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Preface

Over the past few years, food bioactives have gained attention due to their potential 
in reducing the risk of diseases, such as obesity, cardiovascular disease, diabetes, 
and cancer. This potential is attributed to the antitumor, anti-inflammatory, antihy-
perlipidemic, antioxidative, antihypertensive, and antiviral activities of bioactives, 
in addition to their essential nutritional functions. The effectiveness of food bioac-
tives depends on different parameters such as bioactivity, bioavailability, metabolo-
mics, nutrigenomics, and stability within the food matrix. For instance, bioactives’ 
delivery via the oral route is restricted by gastrointestinal enzymes, harsh pH, the 
epithelium, and the mucus layer. Lately, researchers have investigated bioactive 
compounds, bioaccessibility, and functions in detail, whereas the development of 
nutraceutical applications has attracted considerable interest. Functional, “super,” 
and “tailor-made” foods are generated after manufacturing typical or traditional 
food products with ingredients that modify their properties (e.g., by binding, chang-
ing structure, or interface) and provide health benefits to them.

The Food Waste Recovery Group provides insights into all scientific and tech-
nological aspects dealing with food and the environment. The group has published 
several books dealing with biobased products and industries, sustainable food sys-
tems, saving food, as well as technologies and applications (for commodities such 
as cereals, coffee, grape, olive, and meat) for food waste recovery. Others are 
handbooks that deal with innovations strategies in the food and environmental sec-
tors, nonthermal processing, food shelf-life and quality, nutraceuticals, and food 
ingredients such as polyphenols, carotenoids, proteins, lipids, glucosinolates, and 
dietary fiber.

Following the above considerations, the book covers food bioactives’ properties 
and health effects given the new trends in food science and technology. It aims at 
supporting the scientific community that aspires to understand the role of food bio-
actives in health and develop applications in personalized nutrition, in functional 
foods, nutraceuticals, and personalized nutrition.

The book consists of 10 chapters. Chapter 1 describes the principal sources of 
polyphenols and then correlated them with their properties (health), particularly 
absorption (bioavailability), metabolism, gut flora, and chronic disease (cardiac 
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health, obesity, diabetes, cancer, among others). Polyphenols are a very diverse and 
multifunctional group of phytochemicals widely found throughout the plant king-
dom. The main classes of polyphenols are tannins, lignans, phenolic acids, phenolic 
alcohols, flavonoids, stilbenes, coumarins, and chalcones. The remarkable chemical 
structure of polyphenols leads to their biological and physiological activities, 
mainly due to the antioxidant activity that allows them to be used as additives in 
food products, delaying the oxidation process.

Chapter 2 discusses the biochemistry and health properties of glucosinolates, 
their physiological significance, as well as the hydrolysis process in the plant 
response to different abiotic stresses. Glucosinolates are a group of sulfur- and 
nitrogen-containing glycosides found in plants such as broccoli, cabbage, radish, 
and cauliflower, among others. Their hydrolysis byproducts, namely isothiocya-
nates, are responsible for the distinct aroma and pungent taste of cruciferous spe-
cies, most of which contain species-specific glucosinolates. They are considered as 
beneficial to human compounds with several confirmed health effects. At the same 
time, a significant amount of research work has been carried out recently to iden-
tify those mechanisms and synergisms that are responsible for the activities of 
glucosinolates, as well to reveal physiological aspects in the plant–environment 
interactions.

Chapter 3 reviews updated scientific reports about food-derived bioactive pep-
tides and proteins and about their potential preventive or alleviating role in the dead-
liest noncommunicable diseases. Cardiovascular diseases, cancer, diabetes, 
neurodegenerative disorders, as well as oral cavity diseases as a predisposing factor 
to the development of other essential illnesses are addressed. The objective is to 
provide useful information to readers involved or interested in the fields of pharma-
cology and food technology, with the hope that it can serve as an introductory guide 
to recognize the immense potential of peptides and proteins as therapeutic agents.

Chapter 4 discusses the actual state of research concerning the effect of dietary 
fiber on health and the pathways by which this nutrient develops its action. In the 
last years, dietary fiber has gained attention as a bioactive due to its potential health 
benefits in reducing the risks for many diseases, such as cancer and cardiovascular 
ones. This effect is linked to its action against inflammation, oxidation, hyperlipid-
emia, and other physiological disorders. Although research in this area is extensive, 
the elucidation of the mechanisms involved in this bioactivity is not yet conclusive.

Chapter 5 provides information on substances of lipid origin that have had 
important effects on the treatment or prevention of diseases such as cancer, diabetes 
mellitus, cardiovascular disorders, and obesity, among others. Information associ-
ated with metabolites of plant origin, as well as lipids of animal origin and food 
lipids, that have demonstrated hypoglycemic, anti-inflammatory, antiproliferative, 
hypocholesterolemic, antihyperlipidemic, and antihypertensive effects is presented. 
The chapter also discusses topics dealing with the chemical structures of the reported 
lipids, their origin, synthesis, preclinical studies (in vitro, in situ), and clinical stud-
ies, detailing dosage, method of administration, biochemical, molecular, and genetic 
studies, and mechanisms of action.
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Chapter 6 provides a brief review of marine bioactives, including peptides, pro-
teins, vitamins, sterols, fatty acids, polyphenols, saccharides, amino acids, and min-
erals. It also discusses the bioactives derived from marine bacteria as well as 
different techniques used for marine bioactives recovery. Marine organisms are a 
rich source of bioactive compounds. Bioactive compounds are compounds with 
health-promoting effects. Consumption of these compounds may lower the risk of 
diseases such as heart diseases, cancer, diabetes, osteoporosis, and other complica-
tions. Recently, marine bioactives have attracted much attention due to their enor-
mous health benefits.

Chapter 7 deals with food bioactives that reduce the risk of cardiovascular dis-
eases. Bioactive peptides derived from fish, milk, meat, and plant derivatives dem-
onstrated a significant antihypertensive and lipid-lowering effect in randomized 
clinical trials. Some polyphenols isolated from foods or plants exert anti- 
inflammatory and antioxidant activity, which could strengthen the prevention of 
chronic diseases. Furthermore, polyunsaturated fatty acids, lycopene, alliin, plant 
sterols, monacolin k, and berberine could be considered to support cardiovascular 
risk patients in clinical practice.

Chapter 8 discusses bioactives with neuronal and immune functions. Healthy 
diets are low in saturated fats and carbohydrates and high in fiber and antioxidants 
such as polyphenols and monounsaturated and omega-3 fatty acids, phytosterols, 
and probiotics. It has been shown that polyphenols are interfering with immune cell 
regulation, gene expression, and pro-inflammatory cytokines synthesis. As such, 
these molecules are associated with extended health benefits, playing an essential 
role in the prevention and treatment of various chronic conditions, such as neuro-
logical disorders. Omega-3 fatty acids are known for their positive health effects 
through their anti-inflammatory properties as well as for being essential in neuronal/
brain functioning and its immunomodulatory properties. Intestinal immune stress 
associated with low omega-3 availability might also be involved in the development 
of neuroinflammation and the progression of related diseases.

Although many foods that are in the market are marked as functional foods, the 
problem with bioactive compounds, in and from food sources, is that the health 
claims and their bioavailability are still not fully explored. There are many examples 
of bioactive’s functionalization health claims connected to their functional proper-
ties and their interactions in foods. Chapter 9 leads the reader from the necessary 
steps of acquiring bioactive compounds to their bioavailability analysis, protection, 
and further improvement of their functional properties. The chapter also takes into 
account the fortification of foods with bioactive compounds as a strategy to reduce 
the occurrence of chronic illness as well as challenges that lie ahead for scientists 
dealing with all the aspects of bioactives, from processing to health claims.

Chapter 10 discusses the requirement and regulatory aspects of bioactive com-
pounds from food for health claims. It also includes the fundamental processes on 
the health claims for bioactive compounds from vegetables, fruits, spices, nuts, 
cereals, herbal products, legumes, medicinal plants, probiotics, prebiotics as well as 
those from fungal, algal, and animal sources, and other natural antioxidants. These 
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requirements are meant to protect consumers from frauds perpetrated by  producers/
manufacturers on nutraceutical products. Bioactive compounds’ requirements for 
health claims range from laboratory findings to systematic clinical trials to guaran-
tee safety and provide bioavailability and efficacy of nutraceutical products.

It is hoped that this book will assist food chemists, food scientists, food technolo-
gists, nutritionists, and biochemists as well as researchers, academics, and profes-
sionals working in the food industry. It also concerns individuals and stakeholders 
in the food sector (including small startups) interested in developing nutrition-based 
products. Moreover, university libraries and institutes could use it as a textbook for 
undergraduates and postgraduate level multidiscipline courses dealing with food 
science, food chemistry, and food technology.

At this point, I would like to thank all the authors for their fruitful collaboration 
as well as for the fact that they remained dedicated to the timeline and editorial 
guidelines. I would also like to acknowledge the acquisition editor Daniel Falatko 
and the book manager Aravind M. Kumar, and all colleagues from Springer’s pro-
duction team, for their assistance during the preparation of this book. Finally, I have 
a message for all the readers: those collaborative efforts contain hundreds of thou-
sands of words and thus may contain errors. Thus, constructive comments and even 
criticism are always welcome. In that case, please contact me to suggest any 
changes.

Chania, Greece  
Vienna, Austria  Charis M. Galanakis 
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Chapter 1
Polyphenols

Bianca Chieregato Maniglia, Evertan Antonio Rebelatto, 
Katia Suzana Andrade, Acácio Zielinski, and Cristiano José de Andrade

Abstract Polyphenols are a very diverse and multi-functional group of phyto-
chemicals, widely found throughout the plant kingdom. Their basic monomer 
chemical structure comprises a phenolic ring—a benzene ring(s) with at least one 
hydroxyl group attached to it. The main classes of polyphenols are tannins, lignans, 
phenolic acids, phenolic alcohols, flavonoids, stilbenes, coumarins and chalcones. 
Flavonoids are the most plentiful classes of polyphenols, since they represent ≈4000 
out of 8000 polyphenols already identified. Polyphenols are also classified, merely, 
as flavonoids and non-flavonoids. Flavonoids are chemically composed of backbone 
of two benzene rings linked by a 3 carbon atoms in a chain from the pyran ring. The 
oxidation state of central carbon can be used to subclassify them (flavonoids): flava-
nones, flavanols, flavonols, isoflavonoids, flavones, and anthocyanidins. Rich 
sources of phenolic compounds include grape pomace, apple, berries, oranges, 
pomegranate, tomatoes, coffee, tea, wine, olive oil, among others. The remarkable 
chemical structure of polyphenols leads to their biological and physiological activi-
ties, mainly due to their antioxidant activity. Regarding the effects of polyphenols 
on human health, the phenolics have many health-promoting benefits, including 
antimutagenic, antihypertensive, hypoglycemic and antihyperglycemic, anticancer 
and antiapoptotic, antimicrobial, and inflammatory effects. Furthermore, when the 
phenolic antioxidants are added in food products, they can delay the generation of 
toxic products (oxidation), to act as rancidity regulator and maintaining nutritional 
quality of foods, among others. This chapter describes the principal sources of poly-
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phenols and then correlated their properties (health), particularly absorption (bio-
availability), metabolism, gut flora, chronic disease (cardiac health, obesity, 
diabetes, cancer, among others).

Keywords Polyphenols · Nutraceuticals · Flavonoids · Sources of polyphenols · 
Effect of polyphenols on human health

1.1  Introduction

The plants as fruits, vegetables, herbal teas, and seeds, are rich sources of polyphe-
nols with a wide range of chemical structures (Abbas et al. 2017). These compounds 
are secondary metabolites which show a wide range of function such as protection, 
color and flavor in particular astringency and bitterness (Shahidi and Ambigaipalan 
2015). Furthermore, many health-promoting benefits have been reported, including 
antioxidant, anticancer, antimicrobial, antihypertensive, hypoglycemic and antihy-
perglycemic effects (Teixeira et al. 2014; Gani et al. 2012).

It is worth noting that the plants and their processed products stand out as the 
main sources of polyphenols that are consumed by the population. Polyphenols are 
widely related to human health benefits. Currently, World Health Organization 
(WHO) has recommended ≈0.4 kg per day of vegetables and fruits (5 daily por-
tions) (WHO 2019). In addition, the polyphenols also have been applied in food and 
pharmaceuticals products with the aim to supplement them mainly in their levels of 
antioxidants (Vuorela et al. 2004).

The chapter summarizes the classification and chemical structure of polyphe-
nols, their main vegetable sources and effects on human health.

1.2  Polyphenols; Classification and Chemical Structure

1.2.1  Polyphenols

Phenolic compounds or polyphenols are natural biologically active compounds 
found in plant based-food and that show a wide range of complex structures (Abbas 
et al. 2017). In plants, they exhibit different functions as bio stimulating for plant 
growth or as defense compounds. These compounds are also acknowledged as 
strong natural antioxidants, and it was shown in the literature important biological 
and pharmacological properties such as anti-inflammatory, anticancer, antimicro-
bial, antiallergic, antiviral, antithrombotic, hepatoprotective, food additive, signal-
ing molecules, etc. (Kumar and Goel 2019).

B. C. Maniglia et al.
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In plants, the most of polyphenols is chemically bounded to sugars, which is 
named glycosylated. Polyphenol skeletons can show carbohydrates and organic 
acids bound in different positions (Manach et al. 2004).

Polyphenols show as basic monomer a phenolic ring (structure in Fig.  1.1). 
Generally, these compounds are classified according to the structures shown as the 
number of phenolic rings, substituents linked to the rings, and the structural  elements 
that bind these rings to each other. In this way, there are four main groups of poly-
phenols: phenolic acids, flavonoids, stilbenes, and lignans (Manach et al. 2004).

1.2.1.1  Phenolic Acids

Phenolic acids are related to phenolic compounds that have one carboxylic acid 
group and they are rarely found as free form, normally they are associated with 
amides, esters, and mainly glycosides (El Gharras 2009). Phenolic acids are widely 
found in food, in particular in cereals, herbs, vegetables, legumes, fruits, oilseeds, 
and beverages. These compounds show antioxidant capacity and it occurs by scav-
enging hydroxyl radical, several organic radicals, peroxyl radicals, superoxide radi-
cal anion, several organic radicals, singlet oxygen, and peroxynitrite. Moreover, 
phenolic acid can act as reducing agents, chain-breaking antioxidants, and they are 
important compounds to change cell signaling pathways (Chandrasekara 2019). 
There are two classes of phenolic acids: hydroxybenzoic acid (e.g. syringic acid, 
gallic acid, gentisic acid, and vanillic acid) and hydroxycinnamic acid (e.g. ferulic 
acid, caffeic acid, and p-coumaric acid) (Córdova and Medina 2014). Figure 1.2 
shows the chemical structures of phenolic acids: hydroxybenzoic and hydroxycin-
namic acids.

Fig. 1.1 Phenolic ring 
structure

Fig. 1.2 Chemical structures of phenolic acids

1 Polyphenols
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Generally, the content of hydroxybenzoic acid in edible plants is very low. 
However, some red fruits, onions, and black radish show higher concentrations 
(around tens of milligrams per kilogram fresh weight). In addition, complex struc-
tures such as hydrolysable tannins are composed of hydroxybenzoic acids (e.g. ella-
gitannins in red fruit such as raspberries, strawberries, and blackberries, and 
gallotannins in mangoes) (Manach et al. 2004).

According to Manach et  al. (2004), hydroxycinnamic acid are more common 
than are the hydroxybenzoic acids, and it is represented, mainly, by p-coumaric, 
caffeic, ferulic, and sinapic acids.

In wine, there is one natural hydroxycinnamic acid present in an esterified form 
with tartaric acid, named tartaric p-coumaroyl ester (Salameh et al. 2008). Among 
the phenolic acid in fruits, caffeic acid (free and esterified form) is the most abun-
dant compound present (75 until 100% of the total hydroxycinnamic acid content) 
(Cutrim and Cortez 2018).

In cereal grains, ferulic acid is the most abundant hydroxycinnamic acid found. 
For other side, ferulic acid can be found in free form in beer or tomatoes, and in this 
way, this compound is more efficiently absorbed (Bourne and Rice-Evans 1998; 
Bourne et al. 2000).

Spices, berry fruits, citrus, and vegetables show a bioavailable phytoconstituent 
named sinapic acid (Idehen et al. 2017). According to Vuorela et al. (2004), sinapic 
acid is becoming to be explored in the pharmaceutical, cosmetic, and food indus-
tries because of its inflammatory, preservative, antioxidant, and antimicrobial 
activities.

1.2.1.2  Flavonoids

Flavonoids show the structure composed of two aromatic rings (indicated as A and 
B in Fig. 1.3), linked by three carbon atoms and one oxygen, forming an oxygenated 
heterocycle (ring C in Fig. 1.3). The flavonoids can be classified according to the 
oxidation state of central carbon (C ring, Fig. 1.3) that is involved. In this way, there 
are six classes of flavonoids named: flavanones, flavanols, flavonols, isoflavones, 
flavones and anthocyanidins (Abbas et al. 2017).

1.2.1.2.1 Flavanones

Flavanones show the structure composed by a single bond in the positions of the 
C-ring, C2 and C3 with an oxygen atom in C4 position, and a disaccharide in C7 
(Fig. 1.4) (Liu et al. 2008). Flavanones are contained in citrus fruits, cherries, grape-
fruits, and tomatoes (Asakura and Kitahora 2018). Tomás-Navarro et  al. (2014), 
reported that flavonoids show strong antioxidant capacity, and has been investigated 
for prevention of some cardiovascular disorders and certain kinds of cancer, and 
reduction of certain chronic diseases. These same authors showed that flavanones 
could also exhibit anti-inflammatory, antimicrobial, and antiviral activities, which 
can result in beneficial properties for the health human.

B. C. Maniglia et al.
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1.2.1.2.2 Flavanols

Flavanols show a fully saturated heterocyclic ring with a hydroxyl substituent at 
position C3 (Fig. 1.4). According to Bonetti et al. (2017), cocoa powder and choco-
late, grapes, and teas show in it composition, flavanols and it polymerization prod-
ucts as epigallocatechin, catechin, epicatechin, gallocatechin, gallate derivatives, 
and proanthocyanidine.

1.2.1.2.3 Flavonols

Among the flavonoids, flavonols are the most found in foods, being kaempferol and 
quercetin the most representatives. Flavonols are present in glycosylated forms, 
they show 3-hydroxyflavone backbone, existing in the form of mono-, di-, or trigly-
cosides in vivo (Stracke et al. 2007). Di Matteo et al. (2007) showed that the richest 
sources in flavonols: onions (up to 1.2 g/kg fresh weight), red wine and tea (contain 
up to 45 mg flavonols/L), leeks, curly kale, blueberries, and broccoli. In the litera-

Fig. 1.3 Flavonoid 
skeleton structure

Fig. 1.4 Examples of flavanone, flavanol, flavonol, isoflavone, flavone, and anthocyanidin 
structures

1 Polyphenols
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ture (Kelsey et  al. 2010; Mecocci et  al. 2014) was reported that flavonols have 
shown antioxidant and anti-inflammatory properties.

1.2.1.2.4 Isoflavones

Isoflavones are compounds with the structure in the B-ring connected to the C-ring 
by the position C3 (Figs. 1.3 and 1.4) (Liu et  al. 2008). The most representative 
isoflavone is the daidzein (4′,7-dihydroxy-isoflavone) that is, mainly, found in food 
such as beans, apples, onions, and peas (Ying-Hui et al. 2017). According to Song 
et al. (2016), daidzein shows antioxidant, anti-inflammation, and antiestrogen func-
tions. The authors also reported that the due the pharmacological activities of this 
isoflavone, daidzein has been applied in treating osteoporosis, autoimmune dis-
eases, breast cancer, and cardiovascular disease.

1.2.1.2.5 Flavones

Within the flavonoids, flavones consist of one of the largest subgroups, it can be 
found in all parts of the plants as: leaves, stem, buds, heartwood, bark, thorns, rhi-
zomes, roots, flowers, fruit, and seeds (Zuk et al. 2019). Flavones are synthesized 
from flavanones (direct biosynthetic precursor) in the branch point of the anthocy-
anidin/proanthocyanidin (Martens and Mithöfer 2005). Observing the Fig. 1.4, fla-
vones differ from other flavonoids because show saturation of ring C which is 
named as c-pyrone (Atif et al. 2015).

Flavones show structures diversified, which guarantees a variety of functions, 
such as color control on vegetables and fruits to protect them from UV radiation 
and infectious attacks by microorganisms. (Harborne and Williams 2000). Flavones 
are also important for human nutrition and health, representing an abundant class 
of phytochemicals present in our daily diet (fruits, edible vegetables, seeds and 
nuts) (Martens and Mithöfer 2005). Rice-Evans et al. (1997) reported that polyme-
thoxylated flavones, such as nobiletin and sinensetin can be found, mainly in citrus 
fruits as orange peel. Currently, flavone-containing food has attracted considerable 
scientific and therapeutic interest because of the beneficial effect for prevention of 
some human diseases. Agah et  al. (2017) reported that flavones show structural 
features that make them among the strongest food-derived anti-inflammatory com-
pounds. These authors observed that cereal derived flavones show strong synergis-
tic interaction with derived flavonols against inflammation, and Yang et al. (2014) 
reported that flavones can also protect against estrogen-linked colon 
carcinogenesis.

B. C. Maniglia et al.
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1.2.1.2.6 Anthocyanidins

Anthocyanidins show structure with hydroxyl groups in the positions of C3, C5, and 
C7 in the B ring (Fig. 1.4), however each structure may have its own characteristic 
hydroxyl or methoxyl groups (Swanson 2003). Anthocyanidins are mainly found 
conjugated with glucose moieties and they are found in large concentrations in 
wine, grapes and berries (Stalmach 2014).

The Fig. 1.4 shows some examples of flavanone, flavanol, flavonol, isoflavone, 
flavone, and anthocyanidin structures.

1.2.1.3  Stilbenes

Stilbenes are an important group of nonflavonoid phytochemicals of polyphenolic 
structure characterized by the presence of a 1,2-diphenylethylene nucleus (Sirerol 
et al. 2016). The Fig. 1.5 shows the stilbene skeleton.

According to Chong et  al. (2009), the structures of common plant stilbenes 
showed the follow radicals (being OGlu: O-β-d-glucopyranoside):

• trans-resveratrol: R1 = H, R2 = OH, R3 = OH, R4 = OH;
• trans-piceid: R1 = H, R2 = OH, R3 = OGlu, R4 = OH;
• pinosylvin: R1 = H, R2 = H, R3 = OH, R4 = OH;
• piceatannol: R1 = OH, R2 = OH, R3 = OH, R4 = OH;
• pynosylvin monomethylether: R1 = H, R2 = H, R3 = OCH3, R4 = OH;
• trans-pterostilbene: R1 = H, R2 = OH, R3 = OCH3, R4 = OCH3;
• astringin: R1 = OH, R2 = OH, R3 = OGlu, R4 = OH;
• rhapontin: R1 = OH, R2 = OCH3, R3 = OGlu, R4 = OH.

Stilbenes are compounds naturally present in grapes and have gained a growing 
interest due to health-promoting properties reported (Segade et al. 2019). Raposo 
et al. (2018) reported in recent studies that stilbenes could act as compounds that 
help in the preservation of wine. Guerrero et al. (2020) explored this property, iden-
tifying the stilbene composition and concentration in wines as a quality marker.

Fig. 1.5 Stilbene skeleton 
structures
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1.2.1.4  Lignans

Lignans are a group of diphenolic compounds (two units of phenylpropane units) 
linked by a C-C bond between the central atoms of the respective side chains 
(position 8 or β), as we can see in the Fig. 1.6 (Linder et al. 2015). This type of 
polyphenol is concentrated in the bran layer of cereal grain (Higuchi 2014).

Observing the Fig. 1.7, a compound is considered a lignan if the two units of 
phenylpropane (in the dimericcase) are linked by a β-β’ bond, subsequently denom-
inated 8–8′ bond (Linder et al. 2015). However, according to Linder et al. (2015), 
we can found neolignans that consist in units of phenylpropane combined in 
other way.

According to Das and Devi (2019), we can classify lignans in 8 subgroups based 
on their carbon skeleton, cyclization pattern, and the way in which oxygen is incor-
porated in the molecule skeleton. The subgroups consist in: furans, furofurans, 
dibenzylbutanes, dibenzylbutyrolactones, dibenzocyclooctadienes, dibenzylbutyro-
lactols, aryltetralins and arylnaphthalenes (Das and Devi 2019). The Fig. 1.8 shows 
some generic of lignan skeleton structure.

In addition, according Linder et al. (2015), lignans are also classified into three 
categories in relation to oxygen position: lignans with oxygen at the 9(9′)-carbon, 
lignans without oxygen at the 9(9′)-carbon, lignans with dicarboxylic acid. There is 
possible to find some lignan in more than one category and/or there exist different 
cyclization patterns for a given type. Furan lignans is one example of this behavior, 
it is a lignin that occur with or without oxygen at the 9(9′)-carbon (Linder et al. 2015).

Foods rich in lignin (seeds, whole-grain cereals, and nuts) have been associated 
with biological activities such as cytotoxic (Huang et al. 2013), antioxidative (Duan 
et al. 2009), anti-bacterial (Tago et al. 2008), immunosuppressive (Park et al. 2007), 
anti-inflammatory (Zheng et al. 2014), anti-HIV (Chen et al. 1996), etc.

Fig. 1.6 Phenylpropane 
units

Fig. 1.7 Lignan skeleton
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Fig. 1.8 Generic lignan skeletons
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Lignans such as secoisolariciresinol and its precursor secoisolariciresinol diglu-
coside are the most abundant lignans found in the diet (Peirotén et  al. 2019). 
Moreover, other lignans such as matairesinol, and the secoisolariciresinol precur-
sors pinoresinol and lariciresinol, can also be found in some plant foods 
(Landete 2012).

Summing up, from the main structure surrounding the phenolic ring, there are 
highly diversified classes of secondary metabolites, named phenolic compounds, 
distributed widely in the plant kingdom. Moreover, the diversified structures show 
interesting and different properties that has attracted the attention of many sectors 
as biochemistry, physiology, human nutrition, and health.

1.3  Rich Sources of Polyphenols

1.3.1  Wine and Grape Pomace

The main sources of phenolic compounds in red wine are found in grape skins, pulp 
and seeds. During fermentation, important flavonoids (present in the rind, pulp and 
seeds) are transferred to the wine. Regarding white wine, the mixture is made from 
free running, without the mixture of grapes, i.e. without contact with the skin of the 
grape. Thus, when compared to red wine, white wines have lower polyphenol con-
tent and lower antioxidant properties (Fuhrman et al. 2001).

Flavonols are the main flavonoids present in wine. Among them, stand out quer-
cetin, kaemppferol and myricetin. Also can be mentioned tannins, proanthocyani-
dins and flavanols, such as catechin and epicatechin (Shahidi and Ambigaipalan 
2015). The concentration of phenolic compounds of red wines made from dark- 
skinned grapes usually contain about 3500 mg/L, in which the flavonoid portion 
corresponds to 1000–1800 mg/L (Di Lorenzo et al. 2016).

Wines and grapes also have phenolic acids and stilbenes in their composition. 
Phenolic acids can be found in both red and white wine. Among them can be men-
tioned quinic and shikimic and tartaric acid, present in their free form or glycosyl-
ated derivatives (Monagas et al. 2005).

Grape pomace is a low-cost source of phytochemicals. Different polyphenols are 
found in grape pomace. Among them, flavonols such as catechin, epicatechin and 
proanthocyanidins, as well phenolic acids, tannins and anthocyanins. There are sev-
eral phenolic compounds found in grape skin, such as proanthocyanidins, ellagic 
acid, myricetin, prodelphinidins, kaempferol, quercetin and trans-resveratrol. In the 
grape seed there is catechin, epicatechin, gallic acid, proanthocyanidins and dimeric 
procyanidin (Brenes et al. 2016).

In grape seeds a higher concentration of phenolic compounds can be found than 
in grape skin. For example, in seed about up to 16.518 mg of catechin equivalents 
(EC)/100 g can be found. In the skin the value found was up to 1839 mg EC/100 g. 
Grape seed is abundant in flavonols (oligomeric and polymeric compounds) that 
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have high antioxidant capacity, while the skin is very rich in anthocyanins 
(289–935 mg/100 g) (Rockenbach et al. 2011). Flavonols (quercetin 3-O-glucuronide 
and 3-O-rutinoside-rutin) were found in grape stems, as well phenolic acids and 
dihydroflavonols like astribin (Karvela et  al. 2009). There are several potential 
applications grape pomace, however grape pomace is mostly used for the produc-
tion of animal feed (Celma et al. 2009).

1.3.2  Apple

Apple (Malus domestica Borkh) is a widely consumed fruit worldwide—the third 
largest production, 11.6 million tons (Bondonno et al. 2017; Rabetafika et al. 2014).

The main groups of polyphenols in apple are: phenolic acids, flavanols, anthocy-
anidins, flavonols, and dihydrochalcones. The major apple flavonoids are procyani-
dins, catechins, quercetin glycosides, dihydrochalcones, hydroxybenzoic acids and 
hydroxycinnamic acids and their derivatives (Bondonno et  al. 2017; Kalinowska 
et al. 2014; Khanizadeh et al. 2008; Van Der Sluis et al. 2002).

The total phenolic content in the apple peel is significantly higher and in the tis-
sue located just below the peel, than in the pulp, since apple skin contains ≈46% of 
the total phenolics in apples (Kalinowska et al. 2014; Kondo et al. 2002; McGhie 
et al. 2005).

A low concentration of are flavonoids found in apple juice. Regarding commer-
cially available apple juice, the concentration of quercetin is 14 times lower than 
that found in apples fruits (Hertog et al. 1993).

Substantial fraction of apple fruit production, about 30%, it has used to manufac-
ture processed foods, like beverages and desserts. After production, around 11% of 
the initial mass of the fruit is transformed into by-products (skin, pulp and seeds), 
generating annually, about three million tons of waste (Bondonno et  al. 2017; 
Kammerer et al. 2014; Rana et al. 2015). In the apple pomace, there are several 
polyphenols including flavanols, flavonols and anthocyanins such as cyanidin-3- 
galactosides (Diñeiro García et al. 2009; Kammerer et al. 2014).

1.3.3  Berries

Among the berries black chokeberry, blackcurrant, black elderberry, blueberry, 
blackberry, raspberry, blackberry, strawberry and black grapes stand out due to high 
content of phenolic compounds (Kowalska et al. 2017; Skrovankova et al. 2015; 
Tylewicz et al. 2018).

One of the largest sources of polyphenols found is black chokeberry pomace. 
The production of chokeberry juice generates a larger amount of pomace. In addi-
tion, seed fractions, have high total dietary fiber content ≈75%, which are rich in 
proanthocyanidins (12,000 mg/100 g), anthocyanins (1200 mg/100 g) and amygda-
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lin (7–185 mg/100 g), and can be used in the preparation of dietary fibers prepara-
tions and/or phenolic extracts (Sójka et  al. 2013). Beyond that black elderberry 
contains a high amount of anthocyanins (813 mg/100 g), besides flavonols and cin-
namic acid derivatives (Silva et al. 2017).

Blackberries contain severals polyphenols, in particular, stands out anthocya-
nins, like cyanidin-3-glucoside (Siriwoharn et  al. 2004). Blackberries, raspber-
ries, and strawberries have a similar amount of total phenolic compounds 
(215–260 mg/100 g) (Pérez-Jiménez et  al. 2010). However, when compared to 
 blueberries, blackberries, and raspberries; strawberries have a significant lower 
content of anthocyanins (Skrovankova et al. 2015).

The anthocyanins present in blueberries are mainly present in the skin. Many of 
these anthocyanins, exhibit excellent antioxidant activity, such as: delphinidin-3-
O- galactoside, cyanidin-3-O-galactoside, delphinidin-3-O-arabinoside (Borges 
et al. 2010).

Likewise black currants and blueberries, cranberries contain high content of phe-
nolics. Nevertheless cranberries have high content of flavonoids and the main phe-
nolic compounds is ellagic acid (about 51% of the total) (Grace et  al. 2014; 
Skrovankova et al. 2015; Tylewicz et al. 2018).

1.3.4  Orange, Guava and Pomegranate

Orange, including orange juice and their by-products have high levels of flavanones 
(hesperidin and narirutin) (Roowi et al. 2009).

The manufacture of orange juice leads to the production of various by-products 
such as seeds, pulp, leaves, peel and whole fruits (Rezzadori et al. 2012). After the 
juice is extracted, the solid residues of the orange industry represented by the peels, 
seeds and pulp, equivalent to about 50% of the weight of each fruit and with approx-
imately 82% humidity, are transformed into pelletized bran. This bran is mainly 
used as a dietary supplement to cattle herds (Tienne et al. 2004). However, the most 
valuable byproduct of a citrus fruit is found in the orange peel (essential oil), being 
widely used as food and cosmetic ingredients (Rezzadori et al. 2012).

Guava fruits are rich in anthocyanins, flavonoids, proanthocyanidins and other 
phenolic classes including phenolic acids, flavonols and tannins (Gülçin 2012; 
Rojas-Garbanzo et al. 2017; Shi et al. 2005).

According to Rojas-Garbanzo et  al. (2017), several polyphenols are reported, 
and 24 compounds were detected for the first time in P. guajava. Among them, 
phlorizin, nothofagin and astringin.

Pomegranate is a source of anthocyanins, ellagitannins and other phenolic sub-
stances with antioxidant and antitumor activities. Polyphenols are distributed in the 
peel, pulp and seeds, however in the peel has the highest polyphenol content (Fischer 
et al. 2011; Lansky and Newman 2007).

In pomegranate juice, a higher content of polyphenols can be found than in other 
fruit juices. The main class of polyphenols found is anthocyanins, such as 
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delphinidin- 3-glucoside and cyanidin-3,5-diglucoside, followed by elagitanines and 
gallic and ellagic acids (Aviram and Rosenblat 2012; Bakkalbasi et al. 2009; Gil 
et al. 2000).

1.3.5  Potatoes, Sweat Potato, Cassava, Tomatoes, Onions 
and Cabbage

High flavonoid content was found for green and purple sweet potato leaves and 
onion leaves. In addition, sweet potato green leaves showed high antioxidant activ-
ity and reducing potential in comparasion with cabbage, spinach and potato (Chu 
et al. 2000).

Antioxidant activities have been found in several vegetables as perilla leaf, pep-
per and ginseng leaf, sweet potato leaf, chinese toon bud, loosestrife, cowpea, lotus 
root, soybean, that may be important for disease prevention caused by oxida-
tive stress.

In these vegetables were identified phenolic compounds such as chlorogenic and 
gallic acids. Besides, a positive relationship was observed between antioxidant 
activity and total phenolic content (Deng et al. 2013).

According to FAO, in 2015, the potatoes represented the fifth largest harvest in 
the world (Tylewicz et al. 2018). The polyphenols in potatoes are present in flesh 
and skin. About 50% of the total polyphenol content was located in the tuber, 
whereas the remaining concentration decreases as it approaches the center of the 
tubers (Akyol et al. 2016; Friedman 1997).

Phenolic acids represent most of the polyphenols present in potatoes. Among 
these, chlorogenic acid is the most abundant, followed by caffeic acid, gallic acid, 
ferulic acid, among others (Akyol et al. 2016; Dao and Friedman 1992). However, 
the content of chlorogenic acid in potatoes can be reduced with food processing 
(e.g. heating)., which depends on the nature of the heat source used (Dao and 
Friedman 1992).

The second largest category of potato polyphenols is flavonoids. The main flavo-
noids in the tubers were flavanones, naringenin and eriodictyol, flavanols, catechin 
and epicatechin (Lewis et al. 1998).

The main phenolic compound found in potato peel extract is chlorogenic acid, 
and the phenolic content found is about 70.82 mg of CE/100 g. (Akyol et al. 2016; 
Kanatt et al. 2005).

Pigmented potatoes, such as red and purple ones are rich in anthocyanins, which 
may be used in the food industry, since the potato production cost is not as high 
compared to other crops. However, potatoes with high anthocyanin concentrations 
are required for the pigment extraction process (Ezekiel et al. 2013).

The main phenolic acid found in sweet potatoes is chlorogenic acid, and the 
highest content is present in a white pulp cultivar. Among the other phenolic 
acids present, can be highlighted 3,5-dicafeoylquinic acid, 3,4-dicafeoiliquinic, 
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4,5- dicafeoiliquinic and caffeic acids. The highest contents of these acids are 
found in a variety of purple pulp (Padda and Picha 2008).

Purple-fleshed sweet potatoes are also high in anthocyanins. About 39 anthocya-
nins have already been identified and they are dominated by cyanidin and peonidin 
aglycones (Gras et al. 2017; Oki et al. 2002).

Sweet potato leaves are considered processing residues, however, studies indi-
cate that phenolic compounds such as 3,4,5-tri-O-caffeoylquinic acid can be found, 
and these compounds present a high antioxidant potential (Islam et al. 2002; Shahidi 
and Ambigaipalan 2015).

Regarding cassava, it has been found that polyphenol content in flours ranges 
from 2.1 to 120 mg/100 g. These polyphenols can form insoluble complexes, inac-
tivating the thiamine enzyme, which will reduce starch digestibility. On the other 
hand, tannins and also catechins, have antioxidant and anticarcinogenic activities 
and are beneficial to the cardiovascular system (Chung et  al. 1998; Wobeto 
et al. 2007).

The main polyphenols in tomatoes (range from 0.1 to 18.2 mg/100 g) are narin-
genin chalcone, rutin and quercetin. Anthocyanins such as delfidine and malvidine 
can also be found. (Martí et al. 2016; Tylewicz et al. 2018). The main phenolic acids 
identified in tomato peel are procatchoic and vanillic acid, with concentrations of 
5.52 and 3.31 mg/100 g, respectively (Elbadrawy and Sello 2016).

Among the flavonols present in tomatoes, the main ones are quercetin conju-
gates; however, kaempferol amounts and traces of free aglycones were also found 
(Crozier et al. 1997).

In the pericarp and pulp of immature green tomatoes a high content of chloro-
genic acid can be found. This acid level varies with fruit maturation as the fruit turns 
pink and then red (Shahidi and Ambigaipalan 2015; Toor and Savage 2005).

Tomato peels and seeds are usually removed during processing. Lyophilized 
tomato peel extracts showed a total polyphenol yield of 38.67 mg tannic acid equiv-
alent/100 g peel (Sarkar and Kaul 2014).

Several flavonoids are found in onions, in particular quercetin, kaempferol, 
myricetin, and catechin (Pérez-Gregorio et  al. 2014; Shahidi and Ambigaipalan 
2015). In onions, monoglucoside quercetin and diglucoside quercetin represent 
80% of the total flavonoids. Quercetin glucoside levels are much higher in onions 
than in other vegetables (Rhodes and Price 1996; Shahidi and Ambigaipalan 2015).

The total phenolic content in yellow onion ranges from 6.06 ± 0.24 to 22.32 ± 1.62 
gallic acid equivalents (GAE) mg/g, and from 5.71 ± 0.20 to 18.58 ± 0.62 GAE 
mg/g dry weight in red onions (Cheng et al. 2013). In onions, low content of pheno-
lic acids are bounded to cell walls., in which protocatechuic acid is the most (Ng 
et al. 2000). Anthocyanins are part of a lower proportion of flavonoids present in the 
edible portion of red onion. In this type of onion, the total flavonoid content is gen-
erally higher than in white or yellow onion bulbs (Rhodes and Price 1996; Shahidi 
and Ambigaipalan 2015).

A amount in the range of 600.72–2230.89 mg/100 g of quercetin can be found in 
onion bagasse, which varies with onion variety (Roldán et  al. 2008; Tylewicz 
et al. 2018).
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Cabbage is a good source of polyphenols, also rich in carbohydrates and vitamin 
C. Brassica vegetables, including all cabbage-like vegetables, are a genus of the 
Cruciferae family and contribute to the intake of glucosinolates (Chun et al. 2004; 
Shahidi and Ambigaipalan 2015).

1.3.6  Cereals

A variety of phytochemicals can be found in whole grains such as phenolic com-
pounds, carotenoids, γ-oryzanol, dietary fibers and vitamin E (Okarter and Liu 
2010). The main polyphenols found in whole grains are phenolic acids. Other 
classes of polyphenols are flavonoids and lignans. The ferulic acid is the major phe-
nolic acid found in grains (mainly in the cortical layer). Other acids that may be 
cited are caffeic, oxalic and p-comuraic acids (Deng et al. 2012; Tian et al. 2019).

The phenolic content varies according to grain, for instance wheat (7.99 μg/g), 
oats (6.53 μg/g), and rice (5.56 μg/g) (Adom and Liu 2002; Tian et al. 2019).

A higher concentration of polyphenols can be found in whole grains when com-
pared to grains that have been processed. In the case of rice for example, the pheno-
lic portion is present mainly in the cortical layer of the grains. When the grain is 
polished, this part is removed, removing ferulic acid. For this reason, brown rice has 
more phenols than polished rice. Another factor that can be considered is that in 
smaller grains of rye, oat, millet and rice there is a higher availability of ferulic acid 
when compared to larger grains. This is because the acid is bound to the total fiber 
content (McCarty and Assanga 2018).

In cereal grains, there is no uniform distribution of phenolic compounds. The 
outer layers of the grain (bark, forehead, pericarp and aleurone) have a higher con-
centration of phenolics when compared to the endosperm. Usually, the outer layers 
are used for bran production, and the endosperm layer is used for refined flour pro-
duction (Kaur et al. 2014; Tylewicz et al. 2018).

In wheat, the main phenolics are phenolic acids and flavonoids. These com-
pounds are mainly found in the outer layer of the grain. There is a variation among 
wheat genotypes regarding the content of phenolic compounds, flavonoids, lignans 
and anthocyanins present (Žilić 2016). The main phenolic compounds present in 
wheat are ferulic acid and p-coumaric acid (Žilić et al. 2012).

There are several phenolic acids in wheat grains, such as hydroxybenzoic acids 
and hydroxycinnamic acids. Among them, ferulic acid is the main one, with concen-
trations around 1000 μg/g (Hernández et al. 2011). Leoncini et al. (2012) studied six 
varieties of wheat. The end result showed that the total flavonoid content varies 
depending on wheat cultivar. It was found in cultivar Rassineto the highest phenolic 
content (173.48  mg GAE/100  g of grain), which was similar to other cultivars 
(Andriolo, Gentil rosso, Inallettabile and Verna).

Phenolic compounds of oat are mainly found in the bran layer, although some are 
present in groats and hulls (Gangopadhyay et  al. 2015; Ratnasari et  al. 2017). 
Phenolic compounds in oat, as well in other cereals, are either in free or bound 
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forms (Naczk and Shahidi 2006). The main phenolic compounds in oat grain are 
phenolic acids, avenatramides and flavonoids. Among the phenolic acids, stand out 
the gallic, benzoic caffeic and ferulic acids. In the bound fraction, the phenolic con-
centration is higher, with ferulic acid being the main compound. The flavonoids 
found in the free fraction are as follows: catechin, rutin, quercetin, and tricin. 
However, the flavonoid found in the bound fraction is kaempferol (Hitayezu et al. 
2015; Tylewicz et al. 2018; Verardo et al. 2011).

A phenolic compound that is only found in oats are avenantramides. It is an 
antipathogen produced by the plant itself in response to exposure to other pathogens 
such as fungi.

The avenanthramides are low-molecular-weight soluble phenolic compounds 
which are not present in other cereal grains, only in oats. These compounds are 
antipathogens (phytoalexins), which are produced by the plant in response to expo-
sure to pathogens such as fungi. The avenanthramides 2c, 2p and 2f are the main 
ones found in oats (Hitayezu et al. 2015; Meydani 2009; Verardo et al. 2011).

The sorghum has a diversity of phytochemicals, especially the polyphenols. 
Several phenolic compounds are found in extracts obtained from white, red and 
brown sorghum grains. The main family of these compounds are phenolic acids, 
such as ferulic and caffeic acids (Chiremba et al. 2012; Stanisavljević et al. 2016). 
There are several flavoinoids found in sorghum, including: luteolin, apigenin, cate-
chin and quercetin. As in other grains the outer layer of the grain is the richest in 
phenolic compounds (Moraes et al. 2015; Tylewicz et al. 2018).

In rice, various phenolic compounds are found, such as phenolic acids, antho-
cyanins and proanthocyanins. Phenolic acids include ferulic, p-coumaric, isoferulic 
and caffeic acids. Among them, ferulic acid is the most abundantly found. 
Proanthocyanidins in rice are usually type B, but recent research shows that type A 
and B coexist in red and black rice (Shao and Bao 2015).

Several anthocyanins were determined in colored rice grains. The main anthocy-
anin found in colored rice does cyanidin-3-glucoside, besides red and black rice 
also shows peonidin-3-glucoside, and in the black rice evidence of cyanidin-3- 
glucoside was found (Kapcum et al. 2016; Zhang et al. 2010).

In millets, besides micro and macronutrients, can also be found important phyto-
chemicals, especially phenolic compounds. The main polyphenols present in millet 
are hydroxybenzoic (protocatechuic, phydroxybenzoic) and hydroxycinnamic 
(p-coumaric, ferulic syringic) acids, in addition to flavonoids and proanthocyani-
dins (Devi et al. 2014; Xiang et al. 2019). In finger millet free fractions, flavonoids 
such as catechin, epicatechin and quercetin are present. Phenolic acids are also pres-
ent, but in lower concentration. Ferulic acid is also the major phenolic acid in millet, 
however p-coumaric, caffeic and protocatechuic acids are also present (Xiang et al. 
2019). In finger millet of colored pericarp varieties, a higher concentration of phe-
nolic compounds is found when compared to white pericarp varieties (Xiang 
et al. 2019).

In maize grains, the main phenolic compounds are phenolic acids, however, 
other phenolics such as anthocyanins, flavonols, and flavanols have been identified 
in colored maize grains (Salinas-Moreno et al. 2017). Several phenolic acids are 
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present in corn, such as caffeic, vanillic acids, among others. However the main 
ones are ferulic and p-coumaric acids present in soluble form, or attached to the cell 
wall (Salinas-Moreno et al. 2017). In the bound fraction of maize a higher concen-
tration of phenolic compounds was found (150–300 mg/100 g), when compared to 
the free fraction (1–5 mg/100 g) (González-Muñoz et al. 2013). Other classes of 
phenolic compounds found in maize include quercetin, kaempferol, and isorhamne-
tin, which were found in purple corn. In colored corn cultivars, anthocyanins have 
been found, including elargonidin, cyanidin, and peonidin (Montilla et  al. 2011; 
Paucar-Menacho et al. 2017; Tylewicz et al. 2018).

In barley, polyphenols may be present in bound, conjugated or free form. The 
main classes are flavonoids, lignans and phenolic acids (Fogarasi et al. 2015). The 
main phenolic acids in barley are benzoic and cinnamic acids. These acids are found 
in greater concentration in the bound form than in the conjugate and free form. The 
abundance of phenolic acids in barley indicates that it can serve as an excellent 
source of natural antioxidants (Idehen et al. 2017; Quinde-Axtell and Baik 2006; 
Zhao and Moghadasian 2008).

In the free form of barley, the concentration of phenolic acids varies between 4.6 
and 23 mg/g, while in the conjugate form the value varies between 86 and 198 mg/g. 
In bound form, this value ranges from 133 to 523 mg/g. (Abdel-Aal et al. 2012; 
Holtekjølen et al. 2006). The major flavonoids in barley grains are flavanols, antho-
cyanins, which are located in the pericarp, mostly glycoside derivatives. 
Proanthocyanins are also present (Abdel-Aal et al. 2012; Idehen et al. 2017).

1.3.7  Coffee and Teas

Teas and coffees are two of the most popular beverages in the world. In both, poly-
phenols such as flavonoids are present and contribute to taste and health properties 
(Wang and Ho 2009).

Coffee is a beverage with stimulating power due to the presence of caffeine; 
however, other compounds are identified in this drink and many of them have health 
benefits, such as flavonoids, chlorogenic, caffeic, gallic and ferulic acid (Esquivel 
and Jiménez 2012; Meletis 2006).

Coffee flavor is strongly influenced by the presence of phenolic compounds, and 
42 phenolics have been identified as being present in roasted coffee aroma. In coffee 
beverages, the main phenolic compounds are chlorogenic acids, in the form of vari-
ous isomers, considered the most important and those present in greater quantities 
in green coffee beans. In coffee seeds, tannins, lignans and anthocyanins are another 
phenolic compounds present, but in smaller quantities. In coffee pulp, condensed 
tannins stands out as the main phenolic compounds (Clifford 1985; Farah and 
Donangelo 2006).

It was identified chlorogenic, gallic and protocatechuic acids in extracts obtained 
from spent coffee grounds and husks, suggesting the potential use of these residues 
in the recovery of phenolic compounds (Andrade et al. 2012).
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Tea is a beverage produced from the tea plant (Camellia sinensis), that are rich in 
polyphenols (Tylewicz et al. 2018). The main polyphenols in tea leaves include fla-
vonoids, particularly flavanols, and phenolic acids (Coe et  al. 2013; Wang and 
Ho 2009).

Green tea is a minimally processed product obtained from freshly harvested 
leaves of the Camellia sinensis plant. Immediately after harvesting, tea leaves are 
heat treated to inactivate polyphenol oxidase, which preserves the freshness of the 
tea and its monomeric polyphenol profile (Bruno et al. 2014; Frei and Higdon 2003).

In green tea, about 42% of soluble solids are catechins such as epigallocatechin 
gallate, epigallocatechin, gallocatechin and epicatechin (Bradfield and Bate-Smith 
1950; Graham 1992).

Black tea is a processed product obtained from the complete fermentation of 
fresh tea leaves and is characterized by the orange-brown color. This feature comes 
from the presence of teaflavins and thearubigins. In addition to color, these com-
pounds are responsible for the flavor of black tea (Ferruzzi 2010). The polyphenols 
concentration in the black tea decreases during fermentation, then, the longer the 
processing time, the lower the polyphenols content in the tea (Astill et al. 2001).

Oolong teas are produced from the partial fermentation of tea leaves. The pro-
cess is carried out in various ways and the products vary with respect to the degree 
of catechin oxidation that is observed. Because it is only partially fermented, it 
retains a considerable number of original polyphenols. Oolong tea composition is 
estimated to be intermediate between green and black teas (Graham 1992; Wang 
and Ho 2009).

1.3.8  Olive Oil

In olive oil, the main phenolic compounds are secoiridoids followed by phenolic 
alcohols, lignans and flavones (Bendini et al. 2007; Brenes et al. 2000).

The secoiridoids are only found in plants of the Olearaceae family. They are 
compounds produced by metabolism secondary of terpenes. One of the characteris-
tics of these compounds is the presence of elenolic acid in their molecular structure 
(Bendini et  al. 2007). The most abundant secoiridoids of virgin olive oil are the 
dialdehydic form of elenolic acid (Montedoro et al. 1992a, b, 1993). Tyrosol and 
hydroxytyrosol are the main phenyl alcohols found in olive oil (Oliveras-López 
et al. 2007).

The main phenolic acids present in olive oil are: protocatechuic, gallic, vanillic, 
caffeic acid, among others (Franco et al. 2014; Tylewicz et al. 2018).

In olives and virgin olive oil, natural lignans as (+)  - pinoresinol and 
1- acetoxypynoresinol are found. Pinoresinol (+) was found in other plants, how-
ever, 1-acetoxypynoresinol is often found only in olives. It is widely accepted that 
lignan consumption has beneficial health effects. Therefore, these two compounds 
are of great interest based on their properties (López-Biedma et al. 2016).
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Flavonoids are important part in the polar fraction of olive oil. Among these fla-
vonoids, luteolin, apigenin and diosmetine can be highlighted (Kelebek et al. 2017).

The main difference between olive leaves composition for olive oil can be con-
sidered the presence of oleuropein, as well ligstroside and several other flavonols in 
their glycoside form, that are not found in oil (Talhaoui et al. 2015).

As in olive oil, secoiridoids are the main class of phenolic compounds found in 
olive leaves. The component with the highest phenolic fraction in olive leaves is 
oleorupine (24.7 and 143.2 × 103 mg/kg). Olive leaves have a higher concentration 
of phenolic compounds (10,000–82,000  mg/k), when compared to olive oil 
(40–1000 mg/kg) (Bajoub et  al. 2017; Loubiri et  al. 2017; Talhaoui et  al. 2014; 
Tylewicz et al. 2018).

1.4  Effect of Polyphenols on Human Health

Regarding nutraceuticals, polyphenols have been drawn attention, for instance 
Blackcurrant (Ribes nigrum) berrie have been named “superfruits” due to the pres-
ence of important sources of phytochemicals that have huge potential as immuno-
modulators, antimicrobials and anti-inflammatories, inhibiting low density 
lipoprotein and reducing cardiovascular disease. It has been cultivated for use in 
beverages and has a reputation for excellent health characteristics due to its high 
antioxidant content (Nour et al. 2013; Shahidi and Ambigaipalan 2015). Therefore, 
polyphenols consumption plays a fundamental role on human health, for instance 
antioxidant, anti-inflamatory, diabetes controller, microbiome modulator, anti- 
aging, antihypertensive and anticancer - briefly described below:

1.4.1  Antioxidant

Superoxide radical, peroxynitrite radical, nitric oxide, hydroxyl radical, and hydro-
gen peroxide, are ubiquitous molecules knows as reactive oxygen species, since 
reactive oxygen species are inherently produced by all living cells  - metabolism. 
Reactive oxygen species are highly reactive molecules, short-lived derivatives of 
oxygen metabolism. Reactive oxygen species, at low concentrations, are essential to 
regular metabolism, more specifically intracellular communication, cell differentia-
tion, apoptosis, antimicrobial and immunity properties. An oxidative stress condi-
tion occurs when the living cells have high reactive oxygen species rate and/or a 
depression of their antioxidant systems (unbalanced) (Roberts and Sindhu 2009).

Aerobic organisms produce, primarily, superoxide radical which is highly cyto-
toxic. Reactive oxygen species can react with biomolecules, for instance reactive 
oxygen species can damage DNA which may lead to chances on protein conforma-
tion; induce nucleic acid modifications or enhance lipid peroxidation. Oxidized and 
nitrated reactive oxygen species compounds usually affect cell signaling and basal 
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cellular functions. These disorders are related to health problems such as atheroscle-
rosis and inflammation. Therefore, reactive oxygen species show harmful effects on 
human health, in particular metabolic syndrome, type 2 diabetes and cardiovascular 
diseases (coronary and hypertension) (Roberts and Sindhu 2009).

According to Huang et al. (2005), antioxidant activity is related to oxidation lip-
ids, proteins, among other biomolecules that occurs by reducing the oxidative chain 
reactions, in particular propagation stage. Free radicals are directly scavenged by 
primary antioxidants, whereas secondary antioxidants act indirectly, restricting the 
production of free radicals by Fenton reactions. In this sense, polyphenols have 
remarkable antioxidant properties, since they are efficient scavengers of reactive 
oxygen species.

High intakes of polyunsaturated fatty acids lead to generation of toxic lipid oxi-
dation species. Lamothe et al. (2019) investigated the effects of grape juice and tea 
(polyphenol-rich beverages) and milk on generation of toxic lipid oxidation species. 
Significant reductions of 4-hydroxyhexanal and 4-hydroxynonenal (toxic lipid oxi-
dation species) were observed due to milk or polyphenol-rich beverages; 60% and 
75% respectively.

Higher content of phenolic compounds with associated antioxidant activity was 
related to white guava (P. guajava L.) and red guava (P. guajava L.) leaves, when 
compared with other vegetables. On the other hand, between the white and red 
leaves of guava, the highest concentration of total phenolics is found in the pyrifera 
variety (Díaz-de-Cerio et al. 2016; Wang et al. 2007).

The antioxidant potential of cabbage was already widely reported in the litera-
ture. Red cabbage exhibits greater antioxidant capacity than white cabbage. In gen-
eral, when compared to green cabbage, Chinese cabbage and Chinese white cabbage, 
red cabbage has the highest antioxidant activity (Abu-Ghannam and Jaiswal 2015; 
Amin and Lee 2005; Jaiswal et al. 2011).

In red cabbages, cyanidine glycosides are the main pigments found. Studies have 
shown that cyanidine made an excellent contribution to antioxidant capacity, and 
also to total flavonoid and phenolic content (Chun et al. 2004).

Oats have high concentration of β-glucan that are widely known for its health 
properties. Oats also have ≥20 exceptional (unique), for instance phenolic alkaloids 
(avenanthramides) (Meydani 2009).

Therefore, polyphenols are essential to balance antioxidant systems, that is, they 
are an excellent assistant for human health.

1.4.2  Anti-Inflammatory

Inflammation is a defense mechanism towards tissue imbalances. It is the immune 
system’s response to harmful stimuli including pathogens, toxic compounds, 
lesions, osmotic stress, etc. Thus inflammation restores tissue homeostasis. It is 
worth noting that some diseases such as cardiovascular, cancer and chronic inflam-
matory are inflammation based diseases (Bollmann et al. 2014).
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The antioxidant properties of polyphenols are widely known, nevertheless poly-
phenols have also anti-inflammatory properties, in particular those related to have 
been modulations of the arachidonic acid cascade. In this sense, according to Hartung 
et al. (2019), isoflavone genistein has potent 5-lipoxygenase inhibition in neutrophils 
(white blood cell). Then, the authors studied the effects of 5- lipoxygenase-inhibiting 
polyphenols on all branches arachidonic acid cascade. In addition, resveratrol inhib-
ited the cyclooxygenase activity and also minimized lipoxygenase activity. Briefly, 
it was concluded that polyphenols have the ability to block 5-lipoxygenase activity.

The KH-type splicing regulatory protein is a regulator of multiple inherently 
unstable mRNAs in most cases related (coding) to pro-inflammatory intermediators 
such as TNFα and interleukin-8. Bollmann et al. (2014) used treated human cells, 
more specifically DLD-1 or Mono Mac 6, with polyphenol resveratrol. The authors 
observed a lower cytokine induced expression of TNFα, interleukin-8 and inducible 
nitric oxide synthase (effect of resveratrol).

García-Lafuente et al. (2009) reported a review on anti-inflammatory properties 
of polyphenols, which represents the state of art in this subject. The authors pointed 
out that most experiments are in vitro studies, thus there is a lack of in vivo data 
(models), which makes it difficult to draw deep conclusions about anti- inflammatory 
properties of polyphenols.

1.4.3  Diabetes Controller

Diabetes mellitus is a syndrome relates to improper fasting or postprandial hyper-
glycemia due to insulin deficiency and its consequent effects on fat and protein 
metabolisms. Type 2 diabetes is a gradual condition which insulin loses its activity 
and/or pancreas reduces insulin production. The incidence of Type 2 diabetes has 
increased since the last decade which leads to social and economic costs (Hartung 
et al. 2019).

Curcumin is a polyphenol that can be obtained from Curcuma longa (turmeric 
plant). Curcumin (0.2 mg of curcumin/kg diet) enhances insulin resistance in ham-
sters and mice. In addition, curcumin increases insulin content and decreases the 
blood concentration of triglyceride and glucose content. As a result, curcumin 
reduce body weight gain and vascular endothelial growth factor (Seo et al. 2008; 
Aryaeian et al. 2017). The effects of curcumin on human health were also investi-
gated. Over 240 prediabetic adults have received, every day, 250 mg of curcumin or 
placebo, during the 9 months. The analysis of results indicated that curcumin pre-
vented all type 2 diabetes cases (Chuengsamarn et al. 2012; Aryaeian et al. 2017).

Resveratrol, a non-flavonoid polyphenol, is widely found in grapes, peanuts, 
cranberries, and blueberries. 19 type 2 diabetic patients received orally 2 × 5 mg 
resveratrol or placebo for 28 days. Resveratrol reduced insulin resistance, on the 
other hand, the β-cell function was unaffected (Brasnyó et al. 2011; Aryaeian et al. 
2017). Similarly, 14 type 2 diabetic patients have received 6 mg of cinnamon poly-
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phenols. The authors conclude that cinnamon polyphenols decreased blood glucose 
levels (Hlebowicz et al. 2007; Aryaeian et al. 2017).

Costabile et al. (2018) studied the effects of red grape pomace consumption by 
human. The authors observed that of red grape pomace polyphenols have reduced 
the insulin secretion and increase its sensitivity, probably mediated by gallic acid. In 
addition, the dietary drink with a given dose of polyphenols (3 g of polyphenol per 
day) led to a significant increasing in the concentrations of glucose tolerance, insu-
lin sensitivity and postprandial following a 4 month supplementation with flour rich 
in polyphenols in patients prone to having diabetes, heart disease or stroke. (cardio-
metabolic risk). An important finding has been demonstrated about the positive 
effects of polyphenols on glucose homeostasis, improving insulin sensitivity.

Thus, specific polyphenols as curcumin, resveratrol and red grape pomace poly-
phenols can positively affect sugar metabolism and preserve type 2 diabetic.

1.4.4  Microbiome Modulator

Microbiome is the microorganism community composed of bacteria (mostly), 
yeasts, virus and fungi, living in and on all vertebrates. Microbiome, in particular 
gut microbiome, is a key modulator of human health. The human gut microbiome is 
composed of trillions of bacteria. The relation between microbiome and health has 
been drawn attention, since it directly impact on human health. Specific compounds 
such as polyphenols can simultaneously favor some bacteria genera and inhibit 
other bacteria genera, which lead to unique microbiome architecture. Thus, it will 
change the gut microbiome and thus impact on human health.

Apples have high content of polyphenols. Trošt et al. (2018) described a study, in 
which 12 men and women consumed 0.25 L of apple juices (cloudy or enriched 
with 0.750 g of an apple polyphenol extract. Faecal samples were collected indi-
vidually. The authors identified a very strong relation between gut microbiome and 
apple polyphenols. In addition, they speculated (since data were not statistically 
significant) that some metabolic produced from polyphenols are correlated to pre-
dominance of specific bacterial genera. Similarly, Queipo-Ortuño et  al. (2012) 
investigated the effects of red wine intake (source of polyphenols) on select gut 
microbial groups. Experiments were carried out over 20 days (272 mL/d), which 
involved ten healthy adult men aged (≈48 years). The authors observed that domi-
nant bacterial composition changed over experiments. The intake of red wine induce 
higher Enterococcus, Prevotella, Bacteroides, Bifidobacterium, Bacteroides unifor-
mis, Eggerthella lenta, and Blautia coccoides. Thus, red wine modulates gut micro-
biota, in which prebiotic microorganisms as Bifidobacterium are benefited.
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1.4.5  Anti-Aging

During the aging, there are degradation in the skin layers. Which provide changes 
the visual and physical aspects of the skin (Mukherjee et al. 2011).

In their study, Zhuang et al. (2017) verified that rambutan peel phenolic (RPP) 
extracts act in the protection of H2O2-induced HepG2 cells against oxidative stress. 
These inhibitory effects are due the extract capacity to inhibit the formation of 
intracellular ROS and provide an enhance on superoxide dismutase activity. The 
RPP also showed an increased in the in vivo anti-aging activity, and their histologi-
cal evaluations showed that extracts decreased the liver and kidney damage.

Many plant-derived foods have in their composition proanthocyanidins (PAC). 
Jiao et al. (2017) investigated the use A-type and B-type proanthocyanidins from 
cranberry concentrate and grape seed extract against aging. Both products tested 
decreased the brain and hepatic thiobarbituric acid, plasma 8-isoprostane, further 
provided a reduction in the plasma and brain monoamine oxidases. According to 
authors cranberry concentrate increased by 42% the hepatic glutathione peroxidase 
activity, while that grape seed extract improved by 13% the hepatic superoxide dis-
mutase activity. Based on the results, both extracts showed anti-aging activity.

1.4.6  Antihypertensive

Cardiovascular diseases have the hypertension as their main risk factor associated. 
Based on the causes reported, World Health Organization (WHO) has warned that 
healthy habits, such as diet and physical activity, can be reducing the hypertension 
incidence (Peñas et al. 2015). Therefore, the consumption of plant-based foods is 
associated the antihypertensive effects (Aguilera et al. 2016).

In their study, Shukor et  al. (2013) investigated the inhibition ability in 
angiotensin- converting enzyme (ACE) of 22 phenolic compounds. According to 
results, tannic acid had the higher inhibition effect with a IC50 = 230 μM. While, 
others phenolic compounds tested showed lower inhibition varied from 0.41 to 
9.3  mM.  The main factor that contributes to ACE inhibition is the number of 
hydroxyl groups link on the benzene ring, while that methoxy groups into molecule 
reduce the activity.

Red raspberry fruit extracts were evaluated by Jia et al. (2011) against hyperten-
sive effects on spontaneously hypertensive rats. The antihypertensive activity dem-
onstrated by extracts depended of the amount managed in the hypertensive rats. 
Probably, the effect provided by extract is via antioxidation that increases NO acti-
vation and improvement of vascular dysfunction.
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1.4.7  Anticancer

Cancer is a health problem that causes millions of deaths worldwide. The ill is asso-
ciate the various endogenous causes which are inevitable, but also exogenous ones 
(e.g. tobacco consumption). For this, the phenolic antioxidants have been intensely 
investigated (Carocho and Ferreira 2013).

Rangel-huerta et al. (2015) showed that consumption of orange juice with at least 
300 mg of flavonones over a period of 12 weeks improved the antioxidant defense 
system, reduced blood pressure in overweight and obese adults, protecting against 
DNA damage and lipid peroxidation.

Amongst all the urologic malignancies, renal cell carcinoma (RCC) stand out as 
one of the most harmful. As therapeutic intervention, green tea (Camellia sinensis) 
prevented the growth human renal cancer cell lines A-498 and 769-P, with an extract 
dose of 54 ± 10 and 129 ± 28 μg/mL (IC50 values), respectively (Carvalho et al. 
2010). Furthermore, cervical cancer also deserves mention because it is the second 
higher cause of cancer death in women. In their study, Boeing et al. (2019) verified 
that Butia odorata fruit extracts, provided the preliminary evidences of their antitu-
mor effects in SiHa and C33a cells.

Common beans are cultivated and consumed worldwide. In their study, López 
et  al. (2013) studied the influence of boiling and germination processes of dark 
beans (Phaseolus vulgaris L.) on their anticancer activity. According to authors the 
phenolic composition of beans changed with the process used. The extract of raw 
beans was the most cytotoxic on TK-10 line. While, germinated beans extract 
showed a high cytotoxicity for breast adenocarcinoma and melanoma cell lines.

Among all fruits, apple is one of the most consumed. It has been reported that 
dihydrochalcones are the main flavonoids compound in Malus domestica. Xiao 
et al. (2017) tested in five cancer cell lines seven different dihydrochalcones from 
apples. The 3-hydroxyphlorizin and sieboldin compounds exhibited the higher anti-
cancer ability than other dihydrochalcones tested. Their extract quantity varied from 
30 to 80 μM.

1.5  Perspective

Regarding human metabolism, polyphenols are one of the most dynamic biological 
molecules. The wide range of sources, biological properties and chemical structures 
leads to nonconsensual understand on their mechanism of action - virtually infinite 
possibilities. The Table 1.1 shows the relation among source, biological property 
and polyphenols, which can be used to for further studies, in particular:

• Identification of compartments in the plant cell that contain high concentration 
of polyphenols;

• The metabolic effects of glycosylated polyphenols;
• In vivo assays using high purity polyphenols;
• To develop systems with increased polyphenols solubility in water (e.g. cur-

cumin low).
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1.6  Conclusion

Polyphenols are natural biologically active compounds broadly found in plant 
based-food. Wine and grape pomace, apple, berries, tomatoes, coffee, teas and olive 
oils are well-known sources of polyphenols, whereas potatoes, cassava, onions and 
cabbage and cereals need deeper investigations. Polyphenols consumption plays a 
fundamental role on human health, in particular antioxidant, anti-inflamatory, dia-
betes controller, microbiome modulator, anti-aging, antihypertensive and antican-
cer. Thus, it is possible relates the source of polyphenol to biological property, for 
instance cranberry has epicatechin and proanthocyanidins that have anti-aging 
properties; green tea has phenolic acids; catechins, flavonol glycosides that have 
antioxidant, anticancer and antitumor properties; orange has flavanone glycoside, 
hesperitin and naringenin that have antioxidant and microbiome modulator proper-
ties; cereals that have ferulic acid, oxalic acid, p-coumaric acid and caffeic acid that 
have antioxidant and antitumoral properties, among others. The wide range of 
sources, biological properties and chemical structures leads to nonconsensual 
understand on their mechanism of action - virtually infinite possibilities. Thus, fur-
ther investigations should be related to identification of compartments in the plant 
cell that contain high concentration of polyphenols (rich sources of polyphenols, 
including vegetable wastes); the metabolic effects of glycosylated polyphenols; in 
vivo assays using high purity polyphenols; and to develop systems with increased 
polyphenols solubility in water.
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Chapter 2
Glucosinolates

Francesco Di Gioia and Spyridon A. Petropoulos

Abstract Glucosinolates are a group of sulfur- and nitrogen-containing glycosides 
found in the plant order Brassicales which includes several important vegetable 
crops of the Brassica genus such as broccoli, cabbage, radish and cauliflower among 
others. Their hydrolysis byproducts, namely isothiocyanataes, are responsible for 
the distinct aroma and pungent taste of cruciferous species, most of which contain 
species-specific glucosinolates, hence the high number of individual compounds. 
They are considered as beneficial to human compounds with several confirmed 
health effects, while a significant amount of research work has been carried out 
recently to identify those mechanisms and synergisms that are responsible for the 
activities of glucosinolates, as well to reveal physiological aspects in the plant × 
environment interactions. This chapter discusses the biochemistry and health prop-
erties of glucosinolates, their physiological significance as well as the hydrolysis 
process in the plant response to different abiotic stresses.

Keywords Abiotic stress · Brassicaceae · Glucosinolates · Health effects · 
Isothiocyanates · Organosulphur compounds

2.1  Introduction

Glucosinolates (GSLs) or β-thioglucoside-N-hydroxisulfates are a distinctive class 
of phytochemicals derived from amino acids and constituted by glycosides contain-
ing sulfur and nitrogen (Grubb and Abel 2006; Mithen et al. 2010). The biosynthe-
sis of GSLs is exclusive of plants belonging to the botanical families of the order 
Brassicales (formerly Capparales), among which the most representative to pro-
duce GSLs are the Brassicaceae and Moringaceae family (Mithen et  al. 2010; 
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Fahey et al. 2018). The majority of GLSs have been identified in Brassicaceae fam-
ily and their occurrence is considered an important chemotaxonomic criterion for 
species classification (Holst and Fenwick 2003). The Brassicaceae family includes 
the model plant Arabidopsis thaliana and some very popular vegetable crops such 
as broccoli, cauliflower, cabbage, kale, kohlrabi, mustard, Brussel sprouts, radish, 
arugula, while many other less popular vegetables and wild plants are also part of 
the same family (Fahey et al. 2001; Petropoulos et al. 2017). Like other secondary 
metabolites synthesized by plants to face conditions of stress, GSLs are plant 
defense molecules and are characterized by a high level of variability and polymor-
phism that is strictly associated with the continuous coevolution of plants and pests 
(Newton et al. 2009). Since the first characterization of mustard seed extracts and 
the isolation of sinigrin and sinalbin as GSL structures (Ettlinger and Lundeen 
1956; Wisniak 2013), over 130 different GSLs compounds have been isolated and 
documented so far, while several potential GSLs structures have been identified but 
not confirmed yet (Fahey et al. 2001; Clarke 2010; Agerbirk and Olsen 2012). More 
recently, reviewing all the GSLs structures claimed to be isolated from plant tissues 
based on the availability of both NMR spectroscopy and HPLC-MS evidence, 
Blažević et al. (2020) concluded that up to mid-2018, 88 GSL structures have been 
satisfactorily characterized, 47 more GSL structures have been partially character-
ized, while several structures claimed in previous studies have been discontinued 
due to insufficient evidence or characterization. GLSs can be found in all plant 
parts and several individual compounds are present in each species; however, three 
or four of them are usually the most abundant although the overall composition 
defines the bioactivities of each species (Holst and Fenwick 2003). Although a 
great number GLSs have been identified, not all of them are widely consumed since 
they are present in wild or in less common species or in non-edible plant parts (e.g. 
flowers and seeds) (Holst and Fenwick 2003). Therefore research interest has 
focused on those compounds that are present in commonly used vegetables such as 
species of Brassica oleraceae which are considered the most important dietary 
sources of GLSs (Kassie and Knasmüller 2004).

Accumulated and compartmentalized into specific cells (Koroleva et al. 2010), 
GSLs are part of an articulated two-component biological defense mechanism that 
is activated when, especially in case of damage or infection of the plant tissues, 
GSLs come in contact with specific hydrolytic enzymes called myrosinases 
(β-thioglucosidases), which constitute the second component of the defense mecha-
nism referred also as the “mustard oil bomb”(Kissen et al. 2009). Coming in contact 
with myrosinase, GSLs are immediately degraded into bioactive compounds such 
as isothiocyanates (ITCs) and other metabolites that are deterrent or toxic for herbi-
vores, insects, nematodes, bacteria, and plant pathogens (Textor and Gershenzon 
2009; Pastorczyk and Bednarek 2016). Given their stability within plant cells, GSLs 
are therefore considered the storage form of their bioactive metabolites (Clarke 
2010). ITCs and the other metabolites deriving from the hydrolysis of GSLs are in 
fact directly responsible for most of the biological properties credited to GSLs 
(Dinkova-Kostova and Kostov 2012; Burčul et  al. 2018; Romeo et  al. 2018). 
However, the chemical structure of ITCs defines their functionality and the side 
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chains with less than ten atoms of carbon are considered as more potent and benefi-
cial for human health than longer side chains (Ishida et al. 2014). Moreover, the 
presence of aromatic rings and the oxidation state of sulfur atoms may affect the 
biological activities of ITCs, whereas double bonds had no significant effect 
(Pocasap et al. 2018). This factor has to be considered in breeding strategies aiming 
to increase the content of beneficial GSLs and minimize those that have  antinutritional 
properties. The main ITCs derived from GSLs hydrolysis are presented in Fig. 2.1.

As volatile organosulfur compounds, ITCs are also the main determinants of 
the sulfurous aroma and pungent or sometimes bitter taste typical of cruciferous 
vegetables (Macleod and MacLeod 1990; Jirovetz et al. 2002; Bell et al. 2018; Di 
Gioia et al. 2018a) which is often disliked by consumers (Drewnowski and Gomez- 
Carneros 2000). Despite some consumers may lack appreciation toward the smell 
and taste of Brassicaceae, the interest for cole crops and their unique GSLs and 
derived hydrolysis products started rising since sulforaphane [1-isothiocyanato-
(4R)-(methylsulfinyl)butane], a glucoraphanin-derived ITC isolated from broc-
coli, was identified as an inducer of phase 2 detoxication enzymes and as a potent 
anticancer compound (Zhang et al. 1992, 1994). Over the last decades, thanks to 
an extensive research effort, a significant amount of literature has been produced, 
greatly expanding our knowledge on the beneficial effects of phytochemicals such 
as GSLs and ITCs on human health as antioxidant, anticancer, anti-inflammatory, 
antibacterial, and protective molecules against a variety of chronic and inflamma-
tory medical conditions (Dinkova-Kostova and Kostov 2012; Kumar et al. 2015; 
Moosavi et al. 2018; Palliyaguru et al. 2018). As research continues to disclose the 
biological activity and health-effects of GSLs and relative ITCs, there is also 
increasing interest toward understanding the physiological role of GSLs in the 

Fig. 2.1 The main isothiocyanates structures
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plant response to biotic and abiotic stresses, as this knowledge can contribute to 
advance our ability to regulate the GSL profile of Brassica crops and develop 
products with enhanced content of specific beneficial GSLs through breeding or 
by implementing agronomic biofortification and other practices (Di Gioia 
et al. 2020).

After presenting the biochemistry of GSLs, this chapter provides an overview of 
the current knowledge on the physiological role of GSLs and hydrolysis-derived 
products in plant response to biotic and abiotic stress factors and provides an 
updated summary of the literature on the main health properties attributed to GSLs 
and ITCs.

2.2  Biochemistry of Glucosinolates

Given the great interest toward GSLs and their biological activity over the last 
decades and also considering the development of molecular biology, omics, bioin-
formatics, and novel analytical techniques, a number of studies focusing primarily 
on the model plant A. thaliana, have contributed to advance our understanding of 
the GSL biosynthetic pathway, transportation, storage, and overall metabolism 
within plants (Halkier 2016).

As plant defense phytochemicals, GSLs evolved from cyanogenic glucosides, 
another family of defense metabolites commonly present in the plant kingdom 
(Bolarinwa et al. 2016), which share with GSLs part of the biosynthetic pathway, as 
demonstrated by the presence of cytochrome P79 (CYP79) homologs and enzymes 
that catalyze the conversion of precursor amino acids to aldoximes in both pathways 
(Bak et al. 1998, 2001; Halkier and Gershenzon 2006). Compared to cyanogenic 
glucosides, derived only from valine, isoleucine, phenylalanine, and tyrosine amino 
acid precursors, GSLs are synthesized from a higher number of amino acids and 
from several amino acid-modified structures which contribute to the formation of a 
larger variety of GSLs (Møller 2010; Agerbirk and Olsen 2012).

From a structural standpoint, all GSLs share the same core structure consisting 
of a β-D-glucopyranose residue connected through a sulfur atom to a (Z)-N- 
hydroximinosulfate ester and to a side chain (R). The basic GSL structure is highly 
conserved in nature, whereas the amino acid-derived side chain could be subject to 
a series of structural changes that are associated with the biological properties of the 
final GSLs and hydrolysis metabolites (Blažević et al. 2020). In this perspective, 
considering that the biosynthetic process starts from amino acids, GSLs may be 
further classified based on the precursor amino acids and their structural character-
istics (Table 2.1).

The GSLs biosynthetic process may be divided into three primary indepen-
dent phases:

 1. Chain-elongation by insertion of methylene groups of selected amino acids 
(methionine and phenylalanine);
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Table 2.1 Amino acid precursor, glucosinolates (GSL), and relative hydrolysis products

Amino acid 
precursor

GSL 
number

GSL trivial and/or 
semi- systematic name

Main plant source of 
GSL

Isothiocyanate 
(ITC) and/or other 
hydrolysis 
products

Methionine 12 Gluconapin But-3-enyl 
GSL

Brassica rapa 
species and broccoli

3-butenyl ITC

24R Progoitrin (2R)-2- 
hydroxybut- 3-enyl GSL

Bok choy, turnip, 
broccoli, cauliflower, 
Brussels sprouts

2-hydroxy-3-
butenyl ITC, 
goitrin

24S Epiprogoitrin (2S)-2- 
hydroxybut- 3-enyl GSL

Bok choy, turnip, 
broccoli, cauliflower, 
Brussels sprouts

(5R)-5-Vinyl-1,3- 
oxazolidine- 2-
thione, 
(2S)-1-cyano-2-
hydroxy-3- butene, 
erythro-(2S)- and 
threo-(2S)-1-
cyano-2- hydroxy-
3,4-epithiobutanes

63 Glucoraphenin (RS, 
3E)-4-(Methylsulfinyl)
but-3-enyl GSL

Radish Sulforaphene

64 Glucoraphanin (RS)-4-
(Methylsulfinyl)butyl GSL

Broccoli, rocket Sulforaphane 
(SFN)

73 Glucoiberin (RS)-3-
(Methylsulfinyl)propyl 
GSL

White and red 
cabbage, cauliflower 
and kale

Iberin

83 (Glucoraphasatin or 
dehydroglucoerucin) 
4-Methylsulfanyl-3-
butenyl

Raphanus sativus 4-Methylthio-3-
butenyl ITC, 
raphasatin

84 Glucoerucin 
4-(Methylsulfanyl)butyl 
GSL,

Rocket Erucin

101 Glucobrassicanapin 
Pent-4-enyl GSL

Chinese cabbage, 
turnip, turnip greens 
and swede

4-pentenyl-ITC

107 Sinigrin Prop-2-enyl GSL Brassica nigra, 
B. juncea and 
B. oleracea

Allyl ITC (AITC)

126 6′-Benzoylglucoraphanin 
6′-Benzoyl-4-
(methylsulfinyl)butyl GSL

Arabidopsis thaliana

127 (6′-Benzoylglucoerucin) 
6′-Benzoyl-4-
(methylsulfanyl)butyl GSL

Arabidopsis thaliana

135 Diglucothiobeinin 
4-(β-D- 
Glucopyranosyldisulfanyl)
butyl GSL

Rocket

(continued)
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Amino acid 
precursor

GSL 
number

GSL trivial and/or 
semi- systematic name

Main plant source of 
GSL

Isothiocyanate 
(ITC) and/or other 
hydrolysis 
products

Alanine 51 (Glucocapparin) Methyl 
GSL

Isomeris arborea Methyl ITC

Valine 9 (1R)-2-Benzoyloxy-1- 
methylethyl GSL 
(Glucobenzosisymbrin)

Sisymbrium 
austriacum

56 (Glucoputranjivin) 
1-Methylethyl GSL

Putranjiva 
roxburghii

1-Methylethyl 
ITC

Leucine 52 3-Methylbut-3-enyl GSL Capparis linearis

55 3-Methylbutyl GSL Armoracia 
lapathifolia

3-Methylbutyl 
ITC

59 4-Methylpentyl GSL Radish 4-methylpentyl 
ITC

Isoleucine 7 (Glucobenzsisaustricin) 
(1R)-1-
(Benzoyloxymethyl)propyl 
GSL

Sisymbrium 
austriacum

30 (Glucosisaustricin) 
(1R)-1-(Hydroxymethyl)
propyl GSL

Sisymbrium 
austriacum

141 3-(Hydroxymethyl)pentyl 
GSL

Cardamine pratensis

Phenylalanine 11 Glucotropaeolin Benzyl 
GSL

Tropaeolum majus Benzyl ITC 
(BITC)

23 Sinalbin 4-Hydroxybenzyl 
GSL

Sinapis alba p-hydroxy 
benzyl-ITC

105 Gluconasturtiin 
2-Phenylethyl GSL

Nasturtium officinale Phenethyl ITC 
(PEITC)

Phenylalanine - 
Tyrosine

110 (Glucomoringin) 
4-(α-L- 
Rhamnopyranosyloxy)
benzyl GSL

Moringa oleifera Glucomoringin 
ITC

Tyrosine 152 (3,5- dimethoxysinalbin) 
4-Hydroxy-3,5- 
dimethoxybenzyl GSL

Lepidium 
densiflorum

4-hydroxy-3,5- 
dimethoxy 
benzaldehyde

Tryptophan 43 (Glucobrassicin) 
3-Indolylmethyl GSL

Brassica oleracea indole-3-carbinol 
(I3C)

47 (Neoglucobrassicin) 
1-Methoxyindol-3-yl 
methyl GSL, 
N-Methoxyindol-3- 
ylmethyl GSL

Brassica napus 1-methoxyindol-
3-yl methyl ITC

48 (4-Methoxyglucobrassicin) 
4-Methoxyindol-3-
ylmethyl GSL

Brassica oleracea

Table 2.1 (continued)
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 2. Formation of the core GLS structure through a multistep transformation of the 
amino acid or the chain-elongated derivate to form aldoxime, thiohydroximic 
acids, desulfo-GSLs, and the core GSL structure;

 3. Side-chain modification in which GSLs are subject to secondary modification of 
the amino acid side chain including oxygenations, hydroxylations, alkenylations, 
and methoxylations.

Nevertheless, each of the three phases includes several steps and overall the bio-
synthesis of GSLs is quite complex and involves over 40 genes regulated at the 
transcriptional level to produce the existing variety of GSLs (Kopriva and 
Gigolashvili 2016). A number of comprehensive review articles have illustrated the 
GSL biosynthetic process describing the biochemistry and the genes involved in 
each step especially for methionine and phenylalanine derived GSLs (Mithen 2001; 
Sønderby et  al. 2010; Ishida et  al. 2014; Velasco et  al. 2016; Sánchez-Pujante 
et al. 2017).

