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Preface

Over the past few years, food bioactives have gained attention due to their potential
in reducing the risk of diseases, such as obesity, cardiovascular disease, diabetes,
and cancer. This potential is attributed to the antitumor, anti-inflammatory, antihy-
perlipidemic, antioxidative, antihypertensive, and antiviral activities of bioactives,
in addition to their essential nutritional functions. The effectiveness of food bioac-
tives depends on different parameters such as bioactivity, bioavailability, metabolo-
mics, nutrigenomics, and stability within the food matrix. For instance, bioactives’
delivery via the oral route is restricted by gastrointestinal enzymes, harsh pH, the
epithelium, and the mucus layer. Lately, researchers have investigated bioactive
compounds, bioaccessibility, and functions in detail, whereas the development of
nutraceutical applications has attracted considerable interest. Functional, “super,”
and “tailor-made” foods are generated after manufacturing typical or traditional
food products with ingredients that modify their properties (e.g., by binding, chang-
ing structure, or interface) and provide health benefits to them.

The Food Waste Recovery Group provides insights into all scientific and tech-
nological aspects dealing with food and the environment. The group has published
several books dealing with biobased products and industries, sustainable food sys-
tems, saving food, as well as technologies and applications (for commodities such
as cereals, coffee, grape, olive, and meat) for food waste recovery. Others are
handbooks that deal with innovations strategies in the food and environmental sec-
tors, nonthermal processing, food shelf-life and quality, nutraceuticals, and food
ingredients such as polyphenols, carotenoids, proteins, lipids, glucosinolates, and
dietary fiber.

Following the above considerations, the book covers food bioactives’ properties
and health effects given the new trends in food science and technology. It aims at
supporting the scientific community that aspires to understand the role of food bio-
actives in health and develop applications in personalized nutrition, in functional
foods, nutraceuticals, and personalized nutrition.

The book consists of 10 chapters. Chapter 1 describes the principal sources of
polyphenols and then correlated them with their properties (health), particularly
absorption (bioavailability), metabolism, gut flora, and chronic disease (cardiac
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health, obesity, diabetes, cancer, among others). Polyphenols are a very diverse and
multifunctional group of phytochemicals widely found throughout the plant king-
dom. The main classes of polyphenols are tannins, lignans, phenolic acids, phenolic
alcohols, flavonoids, stilbenes, coumarins, and chalcones. The remarkable chemical
structure of polyphenols leads to their biological and physiological activities,
mainly due to the antioxidant activity that allows them to be used as additives in
food products, delaying the oxidation process.

Chapter 2 discusses the biochemistry and health properties of glucosinolates,
their physiological significance, as well as the hydrolysis process in the plant
response to different abiotic stresses. Glucosinolates are a group of sulfur- and
nitrogen-containing glycosides found in plants such as broccoli, cabbage, radish,
and cauliflower, among others. Their hydrolysis byproducts, namely isothiocya-
nates, are responsible for the distinct aroma and pungent taste of cruciferous spe-
cies, most of which contain species-specific glucosinolates. They are considered as
beneficial to human compounds with several confirmed health effects. At the same
time, a significant amount of research work has been carried out recently to iden-
tify those mechanisms and synergisms that are responsible for the activities of
glucosinolates, as well to reveal physiological aspects in the plant—environment
interactions.

Chapter 3 reviews updated scientific reports about food-derived bioactive pep-
tides and proteins and about their potential preventive or alleviating role in the dead-
liest noncommunicable diseases. Cardiovascular diseases, cancer, diabetes,
neurodegenerative disorders, as well as oral cavity diseases as a predisposing factor
to the development of other essential illnesses are addressed. The objective is to
provide useful information to readers involved or interested in the fields of pharma-
cology and food technology, with the hope that it can serve as an introductory guide
to recognize the immense potential of peptides and proteins as therapeutic agents.

Chapter 4 discusses the actual state of research concerning the effect of dietary
fiber on health and the pathways by which this nutrient develops its action. In the
last years, dietary fiber has gained attention as a bioactive due to its potential health
benefits in reducing the risks for many diseases, such as cancer and cardiovascular
ones. This effect is linked to its action against inflammation, oxidation, hyperlipid-
emia, and other physiological disorders. Although research in this area is extensive,
the elucidation of the mechanisms involved in this bioactivity is not yet conclusive.

Chapter 5 provides information on substances of lipid origin that have had
important effects on the treatment or prevention of diseases such as cancer, diabetes
mellitus, cardiovascular disorders, and obesity, among others. Information associ-
ated with metabolites of plant origin, as well as lipids of animal origin and food
lipids, that have demonstrated hypoglycemic, anti-inflammatory, antiproliferative,
hypocholesterolemic, antihyperlipidemic, and antihypertensive effects is presented.
The chapter also discusses topics dealing with the chemical structures of the reported
lipids, their origin, synthesis, preclinical studies (in vitro, in situ), and clinical stud-
ies, detailing dosage, method of administration, biochemical, molecular, and genetic
studies, and mechanisms of action.
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Chapter 6 provides a brief review of marine bioactives, including peptides, pro-
teins, vitamins, sterols, fatty acids, polyphenols, saccharides, amino acids, and min-
erals. It also discusses the bioactives derived from marine bacteria as well as
different techniques used for marine bioactives recovery. Marine organisms are a
rich source of bioactive compounds. Bioactive compounds are compounds with
health-promoting effects. Consumption of these compounds may lower the risk of
diseases such as heart diseases, cancer, diabetes, osteoporosis, and other complica-
tions. Recently, marine bioactives have attracted much attention due to their enor-
mous health benefits.

Chapter 7 deals with food bioactives that reduce the risk of cardiovascular dis-
eases. Bioactive peptides derived from fish, milk, meat, and plant derivatives dem-
onstrated a significant antihypertensive and lipid-lowering effect in randomized
clinical trials. Some polyphenols isolated from foods or plants exert anti-
inflammatory and antioxidant activity, which could strengthen the prevention of
chronic diseases. Furthermore, polyunsaturated fatty acids, lycopene, alliin, plant
sterols, monacolin k, and berberine could be considered to support cardiovascular
risk patients in clinical practice.

Chapter 8 discusses bioactives with neuronal and immune functions. Healthy
diets are low in saturated fats and carbohydrates and high in fiber and antioxidants
such as polyphenols and monounsaturated and omega-3 fatty acids, phytosterols,
and probiotics. It has been shown that polyphenols are interfering with immune cell
regulation, gene expression, and pro-inflammatory cytokines synthesis. As such,
these molecules are associated with extended health benefits, playing an essential
role in the prevention and treatment of various chronic conditions, such as neuro-
logical disorders. Omega-3 fatty acids are known for their positive health effects
through their anti-inflammatory properties as well as for being essential in neuronal/
brain functioning and its immunomodulatory properties. Intestinal immune stress
associated with low omega-3 availability might also be involved in the development
of neuroinflammation and the progression of related diseases.

Although many foods that are in the market are marked as functional foods, the
problem with bioactive compounds, in and from food sources, is that the health
claims and their bioavailability are still not fully explored. There are many examples
of bioactive’s functionalization health claims connected to their functional proper-
ties and their interactions in foods. Chapter 9 leads the reader from the necessary
steps of acquiring bioactive compounds to their bioavailability analysis, protection,
and further improvement of their functional properties. The chapter also takes into
account the fortification of foods with bioactive compounds as a strategy to reduce
the occurrence of chronic illness as well as challenges that lie ahead for scientists
dealing with all the aspects of bioactives, from processing to health claims.

Chapter 10 discusses the requirement and regulatory aspects of bioactive com-
pounds from food for health claims. It also includes the fundamental processes on
the health claims for bioactive compounds from vegetables, fruits, spices, nuts,
cereals, herbal products, legumes, medicinal plants, probiotics, prebiotics as well as
those from fungal, algal, and animal sources, and other natural antioxidants. These
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requirements are meant to protect consumers from frauds perpetrated by producers/
manufacturers on nutraceutical products. Bioactive compounds’ requirements for
health claims range from laboratory findings to systematic clinical trials to guaran-
tee safety and provide bioavailability and efficacy of nutraceutical products.

It is hoped that this book will assist food chemists, food scientists, food technolo-
gists, nutritionists, and biochemists as well as researchers, academics, and profes-
sionals working in the food industry. It also concerns individuals and stakeholders
in the food sector (including small startups) interested in developing nutrition-based
products. Moreover, university libraries and institutes could use it as a textbook for
undergraduates and postgraduate level multidiscipline courses dealing with food
science, food chemistry, and food technology.

At this point, I would like to thank all the authors for their fruitful collaboration
as well as for the fact that they remained dedicated to the timeline and editorial
guidelines. I would also like to acknowledge the acquisition editor Daniel Falatko
and the book manager Aravind M. Kumar, and all colleagues from Springer’s pro-
duction team, for their assistance during the preparation of this book. Finally, I have
a message for all the readers: those collaborative efforts contain hundreds of thou-
sands of words and thus may contain errors. Thus, constructive comments and even
criticism are always welcome. In that case, please contact me to suggest any
changes.

Chania, Greece
Vienna, Austria Charis M. Galanakis
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Chapter 1
Polyphenols

Bianca Chieregato Maniglia, Evertan Antonio Rebelatto,
Katia Suzana Andrade, Acacio Zielinski, and Cristiano José de Andrade

Abstract Polyphenols are a very diverse and multi-functional group of phyto-
chemicals, widely found throughout the plant kingdom. Their basic monomer
chemical structure comprises a phenolic ring—a benzene ring(s) with at least one
hydroxyl group attached to it. The main classes of polyphenols are tannins, lignans,
phenolic acids, phenolic alcohols, flavonoids, stilbenes, coumarins and chalcones.
Flavonoids are the most plentiful classes of polyphenols, since they represent ~4000
out of 8000 polyphenols already identified. Polyphenols are also classified, merely,
as flavonoids and non-flavonoids. Flavonoids are chemically composed of backbone
of two benzene rings linked by a 3 carbon atoms in a chain from the pyran ring. The
oxidation state of central carbon can be used to subclassify them (flavonoids): flava-
nones, flavanols, flavonols, isoflavonoids, flavones, and anthocyanidins. Rich
sources of phenolic compounds include grape pomace, apple, berries, oranges,
pomegranate, tomatoes, coffee, tea, wine, olive oil, among others. The remarkable
chemical structure of polyphenols leads to their biological and physiological activi-
ties, mainly due to their antioxidant activity. Regarding the effects of polyphenols
on human health, the phenolics have many health-promoting benefits, including
antimutagenic, antihypertensive, hypoglycemic and antihyperglycemic, anticancer
and antiapoptotic, antimicrobial, and inflammatory effects. Furthermore, when the
phenolic antioxidants are added in food products, they can delay the generation of
toxic products (oxidation), to act as rancidity regulator and maintaining nutritional
quality of foods, among others. This chapter describes the principal sources of poly-
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phenols and then correlated their properties (health), particularly absorption (bio-
availability), metabolism, gut flora, chronic disease (cardiac health, obesity,
diabetes, cancer, among others).

Keywords Polyphenols - Nutraceuticals - Flavonoids - Sources of polyphenols -
Effect of polyphenols on human health

1.1 Introduction

The plants as fruits, vegetables, herbal teas, and seeds, are rich sources of polyphe-
nols with a wide range of chemical structures (Abbas et al. 2017). These compounds
are secondary metabolites which show a wide range of function such as protection,
color and flavor in particular astringency and bitterness (Shahidi and Ambigaipalan
2015). Furthermore, many health-promoting benefits have been reported, including
antioxidant, anticancer, antimicrobial, antihypertensive, hypoglycemic and antihy-
perglycemic effects (Teixeira et al. 2014; Gani et al. 2012).

It is worth noting that the plants and their processed products stand out as the
main sources of polyphenols that are consumed by the population. Polyphenols are
widely related to human health benefits. Currently, World Health Organization
(WHO) has recommended ~0.4 kg per day of vegetables and fruits (5 daily por-
tions) (WHO 2019). In addition, the polyphenols also have been applied in food and
pharmaceuticals products with the aim to supplement them mainly in their levels of
antioxidants (Vuorela et al. 2004).

The chapter summarizes the classification and chemical structure of polyphe-
nols, their main vegetable sources and effects on human health.

1.2 Polyphenols; Classification and Chemical Structure

1.2.1 Polyphenols

Phenolic compounds or polyphenols are natural biologically active compounds
found in plant based-food and that show a wide range of complex structures (Abbas
et al. 2017). In plants, they exhibit different functions as bio stimulating for plant
growth or as defense compounds. These compounds are also acknowledged as
strong natural antioxidants, and it was shown in the literature important biological
and pharmacological properties such as anti-inflammatory, anticancer, antimicro-
bial, antiallergic, antiviral, antithrombotic, hepatoprotective, food additive, signal-
ing molecules, etc. (Kumar and Goel 2019).
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In plants, the most of polyphenols is chemically bounded to sugars, which is
named glycosylated. Polyphenol skeletons can show carbohydrates and organic
acids bound in different positions (Manach et al. 2004).

Polyphenols show as basic monomer a phenolic ring (structure in Fig. 1.1).
Generally, these compounds are classified according to the structures shown as the
number of phenolic rings, substituents linked to the rings, and the structural elements
that bind these rings to each other. In this way, there are four main groups of poly-
phenols: phenolic acids, flavonoids, stilbenes, and lignans (Manach et al. 2004).

1.2.1.1 Phenolic Acids

Phenolic acids are related to phenolic compounds that have one carboxylic acid
group and they are rarely found as free form, normally they are associated with
amides, esters, and mainly glycosides (El Gharras 2009). Phenolic acids are widely
found in food, in particular in cereals, herbs, vegetables, legumes, fruits, oilseeds,
and beverages. These compounds show antioxidant capacity and it occurs by scav-
enging hydroxyl radical, several organic radicals, peroxyl radicals, superoxide radi-
cal anion, several organic radicals, singlet oxygen, and peroxynitrite. Moreover,
phenolic acid can act as reducing agents, chain-breaking antioxidants, and they are
important compounds to change cell signaling pathways (Chandrasekara 2019).
There are two classes of phenolic acids: hydroxybenzoic acid (e.g. syringic acid,
gallic acid, gentisic acid, and vanillic acid) and hydroxycinnamic acid (e.g. ferulic
acid, caffeic acid, and p-coumaric acid) (Cérdova and Medina 2014). Figure 1.2
shows the chemical structures of phenolic acids: hydroxybenzoic and hydroxycin-
namic acids.

Fig. 1.1 Phenolic ring OH
structure

OH

R
1
e} R
2 \ /O
R
2 R; OH
R3
Hydroxybenzoic acid Hydroxycinnamic acid
Galic acid => Ry=R; . R;=0H Coumaric acid == R,= OH
Protocatechuic acid == R; = R, = OH, R;= H: Caffeic acid == Ry=R; = OH:

Ferulic acid => R; = OCH: R; = OH

Fig. 1.2 Chemical structures of phenolic acids
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Generally, the content of hydroxybenzoic acid in edible plants is very low.
However, some red fruits, onions, and black radish show higher concentrations
(around tens of milligrams per kilogram fresh weight). In addition, complex struc-
tures such as hydrolysable tannins are composed of hydroxybenzoic acids (e.g. ella-
gitannins in red fruit such as raspberries, strawberries, and blackberries, and
gallotannins in mangoes) (Manach et al. 2004).

According to Manach et al. (2004), hydroxycinnamic acid are more common
than are the hydroxybenzoic acids, and it is represented, mainly, by p-coumaric,
caffeic, ferulic, and sinapic acids.

In wine, there is one natural hydroxycinnamic acid present in an esterified form
with tartaric acid, named tartaric p-coumaroyl ester (Salameh et al. 2008). Among
the phenolic acid in fruits, caffeic acid (free and esterified form) is the most abun-
dant compound present (75 until 100% of the total hydroxycinnamic acid content)
(Cutrim and Cortez 2018).

In cereal grains, ferulic acid is the most abundant hydroxycinnamic acid found.
For other side, ferulic acid can be found in free form in beer or tomatoes, and in this
way, this compound is more efficiently absorbed (Bourne and Rice-Evans 1998;
Bourne et al. 2000).

Spices, berry fruits, citrus, and vegetables show a bioavailable phytoconstituent
named sinapic acid (Idehen et al. 2017). According to Vuorela et al. (2004), sinapic
acid is becoming to be explored in the pharmaceutical, cosmetic, and food indus-
tries because of its inflammatory, preservative, antioxidant, and antimicrobial
activities.

1.2.1.2 Flavonoids

Flavonoids show the structure composed of two aromatic rings (indicated as A and
B in Fig. 1.3), linked by three carbon atoms and one oxygen, forming an oxygenated
heterocycle (ring C in Fig. 1.3). The flavonoids can be classified according to the
oxidation state of central carbon (C ring, Fig. 1.3) that is involved. In this way, there
are six classes of flavonoids named: flavanones, flavanols, flavonols, isoflavones,
flavones and anthocyanidins (Abbas et al. 2017).

1.2.1.2.1 Flavanones

Flavanones show the structure composed by a single bond in the positions of the
C-ring, C, and C; with an oxygen atom in C, position, and a disaccharide in C7
(Fig. 1.4) (Liu et al. 2008). Flavanones are contained in citrus fruits, cherries, grape-
fruits, and tomatoes (Asakura and Kitahora 2018). Tomas-Navarro et al. (2014),
reported that flavonoids show strong antioxidant capacity, and has been investigated
for prevention of some cardiovascular disorders and certain kinds of cancer, and
reduction of certain chronic diseases. These same authors showed that flavanones
could also exhibit anti-inflammatory, antimicrobial, and antiviral activities, which
can result in beneficial properties for the health human.
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Fig. 1.3 Flavonoid
skeleton structure

OoH HO
Y o
HO O

CH ©

Naringenin (flavanone) Catechin (flavanol) Quercetin (flavonal)

Daidzein (isoflavone) Apigenin (flavone) Cyanidin (anthocyanidin)

Fig. 1.4 Examples of flavanone, flavanol, flavonol, isoflavone, flavone, and anthocyanidin
structures

1.2.1.2.2 Flavanols

Flavanols show a fully saturated heterocyclic ring with a hydroxyl substituent at
position C; (Fig. 1.4). According to Bonetti et al. (2017), cocoa powder and choco-
late, grapes, and teas show in it composition, flavanols and it polymerization prod-
ucts as epigallocatechin, catechin, epicatechin, gallocatechin, gallate derivatives,
and proanthocyanidine.

1.2.1.2.3 Flavonols

Among the flavonoids, flavonols are the most found in foods, being kaempferol and
quercetin the most representatives. Flavonols are present in glycosylated forms,
they show 3-hydroxyflavone backbone, existing in the form of mono-, di-, or trigly-
cosides in vivo (Stracke et al. 2007). Di Matteo et al. (2007) showed that the richest
sources in flavonols: onions (up to 1.2 g/kg fresh weight), red wine and tea (contain
up to 45 mg flavonols/L), leeks, curly kale, blueberries, and broccoli. In the litera-
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ture (Kelsey et al. 2010; Mecocci et al. 2014) was reported that flavonols have
shown antioxidant and anti-inflammatory properties.

1.2.1.2.4 Isoflavones

Isoflavones are compounds with the structure in the B-ring connected to the C-ring
by the position C; (Figs. 1.3 and 1.4) (Liu et al. 2008). The most representative
isoflavone is the daidzein (4’,7-dihydroxy-isoflavone) that is, mainly, found in food
such as beans, apples, onions, and peas (Ying-Hui et al. 2017). According to Song
et al. (2016), daidzein shows antioxidant, anti-inflammation, and antiestrogen func-
tions. The authors also reported that the due the pharmacological activities of this
isoflavone, daidzein has been applied in treating osteoporosis, autoimmune dis-
eases, breast cancer, and cardiovascular disease.

1.2.1.2.5 Flavones

Within the flavonoids, flavones consist of one of the largest subgroups, it can be
found in all parts of the plants as: leaves, stem, buds, heartwood, bark, thorns, rhi-
zomes, roots, flowers, fruit, and seeds (Zuk et al. 2019). Flavones are synthesized
from flavanones (direct biosynthetic precursor) in the branch point of the anthocy-
anidin/proanthocyanidin (Martens and Mithofer 2005). Observing the Fig. 1.4, fla-
vones differ from other flavonoids because show saturation of ring C which is
named as c-pyrone (Atif et al. 2015).

Flavones show structures diversified, which guarantees a variety of functions,
such as color control on vegetables and fruits to protect them from UV radiation
and infectious attacks by microorganisms. (Harborne and Williams 2000). Flavones
are also important for human nutrition and health, representing an abundant class
of phytochemicals present in our daily diet (fruits, edible vegetables, seeds and
nuts) (Martens and Mithofer 2005). Rice-Evans et al. (1997) reported that polyme-
thoxylated flavones, such as nobiletin and sinensetin can be found, mainly in citrus
fruits as orange peel. Currently, flavone-containing food has attracted considerable
scientific and therapeutic interest because of the beneficial effect for prevention of
some human diseases. Agah et al. (2017) reported that flavones show structural
features that make them among the strongest food-derived anti-inflammatory com-
pounds. These authors observed that cereal derived flavones show strong synergis-
tic interaction with derived flavonols against inflammation, and Yang et al. (2014)
reported that flavones can also protect against estrogen-linked colon
carcinogenesis.
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1.2.1.2.6  Anthocyanidins

Anthocyanidins show structure with hydroxyl groups in the positions of Cs, Cs, and
C; in the B ring (Fig. 1.4), however each structure may have its own characteristic
hydroxyl or methoxyl groups (Swanson 2003). Anthocyanidins are mainly found
conjugated with glucose moieties and they are found in large concentrations in
wine, grapes and berries (Stalmach 2014).

The Fig. 1.4 shows some examples of flavanone, flavanol, flavonol, isoflavone,
flavone, and anthocyanidin structures.

1.2.1.3 Stilbenes

Stilbenes are an important group of nonflavonoid phytochemicals of polyphenolic
structure characterized by the presence of a 1,2-diphenylethylene nucleus (Sirerol
et al. 2016). The Fig. 1.5 shows the stilbene skeleton.

According to Chong et al. (2009), the structures of common plant stilbenes
showed the follow radicals (being OGlu: O-f-D-glucopyranoside):

e trans-resveratrol: R; = H, R, = OH R; = OH, R, = OH;

e trans-piceid: R; = H, R, = OH R; = OGlu, R, = OH;

e pinosylvin: R; =H, R, =H R; = OH, R, = OH;

e piceatannol: R; = OH, R, = OH R; = OH, R, = OH;

* pynosylvin monomethylether: R, = H, R, = H R; = OCHj;, R, = OH;
e trans-pterostilbene: R; = H, R, = OH, R; = OCH;, R, = OCHj;

e astringin: R; = OH, R, = OH R; = OGlu, R, = OH;

e rhapontin: R; = OH, R, = OCH; R; = OGlu, R, = OH.

Stilbenes are compounds naturally present in grapes and have gained a growing
interest due to health-promoting properties reported (Segade et al. 2019). Raposo
et al. (2018) reported in recent studies that stilbenes could act as compounds that
help in the preservation of wine. Guerrero et al. (2020) explored this property, iden-
tifying the stilbene composition and concentration in wines as a quality marker.

Fig. 1.5 Stilbene skeleton Ro
structures
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1.2.1.4 Lignans

Lignans are a group of diphenolic compounds (two units of phenylpropane units)
linked by a C-C bond between the central atoms of the respective side chains
(position 8 or ), as we can see in the Fig. 1.6 (Linder et al. 2015). This type of
polyphenol is concentrated in the bran layer of cereal grain (Higuchi 2014).

Observing the Fig. 1.7, a compound is considered a lignan if the two units of
phenylpropane (in the dimericcase) are linked by a -4’ bond, subsequently denom-
inated 8-8" bond (Linder et al. 2015). However, according to Linder et al. (2015),
we can found neolignans that consist in units of phenylpropane combined in
other way.

According to Das and Devi (2019), we can classify lignans in 8 subgroups based
on their carbon skeleton, cyclization pattern, and the way in which oxygen is incor-
porated in the molecule skeleton. The subgroups consist in: furans, furofurans,
dibenzylbutanes, dibenzylbutyrolactones, dibenzocyclooctadienes, dibenzylbutyro-
lactols, aryltetralins and arylnaphthalenes (Das and Devi 2019). The Fig. 1.8 shows
some generic of lignan skeleton structure.

