative attack in Rocher
et al. reinforces the power of sampling: to reach the target threshold of 90% chance of
population uniqueness, Rocher et al. (2019) found that on average, an attacker needs
data on 10 quasi-identifiers for each target (though this number will increase or decrease
depending on the structure and distribution of the variables).

Our approach is compatible with the recent trend toward assuming that all informa-
tion could be used as auxiliary information to attack individuals in a dataset, but does
not require that assumption. Instead, we define Plausible Deniability to allow different
predictions about the availability of auxiliary information to be explicitly represented in
simulation. A data steward can test a range of assumptions about the auxiliary informa-
tion that might be available to an attacker and express the plausible deniability across
the range.7 Moreover, the choices about the assumptions can be transparent and easy to
interpret.

4 How Plausible Deniability Overlaps with and Differs from Other
Measures of Database Privacy

If we consider some of the most common measures for reidentification risk through the
lens of false matches and plausible deniability, we see that they fail to account for an
attacker’s lack of confidence. At first blush, this might seem to suggest that they are all
too risk-averse, but this is not accurate, as other measures of privacy inevitably require
certain assumptions or relaxations in order to accommodate the release of useful research
data. A more precise summary is that plausible deniability is differently conservative
and lax when compared to other measures of risk.

4.1 k-Anonymity

k-Anonymity ensures that any combination of values for quasi-identifier variables that
are represented in the released dataset must be shared with at least k − 1 other records

6 This interpretation might be generalized further to include cases in which groups of one kind or
another share low plausible deniability.

7 The assumptions need not be uniform, either. A data steward can assign greater likelihood of
accessible auxiliary information for a data subjectwho is likely to be targeted, such as aGovernor,
or to the members of a vulnerable group who face special harms from successful attack.
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(Samarati 2001; Sweeney 2002). The measure of reidentification risk is “k” itself—
ensuring that a matching attack would do no better than link an identity to k different
data subjects. Thus, the larger “k” is, the more privacy is afforded. The limitations of
“k” as a measure of privacy are now well understood. Some, like attribute disclosure and
overlapping releases, are amenable to technical refinement, but the greatest concern is
that k-Anonymity requires a data steward to make assumptions about which variables
an attacker could have (quasi-identifiers) and which he is expected to not have (sensitive
attributes). For these reasons, k-Anonymity is understood to be an overestimate of pri-
vacy. Less attention has been paid to the ways in which it is an underestimate. But when
sampling is involved, it is. Even if an intruder has information on the sensitive attributes
(the ones that were not considered quasi-identifiers) that allows him to break through
the k-Anonymity protections and uniquely link an identity to a released database, the
match could be wrong. There could be other people in the general population but not
represented in the sample who share the tuple of values.

For example, even the famous reidentification of Gov. William Weld in pre-HIPAA
hospital records was more error-prone than Latanya Sweeney’s original study suggests.
Sweeney claimed to have reidentified Gov. Weld by finding his zip code and date of
birth in the publicly available voter registration rolls, and then identifying the hospital
record that had his unique combination of gender-birthdate-zip code (Ohm 2010; Barth-
Jones 2012a, b). But these three quasi-identifiers alone would not be sufficient to make
a confident match. In fact, there was more than a 35% chance that at least one other
person would have shared Gov. Weld’s gender, birthdate, and zip code, and if such a
doppelgänger existed, there would be a 45% chance that he was not registered to vote
(Barth-Jones 2012a, b). Thus, Rocher et al. (2019) points out that Latanya Sweeney’s
reidentification ofWilliamWeld, using only sex, zip code, and date of birth, was actually
quite likely to be wrong.8

The false match errors from sampling are not typically incorporated into the measure
of privacy protection in k-anonymity. In fact, under the traditional understanding of k-
anonymity, even though using the technique on a small random sample of the data
would intuitively and obviously reduce reidentification risk, the sampling would cause
the measure of “k” to drop, implying that privacy has been lost. A data steward who
starts by first extracting a small random sample would have to introduce more clustering,
suppression, and generalization in order to meet a target k-value than he would if he
released the entire dataset.

A less common approach to k-Anonymity (sometimes called “k-mapping”) ensures
that the k-threshold is reached for the population of potential targets, and not for the
research database itself. This version of k-Anonymity ismore analytically sound because
it avoids exaggerating the privacy threat and allows a research release to have fewer than
k subjects sharing a set of values of quasi-identifiers as long as the data steward has
confidence that the intruder would not be able to disambiguate those research subjects

8 Rocher et al. (2019) estimated that there was a 23% chance the match was wrong. Ironically,
this study by Rocher et al. was the same study that was described in the New York Times’
article with the misleading headline “Your Data Were ‘Anonymized’? These Scientists Can Still
Identify You.”



96 D. Sidi and J. Bambauer

from the k − 1 other individuals in the general population who share their values. k-
mapping thus has a lot in common with plausible deniability as we have defined it. It
ensures that any intruder who has access to identified records that contain the quasi-
identifiers would have at best a 1/k chance of correctly attributing the right identity to a
line of data.

Plausible deniability ismuchmore flexible in its assumptions, however. It allows data
stewards to make an unlimited range of assumptions about the quantity and quality of
information that an intrudermight access rather than restricting the data steward to a strict
set of quasi-identifiers. For example, a data steward could assume that an intruder could
have identified records that contain all variables, but that have wrong or missing values
for a proportion of the cells. The data steward could even make a range of assumptions
about the distribution of missing values. In other words, plausible deniability allows a
data steward to model an attack any way they think is remotely feasible and then study
the impact of various deidentification techniques on false match rates.

4.2 Unicity

Unicity is another measure of privacy in popular use today, particularly in studies that
report results fromdemonstration attacks. Researchers decide on a set number of “tuples”
and then reportwhat proportion of data subjects are unique in a datasetwhen the specified
number of tuples are randomly drawn from their data. For example, the “Unique in a
Crowd” study found that 50% of data subjects were unique based on just two randomly
chosen time-location tuples. The famous credit card and Netflix prize reidentification
studies used uniqueness or unicity to measure privacy risk, too.

Unicity is closely related to k-anonymity. In fact, it is k-anonymity with k set to two
and all tuple variables treated as quasi-identifiers. While the k-value is relatively weak
(k is usually set to at least five), this is made up for by the fact that the researchers treat
variables that are not typically thought of as indirect identifiers as quasi-identifiers—
thereforemaking conservative (as in heroic) assumptions about the type of information an
intruder might have about an identified target. For this reason, unicity is more appealing
to disclosure control experts who want to avoid making assumptions about the types of
auxiliary information that might be available for an attack in the future.

However, just as with k-Anonymity, unicity measurements do not take sampling
into account. And, as with k-anonymity, even though sampling would make accurate
matching attacks more difficult, sampling will make the dataset look worse for privacy.

For example, de Montjoye et al. (2015) found that 90% of the people in an
anonymized credit card dataset were unique based on the date and place of four pur-
chases. A reader is likely to think that this means a person really is unique based on four
purchases, and therefore vulnerable to attack if an intruder happens to have this infor-
mation in identified form. But the credit card data was incomplete. It only described
a sample of people (cardholders for the particular credit card company), and it only
described a subset of those cardholders’ purchases (the transactions that involved that
particular credit card). Treating sample uniqueness as a measure of reidentification risk
is perverse because the reidentification risk will appear to rise when a data producer uses
smaller and smaller samples. At the extreme, a dataset containing just one observation
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of one transaction by one unidentified person will produce a “reidentification” risk of
100% using unicity as its measure even though it will in fact be resistant to attack.

4.3 Differential Privacy

Like the “unicity” measure for privacy, Differential Privacy makes heroic assumptions
about what type of data might be available to a data intruder, now or in the future. In
fact, Differential Privacy goes further than the studies that measure unicity.While studies
relying on unicity often, if implicitly, make some assumptions about what amount and
type of data an attacker is most likely to use, the differential privacy model treats all
attacks as equally plausible, including an attack by an intruder who knows everything
about every person except for one last piece of information about one person (Dwork
and Smith 2009; Bhaskar et al. 2011). In some respects, assuming that attackers are
virtually omniscient makes life easier for the data stewards, as it relieves them from
having to make educated (and sometimes difficult) guesses about which types of threats
are plausible and which are not.

The problem with this approach, though, is that its privacy guarantees are deceptive.
Because it makes such strong assumptions about attackers, it must allow for some infor-
mation leakage (through the selection of ε) in order to provide any useful information
from the research dataset. In fact, even the ε guarantee has been too constraining in prac-
tice, leading to further relaxations of Differential Privacy (for example, the introduction
of δ). Yet these parameters, ε and δ, do not and cannot ensure that the relaxations in
privacy promises are well-aligned with real world risk. They are just as likely to relax
the guarantees that relate to a matching attack using common indirect identifiers like age
and zip code as they are to relax the guarantees relating to attacks that use uncommon
information like body temperature or GPS coordinates at a specific moment in time.
Thus, in some contexts, the use of Differential Privacy is an abdication of responsibility,
allowing data custodians to claim quantifiable “guarantees” and avoid doing the hard but
necessarywork of differentiating between realistic and unrealistic risks (Domingo-Ferrer
and Muralidhar 2016; Christensen and Miguel 2016).9

Plausible Deniability, as we define it, makes assumptions about intruder attacks that
would violate the premise of Differential Privacy. The theoretical intruder who has all
information about everybody except for one last detail about one person will be able
to attack a dataset with high plausible deniability because that intruder will be able to
rule out every other person who is similar to the target and might have been left out

9 Nayek et al. (2016) assesses the problemwith formal privacymeasures, like “differential privacy,”
concluding “… for developing practical disclosure control goals, it is essential for the agency
to consider intruders with limited prior information about their target units.”. Elliot et al. note
“many authors have commented that this environment is inherently difficult—if not impossible—
to understand and therefore directly assessing risk is itself impossible. This in turn has led to bad
decision-making about data sharing (a strange mixture of over-caution and imprudence which
is driven more often than not by the personality of the decision-maker rather than by rational
processes.”
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of the sample.10 By contrast, Plausible Deniability assumes that an attacker has limited
auxiliary information and could not confidently rule out the possibility of a false match.
However, as we show, data stewards can still make very generous assumptions about the
type and quality of auxiliary data that an attacker will have and still preserve data utility
through sampling.

That said, the power of sampling is not lost on the Differential Privacy research
community. Li et al. (2012) have studied its value formeeting and preservingDifferential
Privacy guarantees. Like us, these authors sought to incorporate the routine practice of
sampling into quantified notions of privacy: “[w]e observe that in many data publishing
scenarios, random sampling is an inherent step. For example, the census bureau publishes
a 1-percent microdata sample. In many research settings (such as when Netflix wants
to publishing movie ratings), it is sufficient to publish a random sample of the dataset.
Many times, even when the dataset is not the result of explicit sampling, one can view
it as result of implicit sampling, because the process of selecting respondents involves
randomness. The natural question is how one can benefit from such explicit or implicit
sampling.”

Li et al. (2012) goes on to show that sampling can be combined with k-anonymity
to satisfy (ε, δ)- Differential Privacy in a query system. The authors explore (β, ε, δ)-
Differential Privacy where β represents the sampling proportion. To be clear, the authors
do not use sampling the way we do—as a means to make even a successful attack
futile because it cannot be distinguished from a false match. Instead, they use sampling
within the structure and goals of Differential Privacy, thereby embedding the benefits
and drawbacks of Differential Privacy that we describe above.

We take a different approach. Data stewards can use Plausible Deniability metrics
to report the privacy value of a random sample of microdata under a range of generous
assumptions. And unlikeDifferential Privacy, the choices involved in the use of Plausible
Deniability will be easy for smaller, less sophisticated agencies to use and for the general
public to understand.

5 How to Measure Plausible Deniability

Plausible deniability measures the chance that a data intruder, who is presumed to have
access to a certain range of data for a certain proportion of the population, will falsely
attribute sensitive data to the wrong person. The higher plausible deniability is, the more
privacy is preserved. Although there are a number of statistical disclosure control tech-
niques that can achieve plausible deniability (including noise-adding, data-swapping,
and generalization), we focus primarily on sampling-based approaches in this study.11

Plausible deniability can be measured using a stochastic process. Consider D0, a
dataset controlled by a data stewardwhowishes to create and release a research database,
R0. In order to reduce the risk of reidentification, the data steward plans to randomly

10 More technically, sampling alone could never meet Differential Privacy standards because any
microdata release that does not involve perturbation or the creation of synthetic data will violate
the Differential Privacy guarantee.

11 We allow simulation of noise levels in both the released data and the auxiliary data, though this
is not explicit in the simulation steps below. See the code repository, above at note 1.
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select data on only 1/t of the research subjects. To measure plausible deniability, the data
steward can assign random IDs to each research subject (which will be used to identify
false matches) and run a simulation:

1. Randomly select 1/t records, and potentially remove some variables from the orig-
inal data, to create Ri ⊂ D0. This will represent a potential RESEARCH database
prepared for release.

2. Randomly select 1/s records to create Ai ⊂ D0, and match the variables in the
released data. This will represent a potential AUXILIARY set of identified records
that an intruder will use for attack.

3. Randomly selectpnon-empty values to be suppressed in each individual record inAi

where p ≥ 1. This represents the “payload”—the potentially sensitive information
about an individual that the intruder does not yet possess. (Alternatively, the data
steward can select one or more variables that the steward believes are not accessible
to an intruder and suppress all values in that set of variables.12)

4. Match unique records in Ai to unique records in Ri. Each matched pair represents
an apparent reidentification.13 Let Mi be the count of matched pairs.

5. (Optional). Use the methodology from Rocher et al. (2019) to estimate the confi-
dence of each matched pair, and drop all matched pairs where the confidence level
is lower than c*.

6. Use the unique IDs to identify which apparent matches are false. Let Fi be the
count of false matched pairs.

7. Use the unique IDs to accurately match the records in Ai to the records in Ri. Let
Pi be the count of potential matches.

8. Log Mi, Fi, and the unique IDs of data subjects included in matched pairs and in
false matched pairs.

9. Repeat N times.

10. Report the average false discovery rate (
∑

Fi∑
Mi ). This is the Plausible Deniability

measure for R0 under the assumptions supporting the settings for s and p in the
auxiliary data.

Data stewards could also look at the range of risk by identifying the minimum and
maximum false discovery rates for each individual data subject.

We anticipate that data stewards would assess the plausible deniability for a research
sample under a range of different assumptions for parameters s and p so that, rather than
reporting one single number, the steward would be able to report several Plausible Deni-
ability metrics under a range of reasonable or conservative assumptions about present
and future attacks.

Moreover, within the assumptions that are built into the simulation, the estimates of
Plausible Deniability are conservative estimates because the simulation uses the same

12 This decision would be similar to the judgments that must be made when differentiating between
quasi-identifiers and non-identifiers when implementing k-anonymity.

13 A slightly more sophisticated version of our methodology would include all matches, and sam-
pling uniformly to decide which records from the released data to match with which from the
auxiliary data.
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source of data for both the simulated research databases and the simulated auxiliary
data. In the real world, an intruder would be using data sourced from another origin, and
therefore containing different time-dependent data or different errors from the data used
in the research sample. Data stewards could incorporate this error into the simulations
if they would like.

Conversely, a data steward could start with a target level of Plausible Deniability
under a set of attack assumptions (s and p) and use simulations to find the right sampling
proportion.

For some databases, a data steward could use the distributions and covariance of the
variables to derive PlausibleDeniabilitymetrics analytically, but for large datasets, it will
often be simpler to make use of the law of large numbers through repeated simulations.

6 Proof of Concept Illustration: Education Data

As an application of the foregoing ideas, attacks were simulated on a dataset released in
2008 by the University of California (UC) system, which includes data on undergraduate
students from UC campuses. A graphical representation of a simulated attack on the UC
data is presented in Fig. 2.

Fig. 2. Attacks against a dataset are performed by sampling once to construct a research database
for release, and once to build the auxiliary data available to the attacker.
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The UC data contains data for a range of years from 1992 to 2006, including race,
whether the student applied as resident in California or from another state, SAT I and
SAT II scores, raw and UC adjusted GPA scores, number of AP courses taken, parent
income, theCaliforniaAPI rank of the student’s high school,whether the student enrolled
in the UC system, whether a bachelor’s degree was achieved, and the time to achieve
the bachelor’s degree.14

The simulation itself has a simple structure: first, a “munger” handles the particu-
larities of preprocessing the data, providing a unified interface to different underlying
datasets. So far, the munger is to be implemented for three datasets: the UC educa-
tional data discussed above, the 2010 1% and 5% PUMS data released by the US Cen-
sus, and the MIMIC III hospital dataset, which includes health diagnosis and treatment
information.15

Our simulations ran all combinations of settings for the parameters for 10 and 100
iterations.16 Table 1 reports, for one set of parameters, the average number of possible
matches, apparent matches, and true matches.

Table 1. Average Results for a Simulation Attack on UC Berkeley Enrollee Data Experiment 1.
Attacker presumed to know Year, Race, Cumulative GPA, and Graduation Status on 20% of the
Entire population. N = 54,618; auxiliary dataset contains 10,924 records; iterations = 100.

Research sample 20% Auxiliary Dataset (10,924 records)

Average # attempted
matches

Average # correct
attempted matches

False positive rate of
error

50% 27.52 5.28 80.81%

25% 42.61 2.45 94.23%

Even though the attacker’s auxiliary data had significant overlap with the research
sample, he was able to make only a handful of matches, and many of those matches were
actually wrong.

More concretely, consider the second line of Table 1. In an average attack simulation,
the attacker had auxiliary information on over 10,000 UC enrollees. Of these, over two
thousand were in the research sample and could have potentially been reidentified.
However, on average, the attacker would have been able to attach an identity to only 43
records in the research sample, and almost all of those matches would have been false.

14 The data dictionary can be found in the data directory of our repository. See above at note 1.
15 See https:/www.census.gov/programs-surveys/acs/data/pums.html for the PUMS data, and

https://mimic.physionet.org/ for the MIMIC III data.
16 There were 1,620 parameter settings. For each iteration at a given setting, steps 1–9 mentioned

above are performed. The full set of simulation runs is computationally intensive, so there are
two implementations of the simulation code. One is designed to run serially, and is suitable for
small, slow runs on a single laptop; the other is designed to run in parallel on a high-performance
computing cluster (HPC). The cluster we used had some specific features, such as use of the
PBS Scheduler, but minor modifications should allow the code to be used on a variety of HPC
setups. See the experimental_actors branch of the repository referenced above at note 1.

http://www.census.gov/programs-surveys/acs/data/pums.html
https://mimic.physionet.org/
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The reason is that despite the large amount of information available to the attacker, most
of his records would not be able to be linked to a unique line of data because other
records in the research sample share the same values. When the attacker did make a
match to a record that appeared to be unique in the research sample, it was actually not
unique. Other records in the portion of the data that was not included in the research
sample shared the same values. While the attacker occasionally got lucky and managed
to link to the right (non-unique) record, more often the matches were false.

Note that an intruder is able to make more apparent matches when the UC releases a
smaller sample of records.Thismay seemcounterintuitive, but itmakes sense.With fewer
records in the research sample, there will be more records that look unique, and therefore
more linkages between a unique record in the research sample and a unique record in
the auxiliary sample. But this is an artifact of sampling; in fact, the unique-to-unique
matches will be more likely to be wrong.

Next, consider a similar simulation exercise using a different set of variables. In
this simulation, the attacker has access to Year, Race, and undergraduate GPA (UGPA)
information. Given the low prevalence of undergraduate GPA available in identified
form, the experiment uses both the 20% auxiliary sample and a still-conservative-but-
more-realistic 1% auxiliary sample. Again, very few matches are able to be made to
sampled UC data, and the vast majority of matches are wrong (Table 2).

Table 2. Results for a SimulationAttack onUCBerkeley Enrollee Data. The attacker is presumed
to know Year, Race, and UGPA. N = 54,618; Iterations = 100.

Research
sample

20% Auxiliary Dataset (10,924 records) 1% Auxiliary Dataset (546 records)

Average #
attempted
matches

Average #
correct
attempted
matches

False
positive rate
of error

Average #
attempted
matches

Average #
correct
attempted
matches

False
positive rate
of error

50% 21.1 8.8 58% 2.47 0.27 89%

25% 42.61 2.45 80% 5.91 0.15 97%

The simulation results show the power of sampling if the UC has already clustered
the data (as it had with the 2008 data), even when the attacker is presumed to have access
to extensive and unrealistic amounts of identifying information.

For the final two simulations, a still larger set of variables are assumed to be available
to the attacker: in addition to everything the intruder in the first set of experiments had,
the new attacker also has state of residence, major, high school GPA, parental income,
high school rank, and quarters to degree. By using these additional variables, the attack
will be able to make more matches because much more of the research data will have
unique combinations of values for the full set of ten variables.

With more variables at the intruder’s disposal, the attacks are able to make a lot more
matches. Nevertheless, even under these conditions, the intruder would have very little
confidence in his matches to a research dataset that contained only a 50% or 25% sample
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of the data subjects. Even if an intruder matches an identity to a unique record using all
ten variables, each apparent match has a 40% probability of being wrong.

The final set of simulations repeated the simulation just described, but added the
additional precaution of suppression (Table 3). In addition to releasing only a sample of
the data, in this exercise, the UC suppresses a randomly selected 10% of the values of
the key variables. This precaution reduces both the number of apparent matches and the
percentage of apparent matches that are correct.

Table 3. Results for a Simulation Attack on UC Berkeley Enrollee Data Experiment 4. The
attacker is presumed to know Year, Race, State, Major, Graduation Status, Undergraduate GPA,
High School GPA, High School Rank, Parent Income, and Time to Degree on 20% of the entire
population, and 10% of values are suppressed in the Research Sample. N = 54,618; Iterations =
1,000.

Research sample 20% Auxiliary Dataset (10,924 records)

Average # attempted
matches

Average # correct
attempted matches

False positive rate of
error

50% 1,152 779 32%

25% 799 389 51%

7 Discussion

Plausible deniability measures the risk that an attack against a sampled dataset will
produce too many matches that genuinely identify an individual. A data steward seeking
to estimate the plausible deniability of a samplemust therefore consider the likelihood of
a genuine match given an apparent one—or more simply, the likelihood that an apparent
match is correct.

The central message of Rocher et al. (2019) is that in estimating the likelihood that
an apparent match is correct, the data steward and attacker are on almost even footing,
since they have provided a method that allows accurate estimation of the individual
likelihood from a sample, and the attacker is in possession of the sample. Accordingly,
one casualty of Rocher et al. (2019) is an interpretation of the protections afforded by
plausible deniability that is encouraged by the term itself: plausible deniability does not
always protect by allowing an individual faced with a disclosure to say “Thematch to me
is merely apparent. I am outside the sample, and you have not learned anything about the
sensitive variables for me.” For some data, protections of this sort may be important, and
in those cases more weight should be placed upon individual uniqueness likelihoods, but
for other data—equally possessed of plausible deniability—protection may be provided
by the low probability of a person being matched in the first place.

Therefore the council of despair offered by Rocher et al (2019) over the privacy value
of sampling is overbroad: attackers themselvesmust bemodeled. The likelihood of a true
match depends on the likelihood of an apparent match given an attack with particular
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resources, as well as the probability of those particular resources being assembled in the
first place. Both of the latter aspects of plausible deniability are included in the approach
we present, providing useful flexibility to data stewards with differing data that present
differing threats. Our approach complements the methods of Rocher et al (2019), while
tempering the gloomy conclusions drawn from it.

Finally, specifying the parameters of our approach provides a valuable source of
interpretability: the size and quality of an attackers’ dataset, the payload of variables that
the attacker seeks, as well as the size and variables released, are all easily understood,
and subject to justification by appeal to the particularities of an individual dataset release.
In addition to flexibility and ease of use, our approach offers transparency.
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Abstract. We are concerned here with the publication of microdata
which preserve the confidentiality of the respondents, as measured by dif-
ferential privacy. We borrow the SIMEX methodology from the measure-
ment error literature to analyze microdata perturbed with the Laplace
mechanism, hoping to recover unbiased estimates of the parameters of
interest. Our simulations show that the strategy works in theory, but
only for values of ε too large of be of used in practice. It might however
be of use in the case of normal noise addition, when one does not require
differential privacy.

Keywords: Differential privacy · Microdata · SIMEX

1 Introduction

We are concerned here with the publication of microdata which preserve the
confidentiality of the respondents. This has of course been a topic of interest
for decades, and various methods have already been proposed to achieve this
goal, from recoding and suppression, through microaggregation, all the way to
the generation of completely synthetic datasets. (See for example [12,24] or [6]
for details). However, we are aiming here specifically at microdata which satisfy
differential privacy.

Differential privacy [8] is a rigorous measure of the privacy offered by the
process with which data or statistics computed from data are produced. It basi-
cally promises respondents that accepting to appear in the dataset will not allow
an intruder to learn any more personal information about them than they could
without their data being in the dataset. Several methods have been proposed
to produce differentially-private discrete datasets, known as contingency tables
in the statistics literature, and often referred to as histograms by computer sci-
entists (see for e.g. [1,4,11]). More recently, a few methods have been proposed
to create differentially-private synthetic microdata (e.g. [14,22,23]). Still, these
methods remain rarely studied or used in practice for statistical disclosure con-
trol, probably for two main reasons.

First, differential privacy is often seen as excessive, or inappropriate, in com-
parison to privacy measures and constraints which have historically been used
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for statistical disclosure control. Since this added guarantee comes with a need
for more perturbation of the original data, it is not a very attractive criterion
for practical use.

Second, the algorithms proposed to produce differentially-private data are
often quite complicated, involving for example Fourier transforms or deep learn-
ing models. Consequently, they are hard to implement, and it is difficult to
understand their impact on the quality of the data, and in particular to know
how one should take into account the added variability in the data analysis.
This contrasts with the methodology developed over the years to analyse syn-
thetic data generated for privacy protection with methodology borrowed from
the missing data literature [7,17–19].

In this paper, we propose to borrow from the literature on methodology
for data with measurement errors to try to alleviate these two difficulties with
differentially private microdata. More precisely, the idea is to use the very simple
method of Laplace noise addition to generate the microdata, and combine it with
the SIMEX methodology in order to take into account the noise mechanism and
obtain better estimates.

To be fair, it has never been suggested to generate differentially private syn-
thetic datasets by simply adding Laplace noise to continuous variables, and this
is surely not the optimal method to do so. However, it is easily implemented and
fits perfectly the framework of measurement error models, in particular because
detailed information about the algorithm, such as the noise variance, can be
published without impacting the privacy guarantee. Hence, while this strategy
would most probably not be used in practice, it provides a good testing ground
for the potential of SIMEX in analyzing differentially private datasets.

As for SIMEX, it is one of several techniques coming from the very large
literature on statistics for measurement errors (see for e.g. [3]). The idea is simple:
one gradually adds more noise to the observed data, hoping to observe a trend
in how the estimator behaves with noise addition, which can be used to infer
the estimate with the original dataset. SIMEX is applicable to a large class
of models, and relatively easy to implement, in comparison to other methods
sometimes used to take into account noise from statistical disclosure limitation
methods.

The rest of the paper is divided as follows. Section 2 gives some background
information on differential privacy and the Laplace mechanism, Sect. 3 presents
the SIMEX methodology, Sect. 4 gives various simulation results and Sect. 5
offers a discussion and ideas for future research.

2 Differential Privacy

We review here the concept of differential privacy and the Laplace mechanism.
We refer readers to [9] for more detailed presentations.

2.1 Definition

The formal definition of differential privacy may be given as follows:
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Definition 1 (ε-Differential Privacy). Let D be a set of all possible datasets.
A randomized function κ satisfies ε-differential privacy if and only if for all
neighboring datasets D1 and D2 both elements of D, and for all S ⊆ range(κ),

e−ε ≤ Pr[κ(D1) ∈ S]
Pr[κ(D2) ∈ S]

≤ eε. (1)

For matrix datasets where rows correspond to respondents and columns to
variables, we will say that two datasets are neighbors if their entries are identical
in all but one of the rows. Note that to specify D the range of possible values
for each variable must be known ahead of time.

The value of ε controls the level of privacy guaranteed by the randomized
function κ and must be specified by the user. The smaller the value of ε, the
greater the privacy protection. Note that Eq. (1) must be valid for any possible
pair (D1,D2). Hence, for the extreme choice of ε = 0, the output of the ran-
domized function κ would have to be completely independent from the observed
dataset. Moreover, for ε to be finite, it is necessary that the support of κ be
identical for all possible input datasets.

Note also that the definition does not constrain the form of κ. Hence, the
definition may be applied to functions which simply output one numerical statis-
tic from the dataset, as well as to complicated processes which output synthetic
datasets.

Interpretation. We first emphasize that differential privacy is not a measure of
privacy of a specific output or dataset. Rather, it is a measure on the method used
to generate such output or data. Hence, the phrase differentially-private micro-
data, which we use in this paper, should be understood as microdata obtained
using a differentially-private process.

One may think of the privacy offered to respondents by differential privacy
in terms of deniability. Recall that Eq. (1) requires that any output be almost
as probable for any neighbouring datasets, where the quantitative meaning of
this almost depends on the value of ε. Thus, seeing a specific output from the
randomized function should not allow an intruder to identify which of two neigh-
bouring datasets was indeed observed. So, even in the extreme scenario where
the intruder knew the data of all but one of the respondents she would not be
able to infer the data for that last respondent from the published output. No
matter what the intruder claims their data to be, the respondent can deny that
it is the case, and the intruder will not be able to prove otherwise. In that sense,
we say that differential privacy provides deniability to the respondents.

Microdata. In order to produce differentially-private microdata, one must cre-
ate a randomized function κ which generates synthetic data and satisfies Eq. (1).
In general, this will be difficult because we must be able to study and constrain
the distribution of this randomized function over the space of synthetic datasets.
One may also decide to estimate parameters of a pre-determined statistical model
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under the constraint of differential privacy, and sample new data from it, but this
still requires very technical calculations. A simpler way to produce differentially-
private microdata, and which is directly amenable to treatment with measure-
ment error methodology, is with the addition of Laplace noise.

2.2 Laplace Mechanism

Consider a dataset D ∈ D, and a function f : D → R
k. We want to publish

f(D). We first define the l1-sensitivity of function f .

Definition 2 (l1-sensitivity). The l1-sensitivity of a function f : D → R
k is

Δf = max
D1,D2 neighbours

‖f(D1) − f(D2)‖1 (2)

where ‖x‖1 =
∑n

i=1 |xi|, the l1-norm.

Then, one can prove that the following randomized function will satisfy ε-
differential-privacy:

Definition 3 (Laplace mechanism). Given any function f : D → R
k, the

Laplace mechanism is defined as

κ(D, f(·), ε) = f(D) + (Y1, . . . , Yk) (3)

where Yi
iid∼ Laplace(0,Δf/ε).

Note that the Laplace(μ, b) distribution has probability density function
given as f(x|μ, b) = 1

2b exp
(
− |x−μ|

b

)
, mean 0 and variance 2b2.

Microdata. To produce differentially-private microdata with the Laplace mech-
anism, we take f to be the identity function, since without any privacy con-
straints we would simply publish the observed dataset. Mathematically, f simply
outputs a vector of length np where each entry is the value of a variable for an
individual in the dataset. Since neighbouring datasets differ only by one individ-
ual, only p of these values will differ for two neighbouring datasets. Hence, the
sensitivity of f is

∑p
j=1 Δj where Δj is the range of possible values for variable j.

3 SIMEX

The SIMEX (SIMulation EXtrapolation) method was originally proposed by
[5] in order to correct the attenuation bias identified in regression models with
measurement error. As the name indicates, the SIMEX algorithm consists of
a simulation step followed by an extrapolation step. In the simulation step,
we create new observations by gradually adding more noise to the data and
observe the impact on the estimator. This experiment is repeated many times to
minimize the variability of the results. The extrapolation step then fits a model
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to the estimate as a function of the amount of added noise, and extrapolates to
the case of no noise.

Note that the method is quite general, and can be applied to various statisti-
cal models. It does however require that we know, or can estimate, the variance
of the measurement error. Since differential privacy does not rely on anything
being kept secret about the process, it is not a constraint for our work.

3.1 Original Simex

We present the method for a single perturbed variable; its multivariate extension
is straightforward. See [2] for a detailed exposition.

Let (W,V ) denote a dataset of n respondents with V a set of variables
observed without measurement error, and W a noisy version of a variable X.
The original SIMEX assumes that for i = 1, . . . , n

Wi = Xi + δi (4)

where δ ∼ N(0, σ2
δ ) independent of X and V , with σ2

δ a known parameter. An
extension to deal with Laplace noise addition was proposed in [13] and will be
presented in the next section.

Let θ ∈ Θ be the parameter of interest and T the function which associates
a dataset to an estimate θ̂ ∈ Θ, so that θ̂True = T ({Xi, Vi}n

1 ) and θ̂Naive =
T ({Wi, Vi}n

1 ).

Simulation Step. To do this, we first generate

δ∗
bi ∼ N(0, σ2

δ ) (5)

for observations i = 1, . . . , n and replications b = 1, . . . , B. Here σ2
δ is assumed

to be known in advance or else very well estimated independently [5,15,21].
The value of B is usually taken to be a few hundreds; increasing B reduces the
variability of the estimates.

Then, for fixed values 0 ≤ λ1 < λ2 < ... < λK we calculate new observations

Wbi(λk) = Wi +
√

λkδ∗
bi (6)

The values
√

λkδ∗
bi are called pseudo-errors. Note that [5] suggests λ1 = 0 and

λK = 2, and uses K = 8 in examples. For each λk, we obtain a set of B estimators
{θ̂b(λk)}B

b=1 with
θ̂b(λk) = T ({Wbi(λk), Vi}n

1 ) (7)

from which we compute

θ̂(λk) =
1
B

B∑

b=1

θ̂b(λk) (8)

which is an estimate of the expected value of the estimator θ̂ for the noise level
defined by λk.
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Extrapolation Step. In the extrapolation step, we adjust a model for θ̂(λk) as
a function λk. [5] proposes a non-linear parametric model but [3] recommends a
quadratic form. The graph of θ̂(λk) versus λk can be used to choose an appro-
priate form. The SIMEX estimate is then the extrapolation of this model to
λk = −1.

To see why the extrapolation is made at λk = −1, consider Eq. (5) which
describes how the new observations Wbi(λk), i = 1, ..., n are computed. The
variance of Wbi(λk) is given by:

Var(Wbi(λk)) = σ2
x + (1 + λk)σ2

δ (9)

where σ2
x = Var(X). Since the goal is to return to the case where the measure-

ment error is nonexistent, we want (1+λk)σ2
δ = 0. Since σ2

δ 	= 0, as the variance
of a random variable cannot be zero, we must have 1 + λk = 0 and therefore
λk = −1.

3.2 Extension to Laplace Noise Addition

While the original SIMEX method is concerned with the addition of normal
noise, we generate differentially-private microdata with the addition of Laplace
noise. The SIMEX methodology extends to this noise distribution, but not as
simply as one might expect.

Indeed, [13] shows not only that the original SIMEX produces an estimator
which is no longer consistent for the parameter of interest if the true noise
follows a Laplace distribution, but also that generating the pseudo-errors from
a Laplace distribution does not solve the problem. In fact, the paper shows that
pseudo-errors must be generated as the difference between two gamma random
variables.

More precisely, if we suppose that

Wi = Xi + δi (10)

where δi are independently generated from a Laplace distribution with variance
σ2

δ , then the Laplace SIMEX requires to generate

Wbi(λk) = Wi + V1 − V2 (11)

where V1 and V2 are generated independently from a Gamma (pk, σ2
δ/

√
2) dis-

tribution. The pk here is a scaling parameter which controls the level of noise,
as did λk in the original method. The values p1 < p2 < ... < pK are fixed in
advance, and also taken to be p1 = 0 and pK = 2 in [13], where by convention
p = 0 means that all observations are equal to zero.

The extrapolation step models ˆθ(λk) as a function of pk and extrapolates to
p = −1. While a linear or quadratic model may be used, [13] recommends an
extrapolant of the form (a+ b)/(c+p) for small values of σ2

δ , or (a+ b)/(c+dp+
p2) otherwise. Non-linear least-squares estimates can be obtained using various
methods; we use the nls function of the core R software [16], with the default
Gauss-Newton algorithm.
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4 Simulation Results

The objective of this work is to study if and how SIMEX can be used to provide
accurate estimates of model parameters from microdata generated with Laplace
noise addition in order to satisfy the rigorous differential privacy guarantee.
We report below on simulation results for various linear regression models. A
discussion will follow in the next section.

4.1 Simple Linear Regression

We first consider the simple linear regression model. Given a predictor X, we
generate Yi = β0 + β1Xi + εi where εi

iid∼ N(0, σ2
ε). The dataset (X,Y ) is then

perturbed with Laplace noise addition, with variance σ2
φ chosen to produce an

ε-differentially private dataset (W,Z).
In this simple setup, one can show (see [3]) that the OLS estimator obtained

naively from the regression of Z on W is consistent not for β1 but for λβ1 where
λ = σ2

x

σ2
x+σ2

φ
which is necessarily smaller than 1. This is why we talk of attenuation

bias. Note that the bias only depends on the variance of the predictor and the
variance of the noise on that predictor, not on the variance of the regression
residuals, or the size of the dataset. In our setup, the bias will depend on the
variance of the added noise through the value of ε and the sensitivity of f , which
itself depends on the range of the predictors and response.

We now want to see if SIMEX can correct this bias. Note that in this
restricted case, SIMEX is not necessary. One could directly estimate λ and cor-
rect the slope estimate accordingly. This strategy was also implemented. How-
ever, it is problematic for small values of ε, where σ2

φ is so large that we often
obtain negative estimates of σ2

x. Since SIMEX is more versatile anyway, we only
present results for this method.

In the simulation presented, we set n = 500, Xi
iid∼ U(0, 1), i = 1, . . . , n,

and parameters β0 = 2, β1 = 2 and σ2
ε = 1. We generate differentially-private

microdata for various values of ε. Since this requires that we know the range
of possible values for Y , we first transform Y into [0, 1] by computing Y ∗

i =
(Yi − min(Y ))/(max(Y ) − min(Y )). The values of min(Y ) and max(Y ) would
technically need to be computed in a differentially-private way, but we omit this
step here. In fact, in real life, the same process would have to be applied to the
predictors, but here we do not since we know that they take values in [0, 1].

Note that while traditional applications of SIMEX usually only involve noise
in the predictors, we also perturb the response in order to achieve differential
privacy for the whole dataset. This should not be a problem since adding random
noise on the response simply increases the variance of the error in the linear
model and does not bias the coefficient estimates.

Now, once the synthetic data has been generated, we compute the follow-
ing quantities: the OLS estimate of β1 with the true data (X,Y ), the naive
estimate of β1 obtained with the dataset (W,Z) and SIMEX estimates of the
same parameter obtained from the dataset (W,Z). For SIMEX, we use B = 200,
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p0 = 0, pK = K with K = 20, and we consider linear, quadratic and non-linear
extrapolation of the form (a + b)/(c + p) as proposed in [13].

Figure 1 shows the average relative bias on the slope over 500 replications of
this experiment, for different values of ε. Bias is calculated in comparison to the
estimated slope from the true dataset (X,Y ). Note that the results are robust
to changes in the sample size n, the value of K, and the number of replicates B.
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Fig. 1. Mean relative bias of slope estimates for different ε and estimation methods

We find that SIMEX methodology can reduce the attenuation bias observed
in the naive estimates, which is caused by the addition of Laplace noise to obtain
differential privacy. It is however also evident from Fig. 1 that ε as large as 15
or 20 is required to obtain sufficiently accurate estimates. In this case, although
differential privacy still provides a rigorous measure of the privacy promise, this
promise is objectively really weak.

Regarding SIMEX, quadratic extrapolation is consistently better than lin-
ear extrapolation. Estimates from non-linear extrapolation with SIMEX are not
included in the figure because, while accurate for a certain range of ε, the models
were difficult to fit in other cases. They were extremely unstable for small values
of ε, and seemed to overfit the data for large values of ε, often leading to absurd
extrapolations.

4.2 Multiple Linear Regression

Even though our results on simple linear regression suggest that the method-
ology will not generalize well to multiple linear regression, we still empirically
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document the impact of increasing the number of variables in the dataset and
the model, and of correlation between the variables in the dataset.

The Effect of the Number of Predictors. This simulation is conducted
exactly as above, except that we generate p uncorrelated predictors, each with
slope βj = 2 in the model predicting Y . The main change is thus in the amount
of noise added, as increasing the number of variables increases the l1-sensitivity
of the function f used to generate the microdata.

Figure 2 shows how fast the bias increases (in absolute value) with p. Here, ε is
set to 20. Since variables are uncorrelated, the effect is similar across parameters,
and so we report here the average bias over all estimated slopes. Clearly, even for
such a large value of ε increasing the number of variables in the dataset rapidly
diminishes the quality of the estimates.
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Fig. 2. Mean relative bias of slope estimates for ε = 20 and an increasing number of
predictors

The Effect of Correlation Between the Predictors. When multiple pre-
dictors are perturbed, and they are correlated, the relationship to the bias is
quite complicated [2]. We illustrate this in the case of two predictors, generated
from correlated uniforms obtained following [10], again for ε = 20. We consider
three models: in model 1, β1 = β2 = 2, in model 2, β1 = 2 and β2 = −2 and in
model 3, β1 = 2 and β2 = 4.
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Figure 3 shows the mean relative bias across simulations separately for each
variable as a function of the correlation coefficient between the predictors. For
model 1, the SIMEX estimate with quadratic extrapolation is relatively accurate
for both parameters, with bias decreasing as correlation increases. For model
2, where variables have effects in opposite directions, the bias for both slopes
increases as the correlation between the parameters increases. Finally, model 3
shows that the bias can have different trajectories for different parameters, and
that bias can even become positive.

Note that in all three cases, increasing ε to 50 allows to recover unbiased
estimates for almost all correlations, while clearly greatly diminishing the privacy
guarantee.
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Fig. 3. Mean relative bias of slope estimates for various models and estimation
methods, as a function of the correlation between the two predictors. In model 1,
β1 = β2 = 2, in model 2, β1 = 2 and β2 = −2 and in model 3, β1 = 2 and β2 = 4.

5 Discussion

Our simulations results clearly show that even for simple linear regression models
SIMEX can not be used to recover estimates with acceptably small bias unless ε
is taken so large that the privacy guarantee of differential privacy does not mean
much anymore. The main difficulty is that when generating microdata with
Laplace noise addition the l1 sensitivity does not decrease with the sample size,
as is often the case when publishing statistics under the constraint of differential
privacy.
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We note that the results are dependent on our choice of distribution for the
predictors. Indeed, the variance of the Laplace noise required for a certain pri-
vacy level depends on the range of possible values for the predictors, while the
attenuation bias depends on the variance of the predictors. The overall effect on
the bias of the SIMEX estimate may thus differ for other distributional assump-
tions on the predictors, although we do not expect that the strategy would work
much better in any case.

A question of interest is whether adding normal noise and applying the orig-
inal SIMEX algorithm would prove more successful. We believe that indeed this
approach should be considered but that we would loose the differential privacy
guarantee. Indeed, while in theory one may achieve (ε, δ)-differential privacy in
this way, using the Gaussian mechanism proposed in [9], this requires ε ∈ (0, 1).
Given our results here, we doubt that changing from Laplace noise to Gaussian
noise will allow for unbiased estimates of the regression parameters for such small
values of ε.

Nevertheless, the strategy could be used if one does not require differential
privacy, in which case the size of the noise variance would have to be established
using other measures of privacy, perhaps based on re-identification estimates
from various user scenarios, and may be smaller than that needed for differential
privacy. While it requires a bit of computer time, SIMEX is relatively easy to
implement and can also be adapted for correlated errors [20], and so it could
still provide a way for end-users to improve the estimates from such perturbed
microdata. Future work will investigate this possibility, and study more carefully
some aspects which were not explored here, such as variance estimation of the
SIMEX estimates. Generalizations of SIMEX-style approaches, such as Monte
Carlo corrected score methods described in [3] should also be explored.
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Abstract. k-anonymity is an approach for enabling privacy-preserving
data publishing of personal, sensitive data. As a result of this anonymi-
sation process, the utility of the sanitised data is generally lower than
on the original data. Quantifying this utility loss is therefore important
to estimate the usefulness of the resulting datasets. In this paper, we
analyse several of these utility aspects.

Data utility can be measured as a direct property of the resulting,
anonymised dataset, or via the effectiveness that a statistical analysis,
such as a machine learning model, achieves upon this dataset, as com-
pared to the original data. While the latter is more tailored to the specific
dataset, it is also generally less efficient. We therefore analyse whether
there is a correlation between these two types of measures, and whether
the measurement on the effectiveness can be substituted by a measure-
ment of the data properties. Further, we evaluate to what extent different
solutions for the same level of k-anonymity differ in regards to effective-
ness.

Keywords: k-anonymity · Utility evaluation · Utility metrics ·
Machine learning

1 Introduction

Day after day we generate more and more data in every sector of our daily life.
There are different types of data regarding the domain, but one of the most
valuable is personal data, since they contain information about people, which is
relevant for commercial as well as other purposes, such as healthcare.

For any statistical analysis such data is the key ingredient. However, indi-
viduals’ privacy can be compromised even if direct personal identifiable infor-
mation is removed. The Netflix Prize from 2007 is a famous example of how
customer privacy can be threatened without any identifiers, by matching two
related datasets.

Distributing personal data is highly regulated by law, especially so in the
European Union with the General Data Protection Regulation (GDPR), which
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came into effect in May 2018. For many purposes, datasets have to be there-
fore anonymised before distributing them, in order to avoid identification of the
people contained in these datasets.

k-Anonymity is a privacy model that can be applied to sensitive datasets by
obfuscating information that can be utilised to re-identify individual records in
a dataset from which direct identifiers have been removed. Besides weaknesses
in the privacy guarantee of k-anonymity, and other proposed models such as
Differential Privacy [1], or also approaches such as synthetic data generation [2],
these also do have practical downsides. k-anonymity as a model that facilitates
easy data sharing is thus still considered in several settings.

Another aspect to consider for datasets that have been such treated is the util-
ity of the resulting data. While anonymisation techniques such as k-anonymity,
as well as its extensions such as l-diversity and t-closeness, provide individuals’
anonymity in datasets, it at the same time disturbs the effectiveness of machine
learning algorithms. This is due to that, when sanitising a dataset, via anonymi-
sation or other approaches, some sensitive information at the level of individual
records is invariably removed [3].

Given a candidate for anonymised data, a utility metric quantifies the utility
(or sometimes called the quality) of this release candidate (resp. the information
loss due to the anonymisation process). Data utility can in principal be eval-
uated via two approaches. One is to utilise one or more quantitative measures
of information loss (see [3] and Sect. 2 for an overview). Another approach is
to measure the effectiveness of the final statistical analysis to be carried out on
the data, such as a predictive machine learning model, compared to an analysis
that would have been using the original, unabridged data. The latter is a very
task-specific approach, and further less efficient, as it is generally more resource
consuming (time, computing power, etc.) than the quantitative measures on the
data itself.

We are therefore specifically interested in to what extent these two
approaches correlate, and whether one can be used as a proxy measure for the
other. We are estimating this in an experimental evaluation, utilising different
machine learning models on different classification tasks. We thus utilise correla-
tion analysis to find relationships between classifier behaviour and utility metrics
of the anonymised datasets. As part of this evaluation, we generally compare the
utility of the anonymised datasets to the original, source data.

Another aspect of our investigation is centred along the fact that there is
generally not only one solution for achieving a certain sanitised version of an
original dataset that fulfills the desired level of k-anonymity. In contrast, often
a large number of candidate solutions exists, and finding the optimal solution
is generally solved via heuristic approaches. Therefore, most algorithms utilise
implicitly some data utility metric when deciding which solution to find. We
want to investigate to what extent this influences the utility of the final, result-
ing dataset. To this end, we carry out experiments not only on the “best” found
candidate, but also on different candidates covering the entire range of the solu-
tion space.
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The remainder of this paper is organised as follows. Section 2, before Sect. 3
will detail our evaluation methodology. Section 4 discusses and analyses our
results, before Sect. 5 provides conclusions and future work.

2 Related Work

The concept of k -anonymity was first introduced in the paper of Samarati and
Sweeney[4]. This privacy model can be used to obfuscate sensitive datasets in
order to be able to share them with other parties, thus also fulfilling regulations
such as the EU’s GDPR by anonymising data.

In a dataset, we can generally distinguish different types of attributes (some-
times called variables, or features). On the one hand, (directly) identifying
attributes directly reveal the identity of a data record. Examples are the full
name (to some extent), an e-mail address, or a social security number. As a gen-
eral pre-processing steps, these are in practices removed from the dataset before
publishing, or at least replaced with a pseudonym as identifier.

Quasi-identifiers (QIs) do not directly identify a person, but may become
uniquely identifying when used in combination with other quasi-identifiers. An
example can be a date of birth in combination with information on the residence
of a person, even if in the relatively coarse form of a ZIP code. It has to be noted
that this will not apply for all records in the dataset, but in some settings, a
large number of them can become re-identifiable. For instance, [5] mentions that
87% of U.S. citizens in 2002 could be re-identified by using attributes zip code,
sex and date of birth.

Besides potentially helping in identification, quasi-identifiers often hold sig-
nificant, demographic information, which is required in analysis processes for
differentiating between different groups. In medical analysis, for example, it is
often important to differentiate between age groups, the type of job, or informa-
tion on the location of the residence of patients. Thus, this information cannot
simply be omitted as well.

Sensitive data is contained in attributes that for example hold information
about a certain type of illness, or the salary of an individual. These are gener-
ally the main target in statistical analysis, and can therefore not be omitted or
obfuscated.

k -anonymity is a property of the dataset, which ensures that for the identi-
fied quasi-identifiers, there are at least k records in the dataset that are indistin-
guishable in regards to the quasi identifiers. These records that share the same
quasi-identifier values are called equivalence groups (or classes) or Q-blocks.

k -anonymity can be achieved by suppression and generalisation, where by
suppression we mean simple deletion of values, whereas generalisation refers to
a decrease in a value’s granularity.

Generalisation utilises so-called generalisation hierarchies, which run from
leaf nodes denoting particular values via internal nodes to their most general
root. In the generalisation process for k-anonymity, one traverses the tree from
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a leaf node of the original input value upwards until we can construct an equiv-
alence group with all quasi-identifiers being duplicates of one another.

One further needs to distinguish between a global or local generalisation.
Global generalisation means that an attribute is put to the same generalisa-
tion level for each data record. Local generalisation on the other hand opti-
mises the generalisation by choosing a minimal required loss of precision for
each equivalence group. As each level of generalisation invokes an increasing
loss of specificity, we want to minimise a dataset’s overall information loss. This
makes k-anonymisation an NP-hard problem due to an exponential number of
possible data-row combinations one can examine. For local generalisation, the
search space becomes even larger.

Based on k-anonymity, several related concepts have been proposed, each
addressing potential attack vectors for disclosure that the original model did
not consider. l-diversity [6] and t-closeness [7] are among the most prominent
of those, ensuring diversity among the sensitive attributes. We do not evaluate
these at this stage of our work, however.

Several different, mostly heuristic, approaches have been proposed for find-
ing an optimal level of suppression and generalisation for achieving a specific
level of k -anonymity. Samarati [8] introduces a concept of minimal generalisa-
tion that captures the property of the release process not to distort the data
more than needed to achieve k -anonymity. One globally-optimal anonymisation
algorithm is Flash [9], which we utilise in the implementation provided with the
anonymisation software ARX1. We further utilise an algorithm providing local
generalisation, using a version of a greedy clustering algorithm called SaNGreeA
(Social network greedy clustering), [10], as implemented for relational data by
[11].

Measuring the quality of the output datasets is a complex aspect. It can be
addressed by supporting multiple quality models which can be used as objective
function in the optimisation process of the output data. These can include cell-
oriented, attribute-oriented and record-oriented general-purpose models.

In the Flash algorithm we utilise, the default objective function of the
anonymisation process is Loss, which “summarises the degree to which trans-
formed attribute values cover the original domain of an attribute.”2 Since the
anonymisation is based on this metric, the prime interest is the correlation of
this measurement with the classification results. However, we further compute
additional utility metrics that describe the output dataset, namely:

– Record-level squared error: This utility metric is the sum of squared errors in
groups of indistinguishable records in the transformed dataset. The error is
the attribute distance between records in the original dataset and anonymised
dataset according to the normalised Euclidean Distance. The higher the error,
the greater is the information loss. This metric can take values in the interval
of [0, 1] [12].

1 https://arx.deidentifier.org/.
2 https://arx.deidentifier.org/overview/metrics-for-information-loss/.

https://arx.deidentifier.org/
https://arx.deidentifier.org/overview/metrics-for-information-loss/


An Analysis of Different Notions of Effectiveness in k-Anonymity 125

– Non-uniform entropy: This metric tries to evaluate and quantify the dif-
ferences within attribute value distributions. To calculate the non-uniform
entropy for a transformed dataset, the non-uniform entropy of each column
has to calculated and summed up. Non-uniform entropy compares the fre-
quency of each feature value in the original dataset and the transformed
dataset. This basic idea does not work well for local recording. Therefore,
this utility metric will be calculated as follows: First, the generalisation level
for each record will be calculated, which is followed by identifying the records
that are affected by that generalisation level. Finally, the information loss
according to non-uniform entropy will be calculated for each generalisation
level. Additionally, the calculated value will be scaled into the interval [0, 1]
[13].

– Granularity: This utility metric captures the granularity of the data. For
numerical attributes, the granularity of the generalisation intervals will be
determined by the possible interval end points created during the discretisa-
tion. This metric can take values between 0 and 1 [14].

Measuring the effectiveness of anonymised data via statistical analysis tasks,
such as a predictive machine learning model, is investigated e.g. in [15]. The
authors compare applying six different algorithms, with very diverse results.
The authors only evaluated the setting of 2-anonymous datasets, which would
generally be regarded as too low.

A scheme for controlling over-generalisation of less identity-vulnerable QIs
in diverse classes by determining the importance of QIs is presented in [16].
Comparing this scheme to others (such as Mondrian [17]), the authors measure
accuracy on Decision Trees, Random Forests and SVMs. Their performance on
large factors of k not only remains stable, but in some cases increases with k.

Effects of suppressing records costly to anonymise, instead of generalising
several other records as well, has been studied in [18], on a number of binary
classification problems. Multi-class problems are addressed in [11], with a focus of
selectively deleting outliers to reduce the information loss during the anonymisa-
tion process. The authors consider Logistic Regression, SVMs with linear kernel,
Random Forest, as well as Gradient Boosting.

3 Methodology

Data In our experiments, we use the Adult Data Set3 from the UCI Machine
Learning Repository. The dataset is prepared with the same steps as described
in [11]. The dataset contains some missing values which will be eliminated due to
its small number and therefore the dataset has 30162 data entries. The dataset
has 15 attributes, only 14 of them will be used for the experiments since the
attribute “education” represents the same information as “education-num”, only
differently encoded. To ensure a proper distribution of each attribute, we modify
the column “native-country” to only contain US-States and Non-US since the

3 https://archive.ics.uci.edu/ml/datasets/Adult.

https://archive.ics.uci.edu/ml/datasets/Adult
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value US-States dominated the attribute distribution over 90% over all other
countries.

Contrary to the default task in this dataset, which is a binary prediction of
the income level, we evaluate a more challenging multi-class task. To this end,
we define two different target variables, “education” and “marital-status”. For
“education” we group the 16 continuous “education” levels into four groups,
while for “marital-status” we leave the dataset unmodified.

k-Anonymity. We utilise the Flash and SaNGreeA algorithms described above,
which use global and local generalisation, respectively. For Flash, to evaluate
the effectiveness of different candidate datasets, we created a multitude of these
datasets, namely the ten best, one from the middle of the solution space and the
worst found solution after the anonymisation process for a given k. We produce
perturbations with k = 3, 7, 11, 15, 19, 23, 27, 31, 35, 100, and compare with the
original, unmodified dataset.

Classification. In order to measure the quality of the anonymised datasets for
practical use, we train multiple classification algorithms with the dataset. We
use Gradient Boosting, Random Forest, Logistic Regression and Linear SVC as
classification algorithms of the python scikit-learn framework4. To avoid any
optimisation bias towards a specific dataset, only a limited hyper-parameter
optimisation has been conducted.

We primarily use the F1 score as the evaluation metric in our experiments. F1
measures the test’s accuracy by taking both recall and precision into account. All
exported anonymised dataset will be executed with the defined machine learning
pipeline.

Correlation Analysis. Beside comparing classification results directly, this paper
aims to find relationships between the classification results and the utility met-
rics which characterise the anonymised datasets. To this end, we calculate the
correlation between F1 score and the utility measurements. Our method calcu-
lates correlation based on the Pearson correlation coefficient as implement in
Python library scipy5.

We compare the earlier mentioned objective function Loss, Record-level
squared error, Non-uniform entropy, and Granularity.

4 Evaluation and Analysis

In this section, we describe and discuss our experiments. We start with a general
comparison of the effectiveness of the k-anonymous data, as seen in Fig. 1.

We can see in all plots that there is a decline in classification effectiveness
when anonymising the data, compared to the baseline of no anonymisation. How-
ever, there are very large differences in how the single classifiers are affected. For
4 https://scikit-learn.org/stable/index.html.
5 https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.pearsonr.

html.

https://scikit-learn.org/stable/index.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.pearsonr.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.pearsonr.html
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Fig. 1. Classification results for Flash and SaNGreeA, for several k values and two
classification targets. (left: education, right: marital status)

example, Logistic Regression immediately drops in F1 score when performing
an anonymisation of k = 3. However, for higher values of k, the further deteri-
oration is rather low. It can be observed that the local generalisation provided
by SaNGreeA performs better in this case. A similar observation can be made
by the Linear Support Vector classifier (SVC), which is not surprising, as these
two classification models have a rather similar objective function they minimise.
However, for SVC increasing k, and at some point, the global generalisation of
Flash becomes superior.

For the ensemble methods of Random Forests and Gradient Boosting, the
results are somewhat different. In general, there is a large deterioration in effec-
tiveness between the baseline and k = 3, however the effectiveness appears
to increase for larger values of k. For the target “marital-status”, the global
anonymisation of Flash is performing better for these classifiers. Especially for
the bagging method of Random Forests for the same target, the drop in effec-
tiveness is relatively low.

As a conclusion, the overall performance of the ensembles on the anonymised
data is at a comparable level to the unabridged data, even for relatively large
values of k.
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We now specifically analyse the difference in utility when not using just the
best, but also multiple solutions found by the Flash algorithm.

k=
3

k=
15

k=
31

k=
10

0

Fig. 2. F1 scores for the best ten datasets (left: education; right: marital status)

Figure 2 shows the classification results measured by the F1-score of the best
ten output dataset for each k value and classification method, for “marital-
status” and “education”, respectively. In general, the fluctuations on F1-score are
rather minute. It is visible from the plots that there are no significant differences
between the classification results along the best ten datasets. While for some
values of k, there is a slight decrease in the classification effectiveness (e.g. k =
100 for marital status), for other values, such as k = 31 on the marital status
target, the tenth solution is actually the best.
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k=
3

k=
31

Fig. 3. Classification results of the best, middle and worst found dataset of the solution
space

In order to investigate a wide spectrum of the solution space we also analysed
the worst found dataset for each k, and one from the middle. Figures 9 and
10 show the overall rankings for these datasets (i.e. they indicate how many
different solutions were found). The left column of Figures 3 and 8 shows the
classification results for the best, middle and worst found dataset in the solution
space for “marital-status”, whereas the right column for “education”. As we
can see, there are no significant degradation in the classification performances
along these datasets. Moreover, in some cases we found a better classification
performance for the “worst” dataset than for the best. The dashed blue line on
each diagram shows the objective function score results for each dataset.