In the chain elongation phase reserved only to methionine and phenylalanine, 
branched-chain amino acid aminotransferase (BCATs) enzymes catalyze the amino 
acid deamination to form the relative 2-oxo acids with the involvement of the gene 
BCAT4 induced by wounding and identified as responsible for producing BCATs in 
Arabidopsis (Schuster et al. 2006). The 2-oxo acids are then subjected to further 
transformations which specifically in Brassica oleraceae cultivars are catalyzed by 
the genes BoGSL-ELONG and BoGSL-PRO, homologous of the methylthioalkyl-
mate synthase (AtMAM) genes (Li and Quiros 2002; Gao et al. 2006). Finally, iso-
propylmalate isomerises (IPMIs) and isopropylmalate dehydrogenases (IPMDHs) 
catalyze the isomerization and decarboxylation of the 2-alkylmalic acid-generating 
chain-elongated amino acid derivatives (Sawada et al. 2009; He et al. 2009, 2010).

In the second phase, as described in detail by Halkier and Gershenzon (Halkier 
and Gershenzon 2006), the synthesis of the core GSL structure starts with the oxida-
tion of the amino acid derivatives to the relative aldoxime mediated by cytochrome 
P450 mono-oxygenases belonging to the CYP79 family (Wittstock and Halkier 
2002). The aldoxime is further oxidized by CYP83 enzymes producing unstable 
aci-nitro compounds that are conjugated with cysteine to form S-alkyl- 
thiohydroximates and converted to thiohydroximate acids through enzymatic reac-
tion mediated by glutathione S-transferases and carbon-sulfur lyases (SUR1) 
(Hansen et al. 2001; Mikkelsen et al. 2004). The thiohydroximate acids are finally 
converted to desulfoglucosinolates and to GSLs through the action of uridine 
diphosphate glycotransferase (UGT74) and sulfotransferases (ST) (Grubb et  al. 
2004; Piotrowski et al. 2004).

The biosynthesis of GSLs seems to be regulated at the transcriptional level by the 
availability of different minerals which may have also interactive effects. Although 
deriving from amino acids, GSLs constitute a fundamental component of the sulfur 
metabolism. Each GLSs contains, in fact, two or three sulfur atoms and limited 
availability of sulfur surely lead to a reduced accumulation of GSLs. Sulfur defi-
ciency has been associated with downregulation of the genes associated with GSL 
biosynthesis and the simultaneous upregulation of genes involved in the synthesis 
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of myrosinases and thus in the hydrolysis of GSLs (Hirai et al. 2005; Kopriva and 
Gigolashvili 2016). Using transcriptomics and metabolomics technologies (Bielecka 
et al. 2015) found that MYB29, a transcription factor controlling GSL biosynthetic 
genes, is downregulated under sulfate starvation and is restored with re-supply of 
sulfate, and following this pattern GSL content is reduced upon sulfate starvation 
and increases upon re-supply, suggesting that in presence of limited availability of 
sulfur GSLs may be metabolized to support the primary sulfur metabolism. Total 
GSL content and GSLs profile are also influenced by the total availability and form 
of nitrogen, which may influence also the effect of sulfur on GSL biosynthesis 
(Petropoulos et al. 2017). Higher levels of nitrogen have been associated with lower 
levels of GSLs and the prevalence of indole GSLs (Zhao et al. 1994; Rosen et al. 
2005; Chun et al. 2017). Comparing the effect of ammonium versus nitrate nitrogen, 
increased accumulation of GSLs and myrosinase activity was observed in A. thali-
ana under exclusive ammonium nutrition, considered a condition of stress, and the 
same results were confirmed in broccoli (Marino et  al. 2016). The deficiency of 
phosphorus has also been associated with increased accumulation of GSLs (Pant 
et  al. 2015), while there are contrasting evidence on the effect of potassium 
(Troufflard et al. 2010; Almuziny et al. 2017; Chun et al. 2017).

Apart from dietary GSLs and ITCs, there has been also great research interest 
during the last decades for synthetic compounds with several approaches being sug-
gested (Di Cesare et  al. 2017). Recently, Eschliman and Bossmann (2019) who 
gathered the related information in the literature suggested several approaches to 
synthesize ITCs including the desulfurization of dithiocarbamate salts, the synthesis 
of ITCs from hydroximoyl chlorides or elemental sulfur, the micro-wave assisted 
synthesis or via the tandem Staudinger/aza-Wittig reactions.

2.3  The Role of Glucosinolates in Plant Physiology

GSLs are considered the stronghold in the plant defense system where through the 
“mustard oil bomb” reaction they can deter pest and pathogens attacks (Vig et al. 
2009). Unlike most defense compounds of the plant, GSLs are not toxic per se and 
a hydrolysis reaction through the involvement or myrosinase must precede to pro-
duce ITCs and other biologically active compounds (Kuchernig et al. 2011; Winde 
and Wittstock 2011; Agerbirk and Olsen 2012). Although the whole concept is 
simply a more complex system that exists with genotype and environmental condi-
tions specificities involved in the overall plant defense system and several species- 
specific GSLs being identified so far (Brown et  al. 2002; Farnham et  al. 2004). 
Recent studies comparing the GSL biosynthesis and profile of cabbage lines sus-
ceptible and resistant to ringspot and white mold caused by Mycosphaerella bras-
sicicola and Sclerotinia sclerotiorum, respectively, reported that both fungal 
infections induced the expression of genes associated with the biosynthesis of spe-
cific GSLs and their increase was associated with the resistance to white mold 
(Abuyusuf et al. 2018a, b). Moreover, the plant × pathogen system is under con-
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tinuous evolution and various pests and pathogens develop evading and/or toler-
ance pathways against plant defensive compounds (Winde and Wittstock 2011; 
Humphrey et al. 2016).

GSLs are not only involved in defense mechanisms against biotic stressors, but 
are also considered as major protectants against unfavorable abiotic conditions, 
such as high salinity, water shortage and temperature extremities (Radovich et al. 
(2005); Yuan et al. 2010; Justen et al. 2013; Esfandiari et al. 2017). The defensive 
role of GSLs against abiotic stressors is corroborated by the allocation and 
 distribution of these compounds in the affected plant tissues and organs (Del Carmen 
et  al. 2013). For example, under high salinity conditions total GSLs content 
increased for osmoprotective purposes and it was higher in the florets than in young 
leaves due to either higher de novo biosynthetic rates or to preferable transportation 
via the phloem (Del Carmen et al. 2013). Comparing the effect of moderate salinity 
stress on broccoli at different crop stages it was observed that exposure to salinity 
stress in the first vegetative growth phase determined an increase of glucobrassicin 
and neoglucobrassicin, significantly affecting the GSL profile (Di Gioia et  al. 
2018b). Similarly, for drought stress, an increase of secondary metabolites content 
and GSLs, in particular, has been also reported (Schreiner et al. 2009). However, 
contradictory results exist in the literature indicating that water stress intensity and 
duration and the plant developmental stage are key factors that determine whether 
GSLs will be increased or not compared to control conditions (Robbins et al. 2005; 
Del Carmen et al. 2013). Elevated temperatures, both in soil and air, are associated 
with high GSLs content in several Brassica species (Charron and Sams 2004; 
Charron et  al. 2005), however thermal sensitivity differences among the various 
classes of GSLs may also affect GSLs profile (Bones and Rossiter 2006; Bohinc and 
Trdan 2012). Differences in GSLs composition between plant parts are also reported 
under storage conditions. For example, the most abundant compounds in the leaves 
Brassicoraphanus ‘BB1’, an inter-generic hybrid of Brassica rapa L. cv. ‘Bulam 3’ 
(Chinese cabbage) and (Raphanus sativus L. cv ‘Taebaek’ (radish), were sulfora-
phene and raphasatin, while the roots were rich in raphasatin and PEITC (Han 
et al. 2019b).

Considering the correlation of GSLs content in plant tissues with various stress-
ors, eliciting of plant secondary metabolism through exogenous application of stress 
conditions has been suggested as an effective agronomic practice to biofortify cru-
ciferous species and increase their GSLs and the overall phytochemicals content 
(Robbins et al. 2005; Hassini et al. 2019). So far, several studies have reported the 
beneficial effect of various elicitors on GSLs content which could increase the 
dietary value of food products highlighting the great research interest (Augustine 
and Bisht 2015; Trolove et al. 2018; Banerjee et al. 2019; Dall’Acqua et al. 2019). 
With the rising interest towards sprouts, microgreens, and baby-leaf as functional 
vegetables increasingly grown using soilless systems (Kyriacou et  al. 2016; Di 
Gioia et al. 2017a, b), a number of studies have suggested the opportunity to increase 
the content of GSLs and ITCs by modifying the nutrient solution increasing the 
level of sulfur, salinity, or by modulating other eliciting factors (Kopsell and Sams 
2013; Yang et  al. 2015; Kyriacou et  al. 2016; Yang et  al. 2016d; Di Gioia et  al. 
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2018a; Petretto et al. 2019). Working on broccoli sprouts, (Yang et al. 2015) found 
that compared to other sources of sulfur, ZnSO4 improved sulforaphane formation 
inducing stress. Similarly, (Esfandiari et al. 2017) observed that in broccoli sprouts 
high salinity stress (160 mM of NaCl) decreased the content of some GSLs and did 
not affect the content of glucoraphanin, but increased the content of sulforaphane by 
six-times increasing the transcript of the gene MYROSINASE (BoMYO) and its 
cofactor EPITHIOSPECIFIER MODIFIER1 (BoESM1) which directs the enzyme 
myrosinase to hydrolize GSLs producing ITCs rather than nitrile products. These 
studies suggest that myrosinase activity plays a key role in determining the func-
tional properties of biofortified vegetables. Selenium exogenous application on cru-
ciferous plants has been suggested as a very effective elicitor of GSLs biosynthesis, 
while at the same time the increased Se content in plant tissues presents further 
health benefits to consumers (Bachiega et al. 2016; Schiavon et al. 2016; Wiesner- 
Reinhold et al. 2017).

Apart from their defensive role against stress factors, GLS is also very important 
from a physiological point of view since they can function as sulfur and nitrogen 
pools in plant biosynthetic processes although re-distribution of sulfur in plants 
under deprivation conditions needs to be confirmed (Aghajanzadeh et al. 2014).

2.4  Health Effects of Glucosinolates and Their Hydrolysis 
By-Products

The importance of GSLs for human health is pivotal when considering that most of 
these compounds have been associated with many beneficial effects, including 
activities against cancer, diabetes, heart diseases, obesity, bacteria, and fungi, and 
antioxidant and antimutagenic properties (Vig et al. 2009; Citi et al. 2014; Giacoppo 
et al. 2015; Raiola et al. 2018). Excluding a few exceptions (Abdull Razis et al. 
2011), most of the biological effects attributed to GSLs, which can be beneficial or 
not for human health, are exerted by their hydrolysis metabolites, namely ITCs 
(Xiao et al. 2003; Gründemann and Huber 2018). Since Zhang et al. (1992, 1994) 
demonstrated that sulforaphane, an ITC isolated in broccoli and derived from the 
myrosinase-induced hydrolysis of glucoraphanin, is an inducer of phase 2 detoxica-
tion enzymes and thus a potent natural anticancer, sulforaphane and other ITCs’ 
bioactivity have been the focus of hundreds of clinical studies. Moreover, the pre-
cursor of sulforaphane, namely glucoraphanin was effective against skin aging in 
senescence-accelerated mouse prone 1 after the dietary administration of 
glucoraphanin- enriched kale (Chawalitpong et al. 2019). Apart from sulforaphane, 
the most studied ITCs include allyl ITC (AITC), benzyl ITC (BITC), phenylethyl 
ITC (PEITC), indole-3-carbinol (I3C), erucin, iberin, sulforaphene, and goitrin with 
potent bioactive properties (Mithen et al. 2003; La Marca et al. 2012; Felker et al. 
2016; Baenas et al. 2017; Romeo et al. 2018). Numerous in vitro and in vivo clinical 
studies conducted over the last decades have contributed and continue to highlight 
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the multiple beneficial health effects of other ITCs which include chemoprotective 
and anticancer effects, antioxidant and anti-inflammatory activities and other bio-
logical properties that may contribute to ameliorate a series of chronic disorders 
such as obesity, diabetes, and hypertension (Table 2.2).

Regarding anticancer activities of GSL hydrolysates, various mechanisms of 
action have been identified so far with various types of cancer being studied (Cavell 
et al. 2011; Li et al. 2016, 2018; Mitsiogianni et al. 2018; Lachance et al. 2020), 
while there is great interest from the pharmaceutical industry for using synthetic 
and dietary ITCs as anticancer and chemopreventive agents (Jiang et al. 2016; Li 
et al. 2016; Gründemann and Huber 2018; Rajakumar et al. 2018a; Crowley et al. 

Table 2.2 Biological activity and effects on human health of the most studied isothiocyanates

Isothiocyanates Health effect Specific biological activity Reference

Allyl 
isothiocyanate 
(AITC)

Anticancer In vitro cytotoxic effect on 
androgen-insensitive human 
prostate cancer (AIPC) PC-3 and 
DU 145 cells by inducing 
apoptosis and cell cycle arrest.

Xiao (2003), 
Núñez-Iglesias et al. 
(2019)

inhibited LPS-induced NF-κB-
luciferase activations in human 
HT-29 colon cancer cells

Jeong et al. (2004)

Inhibited cell viability by 
inducing the apoptosis of human 
cervical cancer HeLa cells

Qin et al. (2018)

Decreased the expression of 
NF-κB p65, TNF-α, and IL-6 in 
mammary tissues and inhibits 
phase I and induction of phase II 
detoxification enzymes by 
modulating AhR/Nrf2 signaling 
pathway in mammary 
carcinogenesis

Rajakumar et al. 
(2018a, b)

Inhibited the growth of human 
bladder cancer cells HT1376 by 
90%

Chang et al. (2019)

Inhibit the growth of A549 lung 
cancer cells

Rakariyatham et al. 
(2019)

Inhibition of cell growth in 
malignant melanoma

Mitsiogianni et al. 
(2019)

Anti-estrogenic and anti- 
proliferative effect against 
mammary carcinogenesis

Thangarasu et al. 
(2019)

Cytotoxic activity against bladder 
cancer UM-UC-3 and 
glioblastoma LN229 cell lines

Blažević et al. (2019)

Inhibition of renal carcinoma 
GRC-1 cell line proliferation

Jiang et al. (2016)

(continued)
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Isothiocyanates Health effect Specific biological activity Reference

Antioxidant and 
anti-inflammatory

Ameliorates hepatic steatosis and 
inflammation by activating the 
Sirt1/AMPK pathway and 
inhibiting the NF-κB pathway

Li et al. (2019)

Decreased tumor necrosis factor α 
mRNA levels and its secretion in 
LPS stimulated RAW264.7 
macrophages, downregulated 
pro- inflammatory markers such as 
interleukin-1β and inducible nitric 
oxide synthase. Decreased nuclear 
p65 protein levels, a subunit of the 
transcription factor NF-κB.

Wagner et al. (2012)

Reduced oxidative stress and 
inflammation by modulating Nrf2/
HO-1 and NF-κB pathways in 
traumatic brain injury in mice

Caglayan et al. (2019)

Reduced liver fibrosis by 
regulating Kupffer cell activation

Kim et al. (2018a)

Anti-obesity Increased basal and epinephrine-
induced lipolysis in adipocytes 
and intensified hydrolysis of 
triacylglycerols in the blood 
serum

Okulicz (2010)

Inhibited adipocyte differentiation 
by suppressing galectin-12 levels 
in 3T3L1 cells and has anti-
obesity effects in high fat diet-fed 
mice

Lo et al. (2018)

Reduced blood glucose, total 
cholesterol, triglycerides, and 
creatinine levels, and increased 
total antioxidant capacity

Sahin et al. (2019)

Anti-diabetic Inhibited the hyperglycemia and 
hyperinsulinemia induced by the 
consumption of a high-fat diet

Ahn et al. (2014)

Suppression of oleic acid- induced 
lipid accumulation and 
lipogenesis in hepatocytes

Kim et al. (2015)

Increased carbohydrate oxidation 
by enhancing insulin secretion via 
transient receptor potential (TRP) 
V1

Mori et al. (2018)

Anti-bacterial, 
anti-fungal

Cytotoxic effect against several 
bacterial and fungi

Blažević et al. (2019)

Reduced biofilm growth and 
virulence factors of C. albicans

Raut et al. (2017)

(continued)
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Isothiocyanates Health effect Specific biological activity Reference

Benzyl 
isothiocyanate 
(BITC)

Antimicrobial 
activity

Inhibition of the growth of oral 
pathogens higher than 
sulforaphane

Ko et al. (2016)

Reduced the motility of E. coli 
O157:H7 and Salmonella and 
killed Salmonella by disrupting 
bacterial cell membrane and 
decreased shiga toxin production 
by E. coli O157:H7

Patel et al. (2020)

Anticancer 
activity

Inhibited the growth of 3 different 
human lung cancer cell lines 
A549 (adenocarcinoma), H661 
(large cell carcinoma) and 
SK-MES-1 (squamous cell 
carcinoma)

Zhang et al. (2017)

Increased miR-99a expression 
through ERK/AP-1-dependent 
pathway showing antitumor 
properties in bladder cancer cells

Tsai et al. (2020)

Suppressed cancer cell 
proliferation through the 
post-transcriptional regulation of 
the kinetochore protein Mis12

Abe-Kanoh et al. 
(2019)

Erucin Anticancer Induced apoptosis in human 
hepatoma (HepG2) cells

Lamy and Mersch- 
Sundermann (2009), 
Pocasap et al. (2018)

Modulation of key enzymes in 
carcinogen metabolism in rat lung 
slices

Abdull Razis et al. 
(2011)

Inhibition of PC3 cell 
proliferation by increasing p21 
protein expression and ERK1/2 
phosphorylation

Melchini et al. (2013)

Inhibition of breast cancer 
proliferation acting at various 
levels

Wang et al. (2005), 
Bo et al. (2016), 
Prełowska et al. 
(2017)

Inhibition of histone deacetylase 
(HDAC) activity in human 
bladder cancer cells

Abbaoui et al. (2017)

Release of hydrogen sulfide (H2S) 
in pancreatic adenocarcinoma 
cells (AsPC-1) and inhibition of 
AsPC-1 cell viability and 
migration

Citi et al. (2019)

Table 2.2 (continued)
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Isothiocyanates Health effect Specific biological activity Reference

Anti-
inflammatory

Inhibition of pro-inflammatory 
enzymes and cytokines, through 
inhibition of NFκB signaling in 
RAW 264.7 murine macrophages 
and 12-O-tetradecanoylphorbol- 
13-acetate-treated mouse skin

Cho et al. (2013)

Neuroprotective Activation of the transcriptional 
nuclear factor (erythroid-derived 
2)-like 2 (Nrf2) in in vitro and 
in vivo models of Parkinson’s 
disease

Morroni et al. (2018)

Neuroprotective effects in human 
neuronal cells

Sestito et al. (2019)

Anti-hypertension 
and vasorelaxing

Release of H2S in human aortic 
smooth muscle (HASMCs) cells 
and inhibition of noradrenaline- 
induced vasoconstriction

Martelli et al. (2019)

Antimicrobial 
activity

Inhibition of the growth of oral 
pathogens higher than 
sulforaphane

Ko et al. (2016)

Goitrin Antithyroid Inhibit the uptake and 
organification of iodine by the 
thyroid glands limiting the 
formation of thyroid hormone

Gaitan (1990), Felker 
et al. (2016)

Iberin Anticancer 
activities

Anticancer activities against 
prostate, breast and colon cancer 
and leukemia

Jakubikova et al. 
(2005, 2006), 
Sarikamiş (2009), 
Núñez-Iglesias et al. 
(2019)

Anticancer activities against 
hepatocellular carcinoma cell 
HepG2 line through the increase 
of intracellular reactive oxygen 
species and the inhibition of 
tubulin depolymerization

Pocasap et al. (2019)

Inhibition of carcinogens in 
hepatocytes

La Marca et al. (2012)

Growth inhibition and apoptosis 
in lung cancer A549 cells

Wang et al. (2016)

Induction of cycle arrest and 
apoptosis of human 
neuroblastoma SK-N-AS, 
SK-N-SH and SK-N-BE(2) cell 
lines

Jadhav et al. (2007)

Antimicrobial 
activities

Antimicrobial activities against 
oral and food borne pathogens 
and Pseudomonas aeurugunosa

Jakobsen et al. (2012), 
Wilson et al. (2013), 
Tan et al. (2014), Ko 
et al. (2016)

Table 2.2 (continued)
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Isothiocyanates Health effect Specific biological activity Reference

Indole-3 
carbinol (I3C)

Anticancer 
activities

Management of biochemically 
recurrent prostate cancer through 
the downregulation of signal 
transduction pathways

Van Die et al. (2016), 
Wu et al. (2019), 
Núñez-Iglesias et al. 
(2019)

Inhibition of cervical cancer, 
human breast cancer (T47D), and 
hepatocellular carcinoma 
(SK-Hep-1, SNU-449 and Huh-7) 
cells through the upregulation of 
phosphatase and tensin 
homologue (PTEN)

Meng et al. (2000), Qi 
et al. (2005), 
Aronchik et al. 
(2014), Wang et al. 
(2015), Jiang et al. 
(2019), Mokbel and 
Mokbel (2019)

Antioxidant 
activity

Showed dopamine-like 
antioxidant activity mainly 
preventing the oxidative 
degradation of lipids

Vo et al. (2019)

Antimicrobial 
activity

Potent inhibition of the growth of 
oral pathogens

Ko et al. (2016)

Phenethyl 
isothiocyanate 
(PEITC)

Anticancer 
activities

Activities against human prostate 
cancer PC-3 and DU 145 cell 
lines

Aggarwal et al. 
(2019), Núñez- 
Iglesias et al. (2019)

Activities against human colon 
carcinoma cell line HT29 through 
the synergism with Laccaic acid

Gupta et al. (2019)

Antiatherogenic 
activity

Protective effects against 
atherogenesis and thrombosis

Chuang et al. (2013), 
Huang et al. (2013), 
Jayakumar et al. 
(2013)

Anticancer activities against 
human colon cancer cell lines 
DLD-1 and SW480 through the 
suppression of Wnt/β- catenin 
pathway

Chen et al. (2018b)

Antiobesity 
activity

Antiobesity effects through the 
reduction of adipocyte 
differentiation and the induction 
of cell cycle

Chuang et al. (2019)

Neuroprotective 
activity

In vitro and in vivo effects against 
neurodegenerative diseases

Jaafaru et al. (2018a)

Antimicrobial 
activity

Inhibit of bacterial conjugation of 
pathogen microorganisms

Kwapong et al. (2019)

Inhibition of the growth of oral 
pathogens, Pseudomonas 
aeruginosa, Bacillus cereus and 
Escherichia coli

Jang et al. (2010), Ko 
et al. (2016), Kaiser 
et al. (2017), Yang 
et al. (2020)

Table 2.2 (continued)
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Isothiocyanates Health effect Specific biological activity Reference

Sulforaphane 
(SFN)

Anticarcinogenic 
activity

Induction of phase II detoxication 
enzymes

Zhang et al. (1992, 
1994)

Antioxidant Upregulation of genes that protect 
aerobic cells against oxidative 
stress, inflammation, and 
DNA-damage associated with 
autism spectrum disorder.

Singh et al. (2014)

Protection against nitrative stress 
and inflammation by 
downregulating oxidative stress 
and inflammation by blocking 
NFkB (nuclear factor kappa-light-
chain-enhancer of activated B 
cells) pathway in autistic children.

Nadeem et al. (2020)

Antimicrobial 
activity

Inhibition of the growth of oral 
pathogens

Ko et al. (2016)

Sulforaphene Anticancer 
activity

Induction of apoptosis of 
hepatocarcinoma HepG2 cells

Pocasap and 
Weerapreeyakul 
(2016), Yang et al. 
(2016a), Kntayya 
et al. (2018)

Growth inhibition of human 
breast MCF-7 and SUM159 cells

Bao et al. (2016), 
Pawlik et al. (2017)

Activities against lung cancer 
through the inhibition of the 
PI3K-AKT signaling pathway

Yang et al. (2016c)

Induction of apoptosis and 
inhibition of migration of gastric 
cancer AGS cells

Mondal et al. (2016)

Induces apoptosis of cervical 
cancer (HeLa cell line)

Rhee et al. (2017)

Suppression of growth of human 
colon cancer cell lines (HCT116, 
HT-29, KM12, SNU-1040, 
DLD-1)

Byun et al. (2016)

Induction of apoptosis and 
inhibition of the invasion of 
esophageal cancer cells through 
the inhibition of the MSK2–
CREB–Bcl2 and cadherin 
pathways

Zhang et al. (2019a)

Antiobesity 
activity

Antiobesity activities through the 
activation of the Hedgehog (Hh) 
signaling pathway

Chen et al. (2018a)

Table 2.2 (continued)
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2019). For example, dietary AITC is considered as a potent cancer chemopreven-
tive agent with high bioavailability and low degree of side effects due to cytotoxic-
ity and genotoxicity (Zhang 2010), although synergistic effects with other hydrolysis 
by- products and conventional drugs should be considered (Chatterjee et al. 2016; 
Rakariyatham et al. 2019). Moreover, Blažević et al. (2019) who compared the bio-
active properties of hydrodistillates and extracts of Lepidium latifolium L. with 
pure AITC reported similar cytotoxic effects against bladder cancer UM-UC-3 and 
glioblastoma LN229 cell lines. Other researchers have reported the epigenetic 
effects of AITC against malignant melanoma through the regulation of lysine acety-
lation and methylation marks (Mitsiogianni et  al. 2019). However, the volatile 
nature of AITCs inhibits their use in food products with enhanced bioactive proper-
ties and other forms should be considered. Therefore, Chang et al. (2019) studied 
the potential of encapsulating AITCs in nanoparticles and reported significant 
effectiveness against HT1376 bladder cancer cells proliferation, as well as anti-
inflammatory activity against macrophage cell RAW 264.7, while Encinas-Basurto 
et al. (2017, 2018) suggested the increased delivery of AITC-loaded polylactic-co-
glycolic acid (PLGA) nanoparticles (NPs) against epithelial squamous carcinoma 
cells. Apart from AITC, other GSL hydrolysates such as iberin, PEITC, I3C, 4-pen-
tenyl-ITC (4PI) and SFN showed a dose- and time dependent effectiveness against 
two cell lines of androgen-insensitive human prostate cancer, namely PC-3 and DU 
145 (Núñez-Iglesias et al. 2019). In the study of Zhang et al. (2017), the in vitro and 
in vivo growth inhibition of lung cancer cells (A549 (adenocarcinoma), H661 (large 
cell carcinoma) and SK-MES-1 (squamous cell carcinoma)) was also reported for 
BITC, with a concomitant induction of autophagy for the tested cancer cells. The 
same compound was also effective against bladder cancer cells through the upregu-
lation of miR-99a expression (Tsai et al. 2020), induced apoptosis of gastric cancer 
AGS cells (Han et al. 2019a) and leukemia U937 cells (Stasiłojć et al. 2019), while 
3,4-dimethoxybenzyl ITC (dMBITC) increased doxorubicin efficacy against resis-
tant colon cancer cell lines (LoVoDX) and ameliorated its toxic effects (Psurski 
et al. 2019). Other types of cancer affected by BITC include breast cancer (Roy 
et al. 2019; Xie et al. 2019; Kim and Singh 2019), pancreatic adenocarcinoma (Si 
et al. 2019), liver and prostate cancer (Crowley et al. 2019), human brain glioblas-
toma (Ma et al. 2018b), and human melanoma A375.S2 cells among others (Ma 
et al. 2017). The suggested mechanisms of action of ITCs include the cell cycle 
arrest and cell apoptosis, the inhibition of angiogenesis and metastasis, the modula-
tion of detoxifying enzymes, and the inhibition of phase I and the induction of 
phase II enzymes (Mitsiogianni et al. 2018; Di Gioia et al. 2020).

AITC dietary intake is also associated with antidiabetic, anti-inflammatory and 
antioxidant activities through the increase of glucose transporter-2, peroxisome 
proliferator-activated receptor-gamma, p-insulin receptor substrate-1, and nuclear 
factor erythroid-derived 2 and the reduction of nuclear factor-kappa B in kidney and 
liver tissues of Wistar rats (Sahin et  al. 2019). In another recent study, Lo et  al. 
(2018) attributed anti-obesity effects to AITC since its administration inhibited adi-
pocyte differentiation through the suppression of galectin-12, while Subedi et al. 
(2017) highlighted the neuroprotective activities against microglia-induced toxicity 
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in neuroblastoma cells. Sulforaphane is in the focus of several clinical studies which 
evaluate its effect against diabetes and cardiometabolic disorders and promising 
results have been reported suggesting as possible mechanisms of action the induc-
tion of nuclear factor erythroid 2-related factor 2 (Nrf2) and the modulation of pro- 
inflammatory and metabolic signaling pathways (Patel et  al. 2018). Antidiabetic 
effects of sulforaphane were also associated with the amelioration of insulin respon-
siveness and the lipid profile in male Wistar rats (De Souza et  al. 2016). Other 
beneficial effects of sulforaphane for the cardiovascular system include the reverse 
of abnormal angiotensin II-induced migration of human vascular smooth muscle 
cells (Zhang et al. 2019b), the activation of Nrf2 (Bai et al. 2015), the downregula-
tion of expression of intracellular adhesion molecule-1 in TNF-α-induced ECV 304 
endothelial cells (Hung et al. 2014), as well as the attenuation of cardiotoxicity in 
breast cancer patients treated with doxorubicin (Bose et al. 2018). This potent com-
pound may also exhibit antiobesity effects, since it can inhibit adipocyte differentia-
tion and promote lipolysis in both in vitro and in vivo studies (Choi et al. 2012, 
2014b; Martins et al. 2018).

Indole-3 carbinol (I3C) is another potent phytochemical which is derived from 
glucobrassicin hydrolysis. Several studies have reported its anticancer properties 
against various types of cancer, including recurrent prostate cancer, cervical cancer, 
human breast cancer, and hepatocellular carcinoma (Meng et  al. 2000; Qi et  al. 
2005; Aronchik et al. 2014; Wang et al. 2015; Van Die et al. 2016; Lee et al. 2018; 
Tian et al. 2019). I3C also exhibited antimicrobial activities against a broad spec-
trum of bacteria (Ko et al. 2016; Vale et al. 2019), as well as anti-inflammatory and 
anti-arthritic properties (Hasan et al. 2018) and hepatoprotective effects (Choi et al. 
2018). An I3C digestion byproduct, namely 3,3′-diindolylmethane has been found 
to be effective against hyperglycemia and diabetic nephropathy through the 
increased uptake of glucose, the inhibition of PKC-α expression and the activation 
of insulin signaling in 3T3-L1 adipocytes (Choi and Yoo 2018, 2019), as well as 
against neurodegenerative diseases (Lee et al. 2020) and obesity (Yang et al. 2017). 
This byproduct is an effective anticancer agent with several studies to confirm this 
(Tian et  al. 2019; Ahmad et  al. 2019), while it exhibited anti-ischemic effects 
through the inhibition of hypoxia-induced inflammation and apoptosis and the 
induction of cardiomyocyte autophagy (Liang et al. 2017).

GSL degradation byproducts such as AITC, SFN, PEITC, and 4-methoxyphenyl 
ITC may also inhibit bacterial conjugation which is responsible for the resistance of 
pathogenic microorganisms against antimicrobial agents (Kwapong et  al. 2019). 
Moreover, according to Kaiser et  al. (2017) natural ITCs (AITC, BITC, PEITC) 
isolated from Tropaeolum majus (nasturtium) and Armoracia rusticana (horserad-
ish) may exhibit therapeutic properties against infections from the multi-drug resis-
tant and biofilm-forming Gram-negative bacterium Pseudomonas aeruginosa. 
Similar results were reported for the effectiveness of AITC against Candida albi-
cans biofilms (Raut et al. 2017). Several other studies have reported the antimicro-
bial properties of synthetic or natural ITCs against a broad spectrum of activity 
against both human affecting Gram-negative and Gram-positive bacteria with vari-
ous mechanisms of action being suggested (Jang et al. 2010; Lu et al. 2016; Nowicki 
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et al. 2016, 2019; Saleh et al. 2017; Romeo et al. 2018). According to Ko et al. 
(2016), structural differences of ITCs have a significant effect on antimicrobial effi-
ciency where the number of double bonds, the presence of thiol groups or the length 
of the side-chain defines ITCs activities. In particular, BITC was the most effective 
against Escherichia coli O157:H7 and Salmonella enterica among seven GSL 
hydrolysis products (butyl ITC, ethyl ITC, isopropyl ITC, methyl ITC, phenethyl 
ITC and allyl ITC), since it inhibited the bacteria motility and the production of 
Shiga toxin (Patel et  al. 2020). Moreover, BITC and PEITC showed the highest 
activity against Bacillus cereus compared to 3-butenyl ITC and 4-pentenyl ITC, 
while they were effective against several other Gram-positive and Gram-negative 
bacteria (Jang et al. 2010). Recently, Yang et al. (2020) reported that antimicrobial 
activities of BITC and PEITC against E. coli (enterotoxigenic and Shiga-producing 
strains) are related to the down-regulation of virulence genes.

Other health effects include the attenuation of oxidative stress and anti- 
inflammatory activities of AITC against oxidative stress and inflammation caused 
after traumatic brain injury through the modulation of nuclear factor erythroid 
2-related factor 2 (Nrf2) and nuclear factor kappa B (NF-κB) (Caglayan et al. 2019). 
The same compound was effective against inflammatory bowel disease by amelio-
rating the severity of colitis symptoms in mice models (Kim et al. 2018b). GSLs and 
various ITCs (SFN, PEITC, erucin, 6-(methylsulfinyl) hexyl ITC) showed promis-
ing in vitro and in vivo effects against neurodegenerative diseases mostly associated 
with their anti-amyloidogenic, antioxidant, and anti-inflammatory properties 
(Jaafaru et  al. 2018a). Other suggested mechanisms for the protective effects of 
ITCs against neurodegenerative diseases include the cholinesterase inhibition, with 
phenyl ITC and 3-methoxyphenyl ITC showing the most promising results as cho-
linesterase inhibitors and anti-inflammatory agents (Burčul et al. 2018). According 
to Kim et al. (2018a), AITC produced from sinigrin hydrolysis mitigated hepatic 
fibrosis in carbon tetrachloride-induced hepatotoxicity in rats, while as a possible 
mechanism of action it was suggested the regulation of Kupffer cell and the activa-
tion of monocytes. The hepatoprotective activity of AITC has been also confirmed 
in vivo studies with carbon tetrachloride treated Sprague Dawley rats and the pos-
sible mechanism of action was suggested being the lipid peroxidation inhibition, the 
increased activity of antioxidant enzymes and the suppression of macrophages and 
Kupffer cells (Ahn et al. 2016). Moreover, AITC, BITC and 3-butenyl ITC exhib-
ited significant antimutagenic activity against various mutagens (4-nitro-o- 
phenylenediamine, sodium azide and 2-aminofluorene) (Rampal et al. 2017), while 
SFN, BITC, and PEITC showed protective effects against atherogenesis and throm-
bosis through various mechanisms of action (Chuang et al. 2013; Huang et al. 2013; 
Jayakumar et al. 2013).

Regarding the health effect of other less studied ITCs, 4-carboxy phenyl-ITC 
(4CPI) acted as a hydrogen sulfide donor and decreased ischemia/reperfusion- 
induced tissue injury after acute myocardial infarction in rats (Testai et al. 2016). 
Moreover, 4CPI and phenyl ITC exhibited promising effects against hypertension, 
since they acted as hydrogen sulfide release agents which has vasorelaxing and 
hypotensive properties (Martelli et  al. 2014). Two other ITCs, namely 4-[(α-L- 
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rhamnosyloxy)benzyl] ITC and 4-[(4′-O-acetyl-α-L-rhamnosyloxy)benzyl] ITC 
were also identified as potent indirect antioxidants through the induction of NAD(P)
H quinone oxidoreductase 1 (NQO1) activity in Hepa1c1c7 cells (Tumer et  al. 
2015). Glucomoringin ITC (4-(α-L-rhamnosyloxy)benzyl ITC)) was also effective 
against resistant pathogens affecting long-term hospital patients (Staphylococcus 
aureus, Enterococcus casseliflavus, and Candida albicans) (Galuppo et al. 2013), as 
well as against human neuroblastoma SH-SY5Y cells (Cirmi et al. 2019; Jaafaru 
et al. 2019), human prostate adenocarcinoma (PC-3) cells (Jaafaru et al. 2018b) and 
human astrocytoma grade IV CCF-STTG1 cells (Rajan et al. 2016).

Iberin, an aliphatic ITC derived from glucoiberin hydrolysis, is associated with 
antimicrobial activities against oral and foodborne pathogens (Wilson et al. 2013; 
Ko et al. 2016) and anticancer activity against various types of cancer (Sarikamiş 
2009; Wang et al. 2016; Pocasap et al. 2019; Núñez-Iglesias et al. 2019).

Raphasatin (4-Methylthio-3-butenyl ITC) which is the hydrolysis product of glu-
coraphasatin is a potent detoxifier and inducer of rat hepatic phase II enzymes and 
a potential chemopreventive agent against esophageal carcinogenesis and pancre-
atic carcinogenesis (Scholl et al. 2011; Abdull Razis et al. 2012; Okamura et al. 
2013; Suzuki et al. 2016), without showing toxicity to urinary bladder (Suzuki et al. 
2017). According to Ibrahim et al. (2018), this ITC is responsible for the apoptosis 
and cell cycle arrest of human breast adenocarcinoma MCF-7 cells, while its com-
bined administration along with two other food components (vitexin-2-O-xyloside 
and (–)-epigallocatechin-3-gallate) inhibited the growth and induced the apoptosis 
of colon cancer LoVo and CaCo-2 lines (Papi et al. 2013). Moreover, La Marca et al. 
(2012) who studied the dose-effect of raphasatin and sulforaphane suggested that 
low doses of both ITCs may exhibit anti-aging activities and reduce chemotherapy- 
induced oxidative stress, whereas at high doses they may act synergistically with 
anticancer drugs and induce cell DNA damage (Zanichelli et al. 2012). Raphasatin 
and sulforaphene were detected in aqueous extracts of Spanish black radish vegeta-
tive portions and exhibited significant antioxidant properties by inducing detoxifica-
tion enzymes in HepG2 cells; however, raphasatin content was significantly reduced 
within the first hour after extraction compared to sulforaphene (Hanlon et al. 2009). 
Regarding sulforaphene, which is derived from glucoraphanin and has been detected 
in various plants parts (Hanlon et al. 2009; Lim et al. 2016; Zhang et al. 2016), it 
may induce apoptosis in hepatocarcinoma HepG2 cells and growth inhibition in 
human breast adenocarcinoma MCF-7 cells and human HT-29 and HCT116 colon 
cancer cells (Byun et  al. 2016; Pocasap and Weerapreeyakul 2016; Yang et  al. 
2016b; Bao et al. 2016; Pawlik et al. 2017; Kntayya et al. 2018), as well as in esoph-
ageal cancer cells (Zhang et  al. 2019a). Other health effects include antiobesity 
activities (Chen et al. 2018a), as well anti-cancer properties against various types of 
cancer e.g. lung cancer and gastric cancer (Mondal et al. 2016; Yang et al. 2016c), 
and cervical cancer (Rhee et al. 2017).

While multiple beneficial health effects are attributed to most of the ITCs deriv-
ing from the myrosinase-mediated degradation of GSLs, some of the GLS degrada-
tion products may have harmful effects on human health and are considered 
antinutrients (Kupke et  al. 2016; Di Gioia et  al. 2020). Goitrin and thiocyanates 
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deriving from the hydrolysis of progoitrin and indole GSLs have antithyroid activity 
by inhibiting the uptake and organification of iodine by the thyroid glands limiting 
the formation of thyroid hormone, causing the enlargement of the thyroid with the 
development of a condition known as goiter (Gaitan 1990; Felker et  al. 2016). 
Examining the concentration of goitrin and thiocyanate in human plasma upon 
ingestion of Brassica vegetables containing progoitrin and indole GSLs which are 
responsible for the formation of goitrogenic thiocyanates, Felker et al. concluded 
that, the consumption of regular serving size broccoli, broccoli rabe, bok choy, and 
Chinese cabbage results in plasma concentration levels of progoitrin and goitrogens- 
generating indole-GSLs that are well below the levels that may affect thyroid 
 activity (Felker et al. 2016). On the other hand, excessive and continuous consump-
tion of raw Russian kale, collards, and Brussel sprouts characterized by high levels 
of progoitrin may limit iodine uptake in the thyroid and cause hypothyroidism (Choi 
et al. 2014a; Felker et al. 2016).

Several other studies have indicated toxic effects of ITCs, such as goitrogenic 
and mutagenic ones (Wiesner et al. 2014; Eisenbrand and Peter 2016), while adverse 
activities have been also appointed to other byproducts of myrosinase-induced 
hydrolysis, e.g. nitriles, thiocyanates, goitrins, epithionitriles and cyanides (Cipollini 
and Gruner 2007; Kupke et al. 2016; Felker et al. 2016). There is also a particular 
species, Carica papaya, which contains both beneficial (glucotropaeolin) and toxic 
(cyanogenic glucosides) compounds (Bennett et al. 1997; Olafsdottir et al. 2002; 
Williams et al. 2013; Bolarinwa et al. 2016), while degradation byproducts of spe-
cific GSLs may exhibit either beneficial or adverse effects. A perfect example is the 
case of epithionitriles which may have toxic effects on mammals’ liver and kidney 
(Kupke et al. 2016), or present cancer-preventive/therapeutic properties (Hanschen 
et al. 2015).

Despite the whatsoever limited negative effects, scarce evidence from epidemio-
logical studies on humans exists, while limited data from toxicological studies are 
available to formulate safety regulations and recommend average daily intake 
amounts (Spcijers 1995; Latté and Appel 2011). Recently, a cohort study conducted 
by Ma et al. (2018a) between 1984–2013 associated dietary GSL intake with an 
increased risk of type 2 diabetes in US adults. A recent review paper, (Fimognari 
et al. 2012) stressed out the genotoxic potential of ITCs which may result in gene 
mutations and chromosomal aberrations, however, they suggested that further toxi-
cological studies are required to evaluate the toxicity of ITCs and recommend safe 
daily intake allowance.

2.5  Conclusion Remarks

GSLs represent an important group of phytochemicals with great significance in 
plant physiology and defense system. Apart from that, several beneficial health 
effects have been confirmed with in vitro and in vivo studies during the last decades 
which are associated with their hydrolysis products, namely ITCs, and triggered the 
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current research interest of the scientific community. The numerous GSLs identified 
in various species of the Brassicales order exhibit a great structural diversity and 
originates a large number of byproducts which further results in a broad spectrum 
of bioactive properties, including anticancer, antimicrobial, antidiabetic and benefi-
cial to cardiovascular system activities among others. The recent analytical tech-
niques allowed researchers to identify the mechanisms of action behind the activities 
of many GSLs, as well as their bioavailability and bioaccessibility after ingestion in 
the human body. Moreover, considering the already confirmed positive health 
effects future research should focus on agronomic practices and breeding efforts 
that would increase GSLs content in the final products and improve their dietary 
value. However, despite the beneficial effects, there are also reports and clinical 
studies that highlight possible negative effects which need further consideration in 
order to define safe consumption limits.
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Abstract Non-communicable diseases are among the top causes of death world-
wide. In the following decades, the number of people affected by non- communicable 
diseases will increase due to aging, and so the demand for medicines. Many of the 
treatments available to alleviate these diseases have adverse side effects, whereas 
others are costly, so there is an urgent need for alternatives. Currently, there is an 
increasing pharmacological interest for peptides and proteins as therapeutic agents 
because of advantages such as biocompatibility, high potency, high selectivity, and 
low risk of drug interactions. This chapter reviews updated scientific reports about 
food-derived bioactive peptides and proteins, about their potential preventive or 
alleviating role on the deadliest non-communicable diseases. Cardiovascular dis-
ease, cancer disease, diabetes, neurodegenerative disorders, as well as oral cavity 
diseases as a predisposing factor to the development of other essential illnesses, are 
addressed. The objective is to provide useful information to readers involved or 
interested in the fields of pharmacology and food technology, with the hope that it 
can serve as an introductory guide to recognize the immense potential of peptides 
and proteins as therapeutic agents.
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3.1  Introduction

According to the World Health Organization (WHO 2018), in 2016, deaths world-
wide amounted to 56.9 million. The most prevalent noncommunicable diseases 
accounted for a combined 29.6 million deaths from which cardiovascular diseases 
represented 55%, a set of others, diabetes among them, 31%; and cancer, 14% 
(Fig. 3.1). Percentages vary between regions, income level, age, and sex, being the 
income level the most important factor since, in developing countries, infectious 
diseases represent the leading cause of death. Although some risk factors are well 
identified, which serves the health authorities to plan public health strategies, pro-
jections are not very encouraging. It is thought that by 2030, the sum of deaths due 
to noncommunicable diseases will rise to 52 million (WHO 2008). If this is added 
to the appearance of new diseases and the resurgence of others that were believed 
already eradicated, it results in a growing need for the population for the use of 
medications.

Evidence of the importance of the pharmaceutical sector is the world drug mar-
ket, which had revenues of 1,204.8 billion US dollars (1.2 trillion) in 2018, from 

Fig. 3.1 Contribution of the most prevalent noncommunicable diseases to total worlwide deaths 
in 2016. Calculated with data of the World Health Organization (WHO 2018)
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which 8.26% corresponded to cancer drugs. Cancer is not the most prevalent dis-
ease or the one that causes the most deaths, but anticancer drugs have the highest 
prices (Mikulic 2019). In this context, in addition to the fact that many pharmaceuti-
cal medications are unreachable for people in need, there are adverse effects of the 
same, which even end in a fatality (Karimi et al. 2015). Thus, a growing interest of 
people to use natural alternatives exists, representing an opportunity for the expan-
sion of their market. However, something “natural” is not always free from undesir-
able side effects, so strict protocols must be followed before placing natural-derived 
drugs in the market. Such is the case of peptides and proteins used as therapeu-
tic agents.

Bioactive peptides (BP) are those displaying some kind of biological activity, 
which goes beyond the nutritional one and has a positive impact on human health 
(Kitts and Weiler 2003). In general, BP has current or potential uses as nutraceuti-
cals, food preservatives, or drugs, depending on the amino acid sequence. Bioactive 
peptides are usually encrypted in many proteins, which are part of the human diet. 
This is a latent form of BP, and becomes active after releasing by proteolysis, either 
chemical or enzymatic (Bhat et  al. 2015a; Karami and Akbari-Adergani 2019). 
After a BP with determined biological activity is identified, its production at a high 
scale is frequently assisted by chemical synthesis. Another strategy is the use of 
recombinant technology to obtain the source protein, from which the BP of interest 
are subsequently released (Rasmussen 2018). On the other hand, bioactive proteins 
are those who have therapeutic properties as well, but unlike BP, their number of 
amino acid residues is higher than 50 (Dimitrov 2012).

There are several reviews on the subjects of BP, addressing either general or 
particular issues (Acquah et  al. 2019; Belović et  al. 2011; Boparai and Sharma 
2020; Karami and Akbari-Adergani 2019; Lau and Dunn 2018; Pandit et al. 2020; 
Sánchez and Vázquez 2017). This chapter reviews updated scientific evidence on 
the bioactivity of BP derived from food proteins in terms of their potential impacts 
on the primary non-communicable diseases. A general view on drug design is pre-
sented, as a background, to discuss the research on peptides and proteins in a phar-
macological context.

3.2  Generalities on Drug Design

Drug design is a challenging task. Commercialization of a particular drug is pre-
ceded by years of intense work and involves the participation of a myriad of special-
ists trained in a variety of disciplines. Typically, drug design consists of two major 
stages: drug discovery and drug development; each of them subdivided into many 
minor tasks (Fig. 3.2). The goal of drug discovery is the selection of one compound, 
among thousands, with the potential to be clinically relevant by demonstrating 
in vivo efficacy in animal models. The second primary stage, drug development, has 
the goal of placing the drug in the market. It starts by requesting permissions for 
clinical trials in humans and is progressed through several studies until it is approved 
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by the appropriate regulatory agencies. Then, post-market surveillance is followed 
(Blass 2015).

Since millions of chemical compounds exist, the starting point of drug discovery 
could be extremely laborious. Modern drug design is supported by computational 
and biological approaches to reduce costs and time (Xue et  al. 2018; Zhou and 
Zhong 2017). However, physicochemical properties such as solubility and perme-
ation across membranes, which are particularly crucial for drugs designed for oral 
administration, are not accurately predicted. As a result, physical measurements 
would be necessary, with the disadvantages that this conveys. In this regard, 
researchers have adopted the Lipinski’s rule of five (Lipinski et al. 2001) to define 
drugability, i.e., whether a chemical compound meets the characteristics of a drug. 
This rule, proposed in 1997 and to date very useful (Benet et al. 2016), is based on 
experimental and computational approaches. It establishes that poor absorption or 
permeation of a compound is more likely if:

• There are more than 5 H-bond donors (expressed as the sum of OH and NH);
• The molecular weight is over 500;
• The Log P (octanol-water partition coefficient) is over 5;
• There are more than 10 H-bond acceptors (expressed as the sum of N and O)

In principle, peptides and proteins do not accomplish  Lipinski’s rule to be con-
sidered as candidates for drug development. However, their high potency and 

Fig. 3.2 Simplified diagram of the drug development process. Adapted from Blass (2015)
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 selectivity have prompted researchers to develop strategies for enhancing their phar-
macokinetic properties.

3.3  Bioactive Peptides in the Pharmaceutical Context

As with any other bioactive substance, the biological effects of peptides must be 
measurable at a physiological level and affect the health positively to be considered 
as BP (Möller et al. 2008). Demonstrated bioactivity of peptides includes the anti-
oxidant, antimicrobial, antihypertensive, antithrombotic, anti-inflammatory, hypo-
glycemic, immunomodulatory, anticancer, and opioid, among others (Boparai and 
Sharma 2020). Non-communicable diseases are of high interest to the pharmaceuti-
cal industry, and the BP development is highly concentrated in such areas, too (Lau 
and Dunn 2018). Bioactive peptides are encrypted in proteins, whose sources are of 
both animal and plant origin. However, most of the bioactive peptides come from a 
food of animal origin, such as bovine milk, cheese, and other dairy products. Plant- 
based sources of BP include cereals such as wheat, corn, rice, and sorghum, in addi-
tion to soy, mushrooms, squash, and amaranth, being the latter a pseudocereal 
(Sánchez and Vázquez 2017).

Bioactivity of peptides is specific and depends on the amino acid sequence; how-
ever, they share some general characteristics:

• The length of the peptide chain is between 2 and 20 amino acid residues (although 
there are BP which have 20 or more amino acids);

• Molecular mass less than 6000 Da;
• BP contain hydrophobic amino acids, in addition to Pro, Lys, or Arg;
• BP is resistant to proteolysis by digestive peptidases (Karami and Akbari- 

Adergani 2019; Sánchez and Vázquez 2017)

Advantages of BP for their use in pharmacology include:

• High potency;
• High selectivity;
• Low potential for toxicity;
• Low risk of drug-drug interaction (Morimoto 2017)

Despite so many benefits, BP has the significant disadvantage of instability in 
biological matrices due to their susceptibility to degradation by proteases. Also, cel-
lular absorption is low because of the molecular size and the polar nature of the 
peptide bond (Di 2015). Thus, since peptides violate each and every point of 
Lipinski´s rule of five, their pharmacological properties are enhanced through 
PEGylation, lipidation, glycosylation, cyclization, or non-natural amino acid substi-
tution (Morimoto 2017). Purification of BP after hydrolysis is another challenging 
task (Acquah et al. 2019), and becomes more critical when it comes to taking advan-
tage of agroindustrial wastes as sources of BP (Lemes et al. 2016). Efforts have 
been made to overcome such difficulties (Adhikari et  al. 2020; Fosgerau and 
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Hoffmann 2015; Kapoor et al. 2020; Morimoto 2017; Raza et al. 2018). However, 
there is still much work to do in this regard, representing additional opportunity 
areas to the industrial sector.

The use of proteins and peptides due to their hormone- or drug-like activity is not 
emergent. The insulin hormone is a peptide isolated from the animal pancreas in 
1922 (Karamitsos 2011). Since then, a crescent number of scientific publications 
regarding the bioactivity of peptides and proteins can be encountered. Contemporary 
interest for BP is due to their preventive and alleviating dualistic role in some medi-
cal conditions. At present, nearly 20 new peptide-based clinical trials are done annu-
ally; more than 60 peptide drugs have been discovered and approved for clinical use 
in the United States, Europe, and Japan; around 140 are under evaluation by clinical 
trials, and more than 500 are in the preclinical development (Lee et al. 2019; Wang 
et al. 2018). In Fig. 3.3 are schematized the most prevalent non-communicable dis-
eases into which effects of BP have been investigated.

3.4  Bioactive Peptides and Cardiovascular Diseases

Cardiovascular diseases (CVD) represent the most significant public health problem 
in the world since atherosclerosis, stroke, or myocardial infarction affect a third of 
the adults (Yusuf et al. 2015). Atherosclerotic and thrombolytic processes are asso-
ciated with the development of CVD, where the high levels of cholesterol, dyslipid-
emia, high blood pressure, obesity, and diabetes represent the key predisposing risk 
factors. In recent years, an essential preventive strategy to reduce these risks has 

Fig. 3.3 Most prevalent non-communicable diseases into which the effects of bioactive peptides, 
encrypted in proteins from different sources have been investigated
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focused on dietary compounds that may contribute to improving cardiovascular 
health. The study of proteins and peptides with biological activity had gained an 
interest in preventive medicine due to their beneficial health effects, playing a sig-
nificant role in reducing risks associated with CVD.

Several food proteins and their hydrolysates/peptides have shown diverse bio-
logical activities with beneficial effects in metabolic disorders such as hypertension, 
hypercholesterolemia, dyslipidemia, diabetes type 2, and thrombosis. Research on 
their beneficial effects are based on the inhibition or activation of key enzymes 
associated with the biological process of metabolic disorders such as hypertension 
(e.g., ACE, angiotensin I-converting enzyme; ECE, endothelin-converting enzyme 
and renin); diabetes (e.g., dipeptidyl peptidase-IV (DPP-IV) and α-glucosidase); 
atherosclerosis (e.g., platelet-activating factor-acetyl hydrolase (PAF-AH) and 
thrombin inhibition), and others (Gallego et  al. 2019; Yoshikawa 2015). Diverse 
studies in vitro, in silico, ex vivo, and in vivo, have indicated that food proteins and 
their derived hydrolysates/peptides represent an attractive option for the develop-
ment of nutraceutical and functional foods with potential use in non- pharmacological 
therapies to prevent or reduce risks associated to CVD.

3.4.1  Antihypertensive Peptides for Prevention of CVD

Hypertension or continuously high blood pressure can produce damage in vital 
organs such as kidney and heart. In 2015, 25% of men and 20% of women (repre-
senting 1.13 billion people worldwide), suffered hypertension, leading to the pri-
mary cause of premature death worldwide (WHO 2019). Blood pressure is regulated 
by a process known as the renin-angiotensin system and has been the focus of most 
research on bioactive peptides and functional foods. Briefly, the enzyme renin con-
verts the angiotensinogen to angiotensin I, which is then hydrolyzed by the ACE, 
releasing the octapeptide angiotensin II (a potent vasoconstrictor). Thus, inhibition 
of renin or ACE activity plays a significant role in lowering blood pressure during 
hypertension. Most protein hydrolysates/peptides with potential antihypertensive 
properties are evaluated according to its capacity to inhibit ACE-activity in vitro, 
and then its effectivity confirmed in vivo by blood pressure reduction in spontane-
ously hypertense rats (SHR) (Howard and Udenigwe 2013; Mazorra-Manzano 
et al. 2018).

Many scientific reports indicate that several food proteins, either from animal or 
vegetal origin, contain peptide sequences that can inhibit ACE activity. Some pro-
teins can exhibit bioactivity in their intact form after consumption; however, others 
require to be hydrolyzed to release their bioactive sequences by digestive, fermenta-
tive, or hydrolytic processes, using specific proteases. For example, undigested 
spinach leaf protein (rubisco, ribulose bisphosphate carboxylase/oxygenase, a 
major leaf protein), did not show any antihypertensive effect when was evaluated in 
HSR; however, their hydrolysates, prepared with pepsin or pepsin-pancreatin 
enzymes (ACE IC50 56 and 120 μg/mL respectively), were adequate to reduce blood 

3 Peptides and Proteins



86

pressure after oral ingestion at a minimum dose of 0.25 and 0.5 g/kg, respectively 
(Yang et al. 2004).

Bioactive peptide sequences can exhibit a beneficial effect if they are absorbed 
and reach the target site. Therefore, they must resist the digestive process occurring 
after its ingestion and be absorbed their bioactive form (or its fragments), which will 
depend on its structure. Permeability of two potential antihypertensives (ECA- 
Inhibition) peptides (KPLLCS and KPLL), obtained from the digestion of chicken 
breast, were evaluated ex vivo using the Caco-2 cell model system. The KPLLCS 
peptide (ECA IC50 0.37 μM) was degraded during digestion, while KPLL (ECA IC50 
11.8 μM) was highly permeable and only partially degraded. The released peptide 
fragments (KP and LL) showed ECA-inhibitory activity but in a lower potency 
(ECA IC50 8037 and 7870 μM, respectively) (Sangsawad et al. 2018).

A peptide fraction <3 kDa of chicken skin (IC50 130 μg/mL) hydrolysate was 
produced with a mixture of endo- and exo-peptidases and showed significant sup-
pression of increased blood pressure in SHR.  The identified collagen-derived 
sequences with ACE-inhibitory activity were GAHGLHGP (IC50 29.4 μg/mL) from 
collagen α1, and GIHGERGPVGPSG (IC50 43.4 μg/mL), GAHGPAGPGGIHGERG 
(IC50 45.6 μg/mL), and GLHGSRGERGLHG (IC50 60.8 μg/mL) from collagen α2 
(Saiga et al. 2008).

It has been well documented that milk proteins are an excellent source of pep-
tides with antihypertensive properties. Casein-derived peptides such as VPP and 
IPP possess the highest ACE-inhibitory activity of food protein-derived peptides 
reported until now (ECA IC50 of 9 and 5 μM, respectively). The antihypertensive 
properties shown by fermented milk and by protein hydrolysates from fish, meat, 
soy, amaranth, chickpeas, and other protein sources, have increased the interest in 
the production and commercialization of functional foods and nutraceutical prod-
ucts. Some antihypertensive commercialized products include the fermented milk 
Calpis® and Evolus®, and the capsules petACE® and Vasotensin® from bonito fish 
hydrolysates (Mazorra-Manzano et al. 2018; Nakamura et al. 1995).

3.4.2  Hypoglycemic Peptides in Diabetes and CVD

CVD is the leading cause of death in adults with diabetes. Type 2 diabetes is char-
acterized by increased glucose in the blood (hyperglycemia) as well as postprandial 
hyperglycemia. Typically, in response to food ingestion, the gastrointestinal incre-
tins GIP (glucose-dependent insulinotropic polypeptide) and GLP-1 (glucagon-like 
peptide-1) are secreted into circulation, enhancing the secretion of insulin to control 
the glucose levels in the blood and inducing satiety by a food intake-modulating 
effect. These incretins have very short half-lives since they are renal degraded and 
hydrolyzed by the enzyme DPP-IV. Peptides sequences with the capacity to inhibit 
DPP-IV decrease blood glucose, increase glucose uptake, and stimulate insulin 
secretion. Then, bioactive peptides with DPP-IV-inhibitory capacity can lead to 
obesity and type 2 diabetes treatment (Baggio and Drucker 2007).
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Protein hydrolysates containing peptide sequences with DPP-IV inhibitory activ-
ity have been the target of recent studies, and several peptide sequences have been 
reported. They have relatively high potency to inhibit DPP-IV in vitro; however, 
studies in vivo are still scarce (Lacroix and Li-Chan 2016; Nongonierma and Fitz 
Gerald 2016). The reduction of plasm DPP-IV activity in diabetic rats after the 
administration of protein hydrolysates (e.g., milk proteins, fish gelatin, and zein 
protein) has confirmed its anti-diabetic properties in vivo, observing a reduction of 
plasm glucose and increased insulin levels (Korish et al. 2020; Nongonierma and 
Fitz Gerald 2016).

The most potent food protein-derived hypoglycemic peptides reported until now 
include LPQNIPPL (β-CAS f70-77), LKPTPEGDL (β-Lg f46-54) and GPGA (from 
Atlantic salmon skin gelatin) with DPP-IV IC50 values in the range of 42-45 μM 
(Lacroix and Li-Chan 2014; Li-Chan et al. 2012; Uenishi et al. 2012). It is essential 
to mention that some peptides also have shown multifunctional properties (Mazorra- 
Manzano et  al. 2018; Meisel 2004). For example, IQKVAGTW, VLDTDY, and 
LKALPMH from β-lactoglobulin and WLAHKAL from α-lactalbumin can inhibit 
ACE and DPP-IV activity, showing a possible beneficial effect in diabetes and 
hypertension (Lacroix and Li-Chan 2014, 2016). In other studies, milk fermented 
by a specific strain of Lactococcus lactis with ACE-inhibitory activity in  vitro 
showed antihypertensive activity in SHR, enhanced nitric oxide production and 
reduced the oxidative stress index (i.e., lipid peroxidation and the enhancement of 
antioxidant enzymes activity SOD and CAT) (Beltrán-Barrientos et al. 2018).

It is widely supported that food proteins from different sources contain several 
peptides sequences that can exhibit more than one biological property. Antioxidant, 
antihypertensive, anticholesterolemic, antithrombotic, and antidiabetic peptides 
have been identified in milk, soybean, amaranth, chickpea, lupin, and cowpea pro-
teins (Boachie et al. 2018; Lacroix and Li-Chan 2016; Sabbione et al. 2016; Zhang 
2016). Peptides usually differ in structure, composition, length, and potency, thus 
exhibiting a different action mechanism. For example, camel milk hydrolysates are 
more hypoglycemic than bovine milk hydrolysates; however, bovine milk was more 
effective as antiplatelet/antithrombotic agent in streptozotocin-induced diabetic rats 
(Korish et al. 2020).

3.4.3  Bioactive Peptides in the Control of Dyslipidemia, 
Hypercholesterolemia, and Thrombosis

Protein hydrolysates or peptides derived from animal (e.g., milk, chicken, pork, and 
fish) and plant (e.g., soybean, rapeseed, peanut, and amaranth) proteins, have shown 
beneficial bioactive properties in CVD by regulating lipid metabolism, reducing 
absorption and synthesis of cholesterol, inhibiting thrombin and platelet aggrega-
tions, reducing oxidative stress of cells and inflammation (Rendon-Rosales et al. 
2019; Rodríguez-Figueroa et al. 2013; Sabbione et al. 2016; Saiga et al. 2008; Yang 
et al. 2004; Yoshikawa 2015).
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The platelet-activating factor (PAF), which is catalyzed by PAF-AH, is a pro- 
inflammatory phospholipid mediator that participates in several inflammatory and 
vascular diseases. Recent works have focused on the identification of food-derived 
peptides showing PAF-AH inhibition. These peptides have been considered promis-
ing therapeutic targets for the prevention of atherosclerotic lesions. Seven peptides 
were isolated from the seaweed Palmaria palmata, finding that NIGK was the most 
potent sequence to inhibit PAF-AH (50.74% inhibition at 1 mg/mL) (Fitzgerald 
et al. 2013). More recently, peptides released from dry-cured ham bones were also 
able to inhibit PAF-AH. The sequences identified were derived from collagen and 
hemoglobin and inhibited PAF-AH even after heating and simulated digestion. 
These treatments released additional bioactive peptides that could block activities of 
ACE, DPP-IV, and ECE, indicating a possibly beneficial effect on cardiovascular 
health (Gallego et al. 2019).

Thrombin is a serine protease vitally important during blood clotting, where it 
converts its soluble substrate fibrinogen into insoluble fibrin. Peptides with 
thrombin- inhibitory activity (antithrombotic) prevent the proteolysis of fibrinogen 
and formation of the fibrin clot. However, it can also occur that peptides, binding 
with the already formed fibrin monomers, prevent its polymerization (Tu et  al. 
2017; Zhang 2016). Peptides released from glycomacropeptide (k-CAS f106-169) and 
lactoferrin have demonstrated platelet aggregation inhibition while other casein- 
derived peptide sequences have also shown excellent antithrombotic properties 
(thrombin inhibitors) (Rendon-Rosales et al. 2019). On the other hand, a peptide 
fraction from peanut protein hydrolysate (produced with alcalase) showed 65% of 
inhibition of thrombin activity (antithrombotic) at the same concentration (0.2 mg/
mL) of antithrombotic heparin drugs. Sequences identified in the active fraction 
were SWAGL, GNHEAGE, and CFNEYG (Zhang 2016). An amaranth protein 
hydrolysate (produced by autolysis) showed antithrombotic activity in vitro (IC50 
5.6 mg/mL) and higher antioxidant activity than its protein isolate (IC50, ORAC 0.1 
vs. 0.05; ABTS 5.4 vs. 2.1 mg/mL) (Sabbione et  al. 2016). Peptides sequences 
SSGE and DEE derived from soy protein also showed antithrombotic activity by 
inhibiting ADP-induced platelet aggregation of rats’ blood in  vitro (Lee and 
Kim 2005).

Dyslipidemia or abnormal levels of lipids in the blood occurs when low-density 
lipoproteins (LDL) and triglycerides are found in high levels (or HDL at deficient 
levels), thus increasing the risk of developing atherosclerosis. This last event devel-
ops when fatty deposits called plaques accumulate in blood vessels, making it dif-
ficult for the blood to flow, causing major circulation problems, thus promoting 
heart attacks and strokes. Different approaches have been used to decrease these 
disorders, such as cholesterol-lowering, hypolipidemic, and antithrombotic agents. 
Anticholesterolemic peptides can bind bile acids, inhibit cholesterol micellar solu-
bility, or show statin-like activity (HMGCoAR, 3-hydroxy-3-methyl-glutaryl- 
coenzyme A reductase) by interacting as sterol regulatory element-binding protein 
(Boachie et  al. 2018). Several food proteins have been suggested to be 
 hypocholesterolemic such as milk and soy proteins and its hydrolysates/peptides 
through the reduction of cholesterol biosynthesis, its uptake, and secretion and by 
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decreasing its micellar solubility. The hypocholesterolemic effect of amaranth flour 
(AF) was compared with amaranth isolate (AI), observing that flour shows the dis-
placement of cholesterol in model micelles (in vitro), and increased the cholesterol 
excretion through faces with higher efficiency than its protein isolate (108% vs. 
23%). However, the reduction in hepatic cholesterol accumulation in  vivo was 
inversed (53% vs. 93%). Besides, their digested products (AFD and AID) do not 
increase the displacement of cholesterol in vitro (IC50 0.1 vs. 0.71 and 0.2 vs. 2.1 for 
AF vs. AFD and AI vs. AID, respectively). The hypocholesterolemic effect of AF 
and AI indicate that protein and the presence of fiber influence cholesterol metabo-
lism (Sisti et al. 2019). On the other hand, four peptides from soy (glycinin and 
β-conglycinin) and two from lupin-protein shown HMGCoAR-inhibitory activity. It 
was observed that the peptide lupin-protein derived LTFPGSAED (IC50 68 μM) had 
a higher potency and was also transported across the Caco-2 cells (Boachie 
et al. 2018).

Protein hydrolysates from different food sources have also shown a hypolipid-
emic effect in animal studies by decreasing serum and hepatic TC and LDL + VLDL 
or by increasing fecal excretion of lipids and bile acids. Several peptides derived 
from soy (mainly soy glycinin and conglycinin) and milk proteins (i.e., 
β-lactoglobulin) have shown a hypolipidemic effect in vivo (i.e., rats) and ex vivo 
(i.e., cultured Caco-2 and HepT9A4 cells) (Howard and Udenigwe 2013). Milk 
fermented by Lactococcus lactis strains with antihypertensive properties were also 
able to reduce plasma low-density lipoprotein cholesterol and triglyceride contents 
in SHR (Rodríguez-Figueroa et  al. 2013). Inhibition of thrombin-induced fibrin 
polymerization, anticoagulant activity and the inhibition of the micellar solubility 
of cholesterol and its bile acid-binding capacity, indicate that some lactic acid bac-
teria strains can release peptides with both properties with possible cardiovascular 
health benefits (Beltrán-Barrientos et al. 2018; Rendon-Rosales et al. 2019).

3.4.4  Structural Features of Bioactive Peptides Related to CVD

Bioactive peptides usually are in the range of 2–20 amino acids length with IC50 
values in the range of μg-mg/mL (mM-μM), depending on its properties with IC50 
values significantly higher than drugs used for the same purpose. Structure-function 
relationship of bioactive peptides has been studied recently, determining that 
depending on their structure, the sequence of amino acids, and charge, they could 
exhibit some specific biological function. For example, peptides containing hydro-
phobic (aromatic or branched side chain) amino acid residues at three C-terminal 
positions possess a vigorous ACE-inhibitory activity, where Pro is preferred (e.g., 
IPP and VPP). In addition, the positively charged amino acids Arg and Lys residues 
at the C-terminus contribute to the ACE-inhibitory activity of peptides. On the other 
hand, the presence of His in high amounts and hydrophobic amino acids in peptides 
can contribute to their antioxidant potency, such as the one showed by PHH with 
higher antioxidant activity among several peptides sequences evaluated (Erdmann 
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et al., 2008; Wang and Gonzalez-de-Mejia, 2005). Negatively charged amino acids 
in peptides may influence their antithrombotic potency. Docking studies about the 
interaction between enzymes and inhibitors have predicted that Trp and Pro at 
N-terminal position 2, show relatively potent inhibition of DPP-IV, which is in con-
cordance with diprotin (Ile-Pro-Ile), a well-known DPP-IV inhibitor (Lacroix and 
Li-Chan 2015). The structural features of peptides such as length, charge, and amino 
acid sequence are the most critical factors that determine its biological activity to 
inhibit enzymes related with metabolic disorders in CVD.  Therefore, structural 
characteristics of peptides should be more deeply investigated (Nongonierma and 
Fitz Gerald 2014).

3.5  Bioactive Peptides and Diabetes

Diabetes mellitus is a metabolic disorder of global importance due to its high preva-
lence and progressive increase in recent years (Kehinde and Sharma 2020). There 
are two types of diabetes mellitus. Type I derives from the failure of the pancreas to 
secrete insulin due to the destruction of beta cells (that synthesize and secrete insu-
lin) and has a prevalence of around 5–10%. On the other hand, type II diabetes mel-
litus is characterized by insulin secretion deficiency and the inability of the body to 
use insulin (insulin resistance). As a result, tissues cannot use blood glucose for 
energy, and long-term high plasma glucose concentrations lead to severe conse-
quences such as renal impairment, diabetic neuropathy, blindness due to retinopa-
thy, and cardiovascular disease (Ramadhan et al. 2017). Type II diabetes mellitus 
represents 90–95% of the cases and has shown a gradual increase worldwide, rising 
from 4.7% of world’s population (108 million) in 1980 to 8.5% (422 million) in 
2014; current estimations indicate that the number of cases may reach 592 million 
cases by 2035 (Kehinde and Sharma 2020; Lee et al. 2016).

Sedentarism, high body mass index, aging, and inheritance are well-known fac-
tors for type II diabetes mellitus development (Lauritano and Ianora 2016). 
Therefore, a lifestyle change, including proper eating habits, regular exercise, and 
medication, is required to prevent or reduce short and long-term effects of diabetes 
and hyperglycemia (Yu et al. 2011). Pharmacologic therapies for diabetes mellitus 
type II comprise biguanides, GLP-1 receptor agonists, meglitinides, sulphonyl-
ureas, thiazolidinediones, gliflozins (SGLT-2 inhibitors), as well as inhibitors of 
enzymes involved in the regulation of postprandial hyperglycemia as α-amylase, 
α-glucosidase, and DPP-IV (Kalita et al. 2018; Wang et al. 2019a). Several of these 
therapies have shown toxicity and severe side effects such as the increased risk of 
kidney injury, vascular disease, pancreas infection, and bladder cancer (Chaudhury 
et al. 2017; Qaseem et al. 2017).

Bioactive proteins, protein hydrolysates, and peptides obtained from conven-
tional and non-conventional food sources have demonstrated the ability to provide 
a natural replacement or complement to pharmaceutical approaches in diabetes 
therapy, having minor side effects based on their natural origin. Inhibition (in vitro) 

R. R. Balandrán-Quintana et al.



91

of α-amylase, α-glucosidase, and DPP-IV is the conventional approach to evaluate 
the antidiabetic potential of proteins, hydrolysates, and peptides by determining 
their half-maximal inhibitory concentration (IC50) or the percentage of inhibition on 
such enzymes (Kehinde and Sharma 2020; Li-Chan 2015). When administrated 
orally or intravenously, complementary determinations of the antidiabetic potential 
of bioactive proteins, hydrolysates, and peptides, include the estimation by in vivo 
studies with humans and laboratory animals, of the increase in insulin production, 
enhanced insulin sensitivity, and hypoglycemic effect, among others (Kehinde and 
Sharma 2020).

3.5.1  Antidiabetic Bioactive Peptides from Milk

Milk, cheese, whey protein, and specific protein (α-lactalbumin, β-lactoglobulin, 
lactoferrin, and casein) hydrolysates obtained by enzymatic digestion with several 
enzymes for example trypsin, pepsin, chymotrypsin, and pancreatin, among others, 
have shown in  vitro (mainly DPP-IV and α-glucosidase inhibition) antidiabetic 
potential (Jan et al. 2016; Lacroix and Li-Chan 2012). In vivo experiments have 
shown mainly reduction in blood plasma glucose and DPP-IV inhibition (Lacroix 
and Li-Chan 2013; Uchida et al. 2011). Interestingly, oral intake of both milk pro-
tein and milk protein hydrolysate by diabetic rats reduced the plasmatic glucose and 
lipid levels so that milk protein hydrolysate could be used as an antidiabetic agent 
(El-Sayed et al. 2016). Enzymatic digestion of egg yolk and egg white protein also 
render peptides with in vitro antidiabetic activity (α-amylase, α-glucosidase, and 
DPP-IV inhibitors) (Yu et al. 2011; Zambrowicz et al. 2015).

3.5.2  Antidiabetic Bioactive Peptides from Marine Organisms

A few fish protein hydrolysates have shown to stimulate glucose uptake in  vivo 
(Cheung et al. 2015). Enzymatic digestion of fish collagen and fish skin gelatin has 
shown to inhibit DPP-IV (in vivo and in vitro), to enhance both GLP-1 and insulin 
secretion in vivo (Wang et al. 2015), and to decrease blood fasting glucose and insu-
lin levels in diabetic patients (Zhu et al. 2010).

3.5.3  Antidiabetic Bioactive Peptides from Plant Origin

Bioactive antidiabetic peptides are also obtained from many plants, being cereals 
and pseudocereals well-recognized sources. Rice, amaranth, and quinoa enzymatic 
hydrolysates have shown α-amylase, α-glucosidase, and DPP-IV inhibitory activi-
ties (Kehinde and Sharma 2020). Enzymatic hydrolysis of oats protein and cumin 
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seeds also generates interesting antidiabetic peptides (Yan et al. 2019; Zhang et al. 
2015b). Legumes are a rich source of antidiabetic peptides. Several common bean 
varieties and soybean have shown to release antidiabetic peptides after enzymatic 
digestion and microbial fermentation, showing α-amylase, α-glucosidase, and 
DPP-IV inhibition; additionally, these bioactive peptides have shown to reduce 
blood glucose levels, and to enhance insulin secretion and glucose uptake in vivo 
(Kehinde and Sharma 2020; Yan et al. 2019).

Peptides and hydrolysates from fruits like walnut and watermelon seeds have 
shown to have anti-diabetic properties (Kehinde and Sharma 2020). Antidiabetic 
peptides have also been obtained by enzymatic hydrolysates from rapeseed napin, 
cannabis seed protein, and seaweed protein (Admassu et al. 2018; Ren et al. 2016; 
Xu et al. 2019). Five novel antidiabetic peptides were obtained from an unconven-
tional food source: the Chinese giant salamander muscle. Such peptides strongly 
inhibited α-glucosidase and α-amylase, and, interestingly, one of the peptides inhib-
ited both enzymes (Ramadhan et al. 2017). There are many unexplored food and 
plant sources for antidiabetic peptides. In this sense, byproducts of fruit industrial-
ization and plant oil refining industry represent a sparsely exploded source of bioac-
tive peptides (Balandrán-Quintana et al. 2019), among them antidiabetic ones.

Recently, a purified nitric oxide-generating protein from garlic was injected into 
diabetic mice and significantly reduced the blood sugar and increased insulin level 
in the animals. The protein also increased insulin-release, Glut-4 synthesis, and 
glucose uptake in the liver and β-cells of diabetic animals (Bhattacharya et al. 2019).

3.6  Effects of Bioactive Peptides on Cancer Disease

Cancer is a group of diseases identified by uncontrolled growth and spread of abnor-
mal cells that may be induced by external factors like radiation, chemicals, and 
infectious organisms, or by internal factors such as mutations and altered hormonal 
and immune states (Tanaka 1997). Cancers are among the top causes of deaths 
worldwide, and the number of cases is expected to increase by approximately 70% 
over the next 20 years (González-Montoya et al. 2017). Cancer is mainly treated by 
invasive surgical methods and with radiotherapy and chemotherapy (Hubenak et al. 
2014). Nevertheless, traditional chemotherapeutical drugs are not specific to target 
(tumor) cells and produce many side effects. Furthermore, chemotherapy also fails 
because of multidrug resistance (Huang et al. 2014).

Under such panorama, peptide-based drug therapies have received more atten-
tion because of their specificity, low toxicity, small size, tumor penetrating specific-
ity, and easy modification (Barras and Widmann 2011). Peptides used in cancer 
therapy can bind to specific molecular targets on tumor cells and regulate the bio-
synthesis of malignant cells, they can serve as a drug delivery system or can induce 
specific immunological (T cell) responses to tumor cells (González et al. 2014; Xiao 
et  al. 2015). Some peptide-based cancer therapies have shown promising results 
when tested in vivo and in vitro. Though, some of the clinical trials have shown 
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reduced effectiveness. Thus, novel methods like the combination of peptides with 
nanomaterials, personal peptide vaccination, and improved delivery systems have 
been tested in clinical trials with favorable results (Xiao et al. 2015).

Numerous studies have shown that terrestrial plants and animals, as well as 
organisms from marine environments, are relevant sources of bioactive proteins and 
BP with anti-cancer activity. Plant sources include cereals like wheat, barley, corn, 
and rice (Díaz-Gómez et al. 2017; Malaguti et al. 2014); pseudocereals like ama-
ranth and quinoa (Huerta-Ocampo and Barba de la Rosa 2011; Vilcacundo et al. 
2018), as well as legumes like soybean, bean, chickpea, pea, fava bean, and lentil 
(González-Montoya et  al. 2017). Plant BP are usually generated by enzymatic 
hydrolysis and fermentation. However, germination, a natural hydrolytic process, 
has shown to improve the anti-proliferative effect of soybean protein on cervical 
cancer cells (Mora-Escobedo et  al. 2009). Some dietary proteins (lectins) from 
legumes and soybean are resistant to the passage through the gastrointestinal tract 
and can enter the systemic circulation. Soybean agglutinin demonstrated to inhibit 
tumor growth in rats and improve life expectancy in mice (Malaguti et al. 2014). 
Whereas, lectins from Tepary bean displayed differential antiproliferative effect on 
non- transformed cell and different cancer cell lines (García-Gasca et al. 2012).

It has been described that higher consumption of legumes can considerably 
decrease the risk of colorectal adenoma (Wang et al. 2013b), whereas BP obtained 
from legumes has been reported to have productive anticancer activity (Mora- 
Escobedo et  al. 2009). Bowman-Birk inhibitors isolated from Glycine max, Pea 
sativum, Vicia faba, and Lens culinaris, have shown anticancer effects in HT and 
HepG2 cells (Caccialupi et  al. 2010; Clemente et  al. 2012; Fang et  al. 2011). 
Different peptides from chickpea and distinct common bean cultivars demonstrated 
anticancer activity on MCF-7, HCT-116, CNE-1, HNE-2, HepG2 and MDA-MB-231 
cell lines (Fang et al. 2010; Lam and Ng 2011; Luna Vital et al. 2014; Xue et al. 
2015). Additionally, the anticancer peptide X-MLPSYSPY and Lunasin, a 43 amino 
acid residues peptide isolated from soybean and other legumes, has shown to inhibit 
chemical carcinogen-induced transformation and selectively induction of apoptosis 
in transfected cells but not in non-transformed cells (de Mejia and Dia 2009; Galvez 
et al. 2001; Kim et al. 2000). Lunasin was also detected in cereals and pseudocere-
als, and bioactive properties of lunasin have been attributed to the capacity to inhibit 
histone acetylation, to arrest cell division in cancer cells, and to protect DNA from 
oxidative damage (Malaguti et al. 2014). Besides legumes, cereals, and pseudocere-
als, many other plants can be a source of proteins and peptides with anticancer 
activity. Walnut protein hydrolysates and proteins extracted from Gynura 
 procumbens have shown interesting anticancer properties (Hew et  al. 2013; 
Jahanbani et al. 2016), just to mention a couple of examples.

Bioactive peptides released from milk proteins have shown anti-cancer proper-
ties. Furthermore, this type of peptides can be isolated from fermented milk and 
milk products (Sah et al. 2015). Some casein derived peptides have shown to induce 
necrosis of leukemic cell lines (Otani and Suzuki 2003), have demonstrated cyto-
toxic activity against melanoma cells (Azevedo et al. 2012), and have inhibited pro-
liferation of human ovarian cancer cells (Wang et  al. 2013a). Additionally, 
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hydrolyzed casein has a β-glucuronidase inhibitory activity (Gourley et al. 1997). 
Lactoferrin digestion released peptides that exerted cytotoxic activity against fibro-
sarcoma, melanoma, and colon carcinoma cell lines (Eliassen et al. 2006), induced 
apoptosis in breast cancer cell cultures (Furlong et  al. 2006), and displayed the 
capacity to inhibit angiogenesis in vitro and in vivo (Mader et al. 2006). Peptides 
released from fermented milk, peptides extracted from high-speed centrifugation of 
yogurt and isoelectric extraction of kefir, exhibited antioxidant, and antimutagenic 
activity (Sah et al. 2015).

Fish byproducts (viscera, heads, bone, and skin) are not marketable but can be 
recycled after processing. Production of a fish protein hydrolysate is the most com-
mon approach to use fish byproducts, and the type of peptides released is highly 
dependent on hydrolysis conditions: proteases, temperature, pH, chemicals, and 
time of hydrolysis (Nurdiani et al. 2017). Peptides isolated from dark tuna muscle 
treated with papain showed an antiproliferative effect on human breast cancer cells 
(Hsu et al. 2011). Snow crab byproducts treated with Protamex® produced peptides 
with toxicity against colon, breast, prostate, and lung cancer cell lines (Doyen et al. 
2011). Sepia ink oligopeptides produced by trypsin digestion inhibited proliferation 
of DU-145 (Human prostate cancer) cells (Ding et al. 2011). Peptides released from 
lobster and shrimp shells demonstrated to inhibit the growth of colon (Caco-2) and 
liver (HepG2) cancer cells (Kannan et al. 2011). Similarly, backbones, skin gelatin, 
and fresh fileting byproducts from fishes subjected to different enzymatic treat-
ments have shown antiproliferative effects on HepG2, hFOB 1.19 (osteoblastic) and 
breast cancer cell lines (Nurdiani et al. 2017). However, despite that the peptides 
derived from fish byproducts have demonstrated anticancer activities, cytotoxicity 
of such peptides on healthy cells is rarely discussed (Nurdiani et al. 2017).

Discovery of bioactive peptides and proteins with anti-cancer properties in ter-
restrial (plants and animals) and marine sources, as well as in their byproducts, is 
expected to lead to a broader market in the food-based therapies against cancer. 
Therefore, the discovery of new peptides with anticancer properties, and the formu-
lation of functional foods based on bioactive proteins or their hydrolysates, demand 
rigorous tests to guarantee the effectiveness and safety of these formulations.