In addition, according Linder et al. (2015), lignans are also classified into three
categories in relation to oxygen position: lignans with oxygen at the 9(9")-carbon,
lignans without oxygen at the 9(9")-carbon, lignans with dicarboxylic acid. There is
possible to find some lignan in more than one category and/or there exist different
cyclization patterns for a given type. Furan lignans is one example of this behavior,
itis alignin that occur with or without oxygen at the 9(9”)-carbon (Linder et al. 2015).

Foods rich in lignin (seeds, whole-grain cereals, and nuts) have been associated
with biological activities such as cytotoxic (Huang et al. 2013), antioxidative (Duan
et al. 2009), anti-bacterial (Tago et al. 2008), immunosuppressive (Park et al. 2007),
anti-inflammatory (Zheng et al. 2014), anti-HIV (Chen et al. 1996), etc.

Fig. 1.6 Phenylpropane 7 9
units 2 B CH 3
3 Y a
1 8
4 6
5

Fig. 1.7 Lignan skeleton
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Lignans such as secoisolariciresinol and its precursor secoisolariciresinol diglu-
coside are the most abundant lignans found in the diet (Peirotén et al. 2019).
Moreover, other lignans such as matairesinol, and the secoisolariciresinol precur-
sors pinoresinol and lariciresinol, can also be found in some plant foods
(Landete 2012).

Summing up, from the main structure surrounding the phenolic ring, there are
highly diversified classes of secondary metabolites, named phenolic compounds,
distributed widely in the plant kingdom. Moreover, the diversified structures show
interesting and different properties that has attracted the attention of many sectors
as biochemistry, physiology, human nutrition, and health.

1.3 Rich Sources of Polyphenols

1.3.1 Wine and Grape Pomace

The main sources of phenolic compounds in red wine are found in grape skins, pulp
and seeds. During fermentation, important flavonoids (present in the rind, pulp and
seeds) are transferred to the wine. Regarding white wine, the mixture is made from
free running, without the mixture of grapes, i.e. without contact with the skin of the
grape. Thus, when compared to red wine, white wines have lower polyphenol con-
tent and lower antioxidant properties (Fuhrman et al. 2001).

Flavonols are the main flavonoids present in wine. Among them, stand out quer-
cetin, kaemppferol and myricetin. Also can be mentioned tannins, proanthocyani-
dins and flavanols, such as catechin and epicatechin (Shahidi and Ambigaipalan
2015). The concentration of phenolic compounds of red wines made from dark-
skinned grapes usually contain about 3500 mg/L, in which the flavonoid portion
corresponds to 1000-1800 mg/L (Di Lorenzo et al. 2016).

Wines and grapes also have phenolic acids and stilbenes in their composition.
Phenolic acids can be found in both red and white wine. Among them can be men-
tioned quinic and shikimic and tartaric acid, present in their free form or glycosyl-
ated derivatives (Monagas et al. 2005).

Grape pomace is a low-cost source of phytochemicals. Different polyphenols are
found in grape pomace. Among them, flavonols such as catechin, epicatechin and
proanthocyanidins, as well phenolic acids, tannins and anthocyanins. There are sev-
eral phenolic compounds found in grape skin, such as proanthocyanidins, ellagic
acid, myricetin, prodelphinidins, kaempferol, quercetin and trans-resveratrol. In the
grape seed there is catechin, epicatechin, gallic acid, proanthocyanidins and dimeric
procyanidin (Brenes et al. 2016).

In grape seeds a higher concentration of phenolic compounds can be found than
in grape skin. For example, in seed about up to 16.518 mg of catechin equivalents
(EC)/100 g can be found. In the skin the value found was up to 1839 mg EC/100 g.
Grape seed is abundant in flavonols (oligomeric and polymeric compounds) that
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have high antioxidant capacity, while the skin is very rich in anthocyanins
(289-935mg/100 g) (Rockenbach etal. 2011). Flavonols (quercetin 3-O-glucuronide
and 3-O-rutinoside-rutin) were found in grape stems, as well phenolic acids and
dihydroflavonols like astribin (Karvela et al. 2009). There are several potential
applications grape pomace, however grape pomace is mostly used for the produc-
tion of animal feed (Celma et al. 2009).

1.3.2 Apple

Apple (Malus domestica Borkh) is a widely consumed fruit worldwide—the third
largest production, 11.6 million tons (Bondonno et al. 2017; Rabetafika et al. 2014).

The main groups of polyphenols in apple are: phenolic acids, flavanols, anthocy-
anidins, flavonols, and dihydrochalcones. The major apple flavonoids are procyani-
dins, catechins, quercetin glycosides, dihydrochalcones, hydroxybenzoic acids and
hydroxycinnamic acids and their derivatives (Bondonno et al. 2017; Kalinowska
et al. 2014; Khanizadeh et al. 2008; Van Der Sluis et al. 2002).

The total phenolic content in the apple peel is significantly higher and in the tis-
sue located just below the peel, than in the pulp, since apple skin contains ~46% of
the total phenolics in apples (Kalinowska et al. 2014; Kondo et al. 2002; McGhie
et al. 2005).

A low concentration of are flavonoids found in apple juice. Regarding commer-
cially available apple juice, the concentration of quercetin is 14 times lower than
that found in apples fruits (Hertog et al. 1993).

Substantial fraction of apple fruit production, about 30%, it has used to manufac-
ture processed foods, like beverages and desserts. After production, around 11% of
the initial mass of the fruit is transformed into by-products (skin, pulp and seeds),
generating annually, about three million tons of waste (Bondonno et al. 2017;
Kammerer et al. 2014; Rana et al. 2015). In the apple pomace, there are several
polyphenols including flavanols, flavonols and anthocyanins such as cyanidin-3-
galactosides (Difieiro Garcia et al. 2009; Kammerer et al. 2014).

1.3.3 Berries

Among the berries black chokeberry, blackcurrant, black elderberry, blueberry,
blackberry, raspberry, blackberry, strawberry and black grapes stand out due to high
content of phenolic compounds (Kowalska et al. 2017; Skrovankova et al. 2015;
Tylewicz et al. 2018).

One of the largest sources of polyphenols found is black chokeberry pomace.
The production of chokeberry juice generates a larger amount of pomace. In addi-
tion, seed fractions, have high total dietary fiber content ~75%, which are rich in
proanthocyanidins (12,000 mg/100 g), anthocyanins (1200 mg/100 g) and amygda-
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lin (7-185 mg/100 g), and can be used in the preparation of dietary fibers prepara-
tions and/or phenolic extracts (Séjka et al. 2013). Beyond that black elderberry
contains a high amount of anthocyanins (813 mg/100 g), besides flavonols and cin-
namic acid derivatives (Silva et al. 2017).

Blackberries contain severals polyphenols, in particular, stands out anthocya-
nins, like cyanidin-3-glucoside (Siriwoharn et al. 2004). Blackberries, raspber-
ries, and strawberries have a similar amount of total phenolic compounds
(215-260 mg/100 g) (Pérez-Jiménez et al. 2010). However, when compared to
blueberries, blackberries, and raspberries; strawberries have a significant lower
content of anthocyanins (Skrovankova et al. 2015).

The anthocyanins present in blueberries are mainly present in the skin. Many of
these anthocyanins, exhibit excellent antioxidant activity, such as: delphinidin-3-
O-galactoside, cyanidin-3-O-galactoside, delphinidin-3-O-arabinoside (Borges
et al. 2010).

Likewise black currants and blueberries, cranberries contain high content of phe-
nolics. Nevertheless cranberries have high content of flavonoids and the main phe-
nolic compounds is ellagic acid (about 51% of the total) (Grace et al. 2014;
Skrovankova et al. 2015; Tylewicz et al. 2018).

1.3.4 Orange, Guava and Pomegranate

Orange, including orange juice and their by-products have high levels of flavanones
(hesperidin and narirutin) (Roowi et al. 2009).

The manufacture of orange juice leads to the production of various by-products
such as seeds, pulp, leaves, peel and whole fruits (Rezzadori et al. 2012). After the
juice is extracted, the solid residues of the orange industry represented by the peels,
seeds and pulp, equivalent to about 50% of the weight of each fruit and with approx-
imately 82% humidity, are transformed into pelletized bran. This bran is mainly
used as a dietary supplement to cattle herds (Tienne et al. 2004). However, the most
valuable byproduct of a citrus fruit is found in the orange peel (essential oil), being
widely used as food and cosmetic ingredients (Rezzadori et al. 2012).

Guava fruits are rich in anthocyanins, flavonoids, proanthocyanidins and other
phenolic classes including phenolic acids, flavonols and tannins (Giil¢in 2012;
Rojas-Garbanzo et al. 2017; Shi et al. 2005).

According to Rojas-Garbanzo et al. (2017), several polyphenols are reported,
and 24 compounds were detected for the first time in P. guajava. Among them,
phlorizin, nothofagin and astringin.

Pomegranate is a source of anthocyanins, ellagitannins and other phenolic sub-
stances with antioxidant and antitumor activities. Polyphenols are distributed in the
peel, pulp and seeds, however in the peel has the highest polyphenol content (Fischer
et al. 2011; Lansky and Newman 2007).

In pomegranate juice, a higher content of polyphenols can be found than in other
fruit juices. The main class of polyphenols found is anthocyanins, such as
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delphinidin-3-glucoside and cyanidin-3,5-diglucoside, followed by elagitanines and
gallic and ellagic acids (Aviram and Rosenblat 2012; Bakkalbasi et al. 2009; Gil
et al. 2000).

1.3.5 Potatoes, Sweat Potato, Cassava, Tomatoes, Onions
and Cabbage

High flavonoid content was found for green and purple sweet potato leaves and
onion leaves. In addition, sweet potato green leaves showed high antioxidant activ-
ity and reducing potential in comparasion with cabbage, spinach and potato (Chu
et al. 2000).

Antioxidant activities have been found in several vegetables as perilla leaf, pep-
per and ginseng leaf, sweet potato leaf, chinese toon bud, loosestrife, cowpea, lotus
root, soybean, that may be important for disease prevention caused by oxida-
tive stress.

In these vegetables were identified phenolic compounds such as chlorogenic and
gallic acids. Besides, a positive relationship was observed between antioxidant
activity and total phenolic content (Deng et al. 2013).

According to FAO, in 2015, the potatoes represented the fifth largest harvest in
the world (Tylewicz et al. 2018). The polyphenols in potatoes are present in flesh
and skin. About 50% of the total polyphenol content was located in the tuber,
whereas the remaining concentration decreases as it approaches the center of the
tubers (Akyol et al. 2016; Friedman 1997).

Phenolic acids represent most of the polyphenols present in potatoes. Among
these, chlorogenic acid is the most abundant, followed by caffeic acid, gallic acid,
ferulic acid, among others (Akyol et al. 2016; Dao and Friedman 1992). However,
the content of chlorogenic acid in potatoes can be reduced with food processing
(e.g. heating)., which depends on the nature of the heat source used (Dao and
Friedman 1992).

The second largest category of potato polyphenols is flavonoids. The main flavo-
noids in the tubers were flavanones, naringenin and eriodictyol, flavanols, catechin
and epicatechin (Lewis et al. 1998).

The main phenolic compound found in potato peel extract is chlorogenic acid,
and the phenolic content found is about 70.82 mg of CE/100 g. (Akyol et al. 2016;
Kanatt et al. 2005).

Pigmented potatoes, such as red and purple ones are rich in anthocyanins, which
may be used in the food industry, since the potato production cost is not as high
compared to other crops. However, potatoes with high anthocyanin concentrations
are required for the pigment extraction process (Ezekiel et al. 2013).

The main phenolic acid found in sweet potatoes is chlorogenic acid, and the
highest content is present in a white pulp cultivar. Among the other phenolic
acids present, can be highlighted 3,5-dicafeoylquinic acid, 3,4-dicafeoiliquinic,
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4,5-dicafeoiliquinic and caffeic acids. The highest contents of these acids are
found in a variety of purple pulp (Padda and Picha 2008).

Purple-fleshed sweet potatoes are also high in anthocyanins. About 39 anthocya-
nins have already been identified and they are dominated by cyanidin and peonidin
aglycones (Gras et al. 2017; Oki et al. 2002).

Sweet potato leaves are considered processing residues, however, studies indi-
cate that phenolic compounds such as 3,4,5-tri-O-caffeoylquinic acid can be found,
and these compounds present a high antioxidant potential (Islam et al. 2002; Shahidi
and Ambigaipalan 2015).

Regarding cassava, it has been found that polyphenol content in flours ranges
from 2.1 to 120 mg/100 g. These polyphenols can form insoluble complexes, inac-
tivating the thiamine enzyme, which will reduce starch digestibility. On the other
hand, tannins and also catechins, have antioxidant and anticarcinogenic activities
and are beneficial to the cardiovascular system (Chung et al. 1998; Wobeto
et al. 2007).

The main polyphenols in tomatoes (range from 0.1 to 18.2 mg/100 g) are narin-
genin chalcone, rutin and quercetin. Anthocyanins such as delfidine and malvidine
can also be found. (Marti et al. 2016; Tylewicz et al. 2018). The main phenolic acids
identified in tomato peel are procatchoic and vanillic acid, with concentrations of
5.52 and 3.31 mg/100 g, respectively (Elbadrawy and Sello 2016).

Among the flavonols present in tomatoes, the main ones are quercetin conju-
gates; however, kaempferol amounts and traces of free aglycones were also found
(Crozier et al. 1997).

In the pericarp and pulp of immature green tomatoes a high content of chloro-
genic acid can be found. This acid level varies with fruit maturation as the fruit turns
pink and then red (Shahidi and Ambigaipalan 2015; Toor and Savage 2005).

Tomato peels and seeds are usually removed during processing. Lyophilized
tomato peel extracts showed a total polyphenol yield of 38.67 mg tannic acid equiv-
alent/100 g peel (Sarkar and Kaul 2014).

Several flavonoids are found in onions, in particular quercetin, kaempferol,
myricetin, and catechin (Pérez-Gregorio et al. 2014; Shahidi and Ambigaipalan
2015). In onions, monoglucoside quercetin and diglucoside quercetin represent
80% of the total flavonoids. Quercetin glucoside levels are much higher in onions
than in other vegetables (Rhodes and Price 1996; Shahidi and Ambigaipalan 2015).

The total phenolic content in yellow onion ranges from 6.06 +0.24 t0 22.32 + 1.62
gallic acid equivalents (GAE) mg/g, and from 5.71 = 0.20 to 18.58 + 0.62 GAE
mg/g dry weight in red onions (Cheng et al. 2013). In onions, low content of pheno-
lic acids are bounded to cell walls., in which protocatechuic acid is the most (Ng
et al. 2000). Anthocyanins are part of a lower proportion of flavonoids present in the
edible portion of red onion. In this type of onion, the total flavonoid content is gen-
erally higher than in white or yellow onion bulbs (Rhodes and Price 1996; Shahidi
and Ambigaipalan 2015).

A amount in the range of 600.72-2230.89 mg/100 g of quercetin can be found in
onion bagasse, which varies with onion variety (Rolddn et al. 2008; Tylewicz
et al. 2018).
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Cabbage is a good source of polyphenols, also rich in carbohydrates and vitamin
C. Brassica vegetables, including all cabbage-like vegetables, are a genus of the
Cruciferae family and contribute to the intake of glucosinolates (Chun et al. 2004;
Shahidi and Ambigaipalan 2015).

1.3.6 Cereals

A variety of phytochemicals can be found in whole grains such as phenolic com-
pounds, carotenoids, y-oryzanol, dietary fibers and vitamin E (Okarter and Liu
2010). The main polyphenols found in whole grains are phenolic acids. Other
classes of polyphenols are flavonoids and lignans. The ferulic acid is the major phe-
nolic acid found in grains (mainly in the cortical layer). Other acids that may be
cited are caffeic, oxalic and p-comuraic acids (Deng et al. 2012; Tian et al. 2019).

The phenolic content varies according to grain, for instance wheat (7.99 pg/g),
oats (6.53 pg/g), and rice (5.56 pg/g) (Adom and Liu 2002; Tian et al. 2019).

A higher concentration of polyphenols can be found in whole grains when com-
pared to grains that have been processed. In the case of rice for example, the pheno-
lic portion is present mainly in the cortical layer of the grains. When the grain is
polished, this part is removed, removing ferulic acid. For this reason, brown rice has
more phenols than polished rice. Another factor that can be considered is that in
smaller grains of rye, oat, millet and rice there is a higher availability of ferulic acid
when compared to larger grains. This is because the acid is bound to the total fiber
content (McCarty and Assanga 2018).

In cereal grains, there is no uniform distribution of phenolic compounds. The
outer layers of the grain (bark, forehead, pericarp and aleurone) have a higher con-
centration of phenolics when compared to the endosperm. Usually, the outer layers
are used for bran production, and the endosperm layer is used for refined flour pro-
duction (Kaur et al. 2014; Tylewicz et al. 2018).

In wheat, the main phenolics are phenolic acids and flavonoids. These com-
pounds are mainly found in the outer layer of the grain. There is a variation among
wheat genotypes regarding the content of phenolic compounds, flavonoids, lignans
and anthocyanins present (Zili¢ 2016). The main phenolic compounds present in
wheat are ferulic acid and p-coumaric acid (Zili¢ et al. 2012).

There are several phenolic acids in wheat grains, such as hydroxybenzoic acids
and hydroxycinnamic acids. Among them, ferulic acid is the main one, with concen-
trations around 1000 pg/g (Herndndez et al. 2011). Leoncini et al. (2012) studied six
varieties of wheat. The end result showed that the total flavonoid content varies
depending on wheat cultivar. It was found in cultivar Rassineto the highest phenolic
content (173.48 mg GAE/100 g of grain), which was similar to other cultivars
(Andriolo, Gentil rosso, Inallettabile and Verna).

Phenolic compounds of oat are mainly found in the bran layer, although some are
present in groats and hulls (Gangopadhyay et al. 2015; Ratnasari et al. 2017).
Phenolic compounds in oat, as well in other cereals, are either in free or bound
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forms (Naczk and Shahidi 2006). The main phenolic compounds in oat grain are
phenolic acids, avenatramides and flavonoids. Among the phenolic acids, stand out
the gallic, benzoic caffeic and ferulic acids. In the bound fraction, the phenolic con-
centration is higher, with ferulic acid being the main compound. The flavonoids
found in the free fraction are as follows: catechin, rutin, quercetin, and tricin.
However, the flavonoid found in the bound fraction is kaempferol (Hitayezu et al.
2015; Tylewicz et al. 2018; Verardo et al. 2011).

A phenolic compound that is only found in oats are avenantramides. It is an
antipathogen produced by the plant itself in response to exposure to other pathogens
such as fungi.

The avenanthramides are low-molecular-weight soluble phenolic compounds
which are not present in other cereal grains, only in oats. These compounds are
antipathogens (phytoalexins), which are produced by the plant in response to expo-
sure to pathogens such as fungi. The avenanthramides 2c, 2p and 2f are the main
ones found in oats (Hitayezu et al. 2015; Meydani 2009; Verardo et al. 2011).

The sorghum has a diversity of phytochemicals, especially the polyphenols.
Several phenolic compounds are found in extracts obtained from white, red and
brown sorghum grains. The main family of these compounds are phenolic acids,
such as ferulic and caffeic acids (Chiremba et al. 2012; Stanisavljevi¢ et al. 2016).
There are several flavoinoids found in sorghum, including: luteolin, apigenin, cate-
chin and quercetin. As in other grains the outer layer of the grain is the richest in
phenolic compounds (Moraes et al. 2015; Tylewicz et al. 2018).

In rice, various phenolic compounds are found, such as phenolic acids, antho-
cyanins and proanthocyanins. Phenolic acids include ferulic, p-coumaric, isoferulic
and caffeic acids. Among them, ferulic acid is the most abundantly found.
Proanthocyanidins in rice are usually type B, but recent research shows that type A
and B coexist in red and black rice (Shao and Bao 2015).

Several anthocyanins were determined in colored rice grains. The main anthocy-
anin found in colored rice does cyanidin-3-glucoside, besides red and black rice
also shows peonidin-3-glucoside, and in the black rice evidence of cyanidin-3-
glucoside was found (Kapcum et al. 2016; Zhang et al. 2010).

In millets, besides micro and macronutrients, can also be found important phyto-
chemicals, especially phenolic compounds. The main polyphenols present in millet
are hydroxybenzoic (protocatechuic, phydroxybenzoic) and hydroxycinnamic
(p-coumaric, ferulic syringic) acids, in addition to flavonoids and proanthocyani-
dins (Devi et al. 2014; Xiang et al. 2019). In finger millet free fractions, flavonoids
such as catechin, epicatechin and quercetin are present. Phenolic acids are also pres-
ent, but in lower concentration. Ferulic acid is also the major phenolic acid in millet,
however p-coumaric, caffeic and protocatechuic acids are also present (Xiang et al.
2019). In finger millet of colored pericarp varieties, a higher concentration of phe-
nolic compounds is found when compared to white pericarp varieties (Xiang
et al. 2019).

In maize grains, the main phenolic compounds are phenolic acids, however,
other phenolics such as anthocyanins, flavonols, and flavanols have been identified
in colored maize grains (Salinas-Moreno et al. 2017). Several phenolic acids are
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present in corn, such as caffeic, vanillic acids, among others. However the main
ones are ferulic and p-coumaric acids present in soluble form, or attached to the cell
wall (Salinas-Moreno et al. 2017). In the bound fraction of maize a higher concen-
tration of phenolic compounds was found (150-300 mg/100 g), when compared to
the free fraction (1-5 mg/100 g) (Gonzalez-Mufioz et al. 2013). Other classes of
phenolic compounds found in maize include quercetin, kaempferol, and isorhamne-
tin, which were found in purple corn. In colored corn cultivars, anthocyanins have
been found, including elargonidin, cyanidin, and peonidin (Montilla et al. 2011;
Paucar-Menacho et al. 2017; Tylewicz et al. 2018).

In barley, polyphenols may be present in bound, conjugated or free form. The
main classes are flavonoids, lignans and phenolic acids (Fogarasi et al. 2015). The
main phenolic acids in barley are benzoic and cinnamic acids. These acids are found
in greater concentration in the bound form than in the conjugate and free form. The
abundance of phenolic acids in barley indicates that it can serve as an excellent
source of natural antioxidants (Idehen et al. 2017; Quinde-Axtell and Baik 2006;
Zhao and Moghadasian 2008).

In the free form of barley, the concentration of phenolic acids varies between 4.6
and 23 mg/g, while in the conjugate form the value varies between 86 and 198 mg/g.
In bound form, this value ranges from 133 to 523 mg/g. (Abdel-Aal et al. 2012;
Holtekjglen et al. 2006). The major flavonoids in barley grains are flavanols, antho-
cyanins, which are located in the pericarp, mostly glycoside derivatives.
Proanthocyanins are also present (Abdel-Aal et al. 2012; Idehen et al. 2017).

1.3.7 Coffee and Teas

Teas and coffees are two of the most popular beverages in the world. In both, poly-
phenols such as flavonoids are present and contribute to taste and health properties
(Wang and Ho 2009).

Coffee is a beverage with stimulating power due to the presence of caffeine;
however, other compounds are identified in this drink and many of them have health
benefits, such as flavonoids, chlorogenic, caffeic, gallic and ferulic acid (Esquivel
and Jiménez 2012; Meletis 2006).

Coffee flavor is strongly influenced by the presence of phenolic compounds, and
42 phenolics have been identified as being present in roasted coffee aroma. In coffee
beverages, the main phenolic compounds are chlorogenic acids, in the form of vari-
ous isomers, considered the most important and those present in greater quantities
in green coffee beans. In coffee seeds, tannins, lignans and anthocyanins are another
phenolic compounds present, but in smaller quantities. In coffee pulp, condensed
tannins stands out as the main phenolic compounds (Clifford 1985; Farah and
Donangelo 2006).

It was identified chlorogenic, gallic and protocatechuic acids in extracts obtained
from spent coffee grounds and husks, suggesting the potential use of these residues
in the recovery of phenolic compounds (Andrade et al. 2012).
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Tea is a beverage produced from the tea plant (Camellia sinensis), that are rich in
polyphenols (Tylewicz et al. 2018). The main polyphenols in tea leaves include fla-
vonoids, particularly flavanols, and phenolic acids (Coe et al. 2013; Wang and
Ho 2009).