The left columns of Figs. 4, 5, 11 and 12 show the investigated utility metrics
for each k value. On the right side of the figures, we see the correlation results
between F1 score and Loss for each k value and each classifier; since Loss was the
objective function, we examined the correlation of this value. The scores are com-
puted via the Pearson correlation coefficient, where 1 means strong relationship,
while −1 means negative correlation. In order to find reasonable correlations,
we multiplied the correlation value by −1, since if Loss is higher, we expect
worse classification results. As we can see, there is no clear relation between the
classification results (F1 score) and the Loss score for “education”. For k = 100,
we observe a clear trend and moderate correlation, and further for the linear
models (Logistic Regression and linear SVC) for k = 31. For “marital-status”,
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k=
3

k=
10

0

Fig. 4. Utility metrics and loss correlation for education

k=
3

k=
15

Fig. 5. Utility metrics and loss correlation for marital-status

we can observe an overall correlation between all metrics and the F1 score for
“marital-status” with k = 3, and to some extent also for k = 100. There’s an
overall indirect correlation, though not that strong, for “marital-status” and
k = 1. The other settings show either none, or no clear trend of correlation.
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Loss Granularity

Entropy Error

Fig. 6. Correlation results for all investigated utility metrics for education

Loss Granularity

Entropy Error

Fig. 7. Correlation results for all investigated utility metrics for marital-status
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In order to investigate not only the Loss but also other utility metrics, we
correlated the classification results (F1 score) with all scores. Figure 7 shows the
correlation results for “marital-status”, and Fig. 6 for “education”. As the plots
show, we cannot derive global rules for the correlation. However, we can observe
some case specific strong correlations. The record-level squared error and the
non-uniform entropy correlates strongly for k = 3 on the “education” target
attribute with the classification results, while granularity shows also a strong
relationship for k = 31 and k = 100 on the same target variable. Loss also
correlates for k = 15 on “marital-status” and some on “education”. We further
observe correlation for Logistic Regression and Linear SVC for k = 31.

5 Conclusion and Future Work

In this paper, we performed an analysis on the utility of k-anonymous datasets
for specific classification tasks. We investigated (i) the differences between the
multiple (syntactically valid) solutions found by heuristic anonymisation tech-
niques, considering the ten best, as well as one from the middle of the solution
space and the worst generated dataset. We can conclude that there is very little
difference in these solutions, which entails that the effectiveness of the resulting
dataset is rather stable, and not influenced by potentially minute aspects in the
heuristic. In some cases, even the supposedly worse solutions marginally outper-
form the best solution. We further investigated (ii) whether there is a correlation
between measure that estimate the data utility directly on the dataset, versus the
utility for the specific classification task. We specifically analysed Loss, Granu-
larity, Non-uniform Entropy and Record-level squared error. Although, we could
not derive any global rule of these correlations that can be applied independently
of the task or the k value, we could see some specific correlations between clas-
sification and utility metrics. We can conclude that there is no overall, reliable
correlation between these two measures, and it is thus not generally possible to
estimate the classification performance based on the measures from the dataset
alone.

Future work will focus on extending this analysis to further machine learning
tasks such as regression, and will include further datasets. We will also extend
the analysis to multiple solvers of the k-anonymity problem.

Acknowledgements. This work was partially funded by the BRIDGE 1 programme
(No 871267, “WellFort”) of the Austrian Research Promotion Agency (FFG), the EU
Horizon 2020 research and innovation programme under grant agreement No. 826078
(Project “FeatureCloud”). SBA Research (SBA-K1) is funded within the framework of
COMET—Competence Centers for Excellent Technologies by BMVIT, BMDW, and
the federal state of Vienna, managed by the FFG.



An Analysis of Different Notions of Effectiveness in k-Anonymity 133

Appendix
k=

15
k=

10
0

Fig. 8. Classification results of the best, middle and worst found dataset of the solution
space

k value middle rank worst rank
3 46 92
15 48 96
31 40 80
100 16 33

Fig. 9. Rankings for education

k value middle rank worst rank
3 36 72
15 36 72
31 40 81
100 33 66

Fig. 10. Rankings for marital-status
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Fig. 11. Utility metrics and loss correlation for education

k=
31

k=
10

0

Fig. 12. Utility metrics and loss correlation for marital-status
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Abstract. One of the most challenging problems for national statistical
agencies is how to release to the public microdata sets with a large num-
ber of attributes while keeping the disclosure risk of sensitive information
of data subjects under control. When statistical agencies alter microdata
in order to limit the disclosure risk, they need to take into account rela-
tionships between the variables to produce a good quality public data
set. Hence, Statistical Disclosure Limitation (SDL) methods should not
be univariate (treating each variable independently of others), but prefer-
ably multivariate, that is, handling several variables at the same time.
Statistical agencies are often concerned about disclosure risk associated
with the extreme values of numerical variables. Thus, such observations
are often top or bottom-coded in the public use files. Top-coding consists
of the substitution of extreme observations of the numerical variable by
a threshold, for example, by the 99th percentile of the corresponding
variable. Bottom coding is defined similarly but applies to the values
in the lower tail of the distribution. We argue that a univariate form
of top/bottom-coding may not offer adequate protection for some sub-
populations which are different in terms of a top-coded variable from
other subpopulations or the whole population. In this paper, we propose
a multivariate form of top-coding based on clustering the variables into
groups according to some metric of closeness between the variables and
then forming the rules for the multivariate top-codes using techniques of
Association Rule Mining within the clusters of variables obtained on the
previous step. Bottom-coding procedures can be defined in a similar way.
We illustrate our method on a genuine multivariate data set of realistic
size.
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1 Introduction

Many national surveys conducted by government agencies have a large number of
attributes of different types. Some examples of such surveys in the USA are the
National Health Interview Survey [15], the Behavioral Risk Factor Surveillance
System [4], the Current Population Survey [7], and the American Community
Survey [1]. Government statistical agencies have an obligation by law to pro-
tect the privacy and confidentiality of their respondents who can be individuals
or enterprises. This is usually done by altering—we use the term masking—
the original data before release, for example, by aggregating categorical values,
swapping data values for selected records, adding noise to numerical values, or
synthesizing some or all of the responses. See [12,13] for more details.

Records that have extreme or very large values of numerical attributes are
often a subject of concern about disclosure risk associated with these values.
One way of addressing such a risk is to top code numerical attributes which
are considered as “visible” or possibly known from other publicly available data
sources and which are not a subject to very frequent variation. For example, a
person’s height can be top-coded to 75 in., so all the individuals who are taller
than 75 in. are recorded in the category “75 in. and above”. Such top-coding
thresholds are chosen by the data protectors. Typically these thresholds are the
estimates of the upper percentiles of the corresponding variable, for example,
95th, 97th, or 99th percentiles.

However, when top-coding thresholds are determined independently of other
variables, protection may be inadequate for some groups of individuals. For
example, assume the attribute weight is top-coded to 300 pounds for all the
respondents. However, a female respondent with such a top-coded weight whose
race/ethnicity is Asian could be more extreme as opposed to a respondent with
the same weight who is a white male [14]. Being more extreme and rare, these
individuals are more likely to be subject to re-identification. Thus, from the
disclosure risk perspective it would be desirable to determine appropriate top-
codes for the individuals in this group, different from those for the rest of the
population. First, such subgroups should be identified. In some cases, as in the
example above, it may be intuitive and easy. However, in general, in data sets
with a large number of attributes, such a task is not always trivial. In this
paper we propose a procedure that we call multivariate top-coding. It consists
of identifying sub-populations/groups of records that require adjusted top-codes
and then computing such top-codes for these groups.

1.1 Contribution and Plan of the Paper

The main contribution of the paper is a new multivariate top-coding proce-
dure which is based on clustering variables and using techniques of Association
Rule Mining (ARM) [2] to determine the sub-populations that should be top-
coded differently from others. In Sect. 2 our multivariate top coding procedure is
described. In Sect. 3 we illustrate the application of this procedure to a genuine
data set of realistic size. Concluding remarks are given in Sect. 4.
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2 The Description of the Multivariate Top-Coding
Method

Assume there is a microdata set D with p variables and the data protector
decides to top-code numerical variables T = {T1, · · · , Tk} ∈ D, k < p. If there
are many variables in D, then the number of possible combinations of categories
of variables can be extremely high, and each such combination defines a poten-
tial sub-population or group of individuals. Thus, identification of the groups
of individuals which require adjusted top-codes can be computationally very
demanding. To make it feasible, we propose first to cluster the variables in D
into groups, where each group is formed around each numerical variable Ti that is
selected for top-coding. Next, we perform the search of the sub-populations that
should have special top-codes for Ti within the vertical partition corresponding
to the cluster of variables around Ti.

2.1 Clustering Approach

In [16], several methods of clustering of variables were described and compared
within the framework of disclosure limitation. These are hierarchical clustering
methods that operate on the dissimilarity matrix which represent pairwise dis-
similarities or “distances” between the variables. The metric of distance is based
on the squared canonical correlation which can be computed for variables of dif-
ferent types (see [6,16]). The dissimilarity matrix is created as a lower triangular
p× p matrix DM with elements DM [i, j] = 1− r[i, j] for i > j, and 0 otherwise,
where r[i, j] is a squared canonical correlation between variables Vi and Vj .

In [16], K-Link and Single-Link methods were ranked high among the best
performing clustering methods within the framework of disclosure limitation.
These methods, however, may produce big clusters where some of the variables
within the cluster may have low correlation, which is not optimal for our case.
For example, if the variable income is being top-coded, then variables that are
not correlated with income most likely will not be included by the subsequent
ARM in the description of those sub-populations which need special top-codes
for income.

A better way to group the variables for multivariate top-coding is to include
in each cluster only the closest variables to Ti, which are no further than 1 − h
from Ti. The cut-off value h depends of the preferences of the data protector,
intuitively representing a trade-off between accuracy/utility and computational
complexity of the procedure. In this approach multiple cluster membership is
allowed so the same variables may be used to describe different sub-populations.
For example, sex and race could define different subpopulations such as “Asian
females” and “white males” that should have different top-codes for a person’s
weight. This simple variable grouping is much faster than other clustering algo-
rithms as it does not even require computation of the whole dissimilarity matrix
DM , but only those rows of DM which correspond to the variables in T . Once
variables are clustered in k groups, each one centered at some Ti ∈ {T1, · · · , Tk},
the search of sub-populations that require special top-codes for each of Ti will
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be done within the corresponding cluster. To accomplish this search we pro-
pose to use Association Rule Mining (ARM), a popular machine learning rule-
based methodology for discovering interesting relationships between the vari-
ables. There are several reasons why we decided to use ARM. First, the problem
of multivariate top-coding, as we outlined it above, can be expressed as a search
of association rules for variables Ti. An association rule [2] is an expression of
the form X → Y , where X and Y express conditions on the attributes of the
following form:

Vi = catil ∧ · · · Vf ∈ [lf , uf ] · · · ∧ Vj = catjm (2.1)

where Vi, Vj , · · · Vf are the variables from the data set D, catil , · · · catjm are the
categories of the categorical variables, and [lf , uf ] are specific intervals within
the domains of the corresponding continuous variables. In the paper we call the
antecedent of the rule, X, a “LHS of the rule”, and the consequent of the rule,
Y , a “RHS of the rule”.

The association rules that we are proposing for multivariate top-coding are
of the form:

(Vi = catil) ∧ (· · · Vj = catjm) → Ti < threshold (2.2)

For example, (Sex = Female) ∧ (Height < 65 in.) → (Weight < 200).
Another reason for using ARM is that these techniques are designed to work

well for large data bases. ARM algorithms are implemented in many software
packages, including R.

2.2 Background on ARM

Association rule X → Y is characterized by its support and confidence. Accord-
ing to the original definition and notation used in [2], a support of X, the
antecedent of the rule, is defined as the proportion of records in the database D
that satisfy the expression X:

Supp(X) = |{r ∈ D|X ⊆ r}|/|D|

where r denotes a record in D and | · | means cardinality.
A confidence of the rule is defined as the proportion of the records in D that

contains X which also contains Y :

Conf(X → Y ) = Supp(X ∪ Y )/Supp(X)

The standard Apriori [3] algorithm (or other well known algorithms, for
example, ECLAT [20], FP GROWTH [11] or ASSOC [10]) can be used to mine
association rules where all the attributes are categorical. The procedure usu-
ally consists of two steps. The first step is to mine the so called set of frequent
itemsets, that is, to find expressions X with support higher than a predefined
minimal support of the rule, MinSupp. The second step is to discover all the
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rules with the confidence higher than a predefined minimal confidence of the
rule, MinConf .

Mining association rules on both categorical and numerical attributes, often
called mining quantitative association rules, have been covered significantly less
in the literature. There is no method that is considered a “gold standard” for
quantitative association rules. The difficulty of mining these rules stems from the
fact that numerical attributes are usually defined on a wide range of different
values. It’s not practical to work on all possible numeric values, as is done for
categorical values, because in most cases, there are many such values and each
numeric value does not appear frequently.

In [18], a genetic-based algorithm called QuantMiner for mining quantita-
tive association rules was proposed. QuantMiner works directly on a set of rule
templates - preset formats - specifying which attributes occur in the LHS and
the RHS of the rule. Templates can be chosen by the user or computed by the
system.

For categorical variables QuantMiner computes frequent itemsets similar to
Apriori; that is, finds frequently occurring instantiations Vi = catil ∧ · · · Vj =
catjm . Then it generates a rule template for each such instantiation. For each rule
template, the algorithm looks for the best intervals of the numerical attributes
occurring in that template, which is achieved using the Genetic Algorithm.

The algorithm starts with an initial population of rules for each rule template.
Different rules in the initial population have different intervals for continuous
variables, randomly chosen within their domains. In the following generations,
the intervals are subject to change by genetic operators of mutation and crossover
[18]. The mutation operator changes the lower or the upper bound of the interval.
The crossover operator consists of taking two intervals, called parents, at random
and generating new intervals in such a way so that the new interval is either
inherited from one of the parents or formed by mixing the bounds of the two
parents. These operators are applied to the rules of each generation. After each
application, the fitness of each rule is evaluated and the best rules, according
to the chosen fitness function, are selected for the next generation. This process
repeats over GenN generations (GenN is a parameter of the algorithm). After
the last generation is created the best rule for each rule template is selected from
the corresponding population of rules and included in the output.

The fitness function used in QuantMiner is proportional to the Gain of the
rule [9] and the length of the intervals in the rule:

Fitness(Rule) = Gain(Rule) ∗
∏

j

(1 − Propj)2 (2.3)

where Gain is defined as follows:

Gain(Rule) = Gain(LHS → RHS)
= (Conf(LHS → RHS) − MinConf) ∗ Supp(LHS) (2.4)

and where Propj is the ratio of the interval length to the length of the domain
of Vf .
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2.3 Multivariate Top-Coding Using ARM

Let P be a percentile rank chosen by the data protector to compute top-code
thresholds for variable Ti. For example, if P = 99 then 99th percentile of Ti

serves as a top-code threshold for this variable. For each variable Ti, let Clusti
be the cluster of variables that contains Ti. We propose the following procedure
to determine which sub-populations may need special top-codes (that is, lower
than the rest of the population) for each variable Ti in T .

1. Compute the P -th percentile for the variable Ti using all the records in the
data set. Denote this marginal percentile as Zi.

2. Mine the following type of association rules on the vertical partition of the
data that corresponds to the cluster of variables Clusti :

X → Ti < (Zi − Δ) (2.5)

The LHS of the rule X represents any combination of the variables/categories
from Clusti, in the form given by expression (2.1). The RHS of the rule is the
expression that makes the implication (that is, the rule) true. In the RHS of
the rule we introduce parameter Δ which is the minimal difference between
Zi and the percentile for a particular sub-population that should “get” its
own top-coding threshold, different from Zi. Δ can be chosen by the data
protector for practical reasons in order not to have too many top-codes which
are not very different from Zi.

3. Choose the rules with the confidence equal to P/100 or higher. Denote this
set of rules as S. Note that, the confidence of a rule is the probability

P (Ti < (Zi − Δ)|X) (2.6)

Hence, the LHS of such rules defines sub-populations for which the P -th
percentile of the variable Ti is at most Zi − Δ. Thus, extreme observations
in these subpopulations might need to be protected by adjusting, that is
lowering, their top-code thresholds.

4. For each subpopulation defined by the LHS of the rules mined on the previous
step, compute the P -th percentile for Ti using the records that belong to
these subpopulations. The computed percentiles may serve as the top-codes
for these subpopulations.

To find quantitative association rules (step 2 of the procedure above) we used
a modified QuantMiner procedure: we changed the way how interval boundaries
of numerical variables that appear on the LHS of the rules are calculated. We also
changed the form of the fitness function. Regarding the calculation of interval
boundaries, in the original version of QuantMiner both ends of the intervals are
subject to change by the operators of crossover and mutation and the shortest
intervals are being sought. However, we fixed the lower end of the intervals at the
minimal value of the domain for those numerical variables that appear on the
LHS of the rule and are positively correlated with the top-coded variable Ti. If the
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numerical variable on the LHS of the rule is negatively correlated with Ti, then
the lower end of the interval is subject to change and the upper end is fixed. This
is done in order not to exclude the individuals with values of numerical variables
close to the boundaries of the domain from protection by top-coding who should
otherwise be protected. For example, assume the variable Income is being top-
coded and the numerical variable Hours, hours worked per week, is positively
correlated with Income. So, the association rule has the form: Hours ∈ [l, u] →
Income ≤ threshold. If l 	= min(Hours), then those individuals with Hours ∈
[min(hours), l] will not be top-coded, but those with hours ∈ [l, u] will. This,
however, leaves the former groups of individuals unprotected. It also does not
make sense given the nature of relationship between Hours and Income.

As mentioned above, we also modified the form of the fitness function. Con-
trary to [18] our fitness function favors larger intervals of numerical variables Vf

on the LHS of the rule, subject to the resulting rule satisfying minimal confidence
and minimal support.

Fitness(Rule) =

⎧
⎪⎨

⎪⎩

∏
j(Propj)2, if Supp(Rule) ≥ MinSupp

and Conf(Rule) ≥ MinConf

0, otherwise
(2.7)

The reason of this modification is again not to exclude any individuals from
protection that otherwise should be protected. Indeed, larger intervals typically
correspond to larger groups of individuals having values of numerical variables
within these intervals. Thus, the largest intervals on the LHS of the rule in our
algorithm define the largest sub-population for which expression (2.6) is true.
Hence, these individuals need lower top-codes for variable Ti than the top-codes
for rest of the population.

Finally, it is important to note that the procedure of bottom-coding is a
straightforward conversion of the top-coding procedure described above.

3 Numerical Experiments

We applied our approach of multivariate top-coding to a genuine multivariate
data set that was downloaded from the UCI Machine Learning Repository [8].
This is a sample drawn from the Public Use Microdata Samples (PUMS) person-
level 1990 US Census file. We will refer to this file as Census in the paper. In
our experiments we used 66 numerical and categorical variables from this data
set. Full description of the variables can be found in [5]. Some variables were
excluded from the experiments, such as allocation flags, serial number and some
others because they would not be used in practice. There are 1.8 million records
in our data set.

To illustrate our approach we choose the variables Income1 - wages or salary
earned by the individuals in 1989 and Age for top-coding. These types of vari-
ables are usually top-coded. As outlined in Sect. 2, we first found clusters of vari-
ables around these two variables. For Age, the cluster consisted of the following



Multivariate Top-Coding for Statistical Disclosure Limitation 143

variables: Relat1 - relationship of the respondent to the householder (householder
is defined later in the text) with 13 categories, Marital - marital status with
5 categories, Disable2 - work prevented status with two categories, Income5
- social security income in 1989 (a numerical variable), Rlabor - employment
status with 7 categories, Work89 - worked or not in 1989 with two categories,
and Y earsch - educational attainment with 18 categories. In our experiments
Y earsch was treated as a numerical variable, hence, the output rules were given
in the form if Y earsch < i → Income1 < Y , which is more meaningful than
potentially a large number of rules, each one differing by a particular category
in Y earsch.

The cluster of variables around Income1 includes the following variables:
Class - class of worker with 10 categories, IndustryClass - industry class with 13
categories, Ocupclass - occupation class with 8 categories, Relat1 - relationship
within the household with 13 categories, Disable1 - work limitation with three
categories, Rlabor - employment status with 7 categories, Hour89 - numerical
variable denoting usual hours worked per week the year before the interview,
Week89 - weeks worked the year before the interview, and Y earsch - educational
attainment with 18 categories.

The default minimal support of the rules in QuantMiner is set up to be
10%, but in our experiments, we lowered the minimal support to 1% in order
to be able to identify small sub-populations (of the size of 1% of the data set
or larger) which may require their own top-codes. For the data set of this size,
it means that the size of these sub-populations should be at least 18, 000. The
main constraint on lowering support of the rules is the computational burden,
because many more subpopulations need to be checked, and, as a consequence,
many more potential rules should be tested by the algorithm.

It should be noted that the main purpose of the proposed procedure is to
assist the data protector in the otherwise daunting task of going through the
large number of possible combinations of the relevant attributes in a big data set
in order to find rarely observed extreme observations of top-coded variables for
certain groups of records or sub-populations. These sub-populations are usually
associated with lower values of the numerical variables subject to top-coding.
Our rules are meant to bring such special cases to the data protector’s attention.
However, the decision about whether to use these rules to apply top-codes or
not depends on many factors, such as a particular scenario of data release, SDL
practice at a particular institution, and preferences of data protectors. In any
case, such decisions are usually made together with the subject area specialists.
Furthermore, some of the rules may be obvious, or they may be always observed
in the data; for example, the rules that have confidence equal to 100%. Thus,
not every automatically mined rule should imply top-coding. In some instances,
the rules that have confidence equal to 100% may be used with the goal to check
and find incorrectly recorded observations or the values that are not plausible.

Due to space limitation, below we present a selection of rules for Age and
Income1 that are representative for this data set. They have attribute categories
that appear most frequently. It should be noted that, the rules presented below
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are not our recommendations for top-coding for this particular data set nor
any similar data set. The rules and results presented in this section are for the
illustration of our method of multivariate top-coding only. In our experiments
we used a 99-th percentile as a parameter for top-coding thresholds. So, for
the groups of individuals that fit the description that appears in the LHS of the
rules, at least 99% of individuals in the data set have Income1 (or Age) below the
threshold that appears on the RHS of the rules. It is worth noting, that univariate
top-code thresholds for this data set using the same parameter P , that is, the
99-th marginal percentile rank, would be $88, 000 for Income1 and 87 years old
for Age. Hence, univariate top-coding would imply that these thresholds would
apply to all the individuals, regardless of their other characteristics. Below we
list several age- and income- related rules as an illustration.

Age-related rules:
Relat1 = Son/daughter of the householder → Age < 60
Relat1 = Other persons in group quaters ∧ Work89 = Yes →

Age < 60
Relat1 = Housemate ∧ Work89 = Yes → Age < 65
Marital = Never married ∧ Relat1 = Housemate ∧ Work89 = Yes →

Age < 60
Marital = Never married ∧ Income5 = 0 ∧ Work89 = Yes → Age < 60
Marital = Never married ∧ Rlabor = Civilian employee, at work →

Age < 65
Marital = Never married ∧ Rlabor = Civilian employee, at work ∧

Income5 ∈ [0.0; 2500.0] → Age < 60
Marital = Never married ∧ Disable2 = No, not prevented from working ∧
Work89 = Yes → Age < 65

Income1-related rules:
Hour89 < 35 → Income1 < 28, 000
Week89 < 40.0 → Income1 < 40, 000
Relat1 = Son/daughter of the householder → Income1 < 40, 000
Relat1 = Grandson/granddaughter of the householder → Income1 < 33, 000
Relat1 = Persons in group quarters → Income1 < 35, 000
Relat1 = Other nonrelative of the householder → Income1 < 47, 000
Relat1 = Other relative of the householder → Income1 < 45, 000
Relat1 = Householder ∧ Hour89 < 35 → Income1 < 35, 000
Disabl2 = Yes, limited in kind or amount of work → Income1 < 50, 000
Rlabor = Institutionalized persons → Income1 < 30, 000
Occupclass = Service → Income1 < 40, 000
Occupclass = Farming → Income1 < 55, 000
Class = Employee of private for profit company ∧

Y earsch = High school diploma or less → Income1 < 55, 000
Relat1 = Husband/wife ∧ Y earsch = High school diploma or less →

Income1 < 40, 000
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Some of the rules presented above seem intuitive or common sense. One
example of such rules are those that have income on the RHS and Hour89
(usual hours worked per week in 1989) and Week89 (weeks worked in 1989) on
the LHS. These two variables are positively correlated with income. These rules,
in essence, describe part-time workers in the previous year. Therefore, the rules
suggests lower top-codes for income for these individuals compared to the rest
of the population.

Another example of rules that are intuitive are the rules that involve Relat1
(relationship of the respondent to the householder) on the LHS of the rules. For
instance, when Relat1 = son/daughter, then the threshold for the Income1 and
Age may be lower comparative to other groups of individuals. According to the
documentation on 1990 Census data files [19], in most cases, a householder is the
person, or one of the persons, in whose name the home is owned, being bought,
or rented. Higher income respondents may be expected to be householders them-
selves, rather than living with a parent-householder, which may be one of the
reasons for lower income and possibly younger age for these types of respon-
dents. Similar reasoning may be applied to the rules that involve other relatives
of the householder and their respective top-codes. Note, that in some (possibly
rare) instances when several members of the family can be linked together, the
advanced age of the son may allow the intruder to get a good estimate of the
age of a parent, despite the fact that the age of the parent was top-coded. For
example, if the age of a son of the householder is 75 years old (which is above
the threshold limit in the corresponding rule above), and the age of a parent-
householder is 95 years old, then univariate top-coding, at 87 years old will only
apply to the householder, but not to the son. However, based on the age of the
son, the intruder would know that the parent must be older than the threshold
value of 87 years old, and most likely around 95 years old. Such an extreme
age and such a rare combination (if present in the data) could lead to the re-
identification of these individuals if univariate top-coding is used. Presence of
other variables could improve the assessment of the intruder even further.

Rules that include a combination of the following three characteristics: mar-
ital status = “Never married” combined with zero or small values of social secu-
rity income in the previous year (variable Income5), no disability, and worked
during the previous year (Work89 = yes) for the most part describe a younger
group of respondents in this data set; thus, the 99-th percentile of age for this
group of individuals found by the rules is generally smaller than for the rest of
the population.

Another characteristic that is related to income is the occupation of the
respondent (Occupclass variable). The rules identified some occupation classes
with lower values of Income1 in this data set. For example, Occupclass =
Service which includes cooks, waiters and waitresses, housekeepers, cleaners,
maids and housemen, hairdressers, welfare service aides and some others, has a
lower 99-th percentile of income than the others, which agrees with the literature
on the subject [17]. Also, according to the rules Occupclass = Farmers has a
lower 99-th percentile of Income1 as well.
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As expected, rules that included the variableY earsch, educational attainment,
indicated that if educational attainment is less than high school, then Income1 is
limited, especially for certain categories of individuals in the data set.

We conclude this section by emphasizing that the focus of the paper is not the
discussion and analysis of particular rules, but the development and description
of the methodology to obtain such rules. Deeper analysis of the rules obtained by
our procedure should be done by the data protector and subject area specialist
for each particular data set and the scenario of data release.

4 Concluding Remarks and Future Work

In this paper we propose a new approach for multivariate top-coding for dis-
closure limitation in large databases with many attributes of different types.
We outlined an automated procedure that can help the data protector to find
sub-populations that may need their own top-codes, lower than the rest of the
population. Such a procedure may be used as an aid for the data collecting orga-
nizations in the disclosure review process as an alternative, or in addition, to their
regular procedures. Such procedures often involve identification of risky combi-
nations of the variables, which is often based on intuition as well as knowledge of
a particular data set. In big data sets these procedures may be complicated and
computationally involved as they require computation of many tabulations to
identify potentially rare/risky combinations of the categories of these attributes.
Thus, an automated procedure to identify such cases can be helpful especially
when the data protector intends to release data sets with many attributes of
different types, such as big government surveys.

To reduce the complexity of the problem we outlined a two-step approach
which consists first of clustering the variables around the top-coded variables,
using squared canonical correlations, then running our association rule mining
algorithm on a vertical partition of the data that consist of the variables that are
in the same cluster with the top-coded variables. This two-step approach makes
association rule mining and the subsequent work with the rules by subject area
specialists computationally feasible.

We would like to note that the association rules found by the proposed app-
roach are meant to bring to the data protector’s attention particular combina-
tions of the attributes that are rarely associated with the extreme values of the
numerical variable that is subject to protection. Data protectors can choose top-
coding or some other technique for protection of these groups of individuals. For
example, synthesis can be used to impute safer values of numerical attributes.

Our future work consists of finding efficient ways for further reduction of the
number of association rules. Another direction of future research is to investigate
possible ways of incorporation of the data protector’s preferences and knowledge
in the algorithm. For example, certain individual characteristics are more visible
or noticeable than the others; for instance, amputations/missing limbs, walking
aids and some others. So, we will investigate the best way of weighting the
variables/characteristics on the clustering step and the association rule mining
algorithm as well.
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A Appendix. Variables in the Census Data Set Mentioned
in the Paper

Class - Class of worker. Categories: 0 N/a, Unemployed who never worked. 1
Employee of a private for profit company. 2 Employee of a private not for profit
company. 3 Local government employee. City, county, etc. 4 State government
employee. 5 Federal government employee. 6 Self employed in own not incorpo-
rated business. 7 Self employed in own incorporated business. 8 Working without
pay in family business or farm. 9 Unemployed, last worked in 1984 or earlier.

IndustryClass - Industry class. Categories: 1 Agriculture. 2 Mining. 3 Manu-
facturing. 4 Transportation. 5 Wholesale trade. 6 Retail trade. 7 Finance. 8 Busi-
ness. 9 Personal services. 10 Entertainment. 11 Professional. 12 Public adminis-
tration.

Occupclass - occupation class. Categories: 1 Managerial. 2 Professional. 3
Technical. 4 Service. 5 Farming. 6 Precision. 7 Operators. 8 Military.

Relat1 - Relationship to the householder. Categories: 0 Householder. 1
Husband/wife 2 Son/daughter 3 Stepson/stepdaughter 4 Brother/sister 5
Father/mother 6 Grandchild 7 Other relative 8 Roomer/boarder/foster child
9 Housemate/roommate 10 Unmarried partner 11 Other non related. 12 Insti-
tutionalized person. 13 Other person in group quarters.

Disable1 - Work limitation. Categories: 0 N/a. 1 Yes, Limited in kind or
amount of work. 2 No, not Limited.

Rlabor - Employment status. Categories: 0 N/a 1 Civilian employee, at work.
2 Civilian employee, with a job but not at work. 3 Unemployed. 4 Armed forces,
at work. 5 Armed forces, with a job but not at work. 6 Not in labor force.

Hour89 - Usual hours worked per week the year before the interview. This
is a numerical variable with range from 0 to 99.

Week89 - Weeks worked the year before the interview. This is a numerical
variable with range from 0 to 52.

Y earsch - educational attainment. Categories: 0 N/a. 1 No school completed.
2 Nursery school. 3 Kindergarten. 4 1st, 2nd, 3rd, or 4th grade. 5 5th, 6th, 7th,
or 8th grade. 6 9th grade. 7 10th grade. 8 11th grade. 9 12th grade, No diploma.
10 High school graduate, diploma or GED. 11 Some College, But no degree.
12 Associate degree in College, Occupational. 13 Associate degree in College,
Academic Program. 14 Bachelors degree. 15 Masters degree. 16 Professional
degree. 17 Doctorate degree.
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10. Hájek, P., Havránek, T.: Mechanizing Hypothesis Formation: Mathematical Foun-
dations for a General Theory. Springer, Heidelberg (1978). https://doi.org/10.
1007/978-3-642-66943-9

11. Han, J.: Mining frequent patterns without candidate generation. In: Proceedings
of the 2000 ACM SIGMOD International Conference on Management of Data.
SIGMOD 2000, pp. 1–12 (2000)

12. Hundepool, A., et al.: Handbook on Statistical Disclosure Control (version 1.2).
ESSNET, SDC project (2010). http://neon.vb.cbs.nl/casc

13. Hundepool, A., et al.: Statistical Disclosure Control. Wiley, Hoboken (2012)
14. NHANES: National Health and Nutrition Examination Survey. Centers for Disease

Control and Prevention (CDC). National Center for Health Statistics (NCHS).
https://www.cdc.gov/nchs/data/factsheets/factsheet nhanes.htm

15. NHIS: National Health Interview Survey. Centers for Disease Control and Preven-
tion (CDC). National Center for Health Statistics (NCHS). https://www.cdc.gov/
nchs/nhis/index.htm

16. Oganian, A., Iacob, I., Lesaja, G.: Grouping of variables to facilitate SDL methods
in multivariate data sets. In: Domingo-Ferrer, J., Montes, F. (eds.) PSD 2018.
LNCS, vol. 11126, pp. 187–199. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99771-1 13

17. Ross, M., Bateman, N.: Meet the low-wage workforce. Technical report, Brookings
(2019)

18. Salleb-Aouissi, A., Vrain, C., Nortet, C., Xiangrong Kong, X., Vivek Rathod, V.,
Cassard, D.: QuantMiner for mining quantitative association rules. J. Mach. Learn.
Res. 14(61), 3153–3157 (2013). http://jmlr.org/papers/v14/salleb-aouissi13a.html

19. U.S. Department of Commerce Economics and Statistics Administration.
BUREAU OF THE CENSUS: 1990 Census of Population and Housing. Public
Use Microdata Samples. United States (1990)

20. Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. Knowl. Data
Eng. 12(3), 372390 (2000)

https://www.cdc.gov/brfss/index.html
https://archive.ics.uci.edu/ml/datasets/US+Census+Data+%281990%29
https://www.census.gov/programs-surveys/cps.html
https://www.census.gov/programs-surveys/cps.html
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-642-66943-9
https://doi.org/10.1007/978-3-642-66943-9
http://neon.vb.cbs.nl/casc
https://www.cdc.gov/nchs/data/factsheets/factsheet_nhanes.htm
https://www.cdc.gov/nchs/nhis/index.htm
https://www.cdc.gov/nchs/nhis/index.htm
https://doi.org/10.1007/978-3-319-99771-1_13
https://doi.org/10.1007/978-3-319-99771-1_13
http://jmlr.org/papers/v14/salleb-aouissi13a.html


Protection of Statistical Tables



Calculation of Risk Probabilities for the Cell
Key Method

Tobias Enderle, Sarah Giessing(B), and Reinhard Tent

Federal Statistical Office of Germany, 65180 Wiesbaden, Germany
{Tobias.Enderle,Sarah.Giessing,Reinhard.Tent}@destatis.de

Abstract. When deciding on the parameters of the Cell Key method (c.f. [2, 3,
5, 8, 10]), agencies should take into account disclosure risk issues connected to
candidate parametrizations. The present paper offers suggestions for analytical
calculation of certain risk probabilities using candidate noise parameters for both,
the case of tables of counts, as well as for the case of magnitude tables.

1 Introduction

The cell key method (CKM) for statistical disclosure limitation by random noise is
a well-known, and recently widely discussed though not yet very widely used post-
tabular perturbative disclosure control method. In this paper we therefore assume some
familiarity with the basic CKMconcept. It is implemented for example in the package τ–
Argus and as separate R package cellKey, c.f. [8]. Both packages rely on the R-package
ptable [2] to compute random distributions by maximizing entropy [4, 7].

When deciding on the parameters of the Cell Key method (CKM), agencies cannot
focus on information loss alone – they also have to take into account disclosure risk issues
connected to candidate parametrizations. One such issue is the conditional probability
for a particular perturbed cell value to be indeed identical or very close to the original
cell value which – even though intruders may not be aware of the issue – should not
be too high, for sake of sufficient protection. After recalling some basic principles of
the CKM implementation of [8] in Sect. 3 we explain how to compute such conditional
probabilities for a candidate set of parameters using Bayes’ theorem for both cases:
counts and magnitudes of continuous data. Section 4 considers a very special form of a
differencing attack in the context of published means of a continuous variable when the
underlying frequencies are protected by noise. Because after CKM protection interior
cells of a table often do not add up exactly to the perturbed margins there is a general
risk of disclosure by differencing connected to the method. While [1] suggests rigorous
randomized computation of feasibility intervals to compare risk avoidance potentials of
different parametrizations, the present paper takes a different approach: we study how
to analytically compute probabilities of typical differencing risks using the candidate
noise parameters for the case of tables of counts (Sect. 5) and of magnitudes (Sect. 6).
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2 Recalling Principles of Noise Design and Lookup

The R-package ptable supports the noise design of the implementation of CKM for
frequency and magnitude tables in τ–Argus and cellKey. It computes perturbation tables
(the “p-tables”) used by τ–Argus and cellKey to obtain a perturbation value v in a so
called “lookup” using the cell key of a table cell.

When generated to protect tables of counts, perturbation tables define conditional
probabilities pij = P(perturbed cell value is j | original cell value is i). As suggested
in [3] and [4], the noise distributions resulting from the algorithm implemented in the
ptable package ensure that the perturbations will have zero mean, take integer values,
not produce negative cell values and that the following criteria hold:

(1) the perturbations have a constant variance σ 2;
(2) the absolute value of any perturbation is less than a specified integer value D.

For tabulations of continuous (magnitude) variables, the principle of a constant noise
variance will usually not be suitable: it will lead to either not enough protection for table
cells with large contributions, or to too much protection (e.g. high information loss) for
table cells with small contributions. Building on ideas of [10], τ–Argus and cellKey
computes the noise by adding the sum of topK random variables X̂j(j = 1, .., topK),
where each component X̂j has a fixed conditional distribution, i.e. conditional on the
(weighted) top-kth contribution wjyj

(= xj
)
to a table cell with ordered contributions

(|x1| ≥ |x2| ≥ . . .) as proposed in [5]. In the present paper we focus on the simplest case,
topK = 1, only and do not consider an extra provision of [5] to ensure a minimum noise
variance also for x1 tending to zero.

To summarize, in this paper we assume a perturbed value for original value x =∑n
i=1 wiyi to be computed according to ((2.2) in [5]) as

x̂ := x + xδ · V ,with xδ = x1m(x1) for x1 > zf , and xδ = σ1x1, for x ≤
zf , andV a randomvariable defining the noise. (1)

Moreover, in this paper we generally assume xδ ≤ x. This allows us to ignore the
special technique implemented to avoid changes of sign due to the perturbation, and to
assume realizations of V to be v ∈ {−D, 1

l − D, 2
l − D, . . . ,D − 1

l ,D
}
, obtained by a

“lookup” in a suitable perturbation table (the “p-table” supplied by the ptable package for
the case of continuous data), using the cell key of x. The reciprocal of the “step-width”,
l, is a user defined number, like 2, 8, 10, 100. The p-table defines, e.g., probabilities
(pD,k)k=0,1,...,2·l·D for an original value x ≥ D to be perturbed by k

l − D.
The so called flex-function m(x1) computes the coefficient m(x1) of x1 · V (c.f. (1))

as a decreasing function of x1 (c.f. [5], (2.2)), with m(x1) ≈ σ0 for larger arguments,
and m

(
zf

) = σ1 at the “flex-point” zf ≥ 0. Parameters σ0 and σ1 are to be defined such
that 0 < σ0 ≤ σ1.

3 Probability for Original Values Too Close to the Perturbed Ones

For any given set of observed and perturbed frequencies x and x̂, the disseminator can
easily compute the probability for a particular perturbed frequency to be indeed identical
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or very close to the original frequency. Denoting for example B := {
x̂ = 1

}
the event of

a perturbed frequency to be 1 and A := {x = 1} the event that the original frequency in a
given population is indeed 1, according toBayes’ theoremwehaveP(A|B) = P(B|A)·P(A)

P(B)
,

hence in our case: P
(
x = 1|x̂ = 1

) = 1
P(x̂=1)

P
(
x̂ = 1|x = 1

) · P(x = 1).

Using the conditional probabilities pi1 = P(perturbed cell value is 1 | original cell
value is i) defined in a perturbation table,we computeP

(
x̂ = 1

)
as

∑

i=1,...,D
pi1P(x = i), to

derive P
(
x = 1|x̂ = 1

) = p11·P(x=1)∑
i=1,...,D pi1P(x=i) . Obviously, the probability of the perturbed

count of 1 to actually relate to a true count of 1 can be quite high, if, compared to p11,
the probabilities pi1 are small for i �= 1, or if, compared to the frequency of 1’s there
are very few observations x = i; i = 2, . . . ,D in the set, i.e. if P(x = 1) is much larger
than P(x = i); for i = 2, . . . ,D.

This kind of risk assessment is also possible in the case of the generalization of the cell
key method to the case of a continuous variable, like for example the size of a dwelling.
For the assessment, we consider only the most critical scenario of observations relating
to only a single contribution, i.e. the case x = x1. The aim is to compute for a given set
of original and perturbed observations x and x̂ the probability for a particular perturbed
observation to be indeed identical or very close to the original observation. Denote
B := {

x̂ = y
}
the event of a perturbedobservation to be y andDε := {y − ε ≤ x ≤ y + ε}

the event that the original observation x is within a small range of ±ε of this perturbed
observation.

According to Sect. 2, (c.f. (1)), the perturbed observation x̂ is computed as x̂ =
x+ xδ ·V , with xδ = x1m1(x1), and assuming xδ ≤ x, and V a random variable defining
the noise. We focus here on the case xδ = x1m1(x1). For ease of illustration we simplify
further, assuming for m1 a linear function, i.e. m1(x1) = m · x1. Because in our critical
scenario x = x1 we can write x̂ = x + m · x · v = x · (1 + m · v).

Allowing for some rounding in the publication of x̂, like e.g. to integers, we consider
x̂ = y to be “matched” by x · (1 + m · v), if y − 0.5 ≤ x · (1 + m · v) < y + 0.5, for a
realization v ∈ {−D, 1

l − D, 2
l − D, . . . ,D − 1

l ,D
}
.

Appendix A.1 provides an illustrative example for an instance with y = 50, l =
2,D = 3, noise probability distribution (pD,k)k=0,1,...,2Dl as displayed in Fig. 1, and
two different factors m defining the strength of the perturbation. Using Bayes’ theorem,
Appendix A.1 shows how to use these intervals to construct a partition of B which can
be used to compute P(Dε|B) as ratio of two weighted sums of the noise distribution
probabilities pD,k , where the weights are probabilities of partition events corresponding
to v = k

l − D. Using formula (A.4) from the appendix, and assuming for x a uniform
distribution, with a strong perturbation parameter m = 0.25 we obtain a low probability
P({48.5 ≤ x ≤ 51.5}|x̂ = 50) = 18% for the risk of an original value x to be within
±1.5 of the perturbed value x̂ = 50, whereas with a weak parameter m = 0.015 we end
up with rather high probability 94%.
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4 An Attacker Strategy to Disclose Original Frequencies Using
Published Means

In the following example we assume the agency to publish noisy counts along with
original means of a magnitude variable, like e.g. rent per m2. The illustrative example
presented in Table 1 displays original as well as noisy counts, along with the original
magnitudes and means.

Table 1. Illustrative Example Mean rent per m2

Area A Area B Total
No. of dwellings (orig) 8 12 20
No. of dwellings (pertubed) 9 14 19 
Sum of rent per m2 90 95 185
Mean of rent per m2 11.25   7.9167  9.25 

not to be published

Again, we assume the worst case: the intruder knows the maximum deviation D. In
this example, let D = 2. Knowing that the original counts for areas A and B sum up
to the Total, the intruder can easily generate all possible combinations of counts (six in
this instance), listed in the first three columns of Table 2. In the next step, the intruder
estimates the respective sums of rent per m2 (c.f. Table 1 – not meant to be published by
the agency), bymultiplying the frequencies from the six combinationswith the respective
published mean rent per m2 figures. Actually, for the total of the two areas A and B,
there will be two estimates, one directly obtained using the candidate counts for the total
of the two areas, and a second one which results from summing the estimates for area
A and area B. Obviously, for the correct candidate combination of possible counts (in
the example: 8 + 12 = 20), the difference of the two estimates will be zero (apart from
eventual minor effect due to rounded publication of the mean figures). For the other
candidate combinations those differences tend to be non-zero, as can be seen in the last
column of Table 2.

Therefore, when an agency releases perturbed counts along with unperturbed means
on a general basis, for an attacker interested in disclosing the original counts, it might be
a promising strategy to systematically implement the approach explained here, consid-
ering the candidate count combination with the smallest difference in the two different
magnitude estimates as disclosed correct combination of original counts.

Even when the summedmagnitudes themselves in the enumerator of mean figures to
be released alongwith the respective perturbed frequencies are notmeant to be published,
it is therefore maybe advisable for the disseminator, to anyway perturb those summed
magnitudes and compute the released means using the perturbed magnitudes.

Notably, when following this strategy, rounding to multiples of a fixed rounding base
b would be a rather ill-advised technique for perturbing the magnitudes. As pointed out
in [9], of course now an attacker following the approach above will find the difference
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Table 2. Candidate count combinations and estimates for summed rent per m2

Candidate
counts

Area estimates for 
summed rent per m2

Total area estimates for summed 
rent per m2

Differ-
ence: 
Total-
(A+B)

A B Tot. A B A+B Total

7 12 19 78.75 95 173.75 175.75 2 
7 13 20 78.75 102.917 181.667 185 3.333
8 12 20 90 95 185 185 0 
7 14 21 78.75 110.833 189.583 194.25 4.667
8 13 21 90 102.917 192.917 194.25 1.333
9 12 21 101.25 95 196.25 194.25 -2 

between the two estimates to be usually non-zero then also for the correct original count
combination. However, she may realize that unlike in case of the other combinations,
for the correct combination the difference tends to be a multiple of b.

Perturbation by random noise, on the other hand, can solve the problem. Appendix
A.2 presents design and results of a little simulation study to establish how much per-
turbation is needed for this purpose. A first observation of the study is that in contrast
to rounding of the magnitudes prior to calculation of the means (as briefly mentioned
above) rounding of the original mean is indeed an efficient strategy to reduce the risk:
rounding to 3 decimals for example reduces the attacker success rate from 97.5% to
88% in the most risky constellation considered in the study. Noise, even with very low
σ = 0.001, applied to the enumerator of the mean, can – in combination with rounding
of the mean to 3-decimals – reduce the success rate to below 70, which should be enough
to discourage potential intruders.

5 Differencing Risk Probabilities for Tables of Counts

As mentioned in the introduction, there is always a certain risk of disclosure by dif-
ferencing connected to any non-additive SDC method like cell key based noise. When
deciding on the noise parameters, one should therefore take into account the potential
of a candidate set of parameters to avoid such risks.

A typical instance of a disclosable constellation is the following:
Assume a maximum deviation of D = 2 to be known to the intruder who is also

informed that zero counts are never changed into non-zero counts. Assume a table row
consisting of two original counts of 1 (and original margin of 2). Assume both 1’s remain
unperturbed, and the margin 2 is perturbed to 0. The intruder can then conclude that the
margin must be at least 2 because none of the 1’s could have been a zero. On the other
hand, the margin can be at most 2, because the perturbed value (0) plusD is 2. Therefore,
the original count of the margin must be 2. If any of the interior cells would be 2 or more,
this would lead to a margin larger than 2, hence the original interior counts must both
be 1.
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So, if we publish a table row which consists of only two entries which are both
original counts of 1, it can be disclosed, if both 1 s remain unchanged, and the margin
is perturbed into 0. The probability of this event is given by p11 · p11 · p20, where pij
are the probabilities defined in the p-table for an original count of i to change into a
perturbed count of j. So, the risk of this case to occur in a published set of tables is
P({1, 1}) · p11 · p11 · p20; P({1, 1}) denoting here the – table, or publication dependent
– probability of a row with only two interior cells, both with an original entry of 1, to
occur in the tables.

This instance leads us to the following strategy for a (partly) analytical disclosure
risk benchmark: First, identify the most typical constellations C1, C2,... of interior cell
combinations that can be disclosed through computation of feasibility intervals, if interior
cells and margins are perturbed in a particular way1. In the second step, compute for
each constellation its probabilityπ({Ck}) using the respective probabilities of the p-table
under consideration. In the third step, analyze every table relation (row, column,…) of
the test table set used for the benchmarking and establish, if it is an instance of one of
the typical constellations C1, C2,.... Notably, such categorization can usually be based
on the following information on a table relation: number of interior cells, number of
zeros, and number of 1’s, 2’s,…, up to a certain count (depending on the p-table under
consideration). This categorization of table relations leads to empirical estimates of
the probabilities P(Ck). Finally, compute the risk indicator for a proposed p-table as∑

k P(Ck)π(Ck).

5.1 Test Results

In order to demonstrate to some degree the efficiency of the strategy explained above
in comparison to the alternative, discussed for example in [1], of randomized feasibility
interval (c.f. [6], 4.3.1) computation,we systematically generated pseudo test instances of
table relations (i.e. single relation tables), all belonging to either of two typical disclosable
constellations C1 and C2, varying the number of (up to 15) non-zero internal cells (and
their values) in the relations. This way we ended up with thirty constellations C1k and
C2k ; 1 ≤ k ≤ 15, nineteen test instances relating to every C2k and one instance for every
C1k . While the probabilities for the C2k only depend on probabilities in the tails of the
noise distribution, for the C1k they strongly depend on the probability of original 1 s not
being perturbed to 0.

In the next step, we generated n perturbed versions of each table, drawing cell keys
for the respective instance n times. Finally we computed the feasibility intervals for
the n perturbed versions of each instance, using four different candidate parameter sets,
considering an instance as disclosed, if upper and lower bound of the feasibility interval
coincide2. With n = 100 only those instances were disclosed (sometimes even in more
than one perturbed version) which relate to C·k with π(C·k) at least ca. 0.3%. Actually
all those instances relate to constellations of the C1k type.

1 Out of sensitivity concerns we refrain from any further description of such constellations here.
2 Due to the construction of the instances, if the bounds coincide for one cell of an instance, they
always coincide for all cells of the instance.
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Table 3 reports for those instances for the two parameter sets with higher risk the
frequency of disclosed perturbed versions alongwith the probabilityπ(C1k) of the event.

Table 3. Disclosed perturbed versions of test tables for constellations C1k

k
Parameter set 1 Parameter set 2

Disclosed table versions Disclosed table versions
7 1 0.008 - 0.002
6 1 0.010 1 0.003
5 2 0.013 1 0.005
4 2 0.017 2 0.008
3 4 0.023 3 0.013
2 2 0.015 4 0.021

For the third parameter set, we observed only two disclosed instances, both relating to
C12, π(C12) = 0.024 for this parameter set. For the fourth parameter set, none of the test
table versions was disclosed. For this set, the largest of the probabilities was π(C12) =
0.0009. The respective probabilities for the (never disclosed) C2k constellations range
from C22 = 0.006 (for the third parameter set) to zero, quickly decreasing for all
parameter sets with increasing k.

Obviously, the theoretical probabilities π(C·k) offer a more direct comparison of
the risk avoidance potential of different parametrizations as compared to randomized
feasibility interval computation.

6 Differencing Risk Probabilities for Tables of Continuous Data

Similar to the frequency counts, also in the continuous data case there are typical con-
stellations where a row (or column) of a table can be disclosed exactly, when an intruder
who knows the noise coefficient xδ (c.f. (1) in Sect. 2) for all cells, and is aware of
the maximum deviation parameter3, computes the feasibility intervals for original inte-
rior and margin cell values using the noisy cell values, as illustrated by the following
example:

Assume two internal cells x1, x2 with margin cell x1 + x2 = x. Table 4 shows for
all three cells, in line 1: the random noise v assumed to result from the p-table lookup
in a p-table with maximum deviation D; in line 2: the upper bound ub computed as
x̂ + xδD = x + xδ(v + D) for the margin cell; in line 3: the lower bound lb computed
as xj

∧ − xδjD = xj + xδj (v − D) for the interior cells. The shaded cell in line 3 shows

3 This may seem to be a silly scenario, because our super knowledgeable intruder has all the
information (e.g. on the maximum contributions) he is supposed trying to gain in his attempt of
breaking protection in advance of the attack. Still, for the sake of benchmarking risk avoidance
potentials of different parameter settings it is a useful scenario. Otherwise results of the bench-
mark would depend largely on the parameters used to model the attacker knowledge, hampering
their interpretability.
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the lower bound for the margin computed as lb(x1) + lb(x2). The shaded cells in line 2
present ub for the interior cells xj computed as ub(x)− lb(xi)(i �= j). Line 4 presents the
resulting width of the interval ub − lb.

Table 4. Example: upper and lower attacker bounds in a highly risky scenario

The example is constructed in such a way that the noise of internal cells and margin
is the maximum possible amount (D), but in opposite direction for internal cells and
margin, and with a small deviation of ε fromD for the second internal cell. The resulting
differences ub− lb, i.e. the widths of the feasibility intervals, show that the true observa-
tions are exactly disclosed in this example, if ε = 0. Otherwise, the width of the interval
for x1 relative to its largest observation x11 is xδ2ε/x11 = ε ·m(

x21
) · x21/x11 . This means

it depends on the ratio of the largest observation x21 in the second interior cell to that of
the first interior cell. Hence x11 would be disclosed almost exactly, if x21 is very small
compared to x11 . Assuming that m(x) is defined in such a way that sufficient protection
is provided, if

ub − lb
(
here : ε · m(

x21
) · x21

) ≥ (
m

(
x11

) · x11
)
/l, (2)

e.g. if xδ2ε ≥ xδ1/l, there is a risk of disclosure for x11 , if ε ≤ xδ1/
(
l · xδ2

)
, or (sub-

stituting ε by k/l) if 1 ≤ k ≤ floor(xδ1/xδ2). Obviously, if xδ1/xδ2 > 2 · l · D then
the probability of this event is 1. If, on the other hand, xδ1/xδ2 < 1, then it is given
by the probability π2Dl for v = D (which is equivalent to ε = 0). In the other cases
it can be computed by cumulating those probabilities pD,k in the p-table for perturba-
tion values v between D and D − floor(xδ1/xδ2)/l, i.e. by the cumulated probability
φfloor

(
xδ1/xδ2

) := ∑
j=0,..,floor

(
xδ1/xδ2

) pD,2Dl−j.

Wecould nowcompute for every element of a test set of pairs of two interior cells used
for the benchmarking of different candidate parametrizations f := floor(xδ1/xδ2), obtain
this way empirical probabilities pf from the test set which can be used to obtain a risk
indicator R := ∑

f =0,...,2Dl pf · φf . Notably, before using the indicator for comparing
different parameter sets, the indicator has to be multiplied by the probability pD,2Dl ·pD,0
of the constellation, to take into account the general probability of the setting, i.e. that
the larger of the two cells is perturbed by D (i.e. k = 0) and the sum of the two cells by
D − 2 ·D · l/l = −D. Because pD,2Dl · pD,0 may differ between the different candidate
parametrizations.
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6.1 Illustrative Example

We demonstrate the above approach by comparing a weaker and a stronger set of param-
eters, each one in combination with three different, standardized (i.e. variance of 1)
p-tables with maximum deviations of D = 1, 3 and 5, and step-width 1/l = 1/2. In the
weaker setting, the flex function used to compute the noise CV parameters was designed
with parameter σ0 for large values of 0.01, and 0.1 in the stronger setting.

The line on top of Table 5 presents the data used in the example, i.e. the largest
observations for the two interior cells. The example keeps the largest observation x11
for the first interior cell x1 at 200, but varies the largest observation x21 for the second
interior cell. Below this line, the upper half of the table refers to the stronger parameter
setting, the lower half to the weaker setting. Col. 2 of the table displays the noise CV
parameters σ1 for smaller values (below zf = 120 in the weaker setting, and below
zf = 12 in the strong setting). For both settings, there are lines in the table showing
the noise coefficients xδ2 for the four variants of x21 along with the noise coefficients
xδ1 of x11 computed according to (1) in Sect. 2 with parameters of the flex-function just
mentioned, and floor(xδ1/xδ2). The last lines in the upper and in the lower half of the
table present the disclosure risk probabilities ·φf , along with the factor pD,2Dl ·pD,0, and
finally the weighted risk indicator R computed as mean of the four ·φf , weighted by the
constellation probability pD,2Dl · pD,0.

Table 5. Example: Disclosure risk probabilities for a typical, disclosable constellation

100 60 40 20 200

Setting: 

=0.1
=0.5

11.8 8.7 7.4 6.5 21
1 2 2 3 -

1 0.4 0.6 0.6 0.8 0.04 0.024
3 0.01141 0.03897 0.03897 0.10433 5.46E-06 2.64E-07
5 0.00001 0.00008 0.00008 0.00051 5.48E-13 9.20E-17

Setting: 

=0.01
=0.05

5 3 2 1 6.5
1 2 3 6 -

1 0.4 0.6 0.8 1 0.04 0.028
3 0.01141 0.03897 0.10432 0.59920 5.46E-06 1.03E-06
5 0.00001 0.00008 0.00051 0.03849 5.48E-13 5.35E-15

The results clearly show that the risk for x11 of being not sufficiently protected, in
the high risk constellation considered here, depends in the first place on the maximum
deviation parameter D. This is not surprising – after all our definition (2) of sufficient
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protection is based on the flex-function parameter, assuming they are defined properly.
Still, comparing the risk indicator relating to same D, but different noise CV parame-
ter setting, the results show a slight tendency for higher risk connected to the weaker
parameter set.

Considering the order of magnitude of the risk probabilities especially at D = 3,
and D = 5, it becomes clear that observing such cases of too small feasibility intervals
through randomized feasibility interval computation is like finding a needle in a hay-
stack.

7 Summary and Conclusions

This paper has investigated how to use the parameters defining the noise applied by
CKM to protect tables of counts and magnitudes to compute indicators for several types
of disclosure risk: Sect. 3 suggests an approach to calculate the probability for a true
observation to be (too) close to the published perturbed observation – the disseminator
should of course select the parameters in such away that this probability is not excessively
high! In Sect. 4 we observe that perturbation of the magnitudes in the enumerator of
means published along with CKM protected counts is well suited to reduce attacker
success rates of a scenario targeted to this special case even with rather weak parameter
choice.

The main contribution of the paper consists of concepts proposed in Sects. 5 and
6 for analytical calculation of typical differencing risk probabilities to compare the
risk avoidance potential of candidate noise parameters. The proposed concepts include
suggestions for weighted indicators: risk probabilities relating to certain constellations
shall be weighted by the empirical probability of the respective constellation to occur in
a given test data set. As demonstrated by examples presented in those sections, for rather
risk averse parametrizations the order of magnitude of the risk probabilities is extremely
low. Thus, observing such cases through randomized feasibility interval computation
as proposed in [1] is like finding a needle in a hay-stack, hampering interpretability of
results. The analytical risk probabilities allow clear and direct comparison even of risk
averse candidate parametrizations.

However, in the present paper, we have only considered differencing risks of uni-
variate tables, taking into the scenario only one relation between interior and margin
cell. In multivariate tables those relations are not independent. Moreover, the approach
of Sect. 6 concerning tables of continuous data is restricted to relations with only two
non-zero cells. If and how it could be extended to the case of more non-zero cells in a
relation is not yet clear and has to be studied in future work. This holds as well for the
effects of relation interdependency in multiway tables on risk probabilities.

Appendix

A.1 How to Use pD,k to Compute the Probability of (y − ε ≤ x ≤ y + ε|x̂ = y)
Applying Bayes’ Theorem?