3.7  Bioactive Peptides and Degenerative Neurological 
Disorders

Degenerative neurological disorders (DND) are diseases that destroy neurons and 
neural communication. While the etiology associated with these disorders remains 
poorly understood, the incidence of neurodegeneration will convert into a public 
health problem in a few years due to the aging population (Gaugler et al. 2016). 
Therefore, it is necessary for a greater understanding of each disorder’s etiology to 
develop, timely diagnosis, and effective treatments.
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3.7.1  Bioactive Peptides and Alzheimer

Alzheimer’s neurodegenerative disease (AD) is a brain disorder that causes 60–70% 
of cases of dementia. It is the principal cause of disability in later life (Gaugler et al. 
2016). AD is irreversibly and progressively damages brain cells causing memory 
loss, thinking skills, and subsequent premature death 3–9 years following diagnosis 
(Scheltens et al. 2016). The causes of Alzheimer’s are unknown. The most accepted 
hypotheses are the amyloidogenic (βAH), and the tau proteins phosphorylation 
(Folch et al. 2018). A typical characteristic of AD is the extracellular accumulation 
of plaques between neurons formed by β-amyloid peptides. According to βAH, this 
peptide accumulation (in particular, Aβ4, peptide) interferes with essential pro-
cesses for neurons such as communication, repair capacity, metabolism, and neuro-
genesis leading to the death of nerve cells and subsequent behavioral/psychiatric 
changes (Mucke and Selkoe 2012). The tau protein hypothesis proposes that the 
leading cause of AD is the hyperphosphorylation of the 3R and 4R tau proteins 
(Folch et  al. 2018). Tau proteins are involved in the microtubule stabilization of 
nerve cells, which is destabilized by the post-translational modification (hyperphos-
phorylation) of these proteins, causing cytoskeletal abnormalities (Zhang et  al. 
2015a). In this context, research has been focused on anti-amyloid Aβ42 production 
and anti-tau protein hyperphosphorylation for AD treatment. However, these treat-
ments have not been effective in stopping the disease progression because of the 
multifactorial AD etiology (Folch et al. 2018).

Recent studies confirm that the complexity of AD pathophysiology is greater 
than the transformation of amyloid peptides and tau proteins. Metabolic alterations 
(insulin resistance, cholesterol homeostasis), chronic brain inflammation, oxidative 
stress, dendritic neuropathology, and influence of bacteria such as P. gingivalis have 
also been observed (Cochran et al. 2014; De Felice 2013; Ferreira et al. 2014; Ide 
et al. 2016). To develop more effective treatments is necessary to consider these new 
findings. According to the United Nations, the number of people with AD and other 
dementias will reach 152 million by 2050, if adequate therapies are not discovered 
(Patterson 2018).

The four approved drugs for the treatment of AD act (1) as inhibitors of acetyl-
cholinesterase that increases cholinergic transmission in neuronal synapses 
(AChEI)., or (2) by blocking receptors for N-methyl-D aspartate (NMDAR antago-
nists) that decrease brain excitotoxicity (Folch et al. 2018). There are currently no 
approved drugs based on peptides or natural proteins. However, some of these mol-
ecules are being studied due to their neuroprotective activity. BP may occur natu-
rally in foods or can be found encrypted in plant and animal proteins. In the last 
case, it can be released either by enzymatic hydrolysis or by microbial fermentation 
(Chakrabarti et al. 2018).

Apoptosis inhibition helps to reduce neuronal damage in neurodegenerative dis-
eases (Balez et al. 2016). It has been shown that several peptides of animal origin 
can block some specific elements of the apoptotic signaling. For example, peptide 
MQIPVLTLTG from venison muscle, decrease the population of cells positive to 
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Annexin V, suppress the Cytochrome C release, and regulate the expression of 
apoptosis-related genes like those encoding to produce caspases 3 (Kim et al. 2010). 
PAYCS and CVGSY peptides obtained by hydrolysis of anchovy muscle using 
papain, pancreatin, and alcalase, also inhibit apoptosis (Zhao et al. 2017). Neural 
death in AD can also be reduced by decreasing oxidative stress. Overproduction and 
long-time exposure of reactive oxide species (ROS) cause an antioxidant disbalance 
leading to synapse loss, mitochondrial disfunction, receptor cell trafficking, com-
munication perturbation, and disbalance in cellular homeostasis accompanied by a 
disfavored antioxidant status (Tönnies and Trushina 2017). ROS and other mole-
cules of oxidative stress (nitric oxide, peroxynitrite) also alter the function of cel-
lular and mitochondrial DNA, lipids, proteins, and energy production leading to 
neuron death (Huang et al. 2016). Whey protein hydrolysates, DWMH peptide from 
walnut, and PAYCS and CVGSY from anchovy show antioxidant capacity and neu-
roprotective activity (Chen et al. 2015a; Zhao et al. 2017).

Experimental and clinical evidence indicates that peptides inhibitors of DPP-IV 
may reduce ROS formation, mitochondrial dysfunction, and neuroinflammation, 
and also control tau protein hyperphosphorylation and amyloid plaque aggregation 
(Kosaraju et al. 2013a; Kosaraju et al. 2013b). Many investigations have demon-
strated the DPP-IV inhibitor capacity of peptides from food origin (Table 3.1). For 
example, PGVGGPLGPIGPCYE, CAYQWQRPVDRIR, and PACGGFWISGRPG 
peptides obtained from tuna cooking juice hydrolysates showed DPP-IV inhibitor 
activity in a dose-dependent manner (Huang et al. 2012). Other inhibitor peptides 
obtained from casein (LPQNIPPL), salmon skin gelatin (GPAE), and rice protein 
(LP and IP) have been reported (Hatanaka et al. 2012; Li-Chan et al. 2012; Uenishi 
et al. 2012).

Additionally, peptides from food origin have shown different bioactivities asso-
ciated with possible treatment for AD, like inhibition of acetylcholinesterase 
(AChE), or anti-inflammation activity (Table 3.1). However, there are different chal-
lenges to overcome so that these peptides can be used commercially. Some of these 
challenges are isolation and purification, large scale production, quality aspects, 
taste, and transfer through the blood-brain barrier (BBB) (Chakrabarti et al. 2018).

A promising protein related to AD and other neurodegenerative diseases treat-
ments is lactoferrin (Lf). Lf is a non-heme iron-binding mammalian glycoprotein 
(~80 kDa, ~700 aa), secreted mainly in milk, saliva and tears. It is industrially pro-
duced by cow milk and used as a health-promoting protein (Wakabayashi et  al. 
2018). Lactoferrin supplementation to three-day-old male piglets induced the 
expression of genes related to:

• Neural development and cognition;
• Organization of brain cell structure (cytoskeleton, microtubule dynamics, the 

formation of cytoplasm projections, neurites formation);
• Diminution of anxiety (Chen et al. 2015b).

Mohamed et al. (2019) conducted a pilot study to determine the role of 3-month 
supplementation of bovine Lf in patients with AD. After supplementation, patients 
showed a decrease in many AD-related markers (Table 3.2). This and other studies 
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showed evidence about the protective effect of Lf supplementation in AD (Table 3.2). 
Possible mechanisms are iron sequester and antioxidant effect. However, additional 
studies over higher point immune functions are necessary.

Lactoferrin has also been proposed as a non-invasive biomarker for the detection 
and monitoring of AD in saliva (EP3171174A1; EPO patent). A significant increase 
in the concentration of Lf in saliva has been observed in patients with AD. This 
increase could be related to the neuroprotective, anti-inflammatory, and anti-oxi-
dant effects of Lf and its ability as a chelator of iron deposited in the brain of 
patients with AD (Carro et al. 2017). Another possible application of Lf in AD is 
like brain- target- ligand conjugated with nanocarriers for the delivery of drugs and 
bioactive (Babazadeh et al. 2020). Lf can penetrate the BBB via receptor-mediated 

Table 3.2 Lactoferrin effect in neurodegenerative diseases models

Via Model Effect References

Holo-Lf and 
Apo-Lf, 5–15 mg/
kg, for 7 days

Male C57BL/6 
mice PD model, 
aged 9–10 weeks 
n = 120

Protection against iron dysregulation, 
oxidative stress, and apoptosis with 
apo-Lf showing greater efficacy

Liu et al. 
(2020)

Oral administration 
of 250 mg/day for 3 
months

Fifty AD patients 
(Men n = 28 and 
woman n = 22)

Alleviation the AD pathological 
cascade and cognitive decline via 
modulation of the p-Akt/PTEN 
pathway

Mohamed 
et al. (2019)

Nutraceutical 
product based on 
lactoferrin 
liposomes

Caenorhabditis 
elegans wild and 
transgenic type AD 
models

Protection against acute oxidative 
stress and extended lifespan of 
C. elegans; Paralysis of transgenic 
C. elegans strain CL4176, caused by 
Aβ1-42 aggregates, was clearly 
ameliorated by treatment

Martorell 
et al. (2016)

Orally 500 mg/kg/
day via intragastric 
tube for 12 weeks

Male albino rats; 
aged 12–16 weeks 
old, n = 30

Alleviation of memory impairment 
induced by lipopolysaccharide; 
antioxidant activity

Madi and 
El-Saka 
(2018)

Daily injection of 
100 mg/kg for 15 
days

Adult male Wistar 
rats weighing 
180–200 g

Antihyperalgesic and antiallodynic 
effects in neuropathic rats

Madi and 
Saka (2018)

Holo-Lf and Apo-Lf 
(human 
recombinant) 
Intraperitoneal 
injection

Rat MS model and 
Rat PD model

Apo-Lf induced the synthesis of 
neuroprotective molecules like 
erythropoietin and Nrf2 signal 
pathway

Zakharova 
et al. (2018)

Intraperitoneal 
injection of 
deferasirox-Lf 
conjugates

Rat model of AD Attenuation of learning deficits Kamalinia 
et al. (2013)

Intranasal human 
lactoferrin (hLf) 
2–6 mg/kg/day for 
3 months

Male APP/PS1 mice 
AD model (six 
months year old) 
n = 24

HLf enhanced the non-amyloidogenic 
metabolism of amyloid precursor 
protein; reduction of oxidative stress 
and neuroinflammation

Guo et al. 
(2017)

AD Alzheimer disease, MS multiple sclerosis, PD Parkinson disease
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transcytosis. This drug delivery system would take advantage of the significant 
increase in Lf-receptors observed in the brains of neurodegenerative disease 
patients (Wang et al. 2019b).

3.7.2  Bioactive Peptides and Multiple Sclerosis

Epidemiological studies indicate that approximately 2.5 million people were 
affected by multiple sclerosis (MS) around the world in the past decade (McFarland 
and Martin 2007). MS is a chronic autoimmune neurological and degenerative dis-
ease in which the immune system mistakenly attacks proteins of the myelin sheath 
surrounding nerve cells of the central nervous system (CNS). This leads to chronic 
inflammation of the CNC, breakdown of the BBB, axon damage by demyelination 
and lesion formation along the nerves, in the brain and spinal cord that decrease or 
impede the conduction of nerve stimuli (Dobson and Giovannoni 2019).

Symptoms of MS are unpredictable as they can vary significantly between 
patients and change or fluctuate throughout the disease (McFarland and Martin 
2007). Among the common symptoms are weakness, fatigue, tremor, vision loss, 
seizures, vertigo, spasticity, depression, cognitive changes, pain syndromes, and 
speech, swallowing, breathing, bladder, bowel, and walking problems (Dobson and 
Giovannoni 2019).

At present, there is no cure for MS. However, several immunosuppressive agents 
are used as therapy for relapse and brain injury prevention (Badawi and Siahaan 
2012). This kind of therapy increases the risk of opportunistic infections. Hence it 
is necessary to develop more specific therapeutic agents and look for bioactive mol-
ecules that help to reduce the symptoms of MS. Cyclotides are disulfide-rich cyclic 
peptides (27–37 amino acid long, including 6 Cys) produced by plants (Huang et al. 
2019). These highly stable molecules can be found in flowers, leaves, stems, and 
roots of Fabaceae, Cucurbitaceae, Rubiaceae, Solanaceae, and Violaceae family 
plants (Craik and Du 2017). Cyclotide [T20K]kB1 derived from cyclotide kalata B1 
purified from Oldenlandia affinis DC (Rubiaceae), inhibits TH17 proliferation in an 
MS mouse model experimental autoimmune encephalomyelitis (Thell et al. 2016). 
TH17 is an autoreactive T lymphocyte subset that causes demyelination, inflamma-
tory cell influx into the CNS, axonal damage, and neuronal degradation (McFarland 
and Martin 2007). In vivo activity of [T20K]kB1 is sequence-specific, producing a 
significant reduction of demyelination and inflammation in the MS mouse model. In 
addition, oral treatment with daily lower doses was effective in preventing disease 
prevention. Consequently, [T20K]kB1 oral activity represents a promising alterna-
tive for the treatment of MS (Thell et al. 2016). However, more studies are needed 
to understand better the mechanisms of action of cyclotides in MS treatment.

Oral administration of the iron-binding glycoprotein lactoferrin (Lf) accelerates 
the recovery of Lewis rats in an experimental autoimmune encephalomyelitis MS 
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model. In addition, Lf reduced serum pro-inflammatory TGFβ and TNF-α cytokines 
associated with the progression of MS disease, and also decreases inflammation in 
the spinal cord of the treated rats (Zimecki et al. 2007). Other studies showed that 
prolonged administration of bovine Lf (bLf) decreases neuropathic pain in adult 
male Wistar rats (Onal et al. 2010). Fifteen days injection of bLF (50–100 mg/kg/
day), also decreased c-Fos (a neural marker of pain) and NADPH-d immunoreactiv-
ity and TNF-α and nitric oxide expressions (Onal et al. 2010). These results confirm 
the immune modulator and anti-inflammatory activity of LF associated with neuro-
generative disease (Kruzel et al. 2017). Moreover, Lf could serve as an essential 
element to direct drugs to the BBB of patients with MS. Targeting delivery of drugs 
into the brain is physically restricted by the BBB, but Lf can penetrate the BBB via 
receptor-mediated transcytosis (Wang et al. 2019b), indicating the opportunity of Lf 
as a brain-targeting ligand (Chen et al. 2010). Yu et al. (2012), developed a brain 
drug delivery system based on biodegradable PEG-PLGA polymersomes conju-
gated with 101 Lf molecules (Lf101-POS) and loaded with S14G-humanin pep-
tides. Lf101-POS not only acted as a carrier for the S14G-humanin peptides but also 
protected them from protease attack. Under these conditions, S14G-humanin pep-
tides could be successfully internalized into the brain, producing a neuroprotective 
effect in murine animal models and controlling the overexpression of brain cell 
apoptotic promoters. These findings position Lf101-POS as a promising brain drug 
delivery system for the treatment of neurodegenerative disease. In addition, several 
investigations are being carried out for the synthesis of other brain drug carriers 
(dendrimers, liposomes, nanoparticles) that include Lf as a brain-targeting ligand 
(Chen et al. 2010; Gao et al. 2010; Gao 2016; Huang et al. 2013; Liu et al. 2018; Su 
et al. 2014).

Other important neurodegenerative diseases are Parkinson’s disease, Huntington’s 
disease, amyotrophic lateral sclerosis, frontotemporal dementia, and the spinocere-
bellar ataxias. All of them share similar symptoms to AD and MS, like degeneration 
of CNS, oxidative stress, permanent inflammation, damage of neuron axon, and 
destruction of the myelin sheath (Dugger and Dickson 2017). Since the main effect 
of naturally occurring peptides and proteins is a neuroprotective effect, it is possible 
to expect that these molecules can also be useful in relieving symptoms of neurode-
generative diseases other than AD and MS.

Available evidence suggests that peptides from food-origin can exert neuropro-
tective in DND models. However, some challenges must be overcome for the use of 
these peptides in approved treatments, such as large-scale production. An alterna-
tive could be the synthesis of peptides with sequences equal to those that have been 
effective. Before this occurs, more studies are necessary to understand the mecha-
nisms of action of each peptide on DND. In addition, human studies should be con-
ducted to confirm the neuroprotective effect of selected peptides. Lactoferrin is a 
promising protein for the diagnosis and alleviation of DND. In addition, its ability 
to cross the BBB makes Lf, an excellent candidate to be used as a targeting signal 
for brain delivery devices loaded with peptides, bioactive, or drug treatments.
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3.8  Effects of Bioactive Peptides on Diseases of the Oral 
Cavity

Dental caries and periodontal conditions are the most prevalent oral cavity infec-
tious diseases in humans and represent a first-rate public health problem that affects 
all countries of the world. The WHO reports that more than 530 million children 
suffer from dental caries of primary teeth, and 2.3 billion people suffer from caries 
of permanent teeth, while severe periodontal diseases that lead to tooth loss affect 
10% of the global population (WHO 2020). Caries is a condition that starts with the 
formation of a polymicrobial biofilm on the tooth surface, known as dental plaque, 
and in advanced stages, it causes the dissolution of the enamel and the dentin of the 
teeth (Levine 2011). Periodontal diseases (gingivitis, periodontitis) are chronic 
inflammations that affect the supporting tissues of the teeth (Dashper et al. 2007).

In recent decades epidemiological associations have been reported between den-
tal caries or periodontal conditions with systemic diseases (Seymour et al. 2007). 
On the one hand, caries is frequently related to the development of endocarditis 
(Leishman et al. 2010). On the other hand, periodontal conditions predispose to the 
development of atherosclerosis, Alzheimer’s disease, adverse pregnancy outcomes, 
and different types of cancer that include the mouth, head, neck, gastrointestinal, 
and colorectal. Recent worldwide statistics reveal that the oral squamous cell carci-
noma (mouth, head, neck) has increased alarmingly and represents 90% of all can-
cers (Bui et al. 2019; Chattopadhyay et al. 2019; Zhang et al. 2018). Likewise, oral 
infections significantly increase the risk of complications in individuals suffering 
from chronic diseases such as diabetes, respiratory diseases, and even osteoporosis 
(Seymour et al. 2007). In this situation, the WHO has recommended that all coun-
tries promote global efforts and develop strategies to prevent oral infections from 
improving the general health of the population and reducing public health expenses.

Among the strategies addressed by scientists to prevent oral diseases, the use of 
bioactive peptides stands out. To date, some peptides of animal and plant origin 
have been identified, which could affect different stages in the caries formation and 
periodontal infections, as well as the oral squamous cell carcinoma.

3.8.1  Peptides Derived from Proteins of Milk and Cheese

Proteins of milk and dairy products, particularly of bovine origin, are currently the 
primary source of bioactive peptides, among which are distinguished for their mul-
tiple anticariogenic functions, the caseinophosphopeptides (CPP) and glycomacro-
peptide (GMP) (Aimutis 2004). CPP are phosphorylated peptides produced during 
the digestion of α- and β-caseins, the family of proteins predominant in milk (80% 
of total protein). GMP represents one of the glycosylated forms of the caseinomac-
ropeptidos (k-casein) and is a significant component of cheese whey protein 
(15–20% of total protein) (Eigel et al. 1984; Schlimme and Meisel 1995). CPP (resi-
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dues 30–37 and 195–208 of αS1-casein) and GMP (residues 106-169 of k-casein) 
can intervene in the initial and more advanced stages of dental caries formation. 
Both peptides have antimicrobial effects since they disrupt the membrane structure 
of opportunistic pathogenic bacterial species, such as the Streptococcus mutans 
(primary causative agent of caries), Streptococcus sangius, and Streptococcus sob-
rinus (Dashper et al. 2007). In the same way, CPP and GMP bind directly to the cell 
wall of these bacteria preventing them from adhering to saliva-coated hydroxyapa-
tite (the main component of the tooth surface), and as a consequence, the cariogenic 
biofilm weakens (Neeser et al. 1994; Reynolds 1995). In more advanced stages of 
caries, CPP complexed with amorphous calcium phosphate (ACP) provide a reser-
voir of calcium and phosphate ions, which acts as a buffer system that controls the 
demineralization/remineralization process, preventing dental lesions (Reynolds 
1995). CPP responsible for the property of binding minerals is a mixture of peptides 
from 1.4 to 9.6 kDa, from which 50% maintain the sequence SerP-SerP-SerP-Glu-
Glu (Sgarbieri 2017). Due to their various anti-cariogenic functions, CPP, ACP, and 
GMP have currently been incorporated as a nano complex into toothpaste to test 
their antibacterial and remineralization potential (Elgamily et al. 2019). Similarly, 
CPP and ACP have been incorporated into chewing-gums as a source of calcium 
and phosphorus to maintain the remineralization in the whole dentition for a pro-
longed period (Dewani et al. 2019).

A casein macropeptide called kappacin, which represents the analogous phos-
phorylated form of GMP (glycosylated), is very efficient in inhibiting the growth of 
Porphyromonas gingivalis, the primary bacterium causing periodontal diseases 
(Sgarbieri 2017). Some peptides derived from milk globular glycoproteins also have 
bioactive effects. For example, LfcinB(20–25)4, a tetrameric cationic peptide based 
on the core sequence RRWQWR of bovine milk lactoferricin, was efficient for the 
treatment of the oral squamous cell carcinoma (Solarte et al. 2017). Several hypoth-
eses have been postulated about that the metabolic by-products of certain bacteria, 
among them Porphyromonas gingivalis, may induce permanent genetic alterations 
and chronic inflammation in epithelial cells of the oral cavity of the host, which 
contribute to the development of oral squamous cell carcinoma (Chattopadhyay 
et al. 2019).

3.8.2  Peptides Derived from Fish

Pardaxin is a polypeptide isolated from the marine fish Red Sea Moses sole 
(Pardachirus marmoratus) characterized by its cytotoxicity against cancer oral 
squamous cell. Its structure includes 33-aminoacids with the following sequence 
(H-GFFALIPKIISSPLFKTLLSAVGSALSSSGGQE-OH). Anticancer activity of 
pardaxin is mediated by apoptosis, the elevation of caspase-3/7 activities, disruption 
of the mitochondrial membrane potential, and accumulation of ROS. It is essential 
to mention that pardaxin belongs to a large family of antimicrobial peptides, which 
has shown effectiveness against various species of bacteria (Han et  al. 2015; 

3 Peptides and Proteins



104

Pangestuti and Kim 2017). However, pardaxin activity against the pathogenic bac-
teria that cause infectious diseases of the oral cavity has not been studied, so it 
would be worthwhile to research in this context.

3.8.3  Peptides Derived from Egg

Among the multiple proteins and peptides produced from the hen’s egg, cystatin a 
protein contained in the egg white and a peptide of approximately 13 kDa derived 
from it, which is called L7LGA10, were shown to be inhibitors of Porphyromonas 
gingivalis. The antibacterial activity of cystatin and its peptides is attributed to the 
inhibition of essential microbial proteases. In the case of Porhyromonas gingivalis 
it refers to some forms of the enzymes gingipains and gingivains (Bhat et al. 2015b; 
Blankenvoorde et al. 1996).

3.8.4  Peptides Derived from Rice

Two powerful cationic peptides that selectively inhibit the growth of Porphyromonas 
gingivalis have been produced from proteins of rice (Oryza sativa L. japonica). One 
of them, a dodecapeptide derived from a region (residues 14–25) near the N-terminus 
of the enzyme cyanate lyase can inhibit the growth of Porphyromona gingivalis fol-
lowing different pathways. This dodecapeptide (CL(14-25)), which has the sequence 
RRLMAAKAESRK, contains three Arg and two Lys residues that might be impor-
tant to disrupte the Porphyromonas gingivalis membranes in a detergent-like man-
ner. Another way in which the dodecapeptide acts against Porphyromonas gingivalis 
is through the inhibition of the enzymatic activity of Arg-gingipains and Lys- 
gingipains, Both enzymes represent the main virulence factor of Porphyromonas 
gingivalis, they are capable of degrading a wide range of proteins and stimulating 
the expression and activity of the matrix metalloproteinases, which together degrade 
collagen, fibronectin and laminin, destroying periodontal tissue (Leishman et  al. 
2010; Taniguchi and Ochiai 2017).

The second peptide is derived from heat shock protein70. It is an octadecapep-
tide constituted by the residues Hsp70(241–258) with the sequence 
DNRMVNHFVQEFKRKHKK, which includes four Lys, two Arg, and two His 
residues that could participate in the disruption of the bacterial membrane. The 
antimicrobial activity of Hsp70(241–258) against Porphyromonas gingivalis is 
approximately sixfold than that of CL(14–25) (Taniguchi and Ochiai 2017).

A third octadecapeptide that is powerful, but not selective, has been isolated 
from the enzyme α-amylase in rice and is made up of residues Amyl-1-18(175-192) 
with the sequence HLNKRVQRELIGWLDWLK. In its action against Porphyromona 
gingivalis, AmyI-1–18 is approximately 26-fold and five fold higher than those of 
CL(14–25) and Hsp70(241–258), respectively. However, this octadecapeptide also 
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shows moderate to low inhibitory activity toward Streptococcus mutans and other 
bacteria, for example, Propionibacterium acnes, Aggregatibacter actinomycetem-
comitans, Pseudomonas aeruginosa, Candida albicans, Fusobacterium nucleatum, 
Escherichia coli, and Staphylococcus aureus (Taniguchi and Ochiai 2017). 
Regardless of selectivity, cationic peptides are more powerful antimicrobials 
because they bind more strongly to negatively charged surfaces in lipid membranes 
of bacteria, and also are more useful than other peptides that have specific activity 
in the promotion of health and the treatment of diseases (Taniguchi and Ochiai 2017).

3.8.5  Other Peptides

Recently a novel bioactive peptide was developed from an endopeptide that is 
produced naturally by the human parotid and submandibular glands. Histatin 5 
(H5) was modified by applying a graft based on phosphoserine (Sp) moiety onto 
the N-terminus of H5, leading to the formation of a bioactive peptide 
phosphoserine- histatin 5, whose sequence is Sp-H5 (phosphoserine- 
DSHAKRHHGYKRKFHEKHHSHRGY). This molecule has a higher binding 
affinity to the tooth surface, and therefore prevents the adhesión of Streptococcus 
mutans to hydroxyapatite, avoiding the formation of the biofilm; also serves as a 
nucleus to suppress demineralization and to initiate mineralization (Zhou 
et al. 2020).

Based on the information shown above, it is suggested that many proteins, espe-
cially those of plant origin, still need to be investigated to identify diet-derived 
bioactive peptides with possible pharmacological applications in the prevention of 
oral diseases. This area is promising for bioactive peptides since due to their chemi-
cal structures, local applications in the oral cavity could be highly advantageous 
since in this way they avoid exposure to peptidases and intestinal absorption diffi-
culties. Furthermore, bioactive peptides with the double potential of preventing sys-
temic diseases by controlling diseases of the oral cavity, are extensively sought-after.

3.9  Concluding Remarks

The world’s population is threatened by an imminent increase in non- communicable 
diseases, which are currently the ones that take the most lives. In this scenario, the 
aggressiveness and expensiveness of the available medicinal treatments force to 
investigate cheaper and less risky alternatives. Bioactive proteins and peptides are 
becoming increasingly popular as preventive and therapeutic agents due to advan-
tages such as biocompatibility, high selectivity, high potency, and low possibility of 
drug interactions. The downside is their poor pharmacokinetic properties, but these 
can be improved by chemical manipulation without further risks. Bioactive pep-
tides have been found in many of the proteins present in the human diet. It is only 
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necessary to release them in their active form by hydrolysis. Agro-industrial waste 
represents another source of bioactive peptides in the context of sustainability. 
Scientific evidence shows the immense potential of peptides for the treatment and 
prevention of diseases such as cardiovascular diseases, cancer, diabetes, and demen-
tias, that put humanity in check in the modern era. However, there are areas of 
opportunity to exploit this potential fully. For example, in many cases, clinical evi-
dence is needed to extrapolate what has been observed in in vitro analyzes or ani-
mal models. It is also necessary to improve the purification and large-scale 
production processes of peptides and proteins that have already passed clinical 
tests. Collaborative work between government authorities, industry, and academia 
will make it possible to face these challenges.
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Chapter 4
Dietary Fibre
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Abstract In the last years, dietary fibre has gained attention as a bioactive due to 
its potential health benefits in reducing the risks for many diseases, such as cancer 
and cardiovascular ones. This effect is linked to its action against inflammation, 
oxidation, hyperlipidemia and other physiological disorders. The research in this 
area had been extensive but elucidation of the mechanisms involved in this bioactiv-
ity is not yet conclusive.

In this chapter, it will be analyzed the actual state of research concerning the 
effect of dietary fibre on health and the pathways by which this nutrient develops its 
action.

Keywords Dietary fibre · Nutrient · Health benefits · Gut microbiota · Immunity

4.1  Dietary Fibre

4.1.1  Definition: Chemical Components

The term “dietary fibre” was introduced in 1953 (Dai and Chau 2017). Early, the 
concept of fibre corresponded to an indigestible moiety which was quantified and 
named as “crude fibre”. It was referred to as the residue of plant-based food left 
after extraction with solvent, dilute acid, and dilute alkali. According to Thompson 
and Brick (2016), the CODEX Alimentarius (2010) indicated that the carbohydrate 
polymers of plants consumed in the human diet that cannot be hydrolyzed by the 
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endogenous enzymes in the small intestine are referred to as dietary fibre. A 
 validated, integrated method of dietary fibre analysis that complies with that defini-
tion has been developed, which is the Association of Analytical Chemists’ (AOAC) 
2011.25 method (McCleary et al. 2012).

Nowadays, the precise definition of dietary fibre is evolving. For example, scien-
tific research has initiated the expansion of the dietary fibre concept to include indi-
gestible oligosaccharides with their DP between 3 and 9 (Dai and Chau 2017). 
Benítez-Paez et  al. (2016) reported that dietary fibre is generally defined by the 
EFSA NDA Panel (2010) as non-digestible carbohydrates plus lignin. They are 
structurally different components including non-starch polysaccharides, resistant 
oligosaccharides (e.g. fructooligosaccharides or FOS, galacto-oligosaccharides or 
GOS) and resistant starch. According to de Vries et al. (2019), dietary fibre is made 
up of carbohydrate polymers with three or more monomeric units that are neither 
digested nor absorbed in the human intestine.

In the European Commission (2019), EU regulation 1169/2011, on the provision 
of food information to consumers, defines fibre as “carbohydrate polymers with 
three or more monomeric units, which are neither digested nor absorbed in the 
human small intestine and belong to the following categories:

 – edible carbohydrate polymers naturally occurring in the food as consumed,
 – edible carbohydrate polymers which have been obtained from food raw material 

by physical, enzymatic or chemical means and which have a beneficial physio-
logical effect demonstrated by generally accepted scientific evidence,

 – edible synthetic carbohydrate polymers which have a beneficial physiological 
effect demonstrated by generally accepted scientific evidence.”

Similar to the EU, the United States (US) Food and Drug Administration (FDA) 
definition (FDA 2016) refers to “non-digestible soluble and insoluble carbohydrates 
(with 3 or more monomeric units), and lignin that are intrinsic and intact in plants; 
isolated or synthetic non-digestible carbohydrates (with 3 or more monomeric units) 
determined by the FDA to have physiological effects that are beneficial to human 
health”.

The EU and US definitions differ from that of the Codex Alimentarius (FAO 
2009) on the number of monomers that constitute the carbohydrate polymer; while 
the EU and US include three or more monomeric units, the Codex definition speci-
fies ten or more, leaving national authorities to decide whether to include as fibre 
also carbohydrates with 3–9 monomers.

Dietary fibre is often referred to as non-starch polysaccharides’ fibre or as AOAC 
fibre. Non-starch polysaccharides’ fibre only includes polysaccharides of the plant 
cell wall components characteristic of plant foods, such as wholegrain cereals, fruits 
and vegetables. AOAC fibre comprises the total amount of non-digestible polysac-
charides, and includes e.g. lignin and resistant starches, measured with a set of 
methods developed by the AOAC (BNF British Nutrition Foundation 2019). In 
effect, AOAC fibre includes non-starch polysaccharides’ fibre, but in addition it also 
includes non-digestible carbohydrates (naturally present and isolated from foods 
and/or synthesized) that can be added as ingredients to foods.
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Why are most of the carbohydrates non-digestible or non-hydrolysable (and 
then called dietary fibre)? Because of the inability of the enzymes found along the 
human digestive tract for hydrolyzing saccharides present in the bolus. The human 
genome encodes 97 glycoside hydrolases and no polysaccharide lyases, while gut 
microbiota have both types of enzymes. Eight of the human glycoside hydrolases 
can be directly linked to digestion, and nine of them are possibly digestive, while 
the rest act in reactions not associated with food digestion (El Kaoutari et al. 2013). 
Just in the mouth, the α-amylase comes into contact with food and finally impreg-
nates the bolus, where it is able only to hydrolyze native and some modified 
starches (α-1,4 and α-1,6 bonds) of plants and the multibranched glycogen (α-1,4 
and α-1,6 bonds), the readily mobilized storage form of glucose dispersed in the 
cytoplasm of animal cells. In the stomach, the high acidic pH kills the bacteria 
present in the chyme. Just into the lumen of the duodenum, the chyme is neutral-
ized by the concentrated bicarbonate buffer and attacked by the enzymes, all of 
them secreted by the exocrine pancreas’ cells through the hepatopancreatic (Oddi) 
sphincter. These enzymes include the pancreatic α-amylase able to hydrolyze gly-
cogen and starches (>100 kDa), producing di-, tri-, and oligosaccharides’ products. 
And also all the brush-border membrane enzymes that hydrolyze specific disac-
charides: sucrase- isomaltase, lactase (β-glycosidase) and trehalase for hydrolysis 
of sucrose (β-D- fructofuranosyl α-D-glucopyranoside; α-1,2 bond), lactose (β-D-
galactopyranosyl-(1→4)-D-glucopyranose; β-1,4 bond) and trehalose (α-1,1 bond) 
disaccharides, respectively. Uncommon in the American diet, the trehalose is found 
in algae, young mushrooms, and other fungi and may cause gastrointestinal dis-
tress if consumed by individuals without adequate quantities of intestinal trehalase 
(Goodman 2010). The ability to digest lactose varies across the populations and 
lactase activity can decrease with the age (Holscher 2017).

Mouth and pancreatic α-amylases are endosaccharidases specific for internal 
α-1,4 glycosidic bonds. They have no effect on α-1,6 glycosidic bonds or on α-1,4 
bonds of glucose molecules at the branch points or at the ends. The mentioned com-
plex carbohydrates are broken down into maltose, maltotriose (isomaltose), trisac-
charides, larger oligosaccharides, and α-limit dextrins (oligosaccharides with 
branch points). The maltase, a β-glucoamylase, splits maltoses, while the isomaltase 
does it with the isomaltoses. Only monosaccharides (D-glucose, D-fructose) are 
then absorbed by the intestinal cells in order to reach the capillary blood of the 
enterohepatic cycle (Goodman 2010; Crawley et al. 2014).

Dietary fibre is essentially, constituted by the components of vegetables’ and 
fruits’ cell walls consumed by humans and animals in a normal balanced diet, which 
include pectins, cellulose, and hemicelluloses such as arabinoxylans and also 
(1,3;1,4)-β-D-glucans, which are distributed in the cell walls of the Poaceae family, 
whose economically important members are cereals and grasses (Scheller and 
Ulvskov 2010). In oat and barley, the β-glucans are specially located in the cell walls 
of the endosperm and aleurone (Kurek et al. 2018). β-glucans can contribute up to 
70% by weight of the walls in barley, rye, and oats (Fincher and Stone 2004). 
Resistant starch is also being considered a dietary fibre, but it is located in the cel-
lular cytoplasm, as part of the starch granules. Based on its digestive rate, starch is 
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actually divided in three fractions that comprise rapidly digesting starch, slowly 
digesting starch, and resistant starch. Resistant starch includes a wide range of mate-
rials, and it is divided into four types: physical inaccessible starch, ungelatinized 
starch granules, retrograded starch, and chemically modified starch (Dai and Chau 
2017). Inulin or β-fructans, which like starch are storage carbohydrates present in 
the cellular cytoplasm of temperate and cool zone grasses, are composed of five 
types of fructans, all with β-linkage: inulin β2-1, levan β2-6, branched β2-1 and 2-6, 
inulin neoseries β2-1, and levan neoseries β2-6. Oligomeric fructans (DP 3-9), usu-
ally called oligofructose or FOS, are mostly obtained by inulin hydrolysis or enzy-
matic synthesis from the sucrose obtained from beet or cane (De Vries et al. 2019). 
On the other hand, lignin, which constitutes the secondary cell walls and it is then 
part of the fibre fraction of the diet, is the chemical exception because it is a phenolic 
polymer and not a carbohydrate (Brett and Waldron 1996; Broekaert et al. 2011; Qi 
et al. 2018). Lignin is the second most abundant natural polymer after cellulose, 
playing an important role in plants, providing rigidity to strengthen the structures of 
cell walls and resistance to microbial attack. Chemical structure of lignin consists of 
three monolignols’ kinds of phenylpropane units: p-hydroxyphenyl unit (H unit, 
from p-coumaryl alcohol), guaiacyl unit (G unit, from coniferyl alcohol), and syrin-
gyl unit (S unit, from sinapyl alcohol). The content of each monolignol in lignin 
depends on the plant species. Through radical coupling reactions, the monolignols 
are linked together to form lignin, a complex three-dimensional structure (Wang 
et al. 2019). Bunzel et al. (2005) determined the insoluble fibre lignins in fruits and 
vegetables. They were classified as G-rich lignins (G/S ratio >3; carrot, spinach, 
kiwi, curly kale, radish, and asparagus), S-rich lignins (S/G ratio >3; rhubarb), or 
balanced lignins (0.3 < G/S ratio < 3; pear, apple, small radish, and kohlrabi).

Gums and mucilages are polysaccharides habitually considered as dietary fibre. 
They are derived not only from plant exudates and seeds, but also from seaweeds. 
Some of them such as gum arabic, karaya, tragacanth, and carob are obtained as 
exudates from trees or shrubs. Guar gum and locust bean gum are extracted from 
seeds. Xanthan gum, curdlan and gellan are produced by microbial fermentation 
(Huffman 2003; Qi et  al. 2018). Other soluble fibres also represented by certain 
hydrocolloids habitually used in food formulations such as agar, alginate, and car-
rageenan are obtained from seaweeds, while carboxymethylcellulose and hydroxy-
propylmethyl cellulose are chemical derivatives of cellulose produced for obtaining 
water soluble cellulose. Chemically modified starches and xanthan gum are also 
used (Qi et al. 2018).

4.1.2  Classification

Based on the chemistry, i.e., in the character of the individual monomers, DP, and 
type of linkage (α or β, axial or equatorial), the following form of primary classifica-
tion of dietary carbohydrates is considered (Cummings and Stephen 2007). 
 Non- digestible carbohydrates with a DP of 2–10 (or 3–9 according to some conven-
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tions), known as oligosaccharides, are also dietary fibre molecules, though they are 
often treated differently by the regulatory authorities (Qi et al. 2018). In general, 
carbohydrate chains with a number of carbon atoms up to nine are water-soluble. 
Many oligosaccharides are naturally found in vegetables. Raffinose, stachyose, and 
verbascose are galactooligosaccharides (GOS) found in legumes. They consist of a 
terminal sucrose to which one (raffinose), two (stachyose), or three (verbascose) 
galactose monomers are linked. Other oligosaccharides such as those derived from 
β-glucans, mannan oligosaccharides (MOS), GOS, oligofructans, xylan- 
oligosaccharides (XOS), arabinoxilan-oligosaccharides (AXOS), dextrins, and 
short pectins can be also found in some specific vegetables like mushrooms 
(Gerschenson et al. 2017). Moreover, they can be also liberated into the colon by the 
enzymatic battery of the microflora (e.g. endo-β1,4-xylanases and xylosidases) act-
ing on the non-digested dietary fibre polysaccharides (e.g. arabynoxylans) 
(Broekaert et al. 2011; El Kaoutari et al. 2013).

Based on the different physiological effects, dietary fibre is classified in soluble 
(oligosaccharides of DP < 10, pectins, inulin of lower DP, soluble hemicelluloses, 
gums and mucilages) and insoluble (debranched hemicelluloses, cellulose, lignin, 
resistant starch) in the aqueous fluids. However, over the years a good amount of 
scientific research has shown that solubility is not necessarily the determinant of 
physiological effect. Therefore FAO/WHO in 1998 proposed to no longer use this 
classification (FAO/WHO 1998). In spite of this observation, the solubility of the 
dietary fibre determines the site of the colon where it is fermented and absorbed 
(Holscher 2017).

Based on the dietary fibre solubility, soluble fibre can interfere with the absorp-
tion of dietary fat and cholesterol. This, in turn, can help to lower low-density lipo-
protein (LDL) cholesterol levels in the blood. Soluble fibre also slows digestion and 
the rate at which carbohydrates and other nutrients are absorbed into the blood-
stream. This can help control the level of plasma glucose by preventing rapid 
increase in blood glucose following a meal. On the other hand, insoluble fibre pro-
vides “bulk” for stool formation and speeds up the movement of food and waste 
through the digestive system, which can help prevent constipation. Diets higher in 
dietary fibre promote intestinal regularity due to the stimulation of intestinal peri-
stalsis. Simultaneous to this important mechanical effect, fibre can reduce the risk 
of developing cardiovascular disease, as well (Cadden 1987; FDA 2019).

According to Watson (2019), the FDA classifies dietary fibres into three groups:

 1. Non-digestible soluble and insoluble carbohydrates (with three or more mono-
meric units), and lignin that are intrinsic and intact in plants: these don’t need 
FDA pre-approval and automatically meet the definition.

 2. Isolated or synthetic non-digestible carbohydrates (with three or more mono-
meric units) determined by FDA to have physiological effects that are benefi-
cial to human health. The FDA initially approved six: β-glucan soluble fibre, 
psyllium husk, cellulose, guar gum, pectin, locust bean gum, and 
 hydroxypropylmethylcellulose, but required suppliers of many others to submit 
citizen's petitions.
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 3. Isolated and synthetic non-digestible carbohydrates. The FDA has already 
approved:

• Mixed plant cell wall fibres
• Arabinoxylan
• Alginate
• Inulin and inulin-type fructans
• High amylose starch (resistant starch 2)
• Galactooligosaccharides
• Polydextrose
• Resistant maltodextrin/dextrin

In this scheme, the called mixed plant cell wall fibres imply a broad category that 
includes barley fibres, cocoa fibres, sugar cane fibre, apple fibre, sugar beet fibre, 
corn hull fibre, potato fibre, oat hull fibre, pea fibre (hull and cotyledon), bamboo 
fibre, cottonseed fibre, rice bran and hull fibre, soy fibre (cotyledon and hull), citrus 
fibre, and wheat fibre. It is defined by the FDA as “Ingredients that contain two or 
more of the following plant cell wall fibres in varying proportions: cellulose, pectin, 
lignin, β-glucan, and arabinoxylan”, and mentions that “Examples of mixed plant 
cell wall fibres that we intend to consider enforcement discretion for as a dietary 
fibre are those obtained from whole or parts of fruits, vegetables, grains, legumes, 
pulses, nuts, and other plants that undergo processing methods”.

As explained by Watson (2019), regarding the FDA decisions about which iso-
lated or synthetic non-digestible carbohydrates should be classified as “dietary 
fibre” on the Nutrition Facts panel, actually the FDA did not approve or reject any-
thing. The FDA granted and denied certain petitions and made determinations about 
whether the 26 non-digestible carbohydrates from the 2016 science review meet the 
criteria to be considered a dietary fibre as laid out in this guidance.

4.1.3  Recommended Daily Intake

According to the FDA (2019), the daily intake value recommended for fibre is 
25  g, based on a 2000 calorie diet. According to Li and Komarek (2017), the 
National Center for Health Statistics (NCHS) conducted a study in adults aged 
18  years and above within the 1999–2008 period, to estimate the daily fibre 
intake of individuals and compared it with recommended intakes. It was deter-
mined that the mean daily intake of dietary fibre is stagnant at the level of 
15–16 g/day per person and, hence, individuals do not meet the recommendation 
in the US, considering that the recommended levels for total fibre intake by age 
and gender are 38 g/day for men aged 19–50 years, 30 g/day for men older than 
50 years, 25 g/day for women aged 19–50 years, and 21 g/day for women older 
than 50 years.

Dietary fibre intake in most countries around the world is far below recom-
mended levels. The gap between dietary fibre recommendations and intakes is so 
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extreme that the U.S. Dietary Guidelines Advisory Committee listed dietary fibre as 
one of five “nutrients of concern” (Miller 2014).

European Commission (2019) recommended amounts of dietary fibre for promo-
tion of adequate laxation and for prevention of chronic diseases such as diabetes 
type 2, colorectal cancer, CVD or of overweight and obesity range from 25 to 38 g/
day in adults. In children, recommended amounts vary according to the energy 
requirements of the different age groups. Recommended intake values are expressed 
in the majority of the cases as adequate intakes of AOAC fibre unless differently 
stated. Some public health organizations also recommend fibre intakes on the basis 
of energy requirements (grams fibre per Joules or grams per 1000 kcal).

Regarding the role of dietary fibre, recent reviews outline the benefits of ances-
tral diets and high fibre diets to maintain a rich and diverse gut microbiome and 
related health benefits. In light of these data, some studies propose that dietary fibre 
intake would at least reach 50  g/day, whereas the current recommendations are 
around 30 g/day in the adult, as above mentioned (Delzenne et al. 2019).

4.1.4  Nutritional and Functional Properties of Dietary Fibre

In his medical research into the occurrence and distribution of cancer in Africa, 
Denis Parsons Burkitt became convinced of the dietary fibre importance and, using 
his surgical knowledge, expertise in the geography of diseases and some experimen-
tal work, he showed that lack of fibre was a determinant of bowel cancer risk. Other 
conditions including diverticular disease, irritable bowel syndrome, appendicitis, 
varicose veins, haemorrhoids, diabetes, obesity, atherosclerosis and dental caries 
were added to the Burkitt’s fibre hypothesis, as the non-communicable diseases of 
Western culture (Cummings and Engineer 2018).

A diet rich in fibre is usually lower in fat and contains fruit and vegetables. High 
intakes of dietary fibre may reduce absorption of some minerals from food as they 
can be bound by the fibre in insoluble complexes. However, fermentation of the 
fibre in the large intestine can release some of the bound minerals (e.g. calcium) 
and, hence, they can be absorbed. The amount of vitamins and minerals lost through 
eating a diet rich in fibre is not likely to be significant unless an individual’s diet is 
already poor. The health risks of a low fibre diet are potentially much greater than 
those of a very high fibre diet (BNF British Nutrition Foundation 2019).

From a labeling perspective, the format and contents of which is set by EU law, 
fibre provides 2 kcal/g of energy (BNF British Nutrition Foundation 2019).

European regulations on nutrition and health claims state that a product claiming 
to be a “source” of fibre should contain at least 3 g of fibre per 100 g or at least 1.5 g 
of fibre per 100 kcal. A product claiming to be “high fibre” should contain at least 
6 g of fibre per 100 g or at least 3 g of fibre per 100 kcal (The European Parliament 
and the Council of the European Union 2007).

As reported by FAO (2019), even when a great number of scientific investiga-
tions were stimulated by the Burkitt’s hypothesis, it is still early to assign clear 
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health claims to dietary fibre. This difficulty derived from the fact that dietary fibre 
includes many complex substances, each having unique chemical structure and 
physical properties. In this sense, dietary fibre is often intimately associated in the 
plant cell structure with other bioactive organic compounds, such as vitamins, iso-
flavons (phytoestrogens), phenolics, etc., which display their own biological activity.

The functional properties of dietary fibre can be strongly associated to the bio-
logical effects, and comprise the hydration properties of the fibre (swelling, water- 
holding and water retention capacities), thickening, gelling and antioxidant effects, 
as well as, the effect of fibre on gut microbiota. Functional properties depend basi-
cally on the chemical composition of the fibre biopolymers, but physical properties 
derived from the matrix microstructure developed after drying and milling can also 
influence greatly, for a given chemical composition.

4.1.4.1  Dietary Fibre and Antioxidant (AOX) Effect

In the case of extraction of fibre enriched fractions from vegetables and fruits by- 
products and leftovers, this fact can be in part overcome by applying a sequential 
process for the extraction with solvents of decreasing polarity, and different pH and 
concentrations in the case of solvent mixtures. For example, only water soluble and 
ethanol insoluble biopolymers and associated substances like phenolics but not 
hydrophobic substances, can be together obtained in the isolated fraction by using 
the mentioned solvents (Fry 1986; Marry et al. 2006; Ponce et al. 2010; Raffo et al. 
2011). As indicated by Renard et al. (2015), pectins show high affinity in the interac-
tion with polyphenols liberated from the intracellular location during extraction of 
the cell wall biopolymers from tissues, after mechanical disruption of cells. The 
binding is due to a combination of hydrogen bonds and hydrophobic interactions, 
increasing the affinity with the degree of methyl-esterification of the homogalactu-
ronans, and it is favored by increased ionic strength and decreased temperature. 
Also, phenolic compounds such as ferulic and coumaric acids (monomer, dimer and 
trimmer forms) can be found covalently bound to the arabinan chains of the rham-
nogalacturonan I of pectins, as well as to the L-arabinose lateral substituents of the 
xylan backbone in hemicelluloses (Fry 1986; Marry et  al. 2006; Scheller and 
Ulvskov 2010). In this cases, the polysaccharides can be chemically liberated after 
treatment with strong alkali (NaOH, KOH). Saura-Calixto (2011) established that 
dietary fibre and antioxidants are two recognized dietary factors in the prevention of 
chronic disease. The author indicated that dietary fibre has an essential role in intes-
tinal health and appears to be significantly associated with a lower risk of developing 
coronary heart disease, stroke, hypertension, diabetes, and obesity. Regarding 
dietary antioxidants, they protect against oxidative damage to DNA, proteins, and 
lipids, and have a significant impact on the regulation of gene expression. Intake or 
plasma concentration of dietary antioxidants has been associated with the low risk 
of chronic disease in healthy diets. It has been suggested (Saura-Calixto 2011) 
 suggested that even though an abundant scientific literature addresses dietary fibre 
and antioxidants separately as nonrelated compounds, probably because of the dif-
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ference between their chemical structures and, hence, physicochemical and biologi-
cal properties, as well as metabolic pathways, dietary fibre and a considerable 
amount of dietary antioxidants follow a common and synergistic physiological pro-
cess within the gastrointestinal tract. Most reported dietary antioxidants are a wide 
variety of single molecules (vitamin C, tocopherols, carotenoids, low molecular 
weight polyphenols, and others) solubilized and totally or partially absorbed in the 
upper intestine. However, an appreciable amount of dietary antioxidants, mainly 
polyphenolics and some carotenoids, travel through the small intestinal lumen intact 
in tandem with the dietary fibre, reaching the colon, where they release the fibre 
matrix and produce metabolites and an antioxidant environment by the action of the 
enzymatic machinery of the bacterial microbiota. In this way, Broekaert et al. (2011) 
reported that arabinoxylan oligosaccharides (AOXs) are more powerful antioxidants 
than the free ferulic acid that they contain as esterified group. In addition, ferulate 
esterase of the gut microbiota liberates ferulic acid from hemicellulases and oligo-
saccharides into the caeco-colon lumen. Basanta et al. (2016) determined that the 
polyphenolic extract obtained from plum isolated fibres, mainly constituted by pen-
tameric proanthocyanidins (170–200  mg/100  g plum fibre), showed a protective 
effect against the oxidative stress induced by tert-butylhydroperoxide on a Hek 293 
kidney cell line, joined to a low cytotoxicity (50%-cytotoxic concentration > 100 μg/
mL extract). Proanthocyanidins are catabolized in a relevant proportion by the 
colonic microbiota before they can be absorbed as the resulting products, which 
include free phenolic acids and phenyl-γ-valerolactones (Ou and Gu 2014).

4.1.4.2  Dietary Fibre and Hydration Properties

The hydration properties comprise the swelling, water-holding and water retention 
capacities and are tightly related to the thickening and gelling effects of dietary fibre.

Dietary fibre such as oligosaccharides, pectins, inulin of lower DP, soluble hemi-
celluloses, gums (alginates, carrageenans) and mucilages are water-soluble, vis-
cous, and highly fermentable by the microorganisms of the intestinal tract. Because 
of its water-holding capacity, they delay gastric emptying (Huffman 2003). 
Therefore, many mucilages as well as pectins are also used for pharmaceutical pur-
poses such as the mucilages obtained from Plantago ovata like the psyllium muci-
lage and mucilage of llanten, used as laxatives, as well as for protection of the 
intestinal epithelium. Wheat bran, cellulose and psyllium may help reduce constipa-
tion and the risk of colon disease because they absorb water, which increases bulk-
ing and promotes regularity. Soluble fibres include viscous fibres such as pectin, 
β-glucans, fructans (inulin, fructooligosaccharides), gum, mucilage (Soliman 2019). 
The physiological effects of soluble dietary fibres are attributed to their unique 
properties: viscosity and gel formation, and fermentability into the colon. Different 
dietary fibres might have different viscosities depending on their chemical composi-
tion (types of monomers), macromolecular structure and weight, concentration, pH, 
counter-ions, and ionic strength. Viscous soluble dietary fibres are believed to be 
more capable of inducing satiety compared to non-viscous soluble dietary fibres, 
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and hence delays gastric emptying, slowing digestion and the absorption of nutri-
ents, including D-glucose, and reducing intestinal enzyme diffusion and the forma-
tion of an unstirred water layer. Viscous soluble dietary fibres are not being digested 
in the stomach. Instead, they are fermented in the colon and result in a rise in short 
chain fatty acids (SCFAs) (Lapasin and Pricl 1995; Salleh et al. 2019).

For healthy effects above described, a functional property like the hydration 
capacity (swelling and water holding capacity), inherent to dietary fibres, is involved, 
which is strongly associated to the chemical composition of dietary fibres. As a 
result of the hydration capacity, dietary fibres are able to immobilize water mole-
cules by hydrogen bonding next to the hydroxyl groups of the polysaccharide mac-
romolecules or low molecular weight carbohydrates and, consequently, to slow 
down water flow in the following layers of surrounding water. This behavior is 
manifested as viscosity or thickening effect, a very important property of dietary 
fibres and, especially, of higher molecular weight carbohydrates. The lower molecu-
lar weight saccharides also retain water molecules around, but the main effect of 
them is as osmotically active compounds (Schaller-Povolny et al. 2000). The dietary 
fibre has a varying capacity of producing viscous solutions upon dissolution and 
swelling in water. This capacity strongly depends on the molecular weight and con-
centration, and it is positively correlated to its solubility (Capuano 2017). Also, it 
can be favored by the presence of counterions such as potassium and calcium. Since 
the latter is a divalent ion, it produces the electrochemical crosslinking of pectin and 
alginate macromolecules, which leads to gelling of the aqueous system (Braccini 
and Pérez 2001). Hence, rheological properties of dietary fibres linked to their 
hydration capacity are not only related to their utility as additive or ingredient but 
also to their intestinal effects. Moreover, the gelation capacity of some soluble 
dietary fibres showed health benefits to the consumers and improved the commer-
cial values of related functional food. As reported by Li et al. (2018), the soluble 
dietary fibre showed higher swelling and water holding capacities and viscosities 
than insoluble dietary fibre. These hydration properties are believed to be responsi-
ble for the delay in, for example, the glucose and cholesterol absorption in the small 
intestine and, hence, for the decrease in the blood glucose and cholesterol levels. 
The European Food Safety Authority (EFSA) has recognized in 2010 the scientific 
validity of nutrition and health claims regarding pectin as a nutritional supplement 
in the reduction of the post-prandial glycemic response, maintenance of normal 
blood cholesterol levels and the increases in satiety, leading to a reduction in the 
energy intake. Therefore, pectins’ producers for food and pharmaceutical formula-
tion were then suddenly confronted with an unexpected outcome, that is the use of 
pectin as a healthy additive or ingredient (Ciriminna et al. 2016). Pectin is a major 
fruit prebiotic that has been extensively studied and shown to promote a healthy, 
anti-inflammatory colonic microbiota ecosystem with greater microflora diversity 
than inulin (Dreher 2018).

On the other hand, the EFSA NDA Panel (2010) and the Federal Drug 
Administration in 2005, have recognized that the daily intake of 3 g of β-glucans 
from oat and barley contributes to maintain normal the cholesterol level in blood 
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(Othman et al. 2011). Therefore, the EFSA and FDA authorized the use of health 
claims for β-glucan from barley and oat (Kurek et al. 2018).

Swelling capacity is defined as the ratio of the volume occupied by the sample 
after immersion in excess of water and equilibration to the actual weight 
(Raghavendra et al. 2004). Hence, this parameter indicates how much the powder 
fibre matrix swells and its volume increases as water is absorbed. Water-holding 
capacity (WHC) is defined by the quantity of water retained by the fibres without 
the application of any external force, except for gravity and atmospheric pressure 
(Raghavendra et  al. 2004). Thus, this parameter also includes the proportion of 
water loosely associated to the fibre matrix in addition to the strongly retained water. 
The water retention capacity (WRC) is defined as the quantity of water that remains 
into the hydrated fibre following the application of an external force (pressure or 
centrifugation). Therefore, it is indicating the fraction of water that it is strongly 
retained by the fibre polymers.

The maximum amount of water that the fibre can hold is a function of its chemi-
cal, physical and microstructural characteristics (Brett and Waldron 1996; 
Raghavendra et al. 2004). Beyond the chemical composition and macromolecular 
structure of the fibre (hydroxylation, methylesterification, charged groups, branch-
ing, molecular weight), particle size is hence a main characteristic that can deci-
sively contribute to determine the hydration properties of the dietary fibre in the 
powder form (Cadden 1987). For the same chemical composition, the procedure by 
which a given particle size range is reached also contribute to determine the surface 
properties of the fibre material, that is, wettability or hydrophobicity. Consequently, 
the procedure used affect finally the swelling and hydration capacities of fibres as 
well as the final dissolution in the case of soluble dietary fibre. The rheological 
behavior is finally conditioned by the mentioned facts since it is a function of the 
capacity of the fibre biopolymers to interact with the water solvent, modifying its 
flow property. Reducing the particle size of wheat bran decreased the water-holding 
capacity, due, in part, to the collapse of its fibre matrix. Water absorption properties 
of cereal fibres are an important determinant of their reported stool bulking effects 
(Cadden 1987). Idrovo Encalada et  al. (2019) obtained fibre powders from dis-
carded carrots after elimination of the water soluble simple sugars and freeze- 
drying. For the same chemical composition (15% w/w uronic acids, 33% of neutral 
sugars, 23–25% of cellulose, 7–10% of lignin and ≈0.72% of total starch), the 
authors determined that swelling capacity increased significantly with the particle 
size of carrot fibre from 26.7 mL of water absorbed after18 h of equilibration per 
gram of 53 μm dried fibre, up to 36.3 mL/g for 210 μm of average particle size. 
Pectins present in the carrot fibres at (≈15% uronic acids’ content) were mainly 
responsible for the water absorption and swelling capacity. The values of water 
holding and water retention capacities determined as the grams of water absorbed 
by the dried fibres after 18 h of equilibration per gram of dry fibre, were signifi-
cantly lower for 53 μm carrot fibre than for 105 and 210 μm. On the other hand, 
Raghavendra et al. (2004) determined that the reduction in the particle size of coco-
nut grating residue from 1127 to 550 μm, resulted in increased hydration properties, 
which was ascribed to the increase in the theoretical surface area and total pore 
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volume, as well as to an structural modification. However, below 550 μm, the hydra-
tion properties were found to decrease with decreasing particle size, which can be 
associated to the collapse of pores.

As early reported by Cadden (1987), the consumption of dietary fibre of cereals 
has been promoted for its prophylactic value in regulating colonic function. 
However, the addition of fibre to foods does not guarantee that the foods will become 
endowed with desirable physiological effectiveness. The addition of finely ground 
wheat bran or cellulose to a low-fibre diet has been reported to cause constipation in 
human subjects. Fibre supplements prepared by the food industry as food ingredi-
ents are often finely ground. Unfortunately, studies have shown that the processing 
of foods can alter the physical characteristics of the plant fibre and so affect the 
degree of microbial degradation and the ability of the fibre to absorb water and/or 
other compounds.

For a given chemical composition, the drying process used to obtained powders 
enriched in dietary fibre has a great effect on hydration properties of the product 
because it affects the microstructural characteristics of the powders obtained (Vetter 
and Kunzek 2003). In general, lyophilization generates powders with the highest 
active surface for interaction with water and, hence, with absolute re-hydration 
capacity. Spray-drying is also a high-quality drying process with respect to the wet-
tability and re-hydration capacity of the powders obtained, and the particle size 
range can be managed through the nozzle used. On the other hand, drying in com-
mon chambers under limited convection combined with higher temperatures can 
produce powders with lower porosity and, hence, the lowest hydration capacity 
(Martinez-Las Heras et al. 2017). Fibres extracted as the ethanol (96% v/v) insolu-
ble residues from persimmon peel and pulp showed that when freeze-dried, these 
fibres presented better hydration properties and oil holding capacity than those 
obtained after drying under 40 °C-air (≈7 h to constant weight). Freeze-dried per-
simmon peel and pulp fibres also demonstrated higher values of emulsion stability 
than commercial fibres such as those obtained from peach, lemon, orange and apple. 
Finally, the antioxidant activity of the smallest sized persimmon peel fibre obtained 
by freeze-drying was higher than that for lemon, orange and peach fibres (Martinez-
Las Heras et al. 2017).

Beyond the drying processing used, the fibre powder obtained can be also modi-
fied by other physical methods which can imply the change in the particle size. In 
this sense, for a given chemical composition and particle size, the process used for 
reducing the particle size can also influence the hydration properties of the dietary 
fibre. Powder properties such as flowability and compressibility that pertain to bulk 
level of solid state are strongly influenced by changes in characteristics at the particle 
level, such as size, size distribution and morphology of particles (aspect ratio) 
(Sarrate et al. 2015). Liu et al. (2016) evaluated the effect of regular laboratory mill-
ing, ultra centrifugal rotor milling and ball milling on structural, physicochemical, 
and functional properties of the insoluble dietary fibre fraction that remained after 
heating the orange peel in water (1:5) for 2 h at 90 °C followed by centrifugation and 
freeze-drying. The matrix structure of the insoluble fibre fraction was destroyed but 
FTIR structure had no major change after grinding. Ultracentrifugal milling and ball 
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milling effectively decreased the average particle size of insoluble dietary fibre frac-
tion (81.40 μm and 19.63 μm, respectively). As particle seize decreased, the bulk 
density and lightness of the insoluble dietary fibre fraction increased and a redistri-
bution of fibre components from insoluble to soluble fractions was observed. 
Furthermore, the ball milled insoluble fibre exhibited significantly higher capacity to 
retard glucose diffusion. Ye et al. (2015) obtained insoluble fibre from orange pom-
ace by elimination of the soluble fibre with 60  °C-water for 1  h of stirring. The 
insoluble fibre residue was dried under air at 60 °C for 48 h. The dried insoluble fibre 
was then ordinarily grinded (high-speed pulverizer), a sample of this procedure was 
then micronized for 8  min, while another sample was submitted to jet grinding. 
According to the d0.90 diameter determined through light scattering, the particle sizes 
of the three milled products were respectively 750, 125, and 48.4 μm. As the particle 
size decreased, the fibre was enriched in the soluble component (the insoluble fibre 
was mostly lost upon intensive grinding), and a slight increase in crystallinity 
(52.84–62.20%) occurred. The latter was ascribed to the fact that lignin and hemicel-
luloses, existing in amorphous regions of the powders, were removed as the grinding 
was more intense. However, the swelling and water holding capacities were low and 
varied significantly but slightly as the particle size decreased, from 7.14 to 6.17 mL/g 
for the swelling capacity, and from 7.33 to 5.74 g water/g fibre for the water holding 
capacity.

Dubey et  al. (2018) determined that milled cellulose showed significantly 
enhanced capacity for holding water (3.5–25 mL water/g), swelling (3–26.5 mL/g) 
and binding bile acids and sugars. The size reduction also resulted in increased fer-
mentability of cellulose into SCFAs using three human fecal microflora samples. 
The increase in production of acetate (2880.60%), propionate (2738.52%), and 
butyrate (2865.89%) after fermentation of cellulose for 24  h was significantly 
enhanced by size reduction. Ang (1991) found that, depending on the fibre length, 
cellulose can retain 3.5–10 times its weight in water. A cellulose powder with at 
least 110 μm fibre length significantly increased the viscosity when dispersed in 
water at concentrations up to 3% w/v before sedimentation.

De Paepe et al. (2019) determined that modification of wheat bran particle size 
and tissue composition affects the colonization and metabolism by human faecal 
microbiota. Modification of wheat bran physicochemical properties largely affects 
the amount, but not the ratio of produced SCFAs, and that interindividual variability 
dictates the functional and composition response from the luminal microbiota to 
wheat bran supplementation. The wheat bran-attached microbiome composition 
was more affected by wheat bran structure. Micronization of unmodified bran from 
1687 μm to 149 μm resulted in a higher SCFAs production after 24 h for all donors, 
except donor 7 and 9. This difference between micronized and unmodified bran 
disappeared again after 48 h and was not observed at 6 h. This result suggests that 
particle size only affects the rate of fermentation, confirming the finding from 
Stewart and Slavin (2009) that a reduction in average wheat bran particle size from 
1239 μm to 551 μm increased SCFAs’ levels starting from 8 h up till 24 h. The 
authors attributed the increased production of SCFAs to an increased surface area, 
providing a larger contact area for bacterial enzymes to access the substrate. 
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However, others claim that bran porosity more than surface area determines sub-
strate accessibility to enzymes. Secreted extracellular enzymes are able to penetrate 
in nanometer size pores, whereas membrane-bound enzyme complexes, which are 
suggested to play a major role in the rate limiting primary degradation of wheat 
bran, are restricted to micrometer size pores. Changes in porosity may partly offset 
the effect of an increased surface area on enzyme accessibility, limiting the effect of 
micronization on fermentability.

As a consequence of all above described, swelling, water-holding and water 
retention capacities have to be determined after any extractive and modification 
procedures performed for extraction of dietary fibre enriched fractions. Intense 
shearing during grinding processes such as micronization, changes the insoluble 
fibre/soluble fibre weight ratio in the fibre product, with a general decrease. In spite 
of it, contrary to that expected, the hydration properties are decreased.

4.1.4.3  Dietary Fibre and Gut Microbiota

By considering the health benefits, Codex states that dietary fibre generally presents 
one or more of the following properties: (1) decreased intestinal transit time, 
increased stools bulk; (2) fermentation by colonic microbiota; (3) reduced blood 
total and/or LDL cholesterol levels; and (4) reduced post-prandial glycemia and/or 
insulin levels (Delzenne et al. 2019). The (1) and (2) functions are the essential ones 
for the nutritional effect of dietary fibre. These four properties were included in the 
EU Directive 2008/100/EC and applied, in recent years, for evaluating the benefits 
to health of a wide range of fibre ingredients by Health Canada’s Food Directorate 
and the FDA. These two public organisms concluded that, for most current com-
mercially available dietary fibre, sufficient scientific evidence is available for includ-
ing them in the list of compounds that can be officially considered as dietary fibre.

In spite of the common characteristic of being non-digestible in the human small 
intestine, the dietary fibre is widely different in composition, structure and the way 
by which they feed the bacteria harboring the gut microbiota (Delzenne et al. 2019). 
The gastrointestinal microbiota has an important role in human health, and there is 
increasing interest in utilizing dietary approaches to modulate the composition and 
metabolic function of the microbial communities that colonize the gastrointestinal 
tract to improve health, and prevent or treat disease. One dietary strategy for modu-
lating the microbiota is the consumption of dietary prebiotics (Holscher 2017). The 
International Scientific Association of Probiotics and Prebiotics defined “dietary 
prebiotics” as “a selectively fermented ingredient that results in specific changes in 
the composition and/or activity of the gastrointestinal microbiota, thus conferring 
benefit(s) upon host health” (Davani-Davari et al. 2019). As indicated by Benítez- 
Paez et al. (2016), dietary fibres are major drivers of gut microbiota composition 
and function, stimulating the dominance of bacteria able to utilize these substrates 
as an energy source. Microbial species interact in vivo to form complicated food 
chains, and some of these relationships are centered on the glycan metabolism 
(Koropatkin et al. 2012). However, the effects vary depending on both the type of 
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fibre and the individual’s microbiota. The primary and secondary metabolic path-
ways mediating specific fibre-induced effects on the metabolic phenotype remain 
unclear and, hence, it is not possible to personalize fibre-based interventions. Fibre 
is an instrumental dietary component that can be used to remodel gut microbiota 
composition and function to potentiate the beneficial effects of healthy diets on 
body weight management and metabolism. Experimental models revealed that diet- 
microbe interactions contribute to obesity, for example, by increasing lipid absorp-
tion or aggravating adipose tissue inflammation independently of adiposity, in the 
context of diets rich in saturated lipids (Benítez-Paez et  al. 2016). According to 
actual evidence, it can be inferred that consumption of a varied diet with an impor-
tant proportion of vegetables and fruits (cell wall carbohydrates and lignin, antioxi-
dants) and, probably, also algae in some diets, gives rise to a typical gut microbiota 
that carries healthy benefits to the host. Conversely, a meat rich diet combined with 
low proportion of vegetables and fruits would promote the development of the 
microbiota responsible for anaerobic fermentation into the gut and deliver of sul-
phur compounds (Conlon and Bird 2015). The differences in bacterial community 
structures of native African populations reflected the diets of the hosts. Western 
diets, characterized by higher intakes of dietary animal proteins (as meat, milk and 
eggs), may deliver greater amounts of sulphur compounds to the colonic microbi-
ota, thus favoring sulfidogenic hydrogen disposal. On the other hand, methane is the 
major hydrogen sink in Native Africans, who have lower intake of animal products 
and higher breath methane concentrations than the westernized populations.

The immune defenses along the intestine, including the mucus barrier, help pre-
vent potentially harmful bacteria from causing tissue damage (Conlon and Bird 
2015). The microbial metabolism contributes to the host immunity because micro-
bial enzymes mediate the conversion of tryptophan into indole and indole deriva-
tives that shape human host immune responses. The indole 3-aldehyde produced by 
the microbiome acts like an activating ligand for human host aryl hydrocarbon 
receptors, which are expressed by the immune cells. For example, the binding of 
indole induces the IL-22 secretion by innate lymphoid cells, promoting the secre-
tion of antimicrobial peptides that protects the host from pathogenic infection by 
Candida albicans. Microbial production of SCFAs (acetate, propionate, butyrate, 
succinate and lactate) from dietary fibre also shapes host immunity, contributing to 
both innate and adaptive immune system functions (Guthrie et al. 2019).

The maintenance of a diverse and thriving population of beneficial gut bacteria 
helps keep harmful bacteria at bay by competing for nutrients and sites of coloniza-
tion. Diet, particularly the use of a range of fibres, may be the best way of maintain-
ing a healthy gut microbiota population (Conlon and Bird 2015).

4.1.4.3.1 Microbiota Enzymes’ Machinery

Symbiotic microorganisms that reside in the human intestine are adept at foraging 
glycans, including those in dietary plants (starch, hemicellulose and pectin), animal- 
derived cartilage and tissue (glycosaminoglycans and N-linked glycans), and host 
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mucus (O-linked glycans). Most gut bacteria can possess multiple enzymes that 
have activity against isolated plant polysaccharides, but only a few gut bacteria, are 
directly engaged in the breakdown of recalcitrant insoluble substrates, such as those 
organized into the plant cell wall structure (Flint et al. 2008). Fluctuations in the 
abundance of dietary and endogenous glycans, combined with the immense chemi-
cal variation among these molecules, create a dynamic and heterogeneous environ-
ment in which gut microorganisms proliferate (Koropatkin et al. 2012). Descriptions 
of the microbial communities that live on and in the human body have progressed at 
a spectacular rate over the past 5 years, fuelled primarily by highly parallel DNA- 
sequencing technologies and associated advances in bioinformatics, and by the 
expectation that understanding how to manipulate the structure and functions of our 
microbiota will allow us to affect health and prevent or treat diseases. Among the 
myriad of genes that have been identified in the human gut microbiome, those that 
encode carbohydrate-active enzymes are of particular interest, as these enzymes are 
required to digest most of our complex repertoire of dietary polysaccharides (El 
Kaoutari et al. 2013).

The human gut microbiota is rich at the species level, but somewhat limited in 
terms of phylum-level bacterial diversity; furthermore, archaea are mainly repre-
sented by members of the genus Methanobrevibacter. The most commonly repre-
sented bacterial phyla in healthy adults are Firmicutes and Bacteroidetes, with 
significant numbers of Actinobacteria and Proteobacteria members also present. 
The relative proportions of these phyla sometimes diverge widely, reflecting not 
only interpersonal, geographical, lifestyle and temporal variations, and perturba-
tions caused by disease, but also variations in the metagenomic protocols used to 
determine the composition of the microbiota. The ability to utilize complex dietary 
and host glycans is central to the survival of prominent members of the gut micro-
biota. Plants in the form of fruits, vegetables and cereals are major components of 
the human diet that provide dietary fibre (El Kaoutari et al. 2013). The biochemistry 
of the various host and dietary glycans that enter the gut is exceptionally diverse. 
Dietary fibre comprises many structurally diverse sugar moieties joined together by 
glycosidic bonds to form chains and branches. Generally, the more complex the 
polysaccharide, the more enzymes are required for its breakdown. Many different 
glycosidic linkages may be incorporated into a single polymer, so degradation of 
these polymers requires several linkage-specific degradative enzymes. 
Polysaccharide chain length or DP and branching of the fibre influence the ability of 
bacteria to utilize it as an energy source.

As reported by McKeen et al. (2019), dietary glycans are at the core of immuno-
logical interactions between host cells, microbes, and the mucosal matrix. Multiple 
pathways of immunomodulatory action have been identified, leading to the reclas-
sification of functional polysaccharides as secondary metabolites and biological 
response modifiers. Flint et al. (2008) indicated that the human genome encodes, at 
most, only 17 enzymes for the digestion of food glycans, specifically starch, sucrose 
and lactose, as above mentioned. On the other hand, digestion of plant material 
occurs through fermentation, in which the chemical energy in a carbon source is 
converted into ATP that is used by cells in the anaerobic environment of the intestine 
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(Fig. 4.1). The major end products of fermentation at the colon are the SCFAs butyr-
ate, acetate and propionate, which provide approximately 10% of the calories that a 
human absorbs (the value varies depending on our diets), and are involved in numer-
ous physiological processes. For example, SCFAs have been associated with a 
reduced risk of cardiovascular and inflammatory bowel diseases, and type 2 diabe-
tes. Furthermore, butyrate is a main energy source for colonocytes and has been 
associated with a reduced risk of colorectal cancer.

Carbohydrate-active enzymes encoded by the human gut microbiome catalyse 
the breakdown of glycoconjugates, oligosaccharides and polysaccharides to fer-
mentable monosaccharides. There are two types of enzyme that cleave glycosidic 
bonds between carbohydrates or between a carbohydrate and a non- 
carbohydrate moiety:

 – Glycoside hydrolases (e.g. bacterial cellulases, mannanases, xyloglucanases, 
bacterial xylanases): cleave bonds by the insertion of a water molecule (hydroly-
sis), and they are classified into 130 families.

 – Polysaccharide lyases: cleave complex carbohydrates using an elimination 
mechanism, and they are segregated into 22 families.

Bacterial pectinases are found in glycoside hydrolases and polysaccharide lyases 
families. An additional category of carbohydrate-active enzymes associated to the 
food digestion by microbiota is that of the carbohydrate esterases, which remove 
ester substituents from the glycan chains to facilitate the action of glycoside hydro-
lases and polysaccharide lyases (El Kaoutari et al. 2013).

Methanogens Acetogens

CH4 CH3-COO -

Glycans
Anaerobic fermentation

ATP SCFAs CO2 H2+++

Fig. 4.1 Anaerobic fermentation reaction taking place in the colon lumen catalyzed by the 
enzymes of the microbiota, with production of energy as ATP, short chain fatty acids (SCFAs), 
carbon dioxide and hydrogen. These products are afterwards involved in the conversion to methane 
and acetate by the methanogen and acetogen microorganisms, respectively. SCFAs are absorbed 
by the colonocytes
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Some microorganisms in the intestinal tract target dozens of glycans and possess 
the corresponding enzymatic tools for depolymerizing each of these molecules into 
their component sugars. Gut microorganisms vary widely in the number of different 
glycans that they are capable of targeting. As an example, the human gut symbiont 
Bacteroides thetaiotaomicron can degrade more than a dozen types of glycan, 
whereas some species are restricted to one or a few types (Koropatkin et al. 2012).

From an ecological perspective, species with broad glycan-degrading abilities 
can be thought as “generalists” that shift their metabolism from meal to meal, 
whereas species with narrower glycan-degrading potential can be considered “spe-
cialists” that focus on one or a few glycans. Specialists run the risk of becoming 
extinct in a host if their preferred nutrients wane for too long, so such microorgan-
isms would most probably evolve to degrade ubiquitously abundant dietary glycans 
or host-derived mucins. Thus, the gut microbiota grown in hosts that consume veg-
etable, fruit and cereal reach diets has “specialists” species that can be absent in 
diets poor in these items. However, when a fully omnivorous diet is achieved after 
weaning, the composition of the microbiota stabilizes and experiences fewer tempo-
ral changes. Two bacterial phyla, Firmicutes and Bacteroidetes, are numerically 
dominant in the adult microbiota. Microbes of the first phylum are usually the most 
abundant, but the ratio of firmicutes to bacteroidetes can change over time and be 
influenced by different diets, especially those that promote changes in host adipos-
ity. Actinobacteria is the third phylum that also contributes to the human microbiota, 
being in general underestimated due to the molecular approaches used. A predomi-
nantly vegetarian, high-fibre African diet is conducive to the growth of specific 
fibre-degrading species, which involve a higher prevalence of bacteroidetes and 
actinobacteria than of firmicutes and proteobacteria, while the opposite trend was 
observed in European individuals, who consumed a lower fibre diet, more typical of 
the Western societies (Koropatkin et al. 2012).

Beyond the influence of certain types of diet in shaping the composition of the 
microbiota, supplementing the diet with particular glycans can affect species abun-
dance. Not all species that possess the potential to degrade a given glycan will do so 
successfully in vivo. As an example, inulin and shorter FOS selectively increase the 
abundance of Bifidobacterium spp., although many Bacteroides spp. are also able to 
use these glycans. The microbiota can change rapidly according to the composition 
of two following meals in the same day. A rapid shift from a high-fat diet to a high- 
carbohydrate diet results in community changes that are observable after just 1 day, 
but take several days to stabilize. Bacteroides ovatus has an enzyme machinery that 
targets arabinoxylans of maize. Also, enzymes to hydrolyze other hemicelluloses 
(equatorial β-1→4 link) such as β-glucans, galactomannan, glucomannan, xylans, 
and xyloglucan. Bacteroides thetaiotaomicron has two different groups of enzymes 
able to hydrolyze the equatorial-axial β-1→4 link of the galactan lateral chains of 
pectins (two enzymes), the arabinan side chains (two groups of six enzymes), the 
arabinogalactan side chains, the rhamnogalacturonan I and II, and the homogalactu-
ronan backbone (seven enzymes) of pectins. Also, other groups hydrolyze the 
β-2→6 fructan link of levan, and the links of starch (Koropatkin et al. 2012).
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Hemicelluloses such as the arabinoxylans of maize contain ferulate as pendant 
group and as crosslinker of these macromolecules (ferulate, di or triferulate esters. 
After fermentation in the gut by endo-β-1,4-xylanases (endoxylanases) that cleave 
β-1,4-glycosyl linkages within the poly-β-1,4-xylose backbone, readily soluble ara-
binoxylans of different DP, containing ferulates, can be produced, which are more 
powerful antioxidants than the free ferulic acid. In addition, ferulate esterase of the 
gut microbiota liberates ferulic acid from hemicellulases and oligosaccharides into 
the caeco-colon lumen (Broekaert et al. 2011).

The phylum Bacteroidetes possess the starch utilization system (Sus) as the effi-
cient strategy for competing for this nutrient. In their outer membrane and the peri-
plasm of these bacteria, the Sus works to sequentially bind starch to the cell surface, 
degrades it into oligosaccharides and transports them into the periplasmic space, 
where the oligosaccharides are degraded to even simpler sugars like D-glucose, and 
imported into the cell. Unique to Bacteroidetes are also the called Sus-like systems 
which function by a similar mechanism as Sus but harbor enzymes that are pre-
dicted to target glycans other than starch (Koropatkin et al. 2012).

Insoluble fibres such as cellulose, are generally poorly fermented by human gut 
microbes, but their presence in the diet increases gut transit rate and thus reduces the 
amount of time available for colonic bacterial fermentation of non-digested food-
stuff (Holscher 2017). The ability to degrade cellulose seems to be essential for the 
disruption of most plant cell-wall structures of vegetable tissues, as non-cellulolytic 
bacteria have limited ability to solubilize this material. Cellulolytic bacteria are gen-
erally defined by their ability to degrade and grow on highly ordered forms of cel-
lulose. In the human colon, the digestibility of cellulose from dietary fibre is 
reportedly far higher than that of the purified crystalline cellulose, and the cellulo-
lytic bacteria that have been isolated from the human gastrointestinal tract have less 
activity than their rumen counterparts against more recalcitrant cellulosic substrates. 
Cellulolytic bacteria require the ability to degrade matrix polysaccharides, such as 
xylans, mannans and pectins, to access cellulose fibrils, although they do not neces-
sarily use the solubilized products, which become available to other members of the 
community through cross-feeding. This task is performed by the cellulosome, 
which is a discrete, extracellular, multi-component, multi-enzyme complex that is 
found in anaerobic cellulolytic bacteria and provides enhanced synergistic activity 
among the different resident enzymes to efficiently deconstruct the intractable cel-
lulosic and hemicellulosic substrates of the plant cell wall. Some of the components 
of the cellulosome are structural and some are enzymatic. Although the systems that 
have been described so far in the abundant Gram-negative Bacteroidetes seem to be 
most suitable to the sequestration of soluble polysaccharides, some Bacteroides 
species that have been reported in the human colon, particularly the Bacteroides 
cellulosilyticus, have activity against insoluble cellulose (Flint et al. 2008).

In addition to the degree of polymerization, the accessibility within the digesting 
food particles and solubility of complex carbohydrates impacts the location of their 
respective fermentation within the human gastrointestinal tract. Regional variations 
in microbial colonization of the colon exist, along its length, simultaneous to the 
decrease in transit velocity. Soluble fibres, such as FOS and pectin are metabolized 
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by bacteria more proximally in the gastrointestinal tract, ileum and ascending colon, 
while the least soluble fibres like cellulose, can be partially fermented in the distal 
colon where the slowest transit time and the highest bacterial density exist 
(Koropatkin et al. 2012; Holscher 2017). The most soluble easily digestible glycans 
are metabolized in the ileum, caecum and ascending colon at decreasing rates, as 
their solubility decreases. The brush-epithelium is covered by a thinner mucus, the 
transit is faster and lower bacteria density exists. Along the transverse and descend-
ing colon, the velocity of transit is also continuously decreasing while the concen-
tration of bacteria increases simultaneously. Just in the sigmoid colon and rectum 
the mucus is thick, the transit is slow, and the highest bacteria density is found, with 
colonization of fibre particles and outer mucus layer. Therefore, the least soluble, 
indigestible glycans are fermented by bacteria located in the descending and sig-
moid colon (Flint et al. 2008; Koropatkin et al. 2012; Holscher 2017).

4.1.5  Dietary Fibre and Bioactivity

Dietary fibre have gained attention over the past 20 years due to its bioactivity which 
means its potential health benefits in reducing the risks of many diseases, such as 
diabetes, cancer, cardiovascular diseases, and obesity. These benefits are related, in 
many cases, to its functional properties, in addition to their basic nutritional 
functions.