Green tea is a minimally processed product obtained from freshly harvested
leaves of the Camellia sinensis plant. Immediately after harvesting, tea leaves are
heat treated to inactivate polyphenol oxidase, which preserves the freshness of the
tea and its monomeric polyphenol profile (Bruno et al. 2014; Frei and Higdon 2003).

In green tea, about 42% of soluble solids are catechins such as epigallocatechin
gallate, epigallocatechin, gallocatechin and epicatechin (Bradfield and Bate-Smith
1950; Graham 1992).

Black tea is a processed product obtained from the complete fermentation of
fresh tea leaves and is characterized by the orange-brown color. This feature comes
from the presence of teaflavins and thearubigins. In addition to color, these com-
pounds are responsible for the flavor of black tea (Ferruzzi 2010). The polyphenols
concentration in the black tea decreases during fermentation, then, the longer the
processing time, the lower the polyphenols content in the tea (Astill et al. 2001).

Oolong teas are produced from the partial fermentation of tea leaves. The pro-
cess is carried out in various ways and the products vary with respect to the degree
of catechin oxidation that is observed. Because it is only partially fermented, it
retains a considerable number of original polyphenols. Oolong tea composition is
estimated to be intermediate between green and black teas (Graham 1992; Wang
and Ho 2009).

1.3.8 Olive Oil

In olive oil, the main phenolic compounds are secoiridoids followed by phenolic
alcohols, lignans and flavones (Bendini et al. 2007; Brenes et al. 2000).

The secoiridoids are only found in plants of the Olearaceae family. They are
compounds produced by metabolism secondary of terpenes. One of the characteris-
tics of these compounds is the presence of elenolic acid in their molecular structure
(Bendini et al. 2007). The most abundant secoiridoids of virgin olive oil are the
dialdehydic form of elenolic acid (Montedoro et al. 1992a, b, 1993). Tyrosol and
hydroxytyrosol are the main phenyl alcohols found in olive oil (Oliveras-Lépez
et al. 2007).

The main phenolic acids present in olive oil are: protocatechuic, gallic, vanillic,
caffeic acid, among others (Franco et al. 2014; Tylewicz et al. 2018).

In olives and virgin olive oil, natural lignans as (+) - pinoresinol and
I-acetoxypynoresinol are found. Pinoresinol (+) was found in other plants, how-
ever, 1-acetoxypynoresinol is often found only in olives. It is widely accepted that
lignan consumption has beneficial health effects. Therefore, these two compounds
are of great interest based on their properties (Lopez-Biedma et al. 2016).
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Flavonoids are important part in the polar fraction of olive oil. Among these fla-
vonoids, luteolin, apigenin and diosmetine can be highlighted (Kelebek et al. 2017).

The main difference between olive leaves composition for olive oil can be con-
sidered the presence of oleuropein, as well ligstroside and several other flavonols in
their glycoside form, that are not found in oil (Talhaoui et al. 2015).

As in olive oil, secoiridoids are the main class of phenolic compounds found in
olive leaves. The component with the highest phenolic fraction in olive leaves is
oleorupine (24.7 and 143.2 x 103 mg/kg). Olive leaves have a higher concentration
of phenolic compounds (10,000-82,000 mg/k), when compared to olive oil
(40-1000 mg/kg) (Bajoub et al. 2017; Loubiri et al. 2017; Talhaoui et al. 2014;
Tylewicz et al. 2018).

1.4 Effect of Polyphenols on Human Health

Regarding nutraceuticals, polyphenols have been drawn attention, for instance
Blackcurrant (Ribes nigrum) berrie have been named “superfruits” due to the pres-
ence of important sources of phytochemicals that have huge potential as immuno-
modulators, antimicrobials and anti-inflammatories, inhibiting low density
lipoprotein and reducing cardiovascular disease. It has been cultivated for use in
beverages and has a reputation for excellent health characteristics due to its high
antioxidant content (Nour et al. 2013; Shahidi and Ambigaipalan 2015). Therefore,
polyphenols consumption plays a fundamental role on human health, for instance
antioxidant, anti-inflamatory, diabetes controller, microbiome modulator, anti-
aging, antihypertensive and anticancer - briefly described below:

1.4.1 Antioxidant

Superoxide radical, peroxynitrite radical, nitric oxide, hydroxyl radical, and hydro-
gen peroxide, are ubiquitous molecules knows as reactive oxygen species, since
reactive oxygen species are inherently produced by all living cells - metabolism.
Reactive oxygen species are highly reactive molecules, short-lived derivatives of
oxygen metabolism. Reactive oxygen species, at low concentrations, are essential to
regular metabolism, more specifically intracellular communication, cell differentia-
tion, apoptosis, antimicrobial and immunity properties. An oxidative stress condi-
tion occurs when the living cells have high reactive oxygen species rate and/or a
depression of their antioxidant systems (unbalanced) (Roberts and Sindhu 2009).
Aerobic organisms produce, primarily, superoxide radical which is highly cyto-
toxic. Reactive oxygen species can react with biomolecules, for instance reactive
oxygen species can damage DNA which may lead to chances on protein conforma-
tion; induce nucleic acid modifications or enhance lipid peroxidation. Oxidized and
nitrated reactive oxygen species compounds usually affect cell signaling and basal
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cellular functions. These disorders are related to health problems such as atheroscle-
rosis and inflammation. Therefore, reactive oxygen species show harmful effects on
human health, in particular metabolic syndrome, type 2 diabetes and cardiovascular
diseases (coronary and hypertension) (Roberts and Sindhu 2009).

According to Huang et al. (2005), antioxidant activity is related to oxidation lip-
ids, proteins, among other biomolecules that occurs by reducing the oxidative chain
reactions, in particular propagation stage. Free radicals are directly scavenged by
primary antioxidants, whereas secondary antioxidants act indirectly, restricting the
production of free radicals by Fenton reactions. In this sense, polyphenols have
remarkable antioxidant properties, since they are efficient scavengers of reactive
oxygen species.

High intakes of polyunsaturated fatty acids lead to generation of toxic lipid oxi-
dation species. Lamothe et al. (2019) investigated the effects of grape juice and tea
(polyphenol-rich beverages) and milk on generation of toxic lipid oxidation species.
Significant reductions of 4-hydroxyhexanal and 4-hydroxynonenal (toxic lipid oxi-
dation species) were observed due to milk or polyphenol-rich beverages; 60% and
75% respectively.

Higher content of phenolic compounds with associated antioxidant activity was
related to white guava (P. guajava L.) and red guava (P. guajava L.) leaves, when
compared with other vegetables. On the other hand, between the white and red
leaves of guava, the highest concentration of total phenolics is found in the pyrifera
variety (Dfaz-de-Cerio et al. 2016; Wang et al. 2007).

The antioxidant potential of cabbage was already widely reported in the litera-
ture. Red cabbage exhibits greater antioxidant capacity than white cabbage. In gen-
eral, when compared to green cabbage, Chinese cabbage and Chinese white cabbage,
red cabbage has the highest antioxidant activity (Abu-Ghannam and Jaiswal 2015;
Amin and Lee 2005; Jaiswal et al. 2011).

In red cabbages, cyanidine glycosides are the main pigments found. Studies have
shown that cyanidine made an excellent contribution to antioxidant capacity, and
also to total flavonoid and phenolic content (Chun et al. 2004).

Oats have high concentration of f-glucan that are widely known for its health
properties. Oats also have >20 exceptional (unique), for instance phenolic alkaloids
(avenanthramides) (Meydani 2009).

Therefore, polyphenols are essential to balance antioxidant systems, that is, they
are an excellent assistant for human health.

1.4.2 Anti-Inflammatory

Inflammation is a defense mechanism towards tissue imbalances. It is the immune
system’s response to harmful stimuli including pathogens, toxic compounds,
lesions, osmotic stress, etc. Thus inflammation restores tissue homeostasis. It is
worth noting that some diseases such as cardiovascular, cancer and chronic inflam-
matory are inflammation based diseases (Bollmann et al. 2014).
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The antioxidant properties of polyphenols are widely known, nevertheless poly-
phenols have also anti-inflammatory properties, in particular those related to have
been modulations of the arachidonic acid cascade. In this sense, according to Hartung
etal. (2019), isoflavone genistein has potent 5-lipoxygenase inhibition in neutrophils
(white blood cell). Then, the authors studied the effects of 5-lipoxygenase-inhibiting
polyphenols on all branches arachidonic acid cascade. In addition, resveratrol inhib-
ited the cyclooxygenase activity and also minimized lipoxygenase activity. Briefly,
it was concluded that polyphenols have the ability to block 5-lipoxygenase activity.

The KH-type splicing regulatory protein is a regulator of multiple inherently
unstable mRNAs in most cases related (coding) to pro-inflammatory intermediators
such as TNFa and interleukin-8. Bollmann et al. (2014) used treated human cells,
more specifically DLD-1 or Mono Mac 6, with polyphenol resveratrol. The authors
observed a lower cytokine induced expression of TNFa, interleukin-8 and inducible
nitric oxide synthase (effect of resveratrol).

Garcia-Lafuente et al. (2009) reported a review on anti-inflammatory properties
of polyphenols, which represents the state of art in this subject. The authors pointed
out that most experiments are in vitro studies, thus there is a lack of in vivo data
(models), which makes it difficult to draw deep conclusions about anti-inflammatory
properties of polyphenols.

1.4.3 Diabetes Controller

Diabetes mellitus is a syndrome relates to improper fasting or postprandial hyper-
glycemia due to insulin deficiency and its consequent effects on fat and protein
metabolisms. Type 2 diabetes is a gradual condition which insulin loses its activity
and/or pancreas reduces insulin production. The incidence of Type 2 diabetes has
increased since the last decade which leads to social and economic costs (Hartung
et al. 2019).

Curcumin is a polyphenol that can be obtained from Curcuma longa (turmeric
plant). Curcumin (0.2 mg of curcumin/kg diet) enhances insulin resistance in ham-
sters and mice. In addition, curcumin increases insulin content and decreases the
blood concentration of triglyceride and glucose content. As a result, curcumin
reduce body weight gain and vascular endothelial growth factor (Seo et al. 2008;
Aryaeian et al. 2017). The effects of curcumin on human health were also investi-
gated. Over 240 prediabetic adults have received, every day, 250 mg of curcumin or
placebo, during the 9 months. The analysis of results indicated that curcumin pre-
vented all type 2 diabetes cases (Chuengsamarn et al. 2012; Aryaeian et al. 2017).

Resveratrol, a non-flavonoid polyphenol, is widely found in grapes, peanuts,
cranberries, and blueberries. 19 type 2 diabetic patients received orally 2 x 5 mg
resveratrol or placebo for 28 days. Resveratrol reduced insulin resistance, on the
other hand, the p-cell function was unaffected (Brasnyo6 et al. 2011; Aryaeian et al.
2017). Similarly, 14 type 2 diabetic patients have received 6 mg of cinnamon poly-
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phenols. The authors conclude that cinnamon polyphenols decreased blood glucose
levels (Hlebowicz et al. 2007; Aryaeian et al. 2017).

Costabile et al. (2018) studied the effects of red grape pomace consumption by
human. The authors observed that of red grape pomace polyphenols have reduced
the insulin secretion and increase its sensitivity, probably mediated by gallic acid. In
addition, the dietary drink with a given dose of polyphenols (3 g of polyphenol per
day) led to a significant increasing in the concentrations of glucose tolerance, insu-
lin sensitivity and postprandial following a 4 month supplementation with flour rich
in polyphenols in patients prone to having diabetes, heart disease or stroke. (cardio-
metabolic risk). An important finding has been demonstrated about the positive
effects of polyphenols on glucose homeostasis, improving insulin sensitivity.

Thus, specific polyphenols as curcumin, resveratrol and red grape pomace poly-
phenols can positively affect sugar metabolism and preserve type 2 diabetic.

1.4.4 Microbiome Modulator

Microbiome is the microorganism community composed of bacteria (mostly),
yeasts, virus and fungi, living in and on all vertebrates. Microbiome, in particular
gut microbiome, is a key modulator of human health. The human gut microbiome is
composed of trillions of bacteria. The relation between microbiome and health has
been drawn attention, since it directly impact on human health. Specific compounds
such as polyphenols can simultaneously favor some bacteria genera and inhibit
other bacteria genera, which lead to unique microbiome architecture. Thus, it will
change the gut microbiome and thus impact on human health.

Apples have high content of polyphenols. Trost et al. (2018) described a study, in
which 12 men and women consumed 0.25 L of apple juices (cloudy or enriched
with 0.750 g of an apple polyphenol extract. Faecal samples were collected indi-
vidually. The authors identified a very strong relation between gut microbiome and
apple polyphenols. In addition, they speculated (since data were not statistically
significant) that some metabolic produced from polyphenols are correlated to pre-
dominance of specific bacterial genera. Similarly, Queipo-Ortuiio et al. (2012)
investigated the effects of red wine intake (source of polyphenols) on select gut
microbial groups. Experiments were carried out over 20 days (272 mL/d), which
involved ten healthy adult men aged (=48 years). The authors observed that domi-
nant bacterial composition changed over experiments. The intake of red wine induce
higher Enterococcus, Prevotella, Bacteroides, Bifidobacterium, Bacteroides unifor-
mis, Eggerthella lenta, and Blautia coccoides. Thus, red wine modulates gut micro-
biota, in which prebiotic microorganisms as Bifidobacterium are benefited.
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1.4.5 Anti-Aging

During the aging, there are degradation in the skin layers. Which provide changes
the visual and physical aspects of the skin (Mukherjee et al. 2011).

In their study, Zhuang et al. (2017) verified that rambutan peel phenolic (RPP)
extracts act in the protection of H,0,-induced HepG2 cells against oxidative stress.
These inhibitory effects are due the extract capacity to inhibit the formation of
intracellular ROS and provide an enhance on superoxide dismutase activity. The
RPP also showed an increased in the in vivo anti-aging activity, and their histologi-
cal evaluations showed that extracts decreased the liver and kidney damage.

Many plant-derived foods have in their composition proanthocyanidins (PAC).
Jiao et al. (2017) investigated the use A-type and B-type proanthocyanidins from
cranberry concentrate and grape seed extract against aging. Both products tested
decreased the brain and hepatic thiobarbituric acid, plasma 8-isoprostane, further
provided a reduction in the plasma and brain monoamine oxidases. According to
authors cranberry concentrate increased by 42% the hepatic glutathione peroxidase
activity, while that grape seed extract improved by 13% the hepatic superoxide dis-
mutase activity. Based on the results, both extracts showed anti-aging activity.

1.4.6 Antihypertensive

Cardiovascular diseases have the hypertension as their main risk factor associated.
Based on the causes reported, World Health Organization (WHO) has warned that
healthy habits, such as diet and physical activity, can be reducing the hypertension
incidence (Pefias et al. 2015). Therefore, the consumption of plant-based foods is
associated the antihypertensive effects (Aguilera et al. 2016).

In their study, Shukor et al. (2013) investigated the inhibition ability in
angiotensin-converting enzyme (ACE) of 22 phenolic compounds. According to
results, tannic acid had the higher inhibition effect with a ICs, = 230 pM. While,
others phenolic compounds tested showed lower inhibition varied from 0.41 to
9.3 mM. The main factor that contributes to ACE inhibition is the number of
hydroxyl groups link on the benzene ring, while that methoxy groups into molecule
reduce the activity.

Red raspberry fruit extracts were evaluated by Jia et al. (2011) against hyperten-
sive effects on spontaneously hypertensive rats. The antihypertensive activity dem-
onstrated by extracts depended of the amount managed in the hypertensive rats.
Probably, the effect provided by extract is via antioxidation that increases NO acti-
vation and improvement of vascular dysfunction.
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1.4.7 Anticancer

Cancer is a health problem that causes millions of deaths worldwide. The ill is asso-
ciate the various endogenous causes which are inevitable, but also exogenous ones
(e.g. tobacco consumption). For this, the phenolic antioxidants have been intensely
investigated (Carocho and Ferreira 2013).

Rangel-huerta et al. (2015) showed that consumption of orange juice with at least
300 mg of flavonones over a period of 12 weeks improved the antioxidant defense
system, reduced blood pressure in overweight and obese adults, protecting against
DNA damage and lipid peroxidation.

Amongst all the urologic malignancies, renal cell carcinoma (RCC) stand out as
one of the most harmful. As therapeutic intervention, green tea (Camellia sinensis)
prevented the growth human renal cancer cell lines A-498 and 769-P, with an extract
dose of 54 = 10 and 129 = 28 pg/mL (ICs, values), respectively (Carvalho et al.
2010). Furthermore, cervical cancer also deserves mention because it is the second
higher cause of cancer death in women. In their study, Boeing et al. (2019) verified
that Butia odorata fruit extracts, provided the preliminary evidences of their antitu-
mor effects in SiHa and C33a cells.

Common beans are cultivated and consumed worldwide. In their study, L6pez
et al. (2013) studied the influence of boiling and germination processes of dark
beans (Phaseolus vulgaris L.) on their anticancer activity. According to authors the
phenolic composition of beans changed with the process used. The extract of raw
beans was the most cytotoxic on TK-10 line. While, germinated beans extract
showed a high cytotoxicity for breast adenocarcinoma and melanoma cell lines.

Among all fruits, apple is one of the most consumed. It has been reported that
dihydrochalcones are the main flavonoids compound in Malus domestica. Xiao
et al. (2017) tested in five cancer cell lines seven different dihydrochalcones from
apples. The 3-hydroxyphlorizin and sieboldin compounds exhibited the higher anti-
cancer ability than other dihydrochalcones tested. Their extract quantity varied from
30 to 80 pM.

1.5 Perspective

Regarding human metabolism, polyphenols are one of the most dynamic biological
molecules. The wide range of sources, biological properties and chemical structures
leads to nonconsensual understand on their mechanism of action - virtually infinite
possibilities. The Table 1.1 shows the relation among source, biological property
and polyphenols, which can be used to for further studies, in particular:

¢ Identification of compartments in the plant cell that contain high concentration
of polyphenols;

e The metabolic effects of glycosylated polyphenols;

e [nvivo assays using high purity polyphenols;

e To develop systems with increased polyphenols solubility in water (e.g. cur-
cumin low).
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1.6 Conclusion

Polyphenols are natural biologically active compounds broadly found in plant
based-food. Wine and grape pomace, apple, berries, tomatoes, coffee, teas and olive
oils are well-known sources of polyphenols, whereas potatoes, cassava, onions and
cabbage and cereals need deeper investigations. Polyphenols consumption plays a
fundamental role on human health, in particular antioxidant, anti-inflamatory, dia-
betes controller, microbiome modulator, anti-aging, antihypertensive and antican-
cer. Thus, it is possible relates the source of polyphenol to biological property, for
instance cranberry has epicatechin and proanthocyanidins that have anti-aging
properties; green tea has phenolic acids; catechins, flavonol glycosides that have
antioxidant, anticancer and antitumor properties; orange has flavanone glycoside,
hesperitin and naringenin that have antioxidant and microbiome modulator proper-
ties; cereals that have ferulic acid, oxalic acid, p-coumaric acid and caffeic acid that
have antioxidant and antitumoral properties, among others. The wide range of
sources, biological properties and chemical structures leads to nonconsensual
understand on their mechanism of action - virtually infinite possibilities. Thus, fur-
ther investigations should be related to identification of compartments in the plant
cell that contain high concentration of polyphenols (rich sources of polyphenols,
including vegetable wastes); the metabolic effects of glycosylated polyphenols; in
vivo assays using high purity polyphenols; and to develop systems with increased
polyphenols solubility in water.
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Chapter 2
Glucosinolates

Francesco Di Gioia and Spyridon A. Petropoulos

Abstract Glucosinolates are a group of sulfur- and nitrogen-containing glycosides
found in the plant order Brassicales which includes several important vegetable
crops of the Brassica genus such as broccoli, cabbage, radish and cauliflower among
others. Their hydrolysis byproducts, namely isothiocyanataes, are responsible for
the distinct aroma and pungent taste of cruciferous species, most of which contain
species-specific glucosinolates, hence the high number of individual compounds.
They are considered as beneficial to human compounds with several confirmed
health effects, while a significant amount of research work has been carried out
recently to identify those mechanisms and synergisms that are responsible for the
activities of glucosinolates, as well to reveal physiological aspects in the plant X
environment interactions. This chapter discusses the biochemistry and health prop-
erties of glucosinolates, their physiological significance as well as the hydrolysis
process in the plant response to different abiotic stresses.

Keywords Abiotic stress - Brassicaceae - Glucosinolates - Health effects -
Isothiocyanates - Organosulphur compounds

2.1 Introduction

Glucosinolates (GSLs) or f-thioglucoside-N-hydroxisulfates are a distinctive class
of phytochemicals derived from amino acids and constituted by glycosides contain-
ing sulfur and nitrogen (Grubb and Abel 2006; Mithen et al. 2010). The biosynthe-
sis of GSLs is exclusive of plants belonging to the botanical families of the order
Brassicales (formerly Capparales), among which the most representative to pro-
duce GSLs are the Brassicaceae and Moringaceae family (Mithen et al. 2010;
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Fahey et al. 2018). The majority of GLSs have been identified in Brassicaceae fam-
ily and their occurrence is considered an important chemotaxonomic criterion for
species classification (Holst and Fenwick 2003). The Brassicaceae family includes
the model plant Arabidopsis thaliana and some very popular vegetable crops such
as broccoli, cauliflower, cabbage, kale, kohlrabi, mustard, Brussel sprouts, radish,
arugula, while many other less popular vegetables and wild plants are also part of
the same family (Fahey et al. 2001; Petropoulos et al. 2017). Like other secondary
metabolites synthesized by plants to face conditions of stress, GSLs are plant
defense molecules and are characterized by a high level of variability and polymor-
phism that is strictly associated with the continuous coevolution of plants and pests
(Newton et al. 2009). Since the first characterization of mustard seed extracts and
the isolation of sinigrin and sinalbin as GSL structures (Ettlinger and Lundeen
1956; Wisniak 2013), over 130 different GSLs compounds have been isolated and
documented so far, while several potential GSLs structures have been identified but
not confirmed yet (Fahey et al. 2001; Clarke 2010; Agerbirk and Olsen 2012). More
recently, reviewing all the GSLs structures claimed to be isolated from plant tissues
based on the availability of both NMR spectroscopy and HPLC-MS evidence,
Blazevi¢ et al. (2020) concluded that up to mid-2018, 88 GSL structures have been
satisfactorily characterized, 47 more GSL structures have been partially character-
ized, while several structures claimed in previous studies have been discontinued
due to insufficient evidence or characterization. GLSs can be found in all plant
parts and several individual compounds are present in each species; however, three
or four of them are usually the most abundant although the overall composition
defines the bioactivities of each species (Holst and Fenwick 2003). Although a
great number GLSs have been identified, not all of them are widely consumed since
they are present in wild or in less common species or in non-edible plant parts (e.g.
flowers and seeds) (Holst and Fenwick 2003). Therefore research interest has
focused on those compounds that are present in commonly used vegetables such as
species of Brassica oleraceae which are considered the most important dietary
sources of GLSs (Kassie and Knasmiiller 2004).

Accumulated and compartmentalized into specific cells (Koroleva et al. 2010),
GSLs are part of an articulated two-component biological defense mechanism that
is activated when, especially in case of damage or infection of the plant tissues,
GSLs come in contact with specific hydrolytic enzymes called myrosinases
(B-thioglucosidases), which constitute the second component of the defense mecha-
nism referred also as the “mustard oil bomb”(Kissen et al. 2009). Coming in contact
with myrosinase, GSLs are immediately degraded into bioactive compounds such
as isothiocyanates (ITCs) and other metabolites that are deterrent or toxic for herbi-
vores, insects, nematodes, bacteria, and plant pathogens (Textor and Gershenzon
2009; Pastorczyk and Bednarek 2016). Given their stability within plant cells, GSLs
are therefore considered the storage form of their bioactive metabolites (Clarke
2010). ITCs and the other metabolites deriving from the hydrolysis of GSLs are in
fact directly responsible for most of the biological properties credited to GSLs
(Dinkova-Kostova and Kostov 2012; Burcul et al. 2018; Romeo et al. 2018).
However, the chemical structure of ITCs defines their functionality and the side
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Fig. 2.1 The main isothiocyanates structures

chains with less than ten atoms of carbon are considered as more potent and benefi-
cial for human health than longer side chains (Ishida et al. 2014). Moreover, the
presence of aromatic rings and the oxidation state of sulfur atoms may affect the
biological activities of ITCs, whereas double bonds had no significant effect
(Pocasap et al. 2018). This factor has to be considered in breeding strategies aiming
toincrease the content of beneficial GSLs and minimize those that have antinutritional
properties. The main ITCs derived from GSLs hydrolysis are presented in Fig. 2.1.