As pointed out in Sect. 3, we assume x̂ = y to be “matched” by x · (1 + m · v), if
y − 0.5 ≤ x · (1 + m · v) < y + 0.5 for v ∈ {−D, 1

l − D, 2
l − D, . . . ,D − 1

l ,D
}
.



Calculation of Risk Probabilities for the Cell Key Method 161

Fig. 1. Noise distribution probabilities
(pD,k )k=0,1,...,12 of the example

Table 6. Interval bounds of{
zLk ≤ x < zUk

}
corresponding to

v = k
l − D

Now let zLk := y−0.5(
1+m·

(
k
l −D

)) , zUk := y+0.5(
1+m·

(
k
l −D

)) , and Ek := {
zLk ≤ x < zUk

}
. Then

(Ek)k=1,...,2·l·D is a sequence of intervals where for x ∈ Ek perturbation v = k
l − D

results in x̂ = y being matched. Figure 1 and Table 6 provide an illustrative example for
an instance with y = 50, l = 2,D = 3, two different factors m defining the strength
of the perturbation, and Table 6 presenting the interval boundaries zLk , z

U
k for those two

settings.
For the stronger perturbation with m = 0.25 the intervals Ek do not overlap. But for

the weaker perturbation withm = 0.015, they do. Here, for Bayes’ theorem to apply, we
need a suitable partition

{
Cj

}
j∈J . It can be constructed from the list of interval bounds

{zLm, zUn }m,n∈{0,..,,2Dl}: after sorting this list, and removal of possibly tied entries we
get a sorted list {cs}s=1,...,I , and construct

{
Cj

}
j∈J as {[c1; c2), [c2; c3), . . . , [cI−1; cI ) }.{

Cj
}
j∈J is a partition of the union {Ek}k=0,..,,2Dl such that eitherCj ⊆ Ek orCj ∩ Ek = ∅,

⋃
j∈J Cj = {Ek}k=0,..,,2Dl , Cj1 ∩ Cj2 = ∅ for j1 �= j2.
For illustration, consider the entries of Table 6 corresponding to m = 0.015 and

k = 1: As there are no ties in the list of interval bounds, I = 2 · (2Dl + 1) = 26, and
J = {1, . . . , 25}. The first 6 elements in {cs}s=1,...,26 for example are 47.4, 47.7, 48.1,
48.3, 48.4, and 48.7, providing the interval bounds of C1 to C5. The union of C1 to C3
is E12, and E11 is the union of C2 to C5.

Recalling the event B of an original observation x being perturbed into x̂ where
y − 0.5 ≤ x̂ < y + 0.5, conditional on x ∈ Cj, the probability of B is defined by the
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probabilities pD,k specified by the perturbation table: For Cj, as well as for any subset
S(Cj) of Cj, we have

P
(
B|x ∈ S(Cj)

) =
∑

{k=0,..,,2Dl;
S(Cj)∩Ek �=∅}

pD,k . (A.1)

Recalling now the event Dε defined in Sect. 3 of an original observation x to
be within a (too) small range of ±ε of the perturbed observation, of course also{(
Cj\Dε

) ∪ (
Cj ∩ Dε

)}
j∈J defines a non-overlapping partition of {Ek}k=0,..,,2Dl . and

of course Cj\Dε and Cj ∩Dε are subsets of Cj and hence subsets of (one or more) of the
intervals Ek .

According to the law of total proba-
bility, we can write P(B) = ∑

j∈J
(
P
(
B|Cj\Dε

)
P
(
Cj\Dε

) + P
(
B|Cj ∩ Dε

)
P
(
Cj ∩ Dε

))
.

Using (A.1) with Cj\Dε and Cj ∩Dε as subsets S(Cj), and after some rearrangement of
summation terms we get

P(B) = T1 + T2 = T3, (A.2)

where T1 :=
∑

{k=0,..,,2Dl} pD,k

(∑

{j∈J ;Cj\Dε⊆Ek} P
(
Cj\Dε

))
,

T2 :=
∑

{k=0,..,,2Dl} pD,k

(∑

{j∈J ;Cj∩Dε⊆Ek} P
(
Cj ∩ Dε

))
,

and T3 :=
∑

{k=0,..,,2Dl} pD,k

(∑

{j∈J ;Cj⊆Ek} P
(
Cj

))
.

Of course P(Dε ∩ Cj|B) = 1
P(B)

P(B|Dε ∩ Cj)P
(
Dε ∩ Cj

)
. Now, using (A.1), we

compute

P
(
Dε ∩ Cj|B)

) = 1

P(B)

∑
{k=0,..,,2Dl;
Cj∩Dε⊆Ek }

pD,k
(
P
(
Cj ∩ Dε

))
for j ∈ J (A.3)

By construction, only observa-
tions in

{
Cj

}
j∈J can be perturbed into x̂, hence P(Dε\

{
Cj

}
j∈J |B) = 0. So we have

P(Dε|B) = P(Dε ∩ {
Cj

}
j∈J }|B) = P(

{
Dε ∩ Cj

}
j∈J |B) = ∑

j∈J
P(Dε ∩ Cj|B). Because

of (A.3) it follows P(Dε|B) = 1
P(B)

∑
j∈J

∑
{k=0,..,,2Dl;
Cj∩Dε⊆Ek }

pD,k · P(
Cj ∩ Dε

)
, and thus

P(Dε|B) = 1
P(B)

∑
{k=0,..,,2Dl} pD,k

(∑
{j∈J ;Cj∩Dε⊆Ek} P

(
Cj ∩ Dε

))
. Because of (A.2)

it follows

P(Dε|B) = T2
P(B)

= T2
T1 + T2

= T2
T3

(A.4)

The probabilities P
(
Cj

)
in the term T3 and P

(
Cj ∩ Dε

)
in the term T2 depend on the

distribution of the original magnitudes x. For the remainder of the example, we assume
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x to be uniform distributed on some interval [α, β] covering all the Cj. Then P
(
Cj

)
and

P
(
Cj ∩ Dε

)
can be computed as r−s

β−α
; r, s denoting interval bounds of a Cj or Cj ∩ Dε.

The term β − α cancels out in the computation of (Dε|B) as T2 divided by T3.
In our instance,wefindT3 to be 1.1/(β − α) in the case ofm = 0.25 and 1.0/(β − α)

in the case m = 0.015. The shaded cells in Fig. 1 indicate which of the boundaries
zUk , zLk are contained in the critical interval defined by D1.5 = {48.5 ≤ x ≤ 51.5}. For
the stronger perturbation with m = 0.25, this is the case only for k = 6 which is
the center of the distribution where the perturbation k

l − D is zero, meaning that here
only zero perturbation leads to a perturbed value within D1.5. Using (A.4), with this
strong perturbation parameter we obtain a low probability P({48.5 ≤ x ≤ 51.5}|x̂ =
50) = pD,6(50.5−49.5)

1.1 = 18% for the risk of an original value x to be within ±1.5 of the
perturbed value x̂ = 50, whereas with the weak parameter m = 0.015 we end up with
rather high probability 94%.

A.2. Simulation Study to Estimate Attacker Success Rates for the Scenario
of Sect. 4, Before and After Noise

In the study, we consider random noise generated by truncated normal distributions V
with μ = 0, and several combinations of standard deviation σ and truncation (e.g.,
maximum deviation) parameter D.

While the illustrative example of Tables 1 and 2 of Sect. 4 is based on the instance
of counts and means evaluated for a variable with two categories (the two areas A and
B), the study also considers instances with categories j = 2, . . . , nc; nc ∈ {2, 3, 4}. For
each combination of nc and parameters σ and D, we randomly generated 1000 times a
test with counts between 2 and 100. Using a two stage mechanism, in the first stage we
drew for each category j a count fj from uniform distribution U ([2, 100]). In the second
stage, for each category j, fj observations were drawn independently from U ([1, 75])
(viz. realizations of a variable “age” truncated at 75). Denoting xj the sum of the fj
observations, and xj,Top1 the largest of them, x := x1 + . . . + xnc , f := f1 + . . . + fnc
and xTop1 = max

{
xj,Top1; j = 1, . . . .nc

}
, perturbed means were computed as x̄

∧

j :=
xj + xj,Top1

fj
· V and x̄

∧

:= x̄ + xTop1
f · V . The frequencies fi and f were perturbed using a

p-table with maximum deviation of 2.
After generating the instances, the study ran the attack illustrated byTables 1 and 2 for

every instance for all of the 1000 cases, i.e. establishing for every case candidate original
counts and then candidate original means by multiplication of perturbed means with
candidate counts, obtaining this way two different estimates for the original observation
total x, as described in Sect. 4.

A first observation of the study is that in contrast to rounding of the magnitudes prior
to calculation of the means (as briefly mentioned above), rounding of the original mean
is indeed an efficient strategy to reduce the risk: rounding to 3 decimals for example
reduces the attacker success rate from 97.5% to 89% in the most risky constellation, i.e.
the case with nc = 2 categories only. A second observation is that – after rounding to 3
decimals – the success rate decreases with the number of categories nc of the variable:
while for nc = 2 the success rate is 89%, for nc = 3 it is 62%, and for nc = 4 it is only
about 20%.
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Table 7 below presents success rates of the first strategy after rounding to 3 decimals
and perturbation by random noise with different noise variance and maximum deviation.
Obviously, success rates shrink with rising noise variation, and maximum perturbation.
Even in the nc = 2 categories case, where the intruder is still quite successful even when
true rounded means are published, noise with D = 3 and very low σ = 0.001 reduces
the success rate to below 70.

Table 7. Attacker success rate (in %) after 3-decimals rounding of means and noise perturbation
(of the mean enumerator)
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Abstract. In this paper, we consider a Controlled Tabular Adjustment
(CTA) model for statistical disclosure limitation of tabular data. The
goal of the CTA model is to find the closest safe (masked) table to the
original table that contains sensitive information. The measure of close-
ness is usually measured using �1 or �2 norm. However, in the norm-based
CTA model, there is no control of how well the statistical properties of
the data in the original table are preserved in the masked table. Hence, we
propose a different criterion of “closeness” between the masked and orig-
inal table which attempts to minimally change certain statistics used in
the analysis of the table. The Chi-square statistic is among the most uti-
lized measures for the analysis of data in two-dimensional tables. Hence,
we propose a Chi-square CTA model which minimizes the objective func-
tion that depends on the difference of the Chi-square statistics of the
original and masked table. The model is non-linear and non-convex and
therefore harder to solve which prompted us to also consider a modifica-
tion of this model which can be transformed into a linear programming
model that can be solved more efficiently. We present numerical results
for the two-dimensional table illustrating our novel approach and pro-
viding a comparison with norm-based CTA models.

Keywords: Statistical disclosure limitation · Controlled tabular
adjustment models · Linear and non-linear optimization · Interior-point
methods · Chi-square statistic

1 Introduction

Minimum-distance controlled tabular adjustment (CTA) methodology for tabular
data was first introduced in [7,15]. It is one of the effective statistical disclosure
limitation (SDL) methods for the protection of sensitive information in tabular
data. An overview of SDL theory and methods can be found in the monograph
[17], and for tabular data only, in the survey [8].
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CTA problem can be formulated as follows: given a table with sensitive cells,
compute the “closest” additive safe (masked) table to the original table ensuring
that adjusted (masked) values of all sensitive cells are safely away from their
original value and that adjusted values are within a certain range of the real
values. The additivity of the masked table means in most cases the requirement
that the sum of cell values in each row and column of the table remains the same
in the original and masked table, [17,19].

In the standard formulation of the CTA model, the closeness of the original
and masked table is measured by the weighted distance between the tables with
respect to a certain norm. Most commonly used norms are �1 and �2 norms. Thus,
the problem can be formulated as a minimization problem with the objective
function being a particular weighted distance function and constraints being
derived from the requirements stated above.

In general, the CTA problem is a Mixed Integer Optimization Problem
(MICOP) which is a difficult problem to solve especially for large dimension
tables. The MICOP CTA problem involves binary variables that characterize
sensitive cells and their values indicate whether the value of the sensitive cell
is adjusted upward or downward. Apriori fixing the values of binary variables
reduces the problem to the continuous optimization problem which is easier to
solve, however, the quality of the solution may be reduced since we are no longer
searching for the global optimal solution but its approximation. In addition, the
values of the binary variables have to be assigned carefully otherwise the prob-
lem may become infeasible. Some strategies to fix the binary variables while
preserving the feasibility of the problem were discussed in [11,12]. In the paper
we assume that the binary variables are fixed upfront according to one of the
strategies presented in these papers, hence we consider continuous CTA models.

As indicated above, the objective function in the continuous CTA model
is based on either the �1-norm or �2-norm. The formulation of �2-CTA model
leads to the Quadratic Programming (QP) problem, while �1-CTA model can be
formulated as the Linear Programming (LP) problem and, as a Second-Order
Cone (SOC) problem, which has recently been proposed in [19].

However, in the standard norm-based CTA model, there is no control of
how well the statistical properties of the data in the table are preserved. The
numerical experiments summarized in Table 2 in Sect. 2.2 suggest that there is
no pattern which would indicate that one CTA model consistently produces the
values of the Chi-square statistic, or other statistics, of the masked and original
table that are closer to each other than for any other model.

This observation motivated us to consider different criteria of “closeness”
between masked and original table which attempts to minimally change certain
statistical properties of the table. For example, the Chi-square statistic is an
important statistical measure often used to analyze tabular data [10]. Hence,
we propose, what we call Chi-square CTA model, which minimizes the objective
function that depends on the difference of Chi-square statistics of the original and
masked table. The Chi-square CTA model is smooth, non-linear, and non-convex
which makes it harder to solve the problem. This motivated us to also consider
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a modification of this model, called Chi-linear CTA which can be transformed
into a LP problem that can be solved more efficiently.

The Chi-square and Chi-linear CTA models are applied to the two-
dimensional table used previously in the literature [5,19] as a two-dimensional
test table to compare solutions of different CTA models. Chi-square and Chi-
linear CTA models for this table are solved using interior-point methods (IPMs)
and compared with results obtained in [19] when norm-based CTAs models were
applied to the same table. The Chi-square statistic, Cramer V, and Chi-linear
measures were calculated for the original table and for masked tables and com-
pared to illustrate the validity of our approach.

The paper is organized as follows. In Sect. 2 the norm-based CTA models
are outlined. In Sect. 3 a novel continuous Chi-square CTA model is presented,
as well as its modification, Chi-linear CTA model, and the transformation to
LP problem is derived. Section 4 contains numerical results of applying Chi-
square, Chi-linear, and norm-based CTA models to the two-dimensional table.
The concluding remarks and possible directions for future research are given in
Sect. 5.

2 Preliminaries

2.1 Norm-Based CTA Models

In this section, we review the standard norm-based CTA model as it is presented
in [19]. Given the following set of parameters:

(i) A set of cells ai, i ∈ N = {1, . . . , n}. The vector a = (a1, . . . , an)T satisfies
certain linear system Aa = b where A ∈ R

m×n is an m × n matrix and and
b ∈ R

m is m-vector.
(ii) A lower, and upper bound for each cell, lai

≤ ai ≤ uai
for i ∈ N , which are

considered known by any attacker.
(iii) A set of indices of sensitive cells, S = {i1, i2, . . . , is} ⊆ N .
(iv) A lower and upper protection level for each sensitive cell i ∈ S respectively,

lpli and upli, such that the released values must be outside of the interval
(ai − lpli, ai + upli).

(v) A set of weights, wi, i ∈ N used in measuring the deviation of the released
data values from the original data values.

A standard CTA problem is a problem of finding values zi, i ∈ N , to be
released, such that zi, i ∈ S are safe values and the weighted distance between
released values zi and original values ai, denoted as ‖z − a‖l(w), is minimized,
which leads to solving the following optimization problem

min
z

‖z − a‖l(w)

s.t. Az = b,
lai

≤ zi ≤ uai
, i ∈ N ,

zi, i ∈ S are safe values.

(1)
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As indicated in the assumption (iv) above, safe values are the values that
satisfy

zi ≤ ai − lpli or zi ≥ ai + upli, i ∈ S. (2)

By introducing a vector of binary variables y ∈ {0, 1}s the constraint (2) can
be written as

zi ≥ −M (1 − yi) + (ai + upli) yi, i ∈ S,
zi ≤ Myi + (ai − lpli) (1 − yi) , i ∈ S,

(3)

where M � 0 is a large positive number. Constraints (3) enforce the upper safe
value if yi = 1 or the lower safe value if yi = 0.

Replacing the last constraint in the CTA model (1) with (3) leads to a mixed-
integer convex optimization problem (MICOP) which is, in general, a difficult
problem to solve; however, it provides a globally optimal solution [6]. The alter-
native approach is to fix binary variables upfront which leads to a CTA model
which is a continuous convex optimization problem that is easier to solve. It
is worth noting that the obtained solution is optimal for the fixed combination
of binary variables which is different from the global optimum obtained when
solving MICOP CTA problem, however, in most cases, it is quite a good approx-
imation that serves the purpose of protecting sensitive values in the table quite
well. It is also important to mention that a wrong assignment of binary vari-
ables may result in the problem being infeasible. Strategies on how to avoid this
difficulty are discussed in [11,12].

In this paper, we consider a continuous CTA model where binary variables are
fixed according to one of the strategies suggested in these papers. Furthermore,
vector z is replaced by the vector of cell deviations, x = z − a.

The CTA (1) model with constraints (3) reduces to the following convex
optimization problem:

min
x

‖x‖l(w)

s.t. Ax = 0,
l ≤ x ≤ u,

(4)

where upper and lover bounds for xi, i ∈ N are defined as follows:

li =

{
upli if i ∈ S and yi = 1
lai

− ai if (i ∈ N \ S) or (i ∈ S and yi = 0)
(5)

ui =

{
−lpli if i ∈ S and yi = 0
uai

− ai if (i ∈ N \ S) or (i ∈ S and yi = 1) .
(6)

The two most commonly used norms in problem (4) are the �1 and �2 norms.
For the �2-norm the problem, (4) reduces to the following �2-CTA model which
is a QP problem:

min
x

n∑
i=1

wix
2
i

s.t. Ax = 0,
l ≤ x ≤ u.

(7)
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For the �1-norm the problem, (4) reduces to the following �1-CTA model:

min
x

n∑
i=1

wi |xi|
s.t. Ax = 0,

l ≤ x ≤ u.

(8)

The above �1-CTA model (8) is a convex optimization problem; however, the
objective function is not differentiable at x = 0. Since most of the algorithms
require differentiability of the objective function, problem (8) needs to be refor-
mulated. The standard reformulation is the transformation of the model (8) to
the following LP model:

min
x−,x+

n∑
i=1

wi

(
x+
i + x−

i

)
s.t. A

(
x+
i − x−

i

)
= 0,

l ≤ x+ − x− ≤ u,

(9)

where

x+ =

{
x if x ≥ 0
0 if x < 0,

x− =

{
0 if x > 0
−x if x ≤ 0,

(10)

The inequality constraints can further be split into lower and upper bounds
constraints for x+ and x− separately (see [19]).

Recently, another reformulation of �1-CTA has been proposed. In [19] it was
observed that the absolute value has an obvious second-order cone (SOC) rep-
resentation

ti = |xi| −→ Ki =
{

(xi, ti) ∈ R
2 : ti ≥

√
x2
i

}

which leads to the following SOC formulation of the �1-CTA (8)

min
x

∑n
i=1 witi

s.t. Ax = 0,
(xi, ti) ∈ Ki; i = 1, . . . , n,
l ≤ x ≤ u.

(11)

The three CTA models outlined above can be solved using interior-point
methods (IPMs). IPMs have been developed in the past three decades and have
proven to be very efficient in solving large linear and non-linear optimization
problems that were previously hard to solve. Nowadays almost every relevant
optimization software, whether commercial or open-source, contains an IPM
solver. For more information on IPMs see [20–24] and references therein. Specif-
ically, for conic optimization problems and methods see [3,4,16].

We conclude this section by listing several references where numerical exper-
iments and comparisons of different methods for norm-based CTA models were
presented [5,9,13,19].
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2.2 Motivation to Consider Different CTA Models

In traditional, norm-based continuous CTA models we are finding the closest
safe table to the original table with respect to a certain norm, usually l2 or
l1 norm. However, in norm-based CTA models, there is no control of how well
the statistical properties of the data in the table are preserved. The analysis of
the data in the masked table with respect to the original table is usually done
after the masked table is produced using a CTA model. One of the most utilized
measures of analysis is the Chi-square statistic. For example, in [10] Chi-square
and Cramer V statistical measures were used in assessing information loss of the
masked table produced by the LP CTA model (9). See also references therein.

The definitions of Chi-square statistic and Cramer V measure are well known,
however, we list them below for the sake of completeness.

Chi-square statistic of a table is

χ2 =
n∑

i=1

(0i − ei)
2

ei
, (12)

where oi is an observed cell value and ei is an expected cell value.
Cramer’s V statistical measure is derived from Chi-square statistic

V =

√
χ2

n(r − 1)(c − 1)
(13)

where r is a number of rows and c is a number of columns and n is a number of
cells in the table, i.e. n = rc.

An absolute value of the differences instead of a square of the differences as
in (12) can also be considered. We call this measure a Chi-linear measure.

χabs =
n∑

i=1

|0i − ei|√
ei

, (14)

We performed numerical experiments on a set of randomly generated tables
of different dimensions and different numbers of sensitive cells and applied the
QP, the LP, and SOC (Conic) CTA models listed above to obtain the masked
tables. We used different weights, wi = 1/ai and wi = 1/ei for QP and the
square root of these weights for LP -CTA models. We calculated the Chi-square
statistic, and Cramer V and Chi-linear measures for each masked table and for
the original table. The summary of the results is presented in Table 2 in the
Appendix.

The review of the results in Table 2 leads to the following observations:

– There is no pattern that would indicate that the masked table produced by
one of the CTA models consistently exhibits values of the Chi-square, or other
statistics, closer to the values of these statistics for the original table than for
other models.
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– This is consistent with the findings in [10]. The authors compared the original
and masked tables generated using only LP CTA model. They observed that
Chi-square and Cramer’s V measures are affected by the size of the table, the
way the cell values are generated, the number of sensitive cells, upper and
lower safe values for sensitive cells, etc.

– The conclusion is that standard norm-based CTA models do not guarantee
that Chi-square value, or values of other statistics, computed on the masked
table will be as close as possible to the corresponding values of the original
table given the constraints.

Given these observations, we propose to consider a different measure of
“closeness” between masked and original table which attempts to minimize an
objective function that depends on the difference between values of statistics of
the original and masked table. In the sequel, we specifically focus on designing
a CTA model for Chi-square statistic.

3 Chi-Square CTA Model and a Modification

3.1 Chi-Square CTA Model

In this section, we propose a CTA model that we call Chi-Square CTA where
the minimization of the norm-based objective function in (4) is replaced with
the minimization of the absolute value of the differences of values of Chi-square
statistic of the masked and original table.

The model is as follows:

min
∣∣∣∑n

i=1
(zi−ei)

2

ei
− ∑n

i=1
(ai−ei)

2

ei

∣∣∣
s.t. Ax = 0,

l ≤ x ≤ u.

(15)

In the model above it seems that there is no connection between variables
in the objective function and in the constraints. However, variables z and x are
connected as follows x = z − a, that is, variable x represents cell deviations.
Below, the objective function is transformed in terms of cell deviations x, rather
than the original masked values z. We have a similar situation in several other
models below.

f(x) =
∣∣∣∑n

i=1
(zi−ei)

2

ei
− ∑n

i=1
(ai−ei)

2

ei

∣∣∣
=

∣∣∣∑n
i=1

(xi+ai−ei)
2

ei
− ∑n

i=1
(ai−ei)

2

ei

∣∣∣ → di := ai − ei

=
∣∣∣∑n

i=1
(xi+di)

2

ei
− ∑n

i=1
d2
i

ei

∣∣∣
=

∣∣∣∑n
i=1

(xi+2di)xi

ei

∣∣∣
=

∣∣∣∑n
i=1

x2
i+2dixi

ei

∣∣∣
(16)

The difficulty with the Chi-square CTA model (15) is that it is non-
linear, non-convex, and non-smooth. The non-convexity is due to the fact that
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di == ai − ei may b negative for some i. The non-smoothness that is caused by
absolute value can be removed by replacing the absolute value with a square of
the differences.

min
[∑n

i=1
(zi−ei)

2

ei
− ∑n

i=1
(ai−ei)

2

ei

]2
s.t. Ax = 0,

l ≤ x ≤ u.

(17)

Using the same substitutions as in (16) we obtain the following non-linear and
non-convex but smooth problem with linear constraints that we call Chi-square
CTA model.

min
[∑n

i=1
(xi+2di)xi

ei

]2
s.t. Ax = 0,

l ≤ x ≤ u.

(18)

3.2 Chi-Linear CTA Model

The Chi-square CTA model (18) which is a smooth non-linear and non-convex
problem can be solved using an appropriate IPM for non-linear problems. How-
ever, the non-linearity and non-convexity of the problem make it harder to solve
the problem. In other words, the IPM will be able to handle problems of the
smaller size and will perform slower than if it is applied to the LP or QP CTA
model. At this point, it is still an open question of whether model (18) can
be transformed into a more tractable problem that can be efficiently solved by
IPMs. One option is to consider the modification of the Chi-square CTA formu-
lation (18) by minimizing the absolute value of the sum of absolute values of
differences (errors) rather than squares of differences as in (18).

The model is as follows:

minz

∣∣∣∑n
i=1

|zi−ei|√
ei

− ∑n
i=1

|ai−ei|√
ei

∣∣∣
s.t. Ax = 0,

l ≤ x ≤ u,

(19)

We call this model Chi-linear CTA model. In what follows we will show that
this model can be transformed into the LP problem which then can be solved
efficiently using IPMs or simplex based algorithms.

The objective function in (19) can be transformed in a similar way as in (16)
for Chi-square CTA model (18).

f(x) =
∣∣∣∑n

i=1
|zi−ei|√

ei
− ∑n

i=1
|ai−ei|√

ei

∣∣∣ → xi := zi − ai

=
∣∣∣∑n

i=1
|xi+ai−ei|√

ei
− ∑n

i=1
|ai−ei|√

ei

∣∣∣ → di := ai − ei

=
∣∣∣∑n

i=1
|xi+di|√

ei
− ∑n

i=1
|di|√
ei

∣∣∣ → G :=
∑n

i=1
|di|√
ei

=
∣∣∣∑n

i=1
|xi+di|√

ei
− G

∣∣∣ → g(x) =
∑n

i=1
|xi+di|√

ei

= |g(x) − G|

(20)
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The Chi-linear CTA model (19) can now be written in the form

minx |g(x) − G|
s.t. Ax = 0,

l ≤ x ≤ u,
(21)

The transformation of (21) to the LP model is derived below.
The objective function transformation:

f(x) =
∣∣∣∑n

i=1
|xi+di|√

ei
− G

∣∣∣ → yi = xi + di; i = 1, · · · , n

=
∣∣∣∑n

i=1
|yi|√
ei

− G
∣∣∣ → |yi| = y+

i + y−
i ; y+

i , y−
i ≥ 0; i = 1, · · · , n

=
∣∣∣∑n

i=1
y+
i +y−

i√
ei

− G
∣∣∣ → t =

∑n
i=1

y+
i +y−

i√
ei

− G

= |t| → t = t+ − t−, t+, t− ≥ 0
= t+ + t−

(22)
Equality constraints transformations:

Ax = 0 → A(y − d) = 0
→ A(y+ − y−) = Ad
→ Ay+ − Ay− = Ad

(23)

It is not hard to show that
Ad = 0, (24)

hence, we have
Ax = 0 → Ay+ − Ay− = 0. (25)

Inequality constraints transformations:

l ≤ x ≤ u → l ≤ y − d ≤ u
→ l + d ≤ y ≤ u + d
→ l + d ≤ y+ − y− ≤ u + d

(26)

The Chi-linear CTA model (21) transforms now to the following LP problem.

min (t+ + t−)
s.t. Ay+ − Ay− = 0,

t+ − t− =
∑n

i=1
y+
i +y−

i√
ei

− G

l + d ≤ y+ − y− ≤ u + d
t+, t− ≥ 0
y+, y− ≥ 0,

(27)

4 Numerical Results

In this section a two-dimensional table stated in Figure 1 in [19] is considered.
The table is listed in Fig. 1 below as Table (a).
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This table is used to build five different CTA models, �1-CTA LP formulation
(9), �1-CTA SOC formulation (11), �2-CTA QP formulation (7), Chi-linear CTA
LP formulation (27), and Chi-square CTA formulation (18). These CTA mod-
els are solved using appropriate interior-point methods (IPMs). The first four
models were solved using MOSEK solver [1] while the last one is solved using
IPOPT solver [2]. The results are listed in Fig. 1.

Original
10(3) 15 11 9 45
8 10 12 15 45
10 12 11 13(5) 46
28 37 34 37 136

(a)

�1-LP
13 15 11 6 45
10 10 12 13 45
5 12 11 18 46
28 37 34 37 136

(b)

�1-SOC
13.47 15.26 11.22 5.05 45
8.19 10.43 12.43 13.95 45
6.34 11.31 10.35 18 46
28 37 34 37 136

(c)
�2-QP

13 15.03 11.03 5.94 45
7.66 11.14 13.14 13.06 45
7.34 10.83 9.83 18 46
28 37 34 37 136

(d)

Chi-linear LP
13. 12.77 11.25 7.98 45
9.26 13.47 11.25 11.02 45
5.74 10.76 11.5 18 46
28 37 34 37 136

(e)

Chi-square
13. 12.13 11.15 8.72 45
8.47 13.68 12.57 10.28 45
6.53 11.19 10.28 18. 46
28 37 34 37 136

(f)

Fig. 1. Masked tables produced by different CTA models for table (a)

In the next Table 1 the values of Chi-square, Cramer V, and Chi-linear statis-
tical measures are listed for the original table and related masked tables produced
by five CTA models.

Table 1. Values of the three statistical measures

Tables Statistical measures

Chi-square Chi-linear Cramer V

Original 2.89 4.70 0.20

�2-QP 9.49 8.74 0.36

�1-LP 10.44 8.49 0.32

�1-SOC 11.30 9.26 0.39

Chi-Square 6.81 7.17 0.31

Chi-Linear 7.38 6.55 0.32

From Table 1 we observe that the value of the Chi-square statistic of the
masked table produced by the Chi-square CTA model indeed differs the least
from the value of the Chi-square statistic of the original table. Similarly, the
Chi-linear measure of the masked table produced by the Chi-linear CTA model
is the closest to the Chi-linear measure of the original table.
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The second observation is about p-values of the Chi-square statistic for the
tables listed in Table 1. The p-values for the tables are as follows: original: 0.82,
�2-QP: 0.15, �1-LP: 0.11, �1-SOC: 0.08, Chi-square: 0.34, Chi-linear: 0.29. As
expected, the p-value of the Chi-square table is the closest to the p-value of the
original table. However, the discrepancy between the p-values of the original and
masked tables is significant and deserves comment.

The Chi-square statistic is very sensitive to the number of sensitive cells in
the table and the level of perturbation needed to get the safe values for these
cells [6,10]. The larger the number of sensitive cells and the level of perturbation,
in general, the larger the discrepancy between Chi-square statistic values and,
consequently, p-values. Therefore, the discrepancy is more due to the require-
ments for the protection of tabular data and less due to the CTA model used
to obtain the masked table which satisfies these requirements. Nevertheless, the
new Chi-square CTA model proposed in this paper achieves the p-value of the
masked table that is the closest to the p-value of the original table among all
other CTA models. On the more general note, this is an illustration of the inter-
play between maximizing the utility of the masked data while keeping disclosure
risk under control which is at the heart of the theory and methods of SDL.

5 Concluding Remarks and Future Work

In this paper, a novel approach to building Continuous CTA models for statisti-
cal disclosure limitation of tabular data is discussed. The standard norm-based
CTA model finds the closest safe (masked) table to the original table while sat-
isfying additivity equations and safe value inequality constraints, as described in
Sect. 2.1. The measure of closeness is usually measured using an �1 or �2 norm.

The numerical experiments summarized in Table 2 in Sect. 2.2 suggest that
there is no pattern which would indicate that one CTA model consistently pro-
duces the values of the Chi-square statistic, or other statistics, of the masked and
original table that are closer to each other than for any other model. Hence, we
propose a CTA model, which we call Chi-square CTA model (18), that produces
a masked table with Chi-square statistic closest to Chi-square statistic of the
original table.

Given the non-linearity and non-convexity of the Chi-square CTA model,
we also consider a modification of this model, a Chi-linear CTA model (27)
that can be transformed to LP problem, hence allowing IPMs to solve high
dimensional tables efficiently. The price to pay is that the closeness between
Chi-square statistics of an original and masked table may be affected. Further
examination of this topic is the subject of future research.

The goal of the paper is mainly theoretical, that is, to present a novel Chi-
square CTA model and its modification, Chi-linear CTA model, as an illustration
of a possible new approach in building CTA models which produce masked tables
that are the closest to the original table in terms of a certain statistic, rather
than in terms of a distance between tables.
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The rationale behind the new approach is to consider Analysis Specific CTA
models. On one hand, they may be more narrow in scope, however, they produce
the optimal result for the specific analysis. On the other hand, norm-based CTA
models may be wider in scope and produce tables that may have “relatively
good” results for multiple different statistical measures, but “really good” (opti-
mal) for none. In addition, we have no explicit control of the quality of results
in the norm-based CTA approach.

Directions for future research include more extensive numerical experiments
on a larger set of randomly generated two-dimensional tables of different sizes
and different numbers of sensitive cells. A more theoretical direction for future
research is to examine whether the Chi-square CTA model (18) can be trans-
formed into a more tractable problem that can be efficiently solved by IPMs.

Acknowledgments. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors only and do not necessarily
represent the official position of the Centers for Disease Control and Prevention.

A Appendix

Values of Statistical Measures for Different CTA Models

Table 2. Values of statistical measures for different CTA models

Percentage of sensitive cells Tables Statistical measures

Chi-square Chi-linear Cramer V

Original 1790.69 506.40 0.228821

10 LP 2039.68 536.77 0.244212

W (ai) − LP 2034.97 518.96 0.243930

W (ei) − LP 2111.99 540.48 0.248504

QP 1971.56 519.52 0.240100

W (ai) − QP 1940.21 512.82 0.238183

W (ei) − QP 1976.04 519.89 0.240372

Conic 1954.00 520.86 0.239028

15 LP 2008.59 532.59 0.242344

W (ai) − LP 1960.27 520.67 0.239411

W (ei) − LP 2046.51 539.46 0.244621

QP 2012.38 534.54 0.242573

W (ai) − QP 1952.36 526.04 0.238928

W (ei) − QP 2019.59 535.99 0.243007

Conic 1968.98 525.72 0.239942

(continued)
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Table 1. (continued)

Percentage of sensitive cells Tables Statistical measures

Chi-square Chi-linear Cramer V

20 LP 1950.37 513.28 0.238806

W (ai) − LP 1922.12 511.77 0.237070

W (ei) − LP 1993.11 522.35 0.241408

QP 1949.98 516.88 0.238782

W (ai) − QP 1881.74 505.13 0.234566

W (ei) − QP 1947.82 516.88 0.238650

Conic 1957.35 520.91 0.239233
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Abstract. Vast amounts of information of all types are collected daily
about people by governments, corporations and individuals. The infor-
mation is collected, for example, when users register to or use on-line
applications, receive health related services, use their mobile phones, uti-
lize search engines, or perform common daily activities. As a result, there
is an enormous quantity of privately-owned records that describe indi-
viduals’ finances, interests, activities, and demographics. These records
often include sensitive data and may violate the privacy of the users if
published. The common approach to safeguarding user information is to
limit access to the data by using an authentication and authorization
protocol. However, in many cases the publication of user data for statis-
tical analysis and research can be extremely beneficial for both academic
and commercial uses, such as statistical research and recommendation
systems. To maintain user privacy when such a publication occurs many
databases employ anonymization techniques, either on the query results
or the data itself. In this paper we examine and analyze the privacy
offered for aggregate queries over a data structures representing linear
topologies. Additionally, we offer a privacy probability measure, indi-
cating the probability of an attacker to obtain information defined as
sensitive by utilizing legitimate queries over such a system.

Keywords: Privacy · Datasets · Anonymity · Vehicular network ·
Linear topology · Privacy measure

1 Introduction

The problem of privacy-preserving data analysis has a long history spanning
multiple disciplines. As electronic data about individuals becomes increasingly
detailed, and as technology enables ever more powerful collection and curation
of these data, the need increases for a robust, meaningful, and mathematically
rigorous definition of privacy, together with a computationally rich class of algo-
rithms that satisfy this definition. A comparative analysis and discussion of
such algorithms with regards to statistical databases can be found in [1]. One
common practice for publishing such data without violating privacy is applying
c© Springer Nature Switzerland AG 2020
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regulations, policies and guiding principles for the use of the data. Such regu-
lations usually entail data distortion for the sake of anonymizing the data. In
recent years, there has been a growing use of anonymization algorithms based
on differential privacy introduced by Dwork et al. [6]. Differential privacy is a
mathematical definition of how to measure the privacy risk of an individual when
they participate in a database. While ensuring some level of privacy, these meth-
ods still have several issues with regards to implementation and data usability,
which we discuss in Sect. 2. Due to these issues and restrictions, other privacy
preserving algorithms are still in prevalent in many databases and statistical
data querying systems.

In this paper, we analyze the effectiveness of queries using the k-query-set-
size limitation over aggregate functions in maintaining individual user privacy.
This method is similar in its approach to the k-anonymization technique offered
by Sweeney and Samarati et al. [12,14], which states that the information of any
individual in released data in indistinguishable from that of at least k−1 individ-
uals in the same release. This method was later improved upon by Machanava-
jjhala et al. [11] adding a l-diversity measure to the anonymization of the data.
Li et al. [10] further introduce the t − closeness classification aimed at solving
issues that arose with the previous two methods. Srivatsava et al. [8] explore sev-
eral of these privacy preserving techniques and show their vulnerabilities with
regards to what they call “composition attacks” and auxiliary information. In
the majority of cases, these methods and the research surrounding them are
focused on tabular databases that are “sanitized” (anonymized) and distributed
for statistical analysis. In our research we examine a different database struc-
ture representing entities distributed throughout a linear topology, and instances
where the user has access to specific data queries but not to the entire data. We
examine aggregate function queries (minimum/maximum/median values) over
a linear topology structure in order to determine the privacy level that can be
afforded by the query-set-size control method. We define a privacy metric of “Pri-
vacy Probability” for the case of minimum and maximum queries on their own.
We also analyze the privacy afforded when the attacker has access to median,
minimum and maximum queries over the same data set.

The rest of this paper is organized as follows: we discuss related work in
Sect. 2, in Sect. 3 we define the problem outline and models, in Sect. 4 we show
the privacy afforded when using only the maximum (or minimum) query and
offer a privacy probability measure, and Sect. 5 analyzes the level of privacy
that can be attained when the attacker has simultaneous access to the minimum,
maximum and median queries. We summarize in Sect. 6.

2 Related Work

Much of the recent research into privacy preservation of published data has been
surrounding differential privacy algorithms [5]. To construct a data collection or
data querying algorithm which constitutes differential privacy, one must add
some level of noise to the collected or returned data respectively. Examples of
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this method can be found in [2,3,7]. There are however still several issues and
limitations to this method. Sarwate and Chaudhuri [13] discuss the challenges
of differential privacy with regards to continuous data, as well as the trade-off
between privacy and utility. In some cases, the data may become unusable after
distortion. Lee and Clifton [9] discuss the difficulty of correctly implementing
differential privacy with regards to the choice of ε as the differential privacy
factor. Zhu et al. [16] detail the issue of querying large data sets with multiple
query rounds, compounding the noise added from Lap(1/ε) to 10Lap(10/ε) over
ten rounds for example. Moreover, even many published differentially private
algorithms have been shown to violate this privacy claim [4]. For the aggregate
queries used in our model, the amount of noise required for differential privacy
would distort the data in a manner that would make it unusable. This is due to
the sensitivity (i.e. the maximum influence of a single entry in the data set as
defined for differential privacy by Dwork et al [6]) being high. In addition, in our
model we do not restrict the user (and the attacker) in the number of queries
performed. Such a lack of restriction is known to cause differential privacy to
fail, since the noise can be averaged out and filtered from the results. Therefore,
our work focuses on data sets utilizing the query-set-size control method which
is still used for privacy preservation today. For a similar scenario, Venkatadri et
al. [15] recently demonstrated a privacy attack on Facebook users by utilizing
an exploit in Facebook’s targeted advertising API which used the query-set-size
control method to assure user privacy.

3 Research Problem and Models

We attempt to show privacy attacks on data gathered from linear topology sys-
tem. The gathered data is stored in a centralized database which allows a set
of queries that are designed to return meaningful information without compro-
mising the privacy of the users. A privacy attack is defined as access to any
information gathered from the user that was not made available from standard
queries on the database.

A system is comprised of n unique units distributed in the real world and
are displayed on a linear topology GL as a set of nodes V , distributed along
discrete coordinates on the X axis between −∞,∞, such that each node vi, i =
(1, 2, 3, . . . , n) represents one unit at a single (discrete) point in time tj . The
timestamps are measured as incremental time steps from the system’s initial
measurement designated t0 = 0.

For each node vi at each timestamp, some sensitive attribute is measured.
We denote this si,t with t being a discrete value timestamp. As an example these
could be vehicles with measured speeds. However, our analysis and results are
not limited to a vehicular network and speed values. The same methods we will
be describing can be used for any type of system with a similar node distribution,
and on any sensitive value held by these nodes on which the aggregate queries
described next can be performed.

A query is performed on the system at a given timestamp τ and over a range
R in the topology. The queries allowed are Fmax, Fmin and Fmed which return
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the maximum, minimum and median values in the given range respectively. The
range R is defined by a set of boundaries over the linear topology with a starting
coordinate xstart and end coordinate xend. As stated, a query will only return a
result if at least k nodes reside within the given range. The value k is known to the
attacker. In the following sections, we will analyze the privacy levels of different
aggregate queries over the structure defined above. The analysis is based on an
attacker with legitimate access to a subset of queries from [Fmin, Fmax, Fmed]
over a linear topology, with the goal of obtaining the sensitive attribute within a
group of less than k entities (nodes) as allowed by the query-set-size limitation.
The matching of a sensitive attribute to a single entity (node) constitutes a
powerful attack.

4 Privacy Analysis of Fmax or Fmin over Random Node
Distribution

This section explores the level of privacy afforded to a random node in the system
when using the query-set-size control method for query limitation. The query
available to the attacker is the Fmax query (this case is of course symmetrical
for the Fmin query as well). The system will consist of n nodes placed randomly
(uniformly distributed) along a linear topology. Each node vi has its attribute
value si, and we denote m to be the number of nodes in M where M = {vj |
sj > si} (i.e. the nodes whose attribute value s is larger than that of vi). For our
analysis, we require that m ≤ n − 2k. A query result will only be returned if at
least k nodes are in the queried range, with 2 < k < n

2 . We consider the privacy
of vi to be maintained if the value si cannot be determined by an attacker who
holds the results of all possible queries over the data set. In the case of a linear
topology, this requires that there exist a set of nodes surrounding vi, whose
attribute values are above si, and therefore will mask the value of vi. We name
this set the “privacy umbrella” of vi. The relative locations of nodes which make
up this privacy umbrella depends on the position of vi. For any given position
of vi, we look at all possible permutations of placement for the remaining nodes
in the topology and analyze which set of permutations constitutes a privacy
umbrella. Denote this set Ui. We define the privacy level pi of node vi to be |Ui|

(n−1)! ,
as (n−1)! is the total number of possible permutations of node positioning, given
a static node vi.

Model: A linear topology GL with n nodes.
Queries: Fmax (or Fmin - symmetric case).
Goal: Find the sensitive attribute of a node vtarget at a given time τ . In
this case, we show the probability of the attacker realizing his goal for any
target vi. There are three scenarios for the position of vi, each of which have
a different set Ui:
1. vi is one of k − 1 nodes at one edge of the topology.
2. vi is the kth node from one edge of the topology.
3. vi is between the kth and the (n − k)th node in the topology.
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We note two trivialities for all scenario proofs:

– Any query over a range with less than k nodes will return no values and is
therefore not help the attacker learn any new values of nodes.

– If a query over a range containing vi has returned some value s which does
not belong to vi, any query containing that range within its range will never
return the value si belonging to vi.

Due to these trivialities, it is easy to see that the best strategy for an attacker
to receive all possible values is to run all possible k-sized queries over the data
set. Our analyses will therefore be based on all possible k-sized queries run over
the positioning permutations. In addition, we discovered that in most cases it is
simpler to calculate the number of permutations in which a “privacy umbrella”
does not exist for a given node position. Therefore, we will present the calculation
of number of permutations not in Ui. We denote the set of these permutations
Wi and note that |Ui| = (n−1)!−|Wi|. We define a “discoverability probability”
q = Wi

(n−1)!) , and finally realize the privacy measure p as p = 1 − q. Following is
the analysis of the privacy measure for each scenario.

Scenario 1: vi is one of k − 1 nodes at one edge of the topology
We look first to the left edge of the topology. Assume that vi is the first node
in the topology. If one of the following k − 1 nodes is in M , then the value si
will never be returned in a query. If the kth node after vi is the first node in
the topology which is in M , then there exists one query that will return si (the
query containing the first k nodes), however any other query containing vi will
return a value of a node in M and the attacker will not be able to distinguish
between the values of the first k nodes (they will only know that si belongs to
one of them). Therefore, if even one of the first k nodes after vi is a member of
M , the value of vi is considered private. Now we look at the case where none if
these nodes is a member of M . In this case, a query over the first k nodes will
return the value si. Once the attacker “slides” the k-sized query window by one
node, and queries over k nodes starting from the second node in the topology,
the value returned will be smaller then si. In this manner, the attacker can know
for certain that si belongs to vi, and the privacy is lost.

From this, we see that the privacy umbrella of v1 (i.e. the first node in the
topology) exists in the set of all permutations where at least one node from
M is within the first k nodes after v1. As noted, it is easier to calculate the
number of permutations where this does not occur: place m nodes in any order
inside n − k − 1 positions (the first position belongs to vi, and we don’t want
any nodes from M in the next k positions), and the remaining n − m − 1 nodes
can be placed in any permutation among the remaining positions. Therefore, the
number permutations not in Ui is

(
n−k−1

m

) · m! · (n − m − 1)!.
This same privacy umbrella holds for any case where vi is within the first

k−1 nodes in the topology. This is due to the fact that any query range starting
to the left of vi will always contain at least vi and vi+1, and therefore even if
there are no nodes from M to the left of vi the attacker will not be able to
distinguish between vi and vi+1, as long as one of the k nodes following vi is in
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M . It can clearly be seen that due to symmetry, the same is true for the right
side (i.e. trailing edge) of the topology. Hence the number of permutations not
in Ui for any node vi adhering to scenario 1 is

(
n−k−1

m

) · m! · (n − m − 1)!.

Scenario 2: vi is the kth node from one edge of the topology
Again, we analyze this scenario by looking at the left side of the topology and
consider the right side to behave in the same manner due to symmetry. In this
scenario, for vi to retain privacy, there must either be a node from M within the
k − 1 nodes to the right of vi, or a node from M to the left of vi and have the
kth node to the right of vi be from M as well. The former is easy to see, since it
won’t allow vi to be isolated and cause any query that may return the value of
vi to contain vi−1 in its range as well. The latter case is true since having a node
from M to the left of vi will cause the queries to behave the same as Scenario 1.
Assume some node vm from M is at coordinate xm to the left of vi. Any query
starting from xm will return a value of at least sm. Therefore, the attacker must
start their queries after xm, in which case it will behave as though vi’s position
in the topology is smaller than k (i.e. Scenario 1). Once more, we will calculate
the number of permutations in Wi. These permutations can be categorized as:

– There are no nodes from M between v1 and vk+(k−1), the 2k − 2 nodes
surrounding vi.

– There exists at least one node from M within the k − 1 nodes to the left of
vi, but there are none within the k nodes to the left of vi

These cover all permutations that will allow the attacker to determine the value
of vi. The number of permutations in each category are as follows:

Category 1
(
n−(2k−1)

m

) ·m! · (n−m−1)! =
(
n−2k+1

m

) ·m · (m−1)! · (n−m−1)!

Category 2
∑k−1

x=1

(
n−(2k+2−x)

m−1

) · m · (m − 1)! · (n − m − 1)!

Total Number of Permutations
Therefore, the number of permutations in Wi for any node vi adhering to
scenario 2 is (

(
n−2k+1

m

)
+

∑k−1
x=1

(
n−(2k+2−x)

m−1

)
) · m! · (n − m − 1)!

Scenario 3: vi is between the kth and the (n − k)th node in the topology
While this scenario is a little more complicated, the permutations can be some-
what derived from scenarios 1 and 2. If the kth node the left or right of vi is in
M , then it will require the same permutations as if it were a node in Scenario
2 on the left or right side of the topology respectively. Otherwise, it will require
at least one node from M within the k − 1 nodes to its left, and one node from
M within the k − 1 node to its right. Following is a count of all permutations
where none of these conditions are met, split into four different node placement
categories:

Surrounding Nodes vi−k ∈ M,vi−(k−1) . . . vi+k �∈ M(
n−2k
m−1

) · m · (m − 1)! · (n − m − 1)! =
(
n−2k
m−1

) · m! · (n − m − 1)!
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Surrounding Nodes vi−(k−x) ∈ M,vi−(k−x−1) . . . vi+k �∈ M or vi+x ∈
M,vi+(x−1) . . . vi−k �∈ M for x = 1, 2, . . . , k − 1
2 · ∑k

x=2

(
n−(2k+2−x)

m−1

) · m · (m − 1)! · (n − m − 1)! = 2 · ∑k
x=2

(
n−(2k+2−x)

m−1

) ·
m! · (n − m − 1)!

Surrounding Nodes vi+k ∈ M,vi−k . . . vi+(k−1) �∈ M(
n−2k−1
m−1

) · m · (m − 1)! · (n − m − 1)! =
(
n−2k−1
m−1

) · m! · (n − m − 1)!

Surrounding Nodes vi−k . . . vi+k �∈ M(
n−2k−1

m

) · m! · (n − m − 1)!

Total Number of Permutations
As such, the number of permutations in Wi for any node vi adhering to
scenario 3 is (

(
n−2k
m−1

)
+ 2 · ∑k

x=2

(
n−(2k+2−x)

m−1

)
+

(
n−2k−1
m−1

)
+

(
n−2k−1

m

)
) · m! ·

(n − m − 1)!.

4.1 Privacy Probability Measure

Using the above scenarios, we can now calculate the privacy level of a randomly
chosen node v. The probability that the value s can be discovered and matched
to v by the attacker can be calculated as the chance that v falls into a given
scenario, multiplied by the probability that an attacker can determine s for a
node in that scenario. The probability that v falls into any given scenario is:

– Scenario 1: 2(k−1)
n

– Scenario 2: 2
n

– Scenario 3: n−2k
n

We can now calculate the “privacy probability measure” p, given in the following
theorem:

Theorem 1. Given the number of nodes in the system, n, the number of nodes
with a higher value than the target node, m, and the query-set-size limit k, the
privacy probability measure of a random node in a linear topology is: p = 1−q =

1−
[

2(k−1) ·(n−k−1
m

)
+2 ·

(
(
n−2k+1

m

)
+

∑k−1
x=1

(
n−(2k−x)

m−1

)
)

+(n−2k) ·
(

(
n−2k
m−1

)
+

2 · ∑k
x=2

(
n−(2k+2−x)

m−1

)
+

(
n−2k−1
m−1

)
+

(
n−2k−1

m

)
)]

· m!·(n−m−1)!
(n)!

Figure 1 in the Appendix shows p as a function of m and k in a system of size
n = 1000. We can see that the privacy probability approaches 1 exponentially as
m is increased. As expected, the larger the value of k, the fewer nodes we require
with higher values than v in order for v to have a higher privacy probability. We
note that there is a linear correlation between m and k with regards to their
effect on the privacy probability. Multiplying k by a factor of α reduces the
number of nodes m required for the same outcome p by approximately a value
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of α. For example, in order to reach a privacy probability of over 0.9 in a system
of 1000 nodes, we require a set M of over 390 nodes if the k is set to 6. Doubling
this value of k to 12 reduces the amount of nodes required in M to 218, roughly
half of the previously required value. Doubling k again to 24 now reduces the
required m to 115.

5 Analysis of Fmin, Fmax and Fmed

In this section we look at possible attacks using the minimum, maximum and
median value queries over ranges in the topology as defined previously by
Fmin, Fmax and Fmed respectively. Our approach in this section is slightly differ-
ent, as we attempt to discover a distribution of nodes in the topology in which
at least one node’s sensitive attribute is hidden from the attacker. As per the
query-set-size restriction, we define that the queries will not return a result if the
target Range R at time τ contains less than k individual values. In addition, our
analysis of potential attacks rests on the following set of assumptions. The data
set consists of n unique values. The value k is known to the attacker. If a result
is returned, the number of actual values in (R, τ) is not known to the attacker.
If (R, τ) contains an even number of values, Fmed returns the lower of the two
median values. The attacker is limited only to the Fmin, Fmax and Fmed queries,
but can perform any number of queries over the data set. The data set will be a
linear topology GL representing a snapshot in time τ of recorded sensitive values
of nodes in a specified area (such as speeds in a vehicular network). A query of
type q (q being min,max or med) at time τ over a range beginning at xi and
ending at xj (inclusive) will be denoted Fq([xi, xj ]).

Model: A linear topology GL with n nodes.
Queries: Fmin, Fmax and Fmed

Goal: Hide the sensitive attribute of a single node at a given time τ .
We note that there are two special cases in which a trivial attack can be
performed. We will address these cases before moving on to the general case.

Case 1: k − local Min/Max
If a node has the local minimum or maximum value with regards to his k nearest
neighbors then their value can be discovered. This is equivalent to not having a
“Privacy Umbrella” as defined in Sect. 4.

Case 2: k = 3
In this case, since all values are defined to be unique, querying Fmin, Fmax, Fmed

on a range containing exactly three nodes returns three values, each belonging to
a specific node. An attacker can query over a single coordinate at the left-most
side of the topology and increase the range until a result is returned. The first
time a result is returned, the minimum k = 3 group size has been reached, and
the attacker has the value of each of the 3 nodes. Each value cannot be attributed
to a specific node, but we will denote these three values s1, s2, s3. The attacker
now decreases the range’s size from the left until no result is returned, this
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indicates the range now only contains two nodes. Increasing the range to the
right until a result is returned indicates that a new node has been added to the
range. Since all values are unique, one of the values s1, s2, s3 will be missing from
the results. This belongs to the left-most node from the previous query results.
Continuing this method until the entire range has been scanned will reveal the
values of each node in the system.

The General Case: k ≥ 4
We show that for the general case of Fmin, Fmax, Fmed queries, there exists a
linear placement of nodes such that at least one node will have a value that will
remain hidden from an attacker. We use an adversarial model and show that
for any number n ≥ 2k of nodes and any minimal query size k ≥ 4, a node
arrangement can be created in which the attacker, using any combination of the
above mentioned queries, lacks the ability to discover the value of at least one
node.

Lemma 1. Let V be a set of n nodes v1, v2, . . . , vn positioned along a linear
topology at coordinates x1, x2, . . . , xn at time τ . If k ≥ 4, for any value n ≥ 2k
there exists a corresponding assignment of values s1, s2, . . . , sn, such that there
exists a node vj with value sj which cannot be determined by any attacker with
access to the Fmin, Fmax and Fmed queries over the data.

Proof. We prove by induction for k = 4 and n ≥ 2k, then extrapolate for k ≥ 4
and n ≥ 2k.

Show Correctness for k = 4, n = 8
With nodes v1, v2, v3, . . . , v8 positioned at x1, x2, x3, . . . , x8, set the values of
s1, s2, s3, . . . , s8 such that s8 > s4 > s3 > s7 > s6 > s1 > s2 > s5. The value
of s3 cannot be determined by an attacker even by running all possible query
combinations on the data. The results of all such possible queries can be see in
Table 1 in the Appendix.

Assume Correctness for k = 4, n = (N | N ≥ 2k)
Given a set of nodes v1, v2, v3, . . . , vN positioned at coordinates
x1, x2, x3, . . . , xN , assume there exists an assignment of corresponding values
s1, s2, s3, . . . , sN such that there exists some value sj belonging to some node vj
at position xj , which cannot be determined by an attacker with access to any
number of Fmin, Fmax, Fmed queries under a k = 4 limitation.

Prove for k = 4, n = (N + 1 | N ≥ 2k)
We assign s1, s2, s3, . . . , sN such that for the range [x1, xN ], for k = 4, there
exists some value of sj which is never revealed by any query Fmin, Fmax, Fmed.
Assume sj ∈ (s1, s2, s3, . . . , sN−3). We note two properties regarding sN+1 of
the node vN+1, placed at (xN+1 | xN+1 > xN ):

1. Regardless of the value of sN+1: ∀xi | xi ∈ [x1, xj ] ⇒ Fmin([xi, xN+1]) < sj .
(i.e. sj cannot be the result of any Fmin query in the range [x1, xN+1])

2. Regardless of the value of sN+1 : ∀xi | xi ∈ [x1, xj ] ⇒ Fmax([xi, xN+1]) > sj .
(i.e. sj cannot be the result of any Fmax query in the range [x1, xN+1])
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Therefore, we must only assign sN+1 such that it does not cause sj to be the
result of any Fmed query. Define smedi

to be the result of Fmed([xi, xN ]). Due
to the properties of Fmed, if med1 > sj then ∀i | 1 ≤ i ≤ j ⇒ medi > sj .
Conversely, if med1 < sj then ∀i | 1 ≤ i ≤ j ⇒ medi < sj . Otherwise at
least one of those queries would have returned sj as a result, which contradicts
the induction assumption. Define s′

med to be the closest median value to sj
from the previously stated queries. s′

med = Fmed([xy, xN ]) | ∀i, 1 ≤ i ≤ j ⇒
|sj − smedi

| ≥ |sj − sy| We set sN+1 to be some uniformly distributed random
value between s′

med and sj . We now look at Fmed([xi, xN+1]) and note that for
any value i | 1 ≤ i ≤ j, the results of Fmed([xi, xN ]) and Fmed([xi, xN+1]) are
either the same value or adjacent values, as the values in the range differ by
exactly one value. Since no value smedi

is adjacent to sj , then sj cannot be the
result of any value Fmed([xi, xN+1], 1 ≤ i ≤ j). There exist no other queries
of the type fmed which contain both xj and xN+1, therefore we now have an
assignment s1, s2, s3, . . . , sN , sN+1 such that the value sj cannot be discovered
by an attacker.

The above holds for the assumption sj ∈ (s1, s2, s3, . . . , sN−3). It is easy to
see that due to symmetry, the case where sj ∈ (s4, s5, s6, . . . , sN ) allows us to
shift all values of S one node to the right, and assign the random value between
s′
med and sj to s1. This completes correctness for all positions of vj .

Extrapolate for k ≥ 4, n ≥ 2k
Increasing k for a given value of n only reduces the amount of information
available to the attacker. Therefore, if a value sj exists for an assignment in a
system with n nodes under the k = 4 limitation (with n ≥ 2k), it will exist for
any value of k such that 4 ≤ k ≤ n

2 . Therefore we have the following theorem:

Theorem 2. There exists a linear placement of nodes such that at least one
node will have a value that will remain hidden from an attacker with access to
Fmin, Fmax, Fmed queries under the query-set-size limitation for values of k ≥
4, n ≥ 2k.