4.1.5.1  Dietary Fibre and the Glycemic Response

Diabetes mellitus (DM) is a metabolic disease that occurs when the body does not 
produce insulin (Type I diabetes) or the body does not use insulin properly (Type II 
diabetes), leading to high glucose concentration in blood (hyperglycemia) (ADA 
2019). In 2017, approximately 425 million adults were living with diabetes and it is 
estimated that by 2045 this will rise to 629 million (IDF 2017). A healthy diet is key 
to manage type II diabetes, the most common type (ADA 2019).

Many prospective cohort studies have shown that a relatively high intake of 
dietary fibre (DF) is inversely associated with the risk of diabetes compared with a 
low intake (Nie et al. 2019).

DF can act in the small intestine as soluble polymer chains in solution, as insol-
uble macromolecular assemblies, and as swollen, hydrated networks (Eastwood and 
Morris 1992). Therefore, DF intake improves postprandial glucose and insulin 
response by slowing sugar absorption and causing a bulking effect in the stomach, 
and the added satiety results in the reduction of energy intake (Nie et al. 2019). DF 
may also be able to decrease gross energy of a food due to its lower energy density 
(Lattimer and Haub 2010). Goff et al. (2018) proposed four possible mechanisms 
for controlling glycemia:
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 1. Delay of gastric emptying (GE): high DF diets results in lower gastric emptying 
rates, slower rates of absorption of glucose into the blood and lower insulin 
responses, suggesting that GE is the predominant mechanism involved. This 
effect is attributed to the viscosity of soluble DF and to attenuation of enzyme 
action due to non-specific binding with insoluble DF.

 2. Hormonal regulation: DF can affect the release of gastric and intestinal hor-
mones regulating digestion and absorption. In addition, short-chain fatty acids 
resulting from DF colonic fermentation also stimulate the release of gut-derived 
hormones.

 3. Reduced α-amylase activity in the small intestine: this effect can be attributed to 
various mechanisms such as the formation of DF-starch complexes where DF 
acts as a barrier between starch and enzyme, the adsorption of enzyme to DF 
leading to its inhibition, the reduction of water availability for starch hydrolysis 
and the slowing of enzyme and substrate diffusion due to increased viscosity, 
among others.

 4. Delay of sugar absorption: DF might delay the diffusion of sugars in the small 
intestine.

These authors indicated that the rheological behavior of food not necessarily 
reflects its rheological behavior in the gut, so digesta viscosity is a more effective 
way of measuring glucose levels regulation than solution viscosity.

The chemical composition and structure as well as the molecular weight (MW) 
of polysaccharide chains influence the ability of DF to exert physiological func-
tions. There are discrepancies about the effect of the solubility nature of DF and its 
beneficial effect in glucose levels regulation. Although it has been generally accepted 
a relationship between viscosity and reduction of blood glucose, the exact impact of 
viscosity is unclear (Goff et  al. 2018). According to Gowd et  al. (2019), several 
prospective cohort studies associate the intake of insoluble DF with a protective 
effect against insulin resistance and DM, while consumption of soluble DF gives 
little protection. The positive effects of insoluble DF are attributed to fermentation 
and short chain fatty acids production in gut microbiota. Short chain fatty acids 
promote the secretion of key hormones to prevent gluconeogenesis in the liver, acti-
vate intestinal gluconeogenesis and improve insulin sensitivity.

Nevertheless, most studies focus on the viscosity effect of soluble DF. In order to 
verify whether other fibre characteristics, beyond viscosity, can have an impact on 
glycemia and appetite sensations, Paquet et al. (2014) compared the effects of two 
juices of similar viscosity but enriched with guar gum/xanthan gum or konjac- 
mannan/xanthan gum mixture and a control non-enriched juice on the variation of 
glucose, insulin, C-peptide and appetite sensations in 20 healthy men with similar 
glucose, insulin and C-peptide concentrations before the consumption of the three 
juices. Juices enriched with fibres failed to significantly reduce postprandial  glucose, 
insulin and C-peptide responses compared to the control beverage, but the beverage 
enriched with konjac-mannan/xanthan gum decreased significantly the appetite 
score, and increased fullness sensation suggesting that viscosity is not the unique 
factor influencing appetite responses.
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Repin et al. (2018) studied the amylolysis of modified tapioca starch in simulated 
small intestinal conditions in the presence of each of four dietary fibre types (yellow 
mustard mucilage, soluble flaxseed gum, fenugreek gum, and oat gum) at concen-
trations to match for post-digestion viscosity. Studying the progress of amylolysis 
by measuring the decline of digesta apparent viscosity over time, they observed that 
supplementation of digesta with DF reduced the progress of both the digesta appar-
ent viscosity decline and the changes in digesta reducing sugar content. Authors 
attributed these effects to the reduced diffusion of enzyme and/or substrate and con-
cluded that to alter amylolysis to a similar extent, fibres have to be present at 
amounts resulting in similar post-digestion viscosity even though their concentra-
tions may not match.

Fabek et al. (2014) investigated the effects that digestive processes in the stom-
ach and small intestine have on the thickening capacity of six soluble DFs (guar 
gum, locust bean gum, fenugreek gum, xanthan gum, soluble flaxseed gum, and soy 
soluble polysaccharides). They performed a two-stage in vitro digestion, simulating 
gastric and small intestinal phases, in order to evaluate changes in viscosity. Gums 
were used at defined concentrations to create equi-viscous solutions. Their flow 
behavior was analyzed after exposure to simple dilutions, pH changes, and in vitro 
digestion. Authors observed minor effects of pH and digestive enzymes on fibre 
structure. Xanthan gum retained viscosity more than all other DF types. Later, using 
a dialysis system, protein and starch were mixed with gums to study glucose release 
in a food model, in vitro. Although all gums lowered glucose concentration, xanthan 
gum was the most effective. With these results, the authors concluded that digesta 
viscosity of soluble fibres does not depend on their initial viscosity or concentration 
but on their ability to resist changes during digestion.

In a later study, Fabek and Goff (2015) examined the effect of adding viscous 
soluble DFs on starch digestibility during simulated intestinal digestion. The model 
food consisted of tapioca starch (4% w/w), skimmed milk (8.65% w/w) and xanthan 
gum (4% w/w), guar gum (3% w/w), soluble flaxseed gum (7% w/w) or soy soluble 
polysaccharide (20% w/w). Gum concentrations were chosen to give matching vis-
cosities. Solutions were submitted to a 3-stage in vitro digestion (salivary, gastric, 
and small intestinal phases). Light scattering results showed that the particle size of 
starch granules decreased through the digestion process. Microscopy showed gran-
ule surface degradation for the control, flax and soy solutions while this effect was 
attenuated for granules extracted from the guar gum and xanthan gum solutions, 
which had greater viscosities inside the digesta in comparison to the other treat-
ments. The authors observed that including DFs that can retain viscosity during 
digestion, reduced starch hydrolysis and suggested that the increase in viscosity 
interferes with enzyme diffusion, leading to a reduced amylolysis. In addition, the 
authors considered the ability of some gums to allow granules agglomeration, thus 
reducing the area exposed to enzymes. Based on these results, authors suggested 
that the glucose-lowering ability of viscous DFs might be related to their ability to 
reduce the rate at which starch granules are hydrolyzed inside the lumen.

Using β-glucans, Kwong et al. (2013) studied the effect of varying solution vis-
cosity on glycemic responses. For this, they changed solution volume, without 
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changing the β-glucan dose or MW. A total of 15 healthy subjects received six 50 g 
oral glucose beverages prepared with or without 4 g of high-MW (580,000 g/mol) 
or low-MW (145,000 g/mol) β-glucan, with a beverage volume of 250 or 600 ml. 
Postprandial plasma glucose concentration was measured over 2 h. The physico- 
chemical properties of the beverages were also measured. The high-MW β-glucan 
beverage, which was more viscous, achieved greater reductions in plasma glucose 
concentrations than the beverage with low-MW β-glucan. At the same MW, the 250 
and 600 ml β-glucan beverages differed in viscosity but not in postprandial plasma 
glucose concentration. Authors concluded that β-glucan dose and MW are the most 
vital characteristics for improving the bioactivity of β-glucan solutions with respect 
to glycemic response.

Abirami et al. (2014) used the pulp and peel DF from Citrus hystrix and Citrus 
maxima to study their potential role in lowering postprandial serum glucose level 
through in vitro assays and observed that these DFs could effectively adsorb glu-
cose, retard glucose diffusion and post-pone the release of glucose from starch to 
different extents.

Feinglos et  al. (2013) performed a double-blind, placebo-controlled 20-week 
clinical study to evaluate the effects of psyllium (two different doses) on fasting 
blood glucose and glycosylated hemoglobin in 37 patients being treated for type-2 
DM and on a restricted diet. Both doses of psyllium significantly lowered blood 
glucose and glycosylated hemoglobin compared to placebo treatment at week 12. 
The improvement in glycemic control observed was above that already conferred by 
a restricted diet.

To evaluate the effect of oat β-glucan on postprandial glycemia attenuation, 
Regand et al. (2009) prepared muffins, granola, porridge and pasta containing 4 g of 
β-glucan and control products with low β-glucan content prepared with wheat flour. 
They determined the viscosity and MW of β-glucan in vitro-digestion extracts and 
the fasting and postprandial blood glucose concentrations in 12 human subjects in a 
period of 4 weeks. Porridge and granola were the most effective in attenuating the 
glucose peak in blood glucose response and authors attributed this to the high MW 
of their components and to viscosity.

Steinert et al. (2016) assessed the effect of consuming a pre-load of a commer-
cially available oat-bran at different concentrations before a test-meal of white 
bread on glycemic responses in 10 healthy humans. They observed a significant 
effect of dose on blood glucose reduction suggesting the use of oat bran as nutri-
tional preload strategy in the management of postprandial glycemia.

Kubo et al. (2016) tested the combined effects of wheat albumin, which inhibits 
mammalian amylase, and DF, which retards sugars absorption, in a rat model of 
type 2 DM. The DF mixture (54.4% of total DF, 39.9% water soluble DF) consisted 
of oat, chicory root, guar bean, barley leaves, konjac potato, and seaweed. The bio-
active ingredients were added to a soluble starch solution. Authors observed that the 
combined intake of both ingredients suppressed hyperglycemia more effectively 
than each separate intake. They also observed an improvement in liver and plasma 
lipids contents.
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Regand et al. (2011) studied the effect of oat β-glucan in a granola model food 
on starch digestibility and glycemic responses. Blood glucose concentrations were 
measured before and after ingesting wheat and oat granolas, with 0.6 and 6.2 g of 
β-glucan, respectively, and two starch doses (40 and 60 g). The authors observed a 
reduction of in  vitro starch digestibility and lower blood glucose levels when 
in  vitro sample viscosity increased. Moreover, β-glucan was significantly more 
active in reducing blood glucose rise when the β-glucan/starch ratio was 0.16 
rather than 0.11.

Rohajatien et al. (2018) studied the effect of feeding bitter melon fruit to rats 
with and without hyperglycemia in a 4 weeks experiment. At week 4 of experi-
ment, they observed a decrease of 56% blood glucose level in hyperglycemia rats 
when compared to week 0, and ascribed these effects to the DF of melons, 
mainly pectin.

Huang et al. (2019) compared the in vitro hypoglycemic capacities of orange 
pomace and extruded orange pomace powders. The extruded pomace, which had a 
higher soluble DF content, was more effective to retard glucose diffusion and inhibit 
α-amylase activity than the non-extruded sample and authors suggested that a higher 
soluble DF content would lead to higher glucose adsorption and may contribute to 
the retarding of α-amylase hydrolysis of the starch molecules.

Cassidy et al. (2018) performed and extensive review on the effects of soluble 
DF (β-glucan, guar gum. psyllium, alginate) on postprandial blood glucose 
response. They concluded that overall, several soluble DFs have shown beneficial 
effects in lowering the postprandial blood glucose response however issues with 
palatability have limited their development in the functional food industry. 
Authors state that while research is scarce investigating the effect of processing 
on many of these soluble DFs, results from clinical studies show that some solu-
ble DFs, mainly β-glucans that have undergone minimal processing can attenuate 
the postprandial blood glucose response when consumed with a high carbohy-
drate food or beverage.

Lu et al. (2013) studied the effect of replacing 25%, 15% or 10% wheat flour 
with okara powder (a byproduct of tofu or soy milk production process) to make 
noodles and bread enriched in DF, mainly insoluble DF, on glycemic response (GI) 
in vivo. The results showed that the GI of okara foods was markedly lower than 
that of control foods, with values for okara bread, okara steamed bread and okara 
noodle of 49, 54 and 52, respectively, referring to glucose (GI = 100). While the 
values obtained for control foods were 67 for bread, 86 for steamed bread and 77 
for noodle.

It can be concluded that there are different mechanisms by which dietary fibres 
can help to control glycemia. The DFs that perform this control more efficiently, 
according to literature, are those that can exert the effects summarized in Fig. 4.2. 
Nevertheless, more systematic studies are necessary to clarify the effect of fibers 
from different sources on short-chain fatty acids production and of these com-
pounds, on glycemia control.
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4.1.5.2  Dietary Fibre and Obesity

The accumulation of excessive fat in the body causes overweight and obesity, which 
lead to chronic health problems such as cardiovascular diseases and type-2 diabetes.

According to Maheshwari et al. (2019), β-glucans from oat and barley reduce 
appetite and weight providing satiation along with nutrition. Authors suggest this 
could be due to the high viscosity and water binding capacity of β-glucans, which 
prolongs the digestion in the gut. Huang et al. (2011) studied the effects of β-glucan 
from oats, on the activation of gut hormone, satiety, and weight loss in diet-induced 
obesity mice. Authors observed that the energy intake and body weight gain were 
lower with increasing β-glucan over 6  weeks. A gut-hypothalamic anorexigenic 
pathway was activated and the response was in a dose-dependent manner. The 
increased satiety appeared to be long-lasting without the development of a tolerance 
effect. In this study all diets had the same total fibre content having included insol-
uble DF from wheat in diets with lower β-glucan content and authors suggested that 
oat β-glucan may have some advantages over other sources of DF.

Hamden et al. (2018) studied the effect of pectin in high-fat/fructose diet induced 
obesity, hyperlipidemia and hyperglycemia. Administration of pectin to rats 

Fig. 4.2 Effects by which dietary fibres help to control glycemia
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decreased lipase activity improving body weight. Cholesterol and triglycerides also 
decreased. In addition, it was observed a decrease in α-amylase activity leading to 
lower blood glucose levels.

Drew et  al. (2018) studied the effects of seven DFs (β-glucan, pectin, inulin, 
inulin acetate ester, inulin propionate ester, inulin butyrate ester or a combination of 
inulin propionate ester and inulin butyrate ester) in obesity prevention. During 
8 weeks, mice were fed either high-fat, low-fat or high-fat/DF-supplemented diets. 
Results showed that all of the DFs prevented weight gain and produced similar 
responses in body composition and host gene expression in cecum and liver. While 
cecal bacterial profiles differed with each specific dietary fibre, authors observed 
collective outcomes in the expression of certain host genes and established common 
gene expression differences in the host. This implies that bacterial composition per 
se may not be causal in protecting against weight gain. In conclusion, diverse DFs 
prevented weight gain on a high-fat diet, despite giving rise to different cecal bacte-
ria profiles.

Du et al. (2010) investigated the association of total DF, cereal DF, and fruit and 
vegetable DF with changes in weight and waist circumference in a 6.5-year follow-
 up study with 89,432 European participants. DF consumption was inversely associ-
ated with subsequent weight and waist circumference change. A 10-g/day total DF 
intake was associated with a reduction in body weight of 39 g/year and a reduction 
in waist circumference of 0.08  cm/year. When evaluating the effect of the fibre 
source, they observed that a 10-g/day cereal DF intake reduced body weight in 77 g/
year and waist circumference in 0.1 cm/year, while fruit and vegetable DF was not 
associated with weight change but had a similar association with waist circumfer-
ence. Authors concluded that there is a beneficial effect of DF intake, particularly 
cereal DF, in preventing body weight gain.

Bozzetto et al. (2018) reviewed epidemiological and observational studies con-
cerning the effect of DFs on obesity-associated cardiovascular events. They found 
evidence from epidemiological studies that consuming more than 20 g DF/day is 
associated with body weight loss in the long term. From observational studies, 
authors also found an inverse association with DF intake and a percent body fat.

Samout et al. (2016) performed a study on rats evaluating the effect of apple 
pectin supplementation on obesity. Results showed that treatment with the aque-
ous extract of pectin decreased the weights of the rats. In addition, high-fat diet 
treatment induced severe liver and kidney damage as determined by several bio-
markers in blood but when high-fat diet-treated rats were also fed pectin, all those 
biomarkers were restored to almost normal values. The apple pectin extract 
reduced lipid peroxidation and enhanced the expression of intracellular endoge-
nous antioxidants.

Zhan et  al. (2019) studied the effect of citrus pectin in mice that were first 
exposed to a typical environmental pollutant, p,p′-dichlorodiphenyldichloroethylene 
(p,p′-DDE), in order to induce obesity. Pectin was supplied during and after inter-
ruption of p,p′-DDE exposure. They analyzed the body and fat weight gain, plasma 
lipid profile and insulin resistance of mice and analyzed gut microbiota composition 
and the levels of short-chain fatty acids. Results showed that pectin supplementation 
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reversed body and fat weight gain, dyslipidemia, hyperglycemia and insulin resis-
tance and authors ascribed this to the regulating gut microbiota effect of pectin.

Bray et al. (2018) compared the effects of a high-fat cellulose diet (60% fat + 
10% cellulose), a high-fat pectin diet (60% fat + 10% pectin), a low-fat cellulose 
diet (10% fat + 10% cellulose), and a low-fat pectin diet (10% fat + 10% pectin) on 
mice for 12 weeks. In high-fat diets pectin prevented additional weight gain while 
for low-fat diets, it was determined a weight loss of 22.2 and 25.4%, for cellulose 
and pectin, respectively. Both low-fat diets and high-fat pectin diet reduced fasting 
blood glucose, improved glucose tolerance and decreased fatty liver when com-
pared to high-fat cellulose diet. Authors concluded that pectin could moderate some 
obesity-related morbidities in the presence of high fat.

Choi et al. (2016) isolated a pectic polysaccharide composed of rhamnogalactu-
ronan I with arabinan and arabinogalactan chains from Morus alba. This polysac-
charide was able to inhibit the proliferation of pre-adipocyte cells in a dose-dependent 
manner to 91, 75, 68 and 54% viabilities at sample concentrations of 50, 100, 200 
and 500 μg/ml, respectively, compared to untreated control cells. Authors suggested 
that this polysaccharide is able to reduce the number of fat cells and the mass of 
adipose tissue and could be used for the treatment or prevention of obesity disorders.

It can be concluded that research supports a beneficial role of higher intake of DF 
in the prevention of obesity. According to Du et al. (2010) the mechanisms by which 
this role is developed are: (1) reduced digestion rate which stimulates the release of 
gut hormones promoting satiety, (2) increased viscosity in the case of soluble DF, 
(3) low energy density, (4) reduced postprandial blood glucose response, and (5) its 
acting as a mechanical barrier to the enzymatic digestion of other macronutrients 
such as fat and starch in the small intestine. More recent studies ascribed also the 
prevention of obesity to the regulation of gut microbiota by certain dietary fibres.

4.1.5.3  Dietary Fibre and Cancer

Almost 50  years ago, Burkitt (1971) observed lower rates of colorectal cancer 
among Africans who consumed a diet high in fibre. Ever since, most of the research 
on DF and cancer prevention has focused on colorectal cancer. Increased DF intake 
may lead to a dilution of fecal carcinogens, reduced transit time, and bacterial fer-
mentation producing short-chain fatty acids with anti-carcinogenic properties 
(Kunzmann et al. 2015). Evidence from case-control studies also suggests that DF 
may be inversely related to breast cancer risk and this could be associated with the 
inhibition of intestinal reabsorption of estrogens by DF and the subsequent increased 
fecal excretion of estrogens (Aune et al. 2012).

Many investigations on DF and cancer have focused on pectin. Zhang et  al. 
(2015) suggested that the antitumor capacity of pectin and its effect in colon cancer 
prevention is correlated with pectin probiotic activity. On the other hand, there is 
growing evidence that the arabinogalactan/galactan content of pectins provides a 
natural source of ligands to inhibit the biological functions of galectin-3 (Gal-3) 
(Morris et al. 2013). Elevated levels of Gal-3 in the serum have been linked to the 

4 Dietary Fibre



146

development of several different cancers as well as cancer metastasis (Zhang et al. 
2015). It is important to remark that modification of pectin generates homogalactu-
ronans and fragments containing rhamnogalacturonan I, which are pectin-derived 
products rather than pectins (Morris et  al. 2013). Most researches performed on 
pectin and cancer prevention are based on pectin-derived fragments, which are more 
accessible to galectins. Moreover, pectin modification to degrade the polymer and 
to decrease its degree of esterification may produce antitumor activity by interven-
tion in ligand recognition by Gal-3 (Zhang et al. 2015).

Bergman et  al. (2010) compared the effects of citrus pectins with different 
degrees of esterification (DE: 30%, 60% and 90%) on the proliferative capacity of 
four malignant cell lines (2 human colon carcinoma cell lines, 1 human erythroleu-
kemia cell line, and 1 Burkitt lymphoma cell line). Pectins with DE 30% or 60% at 
increasing doses caused a dose-dependent inhibition of colon carcinoma and leuke-
mia cells but neither pectin affected Burkitt lymphoma cells. Authors concluded 
that as the cells that were affected by pectin express galectin receptors, while those 
cells that were not affected are deficient of this receptors, probably the antiprolifera-
tive effect of citrus pectin is due to its ability to inhibit galectin function.

Citrus pectin when modified by high-pH and temperature is rich in galactosyl, a 
ligand for Gal-3. Liu et al. (2008) studied the effect of modified citrus pectin in the 
inhibition of the expression of Gal-3 in liver metastasis of colon cancer. The study 
was performed with 75 mice injected with colon cancer cells. Liver metastasis of 
colon cancer was observed after 3 weeks. Mice were fed pectin through drinking 
water at concentrations of 0.0%, 1.0%, 2.5% and 5.0% (w/v) and the percentage of 
liver metastasis was 100%, 80%, 73.3% and 60%, respectively. The concentration 
of serum Gal-3 in pectin treated mice was significantly higher than that in the nega-
tive control group. Authors concluded that Gal-3 expression increases in liver 
metastasis and can be inhibited by modified citrus pectin.

Xue et  al. (2019) studied the effects of ginseng pectin derivatives on Gal-3- 
mediated T cell activation and apoptosis. They isolated two fractions from ginseng 
roots, which were enriched in rhamnogalacturonan I: WGPA-UD was composed of 
GalA (24.6%), Rha (10.8%), Gal (30.8%), and Ara (20.6%), while RG-I-4 was 
composed of GalA (33.8%), Rha (21.8%), Gal (19.5%), and Ara (9.2%). Authors 
also prepared modified citrus pectin (85% GalA, 1.6% Rha, 9.3% Gal and 4% Ara) 
and purified potato galactan (11.3% GalA, 6.1% Rha, 70% Gal and 10.0% Ara). 
Both ginseng fractions inhibited apoptosis, but not activation, whereas potato galac-
tan promoted activation, but not apoptosis, and citrus pectin affected both of these 
activities, indicating that these substances selectively act on different cell processes, 
even though they all bind Gal-3. Later, to investigate the anti-tumor activity of these 
samples they performed a study in mice where samples (10 mg/kg body weight) 
were administered daily following tumor cell inoculation. Authors observed that 
only ginseng samples WGPA-UD and RG-I-4 could inhibit tumor growth by 29% 
and 45%, respectively and demonstrated that ginseng pectins could selectively 
inhibit Gal-3-induced T-cell apoptosis, while not affecting T-cell activation.

Cobs-Rosas et  al. (2015) studied the effect of pectins extracted from defatted 
rapeseed cake on cancer MCF-7 (human breast adenocarcinoma) and Caco-2 
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(human colorectal adenocarcinoma) lines. All the pectins extracted exhibited anti- 
proliferative activity, being more effective on MCF-7 cells than Caco-2.

Cheng et al. (2011) studied the anticancer activity of structurally different gin-
seng polysaccharides: homogalacturonan- rich pectins, arabinogalactans with 
rhamnogalacturonan I domains, and one fraction containing glucan and arabinoga-
lactan. The homogalacturonan rich fraction inhibited a human colorectal adenocar-
cinoma cell (HT-29) cell proliferation and induced apoptosis accompanied by the 
activation of caspase-3.

According to Wang et al. (2003), a pectic polysaccharide from Centella asiatica 
(L.) Urban could increase the immunological activity of T and B cells, being modu-
lated by the carboxyl and acetyl groups of pectin.

Prado et al. (2019) extracted pectin fractions from papaya with ammonium oxa-
late and at different ripening-time points in order to relate changes in pectin struc-
ture with Gal-3 inhibition. Only one fraction, the less soluble one, was able to bind 
Gal-3 and diminished the proliferation of colon cancer cell lines. This fraction 
derived from an intermediate point of papaya ripening and had similar GalA content 
and degree of esterification from those of other ripening time points but it showed a 
lower MW peak and more exposed ramifications.

Fan et al. (2017) studied the effect of combining fish oil (containing polyunsatu-
rated fatty acids) with fermentable DF in the prevention of colon cancer. Mice were 
fed diets containing 15% fat and 6% fibre by weight. The diets differed in the source 
of lipid (corn oil versus fish oil) and source of fibre (cellulose, which is poorly fer-
mentable, versus highly fermentable pectin). The four dietary groups were corn oil/
cellulose, corn oil/pectin, fish oil/cellulose, and fish oil/pectin. After 4 weeks of diet, 
authors observed that the combination of fish oil (containing ω-3 polyunsaturated 
fatty acids) and fermentable pectin (leading to butyrate production) acted coordi-
nately to protect against colon cancer due, in part, to an enhancement of apoptosis 
across all stages (initiation, promotion, and progression) of colon tumorigenesis. 
Authors suggested that fish oil alters colonocyte mitochondrial membrane composi-
tion and function, creating a permissive environment for apoptosis induced by DF 
fermentation products

Triff et al. (2018) also investigated the effect of combining fish oil and ferment-
able DF in colon cancer. These authors suggested that the short-chain fatty acids 
produced by DF fermentation act as chemoprotectives and the polyunsaturated fatty 
acids in fish oil act as ligands for tumor suppressive nuclear receptors. They treated 
rats with a colon carcinogen and fed them diets containing fish oil, fermentable DF, 
a combination of fish oil and pectin, or control diet (with no fish oil or pectin). The 
fish oil/pectin diet generated unique epigenetic modifications and was the only one 
to induce the expression of chemoprotective genes.

Oh et al. (2019) performed a meta-analysis of prospective studies that included 
studies on fibre intake and outcomes including colorectal adenoma and colorectal 
cancer. Publications considered reported all DF sources (cereal/grain, vegetable, 
fruit, and legume) although for adenoma studies, there were no report on legume 
DF. From 4632 publications, 10 prospective studies (6 for colorectal cancer and 4 
for adenoma) were included in the dose-response meta-analysis. They concluded 
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that although all DF sources may provide some benefits, the effect in colorectal 
cancer prevention is strongest for DF from cereals/grains.

It can be concluded that DF performs specific bioactive effects against certain 
cancers. According to literature, these effects are influenced by DF source and the 
high activity of pectin and its degradation products is remarkable.

4.1.5.4  Dietary Fibre and Cardiovascular Disease

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the 
United States and Europe.

The cardiovascular system is subject to life-style induced changes as well as 
natural deterioration due to the aging process. The vascular endothelium is a regula-
tor of vascular homeostasis and endothelial disfunction contributes to the expres-
sion of CVD. A dysfunctional endothelium results in blood pressure desregulation 
and increased atherogenicity. Arterial disfunction, characterized by oxidative stress 
and inflammation-mediated endothelial disfunction and arterial stiffening, is the 
primary risk factor for cardiovascular diseases. Age, stress and dietary pattern have 
a significant role in modulating endothelial disfunction (Edirisingle and Burton- 
Freeman 2014).

Dietary fibre has been reported extensively as having a beneficial effect to pre-
vent mortality due to CVD (Threapleton et  al. 2013; Tang et  al. 2018, Soliman 
2019). Erkkila and Lichtestein (2006) informed that an increase in fibre intake 
reduces diet caloric density while soluble fibre exerts a beneficial effect on lipid and 
glucose metabolism but, according to the authors, data on its effect in arterial 
inflammation and coagulation are limited. Salas-Salvado et al. (2006) informed that 
dietary fibre decreases CVD risk independently of fibre type and concluded that, 
probably, this trend is associated not only to dietary fibre but also to numerous bio-
active compounds (i.e. antioxidants) that are present in food rich in dietary fibre. 
Pita Lottenberg et  al. (2010) stated that the immune and metabolic systems are 
closely related and act in an interdependent way. Inflammatory processes are associ-
ated with excessive fat tissue which has a pro-inflammatory activity which can help 
the development of other chronic diseases. Chronic diseases such as cardiovascular 
ones are associated with inflammatory processes due to the effect of low density 
lipoproteins that induce inflammation of the arteries endothelium. Inflammatory 
process markers are, for example, C-reactive protein, Interleukin-6 and leukocyte 
count. Casas et al. (2018) evaluated the effect of some constituents of the diet on 
CVD. They informed that there are different mediators of coronary artery diseases: 
C-reactive protein, interleukin IL-1, IL-18, IL-1β, IL-18, monocyte chemoattractant 
protein MCP-1 and tumor necrosis factor TNF-α, among others. These mediators 
are considered potential inflammation biomarkers and their expression may corre-
late with coronary artery diseases severity. And that these markers suffer a decrease 
when polyphenols are present in the diet. It must be remembered that polyphenolic 
compounds are present, in general, jointly with dietary fibre in fruit and vegetables.
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The relationship between carbohydrate and dietary fibre intake and the risk of 
cardiovascular disease mortality in japanese was reported by Miyazawa et  al. 
(2019). The study followed 8925 participants (3916 men and 5009 women) aged 
30–79 years without CVD at baseline who participated in the National Nutrition 
Survey in Japan, concluding that higher intake of DF was associated significantly 
with a lower risk of CVD mortality in men and lower risk of stroke mortality in 
women. They also concluded that intake of carbohydrates, available carbohydrate 
and starch were not associated with the risk of CVD mortality in men or women.

Threapleton et al. (2013) reported that there are different mechanisms by which 
the DF can exert a protective effect on risk of CVD. Fibres with thickening effect 
can affect absorption of glucose and lipids in the small intestine, attenuating their 
postprandial rise and helping to maintain higher levels of satiety contributing to less 
weight gain. These authors also remarked that, additionally, soluble fibre is fer-
mented in the large intestine giving origin to short chain fatty acids which reduce 
circulating levels of cholesterol. This constitutes a new point of view for the link 
between CVD risk and dietary fibre and it centers on the effect of dietary fibre on 
human gut microbiota.

McRae (2017) reported a review of meta-analyses concerning the dietary fibre 
beneficial effect for CVD prevention. The author concluded that dietary fibre pro-
duces a decrease in mortality and that this trend might be ascribed to: (a) reduced 
LDL cholesterol which originates in reduced cholesterol and fatty acid absorption, 
increased fecal bile acid excretion, bacterial fermentation that produces propionic 
acid that inhibits HMG- CoA reductase; (b) reduced blood pressure which origi-
nates in reduced glucose absorption and decreased insulin secretion; (c) reduced 
inflammation due to nuclear factor-κB inhibition by polyphenols leading to reduced 
C-reactive protein, tumor necroses factor α and interleukin-G.

Brunt et al. (2019) investigated the potential mediation of age-related changes in 
the gut microbiome on arterial dysfunction. For this purpose, they suppressed gut 
microbiota in young and old mice with a mixture of broad-spectrum, poorly 
absorbed antibiotics in drinking water for 3–4 weeks. They concluded that ageing 
alters the abundance of microbial taxa associated with gut dysbiosis and that, in old 
mice, the antibiotic treatment reverses arterial rigidity and attenuates vascular 
inflammation and oxidative stress.

Bartolomaeus et al. (2019) investigated the effect of short chain fatty acids, in 
particular, propionic acid, on cardiac damage mediated by hypertension and athero-
sclerosis. For this purpose, they developed a mice animal model. The hypertension 
was induced by means of infusion with Angiotensin II (1.44 mg/kg) for 14 days and, 
to accelerate the development of atherosclerosis, the mice were infused with 
0.72 mg/kg of Angiotensin II for 28 days. To study the effect of propionate, mice 
received this compound (200  mM) in the drinking water ad libitum during the 
experiment. They studied the cardiac damage through histology, echocardiography, 
electrophysiology, immunofluorescence and flow citometry. As hypertensive stim-
uli like Angiotensin II, promotes the activation of T cells and macrophages, they 
also evaluated the mode of action of propionate through the study of the regulatory 
T cell depletion using antibodies. They concluded that propionate significantly 
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attenuated cardiac hypertrophy, fibrosis, vascular dysfunction and hypertension 
showing the immune-modulatory effect of short chain fatty acids and their impor-
tance in cardiovascular health. These fatty acids are generated in the colon by means 
of the fermentation of dietary fibre present in the diet.

The different effects of dietary fibre on cardiovascular disease risk, according to 
bibliography, are summarized in Fig. 4.3.

It can be concluded that there is a close relationship between dietary fibre intake 
and the decrease in factors associated with cardiovascular disease, showing the pos-
itive effect of this nutrient in human health. Although, more information is needed 
in relation to the exact mechanism of action, it can be emphasized that the link 
between dietary fibre consumption and microbial flora of the gastrointestinal tract, 
immunity and cardiovascular disease, emerges as a promising working hypothesis 
that must be more deeply studied.

4.1.6  Conclusions

Research performed over the past 20 years showed that dietary fibre produces health 
benefits in reducing the risks of diabetes, obesity, cancer and cardiovascular disease. 
These benefits are related, in many cases, to their hydration, thickening, gelling, 
antioxidant properties and to their effect on gut microbiota.

Investigations in this area had been extensive but elucidation of the mechanisms 
involved in this bioactivity is not yet conclusive. However, the emergence of new 
hypotheses such as the linking of dietary fibre with gastrointestinal flora and immu-
nity, illuminates the path of future studies to be carried out to clarify these 
mechanisms.

Fig. 4.3 Influence of dietary fibres on cardiovascular disease risk
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Abstract Chapter 6 provides information on substances of lipid origin that have 
had important effects for the treatment or prevention of diseases such as cancer, 
diabetes mellitus, cardiovascular disorders, obesity, among others. Information 
associated with metabolites of plant origin, as well as lipids of animal origin, food 
lipids, that have demonstrated hypoglycemic, anti-inflammatory, antiproliferative, 
hypocholesterolemic, antihyperlipidemic and antihypertensive effects is presented. 
The chapter also discusses topics dealing with the chemical structures of the reported 
lipids, their origin, synthesis, preclinical studies, in vitro, in situ, clinical studies, 
detailing dosage, method of administration, biochemical, molecular, genetic stud-
ies, and mechanisms of action.

Keywords Lipids · Diseases · Health · Food · Fatty acid

5.1  Introduction

Lipids are hydrophobic substances essential for living; currently, much is known 
about these molecules (Finkelstein et al. 2014). One of their classic functions is to 
form part of the plasma membrane of any type of cell, including agents such as 
viruses (Shepherd 2004). This chapter discusses the therapeutic properties of lipids 
as well as the type of food where they are found, whether they are of plant, animal, 
mineral origin. The lipid group includes fatty acids, phospholipids, waxes, sphingo-
lipids, cerebrosides, gangliosides, terpenoids, and steroids, among others.
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5.2  Lipids and Cholesterol Diseases

The diseases associated with the high concentration of cholesterol are varied, for 
example, hypercholesterolemia, atherosclerosis, dyslipidemia, gallstones, among 
others (Platt et al. 2014). These diseases have been treated with drugs that lower the 
plasma cholesterol concentration, such as statins and ezetimibe (Taylor et al. 2013; 
Thongtang et al. 2012); however, some lipids can also inhibit intestinal cholesterol 
absorption, generating significant therapeutic effects and we can find them in differ-
ent foods.

5.2.1  Hypercholesterolemia

Beta-sitosterol is a plant sterol that, biochemically, is classified within sterols or 
steroids, which are non-saponifiable lipids (Ulbricht 2016). It has been shown to 
have significant effects on the treatment of hypercholesterolemia for a long time. 
Some clinical trials date back to the 1990s when a group of patients was treated with 
beta-sitosterol at a dose of 12 g/day, demonstrating a significant decrease in the 
plasma concentration of total cholesterol and LDL cholesterol (Zák et al. 1990). 
β-sitosterol, as well as other plant sterols, have extensive reports as hypocholester-
olemic agents. Still, its food formulation is complicated due to insolubility in water 
and, despite being lipids, it does not have a high solubility in oils. Its chemical 
properties prevent the existence of a variety of functional foods enriched with ste-
rols. A widely used technique to formulate them is the use of emulsions (Yuan et al. 
2019). This type of physicochemical system has been tested in experimental ani-
mals. Beta-sitosterol has been esterified with fatty acids (e.g, oleic and linoleic) and 
has been formulated in microemulsions to be administered in mice with hypercho-
lesterolemia. The mice were fed a high-fat diet for 70 days. Once they presented 
hypercholesterolemia, they were treated with a b-sitosterol microemulsion esteri-
fied with linoleic acid at different concentrations. The dose with the highest 
cholesterol- lowering effects was 700 mg/kg/day (Yuan et al. 2019). The authors car-
ried out the microemulsions using standardized methods from their laboratory and 
suggest that this type of formulations may be a guideline for making industrial 
products or functional foods.

5.2.2  Cholesterol in Metabolic Syndrome

Another of the beneficial effects of β-sitosterol has been reported in the metabolic 
syndrome, which is characterized by altering the concentration of lipids, carbohy-
drates, producing visceral obesity, and alterations in blood pressure (Desai et  al. 
2016). Associated with lipids, cholesterol accumulates excessively in cell 

I. G. Castro-Torres et al.



161

 membranes in this syndrome. This effect disrupts the activity of cholecystokinin, an 
essential hormone in the gastrointestinal system (Desai et al. 2016). This hormone 
has its type 1 receptor, abbreviated as CCK1R. A group of American researchers 
analyzed the effect of β-sitosterol on cholecystokinin receptors in experimental ani-
mals, which expressed the human receptors, the study was carried out on the cells 
of the mice. β-sitosterol, at doses of 100 and 10 mM, was shown to improve CCK1R 
signaling in cells that had elevated cholesterol in their membrane, without affecting 
the binding between the receptor and its hormone (Desai et al. 2016). This suggests 
that this lipid could be used to treat one of the metabolic syndrome disorders, which 
would be visceral obesity since there is an accumulation of adipose tissue and 
excess cholesterol in cell membranes.

5.2.3  Cholesterol Gallstones

Other lipids that have shown effects for the treatment of cholesterol diseases are 
the so-called polyunsaturated fatty acids (PUFA) (Jang et al. 2019). These lipids 
have been evaluated concomitantly with ursodeoxycholic acid for the treatment 
of cholesterol gallstones. In this disease, there is an overproduction of mucin in 
the gallbladder, which generates bile sludge and, later, the gallstone. C57BL/6 
mice fed a lithogenic diet and treated with ursodeoxycholic acid and PUFA at 
doses of 12.5 mg/kg/day and 51 mg/kg/day, demonstrating significant effects on 
gallstone dissolution; the most significant results were those that combined 
PUFAs and ursodeoxycholic acid because they decreased the expression of mucin 
genes, associated with the overproduction of bile sludge. Also, these fatty acids 
increased the concentration of phospholipids and bile salts in the bile, allowing 
mixed micelles to assemble that transport excess cholesterol in bile and gall-
stones (Jang et al. 2019).

In this way, it can be considered that functional foods rich in fatty acids of this 
type could serve as healthy foods in lithiasis people.

Cholesterol-associated diseases have statin-based therapy; however, these drugs 
produce critical adverse reactions. Statin hepatotoxicity and myotoxicity have 
been demonstrated in many studies, but remain the leading-edge drugs for the 
treatment of hypercholesterolemia (Adhyaru and Jacobson 2018). The develop-
ment of functional foods rich in fatty acids, plant sterols, or other types of lipids, 
could replace statin therapy, supporting a healthy life in terms of eating, sleeping 
well, reducing stress, exercising. In the case of gallstones, we find a disease that 
has no pharmacological treatment, only surgical treatment (Portincasa et al. 2016). 
A diet rich in fatty acids, which have proven effective in dissolving gallstones, 
would be appropriate to manage this disease, which is one of the most frequent in 
the gastrointestinal system.
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5.3  Biological Activity in Cancer

In recent years, the development of anticancer agents has shifted from non-specific 
drugs to cytotoxic drugs, which act towards dysregulated signaling pathways in 
cancer cells. Among these discoveries, tyrosine kinase inhibitor molecules have 
been found, which are overexpressed in tumors and have become a pharmacological 
target for these therapeutic agents (Heinrich et al. 2003).

These new drugs are well tolerated and have fewer adverse effects than the more 
widely used cytotoxic agents, there is a continuing need to develop new specific 
molecules that are well tolerated and provide more options in cancer chemotherapy, 
either as single agents or in combination with other drugs, and that can be used to 
develop new regimens cancer treatments. Cancer is a disease that weakens the 
body's immune system. Most of the people who fail due to this disease contracted 
other types of in-hospital infections that became opportunistic and evicted the body, 
due to their immunosuppressed state; For this reason, there is an emerging need to 
search for new therapies based on lipid compounds, which do not produce such 
severe immunosuppression effects.

There is reported evidence that many lipids and lipid analogs are critical regula-
tors of oncogenesis. This information has arisen from investigations that have been 
carried out in tumor cells or experimental animals after dietary conditioning and the 
use of tumor cell xenografts. Exploration of such molecules in cancer therapy is at 
an early stage of research; however, many of them show considerable promise as 
future cancer therapies. When considering which lipid-based molecules could be 
developed, it is essential to solving particular problems that arise with lipid-based 
medications.

5.3.1  Prostaglandins and Ceramides

Although the biological properties of individual molecules seem promising, rela-
tively few have managed to go through the drug development process due to chemi-
cal instability, rapid metabolism, and in some cases, the incidence of side effects. 
For example, several synthetic prostaglandin (PG) analogs have previously been 
developed as potential antiulcer, antihypertensive, and fertility control agents 
(Collins and Djuric 1993). Knowledge of the mechanisms of action through which 
lipids and their metabolites regulate tumorigenic processes requires background 
information on the growth and spread of cancer cells. Cancer has multiple stages, in 
which cells develop the capacity for unregulated proliferation, become resistant to 
proapoptotic stress that kills normal cells, and acquires the ability to migrate to 
other adjacent and distant tissues to establish secondary metastases (Murray 
et al. 2015).

Another example of functional lipids are ceramides, which can be found in many 
foods such as rice and wheat. Besides, they are metabolites of many medicinal 
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plants and are called phytoceramides (Canals et  al. 2018). Ceramides are recog-
nized for their signaling role in regulating cell proliferation, differentiation, and 
death. Hydrolysis of sphingomyelin produces a ceramide. This reaction is catalyzed 
by sphingomyelinases, whereas de novo synthesis is mediated by multiple cerami-
des synthases that produce endogenous ceramides, which have various types of fatty 
acids attached; the longest chain ceramides are proapoptotic. Accumulation of 
ceramide in cells occurs after treatment with anticancer agents or saturated fatty 
acids, such as palmitic acid (Merrill and Jones 1990). Direct addition of ceramide 
C2, at a concentration of 1 μM, has been shown to alter the mitochondrial trans-
membrane potential, forming channels, or targeting Bcl-2 proteins (B-cell lym-
phoma 2) (Garcia-Ruiz et  al. 1997). These proapoptotic actions of ceramide are 
mediated by many molecules (Chen et  al. 2008). Ceramide can be cleaved by 
ceramidase, which terminates the apoptotic actions of long-chain ceramides and is 
overexpressed in cancer cells (Seelan et al. 2000).

5.3.2  Fatty Acids

There are some lipids that inhibit the activity of enzymes dedicated to promoting 
tumorigenesis. Inhibition of COX-2 enzyme activity is an attractive strategy for 
preventing tumorigenesis and has been shown to be effective in colon, lung, and 
prostate cancer cells in in vitro assays (Kamijo et al. 2001; Nagatsuka et al. 2002) 
and models of xenografts in mice. Recently, it was discovered that a group of novel 
ins-3 monounsaturated fatty acids inhibited the proliferation and migration of breast 
cancer cells that overexpressed COX-2. In this study, monounsaturated fatty acid 
analogs with variations in the chain were synthesized (Fig. 5.1), which were evalu-
ated in breast cancer cells, MDA-MB-468, which overexpressed COX-2. These 
fatty acids inhibited cell proliferation, activated the apoptotic pathway, decreased 
PGE2 production, as well as reduced cell invasion (Cui et al. 2012). These fatty 
acids, called MUFAs, managed to demonstrate high activity in this experimental 
model, and this study establishes a relationship between the activity of these fatty 
acids, depending on the length of their chain, therefore, converts them to longer 
chain MUFAs. In promising anti-inflammatory agents, as well as can be part of a 
new species of anticancer.

Fig. 5.1 Long-chain n-3 
synthetic monounsaturated 
fatty acids active in breast 
cancer cells that 
overexpress the COX-2
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5.3.3  Alkylphospholipids

On the other hand, there are the so-called Alkyl phospholipids (ALPs), which have 
shown antitumor activity (Berdel et al. 1981). Edelfosine has considered the first 
synthetic analog of ALPs evaluated as a possible anticancer agent, along with ilmo-
phosine, which has a thioether residue instead of the methoxyl substituent (Fig. 5.2).

It is essential to mention that these phospholipids have been modified to improve 
their therapeutic activity against cancer. As seen in the figure below, structural mod-
ification to remove the glyceryl nucleus produced an alkylphosphocholine analog 
miltefosine and replacement of the choline moiety with a piperidine system pro-
duced periphosine (Fig. 5.3). The development of other molecules has been reported, 
for example, erucylphosphocholine and it’s analog erufosine, which possess a 
22-carbon fatty acid chain and a ω − 9-cis double bond. These structural develop-
ments have improved the selectivity of the agents for cancer cells over healthy cells 
and have enhanced their metabolic stability (Mollinedo et  al. 1997; Ruiter et  al. 
1999; Gajate et al. 2004).

ALPs cause a number of antitumor actions in cells (Fig. 5.4), including interfer-
ence with membrane lipid raft function, impaired PI3K/Akt survival signaling, inhi-
bition of phosphatidylcholine synthesis, generation of ROS, and activation of 
endoplasmic reticulum stress (Gajate et al. 2012). That is why there is substantial 
evidence that these fatty acids have multiple potential pathways in their mechanism 
of action. ALPs decrease the viability of tumor cells in several ways. They promote 
cell cycle arrest in the G2/M phase by inducing the CDK inhibitor p21Cip1 and 
inhibit proliferative signaling of ERK and PI3K/Akt, possibly interfering with Raf-1 
membrane association, leading to decreased Raf-1 kinase activity (Samadder and 
Arthur 1999; Elrod et al. 2007; Kumar et al. 2009).

In addition to what has already been mentioned, ALPs are well tolerated in pre-
clinical studies. However, the clinical use of ALPs of synthetic origin has been 

Fig. 5.2 Chemical structures of ilmofosine and edelfosine
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restricted due to their hemolytic potential and gastrointestinal toxicity, as well as 
other vital toxicities including fever, myalgia, arthritis, and pain (Berdel et al. 1987).

In addition to ALP treatment, concomitant therapies of these lipids with antican-
cer agents have been developed. The use of these combinations as forms of cancer 
treatments has been promising. In recent studies, periphosine increased the antineo-
plastic effect of lenalidomide and dexamethasone in multiple myelomas (Jakubowiak 
et al. 2012); also, studies with promising activity of the combination of capecitabine 
with peripheosine for metastatic colorectal cancer have been reported (Bendell et al. 
2011). Other recent preclinical studies have identified more combinations of drugs 
containing peripheosine, for example, the mixture with the cyclin dependent kinase 
inhibitor SNS-032, which has shown a potential value in the treatment of human 
acute myeloid leukemia cells, within the effects cell death was increased if we com-
pared the effect of the substances separately, probably due to a decrease in PI3K/
Akt survival signaling by periphosine (Meng et al. 2013). The combination of peri-
phosine with the mTOR inhibitor CCI-779 caused cell cycle arrest and inhibited 
growth in various human cancer cell lines (Pitter et  al. 2011). These preclinical 
results suggest that inhibition of the PI3K/Akt/mTOR pathway at two points in the 
cascade may produce more optimal effects.

In addition to combinatorial therapies between ALPs and anticancer drugs, com-
binations between these molecules and radiation therapy have been developed. One 
of the first in vitro assays that showed radiosensitization potential was miltefosine 

Fig. 5.3 Alkyl phospholipid structures that have been chemically modified to improve their anti-
cancer properties
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on cell lines that excreted the activated Ras oncogene (Bruyneel et  al. 1993). 
Subsequently, Berkovic et al., demonstrated that miltefosine and edelfosine affected 
clonogenic survival after radiation in squamous cell carcinoma KB (Berkovic 1998). 
Periphosine has been shown to improve cytotoxicity through radiation in both short 
and long-term trials. The most recent studies have demonstrated the increase in 
radiation-induced apoptosis and the elimination of clonogenic tumor cells by erucil-
phosphocholine (ErPC) in malignant glioma (Handrick et al. 2006). Although the 
cytotoxic mechanisms of action remain unclear, immunohistochemical analyzes of 
tumor tissue after treatment revealed a prominent apoptotic response, mediated by 
caspase 3 activity. Similar results were observed in a xenograft model of human 
prostate carcinoma, in which the combinatorial therapy of peripheosine and radia-
tion, had a significantly more potent effect on tumor growth, unlike treatment with 
a single substance (Gao et al. 2011).

5.3.4  Omega Fatty Acids

Another class of lipids found in many foods and that have shown therapeutic effects 
are omega polyunsaturated fatty acids, particularly those in group 6 (ω-6 PUFAs). 
Although all ω-6 PUFAs can be consumed in the daily diet, the precursors of ω-6 are 
more abundant in seeds and vegetable oils; therefore, it is considered the primary 

Fig. 5.4 ALPs decrease the viability of cancer cells by disrupting lipid rafts in the plasma and 
mitochondrial membrane, modulating the distribution of Raf death receptors, and affecting phos-
phatidylcholine synthesis. The production of reactive oxygen species and the stress of the endo-
plasmic reticulum promote apoptotic cell death. Disruption of the PI3K/Akt survival pathway and 
proliferative ERK signaling may also contribute to decreased cell viability produced by ALPs
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dietary source of all ω-6. Research on these fatty acids shows that PUFAs have some 
participation in the diet as inhibitors of cell proliferation, for example, in the Caco-2 
colon cancer cell line (Dommels et al. 2003). At the same time, a high intake of 
these compounds also shows a protective effect against the development of cancer 
(Horrobin and Ziboh 1997). In addition to found activity found in these molecules, 
as well as in their derivatives, the family of polyunsaturated fatty acids has an 
important antitumor event.

Linoleic acid can be desaturated and converted to gamma-linolenic acid (GLA), 
which is associated with anticancer activities in vitro and in vivo models. For exam-
ple, GLA inhibited cell growth of the human neuroblastoma lines GOTO, SK N-DZ, 
NKP, and NCG, a rat C6 glioma cell line, and the LLC-WRC256 rat carcinosar-
coma cell line (Fujiwara et al. 1989; Colquhoun and Schumacher 2001). More inter-
estingly, GLA-induced cytotoxicity was shown to exhibit high selectivity towards 
cancer cells without affecting the growth of non-cancer cells in ZR-75-1 human 
breast cancer lines, A549 lung cancer cells, and prostate PC-35 (Das 1992). Also, 
GLA has been shown to be cytotoxic to the 36B10 rat malignant astrocytoma cell 
line, without affecting normal astrocytes. And the radiation sensitivity of astrocy-
toma cells was improved, but not of normal astrocytes (Begin et al. 1986). In an 
experimental rat model for C6 glioma, the infusion of GLA was shown to increase 
the frequency of apoptosis and a decrease in tumor mass, without influencing neural 
tissue and normal vasculature (Vartak et al. 1998). Therefore, it is suggested that 
GLA is a possible anticancer therapeutic agent due to its high selectivity, as well as 
the ease of consuming it in daily food.

There is evidence that specific metabolites of ω-3 PUFAs exert antitumor actions 
on their own. An example of these is eicosanoid derivatives, which have decreased 
pro-inflammatory, proliferative, invasive, and pro-angiogenic responses compared 
to those formed from ω-6 PUFAs (Abou-el-Ela et  al. 1989; Rose and Connolly 
2000; Hardman 2002). The antiangiogenic activities of eicosapentaenoic acid (EPA) 
in human endothelial cells, including decreased invasion and endothelial tube for-
mation, have been attributed to prostaglandin E3 (PGE3), derived from COX-2, and 
possibly to other metabolites; PGE3 directly suppressed the induction of the pro- 
angiogenic mediator angiopoietin-2 by vascular endothelial growth factor (VEGF). 
The mechanisms by which specific metabolites of PUFA-3 regulate angiogenesis 
and other associated processes have not been fully explained, but are related to the 
alteration in the signaling pathway for prostanoid receptors; therefore, eicosanoids 
derived from EPA ω-3 activate prostanoid receptors less efficiently than those 
derived from arachidonic acid ω-6 (Wada et  al. 2007). Also, epoxides obtained 
through CYP-mediated metabolism of PUFA-3 have been shown to exert growth 
suppression and anticancer effects. These EPA epoxides decreased cell proliferation 
in endothelial tissues and activated apoptosis, leading to cell cycle arrest by activa-
tion of MAPK p38, which suppresses growth through down-regulation of cyclin D1 
(Cui et al. 2011). Another study on epoxides demonstrated that they exert anticancer 
effects by suppressing VEGF-mediated angiogenesis, which resulted in decreased 
growth of the primary tumor and metastasis in vitro (Zhang et al. 2013). Figure 5.5 
shows the structures of the epoxides evaluated in the said experiment.
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Some metabolites dependent on the 5-lipoxygenase (LOX) pathway have also 
presented antitumor activity, including 15-Hydroxyeicosatetraenoic acid and 
resolvins with antiproliferative capacity, and which are derived from arachidonic acid 
(Haeggström and Funk 2011). Among the resolvins that have anti- inflammatory 
activity, as well as inducing apoptosis when administered orally or intravenously, we 
find those derived from epoxidation reactions. These complex eicosanoids come 
from the biotransformation of DHA into 17S-hydroxy-DHA by the action of 15-LOX, 
then it is transformed into 7S hydroperoxy, 17S-hydroxy-DHA by 5-LOX and finally 
into resolvin D1, after epoxidation, which could involve CYP-mediated metabolism. 
Similarly, 4S-hydroperoxy, 17S-hydroxy-DHA is another product generated by LOX 
from 17S-hydroxy-DHA, which also undergoes epoxidation to produce resolvins D3 
and D4. These resolvins exhibit anti-inflammatory properties in vivo when adminis-
tered intravenously or orally (Dangi et al. 2009).

Some ω-3 PUFAs epoxides have become a different group of potential anticancer 
agents. A series of synthetic C20-C22 long-chain saturated fatty acid ep-3 epoxides 
(Fig. 5.6) have been evaluated for their antiproliferative and proapoptotic actions in 
human breast cancer cells. In these experiments, it was discovered that these 
epoxyeicosapentaenoic fatty acids are active on the MDA-MB-231 cell line, which 
increases caspase-3 activity and leads to downregulation of cyclin D1 and cell cycle 
arrest in the phase G1 (Dyari et al. 2014). These fatty acid epoxides were developed 
from naturally occurring 17,1-3 17,18-epoxy-EPA by removing additional olefinic 
bonds, due to the oxidation potential of isomeric epoxides, which stimulate prolif-
eration and inhibit apoptosis. Synthetic ω-3 fatty acid epoxides impaired the viabil-
ity of MDA-MB-231 cells and, to a lesser extent, MDA-MB-468, MCF-7, and 
T-47D cells; however, epoxides are unlikely to be suitable for in vivo application, 
due to their low stability, since epoxide hydrolase converts them to inactive diols 
(Inceoglu et al. 2008).

5.3.5  In Vitro and In Vivo Studies

Bhupender and coworkers synthesized acylamide derivatives from doxorubicin 
fatty acids (Fig. 5.7) and evaluated their anticancer activities in vitro. One of the 
synthesized molecules showed antileukemia activity, comparable to cytarabine. 

Fig. 5.5 Chemical structures of 19,20-epoxydocosapentaenoic acid and 14,15- epoxyeicosatrienoic 
acid with in vitro antiangiogenic activity
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These effects were associated with the chemical modification of the structure 
(Bhupender et al. 2011).

These researchers also synthesized fatty acyl ester derivatives (Fig. 5.8) of cyta-
rabine and evaluated them as antileukemic agents, finding that some of them inhib-
ited the growth of CCRF-CEM cells (Bhupender et al. 2010). On the other hand, Liu 
et al., reported the synthesis and antitumor evaluation of cytarabine N4 fatty acyl 
amino acid derivatives, to improve lipophilicity and bioavailability of cytarabine, 
where the antitumor activity determined in HL-600 cells and HeLa demonstrated 
that the derivatives were more active in HeLa cells than cytarabine, while most of 
them shown cytarabine-like activity in HL-60 cells. The length of the fatty acids in 
the derivatives seemed to have an impact on the observed business (Liu et al. 2009) 
(Fig. 5.9).

Zhang Chun-hong and his working group synthesized new panaxadiol fatty acid 
esters and evaluated them to determine their antitumor activity in Vero cells, finding 
a better antitumor effect compared to the 5-Fluorouracil control (Zhang et al. 2007). 

Fig. 5.6 Chemical structures of ω -3 Epoxyfatty acids

Fig. 5.7 Structures of fatty acyl amide derivatives of doxorubicin
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The antitumor activity of these panaxadiol derivatives is more reliable than the ref-
erence drug; Fig. 5.5 shows the chemical structures of the synthesized compounds, 
where the length of the fatty acid alkyl chain was modified, and the activities of each 
one were compared.

Jubie et al., have reported two works reporting on some new heterocyclic fatty 
acid conjugates and their anticancer evaluation in human lung carcinoma cell lines. 
These compounds demonstrated cytotoxicity on these cell lines (Jubie et al. 2013). 
The compounds of Fig.  5.10 possess a fatty acid chain substituted with 
1,3,4- oxadiazole, which showed maximum cytotoxic activity. Furthermore, it was 
observed that the presence of toxophoric bonds -N = C-O- in the nucleus 1,3,4 oxa-
diazole might be responsible for the antitumor activity. This working group con-
cluded that these compounds are good bioisterosters of amide and ester 
functionalities, with a substantial improvement in the biological activity of hydro-
gen bonding interactions with different objectives responsible for tumor develop-
ment. The operation of these 1,2,4-triazole substituted fatty acid analogues depends 
on the length of the fatty acid chain and is therefore directly related to their antitu-
mor activity (Jubie et al. 2013).

The chemical structures of the ceramides (Fig.  5.11) have allowed them to 
exert proapoptotic effects. A correlation has been found between the activation of 
apoptosis and its intracellular levels. The investigations have been able to continue 
because methods have been developed for the detection of ceramides, enzymatic 
inhibitors have been discovered to block the synthesis of ceramides and genera-
tors of ceramides have been identified that induce apoptosis (Lin et al. 2006). It 
has been investigated that ceramide can intervene, both in the intrinsic and extrin-
sic apoptotic pathway. Likewise, the concentration of this lipid is influenced by 

Fig. 5.8 Structure of 
2',5'-dimyristoyl derivative 
of cytarabine

Fig. 5.9 Structure of new 
panaxadiol fatty acid ester
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stimuli, such as the deprivation of nutrients, cellular stress, the effect of drugs, 
heat, radiation or hypoxia, which is reflected in the cascade activation of caspases 
and dysfunction. In multiple organelles leading to apoptosis (Morales et al. 2007).

Due to the resistance of traditional cancer therapies, studies on ceramide metabo-
lism show promising pharmacological treatments and alternatives.

The focus on the development of ceramide as an anticancer potential has led 
researchers to the design of analogs of this sphingolipid to give a new approach to 
cancer therapy; however, it is known that ceramide cannot cross cell membranes. 
Therefore its application as a therapeutic agent is limited (Kolesnick and Hannun 
1999). From this point, it is where analogues of this sphingolipid are developed, 
which increase both its corrective action and the ability to cross cell membranes. 
The first indications of modifications to ceramide as proapoptotic agents occurred 
with the replacement of one of the fatty acid chains by a shorter acyl group, result-
ing in the derivatives called C2 and C6 (Fig. 5.12), which inhibited proliferation in 
tumor cells (Kolesnick and Hannun 1999). On the other hand, investigating the 
functionality of ceramide, other derivatives with anticancer activity have been 
obtained (Fig. 5.13), mainly the derivative that contains the phenyl ring together 
with those that have a sphingoid residue or an allyl fluoride and the derivative dihy-
droceramide Fluorides, which induced apoptosis in Molt-4 and K-422 leukemine 
cell lines (De Jonghe et  al. 1999). Within this same exchange of functional  
groups to ceramide, the compounds derived from uracil, thiouracil, and 
5,6- dimethylthiouracil (Fig. 5.14) were analyzed in the CCRF-CEM leukemia cell 
line, finding that the presence of pyrimidine rings is essential for apoptosis-inducing 
activity, these sphingolipid derivatives have also been shown to increase caspase-3 
activity as well as cytochrome C release (Ghafourifar et al. 1999).

In conclusion, a large number of lipid-derived compounds with anticancer activ-
ity have been developed, constituting new lines of research for alternative cancer 
therapies. As reviewed, the influence of functional groups within a molecule of lipid 
origin can have various effects on human cancer lines. The development of these 

Fig. 5.10 Structures of 
novel 1,3,4-oxadiazole-2- 
thiol and 1,2,4-triazole-3- 
thiol fatty acid analogues

Fig. 5.11 Chemical 
structure of ceramide
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new molecules broadens the panorama in the search for more significant activity 
against cancer, but less toxic effects. Likewise, it is used that lipid molecules are 
endogenous and that the body can easily recognize them, reducing the reactions that 
may occur within a future therapy based on these compounds.

5.4  Effects on the Cardiovascular System

One of the most prevalent conditions that produce cardiovascular damage is athero-
sclerosis; this disease has a strong relationship with lipid metabolism (Torres et al. 
2015); however, the events it triggers are associated with heart disease and blood 
pressure problems, due to the formation of atheroma plaque. Among the lipids that 

Fig. 5.12 Chemical 
structures of C2-ceramide 
and C6-ceramide

Fig. 5.13 Ceramide derivatives; with a phenyl ring, ceramide allyl fluoride and fluorinated 
dihydroceramide

Fig. 5.14 Derivatives of ceramide of the uracil and thiouracil type
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have shown essential effects against atherosclerosis, we find short-chain fatty acids, 
for example, butyric acid (Ohira et al. 2017).

5.4.1  Atherosclerosis and Cardiovascular Risk

This acid is also found referred to as butyrate, and it has reported significant anti- 
inflammatory, apoptotic and antioxidant properties in different experimental mod-
els; These properties are related to the development of atherosclerosis, since, within 
its pathophysiology, there are numerous inflammatory and oxidative processes 
(Aguilar et al. 2014). In a study carried out in ApoE konckout mice, the effect of 
butyrate was evaluated, which was added to 1% in the rodent diet for 10 weeks; the 
study was complemented using endothelial cell lines, which were treated with 
0.5 mM butyrate, after being stimulated with oxidized LDL. The effects of butyrate 
were surprising since the appearance of atheroma plaque was reduced in 50% of the 
treated mice, macrophage migration was inhibited by decreasing the production of 
monocyte chemoattractant protein 1, cell adhesion protein 1 vascular and 72 kDa 
type IV collagenase (Aguilar et al. 2016); thanks to the fact that the output of this 
last protein was reduced, the collagen deposits in the atheroma plaques increased, 
forming a kind of protection factor. The authors concluded that butyrate could delay 
the formation of atherosclerosis, stabilizing atheroma plaque, and lowering platelet 
glycoprotein 4 in macrophages, leaving important points to investigate a future ther-
apeutic target (Aguilar et al. 2016). It is imperative to recognize the role of this acid 
in some functional foods that may be part of the atherosclerotic patient’s diet.

5.4.2  Omega-3 and Coronary Disease

Omega-3 fatty acids also have essential reports in coronary diseases, for example, 
eicosapentaenoic acid (Brinton and Mason 2017). This lipid has been administered 
in hypercholesterolemic patients, who also receive statin therapy. The effects found 
are translated to the decrease of coronary events in the patients (Alfaddagh et al. 
2017). A clinical study evaluated the effect of eicosapentaenoic and docosahexae-
noic acids on coronary heart disease caused by atherosclerosis. These acids were 
administered at doses of 2 and 4 g per day. The results were significant since many 
parameters associated with the formation of atheroma plaque were reduced, and 
antioxidant and anti-inflammatory mechanisms of action were revealed (Nakao 
et al. 2018).

Different reviews have shown that omega fatty acids are effective in preventing 
coronary events caused by atherosclerosis (Abdelhamid et al. 2018); however, there 
is little evidence on the effect of lipids on other diseases of the cardiovascular sys-
tem. Fatty acids can be obtained from foods rich in unsaturated fats; other studies 
have evaluated supplements enriched with fatty acids; that is, they are already pre-
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sented under some pharmaceutical form or special presentation. More specific stud-
ies estimate fatty acids reactively in different models in  vivo, in  vitro, even in 
clinical trials.

Some authors have recommended functional foods fortified with phytosterols as 
a primary source to prevent cardiovascular diseases, mainly those associated with 
high cholesterol levels, including prestigious health institutions that have supported 
this initiative (Köhler et al. 2017). Foods rich in phytosterols have been shown to be 
effective in lowering the plasma concentration of total cholesterol and LDL choles-
terol, being critical factors in avoiding cardiovascular risk (Patch et al. 2006).

One of the disadvantages of phytosterols is their poor solubility in water, so they 
must use different systems to be administered or used as ingredients in functional 
foods. Some tests that have been done with these lipids consisting of lecithin emul-
sifications, others include the use of margarine to be administered. These lipids have 
had essential effects in preventing acute myocardial infarctions (Ortega et al. 2006).

5.5  Effects on Inflammation

Inflammation can be conceptualized as a primary way in which the body reacts to 
harmful stimuli such as irritation, toxic compounds, infection, or irradiation; the 
vital signs are warmth, redness, pain, and swelling. The aim of this process is 
removing injurious stimuli and favors the healing process (Chen et  al. 2018). 
However, some specialist suggests that it shifts the metabolic balance towards 
catabolism; being a pathological process, not a defensive reaction (Stankov 2012). 
The inflammatory process underlies primary hyperalgesia (a painful response to a 
stimulus that is usually not painful), contributing to peripheral sensitization in nerve 
damage, especially if accompanied by tissue damage (American Chronic Pain 
Association 2018). Acute inflammation is generally self-limited allows that cellular 
and molecular events efficiently minimize impending injury or infection. However, 
if it fails to resolve, chronic inflammation can appear, contributing to a variety of 
diseases (Chen et al. 2018). During inflammation are promoted leukocyte migration 
from blood to the damaged tissues and the generation of pro-inflammatory chemo-
kines, cytokines, and lipids mediators, which are fundamental to start and maintain 
the phenomenon (Shapiro and Fazio 2016).

5.5.1  Lipids as an Inflammation Mediator

Lipids are the second energy fuel and the main component of cell membranes. 
There are also recognized as a protagonic role as regulators of intracellular and 
intercellular processes in maintaining tissue homeostasis and inflammation so have 
been named "bioactive lipids" (Chiurchiù and Maccarrone 2018). These lipids 
 originate from host essential fatty acids, which could be regulated by diet and by 
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synthetic optimized mimetics of these molecules as nutritional supplements (Serhan 
et al. 2014). These molecules generated from omega-6 or omega-3 essential polyun-
saturated fatty acids precursors, are esterified into membrane lipids and act activat-
ing specific G protein-coupled receptors (GPRs). A bioactive lipid classification by 
their biosynthesis and function is classical eicosanoids, specialized pro-resolving 
mediators (SPMs), sphingolipids/lysoglycerophospholipids, and endocannabinoids 
(eCBs) (Chiurchiù and Maccarrone 2018).

Classic eicosanoid includes leukotrienes (LTs) and prostaglandins (PGs) that 
arise from the oxidation of arachidonic acid (AA) and related (PUFA) by cyclooxy-
genase (COX), lipoxygenase (LOX), cytochrome P450 (CYP) enzymes and via 
non-enzymatic free radical mechanisms (Rogerio et al. 2015). Cells are specialized 
in produce certain kinds of eicosanoid, but concentration changes accord with phys-
iological conditions of the tissues in which they in (Dennis and Norris 2015). In 
situations of tissue damage or injury, innate immune cells, like granulocytes, mono-
cytes, and macrophages, are conducted, and it is produced by classical eicosanoids. 
The result is an acute inflammation, characterized by when so-called “cardinal 
signs”: heat, swelling, redness, pain, and loss of function (Nathan 2002). Therefore, 
classical eicosanoids are involved in the initiating steps that permit leukocytes and 
specifically neutrophils to leave, via diapedesis, postcapillary venules (Serhan et al. 
2014), are enhancers of innate and adaptive immune activation and thus involved in 
many inflammatory diseases; despite (PGD2) and (PGE2) possess anti- inflammatory 
effects (Dennis and Norris 2015).

Specialized pro-resolving mediators (SPMs) participate in reducing inflamma-
tion and facilitate the restoration of tissue contributing to homeostasis through 
removal, relief, recovery, regeneration, and remission, a process called to as “reso-
lution of inflammation”. They are produced by the very same immune cells recruited 
in the inflammatory zone to selflimiting and minimized the noxious stimulus 
(Chiurchiù and Maccarrone 2018). The SPMs are originated from omega-6 AA and 
omega-3 PUFAs docosahexaenoic acid (DHA), docosapentaenoicacid (DPA) and 
eicosapentaenoic acid (EPA), through the same enzymes that produces classical 
eicosanoids: COXs, LOXs, and P450 (CYP). At the same time, SPMs have been 
subdivided into six kind: AA-derived lipoxins LXs (LXA4 and LXB4); EPA-derived 
E-series resolvins (RvE1–3); DHA-derived D-series resolvins (RvD1–6); protectins 
and neuroprotectins (PD1/NPD1 and PDX) and their sulfido-conjugates (PCTRs); 
maresins and their conjugates (MaR1, MaR2 and MCTR1–3) and, the DPA- 
associated 13-series resolvins (RvT1–4) (Serhan et  al. 2014). The receptors that 
mediate SPMs activity are five: formyl peptide receptor 2 or ALX (FPR2), GPR32 
or DRV1, chemerin receptor 23 or ChemR23 (ERV), leukotriene B4 receptor 1 
(BLT1) and GPR18 (DRV2), differentially expressed in tissues and with a broad 
affinity for each lipid mediator (Chiurchiù and Maccarrone 2018). Recent evidence 
shows that impaired metabolism and SPMs function are associated with persistent 
inflammation reaching chronicity, such as rheumatoid arthritis, cystic fibrosis, neu-
rological diseases, and atopic dermatitis (Rincón et al. 2015).

Lysoglycerophospholipids and sphingolipids are other classes of bioactive lipids 
distributed in the plasma membranes that show a tremendous molecular diversity 
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due to their linkage with molecules such as serine, choline, ethanolamine, inositol 
or and other fatty acids (e.g., phosphoinositides and ceramides) responsible for the 
outcome of inflammation (Serhan 2014). These modulate a great variety of cellular 
processes that are relevant for tissue adaption to inflammatory events. Some of them 
included lysophosphaditylcholine (LPC), lysophosphatidilinositol (LPI), and their 
byproduct lysophosphatidic acid (LPA) involved in relevant aspects of tissue biol-
ogy, such as plasma membrane shaping, cell growth and death, and inflammatory 
cascades (Chiurchiù and Maccarrone 2018). It is speculated that its sustained effects 
are linked with a variety of chronic inflammatory diseases, for instance, obesity and 
diabetes, chronic obstructive pulmonary disease, cancer, atherosclerosis, inflamma-
tory bowel disease, neuroinflammatory disorders, and rheumatic artritis (Serhan 
et al. 2014; Rogerio et al. 2015). For example, sphingolipids as ceramide and its 
byproducts ceramide 1-phosphate (C1P) and sphingosine 1-phosphate (S1P) par-
ticipate in numerous inflammatory processes and are responsible for controlling 
intracellular traffic and signaling, cell growth, adhesion, vascularization, survival, 
and apoptosis. Excessive ceramide signaling conditions adipose tissue inflamma-
tion and insulin resistance, which occurs in metabolic syndrome and type 2 diabetes 
by inducing hyperactive immune cells such as macrophages and B cells (Chiurchiù 
and Maccarrone 2018).

Endocannabinoids (eCBs) are endogenously bioactive lipids produced by 
mammals capable of binding to and activate the same receptors as the main psy-
choactive component of marijuana Δ9-tetrahydrocannabinol, named type CB1 
and CB2. Two of them are anandamide (N-arachidonoyl ethanolamine or AEA) 
and 2- arachidonoylglycerol (2-AG), which also comprise -AG-ether, 
O-arachidonoylethanolamine, and palmitoylethanolamide (PEA) (Bruni et  al. 
2018). According to the inflammatory state from tissue, eCBs also interact with 
peroxisome proliferator-activated receptors (PPARs) and members of the transient 
receptor potential (TRP) channels, GPR55 (Chiurchiù and Maccarrone 2018). 
Consequently, modulation of the eCB system through various therapeutic and 
nutritional strategies allows reducing the inflammatory processes in which cyto-
kines are released, infiltrate leukocytes and reactive species are produced, as neu-
rodegenerative diseases (Witkamp and Meijerink 2014; Balvers et al. 2013)

5.5.2  Bioactive Lipids in Preclinical Trial

Rheumatoid arthritis is an autoimmune affection of onset around the age of forty, 
characterized by severe joint inflammation, deformation, pain, and movement limi-
tation. In vitro tests, omega-3 polyunsaturated fatty acid eicosapentaenoic acid 
(20,5, EPA) reduces gene expression, particularly cyclooxygenase (COX-2), which 
participates in inflammatory processes leading to the production of leukotriene B4 
(LTBA4) and prostaglandins E2 (PGE2). Linolenic acid (18,3, ALA) was also tested 
on these models, although it was found to have less potency than EPA (Hurst et al. 
2010). Moreover, PUFAs have been evaluated by their anti-inflammatory properties 
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linking the neuro-immune modulating features to its biological effects. It has been 
explored the supplementation with 20 g/kg of fish oil (FO) finding than this treat-
ment attenuated the stress-induced neuroinflammation and promoted dysregulation 
the of neurotransmission system, with NLRP3 and NF- κB decrement in certain rat 
brain areas (Tang et al. 2018). On the other hand, omega-3 PUFA treatment amelio-
rated DOX-induced oxidative stress in the prefrontal cortex and hippocampus, 
showing than this supplementation attenuated neuroinflammation. Some research 
suggests than apoptosis induced by stress, oxidative, and neurotransmitter system 
abnormalities and pro-inflammatory cytokines, may contribute to the physiopathol-
ogy of depression (Wu et al. 2016). Furthermore, PUFAs also have been demon-
strated as a potential treatment against neurobiological side-effects associated with 
depression. The omega-3 PUFAs can effectively protect against chemotherapeutic 
agents like Doxorubicin (DOX) in a dose of 1.5 g/kg over three weeks, and the 
results shows than the PUFAs supplementation significantly mitigated the behav-
ioral changes induced by the neurotoxicity of DOX, and also alleviated the induced 
neural apoptosis and the induced depressive-like behaviors in rats. The fish oil (FO) 
has a rich content of PUFAs (EPA 34%, DHA 24%), and it has been proved than the 
treatment with 1.5 g/kg ameliorated depressive-like behaviors induced by lipopoly-
saccharide (LPS) repeated administration through modulation of reactive oxygen 
species (ROS). The improvement of serotonin, dopamine, and glutamate neuro-
transmission system was observed, conferring neuro-immune modulating features 
to PUFA (Dang et al. 2018).

Many preclinical studies are showing that cannabinoids can be beneficial in 
treating pain and inflammation, among other clinical conditions (Bruni et al. 2018). 
For example, through a triple trial, the anti-inflammatory and antinociceptive effi-
cacy of cannabidiol (CBD) was measured by inhibiting zymosan-induced swelling 
of the mouse leg and to relieve zymosan-induced pain. In the same study, CBD also 
sharply reduced in  vivo TNF production evaluated by an ELISA kit. Hence the 
author concluded that cannabinoids are involved in the inhibition of chronic inflam-
mation symptoms (Gallily et al. 2018).

5.5.3  Bioactive Lipids in Clinical Trials

Few clinical trials have explored the beneficial effects of PUFAs on illnesses. Fish 
oil-derived PUFA supplementation is recommended for the relief of symptoms in 
many inflammatory diseases. The main reason for this is that omega-3 EPA and 
DHA promote the inhibition of the enzyme COX-1 (more than the COX2), reducing 
the products of arachidonic acid metabolism, as does the lowest dose of acetylsali-
cylic acid, an NSAID (Dennis and Norris 2015). In the case of rheumatoid arthritis, 
stearidonic acid (18, 4 or SDA) and its EPA and DHA derivatives, present in seed 
oils such as chia, can play an essential role in human metabolism in its prevention 
or treatment, because it has been demonstrated at a clinical level that reduces inflam-
matory symptoms (Miles and Calder 2012). Patients with hepatic diseases like non- 
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alcoholic steatohepatitis (NASH) treated with a diet richer in omega-3 PUFAs (64% 
alpha-linolenic ALA, 16% eicosapentaenoic EPA, and 21% docohexanoic DHA 
acids) show positive changes evaluated by the NASH activity score (NAS) in plasma 
biochemical markers of inflammation, lipid metabolism and liver function (Nogueira 
et al. 2016). Atopic dermatitis is a skin disease that is mainly characterized by its 
dryness, which leads to its scaling and irritation and causes annoying symptoms 
such as itching. In these patients, there is a reduction in the activity of the 
A6-desaturase, necessary to convert the ALA of the diet into SDA and EPA, so 
including an SDA supplement would be required for the treatment of the disease. 
On the other hand, echium oil, rich in SDA, has shown for years, local utility in 
some types of dermatitis, inhibiting up to 60% the release of pro-inflammatory pros-
taglandins (PGE2) with respect to untreated control tissues (Coupland et al. 1996; 
Guil-Guerrero 2007). Added to this, pro-inflammatory mediators LTB4 and PGE2 
are present in the sebaceous glands of the skin being associated with acne. Blocking 
them with PUFAs (SDA or EPA) can, therefore, reduce acne lesions, constituting a 
therapeutic alternative (Alestas et al. 2006).

Although major depression is not an inflammatory disorder, it is well known that 
chronic inflammation (infection, for example), increased the rate of major depres-
sive disorder and reduced the responsiveness of antidepressants and to psychother-
apy. In this sense, the fish oil (FO) biological effects have been evaluated against the 
major depressive disorder (MDD) in humans being by proton magnetic resonance 
spectroscopy in the bilateral dorsolateral prefrontal cortex (DLPFC) an anterior cin-
gulate cortex and of teenagers. It is found that 16.2 g/day correlating positively with 
a low score depressive symptom, with a trend in the small dose group, although 
further studies are needed to evaluate these changes in a larger controlled trial 
(McNamara et al. 2016) and if it can also be reduced in patients suffering from joint 
pain or inflammation.

5.5.4  Pharmacodynamic and Pharmacokinetic of Bioactive 
Lipids.

The Wageningen University & Research, a partnership between Wageningen 
University and Wageningen Research Foundation is interested a novel mechanisms 
underlying the anti-inflammatory activity of omega-3 fatty acids, that involve the 
formation, biological activity and kinetics of fatty acid amides as DHEA 
(N-docosahexaenoylethanolamine). This research focuses on immune-modulating 
properties of these PUFAs using peripherical blood mononuclear cells (PBMCs), 
macrophages, microglial cells, and mice model of colitis. To elucidate the mecha-
nism of action and kinetics properties of these compounds in gastrointestinal- and 
neurological disorders in mice and human tissue after being submitted to 
 inflammatory conditions or by diet modifications are used spectroscopy techniques 
(LC-MS/MS). Consequently, is possible to develop novel nutritional and/or phar-
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macological intervention strategies (Witkamp and Meijerink 2014; Balvers 
et al. 2013).

In the case of cannabinoids, they are metabolized by liver and gut enzymes, suf-
fering a first-pass hepatic metabolism; likewise, they have specific pharmacokinetic 
requirements, demonstrate reduced gastrointestinal permeability, and cause irrita-
tion. Also, cannabinoids show low oral bioavailability to treat inflammation, so 
other routes of administration such as transdermal, intranasal, and transmucosal 
must be used. Due to its hydrophobic nature, they may be susceptible to choice for 
nanoparticulate pharmaceutical systems, with the advantage of being administered 
by multiple routes (Bruni et al. 2018).

5.5.5  Functional Food Based on Bioactive Lipids

The functional foods are a beneficial effect on health more than necessary nutrients, 
promoting a reduction of risk of disease. The role of dietary lipids in wellbeing as 
protectors or potential therapeutic targets has been explored in last year (Rey et al. 
2019). Humans can synthesize many fatty acids but are unable to desaturate long- 
chain fatty acids at either C3 or C6 from the methyl end, making them essential, as 
the PUFAs (Ballabio and Restani 2012). The importance of the dietary lipids has 
few considered in nutritional researches, even less in the technology of functional 
food (Meyner and Genot 2017) Besides this limiting aspect, lipid oxidation (rancid-
ity) is the primary process involved in reducing shelf-life food. It modifies the nutri-
tional value, texture, color, taste, and aroma leading to taste and flavors unacceptable 
(Lima et al. 2013). The oxidation of PUFAs and other bioactive lipids is associated 
with several mechanisms; one of them is the phenomenon of unsaturated lipid per-
oxidation that runs in parallel with oxidative stress (Nowak 2013). Therefore, essen-
tial unsaturated lipids contained in fishmeal and meat show severe trouble in food 
stability. In the case of chicken meat, has been tested the dietary supplement with 
conjugated linoleic acid, reducing the concentrations of malondialdehyde (MDA), a 
final product of oxidative degradation of fats (Narciso-Gaytán et al. 2011).

The oral drug fingolimod was developed as a first-line treatment for multiple 
sclerosis (an inflammatory disease), due to its ability to down-regulate S1PR1 and 
to sequester highly pathogenic T cells within the lymph nodes, avoiding brain 
myelin injuries. Fingolimod is responsible for reducing blood-brain barrier dys-
function, diminishing the production of sphingolipids from reactive astrocytes, as 
ceramides (Van Doorn et al. 2010).

Finally, in relation to cannabinoids, regulation is stringent, particularly for phy-
toremediation and other herbal products such as marijuana, because it is required 
prior to its commercialization, the performance of strict and well-controlled pre-
clinical and clinical trials, which clearly demonstrate therapeutic efficacy against 
pain and inflammation, the therapeutic interval and low risk for patients (Nathan 
2002; Rincón et al. 2015).
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The inflammatory process is related to four main lipids: classical eicosanoids, 
specialized pro-resolving mediators (SPMs), lysoglycerophospholipids /sphingo-
lipids, and endocannabinoids that play significant roles in inflammation, and dys-
regulation of one or more of them may lead to inflammation-associated disorder. 
Most of these bioactive lipids and several elements of their intricate metabolism and 
signaling are differentially dysregulated in many chronic inflammatory diseases, so 
the study of the role they play as part of the diet will allow the design of new thera-
peutic strategies based on robust and safe functional food. In the case of cannabi-
noids, alternatives to systemic oral delivery as nanoparticle techniques should be 
considered once the therapeutic doses have been correctly established to treat 
inflammatory disorders without risk to the patient and in accordance with the legis-
lation of each country.