As volatile organosulfur compounds, ITCs are also the main determinants of
the sulfurous aroma and pungent or sometimes bitter taste typical of cruciferous
vegetables (Macleod and MacLeod 1990; Jirovetz et al. 2002; Bell et al. 2018; Di
Gioia et al. 2018a) which is often disliked by consumers (Drewnowski and Gomez-
Carneros 2000). Despite some consumers may lack appreciation toward the smell
and taste of Brassicaceae, the interest for cole crops and their unique GSLs and
derived hydrolysis products started rising since sulforaphane [1-isothiocyanato-
(4R)-(methylsulfinyl)butane], a glucoraphanin-derived ITC isolated from broc-
coli, was identified as an inducer of phase 2 detoxication enzymes and as a potent
anticancer compound (Zhang et al. 1992, 1994). Over the last decades, thanks to
an extensive research effort, a significant amount of literature has been produced,
greatly expanding our knowledge on the beneficial effects of phytochemicals such
as GSLs and ITCs on human health as antioxidant, anticancer, anti-inflammatory,
antibacterial, and protective molecules against a variety of chronic and inflamma-
tory medical conditions (Dinkova-Kostova and Kostov 2012; Kumar et al. 2015;
Moosavi et al. 2018; Palliyaguru et al. 2018). As research continues to disclose the
biological activity and health-effects of GSLs and relative ITCs, there is also
increasing interest toward understanding the physiological role of GSLs in the
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plant response to biotic and abiotic stresses, as this knowledge can contribute to
advance our ability to regulate the GSL profile of Brassica crops and develop
products with enhanced content of specific beneficial GSLs through breeding or
by implementing agronomic biofortification and other practices (Di Gioia
et al. 2020).

After presenting the biochemistry of GSLs, this chapter provides an overview of
the current knowledge on the physiological role of GSLs and hydrolysis-derived
products in plant response to biotic and abiotic stress factors and provides an
updated summary of the literature on the main health properties attributed to GSLs
and ITCs.

2.2 Biochemistry of Glucosinolates

Given the great interest toward GSLs and their biological activity over the last
decades and also considering the development of molecular biology, omics, bioin-
formatics, and novel analytical techniques, a number of studies focusing primarily
on the model plant A. thaliana, have contributed to advance our understanding of
the GSL biosynthetic pathway, transportation, storage, and overall metabolism
within plants (Halkier 2016).

As plant defense phytochemicals, GSLs evolved from cyanogenic glucosides,
another family of defense metabolites commonly present in the plant kingdom
(Bolarinwa et al. 2016), which share with GSLs part of the biosynthetic pathway, as
demonstrated by the presence of cytochrome P79 (CYP79) homologs and enzymes
that catalyze the conversion of precursor amino acids to aldoximes in both pathways
(Bak et al. 1998, 2001; Halkier and Gershenzon 2006). Compared to cyanogenic
glucosides, derived only from valine, isoleucine, phenylalanine, and tyrosine amino
acid precursors, GSLs are synthesized from a higher number of amino acids and
from several amino acid-modified structures which contribute to the formation of a
larger variety of GSLs (Mgller 2010; Agerbirk and Olsen 2012).

From a structural standpoint, all GSLs share the same core structure consisting
of a f-D-glucopyranose residue connected through a sulfur atom to a (Z)-N-
hydroximinosulfate ester and to a side chain (R). The basic GSL structure is highly
conserved in nature, whereas the amino acid-derived side chain could be subject to
a series of structural changes that are associated with the biological properties of the
final GSLs and hydrolysis metabolites (Blazevi¢ et al. 2020). In this perspective,
considering that the biosynthetic process starts from amino acids, GSLs may be
further classified based on the precursor amino acids and their structural character-
istics (Table 2.1).

The GSLs biosynthetic process may be divided into three primary indepen-
dent phases:

1. Chain-elongation by insertion of methylene groups of selected amino acids
(methionine and phenylalanine);
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Table 2.1 Amino acid precursor, glucosinolates (GSL), and relative hydrolysis products
Isothiocyanate
(ITC) and/or other
Amino acid GSL GSL trivial and/or Main plant source of | hydrolysis
precursor number | semi-systematic name GSL products
Methionine 12 Gluconapin But-3-enyl Brassica rapa 3-butenyl ITC
GSL species and broccoli
24R Progoitrin (2R)-2- Bok choy, turnip, 2-hydroxy-3-
hydroxybut-3-enyl GSL broccoli, cauliflower, | butenyl ITC,
Brussels sprouts goitrin
248 Epiprogoitrin (2S)-2- Bok choy, turnip, (5R)-5-Vinyl-1,3-
hydroxybut-3-enyl GSL broccoli, cauliflower, | oxazolidine-2-
Brussels sprouts thione,
(2S)-1-cyano-2-
hydroxy-3-butene,
erythro-(2S)- and
threo-(2S)-1-
cyano-2-hydroxy-
3,4-epithiobutanes
63 Glucoraphenin (RS, Radish Sulforaphene
3E)-4-(Methylsulfinyl)
but-3-enyl GSL
64 Glucoraphanin (RS)-4- Broccoli, rocket Sulforaphane
(Methylsulfinyl)butyl GSL (SFN)
73 Glucoiberin (RS)-3- White and red Iberin
(Methylsulfinyl)propyl cabbage, cauliflower
GSL and kale
83 (Glucoraphasatin or Raphanus sativus 4-Methylthio-3-
dehydroglucoerucin) butenyl ITC,
4-Methylsulfanyl-3- raphasatin
butenyl
84 Glucoerucin Rocket Erucin
4-(Methylsulfanyl)butyl
GSL,
101 Glucobrassicanapin Chinese cabbage, 4-pentenyl-ITC
Pent-4-enyl GSL turnip, turnip greens
and swede
107 Sinigrin Prop-2-enyl GSL | Brassica nigra, Allyl ITC (AITC)
B. juncea and
B. oleracea
126 6’-Benzoylglucoraphanin | Arabidopsis thaliana
6’-Benzoyl-4-
(methylsulfinyl)butyl GSL
127 (6’-Benzoylglucoerucin) | Arabidopsis thaliana
6’-Benzoyl-4-
(methylsulfanyl)butyl GSL
135 Diglucothiobeinin Rocket

4-(p-D-
Glucopyranosyldisulfanyl)
butyl GSL

(continued)
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Table 2.1 (continued)
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Isothiocyanate
(ITC) and/or other
Amino acid GSL GSL trivial and/or Main plant source of | hydrolysis
precursor number | semi-systematic name GSL products
Alanine 51 (Glucocapparin) Methyl Isomeris arborea Methyl ITC
GSL
Valine 9 (1R)-2-Benzoyloxy-1- Sisymbrium
methylethyl GSL austriacum
(Glucobenzosisymbrin)

56 (Glucoputranjivin) Putranjiva 1-Methylethyl

1-Methylethyl GSL roxburghii ITC
Leucine 52 3-Methylbut-3-enyl GSL | Capparis linearis

55 3-Methylbutyl GSL Armoracia 3-Methylbutyl

lapathifolia ITC

59 4-Methylpentyl GSL Radish 4-methylpentyl

ITC
Isoleucine 7 (Glucobenzsisaustricin) Sisymbrium
(1R)-1- austriacum
(Benzoyloxymethyl)propyl
GSL

30 (Glucosisaustricin) Sisymbrium
(1R)-1-(Hydroxymethyl) | austriacum
propyl GSL

141 3-(Hydroxymethyl)pentyl | Cardamine pratensis
GSL

Phenylalanine | 11 Glucotropaeolin Benzyl Tropaeolum majus | Benzyl ITC
GSL (BITC)

23 Sinalbin 4-Hydroxybenzyl | Sinapis alba p-hydroxy
GSL benzyl-ITC

105 Gluconasturtiin Nasturtium officinale | Phenethyl ITC
2-Phenylethyl GSL (PEITC)

Phenylalanine - | 110 (Glucomoringin) Moringa oleifera Glucomoringin
Tyrosine 4-(a-L- ITC
Rhamnopyranosyloxy)
benzyl GSL
Tyrosine 152 (3,5- dimethoxysinalbin) | Lepidium 4-hydroxy-3,5-
4-Hydroxy-3,5- densiflorum dimethoxy
dimethoxybenzyl GSL benzaldehyde
Tryptophan 43 (Glucobrassicin) Brassica oleracea indole-3-carbinol
3-Indolylmethyl GSL (I30)

47 (Neoglucobrassicin) Brassica napus 1-methoxyindol-
1-Methoxyindol-3-yl 3-yl methyl ITC
methyl GSL,

N-Methoxyindol-3-
ylmethyl GSL
48 (4-Methoxyglucobrassicin) | Brassica oleracea

4-Methoxyindol-3-
ylmethyl GSL
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2. Formation of the core GLS structure through a multistep transformation of the
amino acid or the chain-elongated derivate to form aldoxime, thiohydroximic
acids, desulfo-GSLs, and the core GSL structure;

3. Side-chain modification in which GSLs are subject to secondary modification of
the amino acid side chain including oxygenations, hydroxylations, alkenylations,
and methoxylations.

Nevertheless, each of the three phases includes several steps and overall the bio-
synthesis of GSLs is quite complex and involves over 40 genes regulated at the
transcriptional level to produce the existing variety of GSLs (Kopriva and
Gigolashvili 2016). A number of comprehensive review articles have illustrated the
GSL biosynthetic process describing the biochemistry and the genes involved in
each step especially for methionine and phenylalanine derived GSLs (Mithen 2001;
Senderby et al. 2010; Ishida et al. 2014; Velasco et al. 2016; Sanchez-Pujante
et al. 2017).

In the chain elongation phase reserved only to methionine and phenylalanine,
branched-chain amino acid aminotransferase (BCATs) enzymes catalyze the amino
acid deamination to form the relative 2-oxo acids with the involvement of the gene
BCAT4 induced by wounding and identified as responsible for producing BCATs in
Arabidopsis (Schuster et al. 2006). The 2-oxo acids are then subjected to further
transformations which specifically in Brassica oleraceae cultivars are catalyzed by
the genes BoOGSL-ELONG and BoGSL-PRO, homologous of the methylthioalkyl-
mate synthase (AtMAM) genes (Li and Quiros 2002; Gao et al. 2006). Finally, iso-
propylmalate isomerises (IPMIs) and isopropylmalate dehydrogenases (IPMDHs)
catalyze the isomerization and decarboxylation of the 2-alkylmalic acid-generating
chain-elongated amino acid derivatives (Sawada et al. 2009; He et al. 2009, 2010).

In the second phase, as described in detail by Halkier and Gershenzon (Halkier
and Gershenzon 2006), the synthesis of the core GSL structure starts with the oxida-
tion of the amino acid derivatives to the relative aldoxime mediated by cytochrome
P450 mono-oxygenases belonging to the CYP79 family (Wittstock and Halkier
2002). The aldoxime is further oxidized by CYP83 enzymes producing unstable
aci-nitro compounds that are conjugated with cysteine to form S-alkyl-
thiohydroximates and converted to thiohydroximate acids through enzymatic reac-
tion mediated by glutathione S-transferases and carbon-sulfur lyases (SURI)
(Hansen et al. 2001; Mikkelsen et al. 2004). The thiohydroximate acids are finally
converted to desulfoglucosinolates and to GSLs through the action of uridine
diphosphate glycotransferase (UGT74) and sulfotransferases (ST) (Grubb et al.
2004; Piotrowski et al. 2004).

The biosynthesis of GSLs seems to be regulated at the transcriptional level by the
availability of different minerals which may have also interactive effects. Although
deriving from amino acids, GSLs constitute a fundamental component of the sulfur
metabolism. Each GLSs contains, in fact, two or three sulfur atoms and limited
availability of sulfur surely lead to a reduced accumulation of GSLs. Sulfur defi-
ciency has been associated with downregulation of the genes associated with GSL
biosynthesis and the simultaneous upregulation of genes involved in the synthesis
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of myrosinases and thus in the hydrolysis of GSLs (Hirai et al. 2005; Kopriva and
Gigolashvili 2016). Using transcriptomics and metabolomics technologies (Bielecka
et al. 2015) found that MYB29, a transcription factor controlling GSL biosynthetic
genes, is downregulated under sulfate starvation and is restored with re-supply of
sulfate, and following this pattern GSL content is reduced upon sulfate starvation
and increases upon re-supply, suggesting that in presence of limited availability of
sulfur GSLs may be metabolized to support the primary sulfur metabolism. Total
GSL content and GSLs profile are also influenced by the total availability and form
of nitrogen, which may influence also the effect of sulfur on GSL biosynthesis
(Petropoulos et al. 2017). Higher levels of nitrogen have been associated with lower
levels of GSLs and the prevalence of indole GSLs (Zhao et al. 1994; Rosen et al.
2005; Chun et al. 2017). Comparing the effect of ammonium versus nitrate nitrogen,
increased accumulation of GSLs and myrosinase activity was observed in A. thali-
ana under exclusive ammonium nutrition, considered a condition of stress, and the
same results were confirmed in broccoli (Marino et al. 2016). The deficiency of
phosphorus has also been associated with increased accumulation of GSLs (Pant
et al. 2015), while there are contrasting evidence on the effect of potassium
(Troufflard et al. 2010; Almuziny et al. 2017; Chun et al. 2017).

Apart from dietary GSLs and ITCs, there has been also great research interest
during the last decades for synthetic compounds with several approaches being sug-
gested (Di Cesare et al. 2017). Recently, Eschliman and Bossmann (2019) who
gathered the related information in the literature suggested several approaches to
synthesize ITCs including the desulfurization of dithiocarbamate salts, the synthesis
of ITCs from hydroximoyl chlorides or elemental sulfur, the micro-wave assisted
synthesis or via the tandem Staudinger/aza-Wittig reactions.

2.3 The Role of Glucosinolates in Plant Physiology

GSLs are considered the stronghold in the plant defense system where through the
“mustard oil bomb” reaction they can deter pest and pathogens attacks (Vig et al.
2009). Unlike most defense compounds of the plant, GSLs are not toxic per se and
a hydrolysis reaction through the involvement or myrosinase must precede to pro-
duce ITCs and other biologically active compounds (Kuchernig et al. 2011; Winde
and Wittstock 2011; Agerbirk and Olsen 2012). Although the whole concept is
simply a more complex system that exists with genotype and environmental condi-
tions specificities involved in the overall plant defense system and several species-
specific GSLs being identified so far (Brown et al. 2002; Farnham et al. 2004).
Recent studies comparing the GSL biosynthesis and profile of cabbage lines sus-
ceptible and resistant to ringspot and white mold caused by Mycosphaerella bras-
sicicola and Sclerotinia sclerotiorum, respectively, reported that both fungal
infections induced the expression of genes associated with the biosynthesis of spe-
cific GSLs and their increase was associated with the resistance to white mold
(Abuyusuf et al. 2018a, b). Moreover, the plant x pathogen system is under con-
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tinuous evolution and various pests and pathogens develop evading and/or toler-
ance pathways against plant defensive compounds (Winde and Wittstock 2011;
Humphrey et al. 2016).

GSLs are not only involved in defense mechanisms against biotic stressors, but
are also considered as major protectants against unfavorable abiotic conditions,
such as high salinity, water shortage and temperature extremities (Radovich et al.
(2005); Yuan et al. 2010; Justen et al. 2013; Esfandiari et al. 2017). The defensive
role of GSLs against abiotic stressors is corroborated by the allocation and
distribution of these compounds in the affected plant tissues and organs (Del Carmen
et al. 2013). For example, under high salinity conditions total GSLs content
increased for osmoprotective purposes and it was higher in the florets than in young
leaves due to either higher de novo biosynthetic rates or to preferable transportation
via the phloem (Del Carmen et al. 2013). Comparing the effect of moderate salinity
stress on broccoli at different crop stages it was observed that exposure to salinity
stress in the first vegetative growth phase determined an increase of glucobrassicin
and neoglucobrassicin, significantly affecting the GSL profile (Di Gioia et al.
2018b). Similarly, for drought stress, an increase of secondary metabolites content
and GSLs, in particular, has been also reported (Schreiner et al. 2009). However,
contradictory results exist in the literature indicating that water stress intensity and
duration and the plant developmental stage are key factors that determine whether
GSLs will be increased or not compared to control conditions (Robbins et al. 2005;
Del Carmen et al. 2013). Elevated temperatures, both in soil and air, are associated
with high GSLs content in several Brassica species (Charron and Sams 2004;
Charron et al. 2005), however thermal sensitivity differences among the various
classes of GSLs may also affect GSLs profile (Bones and Rossiter 2006; Bohinc and
Trdan 2012). Differences in GSLs composition between plant parts are also reported
under storage conditions. For example, the most abundant compounds in the leaves
Brassicoraphanus ‘BB1°, an inter-generic hybrid of Brassica rapa L. cv. ‘Bulam 3’
(Chinese cabbage) and (Raphanus sativus L. cv ‘Taebaek’ (radish), were sulfora-
phene and raphasatin, while the roots were rich in raphasatin and PEITC (Han
et al. 2019b).

Considering the correlation of GSLs content in plant tissues with various stress-
ors, eliciting of plant secondary metabolism through exogenous application of stress
conditions has been suggested as an effective agronomic practice to biofortify cru-
ciferous species and increase their GSLs and the overall phytochemicals content
(Robbins et al. 2005; Hassini et al. 2019). So far, several studies have reported the
beneficial effect of various elicitors on GSLs content which could increase the
dietary value of food products highlighting the great research interest (Augustine
and Bisht 2015; Trolove et al. 2018; Banerjee et al. 2019; Dall’ Acqua et al. 2019).
With the rising interest towards sprouts, microgreens, and baby-leaf as functional
vegetables increasingly grown using soilless systems (Kyriacou et al. 2016; Di
Gioiaetal. 2017a, b), a number of studies have suggested the opportunity to increase
the content of GSLs and ITCs by modifying the nutrient solution increasing the
level of sulfur, salinity, or by modulating other eliciting factors (Kopsell and Sams
2013; Yang et al. 2015; Kyriacou et al. 2016; Yang et al. 2016d; Di Gioia et al.
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2018a; Petretto et al. 2019). Working on broccoli sprouts, (Yang et al. 2015) found
that compared to other sources of sulfur, ZnSO, improved sulforaphane formation
inducing stress. Similarly, (Esfandiari et al. 2017) observed that in broccoli sprouts
high salinity stress (160 mM of NaCl) decreased the content of some GSLs and did
not affect the content of glucoraphanin, but increased the content of sulforaphane by
six-times increasing the transcript of the gene MYROSINASE (BoMYO) and its
cofactor EPITHIOSPECIFIER MODIFIER1 (BoESM1) which directs the enzyme
myrosinase to hydrolize GSLs producing ITCs rather than nitrile products. These
studies suggest that myrosinase activity plays a key role in determining the func-
tional properties of biofortified vegetables. Selenium exogenous application on cru-
ciferous plants has been suggested as a very effective elicitor of GSLs biosynthesis,
while at the same time the increased Se content in plant tissues presents further
health benefits to consumers (Bachiega et al. 2016; Schiavon et al. 2016; Wiesner-
Reinhold et al. 2017).

Apart from their defensive role against stress factors, GLS is also very important
from a physiological point of view since they can function as sulfur and nitrogen
pools in plant biosynthetic processes although re-distribution of sulfur in plants
under deprivation conditions needs to be confirmed (Aghajanzadeh et al. 2014).

2.4 Health Effects of Glucosinolates and Their Hydrolysis
By-Products

The importance of GSLs for human health is pivotal when considering that most of
these compounds have been associated with many beneficial effects, including
activities against cancer, diabetes, heart diseases, obesity, bacteria, and fungi, and
antioxidant and antimutagenic properties (Vig et al. 2009; Citi et al. 2014; Giacoppo
et al. 2015; Raiola et al. 2018). Excluding a few exceptions (Abdull Razis et al.
2011), most of the biological effects attributed to GSLs, which can be beneficial or
not for human health, are exerted by their hydrolysis metabolites, namely ITCs
(Xiao et al. 2003; Griindemann and Huber 2018). Since Zhang et al. (1992, 1994)
demonstrated that sulforaphane, an ITC isolated in broccoli and derived from the
myrosinase-induced hydrolysis of glucoraphanin, is an inducer of phase 2 detoxica-
tion enzymes and thus a potent natural anticancer, sulforaphane and other ITCs’
bioactivity have been the focus of hundreds of clinical studies. Moreover, the pre-
cursor of sulforaphane, namely glucoraphanin was effective against skin aging in
senescence-accelerated mouse prone 1 after the dietary administration of
glucoraphanin-enriched kale (Chawalitpong et al. 2019). Apart from sulforaphane,
the most studied ITCs include allyl ITC (AITC), benzyl ITC (BITC), phenylethyl
ITC (PEITC), indole-3-carbinol (I3C), erucin, iberin, sulforaphene, and goitrin with
potent bioactive properties (Mithen et al. 2003; La Marca et al. 2012; Felker et al.
2016; Baenas et al. 2017; Romeo et al. 2018). Numerous in vitro and in vivo clinical
studies conducted over the last decades have contributed and continue to highlight
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the multiple beneficial health effects of other ITCs which include chemoprotective
and anticancer effects, antioxidant and anti-inflammatory activities and other bio-
logical properties that may contribute to ameliorate a series of chronic disorders
such as obesity, diabetes, and hypertension (Table 2.2).

Regarding anticancer activities of GSL hydrolysates, various mechanisms of
action have been identified so far with various types of cancer being studied (Cavell
et al. 2011; Li et al. 2016, 2018; Mitsiogianni et al. 2018; Lachance et al. 2020),
while there is great interest from the pharmaceutical industry for using synthetic
and dietary ITCs as anticancer and chemopreventive agents (Jiang et al. 2016; Li
et al. 2016; Griindemann and Huber 2018; Rajakumar et al. 2018a; Crowley et al.

Table 2.2 Biological activity and effects on human health of the most studied isothiocyanates

Isothiocyanates | Health effect Specific biological activity Reference

Allyl Anticancer In vitro cytotoxic effect on Xiao (2003),
isothiocyanate androgen-insensitive human Nuez-Iglesias et al.
(AITC) prostate cancer (AIPC) PC-3 and | (2019)

DU 145 cells by inducing
apoptosis and cell cycle arrest.

inhibited LPS-induced NF-kB-
luciferase activations in human
HT-29 colon cancer cells

Jeong et al. (2004)

Inhibited cell viability by
inducing the apoptosis of human
cervical cancer HeLa cells

Qin et al. (2018)

Decreased the expression of
NF-xB p65, TNF-a, and IL-6 in
mammary tissues and inhibits
phase I and induction of phase II
detoxification enzymes by
modulating AhR/Nrf2 signaling
pathway in mammary
carcinogenesis

Rajakumar et al.
(2018a, b)

Inhibited the growth of human
bladder cancer cells HT1376 by
90%

Chang et al. (2019)

Inhibit the growth of A549 lung
cancer cells

Rakariyatham et al.
(2019)

Inhibition of cell growth in
malignant melanoma

Mitsiogianni et al.
(2019)

Anti-estrogenic and anti-
proliferative effect against
mammary carcinogenesis

Thangarasu et al.
(2019)

Cytotoxic activity against bladder
cancer UM-UC-3 and
glioblastoma LN229 cell lines

Blazevié et al. (2019)

Inhibition of renal carcinoma
GRC-1 cell line proliferation

Jiang et al. (2016)

(continued)
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Isothiocyanates | Health effect

Specific biological activity

Reference

Antioxidant and
anti-inflammatory

Ameliorates hepatic steatosis and
inflammation by activating the
Sirt]l/AMPK pathway and
inhibiting the NF-kB pathway

Lietal. (2019)

Decreased tumor necrosis factor o
mRNA levels and its secretion in
LPS stimulated RAW264.7
macrophages, downregulated
pro-inflammatory markers such as
interleukin-1f and inducible nitric
oxide synthase. Decreased nuclear
p65 protein levels, a subunit of the
transcription factor NF-kB.