6 Conclusions and Future Work

With more and more user data being stored by companies and organizations,
and a growing demand to disseminate and share this data, the risks to security
and privacy rise greatly. While some of these issues have been addressed with
encryption and authorization protocols, the potential for misuse of access still
exists. The need for protecting user privacy while still maintaining utility of
databases has given birth to a wide variety of data anonymization techniques.
One such technique used today is the query-set-size control method. In this
research we have analyzed the behavior and vulnerabilities of instances of the
query-set-size control method. For a linear topology based data set we have
offered a privacy measure as the probability of an attacker with access only to
either the maximum or minimum query determining the sensitive value of a
random node. We have also shown the limitations of an attacker to access some
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nodes even with access to a combination of the minimum, maximum and median
queries. We plan on continued exploration of different privacy preserving data
querying methods such as the one detailed in this paper. We are also investigating
different implementations on multiple data structures as well as other query
formats, such as allowing concatenation of several ranges in a single query. We
aim to offer privacy measures similar to the privacy probability measure detailed
in this paper.

A Appendix

Fig. 1. Privacy Probability of Fmax under Query-Set-Size Limitation for n = 1000.

Table 1. All Possible Results of Fmin, Fmax and Fmid with k = 4 and n = 8.

Containing 4 Nodes
[x1, x4] [x2, x5] [x3, x6] [x4, x7] [x5, x8]

Fmin s2 s5 s5 s5 s5
Fmax s4 s4 s4 s4 s8
Fmed s1 s2 s6 s6 s6

Containing 5 Nodes
[x1, x5] [x2, x6] [x3, x7] [x4, x8]

Fmin s5 s5 s5 s5
Fmax s4 s4 s4 s8
Fmed s1 s6 s7 s7

Containing 6 Nodes
[x1, x6] [x2, x7] [x3, x8]

Fmin s5 s5 s5
Fmax s4 s4 s8
Fmed s1 s6 s7

Containing 7 Nodes
[x1, x7] [x2, x8]

Fmin s5 s5
Fmax s4 s8
Fmed s6 s7

Containing 8 Nodes
[x1, x8]

Fmin s5
Fmax s8
Fmed s6
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Abstract. The spatial distribution of a variable, such as the energy
consumption per company, is usually plotted by colouring regions of the
study area according to an underlying table which is already protected
from disclosing sensitive information. The result is often heavily influ-
enced by the shape and size of the regions. In this paper, we are interested
in producing a continuous plot of the variable directly from microdata
and we protect it by adding random noise. We consider a simple attacker
scenario and develop an appropriate sensitivity rule that can be used to
determine the amount of noise needed to protect the plot from disclosing
private information.

1 Introduction

Traditionally, statistical institutes mainly publish tabular data. For the tabular
data and underlying microdata, many disclosure control methods exist [10]. A
straightforward way to visualise the spatial structure of the tabular data on a
map is to colour the different regions of the study area according to their value in
a table that was already protected for disclosure control. The connection between
disclosure control in tables and on maps is investigated in [16,18], for example.

Drawbacks of giving a single colour to the chosen regions are that the shape
of the region influences the plot quite a lot and that the regions might not
constitute a natural partition of the study area. This makes it difficult for a user
to extract information from the plot. A smooth plot is often easier to work with.

To overcome these disadvantages, more and more publications use other visu-
alisation techniques, such as kernel smoothing, that can be used to visualise data
originating from many different sources, including road networks [3], crime num-
bers [6], seismic damage figures [7] and disease cases [8]. More applications and
other smoothing techniques are discussed in [4,5,19].

The views expressed in this paper are those of the authors and do not necessarily reflect
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Research involving the confidentiality of locations when publishing smoothed
density maps [14,20] shows that it is possible to retrieve the underlying locations
whenever the used parameters are published.

Regarding plots of smoothed averages, [13,22] constructed a cartographic
map that showed a spatial density of the relative frequency of a binary variable,
such as unemployment per capita. The density was defined at any point, not
just at raster points, but the final colouring of the map was discretised, as part
of the disclosure control. By the fact that often only one of the values of the
variable is considered sensitive information, e.g. being unemployed versus being
employed, a practical way to protect locations with too few nearby neighbours is
assigning them to the non-sensitive end of the frequency scale. Besides assessing
the disclosure risk, some utility measures were constructed.

The starting point for the current research is [23], in which plotting a sensi-
tive continuous variable on a cartographic map using smoothed versions of cell
counts and totals is discussed. The authors constructed a p% rule that used the
smoothed cell total and smoothed versions of the largest two contributions per
cell.

In this paper, we provide another view on the sensitivity of a map that
shows a continuous variable and abandon the idea of explicitly using grid cells,
so that the result will be a continuous visualisation on a geographical map.
First, in Sect. 2, we will introduce some preliminaries. Then, Sect. 3 will show
that the application of disclosure control is needed, after which our method to
do so is explained in Sect. 4 and guaranteed to sufficiently protect the sensitive
information in Sect. 5. We illustrate our approach by means of a case study in
Sect. 6 and make some final remarks in Sect. 7.

2 Preliminaries and Notation

First, we will introduce some notation. Let D ⊂ IR2 be an open and bounded
set that represents the study region on which we want to make the visualisation.
Let the total population be denoted by U = {r1, . . . , rN} ⊂ D, for N ∈ IN, in
which ri = (xi, yi) is the representation of population element i by its Cartesian
coordinates (xi, yi). We write r = (x, y) for a general point in D and ||r|| =√

x2 + y2 for the distance of that point to the origin. Associated with each
population element is a measurement value. By gi ≥ 0, we will denote the value
corresponding to population element i. As an example, U could be a set of
company locations, where company i has location ri and measurement value gi,
indicating its energy consumption, as in our case study of Sect. 6.

In order to visualise the population density, one can use kernel smoothing
[19]. The approach is similar to kernel density estimation [17], except that no
normalisation is applied. Essentially, density bumps around each data point are
created and added to make a total density. In our case, the kernel smoothed
population density is given by

fh(r) =
1
h2

N∑

i=1

k

(
r − ri

h

)
,
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in which k : IR2 → IR is a so-called kernel function, that is, a non-negative,
symmetric function that integrates to 1 over IR2. The bandwidth h con-
trols the range of influence of each data point. The Gaussian kernel k(r) =
(1/2π) exp(−||r||2/2), the Epanechnikov kernel k(r) = (2/π)(1 − ||r||2)1l(||r|| ≤
1) and the uniform kernel k(r) = (1/π)1l(||r|| ≤ 1) are common choices, but obvi-
ously many others kernel functions exist. Some guidelines are given in Sect. 4.5
of [19].

For the measurements values g1, . . . , gN , a density can be constructed by
multiplying the kernel corresponding to location i with the value gi:

gh(r) =
1
h2

N∑

i=1

gik

(
r − ri

h

)
.

By dividing the two densities fh and gh, we get the Nadaraya-Watson kernel
weighted average [21]

mh(r) =
gh(r)
fh(r)

=
∑N

i=1 gik ((r − ri)/h)
∑N

i=1 k ((r − ri)/h)
, r ∈ D. (1)

Whenever fh(r) = 0, it follows that gh(r) = 0 as well and we define mh(r) = 0.
This weighted average is an excellent tool for data visualisation and analysis
[5]. The ratio mh(r), r ∈ D will be the function of which we will investigate
disclosure properties and discuss a possible protection method.

Some remarks are in order. Firstly, the bandwidth h influences the smooth-
ness of mh. In the limit case of a very large bandwidth, mh will be constant,
while for small h, the plot will contain many local extrema. In the limit case
of a very small bandwidth, mh will be the nearest neighbour interpolation, at
least when using a Gaussian kernel. Secondly, note that mass can leak away,
since D is bounded but the kernel is defined on IR2. Consequently, fh and gh

underestimate the (weighted) population density at r close to the boundary of
D. Various techniques to correct such edge effects exist, see [2,9,15].

In this paper, we will frequently use two matrices that are defined in terms
of the kernel function, namely

Kh =
(

k

(
ri − rj

h

))N

i,j=1

and

Ch =

(
k ((ri − rj)/h)

∑N
k=1 k ((ri − rk)/h)

)N

i,j=1

.

Lastly, we will write Φ−1 for the standard normal inverse cumulative distribution
function.
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3 Motivation and Attacker Scenario

In this section, we will show that publishing the kernel weighted average reveals
exact information on the underlying measurement values. This implies that it is
necessary to apply disclosure control before publishing the plot. Our method to
do so will be elaborated on in Sect. 4.

Here, we will restrict our attention to the scenario in which an attacker is able
to exactly read off the plot of the kernel weighted average (1) at the population
element locations ri, i = 1, . . . , N . Throughout this paper, we will assume that
he is completely aware of the method to produce the kernel weighted average
and knows what kernel function, bandwidth and population element locations
were used.

Using the plot values, the attacker can set up a system of linear equations to
obtain estimates of the measurement values, since the kernel weighted average (1)
is a linear combination of the measurement values. When the attacker chooses N
points to read off the plot of (1) and uses the exact locations ri for i = 1, . . . , N ,
he obtains the system

mh = Ch g, (2)

with the known plot values mh = (mh(ri))
N
i=1 and the unknown measurement

value vector g = (gi)
N
i=1. We know the following about solvability of the system.

Theorem 1. Whenever Kh is invertible, system (2) can be solved uniquely and
the attacker can retrieve all measurement values exactly.

Proof. Assume that Kh is invertible. Then Ch is invertible as well, as it is
created from Kh by scaling each row to sum to 1. Hence, the linear system (2)
is uniquely solvable and an attacker can retrieve the vector g of measurement
values by left-multiplying mh with C−1

h . ��
In particular, Theorem1 shows that there is at least one configuration of points
at which the attacker can read off the plot of (1) to retrieve the measurement
values gi, i = 1, . . . , N exactly.

For the Gaussian kernel, amongst others, Kh is positive definite and thus
invertible, regardless of h, N and ri, i = 1, . . . , N , only provided that all ri are
distinct.

In the remainder of this paper, we will assume an attacker scenario in
which the attacker obtains a vector containing the exact plot values at loca-
tions ri, i = 1, . . . , N and left-multiplies that vector by C−1

h to obtain estimates
of the measurement values gi, i = 1, . . . , N .

4 Proposed Method and Main Result

Our method to prevent the disclosure of sensitive information consists of dis-
turbing the plot of (1), by adding random noise to the numerator g(r), r ∈ D,
so that an attacker observes

m̃h(r) =
∑N

i=1 gik ((r − ri)/h) + ε(r)
∑N

i=1 k ((r − ri)/h)
, r ∈ D, (3)
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instead of (1), where we define m̃h(r) = 0 if fh(r) = 0. The random noise
ε(r) will be generated as a Gaussian random field, with mean 0 and covariance
function

Cov (ε(r), ε(s)) = σ2k

(
r − s

h

)
, r, s ∈ D,

where σ is the standard deviation of the magnitude of the added noise. The
kernel k should be a proper covariance function, which is the case when for all
h > 0, m ∈ IN and si ∈ IR2, i = 1, . . . ,m, the corresponding matrix Kh is
positive definite, see Chapt. 1 of [1]. In this way, (3) will be continuous, just as
(1), whenever a continuous kernel function is used and fh vanishes nowhere.

Adding random noise to the plot implies that the attacker’s estimates will be
stochastic as well. This fact should be captured in a rule that describes whether it
is safe to publish the noised kernel weighted average. It brings us to the following
sensitivity rule, that states that a plot is considered unsafe to publish when any
measurement value estimate that the attacker makes lies with probability greater
than α within p percent of the true value. Such a sensitivity rule can be seen
as a stochastic counterpart of the well known p% rule for tabular data, which is
elaborated on in [10].

Definition 1. For 0 < p ≤ 100 and 0 ≤ α < 1, a plot is said to be unsafe
according to the (p%, α) rule for an attacker scenario whenever the estimates ĝi

of gi, i = 1, . . . , N , computed according to the scenario, satisfy

max
i=1,...,N

P

{∣∣∣∣
ĝi − gi

gi

∣∣∣∣ <
p

100

}
> α, (4)

where we take |(ĝi − gi)/gi| = |ĝi| if gi = 0.

When applying the (p%, α) rule, we normally choose p and α to be small, so
that a plot is safe when small relative errors in the recalculation happen with
small probability. Theorem 1 implies that the plot of (1) cannot be safe for any
(p%, α) rule. Furthermore, we note that high values of p and low values of α
correspond to a stricter rule: If a plot is safe according the (p%, α) rule, then for
any p̃ ≤ p and α̃ ≥ α, the plot is also safe according to the (p̃%, α̃) rule.

Our main result is the following theorem, that gives the standard deviation
of the magnitude of the noise ε in (3) needed to ensure that the plot is safe
according to the (p%, α) rule. In Sect. 5, we will prove the theorem.

Theorem 2. Suppose that the kernel k : IR2 → IR is a proper covariance func-
tion and gi > 0, i = 1, . . . , N . Then the plot of (3) is safe according to the
(p%, α) rule for our attacker scenario of Sect. 3 if

σ ≥ p

100Φ−1 ((1 + α)/2)
max

i=1,...,N

⎧
⎨

⎩
gi√(

K−1
h

)
ii

⎫
⎬

⎭
. (5)
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5 Proof of Theorem 2

Recall that the attacker observes (3). In matrix notation, (3) reads

mh + ε̃ = Ch g + ε̃,

where

ε̃ = (ε̃i)
N
i=1 =

(
ε(ri)

∑N
j=1 k ((ri − rj)/h)

)N

i=1

. (6)

If the attacker left-multiplies the vector of observed plot values by C−1
h to

recalculate g, just as he could do in (2), he will now make an error, because the
observed values are mh + ε̃ instead of mh. When we write ĝ = (ĝi)

N
i=1 for the

vector of recalculated measurement values, we obtain

ĝ = C−1
h (mh + ε̃) = g + C−1

h ε̃. (7)

Recall that Ch is invertible because Kh is positive definite since k is a proper
covariance function.

By the next lemma, that is the result of basic probability theory, it suffices,
in order to prove Theorem 2, to show that for our attacker scenario of Sect. 3
and using the plot of (3), for i = 1, . . . , N , the recalculated value ĝi follows a
normal distribution with mean gi and variance σ2

(
K−1

h

)
ii
.

Lemma 1. Whenever ĝi follows a normal distribution with mean gi, (4) is
equivalent with

max
i=1,...,N

p gi

100 Φ−1
(
1+α
2

) √
Var(ĝi)

> 1.

Now, let us compute the variance of the recalculated measurement values.
For all i = 1, . . . , N , combining (7) with the fact that ε(ri), i = 1, . . . , N, follows
a multivariate normal distribution with zero mean and covariance matrix σ2Kh,
the i-th recalculated value ĝi will follow a normal distribution with mean gi and
variance

Var(ĝi) =
N∑

j=1

N∑

k=1

Cov
((

C−1
h

)
ij

ε̃j ,
(
C−1

h

)
ik

ε̃k

)
.

Rewriting ε̃j and ε̃k according to (6), taking factors outside the covariance
term and substituting σ2 (Kh)jk = σ2 (Ch)kj

∑N
m=1 (Kh)km for Cov(εj , εk),

we obtain

Var(ĝi) = σ2
N∑

j=1

N∑

k=1

(
C−1

h

)
ij

(
C−1

h

)
ik

∑N
m=1 (Kh)jm

(Ch)kj .

Now, we can work out the multiplications of inverse matrices and use

K−1
h =

( (
C−1

h

)
ij

∑N
m=1 (Kh)jm

)N

i,j=1
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Fig. 1. Unprotected (left panel) and protected (right panel) kernel weighted average of
our entire synthetic dataset, according to a (10%, 0.1) rule for a Gaussian kernel with
bandwidth h = 250m

to get the result
Var(ĝi) = σ2

(
K−1

h

)
ii

,

which, together with Lemma 1, proves Theorem 2.

6 Case Study

We want to be able to compare unprotected plots with protected plots, so we
cannot use original, confidential data. Hence we used a synthetic dataset, based
on real data of energy consumption by enterprises. The original data contained
enterprises in the region ‘Westland’ of The Netherlands. This region is known
for its commercial greenhouses as well as enterprises from the Rotterdam indus-
trial area. We perturbed the locations of the enterprises and we assigned random
values for the energy consumption drawn from a log-normal distribution with
parameters estimated from the original data. We introduced some spatial depen-
dency in the energy consumption to mimic the compact industrial area and the
densely packed greenhouses. The final dataset consists of some 8348 locations
and is also included in the sdcSpatial R-package that can be found on CRAN
[12].

Figure 1 shows the unprotected kernel weighted average (1) and the protected
kernel weighted average (3) that satisfies the (10%, 0.1) rule. A Gaussian kernel
with a bandwidth of 250 m was used. We computed a safe lower bound for
the standard deviation σ of the random noise by (5). The plot of (3) resulting
from that computation looks almost exactly identical to the plot of (1). Only
at parts of the boundary where the population density is very small, the added
disturbance is perceptible by the eye.

When the bandwidth would be taken smaller, the standard deviation of the
noise would become large enough for the disturbance to be visually apparent.
However, working on this scale, it would be hard to see the details in that
situation. Thus, we plotted a subset of the data, restricting ourselves to a square
of 2 km × 2 km and all 918 enterprises contained in that square. The results of
our method on the data subset are visible in Fig. 2 for h = 100 m and in Fig. 3
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Fig. 2. Unprotected (left panel) and protected (right panel) kernel weighted average
of a part of our synthetic dataset, according to a (10%, 0.1) rule for a Gaussian kernel
with bandwidth h = 100 m
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Fig. 3. Unprotected (left panel) and protected (right panel) kernel weighted average
of a part of our synthetic dataset, according to a (10%, 0.1) rule for a Gaussian kernel
with bandwidth h = 80 m

for h = 80 m, while Fig. 4 displays the spatial structure of the locations in our
entire synthetic dataset and the subset thereof.

We see that the necessary disturbance to the plot is smaller in Fig. 3 than
in Fig. 2. In order to be able to compare the results for different bandwidths,
Fig. 5 contains two graphs that show the influence of the bandwidth on σ for our
synthetic data set. Note that the total disturbance of the plot is also influenced
by the denominator of (3), that increases with increasing bandwidth if the used
kernel is decreasing in ||r||. The graph of the entire dataset shows a steep decrease
of σ around h = 5. This is caused by the quick increase of the diagonal elements
of K−1

h due to Kh becoming less similar to the identity matrix. For h ≤ 5 a
single company with a very large energy consumption dominates the value of σ.
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Fig. 4. Map of enterprise locations in our entire dataset (left panel) and in the data
subset (right panel)
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Fig. 5. Standard deviation σ of added noise for different bandwidths

Since this company is not present in the subset that we work with, a smaller σ
may be used for the subset, also for h ≤ 5.

7 Discussion

In this paper we introduced a new sensitivity rule that is applicable in the
scenario that an attacker knows both the kernel and the bandwidth used to
produce the map, reads off the plotted values at the population elements and
estimates the measurement values by solving a system of linear equations. To
protect the plot, we proposed to disturb the data by adding noise and derived a
rule on how large the disturbance to the plot should be before publishing it.

To investigate the efficacy of the proposed method a case study was carried
out. It indicated that for a bandwidth that is large relative to the population
density, the disturbance needed was very small. When zooming in, however, the
disturbance to the plot was visually apparent.

During this research, some other interesting results were found that fall out-
side the scope of this paper. For details we refer to [11]. For instance, in our
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attacker scenario we assumed that the bandwidth is known to the attacker. If
the bandwidth were unknown to the attacker, simulations indicate that in many
cases, the bandwidth can be retrieved from the plot of (1) by repeatedly guessing
a bandwidth, solving the linear system for that bandwidth, making a plot using
the recalculated values and the guessed bandwidth and calculating the similarity
between the original and the recovered plot.

Secondly, many kernels with a compact support, including the uniform and
Epanechnikov kernel, are discontinuous or not infinitely differentiable at the
boundary of their support. An attacker can often use such information to obtain
the bandwidth or a single measurement value by considering plot values close to
that boundary.

We close with some final remarks and perspectives. At first glance, it might
seem more natural to add noise to the kernel weighted average itself rather
than to the numerator of (1). However, typically more noise should then be
added, resulting in a less visually attractive map. Furthermore, the proposed
method agrees with the intuition that densely populated areas need less pro-
tection, since the standard deviation of the noise is inversely proportional to
the kernel smoothed population density. Note that the addition of noise in our
method might lead to negative or extremely large values of (3) at locations where
the population density is very small. In our figures, these locations were given
the minimal or maximal colour scale values, to result in a realistic map for the
user.

It would be interesting to look at the utility of our plot for different band-
widths. Figure 5 is a first step in this direction but more research is needed.

Our method requires that all ri, i = 1, . . . , N are distinct. It would be inter-
esting to look into a scenario in which population elements can have the same
location, since these might partly protect each other for disclosure. If one would
introduce grid cells and use a single location for elements in the same cell, a
similar analysis could lead to explicitly taking the resolution of the plot into
account. Alternatively, rounding the plot values or using a discrete color scale
may be a useful approach to obtaining some level of disclosure control.

Finally, we restricted ourselves to a single simple attacker scenario. It would
be interesting to investigate alternative scenarios in which the attacker is par-
ticularly interested in a single value, uses other locations to read off the plot or
tries to eliminate the added noise.
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18. Suñé, E., Rovira, C., Ibáñez, D., Farré, M.: Statistical disclosure control on visual-
ising geocoded population data using quadtrees. In: Extended Abstract at NTTS
2017 (2017). http://nt17.pg2.at/data/x abstracts/x abstract 286.docx

19. Wand, M.P., Jones, M.C.: Kernel Smoothing. CRC Press, Boca Raton (1994)
20. Wang, Z., Liu, L., Zhou, H., Lan, M.: How is the confidentiality of crime locations

affected by parameters in kernel density estimation? Int. J. Geo-Inf. 8(12), 544–556
(2019). https://doi.org/10.3390/ijgi8120544

21. Watson, G.S.: Smooth regression analysis. Sankhya: Indian J. Stat. 26(4), 359–372
(1964)

22. de Wolf, P.P., de Jonge, E.: Location related risk and utility. Presented at
UNECE/Eurostat Worksession Statistical Data Confidentiality, Skopje, 20–22
September (2017). https://www.unece.org/fileadmin/DAM/stats/documents/ece/
ces/ge.46/2017/3 LocationRiskUtility.pdf

23. de Wolf, P.-P., de Jonge, E.: Safely plotting continuous variables on a map. In:
Domingo-Ferrer, J., Montes, F. (eds.) PSD 2018. LNCS, vol. 11126, pp. 347–359.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99771-1 23

https://doi.org/10.1007/978-3-540-69839-5_31
https://CRAN.R-project.org/package=sdcSpatial
https://doi.org/10.1007/978-3-319-45381-1_9
https://doi.org/10.1080/12265934.2018.1482778
https://doi.org/10.1007/978-3-642-33627-0_18
http://nt17.pg2.at/data/x_abstracts/x_abstract_286.docx
https://doi.org/10.3390/ijgi8120544
https://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2017/3_LocationRiskUtility.pdf
https://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2017/3_LocationRiskUtility.pdf
https://doi.org/10.1007/978-3-319-99771-1_23


Record Linkage and Alternative
Methods



Bayesian Modeling for Simultaneous
Regression and Record Linkage

Jiurui Tang(B), Jerome P. Reiter, and Rebecca C. Steorts

Department of Statistical Science, Duke University, Durham, USA
{jiurui.tang,jreiter}@duke.edu, beka@stat.duke.edu

Abstract. Often data analysts use probabilistic record linkage tech-
niques to match records across two data sets. Such matching can be the
primary goal, or it can be a necessary step to analyze relationships among
the variables in the data sets. We propose a Bayesian hierarchical model
that allows data analysts to perform simultaneous linear regression and
probabilistic record linkage. This allows analysts to leverage relationships
among the variables to improve linkage quality. Further, it enables ana-
lysts to propagate uncertainty in a principled way, while also potentially
offering more accurate estimates of regression parameters compared to
approaches that use a two-step process, i.e., link the records first, then
estimate the linear regression on the linked data. We propose and eval-
uate three Markov chain Monte Carlo algorithms for implementing the
Bayesian model, which we compare against a two-step process.

1 Introduction

Increasingly, data analysts seek to link records across data sets to facilitate sta-
tistical analyses. As a prototypical example, a health researcher seeks to link
data from a previously completed study to patients’ electronic medical records
to collect long-term outcomes, with the ultimate goal of estimating relation-
ships between the long-term outcomes and baseline covariates. Such linkages are
performed readily when unique identifiers, such as social security numbers, are
available for all records in all data sets.

Often, however, one or more of the data sets do not have unique identifiers,
perhaps because they were never collected or are not made available due to
privacy concerns. In such cases, analysts have to link records based on indirect
identifiers, such as name, date of birth, and demographic variables [1,2]. Gen-
erally, such indirect identifiers contain distortions and errors. As a result, they
can differ across the data sets, which can make it difficult to determine the cor-
rect record linkages. This uncertainty should be quantified and propagated to
statistical inferences, although typically this is not done.

In the statistics literature, the most popular method for linking records via
indirect identifiers is based on the probabilistic record linkage (RL) approach
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of Newcombe et al. [15], which was later extended and formalized by Fellegi
and Sunter [4]. Many extensions to the Fellegi-Sunter (FS) model have been
proposed [e.g., 18,23,24]. A common drawback of these and other probabilistic
RL methods [e.g., 7,12] is the difficulty in quantifying linkage uncertainty, and
propagating that uncertainty to statistical inferences. These limitations have led
to developments of RL approaches from Bayesian perspectives [e.g., 3,5,6,9–
11,14,16,17,19–21,25,26].

In this article, we propose a Bayesian model for performing probabilistic RL
and linear regression simultaneously. The proposed model quantifies uncertainty
about the linkages and propagates this uncertainty to inferences about the regres-
sion parameters. We focus on bipartite RL—that is, the analyst seeks to merge
two data sets—assuming that individuals appear at most once in each data set.
As we illustrate, the model can leverage relationships among the dependent and
independent variables in the regression to potentially improve the quality of the
linkages. This also can increase the accuracy of resulting inferences about the
regression parameters.

We use a Bayesian hierarchical model that builds on prior work by Sadinle
[17], who proposed a Bayesian version of the FS model for merging two data
sets. In fact, one of our primary contributions is to turn the model in [17] into
a procedure for jointly performing probabilistic RL and fully Bayesian inference
for regression parameters. We also propose and evaluate the effectiveness of
three algorithms for fitting the Bayesian hierarchical model, focusing on both
the quality of the linkages and on the accuracy of the parameter estimates.

2 Review of Bayesian Probabilistic Record Linkage

In this section, we review the Bayesian bipartite RL model of [17]. Consider two
data sets A1 and A2, containing n1 and n2 records, respectively. Without loss
of generality, assume n1 ≥ n2. Our goal is to link records in A1 to records in
A2. We further assume that A1 and A2 do not contain duplicate records; that
is, each record in A1 corresponds to a single individual, as is the case for A2.
We assume that some of the same individuals are in A1 and A2.

To characterize this, we define the random variable Z = (Z1, . . . , Zn2) as the
vector of matching labels for the records in A2. For j = 1, . . . , n2, let

Zj =

{
i, if record i ∈ A1 and j ∈ A2 refer to the same entity;
n1 + j, if record j ∈ A2 does not have a match in A1.

Analysts determine whether a pair of records (i, j) is a link, i.e., whether or
not Zj = i, by comparing values of variables that are common to A1 and A2.
Suppose we have F common variables, also known as linking variables or fields.
For f = 1, . . . , F , let γf

ij represent a score that reflects the similarity of field f
for records i and j. For example, when field f is a binary variable, we can set
γf

ij = 1 when record i agrees with record j on field f , and γf
ij = 0 otherwise.

When field f is a string variable like name, we can calculate a similarity metric
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like the Jaro-Winkler distance [8,22] or the Levenshtein edit distance [13]. We can
convert these string metrics to γf

ij by categorizing the scores into a multinomial
variable, where the categories represent the strength of agreement. We illustrate
this approach in Sect. 4.

For each record (i, j) in A1 × A2, let γγγij = (γ1
ij , . . . , γ

F
ij). We assume γγγij is a

realization of a random vector Γij distributed as

Γij |Zj = i
iid∼ M(m), Γij |Zj �= i

iid∼ U(u), where

M(m) represents the model for comparison vectors among matches, and U(u)
represents the model for comparison vectors among non-matches. For each field
f , we let mf� = P(Γ f

ij = �|Zj = i) be the probability of a match having level �

of agreement in field f , and let uf� = P(Γ f
ij = �|Zj �= i) be the probability of

a non-match having level � of agreement in field f . Let mf = (mf1, . . . , mfLf
)

and uf = (uf1, . . . , ufLf
); let m = (m1, . . . ,mF ) and u = (u1, . . . ,uF ).

For computational convenience, it is typical to assume the comparison fields
are conditionally independent given the matching status of the record pairs. Let
Θ = (m,u). The likelihood of the comparison data can be written as

L(Z|Θ, γγγ) =
n1∏
i=1

n2∏
j=1

F∏
f=1

Lf∏
�=0

[
m

I(Zj=i)
f� u

I(Zj �=i)
f�

]I(γf
ij=�)

, (1)

where I(·) = 1 when its argument is true and I(·) = 0 otherwise.
Sometimes, there are missing values in the linking variables. Although we

do not consider this possibility in our simulations, we summarize how to handle
missing values in the model, assuming ignorable missing data. With conditional
independence and ignorability, we can marginalize over the missing comparison
variables. The likelihood of the observed comparison data can be written as

L(Z|Θ, γγγobs) =
F∏

f=1

Lf∏
�=0

m
af�(Z)
f� u

bf�(Z)
f� , where (2)

af�(Z) =
∑

i,j Iobs(γ
f
ij)I(γf

ij = �)I(Zj = i) and bf�(Z) =
∑

i,j Iobs(γ
f
ij)I(γf

ij =
�)I(Zj �= i). For a given Z, these represent the number of matches and non-
matches with observed disagreement level � in field f . Here, Iobs(·) = 1 when its
argument is observed, and Iobs(·) = 0 when its argument is missing.

To define the prior distributions for m and u, for all fields f , let αf =
(αf0, . . . , αfLf

) and βf = (βf0, . . . , βfLf
). We assume that mf ∼ Dirichlet(αf )

and uf ∼ Dirichlet(βf ), where αf and βf are known parameters. In our simu-
lation studies, we set all entries of αf and βf equal to 1 for every field.

We use the prior distribution for Z from [17]. For j = 1, . . . , n2, let the
indicator variable I(Zj ≤ n1) | π

iid∼ Bernoulli(π), where π is the proportion of
matches expected a priori. Let π ∼ Beta(απ, βπ), where the prior mean απ/(απ+
βπ) represents the expected percentage of overlap. Let n12(Z) =

∑
j I(Zj ≤ n1)



212 J. Tang et al.

be the number of matches according to Z. The prior specification implies that
n12(Z) ∼ Beta-Binomial(n2, απ, βπ) after marginalizing over π. That is,

P(n12(Z)) =
(

n2

n12(Z)

)
B(n12(Z) + απ, n2 − n12(Z) + βπ)

B(απ, βπ)
. (3)

We assume that, conditional on the value of n12(Z), all the possible bipartite
matchings are equally likely a priori. There are n1!/(n1 −n12(Z))! such bipartite
matchings. Thus, the prior distribution for Z is

P(Z|απ, βπ) = P(n12(Z)|απ, βπ)P(Z|n12(Z), απ, βπ) (4)

=
(n1 − n12(Z))!

n1!
B(n12(Z) + απ, n2 − n12(Z) + βπ)

B(απ, βπ)
. (5)

3 The Bayesian Hierarchical Model for Simultaneous
Regression and Record Linkage

In this section, we present the Bayesian hierarchical model for regression and RL,
and propose three Markov chain Monte Carlo (MCMC) algorithms for fitting the
model in practice. Throughout, we assume the explanatory variables X are in
A1, and the response variable Y is in A2.

3.1 Model Specification

We assume the standard linear regression, Y|X,V,Z ∼ N(Xβ, σ2I). Here, V are
linking variables used in the RL model but not in the regression model. Analysts
can specify prior distributions on (β, σ2) that represent their beliefs. A full spec-
ification of the joint distribution of (Y,X|V) requires analysts to specify some
marginal model for X, written generically as f(X|V). In some contexts, however,
it is not necessary to specify f(X|V), as we explain in Sect. 3.2. Critically, this
model assumes that the distribution of (Y,X|V) is the same for matches and
non-matches. Finally, for the RL component of the model, we model Z using the
Bayesian FS approach in Sect. 2.

For the simulation studies, we illustrate computations with the Bayesian
hierarchical model using univariate Y and univariate X. Assume X ∼ N(μ, τ2).
As a result, in the simulations, the random variable (X,Y ) follows a bivariate
normal distribution with[

X
Y

]
∼ N

( [
μ

β0 + β1μ

]
,

[
τ2 β1τ

2

β1τ
2 σ2 + β2

1τ
2

] )
.

We assume a normal-Gamma prior on the regression parameters. Letting φ =
1/σ2, we have φ ∼ G(.5, .5) and β|φ ∼ N(b0, Φ0φ

−1) where b0 = [3, 1]T and Φ0 is
a 2×2 identity matrix. When needed, we assume Jeffrey’s prior p(μ, τ2) ∝ 1/τ2.
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3.2 Estimation Strategies

Even in the relatively uncomplicated set-up of the simulation study, it is not
possible to compute the posterior distribution of the model parameters in closed
form. Therefore, we consider three general strategies for MCMC sampling in
order to approximate the posterior distribution.

First, we propose an MCMC sampler that uses only the linked records when
estimating the full conditional distribution of the regression parameters in each
iteration of the sampler. This method generates potentially different samples of
linked records at each iteration. A key advantage of this method is that it does
not require imputation of X; hence, analysts need not specify f(X|V). We call
this the joint model without imputation, abbreviated as JM. Second, we propose
an MCMC sampler that imputes the missing values of X for those records in A2

without a link, and updates the regression parameters in each iteration using
the linked pairs as well the imputed data. We call this the joint model with
imputation, abbreviated as JMI. Third, we propose an MCMC sampler that is
similar to JMI but uses an extra step when imputing the missing values of X.
Specifically, at each iteration, we (i) sample values of the regression parameters
from a conditional distribution based on only the linked records, (ii) use the
sampled parameters to impute missing values in X, and (iii) update regression
coefficients based on linked as well as imputed pairs. By adding step (i), we aim
to reduce potential effects of a feedback loop in which less accurate estimates
of regression parameters result in less accurate estimates of the conditional dis-
tribution of X, and so on through the MCMC iterations. We call this the joint
model with imputation and reduced feedback (JMIF).

For JMI and JMIF, inferences are based on every entity in A2, whereas for
JM inferences are based on the subsets of linked pairs, which can differ across
MCMC iterations. Analysts should keep these differences in mind when selecting
an algorithm that suits their goals.

3.3 Details of the MCMC Samplers

In this section, we present the mathematical details for implementing the three
proposed MCMC samplers. Before doing so, we present an algorithm for a two-
step approach, where we perform RL and then use the linked data for regression.
The three proposed MCMC samplers for the Bayesian hierarchical model utilize
parts of the algorithm for the two-step approach.

3.3.1 Two Step Approach (TS)
Given the parameter values at iteration t of the sampler, we need to sample
new values m[t+1]

f = (m[t+1]
f0 , . . . , m

[t+1]
fLf

) and u[t+1]
f = (u[t+1]

f0 , . . . , u
[t+1]
fLf

), where

f = 1, . . . , F . We then sample a new value Z[t+1] = (Z [t+1]
1 , . . . , Z

[t+1]
n2 ). The

steps are as follows.

T.1 For f = 1, . . . , F , sample

m[t+1]
f |γγγobs,Z[t] ∼ Dirichlet(af0(Z[t]) + αf0, . . . , afLf

(Z[t]) + αfLf
), (6)
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u[t+1]
f |γγγobs,Z[t] ∼ Dirichlet(bf0(Z[t]) + βf0, . . . , bfLf

(Z[t]) + βfLf
). (7)

Collect these new draws into Θ[t+1]. Here, each

afl(Z) =
∑
i,j

Iobs(γγγ
f
ij)I(γf

ij = l)I(Zj = i), (8)

bfl(Z) =
∑
i,j

Iobs(γγγ
f
ij)I(γf

ij = l)I(Zj �= i). (9)

T.2 Sample the entries of Z[t+1] sequentially. Having sampled the first j −
1 entries of Z[t+1], we define Z[t+(j−1)/n2]

−j = (Z [t+1]
1 , . . . , Z

[t+1]
j−1 , Z

[t]
j+1,

. . . , Z
[t]
n2). We sample a new label Z

[t+1]
j , with the probability of select-

ing label q ∈ {1, . . . , n1, n1 + j} given by pqj(Z
[t+(j−1)/n2]
−j | Θ[t+1]). This

can be expressed for generic Z−j and Θ as

pqj(Z−j |Θ) ∝

⎧⎪⎨
⎪⎩

exp[wqj ]I(Zj′ �= q,∀j′ �= j), if q ≤ n1

[n1 − n12(Z−j)]
n2 − n12(Z−j) − 1 + βπ

n12(Z−j) + απ
, if q = n1 + j;

(10)
where wqj = log[P(γγγobs

qj |Zj = q,m)/P(γγγobs
qj |Zj �= q,u)] is equivalently

wqj =
F∑

f=1

Iobs(γγγ
f
qj)

Lf∑
l=0

log
(mfl

ufl

)
I(γf

qj = l). (11)

The normalizing constant for pqj(Z−j |Θ) is

n1∏

i=1

n2∏

k=1

F∏

f=1

Lf∏

�=0

[
m

I(Zk=i)
f� u

I(Zk �=i)
f�

]I(γ
f
ij=�)

u
I(Zj �=i)

fl

×
(
n1 − (n12(Z−j) + 1)

)
!

n1!

(n12(Z−j) + απ)!(n2 − (n12(Z−j) + 1) + βπ − 1)!

(n2 + απ + βπ − 1)

(12)

where k �= j.
T.3 We now add the regression parameters to the sampler. For any draw of

Z[t+1], we sample β[t+1] and (σ2)[t+1] = φ−1 from

β[t+1]|φ,Y,Z[t+1] ∼ N(bn, (φΦn)−1) (13)

φ|Y,Z[t] ∼ G
(

n+1
2 , 1

2 (SSE + 1 + β̂T X̃T X̃β̂ + bT
0 φ0b0 − bT

nΦnbn)
)

(14)

where SSE = ỸT [I − X̃(X̃T X̃)−1X̃T ]Ỹ,Φn = X̃T X̃ + Φ0, bn = Φ−1
n (X̃T X̃

β̂ + φ0b0), and β̂ = (X̃T X̃)−1X̃T Ỹ. Here, X̃ and Ỹ are the subsets of X
and Y belonging to only the linked cases at iteration t.
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Steps T.1 and T.2 are the same as those used in [17]; we add T.3 to sample the
regression parameters. Alternatively, and equivalently, analysts can run T.1 and
T.2 until MCMC convergence, then apply T.3 to each of the resulting draws of
Z[t] to obtain the draws of the regression parameters.

3.3.2 Joint Method Without Imputation (JM)
The sampler for the JM method uses T.1, but it departs from T.2 and T.3. As
we shall see, in JM we need the marginal density f(Y). This can be approximated
with a standard univariate density estimator. Alternatively, one can derive it
from f(Y|X) and extra assumptions about f(X), although these extra assump-
tions obviate one of the advantages of JM compared to JMI and JMIF. In the
simulations, for convenience we use the fact that (Y,X) are bivariate normal
when computing the marginal density of Y, as evident in step J.2. Step J.2
can be omitted when using means to compute f(Y) that do not leverage a joint
model for (Y,X).

J.1 Sample m[t+1]
f and u[t+1]

f using T.1.
J.2 Sample μ[t+1] and (τ2)[t+1] using 1/τ2 ∼ G((n − 1)/2,

∑
(Xi − X̄)2) and

μ|τ2 ∼ N(X̄, τ2). We use all of X in this step.
J.3 Given Z[t], sample β[t+1] and (σ2)[t+1] from (13) and (14).
J.4 Sample Z[t+1] sequentially. Having sampled the first j − 1 entries of Z[t+1],

we define Z[t+(j−1)/n2]
−j = (Z [t+1]

1 , . . . , Z
[t+1]
j−1 , Z

[t]
j+1, . . . , Z

[t]
n2). Then we sam-

ple a new label Z
[t+1]
j with probability pqj(Z

[t+(j−1)/n2]
−j | Θ[t+1],X,Y) of

selecting label q ∈ {1, . . . , n1, n1 + j}. For generic (Z−j ,Θ,X,Y), we have
f(Z−j |Θ,X,Y) ∝ f(Y,X|Θ,Z−j)f(Z−j |Θ). For q ≤ n1, and using the
definition for wqj in (11), we thus have

pqj(Z−j |Θ,X,Y) ∝ exp[wqj ]I(Zj′ �= q,∀j′ �= j)
∏

i�=q,i∈A12

f(Xi, Yi|Z−j)

×
∏

i�=q,i∈A1−

f(Xi)
∏

i�=q,i∈A2−

f(Yi)f(Yj ,Xq) (15)

∝ exp[wqj ]I(Zj′ �= q,∀j′ �= j)
f(Yj ,Xq)

f(Yj)f(Xq)
(16)

= exp[wqj ]I(Zj′ �= q,∀j′ �= j)
f(Yj |Xq)

f(Yj)
. (17)

Here, A12 is the set of matched records, A1− is the set of records in A1

without a match in A2, and A2− is the set of records in A2 without a match
in A1.
For q = n1 + j, after some algebra to collect constants, we have

pqj(Z−j |Θ,X,Y) ∝ [n1 − n12(Z−j)]
n2 − n12(Z−j) − 1 + βπ

n12(Z−j) + απ
.
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3.3.3 Joint Method with Imputation (JMI)
The sampler for JMI is similar to the sampler for JM, except we impute X
for non-matches in A2. Thus, we require a model for X, which we also use to
compute f(Y). In accordance with the simulation set-up, we present the sampler
with X ∼ N(μ, τ2).

I.1 Sample m[t+1]
f and u[t+1]

f using J.1.
I.2 Sample μ[t+1] and (τ2)[t+1] using J.2.
I.3 Impute Xmis for those records in A2 without a matched X. For the sampler

in the simulation study, the predictive distribution is

Xmis ∼ N
(
μ +

β1τ
2

σ2 + β2
1τ

2
(Y − β0 − β1μ), τ2 − β2

1τ
4

σ2 + β2
1τ

2

)
. (18)

In JMI, we use the values of (β[t], (σ2)[t], (τ2)[t+1]) in (18). Once we have
X[t+1]

mis , in the full conditional distributions for (β[t+1], (σ2)[t+1]) we use both
the matched and imputed data for all records in A2, with the priors in
Sect. 3.3.1. As a result, we draw β[t+1] and (σ2)[t+1] based on (13) and (14),
but let (X̃, Ỹ) include both the linked pairs and imputed pairs in A2.

I.4 Sample Z[t+1] sequentially using J.4.

3.3.4 Joint Method with Imputation and Reduced Feedback (JMIF)
The sampler for JMIF is like the sampler for JMI, but we use a different predic-
tive model for Xmis. We again present the sampler with X ∼ N(μ, τ2).

F.1 Sample m[t+1]
f and u[t+1]

f using J.1.
F.2 Sample μ[t+1] and (τ2)[t+1] using J.2.
F.3 Given Z[t], take a draw (β∗, σ2∗) from the full conditional distributions in

(13) and (14), using only the linked cases at iteration t. We impute Xmis for
those records in A2 without a matched X using (β∗, σ2∗). For the sampler
in the simulation study, we use (18) with (β∗, σ2∗) and (τ2)[t+1]. Once we
have X[t+1]

mis , in the full conditional distributions for (β[t+1], σ[t+1]) we use
both the matched and imputed data for all records in A2, with the priors
in Sect. 3.3.1. As a result, we draw β[t+1] and (σ2)[t+1] based on (13) and
(14), but let (X̃, Ỹ) include both the linked pairs and imputed pairs in A2.

F.4 Sample Z[t+1] sequentially using (J.4).

3.4 MCMC Starting Values

Sadinle [17] starts the MCMC sampler by assuming none of the records in file
A2 have a link in file A1. We do not recommend this starting point for the
hierarchical model, as it is beneficial to specify an initial set of links to determine
sensible starting values for the linear regression parameters. Instead, we employ
a standard FS algorithm—implemented using the RecordLinkage package in
R—to determine a set of links to use as a starting point.
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4 Simulation Studies

We generate simulated data sets using the RLdata10000 data set from the
RecordLinkage package in R. The RLdata10000 contains 10,000 records; 10%
of these records are duplicates belonging to 1,000 individuals. The RLdata10000
includes linking variables, which the developers of the data set have distorted
to create uncertainty in the RL task. To create A2, we first randomly sample
n12 = 750 individuals from the 1,000 individuals with duplicates. We then sam-
ple 250 individuals from the remaining 8,000 individuals in RLdata10000. This
ensures that each record in A2 belongs to one and only one individual. To create
A1, we first take the duplicates for the 750 records in A2; these are true matches.
Next, we sample another 250 records from the individuals in RLdata10000 but
not in A2. Thus, we have 750 records that are true links, and 250 records in
each file that do not have a match in the other file. We repeat this process
independently in each simulation run.

In both files, in each simulation run, we generate the response and explana-
tory variables, as none are available in the RLdata10000. For each sampled record
i, we generate xi ∼ N(0, 1) and yi ∼ N(β0 + β1xi, σ

2) in each simulation run.
We set β0 = 3 and σ2 = 1. We consider β1 ∈ {.4, .65, .9}, to study how the
correlation between X and Y affects performance of the methods.

We use four linking variables: the first name and last name, and two con-
structed binary variables based on birth year and birth day. For the constructed
variables, we create an indicator of whether the individual in the record was
born before or after 1974, and another indicator of whether the individual in the
record was born before or after the 16th day of the month.

To compare first and last name, we use the Levenshtein edit distance (LD),
defined as the minimum number of insertions, deletions, or substitutions required
to change one string into the other. We divide this distance by the length of
the longest string to standardize it. The final measure is in the range of [0, 1],
where 0 represents total agreement and 1 total disagreement. Following [17], we
categorize the LD into four levels of agreement. We set f = 1 and γf

ij = 3 when
the first names for record i and j match perfectly (LD = 0); γf

ij = 2 when these
names show mild disagreement (0 < LD ≤ .25); γf

ij = 1 when these names show
moderate disagreement (.25 < LD ≤ .5); and, γf

ij = 0 when these names show
extreme disagreement (LD ≥ .5). The same is true for last names with f = 2.
For the constructed binary variables based on birth day and year, we set γf

ij = 1
when the values for record i and j agree with each other, and γf

ij = 0 otherwise.
We create two scenarios to represent different strengths of the information

available for linking. The strong linkage scenario uses all four linking variables,
and the weak linkage scenario uses first and last name only.

4.1 Results

Table 1 displays averages of the estimated regression coefficients over 100 simu-
lation runs. Across all scenarios, on average the point estimates of β1 from the
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(a) β1 = 0.9. (b) β1 = 0.65. (c) β1 = 0.4.

Fig. 1. Posterior density of β1 in one arbitrarily chosen data set for each value of β1

under the strong linking information scenario. Posterior distribution for the two-step
approach is in solid green, for JM is in dashed red, for JMI is in dotted blue, and for
JMIF is in dotdash black. Vertical lines are estimates of β1 when using all the correct
links.

Bayesian hierarchical model, regardless of the MCMC algorithm, are at least
as close to the true β1 as the point estimates from the two-step approach. The
hierarchical model offers the largest improvements in accuracy over the two-step
approach when the correlation between X and Y is strongest and the information
in the linking variables is weakest. In this scenario, the model takes advantage
of information in the relationship between the study variables that the two-step
approach cannot. In contrast, when the correlation between X and Y is weakest
and the information in the linking variables is strongest, there is little difference
in the performances of the hierarchical model and two-step approach. These
patterns are illustrated in Fig. 1.

Generally, all the algorithms tend to underestimate β1 in these simulations.
It is practically impossible to identify all the true links. Therefore, the regression
is estimated with some invalid pairs of (xi, yi). This attenuates the estimates of
β1. The hierarchical model tends to overestimate β0 slightly. The difference is
most noticeable when the correlation between X and Y is strong. Generally, on
average the two-step approach offers more accurate estimates of β0, although
the differences are practically irrelevant.

Among the hierarchical models, JM outperforms JMI and JMIF, with JMIF
slightly better than JMI. This is because inaccuracies in the estimated distribu-
tion of Xmis in JMI and JMIF are propagated to the estimated distributions of
(β0, β1). To illustrate this, suppose in a particular MCMC iteration the value of
β1 is somewhat attenuated, which in turn leads to inaccuracy in the parameters
of the imputation model for X|Y . As a result, the imputed values of Xmis are not
samples from an accurate representation of f(X|Y ). Thus, the full conditional
distribution of (β0, β1) is estimated from completed-data that do not follow the
relationship between X and Y . The inaccurate samples of (β0, β1) then create
inaccurate imputations, and the cycle continues. In contrast, in any iteration,
JM samples coefficients using only the records deemed to be links (in that itera-
tion), thereby reducing the effects of feedback from imprecise imputations. This
also explains why JMIF yields slightly more accurate estimates of β1 than JMI
when the correlation between X and Y is strong.
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Table 1. Summary of simulation results for regression coefficients. Results based on
100 runs per scenario. The true β0 = 3 in all scenarios. For each reported average, the
Monte Carlo standard errors are smaller than .01. “Strong” refers to scenarios where
we use all four comparison fields, and “Weak” refers to scenarios where we use only
two comparison field’s.

Results for β1 Results for β0

TS JM JMIF JMI TS JM JMIF JMI

Strong

β1 = .90 .73 .85 .80 .79 3.01 3.05 3.04 3.04

β1 = .65 .52 .60 .56 .55 3.00 3.02 3.01 3.01

β1 = .40 .32 .36 .33 .32 2.99 3.00 3.00 3.00

Weak

β1 = .90 .60 .82 .78 .76 3.00 3.05 3.04 3.03

β1 = .65 .42 .57 .53 .53 3.00 3.03 3.02 3.02

β1 = .40 .27 .34 .32 .32 3.00 3.01 3.01 3.01

Table 2 displays averages across the 100 simulation runs of six standard met-
rics for the quality of the record linkages. These include the average numbers
of correct links (CL), correct non-links (CNL), false negatives (FN), and false
positives (FP), as well as the false negative rate (FNR) and false discovery rate
(FDR). These are formalized in AppendixA. The results in Table 2 indicate
that the hierarchical model offers improved linkage quality over the two-step
approach, regardless of the estimation algorithm. In particular, the hierarchical
model tends to have smaller FP and larger CNL than the two-step approach.
The difference in CNL is most apparent when the information in the linking
variables is weak and when the correlation between X and Y is strong. The
hierarchical model tends to have higher CL than the two-step approach, but the
difference is practically important only when the linkage information is weak and
the correlation is relatively strong (β1 = .9, β1 = .65). Overall, the hierarchical
model has lower FDR compared to the two step approach.

5 Discussion

The simulation results suggest that the Bayesian hierarchical model for simulta-
neous regression and RL can offer more accurate coefficient estimates than the
two-step approach in which one first performs RL then runs regression on linked
data. The hierarchical model is most effective when the correlation between
the response and explanatory variable is strong. The hierarchical model also can
improve linkage quality, in particular by identifying more non-links. This is espe-
cially the case when the information in the linking variables is not strong. In all
scenarios, the relationship between the response and explanatory variable com-
plements the information from the comparison vectors, which helps us declare
record pairs more accurately.
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Table 2. Summary of linkage quality across 100 simulation runs. Averages in first four
columns have standard errors less than 3. Averages in the last two columns have Monte
Carlo standard errors less than .002.

CL CNL FN FP FNR FDeR

Strong

β1 = .90 JM 702 152 47 128 .06 .15

JMIF 702 155 48 125 .06 .15

JMI 702 155 48 125 .06 .15

TS 697 123 53 167 .07 .19

β1 = .65 JM 702 139 48 144 .06 .17

JMIF 701 143 49 140 .06 .16

JMI 701 143 49 141 .06 .17

TS 698 119 52 172 .07 .20

β1 = .40 JM 698 131 52 158 .07 .18

JMIF 698 133 52 155 .07 .18

JMI 698 133 52 155 .07 .18

TS 697 121 53 170 .07 .20

Weak

β1 = .90 JM 636 114 114 223 .15 .26

JMIF 636 116 114 222 .15 .26

JMI 636 115 114 223 .15 .26

TS 620 53 130 315 .17 .34

β1 = .65 JM 632 93 118 256 .16 .29

JMIF 631 94 119 255 .16 .29

JMI 631 92 119 256 .16 .30

TS 621 51 129 317 .17 .34

β1 = .40 JM 625 69 125 291 .17 .32

JMIF 624 69 126 291 .17 .32

JMI 625 69 125 291 .17 .32

TS 620 50 130 319 .17 .34

As with any simulation study, we investigate only a limited set of scenarios.
Our simulations have 75% of the individuals in the target file as true matches.
Future studies could test whether the hierarchical model continues to offer gains
with lower overlap rates, as well as different values of other simulation param-
eters. We used a correctly specified linear regression with only one predictor.
AppendixB presents a simulation where the linear regression is mis-specified; the
model continues to perform well. We note that the hierarchical model without
imputation for missing X extends readily to multivariate X. When outcomes are
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binary, analysts can use probit regression in the hierarchical model. The model
also can be modified for scenarios where one links to a smaller file containing
explanatory variables. In this case, we use the marginal distribution of X and
conditional distribution of X|Y rather than those for Y and Y|X in (17).

A Record Linkage Evaluation Metrics

Here, we review the definitions of the average numbers of correct links (CL),
correct non-links (CNL), false negatives (FN), and false positives (FP). These
allow one to calculate the false negative rate (FNR) and false discovery rate
(FDR) [19]. For any MCMC iteration t, we define CL[t] as the number of record
pairs with Zj ≤ n1 and that are true links. We define CNL[t] as the number
of record pairs with Zj > n1 that also are not true links. We define FN[t] as
the number of record pairs that are true links but have Zj > n1. We define
FP[t] as the number of record pairs that are not true links but have Zj ≤ n1.
In the simulations, the true number of true links is CL[t]+FN[t] = 750, and the
estimated number of links is CL[t]+FP[t]. Thus, FNR[t] = is FN[t]/(CL[t]+FN[t]).
The FDR[t] = FP[t]/(CL[t]+FP[t]), where by convention we take FDR[t] = 0
when both the numerator and denominator are 0. We report the FDR instead
of the FPR, as an algorithm that does not link any records has a small FPR,
but this does not mean that it is a good algorithm. Finally, for each metric,
we compute the posterior means across all MCMC iterations, which we average
across all simulations.

B Additional Simulations with a Mis-specified Regression

As an additional simulation, we examine the performance of the hierarchical
model in terms of linkage quality when we use a mis-specified regression. The
true data generating model is log(Y)|X,V,Z ∼ N(Xβ, σ2I), but we incorrectly
assume Y|X,V,Z ∼ N(Xβ, σ2I) in the hierarchical model. Table 3 summarizes
the measures of linkage quality when the linkage variables have weak information.
Even though the regression component of the hierarchical model is mis-specified,
the hierarchical model still identifies more correct non-matches than the two-step
approach identifies, although the difference is less obvious than when we use the
correctly specified regression. We see a similar trend when the information in the
linking variables is strong, albeit with smaller differences between the two-step
approach and the hierarchical model.
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Table 3. Results for simulation with mis-specified regression component in the hierar-
chical model. Entries summarize the linkage quality across 100 simulation runs. Aver-
ages in first four columns have standard errors less than 3. Averages in the last two
columns have Monte Carlo standard errors less than .002.

CL CNL FN FP FNR FDeR

β1 = .90 JM 3625 69 125 292 .17 .32

JMIF 624 70 126 291 .17 .32

JMI 624 69 126 292 .17 .32

TS 619 51 131 318 .17 .34

β1 = .65 JM 626 62 124 299 .17 .32

JMIF 626 62 124 299 .17 .32

JMI 626 62 124 299 .17 .32

TS 622 49 128 319 .17 .34

β1 = .40 JM 623 56 127 309 .17 .33

JMIF 623 56 127 309 .17 .33

JMI 623 57 127 309 .17 .33

TS 622 50 128 318 .17 .34
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Abstract. Entity resolution (ER) is becoming an increasingly impor-
tant task across many domains (e.g., official statistics, human rights,
medicine, etc.), where databases contain duplications of entities that
need to be removed for later inferential and prediction tasks. Motivated
by scaling to large data sets and providing uncertainty propagation, we
propose a generalized approach to the blocking and ER pipeline which
consists of two steps. First, a probabilistic blocking step, where we con-
sider that of [5], which is ER record in its own right. Its usage for blocking
allows one to reduce the comparison space greatly, providing overlapping
blocks for any ER method in the literature. Second, the probabilistic
blocking step is passed to any ER method, where one can evaluate uncer-
tainty propagation depending on the ER task. We consider that of [12],
which is a joint Bayesian method of both blocking and ER, that provides
a joint posterior distribution regarding both the blocking and ER, and
scales to large datasets, however, it does it a slower rate than when used
in tandem with [5]. Through simulation and empirical studies, we show
that our proposed methodology outperforms [5,12] when used in isola-
tion of each other. It produces reliable estimates of the underlying linkage
structure and the number of true entities in each dataset. Furthermore, it
produces an approximate posterior distribution and preserves transitive
closures of the linkages.

1 Introduction

One of the most increasingly common problems in computer science and machine
learning is merging databases that contain duplicate entities, often without a
unique identifier due to privacy and confidentiality reasons. This task is referred
as entity resolution (ER) or record linkage, and it is known to be difficult due to
the noise and distortions as well as the size of the databases [2]. The scalability of
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ER approaches has been recently studied. Considering T tables1 (or databases)
with N records each, one must make O(NT ) comparisons using brute force
approaches. In order to avoid such computational constraints, the number of
comparisons needs to be reduced without comprising the ER accuracy. One
typically achieves this via blocking, which seeks to place similar records into
partitions (or blocks), and treating records in different blocks as non-co-referent.
ER techniques are then applied within blocks.

The simplest blocking method is known as traditional blocking, which picks
certain fields (e.g., gender and year of birth) and places records in the same block
if and only if they agree on all fields. This amounts to a deterministic a priori
judgment that these fields are error-free. Other probabilistic blocking methods
use probability, likelihood functions, or scoring functions to place records in
similar partitions. For example, techniques based upon locality sensitive hashing
(LSH) utilize all the features of a record, and can be adjusted to ensure that all
the records are manageably small. Recent work, such as, [21] introduced novel
data structures for sorting and fast approximate nearest-neighbor look-up within
blocks produced by LSH. This approach gave a good balance between speed and
recall, but their technique was specific to nearest neighbor search with similarity
defined by the hash function. Such methods are fast and have high recall (true
positive rate), but suffer from low precision, rather, too many false positives.2

Turning to the ER literature, the most popular and widely used approach
is that of [6]. While there exists a well-known literature on probabilistic record
linkage, there are few available implementations that scale to large data sets
commonly used in research or industry. Recently, [5] addressed this by developing
a scalable implementation, called fastLink, of the seminal record linkage model
of [6]. In addition, the authors extended work of [8] in order to incorporate
auxiliary information such as population name frequency and migration rates.
The authors used parallelization and hashing to merge millions of records in
a near real-time on a laptop computer, and provided open-source software of
their proposed methodology. [5] compared their open-source software to that
of [16], which utilizes that of [6]. For example, fastLink provided a 22 times
speed up compared to the RecordLinkage package when merging datasets of
50,000 records each. Further, [5] showed that these speed gains grow orders of
magnitude larger as the size of the datasets goes beyond 50,000 records. To our
knowledge, this method has never been proposed as a blocking step.