5.6  Therapeutic Activity in Obesity

The World Health Organization (WHO) defines obesity as abnormal or excessive fat 
accumulation that presents significant risk factors for several chronic diseases, like 
diabetes, cardiovascular diseases and cancer (World Health Organization (WHO) 
2018) Obesity has been increasing worldwide in the last 40 years; in 2016 there 
were about 650 million adults, about 41 million children under 5 years old and more 
than 340 million children and adolescents from 5 to 19 years old with this condition. 
Currently, there are some strategies to reduce the incidence of obesity, but the tradi-
tional treatment and public health interventions are proving inadequate control of 
the global epidemic in this condition (Afzal 2017). There are multiple approaches 
and strategies used to treat obesity, including lifestyle modifications (healthy dietary, 
increasing exercise, behavioral therapy), pharmacotherapy, and surgery (mainly 
bariatric), the latter being the most risking of the interventions (Wyatt 2013).

Obesity, due to its metabolic complexity, acts as a stressful agent, both adipocyte 
metabolism and the organs responsible for the metabolism process, including liver, 
muscle, and pancreas, resulting in insulin resistance and type II diabetes mellitus 
(DM II). The obesity and the progressive expansion of adipocytes lead to the 
decreased blood supply to these lipid cells ending in hypoxia. These events have 
been related to the necrosis of macrophages and their infiltration into the fat tissue, 
allowing an overproduction of active metabolites called adipocytokines, such as 
glycerol, plasminogen activator inhibitor-1 (PAI-1), C-reactive protein (CRP), and 
pro-inflammatory mediators, including tumor necrosis factor-alpha and interleukin-
 6 (TNF-α and IL-6), and free fatty acids. These changes initially lead to an inflam-
matory process in adipose tissue; then, it expands to a systemic inflammation 
associated with the development of various obesity-related diseases (Figueiredo 
et al. 2017a).

In this context, some substances play an essential role in mediating inflammation 
and related disorders. Some studies have shown that omega-3 polyunsaturated fatty 
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acids (PUFAω3) have significant biological effects, which can contribute to the 
treatment of obesity and metabolic disorders related (de Mello et al. 2018).

This has led to the search for more treatments to reduce this epidemic, such as 
the use of substances with a high content of polyunsaturated fatty acids, or the con-
sumption of these acids directly.

5.6.1  Polyunsaturated Fatty Acids (PUFAs)

Fatty acids are the main components of membrane lipids, typically contain 12 to 
24 carbon atoms forming hydrocarbon chains. Based on the presence and number 
of double bonds, maybe of the type: saturated fatty acid (no double bonds), mono-
unsaturated (one double bond), and polyunsaturated (with two or more double 
bonds). Polyunsaturated fatty acids (PUFA) include two series: omega-6 (ω6) and 
omega-3 (ω3), depending on which is the first carbon double bond (Fig. 5.15). The 
exogenous conversion of these fatty acids form compounds which are precursors 
of biologically relevant mediators, such as arachidonic acid (ARA), docosahexae-
noic acid (DHA) and eicosapentaenoic (EPA) (Wiktorowska-Owczarek et al. 2015).

The increased consumption of omega-6 contributes to inflammation, oxidative 
stress, endothelial dysfunction, and atherosclerosis since arachidonic acid is metab-
olized in pro-inflammatory eicosanoids. Furthermore, EPA and DHA have an anti- 
inflammatory ability due to the reduction of the adhesion molecules VCAM-1 and 
ICAM-1 as well as MCP-1 chemokines, metalloproteinases matrix, and pro- 
inflammatory cytokines. Therefore, by decreasing the omega-6/3 ratio, the inflam-
matory response can be reduced (DiNicolantonio and O'Keefe 2018).

PUFAω6 intake does not inhibit the antiinflamtoria ability of omega-3; even this 
combination (at low ratio omega-6/3) is associated with lower levels of inflamma-
tion. This was demonstrated in the study Health Professionals Follow-Up Study 

Fig. 5.15 Examples of structures of different polyunsaturated fatty acids. (a) Arachidonic acid, 
omega-6; (b) eicosapentaenoic acid, omega-3; (c) docosahexaenoic acid, omega 3
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(HPFS), which was a prospective cohort investigation of 51,529 professional men 
health USA, between 40 and 75 years, with the baseline in 1986. Also, we con-
ducted the Nurses' Health Study II, a prospective cohort of 116,671 nurses between 
25 and 42 years, with the baseline in 1989. After applying a number of exclusion 
criteria, the sample for such research was 859 subjects (405 men and 454 women). 
The participants were determined in serum sTNF-R1, sTNF-R2, IL-6, CRP, all 
markers of pro-inflammatory cytokines. With multiple regression analysis, it was 
observed that there is a statistically significant inverse association between dietary 
PUFAω3 and plasma levels of soluble TNF-receptor 1 and 2. These relationships 
depend on the intake of PUFAω6, suggesting that at low levels of PUFAω3 intake, 
the PUFAω6 are associated with high levels of inflammatory markers; however, at 
higher levels of omega-3 together with the consumption of omega-6, the combina-
tion of both types of fatty acids is associated with lower levels of inflammation 
(Pischon et al. 2003).

On the other hand, Mantzioris et al. in 2000 developed a study with healthy male 
volunteers, who were provided with enriched α-linolenic acid (ALA) food (cooking 
oil, margarine, salad dressing, and mayonnaise), eicosapentaenoic and docosa-
hexaenoic acid (sausage and salt sauce), and food rich in naturally PUFAω3 as lin-
seed meal and fish. Subjects added to these foods diet for four weeks, whereby the 
fatty acid intake, plasma cell fatty acids and eicosanoid production, and monocyte- 
derived cytokines were measured. On average, volunteers consumed 1.8 g/day of 
EPA + DHA, while the daily intake of ALA was 9  g/day. With this, EPA was 
increased on average three times in plasma, platelets and mononuclear cell phos-
pholipids. There was also a significant decrease in PGE2, IL-1b, and TXB2 synthe-
sis, pro-inflammatory cytokines related to the development of obesity, and another 
metabolic syndrome (Izaola et al. 2015).

5.6.2  Fish Oil

Currently, there are dietary supplements in the market based on fish oil (FO), which 
contain PUFAω3, EPA, and DHA (Mantzioris et al. 2000).

A study in two groups of male C57BL/6 administered with fish oil (low dose = 
1.2%, high dose = 2.4%), showed that subjects delivered with this oil gain less 
weight compared to those without, and intake of this substance reduces fat accumu-
lation and induces the expression of uncoupling protein 1 (UCP1) in mitochondrial 
brown adipose tissue (BAT). Also, it increases oxygen consumption and rectal tem-
perature, as well as upregulation of β3 adrenergic receptors (β3AR) and UCP1, in 
white adipose tissue (WAT) and in interscapular brown adipose tissue; added to this, 
the urinary excretion of catecholamines and norepinephrine is enhanced. Everything 
described indicates that it promotes thermogenesis (Mason and Sherratt 2017). BAT 
is an essential factor in the regulation of energy homeostasis. It's controlled by the 
sympathetic nervous system and mitochondrial uncoupling protein 1 (UCP1). That 
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is why it can provide novel strategies for the treatment of obesity in humans (Kim 
et al. 2015).

In another study, male C57BL/6 mice were administered with a low-fat diet 
(LFD) and high-fat diet (HFD), as well as being supplemented with fish oil (0%, 3% 
or 9%), all treatments were for 6 months. Mice were measured bone structure, body 
composition, and serum cytokines bone-related. The animals fed with HFD 
increased serum TNF-α, leptin, and tartrate-resistant acid phosphatase (TRAP). 
Similarly, serum osteocalcin fell and bone-specific alkaline phosphatase. Moreover, 
the intake of fish oil decreased fat mass, serum TRAP, and expression of TNF-α in 
adipose tissue. The bone content of long-chain PUFAω3 increased, and the PUFAω6 
decreased, with the elevation of FO content in the diet. Therefore, the increased FO 
in the diet may decrease adiposity and thus mitigate bone deterioration induced by 
HFD, possibly by reducing inflammation and bone resorption (Contreras et al. 2016).

Furthermore, in a double-blind, placebo-control trial, supplements derived 
PUFAω3 fish oil at a dose of 2.4 g/day for 6 months was administered. This treat-
ment decreased the levels of triglycerides (TG) and increased HDL-C levels in 
patients with type 2 diabetes with abdominal obesity. However, there were no 
changes in total cholesterol, LDL-C, LDL-C index /HDL-C, body composition, and 
glucose compared to subjects administered placebo (Cao et al. 2020).

5.6.3  Linseed Oil

Flaxseed is one of the oldest cultivated grains in all civilizations; It is used today 
primarily as a nutritional supplement, especially its oil. Linseed oil is an essential 
source of PUFAω3, in which the α-linolenic acid (ALA) represents approximately 
50% of these (Wang et al. 2017).

A study with rats Wistar (Rattus norvegicus) fed diets based on linseed oil and 
sesame oil (independent groups and a third with both oils) for 60 days was per-
formed. Bodyweight (throughout the experiment, twice a week), adiposity index, 
triglycerides, total cholesterol, LDL, HDL, non-HDL, and glucose in serum were 
evaluated at the end of the experiment. The diets enriched with flaxseed and sesame 
oils were rich in PUFAω3, being higher in linseed. The adiposity index was lower 
in animals with diets supplemented with linseed oil. Also, this group showed lower 
levels of total cholesterol, triglycerides, and showed less weight gain. This demon-
strated that diets supplemented with flaxseed oil improve the biochemical and mor-
phometric parameters of experimental animals, explaining that the presence of 
sources of PUFAω3 benefits the quality of food (Goyal et al. 2014).

Another study was carried out in C57BL/6 male mice, where they were divided 
into different groups: fed with a low-fat diet (LFD), high-fat diet (HFD), and two 
groups with the same diets supplemented with flaxseed oil, plus a control group. All 
diets lasted 16 weeks. The animals were weighed twice weekly, as well as the reg-
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istration of food consumption. With these data, the caloric intake of each group was 
calculated, and adipose tissue biopsies were taken for histological analysis. HFD 
mice develop obesity with insulin resistance, a fact that was attenuated by supple-
mentation with linseed oil; even with medium doses of this, the metabolic activation 
of macrophages in adipose tissue (ATM) is blocked, so insulin signaling in adipose 
tissue was improved (Figueiredo et al. 2017b).

5.6.4  Bile Acid and Derivatives

Bile acids come from cholesterol metabolism. In their chemical structure, they pre-
serve the core nucleus of cholesterol; therefore, they are considered substances with 
lipid properties (Thakare et al. 2018; Marin et al. 2015). Bile acids are synthesized 
in the liver and are responsible for forming bile salts, which are the body's natural 
emulsifiers (Macierzanka et al. 2019). The body synthesizes cholic acid and cheno-
deoxycholic acid abundantly; however, there are other bile acids such as deoxycho-
lic and ursodeoxycholic (Chiang 2009). The latter has been used for decades for the 
treatment of cholestasis and cholesterol gallstones (Guarino et al. 2013).

Ursodeoxycholic acid (UDCA) is a secondary bile acid derivative metabolism 
(Fig. 5.16) that has been proposed as a potent treatment for inflammatory bowel 
disease (Yu et al. 2017).

A study conducted in male C57BL/6, were divided into three groups fed with a 
regular diet, high-fat diet (HFD), and HFD supplemented with UDCA 0.5% w/w, 
for 8 weeks. It showed that mice fed with HFD + UDCA had less body weight gain 
compared to other animals. Similarly, the glucose level was decreased in this group 

Fig. 5.16 Chemical structure of ursodeoxycholic acid
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compared to only HFD were fed (He et al. 2018; Zhang et al. 2019). This research 
is opening new search strategies for potential obesity treatments, with this molecule.

Taking supplements and enriched with polyunsaturated fatty acids, with a higher 
proportion of omega-3 to omega-6 food, can induce obesity reduction due to the 
decrease of pro-inflammatory cytokines as well as preventing other metabolic dis-
orders. However, it is necessary to emphasize that adequate dietary management 
regarding these PUFAs should be considered, as well as the consumption of fiber, 
unprocessed sugar, and exercise since their inadequate use can lead to other prob-
lems such as hypertension.

Bile acids have also been shown to be protective factors against obesity and lipid 
accumulation. In a study of transgenic mice, which overexpressed the limiting 
enzyme in the synthesis of bile acids, cholesterol 7a-hydroxylase, it was shown that 
taurokenodeoxycholic, taurodeoxycholic, taurocolic and tauro-β-murolic bile acids 
decreased plasma lipid concentration, such as lysophosphatidylcholines, phosphati-
dylcholines, sphingomyelins, and ceramides. These effects occurred in mice that 
were fed a high-fat diet and suggest anti-obesity results (Qi et al. 2015).

Another bile acid that has shown significant effects against obesity is chenode-
oxycholic acid. This acid was evaluated in an in vitro model, using 3 T3-L1 adipo-
cytes, which were exposed to high concentrations of glucose and different doses of 
the acid. Adipocytes demonstrated oxidative capacities, probably of fatty acids, a 
significant effect in the treatment of obesity (Teodoro et al. 2016).

The use of bile acids also represents a significant challenge for the pharmaceuti-
cal and food industries, since they are substances derived from cholesterol and can-
not be solubilized in water, they also tend to form emulsions, which are very 
complicated systems to use in some food. Furthermore, the high concentration of 
bile acids can be toxic to cells, so its use and consumption should be moderate. 
Some bile acids produced by other animals have been used in capsule form to treat 
problems of obesity, cholesterol, diabetes, bile, but their biological impact on health 
must be considered.

The information presented in the chapter highlights the effects of some lipids 
against cancer, which is a chronic degenerative disease, to a lesser extent we 
report effects on the cardiovascular system, obesity, inflammation and cholesterol 
diseases. Whatever the disease, what is sought in the future is to find adequate 
means to be able to ingest or administer lipids. If we consider the core part of the 
theme of this book, we are faced with many disadvantages, because lipids are dif-
ficult to manipulate for the pharmaceutical and food industries. Its null or poor 
solubility in water prevents them from making formulations that can be adminis-
tered orally, without presenting problems. Associated with the latter, emulsions 
can be formulated to be ingested, but these types of preparations are unpleasant to 
the eye, since they coexist two phases that are immiscible with each other, but that 
can coexist thanks to a surfactant agent. The emulsions can be administered intra-
muscularly, which would be an alternative for lipid treatment. The food industry 
also faces many difficulties when formulating products for human consumption, 
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which use lipids as active ingredients. These substances can be dissolved with 
similar ones that could harm the body, especially if you have a disease associated 
with cholesterol,  triglycerides, dyslipidemias. Therefore, they must also invest a 
lot of inputs in creating the right vehicles to formulate food with healthy lipids. 
All these factors constitute constant research, which has left different products on 
the market, such as emulsions, capsules, ointments. The development of a func-
tional food becomes more complex because every food needs to have a pleasing 
presentation for the client, in terms of smell, color, flavor, texture, and appearance. 
The information collected will allow taking different bibliographic sources in 
order to amplify a particular topic that readers choose.
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Chapter 6
Marine Bioactives

Reza Tahergorabi and Mehdi Abdollahi

Abstract Marine organisms are a rich source of bioactive compounds. Bioactive 
compounds are compounds with health-promoting effects. Consumption of these 
compounds may lower the risk of diseases such as heart diseases, cancer, diabetes, 
osteoporosis, and other complications. Recently, marine bioactives have attracted 
much attention due to their enormous health benefits. This book chapter provides a 
succinct review of the recent studies about marine bioactives including proteins, 
peptides, amino acids, fatty acids, sterols, polysaccharides, oligosaccharides, phe-
nolic compounds, photosynthetic pigments, vitamins, and minerals. It also discusses 
the bioactives derived from marine bacteria as well as different techniques used for 
marine bioactives recovery.

Keywords Marine organisms · Bioactives · Health · Seafood

6.1  Introduction

More than 70% of the earth is covered by the seas, oceans and aquatic environ-
ments. Many living creatures including aquatic plants and animals exist in these 
environments with potential health benefits that have not been discovered yet. Many 
studies have been conducted so far to explore the world under the water and to find 
a cure for many diseases that the world population is dealing with. However, we are 
yet far from exploring these valuable resources of the aquatic world. Earlier studies 
with Greenlandic Inuit or Eskimos indicated that having a great number of seafoods 
in the diet increases well-being and health (Bang et al. 1986; Rangel-Huerta and Gil 
2018). This was probably the milestone of a series of studies on the effect of sea-
food consumption on human body. Since that time, scientists found that marine 
organisms including plant and animals contain bioactive compounds which may 
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promote health in human being. According to these studies, marine organisms may 
provide bioactive compounds with different activities including anticoagulant, 
 calcium- binding, anti-obesity, and anti-diabetic, antioxidant, anti-hypertensive, 
anti-HIV and anti-proliferative activities (Bleakley and Hayes 2017; De Jesus 
Raposo et al. 2013; Abdul et al. 2016). Thus, this chapter discusses the bioactive 
compounds of different types of marine organism. It also reviews their applications 
in health, cosmetic and food industries.

6.2  Marine Proteins

Proteins have a fundamental, physiological and nutritional role in the human body 
as major structural components of all cells. They also act as hormones, enzymes, 
and antibodies and have a critical role as carries in both cell walls and blood. On top 
of that, proteins e.g. collagen provide structural support in connective tissues, cells, 
and skin. As a food component, proteins have essential nutritional roles by provid-
ing energy and amino acids which are vital for growth and maintenance in our body. 
Foods from marine resources are generally recognized as a great source of proteins 
containing all the essential amino acids close to the proportion suitable for human 
beings (Hamed et al. 2015). Marine animal-based foods contain relatively higher 
proportion of protein on a wet weight basis (average 17.3%) than meats from ter-
restrial animals (13.8%), despite having a higher moisture content than most ter-
restrial meats (Tacon and Metian 2013). Marine animals muscle usually contains 
lower amount of stroma proteins (e.g. collagen and elastin) than red meat which 
ranges from 1 to 3% in finfish up to 10% in shark and ray fish. Myofibrillar protein 
content in marine animals ranges between 65 and 75% and it ranges between 20 and 
35% for sarcoplasmic proteins (Venugopal 2008). Marine invertebrates e.g. oyster, 
mussel, clam, and squid exceptionally have another type of protein in their strained 
muscles called paramyosin which ranges between 3 and 19%. Proteins from marine 
animals have high digestibility and biological value as well as having essential 
amino acids especially lysine much higher than proteins from plant foods (Wang 
et al. 2018). These proteins are also rich in amino acids e.g. methionine and lysine 
which are limited in terrestrial meat proteins (Tacon and Metian 2013; Khalili 
Tilami and Sampels 2018).

Beyond their nutritional value, recent studies have shown that proteins from 
marine foods and their hydrolysates can also exert health effects on the human body. 
For many years, health effects of seafoods consumption such as dyslipidemia and 
heart diseases have been attributed to high content of mega-3 fatty acids found in 
their oil. However, most recent studies have shown that marine proteins may also 
play a key role in beneficial health effects of marine foods. Various physiological 
health effects and bioactivities such as mitigating effects on obesity, metabolic syn-
drome, inflammation, type II diabetes (insulin sensitivity or glucose tolerance), car-
diac risk factors (high blood pressure and triacylglycerol levels), osteoporosis, and 
reduced circulating concentrations of lipids have been reported for marine proteins 
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in either animal models or human trials which are summarized in Table 6.1 and 
briefly reviewed in the following.

6.2.1  Antiobesity Properties of Marine Proteins

Obesity which is morphologically seen as overweight and extra body fat accumula-
tion is as worldwide health issue. This excessive body weight has shown strong 
association with heart disease risk factors e.g. insulin resistance, type-2 diabetes, 
dyslipidemia, metabolic syndrome, and high blood pressure. Several studied have 
shown that sole inclusion of fish protein in diet can effectively protect against 
obesity- related disorders especially formation of adipose tissue mass in animal 
models as summarized in Table 6.1. For example, a diet with a mixture of several 
marine protein sources (ling, rosefish, cod, wolfish and muscle from a scallop) 
could reduce fat mass in rats compared with the diets containing a mixture of 
chicken, pork, and beef as main protein source (Holm et al. 2016). However, the 
effects of preventing obesity were more evident in cod protein containing diets. 
Proteins from other fish including salmon, herring, bonito, and mackerel were also 
added to high fat diet and their effects on rats were compared with diets with casein. 
Despite equal energy intake among all groups, it was an only salmon protein- 
containing diet that significantly reduced weight gain (Pilon et al. 2011). These two 
studies suggest that beneficial physiological effects of marine proteins are highly 
governed by their sources. The latter study also found that consumption of salmon 
diet also increased circulating calcitonin levels in the rats which might have also 
played role in reduction of weight gain in the studied rats. Salmon calcitonin is a 
widely studied bioactive peptide in fish protein with 32 amino acids with blood 
calcium lowering activity 40–50 times more potent than human calcitonin (Aadland 
et al. 2015). It has been clinically used for more than 30 years for treatment of meta-
bolic bone disease e.g. osteoporosis, paget disease, and bone metastases by inhibit-
ing osteoclast activity (Pilon et al. 2011).

6.2.2  Hypolipidemic Properties of Marine Proteins

Another reported health benefit for marine food proteins is related to their effects on 
lipid metabolism which is also related to coronary artery disease. Animal studies 
have shown that defatted protein from Alaska Pollak could decrease serum choles-
terol in rats through the inhibition of cholesterol and bile acid absorption and the 
enhancement of cholesterol catabolism in the liver (Hosomi et al. 2009). Also, simi-
lar beneficial effects have been observed in both rabbits fed with cod protein com-
pared to casein and milk proteins and in rat fed with herring and salmon protein 
hydrolysates (Bergeron and Jacques 1989; Drotningsvik et al. 2016). When protein 
from crab, scallop, cod, and chicken was tested on obesity-prone mice, a significant 
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Table 6.1 Bioactive properties of fish proteins studied in animal models

Studied 
bioactivity Protein source Study condition Main results Reference

Anti-obesity Bonito, herring, 
mackerel, or 
salmon

Male Wistar rats
4 weeks

Lower weight gain and 
reduced fat 
accumulation in 
salmon protein fed 
mice

Pilon et al. 
(2011)

Ling, rosefish, 
cod, wolffish, 
and scallop

Healthy male mice
12 weeks

Less fat mass 
accumulation, 
decreased feed intake 
and diminished weight 
gain

Holm et al. 
(2016)

Cod, crab, and 
scallop

Obesity-prone 
male mice, high 
sucrose and 
high-fat diet

Scallop-fed mice 
gained less body and 
fat mass

Tastesen et al. 
(2014)

Hypolipidemic Shrimp, squid 
and octopus 
defatted protein

Male rats, 19 days Decreased hepatic 
cholesterol

Tanaka et al. 
(1998)

Alaska pollock Male Wistar rats
4 weeks

Decreased cholesterol 
in serum and liver

Hosomi et al. 
(2009)

Cod + scallop Female mice, 
13 weeks

Lower serum levels of 
leptin and LDL 
cholesterol

Jensen et al. 
(2016)

Blue whiting 
water-soluble 
protein

Male obese rats
5 weeks

Lower serum and liver 
cholesterol

Drotningsvik 
et al. (2018)

Herring and 
salmon 
by-products 
protein 
hydrolysate

Obese rats
4 weeks

Reduced serum HDL 
and LDL-cholesterol, 
and higher serum TAG, 
MUFA and n-3: n-6 
PUFA ratio

Drotningsvik 
et al. (2016)

Antidiabetic Cod High fat diet fed 
rats
4 weeks

Fully prevented the 
development of insulin 
resistance in rats

Lavigne et al. 
(2001)

Bonito, herring, 
mackerel, or 
salmon

Male Wistar rats
4 weeks

Improved insulin 
sensitivity

Pilon et al. 
(2011)

Bonito Type-2 diabetes 
mellitus rats
6 weeks

Improved T2DM- 
induced bone frailty

Ochiai et al. 
(2015)

(continued)
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reduction in lipid metabolization was found in scallop fed mice (Tastesen et  al. 
2014). Scallop protein could significantly reduce plasma triacylglyceride, non- 
esterified fatty acids, glycerol and hydroxybutyrate in mice. Most of the mentioned 
studies have used fillet or muscle of marine animals as a source of protein in their 
studies. However, a more recent study by Drotningsvik et al. (2018) have evaluated 
anti-obesity effects of water soluble proteins from a pelagic fish called blue whiting. 
Obese rats fed with a diet containing the water soluble proteins (1/3 of protein in 
their diet) from blue whiting had lower levels of serum and liver cholesterol com-
pared to rats fed with 100% of casein in their diet. This was most likely related to 
lower hepatic cholesterol synthesis in the rats fed with the water soluble proteins.

In line with the above mentioned animal studies, a randomized control trial com-
paring the effects of consuming protein from cod, pollock, saithe, and scallops with 
lean meat: chicken, beef, turkey, pork, egg, and low-fat milk in a Norwegian group 
found a reduction in both fasting and postprandial circulating triglycerides concen-
trations in the participants (Aadland et al. 2015). Also, cod protein supplementation 
to thirty-four overweight adults for 8  weeks could help lipid metabolism in the 
participants and reduce LDL cholesterol (Vikoren et al. 2013).

Table 6.1 (continued)

Studied 
bioactivity Protein source Study condition Main results Reference

Anti- 
hypertensive

Fish Spontaneously 
hypertensive rats 
(SHR) for 8 weeks

significant reduction of 
blood pressure

Ait-Yahia 
et al. (2003, 
2005)

sardine Male Wistar rats
3 weeks

decrease of diastolic 
blood pressure and 
heart rates

Khelladi et al. 
(2018)

sardine 
by-products

Obese rats
4 weeks

Lowered blood 
pressure

Affane et al. 
(2018)

Anti- 
inflammatory

Cod protein Bupivacaine- 
injured skeletal 
muscle rats
4 weeks

Promoting growth and 
regeneration of skeletal 
muscle after trauma

Dort et al. 
(2012)

Shrimp protein 
hydrolysate

Bupivacaine- 
injured skeletal 
muscle rats
4 weeks

Facilitated resolution 
of inflammation after 
muscle injury

Dort et al. 
(2016)

Bonito, herring, 
mackerel, or 
salmon

Male Wistar rats
4 weeks

Reduced expression of 
both tumor necrosis 
factor–α and 
interleukin-6

Pilon et al. 
(2011)
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6.2.3  Antidiabetic Properties of Marine Proteins

Type 2 diabetes is another health issue associated with obesity and related to sugar 
metabolism in the body. In this disorder, the human body becomes resistant to the 
effect of insulin or loses the capacity to produce insulin. Some studies have shown 
that seafood and even fish protein can reduce insulin resistance and thereby increase 
capacity to store glucose as glycogen and minimize the risk of type 2 diabetes 
(Nkondjock and Receveur 2003). For instance, feeding rats with a high-fat, high- 
sucrose diet containing cod protein (having 91% protein and 0.19% lipid) as protein 
source completely hindered the development of insulin resistance and glucose intol-
erance in the animals (Lavigne et al. 2001). Control rats fed with the same diet but 
containing soy protein isolate and casein as protein sources showed improvement in 
fasting glucose tolerance and peripheral insulin sensitivity (Lavigne et al. 2000). 
Nevertheless, insulin resistance was detected in the rats fed with soy protein and 
casein. The author showed that the ability of cod protein in preventing insulin resis-
tance caused by obesity in those rats could be partly related to the direct effect of 
amino acids in the cod protein on insulin-stimulated glucose uptake in skeletal mus-
cle cells (Lavigne et al. 2001). In line with the previous studies, feeding rats with 
diet containing salmon protein also promoted their insulin sensitivity (Pilon et al. 
2011). Ochiai et al. (2015) showed that defatted protein produced from dried bonito 
fish (Katsuwonus pelamis) could effectively diminish the bone frailty caused by 
insulin resistance and type 2 diabetes mellitus in young rats (Ochiai et al. 2015). 
This study could confirm that fish protein can also be a marine bioactive that can 
potentially help in mitigating bone frailty independent from the effects found for 
poly unsaturated fatty acids.

A more recent randomized double-blind study on 93 overweight adults evaluated 
the effect of protein from herring and salmon protein hydrolysate as well as cod 
protein on glucose regulation and markers of insulin sensitivity in the participants 
(Hovland et al. 2019). The participants received the fish proteins (2.5 g/day) as well 
as a mixture of casein and whey (as control) as tablet. They did not report fat content 
in the proteins. The study showed that consumption of the low dosage of cod protein 
or herring protein hydrolysates could promote glucose regulation in overweight 
adults. However, they did not find any significant effect for salmon protein hydrol-
syate (Hovland et al. 2019).

6.2.4  Antihypertensive Properties of Marine Proteins

Blood pressure or hypertension is another important risk factor for cardiovascular 
disease which is the largest cause of death globally (Vasdev and Stuckless 2010). 
Normal blood pressure should be 120/80 mmHg and elevation of one or both param-
eters causes heart workload increase and results in a condition called hypertension 
(Jensen and Mæhre 2016). The beneficial effects of marine proteins on hypertension 
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have been studied in both animal models and less frequently in clinical trials. For 
example, a 20% replacement of intact fish protein in the diet of spontaneously 
hypertensive rats (SHR) for 8  weeks significantly reduced blood pressure in the 
animals compared to those eating the casein protein (Ait-Yahia et  al. 2003; Ait 
Yahia et al. 2005). A more recent study showed that a diet containing 20% of sardine 
protein and 2% of lemon zest induced a significant decrease of diastolic blood pres-
sure and heart rate values in rendered diabetic and hypertensive rats compared with 
casein containing diet (Khelladi et  al. 2018). Also, purified protein from sardine 
by-products could induce lowered blood pressure in obese rats compared with 
casein (Affane et al. 2018). Although studies on the effects of intact marine proteins 
are rare, a large number of studies have shown that total protein hydrolysates from 
different marine sources such as salmon (Enari et al. 2008), cod (Jensen et al. 2014), 
cobia (Yang et al. 2013) and jellyfish (Liu et al. 2012) have significant blood pres-
sure reducing effect on SHR. Also, evaluations on chronic effect of total protein 
hydrolysates from some marine sources such as seabream (Fahmi et al. 2004) and 
jellyfish (Liu et al. 2012) on SHR have shown a significant reduction of blood pres-
sure even comparable to that of captopril. When it comes to human studies the 
results are not easily judged. For example, a randomized trial with 33 medicated 
patients with coronary heart disease showed that cod protein as main protein source 
in diet could reduce both systolic and diastolic blood pressure in the patients (Erkkilä 
et al. 2008). However, supplementation of salmon protein hydrolysate capsules to 
overweight adults for 2  months had no effect on blood pressure of the patients 
(Enari et al. 2008).

6.2.5  Anti-Inflammation Properties of Marine Proteins

Inflammation is normally considered as a regular reaction of our immune system to 
harmful stimuli which has a critical role in our life. However, inflammation disorder 
can cause a vast variety of diseases such as cancer, atherosclerosis, and ischemic 
heart disease, colitis, Crohn's disease and so on. Anti-inflammatory effects of 
omega-3 containing fish oil are widely agreed but recent studies have shown that 
fish proteins and most probably their hydrolysate may have anti-inflammatory 
effects.

For example, defatted cod protein added to the diet of rats with artificially injured 
muscle promoted resolution of inflammation in their muscles compared to casein 
and defatted peanut protein. The cod protein could significantly reduce density of 
neutrophils and ED1+ macrophages at day 14 and 24 post injury in the injured 
muscles of the rats (Dort et al. 2012). Addition of defatted peanut protein to the diet 
of the rats with injured muscles had no anti-inflammatory effect and even reduced 
their muscle mass recovery (Dort et al. 2012). The authors later showed that the 
anti-inflammatory effect observed for cod protein is related to its high levels of 
arginine, glycine, lysine and taurine by supplementing casein with a mixture of 
those amino acid in similar amount to their levels in cod protein (Dort et al. 2016). 
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In a later study, Dort et  al. (2016) reported similar anti-inflammatory effects for 
shrimp protein hydrolysate in rats with artificially injured muscle. Anti-inflammatory 
activity was also reported for proteins from four different fish species including 
bonito, salmon and herring and mackerel. Proteins from the named fish could miti-
gate expression of both tumor necrosis factor–α and interleukin-6 in visceral adi-
pose tissue of rat compared with casein (Pilon et al. 2011).

6.2.6  Brain Health Effects of Marine Proteins

Age-related diseases such as dementia and Alzheimer’s disease that are progressive 
disorders causing brain cell death and loss of memory are also growing in the aging 
population around the world. Beneficial effects of fish consumption against the cog-
nitive related disease have been widely studied but it has been mainly related to the 
function of omega-3 fatty acids (Kühn 2014). However, a recent study has shown 
that parvalbumin which is recognized as most common allergen in fish can cause 
cross-reactions with human amyloidogenic proteins and inhibits amyloid formation 
of α-synuclein which is mostly associated with neurodegenerative disorders such as 
Alzheimer’s and Parkinson’s (Werner et al. 2018). The authors suggested that ben-
eficial effects of fish on brain health might be also partly explained by its protein 
function. However, further studies are needed to make a concrete conclusion in 
this regard.

6.2.7  Marine Algae Proteins and Their Bioactivity

Proteins from marine plants i.e. seaweed and microalgae are also an emerging type 
of marine proteins that have gained massive attention recently as more sustainable 
and marine origin vegetarian protein alternatives. Proteins in seaweed are a struc-
tural component of their cell wall and have physiological roles as enzymes and pig-
ments (Pimentel et al. 2019). Protein contents in seaweeds can reach up to 47% dry 
weight in Rhodophyceae (red seaweeds) and 9–26% dry weight in Chlorophytes 
(green seaweeds), followed by the lowest at about 3–15% in Phaeophytes (brown 
seaweeds). However, protein content of seaweeds varies substantially by change in 
season and geographical locations and environmental conditions (Okolie et al. 2018).

Two typical proteins found in seaweeds with bioactive properties are lectin and 
phycobiliproteins. As glycoproteins with high specificity binding with carbohy-
drate, lectins have found a wider range of application e.g. in blood grouping, anti- 
viral (including human immunodeficiency virus type 1(HIV-1)), cancer biomarkers, 
and targets for drug delivery (Bleakley and Hayes 2017). Lectins from algal sources 
have also shown other bioactive properties such as antinociceptive, antibacterial, 
antiviral, antiadhesion, cytotoxic, and mitogenic properties (Okolie et al. 2018).
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Phycobiliproteins are photosynthetic proteins that have critical role in light cap-
turing in red seaweeds. They are water-soluble and inherently fluorescent which 
makes them a useful biomaterial for application in some immunological methods 
(Pal and Suresh 2016). Phycobiliproteins are also used as natural colorants in the 
food and cosmetic industry. In addition, these proteins have shown a wide range of 
bioactive properties such as hepatoprotective anti-inflammatory activities, antitu-
mor, antioxidant, antiviral and neuroprotective properties (Bleakley and Hayes 
2017). These multifunctional bioactivities of phycobiliproteins have led to their 
application in treatment of some disease e.g. arteriosclerosis, serum lipid reduction, 
and lipase inhibition (Okolie et al. 2018).

Protein hydrolysates and peptides generated by enzymatic hydrolysis of proteins 
from a wide range of seaweeds have also shown several bioactive properties such as 
antioxidant (Heo and Jeon 2008; Wang et al. 2010), antihypertensive (Athukorala 
and Jeon 2005; Cian et al. 2012), antiproliferative (Athukorala et al. 2006) and anti-
diabetic (Harnedy et al. 2015) properties. However, results are mainly limited to 
in vitro studies which call for more research on animal models and human trials for 
a better understanding of their application potentials. This has also made seaweeds 
as one of the fastest-growing research fields for recovery of marine origin bioactive 
compounds.

Altogether, recent studies have shown that health benefit effects of marine foods 
go beyond their omega-3 PUFAs and their protein can play a significant role in their 
bioactivity. However, more human studies in clinical and intervention trials on pure 
and especially defatted marine proteins are needed to support bioactivities found 
in vitro models and animal models. Also, effects of processing, storage and cooking 
methods on the bioactivity of marine proteins need to be considered in future stud-
ies and recommendations.

6.3  Marine Peptides

Peptides are short chains of amino acids connected with peptide bonds with usually 
between 3 to 20 amino acids (Jo et al. 2017). Bioactive peptides may naturally exist 
in marine organisms to perform some physiological roles in their body or be gener-
ated artificially by enzymatic hydrolysis of marine proteins. The enzymatic hydro-
lysis method has gained great attention in the food industry and it has been used for 
extraction of bioactive peptides from a wide range of marine resources such as fish, 
crustaceans, mollusks, algae, and microorganisms, especially during the last two 
decades. Different types of marine animals such as fish, shrimp, lobster, crab, mus-
sel, clam, jellyfish, sea cucumber, sea urchin, squid, oyster, sponges, rotifers and 
etc. have been used for production of bioactive peptides using enzymatic hydrolysis 
(Proksch et al. 2010; Bordbar et al. 2011; Ngo et al. 2012; Harnedy and FitzGerald 
2012; Jo et al. 2017). In addition, seafood industry has already lost more than 50% 
of its biomass as by-product e.g. fish head, frame, tail, bone, skin, viscera, blood and 
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shells which have been targeted as a great substrate for production of marine bioac-
tive peptides (Atef and Mahdi Ojagh 2017; Ishak and Sarbon 2018).

Bioactive peptides are inactive within the parent protein structure but as soon as 
they are released using the hydrolysis, they show various bioactive properties 
depending on their amino acid composition and sequence (Ngo et al. 2012). Thanks 
to the almost endless number of variations that can happen in amino acid composi-
tion and sequence, marine bioactive peptides have shown several types of bioactiv-
ity including antihypertensive, antiproliferative, anticancer, antioxidant, 
antimicrobial, anti-inflammation, anticoagulant and opioid agonists or antagonists 
properties (Proksch et al. 2010; Bordbar et al. 2011; Ngo et al. 2012; Harnedy and 
FitzGerald 2012; Samarakoon and Jeon 2012; Jo et al. 2017). In the light of these 
explanations, bioactive peptides may be able to potentially improve human health 
and reduce disease risk as nutraceuticals and pharmaceuticals. In parallel, promo-
tion in consumers’ awareness about the association between food and health has led 
increase in demand for functional foods (Jo et al. 2017). Thus, bioactive peptides 
produced from marine organisms, representing more than 50% of our global biodi-
versity, can be a great source of bioactive compounds to be used as nutraceuticals 
and functional foods (Kim and Wijesekara 2010; Suleria et al. 2015). Thus, in the 
following, an overview of most recent bioactive peptides produced from different 
marine resources as well as seafood processing by-products and their bioactive 
properties is presented.

6.3.1  Marine Peptides with Antioxidant Activity

Antioxidants play an important role in our body by reducing negative effects from 
the excessive generation of reactive oxygen species (ROS) such as superoxide anion 
(O2−) and hydroxyl (OH1−) radicals. However, imbalance between generation of 
ROS and ability of endogenous antioxidants in human body in their detoxification 
can cause oxidative stress. This imbalance has been associated with several chronic 
health issues such as heart disease, stroke, high blood pressure, cancer, inflamma-
tory disease and aging (Valko et al. 2007). Bioactive peptides with ability to scav-
enge free radicals and ROS or stopping lipid peroxidation by interrupting the radical 
chain reaction have been extracted from protein hydrolysate of different marine ani-
mals and plants. These peptides are normally called antioxidant peptides and have 
been isolated from fish and shrimp muscle and their processing by-products e.g. 
head (Yang et al. 2011; Chi et al. 2015a), frame (Je et al. 2005, 2007), skin (Zhang 
et al. 2012), bone (Baehaki et al. 2015), swim bladder (Zhao et al. 2018), viscera 
(Villamil et al. 2017), and shrimp peeling by-products (Ambigaipalan and Shahidi 
2017). For example Chi et al. (2015b) extracted three antioxidant peptides from tuna 
head by-products with sequence of Trp-Glu-Gly-Pro- Lys (WEGPK), Gly-Pro-Pro 
(GPP), and Gly-Val-Pro-Leu-Thr (GVPLT), with molecular weights of 615.69, 
269.33, and 485.59 Da, respectively. The antioxidant activity of the isolated peptide 
was most likely related to high concentration of hydrophobic and/or aromatic amino 
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acid residues in their sequence. However, the mechanism of their antioxidant activ-
ity was different where GPP indicated highest in vitro radical scavenging activity 
(IC50 = 1.9-2.4) but WEGPK inhibited the peroxidation of linoleic acid. Also, a 
peptide (Lys-Thr-Phe-Cys-Gly-Arg-His) with molecular weight of 86.1 kDa pro-
duced from croaker (Otolithes ruber) muscle with enzymatic hydrolysis could pro-
mote the endogenous cellular antioxidant enzymes in Wistar rats (Nazeer et  al. 
2012). The peptide elevated the activities of catalase (CAT), glutathione- S-
transferase (GST) and superoxide dismutase (SOD) in the animals.

Other marine animals including crab (Yoon et al. 2013), squid (Sudhakar and 
Nazeer 2015), oyster (Umayaparvathi et  al. 2014; Zhang et  al. 2019a), mussel 
(Wang et al. 2013), clam (Chi et al. 2015a), jellyfish (Zhuang et al. 2009a), and sea 
cucumber (Zhou et al. 2012) have been used for production of antioxidant peptides. 
For example, Sudhakar and Nazeer (2015) could separate a 679.5 Da peptide from 
cuttlefish (Sepia brevimana ) by enzymatic hydrolysis with the sequence of Ile/Leu- 
Asn- Ile/Leu-Cys-Cys-Asn with a remarkable inhibition of linoleic acid auto- 
oxidation in a model system.

Marine algae are also considered as a rich source for isolation of antioxidant 
peptides due to their highly unstable living conditions in ocean experiencing 
extraordinary low light intensities and high oxygen concentrations (Samarakoon 
and Jeon 2012). For example, a peptide with sequence of Glu-Leu-Trp-Lys-Thr-Phe 
recovered from enzymatic hydrolysis of Gracilariopsis lemaneiformis proteins with 
α-chymotrypsin showed a significant free radical scavenging activity with an EC50 
value of 1.514 mg/ mL (Zhang et al. 2019b). The authors suggested low molecular 
weight and hydrophobic and/or aromatic amino acids in the sequence of the purified 
peptides as main reason for its relatively good antioxidant activity.

6.3.2  Marine Peptides with Antihypertensive Properties

Peptides produced form marine organisms have been widely investingated as bio-
actives with antihypertensive properties. Antihypertensive peptides can modulate 
physiological regulation of blood pressure by inhibiting the activity of angioten-
sin-I converting enzyme (ACE) (Abdelhedi and Nasri 2019). ACE can regulate 
blood pressure by converting angiotensin-I to angiotensin-II. The later is a potent 
vasoconstrictor and also inactivates the vasodilator bradykinin (Li et  al. 2004). 
Side effects created by treatment of blood pressure with synthetic ACE inhibitors 
such as captopril, enalapril, alcacepril have made interest in finding natural alter-
natives including bioactive peptides (Kim and Wijesekara 2010). From a mecha-
nistic point of view, synthetic drugs inhibit ACE by blocking its action while ACE 
inhibitory peptides react with ACE and prevent its attachment to Angiotensin I 
(Ngo et al. 2012). However, the mechanism of action has not been well understood 
for some bioactive peptides. Numerous studies have shown antihypertensive activ-
ity of marine-derived bioactive peptides in both in vitro and in vivo. Bioactive frac-
tions obtained by enzymatic hydrolysis of cobia head with papain showed an ACE 
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inhibitory IC50 of 0.24 mg/ml which was intensified after incubation with gastroin-
testinal enzymes (Yang et al. 2013). Oral administration of the bioactive peptides 
to SHR in a dosage of 150–1200 mg/kg body weight could reduce systolic blood 
pressure in a dose-dependent manner in the rats. Similar blood pressure-lowering 
effect was found in SHR fed with bioactive peptides from jellyfish Rhopilema 
esculentum (IC50 = 1.28 mg/ml) (Liu et al. 2012), oyster (IC50 = 66 μmol/L) (Wang 
et al. 2008), sea bream scale collagen (IC50 = 0.57 mg/ml) (Fahmi et al. 2004), yel-
lowfin sole (Limanda aspera) frame (IC50 = 28.7 μg/ml) (Jung et al. 2006), bigeye 
tuna dark muscle (Thunnus obesus) (IC50 = 26.6 μM), chum salmon (Oncorhynchus 
keta) skin (IC50 = 18.7 μM) (Wang et al. 2008).

The antihypertensive effect of marine bioactive peptides has been also reported 
in some human studies. For example, daily administration of 3 g of a 3 kDa perme-
ate of protein hydrolysate from dried bonito could significantly reduce systolic 
blood pressure in borderline and mildly hypertensive human subjects (Fujita et al. 
2001). Also, 300 and 500 mg daily uptake of protein hydrolysate from a seaweed 
(Undaria pinnatifida) showed the same effect in mildly hypertensive subject groups 
consuming its jelly after 8 weeks (Kajimoto et al. 2002). Similarly, a daily intake of 
1.6 g oligopeptide from Nori (Porphyra yezoensis) resulted in a significant reduc-
tion of systolic blood pressure in participants with high-normal blood pressure after 
12 weeks (Kajimoto 2004). In addition, consumption of a beverage (100 ml) con-
taining 2 g of salmon muscle protein hydrolysate for 12 weeks significantly reduced 
systolic and diastolic blood pressure in 60 mildly and high-normal hypertensive 
participants (Enari et al. 2007; Norris et al. 2013).

6.3.3  Marine Peptides with Antiproliferative and Anticancer 
Properties

Cancer is one of the top leading causes of death among the global population and is 
continuously increasing which has made it a big threat for the global population 
(Ezzati et al. 2002). Cancer is the abnormal growth and uncontrolled proliferation 
of cells caused by certain mutations in cellular DNA which destabilize cell division 
and death process (Le Gouic et al. 2019). This uncontrolled cell division can finally 
lead the formation of tumor which may limit its location or invade and spread to 
other parts of body (Ezzati et al. 2002). Production of antiproliferative peptides that 
can induce cell death by apoptosis has gained interest as a way for treatment of 
cancer. Different peptides from marine organisms have shown antiproliferative and 
anticancer properties. Among the studied organisms that can produce toxins; 
sponges, mollusk and tunicates have been the most effective and studied aquatic 
organisms (Suarez-Jimenez et al. 2012). However, peptides with antiproliferative 
effect have been also isolated from other marine organisms such as marine snails 
(Kim et al. 2013), oyster (Umayaparvathi et al. 2014) and fish (Song et al. 2014) and 
snow crab by-products (Doyen et al. 2011). Two peptides with molecular weight 
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ranging from 390 to 1400 Da separated from enzymatic hydrolysate of tuna dark 
muscle showed antiproliferative activity against human breast cancer cell line 
MCF-7 (Hsu et al. 2011). The purified peptides had an amino acid sequence of Leu- 
Pro- His-Val-Leu-Thr-Pro-Glu-Ala-Gly-Ala-Thr and Pro-Thr-Ala-Glu-Gly-Gly-
Val-Tyr-Met-Val-Thr. The two peptides exhibited a dose-dependent inhibition effect 
of the cancer cells with IC50 values of 8.1 and 8.8 μM. Also, a peptide with amino 
acid sequence of YALPAH from hydrolysate of half-fin anchovy (Setipinna taty) 
induced PC-3 cell apoptosis at the concentration of 4.47 μM (Song et al. 2014). The 
peptide showed an IC50 of 8.1 mg/ml and its antiproliferative activity was correlated 
to its positive charge intensity in a way peptide with the highest positive charge 
intensity showed the strongest antiproliferation. Anticancer peptides found in the 
studied hydrolysates from marine organisms have all had very low molecular weight 
and all contained active amino acids including Pro, Gly, Lys, Arg, and Tyr. This 
might be because low molecular weight peptides have higher mobility and diffusiv-
ity than larger peptides which facilitates their interaction with cancer cells and pro-
mote their anticancer activity (Ishak and Sarbon 2018).

6.3.4  Marine Peptides with Skin, Bone, and Joint Health 
Effects

Several factors including chronological aging, dermatological disorders, and envi-
ronmental conditions can cause skin properties loss. This can be even intensified 
undesirable lifestyle and photo-aging (Fu et  al. 2018). Collagen peptides from 
marine foods have gained great interest as a sustainable ingredient with antiaging 
and skin health promotion properties. A large number of studies have shown that 
collagen peptides from different marine sources such as fish scale (Wang et  al. 
2017) fish skin (Pyun et al. 2012) and jellyfish (Zhuang et al. 2009b; Fan et al. 2013) 
could increase collagen production in rats and significantly decrease matrix metal-
loproteinases (MMP) expression. For example, Song et  al. (2017) showed that 
ingestion of collagen peptide from silver carp skin at 50, 100 and 200 mg/kg body 
weight increased moisture contents of the skin of mice subjected to UV-induced 
photoaging. It also significantly increased the skin components and improved the 
antioxidative enzyme activities in both serum and skin of the animals. In addition, 
they found that low molecular peptides were more effective than high molecular 
weight collagen peptides. In contrast, ingestion of gelatin (>120 kDa) from silver 
carp did not lead to any significant change compared to control mice. Later Liu et al. 
(2019) showed that collagen peptides form silver carp skin promotes the photoaging 
skin cell repair by activating the TGF-β/Smad pathway to promote procollagen syn-
thesis and suppressing AP-1, MMP-1 and MMP-3 protein expression to prevent 
collagen degradation. Similarly, oral ingestion of collagen hydrolysate from Nile 
tilapia scale increased the collagen content and antioxidant enzyme activities and 
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improved the appearance and structure of skin after 6  months in mice (Wang 
et al. 2017).

A clinical study on 64 individuals for 12 weeks evaluated the effect of collagen 
peptides from catfish skin on human skin hydration and elasticity, and wrinkling 
when it is orally consumed. This randomized controlled trial showed that daily 
intake (1000 mg/day) of low-molecular-weight collagen peptide from the fish skin 
significantly promoted hydration, elasticity, and wrinkling in human skin (Kim 
et al. 2018). It has been also shown that gelatin hydrolysate from fish skin resulted 
in significantly higher content of hydroxyproline-containing peptides in human 
blood compared with gelatin hydrolysate from porcine in 5 h after ingestion (Ohara 
et al. 2007; Ichikawa et al. 2010). This means collagen source can affect quantity 
and structure of hydroxyproline-containing peptides in human blood after their oral 
administration which would govern their health benefit. This may suggest marine 
collagens as a more promising source for functional food development. However, 
further clinical studies are needed to fully support this.

Bone related disorders such as osteoporosis and osteoarthritis are also consid-
ered as a common disease in the global aging population (Daneault et al. 2017). 
Marine collagen peptides have also shown a positive effect in treatment of osteopo-
rosis, joint disorders, and osteoarthritis (Aleman and Martinez-Alvarez 2013). For 
example, collagen hydrolysate from silver carp skin improved mineral density, 
increase bone hydroxyproline content, enhance alkaline phosphatase level and 
reduce tartrate-resistant acid phosphatase 5b (TRAP-5b) activity in serum of chron-
ologically aged mice (Zhang et al. 2018). Also, a significant reduction of bone loss 
was observed in mice supplemented with collagen hydrolysate from fish compared 
to a control protein suggesting benefits of hydrolyzed collagen for osteoporosis 
prevention go beyond the effect of simple protein supplementation (Wauquier 
et al. 2019).

Altogether, bioactive peptides from marine resources have shown a wide range 
of bioactive properties which have made them a promising source for the develop-
ment of functional foods as a route to benefit from these biologically active ingredi-
ents in human health promotion. However, further studies on the efficacy of marine 
bioactive peptides when added to food products is needed.

6.4  Marine Amino Acids

Seafood products such as fish, crustaceans, and mollusks are very good sources of 
essential amino acids (EAA) and contain proteins with a very high biological value. 
Proteins from marine animals are a rich source of methionine (5.9 to 6.4% of total 
EAA) and lysine (18.2–19.6% of total EEA) (Tacon and Metian 2013). This makes 
marine products a good substitute for these amino acids which are normally consid-
ered as limiting amino acids in plant-based proteins. Marine plants especially brown 
seaweeds are also a reach source of aspartic acid and glutamic acid. Other abundant 
amino acids in edible seaweeds e.g. Palmaria palmata and Enteromorpha include 
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histidine, leucine, isoleucine, methionine, and valine (Pal and Suresh 2016). Also, 
content of valine, threonine, isoleucine, leucine, methionine, and phenylalanine in 
Sacharine latissima and proteins from this brown seaweed met the WHO/FAO’s 
adult and infant recommended dietary intake level set by WHO/FAO/UNU 
(Abdollahi et al. 2019).

Marine foods are also considered as an important source of taurine which is a 
biologically active amino acid. Taurine is naturally occurring Sulphur-containing 
amino acid (2-aminoethanesulphonic acid) in the human body which does not 
include in protein sequence or structure, but it plays very important biological role 
in our body. A wide range of biological actions including beneficial effect on cardio-
vascular health, protection against ischemia-reperfusion injury, modulation of intra-
cellular calcium concentration, and antioxidant, antiatherogenic and blood 
pressure-lowering effects have been reported for taurine (Xu et al. 2008). It can be 
partially synthesized in the body, but diet is the main source of taurine in healthy 
people. Seafoods especially mollusks are rich source of taurine and a large part of 
seafood health benefits has been associated with their high levels of taurine. For 
example, Dragnes et  al. (2009) reported a range of 57  mg/100  g in haddock to 
510 mg/100 g in blue mussel when studying different seafood including cod fillet, 
salmon fillet, saith fillet, haddock fillet, cod roe, peeled shrimp and deshelled mus-
sel. Among the studied fish fillets, saithe had the highest content with 162 mg/100 g. 
They also found substantially higher content of taurine in cod roe, shrimps and blue 
mussel than all the studied fish fillets. A level of 70 and 240 mg/100 g wet weight 
has been also reported for oyster and clam (Lourenço and Camilo 2002; Harnedy 
and FitzGerald 2012). However, taurine content of seafood products can be strongly 
affected by processing conditions, cooking, and storage. Since taurine is a water- 
soluble compound, products subjected to soaking, brining or washing experience a 
great loss of taurine compared to freshly caught products (Dragnes et al. 2009).

6.5  Marine Oils and Fatty Acids

Marine food products are considered as the major food source of long-chain 
omega-3 fatty acids especially eicosapentaenoic acid (EPA) and docosahexaenoic 
acid (DHA). A great scientific and public interest has been created toward consump-
tion of marine omega-3 polyunsaturated fatty acids since studies found a signifi-
cantly lower incidence of cardiovascular disease (CVD) in Greenlandic Inuit or 
Eskimos having a great number of seafoods in their diet compared to Western popu-
lations (Bang et al. 1986; Rangel-Huerta and Gil 2018). Long-chain omega-3 fatty 
acids including EPA and DHA are very insufficiently produced from their plant 
origin precursor alpha-linolenic acid in human body (Keefe et al. 2019). Thus, they 
must be necessarily provided by our diet and/or supplementation with marine fatty 
acids. Marine foods are in general considered as a rich source of long-chain omega-3 
fatty acids but there is large variation in the content of these fatty acids among dif-
ferent types of seafood.
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6.5.1  Marine Sources of Omega-3 Fatty Acids

The muscle of fatty fish such as salmon, trout, herring, mackerel, sardine, anchovy, 
albacore and tuna contains high amounts of EPA and DHA. For example, 100 g of 
cooked salmon and herring or 200 g of sardine can provide 2 g of EPA +DHA. This 
will cover the recommendations for daily intake of omega-3 fatty acids (0.25–2 g) 
by World Health Organization (Itsiopoulos et al. 2018). Demersal fish such as cod 
and halibut store oil mainly in their liver thus have low content of EPA and DHA in 
their muscle.

Fish oil is also a very important source of long-chain omega-3 and is the richest 
available source of EPA and DHA. Global production of fish oil is around 0.8–1 
million tons which are mainly produced from whole pelagic fish including ancho-
veta, sardine, capelin, blue whiting, menhaden, and herring especially in southwest 
America (Auchterlonie 2018). Also, almost a quarter of global fish oil is produced 
from fish processing by-products which its share is increasing as a more sustainable 
alternative. More than 75% of global fish oil production is used for animal feeding, 
especially in aquaculture. Around 21% of its global production is directly used for 
human consumption as omega-3 capsules, infant formulas and pharmaceuticals and 
functional food supplements which are expected to have major growth in demand 
for fish oil (Seafish 2018). Although the major part of fish oil is used for feed, still 
marine oils are one of the most popular supplements in the world. For example, 
marine origin omega-3 products are used by 6.5% of the population in the USA 
which represents 37% of supplement users in the country (Albert et al. 2016).

Other emerging marine sources of omega-3 fatty acids are krill and algae and 
copepods oil as shown in Fig. 6.1. Krill oil contains high levels of phospholipids and 
represents a good source of EPA and DHA up to 12–50 g of long-chain omega-3 

Fig. 6.1 Marine sources of omega-3 fatty acids can be directly consumed as seafood products or 
used for the production of fish oil and omega-3 concentrates
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fatty acids per 100 g oil depending on species (Adarme-Vega et al. 2014). Krill oil 
is mainly produced by harvesting a krill species known as Euphasia superba and 
compared to fish oil stores 30–65% of long-chain omega-3 fatty acids as phospho-
lipids while it is mainly stored as triglycerides in fish oil (Burri and Johnsen 2015). 
Several studies have shown that since cell membrane is made of phospholipids, this 
similarity may increase physiological fatty acid absorption of krill oil compared to 
fish oil (Andraka et al. 2019). Some review papers have recently gathered researches 
on bioavailability and health benefits of krill oil (Burri and Johnsen 2015; Andraka 
et al. 2019). Recently a Norwegian company called Calanus has started marketing 
oil extracted from a small copepod called Calanus finmarchicus as a new source of 
marine long-chain omega-3 fatty acids. Omega-3 fatty acids are mainly stored as 
wax esters in this copepod and are sold as the only commercially available marine 
source of wax esters.

Marine microalgae are another emerging source of marine omega-3 fatty acids 
which is considered as a vegetarian and sustainable marine alternative. Microalgae 
are primary producers of long-chain omega-3 fatty acids which are later accumu-
lated in other marine organisms including krill and fish. They can have oil content 
of 10-50% of their body weight which can store omega-3 as 30–70% of their fatty 
acids (Martins et al. 2013).

6.5.2  Health Benefits of Marine Omega-3 Fatty Acids

Marine omega-3 polyunsaturated fatty acids are among the most studied and docu-
mented food bioactives with health benefits during the last four decades and some 
of their health benefits are summarized in Fig.  6.1. Beneficial health effects of 
marine omega-3 polyunsaturated fatty acids on CVD by preventing sudden cardiac 
death, congestive heart failure, and ischemic stroke have been reported in many 
clinical studies and reviewed by Bowen et  al. (2016) and Elagizi et  al. (2018). 
Recently 3 large randomized control trials on the potential benefits of marine 
omega-3 fatty acids on the occurrence of CVD have been conducted (Keefe et al. 
2019). First study was done on 8179 patients suffering from coronary heart disease 
and showed that daily intake of highly purified omega-3 product (4 g/day) contain-
ing EPA reduced the risk for major adverse CVD by 25% (Bhatt et al. 2019). The 
two other large trials were conducted in primary prevention populations (Bowman 
et al. 2018; Bhatt et al. 2019). They also indicated that daily intake of purified fish 
oil (1 g/day) providing 840 mg/day of EPA and DHA significantly diminished risks 
of death due to coronary heart disease. It was especially effective in those who did 
not consume fish and seafood frequently (Bowman et al. 2018; Bhatt et al. 2019). 
The authors concluded that high doses of marine omega-3 fatty acids should be 
consumed for patients with coronary heart disease on statins having elevated tri-
glycerides and in primary prevention for people who do not consume at least 1.5 
meals of seafood/week (Keefe et al. 2019).
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Omega-3 fatty acids especially DHA are primary structural fatty acids in the 
brain membrane phospholipids thus their beneficial neuroprotective effects against 
dementia have been also reported (Karr et al. 2011). A large number of studies have 
also evaluated the effects of omega-3 fatty acids on cognitive decline or Alzheimer’s 
disease (Sinn et al. 2010). Long-chain omega-3 fatty acids have a vital role for nor-
mal development of brain and their levels decrease in the brains of people with 
Alzheimer’s disease (Karr et al. 2011; Shahidi et al. 2018). Studies with biological 
and animal models have shown that omega-3 fatty acids can improve blood flow, 
reduce inflammation and/or amyloid-β pathology which giving them ability of pri-
mary prevention of cognitive decline (Fotuhi et  al. 2009; Jicha and Markesbery 
2010). This is in line with observational studies on human which also suggests con-
sumption of omega 3 fatty acids can reduce cognitive decline with aging (Canhada 
et al. 2018). However, Fotuhi et al. (2009) concluded in their review that the existing 
data may support the role of these fatty acids in slowing cognitive decline in elderly 
people without dementia, but not for the prevention or treatment of dementia, 
including Alzheimer disease.

Other important health benefits reported for marine long-chain omega-3 fatty 
acids includes preventing or slowing the progression of age-related macular degen-
eration (Ghasemi Fard et al. 2019; Punia et al. 2019), anticancer properties (Manson 
et al. 2019). It has been also reported that they can reduce oxidative stress (Heshmati 
et al. 2019), and have immuno-modulatory activity. This makes them a prominent 
supplement recommended for prevention or treatment of inflammatory disorders 
e.g. rheumatoid arthritis (RA), Crohn’s disease, ulcerative colitis, psoriasis, asthma, 
lupus and cystic fibrosis (CF) (Ruxton et al. 2004).

6.6  Marine Sterols

Sterols are a group of lipids that are also found in marine organisms with different 
biological roles as hormones and signaling molecules (Pal and Suresh 2016). They 
are also a structural component of cell membrane providing membrane fluidity and 
permeability. Sterols have been isolated from different marine sources such as dia-
toms (Belt et al. 2018) and sponges (Heidary Jamebozorgi et al. 2019) but marine 
algae are considered among the most important marine sources of bioactive sterols 
(Abdul et al. 2016). The main type of sterol found in brown algae is fecosterol while 
red algae contain mainly cholesterol and green algae (Chlorophyceae) contain 
mainly Taergosterol and 24-ethylcholesterol (Sánchez-Machado et  al. 2004). A 
wide range of biological activities have been also reported for sterols from marine 
organisms including antioxidant, antidiabetic, anti-inflammatory and anti-HIV 
properties, anticancer activity, hepatoprotective, antiobesity, anti-osteoarthritic and 
anti-osteoporotic effects as well as anti-hyperlipidemic and anti-arteriosclerosis 
effects (De Jesus Raposo et al. 2013; Abdul et al. 2016).
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6.7  Marine Polysaccharides

Marine animals that are used as muscle food contains normally low contents of 
polysaccharides but shells of crustaceans such as shrimp and crab as well as squid 
pen are a rich source of chitin which is one of the most important marine polysac-
charides (Fig. 6.2). Chitin or poly (β-(1-4)-N-acetyl-D-glucosamine) is the second 
most abundant polysaccharide on the earth which is industrially produced from 
marine shell waste stream (Ngo et al. 2015). However, chitin has poor solubility due 
to its crystalline structure which limits its application. Thus, chitin is converted to 
chitosan which is generated by deacetylation of chitin through enzymatic or chemi-
cal processes. Chitosan is soluble in weakly acidic solutions and has antioxidant and 
antimicrobial properties. It is widely used for biomedical applications such as drug 
delivery, wound healing, tissue regeneration, as well as food protection, agriculture, 
textile, cosmetics, paper making and wastewater treatment (Muxika et  al. 2017). 
Also a recent systematic review of randomized controlled trials by Huang et  al. 
(2019) concluded that chitosan consumption might be a useful adjunctive pharma-
cological therapeutic tool for bodyweight management, particularly in overweight/
obese participants.

Another bioactive polysaccharide extracted from marine animals is chondroitin 
sulfate which is a sulfated glycosaminoglycan. Cartilage of some marine animals 
such as shark and ray for many years have been considered a good source of this 
polysaccharide. More recently other marine sources such as sea cucumber (Myron 
et al. 2014), fish (Vázquez et al. 2016) and shrimp by-products (Palhares et al. 2019) 
have been introduced as alternative marine sources for extraction of chondroitin 
sulfate. It is an essential component of the extracellular matrix of connective tissues. 
This glycosaminoglycan has various biological and vital roles in human body. This 
ranges from help in function and elasticity of the articular cartilage and hemostasis 

Fig. 6.2 Marine polysaccharides and their potential animal and algae sources
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up to regulation of cell development, cell adhesion, proliferation and differentiation 
(Vázquez et al. 2013). A wide range of commercial products of chondroitin sulfate 
is marketed as nutraceuticals with cartilage regeneration, anti-inflammatory activity 
and osteoarthritis properties (Volpi 2009). The products mainly contain low/
medium-molecular weight chondroitin sulfate (inferior to 20 kDa) and are orally 
consumed to treat and prevent osteoarthritis (Michel et al. 2005; Vázquez et al. 2013).

Hyaluronic acid, also called hyaluronan, is another polysaccharide or more 
exactly a mucopolysaccharide which is naturally found in organisms (Vázquez et al. 
2013). It has a huge number of medical applications e.g. ophthalmic surgery, ortho-
pedic surgery and rheumatology, drug delivery systems, pulmonary pathology, joint 
pathologies, and tissue engineering (Giji and Arumugam 2014). It has been tradi-
tionally extracted from terrestrial sources, but more sustainable sources especially 
marine organisms have recently attracted great attention. It has been isolated from 
some marine animals such as bivalve mollusk Amussium pleuronectus (Kanchana 
et al. 2013), fish eyeball (Amagai et al. 2009; Murado et al. 2012), liver of marine 
stingray Aetobatus narinari (Sadhasivam et  al. 2013). Sulfated polysaccharides 
have been also isolated from some marine animals such as sponges (Jridi et  al. 
2018), clam (Souissi et al. 2019) and tuna processing by-products (Jridi et al. 2018).

Algae, especially seaweeds, are the most important sources of marine bioactive 
polysaccharides. Brown seaweed is a source of alginate, fucoidans, and laminarin 
(Fig. 6.2) (Fedorov et al. 2013). Fucoidans are a group of sulfated polysaccharides 
that have structural role in cell wall of brown seaweeds and are one of the most 
studied marine polysaccharides during the last decade (Sanjeewa et  al. 2017). 
Fucoidans have shown a wide range bioactive properties including antiviral, antico-
agulant, antitumor, anti-inflammation, anti-allergy, antiobesity and antioxidant 
properties (Vo and Kim 2013). Laminarin is also a polysaccharide with a small 
molecular weight (∼5 kDa) found in brown seaweeds which has shown different 
bioactive properties such as anticancer, anti-inflammatory, anticoagulant, and anti-
oxidant effects (Kadam et al. 2015). Both fucoidans and laminarins are considered 
as interesting marine bioactive compounds for application in functional foods.

Red seaweeds are the source of sulfated galactan (agars and carrageenans), 
xylans, and floridean starch (Pal and Suresh 2016). Carrageenans are also a group 
of sulfated polysaccharides with great interest in food industry due to their excellent 
physical properties, such as thickening, gelling, and stabilizing abilities (Jiao et al. 
2011). At low molecular weight they have also shown different bioactive properties 
e.g. as promising anticancer and antitumor activities possibly due to their antiviral 
and antioxidant properties, and stimulation of antitumor immunity (Raman and 
Doble 2015).

Green algae contain ulvan, starch, xylans, mannans, and ionic polysaccharides 
which contain sulfate groups. Uronic acids, rhamnose, xylose, galactose, and arabi-
nose are also found in this type of algae (Pal and Suresh 2016). Ulvan is a water- 
soluble sulfated polysaccharide found in green seaweed of the order Ulvales and it 
has the gel-forming capacity and several bioactive properties and health benefits 
which have been reviewed in may papers (Kim and Li 2011; Ngo and Kim 2013).
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6.8  Oligosaccharides

Sugar molecules consisting of 2–10 monosaccharide units are called compound 
sugar or oligosaccharides. Many functions have been reported for oligosaccharides 
extracted from marine resources including immunostimulant, antioxidant, anticar-
cinogenic and antitumor effects (Mussatto and Mancilha 2007). Some of the oligo-
saccharides may be used as prebiotics to promote probiotic bacterial growth. 
Examples include xylooligosaccharides and fructooligosaccharides which cannot 
be digested in the gastrointestinal tract and act as prebiotics. Some of the most 
important marine oligosaccharides are chitin, carrageenan, agar, and alginate oligo-
saccharides which are produced by chemical or enzymatic hydrolysis of their pri-
mary polysaccharides. Food applications of marine oligosaccharides have been 
reported as low-sweetness humectants and bulking agents. They are also used as 
stabilizers in cosmetic industry (Lordan et al. 2011).

6.9  Phenolic compounds

Macro and microalgae contain-antioxidant compounds called polyphenolic com-
pounds. Phenolic acids, hydroxycinnamic acids, simple phenols, coumarins, xan-
thones, naphthoquinones, flavonoids, stilbenes, anthraquinones and lignins are 10 
classes of polyphenolic compounds that can be recovered or isolated from marine 
organisms (Ibañez et al. 2012). For instance, extract of marine brown algae such as 
Eisenia bicyclis, Ecklonia kurome, H. fusiformis, and Ecklonia cava polyphenolic is 
called phlorotannins. This bioactive compound imparts many functions including 
antioxidant, antibacterial, chemo-preventive, UV-protective, and antiproliferative 
effects… Eckol, phlorofucofuroeckol A, dieckol, and 8,8-bieckol which are few 
examples of phlorotannins have been effective against phospholipid peroxidation 
Shibata et  al. (2007) experimented these phlorotannins and found out that they 
resemble ascorbic acid and tocopherol in terms of antioxidant activity.

6.10  Photosynthetic Pigments

These are pigments that are able to absorb solar energy for photosynthesis. Mainly, 
carotenoids and chlorophyll in macroalgae are the photosynthetic pigments. 
Carotenoids act as antioxidants, and provitamin A. They have anticancer, and car-
dioprotective effects. They are also effective against macular degeneration. 
β-carotene and astaxanthin are generated by microalgae and have been employed in 
food industry. Examples of these microalgae include Dunaliella salina, 
Haematoccous pluvialis, Nanochloropsis oculat, Chlorerlla sorokiniana (Pizarro 
and Stange 2009).
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Dunaliella salina is used for mass production of the β-carotene and it can pro-
duce β-carotene up to 14% of its dry weight (Miyashita 2009). Cultivation of the 
Dunaliella salina is easier than the other plants and produces both cis and trans 
isomers of carotene with high bioavailability. In addition, under irradiance stress, 
Dunaliella salina accumulates a large amount of zeaxanthin which contributes to 
disease preventions (Yeum and Russell 2002).

Haematoccous pluvialis, is cultivated in both open and closed culture systems 
and produces chlorophylls and carotenoids. Haematoccous pluvialis, is able to pro-
duce astaxanthin as 1.5–3% of its dry weight under stress conditions. Several 
European countries and USFDA approved Haematoccous pluvialis, as a dietary 
supplement for human consumption. Astaxanthin has 10 times stronger activity 
than carotenoids which promotes anticancer, anti-inflammatory effects. That is why 
astaxanthin has been utilized by nutraceutical, cosmetics and food and feed industry 
(Rasmussen and Morrissey 2007).

Some of the reported bioactivities of the β-carotene include free-radical scaveng-
ing which alleviates the issues with coronary heart disease, cancer, premature aging, 
and arthritis. Carotenoid extract of Chlorella ellipsoidea exerted strong antiprolif-
erative effect on human colon cancer cells, including induction of apoptosis 
(Klassen 2010).

Chlorophylls which are mainly produced by all classes of algae and cyanobacte-
ria have been used as a coloring agent in food and drinks. They also impart antican-
cer effects. Marquez and Sinnecker (2007) found that dietary chlorophyll exhibits 
antimutagenic effects and reduces tumor cell growth. Diet high in chlorophyll may 
also reduce the risk of colon cancer.

Astaxanthin is a type of carotenoid which is found in yeast, salmon, trout, krill, 
shrimp, and crayfish. Astaxanthin supplementation of obese mice diet showed a 
decrease in body weight, skeletal muscle and adipose tissue (Yuan et  al. 2011). 
Studies also have shown that insulin resistance could be alleviated using astaxan-
thin. This could be related to activation of post-receptor insulin signaling (Arunkumar 
et  al. 2012). It appears that the greatest amount of astaxanthin can be found in 
Haematococcus pluvialis which is a chlorophyte algae. Astaxanthin has been effec-
tive to reduce cardiovascular risk markers of oxidative stress and inflammation 
according to clinical studies. It has been also effective for improving blood status 
(Riccioni et al. 2011; Yuan et al. 2011).

Chlorophylls extracted from brown algae have antioxidant activities in methyl 
linolenate systems. Normally chlorophyll b shows stronger antioxidant effect than 
chlorophyll a due to the presence of an aldehyde group in chlorophyll group b. 
However, the mechanism of action is unknown (Lanfer-Marquez et al. 2005).

Neither carotenoids nor chlorophyll can be synthesized by animal tissues. Thus, 
these molecules must be obtained from food, particularly seafood organisms are the 
major sources of these compounds.

Phycobiliproteins are a class of pigments (composed by a protein and chromo-
phore called phycobilin) in marine red algae such as Porphyridium cruentum and 
cyanobacteria which are used as fluorescent markers when linked to antibodies, 
A-protein, biotin, lectins, and hormones (Aneiros and Garateix 2004). Phycocyanin 
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and phycoerythrin are two of the most known phycobiliproteins. They act in the 
immune system and anti-inflammatory agents. Phycocyanin is also used in per-
fumes and eye makeup powders as well as food colorants due to its stability (Kadam 
and Prabhasankar 2010).

Fucoxanthin extracted from Hijikia fusiformis is also one of the main antioxidant 
molecules with free radical scavenging activity. This activity might be due to double 
allenic bonds at the C-70 position (Sachindra et al. 2007). Fucoxanthinol has been 
extracted from Undaria pinnatifida. Undaria pinnatifida also contains another 
metabolite called halocynthiaxanthin. Both metabolites have antioxidant activity. 
Studies have shown that fucoxanthin has higher antioxidant activity than fucoxan-
thinol and halocynthiaxanthin due to the presence of an allenic bond.

6.11  Vitamins

B vitamins particularly vitamins B1, B2 and B12 are found in large quantities in sea-
weeds. According to Kim and Taylor (2011), two-third of the human requirement of 
vitamin C and adequate amount of vitamins A, B2 and B12 can be obtained through 
consumption of 100 g of seaweed. Vitamin B12 is mainly found in some of the red 
macroalgae such as Palmaria longat and Porphyra tenera and green seaweeds. 
However, the highest concentration of vitamin B12 is 0.768 mg/kg for Porphyra. 
Vitamin B12 is also found in microalgae (Spirulina platensis) at 7 mg/kg. Vitamin 
B12 is a co-factor enzyme and cobalt-containing tetrapyrrole related to chlorophyll 
and heme. Megaloblastic anemia, chronic fatigue syndrome, and neuropsychiatric 
disorders are few serious conditions due to vitamin B12 deficiency. Red and brown 
algae are the excellent sources of folic acid and folate derivatives.. For instance, 
100  g of dry Undaria pinnatifida provides 150 μg folic acid (Misurcova 2011). 
Dunaliella salina is a halophile green micro-algae which is a great source of 
β-carotene (provitamin A), as well as thiamine, pyridoxine, riboflavin, nicotinic 
acid, biotin and tocopherol (Drokova and Popova 1974).

Vitamin C or ascorbic acid acts as an antioxidant as well as immune system sup-
port. This vitamin is found in Spirulina platensis at high concentration (80 mg/kg). 
It is also found in Porphyra umbilicalis which traditionally consumed to prevent 
scurvy (Karleskint et al. 2012). While Undaria pinnatifida and Laminaria digitate 
are significant sources of vitamin E and C, diatom Haslea (Navicula) ostrearia is 
particularly rich in vitamin E. P. cruentum is another microalga rich in vitamins C, 
E (tocopherols) (Lordan et al. 2011).

The best sources of vitamin D are fatty fish. Nannochloropsis oculate is one of 
the algae that contain vitamin D as well. Rickets in infants and children and osteo-
malacia in adults are among the diseases due to vitamin D deficiency (Luten 2009).

Vitamin E is a mixture of tocopherols including α-, β-, and γ-tocopherols. Red, 
green and brown seaweeds are the main sources of α-tocopherol. β- and γ-tocopherols 
are mainly found in Phaeophycean. Vitamin E is useful in cardiovascular disease 
prevention and it has antioxidant activities. type of seaweed processing as well as 
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seasonal, environmental and physiological changes all may influence the vitamin E 
content. For instance, α-tocopherol in dehydrated Himanthalia longate and canned 
Himanthalia longate was 33.3 and 12 μg/dry weight, respectively (Ravishankar 
et al. 2005).

6.12  Minerals

Macroalgae are great sources of minerals. Geography, season and environmental 
condition of the harvested seafood all affect the mineral contents of the macroalgae. 
U. pinnatifida, sargassum and Chondrus crispus, Gracilariopsis can be considered 
as a dietary supplement to the daily intake of minerals such as Na, K, Ca and Mg, as 
well as trace minerals like Fe, Zn, Mn and Cu (Taboada et al. 2010).

Osteoporosis and hypocalcia are two of the conditions caused by Ca deficiency 
in the diet. Ca is also needed during lactation and pregnancy. The high amount of Ca 
is found in seaweeds. Fishbone which is considered a fish processing by-product is 
also a good source of Ca. Almost 30% of the fishbone is collagen however, 60–70% 
of the fishbone is composed of Ca, phosphate and hydroxyapatite. Fishbone can be 
incorporated into food products. However, they should become soft enough to be 
edible. In order to make them edible, different techniques and methods such as hot 
water treatment and acetic acid solutions are used (Nguyen et al. 2011).

Hydroxyapatite is another compound from fishbone which can be used for rapid 
bone repair after major trauma or surgery because it is stable at physiological pH 
and functions actively in bone bonding.

The most promising characteristic of seaweed is high I content which is an 
important factor in growth patterns and metabolic regulations. Kelp is one of the 
seaweeds which contains high amount of I. Production of thyroid hormones such as 
thyroxine and triiodothyronine depend upon I in the diet. Stillbirth, abortion, cretin-
ism, goiter and mental disorders are few ailments due to lack of enough I in the diet 
(MacArtain et al. 2007).

Some of the minerals in seafoods are more abundant than land animals or plants. 
For instance, Palmaria palmata is a seaweed and an excellent source of iron which 
contains 8 g/serving of dry algae. This amount of iron is even higher what is found 
in 100 g of raw sirloin steak. However, high content of arsenic in some seaweeds is 
a place of concern for their direct consumption as food (MacArtain et al. 2007).

6.13  Bioactive Compounds Derived from Marine Bacteria

Several biologically important bioactive compounds can be extracted from bacteria 
that live in marine environment. Most of these bacteria live under harsh conditions 
including high pressure, cold and dark situations. However, regardless of these con-
ditions, they produce valuable bioactive compounds that are necessary to study.
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6.13.1  Antibacterial Effects

Marinispora (strain NPS008920) is a marine actinomycete that has been isolated 
from Cocos Lagoon, Guam. This strain was found in the sediment samples collected 
from this area. The compositional analysis of this strain revealed a series of novel 
2-alkylidene-5-alkyl-4-oxazolidinones, lipoxazolidinone A, B, and C. These com-
pounds have shown potent antibacterial activities similar to linezolid (Zyvox) which 
is a commercial antibiotic. Minimum inhibitory concentration (MIC) tests showing 
that this antibiotic has potent antibacterial activity with 1.56–15.57  mM against 
gram-positive bacteria and 37.38 mM against two strains of Haemophilus influen-
zae (Barbachyn and Ford 2003).

Marinispora is a marine actinomycete. A new strain of this genus called 
NPS12745 was found in the sediments off the coast of San Diego, California. Two 
important marine antibiotics i.e. chlorinated bisindole pyrroles, and lynamicins A-E 
were discovered in this strain. These two antibiotics have shown strong antibacterial 
activity against S. aureus (MSSA, MRSA: methicillin-resistant), Staphylococcus 
epidermidis and Enterococcus faecalis. Therefore, this strain has the potential to be 
used in combat against those infections that have been caught in a hospital and are 
potentially caused by organisms that are resistant to antibiotics (McArthur 
et al. 2008).

Pseudomonas stutzeri (CMG 1030) is one of the 100 species of bacteria that was 
found in the intestinal tract of fish collected from the Baluchistan coast in which 
borders the Gulf of Karachi, Pakistan, Pseudomonas stutzeri (CMG 1030) showed 
potent antibacterial effect against different types of pathogens including MRSA 
strains. zafrin (4b-methyl-5,6,7,8-tetrahydro-1(4b-H)-phenanthrenone) is an ethyl 
acetate extract of Pseudomonas stutzeri (CMG 1030) which was able to kill Bacillus 
subtilis faster than ampicillin, vancomycin or tetracycline. The mechanism of action 
for zafrin is similar to nisin and it does not disintegrate the bacterial cell wall

and Triton X-100, which disrupts the cell membrane. It was suggested that the 
mode of action of zafrin is via the disruption of the cytoplasmic extract collected 
from red alga Laurenica spectabilis in Ras-Gharib coast of the Red Sea, Egypt is 
active against pathogenic microorganisms with MIC of 0.1–10 mg ml−1. This extract 
was effective against most of the Gram-positive and Gram-negative bacteria as well 
as against pathogenic fungi such as Candida albicans, Aspergillus niger and Botrytis 
fabae (Isnansetyo et al. 2003).

6.13.2  Anticancer Effects

Marine bioactive compounds have been also explored for anticancer effects. 
Micromonospora marina is a bacterium which was found in In 1997 in soft corals 
of Indian oceans. the mycelial extract of this bacterium contains a novel depsipep-
tide named thiocoraline Clinical studies revealed that Thiocoraline is able to inhibit 
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DNA polymerase-a. PharmaMar is a pharmaceutical company that currently studies 
this compound for commercialization (Romero, et  al. 1997; Newman and 
Cragg 2004).

Marine fungus Curvularia sp. (strain no. 768) was found on a red alga called 
Acanthophora spicifera. The macrolide apralactone A, a 14-membered phenyl ace-
tic acid macrolactone, as well as six further curvularin macrolides that were 
extracted from this fungus, have shown anticancer activity against 36 human tumor 
cell lines (Greve et al. 2008).

6.13.3  Antidiabetic Effects

Diabetes mellitus is a condition that the body does not produce enough insulin and 
as a result, the blood glucose level is high. The number of patients is increasing 
annually throughout the world (World Health Organization 1985). Aquastatin A is a 
compound that was isolated from a marine fungus Cosmospora sp. SF-5060 which 
was found at Gejae Island, Korea. Studies have shown that this compound has 
strong inhibitory effect against protein tyrosine phosphatase 1B (PTP1B).

Further analysis revealed that the EC50 value of this compound is 
0.19 mM. PTP1B is able to regulate the insulin and leptin receptor-mediated signal-
ing pathways. Therefore, it could be future solution to diabetes and its complica-
tions (Seo et al. 2009).

6.14  Extraction Techniques for Marine Bioactives

6.14.1  Super Critical Fluid Extraction (SFE)

This method was proposed by Hannay and Hogarth in 1879. SFE is a method that 
uses solvents at temperature and pressure above their critical points. The major 
advantage of this technique is minimum use of toxic organic solvents. The most 
commonly used solvent is carbon dioxide (CO2) to extract natural resources such as 
marine bioactives. Although CO2 is an environmentally friendly solvent which is 
considered as GRAS for use in food industry, however, low polarity of the CO2 is 
one of the major drawbacks that should be solved by using cosolvents or polar 
modifiers to change the polarity of the CO2 (Björklund et al. 2005). Methanol at 
1–10% may be used to expand the CO2 range of polarity. Propane, butane, and 
dimethyl ether have also been proposed to use to increase the polarity of the CO2. 
However, none of these solvents fulfill the principles of Green Chemistry. As for 
marine bioactives extraction, CO2 has the benefit of high diffusivity, and ease of 
tuning the temperature and pressures that have been applied. Also, utilization of 
CO2 provides a solvent-free extraction method. CO2 can be easily converted from 
liquid form to gas after completion of the extraction for ease of recovery (Ibañez 
et al. 2012).
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6.14.1.1  Application of SFE to Macroalgae, Microalgae, 
and Cyanobacteria

As we discussed earlier, due to the low polarity of CO2, this method is beneficial for 
compounds with low polarity. However, if CO2 used at mild pressure and tempera-
ture conditions, it allows obtaining volatile compounds without affecting its proper-
ties. The volatile compounds produced by aquatic organisms play a critical role in 
chemical defense mechanisms and food gathering of the organisms. Microalgae 
share their ecological niche with bacteria and other microorganisms. As a result, 
microalgae secrete compounds with antibacterial, antifungal, and often antiproto-
zoal activities (El Hattab et  al. 2007). For instance, the extract obtained from 
Dunaliela salina which is a green microalga using the SFE method with CO2 at 
314  bar and 9.8  °C showed strong antimicrobial activity against the pathogens 
Escherichia coli, Staphylococcus aureus, Candida albicus, and Aspergillus niger. 
This activity is probably due to the presence of indolic compounds, polyunsaturated 
fatty acids, and compounds related to the metabolism of carotenes such as β-ion-one 
and neophytadiene in microalgae extract (Mendiola et al. 2005).