Wagner et al. (2012)

Reduced oxidative stress and
inflammation by modulating Nrf2/
HO-1 and NF-kB pathways in
traumatic brain injury in mice

Caglayan et al. (2019)

Reduced liver fibrosis by
regulating Kupffer cell activation

Kim et al. (2018a)

Anti-obesity

Increased basal and epinephrine-
induced lipolysis in adipocytes
and intensified hydrolysis of
triacylglycerols in the blood
serum

Okulicz (2010)

Inhibited adipocyte differentiation
by suppressing galectin-12 levels
in 3T3L1 cells and has anti-
obesity effects in high fat diet-fed
mice

Lo etal. (2018)

Reduced blood glucose, total
cholesterol, triglycerides, and
creatinine levels, and increased
total antioxidant capacity

Sahin et al. (2019)

Anti-diabetic

Inhibited the hyperglycemia and
hyperinsulinemia induced by the
consumption of a high-fat diet

Ahn et al. (2014)

Suppression of oleic acid-induced
lipid accumulation and
lipogenesis in hepatocytes

Kim et al. (2015)

Increased carbohydrate oxidation

by enhancing insulin secretion via
transient receptor potential (TRP)
V1

Mori et al. (2018)

Anti-bacterial,
anti-fungal

Cytotoxic effect against several
bacterial and fungi

Blazevi¢ et al. (2019)

Reduced biofilm growth and
virulence factors of C. albicans

Raut et al. (2017)

(continued)
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Isothiocyanates | Health effect

Specific biological activity

Reference

Antimicrobial
activity

Benzyl
isothiocyanate
(BITC)

Inhibition of the growth of oral
pathogens higher than
sulforaphane

Ko et al. (2016)

Reduced the motility of E. coli
0157:H7 and Salmonella and
killed Salmonella by disrupting
bacterial cell membrane and
decreased shiga toxin production
by E. coli O157:H7

Patel et al. (2020)

Anticancer
activity

Inhibited the growth of 3 different
human lung cancer cell lines
A549 (adenocarcinoma), H661
(large cell carcinoma) and
SK-MES-1 (squamous cell
carcinoma)

Zhang et al. (2017)

Increased miR-99a expression
through ERK/AP-1-dependent
pathway showing antitumor
properties in bladder cancer cells

Tsai et al. (2020)

Suppressed cancer cell
proliferation through the
post-transcriptional regulation of
the kinetochore protein Mis12

Abe-Kanoh et al.
(2019)

Erucin Anticancer

Induced apoptosis in human
hepatoma (HepG2) cells

Lamy and Mersch-
Sundermann (2009),
Pocasap et al. (2018)

Modulation of key enzymes in
carcinogen metabolism in rat lung
slices

Abdull Razis et al.
(2011)

Inhibition of PC3 cell
proliferation by increasing p21
protein expression and ERK1/2
phosphorylation

Melchini et al. (2013)

Inhibition of breast cancer
proliferation acting at various
levels

Wang et al. (2005),
Bo et al. (2016),
Pretowska et al.
(2017)

Inhibition of histone deacetylase
(HDAC) activity in human
bladder cancer cells

Abbaoui et al. (2017)

Release of hydrogen sulfide (H,S)
in pancreatic adenocarcinoma
cells (AsPC-1) and inhibition of
AsPC-1 cell viability and
migration

Citi et al. (2019)

(continued)
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Isothiocyanates

Health effect

Specific biological activity

Reference

Anti-
inflammatory

Inhibition of pro-inflammatory
enzymes and cytokines, through
inhibition of NFkB signaling in
RAW 264.7 murine macrophages
and 12-O-tetradecanoylphorbol-
13-acetate-treated mouse skin

Cho et al. (2013)

Neuroprotective

Activation of the transcriptional
nuclear factor (erythroid-derived
2)-like 2 (Nrf2) in in vitro and
in vivo models of Parkinson’s
disease

Morroni et al. (2018)

Neuroprotective effects in human
neuronal cells

Sestito et al. (2019)

Anti-hypertension
and vasorelaxing

Release of H,S in human aortic

smooth muscle (HASMCs) cells
and inhibition of noradrenaline-
induced vasoconstriction

Martelli et al. (2019)

Antimicrobial
activity

Inhibition of the growth of oral
pathogens higher than
sulforaphane

Ko et al. (2016)

Goitrin

Antithyroid

Inhibit the uptake and
organification of iodine by the
thyroid glands limiting the
formation of thyroid hormone

Gaitan (1990), Felker
et al. (2016)

Iberin

Anticancer
activities

Anticancer activities against
prostate, breast and colon cancer
and leukemia

Jakubikova et al.
(2005, 2006),
Sarikamis (2009),
Nuiez-Iglesias et al.
(2019)

Anticancer activities against
hepatocellular carcinoma cell
HepG2 line through the increase
of intracellular reactive oxygen
species and the inhibition of
tubulin depolymerization

Pocasap et al. (2019)

Inhibition of carcinogens in
hepatocytes

La Marca et al. (2012)

Growth inhibition and apoptosis
in lung cancer A549 cells

Wang et al. (2016)

Induction of cycle arrest and
apoptosis of human
neuroblastoma SK-N-AS,
SK-N-SH and SK-N-BE(2) cell
lines

Jadhav et al. (2007)

Antimicrobial
activities

Antimicrobial activities against
oral and food borne pathogens
and Pseudomonas aeurugunosa

Jakobsen et al. (2012),
Wilson et al. (2013),
Tan et al. (2014), Ko
et al. (2016)

(continued)
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Isothiocyanates | Health effect Specific biological activity Reference
Indole-3 Anticancer Management of biochemically Van Die et al. (2016),
carbinol (I3C) | activities recurrent prostate cancer through | Wu et al. (2019),
the downregulation of signal Nuiiez-Iglesias et al.
transduction pathways (2019)
Inhibition of cervical cancer, Meng et al. (2000), Qi
human breast cancer (T47D), and | et al. (2005),
hepatocellular carcinoma Aronchik et al.
(SK-Hep-1, SNU-449 and Huh-7) |(2014), Wang et al.
cells through the upregulation of | (2015), Jiang et al.
phosphatase and tensin (2019), Mokbel and
homologue (PTEN) Mokbel (2019)
Antioxidant Showed dopamine-like Vo et al. (2019)
activity antioxidant activity mainly
preventing the oxidative
degradation of lipids
Antimicrobial Potent inhibition of the growth of | Ko et al. (2016)
activity oral pathogens
Phenethyl Anticancer Activities against human prostate | Aggarwal et al.
isothiocyanate | activities cancer PC-3 and DU 145 cell (2019), Nuiez-
(PEITC) lines Iglesias et al. (2019)
Activities against human colon Gupta et al. (2019)
carcinoma cell line HT29 through
the synergism with Laccaic acid
Antiatherogenic | Protective effects against Chuang et al. (2013),
activity atherogenesis and thrombosis Huang et al. (2013),
Jayakumar et al.
(2013)
Anticancer activities against Chen et al. (2018b)
human colon cancer cell lines
DLD-1 and SW480 through the
suppression of Wnt/p-catenin
pathway
Antiobesity Antiobesity effects through the Chuang et al. (2019)
activity reduction of adipocyte
differentiation and the induction
of cell cycle
Neuroprotective | In vitro and in vivo effects against | Jaafaru et al. (2018a)
activity neurodegenerative diseases
Antimicrobial Inhibit of bacterial conjugation of | Kwapong et al. (2019)
activity pathogen microorganisms

Inhibition of the growth of oral
pathogens, Pseudomonas
aeruginosa, Bacillus cereus and
Escherichia coli

Jang et al. (2010), Ko
et al. (2016), Kaiser
et al. (2017), Yang

et al. (2020)

(continued)
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Isothiocyanates | Health effect Specific biological activity Reference
Sulforaphane Anticarcinogenic | Induction of phase II detoxication | Zhang et al. (1992,
(SFN) activity enzymes 1994)
Antioxidant Upregulation of genes that protect | Singh et al. (2014)
aerobic cells against oxidative
stress, inflammation, and
DNA-damage associated with
autism spectrum disorder.
Protection against nitrative stress | Nadeem et al. (2020)
and inflammation by
downregulating oxidative stress
and inflammation by blocking
NFkB (nuclear factor kappa-light-
chain-enhancer of activated B
cells) pathway in autistic children.
Antimicrobial Inhibition of the growth of oral Ko et al. (2016)
activity pathogens
Sulforaphene Anticancer Induction of apoptosis of Pocasap and
activity hepatocarcinoma HepG2 cells Weerapreeyakul
(2016), Yang et al.
(2016a), Kntayya
et al. (2018)
Growth inhibition of human Bao et al. (2016),
breast MCF-7 and SUM159 cells | Pawlik et al. (2017)
Activities against lung cancer Yang et al. (2016¢)
through the inhibition of the
PI3K-AKT signaling pathway
Induction of apoptosis and Mondal et al. (2016)
inhibition of migration of gastric
cancer AGS cells
Induces apoptosis of cervical Rhee et al. (2017)
cancer (HeLa cell line)
Suppression of growth of human | Byun et al. (2016)
colon cancer cell lines (HCT116,
HT-29, KM 12, SNU-1040,
DLD-1)
Induction of apoptosis and Zhang et al. (2019a)
inhibition of the invasion of
esophageal cancer cells through
the inhibition of the MSK2—
CREB-BcI2 and cadherin
pathways
Antiobesity Antiobesity activities through the | Chen et al. (2018a)
activity activation of the Hedgehog (Hh)
signaling pathway
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2019). For example, dietary AITC is considered as a potent cancer chemopreven-
tive agent with high bioavailability and low degree of side effects due to cytotoxic-
ity and genotoxicity (Zhang 2010), although synergistic effects with other hydrolysis
by-products and conventional drugs should be considered (Chatterjee et al. 2016;
Rakariyatham et al. 2019). Moreover, Blazevi¢ et al. (2019) who compared the bio-
active properties of hydrodistillates and extracts of Lepidium latifolium L. with
pure AITC reported similar cytotoxic effects against bladder cancer UM-UC-3 and
glioblastoma LN229 cell lines. Other researchers have reported the epigenetic
effects of AITC against malignant melanoma through the regulation of lysine acety-
lation and methylation marks (Mitsiogianni et al. 2019). However, the volatile
nature of AITCs inhibits their use in food products with enhanced bioactive proper-
ties and other forms should be considered. Therefore, Chang et al. (2019) studied
the potential of encapsulating AITCs in nanoparticles and reported significant
effectiveness against HT1376 bladder cancer cells proliferation, as well as anti-
inflammatory activity against macrophage cell RAW 264.7, while Encinas-Basurto
etal. (2017, 2018) suggested the increased delivery of AITC-loaded polylactic-co-
glycolic acid (PLGA) nanoparticles (NPs) against epithelial squamous carcinoma
cells. Apart from AITC, other GSL hydrolysates such as iberin, PEITC, I3C, 4-pen-
tenyl-ITC (4PI) and SFN showed a dose- and time dependent effectiveness against
two cell lines of androgen-insensitive human prostate cancer, namely PC-3 and DU
145 (Nufiez-Iglesias et al. 2019). In the study of Zhang et al. (2017), the in vitro and
in vivo growth inhibition of lung cancer cells (A549 (adenocarcinoma), H661 (large
cell carcinoma) and SK-MES-1 (squamous cell carcinoma)) was also reported for
BITC, with a concomitant induction of autophagy for the tested cancer cells. The
same compound was also effective against bladder cancer cells through the upregu-
lation of miR-99a expression (Tsai et al. 2020), induced apoptosis of gastric cancer
AGS cells (Han et al. 2019a) and leukemia U937 cells (Stasitoj¢ et al. 2019), while
3,4-dimethoxybenzyl ITC (dIMBITC) increased doxorubicin efficacy against resis-
tant colon cancer cell lines (LoVoDX) and ameliorated its toxic effects (Psurski
et al. 2019). Other types of cancer affected by BITC include breast cancer (Roy
et al. 2019; Xie et al. 2019; Kim and Singh 2019), pancreatic adenocarcinoma (Si
et al. 2019), liver and prostate cancer (Crowley et al. 2019), human brain glioblas-
toma (Ma et al. 2018b), and human melanoma A375.S2 cells among others (Ma
et al. 2017). The suggested mechanisms of action of ITCs include the cell cycle
arrest and cell apoptosis, the inhibition of angiogenesis and metastasis, the modula-
tion of detoxifying enzymes, and the inhibition of phase I and the induction of
phase II enzymes (Mitsiogianni et al. 2018; Di Gioia et al. 2020).

AITC dietary intake is also associated with antidiabetic, anti-inflammatory and
antioxidant activities through the increase of glucose transporter-2, peroxisome
proliferator-activated receptor-gamma, p-insulin receptor substrate-1, and nuclear
factor erythroid-derived 2 and the reduction of nuclear factor-kappa B in kidney and
liver tissues of Wistar rats (Sahin et al. 2019). In another recent study, Lo et al.
(2018) attributed anti-obesity effects to AITC since its administration inhibited adi-
pocyte differentiation through the suppression of galectin-12, while Subedi et al.
(2017) highlighted the neuroprotective activities against microglia-induced toxicity
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in neuroblastoma cells. Sulforaphane is in the focus of several clinical studies which
evaluate its effect against diabetes and cardiometabolic disorders and promising
results have been reported suggesting as possible mechanisms of action the induc-
tion of nuclear factor erythroid 2-related factor 2 (Nrf2) and the modulation of pro-
inflammatory and metabolic signaling pathways (Patel et al. 2018). Antidiabetic
effects of sulforaphane were also associated with the amelioration of insulin respon-
siveness and the lipid profile in male Wistar rats (De Souza et al. 2016). Other
beneficial effects of sulforaphane for the cardiovascular system include the reverse
of abnormal angiotensin II-induced migration of human vascular smooth muscle
cells (Zhang et al. 2019b), the activation of Nrf2 (Bai et al. 2015), the downregula-
tion of expression of intracellular adhesion molecule-1 in TNF-a-induced ECV 304
endothelial cells (Hung et al. 2014), as well as the attenuation of cardiotoxicity in
breast cancer patients treated with doxorubicin (Bose et al. 2018). This potent com-
pound may also exhibit antiobesity effects, since it can inhibit adipocyte differentia-
tion and promote lipolysis in both in vitro and in vivo studies (Choi et al. 2012,
2014b; Martins et al. 2018).

Indole-3 carbinol (I3C) is another potent phytochemical which is derived from
glucobrassicin hydrolysis. Several studies have reported its anticancer properties
against various types of cancer, including recurrent prostate cancer, cervical cancer,
human breast cancer, and hepatocellular carcinoma (Meng et al. 2000; Qi et al.
2005; Aronchik et al. 2014; Wang et al. 2015; Van Die et al. 2016; Lee et al. 2018;
Tian et al. 2019). I3C also exhibited antimicrobial activities against a broad spec-
trum of bacteria (Ko et al. 2016; Vale et al. 2019), as well as anti-inflammatory and
anti-arthritic properties (Hasan et al. 2018) and hepatoprotective effects (Choi et al.
2018). An I3C digestion byproduct, namely 3,3’-diindolylmethane has been found
to be effective against hyperglycemia and diabetic nephropathy through the
increased uptake of glucose, the inhibition of PKC-a expression and the activation
of insulin signaling in 3T3-L1 adipocytes (Choi and Yoo 2018, 2019), as well as
against neurodegenerative diseases (Lee et al. 2020) and obesity (Yang et al. 2017).
This byproduct is an effective anticancer agent with several studies to confirm this
(Tian et al. 2019; Ahmad et al. 2019), while it exhibited anti-ischemic effects
through the inhibition of hypoxia-induced inflammation and apoptosis and the
induction of cardiomyocyte autophagy (Liang et al. 2017).

GSL degradation byproducts such as AITC, SEN, PEITC, and 4-methoxyphenyl
ITC may also inhibit bacterial conjugation which is responsible for the resistance of
pathogenic microorganisms against antimicrobial agents (Kwapong et al. 2019).
Moreover, according to Kaiser et al. (2017) natural ITCs (AITC, BITC, PEITC)
isolated from Tropaeolum majus (nasturtium) and Armoracia rusticana (horserad-
ish) may exhibit therapeutic properties against infections from the multi-drug resis-
tant and biofilm-forming Gram-negative bacterium Pseudomonas aeruginosa.
Similar results were reported for the effectiveness of AITC against Candida albi-
cans biofilms (Raut et al. 2017). Several other studies have reported the antimicro-
bial properties of synthetic or natural ITCs against a broad spectrum of activity
against both human affecting Gram-negative and Gram-positive bacteria with vari-
ous mechanisms of action being suggested (Jang et al. 2010; Lu et al. 2016; Nowicki
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et al. 2016, 2019; Saleh et al. 2017; Romeo et al. 2018). According to Ko et al.
(2016), structural differences of ITCs have a significant effect on antimicrobial effi-
ciency where the number of double bonds, the presence of thiol groups or the length
of the side-chain defines ITCs activities. In particular, BITC was the most effective
against Escherichia coli O157:H7 and Salmonella enterica among seven GSL
hydrolysis products (butyl ITC, ethyl ITC, isopropyl ITC, methyl ITC, phenethyl
ITC and allyl ITC), since it inhibited the bacteria motility and the production of
Shiga toxin (Patel et al. 2020). Moreover, BITC and PEITC showed the highest
activity against Bacillus cereus compared to 3-butenyl ITC and 4-pentenyl ITC,
while they were effective against several other Gram-positive and Gram-negative
bacteria (Jang et al. 2010). Recently, Yang et al. (2020) reported that antimicrobial
activities of BITC and PEITC against E. coli (enterotoxigenic and Shiga-producing
strains) are related to the down-regulation of virulence genes.

Other health effects include the attenuation of oxidative stress and anti-
inflammatory activities of AITC against oxidative stress and inflammation caused
after traumatic brain injury through the modulation of nuclear factor erythroid
2-related factor 2 (Nrf2) and nuclear factor kappa B (NF-kB) (Caglayan et al. 2019).
The same compound was effective against inflammatory bowel disease by amelio-
rating the severity of colitis symptoms in mice models (Kim et al. 2018b). GSLs and
various ITCs (SFN, PEITC, erucin, 6-(methylsulfinyl) hexyl ITC) showed promis-
ing in vitro and in vivo effects against neurodegenerative diseases mostly associated
with their anti-amyloidogenic, antioxidant, and anti-inflammatory properties
(Jaafaru et al. 2018a). Other suggested mechanisms for the protective effects of
ITCs against neurodegenerative diseases include the cholinesterase inhibition, with
phenyl ITC and 3-methoxyphenyl ITC showing the most promising results as cho-
linesterase inhibitors and anti-inflammatory agents (Burcul et al. 2018). According
to Kim et al. (2018a), AITC produced from sinigrin hydrolysis mitigated hepatic
fibrosis in carbon tetrachloride-induced hepatotoxicity in rats, while as a possible
mechanism of action it was suggested the regulation of Kupffer cell and the activa-
tion of monocytes. The hepatoprotective activity of AITC has been also confirmed
in vivo studies with carbon tetrachloride treated Sprague Dawley rats and the pos-
sible mechanism of action was suggested being the lipid peroxidation inhibition, the
increased activity of antioxidant enzymes and the suppression of macrophages and
Kupffer cells (Ahn et al. 2016). Moreover, AITC, BITC and 3-butenyl ITC exhib-
ited significant antimutagenic activity against various mutagens (4-nitro-o-
phenylenediamine, sodium azide and 2-aminofluorene) (Rampal et al. 2017), while
SEN, BITC, and PEITC showed protective effects against atherogenesis and throm-
bosis through various mechanisms of action (Chuang et al. 2013; Huang et al. 2013;
Jayakumar et al. 2013).

Regarding the health effect of other less studied ITCs, 4-carboxy phenyl-ITC
(4CPI) acted as a hydrogen sulfide donor and decreased ischemia/reperfusion-
induced tissue injury after acute myocardial infarction in rats (Testai et al. 2016).
Moreover, 4CPI and phenyl ITC exhibited promising effects against hypertension,
since they acted as hydrogen sulfide release agents which has vasorelaxing and
hypotensive properties (Martelli et al. 2014). Two other ITCs, namely 4-[(a-L-
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rhamnosyloxy)benzyl] ITC and 4-[(4-O-acetyl-a-L-rhamnosyloxy)benzyl] ITC
were also identified as potent indirect antioxidants through the induction of NAD(P)
H quinone oxidoreductase 1 (NQOI1) activity in Hepalclc7 cells (Tumer et al.
2015). Glucomoringin ITC (4-(a-L-rhamnosyloxy)benzyl ITC)) was also effective
against resistant pathogens affecting long-term hospital patients (Staphylococcus
aureus, Enterococcus casseliflavus, and Candida albicans) (Galuppo et al. 2013), as
well as against human neuroblastoma SH-SYSY cells (Cirmi et al. 2019; Jaafaru
et al. 2019), human prostate adenocarcinoma (PC-3) cells (Jaafaru et al. 2018b) and
human astrocytoma grade IV CCF-STTGI cells (Rajan et al. 2016).

Iberin, an aliphatic ITC derived from glucoiberin hydrolysis, is associated with
antimicrobial activities against oral and foodborne pathogens (Wilson et al. 2013;
Ko et al. 2016) and anticancer activity against various types of cancer (Sarikamis
2009; Wang et al. 2016; Pocasap et al. 2019; Nufez-Iglesias et al. 2019).

Raphasatin (4-Methylthio-3-butenyl ITC) which is the hydrolysis product of glu-
coraphasatin is a potent detoxifier and inducer of rat hepatic phase II enzymes and
a potential chemopreventive agent against esophageal carcinogenesis and pancre-
atic carcinogenesis (Scholl et al. 2011; Abdull Razis et al. 2012; Okamura et al.
2013; Suzuki et al. 2016), without showing toxicity to urinary bladder (Suzuki et al.
2017). According to Ibrahim et al. (2018), this ITC is responsible for the apoptosis
and cell cycle arrest of human breast adenocarcinoma MCF-7 cells, while its com-
bined administration along with two other food components (vitexin-2-O-xyloside
and (-)-epigallocatechin-3-gallate) inhibited the growth and induced the apoptosis
of colon cancer LoVo and CaCo-2 lines (Papi et al. 2013). Moreover, La Marca et al.
(2012) who studied the dose-effect of raphasatin and sulforaphane suggested that
low doses of both ITCs may exhibit anti-aging activities and reduce chemotherapy-
induced oxidative stress, whereas at high doses they may act synergistically with
anticancer drugs and induce cell DNA damage (Zanichelli et al. 2012). Raphasatin
and sulforaphene were detected in aqueous extracts of Spanish black radish vegeta-
tive portions and exhibited significant antioxidant properties by inducing detoxifica-
tion enzymes in HepG?2 cells; however, raphasatin content was significantly reduced
within the first hour after extraction compared to sulforaphene (Hanlon et al. 2009).
Regarding sulforaphene, which is derived from glucoraphanin and has been detected
in various plants parts (Hanlon et al. 2009; Lim et al. 2016; Zhang et al. 2016), it
may induce apoptosis in hepatocarcinoma HepG2 cells and growth inhibition in
human breast adenocarcinoma MCF-7 cells and human HT-29 and HCT116 colon
cancer cells (Byun et al. 2016; Pocasap and Weerapreeyakul 2016; Yang et al.
2016b; Bao et al. 2016; Pawlik et al. 2017; Kntayya et al. 2018), as well as in esoph-
ageal cancer cells (Zhang et al. 2019a). Other health effects include antiobesity
activities (Chen et al. 2018a), as well anti-cancer properties against various types of
cancer e.g. lung cancer and gastric cancer (Mondal et al. 2016; Yang et al. 2016c),
and cervical cancer (Rhee et al. 2017).

While multiple beneficial health effects are attributed to most of the ITCs deriv-
ing from the myrosinase-mediated degradation of GSLs, some of the GLS degrada-
tion products may have harmful effects on human health and are considered
antinutrients (Kupke et al. 2016; Di Gioia et al. 2020). Goitrin and thiocyanates
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deriving from the hydrolysis of progoitrin and indole GSLs have antithyroid activity
by inhibiting the uptake and organification of iodine by the thyroid glands limiting
the formation of thyroid hormone, causing the enlargement of the thyroid with the
development of a condition known as goiter (Gaitan 1990; Felker et al. 2016).
Examining the concentration of goitrin and thiocyanate in human plasma upon
ingestion of Brassica vegetables containing progoitrin and indole GSLs which are
responsible for the formation of goitrogenic thiocyanates, Felker et al. concluded
that, the consumption of regular serving size broccoli, broccoli rabe, bok choy, and
Chinese cabbage results in plasma concentration levels of progoitrin and goitrogens-
generating indole-GSLs that are well below the levels that may affect thyroid
activity (Felker et al. 2016). On the other hand, excessive and continuous consump-
tion of raw Russian kale, collards, and Brussel sprouts characterized by high levels
of progoitrin may limit iodine uptake in the thyroid and cause hypothyroidism (Choi
et al. 2014a; Felker et al. 2016).