While there have been a large number of new proposals in the Bayesian litera-
ture, many of these have difficulty scaling due to the curse of dimensionality with
Markov chain Monte Carlo (MCMC) [14,15,17–19,22].3 Specifically, even with
the use of blocking, these methods still scale quadratically with the number of

1 A table is an ordered (indexed) collection of records, which may contain duplicates
(records for which all attributes are identical).

2 This approach is called private if, after the blocking is performed, all candidate
records pairs are compared and classified into coreferent/non-confererent using com-
putationally intensive “private” comparison and classification techniques [4].

3 For a review of Bayesian methods, we refer the interested reader to [11].
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records. Existing attempts to manage scalability apply to deterministic blocking
outside the Bayesian framework, thereby sacrificing accuracy and proper treat-
ment of uncertainty [7,9,10,13,14,18–20]. The only work among these which
deviates from deterministic blocking, is a post-hoc blocking approach proposed
by [13]. In addition to coarse-grained deterministic blocking, they apply data-
dependent post-hoc blocking formulated as restricted MCMC. This can yield
significant efficiency gains, but may induce approximation error in the posterior,
since pairs outside the post-hoc blocks cannot be linked.

We are only aware of one joint Bayesian and blocking method that scales to
realistically sized datasets, where [12] have proposed a joint model for blocking
and ER that is fully Bayesian, where they propose scaling via distributed com-
puting using a partially collapsed Gibbs sampler. Given that the model is joint,
the error of the blocking and the entity resolution is propagated exactly, which
contrasts the approach of [5,13]. In both of these approaches, the blocking task
cannot propagated exactly into the ER task given that these two approaches do
not propose a joint model. Thus, any errors that are made in the blocking task
are passed to the entity resolution task and cannot be corrected. Accuracy may
suffer such that the methods can be more computationally scalable.

In this paper, we make the following contributions. Motivated by the need
to both scale to large data sets as well as provide uncertainty propagation, first
we propose utilizing a probabilistic blocking step. Specifically, we consider that
of [5], which, as noted above, is an ER record in its own right. We propose its
usage for blocking as it allows one to reduce the comparison space, providing
overlapping blocks for any ER method in the literature. Second, we propose
that the probabilistic blocking step is passed to any ER method, where one can
evaluate uncertainty propagation depending on the proposed ER task. Specifi-
cally, we consider that of [12], which is a joint Bayesian method of both blocking
and ER, which scales to databases in the millions, and provides a joint poste-
rior distribution regarding both the blocking and ER task at hand. Third, we
consider the computational complexity of our proposed methodology. Fourth,
we consider simulation studies of our proposed methodology, where we compare
to baselines of fastLink and dblink. Finally, we provide a discussion of our
proposed method and avenues for future work.

The remainder of the paper is as follows. Section 2 proposes a general frame-
work for probabilistic blocking and ER. We recommend a specific proposal
(see Sects. 2.1, 2.2, and 2.3). Section 2.4 provides the computational complexity.
Section 3 provides the evaluation metrics. Section 4 provides simulation studies
on our proposed methods with comparisons to two baselines from the literature.
Section 6 concludes.

2 Proposed Methodology

In this section, we provide our proposed methodology, which is a framework
for performing a pipeline of probabilistic blocking and ER. We assume that we
have T aligned databases that contain missing values, and we assume that these
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databases may be large. First, given that all-to-all comparisons is not feasible
due to the total number of records, we first perform dimension reduction using
probabilistic blocking, where we assume the blocks can be overlapping. This is
important as this allows mistakes to be corrected in the ER task. Second, the
blocks are passed to an ER task, such that the duplications can be removed. In
addition, it is important that both accuracy and inference can be assessed as
these are often goals of the ER task.

Specifically, in this paper, we consider the work of [5] as our proposal for
probabilistic blocking, given that it is based upon the seminal work of [6]. This
method is appealing given its simplicity, popularity, and immense speed for a
blocking method that can then be passed to a fully unsupervised method regard-
ing the ER task, such as [12]. In Sects. 2.1 and 2.2, we review the methods of
[5,12], where we have built an open source pipeline regarding this approach to
be used by the computer science, statistics, and social science communities.

2.1 Review of fastLink

In this section, we review the method of [5] and then describe how it can be uti-
lized for probabilistic blocking for the first time to our knowledge. The Fellegi-
Sunter model is fit to the data based on agreement patterns (discrete compar-
isons) of each attribute across all pairs of records (i, j) between two data sets A
and B. Formally, for each attribute a, we define ρa(i, j) to be a discrete variable
e.g., to allow for three levels of similarity, we define ρa(i, j) to be a factor variable
with three levels, in which 0, 1, and 2 indicate that the values of two records
for this variable are different, similar, and identical (or nearly so), respectively.
Based on this definition, the model can be written as the following two-class
mixture model with the latent variable Cij , indicating coreference Cij = 1 or a
non-coreference Cij = 0 for the pair (i, j),

ρa(i, j) | Cij = c
indep.∼ Discrete(πac) (1)

Cij
i.i.d.∼ Bernoulli(μ), (2)

where πac is a vector of length Ha, which is the number of possible values
taken by ρa(i, j), containing the probability of each agreement level for the ath
variable given that the pair is coreferent (c = 1) or non-coreferent (c = 0),
and μ represents the probability of coreference across all pairwise comparisons.
Once the model is fit to the data, the coreference probability is computed via
Bayes rule based on the maximum likelihood estimates of the model parameters
(μ, πac),4

ξij = Pr(Cij = 1 | m(i, j), ρ(i, j), μ, πac)

=
μ

∏A
a=1

(∏Hk−1
h=0 π

1{ρa(i,j)=h}
a1l

)1−ma(i,j)

∑1
c=0 μc(1 − μ)1−c

∏A
a=1

(∏Hk−1
h=0 π

1{ρa(i,j)=l}
acl

)1−ma(i,j)
(3)

4 The Expectation-Maximization algorithm is used to recover estimates for μ and πac

(M-Step) and ξij (E-Step).
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where ma(i, j) indicates whether the value of variable a is missing for pair (i, j)
(a missing value occurs if at least one record for the pair is missing the value for
the variable). We say that record j is a potential link of record i based on the
coreference probability ξij . Note that the model assumes (1) independence across
pairs, (2) independence across linkage fields conditional on the latent variable
Cij , and (3) missing at random conditional on Cij [5].

2.2 Review of dblink

In this section, we review the method of dblink, and then describe how we
integrate it with the approach of [5] for the first time to our knowledge.

[12] extended [17], where ER was framed as a bipartite matching problem
between records and latent entities. Specifically, the work of [17] introduced a
model called blink which extended [18] to include both categorical and noisy
string attributes using an empirically-motivated prior. [12] have proposed a scal-
able, joint blocking and ER model under a Bayesian framework referred to as
“distributed blink” or dblink. To our knowledge, this is the first scalable and
distributed model where uncertainty both the blocking and the ER stages is able
to be accounted for exactly. This contrasts other Bayesian frameworks, where
the blocking uncertainty is approximated or not accounted for when passed to
the Bayesian ER task. The output from the method is a joint posterior of the
blocks and the linkage structure. In addition, the proposed method has a repre-
sentation that enables distributed inference at the partition level, resulting in a
sub-linear algorithm (as the number of records grows).

Again, assume a total of T tables (databases) indexed by t, each with Rt

records (rows) indexed by r and A aligned attributes (columns) indexed by a.
Assume a fixed population of entities of size E indexed by e, where entity e
is described by a set of attributes ye = [yea]a=1...A, which are aligned with the
record attributes. Within this framework, the population of entities is partitioned
into P blocks using a blocking function PartFn, which maps an entity e to a
block according to its attributes ye. Assume each record (t, r) belongs to a block
γtr and is associated with an entity λtr within that block. Denote the value of
the a-th attribute for record (t, r) by xtra, which is a noisy observation of the
associated entity’s true attribute value yλtra

. Assume that some attributes xtra

are missing completely at random through the indicator variable otra. Denote
θta as a distortion probability with an assumed prior distribution, where αa and
βa are fixed hyper-parameters.

The records are generated by selecting an entity uniformly at random and
copying the entity’s attributes subject to distortion. First, one chooses a par-
tition assignment γtr at random in proportion to the partition sizes: γtr|Y ind.∼
Discretep∈{1...P}[|Ep|/E]. Second, one chooses an entity assignment λtr uniformly

at random from partition γtr: λtr|γtr,Y
ind.∼ DiscreteUniform[Eγtr

]. Third, for

each attribute a, one draws a distortion indicator ztra: ztra|θta
ind.∼ Bernoulli[θta].
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Fourth, for each attribute a, one draws a record value xtra:

xtra|ztra, yλtra
ind.∼ (1 − ztra)δ(yλtra) + ztra Discretev∈Va

[ψa(v|yλtra)] (4)

where δ(·) represents a point mass. If ztra = 0, xtra is copied directly from the
entity. Otherwise, xtra is drawn from the domain Va according to the distortion
distribution ψa. In the literature, this is known as a hit-miss model [3]. Finally, for
each attribute a, one draws an observed indicator otra: otra

ind.∼ Bernoulli[ηta].
If otra = 1, xtra is observed, otherwise it is missing. Figure 1 in Appendix A
provides a diagram for the dblink model.

Assume the following notation for convenience: A boldface lower-case vari-
able denotes the set of all attributes: e.g. xtr = [xtra]a=1...A. A bold-
face capital variable denotes the set of all index combinations: e.g. X =
[xtra]t=1...T ;r=1...Rt;a=1...A. In addition, let X(o) denote the xtra’s for which
otra = 1 (observed) and let X(m) denote the xtra’s for which otra = 0 (miss-
ing). The authors perform ER by inferring the joint posterior distribution
over the block assignments Γ = [γtr]t=1...T ;r=1...Rt

, the linkage structure Λ =
[λtr]t=1...T ;r=1...Rt

, and the true entity attribute values Y = [yea]e=1...E;a=1...A,
conditional on the observed record attribute values X(o).

Remark 1. The authors operate in a fully unsupervised setting, as they do not
condition on ground truth data for the links or entities. Inferring Γ is equivalent
to the blocking stage of ER, where the records are partitioning into blocks to
limit the comparison space. Inferring Λ is equivalent to the matching/linking
stage of ER, where records that refer to the same entities are linked together.
Inferring Y is equivalent to the merging stage, where linked records are combined
to produce a single representative record. By inferring Γ , Λ and Y jointly, they
are able to propagate uncertainty between the three stages.

2.3 Putting It Together: fastLink-dblink

In this paper, we propose a two-stage approach that combines the strength of
two probabilistic entity resolution approaches, where crucially in the first stage,
we do not rely on traditional blocking strategies. As already mentioned, the first
stage makes use of fastLink as a pre-processing step designed to identify a
set of possible matches. Then, based on the set of possible matches produced
by fastLink, we further refine the entity resolution process via dblink, where
we determine the co-reference structure of the linkages, where transitivity is
satisfied, and we are able to have approximate measures of uncertainty, which
include the posterior distribution of the linkage structure, precision, and recall.
Our proposed method strikes a balance between the two methods. fastLink
provides very fast linking, but no uncertainty propagation, whereas, dblink
provides exact uncertainty propagation. Thus, with fastLink-dblink we settle
for fast approximate uncertainty quantification. As our results show, such a
balance pays off in practice.
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2.4 Computational Complexity

In this section, we provide the computational complexity of fastLink-dblink.
Let Nmax represent the total number of records in all databases. Assume without
loss of generality that for fastLink we de-duplicate records, i.e., NA = NB =
Nmax, and that each table is of equal size i.e., Nt = N for all t = 1, . . . , T . Fur-
ther, assume that for dblink we perform ER, meaning we find duplicate records
within and across the N∗

max records in all databases, where N∗
max � Nmax is the

number of records classified as possible matches by fastLink. Finally, assume
that SG is the total number of MCMC iterations.

Theorem 1. The computational complexity of fastLink-dblink is

O(ΥNmax(Nmax − 1)) + O(SGN∗
max), where Υ =

ω

2Q
.

Proof. First, we prove the computational complexity of fastLink. Assume that
A represents the total number of attributes. The computational complexity of
all-to-all record comparison of the FS method is O(A

2 Nmax(Nmax −1)), which is
this is computationally intractable as Nmax grows. fastLink compares only the
unique instance of a value per linkage field, leading to a time complexity equal
to O(ω

2 Nmax(Nmax − 1)), where ω =
∑A

a=1 κa,Aκa,B and κa,t ∈ [0, 1] represents
the share of unique values per linkage field a per dataset t ∈ {A,B}. Unless
κa,t = 1 for all a and t, we have that O(ω

2 Nmax(Nmax−1)) � O(A
2 Nmax(Nmax−

1)). In addition, fastLink takes advantage of multithreading/parallelization and
divides the problem into B equally-sized partitions which are O( ω

2B Nmax(Nmax−
1)) each. While these partitions are quadratic, if either Nmax or ω grows, one can
always choose B to be large and guarantee computational feasibility. Therefore,
with Q threads available and Q � B, the final complexity is O(ΥNmax(Nmax −
1)) with Υ = ω

2Q .5

Second, we prove the computational complexity of dblink. Recall SG is the
number of MCMC iterations. Let M = 1

A

∑A
a=1 Ma be the average number

of possible values per field (M ≥ 1). The computational complexity of each
Gibbs iteration is dominated by the conditional distributions of dblink. The
update for the conditional distribution of λtr is O(|Ltr|), where Ltr is the
set of candidate links for record (t, r). This is a linear time operation given
that it is done by inverted index and scales linearly using hashed based rep-
resentations. The update for θta is O(aN∗

max), where N∗
max is the total num-

ber of records in all the tables (data sets). The update for ztra is O(aMN∗),
where N∗ is the number of records per table that have been classified as
possible matches by fastLink. Therefore, the total order of the algorithm is
O(|Ltr|) + O(AN∗

max) + O(AMN∗) for each Gibbs iteration. For SG itera-
tions, the algorithm is O(SG|Ltr|) + O(SGAN∗

max) + O(SGAMN∗). Recall that

5 After the comparisons are made, to retrieve a match or a pairwise comparison, the
lookup time is O(H) where H is the number of unique agreement patterns that are
observed. Note that in practice, H is often times smaller than the number of possible
agreement patterns (

∏A
a=1 Ha).
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N∗ < N∗
max. If |Ltr|, A, and M are much smaller than N∗

max, then the compu-
tational complexity is O(SGN∗

max). Thus, the total computational complexity of
fastLink-dblink is O(ΥN∗

max(N∗
max − 1)) + O(SGN∗

max), where Υ = ω
2Q .

3 Evaluation Metrics

In this section, we describe evaluation metrics used in the paper. In order to
evaluate ER performance, we compute the pairwise precision, recall, and F-
measure [1]. In addition, we evaluate each method by standard cluster metrics
in the literature (if possible), based upon the adjusted Rand index (ARI) and
the percentage error in the number of clusters. In addition, we also evaluate
any Bayesian method regarding inference based upon its posterior mean and
standard error.

4 Simulation Studies

In this section, we describe our simulation studies, which are based upon two syn-
thetic datasets (RLdata500 and RLdata10000) from the RecordLinkage package
in R with a total of 500 and 10,000 total records and 10 percent duplication. Fea-
ture information available is first and last name and full date of birth. There is a
unique identifier available such that one can ascertain the accuracy of proposed
methods. In our simulation study for RLdata500, we consider two blocking cri-
terions (loose and strict) based upon fastLink. We compare our baselines of
fastLink (no blocking) and dblink (no blocking) to our proposed method. In
our simulation study for RLdata10000 , we consider the same type of criterion
— loose and strict and the same comparisons as done for RLdata500. We do
not utilize any partitioning (blocking) of dblink given the small size of the data
sets.

In the case of the fastLink step, we use three categories for the string valued
variables (first and last names), i.e., agreement (or nearly agreement), partial
agreement, and disagreement, based on the Jaro-Winkler string distance with
0.94 and 0.84 as the cutpoints. For the numeric valued fields (day, month, and
year of birth), we use a binary comparison, based on exact matches. For each data
set, and based on the match probability ξij from fastLink, we use 0.60 (loose)
and 0.90 (strict) as the thresholds to produce two sets of likely duplicates.6

Next, we feed the set of possible duplicates per data set to dblink. For both
simulation studies, we run the dblink sampler for 100,000 Gibbs iterations (using
a thin of 10). For each simulation study, we utilize the Edit distance for string
distances, with a threshold of 7.0, and a maximum similarity of 10.0. First and
last name are compa red using Edit distance, while birth year, birth month, and
birth day are assumed to be categorical variables with low distortion. We assume
a maximum cluster size of 10. For RLdata500, α = 0.5, β = 50 and RLdata10000,
α = 10, β = 10000. Convergence diagnostics can be found in AppendixB.
6 These thresholds are selected such that the estimated rate of false positives is less

than 1% (strict) and 10% (loose).
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4.1 Simulation Study Results

In this section, we describe the results from our simulation studies. Table 1
reports the pairwise precision, recall, F-measure, the adjusted Rand index (ARI),
and the percentage error in the number of clusters for the RLdata500 and
RLdata10000 simulation studies, where we provide a baseline comparisons to
dblink, fastLink-L, and fastLink-S. For RLdata500, when we consider dblink
and fastLink-L, we find that the precision and recall are the same at 0.9091
and 1.0000. This intuitively makes sense given dblink has no blocking and the
blocking criterion for fastLink is allowed to be non-conservative (or loose).
When one considers, fastLink-S, the precision and recall are 0.9800 and 1.0000,
respectively. We find a substantial improvement regarding the precision due to
the pre-processing step of fastLink combined with dblink. For example, with
fastLink-dblink-L, the precision improves from 0.9091 to 0.9434; and with
fastLink-dblink-S, the precision goes from 0.9091 to 1.0000. Finally, we see
a computational speed up in the method of dblink regarding runtime from 1 h
(no probabilistic blocking) to 10 min (fastLink-dblink) on a standard Linux
server with one core. Note that the computational run time of fastLink is 1.2 s.

Turning to RLdata10000, when we consider dblink, we find that the pre-
cision is 0.6334 and recall is 0.9970, illustrating there is room for improvement
in the precision. When one considers fastLink-L, we observe the precision is
0.9371 and recall is 0.9840, and when turning to fastLink-S, we observe eval-
uation metrics of 0.9589 and 0.9820, respectively. We see improvements in the
precision due to the pre-processing step of fastLink combined with dblink. For
fastLink-dblink-L, the precision found using dblink improves from 0.6334 to
0.9428 and the recall goes from 0.9970 to 1. In the case of fastLink-dblink-S,
it has a precision of 0.9563 and recall of 0.9989. Finally, we see a computational
speed up in the method of dblink regarding runtime from 3 h (no probabilistic
blocking) to 40 min (fastLink-dblink) on a standard Linux server with one
core. The computational run time of fastLink is 12 s.

Table 2 reports the posterior mean for the number of entities and the
corresponding standard error (if available). It is not possible to calculate
these values for fastLink. For the RLdata500 simulation study, we find that
dblink provides a posterior mean of 443.68 with standard error of 2.02.
fastLink-dblink-L provides a posterior mean of 452.82 with standard error
of 0.60 and fastLink-dblink-S provides a posterior mean of 451.62 with stan-
dard error of 0.55. Observe that dblink underestimates the true population
size of 450, whereas our proposed method using both loose and strict blocking
provides a slight overestimate.

In the case of RLdata10000, dblink provides a posterior mean of 8012.83
with standard error of 26.26. Observe that this estimate is far off from the
true population value of 9000. fastLink-dblink-L provides a posterior mean of
8968.95 with a posterior standard error of 2.60 and fastLink-dblink-S provides
a posterior mean of 8985.33 with posterior standard error of 2.55. Here, we see
that the loose and strict blocking provide a slight underestimate of the true
population size.
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Table 1. Comparison of Matching Quality. “ARI” stands for adjusted Rand index and
“Err. # clust.” is the percentage error in the number of clusters.

Dataset Method Pairwise measures Cluster measures

Precision Recall F1-score ARI Err. # clust

RLdata500 dblink 0.9091 1.0000 0.9524 0.9523 –1.55%

fastLink-L 1.0000 0.9800 0.9899 — —

fastLink-S 1.0000 0.9800 0.9899 — —

fastLink-dblink-L 1.0000 0.9591 0.9791 0.9789 +0.67%

fastLink-dblink-S 1.0000 1.0000 1.0000 1.0000 +0.44%

RLdata10000 dblink 0.6334 0.9970 0.7747 0.7747 –10.97%

fastLink-L 0.9371 0.9840 0.9600 — —

fastLink-S 0.9589 0.9820 0.9704 — —

fastLink-dblink-L 0.9428 1.0000 0.9705 0.9705 –0.34%

fastLink-dblink-S 0.9563 0.9989 0.9772 0.9771 –0.17%

Table 2. Comparison of Posterior Mean and Standard Error for the Number of Unique
Entities.

Dataset Method Posterior Estimates

Mean Std. Error

RLdata500 dblink 443.68 2.02

fastLink-L – –

fastLink-S – –

fastLink-dblink-L 452.82 0.60

fastLink-dblink-S 451.62 0.55

RLdata10000 dblink 8012.83 26.26

fastLink-L – –

fastLink-S – –

fastLink-dblink-L 8968.95 2.60

fastLink-dblink-S 8985.33 2.55

5 Application to the National Long Term Care Study

In this section, we apply our proposed methodology to the National Long Care
Term Study (NLTCS), which is a longitudinal study on health and well-being of
those in the United States that are older than sixty-five years. This data set
consists of three waves, with duplications across but not within each data set.
The entire number of individuals in the study is 57,077. Due to privacy and
confidentiality, the data was anonymized. One goal of this study is to reveal
how one can easily link such data (which is often public) based upon the fol-
lowing features: full DOB, state, location of doctor’s office, and gender. The
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true number of unique individuals in this data set is 34,945. We illustrate that
via fastLink-dblink, we are able to link records a higher level of accuracy
than previously proposed methods, which raises important questions regarding
linking anonymized health data given that an increasing amount of it is pub-
licly available or shared with industry given the rise of technology applications.
Specifically, with the rise of virus spread (e.g. SARS-CoV-2 (COVID-19)) and
increased contact tracing, one would expect the accuracy of these methods to
only increase with additional features. This raises important questions regarding
privacy tradeoffs regarding the collections of such data that can be matched with
extremely sensitive information.

5.1 Results to the National Long Term Care Study

In this section, we provide results to the NLTCS. Table 3 reports the pairwise preci-
sion, recall, F-measure, the adjusted Rand index (ARI), and the percentage error
in the number of clusters for the NLTCS, where we provide a baseline compari-
son to dblink, fastLink-L, and fastLink-S. For the NLTCS, when we consider
dblink, we find that the precision and recall are 0.8319 and 0.9103, respec-
tively – slightly better than of fastLink-L, which has a precision of 0.7977 and
recall of 0.9101. In the case of fastLink-S, the precision and recall are 0.9094
and 0.9087, respectively. Similar to the simulations studies, we see a significant
improvement when combining fastLink with dblink. Specifically, when utiliz-
ing fastLink-dblink-L, both the precision and recall improve to 0.8712 and
0.9363, respectively. In the case of fastLink-dblink-S, we also see a remark-
able improvement in terms of recall, moving from 0.9103 (dblink) to 0.9971.
Finally, we see a computational speed up of dblink regarding runtime from 4 h
(no probabilistic blocking) to 3 h (fastLink-dblink) on a standard Linux server
with 1 core. The computational run time of fastLink is 16 min.7

Table 3. Comparison of matching quality. “ARI” stands for adjusted Rand index and
“Err. # clust.” is the percentage error in the number of clusters.

Dataset Method Pairwise measures Cluster measures

Precision Recall F1-score ARI Err. # clust.

NLTCS dblink 0.8319 0.9103 0.8693 0.8693 –22.09%

fastLink-L 0.7977 0.9101 0.7963 — —

fastLink-S 0.9094 0.9087 0.9090 — —

fastLink-dblink-L 0.8712 0.9363 0.9025 0.9025 -13.01%

fastLink-dblink-S 0.9094 0.9971 0.9512 0.9512 2.79%

Table 4 reports the posterior mean and standard error (if available). For the
NLTCS, we find that dblink provides a posterior mean of 29,990 with standard
7 Parameter settings for fastLink-dblink can be found in Appendix C.
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Table 4. Comparison of Posterior Mean and Standard Error for the Number of Unique
Entities.

Dataset Method Posterior Estimates

Mean Std. Error

NLTCS dblink 29,990 63.48

fastLink-L — —

fastLink-S — —

fastLink-dblink-L 30,397 55.46

fastLink-dblink-S 35,922 13.07

error of 63.48. fastLink-dblink-L provides a posterior mean of 30,397 with
standard error of 55.46 and fastLink-dblink-S provides a posterior mean of
35,922 with standard error of 13.07. Observe that dblink underestimates the
true population size of 34,945, whereas our proposed method using the strong
blocking provides a slight overestimate and the loose blocking provides an under-
estimate. Convergence diagnostics can be found in AppendixB.

6 Discussion

In this paper, motivated by the need to scale ER to large data sets in fast and
accurate ways, we have proposed a principled two-stage approach to blocking
and ER, where our recommendation is based upon first performing the blocking
scheme based upon fastLink, where one can perform this step for around 50 K
records in just minutes. Our recommendation for the ER stage, is using a joint
blocking and Bayesian method such that one obtains a posterior distribution,
and thus, uncertainty propagation. Of course, there are many parameter choices
that must be selected for our proposed framework, however, extensive simulation
and sensitivity analyses have guided these choices [12,17]. One area for future
work would be making these methods more automated, however this would come
at the cost of being more computationally demanding. Another area for future
work would be automating more string distance functions in our pipeline.

We believe that this open-source pipeline could be useful for official statistics
agencies looking for guidance regarding how to improve their own. Finally, as
illustrated the data from the NLTCS, we recommend caution with methods given
the high accuracy for categorical data that is anonymized. This tends to lead to
guidance to the community regarding sharing sensitive medical data that could
be linked or tracking is used, and one’s personal privacy could be in risk without
any prior consent or knowledge.

A Plate Diagram for dblink

In this section, we provide a plate diagram for the dblink model (Fig. 1).
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Fig. 1. Plate diagram for dblink. Extensions to blink are highlighted dashed blue lines.
Circular nodes represent random variables, whereas square nodes represent determin-
istic variables. (Un)shaded nodes represent (un)observed variables. Arrows represent
conditional dependence, and plates represent replication over an index.

B Comparison of dblink and fastLink-dblink-S and
Convergence Diagnostics

In this section, we provide convergence diagnostics after passing the pre-
processing step of fastLinkto dblink. For all experiments, we utilized 100,000
Gibbs iterations (with a thin of 10). Figures 2 and 3 contain trace plots for two
summary statistics as a function of running time, where the first plot illustrates
this for RLdata10000 and the second illustrates this for the NLTCS. The conver-
gence diagnostics plot for RLdata500 is very similar to that of RLdata10000.
The left most plot provides the number of observed entities versus time. The
right most plot provides the distortion for each feature versus time. For both
RLdata10000 and NLTCS, we consider dblink as a baseline and compare this to
fastLink-dblink.

Figure 2 (left plot) illustrates that the convergence for fastLink-dblink is
faster slower than that of dblink, however, the inferential posterior mean is
much more accurate under fastLink-dblink-S (see teal line). Figure 2 (right
plot) illustrates that the the convergence for fastLink-dblinkis faster than that
of dblink for each feature. Figure 3 (left plot) illustrates that the convergence
for fastLink-dblink is much faster than that of dblink. Again, the posterior
mean is much more accurate under fastLink-dblink-S (see teal line). Figure 2
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(right plot) illustrates that the the convergence for fastLink-dblink is much
faster than that of dblink for each feature.

C Parameter Settings for NLTCS Experiments

In this section, we describe the parameter settings for fastLink-dblink. In the
case of the fastLink step, we use a binary comparison, based on exact matches.
For each data set, and based on the match probability ξij from fastLink, we
use 0.98 (loose) and 0.90 (strict) as the thresholds to produce two sets of likely
duplicates. As before, these threshold are selected such that the estimated rate of
false positives is less than 1% (strict) and 10% (loose). In the case of the dblink
step of fastLink-dblink, we run 150,000 iterations of the Gibbs sampler (using
a thin value of 10). In addition, we used a KD-tree with two-levels of partitioning,
which result in a total of four partitions, which were the following: DOB month,
DOB day, DOB year, and state. All six features were treated as categorical
variables. For all experiments, α = 448.134, β = 44813.4. For all experiments,
the threshold is 7.0, the max-similarity is 10.0, and the expected cluster max
size is 10.
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Fig. 2. Comparison of convergence rates for dblink and fastLink-dblink-S for
RLdata10000. The summary statistics for dblink and fastLink-dblink-S (number of
observed entities on the left and attribute distortions on the right) converge within 1 h
(3600 s).
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Fig. 3. Comparison of convergence rates for dblink and fastLink-dblink-S

for NLTCS. The summary statistics for dblink and fastLink-dblink-S (number of
observed entities on the left and attribute distortions on the right) converge within 4 h
(14400 s).
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Abstract. Linking data from different sources can enrich the research
opportunities in the Social Sciences. However, datasets can typically only
be linked if the respondents consent to the linkage. Strategies from the
secure multi-party computation literature, which do not require link-
age on the record level, might be a viable alternative in this context
to avoid biases due to selective non-consent. In this paper, we evaluate
whether such a strategy could actually be successfully applied in prac-
tice by replicating a study based on linked data available at the Institute
for Employment Research. We find that almost identical results could
be obtained without the requirement to link the data. However, we also
identify several problems suggesting that the proposed strategy might
not be feasible in many practical contexts without further modification.

Keywords: Confidentiality · Record linkage · Secure multi-party
computation · Privacy · Oaxaca-Blinder decomposition

1 Introduction

Linking data collected through surveys with administrative data is a popular
and cost-efficient strategy for enriching the information available for research.
However, privacy regulations typically require that survey respondents consent
to the linkage. Non-consent and other reasons for impossible or unsuccessful
record linkage lead to incomplete data and therefore a reduction in statistical
power. However, the main concern regarding non-consent is that non-consenters
could be systematically different from consenters introducing bias in subsequent
analysis based on the linked data. These biasing effects have been confirmed in
several studies (see for example, [18,19]).

To avoid the risk of non-consent bias, we propose using strategies from
the secure multi-party computation literature. Secure multi-party computation
addresses the problem, how to jointly analyze databases distributed among mul-
tiple entities that are either unwilling or unable to share their databases directly.
We will focus on strategies for analyzing vertically partitioned data. Vertically
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partitioned databases are data sources that contain the same data subjects but
provide different information on those subjects (in contrast to horizontally par-
titioned databases which cover the same attributes but for different subjects).
To give an example, assume that agency A collects information on income and
spending, whereas agency B collects health information for the same individu-
als. Both agencies might be interested in analyzing the relationships between
income and health status but neither of them is willing to share their data,
either because of distrust or because confidentiality regulations do not permit
the dissemination of the data. The literature for analyzing vertically partitioned
data deals with strategies to obtain information regarding the joint distribution
of the two data sources without the need for linking the data at the record level.
For example, [12] provide protocols to obtain coefficients and standard errors
of linear regression models in this situation. The method is privacy preserving,
since only aggregate information—sample means and covariances—of the two
datasets need to be exchanged. Other protocols allow for privacy preserving
logistic regression [7], linear discriminant analysis [5], and maximum likelihood
estimation for exponential family models [14].

While all protocols have been developed for contexts in which the data agen-
cies are unwilling or unable to share their data, the approach can also be used
to assess non-consent bias: We can use these protocols to obtain the estimates
that would have been observed, if all survey respondents had agreed to linkage
(note that no consent is required for this approach since no information is linked
on the individual level). A prerequisite of these techniques is that both data
sources contain the same individuals and need to be ordered in the same way.
In our context this means that even though actual data linkage is not necessary,
survey respondents need to be identified in the administrative dataset. If sharing
identifiers, such as social security number or address information is problematic,
privacy preserving record linkage techniques (see for example [6,17,21] or [22])
using encrypted identifiers can be utilized for identification. Alternatively, if the
administrative data act as a sampling frame for the survey data, the sample
IDs could be used to identify and sort the relevant records from the admin-
istrative data. In this case, the department responsible for drawing the initial
sample could act as a trusted third party, which uses the sample IDs to select
the appropriate cases from the administrative data and ensures that both data
files are sorted in the same order. It would be crucial under this scenario that
researchers working with the data would not be able to simply merge the two
data files, i.e., the datasets would need to be hosted on two different platforms
with strict regulations which information could be exchanged between the two
platforms.

In this paper we evaluate whether vertical partitioning can be a realistic
alternative to data linkage in an applied setting. To do so, we try to replicate
results from a report by [10], which uses data from the National Educational
Panel linked to the Integrated Employment Biographies, a large administrative
database gathered by the Institute for Employment Research to study the rela-
tionship between participation in further education programs and the extend to
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which the job consists of high routine tasks. Note that most research requires
substantial preprocessing of the data such as variable recoding, imputation, or
outlier removal before the actual model of interest can be fitted. Thus, the ques-
tion of whether vertical partitioning can be a substitute for record linkage to
avoid consent bias does not only depend on whether the model of interest can
be computed in a secure way. It also requires that all preprocessing steps can be
performed independently on the two data sources.

The remainder of the paper is organized as follows. In Sect. 2 we review the
concept of vertical partitioning with a focus on the linear regression model, as
this will be the model we need for our application. In Sect. 3 we introduce the
two data sources, summarize the research of [10], and present the results of our
replication study. The paper concludes with a discussion of practical problems
that we encountered when trying to replicate the study without linking the data
sources.

2 Secure Multi-party Computation

Fienberg [7] defines secure multi-party computation “as efficient algorithms, to
securely evaluate a function whose inputs are distributed among several parties”.
Most of the secure multi-party computation literature focuses on analyzing hor-
izontally partitioned databases (see, for example, [9,13]). Since we are searching
for alternatives to record linkage, we will only focus on strategies for analyz-
ing vertically partitioned databases in the remainder of the paper. Algorithms
for different types of analyses have been proposed in the literature. Since our
application discussed in Sect. 3 uses an Oaxaca-Blinder decomposition, which is
based on a standard linear regression model, we will describe the protocol of
[12] in more detail below. Other approaches for analyzing vertically partitioned
datasets include [7] for the logistic model and [5] for linear discriminant analysis.

2.1 Estimating Linear Regression Models Using Vertically
Partitioned Databases

Strategies for computing secure linear regression models have been proposed
for example by [20] and [12]. However, the approach by [20] assumes that the
dependent variable of the model is available to all parties involved in the secure
analysis. Obviously, this is an unrealistic scenario for our application as it would
require to link the dependent variable to one of the data sources, which would
not be possible for those units that did not consent to the linkage. The approach
of [12] only requires that covariance matrices and sample means can be shared
between the parties involved. While this can also be problematic – for example,
such a strategy will never offer formal privacy guarantees such as differential
privacy and we will discuss some further caveats in the conclusions–, dissemi-
nating sample means and covariance matrices is considered acceptable at most
statistical agencies. In the following, we discuss, how the approach of [12] can be
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used to obtain regression coefficients and their standard errors for the standard
linear model.

Karr et al. consider the general setting, in which the full database X is
distributed among K agencies A1, A2, . . . , AK . Let X1,X2, . . . , XK denote the
subsets of variables from the full database held by the different agencies and let
p1, p2, . . . , pK denote the number of attributes contained in each of the subsets.
Some further assumptions are necessary, for the approach to be feasible: None
of the attributes is included in more than one database, or if it is, the agencies
coordinate to remove the duplicated attribute. There are no missing values in
any of the databases, and the agencies collude in the sense that they follow the
protocol and share the true values obtained from their computations.

A key element in linear regression analysis is the (scaled) covariance matrix
X ′X. Once the matrix is available, other statistics such as the regression coeffi-
cients and their standard errors can be computed easily using the sweep operator
as we will illustrate below. Thus, [12] mostly focus on how to compute the matrix
in a secure way. We will review their proposed methods below assuming that only
two parties are involved, as this mimics the linkage scenario that we are con-
cerned about. The methods can be extended easily to allow for more than two
parties.

2.2 Secure Computation of X′X

Considering only two parties the cross product X ′X can be written as

X ′X =
[
X ′

1X1 X ′
1X2

X ′
2X1 X ′

2X2

]

The on-diagonal elements can be computed, using only one dataset at a time.
To compute the off-diagonal elements, [12] propose using a secure multiplica-
tion protocol. Specifically, assuming X comprises n records, they propose the
following steps:

1. A1 generates g n-dimensional vectors Z = {Z1, . . . , Zg}, which are orthogonal
to X1, that is, it holds that Z ′(i)X(j)

1 = 0 for i = 1, . . . , p1 and j = 1, . . . , p1.
Z can be computed using a QR-decomposition of the model-matrix X1 (see
[12] for details).

2. A1 sends Z to A2.
3. A2 calculates W = (I − ZZ ′)X2, where I is an (n × n) identity matrix. W is

sent back to A1

4. A1 can generate X ′
1X2 by calculating: X ′

1W = X ′
1(I − ZZ ′)X2 = X ′

1X2

The variable g controls the degree of data protection of the protocol. For exam-
ple, if g = 0, W = X2 exposes the complete X2 matrix to A1. [12] derive an
optimal value for g, which minimizes the loss of protection for both agencies, in
the sense that the amount of information shared is the same for both data own-
ers. The optimal value is given by p2

p1+p2
∗n (this fixes a typo in [12]). Using g can

be problematic for large sample sizes. As Z is a matrix of dimension n × g, and
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g corresponds to n times the proportion of attributes owned by A1, computing
ZZ ′ can become unwieldy. To avoid excessive computational burden, pragmatic
choices such as setting a maximum threshold for g might have to be made in
practice. Given that all data sources are owned by the same agency anyway in
our context, we feel that choosing an appropriate value for g is less important
as long as it is bounded away from 0 and n − p.

Assuming that X ′
1X1 and X ′

2X2 can also be shared without violating confi-
dentiality, the protocol enables the secure computation of the full matrix X ′X.
We note that this assumption can be problematic in some situations. For exam-
ple, if X1 contains binary attributes, releasing X ′

1X1 will reveal how many cases
in the database share these attributes. Furthermore, the average value for the
subset of records sharing the attribute will be revealed for all variables contained
in X1. To illustrate, assume that X1 contains information about HIV status and
income. Releasing X ′

1X1 will reveal how many units have HIV and their average
income. Developing strategies for dealing with this problem is beyond the scope
of this paper.

2.3 Obtaining Regression Coefficients and Standard Errors

Once X ′X is available, regression results for linear regression models can be
computed easily using the sweep operator. The sweep operator [1] can be used
to compute maximum likelihood estimates for linear regression models. Following
the notation in [15], let G be a p × p symmetric matrix. G is said to be swept
on row and column k if it is replaced by a matrix H consisting of the following
elements:

hkk = −1/gkk,

hjk = hkj = gjk/gkk, j �= k,

hjl = gjl − gjkgkl/gkk, j �= k, l �= k.

The sweep operator can be used to obtain the desired regression results for
our context by applying the following procedure. Let X be a n × p matrix con-
taining the p predictor variables in the regression of interest. Likewise, let Y
denote a n × 1 vector containing the data for the dependent variable. Note that
the variables in X will contain variables from both data sources. Let Z = {X,Y }
and let A = {X̄1, . . . , X̄p, Ȳ } be a 1 × (p + 1)-vector containing the means of all
variables. Finally, let B = (Z ′Z)/n, where the matrix Z ′Z is computed following
the protocol given above. Define the (p + 2) × (p + 2) symmetric matrix G as

G =
(−1 A

A′ B

)

Regression results for the linear regression of Y on X can be obtained by
sweeping the matrix G on the rows and columns 1 to p + 1. Specifically, let the
resulting matrix H be defined as

H = SWP[1, 2, . . . , p + 1]G =
(−D E

E′ F

)
,
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where D is (p + 1) × (p + 1), E is (p + 1) × 1, and F is 1 × 1. Then F holds
the residual variance of the linear regression model, E provides the regression
coefficients and D can be used to calculate the covariance matrix of the estimated
regression coefficients. Specifically, it holds that D = n · [(1,X)′(1,X)]−1, that is
D is a scaled version of inverse of the covariance X ′X of the predictor variables
including the intercept. Hence, an unbiased estimate of the covariance matrix of
the regression coefficients β̂ can be computed as

V âr(β̂) = σ̂2 · [(1,X)′(1,X)]−1 = n/(n − p)F · D/n,

where the adjustment factor n/(n−p) is required to ensure that F–the maximum
likelihood estimate of the residual variance–is unbiased.

3 Application

In the application section, we evaluate whether the vertical partitioning approach
can be successfully applied in practice to avoid the requirement to link the data
sources on the record level. To do so we try to replicate a study by [10], which
investigates the relationship between participation in further education programs
and the extend to which the job consists of high routine tasks. The authors find
that while modern technologies mainly replace employees in professions with
a high share of routine tasks, people working in these professions participate
less in further training. For their analysis the authors use data from the adult
cohort of the National Education Panel linked to the Integrated Employment
Biographies of the Institute for Employment Research. Before describing the two
data sources and their linkage below, we emphasize again that the question of
whether the vertical partitioning approach can be a useful alternative to record
linkage does not only depend on whether it would produce the same estimates
for the final model. A substantial amount of work in applied research is typically
devoted to data preparation and exploratory data analysis. Variables might be
regrouped, because of problems with sparse categories, missing values might be
imputed, outliers might have to be removed, and the fit of the final model needs
to be evaluated. It is not clear ex ante whether all the steps that the authors
took before running their final model would be reproducible if the data cannot
be linked on the record level. The authors of the paper kindly agreed to share
their entire script with us so we are able to evaluate whether all data preparation
steps could also have been performed without linking the data. We will discuss
our findings in Sect. 3.2 before presenting the results for the final model.

3.1 The Data

This section provides an overview of the two data sources and discusses the
linkage of both sources. It borrows heavily from [8].
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National Educational Panel Study. The National Educational Panel Study
(NEPS) is carried out by the Leibniz Institute for Educational Trajectories at
the University of Bamberg. The NEPS collects longitudinal data on competency
development, educational processes, educational decisions, and returns to edu-
cation in Germany. Panel surveys on different age cohorts are conducted which
provide data throughout the life course. The NEPS Starting Cohort 6 collects
data specifically on the adult cohort. After a longer period between the first and
second waves, which were carried out in 2007/2008 and 2009/2010, respectively,
surveys for the adult cohort have been conducted yearly since 2011. The sample
is drawn from municipality registration records of residents using a two-stage
cluster sampling design with communities defining the primary sampling units
and simple random sampling without replacement of individuals at the second
stage. The target population of the adult cohort comprises residents in Germany
who were born between 1944 and 1986 [4].

Integrated Employment Biographies. The Integrated Employment Biogra-
phies (IEB) consist of administrative data obtained from social security notifi-
cations and different business processes of the German Federal Employment
Agency. The different data sources are integrated for and by the Institute for
Employment Research.

Employment information is provided for every employee covered by social
security. Note that this excludes individuals who did not enter the labour market
and individuals who were self employed since these groups are not subject to
mandatory social security contributions. For individuals who received benefits
in accordance with the Social Code Books (SGB) II & III, benefit recipient
data are generated respectively. Further data are generated for individuals who
were registered as job seekers with the Federal Employment Agency or who
participated in an employment or training program. We refer to [11] for a detailed
description of the different data sources and of the IEB.

Linkage of the Two Data Sources. Record linkage of NEPS and IEB data
was carried out based on the following non-unique identifiers: first and last name,
date of birth, sex, and address information – postal code, city, street name,
and house number. There are 17,140 respondents in the NEPS adult cohort.
The number of linkage consenters among the NEPS adult cohort was 15,215.
Thus, the linkage consent rate was 88.8%. Of those units that consented 77.4%,
that is, 11,778 units, could be linked deterministically and 8.9% (1,053 units)
probabilistically, and the remainder could not be linked at all. In the NEPS
linkage, a link is called deterministic if the identifiers either match exactly or
differ only in a way that the probability for false positive links is still extremely
low.
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3.2 Review of the Data Preparation Steps

The authors apply several preprocessing steps before running their final model
of interest. In this section we give a brief summary of these steps focusing on
the question whether they are reproducible without linking the data.

Step 1: Preparing the data sources: In this step, the relevant subset of the
data (in terms of time and content) is identified, some variables are recoded and
new variables are generated based on existing variables. Furthermore, additional
information from other data sources is added. For the IEB data, which is orga-
nized as (un-)employment spell data, that is, each row in the data represents an
(un-)employment spell, this step mostly deals with generating aggregated per-
son level information, such as work experience or tenure at the current employer.
Furthermore, aggregated information such as whether the individual is currently
employed or participates in vocational training is generated based on the detailed
information about the current work status recorded in the IEB. Finally, addi-
tional information about the employer is added from another administrative data
source of the IAB, the Establishment History Panel (BHP).

The data on the adult cohort of the NEPS contain more than 1,000 variables
stored in several subfiles grouped by content. The majority of the data prepara-
tion steps focus on selecting, labeling, and merging the relevant variables from
the different subfiles. Some subfiles have to be reshaped into wide format to
allow the inclusion of lagged variables in later analysis steps. New variables are
also derived based on the available information. To give an example, the authors
generate an index variable, which measures the amount of the workload spent
on routine tasks. The variable, which is bounded between 6 and 30 is generated
by aggregating over several variables from the NEPS survey. Using this variable,
the authors generate an indicator variable to identify respondents working in
jobs with a high level of routine tasks.

All processing steps are performed independently in both data sources. Thus,
this step can be fully replicated even if the databases are never linked.

Step 2: Imputation: Since the information in the IEB is based on adminis-
trative processes, the number of missing cases is very small for most variables.
Thus, the authors only impute two variables in the IEB: education and income.
Information on education is often missing or inconsistent as reporting the edu-
cation level is not mandatory. For the imputation of the education variable, the
authors use a simple deterministic approach, which is based on the assumption
that the level of education can only increase over time, but never decrease. In
a first step, all reported (un-)employment spells for each individual are sorted
chronologically. Then, starting with the earliest reported education level, the
observed level of education is always carried over to the next spell unless the
reported level of education is higher for this spell. In this case, the higher edu-
cation level is accepted and this higher level will be used when moving on to the
next spell. This strategy fulfills two goals: it imputes previously reported levels
of education if the education information is missing in certain spells, but it also
fixes inconsistencies in the data, by editing reported education levels, which are
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lower than those previously reported. Since values for education are imputed
using only its own history, this step can also be replicated without linking the
data. The income variable does not contain any missing values since all employ-
ers are required to report the income for all their employees to the social security
administration. However, income is only reported up to the contribution limit of
the social security system and thus higher incomes are top coded. To deal with
the problem, imputed values above the contribution limit are provided in the
IEB and the authors use these imputed values. Imputations are generated using
a tobit regression model. For the tobit model all predictors are taken from the
IEB. This can be seen critical as it implicitly assumes that conditional on the
variables from the IEB the income information is independent from the variables
included in the NEPS data. On the other hand it implies that this imputation
step can also be replicated without linking the data.

To impute missing values in the NEPS data, the authors rely on a set of
STATA routines provided by the research data center of the NEPS. These rou-
tines are meant as a convenience tool for the applied researcher as they automat-
ically impute missing values in the data where possible. However, given that the
routines are developed only for the survey data and not for the linked dataset,
they make a similar independence assumption as the imputation routines for the
education variable described above. While methodologically questionable, this
implies again that these routines can be run without actually linking the data.

Step 3: Identifying the appropriate employment spells: Since the final
model uses information from both data sources to measure the impact of various
individual and job characteristics on the probability to participate in further
training, it is important that the linked data provide information on the same job.
To ensure this, the authors always link the employment spell of each individual
that covers the NEPS interview date (if more than one spell covers the date, the
spell with the higher income is selected). Obviously, this strategy would require
linking the interview date to the IEB and thus it cannot be fully replicated.
We implemented the following alternative, which serves as a proxy if linkage is
not possible: In a first step, we identified the field period of the NEPS survey
by searching for the earliest and latest interview date. Then we identified all
employment spells overlapping with the field period. In a final step we selected
the spell of each individual with the highest overlap with the field period. The
rational behind the approach is that assuming a uniform distribution for the
number of interviews at each day of the field period, the strategy will select the
spell having the highest probability that the interview took place during this
spell. As we show in the next section, this strategy only has modest effects on
the final results.

3.3 Results for the Model of Interest

As discussed previously, the authors are interested in measuring the impact of
various individual and job characteristics on the probability to participate in
further training. To estimate the impacts, the authors use an Oaxaca-Blinder
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decomposition [3,16] taking into account information about the respondents,
their education, socio-economic, firm and job characteristics. The Oaxaca-
Blinder decomposition is a popular strategy in economics to decompose the
observed difference between two groups into a component that can be explained
by observed characteristics and an unexplained component. For example, most
studies on the gender wage gap rely on the Oaxaca-Blinder decomposition treat-
ing the unexplained component as an estimate for discrimination (see for example
[2]). The approach proceeds by fitting the same regression model independently
for both subgroups. Assuming a linear regression model and using the indices A
and B to distinguish the two subgroups, the two models are YA = XAβA + uA

and YB = XBβB + uB, where Y is the variable of interest, X is the matrix of
explanatory variables and u denotes the error term. Based on these two models,
we can write the difference in the means of Y as

ȲA − ȲB = X̄AβA − X̄BβB = βA(X̄A − X̄B) + X̄B(βA − βB).

The first term βA(X̄A − X̄B) is the part of the observed difference in Y which
can be explained by observed characteristics. The second term X̄B(βA − βB)
contains the unexplained difference.

Since [10] also use a linear regression model in the decomposition, we can rely
on the secure protocol described in Sect. 2 to replicate the results of the authors.
Specifically, defining the two groups as those working in highly routine based jobs
and those that do not, the authors run a linear regression in which the dependent
variable is an indicator, whether the unit participated in further training, and
the set of 46 predictor variables can be grouped into seven categories: education,
health status, further individual characteristics that serve as control variables,
job characteristics, firm characteristics, information about the management style,
and information whether the firm generally supports further training.

Note that using a secure protocol for the two regression models poses an
additional problem: The party, which holds the indicator variable for the two
groups cannot simply share this information with the other party. The other
party would learn which unit belongs to group A or group B, although she would
not know which group is which. In our example this would imply that the owner
of the administrative database would still not know, whether group A or group
B contains the individuals that classify their job as mostly routine based. Still,
the amount of protection from this might be limited in practice. For example,
the owner of the administrative database could use the information on the job
classification to identify an individual (for example a university professor) in the
database, for which it is prudent to assume that she classified herself as working
in a job with few routine tasks. This knowledge would then automatically reveal
the value of the group indicator for all other units in the database.

However, sharing the group indicator is not required. Estimates for the two
subgroups can also be obtained by running one regression model on the entire
dataset, but interacting all the variables with the group indicator. The point
estimates from this model will be exactly the same as the point estimates when
running two separate models. Still, the variance estimates will generally differ,
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since one constant residual variance is assumed for the entire dataset instead of
allowing for two independent variances for the two subgroups. It might seem that
nothing is gained by using this strategy as one of the parties will not be able to
compute the interaction terms without sharing of the group indicator. However,
this is not required. As long as the party that owns the group indicator includes
all interactions with the group indicator and the indicator itself, it suffices if
the other party includes all two-way interactions and squared terms of its own
variables. Still, some bookkeeping is required to obtain the full covariance matrix
from the output of the secure protocol in this case.

Table 1 contains the results for the Oaxaca-Blinder decomposition. The
results are presented for three different estimation strategies. The third col-
umn replicates the results from [10] using their code. We note that these results
differ slightly (only in the third digit) from the results reported in the original
paper. We can only speculate about the reasons. Most likely some bugs in the
reported data have been fixed in the meantime. The forth column reports the
results if the data are linked at the record level, but the alternative strategy
which does not rely on the interview date to identify the correct employment
spell is used. These results serve as a benchmark for the last column, which
contains the results based on the vertical partitioning approach.

The upper part of the table reports summary statistics. The first two rows
contain the share of training participants in the two groups (in percent), while
the third row repots the difference in percentage points between the two groups.
Based on the original data, we find that more than 40% of the individuals working
in jobs with low rates of routine tasks participate in further training, while the
uptake in the other group is only 27% resulting in a (rounded) difference of 14%.
Rows four and five show to what extend the difference between the two groups
can be explained by the observed characteristics. From the table it is evident
that about half of the difference can be explained. The lower part of the table
shows how much of the explained difference can be attributed to the different
components. The results indicate that individual and job characteristics only
play a minor role in explaining the difference in the training uptake. Most of the
difference is explained by firm characteristics with a supportive attitude towards
further training explaining most of the difference.

Comparing the results in column three and column four, we find that using
the alternative strategy to identify appropriate employment spells only has minor
effects on the findings. The absolute difference between the estimates is never
more than 0.4% points and the substantive conclusions would not be affected.

Results in the fifth column are based on the vertical partitioning approach,
that is, the data are never linked to compute the results. Comparing the results
to the fourth column, we find that the point estimates are identical. The dif-
ference in the estimated standard errors can be attributed to three factors:
First, as explained above, the residual variance is assumed to be the same in
both groups. Second, the variance estimates in the Stata implementation of
the Oaxaca-Blinder decomposition, which was used to compute the results in
the third and forth column adds a variance component to account for the uncer-
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Table 1. Results of the Oaxaca-Blinder decomposition from [10]. All point estimates
are reported in percent. The third column contains the original results. The forth
column still uses the linked data, but an alternative strategy is used to identify appro-
priate employment spells. The last column contains the results based on the vertical
partitioning protocol.

Original
results

Alternative
spell ident.

Vertical
partitioning

Overall ȲR=0 41.08 41.11 41.11

(0.98) (0.97) (0.97)

ȲR=1 26.71 26.88 26.88

(1.42) (1.42) (1.42)

Difference 14.36 14.23 14.23

(1.72) (1.72) (1.72)

Explained 7.15 7.31 7.31

(1.03) (1.02) (0.68)

Unexplained 7.21 6.92 6.92

(1.70) (1.70) (2,40)

Explained Education 0.61 0.97 0.97

(0.53) (0.54) (0.52)

Health 0.25 0.25 0.25

(0.22) (0.21) (0.18)

Individual characteristics −0.94 −0.91 −0.91

(0.38) (0.38) (0.35)

Job characteristics 0.10 0.18 0.18

(0.37) (0.35) (0.33)

Firm characteristics 1.14 0.98 0.98

(0.57) (0.56) (0.49)

Management 1.85 1.80 1.80

(0.46) (0.45) (0.35)

Firm support 4.13 4.05 4.05

(0.61) (0.60) (0.43)

tainty in the predictors. Third, the authors accounted for the potential clustering
within firms by specifying the cluster option in Stata for the variance estimation
procedure. Investigating whether it is possible to also account for the sampling
design features when using a vertical partitioning approach is an interesting
area for future research. However, we found that the difference in the estimated
standard errors was generally small for this application.
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4 Conclusion

Linking data from different sources is an increasingly popular and cost efficient
strategy to facilitate research in the Social Sciences and in other fields. However,
informed consent is typically required prior to the linkage. This might introduce
bias in the analyses based on the linked cases if not all participants consent. To
avoid linkage bias, strategies from the secure multi-party computation literature
might offer an interesting alternative since they do not require to actually link
the data. In this paper we evaluated whether such a strategy might be feasible in
practice by replicating results from a research project based on a linked dataset.
We feel that such a replication study is important since fitting the final model of
interest – for which multi-party computation strategies might exist – is typically
only the final step in a research project. Most of the time (and computer code)
is spent on cleaning and preparing the data. To illustrate, specifying the final
model required less than 20 lines of computer code, while preparing the data
required almost 1200 lines of code in the replicated project.

We found that it was indeed possible to obtain very similar results for the
final model. However, there are several caveats regarding these findings. From
a utility perspective, the replication study was successful, because almost all
of the data preparation steps happened before linking the two data sources.
This may or may not be realistic for other research projects. In fact, from a
methodological point of view, it would always be recommended to implement
any imputation steps only after linking the data to avoid the conditional inde-
pendence assumption. Generating imputations using the information from both
sources without actually linking the data would be complicated. Even more crit-
ical are the required assumptions from the privacy perspective. The proposed
strategy can only be successfully implemented if the following conditions hold:

– Those units that are included in both databases can be identified in both
databases.

– Both databases can be sorted in the same order.
– Sharing covariances and sample means is not considered to be a violation of

the confidentiality standards.

Identifying the units is straightforward if the same unique identifiers exist
or if the administrative data act as a sampling frame for the survey. In other
cases, privacy preserving record linkage techniques might be required. However,
identifying the units is not only a methodological problem, it also raises privacy
concerns. Even if it can be guaranteed that the researchers involved in the project
will only have access to one of the data sources, the information is spilled, which
of the units is also included in the other source. In some contexts this might
not be acceptable. The strategy also poses legal questions that go beyond the
standard questions regarding the risks of disclosure. Is it legally (and ethically)
justifiable to compute results integrating information from different data sources
even if the data subjects explicitly refused to give consent that the data sources
can be linked directly? Another interesting question for future research would
be to evaluate if the strategy could indeed help to avoid non-consent bias by
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comparing results obtained using a secure protocol and using all records in the
survey, with results obtained using only the data from those units that consented
to the linkage of the data.
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Abstract. US government agencies possess data that could be invalu-
able for evaluating public policy, but often may not be released publicly
due to disclosure concerns. For instance, the Statistics of Income divi-
sion (SOI) of the Internal Revenue Service releases an annual public use
file of individual income tax returns that is invaluable to tax analysts
in government agencies, nonprofit research organizations, and the pri-
vate sector. However, SOI has taken increasingly aggressive measures to
protect the data in the face of growing disclosure risks, such as a data
intruder matching the anonymized public data with other public infor-
mation available in nontax databases. In this paper, we describe our
approach to generating a fully synthetic representation of the income
tax data by using sequential Classification and Regression Trees and
kernel density smoothing. This synthetic data file represents previously
unreleased information useful for tax policy modeling. We also tested
and evaluated the tradeoffs between data utility and disclosure risks of
different parameterizations using a variety of validation metrics. The
resulting synthetic data set has high utility, particularly for summary
statistics and microsimulation, and low disclosure risk.

Keywords: Disclosure control · Synthetic data · Utility ·
Classification and Regression Trees

1 Introduction

Tax data are a potentially invaluable resource for public policy analysis on a wide
range of issues. The Internal Revenue Service (IRS) has for decades released a
public use file (PUF) with selected information from individual income tax return
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records anonymized and altered to protect against disclosure risk. Analysts in
academia, nonprofit research organizations, and the private sector use the PUF
to study the effects of tax policy changes on tax revenues, distribution of tax
burdens, and economic incentives. For instance, the microsimulation models of
various organizations, such as the American Enterprise Institute, the Urban-
Brookings Tax Policy Center, and the National Bureau of Economic Research,
must rely on the PUF. However, concerns about protecting data participants’
privacy in the information age have required the IRS to limit the data released
and distort the data in increasingly aggressive ways. As a result, the released
data are becoming less useful for statistical analyses. Concerns about privacy
might prevent the PUF as currently conceived from being produced.

In response to these concerns, we developed a synthetic data approach to
protecting the tax data from disclosure. Although synthetic data generation has
been used to protect many administrative and other sensitive data sets against
disclosure, it has not previously been applied to U.S. tax return data. As a first
step, we developed a synthetic process for generating the 2012 Supplemental
PUF, a database of individuals who neither filed nor were claimed as a dependent
on any individual income tax return in 2012, which has never been released
publicly before. More information about the file is available in IRS (2019).