Bioactive lipids such as essential fatty acids also are extracted using the SFE. For 
instance, Spirulina platensis was studied for this purpose. The maximum extraction 
yield was obtained at 350 bar and 40 °C and a flow rate of 24 kg/CO2/h. Similarly, 
vitamin E extraction was studied in Spirulina and a tocopherol enrichment of more 
than 12 times the initial concentration of the tocopherol in raw material by extrac-
tion with neat CO2 at 361 bar and 83.3 °C was achieved. Carotenoids were also 
extracted from Chlorella vulgaris and Spirulina. The addition of polar modifiers 
such as ethanol in the supercritical CO2 allowed the extraction of more polar carot-
enoids but also chlorophylls, thus decreasing the selectivity of the extraction pro-
cess. Other bioactive compounds such as diolefins have been extracted from 
Botrycoccus braunii using SFE. Botrycoccus braunii is able to store large number 
of hydrocarbons with long-chain (25–31 carbon atoms) which can be used as a sub-
stitute for paraffinic and natural waxes (Mendiola et al. 2005).

Phenolic compounds from marine resources have been also extracted using the 
SFE method. A hyphenated technique was used to isolate isoflavones from sea mac-
roalgae. In this technique, samples are pretreated using sonication, followed by 
extraction using SFE with modified CO2 and 3% of MeOH/H2O mixture at 350 bar 
and 40 °C for 60 min (Klejdus et al. 2010).

6.14.1.2  Application to Invertebrates

Bioactive compounds from invertebrates such as crustacean including krill, craw-
fish, crab or shrimp as well as squid, urchin, and starfish have also been extracted 
using the supercritical CO2 method (Félix-Valenzuela et al. 2001).

Astaxanthin, the pigment responsible for the orange-pink coloration of the crus-
tacean is abundant in their shell waste. They are also able to modify some carot-
enoids such as β-carotene and transform them into astaxanthin. For the first time, 
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Yamaguchi and his colleagues in 1986 were able to apply SFE to crustacean waste. 
They extracted nonpolar lipids, mainly triglycerides and astaxanthin from krill 
using one-step extraction utilizing SC-CO2 at 60 °C and 245 bar.

Sea urchin gonads and squid viscera are rich in PUFA which are normally dis-
carded. However, these are nutritious from a human nutritional standpoint (Zhu 
et al. 2010). Palmitic, oleic, eicosapentaenoic acid and docosahexaenoic acid were 
extracted from squid viscera using SC-CO2 with 1.5% ethanol and temperatures 
between 25 °C and 50 °C and pressure range from 80 to 170 bar (Chun et al. 2010).

6.14.2  Pressurized Liquid Extraction (PLE)

There are different names for pressurized liquid extraction including pressurized 
fluid extraction (PFE), enhanced solvent extraction (ESE), high-pressure solvent 
extraction (HPSE) or accelerated solvent extraction (ASE). The main advantage of 
this method is the simultaneous application of pressure and a liquid with a tempera-
ture higher than its boiling point. Therefore, it reduces the amount of solvent that is 
needed for extraction, so it is considered as a green extraction technique. It also 
allows for faster extraction of materials. (Turner and Ibañez 2011).

6.14.2.1  Applications to Macroalgae, Microalgae, and Cyanobacteria

Reduced extraction time and the possibility of automation are some reasons for 
popularity of the PLE method for recovery of bioactive compounds from marine 
resources. Carotenoids from Dunaliella salina were extracted using PLE and the 
results showed that the temperature is the main factor that influences the recovery. 
The best yield was with ethanol at 160 °C and 17.5 min (Breithaupt 2004).

Carotenoids such as fucoxanthin and other oxygenated carotenoids from brown 
macroalgae such as Eisenia bicyclis, Cytoseira abies-marina, and Himanthalia 
elongate have been isolated using pressurized liquid extraction. It has been reported 
that this technique could be used to extract bioactive compounds from cyanobacte-
ria or algae as well (Shang et al. 2011).

6.14.3  Pressurized Hot Water Extraction (PHWE)

This method is also known as subcritical water extraction, pressurized low water 
(PLPW) extraction, or superheated water extraction (SHWE) is a particular use of 
PLE with water as extracting solvent. This method uses water at temperatures above 
the atmospheric boiling point. However, it keeps it in the liquid form by using the 
pressure. Water is the greenest solvent can be used (Teo et al. 2010).
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6.14.3.1  Application to Macroalgae, Microalgae, and Cyanobacteria

PHWE at high temperatures may generate new antioxidant compounds. Plaza et al. 
(2010) used this technique to study the antioxidant properties of Chlorella vulgaris 
and Sargassum vulgare. The application of this technique at high temperatures may 
produce new compounds with antioxidant activities.

6.14.4  Ultrasound-Assisted Extraction (UAE) 
and Microwave- Assisted Extraction (MAE)

In an ultrasound-assisted extraction system, acoustic cavitation is used disrupt the 
cell walls and reduce the particle size of the target compounds as well as enhance-
ment of the contact between the solvent and the target compounds. However, in 
microwave-assisted extraction, the microwave radiation is used to induce movement 
of polar molecules and rotation of dipoles to heat solvents and to promote transfer 
of target compounds from the sample’s matrix into solvent (Ying et al. 2011).

6.14.4.1  Application to Macroalgae, Microalgae, and Cyanobacteria

Mainly carotenoids were extracted using this technique from microalgal genus 
Dunaliella. The prosses performed on Dunaliella tertiolecta led to rapid pigment 
extraction mainly because of the absence of frustule in microalgae cells thus allow-
ing immediate solvent penetration (Pasquet et al. 2011).

6.14.4.2  Application to Marine By-Products

The bioactive compounds from fish processing by-products have not been studied 
using MAE method. fatty acid profile composition of the lipids recovered from 
cod liver and mackerel fillet using this technique were studied by Batista et  al. 
(2001). Mackerel fillet and cod liver contained lipid content of 5.6% ± 0.4% and 
62.6%  ±  3.1%, respectively. These results indicated that application of 
 microwave- assisted extraction could be a replacement for the conventional method 
due to its efficiency.

6.14.5  Isoelectric Solubilization and Precipitation

Isoelectric solubilization and precipitation (ISP) is a method of recovery of proteins 
and lipids from seafood and seafood processing by-products. Generally, processing 
fish into fillets generates large quantitates of by-products including trimming, heads, 
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fish frames, skin and scale which are normally discarded. However, these by- 
products are valuable and nutritious resources of highly functional proteins and 
omega-3 fatty acids that if recovered properly cane be added to food products. 
Tahergorabi et al. (2015); Tahergorabi et al. (2012) and Tahergorabi et al. (2011) 
have applied this method to isolate the protein fish whole fish as a model for fish 
processing by-products as well as poultry products.

The ISP process is carried out in five steps. In the initial step, the fish or fish 
processing by-products are ground and homogenized with a ratio of 1:6 (w: w) of 
water. In the second step, the pH of the solution is adjusted to 11.50 ± 0.05 with 10N 
NaOH. In the third step, the homogenate is transferred to centrifuge tubes and cen-
trifuged at 10,000 × g. This step separates the solution into three layers including 
the fat on the top, protein solution in the middle and the insoluble and impurities at 
the bottom. In the fourth step, the protein solution is transferred to a beaker and the 
pH is adjusted to isoelectric point (5.5 ± 0.05) with 10N HCl. In the last step, the 
solution is centrifuged, and the protein is recovered from the solution.

6.15  Conclusions

Extracts of marine organisms have demonstrated bioactive properties that impart 
health benefits. The bioactive compounds not only are extracted from the marine 
organisms but also are extracted from their processing by-products. Hence, they 
have attracted much attention from food, cosmetic and drug industries in the past 
few years. As a result, many methods have been designed to extract these valuable 
compounds from marine resources. Incorporation of these compounds in food may 
also offer functional food products that could target specific health issues. However, 
this may emerge the issue of overexploitation of the marine resources. Therefore, 
responsible and sustainable strategies must be devised to use these limited and valu-
able resources.
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Chapter 7
Food and Plant Bioactives for Reducing 
Cardiovascular Disease Risk

Arrigo F. G. Cicero and Alessandro Colletti

Abstract Cardiovascular diseases (CVDs) are the leading cause of mortality and 
disability worldwide, taking an estimated 17.9 million lives each year. The eco-
nomic burden for CVDs is estimated to have been 906 billion dollars in 2015 and is 
expected to rise to 22% by 2030. In this context, the scientific community is high-
lighting the need to support a concept of “preventive medicine”, based first of all to 
the lifestyle change, and if necessary, the use of nutraceutical substances as well. 
The evidence-based prescription of these molecules seems a viable option, espe-
cially in people in primary prevention from chronic diseases and, in the specific, in 
patients with suboptimal values of blood pressure, cholesterolemia and triglyceride-
mia. Within the world of nutraceuticals, in the last years, a growing interest has been 
directed to food and plant bioactives, which may have a potential disease preventing 
and therapeutic use. In particular, bioactive peptides derived from both animal and 
plant derivatives demonstrated a significant anti-hypertensive and lipid-lowering 
effect in randomized clinical trials (RCTs). Furthermore, some polyphenols isolated 
from foods or plants, exert anti-inflammatory and anti-oxidant activity, which could 
strengthen the prevention of chronic diseases. Other bioactive compounds extracted 
from food or plant derivates and used to support cardiovascular risk patients include 
polyunsaturated fatty acids (PUFAs), lycopene, alliin, plant sterols, monacolin k 
and berberine. Nevertheless, although bioactive molecules showed their effective-
ness in the studies conducted up to today, further long-term RCTs are necessary to 
confirm these effects to allow their preventive use.
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7.1  Introduction

Cardiovascular diseases (CVDs) are the leading cause of mortality and disability 
worldwide, reaching 31% of deaths and taking an estimated 17.9 million lives each 
year (World Health Organization 2015). The leading causes of premature death in 
Europe are atherosclerosis-related diseases, being responsible for 38% of deaths in 
men and 42% of deaths in women under 75 years old (Perk et al. 2012). The eco-
nomic impact worldwide of CVDs is estimated to have been 906 billion (US) dol-
lars in 2015 and will tend to increase by 22% by 2030 (Bloom et al. 2011).

Among the modifiable cardiovascular risk (CVR) factors, the most common in 
the general population with a prevalence about 25–45% in Western countries is 
represented by essential hypertension (≥140  mmHg the systolic blood pressure 
(SBP), and ≥90 mmHg the diastolic (DBP)). Despite the availability of adequate 
and well tolerated antihypertensive drugs, the significant prevalence of hyperten-
sion in the general population and especially in elderly individuals, it is responsible 
for the majority of CVDs in people at different CVR profile (Cicero and Colletti 
2015). Other important CVR factors include elevated total cholesterol (TC) 
(>5  mmol/L) and low density lipoprotein cholesterol (LDL-C) (>3  mmol/L for 
patients at low and moderate risk for coronary heart disease (CHD), >2.6 mmol/L 
for patients at high risk and >1.8 mmol/L for patients at very high risk) while high 
concentrations of high density lipoprotein cholesterol (HDL-C) are considered pro-
tective in certain conditions (Mach et al. 2020). Therefore, both hypertension and 
LDL-C are considered the fundamental CVR factors and the main targets of both 
nutraceutical and drug therapies (Colantonio et al. 2016).

Several non-pharmacological and pharmacological interventions have been pro-
posed for ameliorating the abovementioned CVR factors (Cicero et  al. 2017a, 
2019). In particular, the use of some nutrients and nutraceuticals has demonstrated 
to have favourable anti-hypertensive and lipid-lowering effects (Cicero and Colletti 
2016; Cicero et al. 2018). Among these, plant and food bioactives represent a het-
erogeneous group of compounds potentially useful in the prevention of chronic dis-
eases. An important class of bioactives include the bioactive peptides (BPs), a large 
number of peptides contained in a wide range of food sources of both animal and 
plant origin, and generated by enzymatic processes, chemical hydrolysis, fermenta-
tion or gastrointestinal digestion processes from food proteins (Aluko 2015). In the 
last years, an increased number of publications has highlighted regarding their 
potential effect on lipid metabolism, blood pressure, anticancer and immunomodu-
latory activities, but they seem to have antimicrobial, analgesic, antioxidant and 
anti-inflammatory effects, as well (Cicero et al. 2017b).

Another example of “bioactive molecules” includes the broad category of poly-
phenols (PPs). PPs are various secondary plant metabolites, structurally character-
ized by at least one aromatic ring linked to phenolic-, carbon-, hydroxyl- or other 
groups. They exist with different structures (Table 7.1) in fruits, vegetables, nuts, 
herbs, cocoa, tea and other plants and plant products. In particular, flavonoids, lig-
nans, phenolic acids, and stilbenes represent the main four classes of PPs present in 
food (Fig. 7.1) (García-Villalba et al. 2010). Among flavonoids, the flavonols, flava-
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nols, flavones, flavanones, isoflavones, and anthocyanins are of great interest in 
clinical and pre-clinical researches, while among non-flavonoids class appertain the 
lignans, hydrolysable phenolic acids and stilbenes (Tomé and Visioli 2016). 
Literature data on PPs suggest that they could potentially exert an effect on lipid 
profile, blood pressure and insulin resistance, especially by reducing the oxidation 
of LDL-C and improving the endothelial function. PPs from green tea, grape, ber-
ries, cocoa, and soy are the most studied and the most effective ones in clinical 
practice (Cicero and Colletti 2018a).

Finally, bioactive compounds can also include molecules not typically classified 
as “polyphenols” or “peptides” but with multiple engaging activities in CV preven-
tion. For example, molecules like berberine or monacolin k are well known to act as 
lipid-lowering agents, while alliin and pycnogenol have anti-hypertensive activity, 
representing a potential management option for people in primary prevention.

This chapter aims to analyse the role of bioactive substances derived from food 
and plants in prevention and treatment of CVDs, reporting the results of RCTs and 
meta-analyses associated.

7.2  Methods

A systematic search strategy was conducted to identify trials in both the Cochrane 
Register of Controlled Trials and MEDLINE (January 1970 to May 2020). The 
terms ‘food bioactives’, ‘plant bioactives’, ‘cardiovascular diseases’, ‘hypertension’ 
and ‘dyslipidemia’ were incorporated into an electronic search strategy. Then the 
selected references were screened for application on CVDs or CVR factors. All of 

Fig. 7.1 The four classes of PPs and their chemical structures. PPs that are categorized as “other 
polyphenols” with particular chemical structures such as tyrosol and curcuminoids, are not 
included. Adapted from Spencer et al. (2008)
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the citations included in the electronic strategy have been reviewed in order to iden-
tify potentially relevant articles for this chapter and the eligibility of the potential 
trials as well. Finally, the authors selected papers reporting recent comprehensive 
reviews or meta-analyses, or original studies in vitro and in vivo and clinical trials 
on BPs with an action on CVDs.

7.3  Blood Pressure Lowering Effect

According to the European guidelines for hypertension management (Unger et al. 
2020), the nutraceutical approach might represent a good strategy for people with 
borderline values of blood pressure (BP) and an adjuvant in combination with anti- 
hypertensive drugs in patients with moderate hypertension (Borghi and Cicero 
2016; Sirtori et al. 2012). In addition, the conventional treatment could be associ-
ated with some typical side effects, including loss of taste, hyperkaliemia, skin 
rashes, cough, sleep apnoea, angioedema and erectile dysfunction. In this regard, 
the anti-hypertensive nutraceuticals (Table 7.2) might be used to reduce conven-
tional side effects, especially in subjects in primary prevention with pre- or mild- 
hypertension, also to improve the economic burden on health due to potential 
reduction of CVDs (Houston 2013).

7.3.1  Bioactive Peptides

Different types of bioactive peptides (BPs) derived from both animals and plant 
sources, with antihypertensive activity, have been investigated in the last years from 
a large number of research studies (Fig. 7.2) (Bhat et al. 2015; Hartmann and Meisel 
2007). The anti-hypertensive action of some BPs seems to be related to the inhibi-
tion of angiotensin converting enzyme (ACE), responsible for conversion of angio-
tensin I in angiotensin II. However, BPs are able also to increase the activity of 
certain vasodilating agents including eNOS (endothelial-Nitric oxide synthases that 
increased production of endothelial NO), reduce the activity of the sympathetic sys-
tem and inhibit the production and release of renin (Pripp 2008).

Two important factors can interfere with the anti-hypertensive efficacy of BPs: 
the degradation by gastro-intestinal peptidases and its poor absorption into the 
blood stream. In particular, BPs are probably absorbed by a saturable transporter 
peptide (PEPT1) as well as by the paracellular or transcellular route (Rotimi 2015). 
Concerning these two factors, the anti-hypertensive activity of BPs will be signifi-
cantly different.

An important source of proteins is milk, that contains a good number of BPs 
including the tripeptides Valine-Proline-Proline (VPP), Isoleucine-Proline-Proline 
(IPP) and FFVAPFPEVFGK, YLGYLEQLLR peptides (Cicero et al. 2013). Several 
RCTs have underlined the effects of milk bioactives in CV prevention: in particular, 
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Table 7.2 Food and plant bioactives with possible blood pressure lowering effect

Plant/food bioactive Active daily doses
Expected 
effects on BP

Direct 
vascular 
effects

Beetroot (inorganic nitrates) 321–2790 mg of nitrates 
equivalent to 70–500 mL 
of juice

−3.5 mmHg 
SBP
−1.3 mmHg 
DBP

↑ FMD, ↓ 
PWV

Bioactive peptides (IPP, VPP) 5–60 mg −2 mmHg 
SBP
- 1 mmHg 
DBP

↑ FMD, ↓ 
PWV

Cocoa flavonoids 200 mg −2 mmHg 
SBP

↑ FMD, ↓ 
PWV

Garlic (S-allylcysteine and derived 
polysulfides)

1200–2400 mg of aged 
garlic extract

−9 mmHg 
SBP
−4 mmHg 
DBP

Not 
investigated

Karkadé 2–6 cups −7.5 mmHg 
SBP
−3.5 mmHg 
DBP

Not 
investigated

Non roasted green coffee 
(chlorogenic acid)

40 mg −2.6 mmHg 
SBP
−3.1 mmHg 
DBP

Not clear

Omega-3 PUFAs 3–4 g (EPA + DHA) −4 mmHg 
SBP
−3 mmHg 
DBP

↑ FMD, ↓ 
PWV

Lycopene 15–50 mg −5 mmHg 
SBP

↑ FMD, ↓ 
PWV

Pomegranate (gallic acid, ellagic 
acid, punicalagin A and B and 
punicalin A and B)

240 ml −5 mmHg 
SBP
−2 mmHg 
DBP

Not 
investigated

Pycnogenol 100–200 mg −4 mmHg 
SBP
−3 mmHg 
DBP

↑ FMD, ↓ 
PWV

Resveratrol >300 mg −9 mmHg 
SBP
−6 mmHg 
DBP

↑ FMD, ↓ 
PWV

Tea (flavan-3-ols) 2–6 cups −2 mmHg 
SBP
−1.2 mmHg 
DBP

↑ FMD, ↓ 
PWV

DHA docosahexaenoic acid, EPA eicosapentaenoic acid, FMD flow mediated dilation, IPP isoleu-
cine–proline–proline, PWV pulse wave velocity, VPP valine–proline–proline

A. F. G. Cicero and A. Colletti
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the tripeptides VPP/IPP have shown a variable anti-hypertensive efficacy at dosages 
between 5 and 100 mg/day, although it has been more evident in Asian subjects. In 
a meta-analysis of 18 RCTs, BPs showed to reduce both Systolic Blood Pressure 
(SBP) (−3.73 mmHg, 95%CI: −6.70, −1.76) and Diastolic Blood Pressure (DBP) 
(−1.97 mmHg, 95%CI: −3.85, −0.64) (Cicero et al. 2011a). In addition, these pep-
tides could modulate pulse wave velocity (PWV) in mildly hypertensive subjects, 
with an excellent safety profile (Cicero et al. 2011b, 2016).

A rich source of BPs are also whey proteins, which are converted in BPs through 
different treatments such as the enzymatic hydrolysis by trypsin, alcalase or pepsin. 
In particular the DRVYIHPFHL, DRVYIHPF, and RVYIHPF peptides, have shown 
anti-hypertensive activity with an inhibitory action on the renin angiotensin system 
(RAS) system, both in normotensive/pre-hypertensive and in obese subjects (Yadav 
et al. 2015; Nongonierma and FitzGerald 2015).

Several studies report also a potential anti-hypertensive action of BPs isolated 
from cow’s milk. Studies on animals and humans have shown that lactorphins lower 
both SBP and DBP by normalizing endothelial function while α-lactalbumin and 
β-lactoglobulin, that are obtained from enzymatically hydrolysed whey, are able to 
reduce blood pressure inhibiting the ACE (Dong et al. 2013). Several marine pep-
tides with anti-hypertensive activity have been detected in some fish such as tuna, 
bonito and sardine (LKP, IKP, LRP), but also in Okamejei kenojei (MVGSAPGVL, 
LGPLGHQ) and Styela clava (AHIII). The presence of these BPs has led to an 

Fig. 7.2 BPs with evidence on the reduction of blood pressure: proposed mechanisms of action. 
ACE angiotensin converting enzyme, cGMP cyclic guanosin monophosphate, EF glutamate–phe-
nylalanine, eNOS endothelial nitric oxide synthase, FY phenylalanine–tyrosine, IKP isoleucine–
lysine–proline, IPP isoleucine–proline–proline, IR isoleucine-arginine, IY isoleucine-tyrosine, KF 
lysine–phenylalanine, LKP leucine–lysine–proline, LRP leucine–arginine–proline, LVY leucine–
valine–tyrosine, NO nitric oxide, RVP renal venous pressure, VPP valine–proline–proline, VY 
valine–tyrosine, WYT tryptophan–tyrosine–threonine

7 Food and Plant Bioactives for Reducing Cardiovascular Disease Risk



244

increase of endothelial NO levels and aorta vasodilation in rats even if data on 
humans are still lacking (Cheung et al. 2015).

Finally, the intake of plant proteins such as those derived from barley, soy, oak 
and pea proteins seems to be associated to mild but significant lower blood pressure 
levels (Altorf-van der Kuil et al. 2010; Malaguti et al. 2014). In particular, some 
extract peptides from cereals such as isoleucine–valine–tyrosine (from wheat germ), 
isoleucine–aspartate–proline (from hydrolysis of gliadin) or those oats and barley 
extracts showed strong ACE inhibitory action (Motoi and Kodama 2003; Nirupama 
et al. 2015). However, it is not easy to discriminate between the effect of plant pro-
teins and other associated dietary components on blood pressure level. In this 
regard, isoflavones consumed with soy might be the real compound responsible for 
anti-hypertensive action of this functional food. In fact, a recent meta-analysis, 
including hypertensive patients, showed that soy isoflavones intake is associated to 
a decrease of both SBP (−5.9 mmHg, 95%CI: −10.5, −1.3, p = 0.01) and DBP 
(−3.3 mmHg, 95%CI: −6.5, −0.2, p = 0.04) (Liu et al. 2012).

7.3.2  Polyphenols

Polyphenols (PPs) are secondary plant metabolites naturally present in plants and 
plant products such as fruits, vegetables, nuts, herbs, cocoa, and tea. After ingestion, 
PPs undergo the first structural variations by the acid environment of the stomach 
with the exception of acid-resistant structures. In the small intestine, about 5–10% 
of PPs undergo the action of both glucosidase and hydrolase enzymes which facili-
tate their absorption in the blood.

The other 90% of PPs (in the conjugated form) is metabolized by gut microbiota 
that is responsible for the absorption of low molecular weight metabolites as simple 
phenols. Depending on the type of bacteria, PPs can undergo different enzymatic 
reactions of hydrolysis, dehydroxylation, demethylation, and decarboxylation.

Finally, PPs absorption is severely limited for a phase II metabolism both locally 
and in the liver. The excretion of PPs is mainly urinary (Zanotti et al. 2015).

One of the most important sources of polyphenols and in particular flavan-3-ol 
compounds are both black tea (BT) and green tea (GT). In a dose-response meta- 
analysis of 18 prospective cohort studies (including 11,306 and 55,528 deaths from 
CVDs and all causes), GT consumption was significantly inversely associated with 
CVDs (one cup/day increment, −5%) and all-cause mortality (one cup/day incre-
ment, −4%), whereas BT consumption was significantly inversely associated with all 
cancer and all-cause mortality. In particular, for CVDs mortality, the summary RR for 
the highest vs. lowest category of GT and BT consumption were 0.67 (95% CI 0.46, 
0.96) and 0.88 (95%CI 0.77, 1.01), respectively. For all-cause mortality, the summary 
RR for the highest vs. lowest category of GT and BT consumption were 0.80 (95% 
CI 0.68, 0.93) and 0.90 (95% CI 0.83, 0.98), respectively (Tang et al. 2015). These 
data might be explained in part by the anti-hypertensive properties of both GT and BT 
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probably associated with the action of tea flavonoids on endothelial function and 
thus, the improvement of arterial compliance (Grassi et al. 2008a). In particular, the 
meta-analysis of Liu et al. showed a blood pressure (BP)-lowering effect of tea if 
consumed as 2–6 cups per day, for at least 4 weeks. Moreover, GT appears to have an 
antihypertensive action superior to that of BT (mean reduction of SBP after GT con-
sumption: 2.1 mmHg, 95%CI –2.9 to −1.2; mean reduction of SBP after BT con-
sumption: 1.4  mmHg, 95%CI –2.4 to −0.4; mean reduction of DBP after GT 
consumption: 1.7 mmHg, 95%CI –2.9 to −0.5; mean reduction of DBP after BT 
consumption: 1.1 mmHg, 95%CI –1.9 to −0.2, compared to baseline values) (Liu 
et al. 2014). The greater BP-lowering effect of GT compared to BT might be due to 
the higher content of phytochemicals that contribute to improve vascular function and 
reduce the numbers of reactive oxygen species (ROS) in the vascular system (Ihm 
et al. 2012). However, even BT consumption seems able to improve arterial compli-
ance measured by byrachial artery flow mediated dilation (FMD) (Grassi et al. 2009).

Another type of tea (Hibiscus sabdarifa L., English: roselle, red sorrel) also 
known as karkadé is well known to contain high amounts of vitamin C and poly-
phenols including flavonoids (such as quercetin and luteolin), organic and pheno-
lic acids (such as citric, hibiscus, or protocatechuic acids), and anthocyanins (such 
as cyanidin-3-o-sambubioside, cyanidin-3-o-glucoside, or delphinidin-3-o- 
sambubioside). The phytocomplex of polyphenols seems capable of exercising 
strong antioxidant activity and to inhibit the tone of smooth muscle (Sarr et  al. 
2009). A meta-analysis of 5 RCTs and 390 participants showed a significant effect 
of karkadé consumption in lowering both SBP (− 7.6 mmHg, 95% CI − 9.7 to −5.5, 
p < 0.00001) and DBP (−3.5 mmHg, 95% CI −5.2 to −1.9, p < 0.0001).

Several dietary flavonoids are able to exert positive effects on vascular stiffness, 
reducing ROS and inflammatory markers and improving NO metabolism (Habauzit 
and Morand 2012). In particular, cocoa powder, obtained by pulverizing the bean, 
contains PPs from 12 to 18% of dry weight depending on variety, growing region and 
processing operations of the bean (Fernández-Murga et al. 2011). Cocoa is rich in 
flavanols, and in particular (−)-epicatechin which represents about 35% of the total 
cocoa PPs. In addition, in this “functional food” there are also (+)-catechin, (+)-gal-
locatechin, (−)-epigallocatechin and (−)-epicatechin-3-o-gallate, even if in smaller 
quantities. Finally, cocoa contains dimeric or trimeric forms of flavanols such as 
procyanidin B1, B2 and C1 and other polyphenols like quercetin, apigenin, luteolin 
and naringenin (Oracz et al. 2015). Nevertheless, a particular attention was placed on 
flavanols, which appear to protect the vascular function, increasing NO bioavailabil-
ity. In this regard, several studies including both healthy and hypertensive patients 
have shown a correlation between the dark chocolate consumption and the improve-
ment of arterial stiffness (FMD) (Grassi et al. 2008b, 2012). In a meta- analysis of 20 
RCTs and 856 healthy people, the administration of flavanol-rich cocoa products 
(30–1080 mg of flavanols, mean = 545.5 mg in 3.6–105 g of cocoa products) for 
2–18 weeks revealed a statistically significant reduction of both SBP (−2.8 mmHg, 
95%CI − 4.7 to −0.8, p = 0.005) and DBP (− 2.2 mmHg, 95%CI −3.5 to −0.9, 
p = 0.006) compared with control (Ried et al. 2012). A more recent meta-analysis 
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from the Cochrane collaboration including 40 RCTs and 1804 subjects has con-
firmed data obtained by the abovementioned meta-analysis (Ried et al. 2017).

Finally, future important evidence on the benefit of cocoa PPs in CV health will 
be provided by the ongoing Cocoa Supplement and Multivitamin Outcomes Study 
(COSMOS), coordinated by the Department of Epidemiology of the Brigham and 
Women University (Boston, USA). This study will investigate the effect of cocoa 
flavonoids in reducing the risk of major CV events, in a sample of 18,000 subjects 
(aged ≥60 years) randomized to receive for 4 years either to placebo capsules or to 
the isolated cocoa extract (Brigham and Women Unibersity 2016).

Another important source of polyphenols is Punica granatum L. (Pomegranate), 
well known to provide several health benefits. Pomegranate juice is fruit juice par-
ticularly rich in antioxidant bioactives such as gallic and ellagic acids, punicalagin 
A and B and punicalin A and B. These molecules have been studied in different 
conditions including hypertension (Zarfeshany et al. 2014). A recent meta-analysis 
of 574 individuals and 8 RCTs (Sahebkar et  al. 2017) demonstrated the anti- 
hypertensive effect of pomegranate juice with daily doses >240 cc (SBP −4.9 mmHg, 
95%CI −7.7 to −2.2, p  <  0.001 and DBP -2.0  mmHg, 95%CI –3.7 to −0.3, 
p = 0.021) compared to control.

Coffee is a frequently consumed beverage, even if there has been a long-standing 
controversy regarding its safety on BP and CVD. However, recent, well-controlled 
studies have demonstrated that coffee may reduce BP in people especially with 
borderline values, probably due to the presence of chlorogenic acid. Nevertheless, 
hypertensive subjects with uncontrolled BP should avoid consuming large doses of 
caffeine (Loader et al. 2017).

Despite several authors attribute the BP-lowering effect of coffee to the presence 
of chlorogenic acid (Watanabe et al. 2006), other studies have shown that this mol-
ecule is in part inhibited by hydroxyhydroquinone (HHQ), which is formed through 
the coffee roasting processes (Yamaguchi et al. 2008).

For this reason, coffee could reduce BP inversely to the HHQ content as demon-
strated with the supplementation of decaffeinated green coffee bean extract (signifi-
cant reduction of SBP and DBP and improvement of PWV compared to the control 
(p = 0.01 for all)) (Revuelta-Iniesta and Al-Dujaili 2014).

Resveratrol is a tri-hydroxy-stilbene polyphenol particularly concentrated in 
grape. Many studies in vitro and in vivo have shown the anti-hypertensive effects of 
this molecule through a multiplicity of mechanisms that can be summarized in: anti- 
ROS activity, stimulation of endothelial production of NO and protection of vascu-
lar stiffness, and prevention of platelet aggregation (Li et  al. 2012). A recent 
meta-analysis of 17 RCTs (36 treatment arms and 681 people) concluded that res-
veratrol does not exert a BP-lowering effect. Nevertheless, considering only type 2 
diabetic patients, SBP was significantly reduced by resveratrol treatment 
(−8.8 mmHg, 95% CI −12.5, −5; p < 0.001), probably related to the positive effects 
of this molecule on insulin sensitivity (daily dosages >300 mg/day). Similar results 
were obtained in patients with non-alcoholic fatty liver disease (NAFLD) (Fogacci 
et al. 2018).
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The main important aspects of resveratrol which potentially strongly influence 
the effectiveness of the treatment regard its very-low bioavailability, the pharmaceu-
tical formulation tested and the dosage and the length of the treatments. In this 
regard, new drug delivery systems (DDS) intended to enhance resveratrol bioavail-
ability have been developed in the last years (Amri et al. 2012).

7.3.3  Other Bioactive Compounds

Garlic is a functional food particularly rich in polysulfides. Among these, 
S-allylcysteine might play a pivotal role as BP-lowering agent because stimulating 
the vascular gasotransmitter hydrogen sulfide (H2S) and the production of vascular 
NO, reducing the peripheral vascular resistances (Ried and Fakler 2014). Garlic 
organosulfur compounds act also as ACE inhibitory and calcium channel blockers 
(Butt et  al. 2009). In particular, the study of Williams et  al. suggests that 
S-allylcysteine improves the endothelial function in patients with CAD (coronary 
artery disease) (Williams et al. 2005). A recent meta-analysis (9 RCTs and 482 peo-
ple) showed a positive anti-hypertensive action of aged garlic extract administered 
for 8 to 26 weeks (SBP −9.1 mmHg; 95%CI −12.7 to −5.4; DBP −3.8 mmHg; 
95%CI −6.7 to −1.0 compared to the placebo) (Rohner et al. 2015). The BP-lowering 
effects of garlic seems to be additive to the one of the conventional treatments (Reid 
et al. 2010). However, its use is partially limited because gastrointestinal side effects 
are not uncommon.

Lycopene is a carotenoid, particularly concentrated in tomatoes. This molecule 
has antioxidant, anti-ROS and anti-inflammatory activities even if the antihyperten-
sive mechanism of action of lycopene is still unclear. Several studies have demon-
strated that lycopene reduces the degree of oxidation of LDL and improves the 
FMD in humans (Müller et  al. 2016). A meta-analysis of six RCTs suggested a 
significant BP-lowering effect (SBP mmHg −4.9, 95%CI −8.8, −1.1, p = 0.012) of 
lycopene with dosages of 10–50 mg/day for 4–12 weeks. Nevertheless, lycopene 
intervention had no statistical effect on DBP (Li and Xu 2013).

Although lycopene supplementation might be considered to reduce SBP, the 
tomato intake provided more favourable results on CV outcomes than did lycopene 
supplementation (Burton-Freeman and Sesso 2014).

Pycnogenol, the bark extract of Pinus pinaster, is considered another antioxi-
dant molecule that protects cell membranes from oxidative stress and might exert an 
anti-hypertensive action through the inhibition of ACE and the increase of vascular 
NO. Accordingly to this, a small RCT including pre-hypertensive subjects showed 
that the administration of 150 mg/day of pycnogenol, for a duration of 12 weeks, 
improved the vascular function (FMD) (Hu et al. 2015).

In addition, pycnogenol decreases myelo-peroxidase activity and high sensitivity 
C reactive protein (hs-CRP), improves renal cortical blood flow and reduces urinary 
albumin excretion all properties that support its effect on human BP (Maimoona 
et al. 2011).
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Beetroot is a natural source of inorganic nitrates with BP-lowering activity 
both in pre-hypertensive and hypertensive patients, especially if consumed as juice 
(250 mL/day) (Kapil et al. 2015). A meta-analysis of RCTs showed that beet juice 
administration (321–2790 mg of nitrates) is associated with dose-dependent changes 
in SBP (−4.4 mmHg, 95%CI −5.9, −2.8, p < 0.01) (Siervo et al. 2013). Similar 
results were obtained by a more recent meta-analysis (Bahadoran et al. 2017).

Once ingested, inorganic NO3
− metabolizes in vivo to nitrite (NO2

−) and subse-
quently it is introduced into the bloodstream. NO2

− exerts its effects through its 
conversion to functional nitrogen oxides (NOx), including NO (Clements et  al. 
2014). In addition, beet juice is rich in betalains (responsible for the red colour of 
beetroot) and PPs. Betalains are antioxidants molecules that act as donators of elec-
trons, suggesting a role in protection against oxidative stress and hypertension as 
well (Gandía-Herrero et al. 2016).

Finally, omega 3 Polyunsaturated Fatty Acids (PUFAs), in particular eicosa-
pentaenoic (EPA) and docosahexaenoic acids (DHA) extracted from fish and algae, 
have demonstrated in several RCTs to possess anti-hypertensive effects. The possi-
ble BP-lowering mechanisms of PUFAs could be summarized in: (1) the enhance-
ment of the bioavailability of NO via activation of eNOS (endothelial NO synthase), 
(2) the regulation of prostaglandins synthesis balance and the enhacement of the 
vasodilating ones, (3) the reduction of insulin-resistance, (4) the regulation of vas-
cular tone modulating the parasympathetic nervous system and (5) the suppression 
of the RAS system (Cicero et al. 2009). In a meta-analysis of 70 RCTs, the admin-
istration of PUFAs (0.3–15 g/day) assumed for 4–26 weeks has been demonstrated 
to reduce SBP (−1.5 mmHg, 95%CI −2.2 to −0.8) and DBP (−1.0 mmHg, 95% CI 
−1.5 to −0.4) compared to the placebo. The subgroups analysis showed the stron-
gest BP-lowering effect among untreated hypertensive subjects (SBP = −4.5 mmHg, 
95%CI −6.1 to −2.8 and DBP = −3.0 mmHg, 95%CI −4.3 to −1.7) (Miller et al. 
2014). Another meta-analysis of RCTs also shows that PUFA supplementation 
(900–300  mg/day) is associated to improvement in both pulse wave velocity 
(p < 0.01) and arterial compliance (p < 0.001) (Pase et al. 2011).

7.4  Cholesterol Lowering Effect

Another important CVR factor is represented by dyslipidemia. Many available 
RCTs and meta-analyses of RCTs have shown a correlation between the reduction 
of the levels of low-density lipoprotein cholesterol (LDL-C) and the reduction of 
relative risk of CVDs (Hobbs et  al. 2016). In particular, a meta-analysis of the 
Cholesterol Treatment Trialists’ (CTT) Collaboration, including 14 RCTs and 
90,056 individuals, demonstrated a greater reduction in coronary and vascular 
events, which was related to a greater decrease in absolute levels of LDL-C (Baigent 
et  al. 2005). In addition, in a report from the CTT Collaboration on more than 
170,000 people, it was stated that with the lipid-lowering drug therapy, each further 
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reduction of LDL-C by 40  mg/dl (~1  mmol/l) decreased by 1/5 the risk of 
 revascularization, CAD and ischemic stroke, underlining that a reduction of LDL-C 
of 125 mg/dl (3.2 mmol/l) could lead to a decrease in risk of about 40–50%, in the 
absence of an increased risk of cancer or non-CV-related death (Gay et al. 2016). 
1 mmol/l is a reduction that is achievable through lifestyle improvements associated 
with lipid-lowering nutraceuticals (Table 7.3) (Tang et al. 2015).

7.4.1  Bioactive Peptides

The bioactive peptides (BPs) with major clinical evidence on the reduction of cho-
lesterolaemia are those derived from soy, lupine and milk proteins (Fig.  7.3) 
(Butteiger et al. 2016). Peptides from cowpea and from Mucuna pruriens have also 
shown a lipid-lowering activity (Marques et al. 2015).

In a recent meta-analysis of 35 studies, soy proteins and in particular 
B-conglycinin globulin have shown a lipid-lowering effect with a reduction in 
LDL-C of −4.83  mg/dl (95% CI: −7.34, −2.31), triacylglycerols (TAG) of 
−4.92 mg/dl (95%CI: −7.79, −2.04) and a significant improvement in HDL-C of 
1.40 mg/dl (95%CI: 0.58, 2.23). In particular, hypercholesterolemic patients have 
benefited greatly from the reduction of LDL-C (−7.47  mg/dl, 95%CI: −11.79, 
−3.16) compared with healthy subjects (−2.96 mg/dl, 95%CI -5.28, −0.65) (Tokede 
et al. 2015a).

The lipid-lowering mechanisms of action regarding soy and lupine proteins 
could be attributed to the inhibition of the hydroxymethylglutaryl-coenzymeA 
(HMG-CoA) reductase enzyme, up-regulation of LDL receptors, regulation of the 
Sterol regulatory element-binding protein 2 (SREBP2) pathway and the increase of 
the faecal excretion of bile salts (Lammi et al. 2014).

The proteins derived from lupine (50 mg/day) demonstrated clinical efficacy in 
the reduction of very low density lipoprotein (VLDL) and LDL level in a rat model: 
in fact, an increased number of LDL receptors in HepG2 hepatoma cell line has 
been observed with the conglutin gamma (extracted from lupine) (Sirtori et al. 2012).

Another peptide with lipid-lowering action that interacts with micelle formation 
and absorption of exogenous cholesterol is derived from the hydrolyzate extracted 
of Mucuna pruriens (Herrera Chalé et al. 2016). Peptides from cowpea have also 
demonstrated to inhibit cholesterol synthesis and its solubilisation into micelles 
(Marques et al. 2015).

A bioactive peptide derived from milk is β-lactotensin; at a dose of 100 mg/kg 
per os it showed a significant lipid-lowering activity in mice, with an increased 
excretion of bile acids in the faces (Yamauchi et al. 2003). It acts probably via the 
action on neurotensin receptor 2 (NTS2) and D1 receptors, which results in higher 
levels of synthesis of bile acids from cholesterol, enhanced further by the direct 
action of β-lactotensin on mRNA (Yoshikawa 2015).
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Table 7.3 Food and plant bioactives with possible lipid lowering effect

Plant/food 
bioactive Active daily doses Expected effects on lipid profile

Direct 
vascular 
effects

Apple 100–800 mg of 
polyphenols

0/−15% LDL, 0/+15% HDL (only in 
hypercholesterolemic subjects)

Unclear

Berberine 500–1000 mg −15/−20% LDL, ↓ ApoB, TG, 
hs-CRP, IL-6, MCP-1, ICAM-1, 
VCAM-1, MMP-9

↑ FMD, ↓ 
PWV

Bergamot 500–1000 mg of 
bergamot polyphenols 
fraction

−5/−10% LDL, ↓ sdLDL, hs-CRP, 
TNF-α

↑ FMD, ↓ 
PWV

Berries 320 mg/1 g of dry 
extract

−5/−30% LDL, 0/−20% TG, 
+10/+30% HDL

Unclear

Bioactive 
peptides

10–100 mg/day (IPP, 
VPP)

−0/−5% LDL Not 
investigated

Cocoa and 
dark chocolate

400–1000 mg of 
polyphenols

0/−5% LDL ↑ FMD, ↓ 
PWV

Coffee 150 ml (300 mg of 
polyphenols)

0/−5% LDL, 0/+5% HDL, 0/−13% 
TG

Unclear

Curcumin 300–1000 mg 0/−5% LDL, ↓ hs-CRP, IL-6, MCP-1, 
ICAM-1, VCAM-1, MMP-9

↑ FMD, ↓ 
PWV

Grape 200–800 mg of total 
polyphenols

–0/5% ↓ ApoB, ApoE
↑ ApoAI, ApoAII

↑ FMD, ↓ 
PWV

Monacolin K 3–10 mg −15/25% LDL, ↓ LDL, ApoB, 
hs-CRP, MMP-2, MMP-9

↑ FMD, ↓ 
PWV

Nuts 30 g/day −5/−10% LDL ↑ FMD, ↓ 
PWV

Olive oil 25 ml/day 
(polyphenols: 366 mg/
kg)

0/−5% LDL Unclear

Plant sterols 
and stanols

3 g/day −5/−15% LDL Unclear

PUFAs 1–4 g (EPA + DHA) −5-20% TG, ↓ sdLDL, hs-CRP, 
TNF-α, ↓ adhesion molecules

↑ FMD, ↓ 
PWV

Soy 40–80 mg/day of 
soy-derived isoflavones

0/−5% LDL, +0/5% HDL, 0/−13% 
TG

Unclear

Tea 170–850 mg/day of tea 
catechins

0/−5% LDL, ↓ oxyLDL ↑ FMD, ↓ 
PWV

APO apolipoprotein, DHA docosahexaenoic acid, EPA eicosapentaenoic acid, FMD flow mediated 
dilation, HDL high density lipoprotein, hs-CRP high sensitivity C reactive protein, ICAMintercellular 
adhesion molecule 1, IPP isoleucine–proline–proline, LDL low density lipoprotein, oxyLDL LDL 
oxidated, MCP monocyte chemoattractant protein, sdLDL small dense LDL, TGtriglycerides, 
PWV pulse wave velocity, TNF-alpha tumor necrosis factor alpha, VCAM vascular cell adhesion 
protein, VPP valine–proline–proline
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7.4.2  Polyphenols

The putative lipid-lowering mechanisms of action of polyphenols include the reduc-
tion of oxidative stress of the lipoproteins, the inhibition of hepatic synthesis of 
LDL, the enhancement of the number of hepatic LDL-receptors and the reverse 
cholesterol transport by the stimulation of transporters such as ABCG1, ABCA1 
and SR-BI, the activation of AMPK (AMP-activated protein kinase) and PPAR- 
gamma (peroxisome proliferator-activated receptor gamma) (Tomé and Visioli 2016).

Bergamot is the common name of the fruit Citrus bergamia and it contains high 
levels of flavonoids such as neohesperidin, neodesmin, naringin, neoeriocitrin, 
rutin, rhoifolin and poncirin. Specifically, the 3-hydroxy-3-methyl-glutaryl flava-
none–enriched fraction (HMGF: brutieridin, melitidin, and HMG neoeriocitrin) 
acts as a statin by inhibiting HMG-CoA reductase and ACAT, lowering the forma-
tion of cholesterol esters. Bergamot contains also naringin, a bioactive molecule 
that acts with several anti-atherosclerotic mechanisms, including the inhibition of 
LDL oxidation and ROS activity and the activation of AMPK. Nevertheless, the 
final effect might be due also to other components like neoeriocitrin, melitidin, and 
rutin (Di Donna et al. 2009).

Fig. 7.3 Main bioactive peptides with evidence on cholesterol metabolism: proposed mechanisms 
of action. (1) Bioactive peptides arrive into intestinal lumen with exogenus cholesterol after a meal 
(2). The meal fats form the mixed micelles with pancreatic and bile secretions, that facilitate the 
entrance into enterocytes via the NPC1L1 transporter presents on the brush border membrane of 
the enterocyte. Into enterocytes, the cholesterol is a substrate for intestinal ACAT (3), and after it 
is incorporated into chylomicrons to reach the bloodstream (5) through the lymphatic system (4). 
The cholesterol reaches the liver (6), but a percentage is re-excreted into the intestinal lumen and 
used for the bile synthesis and thus eliminated through the faeces (7). The cholesterol (trough the 
lipoproteins) is taken up by several peripheral tissues such as muscle and adipose tissue (8). ACAT 
Acyl-CoA cholesterol acyltransferase, HMG-CoA hydroxymethylglutaril-CoA, LDL-R low- 
density lipoprotein-receptor, NPC1L1 NiemannPick C1 like 1
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The evidence indicates both quantitative and qualitative lipid-lowering effects of 
bergamot, especially through the reduction of both small dense (sd)-LDL and tri-
glycerydes (TG) levels and the improvement of HDL-C levels. For this reason, 
people with MetS and NAFLD who are intolerant to statins may benefit from berga-
mot supplementation. However, the clinical literature is still poor because data 
regarding bergamot comes from a single research unit and aren’t confirmed by other 
groups yet. In addition, data on vascular stiffness is still lacking.

Gliozzi et al. has conducted a study including 77 patients with mixed dyslipid-
emia divided into five groups: placebo (n = 15), 10 mg of rosuvastatin (n = 16), 
20 mg of rosuvastatin (n = 16), 1000 mg of bergamot (bergamot-derived polyphe-
nolic fraction (BPF); n = 15), and 1000 mg bergamot plus 10 mg of rosuvastatin 
(n = 15). After the treatment the study showed a reduction of LDL-C from a base-
line value of 4.94 mmol/l to a value of 2.97 mmol/l after 10 mg of rosuvastatin; to 
2.26 mmol/l after 20 mg of rosuvastatin; to 2.92 mmol/l after 1000 mg of BPF; 
and to 2.33 mmol/l after 1000 mg bergamot plus 10 mg of rosuvastatin (Gliozzi 
et al. 2013).

The same author underlined a significative effect of bergamot on TC, LDL-C and 
TG in people with Mets and NAFLD (Gliozzi et al. 2014).

The consumption of apple polyphenols (0.21–1.43 g/day) both as a juice and as 
a fruit might protect and reduce the ROS and oxidation of lipoprotein as well. 
However, data regarding LDL-C and TC reduction are still contrasting. In a RCT, 
the treatment with 600  mg/day of apple polyphenols in 71 subjects with BMI 
between 23 and 30 resulted in a significant decrease of LDL-C levels (Nagasako- 
Akazome et al. 2007). Similar results were obtained in mildly hypercholesterolemic 
patients and with the consumption of two apples/day (Annurca apple) for 4 months 
(LDL-C –14.5% and HDL-C  +  15.2% (p  <  0.001 for all)) (Tenore et  al. 2016). 
However other studies showed no benefits on the lipid profile and vascular function, 
despite an improvement of the oxLDL (Ravn-Haren et al. 2013; Vafa et al. 2011).

A rich source of PPs and in particular anthocyanins are berries. Several RCTs 
have evaluated the effects of blueberries, strawberries, chokeberries (Aronia mela-
nocarpa L.) and cranberries supplemented as fresh fruit, juice or freeze-dried extract 
as well in CV prevention (Basu et al. 2010).

The study of Qin et  al. showed that the supplementation with 320 mg/day of 
berry-derived anthocyanin in dyslipidemic subjects improved LDL-C, TG and 
HDL-C compared to the placebo group (p < 0.001 for all) (Qin et al. 2009). Similar 
results were obtained after the consumption of 200  ml of chokeberry juice 
(386  ±  9.7  mg of total phenolics) (Skoczynska et  al. 2007) and in hypertensive 
patients (Oszmianski and Wojdylo 2005) as well.

Even the consumption of cranberry for 12 weeks, has demonstrated to decrease 
significantly LDL-C (from 3.3 ± 0.2 to 2.9 ± 0.2 mmol/l, p = 0.005), TC (p = 0.020) 
and TC/HDL-C ratio (p = 0.044) compared with placebo, in a RCT of 30 diabetic 
subjects (Lee et al. 2008). Cranberry juice (480 mL/day) also demonstrated good 
antioxidant efficacy in patients with metabolic syndrome (Basu et al. 2011).

Finally, even the Vaccinium arctostaphylos L (better known as Caucasian whor-
tleberry) and PPs from strawberries seem able to improve the lipid profile in people 

A. F. G. Cicero and A. Colletti



253

with mild dyslipidaemia or MetS, as demonstrated by several RCTs, probably 
because of the high presence of PPs flavonoids (Kianbakht et  al. 2014; Basu 
et al. 2014).

The flavonoids present in dark chocolate (DC) could possess lipid-lowering 
activity as demonstrated in a pilot study of 28 healthy people treated with 700 mg/
day of flavonoids for 1 week. The results showed a significant reduction of LDL-C 
by 6% (p < 0.018), hs-CRP levels (p < 0.04) and platelet aggregation (p < 0.006) and 
an improvement of HDL-C by 9% (p < 0.0019) (Hamed et al. 2008). Even the RCT 
of Mursu et al. (2004), including healthy volunteers, showed similar conclusions. 
DC (27–100 g/day) or cocoa flavanols (850–993 mg/day) were administered also in 
grade I hypertensive patients (Grassi et al. 2005), in obese people (Di Renzo et al. 
2013), in menopausal women with type 2 diabetes (Curtis et al. 2013) and in the 
elderly (Mastroiacovo et al. 2015), with satisfactory results in the reduction of cho-
lesterolemia and inflammation markers as well.

DC seems to be a lipid-lowering agent also in people at high CVR, in addition to 
increase the levels of HDL-C and decrease the oxidation of LDL (p < 0.05 for both) 
(Khan et al. 2012). Moreover, Baba et al. underlined a greater reduction in patients 
with serum cholesterol ≥3.23 mmol/l at baseline (Baba et al. 2007).

The meta-analyses of Hooper et al. (2012) (42 RCTs and 1297 participants) and 
Shrime et al. (2011) (24 RCTs and 1106 participants) shows an improvement of 
HDL-C and a slight but significant reduction of LDL-C after the assumption of DC 
or flavan-3-ol-rich cocoa derived products.

However, some studies are still conflicting (Desideri et al. 2012; West et al. 2014; 
Nogueira Lde et al. 2012; Neufingerl et al. 2013) and contrasting with the above-
mentioned results even if some of them reported a great statistical heterogeneity. 
For this reason, larger and longer RCTs with a specific population sample are 
needed to have more consistent and clear results. Finally, the consumption of DC or 
cocoa PPs is associated with an improvement of arterial stiffness (FMD) and insulin 
resistance (HOMA-IR) (Hooper et al. 2012; Shrime et al. 2011). In general, DC 
compliance is excellent and side effects are negligible.

In the last years, an increased number of publications has pointed the attention 
on the potential protective effects of coffee and its bioactives (including caffeine, 
chlorogenic acid, caffeic acid and hydroxyhydroquinone) against oxidative stress 
and related chronic disease risk. Concentration of total polyphenols in coffee are 
about 200 mg/100 mL (Fukushima et al. 2009). However, despite that the moderate 
consumption of coffee (2–4 cups/day) seems to be associated with reduced CVR 
(Crippa et al. 2014), data regarding the lipid-lowering activity are still contrasting 
(Cai et al. 2012; Grioni et al. 2015).

Grape is particularly concentrated in anthocyanins, flavanols, flavonols, pro-
anthocyanidins and stilbenes. Nevertheless, although the correlation between the 
consumption of grape (as fruit, juice or nutritional supplement as well) and the anti- 
inflammatory, anti-hypertensive, anti-platelet, anti-oxidant and ameliorative of 
endothelial function is now known, data on lipid profile are still unclear (Castilla 
et al. 2006; Vaisman and Niv 2015). In the study of Sano et al. the administration of 
400 mg/day of proanthocyanidins (extracted from grape seed), for 4–12 weeks, in 
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healthy people, has shown no significant changes in LDL-C and TC as well com-
pared to baseline, even if the supplement significantly decreased the LDL oxidation 
(p < 0.001) (Sano et al. 2007). Similar results were obtained from Diaz-Rubio et al. 
in 28 healthy subjects treated with 200  ml/day of pomegranate and grape juice 
(Díaz-Rubio et al. 2015), Siasos et al. in 26 healthy smoker subjects (965 mg/day of 
total PPs for 2 weeks) (Siasos et al. 2014) and in subjects with metabolic syndrome 
(Sivaprakasapillai et al. 2009). Finally, even the meta-analyses by Feringa et al. (9 
RCTs and 390 participants included) and Sahebkar et al. (10 RCTs and 11 treatment 
arms) showed no quantitative effects of grape seed or resveratrol on lipid profile 
(Feringa et al. 2011; Sahebkar et al. 2015). In contrast to these results, some RCTs 
have found benefits on lipid profile. In this regard, the intake of 800 mg/day of grape 
PPs, in healthy males, for 2 weeks, resulted in lower TC and TG after the consump-
tion of high fat meal (van Mierlo et al. 2010). Similar results were obtained in a 
further study involving 60 healthy volunteers assuming 700 mg/day of polyphenol- 
rich grape extract supplement or placebo (Yubero et al. 2013).

The consumption of at least 30 g/day of nuts or > 4 times/day is known to reduce 
the CVR by 37% (mean reduction of 8.3% for each weekly serving of nuts) (Kelly 
and Sabaté 2006). The reason of CV protective activity of nuts might also be 
explained due to their lipid-lowering action. In fact, nuts are particularly rich in PPs 
(phenolic acids, proanthocyanidins, flavan-3-ols and ellagitanninis) and other bio-
active substances such as plant sterols and stanols, linoleic acid, alpha-linolenic 
acid, gamma-tocotrienols, the L-damming and other micronutrients. The effects of 
nuts consumption were evaluated in a metaanalysis of 25 trials (583 men and women 
with or without dyslipidemia and not in treatment with conventional therapies) con-
ducted in seven countries. The analysis showed a relationship between the con-
sumption of nuts (mean assumption: 67 g/day) and the reduction of the levels of TC 
(0.28 mmol/l; −5.1%), LDL-C (0.26 mmol/l; −7.4%), LDL-C/HDL-C ratio (0.22; 
−8.3%), and TC/HDL-C ratio (0.24; −5.6%) (p  <  0.001 for all). In addition, in 
people with hypertriglyceridemia (TG > 1.70 mmol/l), nuts reduced also TG levels 
by 0.23 mmol/l (−10.2%) (p < 0.05). In general, the effects of nut consumption 
were dosage-dependent and the greatest efficacy was obtained in patients with ele-
vated levels of cholesterol at baseline (Sabaté et al. 2010).

Similar results and conclusions were obtained by a sub-group of the “Prevention 
with Mediterranean diet” (PREDIMED) study, where the Mediterranean diet, 
enriched in the consumption of nuts, has demonstrated to improve the lipid profile 
and to reduce the CVR in patients at high CVR (Medina-Remón et al. 2016).

Another component of the Mediterranean diet are olives with a high content of 
polyphenols such as oleuropein and hydroxytyrosl. Nevertheless, data from RCTs 
regarding their lipid-lowering activity are still conflicting (Cicero and Colletti 
2018b). For example, despite a further meta-analysis of eight cross-over RCTs and 
355 participants showed a slight reduction in SBP (p < 0.001) and LDL oxidation 
(p = 0.05) following the consumption of olive PPs, no significant effect was observed 
on TC, LDL-C, HDL-C and TG (Hohmann et al. 2015). In contrast to this study, 
other RCTs are in countertendency. In a multicentre, crossover study, including 200 
volunteers and six research centers from five European countries, the lipid-lowering 

A. F. G. Cicero and A. Colletti



255

activity of three types of olive oil was tested. In particular, for a single dose of olive 
oil (25 ml/day), the content of PPs was 366 mg/kg (Oil A), 164 mg/kg (Oil B) and 
2.7 mg/kg (Oil C). The treatment was characterized by 3 weeks for each type of oil, 
alternated by 2-week washout periods. At the end of the study the improvement of 
HDL-C was proportional to the intake of PPs (Oil A: +0.045 mmol/l (95% CI 0.02, 
0.06 mmol/l) as well as the reduction of oxidized LDL-C (Oil A: −3.21 U/l (95% 
CI −5.1, −0.8 U/l), while the reduction of TG was on average 0.05 mmol/l for each 
treatment (Covas et al. 2006).

Similar results were obtained in 60 pre-hypertensive patients (Lockyer et  al. 
2016). Even the assumption of yogurt enriched with olive PPs (50  mg/day) has 
demonstrated to improve the LDL-C (p = 0.06) and lipid peroxidation (p < 0.05) in 
16 healthy subjects (Georgakouli et al. 2016). Finally, the PREDIMED study has 
demonstrated that the consumption of extra virgin olive oil rich in PPs is associated 
to reduced risk of CVDs and mortality in individuals at high CVR, if associated 
with a healthy lifestyle (Guasch-Ferré et al. 2014).

Other bioactive compounds which are particularly interesting for their lipid- 
lowering action are soy isoflavones. A meta-analysis of 11 RCTs showed that daid-
zein and genistein, the main soy isoflavones, significantly reduced serum TC by 
0.10 mmol/l (3.9 mg/dl or 1.77%; p = 0.02) and LDL-C by 0.13 mmol/l (5.0 mg/dl 
or 3.58%; p < 0.0001). The cholesterol-lowering activity was larger in people with 
higher values of TC and LDL-C at baseline (Taku et al. 2007), and dosages >80 mg 
of isoflavones led to better results as well. The improvements in HDL-C appeared 
only in trials of >12 weeks duration (Zhan and Ho 2005; Tokede et al. 2015b).

Tea extract from the leaves of Camellia sinensis is the second most consumed 
beverage in the world after water. It is well known to possess health properties 
because of the high presence of bioactive substances. As mentioned before, there 
are many kinds of tea, according to the manufacturing processes: green tea (GT), 
black tea (BT) and oolong tea (OT, produced by partial fermentation) (Khan and 
Mukhtar 2007). The most important catechin present in tea is a flavan-3-ol, the 
(−)-epigallocatechin gallate (EGCG), that represent around the 50–80% of total 
catechins in tea, even if (−)-epigallocatechin (EGC), (−)-epicatechin gallate (ECG), 
and (−)-epicatechin (EC) are present in small quantities as well.

Tea catechins are able to reduce the lipid peroxidation and might improve the 
lipid profile, probably interfering with the micellar solubilization and absorption of 
intestinal cholesterol, acting as activator of the AMPK that stimulate lipogenesis, 
enhancing the hepatic LDL-receptors expression and the biliary excretion of choles-
terol, and reducing the endogenous synthesis of cholesterol through the inhibition 
of HMG-CoA reductase (Shishikura et al. 2006). In the meta-analysis by Onakpoya 
et al. (20 RCTs and 1536 subjects), the consumption of 250–1200 mg/day of GT 
extract or of 170–850  mg/day of EGCG has demonstrated to reduce TC of 
0.13 mmol/l (95%CI: 0.2, 0.07, p < 0.0001) and LDL-C of 0.19 mmol/l (95%CI: 0.3 
to 0.09, p = 0.0004) (Onakpoya et al. 2014). However, GT seems not to influence 
the plasma HDL level (Zheng et al. 2011). Similar results were obtained in patients 
with chronic stable angina (Lee et al. 2016). The cholesterol-lowering effectiveness 
of GT was found to be greater in RCTs with longer durations of intervention. In 
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addition, GT extract has shown a mild but significant antihypertensive effect. 
Regarding the type of tea, the consumption of BT compared to GT has shown ana-
logue results on LDL-C reduction (Wang et al. 2014). Moreover, GT is associated 
with an improvement in FMD (Lin et  al. 2016) and PWV (Park et  al. 2010). 
Regarding the safety profile, the supplementation of tea or catechins is considered 
safe and well tolerated. However, elevated dosages of GT could be responsible of 
iron and folate deficiency, reducing their intestinal absorption. Therefore, particular 
attention should be given to its intake in pregnant women and in women at risk for 
pregnancy (Onakpoya et al. 2014).

7.4.3  Other Bioactive Compounds

The rhizome of Curcuma longa contains a large amount of curcuminoids and in 
particular curcumin, which represents the major phenolic compound present in the 
spice turmeric. Several RCTs and meta-analyses have shown the anti-inflammatory 
and antioxidant activities of curcumin. Moreover, this nutraceutical acts as a lipid- 
lowering agent trough the inhibition of the expression of the NPC1L1 transporter 
and the increase of the cholesterol efflux via ABCA1 expression (Kumar et  al. 
2011). However, the results regarding the effects of curcumin on lipid profile are 
still unclear (Sahebkar 2014).

Plant sterols and stanols (PS), are molecules structurally similar to cholesterol, 
differing in the side chain at C24 that presents a methyl or ethyl group (campesterol 
and B-sitosterol, respectively) or an extra double bond at C22 (stigmasterol). Stanols 
are instead the saturated derivatives of sterols. PS are present in different plant 
sources such as vegetable oils, seeds, legumes, nuts, and fat spreads and if adminis-
trated in fed state, they decrease the intestinal absorption of exogenous cholesterol 
through the competition with it in the formation of solubilized micelles and in the 
NPC1L1 transporter.

However, the ATP-binding cassette protein family (ABCG5 and ABCG8) shut-
tles and blows out the majority of sterols and stanols in the intestinal lumen (PS 
bioavailability <1–2%).

The cholesterol-lowering activities of PS have been highlighted in different 
meta-analyses of RCTs. One of the most recent meta-analyses, including 41 RCTs 
and 2084 subjects, demonstrated the effectiveness of PS (mean dose: 1.6  g/day, 
range: 0.3–3.2 g/day) on cholesterolemia, with a significant reduction of LDL-C of 
0.33 mmol/l (12.8 mg/dl; −8.5%) compared to the placebo (Ras et al. 2013). PS 
might also have an impact on TG but only in people with high TG levels at baseline. 
No differences in efficacy have been underlined between sterols and stanols at dos-
ages up to 3 g/day (Cicero et al. 2017a).

Monacolin K is a secondary fermentative component of red yeast rice (RYR) 
obtained by the fermentation of a particular yeast (in general Monascus purpureus) 
in rice (Oryza sativa), that is well known to possess a lipid-lowering activity. The 
main lipid-lowering mechanism of action of RYR concerns the inhibition of 
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 HMG- CoA reductase. A recent meta-analysis of 20 RCTs showed that 2–24 months 
of supplementation with RYR, reduced LDL-C by 39.4 mg/dl (1.02 mmol/l, −1.20 
to −0.83) compared to the placebo, not different from low-intensity statin treat-
ments (40 mg of pravastatin, 10 mg of simvastatin, 20 mg of lovastatin). In addition, 
the supplementation with RYR significantly reduced TG (−23 mg/dl, −0.26 mmol/l; 
range: −0.35 to −0.17) and increased HDL-C (0.3  mg/dl, 0.007  mmol/l; range: 
0.03–0.11) compared to the placebo.

Concerning the safety profile, RYR administration is in general well tolerated as 
highlighted by a meta-analysis where the incidence of cases of liver abnormalities 
and kidney injury was similar in both RYR and control groups and the incidence of 
developing muscular symptoms was lower in RYR groups (0–23.8%) compared 
with control groups (0–36%) (Gerards et al. 2015). Similar data was obtained in a 
previous Chinese meta-analysis that included 93 RCTs and 9625 volunteers (Liu 
et al. 2006). Pleiotropic activities of RYR include the improvement of FMD and 
arterial stiffness and the reduction of inflammatory markers (hs-CRP). Finally, this 
nutraceutical has been studied to evaluate its effects on CV outcomes. In this regard, 
a large trial including 66 hospitals in China and 445 patients of 65–75 years old, 
with a history of myocardial infarction, has evaluated the effects of RYR for a mean 
of 4 years. People were randomized in two groups (placebo vs RYR). At the end of 
the study, only patients in the active group showed a reduction in the risk of CHD 
(−31.0%; p  =  0.04), all-cause mortality (−31.9%; p  =  0.01), stroke (−44.1%; 
p = 0.04), and the need for a coronary revascularization (−48.6%; p = 0.07) (Zhao 
et al. 2004).

Berberine (BBR) is a quaternary benzylisoquinoline alkaloid particularly con-
centrated in different parts of various plants (e.g. Coptis chinensis, Hydrastis 
canadensis, Berberis aristata).

The lipid-lowering mechanisms of BBR are essentially two: first, it is an inhibi-
tor of proprotein convertase subtilisin/kexin type 9 (PCSK9), limiting the degrada-
tion of the hepatic LDL-receptor, and second, it acts directly on the expression of 
LDL-receptor, causing an upregulation of the receptors through a post- transcriptional 
mechanism that stabilizes their mRNA.

The lipid-lowering efficacy of BBR (500–1000 mg/day) has been confirmed by 
a recent meta-analysis of 27 RCTs and 2569 participants. The results showed a 
reduction of LDL-C of −25.14  mg/d (−0.65  mmol/l, 95%CI, −0.75 to −0.56; 
p = 0.00001), TG of 34.5 mg/dl (−0.39 mmol/l, 95%CI, −0.59 to −0.19; p = 0.0001) 
and an improvement of HDL-C of 2.71 mg/dl (0.07 mmol/L, 95%CI, 0.04–0.10; 
p = 0.00001). These effects might be additive to statin treatments, and could improve 
glucose metabolism and blood pressure as well (Meng et al. 2012).

In 61 patients undergoing percutaneous coronary intervention, the supplementa-
tion with BBR (300 mg, t.i.d., for 30 days) in addition to standard therapy, has dem-
onstrated to reduce matrix metalloproteinase (MMP)-9, intercellular adhesion 
molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, C-reactive pro-
tein, interleukin-6 and monocyte chemoattractant protein-1 (p < 0.001 for all) com-
pared to baseline values (Lan et al. 2015). BBR assumption is usually safe. Mild 
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diarrhea, constipation and abdominal distension can appear with the use of high 
dosages (>1 g/day).

Finally, PUFAs (in particular EPA and DHA) from both fish and vegetal origins, 
represent a valid nutraceutical to reduce TG in the blood (by 18–25%), even if their 
effects on LDL-C and HDL-C are clinically insignificant. Nevertheless, data on 
CVD outcomes have produced conflicting results, and their clinical efficacy appears 
to be related to non-lipid effects. In addition, low dosages of PUFAs (e.g. 400 mg/
day of EPA plus DHA) do not significantly reduce TG levels, as confirmed in an 
RCT of 4837 post-myocardial infarction patients (Kromhout and Giltay 2010). A 
meta-analysis involving 20 RCTs and 63,030 patients showed that the treatment 
with PUFAs did not have an impact on a composite CVD endpoint or total mortality 
but was associated with a significantly decreased rate of vascular death (Kotwal 
et al. 2012).

7.5  Discussion and Future Perspectives

Current progress in bioactive compounds is an exciting and growing research field, 
even if this potential should not be surprising. In fact, bioactive peptides are able to 
control and modulate the cellular communications and functions as well, while the 
polyphenols are able to regulate the inflammation and oxidative stress at the base of 
chronic diseases.

This renewal of interest in therapeutic “bioactive molecules” derived from food 
and plants, might be due to some limitations of conventional treatments, including 
frequent development of drug resistance, poor delivery, non-specificity, side effects 
and economic costs (Craik et al. 2013).

Studies conducted in vitro and in vivo demonstrated the effectiveness of bioac-
tive compounds in prevention of CVDs and, since now, the excellent tolerability 
profile. The blood pressure and cholesterol lowering molecules tested in humans 
confirm their optimal tolerability and safety. However, despite that the safety profile 
seems to be good, the presence of proteins and hydrolysates bioactives might exac-
erbate or induce allergic reactions. In this regard, longer and larger RCTs are needed 
to verify the safety of these substances (Franck et al. 2002). In addition, there is the 
need of solid pharmacokinetic studies to determine the active dosages and the fre-
quency of administration, and to analyze the variability in biological effects. In fact, 
bioactive compounds include a large class of different substances with different 
pharmacodynamic and pharmacokinetic profiles. In addition to the different chemi-
cal structures, other aspects which may influence the bioavailability and the effec-
tiveness of the bioactive compounds are the pharmaceutical forms and the presence 
or not of other substances including excipients and other molecules.

Other limits regarding the prescription of bioactive substances in clinical prac-
tice concern the limitations of the studies, including the short duration (almost never 
more than 8 weeks) and the restricted sample of enrolled subjects. All these factors 
might contribute to explain the great heterogeneity of the results obtained from the 
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studies (Fanali et al. 2018). It is also necessary to standardize extractive processes 
for bioactive compounds.

In conclusion, the results obtained since now in studies in vitro and in vivo and 
in clinical trials are encouraging and have shown the great potential of bioactive 
molecules in CV prevention. However, several aspects need to further confirma-
tions, such as the influence of gut microbiota on bioactives bioavailability, the little 
knowledge of the active metabolites, the dosages of administration and the stan-
dardization of products, and number and characteristic of people enrolled in the 
studies.

Moreover, longer and larger RCTs are needed to confirm the effects of bioactive 
compounds in CVDs as well as in prevention of CVR factors, and to promote activi-
ties and potential prescriptions in clinical practice. Finally, a cost-benefit analysis 
should be done to understand the utility of these compounds in relation to the eco-
nomic burden of chronic diseases with negligible side effects.
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Chapter 8
Bioactives for Neuronal and Immune 
Functions

Mimica-Dukić Neda, Ivana Beara, Tamara Vojnović, 
and Cvejić Jelena Helene

Abstract The positive effects of certain dietary nutrients and phytochemicals on 
human health include the prevention of a non-communicable diseases (NCD) as 
well as the enhancement of the healing processes by decreasing the time needed for 
healing and improving the outcomes. A diet that is low in saturated fats and carbo-
hydrates and that is high in fiber, antioxidants such as polyphenols and monounsatu-
rated and omega-3 fatty acids, phytosterols and probiotics are known as a healthy 
diet. It has been shown that polyphenols are interfering with immune cells regula-
tion, gene expression and pro-inflammatory cytokines’ synthesis. As such, these 
molecules are associated with extended health benefits, playing an important role in 
the prevention and treatment of various chronic conditions, such as neurological 
disorders. Omega-3 fatty acids are known for their positive health effects through 
their anti-inflammatory properties as well as their impact on gut microbiota. DHA 
and EPA are known for being essential in neuronal/brain functioning and its immu-
nomodulatory properties. Intestinal immune stress associated with low omega-3 
availability might be also involved in the development of neuro-inflammation and 
progression of related diseases. Further studies are needed in order to understand 
the real impact and benefits of omega-3 fatty acids on the development of non- 
communicable diseases (NCD) including neurological conditions that are devel-
oped as a consequence of neuro-inflammation.
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8.1  Introduction

8.1.1  Nutrients/Bio-Actives Components from Food

“Health is a state of complete physical, mental and social well-being and not merely 
the absence of disease or infirmity” (World Health Organization (WHO) 2019). It is 
well known that the consumption of certain food has an impact on our health due to 
its health-promoting properties. Many studies have shown the positive effects of 
certain dietary nutrients and phytochemicals on human health. These positive effects 
include the prevention of a non-communicable diseases (NCD) such as some spe-
cific chronic diseases (e.g., obesity, diabetes, cardiovascular diseases, cancer, and 
neurodegenerative conditions) as well as the enhancement of the healing processes 
by decreasing the time needed for healing and improving the outcomes (Davinelli 
et al. 2016; Yasmeen et al. 2017; Urquiaga et al. 2017). These effects that nutrition 
has on human health are especially important in an aging population that is in 
increase worldwide (Bruins et al. 2019).

The primary food nutrients are macronutrients and micronutrients. These are 
called essential nutrients as the human body cannot make them or at least not in 
sufficient quantity. Macronutrients are carbohydrates, proteins, and fats, while 
micronutrients are vitamins and minerals. Macronutrients provide energy to the 
body, while the deficit in micronutrients is related to many non-communicable 
diseases, including cognitive and neuromuscular function impairments (Bruins 
et al. 2019).

Different food contains different nutrients with a variety of the quality of carbo-
hydrates and fats (Haase et al. 2018). High-energy food that has low nutrient value 
and low essential nutrient intake seems to have a tremendous influence on overall 
health, leading to various health problems, including mental health problems 
(Parletta et al. 2013). However, the mechanisms responsible for the effects of food 
components on health remain elusive (Yasmeen et al. 2017). Increased interest in 
the diet-related disease risks and potential beneficial effects that food bioactive 
nutrients can have on human health will most probably lead to improved therapeutic 
approaches in the future (Rescigno et al. 2017).

What is now considered as a healthy diet is an intake of vegetables and fruits, 
nuts, seafood, whole grains, and olive oil. In other words, a diet that is low in satu-
rated fats and carbohydrates and that is high in fiber, antioxidants such as polyphe-
nols and monounsaturated and omega-3 fatty acids, phytosterols and probiotics are 
known as a healthy diet (Urquiaga et al. 2017).

On the other hand, the importance of essential fatty acids and their effects on the 
development and progression of mental diseases has been more investigated 
recently, and the results show that omega-3 fatty acids are crucial for our wellbeing 
and that can be used in preventing and/or treating various diseases (Wysoczanski 
et al. 2016).
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8.1.2  Nutrition and Immune System

It is well known that the role of the immune system is to protect the host homeosta-
sis and general health. In order to achieve that, it must constantly monitor for harm-
ful non-self molecules/ invading pathogens and adapt over time so that one may 
detect and neutralize evolving pathogens that try to avoid neutralization by the 
immune system (Childs et al. 2019; Gutierrez et al. 2019). A resilient immune sys-
tem has the capacity to adapt quickly, and that ability to establish and maintain the 
appropriate immune response in challenging circumstances is called immune fit-
ness. The healthy immune system is programmed to resolve and to return the tissue 
to the pre-inflamed state (restore tissue homeostasis). When that resolution of 
inflammation is contained in time and space, our body is in a state of immune fit-
ness. However, when our body over-reacts and has poor and/or the inappropriate 
resolution of inflammation, it extends the time for pro-inflammatory mechanisms 
leading to tissue damage and pathology. This has a significant impact on the patho-
genesis of chronic inflammatory diseases, including mental diseases (Barnig 
et al. 2019).

There are two major groups of the immune cells:

• cells of the innate immune system that represents the first line of defense and 
cells of the adaptive immune system that is specialized and more effective but its 
action is delayed; these cells are phagocytes such as monocytes, macrophages, 
neutrophils, tissue dendritic cells and mast cells;

• cells of the adaptive immune system; these are T cells that are involved in cell- 
mediated immunity and B cells that are responsible for humoral immunity.

The immune system disorders lead to various diseases, from autoimmune dis-
eases that are the result of the hyperactive immune system to inflammatory diseases 
and life-threatening infections that are the result of the immune system that is less 
active than normal. For the optimal function of the immune system cells, a healthy 
diet that contains adequate nutrients is essential. Nutrition that supports the immune 
cell functions is important not only to help initiation of the effective immune 
response but also to help to avoid chronic inflammation by resolving rapidly the 
response (Childs et al. 2019). Low-grade inflammation that can be triggered by cer-
tain food components can lead to fatigue, depression as well as the development of 
a variety of other immune diseases. Actually, it was shown that chronic low-grade 
inflammation is present in virtually all non-communicable diseases (Prescott 2013).

Some micronutrients (e.g. vitamin D), as well as macronutrients (e.g. polyun-
saturated fatty acids), have specific immune regulatory characteristics. It seems that 
dietary omega-3 fatty acids promote specific immune functions, but clarifying the 
mechanisms of nutrient supply effects on the different immune cells and their 
metabolism and signaling is a challenge that future research may resolve and thus 
help optimizing omega-3 supplementation, lately extremely popular, in busting the 
immune response and treatment of different diseases (Bjelica et al. 2020; Gutierrez 
et al. 2019; Kedia-Mehta and Finlay 2019).
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Polyphenols, due to their specific structures, act as enzyme inhibitors (activa-
tors), activators or suppressors of particular signaling pathways, scavengers of reac-
tive free radicals, etc. In that way polyphenolic component, specifical resveratrol 
may reduce inflammation and this was shown in ischemic heart disease patients by 
reducing inflammatory and fibrinolytic biomarkers (Bruins et al. 2019).

8.1.3  Nutrition and Mental Health

Worldwide, mental disorders are increasing with more than 450 million people suf-
fering from depression, intellectual disabilities, schizophrenia, and drug abuse dis-
orders. Moreover, an increase in the dementia rate is alarming with the incidence of 
4–6 million new cases per year. Despite the significant burden that these mental 
disorders carry, the importance of healthy dietary patterns in the prevention of these 
disorders and the improvement of mental health has been poorly investigated so far 
(Silva and Sobarzo-Sanchez 2019; Parletta et al. 2013).

Currently available psychopharmacological therapy and complementary psycho-
therapeutic procedures have moderate efficacy, unwanted side effects and high risk 
of relapse. Thus, there is a need for new approaches in prevention and managing the 
progression of mental disorders (Mörkl et al. 2018; Opie et al. 2017). The knowl-
edge we have about the nutrition impact on mental health is mainly based on experi-
ments in  vitro, animal research and epidemiological studies and only on some 
clinical trials (Davison et al. 2012). Even though more clinical research is required 
for proving that dietary patterns and food components can improve neuronal and 
cognitive impairments, existing evidence suggests that specific dietary factors may 
influence the lower risk of depression and other mental disorders (Silva and Sobarzo- 
Sanchez 2019; Opie et al. 2017). These factors include omega-3 fatty acids, B vita-
min complex (vitamin B1, pantothenic acid and folate), vitamin E, vitamin D, 
magnesium, zinc and amino acids that are precursors to neurotransmitters (Mörkl 
et al. 2018; Morris 2016; Lakhan and Vieira 2008).

As known, apart from genetics, the potential cause of mental disorders is inflam-
mationand neurotransmitter imbalance with growing evidence that nutrition and gut 
microbiota play an important role in mental health through anti-inflammatory and 
anti-apoptotic as well as neurogenesis supporting effects (Mörkl et  al. 2018). 
Recently conducted studies show that traditional whole-food diets such as 
Mediterranean style diet that includes high consumption of fish, olive oil, vegeta-
bles, fruits, legumes, nuts and seeds, can help patients with mental disorders and 
might reduce the risk of developing depression in healthy population (Mörkl et al. 
2018; Bersani et al. 2017). Increased consumption of nutrient-dense food, high in 
fiber and omega-3 polyunsaturated fatty acids and low in sugar and saturated trans 
fats provide the foundation for optimal brain function (Opie et  al. 2017; Morris 
2016) through the modified synthesis of neurotrophins and neurotransmitters as 
well as reduced neuroinflammation.
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Deficiency in neurotransmitter precursors such as amino acid tryptophan, tyro-
sine, and its precursor phenylalanine as well as S-adenosylmethionine that facili-
tates the production of neurotransmitters in the brain lead to the mental disorders 
(Lakhan and Vieira 2008). Neurotransmitters are also generated in the gut by the gut 
microbiota. Namely, gut bacteria could synthesize 5-hydroxytryptamine (5-HT), 
gamma-amino acid, butyric acid, dopamine and short-chain fatty acids (Wang and 
Wang 2016).

In addition, a reduced level of plasma brain-derived neurotrophic factor (BDNF) 
that is essential for axonal growth, neuronal survival and plasticity is observed in 
patients with depression (Opie et al. 2017). Proteins provide amino acids that are 
neurotransmitter precursors and vitamin B play a significant role in the synthesis of 
these neurotransmitters. On the other hand, lipids and essential fatty acids from 
phospholipids in brain cell membranes ensure the membrane integrity and maintain 
the release of neurotransmitters, cytokines and hormones (Davison et al. 2012).

Oxidative stress and inflammatory processes contribute to neurodegeneration 
and psychiatric disorders (Scapagnini et  al. 2012; Ng et  al. 2008; Pandya et  al. 
2013). Antioxidants such as vitamins and minerals and polyphenols reduce the neg-
ative effects of oxidative stress, but other mechanisms also can reduce inflammation 
markers through a specific impact on intestinal microbiota. The enteric nervous 
system is connected to the central nervous system with a bidirectional communica-
tion pathway. Therefore, our dietary habits that modulate gut bacteria and its metab-
olites have an impact on the overall inflammation including neuroinflammation that 
is known to be involved in the mental disorder pathogenesis (Mörkl et  al. 2018; 
Opie et al. 2017).