Several other studies have indicated toxic effects of ITCs, such as goitrogenic
and mutagenic ones (Wiesner et al. 2014; Eisenbrand and Peter 2016), while adverse
activities have been also appointed to other byproducts of myrosinase-induced
hydrolysis, e.g. nitriles, thiocyanates, goitrins, epithionitriles and cyanides (Cipollini
and Gruner 2007; Kupke et al. 2016; Felker et al. 2016). There is also a particular
species, Carica papaya, which contains both beneficial (glucotropaeolin) and toxic
(cyanogenic glucosides) compounds (Bennett et al. 1997; Olafsdottir et al. 2002;
Williams et al. 2013; Bolarinwa et al. 2016), while degradation byproducts of spe-
cific GSLs may exhibit either beneficial or adverse effects. A perfect example is the
case of epithionitriles which may have toxic effects on mammals’ liver and kidney
(Kupke et al. 2016), or present cancer-preventive/therapeutic properties (Hanschen
et al. 2015).

Despite the whatsoever limited negative effects, scarce evidence from epidemio-
logical studies on humans exists, while limited data from toxicological studies are
available to formulate safety regulations and recommend average daily intake
amounts (Spcijers 1995; Latté and Appel 2011). Recently, a cohort study conducted
by Ma et al. (2018a) between 1984-2013 associated dietary GSL intake with an
increased risk of type 2 diabetes in US adults. A recent review paper, (Fimognari
et al. 2012) stressed out the genotoxic potential of ITCs which may result in gene
mutations and chromosomal aberrations, however, they suggested that further toxi-
cological studies are required to evaluate the toxicity of ITCs and recommend safe
daily intake allowance.

2.5 Conclusion Remarks

GSLs represent an important group of phytochemicals with great significance in
plant physiology and defense system. Apart from that, several beneficial health
effects have been confirmed with in vitro and in vivo studies during the last decades
which are associated with their hydrolysis products, namely ITCs, and triggered the
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current research interest of the scientific community. The numerous GSLs identified
in various species of the Brassicales order exhibit a great structural diversity and
originates a large number of byproducts which further results in a broad spectrum
of bioactive properties, including anticancer, antimicrobial, antidiabetic and benefi-
cial to cardiovascular system activities among others. The recent analytical tech-
niques allowed researchers to identify the mechanisms of action behind the activities
of many GSLs, as well as their bioavailability and bioaccessibility after ingestion in
the human body. Moreover, considering the already confirmed positive health
effects future research should focus on agronomic practices and breeding efforts
that would increase GSLs content in the final products and improve their dietary
value. However, despite the beneficial effects, there are also reports and clinical
studies that highlight possible negative effects which need further consideration in
order to define safe consumption limits.
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Chapter 3 )
Peptides and Proteins b

René Renato Balandran-Quintana, Ana Maria Mendoza-Wilson,
Gabriela Ramos-Clamont Montfort, José Angel Huerta-Ocampo,
and Miguel Angel Mazorra-Manzano

Abstract Non-communicable diseases are among the top causes of death world-
wide. In the following decades, the number of people affected by non-communicable
diseases will increase due to aging, and so the demand for medicines. Many of the
treatments available to alleviate these diseases have adverse side effects, whereas
others are costly, so there is an urgent need for alternatives. Currently, there is an
increasing pharmacological interest for peptides and proteins as therapeutic agents
because of advantages such as biocompatibility, high potency, high selectivity, and
low risk of drug interactions. This chapter reviews updated scientific reports about
food-derived bioactive peptides and proteins, about their potential preventive or
alleviating role on the deadliest non-communicable diseases. Cardiovascular dis-
ease, cancer disease, diabetes, neurodegenerative disorders, as well as oral cavity
diseases as a predisposing factor to the development of other essential illnesses, are
addressed. The objective is to provide useful information to readers involved or
interested in the fields of pharmacology and food technology, with the hope that it
can serve as an introductory guide to recognize the immense potential of peptides
and proteins as therapeutic agents.

Keywords Non-communicable diseases - Bioactive peptides and proteins -
Alternatives to synthetic drugs - Protein technology - Drug development
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3.1 Introduction

According to the World Health Organization (WHO 2018), in 2016, deaths world-
wide amounted to 56.9 million. The most prevalent noncommunicable diseases
accounted for a combined 29.6 million deaths from which cardiovascular diseases
represented 55%, a set of others, diabetes among them, 31%; and cancer, 14%
(Fig. 3.1). Percentages vary between regions, income level, age, and sex, being the
income level the most important factor since, in developing countries, infectious
diseases represent the leading cause of death. Although some risk factors are well
identified, which serves the health authorities to plan public health strategies, pro-
jections are not very encouraging. It is thought that by 2030, the sum of deaths due
to noncommunicable diseases will rise to 52 million (WHO 2008). If this is added
to the appearance of new diseases and the resurgence of others that were believed
already eradicated, it results in a growing need for the population for the use of
medications.

Evidence of the importance of the pharmaceutical sector is the world drug mar-
ket, which had revenues of 1,204.8 billion US dollars (1.2 trillion) in 2018, from

Hypertensive
heart disease

Trachea,
bronchus,

lung

dementias

Fig. 3.1 Contribution of the most prevalent noncommunicable diseases to total worlwide deaths
in 2016. Calculated with data of the World Health Organization (WHO 2018)
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which 8.26% corresponded to cancer drugs. Cancer is not the most prevalent dis-
ease or the one that causes the most deaths, but anticancer drugs have the highest
prices (Mikulic 2019). In this context, in addition to the fact that many pharmaceuti-
cal medications are unreachable for people in need, there are adverse effects of the
same, which even end in a fatality (Karimi et al. 2015). Thus, a growing interest of
people to use natural alternatives exists, representing an opportunity for the expan-
sion of their market. However, something “natural” is not always free from undesir-
able side effects, so strict protocols must be followed before placing natural-derived
drugs in the market. Such is the case of peptides and proteins used as therapeu-
tic agents.

Bioactive peptides (BP) are those displaying some kind of biological activity,
which goes beyond the nutritional one and has a positive impact on human health
(Kitts and Weiler 2003). In general, BP has current or potential uses as nutraceuti-
cals, food preservatives, or drugs, depending on the amino acid sequence. Bioactive
peptides are usually encrypted in many proteins, which are part of the human diet.
This is a latent form of BP, and becomes active after releasing by proteolysis, either
chemical or enzymatic (Bhat et al. 2015a; Karami and Akbari-Adergani 2019).
After a BP with determined biological activity is identified, its production at a high
scale is frequently assisted by chemical synthesis. Another strategy is the use of
recombinant technology to obtain the source protein, from which the BP of interest
are subsequently released (Rasmussen 2018). On the other hand, bioactive proteins
are those who have therapeutic properties as well, but unlike BP, their number of
amino acid residues is higher than 50 (Dimitrov 2012).

There are several reviews on the subjects of BP, addressing either general or
particular issues (Acquah et al. 2019; Belovi¢ et al. 2011; Boparai and Sharma
2020; Karami and Akbari-Adergani 2019; Lau and Dunn 2018; Pandit et al. 2020;
Séanchez and Vazquez 2017). This chapter reviews updated scientific evidence on
the bioactivity of BP derived from food proteins in terms of their potential impacts
on the primary non-communicable diseases. A general view on drug design is pre-
sented, as a background, to discuss the research on peptides and proteins in a phar-
macological context.

3.2 Generalities on Drug Design

Drug design is a challenging task. Commercialization of a particular drug is pre-
ceded by years of intense work and involves the participation of a myriad of special-
ists trained in a variety of disciplines. Typically, drug design consists of two major
stages: drug discovery and drug development; each of them subdivided into many
minor tasks (Fig. 3.2). The goal of drug discovery is the selection of one compound,
among thousands, with the potential to be clinically relevant by demonstrating
in vivo efficacy in animal models. The second primary stage, drug development, has
the goal of placing the drug in the market. It starts by requesting permissions for
clinical trials in humans and is progressed through several studies until it is approved
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DRUG DISCOVERY DRUG DEVELOPMENT

Request permission for clinical
‘ studies in humans

4

Up to 4 phases of clinical trials in
humans

Target selection
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compounds to identify candidate
series

\ 2

Examination of analogous
compounds among the candidate
series

Approval and subsequent
commercialization

Selecting one single compound
which demonstrates its efficacy in Postmarketing surveillance
animal models

Fig. 3.2 Simplified diagram of the drug development process. Adapted from Blass (2015)

by the appropriate regulatory agencies. Then, post-market surveillance is followed
(Blass 2015).

Since millions of chemical compounds exist, the starting point of drug discovery
could be extremely laborious. Modern drug design is supported by computational
and biological approaches to reduce costs and time (Xue et al. 2018; Zhou and
Zhong 2017). However, physicochemical properties such as solubility and perme-
ation across membranes, which are particularly crucial for drugs designed for oral
administration, are not accurately predicted. As a result, physical measurements
would be necessary, with the disadvantages that this conveys. In this regard,
researchers have adopted the Lipinski’s rule of five (Lipinski et al. 2001) to define
drugability, i.e., whether a chemical compound meets the characteristics of a drug.
This rule, proposed in 1997 and to date very useful (Benet et al. 2016), is based on
experimental and computational approaches. It establishes that poor absorption or
permeation of a compound is more likely if:

e There are more than 5 H-bond donors (expressed as the sum of OH and NH);
e The molecular weight is over 500;

* The Log P (octanol-water partition coefficient) is over 5;

e There are more than 10 H-bond acceptors (expressed as the sum of N and O)

In principle, peptides and proteins do not accomplish Lipinski’s rule to be con-
sidered as candidates for drug development. However, their high potency and
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selectivity have prompted researchers to develop strategies for enhancing their phar-
macokinetic properties.

3.3 Bioactive Peptides in the Pharmaceutical Context

As with any other bioactive substance, the biological effects of peptides must be
measurable at a physiological level and affect the health positively to be considered
as BP (Moller et al. 2008). Demonstrated bioactivity of peptides includes the anti-
oxidant, antimicrobial, antihypertensive, antithrombotic, anti-inflammatory, hypo-
glycemic, immunomodulatory, anticancer, and opioid, among others (Boparai and
Sharma 2020). Non-communicable diseases are of high interest to the pharmaceuti-
cal industry, and the BP development is highly concentrated in such areas, too (Lau
and Dunn 2018). Bioactive peptides are encrypted in proteins, whose sources are of
both animal and plant origin. However, most of the bioactive peptides come from a
food of animal origin, such as bovine milk, cheese, and other dairy products. Plant-
based sources of BP include cereals such as wheat, corn, rice, and sorghum, in addi-
tion to soy, mushrooms, squash, and amaranth, being the latter a pseudocereal
(Sanchez and Vazquez 2017).

Bioactivity of peptides is specific and depends on the amino acid sequence; how-
ever, they share some general characteristics:

* The length of the peptide chain is between 2 and 20 amino acid residues (although
there are BP which have 20 or more amino acids);

e Molecular mass less than 6000 Da;

e BP contain hydrophobic amino acids, in addition to Pro, Lys, or Arg;

e BP is resistant to proteolysis by digestive peptidases (Karami and Akbari-
Adergani 2019; Sanchez and Vazquez 2017)

Advantages of BP for their use in pharmacology include:

* High potency;

* High selectivity;

* Low potential for toxicity;

* Low risk of drug-drug interaction (Morimoto 2017)

Despite so many benefits, BP has the significant disadvantage of instability in
biological matrices due to their susceptibility to degradation by proteases. Also, cel-
lular absorption is low because of the molecular size and the polar nature of the
peptide bond (Di 2015). Thus, since peptides violate each and every point of
Lipinski’s rule of five, their pharmacological properties are enhanced through
PEGylation, lipidation, glycosylation, cyclization, or non-natural amino acid substi-
tution (Morimoto 2017). Purification of BP after hydrolysis is another challenging
task (Acquah et al. 2019), and becomes more critical when it comes to taking advan-
tage of agroindustrial wastes as sources of BP (Lemes et al. 2016). Efforts have
been made to overcome such difficulties (Adhikari et al. 2020; Fosgerau and
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Fig. 3.3 Most prevalent non-communicable diseases into which the effects of bioactive peptides,
encrypted in proteins from different sources have been investigated

Hoffmann 2015; Kapoor et al. 2020; Morimoto 2017; Raza et al. 2018). However,
there is still much work to do in this regard, representing additional opportunity
areas to the industrial sector.

The use of proteins and peptides due to their hormone- or drug-like activity is not
emergent. The insulin hormone is a peptide isolated from the animal pancreas in
1922 (Karamitsos 2011). Since then, a crescent number of scientific publications
regarding the bioactivity of peptides and proteins can be encountered. Contemporary
interest for BP is due to their preventive and alleviating dualistic role in some medi-
cal conditions. At present, nearly 20 new peptide-based clinical trials are done annu-
ally; more than 60 peptide drugs have been discovered and approved for clinical use
in the United States, Europe, and Japan; around 140 are under evaluation by clinical
trials, and more than 500 are in the preclinical development (Lee et al. 2019; Wang
et al. 2018). In Fig. 3.3 are schematized the most prevalent non-communicable dis-
eases into which effects of BP have been investigated.

3.4 Bioactive Peptides and Cardiovascular Diseases

Cardiovascular diseases (CVD) represent the most significant public health problem
in the world since atherosclerosis, stroke, or myocardial infarction affect a third of
the adults (Yusuf et al. 2015). Atherosclerotic and thrombolytic processes are asso-
ciated with the development of CVD, where the high levels of cholesterol, dyslipid-
emia, high blood pressure, obesity, and diabetes represent the key predisposing risk
factors. In recent years, an essential preventive strategy to reduce these risks has
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focused on dietary compounds that may contribute to improving cardiovascular
health. The study of proteins and peptides with biological activity had gained an
interest in preventive medicine due to their beneficial health effects, playing a sig-
nificant role in reducing risks associated with CVD.

Several food proteins and their hydrolysates/peptides have shown diverse bio-
logical activities with beneficial effects in metabolic disorders such as hypertension,
hypercholesterolemia, dyslipidemia, diabetes type 2, and thrombosis. Research on
their beneficial effects are based on the inhibition or activation of key enzymes
associated with the biological process of metabolic disorders such as hypertension
(e.g., ACE, angiotensin I-converting enzyme; ECE, endothelin-converting enzyme
and renin); diabetes (e.g., dipeptidyl peptidase-IV (DPP-IV) and a-glucosidase);
atherosclerosis (e.g., platelet-activating factor-acetyl hydrolase (PAF-AH) and
thrombin inhibition), and others (Gallego et al. 2019; Yoshikawa 2015). Diverse
studies in vitro, in silico, ex vivo, and in vivo, have indicated that food proteins and
their derived hydrolysates/peptides represent an attractive option for the develop-
ment of nutraceutical and functional foods with potential use in non-pharmacological
therapies to prevent or reduce risks associated to CVD.

3.4.1 Antihypertensive Peptides for Prevention of CVD

Hypertension or continuously high blood pressure can produce damage in vital
organs such as kidney and heart. In 2015, 25% of men and 20% of women (repre-
senting 1.13 billion people worldwide), suffered hypertension, leading to the pri-
mary cause of premature death worldwide (WHO 2019). Blood pressure is regulated
by a process known as the renin-angiotensin system and has been the focus of most
research on bioactive peptides and functional foods. Briefly, the enzyme renin con-
verts the angiotensinogen to angiotensin I, which is then hydrolyzed by the ACE,
releasing the octapeptide angiotensin II (a potent vasoconstrictor). Thus, inhibition
of renin or ACE activity plays a significant role in lowering blood pressure during
hypertension. Most protein hydrolysates/peptides with potential antihypertensive
properties are evaluated according to its capacity to inhibit ACE-activity in vitro,
and then its effectivity confirmed in vivo by blood pressure reduction in spontane-
ously hypertense rats (SHR) (Howard and Udenigwe 2013; Mazorra-Manzano
et al. 2018).

Many scientific reports indicate that several food proteins, either from animal or
vegetal origin, contain peptide sequences that can inhibit ACE activity. Some pro-
teins can exhibit bioactivity in their intact form after consumption; however, others
require to be hydrolyzed to release their bioactive sequences by digestive, fermenta-
tive, or hydrolytic processes, using specific proteases. For example, undigested
spinach leaf protein (rubisco, ribulose bisphosphate carboxylase/oxygenase, a
major leaf protein), did not show any antihypertensive effect when was evaluated in
HSR; however, their hydrolysates, prepared with pepsin or pepsin-pancreatin
enzymes (ACE ICs, 56 and 120 pg/mL respectively), were adequate to reduce blood
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pressure after oral ingestion at a minimum dose of 0.25 and 0.5 g/kg, respectively
(Yang et al. 2004).

Bioactive peptide sequences can exhibit a beneficial effect if they are absorbed
and reach the target site. Therefore, they must resist the digestive process occurring
after its ingestion and be absorbed their bioactive form (or its fragments), which will
depend on its structure. Permeability of two potential antihypertensives (ECA-
Inhibition) peptides (KPLLCS and KPLL), obtained from the digestion of chicken
breast, were evaluated ex vivo using the Caco-2 cell model system. The KPLLCS
peptide (ECA ICs, 0.37 pM) was degraded during digestion, while KPLL (ECA ICs,
11.8 pM) was highly permeable and only partially degraded. The released peptide
fragments (KP and LL) showed ECA-inhibitory activity but in a lower potency
(ECA ICs, 8037 and 7870 pM, respectively) (Sangsawad et al. 2018).

A peptide fraction <3 kDa of chicken skin (ICs, 130 pg/mL) hydrolysate was
produced with a mixture of endo- and exo-peptidases and showed significant sup-
pression of increased blood pressure in SHR. The identified collagen-derived
sequences with ACE-inhibitory activity were GAHGLHGP (ICs, 29.4 pg/mL) from
collagen a1, and GIHGERGPVGPSG (ICsy43.4 pg/mL), GAHGPAGPGGIHGERG
(ICsy 45.6 pg/mL), and GLHGSRGERGLHG (ICs, 60.8 pg/mL) from collagen o2
(Saiga et al. 2008).

It has been well documented that milk proteins are an excellent source of pep-
tides with antihypertensive properties. Casein-derived peptides such as VPP and
IPP possess the highest ACE-inhibitory activity of food protein-derived peptides
reported until now (ECA ICs, of 9 and 5 pM, respectively). The antihypertensive
properties shown by fermented milk and by protein hydrolysates from fish, meat,
soy, amaranth, chickpeas, and other protein sources, have increased the interest in
the production and commercialization of functional foods and nutraceutical prod-
ucts. Some antihypertensive commercialized products include the fermented milk
Calpis® and Evolus®, and the capsules petACE® and Vasotensin® from bonito fish
hydrolysates (Mazorra-Manzano et al. 2018; Nakamura et al. 1995).

3.4.2 Hypoglycemic Peptides in Diabetes and CVD

CVD is the leading cause of death in adults with diabetes. Type 2 diabetes is char-
acterized by increased glucose in the blood (hyperglycemia) as well as postprandial
hyperglycemia. Typically, in response to food ingestion, the gastrointestinal incre-
tins GIP (glucose-dependent insulinotropic polypeptide) and GLP-1 (glucagon-like
peptide- 1) are secreted into circulation, enhancing the secretion of insulin to control
the glucose levels in the blood and inducing satiety by a food intake-modulating
effect. These incretins have very short half-lives since they are renal degraded and
hydrolyzed by the enzyme DPP-IV. Peptides sequences with the capacity to inhibit
DPP-IV decrease blood glucose, increase glucose uptake, and stimulate insulin
secretion. Then, bioactive peptides with DPP-IV-inhibitory capacity can lead to
obesity and type 2 diabetes treatment (Baggio and Drucker 2007).
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Protein hydrolysates containing peptide sequences with DPP-IV inhibitory activ-
ity have been the target of recent studies, and several peptide sequences have been
reported. They have relatively high potency to inhibit DPP-IV in vitro; however,
studies in vivo are still scarce (Lacroix and Li-Chan 2016; Nongonierma and Fitz
Gerald 2016). The reduction of plasm DPP-IV activity in diabetic rats after the
administration of protein hydrolysates (e.g., milk proteins, fish gelatin, and zein
protein) has confirmed its anti-diabetic properties in vivo, observing a reduction of
plasm glucose and increased insulin levels (Korish et al. 2020; Nongonierma and
Fitz Gerald 2016).

The most potent food protein-derived hypoglycemic peptides reported until now
include LPQNIPPL (B-CAS y.77), LKPTPEGDL (B-Lg t4.54) and GPGA (from
Atlantic salmon skin gelatin) with DPP-IV ICs, values in the range of 42-45 uM
(Lacroix and Li-Chan 2014; Li-Chan et al. 2012; Uenishi et al. 2012). It is essential
to mention that some peptides also have shown multifunctional properties (Mazorra-
Manzano et al. 2018; Meisel 2004). For example, IQKVAGTW, VLDTDY, and
LKALPMH from p-lactoglobulin and WLAHKAL from a-lactalbumin can inhibit
ACE and DPP-IV activity, showing a possible beneficial effect in diabetes and
hypertension (Lacroix and Li-Chan 2014, 2016). In other studies, milk fermented
by a specific strain of Lactococcus lactis with ACE-inhibitory activity in vitro
showed antihypertensive activity in SHR, enhanced nitric oxide production and
reduced the oxidative stress index (i.e., lipid peroxidation and the enhancement of
antioxidant enzymes activity SOD and CAT) (Beltran-Barrientos et al. 2018).

It is widely supported that food proteins from different sources contain several
peptides sequences that can exhibit more than one biological property. Antioxidant,
antihypertensive, anticholesterolemic, antithrombotic, and antidiabetic peptides
have been identified in milk, soybean, amaranth, chickpea, lupin, and cowpea pro-
teins (Boachie et al. 2018; Lacroix and Li-Chan 2016; Sabbione et al. 2016; Zhang
2016). Peptides usually differ in structure, composition, length, and potency, thus
exhibiting a different action mechanism. For example, camel milk hydrolysates are
more hypoglycemic than bovine milk hydrolysates; however, bovine milk was more
effective as antiplatelet/antithrombotic agent in streptozotocin-induced diabetic rats
(Korish et al. 2020).

3.4.3 Bioactive Peptides in the Control of Dyslipidemia,
Hypercholesterolemia, and Thrombosis

Protein hydrolysates or peptides derived from animal (e.g., milk, chicken, pork, and
fish) and plant (e.g., soybean, rapeseed, peanut, and amaranth) proteins, have shown
beneficial bioactive properties in CVD by regulating lipid metabolism, reducing
absorption and synthesis of cholesterol, inhibiting thrombin and platelet aggrega-
tions, reducing oxidative stress of cells and inflammation (Rendon-Rosales et al.
2019; Rodriguez-Figueroa et al. 2013; Sabbione et al. 2016; Saiga et al. 2008; Yang
et al. 2004; Yoshikawa 2015).
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The platelet-activating factor (PAF), which is catalyzed by PAF-AH, is a pro-
inflammatory phospholipid mediator that participates in several inflammatory and
vascular diseases. Recent works have focused on the identification of food-derived
peptides showing PAF-AH inhibition. These peptides have been considered promis-
ing therapeutic targets for the prevention of atherosclerotic lesions. Seven peptides
were isolated from the seaweed Palmaria palmata, finding that NIGK was the most
potent sequence to inhibit PAF-AH (50.74% inhibition at 1 mg/mL) (Fitzgerald
et al. 2013). More recently, peptides released from dry-cured ham bones were also
able to inhibit PAF-AH. The sequences identified were derived from collagen and
hemoglobin and inhibited PAF-AH even after heating and simulated digestion.
These treatments released additional bioactive peptides that could block activities of
ACE, DPP-1V, and ECE, indicating a possibly beneficial effect on cardiovascular
health (Gallego et al. 2019).