We organize the paper as follows. Section 2 details our synthetic data gen-
eration method on the Supplemental PUF data and outlines how our synthesis
process protects privacy, including protections against disclosure of outliers and
attribute disclosure. Section 3 reports and evaluates the data utility measures of
the synthesized Supplemental PUF data. Further discussion of our results and
our plans for future work are in Sect. 4.

2 Data Synthesis Methodology

Our ultimate objective is to synthesize records from the IRS Master File (the
universe of individual income tax returns) to create a synthetic file similar to the
current PUF released by the IRS Statistics of Income (SOI) Division, but with
stronger privacy protections. As a proof of concept and in an effort to release
useful data that had never before been made public, we have created a fully
synthetic file called the Supplemental PUF based on nonfiler tax data.

Cilke (2014) defines a nonfiler as, “Any U.S. resident that does not appear
on a federal income tax return filed [for] a given year.” Our sample is thus
comprised of people with U.S. residences who neither file nor are claimed as a
dependent on a federal income tax return for a given year and do not appear
to have an income tax filing requirement. Our data source is a random 0.1%
sample of social security numbers appearing on information returns, excluding
the people who file tax returns, for Tax Year 2012 maintained by the IRS SOI
Division. Information returns are forms provided to the IRS by any business
or other entity that pays income or has certain other compulsory reportable
transaction with an individual. The following section provides background on
SOI’s disclosure methods and outlines the disclosure risks and data synthesis
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process for the Supplemental PUF. For interested readers, Bowen et al. (2020)
provides the full report on our data synthesis methodology.

2.1 Background

Data stewards have relied on a variety of statistical disclosure control (SDC) or
limitation (SDL) techniques to preserve the privacy of data while maintaining
quality. However, some SDC techniques may fail to eliminate disclosure risk
from data intruders armed with external data sources and powerful computers
(Drechsler and Reiter 2010; Winkler 2007). These techniques may also greatly
reduce the usefulness of the released data for analysis and research. For instance,
currently, the SOI top codes the number of children variable in the individual
income tax return included in the PUF at 3 for married filing jointly and head of
household returns, 2 for single returns, and 1 for married filing separately returns
(Bryant 2017). Also, the 2012 PUF aggregated 1,155 returns with extreme values
into four observations, ostensibly further top coding the high/low income or
extreme positive and negative values of income (Bryant 2017). These methods
may degrade analyses that depend on the entire distribution, bias estimates for
more complex statistical models, distort microsimulation model analyses that
are sensitive to outliers, make small area estimation impossible, and hide spatial
variation (Reiter et al. 2014; Fuller 1993).

2.2 Disclosure Risks

Replacing data with fully synthetic data can potentially avoid the pitfalls of
previous SDC techniques. One way we can generate the synthetic data is by
simulating the data generation process of the confidential data based on an
underlying distribution model. This method protects against identity disclosure,
because no real observations are released (Hu et al. 2014; Raab et al. 2016).
Specifically, Hu et al. (2014), stated that “it is pointless to match fully synthetic
records to records in other databases since each fully synthetic record does not
correspond to any particular individual.”

However, if not carefully designed, fully synthetic data may still risk disclos-
ing information (Raab et al. 2016). For example, overfitting the model used to
generate the synthetic data might produce a synthetic file that is “too close”
to the underlying data. In the extreme case, a data synthesizer could theo-
retically perfectly replicate the underlying confidential data (Elliot 2015). The
database reconstruction theorem proves that even noisy subset sums can be used
to approximate individual records by solving a system of equations (Dinur and
Nissim 2003). If too many independent statistics are published based on con-
fidential data, then the underlying confidential data can be reconstructed with
little or no error.

To protect the integrity of the tax system, the IRS has an obligation to
protect confidentiality even from perceived disclosure. Yet, disclosure risks are
difficult to estimate for most data sets, let alone complex synthetic data sets
such as a synthetic individual income tax return database. Raab et al. (2016)



260 C. M. Bowen et al.

concluded that it was impractical to measure disclosure risk in the synthesized
data from the UK Longitudinal Series: “Hu et al. (2014), Reiter et al. (2014),
McClure and Reiter (2012) proposed other methods that can be used to identify
individual records with high disclosure potential, but these methods cannot at
present provide measures that can be used with (the) sort of complex data that
we are synthesizing.”

The underlying administrative database that is the basis for our synthetic
dataset coupled with our proposed methodology affords us three critical pro-
tections: 1) Reverse engineering the SDC techniques on our high dimensional
data is very computationally demanding. 2) Our synthetic data is only a frac-
tion of the size of the underlying administrative data, sampled at a rate at most
one in ten nonfilers. By limiting sample size, we reduce the potential disclosure
on the properties of the underlying distribution, which is especially important
for outliers. We discuss this further in Sect. 4. 3) Our synthetic data method
smooths the distribution of underlying data, preserving the empirical distribu-
tion of non-sensitive observations. Specifically, the empirical distribution has a
high probability density and then flattens in the tails to only reflect the general
characteristics of outlier observations. This prevents data intruders from using
information about outliers to infer other data about these sensitive observations.

2.3 Data Synthesis Procedure

For our synthetic data generation process, we first synthesized gender by splitting
the data into two parts. One part includes the observations from the confiden-
tial data that have zeros for all 17 tax variables. The other part includes the
observations with at least one non-zero tax variable. For the part with at least
one non-zero value for a tax variable, we randomly assigned gender, X1, values
based on the underlying proportion in the confidential data.

For the part with all zeros for tax variables, we randomly assigned the gender
value based on the proportion in the zero subsample, synthesize age based on
gender, and assign zeros to all tax variables. When the tax variables had non-zero
values, we used classification and regression trees (CART) to predict age, X2,
for each record conditional on gender. Since the CART method selects values
at random from the final nodes, the distribution may differ slightly from the
distribution of age by gender in the administrative data, but, the differences are
small given the sample size.

For the remaining variables (X3, ...,X19), we used CART as our underlying
model (Breiman et al. 1984; Reiter 2005). We estimated CART models for each
variable with all observed values of the previously synthesized outcome vari-
ables as predictors. Our synthetic data generation methodology is based on the
insight that a joint multivariate probability distribution can be represented as
the product of sequential, conditional probability distributions (Eq. 1).

f(X|θ) = f(X1,X2, ...,Xk|θ1, θ2, ..., θk)
= f1(X1|θ1) · f2(X2|X1, θ2)...fk(Xk|X1, ...,Xk−1, θk)

(1)
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where X are the variables to be synthesized, θ is the vector of model parame-
ters such as regression coefficients, and k is the total number of variables (19,
described in Table 1).

We chose to implement CART because the method is computationally sim-
ple and flexible (no distribution assumptions). CART also far out-performed
regression-based parametric methods in several preliminary, utility tests (e.g.
summary statistics) due, in part, to the large number of zero values. We used
a customized version of CART from the R package synthpop, which contains
multiple methods for creating partially-synthetic and fully-synthetic data sets
and for evaluating the utility of synthetic data (Nowok et al. 2019). We used
CART to partition the sample into relatively homogeneous groups, subject to
the constraint that none of the partitions be too small to protect against over-
fitting (Benedetto et al. 2013). In testing on the Supplemental PUF database,
we found that a minimum partition size of 50 produces a good fit with adequate
diversity of values within each partition.

We started with the variable with the most non-zero values–wage income,
X3, and then order the remaining variables, {X4,X5, ...,X19}, in terms of their
correlations with wage, from most to least correlated. Specifically, at each par-
tition, the best split is the one that minimizes the error sum of squares, SSE,
given that the data are partitioned into two nodes. Thus,

SSE =
∑

i∈AL

(yi − ȳL)2 +
∑

i∈AR

(yi − ȳR)2 (2)

The variables ȳL and ȳR are the means of the left and right nodes respectively.
Splits continue until there is no improvement in the splitting criteria or until
the minimum size for a final node (50) is reached. Our data synthesis approach
samples values from the appropriate final node and then applies our smoothing
method discussed below.

To synthesize the first continuous variable X3, (wages in the Supplemental
PUF data), we created a kernel density function for each percentile of values
predicted within groups defined by CART for this variable. While this approach
seems straightforward, we had to tackle some complications. First, the variance
of the Gaussian kernel must be larger when sampling outliers. If the variance is
not adjusted, a data intruder who knows how the database is constructed might
draw some fairly precise inferences since outlier observations in the synthetic
data set would likely be relatively close to an actual observation. We used per-
centile smoothing, which selects the variance based on the optimal variance for
a kernel density estimator estimated on observations in the percentile for each
observation. As discussed later in the section, this causes the variance to grow
with the value of the synthesized variable. Secondly, variables that are a deter-
ministic function of others, such as adjusted gross income or taxable income, will
be calculated as a function of the synthesized variables. We did not calculate such
variables for the Supplemental PUF data.

No smoothing is applied to values of 0, which is the most common value for
all continuous variables in the Supplemental PUF data. We did not consider
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Table 1. Supplemental Public Use File variable description.

Variable Description

Gender Male or female

Age 1 to 85 (age is top-coded at 85)

Wages Reflects the amount reported in Box 1 of Form W-2

Witholding The combination of reported withholdings from
Forms W-2, W-2G, SSA-1099, RRB-1099, 1099-B,
1099-C, 1099-DIV, 1099-INT, 1099-MISC,
1099-OID, 1099-PATR, and 1099-R

Taxable retirement income Total taxable retirement income from the amounts
reported in Box 2a of Form 1099-R for both IRA
and Pension distributions

Mortgage interest The combination of amounts reported in Boxes 1,
2, and 4 of Form 1098

Interest received Combination of amounts reported in Interest
Income from Forms 1065 Schedule K-1, 1041
Schedule K-1, 1120S Schedule K-1, and 1099-INT

Pension received Gross pension distributions reported in Form
1099-R

Residual income Combination of other net income/loss, cancellation
of debt, gambling earnings, and net short term
gains/losses from Forms 1099-Q, 1099-C,
1099-MISC, 1099-PATR, 1065 Schedule K-1, 1041
Schedule K-1, and 1120S Schedule K-1

Business income Amounts reported in Box 7 of Form 1099-MISC

Taxable dividends The combination of reported dividends from Forms
1065 Schedule K-1, 1041 Schedule K-1, 1120S
Schedule K-1, and 1099-DIV

Qualified dividends The amounts reported in Box 1b of Form 1099-DIV

Social security Difference between benefits paid and benefits
repaid from Form SSA-1099

Schedule E Sum of income reported on Schedule E

Long term (LT) capital gain Combination of capital gains from Form 1099-DIV
and net long term gains/losses minus section 179
deduction from Forms 1065 Schedule K-1, 1041
Schedule K-1, and 1120S Schedule K-1

Tax-exempt interest Amount reported in Box 8 of Form 1099-INT

Above the line Based on the combination of amounts reported in
Box 1 of Forms 5498 and 1098-E

State refund Amounts reported in Box 2 of Form 1099-G

Taxable unemployment Amounts reported in Box 1 of Form 1099-G
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zeros to be a disclosure risk because even the variable with the most non-zero
values still contains 73% zeros. In fact, many of the variables are zero for almost
every record. By default, synthpop does not smooth values if the frequency of
a single value exceeds 70%.

Subsequent variables {X4,X5, ...,X19} (all the tax variables) are synthesized
in a similar way to X3 by predicted values based on random draws from a kernel
density estimator within groups defined by CART for observations with similar
characteristics.

CART tends to over-fit data, therefore most trees are reduced based on a
penalty for the number of final nodes in the tree. For the Supplemental PUF,
we did not reduce trees because our minimum partition size of 50 is sufficiently
large.

2.4 Additional Privacy Protection Measures

Our data synthesis methodology protects confidentiality ex ante, but we also
used a set of privacy metrics to test whether the CART method might produce
values that are too close to actual values or reveal too much about relationships
between variables. In other words, although the synthetic data contains pseudo
records, if these values are exactly the same as the confidential data, then we
would be creating a large disclosure risk. We used the following metrics to adjust
the precision of the data synthesis by adjusting smoothing parameters such as
the minimum size of the final nodes in the CART synthesizer.

Number of Unique-Uniques: The count of unique-uniques is the number
of unique rows from the confidential data that are unique in the unsmoothed
synthetic data. This narrows the focus to rows that are uncommon and could
carry some inferential disclosure risk.

Row-Wise Squared Inverse Frequency: For any given row in the
unsmoothed synthetic data, this metric is the multiplicative inverse of the square
of the number of identical rows in the confidential data. Rows that appear once
are assigned a value of 1, rows that appear twice are assigned a value of 1/4,
rows that appear thrice are assigned a value of 1/9, and so on.

We did not report on the results for unique-unique, and row-wise squared
inverse frequency, because they were all very small.

l-diversity of Final Nodes in the CART Algorithm: We were concerned
that the CART algorithm could generate final nodes that lack adequate hetero-
geneity to protect confidentiality. Too little heterogeneity in the final nodes could
result in too much precision for the synthesizer. To ensure adequate heterogene-
ity, we applied l-diversity to the decision trees created by the CART algorithm
(Machanavajjhala et al. 2007). Specifically, let a quasi-identifier be a collection
of non-sensitive variables in a data set that could be linked to an external data
source. Let a q∗-block be a unique combination of the levels of quasi-identifiers.
A q∗-block is l-diverse if it contains at least l unique combinations of sensitive
variables. We applied this formal measure to the CART algorithm: at each parti-
tion the split directions (left and right) are considered to be quasi-identifiers and
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the final nodes are considered to be q∗-blocks. The trees create the discretized
space formed by quasi-identifiers, the final nodes are q∗-blocks, and the sensitive
values are the values in the final nodes. We examined the minimum l-diversity
in a data synthesizer and the percent of observations that came from final nodes
with l-diversity less than 3. In many cases, the minimum l-diversity is 1 because
some final nodes only contain zeros. We considered this to be acceptable because,
as discussed earlier, zeros do not inherently present a disclosure risk.

3 Synthetic Data Quality and Evaluation

In this section, we report the synthetic Supplemental PUF utility results. Fig-
ures 2 and 3 in the Appendix compared the means and standard deviations,
respectively, of the age and the 17 tax variables from the original and synthetic
data. Overall, the original and synthetic variables had similar values, where only
a few variables differed noticeably such as the standard deviation of tax-exempt
interest.

Figure 4 in the Appendix illustrates the correlation difference between every
combination of tax variables, which was 0.0013 across all variables. Most differ-
ences are close to zero. Taxable dividends, qualified dividends, tax-exempt interest,
and long-term capital gains all have correlation differences that are not close to
zero. This is not surprising since these variables have few non-zero values and
are uncommon sources of income for nonfilers. We did not consider this a cause
for concern, but it is an area for future improvement.

We applied pMSE, a propensity-score-based utility measure, that tests
whether a model can distinguish between the confidential and the synthetic
data. Woo et al. (2009) introduced and Snoke et al. (2018) enhanced a propen-
sity score measure for comparing distributions and evaluating the general utility
of synthetic data. We used a logistic regression with only the main effects, result-
ing in a p-value of the pMSE of 0.26. This suggests the model had difficulties
distinguishing between the confidential and synthetic Supplemental PUF.

Ultimately, the synthetic Supplemental PUF data set will be used as an input
for tax microsimulation. We built a tax calculator to compare calculations of
Adjusted Gross Income (AGI), personal exemptions, deductions, regular income
tax, and tax on long-term capital gains and dividends based on the confidential
data and the synthetic data. The tax calculator uses a simplified version of 2012
tax law, the year of the confidential and synthetic data. The calculator assumes
that all individuals are single filers and lowers the personal exemption to $500,
and does not allow any tax credits and standard or itemized deductions. This
unorthodox combination of rules is necessary to obtain useful calculations using
the Supplemental PUF data, where we simulated a change in law that would
make these individuals, who do not have a tax filing obligation under current
law, into taxpayers.

Figure 1 compares results for the original and synthetic data sets across dif-
ferent AGI groups for count, mean tax, and total tax. Overall, the synthetic
Supplemental PUF performs well on our simple tax calculator and approximates
the results from the confidential data set.
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Fig. 1. Tax calculator results for the original and synthetic Supplemental PUF data.

4 Conclusions and Future Work

In this paper, we described the development and evaluation of a method to
create a fully synthetic microdata nonfiler database called the Supplemental
PUF. We demonstrated that the synthetic data set would not allow a data
intruder to meaningfully update his or her prior distribution about any variable
reported on an information return. Our method generated a synthetic data set
that replicates the characteristics of the underlying administrative data while
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protecting individual information from disclosure. These data will be useful for
policy analysts.

For future work, we will develop a synthetic data set based on the much
more complex and diverse individual income tax return data, called the PUF.
We do not know, a priori, how well the data synthesis methodology used for
the Supplemental PUF data will replicate the underlying distributions of these
data. For instance, we found that the “out-of-the-box” random forest method
performed worse than CART for the Supplemental PUF data, but random forests
might outperform CART for the individual income tax return data. We plan to
test a range of data synthesis methods and broaden our disclosure and diagnostic
analyses such as methods by Hu et al. (2014), Taub et al. (2018), and Bowen
and Snoke (2020). At a minimum, our goal is to create a synthetic PUF that
protects the privacy of individuals and reproduces the conditional means and
variances of the administrative data. The synthetic data should also be useful
for estimating the revenue and distributional impacts of tax policy proposals
and for other exploratory statistical analyses.

We will still rely on the sampling rate to provide some privacy protection.
Although we did not compute our test statistics for a dataset with only sampling,
it is easy to see why sampling reduces disclosure risk. With a 1 in 1,000 sample, as
in the synthetic Supplemental PUF, there is a 99.9% chance that any particular
record is not in the sample. For the PUF, sampling will provide less protection,
because we will be sampling at a higher rate (10%) due to the underlying data
are more diverse. However, there is at least a 90% chance that any particular
record is not in the underlying database.

Experience suggests that the synthetic data will not provide accurate esti-
mates for complex statistical models, so a key component of this project is to
create a way for researchers to run their models using the actual administrative
data with parameter estimates altered to protect privacy and standard errors
adjusted accordingly. Other future work includes developing and implementing
a validation server, a secure process to analyze the raw confidential data. This
is a natural complement to the synthetic data because researchers could use the
synthetic data, which have the same record layout as the confidential data, for
exploratory analysis and to test and debug complex statistical programs. Abowd
and Vilhuber (2008) describe a system that provides access to the confidential
version of the Survey of Income and Program Participation in which researchers
receive statistical output after a privacy review by a US Census Bureau staff.
Our goal is to create a similar system that would modify statistical outputs
to guarantee privacy and preserve the statistical validity of estimates without
requiring human review.
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Appendix

The appendix contains the supplementary materials to accompany the paper
“A Synthetic Supplemental Public Use File of Low-Income Information Return
Data: Methodology, Utility, and Privacy Implications” with additional results
from the utility evaluation.

Figures 2 and 3 show the means and standard deviations, respectively, from
the original and synthetic supplemental PUF data for age and all 17 tax vari-
ables. Figure 4 displays the correlation of the synthetic data minus the correlation
of original data for all 17 tax variables.

Fig. 2. Means from the original and synthetic Supplemental PUF data. Age is on the
x-axis scale, but not in dollar amounts.
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Fig. 3. Standard Deviations from the original and synthetic Supplemental PUF data.
Age is on the x-axis scale, but not in dollar amounts.

Fig. 4. Difference in Correlation (correlation of the synthetic minus the correlation of
the original Supplemental PUF data).
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Abstract. Astandard approach in the statistical disclosure control tool-kit for pro-
ducing synthetic data is the procedure based on multivariate sequential chained-
equation regression models where each successive regression includes variables
from the preceding regressions. The models depend on conditional Bayesian pos-
terior distributions and can handle continuous, binary and categorical variables.
Synthetic data are generated by drawing random values from the corresponding
predictive distributions. Multiple copies of the synthetic data are generated and
inference carried out on each of the data sets with results combined for point and
variance estimates under well-established combination rules. In this paper, we
investigate whether algorithms and mechanisms found in the differential privacy
literature can be added to the synthetic data production process to raise the privacy
standards used at National Statistical Institutes. In particular, we focus on a differ-
entially private functional mechanism of adding random noise to the estimating
equations of the regression models. We also incorporate regularization in the OLS
linear models (ridge regression) to compensate for noisy estimating equations and
bound the global sensitivity. We evaluate the standard and modified multivariate
sequential chained-equation regression approach for producing synthetic data in
a small-scale simulation study.

Keywords: Sequential chained-equation regression models · Functional
mechanism · Score functions · Ridge regression

1 Introduction

National Statistical Institutes (NSIs) have traditionally released microdata from social
surveys and tabular data from censuses and business surveys. Statistical disclosure con-
trol (SDC) methods to protect the confidentiality of data subjects in these statistical data
include data suppression, coarsening and perturbation. Over the years, these methods
have been shown to protect against identity and attribute disclosure risks. Inferential
disclosure risk arises when confidential information for data subjects can be learnt by
manipulating and combining data sources and it subsumes identity and attribute disclo-
sure risks.Up till now, inferential disclosure risk has been largely controlled by restricting
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access to the data. For example, microdata from social surveys are deposited in national
data archives for registered users only to access the data and census and register-based
frequency tables are released as hard-copy tables after careful vetting against inferential
disclosure (disclosure by differencing).However, there is growing demand formore open
and easily accessible data from NSIs. Some web-based platforms are being developed
to allow users to generate and download tabular data through flexible table builders. In
addition, research on remote analysis servers, which go beyond generating tabular data,
and synthetic microdata allow researchers access to statistical data without the need for
human intervention to check for disclosures in the outputs. Synthetic data is particularly
useful to researchers for learning about data structures through exploratory analysis and
statistical models prior to gaining access to real data, which generally requires lengthy
application processes to safe data environments. These new forms of data dissemination
mean that NSIs are relinquishing some of the strict controls on released data and hence
they have been focusing more on the need to protect against inferential disclosure.

Given the concerns about inferential disclosure, this has led to the statistical commu-
nity actively reviewing and researching more formal privacy frameworks, in particular
the differential privacy definition developed in the computer science literature. Differen-
tial privacy (DP) is a mathematical rigorous framework designed to give a well-defined
quantification of the confidentiality protection guarantee. It employs a ‘worst-case’ sce-
nario and avoids assumptions about which variables are sensitive, the intruder’s prior
knowledge and attack scenarios. DP assumes that very little can be learnt about a single
data subject based on the observed output and any post-processing of the output and
therefore protects against inferential disclosure. The DP mechanisms are perturbative
and include additive noise and/or randomization. See Dwork et al. (2006) and Dwork
and Roth (2014) and references therein for more information.

The basic form of a privacy guarantee presented by Dwork et al. (2006) is the ε -
Differential Privacy defined for a perturbation mechanismM on database a as follows:

P(M (a) ε S) ≤ eεP
(
M

(
a′) ε S

)
(1)

for all output subsets S of the range of M and neighboring databases a and a′ differing
by one data subject. A relaxed DP mechanism is the (ε, δ)-Differential Privacy, which
adds a new parameter δ as follows:

P(M (a) ε S) ≤ eεP
(
M

(
a′) ε S

) + δ (2)

Statisticians have looked more carefully at the definition of (ε, δ)-Differential Privacy
since the parameter δ can be thought of as a utility measure and allows a small degree
of ‘slippage’ in the bounded ratio of the ε – Differential Privacy definition in (1). For
example, in Rinott et al. (2018), δ is the probability of not perturbing beyond a certain
cap in a table of frequency counts thus narrowing the range of possible perturbations for
a given count. Any perturbation beyond the cap receives a probability of 0 and hence
the ratio in (1): P(M (a) ε S)/P

(
M

(
a′) ε S

)
, is unbounded. In their example and under a

discretized Laplace perturbation mechanism M , the chance of selecting a perturbation
beyond the cap is defined by δ and is very small.

Differential privacy for histograms and frequency tables have been investigated in
many research papers in the computer science literature (see for example Barak et al.
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2007; Gaboardi et al. 2016 and references therein) and more recently in Rinott et al.
(2018) with an application to a web-based table builder. However, research on DP
for synthetic data is still ongoing and recently was advanced by the competition on
the ‘Herox’ platform sponsored by the National Institute of Standards and Technology
(NIST), see: https://www.herox.com/Differential-Privacy-Synthetic-Data-Challenge. In
this paper, we investigate how we can include and adapt DP algorithms and mechanisms
into the standard SDC tool-kit for the production of synthetic data.

Section 2 describes the method of generating synthetic data based on multivariate
sequential chained-equation regression models. Section 3 proposes methods to include
DP into the synthetic data production process. Section 4 presents a small simulation
study to test the feasibility of the proposed methods. We conclude in Sect. 5 with a
discussion and conclusions.

2 Generating Synthetic Data

Generating synthetic data under the statistical disclosure control (SDC) framework
include parametric and non-parametric methods. Rubin (1993) first introduced synthetic
data as an alternative to traditional SDC methods. Rubin’s proposal is to treat all data as
if they are missing values and impute the data conditional on the observed data. Since
then, there have been many alternatives for generating synthetic data in the SDC tool-
kit. Partially synthetic data where some of the variables remain unperturbed have higher
utility but there is a need to assess disclosure risk with a focus on attribute disclosure,
using for example measures of l-diversity and t-closeness The specification of a joint
distribution of all variables for generating synthetic data is difficult in real data applica-
tions. Raghunathan et al. (2001) and Van Buuren (2007) introduced an approximation
using a series of sequential chained-equation regression models for imputing missing
data. Raghunathan et al. (2003) and Reiter (2005) show that the approach is useful for
generating synthetic data in the SDC tool-kit and it is one of the methods used in the
Synthpop R package (Nowok et al. 2016).

The synthesis is performed on each variable by fitting a sequence of regression
models and drawing synthetic values from the corresponding predictive distributions.
The models for drawing the synthetic values are based on conditional Bayesian posterior
distributions and can handle continuous, binary and categorical variables as well as
logical and other constraints. For a particular variable, the fitted models are conditioned
on the original variables and the synthetic values that come earlier in the synthesis
sequence. Synthetic values are drawn for the variable and it is then used as a predictor for
the next variable, and so on.At the end of the first iteration, the last variable is conditioned
on all other variables. These steps are repeated for a number of iterations.Multiple copies
of the data are generated and inference carried out on each of the data sets and results
combined for point and variance estimates under well-established combination rules.

Using the notation of Raghunathan et al. (2001) and under the simple case of a
continuous variable Y in the data (possibly transformed for normality), we fit a linear
regression model Y = Uβ + e e ~ N(0, σ 2I) where U is the most recent predictor
matrix including all predictors and previously generated variables. We assume that θ =
(β, log σ) has a uniform prior distribution. The coefficient β is estimated by solving the

https://www.herox.com/Differential-Privacy-Synthetic-Data-Challenge


274 N. Shlomo

score function Sc(β; σ) = ∑

i
U ′
i (Yi − Uiβ) = 0 and obtaining β = (

U′U
)−1U′Y. The

residual sum of squares is SSE = (Y − Uβ)
′
(Y − Uβ) having df= rows(Y)-cols(U). Let

T be the Cholesky decomposition such that T′T = (U′U)−1. To draw from the posterior
predictive distributions we generate a chi-square random variable u with degrees of
freedom df and define σ 2∗ = SSE

u . We then generate a vector z = (
z1, . . . , zp

)
of standard

normal random variables where p = rows(β) and define β∗ = β + σ∗Tz. The synthetic
values for Y are Y∗ = Uβ∗ + σ∗v where v is an independent vector of standard normal
random variables with dimension rows(U).More details are in Raghunathan et al. (2001)
as well as descriptions for other types of models for binary and categorical variables.

As mentioned, there are other ways to generate synthetic data in the SDC tool-kit
(see Drechsler 2011 for an overview), but using the sequential regression modelling
approach is conducive to our proposal for adding a layer of protection based on DP in
Sect. 3.

Prior to carrying out the synthetic data generation, common SDC methods should
first be applied to the microdata. In consultation with the users of the data, an initial SDC
step is carried out based on defining which variables need to be in the data and how they
should be defined. Direct identifiers are removed from the data. Age and other quasi-
identifiers are typically coarsened into groups. The level of geographical information is
to be determined according to the requirements of the users. At this stage, we can also
apply k-anonymity and related approaches to ensure that coarsened quasi-identifiers have
some a priori privacy protection. Under the DP definition, all variables are considered
identifiable, but it may not be plausible in practice. For example, there may be some
variables that do not need to be perturbed due to legislation, such as some demographic
variables in the US Census. Therefore, the dataset may need to be split into two sets of
variables: Y = (y1, . . . , yL) variables that will need to be masked and X = (x1, . . . , xR)

variables that do not need to be masked.

3 Adding a Layer of Differential Privacy

In the differential privacy framework, we propose to use a functional mechanism of
adding random noise to the estimating equations in the regression models under the
multivariate sequential chained-equation regression modelling approach described in
Sect. 2. Adding differentially private noise to estimating equations in linear and logistic
regressions is presented in Zhang et al. 2012 where it is shown that the functional mech-
anism ensures a differentially private output that is more efficient than adding random
noise directly to the results. Therefore, adding random noise to the estimating equations
for the generation of synthetic data, albeit under a Bayesian framework, will result in
differentially private synthetic data. In addition, any post-analyses on a differentially
private dataset accessed by users will remain differentially private (see Proposition 2.1
in Dwork and Roth 2014).

The Bayesian framework used in the sequential chained-equation regression mod-
elling approach automatically induces additional random noise (see the algorithm for
the OLS linear regression in Sect. 2). Therefore the exact quantification of the privacy
budget accounting for all sources of randomness in the synthetic data generation is still
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to be determined andwill be a topic for future research. As an example,Machanavajjhala
et al. (2008) describe the perturbation used in the Bayesian framework for generating
the ‘On the Map’ application of the US Census Bureau where they added smoothing
parameters to the priors and then measured privacy post-hoc using the DP likelihood
function described in (1).

Following the approach in Chipperfield and O’Keefe (2014), we define a ran-
dom perturbation vector s = (

s1, . . . , sp
)
and solve the score function Sc(β; σ) =

∑
i U

′
i (Yi − Uiβ) = s. The solution is βDP = β + (

U ′U
)−1

s. Under the DP definition,
the random noise is drawn from a Laplace distribution with a shape parameter defined
by the sensitivity divided by the privacy budget ε. Here, we define the sensitivity to be
equal to the maximum prediction error calculated as ei = (Yi − Uiβ) which represents
the contribution of a single individual into the regression equation. We compare two
privacy budgets ε = 1.0 and ε = 0.5. Further investigation is needed through simula-
tion studies to assess the level of protection and the utility under the proposed approach
under different levels of sensitivity and ε. Since E(s) = 0 we obtain a value of βDP that
is an unbiased estimate of β. We then follow the same approach for generating synthetic
values replacing the coefficient β with the coefficient βDP in Sect. 2.

We can use the same intuition for adding Laplace noise in estimating equations for
other types of models in the sequential chained-equation regression models for binary
and categorical variables. However, more simulation studies are needed to assess the
stability of the score functions for obtaining an estimate βDP under different types of
models and for the case of skewed data.

Adding random noise to estimating equations according to the Laplace Distribution
may cause unbounded noisy estimation equations with no optimal solution (Zhang et al.
2012). In addition, ordinary least squares (OLS) linear regression in particular may have
unbounded global sensitivity when calculating regression coefficients (Li et al. 2017). To
circumvent this problem, ridge regression can be used which bounds the OLS estimates
(see Zhang et al. 2012; Dandekar et al. 2018). In addition, Sheffet (2015) shows that
ridge regression in itself can be used as a differentially private mechanism under certain
conditions.

Ridge regression is a technique that add an additional penalty term in the estimating
equations and controls for coefficients with extreme values. Ridge regression is generally
used to control formulticollinearity and reduced rank inU ′U . It is a ‘shrinkage’ approach
since it converges the regression coefficients toward 0. The solution for ridge regression
is βRidge = (

U′U + kI
)−1U′Y where U is now centered and scaled and k is a parameter

that determines by how much the ridge parameters differ from the parameters of OLS.
Figure 1 demonstrates how ridge regression bounds the global sensitivity for an OLS
linear regression coefficient. In the simulation study in Sect. 4 we explore whether the
modifications of ridge regression and additive random noise to the estimating equations
impact on the standard approach for producing synthetic data using the multivariate
sequential chained-equation regression models approach.
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Fig. 1. RidgeRegression (figure taken fromhttps://towardsdatascience.com/ridge-regression-for-
better-usage-2f19b3a202db)

4 Small Simulation Study

For this small simulation study, we run one iteration of the standard sequential chained-
equation regression modelling approach for generating synthetic data and modify it in
threeways: (1) replace theOLS linear regressionswith a ridge regression; (2) addLaplace
noise to the estimating equations; (3) combination of both modifications. We assume
that the variables of interest are multivariate normal to avoid skewed distributions and
focus on OLS regression models.

We generate a population of N = 50,000 under the following settings: (e1, e2, e3) ∼

MVN (0,Σ) where Σ =
⎛

⎝
10 5 3
5 10 4
3 4 10

⎞

⎠. Define X1 ∼ U (0, 10) and X2 ∼ U (0, 20). We

generate three regression equations (Y1,Y2,Y3) as follows: Yi = β0i+β1iX1+β2iX2+ei

i = 1, 2, 3 and β =
⎛

⎝
20 0.5 0.5
30 2 2
40 1 1

⎞

⎠. We synthesize values for (Y1,Y2,Y3) keeping X1

and X2 unperturbed. The true population values are in Table 1.

Table 1. True values of (Y1, Y2, Y3) in the population N = 50,000.

Mean Std Dev Minimum Maximum

Y1 27.5 4.5 11.3 43.5

Y2 60.0 13.3 23.1 97.5

Y3 55.0 7.2 32.7 77.3

We draw 200 simple random samples of size 5000 from the population and on
each sample we generate synthetic data using the standard approach; replace the linear

https://towardsdatascience.com/ridge-regression-for-better-usage-2f19b3a202db
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regression with ridge regression (k= 0.05); add Laplace noise to the score function with
the shape parameter proportional to the maximal prediction value, which in this case is
equal to 10, divided by ε; combination of the two modification approaches.

Table 2 presents the average relative absolute bias of the synthetic values Ŷ compared

to the true values Y using the formula: 1
5000

∑∣∣∣Y − Ŷ
∣∣∣/Y averaged over 200 samples.

In this simple simulation study, the biases are similar across the three modification
approaches compared to the standard approach for generating synthetic data even when
ε is reduced. This demonstrates that there is less impact in statistical analyses when
random noise is added to the estimating equations compared to the results.

Table 2. Average relative absolute bias over 200 samples

Variables Standard Ridge regression Noise addition Ridge regression and
noise addition

ε = 1.0 ε = 0.5 ε = 1.0 ε = 0.5

Y1 0.131 0.136 0.131 0.137 0.136 0.141

Y2 0.053 0.060 0.053 0.054 0.060 0.060

Y3 0.061 0.059 0.061 0.062 0.059 0.060

Table 3 presents the regression parameters for the model Y1 ∼ Y2,Y3,X1,X2 for the
standard and three modified synthetic data approaches and includes the true regression
parameters from the population in the second column. The method of additive noise to
the estimating equations are similar to the truth and the standard approach albeit with
noted differences in the intercept. Under the ridge regression, there are larger deviations
from the original regression parameters as expected due to the shrinkage with a larger
intercept to compensate.

Table 3. Regression parameters for the model Y1 ∼ Y2, Y3,X1,X2 average over 200 samples

Variables True Standard Ridge regression Noise addition Ridge regression
and noise addition

ε = 1.0 ε = 0.5 ε = 1.0 ε = 0.5

Intercept 2.074 2.226 5.867 2.251 2.135 5.885 5.786

Y2 0.447 0.443 0.252 0.443 0.448 0.252 0.256

Y3 0.113 0.110 0.154 0.109 0.111 0.153 0.155

X1 −0.505 −0.501 −0.139 −0.501 −0.505 −0.138 −0.142

X2 −0.507 −0.502 −0.141 −0.502 −0.506 −0.141 −0.144

Table 4 presents correlations between the target variables to assess whether the
correlation structure is preserved in the standard andmodified approaches for generating
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synthetic data compared to the true correlations in the population. The reduced privacy
budget has slightly increased the bias compared to the standard version. For example,
under the ridge regression with additive noise in the estimating equations, we obtain a
bias of 2.6% for the correlation between Y1 and Y2 and 4.1% for the correlation between
Y1 and Y3.

Table 4. Correlations average over 200 samples

Variable
pairs

True Standard Ridge regression Noise addition Ridge regression
and noise addition

ε = 1.0 ε = 0.5 ε = 1.0 ε = 0.5

Y1, Y2 0.78 0.77 0.77 0.77 0.79 0.77 0.80

Y1, Y3 0.73 0.73 0.75 0.73 0.75 0.75 0.76

Y2, Y3 0.91 0.92 0.92 0.92 0.91 0.92 0.91

5 Discussion and Conclusions

NSIs are investigating the feasibility of including differential privacy algorithms and
mechanisms into the SDC tool-kit, particularly when disseminating statistical data via
web-based platforms and producing open synthetic data. Up till now, there have been
various approaches proposed for generating differentially private (DP) synthetic data.
For example, at the US Census Bureau, they are proposing to generate synthetic census
data by perturbing count data under a DP mechanism in many census hyper-cubes
and then reproducing the microdata from the perturbed hyper-cubes. This approach
is problematic since differentially private counts can be negative and not all logical
constraints, correlations and sub-group totals can be preservedwithout adding additional
optimization solvers. Other approaches in the computer science and machine learning
literature use Generative Adversarial Networks (GANs) (see Torkzadehmahani et al.
2020 and references therein).

In this paper, we have demonstrated the potential of including aspects of the DP
framework into standard synthetic data generation under the multivariate sequential
chained-equation regression modelling approach. We looked at two features and their
combination: adding random noise to estimating equations according to a differentially
private Laplace distribution and regularization through ridge regression.

For the shape of the Laplace distribution for generating random noise to add to
the estimating equations, we defined the sensitivity as the maximum prediction error
and set the privacy budget at ε = 1.0 and ε = 0.5. There were little differences in
the outputs from the versions of synthetic data under the varying levels of the privacy
budget although there was slightly larger bias in the correlation structure. In addition,
there are many other mechanisms of randomization under the Bayesian framework for
generating synthetic data based on non-informative priors and therefore, future research
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is needed to formulate the exact mathematics of the sensitivity and privacy budget taking
into account the Bayesian elements which a priori smooths out the parameter space.

For the ridge regression, we tested one level of the ridge parameter at k = 0.5. Ridge
regression aims to bound the global sensitivity in OLS and also stabilize the estimating
equations given that we set them to a noise variable s instead of zero. In fact, the way
we add the random noise to the estimating equation by adding

(
U ′U

)−1
s to the original

calculation of β (see Sect. 3) couldmitigate the problemof unstable estimating equations,
but this needs further investigation. In addition, the ridge regression also contributes to
the privacy budget and needs to be accounted for when formulating the mathematics of
the sensitivity and privacy budget in future research.

The aim of this paper was to show that we can use differentially private algorithms
and mechanisms to modify the production of synthetic data according to a common
approach in the SDC tool-kit without causing additional bias to the underlying data
structure. The small simulation study verified this finding for the simple case of OLS
linear regressions. More large scale simulation studies and real data applications are
needed with other types of variables and regression models to assess feasibility under
more practical settings.
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Abstract. Data swapping is an approach long-used by public agencies
to protect respondent confidentiality in which values of some variables
are swapped with similar records for a small portion of respondents. Syn-
thetic data is a newer method in which many if not all values are replaced
with multiple imputations. Synthetic data can be difficult to implement
for complex data; however, when the portion of data replaced is similar
to data swapping, it becomes simple to implement using publicly avail-
able software. This paper describes how this simplification of synthetic
data can be used to provide a better balance of data quality and dis-
closure protection compared to data swapping. This is illustrated via an
empirical comparison using data from the Survey of Earned Doctorates.

Keywords: Synthetic data · Applications · Methodology

1 Introduction

Data swapping has been used for many years by statistical agencies around the
world to produce public-use files (PUFs) and restricted-use files (RUFs) [10],
though some agencies, such as the U.S. Census Bureau are phasing it out [7].
Swapping is typically used as a supplementary disclosure protection measure
when reductive methods such as suppression and coarsening, which reduce the
detail of the information provided but do not alter it, are used as the primary
disclosure avoidance mechanism. The method involves randomly selecting a small
fraction of records and then swapping certain values for each selected record with
a similar record [1]. This adds uncertainty and plausible deniability in the event
of any ostensible re-identification since analysts do not know which records have
been perturbed. The rate of data swapping, swapping variables, and other details
are typically kept confidential. Critics of data swapping point out that this lack
of transparency makes data swapping non-ignorable; i.e., analyses of swapped
data are unable to take into account the uncertainty introduced by swapping.
Agencies implementing swapping indicate it is a small source of error compared
to other sources of error such as nonresponse [1]. Since both the number of
records and number of variables that can be perturbed with swapping without
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J. Domingo-Ferrer and K. Muralidhar (Eds.): PSD 2020, LNCS 12276, pp. 281–296, 2020.
https://doi.org/10.1007/978-3-030-57521-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57521-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-57521-2_20


282 S. K. Kinney et al.

compromising the usefulness of the data are limited [10,11,15], it is generally
known that the proportion of values that are swapped is small, but how small is
not public information and thus this paper does not define ‘small’.

The use of imputation as a statistical disclosure method, i.e., synthetic data,
was first proposed by Rubin [22], as an extension of multiple imputation for miss-
ing data [23]. As it was originally proposed, entire datasets would be replaced
with multiple implicates, each implicate a new sample from the frame. This app-
roach is now called ‘fully synthetic data’, whereas partially synthetic data [14]
involves replacing part of a dataset with multiple imputations. As with multi-
ple imputation for missing data, analysts apply standard data methods to each
implicate and then apply combining rules that incorporate the uncertainty due
to imputation [19]. Recent applications of synthetic data include U.S. Internal
Revenue Service tax data [5] and the U.S. Census Bureau Survey of Program
Participation [2], which was also one of the first surveys to start using synthetic
data in 2004 [3]. Synthetic data can provide a high level of protection against
re-identification, since the data are simulated; however, in the case of partially
synthetic data, the portion of data replaced greatly influences the level of protec-
tion. Criticism of synthetic data includes the reliance of inferences using synthetic
data on the models used to generate the data, the time involved to produce good
quality synthetic data, and reluctance of data users to use multiply-imputed or
‘fake’ data.

This paper describes a simplification of synthetic data that is similar to data
swapping in application and intent. That is, a small portion of records have their
values replaced with single imputations for selected variables in order to add a
degree of uncertainty and deniability to any ostensible record linkage. Although
we use synthetic data methods and software to generate the imputations, we refer
to this approach as ‘disclosure imputation’ to distinguish from synthetic data
applications that use multiple imputation and/or impute much larger portions
of the data, as well as to aid in public acceptance. Users of public data are
accustomed to analyzing datasets in which a substantial portion of values have
been imputed (due to nonresponse), whereas ‘synthetic’ to many connotes fake.
Disclosure imputation is quite simple to implement with automated routines
such as those provided by the R package synthpop [16]. Data stewards who use
or are considering the use of data swapping may find imputation to be more
intuitive and simpler to implement, particularly when it comes to preserving
relationships between perturbed and unperturbed variables. Section 2 describes
the method of implementation and Sect. 3 describes an empirical experiment
to illustrate that the method can provide better utility at comparable levels
of disclosure protection compared to data swapping. Section 4 concludes with
additional discussion.

2 Method

This section describes the steps to implement disclosure imputation using R
synthpop: 1) select variables to be imputed; 2) select records to be imputed; 3)
generate imputations; and 4) evaluate imputations.
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2.1 Selecting Variables for Imputation

Ideally the variables selected for imputation should include identifying variables
such as race, age, and sex in order to provide meaningful uncertainty to any
attempted record linkage. When all selected variables are categorical, it may be
possible to impute several variables such that each variable has a low perturba-
tion rate but a large portion of records have at least one imputed value. When
categorical variables are imputed, many records will have imputed values that
are the same as the original value, so the effective perturbation rate will be lower
than the proportion of records selected for imputation. If only one categorical
variable is imputed, then the overall perturbation rate, which we define as the
proportion of records with at least one value changed by imputation, will be the
same as the variable-level perturbation rate. If several categorical variables are
imputed, then the variable-level perturbation rates will be lower than the over-
all perturbation rate, so it could be advantageous from both a risk and utility
perspective to select several variables for imputation. It may also be sensible to
impute portions of sensitive variables, such as income or health status, which
might also be coarsened or top-coded, as an added protection measure.

2.2 Selecting Records for Imputation

The simplest approach for selecting records is to use simple random sampling.
An advantage of this is that the imputation models can be constructed using
the full sample since the selected records are representative of the full dataset.
If the records selected are not representative of the full dataset then better data
utility will be obtained by building the model using only the records that are
going to be imputed. In this case the imputation rate should be high enough to
ensure enough records are available for modeling.

If there are subgroups considered to be at a high risk of re-identification,
they may be protected in a simple random sample selection if variables defin-
ing the high risk group are selected for perturbation. Alternatively, records can
be selected for imputation based on their risk. Records at high risk for iden-
tity disclosure via record linkage are those that are most unique on identifying
variables. This can be evaluated using the principle of k-anonymity privacy pro-
tection [24]. That is, protection against record linkage is provided when each
individual is identical to at least k− 1 other respondents in the dataset on spec-
ified key identifiers. Individuals that are unique on a set of key variables are at
a greater risk of identification than those that are identical to many individ-
uals on key variables. This depends heavily on the set of identifying variables
used. For example, a dataset may have k-anonymity privacy protection for key
identifiers race, ethnicity, and sex with k = 5, but not when other potentially
identifying variables are used, like marital status and age. The R package sdcMi-
cro [25], which contains functions for assessing and addressing disclosure risk in
microdata, provides an easy way to assess k-anonymity.

Other methods of selecting records may be used. For example, Drechsler and
Reiter [9] propose an iterative algorithm for selecting values to replace with
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imputations. The algorithm seeks to minimize the number of values replaced
under constraints defined by risk and utility measures.

2.3 Generating Imputations

The R package synthpop provides tools for generating fully or partially synthetic
data. There are a variety of modeling options available in synthpop, includ-
ing classification and regression trees (CART) which are a good default option
for generating synthetic data. CART models and related methods have become
increasingly popular for both missing data and synthetic data [4,8,20]. They
provide a flexible modeling approach, are simple to specify, and do not require
distributional assumptions. The CART algorithm automatically detects impor-
tant variables, interaction terms, and nonlinear relationships, even with a large
list of potential predictors, increasing the likelihood that important relationships
will be preserved in the imputed data. The adaptation of CART for synthetic
data proposed in Reiter [20] includes a Bayesian bootstrap step which yields
‘proper’ imputations. Subsequently, Reiter and Kinney [21] showed that this step
is unnecessary and hence the default option in synthpop is ‘improper’ imputa-
tion. Proper imputation will yield greater variability between imputations.

Variables are imputed sequentially, conditional on previously imputed vari-
ables. This is the case generally for synthetic data: the joint posterior distribu-
tion for the variables being imputed can be written as f(y1|X) · f(y2|y1,X) ·
f(y3|y2, y1,X) . . . where X represents all the variables not being imputed and
y1, y2, . . . are the variables being imputed. See Drechsler [8] for details and meth-
ods for synthetic data generation. This sequential approach is equivalent to mod-
eling the joint distribution regardless of the order of the variables; however, the
order of imputation can impact data quality in datasets with complex logical
relationships. Additional variables that are not being imputed may be included
as predictor variables. In surveys with sampling weights, weights may also be
used as predictor variables. If design variables are imputed, another option is to
recompute weights after imputation [15].

For each imputed variable, imputed values are drawn from leaves of a CART
model fit on a set of predictor variables, including previously imputed variables
and potentially additional variables used only as predictors. As is typical when
using CART models for prediction, tuning parameters may be used to improve
prediction, though synthpop provides useful defaults. Using larger trees increases
the number of interactions that can be accounted for in the model. Note for vari-
ables with missing values, synthpop imputes missingness first and then imputes
the non-missing values.

As of this writing, synthpop allows users to specify which variables should
be imputed but not which records; however, this can be easily worked around.
Sample code is provided in the appendix. Other synthetic data tools besides
synthpop are available; however, we have not evaluated their use. The most user
friendly and closest in nature to synthpop is IVEWare which does not at present
support CART models but can be used for both missing data imputation and
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disclosure imputation and is available for SAS, Stata, and SPSS in addition to
R and a standalone version [17].

2.4 Evaluating Imputations

When imputing data for disclosure purposes, the goal is to model the dataset
itself, so evaluating data quality primarily entails comparisons of the data before
and after imputation and assessing how well the imputed data preserves the
statistical properties of the original data. That can be cumbersome when there
are a large number of analyses, so risk and utility measures have been developed
to assist in evaluating risk-utility trade-offs of candidate datasets [6]. If certain
subgroups were targeted for imputation (Sect. 2.2) or are considered higher risk,
then estimates for those subgroups should be evaluated separately. Since the
protection mechanism of data swapping and disclosure imputation comes from
the portion of data being imputed, a key step in risk evaluation is to verify the
perturbation rates.

3 Experiments

This section describes a set of experiments conducted to compare applications of
data swapping and imputation using restricted-use data from the National Cen-
ter for Science and Engineering Statistics Survey of Earned Doctorates (SED).
SED is an annual census of new research doctorate recipients in the United
States. Data swapping and disclosure imputation strategies were made to be as
similar as possible to facilitate comparison. The experiments described do not
correspond to any actual data product.

The variables selected for perturbation (imputation or swapping) are shown
in Table 1 below. Given the analytic importance of Race/Ethnicity, we also con-
ducted the experiments without perturbing Race/Ethnicity.

Table 1. Variables selected for perturbation

Variable label Data swapping Imputation

Race/Ethnicity RACE (categorical) was
swapped and binary
indicators were link
swapped

Binary indicators were
imputed and RACE
re-derived after imputation

Father’s Education EDFATHER EDFATHER

Mother’s Education EDMOTHER EDMOTHER

Marital Status and
number of dependents
by age category

MARITAL swapped and
DEPEND5, DEPEND18,
and DEPEND19 link
swapped

MARITAL, DEPEND5,
DEPEND18, DEPEND19 all
imputed

Graduate debt level
(categorical)

GDEBTLVL GDEBTLVL
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Data swapping was performed using DataSwap software developed at the
National Center for Education Statistics [12,13] and used with their permission.
Imputation was performed using the R package synthpop [16].

3.1 Data Swapping

Four data swapping experiments were performed. Data swapping was performed
within strata defined by the variables institution HBCU/Carnegie classification,
institution number of doctorates (large/small), sex, and citizenship. The full
cross-classification of these variables contained numerous small cells. These were
collapsed following two strategies: one that collapsed institution information
resulting in 20 strata, with cell sizes ranging from 63 to 13,516; and a second that
had more institution information resulting in 88 strata, with cell sizes ranging
from 39 to 9,707. Thus the four experiments were:

1. Experiment 1: Swap all variables in Table 1 using 20 swapping strata
2. Experiment 2: Swap all variables in Table 1 using 88 swapping strata
3. Experiment 3: Exclude race from swapping and use 20 strata
4. Experiment 4: Exclude race from swapping and use 88 strata

Each experiment was run with five different swap rates: 1.25%, 2.5%, 5%,
7.5%, and 10%. These correspond to target perturbation rates of 2.5%, 5%, 10%,
15%, and 20%, where the perturbation rate is defined as the percent of records
with at least one value perturbed. For each experiment, records were randomly
selected for data swapping within each swapping stratum at the given swap rate.
Partners for each selected record were chosen based on partitions of the stratum
created by cross-classifying the swap variables. These partitions are called swap-
ping cells. For target records selected for swapping, candidate swapping partners
were identified in the adjacent swapping cell within the same stratum such that
partners had similar swap variable values numerically close to, but not equal to,
the target record values. For each target record, the candidate with the smallest
distance between swapping variables was selected as the swapping partner. The
swapping variable listed last in the variable list will tend to have the highest
swap rate, so the order of the swap variables is arranged in each partition such
that the swap rates are more balanced across swapping variables. Each swapping
pair exchanges values of the swapping variable and any link swapping variables.

For each experiment and swap rate, five random swapping runs were com-
pleted and the best run of the five was selected using data quality measures built
into DataSwap. These quality measures include measures for pairwise associa-
tions based on Pearson’s product correlation, Pearson’s contingency coefficient,
Cramer’s V, as well as measures for multivariate association via linear regression
models. Note Hellinger’s Distance was not used in quality assessment because the
SED is a census with no weights involved. Swapping does not impact Hellinger’s
Distance when the weight is one at the univariate level.
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3.2 Imputation

Two experiments were conducted to impute the variables listed in Table 1: one
imputing all variables in Table 1 and one imputing the same variables excluding
race. Each experiment was run with five perturbation rates of 2.5%, 5%, 10%,
15%, and 20%. Records were selected at random for imputation from the whole
dataset at a rate specified slightly higher than the target perturbation rate such
that the target perturbation rate was met. For each experiment and perturbation
rate, five random subsets of the data were replaced with imputed values and the
best of the five selected using general and local utility measures available in
synthpop.

Imputation was conducted as described in Sect. 2.3. Variables were imputed
sequentially in the order HISPANIC, AMERIND, ASIAN, BLACK, HAWAIIAN,
WHITE, EDMOTHER, EDFATHER, MARITAL, DEPEND5, DEPEND18,
DEPEND19, GDEBTLVL. HISPANIC was imputed conditional on all of the
predictor variables; AMERIND was imputed conditional on HISPANIC and
all of the predictor variables, ASIAN was imputed conditional on HISPANIC,
AMERIND, and all of the predictor variables, and so on. An additional 32 vari-
ables were used as predictor variables but not imputed.

Correlations between imputed and non-imputed variables are preserved by
including related variables as model predictors even if they are not being imputed
for disclosure. For example, when race is imputed, the relationship between race
and institution HBCU and Carnegie Classification is preserved in the imputed
data by including these variables as model predictors. In data swapping logically
constrained variables are link swapped, i.e., swapped together between the same
swapping partners. Marital status and number of dependents are not logically
constrained; however, they were link swapped due to having a high correlation.
For imputation, it would have been sufficient for data quality purposes to include
the dependent variables (DEPEND5, DEPEND18, and DEPEND19) as predic-
tors and not to impute them; however, they were included as imputation vari-
ables for consistency with the swapping experiment. Since the categorical race
variable is a deterministic function of the race indicators, the race and ethnicity
indicators were imputed and then the combined race/ethnicity variables were
re-computed after imputation from the imputed race indicators. For variables
with deterministic logical relationships that cannot be derived post-imputation,
it may be necessary to impute the related variables together. For example, if the
dataset included, say, spouse age, it would have been necessary to impute this
along with marital status to maintain logical consistency.

Utility was evaluated by comparing marginal and conditional proportions
of key analytical variables of interest. Most were found to be identical to two
decimal places and all within ±0.01. In addition, some three-way tables were
constructed and found to be quite similar (not shown). Additional utility evalu-
ation is described in Sect. 3.4. In order to assess post-imputation disclosure risk,
we merged the pre-imputation data and post-imputation data in order to ver-
ify risk reduction and the rates of perturbation. These are described below in
Sect. 3.3 and compared with the swapping experiments.
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3.3 Perturbation Rates

All swapping and imputation experiments were successful in achieving target
overall perturbation rates, that is, the target proportion of records with at least
one value perturbed. As expected, the variable-level perturbation rates tend
to be much lower than the overall perturbation rate. As seen in Table 2, the
variable-level perturbation rates for most variables are higher for the imputa-
tion experiments. Results displayed correspond to an overall perturbation rate
of 10%. Similar results were seen for other perturbation rates. The number of
variables perturbed per record was also higher for imputation. As seen in Table 3,
the swapping experiments have higher percents of records with one variable per-
turbed while the imputation experiments have higher percents of records with
three or more variables perturbed.

Table 2. Variable-level perturbation rates by experiment

Variable Swapping 1 Swapping 2 Swapping 3 Swapping 4 Imputation 1 Imputation2

GDEBTLVL 2.8 4.7 2.2 4.3 3.7 3.8

EDMOTHER 4.5 4.8 3.9 4.6 6.4 6.6

EDFATHER 3.8 3.1 4.0 3.1 7.2 7.6

MARITAL 2.0 1.8 2.7 2.3 3.9 4.0

DEPEND5 0.8 0.8 1.2 1.0 2.3 2.2

DEPEND18 0.5 0.5 1.0 0.8 1.3 1.3

DEPEND19 0.3 0.4 0.7 0.6 0.7 0.6

CITRACE 1.0 1.4 n/a n/a 1.8 n/a

Table 3. Percent of records with different numbers of variables perturbed

Experiment Number of variables perturbed

1 2 3+

Imputation 1 1.3 2.2 5.9

Imputation 2 1.7 3.1 5.1

Swapping 1 4.6 2.6 2.3

Swapping 2 4.0 2.5 2.8

Swapping 3 6.5 2.1 1.2

Swapping 4 5.6 2.5 1.6

3.4 Utility Comparison

In order to assess the impact of perturbation on data quality, six two-way tables
of key analytic interest were reproduced for each experiment. While this provides
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concrete evidence of the impact of perturbation on actual data products, it is
a lot of output to evaluate. Utility measures were computed to provide one-
number summaries of the differences between the perturbed and unperturbed
tables. Most of these tables involve Race/Ethnicity combined with Citizenship
into one variable, CITRACE, in which temporary visa holders are in one category
and U.S. citizens and permanent residents are in categories by race and ethnicity.
This is how race and ethnicity are typically reported for SED.

This section provides a summary of the differences between the perturbed
and unperturbed tables and utility measures for each key table across experi-
ments. Tables for which the only perturbed variable is Race/Ethnicity are only
compared for experiments that perturbed Race/Ethnicity. The utility measure
used is the Freeman-Tukey measure [18]. This measure is related to a chi-square
statistic and is calculated as 4

∑
i(

√
obsi − √

syni)2, where summation is over
table cells. This is a distance measure that provides a metric for comparing
tables generated from different candidate perturbed datasets to the same table
generated from the confidential data. Note that for distance measures, larger
values correspond to lower utility and lower values correspond to higher utility.

In order to compare utility scores at comparable levels of perturbation, the
utility scores for each data table were plotted against variable-level perturba-
tion rates for the variables in the table. For tables with both variables per-
turbed, the perturbation rate is the average of the two variable-level perturbation
rates. As expected, relationships between swapped and unswapped variables are
not preserved well in the perturbed data, particularly as the perturbation level
increases. This is seen in the relationships between CITRACE and SRFOS (field
of study) and between CITRACE and PRIMSRCE (primary funding source).
On the other hand, as seen in Fig. 1, much better utility is observed for the impu-
tation experiments. That said, the tables produced for all experiments appeared
to do reasonably well in estimating counts and percents for larger cells, but CIT-
RACE*SRFOS in particular has many small counts. By chance, some of these
avoid perturbation while others have meaningful differences.
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290 S. K. Kinney et al.