8.2  Polyphenolics as Healthy Food Ingredients

A great number of recent studies deal with polyphenols as one of the most promis-
ing healthy food ingredients. Many scientists support the attitude that the increase 
in and regular consumption of this kind of food is linked to numerous health bene-
fits. The main source of of dietary polyphenols are vegetable, fruit and some 
legumes. It was estimated that the average daily intake of dietary polyphenols is 
nearly 1 g/person (Scalbert and Williamson 2000). Many scientists support the atti-
tude that the increase in and regular consumption of this kind of food reduce the risk 
of various chronic diseases such are obesity, cardiovascular diseases, diabetes, and 
even certain types of cancer. The health benefit of polyphenolics is due to the wide 
spectrum of their biological activities: antioxidant, antimicrobial, anti- inflammatory, 
anti-aging, imunomodulatory, hemopreventive, anticarcinogen, anti- atherosclerosis, 
anti-angiogenic etc. Han et  al. (2007), Cvejic and Gojkovic-Bukarica (2016), 
Raškovic et al. (2019). These activities are due to their specific structures, which 
enable them to interfere in many biochemical reactions, acting as enzyme inhibitors 
(activators), scavengers of reactive free radicals, activators or suppressors of par-
ticular signaling pathways, interrupting or inducing gene expressions etc.
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8.2.1  Chemical Diversity and Natural Sources 
of Polyphenolics

Polyphenolic compounds are widely distributed in plants, where they are incorpo-
rated in many physiological, mainly defense mechanisms. They are one of the larg-
est groups of secondary plant metabolites, with diverse structures, from simple 
phenols to large polymers such are tannins and procyanidols. Till now several thou-
sand polyphenols in plants have been identified and classified in several ways 
(Belščak-Cvtanovic et  al. 2018). Based on their chemical structure and carbon 
chain, they are divided into 16 major classes: simple phenols, benzoquinones, phe-
nolic acids, phenylacetic acids, acetophenones, phenylpropanoids (hydroxycin-
namic acids, coumarins, isocoumarins, chromones), naphtoquinones, xanthones, 
stilbenes, antraquinones, flavonoids, lignins (Harborne 1989).

With regard to their role in nutrition, a group of dietary polyphenols can be dis-
tinguished. They are defined as a large group of molecules contained in plant- 
derived foods commonly consumed as fruits, vegetables, herbs, and beverages. 
Among them, five major classes are recognized: phenolic acids (hydroxybenzoic 
and cinnamic acid derivatives), flavonoids (flavones, flavonols, flavanones, flava-
nols, omegaavones, catechins, anthocyanidins etc.), stilbenes and lignans (Han et al. 
2007). It is important to note that many kinds of cereal, like wheat, barley, corn, 
millets, sorghum, rice and rye which are widely used in the everyday diet also con-
tain various polyphenolics that enhance their healthy properties (Shahidi and 
Ambigaipalan 2015).

The most abundant polyphenols in the diet are phenolic acids and flavonoids. 
Phenolic acids are highly distributed in vegetables, fruit and beverages, especially 
coffee, tea, and beer. They are found in cereals such are wheat (caffeic, vanillic, 
ferulic gentisic, p-coumaric acids), barley (salicylic, p-hydroxybenzoic, p-coumaric, 
syringic acids, also flavonoids anthocyanins, proanthocyanidins etc.), sorghum 
(protocatechuic acid, caffeic acid, cinnamic and vanillic acids). Chlorogenic acid 
(3-caffeoyilquinic acid) is the main phenolic in potato extract and is identified as a 
major antioxidant and critical anti-proliferative compound in many cancer cells 
(Roleira et al. 2015).

The most common flavonoids in the diet are flavones and flavonols. Flavanones 
are highly presented in fruit, chocolate, tea and coffee; flavonols (quercetin and its 
derivatives) in various foods: vegetables (celery, broccoli spinach, onions), cereals 
(beans, sorghum), fruit (apples, cranberry, blueberries), spices, red wines etc., fla-
vones (mainly luteolin) in celery seeds, parsley, broccoli, millets, legumes and many 
others, anthocyanins, in red fruit, cherries, plums, strawberries and oranges, proan-
thocyanidins in berries, also in nuts, beans and some cereals; stilbenes in grapes and 
red wine (Atanackovic et al. 2012; Cvejić Hogervorst et al. 2018, 2019; Han et al. 
2007; Cvejić et al. 2017).
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8.2.2  Antioxidant Activity of Dietary Polyphenolic

One of the most important features of phenolic compounds is their antioxidant 
potential. Numerous papers deal with the antioxidant activity of various phenolics, 
especially those present in food. Their presence in food is very important in attribut-
ing food as functional or healthy.

The antioxidant potential of particular phenolic compounds mostly depends on 
the number and arrangement of hydroxyl groups and their ability to donate hydro-
gen or electron, and thus inactivate reactive radical species such are hydroxyl radi-
cals, alkyl peroxyl radicals, superoxide and many others. Besides, plant phenolics 
with two adjacent –OH groups or other chelating structures can bind transition 
metal ions (TMI) and prevent TMI-driven generation of harmful reactive oxygen 
species (Rice-Evans et al. 1997).

Among all phenolics, flavonoids and phenolic acids have been distinguished as 
the major antioxidants in food. Their activity is related to their structural features 
but also varies in dependence on the environmental systems, e.g. lipophilic or 
hydrophilic.

Flavonoids According to Rice-Evans et al. (1996), the main relevant criteria for 
radical scavenger effectiveness of flavonoids are:

 1. the o-dihydroxy structure in the B-ring which is important for the higher stability 
of radical form as a consequence of electron delocalization. It was found that 
3′,4′-hydroxyl groups in the B-ring contribute about 25% to luteolin antioxidant 
activity.

 2. The importance of the 2,3-double bond in flavonoid rings may be seen by com-
paring the antioxidant activity of catechin (with three hydroxyl groups in the 
B-ring) and epigallocathehin-gallate with additional gallic acid moiety (three 
phenolic groups) with quercetin, which has fewer hydroxyl groups but the pres-
ence of the 2,3-double bond. It was found that this structural feature doubles the 
antioxidant activity of quercetin (Salah et al. 1995). However, in contrast to the 
aqueous phase, the significance of the 2,3-double bond decreases in lipophilic 
interactions.

 3. Free hydroxyl groups (3-OH group in A- and 5-OH C-ring) together with the 
4-oxo group contribute to overall antioxidant capacity. It is evident that glycosyl-
ation of free hydroxyl groups diminishes the antioxidant potential of all 
flavonoids.

 4. Metal-chelating- potential: one more structural feature of flavonoids is their abil-
ity to chelate metal ions, especially iron and copper, thus preventing the forma-
tion of ROS. For this property, the most important are the o-diphenolic groups in 
the 3′,4′-position in the ring B and the ketol structure, 4-oxo, 3-OH or 4-oxo, 
5-OH in the C ring of the flavonols (Fig. 8.1)

Phenolic Acids Concerning phenolic acids as dietary antioxidants two classes are 
distinguished: hydroxybenzoic acids and hydroxycinnamic acids. Their antioxidant 
activity is correlated with the numbers of free hydroxyl groups whereas the  carboxyl 
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group, directly attached to the benzene ring, has a negative influence on the 
H-donating abilities of phenolic groups, thus diminishing their potential. In the case 
of hydroxybenzoic acids, the number and position of hydroxyl groups, as well as the 
proximity of the carboxylic group, determine their antioxidant potential. It was 
found that derivatives with the o-diphenolic group in m-position towards a single 
carboxylic group (such as resorcylic acid) have the highest antioxidant potential. 
Incorporation of an additional –CH2 group in hydroxyphenyl acetic acid enhances 
antioxidant potential, decreasing the influence of the carboxylate group and its 
electron- withdrawing effect. Gallic acid, with three hydroxyl groups, exhibits the 
highest antioxidant potential in comparison to others (Chen et al. 2015). In phenyl-
propanoids, the additional ethylenic group significantly increases antioxidant abili-
ties. The presence of the Ph-CH=CH-COOH group ensures greater H-donating 
ability and radical stabilization than in benzoic acid derivatives (Leopoldini et al. 
2011). Therefore, widely distributed hydroxycinnamic acids such as caffeic, ferulic 
or chlorogenic, are considered to be powerful dietary antioxidants. Hydroxylation 
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in the 3,4-position enhances antioxidant activity. This could be explained by the 
delocalization of unpaired electrons derived from 3,4-hydroxyl groups with the –
CH=CH-COOH group, which contributes to the energetic stability of formed 
phenoxyl radicals (Fig. 8.2).

Beside flavonoids and phenolic acids, great attention is devoted to stilbenes 
(1,2-diphenylethylene), in particular trans-resveratrol (trans-R, 3′,4′,5′-trihydroxys-
tilbene) and its glucoside. These phenolics are synthesized in plants in response to 
pathogen attack and are classified as phytoalexins. Hundreds of studies report the 
beneficial effect of resorcinol on the neurological and cardiovascular systems, also 
in the prevention and reduction of cancer diseases (Almagro et al. 2013). The anti-
oxidant activity of resveratrol is documented by numerous studies. It was reported 
that the ability of resveratrol to neutralize different radical species as well as its 
metal chelating activity is significantly higher than synthetic antioxidant and 
α-tocopherol (Gὔlcin 2010). Another phenolic compound currently receiving world-
wide attention is a diarylheptanoid, curcumin (diferuloylmethane), whose main 
compound in turmeric (Curcuma longa). Most of its health benefits are explained 
through its antioxidant and anti-inflammatory potential (Hewlings and Kalman 
2017). A meta-analysis of randomized control data shows that supplementation 
with curcuminoids significantly improves antioxidant status in experimental groups, 
by enhancing plasma antioxidant enzymes (SOD and CAT) and glutathione GSH 
(Sahebkar et al. 2015). The mechanism of radical scavenging ability of curcumin is 
presented in Fig. 8.3.

Impact on Lipid Peroxidation the ability to inhibit lipid peroxidation is one of the 
most important features of flavonoids, especially in regard to their health benefits in 
preventing cardiovascular diseases and arthritis (Mimica-Dukić et al. 2012). Free 
radical-mediated peroxidation of unsaturated fatty acids leads to their decomposi-
tion and the formation of lipid peroxyl radicals and lipid peroxides. It is well-known 
that polyphenols can intercept these chain reactions by reducing generated lipid 
radicals and hydroperoxides. It was found that quercetin was more effective than 
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catechin in the protection of LDL from oxidation (Rice-Evans et al. 1996; Shahidi 
and Ambigaipalan 2015).

However, some studies indicate that plant polyphenolic can exert prooxidant 
activity, especially in the presence of a higher concentration of metal ions (TMI, 
Fe and Cu). The direct prooxidant activity is the result of the generation of 
phenoxyl radicals or complex with TMI, which can induce lipid peroxidation, 
DNA damage and mutagenesis. Besides, it was reported that high concentrations 
(100  mM) of flavonols, myricetin and gossypetin, can affect LDL by covalent 
modification of the apoB100 protein. Even so, it is unlikely that these polyphenols 
will achieve so high concentrations in vivo (Rice-Evans et al. 1996).

Yang et  al. (2012) explored the structure-related antioxidant/prooxidant acti-
vates of quercetin and p-coumaric acids and their derivatives by molecular model-
ing, using NADPH/peroxidase/H2O2 and DNA cleavage systems. They discovered 
that prooxidant activity in the NADPH/peroxidase/H2O2 system was in decreasing 
order, quercetin 3-O-glucoside > p-coumaric acid > rutin > quercetin > ferulic 
acid. Similar results were obtained for DNA cleaving activity. Thus, glycosidation, 
number and position of hydroxyl groups, also hydrophilicity and concentration 
predominantly affect the prooxidant ability of certain phenolic compounds (Yang 
et al. 2012).

Impact on Endogenous Antioxidant Enzymes A very important role of dietary 
phenolics is their ability to affect antioxidant enzymes: superoxide dismutase 
(SOD), catalase (CAT), glutathione reductase (GR) glutathione peroxidase (GPx), 
glutathione transferase (GT), peroxidase (Px) and the level of endogenic antioxidant 
glutathione (GSH). Many previously published results show that polyphenolic com-
pounds improve antioxidant defense mechanisms, both in vitro and in vivo. Phenolic 
extracts from parsley, celery, marigold, and elderberry significantly increased anti-
oxidant enzymes SOD, CAT, GPx and GR, and decreased lipid peroxidase (LP) in 
animals exposed to oxidative stress induced by carbon tetrachloride (Mimica-Dukić 
and Popović 2007; Jakovljević et al. 2001; Popović et al. 2001, 2005). Fernandez- 
Pachon et al. (2009) reported that human consumption of red wine, 300 mL/day, for 
1 week, significantly increase the activities of antioxidant enzymes: SOD, CAT, GR, 
GPx, and overcame oxidative stress. Furthermore, they found that wine consump-
tion increases both SOD activity and SOD gene expression. Catechin, proanthocy-
anidin B4, curcumin, quercetin, resveratrol significantly increases activities of 
SOD, GST, CAT, GPx and GR in different in vitro studies (Han et al. 2007).

Impact on Enzymes Involved in Oxidation Besides the ability to increase the 
activity of antioxidant enzymes, polyphenols are able to modulate enzymes involved 
in the oxidation process, such are cyclooxigenase (COX), lipoxygenase (LOX), 
inducible NO-synthase (iNOS). Not least is their inhibitory effect on Xanthine oxi-
dase (XOD) and NADH-oxidase, key enzymes in a respiratory burst, which leads to 
the uncontrolled release of reactive oxygen species, particularly superoxide radical 
and hydrogenperoxide (Hussain et  al. 2016). Curcumin expressed high in  vivo 
 antioxidant and protective activity in rats exposed to liver injury by increasing the 
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activities of antioxidant enzymes CAT and SOD while decreasing the activities of 
iNOS and myeloperoxidase (MPO) (Shen et al. 2007).

In addition, dietary phenolics exert their influence on human health by acting as 
a modulator on other enzymes closely connected with particular metabolic failure 
and pathological conditions. It was found that particular phenolics increase the 
activities of enzymes such as angiotensin I-converting enzyme (ACE), α-amylase 
and α-glucosidase, lipase, cholinesterases, and tyrosinase, which are related to 
hypertension, type II diabetes, obesity, Alzheimer’s diseases, inflammation and skin 
hyper-pigmentation (Goncalves and Romano 2017).

8.2.3  Oxidative Stress, Immune System and Polyphenolics

Oxidative stress is an imbalance between the excessive generation of reactive oxy-
gen (ROS) or nitrogen molecular species (RNS), and their elimination by the anti-
oxidant systems in cells and tissues. If prolonged, overproduction of ROS/RNS can 
cause damage to the main cellular molecules, proteins, lipids, and DNA, resulting 
in the development of many chronic diseases. There is increasing evidence that 
oxidative stress plays an important role in pathogenesis and the development of 
neurodegenerative, cardiovascular and kidney diseases, diabetes, diabetic nephrop-
athy, lung diseases, eye diseases, autoimmune diseases, liver diseases etc. (Rahman 
et al. 2012).

The effect of polyphenolics on immune systems has been documented by various 
studies. They can affect immune cells, modulate cytokine production and pro- 
inflammatory gene expression (Yahfoufi et  al. 2018). They may also modulate 
immune responses by affecting? epigenetic mechanisms and selectively activate 
and inactivate gene expression. Curcumin from turmeric (Curcuma longa) and epi-
gallocatechin gallate (EGCG) from green tea can induce epigenetic change by 
inhibiting DNA-methyltransferase-1 (DNMT1), the enzyme responsible for the 
methylation of C5 sites of cytosine in DNA molecules leading to the development 
of various diseases. Besides, it was found that polyphenols regulate the intestinal 
mucosal immune response. In vivo experiments have shown that polyphenols 
enhance intestinal mucosal immunity by increasing populations of intraepithelial T 
cells and mucosal eosinophils (Ding et al. 2018). Polyphenols participate in immune 
systems responses by modulating different signaling pathways. They can bind to 
receptors on immune cells and thus trigger intracellular signaling pathways:

 a. the nuclear factor NFkB signaling pathway which plays a key role in DNA tran-
scription, cytokine production, and cell survival. Its activation is control- inhibited 
by IkB proteins (IkBs). Phosphorylation of IkB leads to ubiquitination and deg-
radation of IkBs, leading to activation of NFkB and expression of proinflamma-
tory cytokines, chemokines, immunoreceptors, growth factors, NOS, COX-2 
etc. (Yahfoufi et  al. 2018). It was reported that several phenolics compounds 
modulate NFkB activation and reduce inflammation. The most potent are quer-
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cetin luteolin, isoflain, catechin and epicatechin, hydroxytyrosol etc. (Rahman 
et al. 2006). This is important considering that the disorder of NFkB has already 
been confirmed as being associated with cancer, inflammation, asthma, neurode-
generative diseases and heart diseases (Baldwin 2012).

 b. The mitogen-activated protein kinases (MAPKs) signaling pathway is highly 
involved in cell growth, proliferation, death and differentiation. MAPKs regulate 
gene transcription and transcription factors involved in inflammation. The ability 
of polyphenols to block MAPK pathways indicates their therapeutic potential 
against the inflammation process. Among them, luteolin, chrysin, kaempferol 
and quercetin exhibited the highest potential to moderate MAPKs (Chen et al. 
2004).

 c. Polyphenolic compounds also participate in NO signaling pathways, improving 
endothelial NO-synthase (eNOS) expression and activity. Resveratrol, curcumin, 
quercetin and catechin in green tea were found to increase vasodilatation in cor-
onary arteries through NO generation. Polyphenols-mediated NO signaling is of 
great therapeutic significance, especially with cardiovascular diseases (Forte 
et al. 2016);

 d. Martínez-Huélamo et al. (2017) have recently summarized the results of numer-
ous studies focused on the interaction of phenolic compounds with the nuclear 
transcription factor (erythroid-derived 2)-Like 2 (Nrf2) signaling pathway. Nrf2 
is of crucial importance in regulating the expression of antioxidant enzymes and 
protein, in cells and tissues exposed to oxidative stress. According to the results 
presented, it seems that modulation of Nrf2 by phenolic compounds in olive oil 
(oleuropein, tyrosol, oleacein, ligstroside, etc.) and wine polyphenolics (querce-
tin, epicatechin, catechin, tyrosol, gallic acid, resveratrol, and caffeic acid) may 
be associated with the extent of their health benefits, with special focus on cogni-
tive abilities and neurodegenerative disorders (Fig. 8.4)

 e. However, most of these activities arise from the ability of polyphenolics to scav-
enge and diminish the generation of ROS and maintain redox equilibrium balance. 
Excessive ROS production disturbs the redox equilibriums affecting many cellu-
lar signaling pathways, which in turn leads to cellular dysfunction and the devel-
opment of various diseases (Table  8.1). It was reported that ROS affects 
cell-signaling proteins (NF-𝜅B, MAPKs, Keap1-Nrf2-ARE, and PI3K-Akt), ion 
channels and transporters (Ca2+ and mPTP), and modifyingprotein kinase and 
Ubiquitination/Proteasome System (Zhang et al. 2016). Evidently, by scavenging 
ROS, polyphenolic compounds significantly diminish the harmful effects of ROS.

8.2.4  Polyphenols-Oxidative Stress: Inflammation

One of the explanations of how oxidative stress influences a wide range of chronic 
diseases is a tight connection between oxidative stress and inflammation. The initia-
tion of the inflammatory process is the most important physiological response of the 
immune system, triggered by various exogenous and endogenous inducers. The 
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most important endogenous inducer associated with oxidative stress is the accumu-
lation of advanced glycation end products (AGEs) and oxidized cellular lipopro-
teins. AGEs can attach to other proteins and inactivate them, or interact with their 
receptors (RAGE), stimulating several signaling pathways which in turn activate 
transcriptions of pro-inflammatory genes (Fishman et al. 2018). In addition, ROS 
produces oxidized lipids (LDL), recognized by macrophages, which will then gen-
erate various inflammatory mediators (cytokines, chemokines, vasoactive amines 
etc.) and promote pro-inflammatory signals. On the other hand, one of the main 
consequences of inflammation is the induction of oxidative stress, the production of 
ROS, RNS, AGEs, and several other compounds that lead to tissue damage (Colitti 
et al. 2019). Recently, Valacchi et al. (2018) introduced the term “OxInflammation” 
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Fig. 8.4 Most active phenolic compounds in olive oil and grape wine (Martínez-Huélamo et al. 
2017)

Table 8.1 ROS homeostasis in the cell

ROS homeostasis in cells

Source of ROS MiTRC NOX TNF-α EGF IL-1β TNFR cPLA2 TLR MyD88

ROS neutralization SOD GPx GST MT3 FHC DDH1

MiTRC mitohondrial respiratory chain, NOX NADPH oxidases, TNF-𝛼 tumor necrosis factor-𝛼, 
EGF epidermal growth factor, IL-1𝛽 Interleukin-1𝛽, TNFR tumor necrosis factor receptor, cPLA2 
cytosolic phospholipases; domain, TLR toll-like receptor, MyD88 myeloid differentiation factor 
88, SOD superoxide dismutase, GPx glutathione peroxidase, GS glutathione S-transferase, MT3 
metallothionein-3, FHC ferritin heavy chain, DDH1 dihydrodiol dehydrogenase
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to describe the vicious circle linking oxidative stress to mild chronic inflammation. 
Thus, oxidative stress and inflammation or immune response are in the reciprocal 
cause, intensifying or reducing each other. Therefore, it can be assumed that most of 
the harmful effects of ROS or RNS on human health are associated with the tight 
interaction between oxidative stress and immune response, especially inflamma-
tion. This particularly applies to neuroinflammation, neurodegeneration, arthritis, 
cancer and diabetes (Popa-Wagner et al. 2013). Due to high lipid content and high 
oxygen consumption, the brain is extremely exposed to oxidative stress. High oxy-
gen concentration promotes the excessive generation of ROS. Apart from this, the 
neuronal membranes are rich in polyunsaturated fatty acids (PUFA) which are 
highly susceptible to ROS. The brain is also enriched with redox-metals like iron 
and copper that increase ROS production. All these lead to the development of vari-
ous neurodegenerative diseases, especially Parkinson’s disease (PD), Alzheimer’s 
disease (AD), Huntington’s disease (HD), andamyotrophic lateral sclerosis (ALS) 
(Singh et al. 2019). Unfortunately, the current treatment of most neurodegenerative 
disorders, especially AD, is unsatisfactory, with poor long-term efficacy and many 
undesirable side effects. Therefore, many studies are focused on seeking drugs that 
will eliminate and reduce the main risk factors that lead to these disorders. As oxida-
tive stress and inflammation have already been shown to enhance and initiate many 
neurodegenerative processes, it is reasonable to expect that polyphenolics, as proven 
antioxidants and anti-inflammatory agents, could be used in preventive and adjunct 
therapy. This is supported by in vitro and in ex vivo studies of the effect of grape 
seed polyphenol extract containing proanthocyanidins, catechin, epicatechin and 
gallic acid, on several neurodegenerative diseases. It was found that grape extract 
inhibits in vitro aggregation of neurotoxic amyloid-beta isoform protein (Aβ) which 
is one of the main factors for developing AD. Besides, grape extract attenuates the 
formation of tauopathies, another clinical manifestation in AD and dementia 
(Herman et al. 2018). Treatment with grape-seed polyphenols also improved mul-
tiple neuropathological conditions in PD model systems. Experiments on animals 
showed that chrysin, catechin, genstrain, quercetin and naringenin significantly 
reduced oxidative stress in primary rat midbrain cell cultures (Mercer et al. 2005). 
Many other in vitro and in vivo studies support the protective role of polyphenolics 
in the progression of neurodegenerative failure through its anti-inflammatory and 
antioxidant activities (Herman et al. 2018).

8.2.4.1  Dietary Polyphenols as Modulators of Cyclooxygenase Pathway 
of Arachidonic Acid Metabolism: Impact on Prostaglandin E2 
and Thromboxane A2 Production

Eicosanoids are products of methabolic pathway of arachidonic acid (AA), a fatty 
acid found in in the cell membrane phospholipids. These lipids evince various bio-
logical activities in normal physiology, including vasoconstriction/dilatation, ovula-
tion, platelet and renal function. Also, they have an important role in mediation of 
inflammatory response (Smith 1989; Morita 2002). In this sense, regulation of their 
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production has been determined as importan target for anti-inflammatory therapy. 
Common NSAIDs (non-steroidal anti-inflammatory drugs), which are derivatives 
of propionic (ibuprofen and naproxen), enolic (meloxicam and piroxicam), acetic 
(diclofenac, sulindac, indomethacin) or salicylic acid (aspirin), inhibit enzymes 
involved in AA metabolism and therefore alter eicosanoid production. These drugs 
are the first choice in the treatment of aches, pains or fever, regardless of certain 
risks and side effects, which may occur during repeatedly intake of NSAIDS over a 
long period (Cairns 2007). Consequently, there is a certain need to use alternative 
inhibitors, which can provide adequate therapeutic potential with minor side effects. 
For a better understanding of the anti-inflammatory activity of existing and new, 
potential therapeutics, such as natural products are, key targets in AA metabolism 
should be recognized.

AA metabolism is triggered by different inflammatory stimuli: tumor necrosis 
factor α, β (TNFα, β), interleukin-1 (IL-1), lipopolysaccharide (LPS), different 
cytokines, etc. (Tanabe and Tohnai 2002). Phospholipase A2 (PLA2), initially 
activated enzyme, releases AA from membrane phospholipids. Free AA can be 
converted to structurally diverse eicosanoids by three pathways determined by 
three classes of enzymes: cyclooxygenases (COX), lipoxygenases (LOX) and 
epoxygenases.

The most important step of the COX pathway is dependent on COX-1 and COX-2 
(prostaglandin H synthase-1 and -2 (PGHS-1/2)), since the expression and activity 
of these enzymes direct amount of common intermedier prostaglandin (PG) H2. The 
reaction catalyzed by COX has two phases: it begins with the formation of the cyclic 
endoperoxide PGG2 from AA, which is then reduced to PGH2. PGH2 is transformed 
by different, terminal synthases (prostaglandin and thromboxane) to PGE2, PGI2 
(prostacyclin), PGD2, PGF2α, and thromboxane A2 (TXA2) (Chandrasekharan and 
Simmons 2004; Smith 1989). These products exert wide range of activities: PGE2 
and PGI2 have gastroprotective role in the gastric mucosa, and participate in the 
regulation of salt and water excretion in the kidney; overexpressed PGE2 can cause 
inflammation and pain in joints, as well as pain and fever in the central nervous 
system; PGI2 produced in endothelial cells effects platelet inhibition and vasodilata-
tion; TXA2 in is a regulator of platelet activation and vasoconstriction (Cairns 2007). 
So, modulation of PGs and TXs production can be considered as tool for modula-
tion of pain, fever, thrombosis and overall inflammation processes.

It is obvious that dietary polyphenols have been extensively investigated in 
numerous in vitro model systems which are related to inflammation, in vivo studies 
on animals were also done, but data on human studies are quite limited. Also, 
although dietary polyphenols are ubiquitously found in vegetables, fruits, and plant- 
based beverages, the most studies consider isolated compounds, some metabolites, 
usually plant extracts and eventually whole foods, and therefore enabling to deter-
mine anti-inflammatory potential, rather than claiming on real activity of particular 
food (García-Lafuente et al. 2009; Mitjavila and Moreno 2012; Roleira et al. 2015).

In terms of AA metabolism, most of the researches was focused on COX-2 
inhibition, followed by issues on COX-1/2 selectivity. Although COX-1 and 
COX-2 have almost identical structures, affinities to same supstrates and catalyze 
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same reactions, their functions are different. Constitutively expressed COX-1, 
present in almost all cells, is involved in gastric protection, platelet aggregation 
and renal water balance. During inflammation, COX-2 is highly up-regulated par-
ticularly in the macrophages, monocytes, fibroblasts and endothelial cells (Smith 
1989; Morita 2002). Overexpression of COX-2 leads to overexpression of PGs and 
TXAs, thus contributing to numerous pathological processes. So, COX-2 became 
a significant therapeutic target for inflammation, and even selective COX-2 inhibi-
tors were developed (coxibs). But, coxibs, as well as NSAIDs have certain side 
effects, and, alternative inhibitors (natural products) with minor side effects are 
particularly needed.

Therefore, this chapter will provide a general overview of the most apparent find-
ings on the common polyphenols which can modulate AA metabolism at certain 
points—enzymes involved in cyclooxygenase pathway and consequent reduction of 
PGE2 and TXA2 production.

Dietary Polyphenols as PLA2 Inhibitors
PLA2 family includes at least 10 members, which are classified into three groups: 
secretory (sPLA2), cytosolic (cPLA2) and calcium-independent (iPLA2). Increase of 
PLA2 leads to increased release of AA and consequently increased production of 
PGs and TXs. This can contribute to development of cardiovascular diseases, arthri-
tis, inflammatory gastrointestinal disorders and disturbed neuronal homeostasis. 
PLA2, which is normally expressed in the pancreatic, gall bladder and gastrointesti-
nal epithelial cells, is upregulated in ulcerative colitis and Crohn’s disease. 
Upregulation of gastrointestinal PLA2 effects gut permeability, thus contributing to 
infectivity (Haapamäki et al. 1999). Also, it was found that cPLA2 is involved in the 
pathogenesis of multiple sclerosis-like diseases (Kalyvas and David 2004). It was 
proven, in mouse models of Alzheimer’s disease, that released AA alter neuronal 
and synaptic activity (Sanchez-Mejia and Mucke 2010).

Several polyphenolics have been tested and they differently modulate PLA2 
activity: quercetin and rutin selectively inhibit groups of PLA2; curcumin inhibits 
phosphorylation of cPLA2, and therefore inhibit activation; catechin and anthocy-
anidins cyanidin, malvidin, peonidin, petunidin, delphinidin, and pelargonidin act 
also as PLA2 inhibitors, and stilbene resveratrol suppressed PLA2 expression by 
reducing oxidative stress (Lindahl and Tagesson 1993; Lindahl and Tagesson 1997; 
Hong et al. 2004; Dreiseitel et al. 2009; Sun et al. 2017). Although these results can 
suggest that, for example, foods rich in quercetin can be potential ant-inflammatory 
agents or that a modulatory role for berry polyphenols in phospholipid metabolism 
can be suggested according to content and activity of anthocyanins, only several 
papers consider whole plants (extracts). Among several medicinal plants used for 
skincare and beauty, water extracts of Cassipourea flanaganii (Schinz) Alston. and 
ethanolic extracts of well-known medicinal food Andrographis paniculata Nees 
expressed notably in vitro inhibitory activity against sPLA2 (Kishore et al. 2016; 
Thibane et al. 2019). According to experts opinion, until 2016 none of the synthetic 
inhibitors studied in clinical trials have reached the market (Kokotou et al. 2017).
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Dietary Polyphenols as COX-1 and COX-2 Inhibitors
Since the COX activity is the crucial step in PGs and TXA2 production, this enzyme 
has been in the focus of eicosanoid-related inflammation processes. Unmitigated 
production of PGs and TXA2, mainly caused by rapid induction of COX-2  in 
inflammation processes, impaired renal function, GI tract integrity, nerve and brain, 
ovarian and uterine function, and thrombosis in individual tissues and organs. In 
addition to different physiologic and pathophysiologic roles of COX-1 and COX-2, 
side effects of common NSAIDs (gastric ulceration, complications of gastrointesti-
nal bleeding, perforation, obstruction, renal dysfunction), as a result of non- selective 
COX-1 inhibition, and increased risk of cardiovascular issues after long-term treat-
ment with COX-2 selective inhibitors, directed search for novel, natural inhibitors.

The anti-inflammatory activity of polyphenols can be, at least partially, attributed 
to modulation of COX activities on both transcriptional and enzyme levels. One of 
the first evidence was that quercetin can inhibit PLA2, and that luteolin, galangin 
and morin inhibit COX (Bauman et al. 1980; Lee et al. 1982). Considering cyclo-
oxygenase inhibitory activity, some conclusions on the structural characteristics of 
flavonoids and activity relationship were reached.

COX-1 inhibitory activity is typical for molecules with the C2-C3 double bond, 
which is important for the planarity of the molecule (Fig. 8.5). Oppposite findings 
are stated for 3-OH group in C ring: according to Wang and Wang (2016), it can 
diminish activity or, according to Roleira et al. (2015), it has no effect. The example 
of a good COX-1 inhibitor (Roleira et al. 2015), flavone 1 is shown in Fig. 8.5.

Structure of the most active COX-2 inhibitors is characterized by 4-oxo group, 
C2-C3 double bond, as well as OH groups in C5 and C7 positions (C ring). 
3′,4′-Dihydroxyl moiety in B ring lowers the potency of COX-2 inhibitors, and 
additional B-ring hydroxyl group leads to the loss of inhibitory activity (Takano- 
Ishikawa et al. 2006). But, these rules were not in total agreement with the results of 
Ribeiro et al. (2015a, b). Nevertheless, docking study showed that catechol moiety 
forms hydrogen bonds with Tyr385 and Ser530 in hydrophobic pocket of enzyme 
and strengthen binding of flavone. The other explanation would be that overall 
activity of these compounds can be rather consequence of scavenging activity, 
which results in reduced amount of pro-oxidant reactive species implicated in over-
expression of COX-2 (Takano-Ishikawa et al. 2006; Mello et al. 2011). The exam-
ples of good COX-2 inhibitors (Takano-Ishikawa et al. 2006; Ribeiro et al. 2015a, 
b), flavone 2 and baicalein (3) are shown in Fig. 8.5.

The activity of glycosides of various flavonoids was also tested, and Takano- 
Ishikawa et al. (2006) found that they exhibit lower activity than their aglycones. It 
can be, to some extent, accounted to their lower permeability through the cell 
membrane.

Some structural features of flavonoids were correlated with COX-1/2 selectivity: 
likely, less substituted flavonoids were more potent inhibitors of COX-1 than 
COX-2, since COX-1 active site has a smaller volume (Ribeiro et  al. 2015a, b). 
According to Ribeiro et al. (2015), the flavonoids 4 and 5 are the examples of potent 
selective COX-2 inhibitors. Interestingly, some plant extracts could be selective 
also, as it was demonstrated for chamomile extract (Srivastava et al. 2010).

M.-D. Neda et al.



287

To some extent, potency of COX-inhibition and COX-selectivity can be pre-
dicted according to structural properties of flavonoids. But, plant extracts are mix-
tures of numerous compounds, which are combined in different ratios and can exert 
synergistic (or antagonistic) activities. To determine their activity, in  vitro and 
in vivo studies are undoubtedly needed and present certain challenge. An impressive 
number of in vitro researches have been done in order to prove COX-2 (COX-1) 
inhibitory activity of either isolated natural compounds or different plant extracts 
(Attiq et al. 2018; Kim and Park 2019; Bakar et al. 2018; Beara et al. 2010, 2012a, 
2014, 2015; Lesjak et  al. 2011, 2014; Beara et  al. b; Nađpal et  al. 2016, 2018; 
Šavikin et al. 2017).

Dietary Polyphenols as TXAS Inhibitors
TXAS catalyzes the final step in TXA2 synthesis, and its inhibition can disturb 
TXA2 production and activity leading to modulation of platelet function and 
reduced risk of cardiovascular diseases. Also, increased TXAS expression occurs in 
active inflammatory bowel disease, that contribute to mucosal inflammation and 
intramucosal thrombogenesis (Lipsky et al. 2000). Since direct inhibition of TXAS 
can lead to the accumulation of PGH2, a precursor of TXA2, alternative dual inhibi-
tors of both enzyme and corresponding receptors were found to be promising anti-
angiogenic agents (Leval et al. 2006). But, there are evidence that effect on platelet 
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activity, which can be at least partially caused by TXA2 modulation, could be 
achieved by consumption of different foods rich in polyphenols, such as garlic and 
onion (Moon et al. 2000; Ro et al. 2015; Simin et al. 2013), ginko (Kudolo et al. 
2002), ginseng extracts (Jin et al. 2007; Lee et al. 2012), and even red wine (Renaud 
and de Lorgeril 1992; Majkić et al. 2019). Regarding isolated compounds, TXAS 
can be inhibited by fisetin, kaempferol, morin and quercetin (Tzeng et  al. 1991; 
Lesjak et al. 2018), as well as green tea catechins (Son et al. 2004), while genistein, 
apigenin, quercetin and luteolin are able to bind and block TXA2 receptors (Guerrero 
et al. 2007).

Dietary Polyphenols as PGES Inhibitors
PGES include three groups: constitutive cytosolic PGES (cPGES), coupled with 
COX-1, constitutive membrane PGES-2 (mPGES-2) and inducible mPGES-1, 
which is coupled with COX-2. Ever since its role was discovered, mPGES-1 was 
targeted as a point for regulation of inflammation and its inhibitors were found to be 
a possible alternative to NSAID-s (Koeberle et  al. 2016). Also, mPGES-1 is up- 
regulated in the dopaminergic neurons of patients with diagnosed Parkinson’s dis-
ease, as well as in intestinal-type gastric adenocarcinomas and gastric cancer cell 
lines (Ikeda-Matsuo et al. 2019; van Rees et al. 2003).

Studies have been shown that curcumin and epigallocatechin gallate from green 
tea inhibit mPGES-1 dependent production of PGE2 at sub-molar concentrations, 
exerting significantly stronger activity than activity against COX-2 (Koeberle et al. 
2009a, b), while ellagic acid (Karlsson et al. 2010), kaempferol and isorhamnetin 
(Hämäläinen et al. 2011) inhibit LSP-induced expression of mPGES. Some other 
natural products, such as hyperforin from St. John’s Wort (Koeberle et al. 2011), 
boswellic acids and some other triterpenoic acids from frankincense (Verhoff et al. 
2014), embelin from fruits of Embelia ribes (Schaible et al. 2013) etc. It is interest-
ing that most of these compounds also inhibited 5-lipooxygenase, thus presenting a 
new class of dual 5-LO/mPGES-1 inhibitors.

8.3  Omega-3 Fatty Acids

8.3.1  Main Compounds and Sources

Essential fatty acids are linoleic acid or LA (18:2n-6) and α-linolenic acid or ALA 
(18:3n-3), polyunsaturated fatty acids (PUFAs) with 18 carbon atoms, belonging to 
n-6 PUFAs (omega-6) and n-3 PUFAs (omega-3)families, respectively. These are 
called essential fatty acids as cannot be produced in the human body and must be 
taken from food (Wysoczanski et al. 2016). Fish and seafood are the main sources 
of omega-3 fatty acids, but vegetables and seed oils (e.g. flax, soy, canola, olive and 
walnut), as well as algae, also provide these fatty acids (Wysoczanski et al. 2016; 
Grosso et al. 2016; Cvejić Hogervorst et al. 2019).

After consumption, linoleic acid is transformed into arachidonic acid (AA), a 
precursor of cytokines that facilitate inflammation. On the other hand, α-Linolenic 

M.-D. Neda et al.



289

acid is transformed into eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic 
acid (DHA, 22:6n-3) that have anti-inflammatory effects (Figs. 8.6 and 8.7).

Furthermore, omega-3 PUFAs that increase EPA in the cell membrane compete 
with the enzymes that convert AA into pro-inflammatory omega-6 eicosanoids. 
Increased omega-3 dietary intake with an omega-6/omega-3 ratio not above 5 should 
help in maintaining the non-inflammatory eicosanoid balance that consequently 
influences the cytokine balance (Wysoczanski et al. 2016; Grosso et al. 2014). DHA 
is essential for the proper function of the brain and retina. It builds the neuronal 
phospholipids membranes and positively modifies the immune and inflammatory 
response (Wysoczanski et al. 2016; Grosso et al. 2016). There is also evidence that 
omega-3 facilitates serotonin release by membrane fluidity increase and inhibition 
of prostaglandin formation (Patrick and Ames 2015). Furthermore, these essential 

Fig. 8.6 Essential fatty acids derivatives—transformations that occur in the organism

Fig. 8.7 Structure of EPA and DHA
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fatty acids are involved in neurogenesis and neuroplasticity, and through that can 
have positive effects on mental disorders, especially depression (Bourre 2004).

Deficiency in omega-3 fatty acids reduces vision and cause a decrease in cogni-
tive and behavioral functioning as per the research on rodents (Wysoczanski et al. 
2016; Fedorova et al. 2009). Results of the first meta-analysis of all observational 
studies concerning the influence of omega-3 intake on the decreased depression risk 
conducted by Grosso et al. support the initial hypothesis that consumption of dietary 
omega-3 fatty acids decreases the potential of depression development. It is also 
shown that EPA has better therapeutic effects on the depressive symptoms than 
DHA (Politi et al. 2013; Rizzo et al. 2012; Rondanelli et al. 2010) and the possible 
reason might be higher EPA’s anti-inflammatory action, but further research is 
required in order to better understand the specific EPA and DHA roles (Grosso et al. 
2016). On the other hand, DHA might have a more significant effect on the cortical 
and hippocampal atrophy due to its neuroprotective properties. It has experimen-
tally shown that DHA has a regulatory role in apoptotic processes and consequently 
improve neuron survival (Reimers and Ljung 2019).

8.3.2  Biological Activity

Anti-Inflammatory Effects of Omega-3 Fatty Acids
Established connection between immune and nervous systems enables the direct 
influence of one system to another. Even though the mechanisms of immune system 
influence on the proper brain function are still to be clarified, it is evident that 
immune dysregulation promotes neurodevelopmental disorders. The immune sys-
tem provides defense against pathogens in the first line by phagocytes (macro-
phages)and granulocytes (neutrophils). Microglia are myeloid glial cells located 
throughout the brain, and spinal cord that are brain resident macrophage cells and 
they act as the first and main form of active immune defense in the central nervous 
system (CNS). These cells are responsible for the production of both pro- 
inflammatory and anti-inflammatory cytokines. When there is an imbalance in the 
immune molecules, microglial response is triggered including the increased produc-
tion of pro-inflammatory molecules such as tumor necrosis factor (TNF), 
interlukin-1β (IL-1β) and interleukin 6 (IL-6) that promotes neuronal damage lead-
ing to the brain pathologies (Laye et al. 2018; Filiano et al. 1617; Hsiao and Patterson 
2012). Therefore, any substance that can limit the inflammation should be a new 
research target when it comes to the prevention and treatment of mental disorders. 
The influence of bioactive dietary components and omega-3 on the neuro- 
inflammation is now becoming evident (Davinelli et  al. 2016; Hoppenbrouwers 
et al. 2019).

Omega-3 fatty acids decrease inflammation through the following mechanisms:

 1. Modulation of signaling pathways
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Incorporation of DHA into membrane phospholipids alters receptor-signaling 
interactions. Also, the DHA level influences the membrane fluidity and the localization 
of several pro-inflammatory receptors leading to decreases pro-inflammatory activity 
(Laye et al. 2018).

 2. Control of gene expression
Omega-3 fatty acids alter the signaling pathways controlling the expression of 

genes that encode the proteins involved in inflammation (many cytokines, adhesion 
molecules, and COX-2). These effects can be explained by DHA’s and possibly 
EPA’s ability to disrupt membrane lipid raft formation of inflammatory cells. In that 
way, nuclear factor kappa B (NF-κB) and TLR4 activation are reduced and inflam-
matory signaling initiated. Another mechanism of DHA’s and EPA’s action is an 
activation of peroxisome proliferator-activated receptor γ (PPAR-γ) that is an anti- 
inflammatory transcription factor that also inhibits NF-κB activation and therefore 
reduces the production of cytokines, TNF-α and IL-6 (Calder 2017, 2015).

 3. Reduction of pro-inflammatory eicosanoids
Oxidation of EPA and DHA leads to the synthesis of eicosanoids (prostaglan-

dins, thromboxane, and leukotrienes) that are anti-inflammatory signaling mole-
cules. These eicosanoids antagonize the pro-inflammatory eicosanoids produced 
from AA and by competing for the same enzymes involved in the synthesis and 
consequently reduce the production of AA derived eicosanoids (Laye et al. 2018; 
Calder 2017).

 4. Effects on microglia
In vitro studies showed that omega-3 fatty acids have anti-inflammatory effects 

on microglia. More in vivo studies are need in order to confirm omega-3 PUFAs 
modulation effects on microglia. In vivo studies conducted so far demonstrated that 
low dietary intake of omega-3 fatty acids during the perinatal period causes the 
enhanced phagocytic activity of microglia in the offspring (Laye et al. 2018).

The recommended daily intake of omega-3 polyunsaturated fatty acids for an 
anti-inflammatory effect is up to 1.8 g (Grosso et al. 2016). The aim of increased 
dietary intake of omega-3 fatty acids is to maintain the high level of blood EPA and 
DHA and consequently their increase in the brain. Brain PUFAs control microglia 
activity and its role in neuro-inflammatory processes. Besides, changes in the com-
position of cell membranes caused by increased EPA and DHA content lead to 
changes in lipid raft formation and signaling pathways as well as alterations of gene 
expression and production of eicosanoids and other anti-inflammatory signaling 
molecules (Laye et al. 2018; Calder 2017).

Omega-3 Fatty Acids and Gut Microbiome
The gut microbiome is a community of trillions of bacteria and fungi that inhabit the 
gastrointestinal tract and have an essential influence on the host’s susceptibility to 
disease. There are thousands of different species, but approximately 60% are from 
phyla Bacteroidetes and Firmicutes. Among them, the most common genera are 
Bifidobacterium, Lactobacillus, Bacteroides, Clostridium, Escherichia, 
Streptococcus, and Ruminococcus (Costantini et al. 2017). The other species that 

8 Bioactives for Neuronal and Immune Functions
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are most abundant belong to phyla Proteobacteria, Actinobacteria, Fusobacteria, 
Verrucomicrobia and Cyanobacteria (Li et al. 2018).

These bacteria could improve the food fermentation and enhances the host’s 
uptake of nutrients by processing indigestible food components. However, this is 
not the only function that gut bacteria have, it also has a direct impact on the host’s 
immune system. Therefore, dysbiotic states such as an imbalance in the microbiome 
composition can results in the immune system activation, potentially causing neu-
rodegenerative diseases, as mentioned above (Hirschberg et al. 2019; Ohlsson et al. 
2019; Li et al. 2018).

The bidirectional connection between brain centers and the gastrointestinal tract 
is known as the gut-brain axis. Through it, gut microbiome influences the brain 
function through at least three pathways (Li et al. 2018; Feng et al. 2018; Raybould 
2010; Powley et al. 2008) (Table 8.2).

The acquisition of microbiome starts in utero, as confirmed by the presence of a 
microbiota community in amniotic fluid and placenta (Costantini et al. 2017). The 
way of birth and subsequent breastfeeding have an influence on the composition of 
the microbiome that is gradually developed during the first 3 years of life (Yatsunenko 
et al. 2012). This means that a mother’s diet can also influence the proper develop-
ment of microbiota (Costantini et al. 2017). The factors that may affect adult gut 
microbial communities apart from the host’s genetics are numerous, such as the 
geographical belonging and environmental factors, lifestyle (including the hygienic 
habits and stress exposure), some medications such as antibiotics or probiotics and 
different diets (Hirschberg et al. 2019). More specifically, it was shown that dietary 
habits are crucial in the creation of differences in the composition of microbiota 
between human individuals (Costantini et al. 2017).

Diet rich in saturated fatty acids is connected to the reduction of microbiota rich-
ness with the increased production of lipopolysaccharides (LPS)-producing bacteria 
such as Enterobacteriaceae and decreased production of LPS-suppressing bacteria 
such as Bifidobacterium) (Costantini et al. 2017; Moreira et al. 2012). On the con-
trary, intake of polyunsaturated fatty acids, specifically omega-3 PUFAs, results 
with the increased number of Bifidobacteria that seems to be responsible for the 
decrease in gut permeability that is important in maintaining the integrity of intesti-
nal epithelia. Moreover, omega-3 supports the production of butyrate-producing 
bacteria (e.g., Eubacterium rectale, Eubacterium ramulus, and Roseburia cecicola). 
Butyrate is together with acetate and propionate the most abundant short-chain fatty 

Table 8.2 Brain function regulation pathways

Pathway Interaction/influence Result

Immuno- 
regulatory

On immune cells Changed levels of cytokines and prostaglandins

Neuroendocrine On neurotransmitter 
secretion

Affected hypothalamic-pituitary-adrenal (HPA) 
axis

Vagus nerve On the enteric nervous 
system

Affected brain functions, stress responses, mood 
and behavior

M.-D. Neda et al.
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acid (SCFA). Short-chain fatty acids (SAFAs) are the predominant gut bacteria 
metabolites formed from otherwise indigestible fiber, whose reduced amounts are 
connected to inflammatory processes in the human body (Costantini et  al. 2017; 
Haase et al. 2018; Barcenilla et al. 2000). As such, they influence the neurodevelop-
mental and behavioral disorders that are in correlation with the inflammation, as 
mentioned above.

Even though it was found that an association between essential omega-3 PUFAs 
and gut microbiome diversity in healthy adult people exist, the evidence from ran-
domized clinical trials assessing the effect of omega-3 polyunsaturated fatty acids 
(PUFA) on human gut microbiota is scarce (Watson et al. 2018). Therefore, further 
research is needed in order to better explain the interaction of the gut microbiome, 
the diet, and the CNS immunopathology.

8.3.3  Effects on Depression

There are 13 clinical trials of omega-3 fatty acids in the treatment of depression that 
have been registered and have results according to clinicaltrials.gov. Out of these 
13, only 7 have the published results that are presented in the table below (Table 8.3).

These studies examining the efficacy of omega-3 fatty acids on depression as 
well as meta-analysis have no consistent results related to the significance of 
omega-3 fatty acids efficacy. Omega-3 fatty acids as a therapy for depression are not 
significantly different from placebo based on the results of 4 out of 7 studies, as 
mentioned above. However, 3 out of 7 studies have shown a benefit for the omega-3 
treatment of depression symptoms. Possible reasons for conflicting results could be 
unreliable outcome measurements, non-standardized diagnostic procedures, and 
other methodological flaws. In order to understand the real impact and benefits of 
omega-3 fatty acids on depression and other mental health disorders, further studies 
with a larger sample size are needed. These studies should be designed in the way 
that the therapeutic levels of omega-3 fatty acids needed for the improvement of 
depression symptoms are determined.

8.4  Overall

It has been shown that diet can influence the development of inflammation and vari-
ous metabolic alterations through the effects of specific nutrients on different lines 
of actions, such as immune signaling, reactive species, microbiome composition, 
etc. In case when the immune system does not have appropriate resilience and abil-
ity to adapt, pro-inflammatory mechanisms could provoke tissue damage as well as 
various pathologies, consequently leading to the development of chronic inflamma-
tory diseases, including neurological conditions.

8 Bioactives for Neuronal and Immune Functions
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The inflammation triggered by oxidative stress is the cause of many chronic dis-
eases. Antioxidant activity of polyphenols target different inflammatory compo-
nents consequently exhibiting anti-inflammatory effect. It has been shown that 
polyphenols are interfering with immune cell regulation, gene expression and pro- 
inflammatory cytokines’ synthesis. As such, these molecules are associated with 
extended health benefits, playing an important role in the prevention and treatment 
of various chronic conditions, such as neurological disorders.

Omega-3 fatty acids are known for their positive health effects, regarding their 
anti-inflammatory properties as well as their impact on gut microbiota. DHA and 
EPA are known for being essential in neuronal/brain functioning in close connec-
tion to its immunomodulatory properties, thus strongly influencing the development 
of non-communicable diseases (NCD), also including neurological conditions 
developing as a consequence of neuroinflammation. Intestinal immune stress asso-
ciated with low omega-3 availability might be also involved in the development of 
neuroinflammation and progression of related diseases.
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Chapter 9
Bioactives Functionalization 
and Interactions

Maja Benković, Ana Jurinjak Tušek, Davor Valinger, Tamara Jurina, 
and Jasenka Gajdoš Kljusurić

Abstract In the battle with nutrient deficiency, the production of food enriched 
with bioactive compounds is becoming a modern trend. There are numerous types 
and sources of bioactive compounds used for this purpose, ranging from compounds 
isolated from medicinal plants to those extracted from food waste. Although many 
foods are marketed as functional foods, the problem with bioactive compounds, in 
and from food sources, is that the health claims and their bioavailability are still not 
fully explored. There are many examples of bioactive’s functionalization health 
claims connected to their functional properties and their interactions in foods. This 
chapter leads the reader from the basic steps of acquiring bioactive compounds to 
their bioavailability analysis, protection and further improvement of their functional 
properties. The chapter also takes into account the fortification of foods with bioac-
tive compounds as a strategy to reduce the occurrence of chronic illness as well as 
challenges that lie ahead for scientists dealing with all the aspects of bioactives, 
from processing to health claims.

Keywords Bioactives · Bioavailability · Extraction · Food fortification · 
Microencapsulation · Delivery systems

9.1  Introduction

The food enriched with bioactives has become not only a modern trend but also a 
discussion among scientists what steps are necessary to ensure the quality and sta-
bility of such foods. Although many foods are marketed as functional foods, mean-
ing that they include vitamins, minerals, and other supplements, the problem with 
bioactives in and from food sources is that the health claims and their bioavailability 
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are still not fully explored. Scientists are not only working on ways to improve the 
extraction processes for higher yield of the desired bioactive compound but are also 
trying to preserve their bioactivity and bioavailability. There are many examples of 
bioactives functionalization and interactions in foods; therefore, this chapter aims to 
further familiarize the reader with the process of bioactives extraction, its health 
effects, and bioavailability, as well as with the methods of further preserving and 
improving their functional properties. Furthermore, a short overview of the current 
strategies of bioactives application to battle chronic illness is presented, as well as 
the future challenges which lie among scientists, all the way from the extraction and 
solubilization process to full characterization of their bioavailability and interac-
tions, and further functionalization of their properties.

9.2  Extraction and Solubilization of Bioactives

9.2.1  Extraction

Bioactive compounds or bioactives, are present in various biological sources and 
are important for the development of food additives and compounds utilized in 
health treatment (Jin et al. 2016; Sosa-Hernández et al. 2018). Bioactives can be 
found in small amounts in plants such as fruits, vegetables, whole grains, medicinal 
and aromatic plants (Gökmen 2016; Xu et al. 2017). Because of various positive 
effects on human health, the interest of bioactives also increased in different indus-
tries such as biomedical, pharmaceutical, cosmetic, food and chemical (Smith 2003; 
Azmir et al. 2013; Delattre et al. 2016). However, usage of bioactives in the above 
mentioned industries suggests the requisite for using appropriate and standardized 
extraction methods of these components from plants (Azmir et al. 2013; Mutalib 
2015; Sosa-Hernández et al. 2018). Qualitative and quantitative characteristics of 
bioactives depend on the chosen extraction procedure (Smith 2003; Azmir et  al. 
2013; Delattre et  al. 2016; Sosa-Hernández et  al. 2018). Well-known classical 
extraction processes are often used for the extraction of bioactive compounds from 
different plant sources. These processes largely support the utilization of organic 
solvents, heat, and mixing. The existing classical (conventional) extraction pro-
cesses are solid-liquid extraction, Soxhlet extraction, maceration and hydrodistilla-
tion (Azmir et al. 2013; Hosseini et al. 2018; Al Rashid et al. 2019). Solid-liquid 
extraction (SLE) is generally used for extracting bioactives from various plant 
sources. The solid-liquid extraction process includes extraction of bioactives with 
organic solvents, such as methanol, ethanol, acetone, or the aqueous phase of sol-
vent mixtures (Taamalli et al. 2013; Gadkari et al. 2014; Xu et al. 2017). The choice 
of the solvent is relying on the character (polar or nonpolar) of the compound to be 
extracted. The extraction yield of bioactives is influenced by various working 
parameters such as the time needed for the extraction, temperature, polarity and 
solvent type, solvent to plant material ratio, and extraction cycles. Although per-
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forming the solid-liquid extraction is simple, some disadvantages occur such as the 
requirement for the exploitation of high amounts of toxic organic solvents, the lon-
ger time required for the extraction, low extraction efficiency, additional step such 
as solid-phase extraction to eliminate unwanted compounds (Xu et  al. 2017). 
Soxhlet extraction is a technique in which the bioactive is extracted from the plant 
or detached from interfering compounds (Garcia-Ayuso et al. 2000). Soxhlet extrac-
tion is applied when the bioactive has limited solubility in a solvent. The advantage 
of this method is that instead of moving several portions of the warm solvent through 
the sample, only one batch of solvent is recycled. Thermolabile compounds cannot 
be extracted by this method due to their degradability at prolonged heating (Nafiu 
et al. 2017). Disadvantages of Soxhlet extraction include the longer time required 
for the extraction, high amount of solvent use and a mandatory evaporation step 
after the sample has been extracted (Lopez-Avila 2000). Maceration represents the 
extraction of essential oils and bioactive compounds (Bromberger Soquetta et al. 
2018). When applying maceration as an extraction procedure, the sample has to be 
ground into smaller particles. Grinding ensures an increase of the sample surface 
area to obtain a good mixture with the solvent. Occasional shaking increases the 
diffusion phenomenon and removes the concentrated solution from the sample sur-
face (Azmir et al. 2013; Bromberger Soquetta et al. 2018). Hydro distillation can be 
defined as an extraction procedure of bioactives and essential oils from plant materi-
als. The advantage of this method includes the fact that organic solvents are excluded 
from the process. Hydro distillation can be executed before the drying of plants 
(Azmir et  al. 2013). Hydro diffusion, hydrolysis, and heat decomposition are 
included in this extraction technique. Disadvantages of this method include degra-
dation of compounds at high temperatures, significant consumption of water, energy 
and time (Petigny et al. 2014).

Disadvantages of classical extraction methods are the longer time required to 
obtain a suitable amount of bioactives, utilization of expensive organic solvents, 
solvent evaporation, low extraction selectivity and degradability of bioactives at 
higher temperatures (Azmir et  al. 2013; Bromberger Soquetta et  al. 2018; Sosa- 
Hernández et al. 2018). To overcome the above-mentioned limitations, new extrac-
tion techniques such as supercritical-fluid extraction, microwave-assisted extraction, 
ultrasound-assisted extraction, pressurized-liquid extraction, enzyme-assisted 
extraction, high-voltage electrical discharges, and high hydrostatic pressure, have 
been developed. These new extraction techniques comply with the standards brought 
by the U.S. Environmental Protection Agency (EPA) and are considered “green”. 
These techniques include environmentally friendly working conditions, “green” 
solvents, water use, higher extraction efficiency, energy savings (low environmental 
and economic influence), safe product design (Lenardão et al. 2003; Azmir et al. 
2013; Bromberger Soquetta et al. 2018; Sosa-Hernández et al. 2018). Supercritical- 
Fluid Extraction (SFE) is often used for the extraction of bioactives with high-added 
values, i.e. pigments and fatty acids (García-Pérez et  al. 2017). The often-used 
supercritical fluids are CO2, ethane, butane, pentane, nitrous oxide, ammonia, tri-
fluoromethane and water (Silva et al. 2016; Xu et al. 2017). SFE is performed with 
minimal solvent utilization as compared to other extraction techniques, less extrac-
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tion time, increased safety and selectivity. Major disadvantages include the use of 
non-polar CO2 which is inappropriate for the extraction of bioactives that are polar 
and high capital costs (Xu et al. 2017). Microwave-Assisted Extraction (MAE) can 
be used for the extraction of bioactive phenolics with high-added values, phytonu-
trients, functional foods and pharmaceutical ingredients from biomaterials (Li et al. 
2013; Sosa-Hernández et al. 2018). MAE utilizes the effect of microwave energy to 
separate the desired compound from the plant matrix in the solvent. Methanol, etha-
nol, and water are commonly used as solvents (Xu et al. 2017). The advantages of 
MAE include low energy consumption and temperature, minimal solvent use, short 
extraction period and inhibition of thermolabile compounds degradation (Wang 
et al. 2011; Ma et al. 2012). Ultrasound-Assisted Extraction (UAE) can be used for 
the extraction of proteins, essential oils, polysaccharides, dyes, peptides, pigments, 
and bioactives (Briones-Labarca et al. 2015; Tiwari 2015). Ultrasounds are used for 
the disruption of plant cell walls, thus releasing the desired components from biore-
sources (Roselló-Soto et al. 2015). Factors that regulate the ultrasound effect include 
pressure, temperature, sonication time and frequency (Rajha et al. 2015). The use of 
UAE enables a shorter time of extraction, energy and solvent reduction. Ultrasound 
waves ensure efficient mixing, lower temperature, faster energy transfer, and 
increases the final yield (Chemat et al. 2008). Pressurized-Liquid Extraction (PLE), 
or accelerated solvent extraction (ASE), pressurized fluid extraction (PFE), 
enhanced solvent extraction (ESE) and/or high-pressure solvent extraction (HPSE) 
(Nieto et al. 2010), separates solutes from a plant matrix. PLE technique uses high 
pressure, allowing solvents to stay in the liquid phase beyond their normal boiling 
point (Azmir et al. 2013). The use of PLE encloses the low consummation of organic 
solvents, the shorter time required for the extraction and polar compounds extrac-
tion (Sosa-Hernández et al. 2018). PLE method can be applied for the extraction of 
different types of compounds from different matrices (Kaufmann and Christen 
2002; Smith 2003; Tang et al. 2008). Enzyme-Assisted Extraction (EAE) is a tech-
nique in which enzymatic pretreatment is included, to enhance the extraction effi-
ciency. The addition of enzymes such as pectinase, α-amylase, and cellulase during 
EAE leads to breakage of the cell wall and hydrolysis of the polysaccharides and 
lipids, which are included into the structure of cell wall, to release intracellular bio-
actives (Rosenthal et  al. 1996; Sosa-Hernández et  al. 2018). The EAE method 
depends on the type of used enzyme and its concentration, particle size of plants, 
plant to solvent ratio and time needed for the hydrolysis (Niranjan and Hanmoungjai 
2004). Compared to conventional techniques, EAE offers advantages such as high 
selectivity, overall efficiency, the fast extraction process, low energy consumption, 
low consumption of toxic solvents and process recyclability (Shen et al. 2008; Alam 
et al. 2017). High-Voltage Electrical Discharges (HVED) is a technology that can be 
used for the extraction of products with the high-added-value from different food 
sources (Barba et al. 2015). The electrical breakdown of water is a phenomenon 
included in HVED. The electrical breakdown of water is followed by bubbles cavi-
tation, high-amplitude pressure shock waves, the formation of active species, turbu-
lence, etc. The advantage of HVED includes an increase in an extraction efficiency 
because damaging the cell wall leads to the release of intracellular molecules from 
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the cell cytoplasm (Boussetta et al. 2013; Rajha et al. 2015). The disadvantage of the 
HVED extraction process includes the occurrence of free radicals that can react 
with biomolecules and antioxidants (Bromberger Soquetta et  al. 2018). High 
Hydrostatic Pressure (HHP) is a technique developed to become a replacement for 
processes that include the transfer of thermal energy and include extraction under 
high pressures (100–1000 MPa) (Briones-Labarca et al. 2015). This technology can 
be considered green since electric power is required (Andrés et al. 2016). It can be 
used for food that is safe for use regarding a microbiological point of view, without 
changes in physical, chemical, nutritional and sensory characteristics of foods 
(Escobedo-Avellaneda et al. 2011). The high pressure causes protein denaturation. 
The yield of HVED extraction can be increased using solvents that can pass through 
the cell wall and reach the bioactives present in cells (Briones-Labarca et al. 2015).

9.2.2  Solubilization of Bioactives

Most bioactives are hydrophobic, and, therefore, have low solubility in water as a 
green solvent (Clardy and Walsh 2004). To overcome the above-mentioned con-
cerns, the use of safer alternative solvents such as ionic liquids (ILs) has been sug-
gested (Ventura et  al. 2017). ILs are liquid molten salts at temperatures below 
100 °C (Seddon 1997) and usually consist of large and unsymmetric organic cations 
(e.g. tetraalkyl phosphonium, pyridinium tetraalkyl ammonium, pyrrolidinium, 
imidazolium) and organic or inorganic anions (e.g., bromide, hexafluorophosphate, 
tetrafluoroborate) (Xiao et al. 2018). ILs are known as alternatives to organic sol-
vents because of their physicochemical properties such as negligible vapor pressure, 
non-flammability, high thermal and chemical stability (Arce et  al. 2007; Garcia 
et al. 2012). ILs can also be considered as designable solvents since their properties 
and structure can be tuned using different combinations of cations and/or anions 
(Rogers and Seddon 2003) and can, therefore be used to extract bioactive substances 
which are not extractable using water or organic solvents. For this purpose, IL-water 
mixtures can be used (Brandt et al. 2011). The viscosity of the IL phase can be sig-
nificantly lowered by adding the water into hydrophilic ILs (Blahušiak and Schlosser 
2014). The IL–water mixtures show adequate extraction efficiency for polar bioac-
tives, such as polyphenols, carbohydrates, saponins, alkaloids, etc. (Liu et al. 2011; 
Ribeiro et al. 2013; Zhu et al. 2015).

Along with ILs, deep eutectic solvents (DES) have been recognized as important 
solvents for several applications (Dai et al. 2013; Gonzales et al. 2020). DES is a 
liquid that is formed when at least two solid compounds are mixed in conditions that 
lower their melting points to form a eutectic mixture (Zhang et al. 2012; Smith et al. 
2014). According to Choi et al. (2011), there might be DES-like media in nature 
playing many biological roles and hypothesized that this new kind of DES, named 
natural deep eutectic solvents (NADES), might be present in living organisms. 
Since NADES are primarily composed of natural compounds, they are a very prom-
ising option for green chemistry and are candidates to replace the toxic organic 
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solvents (Choi et al. 2011; Oomen et al. 2020). To date, over 200 natural product 
combinations have been identified as NADESs, all of which have very different 
physical and chemical characteristics and selectivity (Gonzales et al. 2020), which 
is why they cannot be regarded as general solvents (Dai et al. 2013). Factors, such 
as solvent type, pH, temperature, water content, and hydrogen bonding locations 
should be optimized to use NADES for the extraction of a given target compound 
(Ribeiro et al. 2013; Liu et al. 2018). Limitations related to NADESs also include 
their high viscosity and non-volatility. The viscosity of natural deep eutectic sol-
vents can be lowered by water addition (Dai 2013). Future developments on DESs 
and NADESs will depend on their basic characteristics, such as phase behavior of 
the compounds that constitute these solvents. Compared to ILs, DESs and NADESs 
are less toxic solvents, exhibit biodegradability and have less impact on the environ-
ment. DESs can donate and accept electrons and protons, which means that they can 
mold hydrogen bonds thus enhancing their dissolution capacity and consequently 
extraction effectivity (Paiva et al. 2014). While there is a need for conducting addi-
tional researching regarding NADESs, these solvents will contribute significantly to 
the development of a more sustainable industry in the future. There are many docu-
mented cases on the use of DESs and NADESs for extraction of bioactives which 
cannot be extracted using water and organic solvents (Brandt et al. 2011; Liu et al. 
2011; Liu et al. 2012; Jin et al. 2016; Liu et al. 2018).

9.3  Bioavailability of Bioactives

9.3.1  Basic Definitions

As stated before, there is numerous scientific evidence that food components pos-
sess bioactive properties which include anti-inflammatory, anti-cancer, neuropro-
tective and blood pressure-lowering properties (Manach et al. 2004; Teodoro 2019; 
Kris-Etherton et al. 2002; Bishayee and Sethi 2016), thus contributing to the wellbe-
ing and the proper function of the human immune system (Patil et  al. 2009). 
However, there are scientific papers which emphasize that the evidence for the bio-
active properties are often demonstrated in laboratory tests, but the health benefits 
evidence is often difficult to assemble for the in vivo experiments. The reason for 
that is because often single compound—single effect relation cannot be explored 
due to many possible interactions of bioactive with the gut microbiota (Weaver 
2014). To have a positive effect on health, a bioactive compound needs to remain 
undamaged through the whole food processing chain, be metabolized and bioac-
cesible and reach the targeted tissue without damage and changes to its bioactivity 
(Rein et al. 2012). This whole process is described as bioavailability. Bioavailability 
represents the part of a bioactive compound eaten together with its food matrix, 
which retains its bioactivity and is available for utilization at the site of action. 
(Alegría et al. 2015; Guerra et al. 2012). The terms bioavailability, bioaccessibility, 
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and bioactivity are often used together without any distinction among those terms, 
when, in fact, the term bioavailability is a broader term which includes bioaccessi-
bility and bioactivity. The differences and the correlation among those terms are 
shown in Fig. 9.1.

As visible from Fig. 9.1, bioavailability is a broader term that includes bioacces-
sibility and bioactivity. Bioavailability includes digestion, absorption, metabolism, 
tissue distribution and bioactivity, and the methods used for the assessment and 
analysis of bioavailability include in vivo assays (Carbonell-Capella et al. 2014). 
Bioaccessibility defines a part of a bioactive compound which, when released from 
the food matrix, becomes available for absorption in the intestinal parts of the 
human digestion system. Bioaccessibility is analyzed by in vitro procedures (Parada 
and Aguilera 2007). It can be observed through three different steps: (1) release 
from the ingested food, (2) transformation during digestion and (3) adsorption and 
transformation through epithelium (Carbonell-Capella et al. 2014). Bioactivity, on 
the other hand, includes what happens after the assimilation through the epithelium: 
tissue uptake, metabolism, and physiological response. Bioactivity can be analyzed 
by a much broader range of methodologies: in vitro, ex vivo and in vivo (Carbonell- 
Capella et al. 2014).

9.3.2  Methods Used to Asses Bioavailability of Bioactives

There are three most commonly used methods that asses bioavailability, bioacces-
sibility, and bioactivity of bioactive components: in vivo, in vitro and ex vivo.

The basic idea behind the in vivo experiments is that all the testing is done in a 
live subject, e.g. when an individual has ingested a bioactive compound and the 
compound further goes through the digestion process and adsorption. After the pure 

BIOAVAILABILITY

BIOACCESIBILITY BIOACTIVITY

Fig. 9.1 Connection between bioavailability, bioaccessibility and bioactivity (Carbonell-Capella 
et al. 2014)

9 Bioactives Functionalization and Interactions



314

form of a nutrient has been consumed, its concentration in blood plasma is mea-
sured. In vivo methods enable the collection of a great amount of direct data about 
the bioavailability of bioactive compounds, and there is also a lot of research avail-
able on the use of in vivo methods for the analysis of bioavailability of nutrients 
originating from foods. E.g. Yuwen et al. (2015) compared the in vitro and in vivo 
models for bioavailability of nutraceuticals and concluded that the in vivo models, 
despite their high price and ethical issues, are still considered to be able to predict 
the bioavailability of bioactives with high precision and accuracy. Fuller and Tome 
(2005) analyzed the in  vivo bioavailability of amino acids and emphasized the 
importance of the proper selection of sampling. Namely, to properly analyze the 
loss of amino acids, samples should be taken after the ileal digestion step, while for 
reliable analysis of nitrogen losses, samples taken after the fecal step are the most 
representative. Numerous in vivo experiments were also performed on polyphenols 
and concluded that the oral bioaccessibility of polyphenols is very low. Furthermore, 
they concluded that bioavailability is greatly dependables on the composition of the 
food digested with the polyphenols (Olivero-David et  al. 2018; Scholtz and 
Williamson 2007). Some of the conclusions drawn by those authors can be consid-
ered as main drawbacks of in  vivo methods: different individuals have different 
physiological states and the overall diets of the individuals greatly influence the 
results of in vivo testing (Parada and Aguilera 2007).

Compared to the in vivo methods, the in vitro methods are fast, safe and have no 
ethical constrictions. The analysis is done in a test tube, in which the physiological 
conditions (e.g. pH, temperature, and salt concentrations) are simulated to be as 
similar as possible to the conditions in a real living organism. They simulate either 
the digestion or adsorption process and measure the final concentration of a bioac-
tive compound after the end of the simulation. Adsorption or transport is usually 
measured using the Caco-2 cells (Nowak et al. 2019). On the other hand, digestion 
is measured by simulating the conditions of gastric and intestinal fluids, and a bio-
accessible compound is a compound that is found undamaged after the small intes-
tinal digestion stage (Nowak et al. 2019). Examples of in vitro digestion applications 
are present in numerous studies (Pavan et al. 2014; Celep et al. 2015). Further exam-
ples include in vitro bioaccessibility of carotenoids, for which has been reported 
that only a small fraction is bioaccessible (Courraud et al. 2013) and can be improved 
by the addition of fat and oils (Fernández-García et  al. 2012). Similar to carot-
enoids, vitamin E also has to be packed into micelles to facilitate adsorption 
(Carbonell-Capella et al. 2014), and the in vitro studies have shown that β-tocotrienol 
had higher bioaccessibility in comparison to α-tocotrienol (Werner and Böhm 
2011). Vallejo et al. (2004) reported a high loss of glucosinates under in vitro gastric 
conditions of homogenized fresh broccoli, while Alemany et al. (2013) analyzed the 
bioaccessibility of sterols in fruit-based milk beverages and reported that sterols 
have a very low bioaccessibility of 2–6%. The drawbacks of the in vitro studies are 
the inability to simulate the effects of the human microbiota, as well as the possibil-
ity of transformation of bioactive to other metabolites which are also considered to 
be biologically active and can be further absorbed (Parada and Aguilera 2007).
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The ex vivo experiments use tissues or cells extracted from the living organism 
to perform experiments in the laboratory, outside the living organism. Those tests 
are usually considered to be more accurate than the in vitro experiments since some 
of the interactions present in a living organism can be detected, but still have some 
ethical issues present. An example of the ex vivo study can be found in a paper by 
Vinson et al. (2006), where epicatechin originating from chocolate inhibited plasma 
lipid oxidation.

9.3.3  The Food Matrix Effect and Interactions

The food matrix is a complex combination of nutrients and non-nutrients, which 
interact with each other and subsequently influence the bioavailability of food com-
pounds (Crowe 2013). The food matrix directly influences the digestion and absorp-
tion of food compounds in the gastrointestinal tract and can be classified into 
different types such as liquid, emulsion, gel, cellular, network exocellular, fibrous 
extracellular, viscoelastic, dense, porous and artificial (Aguilera 2019).

Carotenoids are fat-soluble plant pigments that can be used to prevent cardiovas-
cular and eye diseases. As mentioned previously, only a small fraction of carot-
enoids is bioaccessible (Courraud et  al. 2013) and a minimal amount of fat is 
necessary for absorption (Fernandez-Garcia et al. 2012). However, carotenoids can 
only become bioaccessible after their release from the food matrix, which greatly 
limits their general bioavailability. Furthermore, its bioaccessibility, as well as the 
bioaccessibility of fat-soluble vitamins is also dependent on the presence of phytos-
terols and phytostanols in the food matrix, which is known to have the potential to 
reduce plasma concentrations of fat-soluble vitamins (Fardet et al. 2017).

Another example of the food matrix effect is visible for vitamin E. In their review 
paper, Carbonell-Capella et al. (2014) list several examples of this effect: bioacces-
sibility of vitamin E for apple sauce was 11%, for beef 86%, for bananas and bread 
100%, for cheese and milk 22% and only 0.5% for apples. Parada and Aguilera 
(2007) stated that folate bioaccessibility is also influenced by the food matrix: folate 
binding proteins present in fortified milk products decrease the bioaccessibility of 
folate. Impact on polyphenols is also well documented: reported bioavailability is 
highly dependent on their structure and conjugation, mostly to sugars, fibers, and 
proteins, as well as to other factors such as the overall diet, and therefore, the foods 
most abundant in polyphenols do not necessarily cause the highest increase in poly-
phenol concentrations in target tissues (Balasundram et al. 2006).

Amino acids and polyunsaturated fatty acids bioaccessibility has also been 
investigated and is influenced by the food matrix. Domoto et al. (2013) concluded 
that the bioaccessibility of polyunsaturated fatty acids originating from phospholipid- 
rich foods was higher in comparison to the ones originating from mono- and triac-
ylglycerol rich foods, while Afonso et al. (2017) concluded that the bioaccessibility 
of fatty acids greatly depends on the overall diet. Peptides and amino acids bioac-
cessibility in yogurt formed with different constituents (starch, pectin or β glucan) 
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were studied by Rinaldi et al. (2015), who concluded that the nature of added ingre-
dient modulates the kinetics of proteins gastric digestion. Bioaccessibility of miner-
als was also studied: Vitali et al. (2008) analyzed the bioaccessibility of Ca, Mg, Mn 
and Cu from biscuits prepared from whole grain flour by an in vitro digestion model 
and concluded that the bioaccessibility was dependant on the protein content, phytic 
acid, and polyphenols present in the samples.

9.3.4  Optimization and Improvement of Bioaccessibility

As mentioned earlier, to have beneficial effects on human health, bioactives have to 
be bioaccessible and delivered undamaged to the target tissue. Methods for bioac-
cessibility and bioavailability improvement include the use of nanosystems, design 
of colloidal systems and modifications of bioactives to improve their solubility at 
the targeted site (Rein et al. 2012). The use of nanosystems is extensively explored 
nowadays. Namely, nanosystems enable bioactives to pass through biological barri-
ers and, at the same time, avoid being modified through metabolic pathways which 
could lead to low absorption. Examples of nanosystems include curcumin bound to 
poly (lactic-co-glycolic acid) nanoparticles and the implementation of curcumin in 
an organogel (Rein et al. 2012). The design of colloidal systems includes the design 
of micelles and vesicles for nutrient delivery, while technological and chemical 
modifications often include the encapsulation of bioactive ingredients through coac-
ervation, inclusion complexation, liposome entrapment, spray drying, cocrystalliza-
tion, nanoencapsulation, freeze-drying and emulsification (Fang and Bhandari 
2010), which are explained further in this chapter.

Another interesting aspect of bioavailability improvement is the entrapment of 
bioactives in vegetable matrices (fruits after processing, spent grain and similar), 
which not only improve bioavailability but also offer the opportunity to develop 
novel food products which are interesting to the consumers. Vacuum and/or atmo-
spheric impregnation introduces nutrients into pores present in fruits and vegetables 
(Parada and Aguilera 2007). For example, lycopene bioaccessibility has been 
improved by processing raw tomatoes into a paste. Namely, from one side, mechan-
ical forces used in processing cause a release of lycopene from the cells, but also the 
trans lycopene polymerizes during processing into cis form which has higher bio-
availability (Porrini et  al. 1998). Also, entrapping lycopene using whey proteins 
enhances its bioaccessibility, as well as entrapment of zeaxanthin in hot milk 
(Richelle et al. 2002; Benzie et al. 2006; Rein et al. 2012). Anino et al. (2006) used 
fresh apple pieces for calcium impregnation, resulting in apple pieces that contained 
23–62% of the daily needed calcium.
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9.4  Microencapsulation of Bioactives for Improvement 
of Bioaccessibility and Protection of Functional 
Properties

According to Marisa Ribeiro et  al. (2019), due to their poor bioavailability, low 
water solubility, fast catabolism and excretion and weak stability in environmental 
processing and gastrointestinal environments, there are many disadvantages con-
nected with the use of bioactive compounds. Also, bioactives lose their activity 
during storage and in contact with oxidants (Rein et al. 2012). Therefore, there is an 
increasing concern in designing encapsulation systems to safeguard the advantages 
of bioactives. Bioactive compounds encapsulation in the food industry is used to (1) 
maintain functional properties, (2) boost the durability of low solubility compounds, 
(3) disguise unwanted flavors, (4) enhance health benefits of food products, (5) 
control the release of bioactive compounds and (6) increase bioavailability of the 
bioactive compound (Silva et  al. 2014; Bourbon et  al. 2016). Encapsulation is 
defined as the methodology for enclosing substances in solid, liquid or gaseous 
states in matrices that may release the target component at regulated levels and 
regulated locations (Bratovcic and Suljagic 2019). The component inside the cap-
sule is called the central layer, inner phase, encapsulant, payload phase, or cover, 
while the surface is often referred to as sheet, coating, wall material, membrane 
sheet, carrier layer, encapsulating agent, external phase, or matrix (Hassan et  al. 
2016; Tangsiriratana et al. 2019). It is important to emphasize that encapsulating 
material must be “generally recognized as safe” (GRAS) for use in the foodstuffs 
sector (Singh et al. 2018). Therefore, many of the components used for encapsula-
tion in the food sector are carbohydrates (starches, maltodextrins, etc.), proteins 
(gelatin, casein, etc.), lipids and other organic and inorganic materials (Shishir et al. 
2018, Trifković et  al. 2015). Encapsulated particles with a diameter of less than 
800  μm can be described as microparticles, while the ones with diameters to 
1000 nm can be described as nanoparticles (Lengyel et al. 2019).

9.4.1  Microencapsulation

According to Tayagi et al. (2011), microencapsulation methods can be divided into 
physical, physicochemical and chemical methods.

Spray drying is one of the most commonly employed physical microencapsula-
tion method since it allows accelerated water evaporation and enables retention of 
low temperatures in the particles which are being dried. As described by Assadpour 
and Jafri (2019), the feed pump introduces the feed into the atomizer. Liquid feed is 
disrupted into droplets that are further dried in the drying chamber. Drying gas is 
introduced into the drying compartment in parallel to the droplets and after a few 
seconds, dried droplets drop to the bottom of the dryer. After that, they are drawn 
into a cyclone where dried particles are isolated from the drying gas and deposited 
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at the bottom of the compartment. Water separation by spray drying guarantees the 
microbiological consistency and enables the delivery, dosing, and preservation of 
the bioactive (Correa-Filho et al. 2019; Sosnik and Seremeta 2015). The biggest 
limitation is the selection of wall material suitable for use in the food industry.

There are numerous examples of using spray drying technology in the microen-
capsulation of bioactives in order to preserve their functional properties. Rigon and 
Norena (2016) described the application of spray drying technology of bioactive 
substances derived from blackberries. They obtained powders with high solubility 
and preserved functional properties. Rezende Abrahao et al. (2019) studied micro-
encapsulation of bioactive compounds form espresso spent coffee where they used 
whey protein as wall material in combination with maltodextrin, arbic gum, and 
inulin. Da Rosa et al. (2019) presented the microencapsulation of anthocyanin com-
pounds extracted from blueberry by spray drying using different process conditions.

As described by Ravichai and Muangrat (2019), microencapsulation by lyophi-
lization is a process where a mixture to be dried is first chilled to -50 °C and dried 
by the transition of ice to gas under decreased pressure. The cryodesiccation is 
known to be a quick and effective procedure for the preparation of microcapsules of 
bioactives which are unstable at high temperatures and oxidative stress (Sanchez 
et  al. 2013; Wilkowska et  al. 2015; Murali et  al. 2019). Nougeira et  al. (2017) 
described the preparation of microcapsules containing tetrapenoids from Phaffia 
rhodozyma by lyophilization were 65% encapsulation efficiency was obtained. 
Bellesteros et al. (2017) used freeze-drying for preparation of microcapsules of bio-
active molecules derived from spent coffee material, Tumbas Šapnjac et al. (2017) 
encapsulated tart cherry marc extract using freeze-drying; Papoutsis et al. (2018) 
used freeze-drying for preparation of microcapsules of lemon secondary product 
extracts and El-Messery et al. (2019) analyzed the microencapsulation of natural 
polyphenolic compounds extracted from apple peel by freeze-drying.

Supercritical fluids have been also used for bioactives encapsulation due to their 
specific physical properties dependent on temperature and pressure (Budisa and 
Schultze-Makuch 2014). According to Cocero et  al. (2009), when working with 
sc-CO2 the process can be performed at temperatures that are similar to the atmo-
sphere temperature. As described by Ozkan et al. (2019) supercritical fluid precipi-
tation is focused on ensuring the interaction of the supercritical fluid with 
microencapsulating solutions. Visentin et al. (2012) presented the use of SC-process 
to prepare particles of rosemary leaves bioactives that can be efficiently suspended 
in water. Meozzomo et  al. (2016) investigated the use of the SC-process for the 
preparation of microparticles of bioactives derived from grape marc and showed 
that the proposed technology was highly efficient. Quintana et al. (2019) developed 
the process using SC-CO2 for stabilization of bioactive molecules derived from 
rosemary.

According to Barin et al. (2019), coacervation offers many benefits like simplic-
ity, adaptability, low cost, etc. As described by Eghbal and Choudhary (2018), coac-
ervation is known as the separation of the colloidal system into two liquid phases 
and the coacervate refers to a phase that is more concentrated in the component. 
Some of the examples of using coacervation for bioactives encapsulation are as 
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 follows: Jain et al. (2016) studied the preparation of microcapsules of provitamin A; 
de Souza et  al (2018) described the preparation of microcapsules of bioactives 
derived from cinnamon based on the formation of polymers; Rudke et al. (2019) 
applied coacervation for the microencapsulation of provitamin D2 derived from 
Agaricus bisporus L. and provitamin D.

According to Emami et al. (2016), liposomes are useful for the supply of both 
bioactives able to dissolve in lipid and bioactives able to dissolve in water media. 
Liposomes have a spherical shape cover that protects the molten center and the 
phospholipids that are included in the liposome cover form two-layer protection for 
the bioactives (Mignet et al. 2013). Chen et al. (2019) presented the liposomes co-
loaded with epigallocatechin-3-gallate (EGCG) and quercetin, and El-Said et  al. 
(2018), described the encapsulation of powdered doum extract in liposomes with 
high encapsulation efficiency.