Thrombin is a serine protease vitally important during blood clotting, where it
converts its soluble substrate fibrinogen into insoluble fibrin. Peptides with
thrombin-inhibitory activity (antithrombotic) prevent the proteolysis of fibrinogen
and formation of the fibrin clot. However, it can also occur that peptides, binding
with the already formed fibrin monomers, prevent its polymerization (Tu et al.
2017; Zhang 2016). Peptides released from glycomacropeptide (k-CAS ¢6.160) and
lactoferrin have demonstrated platelet aggregation inhibition while other casein-
derived peptide sequences have also shown excellent antithrombotic properties
(thrombin inhibitors) (Rendon-Rosales et al. 2019). On the other hand, a peptide
fraction from peanut protein hydrolysate (produced with alcalase) showed 65% of
inhibition of thrombin activity (antithrombotic) at the same concentration (0.2 mg/
mL) of antithrombotic heparin drugs. Sequences identified in the active fraction
were SWAGL, GNHEAGE, and CFNEYG (Zhang 2016). An amaranth protein
hydrolysate (produced by autolysis) showed antithrombotic activity in vitro (ICs,
5.6 mg/mL) and higher antioxidant activity than its protein isolate (ICso, ORAC 0.1
vs. 0.05; ABTS 5.4 vs. 2.1 mg/mL) (Sabbione et al. 2016). Peptides sequences
SSGE and DEE derived from soy protein also showed antithrombotic activity by
inhibiting ADP-induced platelet aggregation of rats’ blood in vitro (Lee and
Kim 2005).

Dyslipidemia or abnormal levels of lipids in the blood occurs when low-density
lipoproteins (LDL) and triglycerides are found in high levels (or HDL at deficient
levels), thus increasing the risk of developing atherosclerosis. This last event devel-
ops when fatty deposits called plaques accumulate in blood vessels, making it dif-
ficult for the blood to flow, causing major circulation problems, thus promoting
heart attacks and strokes. Different approaches have been used to decrease these
disorders, such as cholesterol-lowering, hypolipidemic, and antithrombotic agents.
Anticholesterolemic peptides can bind bile acids, inhibit cholesterol micellar solu-
bility, or show statin-like activity (HMGCoAR, 3-hydroxy-3-methyl-glutaryl-
coenzyme A reductase) by interacting as sterol regulatory element-binding protein
(Boachie et al. 2018). Several food proteins have been suggested to be
hypocholesterolemic such as milk and soy proteins and its hydrolysates/peptides
through the reduction of cholesterol biosynthesis, its uptake, and secretion and by
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decreasing its micellar solubility. The hypocholesterolemic effect of amaranth flour
(AF) was compared with amaranth isolate (AI), observing that flour shows the dis-
placement of cholesterol in model micelles (in vitro), and increased the cholesterol
excretion through faces with higher efficiency than its protein isolate (108% vs.
23%). However, the reduction in hepatic cholesterol accumulation in vivo was
inversed (53% vs. 93%). Besides, their digested products (AFD and AID) do not
increase the displacement of cholesterol in vitro (ICsy 0.1 vs. 0.71 and 0.2 vs. 2.1 for
AF vs. AFD and Al vs. AID, respectively). The hypocholesterolemic effect of AF
and Al indicate that protein and the presence of fiber influence cholesterol metabo-
lism (Sisti et al. 2019). On the other hand, four peptides from soy (glycinin and
f-conglycinin) and two from lupin-protein shown HMGCoAR-inhibitory activity. It
was observed that the peptide lupin-protein derived LTFPGSAED (ICs, 68 pM) had
a higher potency and was also transported across the Caco-2 cells (Boachie
et al. 2018).

Protein hydrolysates from different food sources have also shown a hypolipid-
emic effect in animal studies by decreasing serum and hepatic TC and LDL + VLDL
or by increasing fecal excretion of lipids and bile acids. Several peptides derived
from soy (mainly soy glycinin and conglycinin) and milk proteins (i.e.,
f-lactoglobulin) have shown a hypolipidemic effect in vivo (i.e., rats) and ex vivo
(i.e., cultured Caco-2 and HepT9A4 cells) (Howard and Udenigwe 2013). Milk
fermented by Lactococcus lactis strains with antihypertensive properties were also
able to reduce plasma low-density lipoprotein cholesterol and triglyceride contents
in SHR (Rodriguez-Figueroa et al. 2013). Inhibition of thrombin-induced fibrin
polymerization, anticoagulant activity and the inhibition of the micellar solubility
of cholesterol and its bile acid-binding capacity, indicate that some lactic acid bac-
teria strains can release peptides with both properties with possible cardiovascular
health benefits (Beltran-Barrientos et al. 2018; Rendon-Rosales et al. 2019).

3.4.4 Structural Features of Bioactive Peptides Related to CVD

Bioactive peptides usually are in the range of 2-20 amino acids length with ICs,
values in the range of pg-mg/mL (mM-pM), depending on its properties with ICs
values significantly higher than drugs used for the same purpose. Structure-function
relationship of bioactive peptides has been studied recently, determining that
depending on their structure, the sequence of amino acids, and charge, they could
exhibit some specific biological function. For example, peptides containing hydro-
phobic (aromatic or branched side chain) amino acid residues at three C-terminal
positions possess a vigorous ACE-inhibitory activity, where Pro is preferred (e.g.,
IPP and VPP). In addition, the positively charged amino acids Arg and Lys residues
at the C-terminus contribute to the ACE-inhibitory activity of peptides. On the other
hand, the presence of His in high amounts and hydrophobic amino acids in peptides
can contribute to their antioxidant potency, such as the one showed by PHH with
higher antioxidant activity among several peptides sequences evaluated (Erdmann
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et al., 2008; Wang and Gonzalez-de-Mejia, 2005). Negatively charged amino acids
in peptides may influence their antithrombotic potency. Docking studies about the
interaction between enzymes and inhibitors have predicted that Trp and Pro at
N-terminal position 2, show relatively potent inhibition of DPP-IV, which is in con-
cordance with diprotin (Ile-Pro-Ile), a well-known DPP-IV inhibitor (Lacroix and
Li-Chan 2015). The structural features of peptides such as length, charge, and amino
acid sequence are the most critical factors that determine its biological activity to
inhibit enzymes related with metabolic disorders in CVD. Therefore, structural
characteristics of peptides should be more deeply investigated (Nongonierma and
Fitz Gerald 2014).

3.5 Bioactive Peptides and Diabetes

Diabetes mellitus is a metabolic disorder of global importance due to its high preva-
lence and progressive increase in recent years (Kehinde and Sharma 2020). There
are two types of diabetes mellitus. Type I derives from the failure of the pancreas to
secrete insulin due to the destruction of beta cells (that synthesize and secrete insu-
lin) and has a prevalence of around 5-10%. On the other hand, type II diabetes mel-
litus is characterized by insulin secretion deficiency and the inability of the body to
use insulin (insulin resistance). As a result, tissues cannot use blood glucose for
energy, and long-term high plasma glucose concentrations lead to severe conse-
quences such as renal impairment, diabetic neuropathy, blindness due to retinopa-
thy, and cardiovascular disease (Ramadhan et al. 2017). Type II diabetes mellitus
represents 90-95% of the cases and has shown a gradual increase worldwide, rising
from 4.7% of world’s population (108 million) in 1980 to 8.5% (422 million) in
2014; current estimations indicate that the number of cases may reach 592 million
cases by 2035 (Kehinde and Sharma 2020; Lee et al. 2016).

Sedentarism, high body mass index, aging, and inheritance are well-known fac-
tors for type II diabetes mellitus development (Lauritano and Ianora 2016).
Therefore, a lifestyle change, including proper eating habits, regular exercise, and
medication, is required to prevent or reduce short and long-term effects of diabetes
and hyperglycemia (Yu et al. 2011). Pharmacologic therapies for diabetes mellitus
type II comprise biguanides, GLP-1 receptor agonists, meglitinides, sulphonyl-
ureas, thiazolidinediones, gliflozins (SGLT-2 inhibitors), as well as inhibitors of
enzymes involved in the regulation of postprandial hyperglycemia as a-amylase,
a-glucosidase, and DPP-IV (Kalita et al. 2018; Wang et al. 2019a). Several of these
therapies have shown toxicity and severe side effects such as the increased risk of
kidney injury, vascular disease, pancreas infection, and bladder cancer (Chaudhury
et al. 2017; Qaseem et al. 2017).

Bioactive proteins, protein hydrolysates, and peptides obtained from conven-
tional and non-conventional food sources have demonstrated the ability to provide
a natural replacement or complement to pharmaceutical approaches in diabetes
therapy, having minor side effects based on their natural origin. Inhibition (in vitro)
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of a-amylase, a-glucosidase, and DPP-1V is the conventional approach to evaluate
the antidiabetic potential of proteins, hydrolysates, and peptides by determining
their half-maximal inhibitory concentration (ICs) or the percentage of inhibition on
such enzymes (Kehinde and Sharma 2020; Li-Chan 2015). When administrated
orally or intravenously, complementary determinations of the antidiabetic potential
of bioactive proteins, hydrolysates, and peptides, include the estimation by in vivo
studies with humans and laboratory animals, of the increase in insulin production,
enhanced insulin sensitivity, and hypoglycemic effect, among others (Kehinde and
Sharma 2020).

3.5.1 Antidiabetic Bioactive Peptides from Milk

Milk, cheese, whey protein, and specific protein (a-lactalbumin, f-lactoglobulin,
lactoferrin, and casein) hydrolysates obtained by enzymatic digestion with several
enzymes for example trypsin, pepsin, chymotrypsin, and pancreatin, among others,
have shown in vitro (mainly DPP-IV and a-glucosidase inhibition) antidiabetic
potential (Jan et al. 2016; Lacroix and Li-Chan 2012). In vivo experiments have
shown mainly reduction in blood plasma glucose and DPP-IV inhibition (Lacroix
and Li-Chan 2013; Uchida et al. 2011). Interestingly, oral intake of both milk pro-
tein and milk protein hydrolysate by diabetic rats reduced the plasmatic glucose and
lipid levels so that milk protein hydrolysate could be used as an antidiabetic agent
(El-Sayed et al. 2016). Enzymatic digestion of egg yolk and egg white protein also
render peptides with in vitro antidiabetic activity («-amylase, a-glucosidase, and
DPP-1IV inhibitors) (Yu et al. 2011; Zambrowicz et al. 2015).

3.5.2 Antidiabetic Bioactive Peptides from Marine Organisms

A few fish protein hydrolysates have shown to stimulate glucose uptake in vivo
(Cheung et al. 2015). Enzymatic digestion of fish collagen and fish skin gelatin has
shown to inhibit DPP-IV (in vivo and in vitro), to enhance both GLP-1 and insulin
secretion in vivo (Wang et al. 2015), and to decrease blood fasting glucose and insu-
lin levels in diabetic patients (Zhu et al. 2010).

3.5.3 Antidiabetic Bioactive Peptides from Plant Origin

Bioactive antidiabetic peptides are also obtained from many plants, being cereals
and pseudocereals well-recognized sources. Rice, amaranth, and quinoa enzymatic
hydrolysates have shown a-amylase, a-glucosidase, and DPP-IV inhibitory activi-
ties (Kehinde and Sharma 2020). Enzymatic hydrolysis of oats protein and cumin
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seeds also generates interesting antidiabetic peptides (Yan et al. 2019; Zhang et al.
2015b). Legumes are a rich source of antidiabetic peptides. Several common bean
varieties and soybean have shown to release antidiabetic peptides after enzymatic
digestion and microbial fermentation, showing a-amylase, a-glucosidase, and
DPP-1IV inhibition; additionally, these bioactive peptides have shown to reduce
blood glucose levels, and to enhance insulin secretion and glucose uptake in vivo
(Kehinde and Sharma 2020; Yan et al. 2019).

Peptides and hydrolysates from fruits like walnut and watermelon seeds have
shown to have anti-diabetic properties (Kehinde and Sharma 2020). Antidiabetic
peptides have also been obtained by enzymatic hydrolysates from rapeseed napin,
cannabis seed protein, and seaweed protein (Admassu et al. 2018; Ren et al. 2016;
Xu et al. 2019). Five novel antidiabetic peptides were obtained from an unconven-
tional food source: the Chinese giant salamander muscle. Such peptides strongly
inhibited a-glucosidase and a-amylase, and, interestingly, one of the peptides inhib-
ited both enzymes (Ramadhan et al. 2017). There are many unexplored food and
plant sources for antidiabetic peptides. In this sense, byproducts of fruit industrial-
ization and plant oil refining industry represent a sparsely exploded source of bioac-
tive peptides (Balandran-Quintana et al. 2019), among them antidiabetic ones.

Recently, a purified nitric oxide-generating protein from garlic was injected into
diabetic mice and significantly reduced the blood sugar and increased insulin level
in the animals. The protein also increased insulin-release, Glut-4 synthesis, and
glucose uptake in the liver and p-cells of diabetic animals (Bhattacharya et al. 2019).

3.6 Effects of Bioactive Peptides on Cancer Disease

Cancer is a group of diseases identified by uncontrolled growth and spread of abnor-
mal cells that may be induced by external factors like radiation, chemicals, and
infectious organisms, or by internal factors such as mutations and altered hormonal
and immune states (Tanaka 1997). Cancers are among the top causes of deaths
worldwide, and the number of cases is expected to increase by approximately 70%
over the next 20 years (Gonzdlez-Montoya et al. 2017). Cancer is mainly treated by
invasive surgical methods and with radiotherapy and chemotherapy (Hubenak et al.
2014). Nevertheless, traditional chemotherapeutical drugs are not specific to target
(tumor) cells and produce many side effects. Furthermore, chemotherapy also fails
because of multidrug resistance (Huang et al. 2014).

Under such panorama, peptide-based drug therapies have received more atten-
tion because of their specificity, low toxicity, small size, tumor penetrating specific-
ity, and easy modification (Barras and Widmann 2011). Peptides used in cancer
therapy can bind to specific molecular targets on tumor cells and regulate the bio-
synthesis of malignant cells, they can serve as a drug delivery system or can induce
specific immunological (T cell) responses to tumor cells (Gonzdlez et al. 2014; Xiao
et al. 2015). Some peptide-based cancer therapies have shown promising results
when tested in vivo and in vitro. Though, some of the clinical trials have shown
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reduced effectiveness. Thus, novel methods like the combination of peptides with
nanomaterials, personal peptide vaccination, and improved delivery systems have
been tested in clinical trials with favorable results (Xiao et al. 2015).

Numerous studies have shown that terrestrial plants and animals, as well as
organisms from marine environments, are relevant sources of bioactive proteins and
BP with anti-cancer activity. Plant sources include cereals like wheat, barley, corn,
and rice (Diaz-Gémez et al. 2017; Malaguti et al. 2014); pseudocereals like ama-
ranth and quinoa (Huerta-Ocampo and Barba de la Rosa 2011; Vilcacundo et al.
2018), as well as legumes like soybean, bean, chickpea, pea, fava bean, and lentil
(Gonzdlez-Montoya et al. 2017). Plant BP are usually generated by enzymatic
hydrolysis and fermentation. However, germination, a natural hydrolytic process,
has shown to improve the anti-proliferative effect of soybean protein on cervical
cancer cells (Mora-Escobedo et al. 2009). Some dietary proteins (lectins) from
legumes and soybean are resistant to the passage through the gastrointestinal tract
and can enter the systemic circulation. Soybean agglutinin demonstrated to inhibit
tumor growth in rats and improve life expectancy in mice (Malaguti et al. 2014).
Whereas, lectins from Tepary bean displayed differential antiproliferative effect on
non-transformed cell and different cancer cell lines (Garcia-Gasca et al. 2012).

It has been described that higher consumption of legumes can considerably
decrease the risk of colorectal adenoma (Wang et al. 2013b), whereas BP obtained
from legumes has been reported to have productive anticancer activity (Mora-
Escobedo et al. 2009). Bowman-Birk inhibitors isolated from Glycine max, Pea
sativum, Vicia faba, and Lens culinaris, have shown anticancer effects in HT and
HepG2 cells (Caccialupi et al. 2010; Clemente et al. 2012; Fang et al. 2011).
Different peptides from chickpea and distinct common bean cultivars demonstrated
anticancer activity on MCF-7, HCT-116, CNE-1, HNE-2, HepG2 and MDA-MB-231
cell lines (Fang et al. 2010; Lam and Ng 2011; Luna Vital et al. 2014; Xue et al.
2015). Additionally, the anticancer peptide X-MLPSYSPY and Lunasin, a 43 amino
acid residues peptide isolated from soybean and other legumes, has shown to inhibit
chemical carcinogen-induced transformation and selectively induction of apoptosis
in transfected cells but not in non-transformed cells (de Mejia and Dia 2009; Galvez
et al. 2001; Kim et al. 2000). Lunasin was also detected in cereals and pseudocere-
als, and bioactive properties of lunasin have been attributed to the capacity to inhibit
histone acetylation, to arrest cell division in cancer cells, and to protect DNA from
oxidative damage (Malaguti et al. 2014). Besides legumes, cereals, and pseudocere-
als, many other plants can be a source of proteins and peptides with anticancer
activity. Walnut protein hydrolysates and proteins extracted from Gynura
procumbens have shown interesting anticancer properties (Hew et al. 2013;
Jahanbani et al. 2016), just to mention a couple of examples.

Bioactive peptides released from milk proteins have shown anti-cancer proper-
ties. Furthermore, this type of peptides can be isolated from fermented milk and
milk products (Sah et al. 2015). Some casein derived peptides have shown to induce
necrosis of leukemic cell lines (Otani and Suzuki 2003), have demonstrated cyto-
toxic activity against melanoma cells (Azevedo et al. 2012), and have inhibited pro-
liferation of human ovarian cancer cells (Wang et al. 2013a). Additionally,
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hydrolyzed casein has a -glucuronidase inhibitory activity (Gourley et al. 1997).
Lactoferrin digestion released peptides that exerted cytotoxic activity against fibro-
sarcoma, melanoma, and colon carcinoma cell lines (Eliassen et al. 2006), induced
apoptosis in breast cancer cell cultures (Furlong et al. 2006), and displayed the
capacity to inhibit angiogenesis in vitro and in vivo (Mader et al. 2006). Peptides
released from fermented milk, peptides extracted from high-speed centrifugation of
yogurt and isoelectric extraction of kefir, exhibited antioxidant, and antimutagenic
activity (Sah et al. 2015).

Fish byproducts (viscera, heads, bone, and skin) are not marketable but can be
recycled after processing. Production of a fish protein hydrolysate is the most com-
mon approach to use fish byproducts, and the type of peptides released is highly
dependent on hydrolysis conditions: proteases, temperature, pH, chemicals, and
time of hydrolysis (Nurdiani et al. 2017). Peptides isolated from dark tuna muscle
treated with papain showed an antiproliferative effect on human breast cancer cells
(Hsu et al. 2011). Snow crab byproducts treated with Protamex® produced peptides
with toxicity against colon, breast, prostate, and lung cancer cell lines (Doyen et al.
2011). Sepia ink oligopeptides produced by trypsin digestion inhibited proliferation
of DU-145 (Human prostate cancer) cells (Ding et al. 2011). Peptides released from
lobster and shrimp shells demonstrated to inhibit the growth of colon (Caco-2) and
liver (HepG2) cancer cells (Kannan et al. 2011). Similarly, backbones, skin gelatin,
and fresh fileting byproducts from fishes subjected to different enzymatic treat-
ments have shown antiproliferative effects on HepG2, hFOB 1.19 (osteoblastic) and
breast cancer cell lines (Nurdiani et al. 2017). However, despite that the peptides
derived from fish byproducts have demonstrated anticancer activities, cytotoxicity
of such peptides on healthy cells is rarely discussed (Nurdiani et al. 2017).

Discovery of bioactive peptides and proteins with anti-cancer properties in ter-
restrial (plants and animals) and marine sources, as well as in their byproducts, is
expected to lead to a broader market in the food-based therapies against cancer.
Therefore, the discovery of new peptides with anticancer properties, and the formu-
lation of functional foods based on bioactive proteins or their hydrolysates, demand
rigorous tests to guarantee the effectiveness and safety of these formulations.

3.7 Bioactive Peptides and Degenerative Neurological
Disorders

Degenerative neurological disorders (DND) are diseases that destroy neurons and
neural communication. While the etiology associated with these disorders remains
poorly understood, the incidence of neurodegeneration will convert into a public
health problem in a few years due to the aging population (Gaugler et al. 2016).
Therefore, it is necessary for a greater understanding of each disorder’s etiology to
develop, timely diagnosis, and effective treatments.
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3.7.1 Bioactive Peptides and Alzheimer

Alzheimer’s neurodegenerative disease (AD) is a brain disorder that causes 60-70%
of cases of dementia. It is the principal cause of disability in later life (Gaugler et al.
2016). AD is irreversibly and progressively damages brain cells causing memory
loss, thinking skills, and subsequent premature death 3—-9 years following diagnosis
(Scheltens et al. 2016). The causes of Alzheimer’s are unknown. The most accepted
hypotheses are the amyloidogenic (;AH), and the tau proteins phosphorylation
(Folch et al. 2018). A typical characteristic of AD is the extracellular accumulation
of plaques between neurons formed by -amyloid peptides. According to yjAH, this
peptide accumulation (in particular, Ap4, peptide) interferes with essential pro-
cesses for neurons such as communication, repair capacity, metabolism, and neuro-
genesis leading to the death of nerve cells and subsequent behavioral/psychiatric
changes (Mucke and Selkoe 2012). The tau protein hypothesis proposes that the
leading cause of AD is the hyperphosphorylation of the 3R and 4R tau proteins
(Folch et al. 2018). Tau proteins are involved in the microtubule stabilization of
nerve cells, which is destabilized by the post-translational modification (hyperphos-
phorylation) of these proteins, causing cytoskeletal abnormalities (Zhang et al.
2015a). In this context, research has been focused on anti-amyloid Ap42 production
and anti-tau protein hyperphosphorylation for AD treatment. However, these treat-
ments have not been effective in stopping the disease progression because of the
multifactorial AD etiology (Folch et al. 2018).

Recent studies confirm that the complexity of AD pathophysiology is greater
than the transformation of amyloid peptides and tau proteins. Metabolic alterations
(insulin resistance, cholesterol homeostasis), chronic brain inflammation, oxidative
stress, dendritic neuropathology, and influence of bacteria such as P. gingivalis have
also been observed (Cochran et al. 2014; De Felice 2013; Ferreira et al. 2014; Ide
et al. 2016). To develop more effective treatments is necessary to consider these new
findings. According to the United Nations, the number of people with AD and other
dementias will reach 152 million by 2050, if adequate therapies are not discovered
(Patterson 2018).

The four approved drugs for the treatment of AD act (1) as inhibitors of acetyl-
cholinesterase that increases cholinergic transmission in neuronal synapses
(AChEI)., or (2) by blocking receptors for N-methyl-D aspartate (NMDAR antago-
nists) that decrease brain excitotoxicity (Folch et al. 2018). There are currently no
approved drugs based on peptides or natural proteins. However, some of these mol-
ecules are being studied due to their neuroprotective activity. BP may occur natu-
rally in foods or can be found encrypted in plant and animal proteins. In the last
case, it can be released either by enzymatic hydrolysis or by microbial fermentation
(Chakrabarti et al. 2018).

Apoptosis inhibition helps to reduce neuronal damage in neurodegenerative dis-
eases (Balez et al. 2016). It has been shown that several peptides of animal origin
can block some specific elements of the apoptotic signaling. For example, peptide
MQIPVLTLTG from venison muscle, decrease the population of cells positive to
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Annexin V, suppress the Cytochrome C release, and regulate the expression of
apoptosis-related genes like those encoding to produce caspases 3 (Kim et al. 2010).
PAYCS and CVGSY peptides obtained by hydrolysis of anchovy muscle using
papain, pancreatin, and alcalase, also inhibit apoptosis (Zhao et al. 2017). Neural
death in AD can also be reduced by decreasing oxidative stress. Overproduction and
long-time exposure of reactive oxide species (ROS) cause an antioxidant disbalance
leading to synapse loss, mitochondrial disfunction, receptor cell trafficking, com-
munication perturbation, and disbalance in cellular homeostasis accompanied by a
disfavored antioxidant status (Tonnies and Trushina 2017). ROS and other mole-
cules of oxidative stress (nitric oxide, peroxynitrite) also alter the function of cel-
lular and mitochondrial DNA, lipids, proteins, and energy production leading to
neuron death (Huang et al. 2016). Whey protein hydrolysates, DWMH peptide from
walnut, and PAYCS and CVGSY from anchovy show antioxidant capacity and neu-
roprotective activity (Chen et al. 2015a; Zhao et al. 2017).