The distinction between swapping and imputation is less clear for
the table CITRACE*PHDINST which contains counts by institutions and
Race/Ethnicity. These are reasonably close to the unperturbed counts for all
experiments, even for experiments that did not account for institution, likely
because much of the correlation between race and institution is accounted for
by the institution characteristics (HBCU, Carnegie classification) which are
included in all experiments. A challenge for both approaches is that there are
some 400 institutions in the dataset, many of them with few doctorates. For the
imputation experiments small institutions were grouped together to facilitate
inclusion of PHDINST in the imputation models. For swapping experiments,
fewer and larger swapping strata provide a larger selection of swapping partners
yielding better utility than smaller swapping strata. As seen in Fig. 2, the exper-
iments all perform comparably in reproducing this table except at the highest
perturbation level.
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Fig. 2. Utility scores by experiment and perturbation level for CITRACE*PHDINST

Greater differences between perturbed and unperturbed tables were observed
when the tables contained two perturbed variables. For EDMOTHER*
CITRACE, the experiments with the poorest utility are swapping experiments in
which Race/Ethnicity was not swapped, as seen in Fig. 3. When Race/Ethnicity
was swapped, the swapping algorithm considered both variables when locat-
ing swapping partners. When it was not swapped, it was not used to define
the swapping cell so the relationship with EDMOTHER was not preserved.
Race/Ethnicity could be added as a stratum variable; however, there is a limit
on how many variables can be used to define swapping strata. On the other
hand, imputation experiments that did not impute Race/Ethnicity could use
it as a model predictor and thus the utility is better when Race/Ethnicity is
not perturbed, as one would expect. Similar results were observed for EDFA-
THER*CITRACE.

For GDEBTLVL*CITRACE (Fig. 4), another table in which both variables
were perturbed, the effect of swapping Race/Ethnicity is more pronounced.
When Race/Ethnicity was perturbed, the swapping experiment with the larger
swapping strata actually appears to perform better than imputation; how-
ever, when Race/Ethnicity was not perturbed, the swapping experiment with
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large swapping strata appears much worse, while the imputation experiment
results are as expected, namely that utility is better when Race/Ethnicity is
not perturbed. A less expected result is that data utility for the table MARI-
TAL*SRFOS (Fig. 5) depends on whether Race/Ethnicity was perturbed even
though it does not involve Race/Ethnicity. This is due to the higher variable-
level perturbation rate for MARITAL when Race/Ethnicity was excluded from
perturbation. The difference is more pronounced for swapping due to the involve-
ment of all swapping variables in the selection of swapping partners.
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3.5 Experiment Summary

While data swapping and imputation yielded roughly comparable utility for the
tables investigated when the perturbation level was low, imputation provided
better utility at higher perturbation levels and for a wider range of analyses.
At high perturbation levels, imputation virtually always provides better utility.
Correlations between swapped and unswapped variables are a known problem
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Fig. 5. Utility scores by experiment and perturbation level for MARITAL*SRFOS

with swapping and that was evident here. Swapping does preserve marginal
distributions precisely and can preserve a limited number of multivariate rela-
tionships quite well, but the need for large swapping cells limits the number of
variables that can be accounted for. When imputation is used, marginal distribu-
tions are not precise but still preserved quite well, and many more multivariate
relationships can be preserved.

Within the swapping experiments, experiment 1 proved to be the best. The
use of institution as a stratification variable proved to be unnecessary for pre-
serving the distribution of race within institution, and the smaller swapping
strata reduced quality overall. Including race as a swapping variable preserved
some of the relationships between race and other swapping variables, whereas
excluding race actually reduced data quality. The two imputation experiments
were fairly comparable in utility aside from the impact on Race/Ethnicity when
it was imputed.

While the experiments did not explore all possible relationships in the data,
the results shown indicate that imputation performs better at preserving rela-
tionships between perturbed and unperturbed variables, and thus is likely to
do a better job than swapping at preserving other relationships not explicitly
accounted for in the swapping algorithm or evaluated here. Results for other
datasets may vary; however, given that the properties of imputation and swap-
ping with respect to preserving relationships between perturbed and unper-
turbed data are well known, it is expected that similar results will be seen in
other datasets with many related variables.

4 Discussion

We have described a simplification of synthetic data that is efficient to implement
and illustrated that it can be used as a practical alternative to data swapping.
This implementation, termed disclosure imputation, can be used to provide a
higher level of disclosure protection in the form of higher perturbation rates
compared to data swapping at comparable utility levels, or better data quality
at comparable disclosure protection levels. In particular, imputation can preserve
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a wide range of multivariate relationships between perturbed and unperturbed
variables. For the purposes of comparison we have applied synthetic data in
the manner of data swapping, but it is of course not limited by this. There are
a range of possibilities between what we call ‘disclosure imputation’ and fully
synthetic data. Disclosure imputation might be considered a starting point; data
stewards have a great deal more flexibility than they would with data swapping
to determine the appropriate portion of data to perturb.

The modeling burden of synthetic data and the dependence of inferences
on imputation models is reduced when the proportion of values perturbed is
reduced. Synthetic data tools make imputation simpler to specify than data
swapping since one does not need to select which unperturbed variables should
have their relationships with perturbed variables preserved. Another practical
advantage of disclosure imputation is that it is similar in principle to imputa-
tion for missing data; efforts undertaken for missing data imputation, such as
maintaining logical relationships and evaluating imputations can be re-used to
facilitate disclosure imputation or more typical synthetic data products.

Multiple imputation would allow for analysts to properly account for the
variance due to imputation; however, this is impractical for disclosure imputa-
tion since providing multiple implicates would make it simple to identify which
records and variables have had their values altered. The strategy of only imputing
a small portion of records relies on this information being protected. However,
the variance due to imputation is quite small in our case due to the lower impu-
tation rate as well as the use of improper imputation. This method has very little
between-imputation variability for aggregate estimates, which data stewards can
verify empirically as the generation of additional implicates is trivial.

An appeal of swapping is that it is simple to understand. In practice, how-
ever, the methods for selecting swapping pairs are rarely identified, and proper
implementation of data swapping in a manner that preserves data quality can be
complicated even with software like DataSwap. We are unaware of any similar
software that is available to the public. By contrast, imputation can be per-
formed using open-source software and code can be widely shared with minimal
redaction (see appendix). Data users should also be familiar with imputation
for nonresponse which should aid in user acceptance. Although the methodology
offers improved transparency over data swapping, imputation still shares one of
the major criticisms of data swapping which is the reliance of disclosure protec-
tion on secrecy about the portion of data that has been perturbed. As long as
only a portion of records considered high risk for disclosure are imputed, it will
be necessary to conceal which records those are. If enough variables are imputed
it may be safe to provide users with information about which variables were
imputed. We leave the effect of this on disclosure risk to future work.
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Appendix

This code can be used to implement the method described in this paper. In lieu
of confidential data, the dataset SD2011 included in R synthpop is used. This
code has been tested using R 3.6.1 and synthpop 1.5.1

### Step 1: Impute all records for selected variables

library(magrittr);

library(synthpop);

library(dplyr);

set.seed(138)

orig <- SD2011[1:10] %>% mutate_if(is.character, as.factor)

imp_vars <- c("sex", "age", "edu")

predmat <- matrix(1, 10, 10)

method1 <- rep("",10)

method1[colnames(orig) %in% imp_vars] <- "cart"

partsyn <- syn(data = orig, method = method1, m = 1, visit.sequence =

imp_vars, predictor.matrix = predmat)

### Step 2: Replace a random subset of observed records with imputed data

target_rate = .10 # desired overall perturbation rate

imp_rate = target_rate/mean(apply(orig != partsyn$syn, 1,

function(x) ifelse(sum(x, na.rm=T) >=1, 1, 0)))

imp_rate # replacement rate

repinds <- rbinom(nrow(orig), 1, imp_rate)

partsyn2 <- orig

partsyn2[repinds==1, ] <- partsyn$syn[repinds==1,]

### Step 3: Check perturbation rates

overall_p_rate = mean(apply(orig != partsyn2, 1,

function(x) ifelse(sum(x, na.rm=T) >=1, 1, 0)))

overall_p_rate %>% round(3) #overall rate

v_pert = apply(orig[imp_vars] != partsyn2[imp_vars], 2, mean, na.rm=T)

v_pert %>% round(3) #variable-level rates

### Step 4: Check utility

synth_eval = partsyn

synth_eval$syn = partsyn2

compare(synth_eval, orig, vars = imp_vars)

multi.compare(synth_eval, orig, var = "income", by = "edu")
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Abstract. VIOLAS Framework (Volatile Index of Liable Accuracy for Statistical
Disclosure Controls) defines an assessment methodology for evaluating quality of
statistical disclosure controlmethods bymeasuring the key factors determining the
effectiveness of such methods. This paper describes the base model and explains
how the framework may be used and extended by additional measures that may
be desirable in particular IT environments or for specific data sets.
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1 Introduction

When it comes to the modern IT systems security, emerging academic assumptions and
ideas cannot be only evaluated under theoretical models. Currently, the commonly used
approach to measure the overall security in the IT systems or its components are through
the risk analyses or more offensive activities such as security testing. The systematic
approach to measure the risk is through the application of risk assessment frameworks
such as CVSS [4] or OWASPRRM [5]. Although it is possible tomeasure the risk related
with particular statistical disclosure threats in a similar fashion, it must be noted that
because the statistical disclosure threat is somehow beyond the scope of standardized
approach of security testing, the results of such risk analyses may be overgeneralized
rendering the results inconclusive and inaccurate.

Although designing a comprehensive risk analysis framework for statistical disclo-
sure threats may be a task on its own, with the VIOLAS Framework we take a slightly
different approach to measure the quality of the statistical disclosure controls methods
and mechanisms. VIOLAS Framework (or Volatile Index of Liable Accuracy for Sta-
tistical Disclosure Controls) defines an assessment methodology for evaluating quality
of statistical disclosure control methods by measuring the key factors determining the
effectiveness of such methods. This paper describes the base model and explains how
the framework may be used and extended by additional measures that may be desirable
in particular IT environments or for specific data sets.

The motivation behind crating an assessment framework was a need to establish
a standardized set of metrics to evaluate the overall security of statistical disclosure
controls and objectively compare them between each other and against characteristics of
different IT environments. The need to provide somewhat graphic comparison between
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the methods originated from the business requirement to deliver a comprehensive way
to argument the correct technological and scientific choices to the executive boards.
The assumptions made for the definitions, the values of the evaluation characteristics
within the framework and finally the design of the framework are an idea based on the
observations and practice made during the IT systems security assessments.

2 VIOLAS Framework Definition

VIOLAS Framework (or Volatile Index of Liable Accuracy for Statistical Disclosure
Controls) defines an assessment methodology for evaluating effectiveness of statistical
disclosure control methods.

The statistical liability index, denoted as SLI, is a value that denotes the quality of
the method under assessment. The SLI value is a real number in a range [0, 1], where 1
means a perfect value, and 0 means the lowest score.

SLI ∈ [0, 1] (1)

The framework measures the quality of a Statistical Disclosure Control (SDC)
method (mSDC) by determining the compliance of a method with the statistical security
criteria. The baseline criteria are:

• Statistical confidentiality [sc] - the statistical confidentiality is determined by
evaluating the risk of the primary and the secondary data identification.

• Statistical integrity [si] - the statistical integrity is achieved when the retrieved results
from different queries asking the same data are identical.

• Statistical accuracy [sa] - the statistical accuracy is a measure of the quality of the
retrieved statistics.

• Statistical transparency [st] - the privacy transparency which can be defined as
protecting the selected critical data sets by elimination from the results.

It must be noted that the method of calculating the SLI allows for an easy expansion
of a baseline model by additional criteria.

2.1 Statistical Confidentiality

The statistical confidentiality is determined by evaluating the risk of the primary and the
secondary data identification. The primary data identification must be understood as a
possibility to identify or derive a sensitive characteristic of an individual or predefined
group of individuals from the raw data set that persists in the database. The secondary
data identification must be understood as a possibility to identify or derive a sensitive
characteristic of an individual or predefined group of individuals from the statistical data
set, i.e. the results of the statistical data queries.



Evaluating Quality of Statistical Disclosure Control Methods 301

Let:

• mSDC be a statistical disclosure control method
• C be a sensitive characteristic
• FQ be a statistical query retrieval function
• Q be query result set
• qn be result of a query function
• n be the size of result of a query function.

Then statistical confidentiality sc is satisfied when:

mSDC
(
FQ

) � sc ↔ qn /∈ C ∀ qi ∈ Q, i ∈ {0, .., n} (2)

2.2 Statistical Integrity

The statistical integrity is achieved when the retrieved results from different queries
asking the same data are identical or at least fit within the statistical margin.

Let:

• mSDC be a statistical disclosure control method
• C be a statistical characteristic to be retrieved
• D be a dataset
• FQ be a statistical query retrieval function
• Q be query result set
• N be the number of queries executed to retrieve the same characteristic C

Then statistical integrity si is satisfied when:

mSDC
(
FQ

)� si ↔ QA � QB (3)

∀Qi ∈ Q, i ∈ {0, ..,N },FQA(D) = CA,FQB(D) = CB,CA = CB (4)

2.3 Statistical Accuracy

The statistical accuracy is a measure of the quality of the retrieved statistics. It can be
determined with the appropriate confidence interval that the results must comply with.
The confidence interval must be predetermined at the particular database system’s level.

Let:

• mSDC be a statistical disclosure control method
• S be a statistical database system
• CIS be the predetermined confidence level of a system S
• FQ be a statistical query retrieval function
• Q be query result set
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• qn be result of a query function
• n be the size of result of a query function

Then statistical accuracy sa is satisfied when:

mSDC
(
FQ

)� sa ↔ qn ∈ CIS ∀ qi ∈ Q, i ∈ {0, .., n} (5)

2.4 Statistical Transparency

The statistical transparency can be defined as protecting the selected critical data sets by
elimination from the results. The elimination of the selected data sets must not reveal
any metadata allowing to identify the effect of the retrieved statistics before and after the
elimination from the data sets. This characteristic is strictly related with the differential
privacy model.

Let:

• mSDC be a statistical disclosure control method
• D1 be a dataset that differs with D2 only by one element
• D2 be a dataset that differs with D1 only by one element
• S all subsets of mSDC image
• FQ be a statistical query retrieval function

Then statistical transparency st is satisfied when:

mSDC
(
FQ

) � st ↔ Pr[mSDC
(
FQ(D1)

) ∈ S]≤ ε · Pr[mSDC
(
FQ(D2)

) ∈ S (6)

2.5 System Criticality Matrix

Apart from the statistical security criteria, the system criticality is used to calculate the
SLI value. The system criticality is understood as the level of data sensitivity stored in the
database with conjunction of the data access model characteristic and can be assigned
the values ranging from None to Critical.

The Table 1 depicts how to determine the overall criticality based on the system
characteristic. The data are divided into four categories:

• Public [PU] - public data, not protected by any kind of regulations, the integrity of
the data may be easily verified.

• Private and fully anonymized [PR FA] - sensitive individually identifiable data, that
had been fully anonymized, the integrity of the data can be verified, but requires
additional effort.

• Private and partially anonymized [PR PA] - sensitive individually identifiable data,
that had been partially anonymized, the integrity of the data can be verified, but
requires additional effort.
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• Private and not obfuscated [PR NO] - sensitive individually identifiable data, that
had not undergone any kind of obfuscation, the integrity of the data can be verified,
but requires additional effort.

It must be noted that the effectiveness of the anonymization is not measured here,
in particular, it is the system’s owner responsibility to ensure that the anonymization
process was successful and was executed as planned. In case of any errors during the
anonymization process, the assessment of the system criticality may be affected.

Table 1. System criticality matrix

As for the data access, we divide the access into three categories: no data access
[N], read access [R] and read and write access [RW].

3 SLI Derivation

Each characteristic (sc, si, sa, st) of a given mSDC can be assigned a predetermined
value from the set V = {0, 2, 5, 10}. The values are referenced as vsc, vsi, vsa, vst , where

Table 2. System criticality value assessment

Value Criticality level

1 None/Neutral

2 Low

4 Medium

8 High

10 Critical
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the lower index of v denotes the characteristic. The values are given according to the
Table 3. The value of the system criticality (cr) is assigned once per system, as thismetric
is independent from the mSDC under assessment. The values are assigned according to
the Table 2.

Table 3. VIOLAS Framework: criteria values definition

Value Meaning

0 The method does not satisfy the characteristic for any case of statistical data set

2 The method satisfies the characteristic for a special case, but fails for majority of cases
of statistical data sets

5 The method satisfies the characteristic for major cases, but fails for a special case of
statistical data sets

10 The method satisfies the characteristic for all the cases of statistical data sets

For the overall result, each of the characteristic by default is calculated with the same
weight (wsc,wsi,wsa,wst). However, thanks to the modularity of the formula and the
framework itself, the framework allows to extend themeasuringmethod to assign custom
weights for particular characteristics, e.g. in cases where some of the characteristics are
more desirable and other ones are not critical. The total given weights must sum up to
1, therefore, by default the weight are given the value of 0,25:

wsc = wsi = wsa = wst = 0,25 (7)

wsc + wsi + wsa + wst = 1 (8)

The final index (SLI ) of the mSDC is measured according to the mechanism:

ifwsc · vsc + wsi · vsi + wsa · vsa + wst · vst == 10

SLI = 1 (9)

else

SLI = (wsc · vsc + wsi · vsi + wsa · vsa + wst · vst)
10 · cr (10)

The SLI = 1 is considered the perfect value and means that the mSDC satisfies all
the necessary characteristics for statistical security.

Due to the building-blocks architecture of the framework, it can be easily extended
by additional characteristics. Each additional characteristic (sn, n ∈ N) must:

1. Comply with the scoring mechanism, i.e. it can be assigned values from the set
V = {0,2, 5, 10}

2. Appropriately extend the Eqs. 7–10, e.g. for a single additional characteristic s1, the
equations would be as follows:
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a. wsc = wsi = wsa = wst = ws1 = 0,2
b. wsc + wsi + wsa + wst + ws1 = 1
c. ifwsc · vsc + wsi · vsi + wsa · vsa + wst · vst + ws1 · vs1 == 10

d. SLI =
(
wsc·vsc+wsi ·vsi+wsa ·vsa+wst ·vst+ws1 ·vs1

)

10·cr

4 Application

The VIOLAS Framework can be applied to measure any specific statistical disclosure
method. To assess the value of each characteristic (sc, si, sa, st) for a particular SDC
methodmSDC it must be proven that the method falls into appropriate category. Proposed
proofs are shown in the Table 4.

It must be stressed that the assignment of the criteria values as well as the final
SLI derivation is considered valid at the moment of the assessment. Given that the
security conditions are constantly changing along with the threat landscape expansion
and changes made within the IT environment itself the assessments must be performed
at a regular basis to verify the accuracy of the initially assigned index.

Table 4. VIOLAS Framework requirements for proofs

Value Proof

0 Example of full disclosure of data under given characteristic

2 Example of working condition and proof of disclosure of data under given
characteristic for other cases

5 Example of disclosure of data under given characteristic and proof of compliance
for other cases

10 Proof of compliance for all data sets for a given characteristic

The following sections describe fundamental classes of SDC methods and provides
examples on how to apply the framework. However, it must be noted that for non-specific
methods, only an estimate can be given, as the framework itself is designed to measure
the quality of actual implementations in certain IT environments.

4.1 Fundamental Classes of Statistical Disclosure Protection Methods

As with any IT security related area, there is no universal method for protecting the sta-
tistical processing. However, there are statistical disclosure controls which when imple-
mented properly can significantly decrease the risk of releasing confidential data from the
database. The inference attacks threat can bemitigated by adopting series of mechanism,
starting from the fundamental methods described in the early works.

The standard protection methods, can be divided into two groups (Domingo-Ferrer,
A Survey of Inference Control Methods for Privacy-Preserving Data Mining, 2008),
perturbative and non-perturbative. The first group assumes that the query result sets
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are slightly altered before the release in such a way that the computed statistics do not
significantly differ from the original result yet protect the privacy of potentially sensi-
tive statistics. In the non-perturbative protection methods, the query result sets are not
altered. The protection is achieved by properly restricting statistics. Each of the con-
trol mechanisms, when analyzed or implemented separately, might not be efficient and
appropriate for each type of the database and prevent existing attack vectors. Therefore,
in the real-life systems the protection methods are combined. However, for the purpose
of the evaluation, each of the methods will be evaluated as a single entity.

Perturbative Protection Methods
The first perturbative protection method is rounding [P1]. This method replaces either
original values or original results with rounded values [2]. The rounding function is the
crucial decision factor, as the level of security of this control method depends on it. If the
method returns predictive values, an attacker might deduct the sensitive statistic from
sufficiently large sample [3].

Data swapping and rank swapping [P2] is a transformation which exchanges values
between individual records in such a way that the individual sensitive statistic cannot
be retrieved but the statistical accuracy of the returned result is maintained. A variant
of the data swapping is rank swapping which sorts the values of the characteristic C in
ascending order and later the values are interchanged within the scope of its rank. Ranks
are defined as percentage ranges of all the C values [3].

Non-perturbative Protection Methods
One of the most basic non-perturbative controls is query-set-size control [N1] which
restricts such results that have less than n or more than N − n records for some positive
integer n [1]. This way only the easiest attacks are prevented, e.g. S1, because this control
can be easily bypassed [3].

Another non-perturbative control is maximum-order control [N2], which does not
allow queries which includes too many parameters [1]. The number of the parameters
allowed in a single query should be defined separately for every database in a process
which finds the minimum number of attributes that allows to identify a sensitive statistic
of a particular entity. The drawback of this method is that it restricts many non-sensitive
statistics and with each change in a database the process of finding the maximum of
allowed parameters must be repeated [3].

The suppression mechanism [N3] dismisses such values from the query set result
which can be categorized as sensitive and those which are non-sensitive, but might allow
to derive a sensitive statistic from the retrieved data [1]. The suppression criterion used
in this method for the count(C) query is a minimum query-set size and for the sum(C)

query is the n − respondent k% − dominance rule, i.e. a sensitive statistic is calculated
with n or less values which make up more than k% of the total values [3].

Another control method is sampling [N4] in which different sample records are used
to compute the queried statistic, i.e. the sample records of the original query result set
are used in the result set released from the database [2].

Last analyzed protection method is generalization [N5] in which several data cate-
gories are combined into one more general to increase the number of entities used for
calculating the statistics [2]. The special case of this control is top-bottom coding used
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for the categories which can be ranked. In this case, minor categories are grouped in
major categories by the rank values, i.e. top values and bottom values are combined in
separate groups [2].

4.2 Protection Mechanisms Assessment

Described protection mechanisms can be applied to mitigate but not eliminate the risk of
succeeding in performing inference attacks. Intuitively, because of the non-perturbative
methods which do not distort the data are preferred by statistical databases user, the
starting point of the search for the new universal method which would mitigate the risk
of the high-risk issues should be within the non-perturbative method family. Perturbative
methods however address considerably bigger range of threats, when applied separately,
but may miss the accuracy when the trade-off between the security and the accuracy is
not well defined.

VIOLAS Framework however describes the necessary characteristic of the per-
fect SDC function; therefore, the protection mechanisms can be somewhat objectively
assessed not only based on the preference of the particular database user. The Table 5
shows the results of the assessment conducted for fundamental classes of SDCmethods.
As the methods present high-level solutions appropriate estimations must had been done
to address most likely scenarios for each method, therefore the final outcome shows the
SLI value as a range, being a result of:

Table 5. VIOLAS Framework calculation for fundamental classes of SDC methods

vsc vsi vsa vst cr (sample) SLI

P1 {5, 10} {5, 10} {5, 10} {5, 10} 4 [0,125–1]

P2 {5, 10} {5, 10} {5, 10} {5, 10} 4 [0,125–1]

N1 2 {5, 10} {5, 10} {2, 5} 4 [0,0875–0, 169]

N2 2 5 {5, 10} {2, 5} 4 [0,0875–0, 138]

N3 2 5 {5, 10} {2, 5} 4 [0,0875–0, 138]

N4 {5, 10} {5, 10} {5, 10} {2, 5} 4 [0,106–0, 219]

N5 2 {2, 5} {5, 10} {2, 5} 4 [0,069–0, 138]

• vsc, vsi, vsa, vst for the particular method has been shown in a range possible to achieve
under such SDC,

• as the cr value is independent of the SDCs, to simplify the range of the SLI, a medium
value was selected as a sample value.

The estimations show, that contradictory to the intuition, the perturbative methods
state a valid contender to the non-perturbative ones provided that the accuracy of the
applied method complies with the statistical requirements of the system. As it was
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mentioned before, there is no singular solution to achieve perfect statistical disclosure
control method under every condition, but the closest functions to achieve the perfect
score within the VIOLAS Framework metrics are perturbative methods.

5 VIOLAS Framework Limitations

The VIOLAS Framework should be solely treated as a quantitative method of describing
a security level of anSDCmethod at the timeof performed analysis.As the environmental
conditions may change overtime, the scoring of a particular method may change as well,
therefore it is advised to reevaluate the SLI at minimum at every:

• change of the database system,
• change of the SDC method.

Additionally, depending on the business purpose of the database and the sensitivity
of the data that it holds additional reevaluations may be done periodically and their
frequency should be decided at the procedural level.

Apart from that, as in every case of an evaluation framework, a risk related with
human factor must be considered. The designed framework strongly depends on the
input provided by its users. As much as most of the input that the framework takes
seem to be user-independent, the quality of analysis made to provide proofs produced to
accurately evaluate the criteria play a key part in the assessment and must be prepared
with proper diligence. Without that, the received results may remain erroneous.
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Av. Päısos Catalans 26, 43007 Tarragona, Catalonia
{najeebmoharramsalim.jebreel,rami.haffar,ashneet.singh,

david.sanchez,josep.domingo,alberto.blanco}@urv.cat

Abstract. Surveys are one of the most common ways of collecting data
on individuals. Such data are of great value for economic and social
research. However, the quality of the decisions and research results based
on survey data depends on the ability to detect and filter out bad
answers. The most common source of bad data are the respondents, who
might provide imprecise or fabricated answers due to several reasons.
In this paper we present a method to sanitize survey data that relies
on combining the classification outcomes of three unsupervised machine
learning algorithms (DBSCAN, PCA and IForest) aimed at detecting bad
answers. Empirical results on real data show that our approach is able
to improve the detection of both completely and partially bad answers
with respect to the results provided by each algorithm independently.

Keywords: Survey data · Data quality · Bad answers · Fabrication ·
Unsupervised machine learning

1 Introduction

Survey data are central to many decision-making processes taking place at public
and private institutions. They are also of paramount importance for research
studies in fields such as economics, politics, social sciences or medicine. The
quality of the decisions and research results based on survey data is, however,
heavily dependent on the quality of the data themselves [1].

Experience shows that not all survey data are as good as desired. Errors dur-
ing the survey design, such as choosing non-representative population samples or
introducing unclear questions may lead to bad results [2]. Nonetheless, the most
common source of bad data are the respondents, who might provide imprecise
responses or fabricated answers when they are faced with sensitive questions,
when they feel too much private information is requested or when they are not
interested in the survey [3].
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A literature survey in [4] shows that the percentage of fabricated survey
data is typically below 5% for large-scale surveys with strict supervision, reach-
ing up to 50% in small surveys with limited supervision (e.g. with inaccessible
respondents). Regarding the effects of data fabrication, even small levels of fabri-
cation may cause big effects. For example, in the German Socio-Economic Panel
(SOEP) survey, removing 2.5% of the fabricated answers changed the effect of
the years of education on gross wages by 80% [5]. The authors in [6] conclude
that if roughly 1% of the answers are fabricated via, e.g. duplication, the proba-
bility of obtaining unbiased statistical estimates is of 41.6%; and if 10% or more
of the answers are fabricated, the probability falls to 11.4%.

Given the importance of good data, effective methods are needed to sani-
tize survey data before conducting any meaningful empirical research or making
decisions. Several methods have been proposed to detect bad answers in surveys,
which involve re-interviewing respondents, recording and analyzing interviews
with respondents, or analyzing statistical features of the responses [7]. However,
the application of such verification checks incurs high costs.

Machine learning (ML) classification algorithms are a promising alternative.
In particular, unsupervised ML algorithms, which extract patterns from unla-
beled data with little human intervention, are widely used in anomaly detection;
this includes detecting credit card fraud, cyberattacks, changes in medical condi-
tions and unusual images [8]. In this work, we apply unsupervised ML algorithms
to detect bad answers in survey data.

Although ML algorithms have been used to solve many regression and clas-
sification problems, no individual algorithm performs best under every circum-
stance. A common way to overcome this problem is to combine different algo-
rithms [9]. Following this line, we propose aggregating a chosen set of ML algo-
rithms to detect bad answers.

Contribution and Organization of This Paper

We introduce a new approach for detecting bad responses in survey data. We
distinguish two kinds of bad responses: completely bad responses, in which the
answers to all survey items have been fabricated in some way (e.g. by pro-
viding systematic random answers); and partially bad responses, where only
part of the answers are fabricated (e.g. to hide sensitive features). Our proposal
aggregates the results from three different unsupervised ML algorithms, namely
linear-based, density-based and ensemble-based methods. With this approach,
we aim to improve the detection of both completely and partially bad answers.

The main contributions of our work are:

– We show that unsupervised machine learning algorithms used to detect
anomalies and fraud in categorical data can be effectively used to detect
bad answers in survey data.

– We use three straightforward unsupervised machine learning methods, which
have low computational cost, are easy to implement and have good perfor-
mance.
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– We show that the accuracy of detecting bad answers can be improved by
aggregating the results from those three algorithms.

The results show that our approach detects completely bad answers with an
overall accuracy over 96%, and a true positive rate (TPR) over 95%. Also, we
obtain an overall accuracy over 80% and a true positive rate (TPR) over 75% in
detecting partially bad answers.

The remainder of the paper is organized as follows. Section 2 discusses related
works aimed at detecting fabricated survey data. Section 3 presents our approach
and details the three ML algorithms we use. Section 4 describes and reports the
results of the empirical experiments. Finally, Sect. 5 depicts the conclusions and
proposes several lines of future research.

2 Related Work

The authors of [10] used Census Bureau Studies data to show the importance of
re-interviewing respondents as a means of fabrication detection. In their study,
most faked responses were detected through re-interviews, although some were
detected due to anomalies in the data. Additionally, most of the cheating involved
consisted of complete fabrications rather than partial fabrications of responses.
In [11], the authors used data anomalies from the National Survey on Drug Use
and Health in the US to determine suspicious behaviors. Specifically, they used
the interview duration as a potential sign of fabrication allowing fraud detection
in survey data.

Benford’s law has been widely used to detect bad answers in surveys [12,13].
Benford’s law involves examining the distribution of the leading (or left-most)
digits of all the numbers reported on a survey form. By comparing against the
expected distribution of the leading digits, one can identify unusual data, which
may be fraudulent or generated by an error-prone process: suspect interviews
are those in which the distribution of leading digits does not follow the expected
distribution. Furthermore, [14] introduces an approach for detecting falsifica-
tion in public opinion data. The proposed measure is the maximum percentage
match statistic, which is the maximum percentage of questions on which each
respondent matches any other respondent in the survey data.

Machine learning has been also employed to detect bad answers. The authors
of [15] use cluster analysis on a data set that contains labels identifying the inter-
viewers who fabricated entire interviews. They combine Benford-related features
with other attributes (like item non-response rate) for which they expect differ-
ences between honest interviewers and cheaters. In cluster analysis, the classes of
the groups of data points are not known to the algorithms, which means that the
actual classes are not used for the classification task. In [16] the authors employ
supervised and unsupervised classification to automatically detect interviewer
fabrication in three real data sets containing both completely and partially bad
answers. The authors report a better performance for supervised algorithms.

Each of the above methods above has its advantages and disadvantages. Re-
interviewing respondents is effective to detect cheaters, but it requires substantial
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time and personnel effort. Methods based on Benford’s law are only suitable for
numerical data, but survey data typically contain a mix of numerical, ordinal and
categorical data. Supervised ML algorithms are undoubtedly effective if labeled
data are available, but access to such data is a major challenge.

Unsupervised ML algorithms are a promising alternative, as they are easy to
apply and do not require labeled data.

3 Methodology

In this work, we use three fast, effective unsupervised ML algorithms to detect
and remove bad answers in surveys. Each of the considered algorithms is widely
used to detect anomalies in multidimensional data points. Then we aggregate
the decisions of the three algorithms to improve the accuracy of detecting bad
answers.

We model survey data as microdata tables, where each row corresponds to a
single respondent and each column to each of the questions in the survey. Before
we apply any of the detection algorithms, the data are preprocessed. Numerical
data are normalized and categorical data are one-hot encoded.

The methods used in this paper are chosen based on their performance in
clustering and anomaly detection, and on their execution time. The first method
is DBSCAN, a widely used density-based clustering algorithm. DBSCAN is
described in Sect. 3.1. The second method is Principal Component Analysis
(PCA), often used in exploratory data analysis and dimensionality reduction.
PCA is described in Sect. 3.2. The third method is IForest, an ensemble-based
model that works on the principle of isolating anomalies in datasets. The IForest
model is described in Sect. 3.3.

The answer i from every respondent in the survey (rows in our microdata
table) is tested with each of these methods. Whereas DBSCAN produces a dis-
crete score according to whether the input data is considered anomalous or not,
PCA and IForest produce continuous values quantifying the anomaly degree.
For the latter, we use the parameter τ to convert continuous outcomes to binary
scores, being 0 a normal answer and 1 a bad one. First, we compute the interquar-
tile range IQR = Q3 − Q1, where Q1 and Q3 are the first and third quartile of
the algorithms’ outcomes. After that if the algorithm’s outcome is greater than
Q3+τ ×IQR for a given answer, we consider the answer a bad one and assign it
a score = 1. Otherwise, we consider the answer a good one and assign it a score
= 0.

Finally, the overall score of answer i is 1 if at least one of the methods scores
it 1, in which case the respondent is classified as a cheater, and 0 otherwise.
Since each method has its own way of detecting anomalies, it may happen that
only one method detects a true bad answer, while the other two misclassify it
as a good answer. Even in such cases, our score aggregation strategy enables us
to detect as many bad answers as possible.
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This process is formalized in Algorithm 1. Note that DBSCAN employs two
hyperparameters (ε and MinPts), which we discuss in Sect. 3.1.

Algorithm 1. Bad survey data detection algorithm.
1 Input: Survey data, τ, ε,MinPts;
2 Output: Survey data (without cheaters);
3 numerical data ← one hot encoding(Survey data);
4 normalized data ← normalize(numerical data);
5 for i in normalized data do
6 if DBSCAN(i, ε,MinPts) == −1 then
7 score dbscan(i) ← 1;
8 else
9 score dbscan(i) ← 0 ;

10 if Iforest(i) > Q3 + τ × IQR then
11 score Iforest(i) ← 1;
12 else
13 score Iforest(i) ← 0 ;

14 if pca(i) > Q3 + τ × IQR then
15 score pca(i) ← 1;
16 else
17 score pca(i) ← 0 ;

18 if score dbscan(i) + score Iforest(i) + score pca(i) ≥ 1 then
19 Survey data ← Survey data.drop(i);

3.1 Density-Based Spatial Clustering of Applications with Noise
(DBSCAN)

DBSCAN [17] is a clustering algorithm that groups data points according to
their density with respect to a distance parameter ε. DBSCAN identifies outlying
points as those lying in low-density regions, i.e. points that are unreachable from
other points when taking ε-distance jumps. It has a worst-case time complexity
O(n2).

Next, we summarize the working principles of the algorithm:

1. Neighboring points are those at a distance smaller than ε.
2. Core points are those points that have at least MinPts neighbors.
3. A point is directly reachable if it is within distance ε from a core point.
4. A point is p reachable from q if there is a path of core points between p and

q.
5. A core point p forms a cluster with all points reachable from it.
6. Points that are not reachable, and thus do not belong to any cluster, are

outliers.
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3.2 Principal Component Analysis (PCA)

Principal Component Analysis was first proposed in [18] and it is widely used
for dimensionality reduction, data visualization and exploratory data analysis.

PCA is a linear transformation that takes the data points into an orthonormal
coordinate system that has the principal components as its basis. The data in
the new coordinate system have their components uncorrelated (i.e. the covari-
ance or correlation matrix is diagonal). The record components are ordered with
respect to their variance, with the first component having the highest variance
and the sum of the variances contributed by each of the components being equal
to that of the original data. The principal components can be obtained from
an eigenvector decomposition of the covariance or correlation matrices of the
data [19].

We use an outlier detection mechanism based on PCA, which was proposed
in [20] to identify attacks or outliers in data sets. First, a robust estimator of the
correlation matrix is obtained via multivariate trimming and the principal com-
ponents are obtained. Two detection functions are used: the first one depends
on major components of the transformed data points (those which explain about
50% of the variance) and is able to detect whether the values for single compo-
nents of the original data points are outliers. The second one, based on minor
components (components that contribute each less than 0.2 of the variance) is
able to detect anomalies in the correlation structure of the original data points.
If either of these functions are above a certain threshold, the original data point
is considered an outlier.

3.3 Isolation Forest (IForest)

Isolation forests are unsupervised anomaly detection algorithms. Anomaly detec-
tion algorithms typically model the normal behavior of data points and look for
points that do not follow this normal behavior. In contrast, isolation forests
explicitly isolate outliers [21].

An isolation forest is a collection of isolation trees, which are data-induced
random binary trees. Isolation trees contain external nodes, which are nodes
with no children, and internal nodes, which are nodes with a test (q < p) and
exactly two children. To build such trees, the data set is recursively split by
choosing a random attribute q and a random split value p in the range of the
chosen attribute until i) the tree reaches a predefined maximum height, ii) the
data set contains a single element, or iii) all remaining data points are equal.

The working principle of isolation forests is that, given such random trees,
outliers will be isolated (be assigned to an external node) with less splits on
average than normal data points, that is, their height (distance from the root)
will be smaller on average.

To identify anomalies, data points are searched in the collection of isolation
trees and their average height is computed. This average height is normalized to
obtain an anomaly score s as follows:

s(x, n) = 2− E(h(x))
c(n) ,
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where E(h(x)) is the average height of x in the collection of isolation trees
and c(n) is the average path length of unsuccessful searches in binary search
trees, given in [22]. Data points with anomaly scores close to 1 are considered
anomalous.

4 Experiments

4.1 Dataset

To test the performance of the three considered algorithms and their aggregated
results, we used the Adult income data set [23]. This data set contains 48, 842
records, each of them reporting 6 continuous and 9 categorical demographic
attributes on a certain individual. We viewed Adult as if it resulted from a survey,
that is, as if each record represented the answer from an individual respondent.

After cleaning up the survey data from missing values we still had 45, 222
answers. Then, we simulated two types of bad answers: completely bad answers
and partially bad answers. For completely bad answers, we randomly chose 20%
of the records and replaced values in them with random answers generated from
the respective domains of the 15 attributes. For the partially bad answers, we
randomly selected 20% of the records; after that, we randomly chose 6 out of
the 15 attributes in the selected records and replaced their values with random
values from the corresponding attribute domains. We then attached a label to
each record. The label value was set to 1 if the answer was bad or 0 if the
answer was good. Later, we used these labels to evaluate the performance of the
methods.

For both completely and partially bad answers, we performed the same data
preprocessing steps. First, we converted the categorical attributes into numerical
using label encoding. After that, we applied min-max normalization for each
attribute value, defined as

zi =
xi − min(x)

max(x) − min(x)
,

where x = (x1, ..., xn) and zi is the i-th normalized value.

4.2 Performance Metrics

Since we were dealing with a classification problem (to classify an answer as
good or bad), we used five well-known evaluation metrics that have been used
to assess the performance of classification methods [24]:

• Accuracy (ACC) represents the percentage of correctly classified answers
compared with the total number of answers. We used the accuracy to assess
the overall performance of each method. Accuracy is given by:

ACC =
TP + TN

TP + TN + FP + FN
× 100,
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where TP , TN , FP and FN stand, respectively, for number of true posi-
tives, number of true negatives, number of false positives and number of false
negatives.

• True positive rate (TPR), a.k.a. detection rate or sensitivity, represents
the percentage of correctly classified bad answers compared with the total
number of bad answers. TPR is given by:

TPR =
TP

TP + FN
× 100.

• True negative rate (TNR), a.k.a. recall, represents the percentage of cor-
rectly classified good answers compared with the total number of good
answers. TNR is given by:

TNR =
TN

TN + FP
× 100.

• False positive rate (FPR), a.k.a. fall out, represents the percentage of good
answers incorrectly classified as bad answers compared with the total number
of good answers. FPR is given by:

FPR =
FP

FP + TN
× 100.

• False negative rate (FNR) represents the percentage of bad answers incor-
rectly classified as good answers compared with the total number of bad
answers. FNR is given by:

FNR =
FN

FN + TP
× 100.

4.3 Hyper-parameters

We used different hyper-parameter values with each method.
For DBSCAN applied to completely bad answer detection, we used ε = 0.515

and a minimum number of answers required to form a cluster MinPts = 300.
For DBSCAN applied to partially bad answer detection, we used stricter values
ε = 0.42 and MinPts = 500.

For IForest, we used the default parameters as described in [25]. Then, we
filtered the scores obtained from the decision function of IForest using τ = 0.2
for completely bad answers and τ = 0.1 for partially bad answers.

For PCA, we used the default parameters specified in PyOD [26] with a
number of components equal to 2. PyOD implements [20] to use PCA as an
outlier detection tool.

4.4 Results

Figure 1 shows the performance at detecting completely bad answers. We can
see that both DBSCAN and IForest have a similar performance with an overall
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accuracy 96%, and with a slight advantage for DBSCAN regarding TPR and
FPR: DBSCAN achieved TPR 91.3% and FPR 2.3%. PCA had a somewhat
poorer performance.

Anyway, the aggregation of the three methods as detailed in Algorithm 1
results in a noticeable improvement. On the one hand, the overall accuracy is
maintained at 96% like for DBSCAN and IForest. On the other hand, the TPR
95.3% outperformed the best score achieved by DBSCAN, which was 91.3%.

DBSCAN IForest

PCA Aggregated

Fig. 1. Performance at detecting completely bad answers

Figure 2 shows the performance at detecting partially bad answers. We
can notice the good performance of both DBSCAN and IForest: DBSCAN
achieved an overall accuracy 85.1% while IForest achieved 84.3%. However, IFor-
est achieved the best TPR performance at 64.8%. We also see a poor performance
of PCA at detecting partially bad answers: TPR was just 34.4%; however, PCA
achieved a very good TNR 96%.

Again, we see a noticeable improvement when aggregating the three methods:
the aggregation achieved TPR 72.98%, while IForest was the second best TPR
performer with only 64.78%.
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DBSCAN IForest

PCA Aggregated

Fig. 2. Performance at detecting partially fabricated answers

From the results, it is clear that aggregating the results of the three methods
improves the detection rate of bad answers. The aggregation helps to comple-
ment the different strategies implemented by the three methods at detecting bad
answers and overcome some of their limitations. It is also worth noting that the
performance of detecting partially bad answers is noticeably lower than detecting
completely bad answers. This is not surprising because in this latter case only
40% of the values of each answer were randomly generated. Consequently, some
partially random answers might still be close to good answers and, therefore,
would be considered good.

5 Conclusions and Future Research

We have introduced a method to detect fabricated answers in surveys that aggre-
gates the results from different unsupervised machine learning and anomaly
detection algorithms. Our experiments show that the aggregated results improve
the detection rate of bad answers with respect to the outcomes of each individual
algorithm.

Despite the promising results, the choice of the hyperparameters remains a
major challenge. The value of these parameters depends on several factors like
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the domain of the survey and the size of the answers. More experiments will be
needed to analyze the influence of the parameters on the results and, particularly,
on their aggregation.

As future work, we plan to investigate other aggregation strategies and unsu-
pervised ML methods. We will also consider specific cases of data fabrication,
such as answer duplication, for which specific methods have been proposed.
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Abstract. Methods for generating differentially-private (DP) synthetic
data have received recent attention as large government agencies such
as the U.S. Census have decided to release DP synthetic data for public
usage. In the synthetic data generation process, it is common to post-
process the privatized results so that the final synthetic data agrees with
what the data curator considers public information. Our contributions
are three fold: 1) we show empirically that using post-processing to incor-
porate public information in contingency tables can lead to sub-optimal
inference, 2) we propose an alternative Bayesian sampling framework
that directly incorporates both noise due to DP and public information
constraints, leading to improved inference, and 3) we demonstrate the
proposed methodology on a study of the relationship between mortality
rate and race in small areas given priviatized data from the CDC and
U.S. Census.

1 Introduction

Differential privacy [10] is a mathematical framework for producing statistical
results with provable privacy guarantees. Since its inception, numerous methods
have been proposed for different private inferential procedures, e.g., [4,6,15,32,
33], to name a few. These methods typically require a trusted data curator
to have access to the non-private data, and the query responses can only be
received once while consuming a fixed proportion of a predetermined privacy
budget. Since data curators cannot anticipate the needs of all data users, nor
could they feasibly allocate privacy budgets to all possible requested analyses,
there has been a growing interest in methods for producing differentially-private
synthetic data [3,14,23]. This allows data curators to release data sets with the
same privacy guarantees as individual procedures, implying that any statistic
derived from this synthetic data will automatically be private.

DP synthetic data is particularly useful for multipurpose data sets, where
the number of possible queries of interest is large; for example, the U.S. Census
plans to release its 2020 Census of Population and Housing as DP synthetic data
[2]. However, synthetic data is not usually released as-is once the initial privacy
c© Springer Nature Switzerland AG 2020
J. Domingo-Ferrer and K. Muralidhar (Eds.): PSD 2020, LNCS 12276, pp. 323–336, 2020.
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mechanism has been applied; instead, post-processing is performed so that the
final privatized data agree with a set of constraints often capturing known public
information. In the case of the U.S. Census, this could correspond to structural
inequality relationships between cells (such as the ages of respondents who can
live in certain housing types) or marginal invariant values (such as the popula-
tions of certain geographic areas being exact). As many practitioners have noted
[19,20,25–27,31,34], the Census’ proposed post-processing method [1] preserves
reasonable utility aggregated across large geographic areas, but largely fails for
supporting inference on small areas.

One of the core problems is the difficulty of characterizing the distribution of
post-processed data given the non-privatized data. Post-processing makes it sig-
nificantly harder to calculate or even numerically estimate P (Z | X), even when
the privatization mechanism itself is relatively easy to characterize, as is the case
when DP noise is an independent, additive perturbation; e.g., see [18]. This is
analogous to classical problems in measurement error modeling when consider-
ing whether or not the measurement error distribution is known or unknown
[7]. Unlike most measurement error models, however, the privatization noise dis-
tribution is known exactly, which suggests that better inferential methods are
possible. On the other hand, we will demonstrate that while post-processing can
improve utility from a loss optimization perspective, it can degrade utility from
a statistical inference perspective.

Our contributions in this paper focus on re-framing the aforementioned prob-
lem. The underlying goal of post-processing is to enforce constraints that make
the final synthetic data agree with public information. Instead of using post-
processing to retroactively transform the data to meet these constraints, we
propose incorporating the constraints directly into the data generating process
via Bayesian analysis using the private synthetic data without post-processing.
Note that both approaches are still DP. Our approach, which builds on ideas
from [16], is flexible since it allows us to distinguish between constraints that
depend on the underlying model of interest and constraints that depend on the
data generating process. Furthermore, our approach integrates nicely into stan-
dard tools for analysis of generative models, such as simulation-based inference
for empirical test statistics as we will see in a case study.

In Sect. 2.1, we apply a rejection algorithm of [16] to sample from the pos-
terior distribution of a parameter given DP synthetic data. In Sect. 2.2 we com-
pare and contrast two different kinds of public information, one that affects the
prior parameter distribution (which we call “model-dependent”), and one that
affects the DP error distribution (which we call “data-dependent”). We also
highlight the ways in which post-processing may not support valid inference. In
Sect. 2.3, we incorporate this public information into a new sampling algorithm,
and demonstrate its effectiveness in performing inference about mortality rates
in Sect. 3. We conclude a paper with a brief discussion in Sect. 4.

2 Posterior Sampling Methods

Throughout this section, we let [n] � {1, 2, . . . , n}. Suppose we observe T
different multinomial tabular queries {Xt}Tt=1, each of which has the form
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Xt | θt ∼ Multinom(nt,θt). Finally, Suppose each table has its own privacy
budget εt > 0, and define ηt � exp (−εt/2) for t ∈ [T ]. Let Y t = Xt + εt, where
εtj

iid∼ DL(ηt) and DL(ηt) is the discrete Laplace distribution with PMF [17]:

P (εij = k) =
1 − ηt
1 + ηt

η
|k|
t k ∈ ZZ (1)

Then by the properties of the geometric mechanism and composition [9], {Y t}Tt=1

is an ε-DP synthetic data set, where ε =
∑T

t=1 εt. For convenience, let X and Y

be the concatenated 1-dimensional count vectors from all tables, i.e. X,Y ∈ ZZK

for some total length K.

2.1 Posterior Sampling Methods for DP Synthetic Data

Differentially private analysis should ideally treat each Y t as a noisy mea-
surement of Xt and propagate the measurement error through any subsequent
transformations. Our approach relies on techniques borrowed from approximate
Bayesian inference [12,35], with the end goal of sampling from the distribu-
tion of a parametric statistic of interest conditional on {Yt}Tt=1. In this section,
we demonstrate a rejection algorithm (Algorithm 1), proposed by Gong [16],
for sampling from a distribution of a given statistic with a known mean zero
additive perturbation as shown below. This approach, while computationally
simple, allows for easy generation of point estimates for individual small area
sub-populations and linear combinations of small area sub-populations (when
there is not further public information). In particular, since the perturbations
to the cell counts are additive and independent, sum queries on the contingency
table also have additive errors following a generalized discrete Laplace distribu-
tion, GDL(k, η), where k is the number of cells in the summation query [21].

Data: Observed DP data Y , prior π, likelihood fX|θ, error density gY |X
Result: N samples from θ | Y
while i ≤ N do

Sample θ(i) ∼ π, X(i) | θ(i) ∼ f(· | θ(i)), U ∼ Unif(0, 1) ;
if

U ≤ g(Y | X(i))
supY g(Y | X(i))

(2)

then

Accept sample θ(i), i �→ i + 1 ;
else

Reject sample θ(i) ;
end

end

Algorithm 1: DP posterior sampling given additive perturbation [16]

Figure 1 gives simulated 95% credible intervals for a single-cell count and a
5-cell summation query using three different methods: the non-private true cred-
ible interval, the naive DP approach which treats the privatized data as observed



326 J. Seeman et al.

Fig. 1. Example empirical credible intervals for a single-cell count and a 5-cell sum-
mation query with true proportion θtrue = .25, prior θ ∼ Beta(1, 3), and likelihood
X | θtrue ∼ Binom(100, θtrue). With ε = 1, the single-cell DP perturbation has distribu-
tion ε ∼ DL (exp(−1/2)), and the summation query DP perturbation has distribution
ε ∼ GDL (5, exp(−1/2)). Empirical CIs derived from N = 1000 simulated samples.

without noise, and the empirical DP CI using Algorithm 1. It is important to
note that directly substituting the synthetic data into a statistical analysis (i.e.
the “naive approach” where we ignore the privacy mechanism) underestimates
the uncertainty, leading to deficient coverage probabilities of the CI. By compar-
ison, the posterior CI using Algorithm 1 produces a wider interval that properly
captures the uncertainty introduced by the privacy mechanism.

2.2 Post-processing and Constraints in Data Generating Processes

In Sect. 2.1 we assumed that the perturbed cell counts, {Y t}Tt=1, are directly
available in the absence of additional public information. Next, we consider incor-
porating public information. For the purposes of this paper, we consider only
public information that can be represented as linear constraints. Following the
notation from [1], these take the form of indicator functions evaluated on specific
random vectors: Cj(Y ) � 1{QT

j Y opj cj} where Qj ∈ IRK×dj , opj represents an
element-wise comparison operator (i.e., one of =, ≤, ≥) and cj ∈ IRdj . Under this
definition, a constraint is satisfied if QT

j Y opj cj is true, in which case Cj(Y ) = 1
(0 otherwise). This definition is commonly used and flexible enough to accom-
modate most public information about contingency tables, such as invariant
summation queries, hierarchical geographic structures, structural inequalities,
and more. Note that the constraints Cj as formulated can be evaluated against
any arbitrary random variable of the same dimension; this will be used later.

Constraint enforcement is commonly achieved through post-processing, usu-
ally in the form of an optimization problem that depends only on Y and the
constraints:

Z = arg min
Z ∗

||Z∗ − Y ||22 s.t. Cj(Z∗) = 1 ∀j ∈ [J ]. (3)

In particular, the Census TopDown algorithm’s post-processing, applied to the
first release of 2010 Census DP synthetic data [5], performs the above operations
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twice for each pair of sub-geographic levels: once to find a fractional histogram,
and once to round the fractional histogram; see [1] for full details. This kind of
optimization procedure has many attractive properties from a computer science
perspective. First, the linear constraints can be directly analyzed to determine
properties of the optimization solution, such as NP-completeness and compu-
tational complexity. Furthermore, Z can often be calculated using well known
optimization techniques, such as quadratic or mixed-integer programming, and
the constraints can often be simplified using techniques like network flow anal-
ysis [24]. However, the distribution of Z | X can often be neither analytically
nor computationally tractable, which makes it prohibitively difficult to directly
perform inference given only the post-processed observations. Instead of relying
on post-processing, we first look at two kinds of constraints in detail and see
how they affect the sampling process in the posterior algorithm.

Example 1: Suppose we have the constraint C(Z∗) = 1{a′Z∗ ≤ b′Z∗} for
two fixed vectors a, b ∈ [0, 1]K . Such a constraint arises when cell counts have
to maintain structural inequalities; in the US Census, for example, this could
encode the constraint that all eligible voters must be above the age of 18. This
can be equivalently written as P (a′θ ≤ b′θ) = 1, which contains the same infor-
mation in an expression that depends only on θ.

Example 2: Suppose we have the constraint C(Z∗) = 1{a′Z∗ = na} for some
fixed vector a ∈ [0, 1]K and na ∈ ZZ+. Such a constraint arises when certain
marginals need to be released exactly as public information; in the US Census,
for example, this could encode the constraint that state populations must be
released exactly. Let δ � a′Y − na; then δ is a function of the observed DP
data Y , and provides information about the set of possible ε values that could
have generated such a Y . Therefore the constraint can be equivalently written
as P (a′ε = δ) = 1, which contains the same information in an expression that
depends only on ε.

Comparing and contrasting the two examples above suggests that the con-
straints need only provide information about certain parts of the data generating
process, as the first example did for θ, and the second example did for ε. If our
end goal is to generate posterior samples from θ given the DP synthetic data,
then we could incorporate these constraints into the sampling distributions in
algorithm 1 instead of relying on post-processing. Next, we propose how to do
that.

2.3 Posterior Sampling Under Public Information Constraints

As suggested by the examples above, we define two collections of constraints,
the model-dependent constraints M and the data-dependent constraints E to be
applied to θ and ε, respectively, where we indicate their satisfaction by:

CM(θ) �
∏

m∈M
m(θ), CE(ε) �

∏

e∈E
e(ε) (4)
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For the purposes of this paper, we assume that any constraint is either one of
model-dependent or data-dependent (future work is needed to relax this assump-
tion). Here, we propose Algorithm 2 which we refer to as a constrained posterior
method, a modification of Algorithm 1, to incorporate these constraints.

Data: Observed DP data Y , conditional prior πθ|CM(θ)=1, model-dependent
constraints M, data-dependent constraints E , likelihood fX|θ,
conditional error density gε|CE(ε)=1,

Result: N samples from θ | Y , CM(θ) = 1, CE(θ) = 1
while i ≤ N do

Sample θ(i) ∼ π(· | CM(θ) = 1), X(i) | θ(i) ∼ f(· | θ(i)), U ∼ Unif(0, 1) ;
if

U ≤ g(ε = Y − X(i) | CE(ε) = 1)
supY g(ε = Y − X(i) | CE(ε) = 1)

(5)

then

Accept sample θ(i), i �→ i + 1 ;
else

Reject sample θ(i) ;
end

end

Algorithm 2: Constrained posterior method – DP posterior sampling
given additive perturbation and public knowledge

Our proposed algorithm is flexible enough to support known public informa-
tion in a more statistically principled manner. Additionally, posterior simula-
tion techniques allow for simulation-based inference, giving end users the ability
to construct arbitrary inferential procedures, hypothesis tests, etc. This added
flexibility does not come for free, though, since the new conditional prior and
conditional error densities are more complex than their original counterparts.
However, we will demonstrate the improved utility of this technique by present-
ing an end-to-end example using this algorithm.

3 Data Analysis

For a real data example, we use demographic survey data from the U.S. Census
and the Center for Disease Control (CDC) to perform some inferential tasks
about mortality rates given DP synthetic data (all data and code are available
here). The CDC publishes non-private three year averages of the number of
deaths per U.S. county by race, of which we use 2009–2011 [8]. Additionally,
the U.S. 2010 Census publishes demographics data in Summary File 1, which
contains the population of each U.S. county (indexed by FIPS code) by race
(for this study, restricted to three categories: Hispanic, non-Hispanic White,
and non-Hispanic black) [30]. We use this data as-is, ignoring the effects of any
traditional disclosure limitation methods such as truncation or swapping since
their implementation details are typically non-public.

https://github.com/jseeman/publication-supplements/tree/master/2020_psd_small_area
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For both analyses we focus on data for Alaska residents, yielding two 14 ×
3 tables (14 counties × 3 race groups), which can be aggregated to a single
2 × 3 table of mortality status by race for the entire state. We demonstrate
the advantage of our methods for such small, less densely populated areas. For
both case studies, we assume DP synthetic data is created from the geometric
mechanism outlined in Sect. 2. Sub-population data for both tables is available
in Table 4, and the simulation code is available in a GitHub repository – see the
URL in Appendix A. For both case studies, the inferential question of interest,
public information constraints, and sampling hyperparameters are available in
Table 3.

3.1 Case 1: Joint Estimation of Cell Counts for χ2 Test

In this first case, the 14 × 3 Census and CDC tables are privatized with ε = .5
(yielding a total budget of ε = 1), and we assume the national mortality rates by
race, state total populations, and state total deaths are all public information.
While we list all constraints in the Appendix A Table 3, an example would be
that the state total deaths from the DP generated synthetic tables match the
publicly known state total deaths.

The goal is to test the null hypothesis H0 that the national mortality rates
by race agree with the Alaska-specific mortality rates by race (with H1 other-
wise). This will be achieved by estimating the observed Pearson Chi-Square test
statistic, χ2

obs via three different methods:

1. Naive method: directly use DP synthetic data without post-processing to pro-
duce the test statistic.

2. Post-processing method: post-process the naive DP synthetic data using Eq. 3
to enforce the constraints, then use the post-processed data to produce the
test statistic.

3. Constrained posterior method: generate samples from the posterior distribu-
tion of the joint cell counts given DP synthetic data and public information
using Algorithm 2, then sample from this empirical distribution to generate
an empirical distribution of test statistics.

Notice immediately that our approach has the structural difference of produc-
ing samples from the possible values of the χ2 test instead of point estimates only.
For the purpose of this analysis, we compare the constrained posterior samples
to the non-private test statistic using the posterior mode, estimated numerically
from the samples (assuming unimodality) using the mean-shift algorithm [13].