According to Perignon et  al. (2015), interfacial polymerization was firstly 
described in 1960. The basic principle of interfacial polymerization is that two reac-
tants dissolvable in their unmixable solvents connect, which leads to polymerization 
at the contact area. According to Ozkan et  al. (2019), interfacial polymerization 
method has feasible benefits like the potential to govern particle average dimen-
sions, great capacity for entrapping bioactives, adaptable and persistent membrane 
properties, low cost and simplicity, but it is also important to mention that there are 
great difficulties with the production of a large interface were polymerization occurs.

9.4.2  Nanoencapsulation

As stated by Berekaa (2015), nanotechnology is emerging as a field with a lot of 
interest, mainly due to the possibilities of its applicability in science and technol-
ogy. In the field of food technology, nanotechnology found its application in the 
area of nanoencapsulation. Nanoencapsulation (NE), as Assadpour and Jafri (2019) 
and Paredes et al. (2016) described, is a process for miniature packaging of sub-
stances that provides the final product functionality and managed core release. 
When the particle size is reduced from micro to nano, bioactivity, bioavailability, 
solubility, and delivery is more efficient since the ratio of area and volume is higher 
(Pissoschi et al. 2018). In the food sector, NE technology allows targeted site transi-
tion of the functional ingredient while also protecting it from degradation during 
manufacturing processes, storage and utilization (Bratovcic and Suljagic 2019).

Due to the relative novelty of nanotechnology in the field of food, it is important 
to precisely define the legal aspects of nano-size material containing food 
(Quintanilla-Carvajal et  al. 2010). The European Food Safety Authority (EFSA) 
states that all the actions have to be taken to assure that food which contains nanopar-
ticles is non-hazardous. Some of the uses of nanotechnology for encapsulation of 
bioactives and protection and improvement of their functional properties are given 
in the following text. Pulcharla et al. (2016) prepared nanoformulations containing 
polyphenols from strawberry and chitosan with an encapsulation efficiency of 60% 
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and with particle sizes that were in the range from 300 to 600 nm. At pH 7.4 they 
observed an increased release of bioactive compounds in vitro and based on the 
obtained results, the authors proposed the adaptation of developed formulation for 
oral and external applications. Peng et al. (2018) emulsified tea polyphenols using 
high-pressure and obtained droplets with uniform diameters. It is also imported to 
emphasize that the prepared emulsions were stable for twenty days of storage. Meng 
et al. (2019) prepared oil-in-water (O/W) nanoemulsions for stabilization of bioac-
tives derived from tea and analyzed their stability at three temperatures.

Huang et al. (2019) developed liposomal nanoencapsulation to improve the anti-
oxidant effects of curcumin and resveratrol and showed that changes in the ratio of 
selected bioactive compounds had a significant effect on both physical and chemical 
properties of the prepared nanoparticles. Bhushani et al. (2017) studied the applica-
tion of zein for the preparation of nanocapsules of catechins derived from green tea 
and showed that the addition of zein in the concentration of 5% ensured the forma-
tion of particles with a diameter around 160 nm. Pereira et al. (2018) presented the 
nanoencapsulation of bioactives form guabiroba fruit and showed that prepared 
nanocapsules possess higher antimicrobial activity compared to liquid extract. 
Delfanian et al. (2018) prepared water/oil/water emulsion nanoparticles of polyphe-
nols from the Pistacia atlantica subsp. Mutica and showed that the described sys-
tem ensured the encapsulation efficiency of over 90%.

9.5  Bioactives Fortification in Foods as a Strategy to Reduce 
the Occurrence of Chronic Illness

The definition of food fortification is presented by the United Nations Food and 
Agricultural Organization and the World Health Organization as “deliberately 
increasing essential micronutrient content in food” WHO (2017). The main aim of 
food enrichment is the improvement of the nutritional quality of human food to 
achieve a benefit for the general population with minimal risk to their health. It 
should also be noted here that enrichment and fortification are synonyms. 
Enrichment/fortification is also the macronutrient supplementation that is otherwise 
lost during food production or processing (Allen et al. 2017). Food is a source of 
macro- and micronutrients (fats, carbohydrates, protein, vitamins and minerals), as 
well as a source of small quantities of bioactives, which are not essential for life and 
the body, can function properly without them (like caffeine, polyphenols, flavo-
noids, fatty acids, etc.).

Major global health problems caused by insufficient intakes of vitamins (most 
common deficit; vitamins A & D) and minerals (the most common deficits: calcium, 
iron, and zinc) can be alleviated by food fortification (Knijnenburg et al. 2019). One 
example of fortified food used daily is iodized salt where the ingestion of iodine 
prevents iodine intake deficit which affects almost 30% of the population (the third 
being of school age) and is the leading cause of developmental and intellectual dis-
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ability, worldwide. The mandatory fortification was initiated in 1924 in Switzerland 
and Michigan (United States) when iodine was added to salt to reduce the incidence 
of endemic goiter (Dwyer et al. 2015; Chadare et al. 2019). Salt iodization is an easy 
and inexpensive way of adequate iodine intake measurement as applied in over 100 
countries through salt-iodization programs, among which 34 include a complete salt 
iodination program. EuSalt (European Salt Producers’ Association) strongly advo-
cates the implementation of the Universal Salt Iodization (USI) system in the 
European Union (Tareen et al. 2005).

The European public health alliance (EPHA) proposed the EU Regulation on 
food fortification which contains a table of approved food supplement micronutri-
ents (vitamins and minerals) (Table 9.1) as well as the micronutrients that can be 
added to food (as vitamins and/or minerals within a compound) because fortifica-
tion of food often requires a specific form of substance (where Chromium can be 
added as (1) chromic chloride or (2) chromic sulfate and/or in a form of their hexa-
hydrates). However, as the fortification has an impact on human health, care must 
be taken because the excessive intake of micro-nutrients has unintended health con-
sequences and therefore maximum amounts of their addition to foods should be 
determined (Regulation (EC) No 1925/2006 2006).

Micronutrients used for food fortification can be added to foods individually or 
as a combination of multiple vitamins and minerals. Selenium is an example of 
separately added trace element and essential micronutrient for humans, whose daily 
recommendation for a grown person is sixty micrograms (60 μg) (Gao et al. 2011). 

Table 9.1 Micronutrients allowed to be used in food enrichment (1st Appendix*, (EC) No 
1925/2006)

Vitaminsc Example of enriched fooda Mineralsc Example of enriched foodb

Fat-soluble Calciumb Dairy products, biscuits

Vitamin D Milk, margarine Magnesium Flour, pasta
Vitamin E Fruit juice Ironb Sauce, curry powder
Vitamin K Olestra Copper NA
Vitamin A Rice, milk Iodine NA
Water-soluble Zinc Rice, whole cereals
Vitamin B1 Rice grains
Vitamin B2 Flour, bread Sodium Fish sauce
Niacin (Vitamin B3) Rice Potassium NA
Pantothenic acid Cereals Selenium Salt, yogurt
Vitamin B6 Cereals Chromium NA
Folic acid Wheat flour Molybdenum NA
Vitamin B12 Dairy Fluoride NA
Biotin Beverages Chloride Biscuits
Vitamin C Cereals, fruit juice Phosphorus Milk-based beverages

aLiberato and Pinheiro-Sant’ana (2006)
bVlaic et al. (2019)
cClarke (1995)
NA not available
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Selenium plays an important role in glutathione peroxidase, a well-known 
 antioxidant known to suppress cellular oxidative destruction (Vlaic et al. 2019). It 
also plays an important role in thyroid function by catalyzing the production of its 
active hormones (Wojciechowska-Durczynska and Lewinski 2017; Stuss et  al. 
2017). In the epidemiological studies, selenium deficit is positively correlated to the 
incidence of cancer (Rayman 2005). The most widely used method of selenium 
supplementation is through yogurt (Alsuhaibani 2018) and table salt. As confirmed 
by the study of Cheng and Qian (1990), a significant reduction in the prevalence of 
Keshan disease in China has been documented, due to selenium addition to table salt.

Multiple vitamins and/or mineral insufficient intakes are more frequent in those 
whose diets do not contain specific foods such as meat, eggs, and other food origi-
nated from animals, resulting in insufficient intakes of bioavailable iron and zinc, 
calcium, vitamins A, B2, B6, and B12. Insufficient intake of folic acid, β-carotene, 
and vitamin C is the result of diets with insufficient intake of fruits and vegetables 
(Vlaic et al. 2019). Even simple food processing as grain milling reduces the amount 
of several nutrients such as folates, iron, zinc, thiamine, riboflavin, and niacin. The 
risk of missing more micronutrients is increasing especially in people with higher 
intakes of food from refined cereals and grains (Lindsay et al. 2006). Thus, fortifica-
tions are performed in combinations with several vitamins and minerals: a combina-
tion of vitamin A and iron in fortified foods will often be found, as well as 
combinations of different B vitamins or calcium in combination with vitamin 
D. Food enrichment can be achieved through the addition of a variety of materials 
from which the final product will have multiple benefits. So, e.g. enriching bakery 
or meat products with mushrooms will result in a product that ultimately has 
increased fiber and protein content and thus has increased its nutritional value (Nagy 
et al. 2017), while another example would be bakery products to which nut paste 
was added, resulting in a product with increased content of so-called healthy fats, 
dietary fibers and valuable minerals (Pǎucean 2017). Considering people with lac-
tose intolerance who have reduced calcium intake due to the lack of dairy products 
in their diets, enriching foods with vegetables that are a rich source of calcium will 
certainly be extremely beneficial. However, one should not forget that calcium bio-
availability depends on the presence of other bioactive components such as fiber, or 
phytic and oxalic acid (Vlaic et al. 2019).

Another example of food fortification with bioactives, which are, in this case, 
water-insoluble, is enrichment with essential fatty acids. This enrichment was intro-
duced to battle one of the world’s leading public health problems, related to over-
weight and obesity (as insulin resistance, abdominal obesity, hypertension, 
dyslipidemia), that contribute to an increase in diseases with a particular focus on 
cardiovascular diseases and an increase in mortality as a result of their complica-
tions (Nagao and Yanagita 2008).

It is recommended that the ratio: ω-6/ω-3 fatty acids (FA) is around 1, while aver-
age values of diets in western countries have undesirable ratios because the ω-6 
range from 15–16.7 to 1 ω-3 FA, which represents deficient inputs of ω-3 FA, and a 
sufficient input of the ω-6 FA (Simopoulos 2002). Fatty acid-enriched products of 
the desired ratio include foods from the meat and oil group. The anti-tumor effect of 
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bioactive components associated with FA has been studied, but the results of studies 
conducted on human populations are not straightforward. It is thus difficult to define 
guidelines/recommendations for daily intake of ω-3 FA, which would be necessary 
for the prevention and/or treatment of an illness. Knowledge of the molecular-level 
mechanisms by which ω-3 FA inhibits cancer is crucial in the definition of “needed” 
intake and would lead to insights that will be further used in human trials and further 
clarify their nutrition potential and health benefits (Wang et al. 2014).

Carbohydrates are a source of energy if they are in a form of simple sugar (which 
consists of 1–2 sugar molecules or oligosaccharides (3–10 glucose molecules) or 
starch (>10 glucose molecules). Fibers are largely carbohydrates, but can also be 
non-starch polysaccharides, oligosaccharides, lignin (cellulose, hemicellulose, and 
lignin) and associated plant substances (Lunn and Buttriss 2007). Dietary fibers are 
food components not rich in the nutritive sense, but crucial bioactive compounds 
whose deficit will negatively affect the life quality, e.g. in terms of irregular bowel 
movements (Dahl et al. 2003). Dietary fiber can be divided into those that are solu-
ble and insoluble, and consumption of any of them has many positive health effects 
such as maintaining proper bowel function but also, general good health. The ability 
of fibers to create volume, giving a feeling of satiety (thereby reducing the intake of 
food in general) is extremely helpful during weight loss programs (because the 
fibers can replace fat—the dominant calorie donor in food). Research shows that 
enriching food with dietary fiber in amounts of 2–3 g per serving has a positive 
effect on health (Besbes et al. 2008; Yilmaz and Gecgel 2009) controlling the levels 
of blood sugar and cholesterol. Fiber-enriched foods have advantages such as the 
mentioned fat replacement and thus a product of lower-calorie value; their swelling 
results with higher water retention and upgraded oxidative stability (Sayago-Ayerdi 
et al. 2009; Mudgil et al. 2006).

The last macronutrient group whose components are used in food fortification 
are proteins, macronutrients that are necessary for the proper body growth, develop-
ment of cells and body tissue and their repair. Proteins play a key role in a range of 
body functions: coagulation of blood, immune system reaction, vision function, 
fluid balance, production of various enzymes and hormones, etc. (Vlaic et al. 2019). 
The human body cannot produce essential amino acids by itself, and they must be 
secured from a food of plant or animal origin or fortified food (e.g. wheat flour 
enrichment with legumes) (Pǎucean 2017).

Bioactives such as flavonoids, carotenoids or bioactive lipids have been validated 
through a series of epidemiological studies as factors that positively influence 
human health status, minimizing the risks of the modern age diseases (cardiovascu-
lar diseases, Alzheimer’s, diseases resulting from metabolic syndrome, etc.) 
(Siriwardhana et al. 2013; Hellgren 2010). The reason for this lies in the capability 
of bioactive compounds to modulate biochemical pathways (Carbonell-Capella 
et al. 2014; Septembre-Malaterre et al. 2018). The beneficial effects of bioactives, 
on human health, depends on their stability in the process of digestion, which con-
sequently affects their biological availability and accessibility (Carbonell-Capella 
et  al. 2014). Food enrichment seems to be the most efficient method to prevail 
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impacts of diseases caused by the lack of certain bioactive compounds, particularly 
those which have taken on epidemic proportions.

9.6  Future Challenges and Development

Since the bioactives implementation in foods over the past decade has increased and 
consumers are more involved in learning about their benefits, the scientist is more 
eager to find new bioactives and to find out in which way they influence human 
health. One of the most important things for consumers is to realize that foods 
enriched with bioactives have a positive effect on their health. Although throughout 
history bioactives were used for treatment because of their therapeutic effects, today 
the first main goal is to extract bioactives, which have physiological effects on the 
living organisms (Phillipson 2001). The creation of an efficient and ecologically 
friendly extraction process is, therefore, the first future challenge. Not only are sci-
entists searching for new bioactives, but to preserve the environment, they are also 
trying to re-use by-products from the food industry to find functional compounds 
that have benefits for human health and also some compounds that could replace the 
synthetic additives (Fǎrcaş et al. 2015). As Bonifácio-Lopes et al. (2019) demon-
strated in their review of current extraction techniques used to extract bioactives 
from brewer’s spent grain, various methods for extraction can be applied to extract 
a certain compound. These methods are also used for the extraction of bioactives 
from different sources. In order to implement a certain method, time and money are 
some of the most important things that influence that decision. Pretreatment, as the 
first step, which is used for material structure break down could be done with acid 
hydrolysis, microorganisms and inorganic acids (especially sulfuric acid known for 
one of the highest efficiency for hemicellulose degradation) and also with hydro-
lytic and oxidative enzymes which sometimes, although it simplifies the process, is 
still not commonly used (Hosseini Koupaie et al. 2018; Zhang et al. 2018). According 
to del Campo et al (2006) not only does the pretreatment help minimize energy and 
cost but also preserves pentose fractions and reduces chances of fermentative micro-
organisms development. For the destruction of the plant cell walls pretreatment with 
dilute acid is often used, especially sulfuric acid, which is commonly used for the 
production of bioethanol from agricultural waste (Bonifácio-Lopes et  al. 2019). 
Hydrothermal treatment (autohydrolysis) which is used for monosaccharides, oli-
gosaccharides and acetic acid procurement does not use any chemical agents. The 
main drawback is the optimization of reaction conditions which Meneses et  al. 
(2013) described for the process of extracting aroma compounds from brewer’s 
spent grain. Supercritical carbon dioxide extraction that Kitrytė et al. (2015) used to 
determine the antioxidant potential of malt and brewer’s spent grain indicated that 
they could be used in the food industry as an antioxidant source. Spinelli et  al. 
(2016) who also worked with supercritical carbon dioxide managed to obtain high 
phenolic and flavanoid content and also good antioxidant properties. This technique 
which is mainly used for extraction of phenolic and flavanoid compounds although 
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selective and fast still has a high process cost and is mainly used for targeted com-
pounds that are of high value. There are numerous ways of bioactives extraction 
ranging from classical solid-liquid extraction to cold atmospheric plasma assisted 
extraction but the process cost of obtaining certain bioactive is still the main issue. 
For many extraction processes that have been developed in recent years, the cost of 
the process is sometimes more expensive than the price of obtained purified bioac-
tives leading to the use of older techniques with minor modifications. Solvent 
extraction which is influenced by temperature, time and proper solvent selection is 
still the most common method for recovering antioxidants. One has to take into 
consideration that, depending on the certain antioxidant procurement, the process 
has to be optimized to ensure maximal yield as demonstrated in the work of Jurinjak 
et al. (2018).

The problem of how to implement bioactives in food in the sense that they pre-
serve their functionality remains. As functional foods include vitamins, minerals, 
phenols, bioactive peptides, etc. (Bao et al. 2019; Day et al. 2009) most of the bioac-
tives still come from medicinal plants. One of the most important steps is the iden-
tification of a certain compound that is added to food and its influence of health in 
order to prevent certain diseases. There are many claims from the food manufactur-
ers that certain foods have some sort of beneficial attribute and as Weaver (2014) 
states these claims need to have evidence. There has not been such an elaborate 
study conducted for bioactives used in the food sector like it is the case for active 
ingredients in the pharmaceutical industry, where each contribution to health and 
side effects is known since they have to be tested in vivo. Except for the detailed 
study of vitamin D bioavailability (Nowak et al. 2019), one of the bigger successes 
in that field was recently developed flavonoid database by the USDA (Bhagwat 
et al. 2013; Haham et al. 2012; Cohen et al. 2017). The main concern of the food 
industry is for bioactives that are added to the food to preserve the quality of the 
product in terms of not changing the color, taste or odor (Champagne et al. 2018) of 
the original product and maintain all the qualities that bioactives provide. Since 
bioactives are added during the food production process in order to preserve their 
bioavailability and stability, certain systems for their delivery are required which 
not only protects them in the food matrix but also protects them during consumma-
tion (Bao et al. 2019). Bilia et al. (2018) suggest that a reduction in particle size, as 
well as formulations that have lipid or biopolymer delivery system, can increase 
bioavailability and solubility. Since there is a lack of human clinical studies that 
were conducted with different delivery systems, a possibility of investigating this 
field opens, where interdisciplinarity between scientists is of the highest impor-
tance. To get the full picture of various fields of science like nutrition, food technol-
ogy, biology, biotechnology, chemistry, and others have to work together. As Nowak 
et  al. (2019) mentioned, nutraceutical delivery systems that are used in the food 
industry are similar to the drug delivery systems meaning that they have the purpose 
of (1) increasing the solubility of a bioactive compound to reach their targeted goal 
(intracellular or systemic circulation); (2) increase of bioactives stability—whether 
it is during the production process, in final food form, shelf life and also from physi-
cal, chemical and biochemical degradation during the consummation process 
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(Bruno et al. 2013); (3) masking the undesirable tastes; (4) controlling the release 
rate like the PEGylated forms in term of drugs and (5) targeting specific areas where 
bioactives are adsorbed. For that reason, researchers are investigating different 
delivery systems which are composed of different material and structures that could 
protect bioactives from certain chemical and enzyme degradation to reach the 
desired place in the gastrointestinal tract. Some of the well-known formulations of 
lipids or biopolymers are being redesigned into emulsions that contain lipid and 
protein, different kinds of gels with implanted droplets and covalently bound poly-
saccharides (McClements 2017). As Nowak et al. (2019) state, amongst the new 
materials that are tested, are low molecular weight surfactants and their structures 
such as micellar, micro and nanoemulsions, solid lipid particles, etc. Also, new sur-
factants are being proposed such as saponin derived from tea, liposomes derived 
from sunflower or eggs, PEGylated liposomes and organogels. Some examples of 
developed delivery systems like calcium alginate microparticles for oral administra-
tion can be found in work of Acartürk and Takka (1999), soy protein cold-set hydro-
gels as controlled delivery devices for nutraceutical compounds (Maltais et  al. 
2009), use of resistant starch as a carrier for oral colon-targeting drug matrix system 
(Chen et al. 2007), new biopolymers for bioactive delivery of targeted acid (Chen 
et al. 2019); testing of new polymers that are covalently conjugated (McClements 
2018) and many others making this field very interesting for further studies.
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Chapter 10
Requirements of Bioactive Compounds 
for Health Claims

Stephen Adeniyi Adefegha

Abstract Bioactive compounds are extra nutritionally active ingredients in food 
from plant and animal origin. They include polyphenols, saponins, alkaloids, vita-
mins, minerals, terpenoids, dietary fibers, omega, and poly saturated fatty acids) 
from vegetables, fruits, spices, nuts, cereals, herbal products, legumes medicinal 
plants, probiotics, prebiotics as well as those from fungal, algal and animal sources, 
and other natural antioxidants. In recent times, there is growing evidence from epi-
demiological and experimental data that bioactive compounds in foods have posi-
tive health benefits. These bioactive compounds include, are capable of managing 
weight, modulating genes, enhancing good health as well as preventing diseases 
such as cancer, diabetes, cardiovascular disease, stroke, erectile dysfunction, endo-
thelial dysfunction, heart and respiratory infections to mention a few. This fact has 
propelled a diligent review of the requirement for these health claims. This chapter 
discusses the need and regulatory aspects of bioactive compounds from food for 
health claims. It compiles the fundamental processes that should be considered by 
researchers on the health claims for bioactive compounds. These requirements are 
meant to protect consumers from frauds perpetrated by manufacturers on nutraceu-
tical products. Bioactive compounds’ requirements for health claims may originate 
from laboratory findings and proceeds to systematic clinical trials to guarantee 
safety, provide information on bioavailability and efficacy of nutraceutical 
products.
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10.1  Introduction

A bioactive is regarded as a food component with non-nutritional benefits, which 
may either promote good health or exert a harmful effect upon ingestion (Gry et al. 
2007). Recently, increased interests in food bioactive/ bioactive in foods have 
 necessitated a holistic desire to explore the procedures by which they are considered 
fit for consumption. This fact has informed all stakeholders to understand that 
proper isolation, elucidation, and characterization, as well as useful biological stud-
ies of bioactives, are crucial to identification and recommendation of bioactive com-
pounds in foods for consumption by the public and for public health. Hence, there 
is need to collate all these requirements necessary for the guidance of food bioac-
tives or bioactive e compounds in food for animal or human consumption (Connie 
2014). Particular food containing bioactive compounds and food bioactive have 
undergone series of approval after passing the stipulated regulatory criteria for 
health claims and are either been commercialized or about to be marketed. Adoption 
of these health claims have demonstrated different degrees of success recorded in 
the area of public health information and management (Connie 2014). Incidentally, 
very few bioactive compounds/active ingredients in food have successfully passed 
through the proper regulatory approvals for health claims. Many global agencies 
have provided rules and regulations for health claims as well as disease claims. 
According to the 2007 European Union Regulation EC no. 1924/2006, health claims 
were described extensively under articles 13 for general function claims while arti-
cle 14 demonstrated disease claims of food bioactives/bioactive compounds in food 
by the European Food Safety Authority (EFSA) (Connie 2014). In addition, the 
Food and Drug Administration (FDA) of the United States of America, described 
claims in three levels namely:

 1. Health claims to explain the possible interaction between a bioactive and a dis-
ease. In this case, this claim focuses on how the food bioactives/bioactive com-
pounds ameliorate or attenuate a diseased condition. How the food bioactives 
interact with several biological molecules such as enzymes, hormones, proteins, 
lipids, peptides, DNA, and RNA.

 2. Health claims to describe nutritional content claims that characterize the amounts 
of nutrients present in food. In this claim, the description of the positive roles of 
food nutrients ranging from the micronutrients to the macronutrients in promot-
ing good health and wellbeing.

 3. Health claims to demonstrate the relationship between the structure and function 
of food bioactives or bioactive compounds in food. This claim expounds on how 
the structure of food bioactives or bioactive compounds can influence or alter 
normal function in animals and humans. It explicitly discusses the possible 
mechanisms and mode of action of food bioactives or bioactive compounds in 
food (The Chiropractic Resource Organization 2013) (Fig. 10.1).

These bioactive compounds include peptides, carotenoids, saponins, alkaloids, 
polyphenols (flavonoids—flavanones, flavones, isoflavones, flavanols, lignans, 
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proanthocyanidins, and stilbenes and phenolic acids—hydroxycinnamic acids and 
hydroxybenzoic acids and) terpenoids, omega-3 and polyunsaturated fatty acids 
(Adefegha 2018) (Fig. 10.2).

Bioactives in food have received enormous attention in that they have shown 
interesting biological effects including weight management, beneficial against 
infections ranging from bacterial, viral and fungal, reduction in the cardiovascular 
and obesity risks, prevention and control of diabetes, endothelial dysfunction, erec-
tile dysfunction, cancer, stroke, arthritis and neurodegenerative diseases including 
Alzheimer’s disease, Parkinson’s disease, Huntington’ s disease etc. (Adefegha 
2018) (Fig. 10.3).

Fig. 10.1 Description of health claims

Fig. 10.2 Food bioactives/bioactive compounds in plant foods
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Slendesta, a product manufactured by Kemin Industries, Inc. and approved by 
EFSA approval is Slendesta, has an active ingredient, P12, which is a bio peptide 
that enhances the activation of cholecystokinin. This gut hormone reduces the intake 
of food. Peptides produced by specialized cells along the gastrointestinal tract, 
stomach, and pancreas, are potential crucial targets for bioactive in food/bioactive 
compounds in food to attain satisfaction (Adefegha 2018). Bioactives in foods have 
a beneficial effect against cardiovascular risks, and these can be attributed to the 
positive impact on endothelial function (Hooper et al. 2012). Endothelial dysfunc-
tion is examined by brachial artery flow-mediated dilation and endothelial pulse 
amplitude testing (Endo-PAT) (Hooper et  al. 2012). Recent findings in bioactive 
components and their relationship to health are overwhelming, and its ability to 
maintain and better human health in weight maintenance, management and possible 
treatment for communicable and non-communicable diseases such as microbial 
infections, cancer, diabetes, cardiovascular diseases, endothelial and erectile dys-
function, stroke, heart, and respiratory diseases, (Connie 2014) (Fig.  10.3). 
According to recent developments, bioactive components have been known to have 
an impact on genes, and the information needed to ascertain health claims are out-
dated (Connie 2014). Hence, the primary objective of an analyst, those involved in 
making policies, professional societies is to enhance health (Connie 2014).

The characterization of chemicals is essential in the assessment of risk. 
Characterization of risk reveals the impact of hazard characterization with analyzed 
exposure on humans, which is dependent on the information of the chemical or 
material that has been scrutinized and measured (World Health Organization 2008). 
Analytical procedures need to be in place concerning the chemical purity and nature 
of the substance analyzed during in vitro and in vivo hazard, as well as the amount 
of the chemical in food as regards the required extent or exposure survey (Alder 

Fig. 10.3 Therapeutic intervention of bioactive compounds against chronic diseases
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et al. 2000). Chemicals may find themselves into ingested food in minute or large 
quantities during processing and preservation (Alder et al. 2000). The characteriza-
tion of risk of impurities as well as chemicals in food vary from countries, however 
it is vital to document the stipulated amount of the chemicals that could be termed 
safe in food as well as the intake needs in reputable databases (World Health 
Organization 2008).

10.2  Regulatory Programme for Foods

Analyzed information is collated for various reasons, which includes:

• Legal standards needed to ascertain the standard and health benefit of foods that 
are manufactured within the nation brought into the nation, or exported;

• Examining to ascertain alignment with existing requirements;
• Inspection, mainly for analyzing ingestion or to collate information for quality 

requirements; and
• Findings for product manufacture, which entails the manufacturing of 

specifications.

These reasons may have various analytical requirements, mainly in the line of 
performance characteristics (World Health Organization 2008; Thompson and 
Wood 1995).

Lack of certainty in analytical assessment, mainly for ingestion measurements, 
can lead to a lack of assurance in safety and risk measurements (Thompson and 
Wood 1993). The fitness for purpose of the analytical information in the use of 
safety and risk measurement should be ascertained on a case-by-case basis, as well 
as any lack of certainty in the samples should be reported as part of the assessment 
(Thompson and Wood 1993).

10.3  Quality Management and Quality Control of Bioactive 
Compounds

Quality management and control of bioactive compounds are two critical aspects 
that guarantee high level of production standards of bioactive compounds in food for 
health claims. Quality management of bioactive compounds entails all the proce-
dures involved in the analysis of bioactive compounds in foods while quality control 
of bioactive compounds gives the perspectives of an expert on the analytical proto-
cols and process for acceptance by the general public (Thompson and Wood 1995). 
Knowledge of bioactive compounds in foods are essentials in the discovery of their 
novel therapeutic roles and maintenance of human wellness. The use of different 
analytical methods/procedure may help to secure, validate, manage and control the 
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quantity and quality of bioactives/bioactive compounds in food supplements, nutra-
ceuticals and functional foods. The principles of quality control and management 
often permit policy makers, industrialists, food-drug agencies and other stakeholder 
to lay hold on the authenticity of data generated from the different analytical meth-
ods thus providing valuable information about the products containing bioactive 
compounds (Thompson and Wood 1993; Thompson and Wood 1995).

Increased awareness on health and nutrition has shifted the focus of food indus-
tries and food manufacturers in producing food that can enhance good health and 
prevent diseases aside supplying additional nutritional benefits (Thompson and 
Wood 1993). Active ingredients at times act in an additive reaction or synergistic 
manner in management and fight against pathologies by making changes to meta-
bolic pathways involved in the pathologies or by altering the activities of enzymes 
(Weaver 2014; Ghanbari et  al. 2012; Adefegha and Oboh 2013). Scientifically 
proven facts are not sufficient for the health benefits of active ingredients or bioac-
tive compounds entailed in foods. randomized controlled trial (RCT) is critical in 
providing essential data however it is costly and most times need more pre- 
information for the bioactive compounds in the food which is been analyzed in 
healthy or clinical patients (Biesalski et al. 2013; Gaine et al. 2013). Shelf-life or 
stability of a food is defined as the time frame in which a food can be kept or stored 
under controlled conditions including temperature, light, humidity, moisture con-
tent, etc., conditions, alterations which are acceptable by the producers, consumers 
and within the legal requirements (Sílvia et  al. 2017; Moura and Germer 2010). 
Many modifications and changes occur in food while been processed and stored on 
exposure to various environmental factors that stimulates reactions that leads to 
spoilage, degradation of the food, and dissatisfaction by the consumers (Singh 
2014). Critical changes in fruit-based liquids can be due to physiochemical, sensory 
changes, and microbiological alterations usually linked to chemical composition 
and heat conditions, the quality of the fruit-based drink initially, the quantity of 
oxygen in the bottle and quantity in open space, the nature of the surface, the pack-
age, temperature, etc. (Moura and Germer 2010; Singh 2014).

The quality and quantity of the kind of apparatus used in the processing of food, 
especially those involved in pumping and liquids affected by temperature, need 
accurate data of thermal characteristics (thermal conductivity, diffusivity, density, 
and specific heat). Also, rheological characteristics/properties mainly influenced in 
pumping and transportation of fluid as while production process is going on and the 
activity of the properties during production relating to the temperature (Moura and 
Germer 2010; Singh 2014; Mulvaney et al. 2000; Reuterswärd 2007).

10.4  Health Claim

Regulation (EC) No. 1924/2006 on health claims and nutrition developed on foods 
defines a health claim as any claim explains, reveals, or implies that a link exists 
between a food category, a food, or one of the constituents in the food and health 
(FAO/WHO 1975) (Fig. 10.1).
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The significant classifications of health claims are the following:

• Overall or general function health claims (e.g., Ascorbic acid or Vitamin C aids 
the proper functioning of the nervous system) accepted by the European 
Commission (EC). There are 229 general function claims except for botanicals, 
which have been taken/approved by the EC and published on the Community 
Register. When suggesting such claims, only references linked to relevant scien-
tific justifications are needed (FAO/WHO 1975).

• Proprietary or recent data health claims that are dependent on recently developed 
scientific data or evidence or/and for which protection of new science data is 
requested (FAO/WHO 1975).

• The depletion of disease risk claims, which combines the ingestion of food or 
ingredient with a significant depletion in a risk factor in the development of a 
disease (e.g. oat beta-glucan), has been known to deplete blood cholesterol. 
High cholesterol is a risk factor in coronary heart disease development) (FAO/
WHO 1975).

• Health claims or childhood development (FAO/WHO 1975).

All food products with health claims require a product-specific HACCP (Hazard 
Analysis and Critical Control Point) study before it can be considered for marketing 
or commercialization (FAO/WHO 1975). According to the report of the Joint FAO/
WHO Expert Committee on Food Additives (JECFA), the specifications regarding 
the safety of food additives, ingredients, components, flavor, bioactive constituents, 
contaminants, and naturally occurring toxicants and additives must be adhered to, 
before such products are commercialized and supplied for human consumption and 
use (World Health Organization 2008). These specifications by JECFA cover the 
safety, quality, normal stability, and shelf life of the food additive (World Health 
Organization 2008).

10.5  Method of Analysis for Bioactive Compounds 
from Plant Sources

Plants consist of bioactive compounds that show a variety of biological functions on 
human health, including anticancer, antidiabetic, antimicrobial, antioxidant, anti- 
arthritic, anti-inflammatory properties (Zhao et al. 2015) (Fig. 10.3). Steps involved 
in the analysis of known and unknown bioactive compounds in plants are rigorous 
and difficult. It starts with the extraction of bioactive compounds from the source 
(plants). Extraction procedure can be done on different parts of the plants, including 
leaves, stem barks, seeds, roots, or the whole section (Altemimi et  al. 2017) 
(Fig. 10.4). This can be done fresh or dried samples. Thus, preparation of the plant 
samples should commence prior the extraction steps. For new plant samples can be 
washed with running water, air dried or freeze dried and pulverized or ground into 
powder. The moisture content of plants before and after drying must be known. The 
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large surface area provided by pulverization of the plant samples allows for easy 
penetration of the solvents used for extraction. Wide range of solvents polarity are 
often used for the extraction of bioactive compounds from plants. The choice of 
solvent or solvents, ranging from polar to non-polar solvents, to be used for extrac-
tion depends on the bioactive compound or compounds of interest (Sasidharan et al. 
2011). The extraction of polar bioactive compounds uses polar solvents such as 
water, ethanol, ethyl-acetate, methanol or mixture while that of non-polar bioactive 
compounds, utilizes non-polar solvents such as hexane, dichloromethane, petro-
leum ether, or their combination (Fig. 10.4). As the target compounds may be non- 
polar to polar and thermally labile, the suitability of the methods of extraction must 
be considered. Furthermore, the extraction methods that must be used should take 
into account the physical and chemical stability of bioactive compounds present in 
the plants (Zhang et al. 2018a). These plants bioactive compounds include polyphe-
nols, saponins, alkaloids, vitamins, minerals, terpenoids, essential oils, dietary 
fibers, omega and poly saturated fatty acids, from vegetables, fruits, spices, nuts, 
cereals, herbal products, legumes medicinal plants, and prebiotics (Zhao et al. 2015; 
Abuajah 2017) (Fig. 10.2). The plants or plant parts are soaked in the appropriate 
solvent or solvent mixture before several methods of extraction, including heating 
under reflux, sonification, soxhlet extraction to mention a few are used (Sasidharan 
et al. 2011; Zhang et al. 2018a; The United States Pharmacopeia 2002) (Fig. 10.4). 
The use of water to extract plant herbs in fresh, dried, or powdery forms, has been 
practiced in folklore medicine from ages. Infusion of plant materials, maceration, 
addition of cold or hot water to plant materials and the filtrate is consumed as 
medicinal herbs (Azwanida 2015). It is essential to understand the physicochemical 
(boiling point, polarity, solubility) and toxicological characteristics of different sol-
vents used for extraction (Pandey and Tripathi 2014). These solvents may include 

Fig. 10.4 Plant sample preparation and extraction methods for bioactive compounds
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methanol, water, ethanol, hexane, dichloromethane, ethylacetate, chloroform, and 
acetone etc. In recent times, researchers and scientists have developed modern day 
techniques for extraction in small to large scale. These methods include supercritical- 
fluid extraction, microwave-assisted extraction, solid-phase micro-extraction, solid- 
phase extraction, surfactant-mediated techniques, and pressurized-liquid extraction 
(Liu et al. 2008) (Fig. 10.4). The use of rotary evaporation of solvents at specific 
temperature and pressure as well as freeze-drying of the aqueous portion gives good 
dried extract.

These methods guarantee solvents removal and prepare samples for further anal-
ysis that allows for the identification and characterization of bioactive compounds 
from plants (Altemimi et al. 2017) (Fig. 10.5). Phytochemicals such as alkaloids, 
saponins, phenolics, flavonoids, cardiac glycosides, terpenoids) can be screened and 
quantified in various plants. In addition, chromatographic analyses such thin layer 
chromatography (TLC), paper chromatography (PC), column chromatography 
(CC) permit the separation of some bioactive constituents from plants using the 
stationary and mobile phases (Sasidharan et al. 2011) (Fig. 10.5). The application of 
some advanced techniques allows further streamlining and characterization of spe-
cific bioactive compounds. These advanced techniques include high-performance 
liquid chromatography coupled with diode-array detector (HPLC-DAD), high- 
performance liquid chromatography coupled with ultraviolet detector and mass 
spectrometer (HPLC-UV-MS), high-performance liquid chromatography coupled 
with electrospray ionization mass spectroscopy (HPLC-ESI-MS), gas chromatogra-
phy coupled with flame ionization detector (GC-FID), gas chromatography coupled 
with mass spectrometer (GC-MS), liquid chromatography coupled with mass spec-
trometer (LC-MS), high-performance thin-layer chromatography coupled with 
electrospray ionization mass spectroscopy (HPTLC-ESI-MS) and ultra- performance 
liquid chromatography coupled with mass spectrometer (UPLC-MS) (Fig. 10.5). 
Fourier-transform infrared spectroscopy (FTIR), Near-infrared resonance (NIR) 
spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy are veritable 

Fig. 10.5 Identification and characterization of bioactive compounds from plants
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scientific equipment used in modern science to identify and characterize pure com-
pounds with functional groups (chemical bonds) present in plant extracts with 
unknown constituents and compounds. Polyphenols, flavonoids, alkaloids, sapo-
nins, carotenoids, and peptides can be easily characterized by HPLC-DAD, HPLC- 
UV- MS, HPLC-ESI-MS, HPTLC-MS, LC-MS, GC-MS, and GC-FID. In contrast, 
terpenoids, essential oils, and omega-3 fatty acids can be characterized by GC-MS 
and GC-FID (The United States Pharmacopeia 2002; Azwanida 2015; Pandey and 
Tripathi 2014; Liu et al. 2008) (Fig. 10.5). Vitamins are nutritive and extra-nutritive 
components of food. They are regarded as bioactive components because they can 
elicit disease preventive and health-promoting effects. Vitamins A and E can be 
detected using the column chromatography and normal-phase HPLC (FAO/WHO 
1975; Prashanth et al. 2015). Vitamin D components such as Vitamin D3 and D2 can 
be identified, determined and characterized by ESI-LC-MS/MS (FAO/WHO 1975; 
Cortés-Herrera et al. 2018; Zhang et al. 2018b). Vitamin C in foods can be detected, 
identified, and characterized using HPLC-UV, HPLC-DAD, and UPLC-UV (FAO/
WHO 1975; Cortés-Herrera et al. 2018; Zhang et al. 2018b). Vitamin B12 can be 
analyzed using the LC-UV, LC-DAD and LC-MS (FAO/WHO 1975; Cortés-Herrera 
et al. 2018; Zhang et al. 2018b) (Fig. 10.5). Minerals are essential food components, 
which act as cofactors for a number of enzymes. They include potassium, sodium, 
calcium, magnesium, selenium, iron. Minerals in food can be assayed using the 
Visible-UV spectrophotometric methods as well as the atomic absorption spectro-
photometric method (FAO/WHO 1975; Prashanth et al. 2015). Glucose are mono-
saccharides that can be obtained from foods such as corn, sugar cane, fruits, 
vegetables, can be analyzed using polarimeter, Shaffer-Somogyi chromatography, 
paper chromatography, Sichert-Bleyer modification, Zerban-Sattler modification, 
glucose oxidase method and spectroscopy (FAO/WHO 1975; Shallenberger and 
Moores 1957).

10.6  Method of Analysis for Bioactive Compounds 
from Animal Sources

Animals contain many bioactive compounds that elicit interesting physiological 
functions. These bioactive compounds include amino acids, peptides, proteins, 
polysaccharides, and polyunsaturated fatty acids. Due to the biodiversity of ani-
mals, a wide range of these animal-derived bioactive compounds can be quickly 
produced (Zhang et al. 2015). Omega-3 fatty acids are polyunsaturated fatty acids 
(PUFAs) containing two or more double bonds, with one double bond present at the 
third carbon atom from the methyl (CH3) end of the carbon chain. Examples of 
omega-3 fatty acids found in foods include eicosapentaenoic acid (EPA), docosa-
hexaenoicacid (DHA), α-linolenic acid (ALA) and docosapentaenoic acid (DPA) 
(Shahidi and Wanasundara 1998). These omega-3 fatty acids can be obtained from 
animal food sources such as marine foods, fish and seafood products, meat and 
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poultry products (Meyer et al. 2003) (Fig. 10.6). The omega 3 fatty acids can be 
obtained from the animals by using equipment that can press the animals on the 
surface thus increasing pressure for the release of the oil that will be used for the 
estimation of omega-3 fatty acid. The oil is hydrolyzed by lipase, subsequently 
esterified and analyzed using the gas chromatography (GC) for the determination of 
the omega 3 fatty acid constituents. The physiochemical components (cloudy and 
turbid point, iodine number, peroxide number, saponification number and free fatty 
acid content) of the oil obtained can also be determined (Zhang et al. 2015; Schmid 
et  al. 2006). Omega-3 fatty acids can be detected and characterized by GC-MS, 
GC-FID, ESI-MS and LC-MS (Zhang et al. 2015; Shahidi and Wanasundara 1998; 
Meyer et al. 2003; Schmid et al. 2006) (Fig. 10.6).

Chitin and chitosan can be obtained from the exoskeletons and shells of inver-
tebrates, such as crustaceans, mollusks, crabs, and shrimp. They are biopolymers 
consisting of amino acids and polysaccharides (Zhang et al. 2015). This can be 
achieved by the removal of calcium carbonate by acid hydrolysis with subsequent 
solubilization of proteins by alkaline hydrolysis. Chitin and chitosan possess mul-
tiple functional properties such as chelation of metal ion, biocompatibility, low 
immunogenicity, nontoxicity along with antioxidant and antimicrobial activity, 
biodegradability, optical structural characteristics and, formation of polyoxysalt, 
ability to form films, and, hence they are of great medicinal and industrial rele-
vance (Pillai et al. 2009). The processes of demineralization, deproteination and 
deacetylation can be used for the extraction of chitin and chitosan (Younes and 
Rinaudo 2015; de Queiroz et al. 2017). The following analyses can be carried out 
to detect and characterize chitin and chitosan in animal samples by the methods of 
ninhydrin test, infrared spectroscopy, near infrared spectroscopy, linear potentio-
metric titration, nuclear magnetic resonance spectroscopy, fourier transforms 

FTIR, NMR, IR spectroscopy, Electron Microscopy, XRD,
DSC, GC-MS, GC-FID, amino acid analyzer, HPLC-UV and HPLC-

DAD, ion exchange chromatography, column chromatography,
HPLC-UV, HPLC-DAD and LC-MS/MS analyses and molecular

techniques by protein and amino acid sequencing

Meat, Egg, Fish, Milk, Cheese

Amino acids, peptides, proteins, polysaccharides,
chitin and chitosan, omega 3 fatty acids

Fig. 10.6 Identification and characterization of bioactive compounds from animal sources
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infrared spectroscopy (FTIR), colloidal titration, circular dichroism, acid hydroly-
sis, gel permeation chromatography ultraviolet spectroscopy, pyrolysis-gas 
 chromatography, hydrogen bromide titrimetry, thermal analysis, X-ray diffraction 
(XRD), elemental analysis, scanning differential scanning calorimetry (DSC) and 
electron microscopy (SEM) (Zhang et  al. 2015; Pillai et  al. 2009; Younes and 
Rinaudo 2015; de Queiroz et  al. 2017; Abdel-Rahman et  al. 2015) (Fig.  10.6). 
These methods reveal the spectral, crystalline and band structure as well as vibra-
tion of different bonds (CO, O–H and N–H) in chitin and chitosan (Zhang et al. 
2015; Pillai et al. 2009; Younes and Rinaudo 2015; de Queiroz et al. 2017; Abdel-
Rahman et al. 2015).

10.7  Peptides

Peptides are bioactive compounds with different amino acid residues and specific 
fragments of protein. They have been reported to show additional health benefits 
aside from their nutritional properties. Bioactive peptides can be found in various 
animal sources such as milk, fishes such as salmon, herring sardine tuna, eggs, and 
meat (Möller et al. 2008). Whey protein obtained from milk and milk products such 
as cheese are new sources of bioactive peptides (Livney 2010). Bioactive peptides 
from whey proteins are essential probiotics. The amino acid residues in proteins are 
held together by peptide bonds, hence peptides are formed in this process. Bioactive 
peptides remain inactive unless they are released from the sequence of protein via 
acid and enzymatic proteolysis or fermentation, thus modulating human health in 
different biological systems including the digestive, endocrine, cardiovascular, 
immune and nervous systems (Zhang et al. 2015; Möller et al. 2008; Livney 2010; 
Abuine et al. 2019; Colegate and Molyneux 2007; Bhat et al. 2015). Several reports 
have been shown that lysine, phenylalanine and tryptophan containing peptides 
have elicited physiological roles. These bioactive peptides are often liberated 
through in vitro or in vivo models of animal proteins thus exerting a number of 
physiological benefit including antihypertensive or blood pressure-lowering (ACE 
inhibitory) effects, cholesterol-lowering ability, antidiabetic, antimicrobial, cyto-
modulatory, immunomodulatory antithrombotic, antiobesity, antigenotoxicity and 
antioxidant activities, increasing mineral absorption property and bioavailability 
(Zhang et al. 2015; Livney 2010; Abuine et al. 2019; Colegate and Molyneux 2007) 
(Fig. 10.6). The amino acids residues in the peptides and proteins by amino acid 
analyzer, HPLC-UV and HPLC-DAD. These bioactive peptides can be analyzed 
using different chromatographic techniques including ion exchange chromatogra-
phy, column chromatography, low-resolution (LR), HPLC-UV, HPLC-DAD and 
LC-MS/MS analyses and molecular techniques by protein and amino acid sequenc-
ing (Zhang et al. 2015; Bhat et al. 2015) (Fig. 10.6).
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10.8  Examining/Testing of Bioactive Compounds 
for Recommendation for Health Claim

In the development of bioactive compounds in food for the health claim, certain 
tests ranging from non-clinical to clinical tests are required before health claims are 
made on such food products or food bioactive compounds (Motilva et  al. 2015) 
(Fig. 10.7). Once the bioactive compounds are identified and characterized from 
their various sources (plants and animals), there should be need for testing and vali-
dation of their biological significance (both pharmacological and toxicological 
roles). The in vitro analysis, in silico assays, in vivo animal models and ex vivo 
model/cell- based model) are necessary tests that should be done in the laboratory as 
well as human trials/models or clinical trials in the clinics and hospitals (Motilva 
et al. 2015; Jean-Quartier et al. 2018; Curtis et al. 2008; Gil et al. 2015; Gomes et al. 
2018). (Fig. 10.7). Preliminary investigation using in vitro analysis provides infor-
mation on the concentration and dose of food bioactive compounds that may elicit 
a therapeutic effect. Furthermore, these concentrations are tested in different animal 
models (Curtis et  al. 2008; Gil et  al. 2015). The animals often used as models 
include rats, mice, rodents, and rabbits. The relevance of validated and predictive 
animal models selection, as well as the correct use of animal tests in experimental 

In vitro Analysis
(Experiments carried out in the test tube)

(Experiments carried out in the computer)

(Experiments done in animal models - rates, mice, rodent)

(Experiments done outside the natural in vivo environment - Cell
based research (the use of cell lines/ cell cultured assays)

In silico Analysis

In vivo Analysis

Ex vivo Analysis

Clinical trials (Experiments carried out on human subjects
and patients in clinics/hospitals)

Fig. 10.7 Examining/testing of bioactive compounds for recommendation for health claim

10 Requirements of Bioactive Compounds for Health Claims



350

design, execution, and interpretation, may affect reproducibility, quality, and reli-
ability of non-clinical studies necessary to translate to and support clinical studies 
(Curtis et al. 2008; Gil et al. 2015; Gomes et al. 2018; Lindequist 2016) (Fig. 10.7). 
Guiding principles on scientific studies are essential for the design and development 
of nutraceuticals from bioactive compounds. Before the administration of bioactive 
compounds to human beings, all bioactive compounds should have the following 
characteristics (Motilva et al. 2015; Jean-Quartier et al. 2018; Curtis et al. 2008; Gil 
et  al. 2015; Gomes et  al. 2018; Lindequist 2016; Malve 2016; Nair et  al. 2015; 
Choudhary et al. 2017) (Fig. 10.7):

 1. Analysis of chemical composition.
 2. Preparation method.
 3. Purification method to ascertain the degree of purity.
 4. Toxicity test—acute, subacute, subchronic and chronic toxicity tests will be 

determined at varying doses to ascertain safety in different animal species.
 5. Histopathology analysis in several animal organs, especially in liver, kidneys, 

hearts, testes, and brains.
 6. Examine the absorption and pharmacokinetics of these bioactive compounds 

and their known possible interactions with other substances, drugs, and food.
 7. In silico studies reveal the structure-function relationship of bioactive com-

pounds as well as provide information on the toxicology and pharmacokinetic 
studies of bioactive compounds. It validates the in vivo and in vitro models as 
well. in silico study also provide the information for the creation of computa-
tional models or simulations that can be used to make predictions suggest 
hypotheses, and ultimately provide discoveries or advances in medicine and 
therapeutics. Amino acid sequences, which provide information about the 
structural and functional similarities. It covers the area of molecular docking, 
three-dimensional structures, and interaction of target–ligand binding in bioac-
tive compounds.

 8. Assessment of bioactive compounds using several molecular methods includ-
ing genomics (DNA/RNA) and proteomics (protein) and tools such as immu-
noblotting, microarrays, polymerase chain reaction (PCR), western blotting and 
protein sequencing.

 9. Cell-based experiments cover a wide range of biochemical cell-free and cell 
culture assays. In cell-based assays, alteration in the function of the target pro-
tein and biological significance of the protein in many diseased states, including 
cancer and neurodegenerative diseases. Cell differentiation, apoptosis, growth 
and proliferation, membrane transport, metabolism, cytotoxicity, signal trans-
duction pathways, reporter gene, agonists, and antagonists’ identification, can 
be assessed in cell-based assays and cell culture experiments.

 10. Bioactive compounds can be evaluated in in vivo and ex vivo models, in which 
more complex structures are examined. In these models, a small number of 
animals (blood vessels, brain, cardiac muscle, endocrine glands, liver, spleen, 
smooth muscle of the gastrointestinal tract, airways, urinary tract, among oth-
ers) are used for biological experiments.
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 11. Biological techniques, which range from in vitro tools to the use of whole ani-
mal models, aid the validation of clinical trials, and permit the modulation of a 
desired target in diseased patients. Scientific evidence in animal models can 
also be validated in transgenic and gene knockout animals, using small mole-
cule inhibitors, antisense oligonucleotides, and small interfering RNA (siRNA). 
Information or data generated from animal models may predict the efficacy of 
bioactive compounds in alleviating or promoting the signs and symptoms of 
human diseases. This fact can be validated and confirmed after the completion 
of clinical trials (Fig. 10.7). Nevertheless, animal tests are essential to guide the 
early stages of development, particularly for making decisions regarding 
whether to such bioactive compounds be tested in human models or clinical 
trials be performed.

 12. The initial results obtained from in vitro, in vivo, ex vivo studies, as well as 
clinical trials in normal subjects and diseased individuals on the therapeutic 
effects, the clinical indication and the pharmacokinetic profile of bioactive 
compounds are essentials for the confirmation of the efficacy of bioactive com-
pounds in many biological models (Motilva et  al. 2015; Jean-Quartier et  al. 
2018; Curtis et al. 2008; Gil et al. 2015; Gomes et al. 2018; Lindequist 2016; 
Malve 2016; Nair et al. 2015; Choudhary et al. 2017) (Fig. 10.7).

10.9  Functional Food and Food Processing

Food or diet are susceptible to alterations in the processing and composition of 
nutrients, and hence, understanding of nutrients that improves health should be 
instilled in manufacturing novel products (Hasler 2002). Functional foods are food 
and food products, which contains bioactive compounds in their natural forms or 
processed style, and can supply health benefit in addition to the primary role of 
providing essential daily nutritional needs (Abuajah et al. 2015; Picó et al. 2019). 
Plant foods such as spices, grains, cereals, legumes, nuts, fruits and vegetables are 
often considered as functional foods. Bioactive compounds and bioactive ingredi-
ents can be extracted, purified, incorporated into other food products as supple-
ments and in tablet form (nutraceuticals) (Picó et al. 2019; Varzakas et al. 2016). In 
addition to the extraction and purification of bioactive compounds in functional 
foods and food products, food processing methods may alter the nutritional, sensory 
and biological properties of food products as well as quantity and quality of bioac-
tive compounds in food (Abuajah et al. 2015; Wang and Bohn 2012). The signifi-
cance of traditional and modern food processing techniques in preservation and 
deactivation of bioactive ingredients/compounds have been reported in literature 
(Hasler 2002; Abuajah et al. 2015; Picó et al. 2019; Varzakas et al. 2016; Wang and 
Bohn 2012). The fortification of food is a well-developed production technique and 
can be seen in application of many products, for example infant meals which are 
often fortified with minerals and vitamins mineral (e.g Vitamin A, B, C, D, E, K, 
calcium and iron), fruit juices with added omega 3 fatty acids, breakfast cereals with 
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fortified vitamin (e.g. folic acid) and mineral (e.g calcium and iron) (Betts et al. 
2014). Manufacturers need to consider if the product is able to take the added ingre-
dient within its natural matrix simply, or there is a need for further process altera-
tions (e.g. encapsulation) (Wang and Bohn 2012; Betts et al. 2014). This way could 
include administration of the protected bioactive ingredients to their specific site 
and release under certain trigger factors (enzymes, pH, salts, etc.) (Wang and Bohn 
2012; Betts et al. 2014).

Technologies of some food processing are listed below:

Mechanical Processes
• Size designation: particles are separated according to size by filtering and size 

classification. This is used in grain processing, application of milling. Examples 
of apparatus are air separators, sifting machines (Wang and Bohn 2012).

• Sorting: separation of particles from each other. This is used in separation accord-
ing to density, susceptibility, magnetic, electricity conductivity differences. 
Examples of apparatus are separation of stones, magnets (Wang and Bohn 2012).

• Filtration: filtration of liquids, solids, which is used in the separation of solid 
particles. They are used in dairy industries, beverage industries, ingredient man-
ufacturing. Examples of filtration apparatus include fixed bed filtration, mem-
brane filtration unit (Wang and Bohn 2012).

• Centrifugation: separation of particles by suspension by centrifugation forces. 
This is used in the dairy industry, beverage industry, processing of vegetables 
and fruits, production of oils. Examples of apparatus include a separator, centri-
fuge (Wang and Bohn 2012).

• De-foaming: division of non-needed stable foam during processing by the use of 
mechanical fixtures to de-stabilize foam, division of liquid, gas. This is used in 
dairy industries, beverage industries—examples of apparatus process machinery 
within mechanical fixtures, tanks (Wang and Bohn 2012).

• De-dusting: extraction of solid particles from the gaseous phase, e.g., prevention 
of dust explosions by centrifugation forces, filtration medium. This is used in 
milling powder, baking powder. Examples of apparatus are air separator, aerocy-
clone (Wang and Bohn 2012).

• Floatation: division of solid particles from liquids by linking particles to the gas 
bubble, and then foam separation. This is used in beverage industries. An exam-
ple of an apparatus is the floatation reaction vessel (Wang and Bohn 2012).

• Agglomeration: production of larger particles from a mixture of powder by the 
affinity of particles, used in ingredient industries, pellet production, and tablet 
production. Examples of apparatus palletization drum, tablet press (Wang and 
Bohn 2012).

Thermal Processes
• Heating: When heat is introduced to food in various applications and methods 

(boiling, steaming, roasting, indirect heating, microwave, sterilization, pasteuri-
zation, drying etc), it alters chemical or rheological properties. Example of 
 apparatus includes cooking vessels, autoclaves, reaction vessels, continuous liq-
uid sterilization (UHT), drying machines (Wang and Bohn 2012).
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• Cooling: control of the temperature of products by extraction of heat energy via 
passive or active cooling. This is done through the processes of food production. 
The apparatus used is similar to the ones used in heating (Wang and Bohn 2012).

• Evaporation: extraction of liquid or moisture content, elevated reliable content 
by application of heat (under controlled conditions) to evaporate liquid or solvent 
(water etc.). used in beverage industries, powder and ingredient manufacture. 
Example of apparatus used is evaporation tower (Wang and Bohn 2012).

• Crystallization: division of solids from liquids. Alteration in temperatures stimu-
lates crystallization of solid in high concentration. They are used in sugar indus-
tries, ingredient industries. An example of the apparatus used is the crystallization 
reactor (Wang and Bohn 2012).

Various production processes are needed to produce food from unprocessed 
materials, reconstruct the rheological and physical appearance of the product to 
make sure the food is healthy and safe, with equal and consistent quality, stability, 
and supply (Wang and Bohn 2012). One of the most used procedures in many liquid 
and food products is treated with heat, which is used in processing the product (i.e., 
handling the product in order to enhance the bioavailability of nutrients, reconfigure 
carbohydrates, starches, and protein denaturation), in order to produce the required 
taste, smell, appearance (e.g. Maillard reaction), alter the structure of the food (e.g. 
changes in texture as a result of changes in ingredients or the process of drying), or 
to store, preserve or disinfect the food by inactivating the microorganism, enzymes, 
and toxins by heat (e.g. canned foods been sterilized by heat, vegetable blanching to 
cause the enzymes to be inactive) (Wang and Bohn 2012). Procedures of heat treat-
ment as well as other major food processing procedures may often lead to reduction 
of bioactivities of resident ingredients, which are crucial to human diet (Wang and 
Bohn 2012). Significant sources of essential phytochemicals like vegetable and fruit 
products need to be preserved while been processed, stored and packaged so that 
they remain available for human diet (Reuterswärd 2007). Recently, there has been 
development in novel food processing procedures:

• High-pressure treatment/Ultra-high-pressure treatment: It is one of the ways by 
which hygienic food products can be obtained. Most microbes cannot survive the 
high pressure in which food is subjected to, hence it reduces microbial load and 
provides safety against microorganisms. It is also beneficial as the one of the best 
preservative methods of natural and high quality nutritious and sensory (appear-
ance, flavor, taste and texture) values. It is applied in the sterilization of products 
that easily or quickly spoil and damage through processing (e.g. meat, dairy 
products, fruits, sea foods and vegetables). Although, it is limited due to the high 
cost of processing (maintenance and investments), and the available apparatus 
are mostly batch processes (Wang and Bohn 2012).

• Freeze drying: freeze-drying is an excellent preserving procedure of products 
characteristics and can be used in a vast range of products. It is applied with 
products that have a fragile texture in which there is a need to protect the  naturally 
occurring ingredients (e.g. flavors). E.g. fruits having high application values. It 
is limited due to the fact that there can be formation substances that are heat 
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stimulated, also there is lesser protection from microorganisms, and the cost of 
production is also high (Wang and Bohn 2012).

• Ultrafiltration/membrane filtration: unwanted products like products formed in 
heat treatment are not developed. It is applied as additional treatment in the pas-
teurization of milk (it is possible to treat in overall smaller temperature). It is 
limited because it can be used in only liquid products, and the energy cost used 
is high (Wang and Bohn 2012).

10.10  Determination of Shelf Life (Stability)

Shelf life (Stability) of a product is defined as the time frame in which a product is 
still acceptable for ingestion or consumption at specific storage temperatures and 
other conditions. For products having health claims, it is expedient that shelf-life is 
considered:

• Shelf-life and continuity or consistency of the food/bioactive compound, which 
is expected to portray the acclaimed effect is ascertained in the final product as 
ingested (Betts et al. 2014);

• Still hold nutritional parameters to align with any label declaration of nutritional 
information (Betts et al. 2014).

As shelf-life analysis proceeds, the parameters of a product with a health claim, 
the consistency and stability of food/bioactive compounds for which the demand is 
expected in the product as ingested, sensory microbiological, chemical and bio-
chemical properties and ingestion of the product are examined (Betts et al. 2014). 
The point in a product becomes unacceptable from one or more of these aspects is 
the expiry of shelf-life (Betts et al. 2014).

The stability of active ingredients or bioactive compound(s) represents an addi-
tional, important factor affecting the shelf-life of food products that have health 
claims. In certain situations, it could represent the shelf-life limiting factor (Betts 
et al. 2014).

The shelf life of food product depends on the method of preservation used and 
the nature of the food products (Betts et al. 2014; IFTS 1993). The kind of packag-
ing employed in containing the food will also have a substantial effect; hence, the 
producer of the food can decide and assigns the shelf life of the food, whilst noting 
the requirements of relevant legislation (IFTS 1993; Campden and Chorleywood 
Food Research Association Group 2004). Many factors influence the shelf life of a 
product, some include raw materials, proper treatment or hygiene, formulation of 
product, intrinsic properties of the product, such as salt content, water activity, pH, 
preservatives, procedure steps and parameters, packaging, including gas atmo-
sphere, oxygen content, distribution time and temperature, handling of the con-
sumer (Betts et al. 2014).

Intrinsic and extrinsic factors affect the stability/shelf-life of a product (Betts 
et al. 2014).
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10.10.1  Intrinsic Factors

These are the characteristics of the food itself.

• The quality and nature of the ingredients, raw materials, constituents, and bioac-
tives: The stability of the food constituent has to be controlled during the shelf 
life, and the deterioration curve of the compound examined (Betts et al. 2014). It 
is expedient to be able to state the targeted shelf life. Decent quality raw materi-
als with less amount of microorganisms present should result in products with a 
consistently approved shelf-life (IFTS 1993; Campden and Chorleywood Food 
Research Association Group 2004). For raw materials with several impurities/
dirts and high microbial load, further treatment or washing of plant material is 
required to remove the impurities/ dirts and minimize the amount of microorgan-
isms that can lead to spoilage thus extending the shelf-life of the food products 
(Betts et  al. 2014; IFTS 1993; Campden and Chorleywood Food Research 
Association Group 2004). In such scenario it is expected to set specifications 
(microbiological limits) on raw materials. The stability of the constituent/bioac-
tive should be analyzed while the processing is going on and the storage to know 
whether the beneficial health effect has been altered or not (IFTS 1993; Campden 
and Chorleywood Food Research Association Group 2004).

• Formulation of products as well preservative use: The extraction of fluid content 
can hinder mold and bacterial deterioration or spoilage.

• Structure of the product: Fluids and semi-foods usually have a homogeneous 
composition, unlike fast foods that do not have a similar arrangement (Betts et al. 
2014; IFTS 1993). Moisture and flavours movement through layers, coatings and 
surface treatments will hinder or aid the spoilage potential. The structure of the 
product can influence the bioavailability (Campden and Chorleywood Food 
Research Association Group 2004).

• Availability of oxygen and redox potential within the food: This can exhibit a 
crucial impact in which microorganisms that cause spoilage and pathogenic 
organisms can develop and survive on the food (Betts et al. 2014). This can also 
influence the oxidation-reduction reactions which leads to rancidity, vitamins 
loss, cause browning effect, and changes to flavour. Moulds require oxygen to 
develop and as such are typically found on the surface of food (Campden and 
Chorleywood Food Research Association Group 2004).

10.10.2  Extrinsic (External) Factors

• Procedures applied to food: The impact of technology needs to be examined on 
the stability of bioactive compounds.

• Canning: The process of canning inactivates most organisms that are heat- 
resistant. However, milder heat procedures will lead to the inactivation of some 
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bacteria, and a higher number will survive (Betts et al. 2014). The greater the raw 
materials present, the higher the amount of microorganism that will withstand 
and lessen the shelf-life. The more the procedures, the lengthier the shelf-life 
generally. In addition, the bioactive compounds in canned foods are grossly 
affected by the heat treatment thus enhancing or reducing the potency of the 
bioactive compounds.

• The kind of packaging, including the gaseous environment: Packaging has a pri-
mary objective of shielding or protecting food after been manufactured and, as 
such, can be used to lengthen the shelf-life. However, if the gaseous environment 
is altered (for example, gas flushing or vacuum packing), this will add to the 
development of some microorganisms that cause spoilage and pathogens, as well 
as aiding the growth of microorganisms that need oxygen (including moulds) 
(IFTS 1993). It should be noted that specific attention needs be given to psycho-
tropic pathogens, pathogens that can develop at lessened temperature of the cold 
chain (Betts et al. 2014; IFTS 1993; Campden and Chorleywood Food Research 
Association Group 2004). Aside the microbial action, the preservation of bioac-
tive compounds present in packed foods depend on the materials used for pack-
aging as well. Exposure of packaged foods to several environmental conditions 
such as temperature, pressure, may alter the physicochemical and biological 
activities of the bioactive compounds in food.

• The temperature of Storage (Ambient, chilled, or frozen): As storing in cold 
conditions will inhibit the development of microorganisms, some specific patho-
gens and microorganisms cause spoiling, that freezing can only reduce the 
growth speed but not outrightly stop their growth (Betts et al. 2014; IFTS 1993; 
Campden and Chorleywood Food Research Association Group 2004). A lot of 
spoilage microorganisms and specific important pathogens will grow actively 
because they are psychotropic (cold-tolerant), however their development will 
generally be slower unlike the growth rate in ambient storage (Betts et al. 2014; 
IFTS 1993; Campden and Chorleywood Food Research Association Group 
2004). In addition, consistent alteration in the temperature of bioactive com-
pounds in stored food may affect the structure –function relationship of these 
bioactive compounds. It can lead to breaking and/or formation of certain bonds 
and rings.

10.10.3  Recommended Practices for Shelf-Life Testing

Examination of stability or shelf-life is essential when products are formulated 
again; for example, less critical alterations done when products are reformulated 
may have a crucial influence on growth of microorganisms, or on texture and stabil-
ity of outcome (IFTS 1993; Campden and Chorleywood Food Research Association 
Group 2004). An alteration in formulation of product will cause re-examination of 
the shelf-life of the products. If there is an alteration in parameters, procedures used 
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in the development of the product, the originality of the previous shelf life/stability 
data needs to be elucidated (Betts et al. 2014). The resultant effect of these altera-
tions on the content of the bioactive constituent, sensory and other properties, food 
safety can be assessed reliably if only the shelf-life analysis were manufactured on 
the same product, in the same packaging, processed with the same technology 
(Betts et al. 2014; IFTS 1993).

Before the shelf-life examination, HACCP analysis must be carried out to evalu-
ate and ascertain the significant factors influencing the safe shelf-life, the safety of 
the sensory assessors also involved in the evaluation of the shelf-life is a pre- 
requisite (Betts et al. 2014). Hence, it is expedient that the safety of products must 
be ascertained before they are evaluated. The quantity of analysis carried out is 
dependent on the target shelf-life of the product, sampling should be done at the 
inception of shelf life, at the end of the target shelf life and minimum three times in 
between (IFTS 1993).

For temperature-sensitive constituents, like bioactives, it is better to carry out 
analysis at maximum and higher temperatures. Evaluation at peak and higher tem-
peratures will reveal the influence of the changes from the optimal storage tempera-
ture (Betts et  al. 2014; IFTS 1993; Campden and Chorleywood Food Research 
Association Group 2004). The product needs to be stored at the specific storage 
temperature, for those products that need to maintain cold chain during their storage 
and handling it is also expedient to carry out another evaluation to ascertain the 
influence of the abuse of temperature (Betts et al. 2014). Some of the tests for check-
ing the shelf life (mostly sensory and microbiological ones) can be made more times 
to monitor and improve the understanding of the possible changes in time (IFTS 
1993; Campden and Chorleywood Food Research Association Group 2004).

Extra information can be gotten for evaluation of the shelf-life:

• a complete analysis of the shelf-life of like-products already being 
manufactured;

• the use of visible microbiological models for visualizing when the growth of 
microorganisms (pathogens and organisms that cause spoilage) may get to a 
critical point and render the product unacceptable (IFTS 1993);

• forced storage, for example, increased temperatures could be used to improve the 
rate at which deterioration occurs, and hence lessen the length of shelf life evalu-
ation, which is of excellent benefit is marketed after production (Campden and 
Chorleywood Food Research Association Group 2004). However, it is not all 
reactions as food spoils that follow Van’t Hoff rule (which states that increase in 
temperature by 10° generally increases the rate of chemical reactions by a factor 
of 2–3), this procedure is constricted, but can however be used in getting results 
faster as regards to shelf life behaviour of food product (Betts et al. 2014); and

• use of storage at different temperatures.

In manufacturing, all these procedures have limitations, and using all together 
can be used for some food products to get an accurate result (Betts et al. 2014; IFTS 
1993). In examining the shelf life of food, it should be pointed out what character-
istics of the food are to be the restricting factor (Betts et al. 2014).
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10.10.4  Establishing Specification for Active Ingredients 
and Ensuring Homogeneity Between Batches (Steps 
from Prototype Development to Scaling-up to Factory 
Level)

Usually, the model product evolution entails three stages: small scale bench work- 
model evolution, pilot scale work, and production scale factory trials (Betts 
et al. 2014).

10.10.5  Small Scale Bench Work: Prototype Development

The main objective of the small scale benchwork is to ensure proper formulation of 
food products and analyze the products for physical-chemical and sensory proper-
ties. The products should be manufactured in a reproducible and can be done in a 
way that saves or manages cost (Campden and Chorleywood Food Research 
Association Group 2004). Samples from this level can be used as a foundation in the 
next steps. The possibility and viability of the product need to be reassessed (Betts 
et al. 2014; Campden and Chorleywood Food Research Association Group 2004).

Right from the activities of the small scale bench work to the factory trials the 
data needs to be gotten, examined, reassessed and corrected systematically for the 
complete product specification and also in line with the ingredient specifications, 
recipe, and product properties, feasibility of the quantity of the constituent within a 
batch and between batches and the stability of the component during shelf life, 
cause–effect relationship, food safety and HACCP, process ability, costs and con-
sumer approval (Betts et  al. 2014; Campden and Chorleywood Food Research 
Association Group 2004).

In the product development brief, the minimum effective dose of the bioactive 
compound needs to be clearly stated for the product development team, and gotten 
at preparation, manufacture of all samples and maintained during their shelf-life 
(Betts et al. 2014). The nature of the product and the bioactive compound should 
also be reassessed and evaluated if the planned production process has an altered on 
their stability/degradation (Betts et al. 2014; IFTS 1993; Campden and Chorleywood 
Food Research Association Group 2004).

The first draft product specification needs to be set up during the small scale 
bench work. However, some of the data can only be defined during pilot-scale trials 
(Abuajah 2017). The sensory and nutritional properties of the test and control prod-
uct need to be analyzed to ascertain that they match each other, the nutrient compo-
sition of the analysis and control product should be assessed to determine they align 
with all legal requirements (Betts et al. 2014; IFTS 1993).
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10.10.6  Pilot-Scale Work

A right product specification entails the data listed below to ascertain standardized 
properties (IFTS 1993). During the pilot scale work, batch sized products are manu-
factured with the same type of apparatus or at times with the similar equipment and 
process like those been used in the in full-scale marketing production. At this level, 
the process ability of the product can be examined (IFTS 1993). The sensory char-
acteristics, microbiological and chemical composition, physical parameters, shelf 
life and the HACCP study of the analysis and the model products stated at small 
scale bench work needs to be ascertained. It should be determined that the data 
product aligns with the control product for the samples to be made available for the 
human intervention studies (IFTS 1993). The product properties need to be reviewed 
with the draft specification to know if it aligns, specifically the weight, microbio-
logical parameters, chemical, physical parameters of the products and sensory prop-
erties (IFTS 1993).

For products that have health claims, personal observations have to be made on 
the accurate description of the following information (Betts et al. 2014; IFTS 1993):

• Name of the product, identification of document: date; and
• Composition of the product: formulation of the product; percent of the ingredi-

ent, bioactives in the recipe for standard production volume; ingredients list, 
ingredients specifications, raw materials; bioactive compounds that have benefi-
cial health effect, bioavailability with the limits of feasibility within the pro-
cessed product; data for characterization of the bioactive compounds and the 
food matrix; allergen and sensitivity information; ethical and religious informa-
tion (Betts et al. 2014; IFTS 1993; Campden and Chorleywood Food Research 
Association Group 2004).

Another aspect of data needed for the product specification for all new products 
separately from products with health claims (Betts et al. 2014; IFTS 1993; Campden 
and Chorleywood Food Research Association Group 2004):

• recognized legal information;
• the kind of additives used;
• small description of the production process: HACCP summary, CCPs;
• quality and quantity parameters: nutritional parameters/labelling nutritional 

information/nutritional profile (as appropriate) and their maximal approved fea-
sibility; product structure and the bioavailability of food/bioactive constituent; 
sensory parameters and their maximal approved usefulness; microbiological, 
chemical, physical properties; quality assurance and food safety limits of feasi-
bility within the finished product; chemical, physical, microbiological; weight 
filling; packaging, the kind of the primary and secondary packaging, specifica-
tions of the packaging materials; shelf life at set condition of the storage of the 
storage of the storage of the storage of the storage of the storage of the storage of 
the room; transport requirements; storage requirements; labelling, product label; 
health claims; nutritional values; allergen, sensitivity information; ethical and 
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religious information (as appropriate); GMO information; instructions for users; 
statement of warranty; recommendation by authorized person (Betts et al. 2014; 
IFTS 1993).

All of the required data on food safety, religious, ethical, nutrition and sustain-
ability information along with a defined preparation/users’ manual and storage and 
handling requirements needs to be listed in the product specifications (Betts et al. 
2014; Campden and Chorleywood Food Research Association Group 2004). The 
specification of the concluded analysis and control products should be made avail-
able to the centers working on human intervention studies (HIS) (Betts et al. 2014; 
Campden and Chorleywood Food Research Association Group 2004). Scientists 
performing the HIS should also give feedback to the product manufacturing team 
regarding any needed changes of the product, packaging of the product, the portion 
size, and the method of preparation as soon as possible to allow smooth administra-
tion of the study (Betts et al. 2014). Production timeframe of the analysis and con-
trol products for HIS needs to be manufactured by the food manufacturing company 
and clinical center (Campden and Chorleywood Food Research Association 
Group 2004).

It is as well a beneficial way of preventing misunderstandings and provide useful 
data to the consumer/food producers and the food producers/consumers of the food 
product (Betts et al. 2014; IFTS 1993; Campden and Chorleywood Food Research 
Association Group 2004).

Process specification (Betts et al. 2014; IFTS 1993; Campden and Chorleywood 
Food Research Association Group 2004):

• process description;
• process steps description;
• performance criteria (“Fo” for sterilized products, “P” for pasteurized products, 

uniformity of composition, weight—target and tolerance);
• size of the batch, if relevant;
• process parameters (time, temperature, and pressure): target and acceptance 

limits;
• the procedure of monitoring of the key parameters, frequency, responsibilities;
• actions at deviations, responsibilities;
• approval, verification;
• HACCP summary;
• CCPs/and CPS, identification, descriptions;
• critical restrictions; procedures of monitoring, frequency, responsibilities; and
• corrective actions, responsibilities.

The process control measures, which has to be implicated for ensuring low fea-
sibility within batches and between batches typically include the following ele-
ments (Betts et al. 2014; IFTS 1993; Campden and Chorleywood Food Research 
Association Group 2004):
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• Designing the criteria for performance;
• Stating what has to be achieved at this step considering food safety, quality, 

legality, and uniform composition and properties;
• Reporting the control process for each level;
• Pointing out the critical control points, where parameters affecting the quantity 

of the bioactive constituent, legality, food safety hazards and quality attributes, 
the structure of the food and composition can be and required to be monitored 
(key control points and CCPs). These controls must be in place permanently 
(Betts et al. 2014);

• Pointing out the critical process parameters (target values and acceptance limits) 
(Betts et al. 2014);

• At the chosen key control points bringing up a monitoring system, based on reoc-
curring checks or continuous evaluations, observations. The results of the moni-
toring have to be noted. The monitoring activities, their reoccurrence, and 
responsibilities have to be defined (Betts et al. 2014);

• They are creating corrective actions, which have to be put into effect at devia-
tions. The activities and responsibilities have to be stated and the steps taken 
have to be noted (Betts et al. 2014; IFTS 1993); and

• Confirmation and attestation of the process performance. This fact can be done 
by reassessing the process control data and by evaluating the major product 
parameters and properties such as the quantity of the bioactive compound, by 
assessing the amount of the parameters of the significant procedure steps ascer-
taining food safety, sensory evaluation, microbiological testing etc. (IFTS 1993; 
Campden and Chorleywood Food Research Association Group 2004).

Specific aspects linked to the products having health claims also have the uni-
form quantity and stability of the bioactive compound and the duplicable structure 
of the food, including the maximal approved feasibility of the bioactive compound 
within a batch and between batches (Betts et al. 2014; IFTS 1993; Campden and 
Chorleywood Food Research Association Group 2004). During the pilot-scale test-
ing, the food products containing bioactive compounds and the materials used in 
packaging them have to be evaluated and examined. In addition, a targeted cost of 
the manufacturing process and overall costs have to be assessed (IFTS 1993). 
Packaging testing should be carried out. It should be ascertained that the test prod-
uct aligns with the control product for the samples to be made available for the 
human intervention studies (Betts et al. 2014; IFTS 1993).

10.10.7  Factory Scale Production Trials

It is a standard industrial protocol to evaluate the duplicability of the main parame-
ters as well as the quantity of a specific component such as the bioactive compound 
found on at least 3–3 representatives/samples taken at various times from varies 
parts of a batch from three non-dependent manufacturing tests (Campden and 
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Chorleywood Food Research Association Group 2004; Campden and Chorleywood 
Food Research Association Group 2007). The point of this level is to be able to 
manufacture food products on a bigger scale reproducibly to ascertain that the 
expected concentration of the bioactive compound which is the reason for the ben-
eficial health effect can be continuously ensured within a batch and between differ-
ent batches (Campden and Chorleywood Food Research Association Group 2007). 
The entire final version of the product needs to be delivered consistently at the exact 
cost and exact quality (Campden and Chorleywood Food Research Association 
Group 2004; Campden and Chorleywood Food Research Association Group 2007). 
As the product manufacturing procedures occur, the main versions of product speci-
fications have to be reassessed following the alterations and acceptance (IFTS 
1993). The growth of the strategy used in marketing begins with noting the needs of 
those who use the products (consumers) and making available products or services 
that pleases this request of the consumers (Betts et al. 2014).

10.10.8  Characterization of Active Ingredients/Bioactive 
Compound

It is expedient for any food or ingredient or bioactive compound in which its health 
claim is created to be characterized (Marconi et  al. 2018). The originator of the 
bioactive compound and the part which entails it and its specification, and the speci-
fication of food category for which health claim is made needs to be made available 
(Betts et al. 2014; Marconi et al. 2018). For the recognition and enactment of the 
bioactive compound usually more developed experimental procedures are required, 
this entails noting new substances, characterizing their structure and mode of action, 
and also the significant factors of the amount in the standard matrix and controlling 
the specifications of the product (Marconi et al. 2018).

Experimental procedures need to be fit for the purpose and need to be assessed 
entirely for the aim. The Experimental methods used in the enactment of the bioac-
tive compounds, food ingredients and nutrient examination of foods and macronu-
trients needs to be standardized and ascertained in line with the required guidelines 
(Marconi et al. 2018). According to the EFSA guidance the analysis needs to be 
carried out in a proper laboratory where the information can be approved and the 
quality system created in the laboratory is pointed out (Bernal et al. 2011; EFSA 
2011). As touching experimental procedures, it is expedient to make use of detec-
tors that are able to detect compounds structurally, and not only to measure them by 
time of retention, wavelength, etc. (Park et al. 2012). Recently, gas or liquid chro-
matography tandem mass spectrometry is one of the experimental procedures 
revealing the highest potential for carrying out these aspects (Park et al. 2012). The 
experimental procedures made should be ascertained in terms of specificity, accu-
racy and reliability (Park et al. 2012). Food containing bioactive compounds are raw 
materials for food and pharmaceutical industries. The food grade delivery systems 
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provide necessary strategy that alters the food product properties (Rajasekaran and 
Kalaivani 2013; Coelho et al. 2010). Food and food products containing bioactive 
compounds navigate the human body when consumed from the mouth through or to 
the stomach, small intestine or colon (Rajasekaran and Kalaivani 2013; Coelho 
et al. 2010; Palzer 2009). In the delivery system, encapsulation materials and the 
food matrix can be altered considerably during storage, processing, ingestion and 
digestion of bioactive compound in Food (Chen 2004; McClements et al. 2009a). 
Alterations are caused by ionic strength, pH, surface activities, activities of enzymes 
(lipases, proteases, amylases), flow and force profiles (disruption, pressure, agita-
tion) linked with chewing, stomach and intestine passage in food bioactive com-
pounds (McClements et al. 2009a; Ubbink et al. 2008; Marques 2014; Van Aken 
2007; Pothakamury and Barbosa-Canovas 1995; Siepmann and Siepmann 2008). 
Therefore, conscious efforts are required to monitor the release, digestion, stability 
and absorption of food bioactive compounds in order to ascertain the health claims 
of such food products containing the bioactive compounds and components (Sereno 
et al. 2009; Augustin et al. 2001; Augustin and Sanguansri 2008; Chen et al. 2006). 
The manufacturers’ knowledge, together with more understanding of the link 
between food properties and bioactive ingredient adsorption, is beneficial in the 
design of food materials and encapsulation techniques, which, after protecting the 
ingredient, give monitored release at target points in the gastrointestinal tract (Weiss 
et al. 2008; Dziezak 1998; Augustin et al. 2011; Hejazi and Amiji 2003; McClements 
et al. 2009b).

10.11  Conclusion

This chapter reviews the requirements of bioactive compounds in foods for health 
claims. Polyphenols, saponins, alkaloids, vitamins, minerals, terpenoids, omega and 
poly saturated fatty acids, polysaccharides, chitin, and chitosan and peptides are 
bioactive compounds that are capable of managing weight, modulating genes, 
enhancing good health as well as preventing diseases such as cancer, diabetes, car-
diovascular disease, stroke, erectile dysfunction, endothelial dysfunction, heart and 
respiratory infections to mention a few. The procedures and criteria for coming up 
with proofs for health claims must be thorough scrutinized in order to provide the 
public with the accurate and correct information on therapeutic or/ and nutraceutical 
properties as well as toxicological effects. Variation in food processing techniques, 
safety and design of food bioactives/bioactive compound are essentials for labora-
tory investigation using different models and translation into human clinical trials. 
Thus, providing evidence-based criteria for possible adoption by industries. All 
hands must be on deck to ensure that scientists, policy makers, and professional like 
biochemist, microbiologists, food scientists, food technologists, food chemists and 
pharmacists follow these procedures and criteria on bioactive compounds for health 
claims. Many functional foods with these bioactive compounds with scientifically 
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health claims are currently in the market or under consideration by manufacturers/
scientists. However, consumers should therefore adhere strictly to the instructions 
on these products/labels to avoid possible adverse effects and toxicities.
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