We empirically generate 100 different synthetic DP data sets, apply the meth-
ods listed above, and present the observed distribution of estimated test statis-
tics in Fig. 2 and Table 1. As expected, both the post-processing method and
the posterior mode method offer better performance than naive substitution of
DP synthetic data into the test statistic. This is a scenario in which we expect
post-processed data to perform better than the naive perturbed counts, since in
general post-processing methods do a good job of preserving aggregate informa-
tion about higher-level summary queries as shown empirically [28].
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Fig. 2. Distributions of DP estimates of χ̂2
obs test statistic from 100 synthetic DP data

sets (true χ2
obs test statistic at vertical line)

Table 1. Comparison of DP estimates of χ̂2
obs test statistic from 100 synthetic DP

data sets (true value χ2
obs ≈ 964 on (2 − 1) × (3 − 1) degrees of freedom (two mortality

statuses by 3 race groups)

ind SampleMSE SampleVar SampleBias2

Naive 1053 986 77

PostProcessed 201 130 72

ConstrainedPosterior 102 62 41

Additionally, the constrained posterior mode better estimates the non-private
test statistic compared to the other two methods. Although our method offers
favorable performance as a point estimator, note that there are plenty of other
choices for a centrality estimate. Analysis of different measures of centrality
requires further investigation; however, the posterior sampling method still has
the structural advantage of estimating a distribution rather than only estimat-
ing the point statistic, allowing for further capturing and characterizations of
uncertainty such as the construction of empirical confidence intervals.

3.2 Case 2: Small Area Estimation of Cell Counts for Binomial
Testing

In this second case, both tables are privatized with ε = .1 (yielding a total
budget of ε = .2), but we now assume that county level non-Hispanic white
populations and the national non-Hispanic white mortality rate are public infor-
mation (again, the full specification is in Table 3). The goal is to test each county
under the null hypothesis H0 that the observed non-Hispanic white mortality
rate is less than or equal to the national average non-Hispanic white mortality
rate (with H1 otherwise).
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Fig. 3. Posterior distributions of P̂ (H1 | Y ) using the three different methods outlined
above. Vertical lines represent the true probabilities for each county.

Table 2. Comparison of DP estimates of P̂ (H1 | {Y t}T
t=1) from 100 synthetic DP data

sets for small counties in Alaska

County Method MSE Variance Bias

Haines Naive 0.33 0.20 0.13

Haines PostProcessed 0.32 0.19 0.13

Haines ConstrainedPosterior 0.04 0.03 0.02

Nome Naive 0.31 0.19 0.11

Nome PostProcessed 0.31 0.20 0.11

Nome ConstrainedPosterior 0.03 0.02 0.01

Prince of Wales Naive 0.17 0.13 0.04

Prince of Wales PostProcessed 0.17 0.13 0.04

Prince of Wales ConstrainedPosterior 0.06 0.05 0.01

Again, we simulate 100 DP synthetic data sets, calculate the posterior prob-
ability of rejecting H0 under the same three methods as in Case 1, and ana-
lyze the observed posterior distributions (complete county distributions are in
the appendix in Fig. 4). Figure 3 and Table 2 show results for the subset of
the three least populous counties. Here, in particular, we see the advantage of
the posterior sampling method for small area estimation. In the previous case,
post-processing ensured aggregated summary statistics were a reasonable proxy
for the true summary statistics, but now this is no longer true. In comparing
how the three different methods estimate the non-private posterior probability
of rejecting H1, we see that the constrained posterior sampling method clearly
outperforms the other two; e.g., note very low MSE, variance and bias values.
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4 Conclusion and Discussion

In this paper, we have empirically demonstrated that a post-processed synthetic
DP data mechanism may lead to sub-optimal inference in a Bayesian analysis.
This has some theoretical justification from an information theoretic perspec-
tive; since post-processing is a deterministic function of the privatized data, it
makes intuitive sense that information is lost about the privatization mechanism
when performing the post-processing operation (this theoretical link warrants
further investigation). We have also proposed a posterior sampling framework
that allows for inference that more naturally incorporates both the exact noise
generating mechanism and public information simultaneously, and demonstrated
its use on two small area estimation examples. This preliminary work, along
with extensions of it, could help users of DP synthetic data perform inference
in cases where the error distributions might be obscured by the post-processing
operations.

The major limiting factors of this work are tied to the ease of computational
implementation. In particular, the case studies we have analyzed are limited
in scope for two practical reasons. First, sampling from the distributions given
the constraints is a much more complex problem even under relatively simple
constraints. For contingency table data, it is often easiest to sample from the
marginal distribution of individual cells, whereas sampling from the joint dis-
tribution of cells under constraints is computationally difficult. This suggests
investigating copula methods, such as those in [11], that could make it easier
to generate samples from the constrained distribution, given that the copula
function necessarily encodes constraints about the dependence of the cell values.
Second, the rejection rates in Algorithm 1 can be prohibitively large, particu-
larly in higher-dimensional problems. From a computational perspective, further
investigation is needed to extend Algorithm 1, and thus Algorithm 2, to accom-
modate more efficient sampling schemes, such as MCMC-based methods [22] or
hybrid importance-rejection sampling [12].

Aside from the computational aspects, this work also raises questions for
data curators and administrators who hope to release DP synthetic data. In
particular, the results above suggest that data curators should release DP syn-
thetic data both with and without post-processing when possible. Given the results
above, it is unclear as to whether or not there are scenarios in which working
directly with post-processed data can guarantee similar inference to the poste-
rior method above; this work would be necessary to inform practitioners of how
best to use DP synthetic data.

Our results are also informative from a privacy mechanism perspective. Since
certain public information constraints induce specific noise distributions, one
could consider analyzing privatization mechanisms that explicitly add noise
under these constraints. Additionally, previous studies have looked at empir-
ical privacy guarantees in the presence of public information, such as public
marginals [29]; such approaches could be useful for evaluating the effectiveness
of different privatization mechanisms that enforce public information.
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In conclusion, we have demonstrated that the posterior sampling approach to
inference on DP synthetic data can be extended to include public information in
the form of sampling constraints. Not only does this allow for better point esti-
mation than post-processing based methods, but it also provides natural tools
for performing more complex inferential tasks, such as constructing confidence
intervals from DP synthetic data. Further research can yield more computa-
tionally efficient extensions of this algorithm, as well as tools to compare the
efficiency with which different DP mechanisms incorporate public information.

Acknowledgements. Thanks to Roberto Molinari at Penn State for helpful discus-
sions, John Abowd and Philip Leclerc at the U.S. Census for discussions about their DP
methodology, and Alexis Santos at Penn State for providing data. This work was sup-
ported in part by NSF Award No. SES-1853209 to The Pennsylvania State University.

A Additional tables and figures

All code and data available on GitHub, here.

Table 3. Case study specifications

Case 1 Case 2

H0 mortality rate by race at national level

equals mortality rate by race at state

level

white mortality rate at national level

equals white mortality rate by race at

county level

Target dimensions 2 × 3 2 × 14

Statistic χ2
obs P (H1 | {Yt}2t=1)

Budget ε = 1 ε = .2

Public information – State deaths

– State total population

– County level white population

Constraints – County level deaths between 0 and

state total

– County level population between 0 and

state total

– County level deaths smaller than

county level population

– State level marginal deaths agree with

public data

– State level marginal population

agrees with public data

– County level white deaths between 0

and county level white population

– County level marginal populations

agree with public data

Prior Dirichlet with hyperparameter

corresponding to 50% of empirical

privatized virtual observations

Beta with hyperparameter

corresponding to 10 virtual

observations from national white

mortality rate

Posterior samples 10000 500

DP replicates 100 100

https://github.com/jseeman/publication-supplements/tree/master/2020_psd_small_area
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Table 4. Raw joined data from CDC (first four non-identifier columns) and US Census
(last four columns)

County FIPS White-
Deaths

Hisp-
Deaths

Black-
Deaths

Total-
Deaths

WhitePop HispPop BlackPop TotalPop

Anchorage 2020 1004 43 75 1122 192710 22061 19515 234286

Fairbanks NS 2090 327 0 14 341 75432 0 5091 80523

Matanuska 2170 433 0 0 433 76654 0 0 76654

Kenai 2122 339 0 0 339 47556 0 0 47556

Juneau 2110 112 0 0 112 22504 0 0 22504

Ketchikan 2130 81 0 0 81 9517 0 0 9517

Kodiak 2150 27 0 0 27 7599 0 0 7599

VC 2261 45 0 0 45 7283 0 0 7283

Sitka 2220 46 0 0 46 6048 0 0 6048

SE Fairbanks 2240 33 0 0 33 5723 0 0 5723

WP 2280 39 0 0 39 4669 0 0 4669

Prince of Wales 2201 16 0 0 16 2960 0 0 2960

Haines 2100 13 0 0 13 2167 0 0 2167

Nome 2180 10 0 0 10 1685 0 0 1685

Fig. 4. Posterior distributions of P̂ (H1 | Y ) using the three different methods outlined
above. Vertical lines represent the true probabilities for each county.
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Abstract. As part of its preparations for the 2020 U.S. Population Census, the
U.S. Census Bureau uses themethodology of differential privacy to create privacy-
preserved official microdata. It is expected that the use of differential privacy for
official statistical data will become a topic in Japan in the future.

In this paper, we survey the current discussion on the use of differential privacy
for creating official statistical data. We describe the differential privacy method
used by the U.S. Census Bureau, develop a method to apply differential privacy
to Japanese population grid data, and conduct a comparison between different
differential privacy methods by applying them to Japanese small area data.

Results demonstrate that for population grid data, both the non-negative
Wavelet method (and its public-n variant) and the US census top-down method
preserve the non-negativity and sparsity of the original data, but each results in
a different degree of error. This provides an important criterion for choosing the
most appropriate method among the three options.

Keywords: Differential privacy · Population grid data · Laplace mechanism ·
Non-negative wavelet method · Top-down census method · 2D-Privelet

1 Official Statistics in Japan

In Japan, two types of statistical data are provided: statistical tables (open data) and
microdata created based on questionnaire information (original microdata). Microdata
are provided in a variety of formats, including anonymized microdata, original (non-
anonymized) microdata, tailor-made statistical tables, and via on-site facilitation.

In order to increase the provision and use of anonymized official microdata in Japan,
several empirical studies on the effectiveness of disclosure limitation methods for offi-
cial microdata were conducted by [8, 9]. In preparation for the release of anonymized
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microdata from the 2010 Population Census, empirical research was conducted by the
Statistics Bureau of Japan and the National Statistics Center [10, 11], and empirical
research on using top coding and recoding to create anonymized microdata that contain
more detailed geographical information was conducted by [10]. Empirical research on
the potential of perturbative methods such as data swapping and PRAM was conducted
by [11].

Differential privacy is currently discussed as a disclosure limitation methodology for
official statistics in the U.S. and Europe. Differential privacy was originally developed
in computer science as a method to add controlled noise to data based on a standard
of confidentiality. So far, differential privacy has not been discussed in the context of
Japanese official statistics, with the exception of [12] who investigated the potential of
differential privacy as a disclosure limitation method for official statistics in Japan.

This paper provides amathematical explanation of differential privacy, and describes
how differential privacy is used by the U.S. Census Bureau. On this basis, we develop a
process to apply differential privacy to population grid data, and conduct a comparison
between different differential privacy methods by applying them to Japanese small area
data.

The results from this research aim to provide additional options for creating and
publishing statistical tables specifically for small areas in a way that maximizes both
confidentiality and data utility.

2 Definition of Concepts

In this section, wemathematically define concepts such as aggregate data and differential
privacy.

2.1 Aggregate Data

Aggregate data refers to a set of values obtained by enumerating numbers of records
corresponding to an attribute (or combination of attributes) in a database comprising a
set of records having one or more attributes.

Let D be a dataset which hasm records and they are tuples of d attributes. For the ith
attribute, let Ai be a set of all possible attribute values and set A : = A1 × ··· × Ad . Then
we can consider D as a map D : [m]→ A. Here note that [m] := {X ∈ N|1 ≤ x ≤ m}.
In the remainder of this section, D denotes the set of all possible databases that we want
to protect.
Definition 1 (count query, aggregate data): Letting C ⊂ A, the “count query” for C
a map qC : D→Z≥0 defined as qC(D) = #{i ∈ [m]|D(i)∈C} for any D ∈ D and

V
(−−→
C,D

)
:= (

qC1(D), . . . , qCn(D)
) ∈ Zn≥0 for

−→
C = (C1, . . . ,Cn). We refer to this

as the “aggregate data” for D, �C.

2.2 Differential Privacy

Differential privacy is a privacy protection index extended to include the concept of
indiscernibility [5]. Adjacency between data is defined as follows:
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Definition 2 (adjacent data): When two databases D, D′ ∈ D differ by exactly one
record, D and D′ are referred to as adjacent data. The set of all adjacent data for D ∈ D
is defined as N(D).

Differential privacy is defined as follows:
Definition 3 (ε-differential privacy): Let K : D→S be a randomization function, where
S is the set of all possible output values (in the context of this paper, S = Z, R, etc.), and
let ε be a positive real number.

K satisfies ε-differential privacy if for all D ∈ D, D′ ∈ N(D), and S ⊂ S, it holds
that

Pr[K(D) ∈ S] ≤ eε Pr
[
K

(
D′) ∈ S

]
.

Intuitively speaking, this is based on the idea that a query from a database containing
data for an individual is safe when the results are nearly indistinguishable from those
when querying a database that does not contain data for that individual (individual
privacy is maintained).

Smaller values for ε increase the degree of disturbance and thusmore strongly protect
the data. As ε → 0 we get e0 = 1, which means there is no differentiation between the
two (they are information-theoretically indistinguishable); conversely, as ε increases the
protection becomesweaker. TheUSCensus Bureau calls this ε the “privacy loss budget”.

2.3 The Laplace Mechanism

Here we introduce the Laplace mechanism as the most typical example satisfying the
above-described differential privacy.
Definition 4 (Laplace distribution): Let f : R → R be a probability distribution defined
as

f (x) = 1
2λe

− |x−μ|
λ .

We call the distribution f the λ-scale Laplace distribution with mean μ or the double
exponential distribution.
Definition 5 (Laplace mechanism): Let�q := max

D∈D max
D′∈N (D)

∥∥q(D) − q
(
D′)∥∥

1 for a query

q : D → R (this is called the L1 sensitivity of q). Then defining for ε ∈ R>0 a random
function K : D → R as K(D) = q(D) + R, R ∼ Lap(

�q
ε
), we obtain a privacy protection

mechanism satisfying ε-differential privacy. This is called the Laplace mechanism.

3 Differential Privacy in Official Statistics from the U.S. Census
Bureau

Abowd [1] showed that combining statistical tables which contain multiple geographic
categories can result in an increased risk of identifying individuals even if each table on its
own does not contain identifying information. The application of disclosure limitation
methods such as added noise can reduce this risk, but often negatively impacts data
accuracy.

As a specific example, Abowd [1] describes database reconstruction attacks on statis-
tical tables,which can expose identifying information contained in the data by combining
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a small number of random queries [3]. From this, the basic idea of differential privacy
– adding noise to the query based on a mathematically optimized privacy-loss budget ε
– arose [4].

The following section describes the differential privacy method that the U.S. Census
Bureau will apply to the 2020 U.S. Census (referred to as the top-down census method).

Processing in the top-down census method comprises the following six procedures.
Inputs are a histogramwith a hierarchical structure according to administrative divisions
and a privacy loss budget ε, and the output is a histogram group satisfying ε-differential
privacy. Note that the hierarchical structure by administrative division here has a tree
structure with equal leaf depth k.

1. For a parent histogram H, denote child histograms as H1,…, Hk .
2. Apply noise satisfying ε

k -differential privacy to each component in the child
histograms.

3. For each component, optimize based on the L2 norm so that sums of child histograms
match their parent histograms.

4. Perform L1-norm optimization so that each component of all child histograms has
an integer value.

5. Recursively perform procedures 1–4, treating each child as a parent.
6. Complete when all leaves have been processed.

Proposition 1: The above algorithm is a protection mechanism that satisfies ε-differential
privacy under input privacy loss budget ε.

For details on the optimization based on the L1-norm and L2-norm, see Sect. 5 on
Abowd et al. [2].

4 Application of Differential Privacy to Population Grid Data
and Theoretical Study on the Non-negative Wavelet Method

When using geographic information to analyze relations between data and population,
geographic areas are often divided into in a grid data format. This section develops a
method to apply the U.S. Census Bureau’s differential privacy method to population
grid data, and compares this method with the non-negative wavelet method [14], which
has similar characteristics to the top-down census method; i.e., both preserve privacy,
alleviate the scale of noise injected to partial sums of grid cells, and prevent the output
from involving negative values.

4.1 Basic Concepts for Application of Differential Privacy to Population Grid
Data

Definition 7 (population grid data): Division of a geographic area intom×mvertical and
horizontal areas, along with data including populations in each area, is called population
grid data, which can be represented in matrix form as A ∈ Zm×m

≥0 . Here, we consider
m = 2k in particular.
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Since the grid data has a flat structure itself while the top-down census method
assumes that the input data has a tree structure, some mapping from a two-dimensional
grid data to a tree data has to be introduced for the top-down census method to process
grid data.We use a locality preserving mapping scheme, called “Morton order mapping”
for this purpose (see Appendix 1 for the definition).

Morton order mapping [13] is one of the most commonly used locality preserving
mapping schemes to arrangemulti-dimensional data in a one-dimensional sequence, and
is utilized in several geo-location coding schemes including GeoHash.

4.2 Application of the Top-Down Census Method to Population Grid Data

In this section, we apply the top-down census method to population grid data ordered
by Morton order mapping. Of particular note here is that the U.S. Census Bureau algo-
rithm performs recursive processing of parent-child relations, so the algorithm needs be
formulated for only a single parent-child relation. In other words, we need to formulate
an algorithm for only procedures 1 through 4.

When considering application to population grid data, we assume a histogram with
only one attribute (and therefore not requiring application of the special constraint).
By this assumption, each histogram is simply a non-negative integer value. Algorithm
1 (C) shows procedures 1–4 for the top-down census method rewritten under these
prerequisites. Outputs ã, b̃ are respectively optimal solutions h1, h2 for the optimization
problem.
Algorithm 1: The top-down census method (C)

Require: a, b, ñ ∈ Z≥0, ε ∈ R >0

Ensure: ã, b̃ ∈ Z ≥ 0 s.t. ã + b̃ = ñ, and output satisfies ε-differential privacy.

1: r1, r2←Lap
( 2

ε

)
…generate Laplace noise

2: a∗ ← a + r1,b∗ ← b + r2, …add noise
3: a† ← 1

2 (a
∗ − b∗ + ñ), b† ← 1

2 (−a∗ + b∗ + ñ) …projection to line x + y = ñ

4: ã, b̃ ← N
(
a†, b†

)
…grid-point search for nearest non-negative integer

5: Output ã, b̃

AlgorithmN inAlgorithm1performs a grid-point search for the nearest non-negative
integer on the line. Input here is real numbers x, y satisfying x + y ∈ Z≥0, and output
is x̃, ỹ ∈ Z≥0 nearest to the input and satisfying x̃ + ỹ = ñ.

4.3 Comparison with the Non-negative Wavelet Method

In this section, we introduce the non-negative wavelet method, which shares similar
characteristics to the top-down census method. This method utilizes the Haar wavelet
transform and noise is injected onto the transformed wavelet coefficients similar to Priv-
elet [15], but non-negativity of the output is preserved. In addition, this method uses
Morton mapping to reorder 2D-grid cells into 1D-histograms before the Haar decom-
position to avoid sensitivity enlargement (and thus noise scales enlargement) led by
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2D-wavelet transform, which makes Privelet difficult to apply to geographic data in a
practical manner.

Roughly, the processing flow in the non-negative wavelet method is as follows:

1. Using Morton order mapping, sort population grid data in a histogram format.
2. Apply the Haar decomposition (see Appendix 2) to the histogram.
3. Apply scale-adjusted Laplace noise according to the Matrix mechanism [7], per-

form refinement for the non-negativity constant, and revert through inverse Haar
decomposition.

4. Recursively repeat procedures 2 and 3 until return to the form prior to Haar wavelet
transform.

The non-negativewaveletmethod also performs recursive processing of parent–child
relations in a fully binary tree.

For comparison, we consider one stage of the non-negative wavelet method. One
stage of operations 2–4 is equivalent to Algorithm 2 (W), which is also based on
differential privacy.
Algorithm 2: The non-negative wavelet method (W)

Require: a, b, ñ ∈ Z≥0, s.t. a + b = ñ, ε ∈ R > 0
Ensure: ã, b̃∈ Z≥0 s.t. ã + b̃ = ñ and the output satisfies ε-differential privacy.

1: a′ ← 1
2 (a + b), b′ ← 1

2 (a − b) …Haar decomposition
2: r ← Lap

( 1
ε

)
…generate Laplace noise

3: a∗ ← a′, b∗ ← b′ + r …apply noise to b′
4: b∗∗ ← min{a∗, |b∗|} × sgn(b∗) …preserve non-negativity of the output
5: a† ← a∗ + b∗∗, b† ← a∗ − b∗∗ …inverse Haar decomposition
6: ã, b̃ ← N

(
a†, b†

)
…grid-point search for nearest integer

7: Output ã, b̃

Proposition 2: The output of W(a, b, n, ε) satisfies ε-differential privacy for ε ∈ R>0.

4.4 Comparison Between the Top-Down Census Method and Non-negative
Wavelet Method

When comparing the top-down census method and non-negative wavelet method, both
clearly satisfy the characteristics of ‘no negative populations’ or other nonsensical output
and no contradictions regarding values above and below in the hierarchy. This section
compares the accuracyof the twomethodswith regards to the third characteristic, namely,
maintained high accuracy of partial sums. Specifically, we compare variance values of
the noise added to each output. As described above, each method recursively repeats
operations on a hierarchical structure, so it is sufficient to compare the variance of noise
added to the output in one step, in other words, in the two algorithms C and W. Under
same privacy-loss budgets, we can interpret smaller noise variance as indicating higher
accuracy. Both algorithms use a grid-point search for the nearest non-negative N, and
the behavior in both is the same, so we can compare variance at one prior stage.
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Theorem1: Fixing a privacy-loss budget ε ∈ R>0, variance of noise applied to the output
of top-down census method C is 8

ε2
, and that for the non-negative wavelet method W

is 4
ε2
. Note that noise here refers to output prior to the grid-point search for nearest

non-negative.

1. Top-down census method C

Noise corresponding to the mean of two Laplace noises of scale 2
ε
is added to the

output (R1 − R2 = R1 + (−R2), and the Laplace distribution is symmetric with respect
to the positive and negative, so differences can be considered as sums).

2. Non-negative wavelet method W

Laplace noise of scale 1
ε
is added to the output.

The sum of two Laplace noises does not follow a Laplace distribution, so the top-
down census method does not add noise to the output following the Laplace distribution.
In contrast, the non-negative wavelet method adds Laplace noise as-is due to the Haar
decomposition.

The Haar decomposition causes a 45° reduction rotation of point (a, b) about the
origin of the x–y planeR2, and a counterrevolution operation for y= x. By that operation,
the condition of a + b = n for total number of constraints can be transformed into a
straight line parallel to the y-axis in the R2 plane. The y component is thus sufficient
for the added noise, and this mechanism can be considered as simply equivalent to the
Laplace mechanism for count queries. From this consideration, the results of Theorem 1
are consistent with the suboptimality of the Laplace mechanism for count queries [6].

5 Application of Differential Privacy to Japanese Population Grid
Data

Based on the above discussion, we apply the non-negative wavelet method, the top-down
census method, the (simple) Laplace mechanism and the 2D-Privelet to population grid
data from the Japanese Population Census.

While the noise scales of the non-negative wavelet method are derived from the
Matrix mechanism which presupposes a private-n regime (i.e. the ‘adjacent’ database is
defined as addition or removal of one record), the noise scales of the top-down census
method imply a public-n regime (i.e. the ‘adjacent’ database is defined as replacement
of one record). In order to bridge the gap between these different definitions, we conduct
an evaluation of the “public-n version” of the non-negative wavelet method, which is
almost the same as the (original) non-negative wavelet method, but has its noise scales
derived from the Matrix mechanism under the public-n regime. We hereafter refer to
the (original) non-negative wavelet method, the public-n non-negative wavelet method,
and the top-down census method as NN-Wavelet, NN-Wavelet+ , and USCB Topdown,
respectively.

We apply these methods to data from the 2010 Japanese Population Census for a 1/2
standard area grid data (n = 512 × 512 = 262,144 grids, approximately 500 m per side)
over a 256-km2 area in the Tokyo region.
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Figure 1 shows the original data, with lighter colors indicating higher populations.
The data include 47,016,253 persons as the total population, and contain 95,317 nonzero
values for a density ratio of approximately 36%. This is a remarkably high density for
a census dataset, and is due to the fact that the region includes areas with the highest
population densities in Japan (the Tokyo metropolitan area). However, it also includes
uninhabitable areas (lakes and marine areas), which were processed as non-structural
zeroes.

Fig. 1. Results for original data Fig. 2. Results for the laplace mechanism

Figure 2 shows the results for the application of the Laplace mechanism (ε = 0.1).
Areas shown in white are those violating non-negativity constraints. These account for
91,744 (approximately 35%) of all cells. As the Laplace mechanism generates sym-
metrical noise for each cell, approximately 64% of the zero-valued cells in the original
data have changed to negative (the others have changed to positive). Since all of the cell
values have changed to nonzero, density is 100%.

Figure 3 shows the results for the application of the 2D-Privelet (ε = 0.1). These
results include more white areas (with violation of non-negativity constraints) than the
results from the Laplacemechanism; the number of the negative cells is higher at 118,805
(45%), which constitutes a worse result compared to the Laplace mechanism. At 100%,
density is the same as for the Laplace mechanism.

Fig. 3. Results for 2D-privelet Fig. 4. Results for the NN-Wavelet method
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Figures 4, 5 and 6 show the results for the application of the NN-Wavelet, NN-
Wavelet+ , and USCB Topdown methods (ε = 0.1). Results appear similar and the
absence ofwhite areas indicates that no violations of non-negativity constraints occurred.
Non-zero cells (and non-zero ratio) are 71,929 (27%), 60,832 (23%), and 52,789 (20%)
respectively, which implies that the sparsity of the original data is largely maintained.

Fig. 5. Results for the NN-Wavelet+ method Fig. 6. Results for the USCB Topdown
method

These results indicate that the Laplace mechanism and 2D-Privelet result in negative
values, and that this effect is more pronounced for population data that is sparse (i.e.
includes many zero-values). Results also suggest that the Laplace mechanism and 2D-
Privelet both fail tomaintain the sparsity of the original data, while theNN-Wavelet, NN-
Wavelet+ and USCB Topdown me- thods all preserve both non-negativity and sparsity
of the original data.

To address errors for partial sums, for each method we conduct an empirical assess-
ment of the mean absolute error (MAE) and the root mean squared error (RMSE) for
privacy loss budgets ε of {0.1, 0.2, ln 2, ln 3, 3, 5, 10}. The results show similar trends
for all values of ε and no significant difference between MAE and RMSE, so in the
following section we discuss only results for the MAE of ε = 0.1. The other results are
included in the Appendix Fig. 8, 9, 10, 11, 12 and 13 and Appendix Table 1.

Figure 7 shows the size of the error (mean absolute error over 100 trials) for partial
sums for ε= 0.1. The horizontal axis x shows the area size of the partial sums (logarithmic
base 2). For example, a value of x = 4 indicates an area which contains 16 (=2ˆ4) grid
cells.
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Fig. 7. Size of the Error (Mean Absolute Error Over 100 Trials) for partial sums for ε = 0.1

For the Laplace mechanism, the size of the error for partial sums is small for
small areas, but greatly increases for large areas. This reflects the fact that the Laplace
mechanism does not have any particular means to alleviate the noise of partial sums.

For 2D-privelet, the size of the error for partial sums is comparatively flat; even
for large areas, the degree of increase in the error is small. At the same time, it is
significantly larger for 2D-privelet than for the NN-Wavelet, NN-Wavelet+ , and USCB
Topdown methods regardless of area size.

All three methods allow to control in the degree of increase in the error for partial
sums similar to 2D-Privelet. Among the three methods, the size of the error is smallest
for most areas in case of the NN-Wavelet method, and gradually increases for the NN-
Wavelet+ and USCB Topdown methods. It is remarkable that for the NN-Wavelet+ and
USCB Topdown methods, the size of the error significantly decreases for large area
sizes close to the whole area sum (x = 18). This is due to the fact that the NN-Wavelet+
and USCB Topdown methods do not add noise to the total population according to a
public-n regime (where the size of the ‘adjacent’ database does not change and thus the
total population can be safely preserved), while the (original) NN-Wavelet method adds
noise to the total population in order to follow the rule of private-n regime (where the
disclosure of the total population can violate the privacy).

The above results also hold when we use RMSE as the indicator of errors, as shown
in the Appendix Table 2.

6 Conclusion

This paper describes the methodology of differential privacy, and applies three differen-
tial privacy methods (non-negative Wavelet method, its public-n variant and top-down
census method) to Japanese population grid data. Results show that the top-down census
method - despite its complex structure - can be applied to population grid data, and
demonstrate that the non-negative Wavelet method delivers higher accuracy at identical
security levels than the top-down census method, while having only half the variance of
added noise. This paper also demonstrates that for population grid data, both the non-
negative Wavelet method (and its public-n variant) and the top-down census method
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preserve the non-negativity and sparsity of the original data, but each results in a differ-
ent degree of error. This finding offers an important criterion that can make it easier to
choose the most appropriate method among these three options.

The results of this research provide additional options for creating and publishing
statistical tables specifically for small areas, while optimizing data confidentiality and
data utility of the statistical data that is created.

Appendix 1. Definition of Morton Mapping

Definition A2 (Morton order mapping [13]): A mapping F : Rm×m → Rm2
having

the following characteristics. For given A = (
aij

) ∈ Rm×m, a characteristic of F(A) =
(vk) ∈ Rm2

is that for given i = (ik ik−1 · · · i1)2 and j = (jk jk−1 · · · j1)2, aij = vk holds
for k = (ik jk ik−1jk−1 · · · i1j1)2, with (·)2 indicating a binary expansion.

Appendix 2. Definition of Haar Decomposition

Definition A1 (Haar decomposition): Let m := 2k for k ∈N. A mappingHm : Rm → Rm

defined as
Hm(x1, · · · xm) =

(
a1, · · · am

2
, d1, · · · , dm

2

)
,

where ai = x2i−1+x2i
2 , di = x2i−1−x2i

2 for each 1 ≤ i ≤ m
2 is called “Haar decom-

position.” This is a invertible linear transformation, the inverse mapping for which is
called “inverse Haar decomposition”.

This paper particularly considers a Haar decomposition where k = 1, namely,

H2(x1, x2) =
(
x1 + x2

2
,
x1 − x2

2

)
.

Fig. 8. Comparison for MAE between different differential privacy methods, ε = 0.20
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Fig. 9. Comparison for MAE between different differential privacy methods, ε = 0.69

Fig. 10. Comparison for MAE between different differential privacy methods, ε = 1.10

Fig. 11. Comparison for MAE between different differential privacy methods, ε = 3.00
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Fig. 12. Comparison for MAE between different differential privacy methods, ε = 5.00

Fig. 13. Comparison for MAE between different differential privacy methods, ε = 10.00
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Table 1. Size of the Error (MAE) for partial sums for ε = 0.1, 0.2, ln 2, ln 3, 3, 5, 10
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Table 2. Size of the Error (RMSE) for partial sums for ε = 0.1
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Abstract. Producing accurate, usable data while protecting respondent
privacy are dual mandates of the US Census Bureau. In 2019, the Cen-
sus Bureau announced it would use a new disclosure avoidance technique,
based on differential privacy, for the 2020 Decennial Census of Popula-
tion and Housing [19]. Instead of suppressing data or swapping sensitive
records, differentially private methods inject noise into counts to protect
privacy. Unfortunately, noise injection may also make the data less useful
and accurate. This paper describes the differentially private Disclosure
Avoidance System (DAS) used to prepare the 2010 Demonstration Data
Product (DDP). It describes the policy decisions that underlie the DAS
and how the DAS uses those policy decisions to produce differentially pri-
vate data. Finally, it discusses usability and accuracy issues in the DDP,
with a focus on occupied housing unit counts. Occupied housing unit
counts in the DDP differed greatly from 2010 Summary File 1 differed
greatly, and the paper explains possible sources of the differences.

Keywords: Differential privacy · 2020 US Decennial Census ·
Accuracy

1 Background

1.1 History of Census Disclosure Avoidance Techniques

Using a disclosure avoidance technique based on differential privacy represents a
major break from methods used in prior decennial censuses. From 1970 through
2010, the Bureau used a variety of techniques, including whole table suppres-
sion (1970–1980), swapping (1990–2010), and blank and impute (1990–2010), to
protect the confidentiality of respondents [24]. To implement these methods, the
Bureau identified potentially disclosive variables and then found cells with small
counts based on those variables. They would then suppress tables with these
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small counts or swap households matched on key demographic characteristics
between geographic units.1

Traditional disclosure techniques introduced uncertainty into published data.
Whole table suppression withheld information about certain aspects of the pop-
ulation. Swapping introduced error into some counts because households would
not match on all demographic characteristics. It is impossible to precisely quan-
tify the error introduced by these methods because the swap rates and key char-
acteristics are confidential, but the Census Bureau concluded that “the impact
in terms of introducing error into the estimates was much smaller than errors
from sampling, non-response, editing, and imputation” [24, p. 11].

1.2 Reconstruction and Re-identification Attack

Concerned about increased computing power, increased availability of individual-
level publicly available databases, and the massive volume of statistics pub-
lished from decennial censuses, the Bureau executed a reconstruction and re-
identification attack on the 2010 decennial census [2,17,23]. Working from the
database reconstruction theorem [14],2 the Bureau reconstructed 308,745,538
microdata records using their published census block and tract tabulations. Each
reconstructed record had a census block identifier and values for sex, age, race,
and Hispanic ethnicity.3

The Bureau then linked the reconstructed records to a commercial database
by matching on age,4 sex, and block ID. Forty-five percent (138,935,492) of the
reconstructed records shared the same age, sex, and block ID as a record in the
commercial database, which also included names. Finally, the Bureau attempted
to link these 138 million records to the confidential microdata on all attributes–
census block ID, age, sex, race, Hispanic ethnicity, and name. For 52 million
persons, the Census Bureau was able to confirm that the two records referred
to the same person. In other words, the Bureau reconstructed microdata that
allowed it to match of 17% (52 million out of the 309 million) of the population
enumerated in the 2010 decennial census to an external source.

The Census Bureau was able to verify the linkage of the reconstructed micro-
data and the commercial database because they have access to names via the
confidential microdata. As Acting Director of the Census Bureau Ron Jarmin
pointed out, an external attacker would not have access to such data; thus, they
would not know for sure which 17% of the matches were true [19]. Of course, the
1 Space constraints prevent us from a complete discussion of the Bureau’s disclosure

avoidance techniques. Interested readers are directed to McKenna [24,25].
2 The database reconstruction theorem states that respondent privacy is compromised

when too many accurate statistics are published from the confidential data. For the
2010 decennial census, more than 150 billion statistics were published [23].

3 The Bureau reconstructed microdata from a set of 2010 decennial tables. Tables P1,
P6, P7, P9, P11, P12, P12A-I, and P14 for census blocks and PCT12A-N for census
tracts were used in the reconstruction [23].

4 The Bureau linked the two datasets by exact age and by age plus or minus one year.
[23].



Disclosure Avoidance for the 2010 DDP 355

attacker may have access to other datasets for verification purposes, but those
datasets will differ from the confidential microdata.

1.3 Differential Privacy

For the 2020 Census, the Bureau has adopted disclosure control methods con-
forming to differential privacy. Differential privacy is a class of methods for intro-
ducing noise into published data [15].5 Differential privacy is best understood as
a description of the privacy-protecting properties of the algorithm used to gener-
ate published data, rather than a specific algorithm for implementing disclosure
control. While differential privacy guarantees risk is below a certain level, it does
not guarantee absolute protection from re-identification for all individuals.6

While differential privacy is not a specific algorithm, implementations of dif-
ferential privacy generally follow a pattern of calculating cross-tabulations from
“true” data and injecting noise drawn from a statistical distribution into the
cells of the cross-tabulation. To illustrate with a simple example, let’s say we
asked 100 people about their sex and school attendance status and created the
cross-tabulation of sex by school attendance (Table 1, confidential panel). For
each of the six cells in the cross-tabulation, we draw a random value from a
Laplace distribution with a pre-specified scale and add it to the value of the cell
(Table 1, diff. private panel).

Table 1. Confidential and differentially private cross-tabulations from a simple survey.

Sex Never attended Attending Attended in past Total

Confidential

Male 3 12 33 48

Female 4 17 31 52

Total 7 29 64 100

Diff. private

Male 3 − 1 = 2 12 + 0 = 12 33 + 1 = 34 48 + 0 = 48

Female 4 + 8 = 12 17 + 2 = 19 31 − 2 = 29 52 + 8 = 60

Total 7 + 7 = 14 29 + 2 = 31 64 − 1 = 63 100 + 8 = 108

5 Readers interested in learning more about differential privacy are directed to Wood et
al. [32] and Reiter [27]. These papers provide a relatively non-technical introduction
to the topic. A critique of differential privacy can be found in Bambauer et al. [5].

6 The Census Bureau executed a reconstruction and re-identification attack on the
2010 Demonstration Data Product, which was generated from a differentially pri-
vate algorithm. Approximately 5% of the reconstructed microdata records were suc-
cessfully matched to confidential data. The 5% re-identification rate represents an
improvement over the 17% re-identified from the 2010 decennial census data, but it
still represents approximately 15 million census respondents [21].
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Three key points from this simple example are worth noting. First, the noise
introduced into each cell is independent of the original value of the cell. There-
fore, it is possible to introduce relatively large noise values into relatively small
cells. In the example, the number of females who had never attended school
tripled from four to twelve in the noisy data. Second, introducing noise per-
turbs not only the values of the cells in the cross-tabulation but the size of the
overall population. In the example, our original sample included 100 individu-
als, but the differentially private data described 108 synthetic records. Finally,
though not illustrated in this example, it is possible to introduce noise such that
cell values become negative. If a data producer wishes to maintain the total
population count and avoid negative values in published data, they must use
a post-processing algorithm that enforces total population as an invariant and
non-negativity.

2 2010 Demonstration Data Product

The Census Bureau released the 2010 Demonstration Data Product (DDP) in
October 2019 to help users examine impacts of the new disclosure avoidance
algorithm on decennial census data [9].7 The DDP consists of two datasets -
the Public Law 94-171 Redistricting (PL 94-171) dataset and a partial version
of the Demographic and Housing Characteristics (DHC) dataset.8 Each dataset
contains multiple tables for multiple geographic levels. Details about the tables
and geographic levels are available in the technical documentation for the 2010
DDP [10].

The Bureau generated the DDP by running the 2010 Census Edited File
(CEF)9 through its Disclosure Avoidance System (DAS). The DAS takes in a
data file and a set of parameters detailing the privacy loss budget, its allocation,
and invariants and constraints. It then injects noise drawn from particular two-
sided geometric distributions into the counts for geographic units. After the
noise injection, the DAS uses a “Top-Down Algorithm” developed by Census
to construct differentially private tabulations for specified geographic levels that
are internally consistent and satisfy other invariants and constraints. Finally, it
7 The 2010 Demonstration Data Product was the Census Bureau’s third dataset pro-

duced by the Disclosure Avoidance System (DAS). The DAS consists of the Bureau’s
differentially private algorithm and the post-processing routines required to enforce
constraints. The first dataset contained tabulations from the 2018 Census Test enu-
meration phase, carried out in Providence County, Rhode Island. The second dataset
consists of multiple runs of the DAS over the 1940 complete-count census microdata
from IPUMS. Details are available in [3,22].

8 The Demographic and Housing Characteristics dataset is the replacement for Sum-
mary File 1.

9 All decennial census products, except for Congressional apportionment counts, are
derived from the Census Edited File (CEF). The CEF is produced through a series of
imputations and allocations that fill in missing data from individual census returns
and resolve inconsistencies. Readers interested in a more detailed discussion of the
CEF production are directed to pages 10–11 of boyd [6].
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generates the Microdata Detail File (MDF), which is differentially private. The
Bureau’s tabulation system reads in the MDF and constructs the PL94-171 and
DHC tables for specified geographic levels. The DDP consists of these PL94-171
and DHC tables.

The 2010 Summary File 1 and PL94-171 datasets were also tabulated from
the 2010 CEF and contained the same set of geographic levels and units as the
DDP. By publishing the same set of tabulations for the same set of geographic
units based on the same input data, the Bureau facilitated comparisons between
a dataset produced using traditional disclosure avoidance techniques (Summary
File 1 and PL94-171) and one produced using a differentially private algorithm
(DDP). Data users could compare statistics derived from both products and
determine whether the differentially private data would fit their needs.10

2.1 Policy Decisions

Disclosure control algorithms require parameters that control the amount of
noise, suppression, or swapping applied to the input data. Values for these
parameters have impacts on the quality and accuracy of the output data, and
it is critical that data users understand both the significance of the parame-
ters and their possible range of values. This section will discuss the Top-Down
Algorithm’s parameters and their values that were used to generate the DDP.

Global Privacy Loss Budget. The global privacy-loss budget (PLB), usually
denoted by the Greek letter ε, establishes the trade-off between the privacy
afforded to Census respondents and the accuracy of the published data. Values
for ε range from essentially 0 to infinity, with 0 representing perfect privacy/no
accuracy and infinity representing no privacy/perfect accuracy.11 Once the global
PLB is established, it can then be spent by allocating fractions to particular
geographic levels and queries. Geographic levels or queries that receive larger
fractions will be more accurate, and levels or queries that receive smaller fractions
or no specific allocation will be less accurate.

For the DDP, the Census Bureau’s Data Stewardship Executive Policy Com-
mittee set the global PLB to 6.0, allocating 4.0 to person tables and 2.0 to
household tables. The person and household PLBs were then allocated to com-
binations of geographic levels and queries [12,16]. The geographic level-query
allocations ultimately determine the magnitude of the noise injected into counts.

10 The National Academies of Sciences, Engineering, and Medicine’s Committee on
National Statistics (CNStat) hosted a 2-day workshop on December 11–12, 2019.
Census Bureau staff members presented details of the algorithm used to cre-
ate the DDP. Census data users presented results from analyses that compared
the 2010 DDP with 2010 Summary File 1 and PL94-171 data products. Privacy
experts discussed issues surrounding the decennial census and potential harms of
re-identification. Videos and slides from the workshop are available at https://sites.
nationalacademies.org/DBASSE/CNSTAT/DBASSE 196518.

11 Technically, ε must be greater than 0. If ε was zero, then no data would be published.

https://sites.nationalacademies.org/DBASSE/CNSTAT/DBASSE_196518
https://sites.nationalacademies.org/DBASSE/CNSTAT/DBASSE_196518
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Geographic Levels. If we think of the cross-tabulations into which noise is
injected as a set of rows and columns, the geographic levels define the rows.
Each row in a cross-tabulation is a geographic unit within a geographic level (e.g.,
Minnesota is a geographic unit in the State geographic level). Seven geographic
levels in the Census Bureau’s hierarchy [8] received direct allocations of the
PLB. The nation and state levels received 20% each, and the remaining five
levels (county, census tract group,12 census tract, block group, block) received
12% each. These allocations are the same for the person and household tables.

For geographic levels that receive no direct allocation of the PLB, they accu-
mulate accuracy from the units that comprise them. Levels created from census
blocks will inherit accuracy of census blocks. Within a particular level, units with
larger populations will be more accurate than units with smaller populations.

Queries. If geographic levels define the rows of a cross-tabulation, then queries
define the columns. Queries are essentially combinations of demographic or hous-
ing variables, and the PLB is allocated to these queries. Queries receiving a larger
fraction of the PLB will be more accurate.

The DAS defines two types of queries. “Detailed” queries consist of all unique
combinations of variables, and “DP queries” are specific combinations of vari-
ables. The “detailed” queries allow the Bureau to reconstruct the underlying
microdata, and “DP queries” allow policy makers to select the statistics and
relationships that will be more accurate in the published data.

Queries defined in the DAS do not have a one-to-one relationship with the
tables published in the 2010 DDP. The queries are used in the noise injection and
optimization processes, and the published tables are created from the synthetic
microdata created by those processes. Categories in the published tables can and
will differ from those used in the queries.

The Census Bureau designed seven queries to support the production of
the person tables and six queries to support the production of the household
tables in the 2010 DDP. Each query received a direct allocation of the PLB. The
voting age * Hispanic origin * race * citizenship13 query received the largest
allocation (50%) of the person PLB. The sex of householder * Hispanic origin
of householder * race of householder * household type and the Hispanic origin

12 The census tract group is not a standard unit in the Census Bureau’s geographic
hierarchy. It was created specifically for the DAS to control the number of child units
for each county. The census tract group consists of all census tracts with the same
first four digits of their code (e.g., tract group 1001 consists of tracts 1001.01 and
1001.02). The DDP does not include data for tract groups.

13 At the time the DAS for the 2010 Demonstration Data Product was designed, the
Census Bureau assumed the citizenship question would be included on the 2020
Decennial Census questionnaire. Even though the US Supreme Court ruled in favor
of the plaintiffs and removed the question, the Bureau did not have time to remove
the citizenship variable from the DAS. No actual citizenship data was used to create
the 2010 DDP; instead, the Bureau imputed citizenship status for records in the
CEF [10].
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of householder * race of householder * household size * household type queries
received the largest allocations (25% each) of the household PLB. A list of all
DDP queries and their allocations can be found in AppendixA.

Invariants and Constraints. Invariants and constraints play key roles in the
DAS, particularly in post-processing routines applied to the noisy counts. Invari-
ants are counts computed directly from the CEF into which no noise is injected.
Constraints control the types and range of values in the final tabulations.

While the Bureau has not finalized the invariants for the 2020 Decennial Cen-
sus, they did establish four invariants for the DDP. Total population is invariant
at the state-level, and total housing units, total group quarters facilities, and
total group quarters facilities by type are invariant at the census block-level.14

These same four counts were invariant at the census block-level in the 2010
Decennial Census. Additionally, voting age population and occupied housing
units (i.e., households) were invariant at the census block-level [1].

Constraints are the set of rules that the data produced by the DAS must follow.
For the DDP, constraints included non-negativity, integer, and hierarchical consis-
tency constraints. The non-negativity and integer constraints require all counts to
be positive integer values. The hierarchical consistency constraint imposes con-
sistency among geographic and attribute hierarchies. For geographic hierarchies,
counts for child units must sum to the counts of the parent unit. For attribute hier-
archies, counts for child attributes must sum to the counts of the parent attribute.
If we sum the counts of occupied and vacant housing units for a given geographic
unit, the sum must equal the published total housing unit count for the same unit.

2.2 2010 DDP Disclosure Avoidance System (DAS)

The DAS that generated the 2010 DDP consists of three steps: generating counts
from the CEF, injecting noise, and post-processing to satisfy constraints.

Generating Counts. The first step in the DAS produces counts from the CEF.
The DAS consumes the CEF, the queries, and the geographic levels and creates
a set of histograms - one for each combination of query and geographic level.
The cells each histogram contain the counts of a particular set of categories (e.g,
40 year-old females) for a given geographic unit. The number of cells in these
histograms may be massive, particularly at the census block level, and the counts
in the cells may be small or even zero.

Noise Injection. The second step in the DAS injects noise into the cell counts
generated in the first step. These “noisy counts” are, by definition, differentially
private, but they may not satisfy invariants or constraints set by policy. The
noise injection step is accomplished through the following sub-steps.
14 The geographic level associated with an invariant is the lowest level at which the

invariant holds. All geographic levels composed of the lowest level will also be invari-
ant.
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Compute ε for Each Geographic Level * Query Combination. Policy decisions
establish the global privacy loss budget and the fractional allocations of that
PLB to specific geographic levels and queries. The DAS computes the ε value
for each histogram as the product of the corresponding query and geographic
allocations from the PLB.

Compute the Scale Parameter for the Statistical Distribution. Noise-injection
values are generated by randomly drawing a value from a statistical distribution.
The shape of the distribution is controlled by the scale parameter calculated in
Eq. (1).

2
ε

= s (1)

For this sub-step, ε is the histogram-specific value computed in the previous
sub-step. The numerator is the sensitivity of the query, which is always 2 for his-
tograms [13].15 Scale parameters are shown in Table 2. Nation and state param-
eters are in column Scalenation, and parameters for the other five geographic
levels are in column Scalecounty. Larger scale parameters represent distributions
with higher variances, which yield potentially larger noise values.

Generate and Inject Random Noise into Each Histogram Cell. The final step in
the noise injection process is to actually draw random values from the statistical
distribution for a given geographic level * query combination and inject those
values into the histogram cells computed from the CEF in Step 1. The scale
parameter computed in the previous step determines the shape of a particular
distribution.16
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Fig. 1. Noise distributions used for the detailed histogram at the county, tract group,
tract, block group, and block geographic level. The scale parameter for this distribution
is 41.67.

15 Sensitivity is the value by which a query changes if we make a single modification
to the database. Histogram queries have a sensitivity of 2 - if we increase the count
in a cell by 1, we must decrease the count in another cell by 1.

16 Two types of distributions - the two-tailed geometric and the Laplace - are typically
used to achieve differential privacy. The two-tailed geometric distribution is used
when integers are required, and the Laplace distribution is used when real numbers
are required. Source code for the 2010 DDP includes functions for both types of
distributions [11].
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Figure 1 depicts the Laplace distributions used for the detailed histogram
at the county, tract group, tract, block group and block geographic levels. The
labeled vertical lines illustrate the 75th and 97.5th percentiles. Fifty percent of
all random draws will fall between 29 and −29, and 95% of all random draws
will range from 125 to −125.

Post-processing. The output of step two is a series of noisy, differentially
private, histograms, one for each geographic level * query combination. The raw
noise-injected histograms are not integer-valued and may include negative values.
Furthermore, because noise is injected independently into each histogram, they
are inconsistent with each other, both within and across geographic levels. The
histograms also do not satisfy invariants such as total population. Finally, the
set of queries and geographic levels used for noise injection does not match the
set of cross-tabulations and geographic levels desired for publication. In order
to produce the final dataset, the Census conducts a series of optimization steps
that ultimately generate synthetic microdata, which can then be tabulated to
create tables for publication.

The Census refers to their post-processing algorithm as a “Top-Down Algo-
rithm” because it starts at the national level and works down the geographic
hierarchy, successively generating data for finer geographic levels. A diagram
depicting the flow of data through noise injection and optimization can be found
in AppendixB.

Generate National-Level Detailed Histogram. The first post-processing step pro-
duces an optimized version of the national-level detailed histogram. The detailed
histogram is essentially a cross-tabulation of all possible categories of all the vari-
ables, which fully defines synthetic microdata.

The national-level detailed histogram is generated by solving an optimization
problem to minimize the differences between the detailed histogram and the
set of noisy histograms [22].17 The optimization problem includes constraints
to enforce invariants, non-negativity, integer values, and implied constraints to
maintain consistency between person and household tables.

Generate Detailed Histograms for Lower Geographic Levels. At each subsequent
geographic level, a similar optimization problem is solved, minimizing the differ-
ences between that level’s set of noisy histograms and the output detailed his-
togram for that level, while matching invariants and meeting other constraints.
For these lower geographic levels, the optimization problem also includes an
additional constraint in the form of the detailed histogram from the parent level.
Effectively, the lower-level optimization problems assign geographic identifiers to
the synthetic microdata defined by the national-level detailed histogram in such
a way as to best match the noisy lower-level queries.

17 The optimization problem is actually solved in two stages, one to enforce non-
negativity and optimize over the set of queries and a second stage to produce an
integer-valued detailed histogram.
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Generate Final Synthetic Microdata and Cross-Tabulations for Publication. The
final detailed histogram is at the block level. This histogram is then transformed
into synthetic microdata records, each with a full set of characteristics and a
block identifier, constituting the Microdata Detail File (MDF). The Bureau’s
tabulation system then reads in the MDF and constructs the PL94-171 and
DHC tables for specified geographic levels.

3 Data Usability Insights from the DDP

Publication of the 2010 Demonstration Data product allowed data users to com-
pare statistics from the DDP with those from Summary File 1 (SF1), which was
produced using traditional disclosure avoidance techniques. In doing so, users
discovered several problematic aspects with respect to the accuracy of the DDP
[4,20,26,28–31]. Many users have concluded that if 2020 decennial census data
were published based on the DAS as implemented in producing the DDP it would
be unusable for their needs. Below, we explore several of the issues that seem
to contribute to these data usability problems by examining the particularly
surprising inaccuracies in occupancy rates in the DDP.18

The DDP data showed 310 of the 3,221 counties in the United States and
Puerto Rico as having occupancy rates of 100% (i.e., no vacant housing units).19

In the SF1 data, no counties had 100% occupancy rates. These discrepancies
represent known error in the DDP data because counts of both total housing
units and occupied housing units were invariant to the block level in SF1. These
errors can be traced to particular aspects of the DAS algorithm design and
policy decisions, including the design of the household queries and allocation
of the PLB among them and the invariants and constraints applied during the
optimization process.

3.1 DDP Calculation of Occupancy Rates

First, it is important to understand how occupancy rates were calculated for the
DDP. The Census Bureau’s Data Stewardship Executive Policy (DSEP) com-
mittee made two critical recommendations that impacted the occupied housing
unit counts: (1) the count of housing units be invariant for all geographic levels
in the census hierarchy; (2) the count of occupied housing units will be sub-
ject to disclosure avoidance [16]. Housing unit characteristics were not directly
included in the DAS queries, but the count of occupied housing units is, by def-
inition, equal to the count of households. The count of vacant housing units is
the difference between total housing units and households.
18 The Census Bureau fielded so many questions about occupancy rates that they added

a question to their FAQ [7]. The answer mentions that Census would look into the
issue and post answers or updates. As of 2020-05-22, no answers or updates have
been posted.

19 Readers interested in learning more about the discrepancy should watch Beth Jarosz’
presentation at the December 2019 CNStat workshop on the 2010 Demonstration
Data Product [20].
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3.2 Household Query Design and PLB Allocation

The combination of the design of the household queries and PLB allocations is
likely to have resulted in a low signal-to-noise ratio in the noisy household his-
tograms. Counts of households are, by definition, equal to or less than counts of
persons. (In 2010 the national average household size was 2.68.) Except for the
detailed histogram, the household histograms generally include many more cells
than the person histograms. This means that CEF counts in many of the household
histogram cells are quite small. In the SF1 data, the median count of households
in counties is approximately 10,000. As an example, if 10,000 households were dis-
tributed evenly over the 384 cells in the sex of householder * household type * elderly
histogram, each cell would have a count of about 26. Of course, most households
will be in the male-no elderly cells, so other cells will have even smaller counts.
With a scale parameter of 83.33, 50% of the draws of noise from the Laplace dis-
tribution for this histogram are expected to have absolute values greater than 57,
easily doubling the original count or dropping it below zero. The situation is simi-
lar or worse for the other household histograms, meaning the information content
of each histogram is largely obscured by the noise injected.

The set of household queries and allocation of PLB over the queries further con-
tributes to the low signal-to-noise ratio. Overall, the household queries received an
initial PLB allocation of 2.0, compared to the person queries’ allocation of 4.0. No
single household query received more than a 0.25 fractional allocation of the 2.0
PLB. This means that none of the counts or relationships are particularly well pre-
served. Furthermore, most of the household variables appear in just one or two of
the queries (see AppendixA for details). Variables that appear in multiple queries
provide redundancy in the set of histograms passed into the optimization problem
that helps to pull the solution back toward the true values. Without this redun-
dancy, the original signal tends to get lost in the noise.

3.3 Optimization and Constraints

The non-negativity constraint and block-level total housing unit invariant used as
constraints in the DAS optimization ultimately result in the observed occupancy
rate errors. The non-negativity constraint requires that every cell in the final
detailed histogram be non-negative. As described above, many of the cells in the
noisy household histograms will be negative, especially for geographic units with
smaller numbers of households. Returning these cells to zero effectively adds
households to these small places, resulting in positive bias. Dividing counties
into quintiles by SF1 household count, counties in the three lowest quintiles
consistently have more households in the DDP data than in SF1 (Fig. 2).

The invariant number of housing units down to the block level implies an
upper-bound constraint on the number of households. Each geographic unit must
have no more households than it has housing units. With the low signal-to-noise
ratio in the noisy histograms, especially at the block level, this constraint is
the strongest signal present in the optimization problem. Many geographic units
therefore receive a number of households equal to the number of housing units,
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Fig. 2. Boxplots of county-level differences in household counts between DDP and SF1.
Quintiles are computed from the invariant SF1 counts.

resulting in 100% occupancy rates. This is especially true for geographic units
with smaller numbers of households that are affected by positive bias due to the
non-negativity constraint.

While this combination of factors is especially problematic for the occu-
pancy rate results in the DDP, the issues are not limited to this particular
case. Researchers analyzing the DDP data in comparison to the SF1 data have
found evidence of related issues in many aspects of the data. The issue of scale-
independent noise affects all of the millions of cells with small counts in both
the person and household histograms, making counts of many population sub-
sets unreliable. The combination of the non-negativity constraint and popula-
tion invariants consistently leads to bias increasing counts of small subgroups and
small geographic units and decreasing counts of larger subgroups and geographic
units.

4 Conclusion

Adopting a disclosure control technique based on differential privacy “marks
a sea change for the way that official statistics are produced and published”
[18]. It is critical that data users understand this new technique so they can
judge whether the published data are fit to use. As the occupancy rate exam-
ple demonstrated, the algorithm that generated the 2010 Demonstration Data
Product Data produced highly problematic and biased data. Users must also
be aware of the policy decisions required by the technique so that they may
participate effectively in the decision-making process.
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A Privacy Loss Budget Allocations

Table 2 lists the 7 person and 6 household queries that received direct allocations
of the privacy loss budget. The allocations are shown in the PLBfrac column.
The bold rows are the queries with the largest PLB allocation.

The Scalenation and Scalecounty columns list the scale factors used to gen-
erate the statistical distributions from which noise injection values are drawn.
The Scalenation values are used for the nation and state histograms, and the
Scalecounty values are used for the county, tract group, tract, block group, and
block histograms.

The Histsize column lists the number of cells in the particular query. This
is the number of cells on each row of the histogram (i.e., for each geographic
unit). The value is generated by multiplying together the number of categories
for each variable in a query. For example, the Sex * Age (64 year bins) query
has two categories for sex and two categories for age giving a histogram size
of 4. Category counts for each variable are listed in frequently asked question
11 in [7].

Table 2. Privacy loss budget allocations and scale parameters for 2010 DDP queries.

Query Histsize PLBfrac Scalenation Scalecounty

Person

Detailed person 467,712 0.10 25.0 41.67

Household/group quarters 8 0.20 12.5 20.83

Voting age * Hisp * Race * Citizen 504 0.50 5.0 8.33

Sex * Age (single year bins) 232 0.05 50.0 83.33

Sex * Age (4 year bins) 58 0.05 50.0 83.33

Sex * Age (16 year bins) 16 0.05 50.0 83.33

Sex * Age (64 year bins) 4 0.05 50.0 83.33

Household

Detailed household 96,768 0.20 25.0 41.67

HHHisp * HHrace * HHsize * HHtype 2,688 0.25 20.0 33.33

HHsex * HHHisp * HHrace * HHtype 672 0.25 20.0 33.33

HHHisp * HHtype * HHmulti 28 0.10 50.0 83.33

HHsex * HHtype * HHelderly 384 0.10 50.0 83.33

HHsex * HHage * HHtype 432 0.10 50.0 83.33



366 D. Van Riper et al.

The variable names in the household queries are described in Table 3.

Table 3. Variable names and descriptions.

Variable name Variable description

HHsex Sex of householder

HHrace Race of householder

HHHisp Hispanic/Latino origin of householder

HHsize Household size

HHtype Houehold type

HHmulti Presence of three or more generations in household

HHelderly Presence of persons age 60+, 65+, or 75+

B Top-Down Algorithm flow diagram

Figure 3 depicts the flow of data through the noise injection and optimization
steps of the Census Bureau’s Top-Down Algorithm.

Fig. 3. Census DAS optimization flow diagram.
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