Experimental and clinical evidence indicates that peptides inhibitors of DPP-IV
may reduce ROS formation, mitochondrial dysfunction, and neuroinflammation,
and also control tau protein hyperphosphorylation and amyloid plaque aggregation
(Kosaraju et al. 2013a; Kosaraju et al. 2013b). Many investigations have demon-
strated the DPP-IV inhibitor capacity of peptides from food origin (Table 3.1). For
example, PGVGGPLGPIGPCYE, CAYQWQRPVDRIR, and PACGGFWISGRPG
peptides obtained from tuna cooking juice hydrolysates showed DPP-IV inhibitor
activity in a dose-dependent manner (Huang et al. 2012). Other inhibitor peptides
obtained from casein (LPQNIPPL), salmon skin gelatin (GPAE), and rice protein
(LP and IP) have been reported (Hatanaka et al. 2012; Li-Chan et al. 2012; Uenishi
et al. 2012).

Additionally, peptides from food origin have shown different bioactivities asso-
ciated with possible treatment for AD, like inhibition of acetylcholinesterase
(AChE), or anti-inflammation activity (Table 3.1). However, there are different chal-
lenges to overcome so that these peptides can be used commercially. Some of these
challenges are isolation and purification, large scale production, quality aspects,
taste, and transfer through the blood-brain barrier (BBB) (Chakrabarti et al. 2018).

A promising protein related to AD and other neurodegenerative diseases treat-
ments is lactoferrin (Lf). Lf is a non-heme iron-binding mammalian glycoprotein
(~80 kDa, ~700 aa), secreted mainly in milk, saliva and tears. It is industrially pro-
duced by cow milk and used as a health-promoting protein (Wakabayashi et al.
2018). Lactoferrin supplementation to three-day-old male piglets induced the
expression of genes related to:

* Neural development and cognition;

e Organization of brain cell structure (cytoskeleton, microtubule dynamics, the
formation of cytoplasm projections, neurites formation);

e Diminution of anxiety (Chen et al. 2015b).

Mohamed et al. (2019) conducted a pilot study to determine the role of 3-month
supplementation of bovine Lf in patients with AD. After supplementation, patients
showed a decrease in many AD-related markers (Table 3.2). This and other studies
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Table 3.2 Lactoferrin effect in neurodegenerative diseases models
Via Model Effect References
Holo-Lf and Male C57BL/6 Protection against iron dysregulation, | Liu et al.
Apo-Lf, 5-15mg/ | mice PD model, oxidative stress, and apoptosis with (2020)
kg, for 7 days aged 9—-10 weeks apo-Lf showing greater efficacy
n=120
Oral administration | Fifty AD patients Alleviation the AD pathological Mohamed
of 250 mg/day for 3 | (Men n =28 and cascade and cognitive decline via etal. (2019)
months woman n = 22) modulation of the p-Akt/PTEN
pathway
Nutraceutical Caenorhabditis Protection against acute oxidative Martorell
product based on elegans wild and stress and extended lifespan of et al. (2016)
lactoferrin transgenic type AD | C. elegans; Paralysis of transgenic
liposomes models C. elegans strain CL4176, caused by
Ap1-42 aggregates, was clearly
ameliorated by treatment
Orally 500 mg/kg/ | Male albino rats; Alleviation of memory impairment Madi and
day via intragastric | aged 12-16 weeks | induced by lipopolysaccharide; El-Saka
tube for 12 weeks | old, n =30 antioxidant activity (2018)
Daily injection of | Adult male Wistar | Antihyperalgesic and antiallodynic Madi and
100 mg/kg for 15 rats weighing effects in neuropathic rats Saka (2018)
days 180-200 g
Holo-Lf and Apo-Lf | Rat MS model and | Apo-Lf induced the synthesis of Zakharova
(human Rat PD model neuroprotective molecules like et al. (2018)
recombinant) erythropoietin and Nrf2 signal
Intraperitoneal pathway
injection
Intraperitoneal Rat model of AD Attenuation of learning deficits Kamalinia
injection of etal. (2013)
deferasirox-Lf
conjugates
Intranasal human Male APP/PS1 mice | HLf enhanced the non-amyloidogenic | Guo et al.
lactoferrin (hLf) AD model (six metabolism of amyloid precursor (2017)
2-6 mg/kg/day for | months year old) protein; reduction of oxidative stress
3 months n=24 and neuroinflammation

AD Alzheimer disease, MS multiple sclerosis, PD Parkinson disease

showed evidence about the protective effect of Lf supplementation in AD (Table 3.2).
Possible mechanisms are iron sequester and antioxidant effect. However, additional
studies over higher point immune functions are necessary.

Lactoferrin has also been proposed as a non-invasive biomarker for the detection
and monitoring of AD in saliva (EP3171174A1; EPO patent). A significant increase
in the concentration of Lf in saliva has been observed in patients with AD. This
increase could be related to the neuroprotective, anti-inflammatory, and anti-oxi-
dant effects of Lf and its ability as a chelator of iron deposited in the brain of
patients with AD (Carro et al. 2017). Another possible application of Lf in AD is
like brain-target-ligand conjugated with nanocarriers for the delivery of drugs and
bioactive (Babazadeh et al. 2020). Lf can penetrate the BBB via receptor-mediated
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transcytosis. This drug delivery system would take advantage of the significant
increase in Lf-receptors observed in the brains of neurodegenerative disease
patients (Wang et al. 2019b).

3.7.2 Bioactive Peptides and Multiple Sclerosis

Epidemiological studies indicate that approximately 2.5 million people were
affected by multiple sclerosis (MS) around the world in the past decade (McFarland
and Martin 2007). MS is a chronic autoimmune neurological and degenerative dis-
ease in which the immune system mistakenly attacks proteins of the myelin sheath
surrounding nerve cells of the central nervous system (CNS). This leads to chronic
inflammation of the CNC, breakdown of the BBB, axon damage by demyelination
and lesion formation along the nerves, in the brain and spinal cord that decrease or
impede the conduction of nerve stimuli (Dobson and Giovannoni 2019).

Symptoms of MS are unpredictable as they can vary significantly between
patients and change or fluctuate throughout the disease (McFarland and Martin
2007). Among the common symptoms are weakness, fatigue, tremor, vision loss,
seizures, vertigo, spasticity, depression, cognitive changes, pain syndromes, and
speech, swallowing, breathing, bladder, bowel, and walking problems (Dobson and
Giovannoni 2019).

At present, there is no cure for MS. However, several immunosuppressive agents
are used as therapy for relapse and brain injury prevention (Badawi and Siahaan
2012). This kind of therapy increases the risk of opportunistic infections. Hence it
is necessary to develop more specific therapeutic agents and look for bioactive mol-
ecules that help to reduce the symptoms of MS. Cyclotides are disulfide-rich cyclic
peptides (27-37 amino acid long, including 6 Cys) produced by plants (Huang et al.
2019). These highly stable molecules can be found in flowers, leaves, stems, and
roots of Fabaceae, Cucurbitaceae, Rubiaceae, Solanaceae, and Violaceae family
plants (Craik and Du 2017). Cyclotide [T20K]kB 1 derived from cyclotide kalata B1
purified from Oldenlandia affinis DC (Rubiaceae), inhibits Ty 17 proliferation in an
MS mouse model experimental autoimmune encephalomyelitis (Thell et al. 2016).
Ty17 is an autoreactive T lymphocyte subset that causes demyelination, inflamma-
tory cell influx into the CNS, axonal damage, and neuronal degradation (McFarland
and Martin 2007). In vivo activity of [T20K]kB1 is sequence-specific, producing a
significant reduction of demyelination and inflammation in the MS mouse model. In
addition, oral treatment with daily lower doses was effective in preventing disease
prevention. Consequently, [T20K]kB1 oral activity represents a promising alterna-
tive for the treatment of MS (Thell et al. 2016). However, more studies are needed
to understand better the mechanisms of action of cyclotides in MS treatment.

Oral administration of the iron-binding glycoprotein lactoferrin (Lf) accelerates
the recovery of Lewis rats in an experimental autoimmune encephalomyelitis MS
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model. In addition, Lf reduced serum pro-inflammatory TGFp and TNF-a cytokines
associated with the progression of MS disease, and also decreases inflammation in
the spinal cord of the treated rats (Zimecki et al. 2007). Other studies showed that
prolonged administration of bovine Lf (bLf) decreases neuropathic pain in adult
male Wistar rats (Onal et al. 2010). Fifteen days injection of bLF (50-100 mg/kg/
day), also decreased c-Fos (a neural marker of pain) and NADPH-d immunoreactiv-
ity and TNF-a and nitric oxide expressions (Onal et al. 2010). These results confirm
the immune modulator and anti-inflammatory activity of LF associated with neuro-
generative disease (Kruzel et al. 2017). Moreover, Lf could serve as an essential
element to direct drugs to the BBB of patients with MS. Targeting delivery of drugs
into the brain is physically restricted by the BBB, but Lf can penetrate the BBB via
receptor-mediated transcytosis (Wang et al. 2019b), indicating the opportunity of Lf
as a brain-targeting ligand (Chen et al. 2010). Yu et al. (2012), developed a brain
drug delivery system based on biodegradable PEG-PLGA polymersomes conju-
gated with 101 Lf molecules (Lf101-POS) and loaded with S14G-humanin pep-
tides. Lf101-POS not only acted as a carrier for the S14G-humanin peptides but also
protected them from protease attack. Under these conditions, S14G-humanin pep-
tides could be successfully internalized into the brain, producing a neuroprotective
effect in murine animal models and controlling the overexpression of brain cell
apoptotic promoters. These findings position Lf101-POS as a promising brain drug
delivery system for the treatment of neurodegenerative disease. In addition, several
investigations are being carried out for the synthesis of other brain drug carriers
(dendrimers, liposomes, nanoparticles) that include Lf as a brain-targeting ligand
(Chen et al. 2010; Gao et al. 2010; Gao 2016; Huang et al. 2013; Liu et al. 2018; Su
et al. 2014).

Other important neurodegenerative diseases are Parkinson’s disease, Huntington’s
disease, amyotrophic lateral sclerosis, frontotemporal dementia, and the spinocere-
bellar ataxias. All of them share similar symptoms to AD and MS, like degeneration
of CNS, oxidative stress, permanent inflammation, damage of neuron axon, and
destruction of the myelin sheath (Dugger and Dickson 2017). Since the main effect
of naturally occurring peptides and proteins is a neuroprotective effect, it is possible
to expect that these molecules can also be useful in relieving symptoms of neurode-
generative diseases other than AD and MS.

Available evidence suggests that peptides from food-origin can exert neuropro-
tective in DND models. However, some challenges must be overcome for the use of
these peptides in approved treatments, such as large-scale production. An alterna-
tive could be the synthesis of peptides with sequences equal to those that have been
effective. Before this occurs, more studies are necessary to understand the mecha-
nisms of action of each peptide on DND. In addition, human studies should be con-
ducted to confirm the neuroprotective effect of selected peptides. Lactoferrin is a
promising protein for the diagnosis and alleviation of DND. In addition, its ability
to cross the BBB makes Lf, an excellent candidate to be used as a targeting signal
for brain delivery devices loaded with peptides, bioactive, or drug treatments.
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3.8 Effects of Bioactive Peptides on Diseases of the Oral
Cavity

Dental caries and periodontal conditions are the most prevalent oral cavity infec-
tious diseases in humans and represent a first-rate public health problem that affects
all countries of the world. The WHO reports that more than 530 million children
suffer from dental caries of primary teeth, and 2.3 billion people suffer from caries
of permanent teeth, while severe periodontal diseases that lead to tooth loss affect
10% of the global population (WHO 2020). Caries is a condition that starts with the
formation of a polymicrobial biofilm on the tooth surface, known as dental plaque,
and in advanced stages, it causes the dissolution of the enamel and the dentin of the
teeth (Levine 2011). Periodontal diseases (gingivitis, periodontitis) are chronic
inflammations that affect the supporting tissues of the teeth (Dashper et al. 2007).

In recent decades epidemiological associations have been reported between den-
tal caries or periodontal conditions with systemic diseases (Seymour et al. 2007).
On the one hand, caries is frequently related to the development of endocarditis
(Leishman et al. 2010). On the other hand, periodontal conditions predispose to the
development of atherosclerosis, Alzheimer’s disease, adverse pregnancy outcomes,
and different types of cancer that include the mouth, head, neck, gastrointestinal,
and colorectal. Recent worldwide statistics reveal that the oral squamous cell carci-
noma (mouth, head, neck) has increased alarmingly and represents 90% of all can-
cers (Bui et al. 2019; Chattopadhyay et al. 2019; Zhang et al. 2018). Likewise, oral
infections significantly increase the risk of complications in individuals suffering
from chronic diseases such as diabetes, respiratory diseases, and even osteoporosis
(Seymour et al. 2007). In this situation, the WHO has recommended that all coun-
tries promote global efforts and develop strategies to prevent oral infections from
improving the general health of the population and reducing public health expenses.

Among the strategies addressed by scientists to prevent oral diseases, the use of
bioactive peptides stands out. To date, some peptides of animal and plant origin
have been identified, which could affect different stages in the caries formation and
periodontal infections, as well as the oral squamous cell carcinoma.

3.8.1 Peptides Derived from Proteins of Milk and Cheese

Proteins of milk and dairy products, particularly of bovine origin, are currently the
primary source of bioactive peptides, among which are distinguished for their mul-
tiple anticariogenic functions, the caseinophosphopeptides (CPP) and glycomacro-
peptide (GMP) (Aimutis 2004). CPP are phosphorylated peptides produced during
the digestion of a- and P-caseins, the family of proteins predominant in milk (80%
of total protein). GMP represents one of the glycosylated forms of the caseinomac-
ropeptidos (k-casein) and is a significant component of cheese whey protein
(15-20% of total protein) (Eigel et al. 1984; Schlimme and Meisel 1995). CPP (resi-
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dues 30-37 and 195-208 of ag;-casein) and GMP (residues 106-169 of k-casein)
can intervene in the initial and more advanced stages of dental caries formation.
Both peptides have antimicrobial effects since they disrupt the membrane structure
of opportunistic pathogenic bacterial species, such as the Streptococcus mutans
(primary causative agent of caries), Streptococcus sangius, and Streptococcus sob-
rinus (Dashper et al. 2007). In the same way, CPP and GMP bind directly to the cell
wall of these bacteria preventing them from adhering to saliva-coated hydroxyapa-
tite (the main component of the tooth surface), and as a consequence, the cariogenic
biofilm weakens (Neeser et al. 1994; Reynolds 1995). In more advanced stages of
caries, CPP complexed with amorphous calcium phosphate (ACP) provide a reser-
voir of calcium and phosphate ions, which acts as a buffer system that controls the
demineralization/remineralization process, preventing dental lesions (Reynolds
1995). CPP responsible for the property of binding minerals is a mixture of peptides
from 1.4 to 9.6 kDa, from which 50% maintain the sequence SerP-SerP-SerP-Glu-
Glu (Sgarbieri 2017). Due to their various anti-cariogenic functions, CPP, ACP, and
GMP have currently been incorporated as a nano complex into toothpaste to test
their antibacterial and remineralization potential (Elgamily et al. 2019). Similarly,
CPP and ACP have been incorporated into chewing-gums as a source of calcium
and phosphorus to maintain the remineralization in the whole dentition for a pro-
longed period (Dewani et al. 2019).

A casein macropeptide called kappacin, which represents the analogous phos-
phorylated form of GMP (glycosylated), is very efficient in inhibiting the growth of
Porphyromonas gingivalis, the primary bacterium causing periodontal diseases
(Sgarbieri 2017). Some peptides derived from milk globular glycoproteins also have
bioactive effects. For example, LfcinB(20-25),, a tetrameric cationic peptide based
on the core sequence RRWQWR of bovine milk lactoferricin, was efficient for the
treatment of the oral squamous cell carcinoma (Solarte et al. 2017). Several hypoth-
eses have been postulated about that the metabolic by-products of certain bacteria,
among them Porphyromonas gingivalis, may induce permanent genetic alterations
and chronic inflammation in epithelial cells of the oral cavity of the host, which
contribute to the development of oral squamous cell carcinoma (Chattopadhyay
et al. 2019).

3.8.2 Peptides Derived from Fish

Pardaxin is a polypeptide isolated from the marine fish Red Sea Moses sole
(Pardachirus marmoratus) characterized by its cytotoxicity against cancer oral
squamous cell. Its structure includes 33-aminoacids with the following sequence
(H-GFFALIPKIISSPLFKTLLSAVGSALSSSGGQE-OH). Anticancer activity of
pardaxin is mediated by apoptosis, the elevation of caspase-3/7 activities, disruption
of the mitochondrial membrane potential, and accumulation of ROS. It is essential
to mention that pardaxin belongs to a large family of antimicrobial peptides, which
has shown effectiveness against various species of bacteria (Han et al. 2015;
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Pangestuti and Kim 2017). However, pardaxin activity against the pathogenic bac-
teria that cause infectious diseases of the oral cavity has not been studied, so it
would be worthwhile to research in this context.

3.8.3 Peptides Derived from Egg

Among the multiple proteins and peptides produced from the hen’s egg, cystatin a
protein contained in the egg white and a peptide of approximately 13 kDa derived
from it, which is called L;LGA,, were shown to be inhibitors of Porphyromonas
gingivalis. The antibacterial activity of cystatin and its peptides is attributed to the
inhibition of essential microbial proteases. In the case of Porhyromonas gingivalis
it refers to some forms of the enzymes gingipains and gingivains (Bhat et al. 2015b;
Blankenvoorde et al. 1996).

3.8.4 Peptides Derived from Rice

Two powerful cationic peptides that selectively inhibit the growth of Porphyromonas
gingivalis have been produced from proteins of rice (Oryza sativa L. japonica). One
of them, a dodecapeptide derived from a region (residues 14-25) near the N-terminus
of the enzyme cyanate lyase can inhibit the growth of Porphyromona gingivalis fol-
lowing different pathways. This dodecapeptide (CL(14-25)), which has the sequence
RRLMAAKAESRK, contains three Arg and two Lys residues that might be impor-
tant to disrupte the Porphyromonas gingivalis membranes in a detergent-like man-
ner. Another way in which the dodecapeptide acts against Porphyromonas gingivalis
is through the inhibition of the enzymatic activity of Arg-gingipains and Lys-
gingipains, Both enzymes represent the main virulence factor of Porphyromonas
gingivalis, they are capable of degrading a wide range of proteins and stimulating
the expression and activity of the matrix metalloproteinases, which together degrade
collagen, fibronectin and laminin, destroying periodontal tissue (Leishman et al.
2010; Taniguchi and Ochiai 2017).

The second peptide is derived from heat shock protein70. It is an octadecapep-
tide constituted by the residues Hsp70(241-258) with the sequence
DNRMVNHFVQEFKRKHKK, which includes four Lys, two Arg, and two His
residues that could participate in the disruption of the bacterial membrane. The
antimicrobial activity of Hsp70(241-258) against Porphyromonas gingivalis is
approximately sixfold than that of CL(14-25) (Taniguchi and Ochiai 2017).

A third octadecapeptide that is powerful, but not selective, has been isolated
from the enzyme a-amylase in rice and is made up of residues Amyl-1-18(175-192)
with the sequence HLNKRVQRELIGWLDWLK. Inits action against Porphyromona
gingivalis, Amyl-1-18 is approximately 26-fold and five fold higher than those of
CL(14-25) and Hsp70(241-258), respectively. However, this octadecapeptide also
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shows moderate to low inhibitory activity toward Streptococcus mutans and other
bacteria, for example, Propionibacterium acnes, Aggregatibacter actinomycetem-
comitans, Pseudomonas aeruginosa, Candida albicans, Fusobacterium nucleatum,
Escherichia coli, and Staphylococcus aureus (Taniguchi and Ochiai 2017).
Regardless of selectivity, cationic peptides are more powerful antimicrobials
because they bind more strongly to negatively charged surfaces in lipid membranes
of bacteria, and also are more useful than other peptides that have specific activity
in the promotion of health and the treatment of diseases (Taniguchi and Ochiai 2017).

3.8.5 Other Peptides

Recently a novel bioactive peptide was developed from an endopeptide that is
produced naturally by the human parotid and submandibular glands. Histatin 5
(H5) was modified by applying a graft based on phosphoserine (Sp) moiety onto
the N-terminus of HS5, leading to the formation of a bioactive peptide
phosphoserine-histatin 5, whose sequence is Sp-H5 (phosphoserine-
DSHAKRHHGYKRKFHEKHHSHRGY). This molecule has a higher binding
affinity to the tooth surface, and therefore prevents the adhesion of Streptococcus
mutans to hydroxyapatite, avoiding the formation of the biofilm; also serves as a
nucleus to suppress demineralization and to initiate mineralization (Zhou
et al. 2020).

Based on the information shown above, it is suggested that many proteins, espe-
cially those of plant origin, still need to be investigated to identify diet-derived
bioactive peptides with possible pharmacological applications in the prevention of
oral diseases. This area is promising for bioactive peptides since due to their chemi-
cal structures, local applications in the oral cavity could be highly advantageous
since in this way they avoid exposure to peptidases and intestinal absorption diffi-
culties. Furthermore, bioactive peptides with the double potential of preventing sys-
temic diseases by controlling diseases of the oral cavity, are extensively sought-after.

3.9 Concluding Remarks

The world’s population is threatened by an imminent increase in non-communicable
diseases, which are currently the ones that take the most lives. In this scenario, the
aggressiveness and expensiveness of the available medicinal treatments force to
investigate cheaper and less risky alternatives. Bioactive proteins and peptides are
becoming increasingly popular as preventive and therapeutic agents due to advan-
tages such as biocompatibility, high selectivity, high potency, and low possibility of
drug interactions. The downside is their poor pharmacokinetic properties, but these
can be improved by chemical manipulation without further risks. Bioactive pep-
tides have been found in many of the proteins present in the human diet. It is only
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necessary to release them in their active form by hydrolysis. Agro-industrial waste
represents another source of bioactive peptides in the context of sustainability.
Scientific evidence shows the immense potential of peptides for the treatment and
prevention of diseases such as cardiovascular diseases, cancer, diabetes, and demen-
tias, that put humanity in check in the modern era. However, there are areas of
opportunity to exploit this potential fully. For example, in many cases, clinical evi-
dence is needed to extrapolate what has been observed in in vitro analyzes or ani-
mal models. It is also necessary to improve the purification and large-scale
production processes of peptides and proteins that have already passed clinical
tests. Collaborative work between government authorities, industry, and academia
will make it possible to face these challenges.
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Chapter 4
Dietary Fibre

Lia Noemi Gerschenson, Ana Maria Rojas, Eliana Noemi Fissore,
Maria Florencia Basanta, Maria Dolores De’Nobili,
Carlos Mauricio Otalora Gonzalez, and Enzo Fernando Zukowski

Abstract In the last years, dietary fibre has gained attention as a bioactive due to
its potential health benefits in reducing the risks for many diseases, such as cancer
and cardiovascular ones. This effect is linked to its action against inflammation,
oxidation, hyperlipidemia and other physiological disorders. The research in this
area had been extensive but elucidation of the mechanisms involved in this bioactiv-
ity is not yet conclusive.

In this chapter, it will be analyzed the actual state of research concerning the
effect of dietary fibre on health and the pathways by which this nutrient develops its
action.

Keywords Dietary fibre - Nutrient - Health benefits - Gut microbiota - Immunity

4.1 Dietary Fibre

4.1.1 Definition: Chemical Components

The term “dietary fibre” was introduced in 1953 (Dai and Chau 2017). Early, the
concept of fibre corresponded to an indigestible moiety which was quantified and
named as “crude fibre”. It was referred to as the residue of plant-based food left
after extraction with solvent, dilute acid, and dilute alkali. According to Thompson
and Brick (2016), the CODEX Alimentarius (2010) indicated that the carbohydrate
polymers of plants consumed in the human diet that cannot be hydrolyzed by the
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endogenous enzymes in the small intestine are referred to as dietary fibre. A
validated, integrated method of dietary fibre analysis that complies with that defini-
tion has been developed, which is the Association of Analytical Chemists’ (AOAC)
2011.25 method (McCleary et al. 2012).

Nowadays, the precise definition of dietary fibre is evolving. For example, scien-
tific research has initiated the expansion of the dietary fibre concept to include indi-
gestible oligosaccharides with their DP between 3 and 9 (Dai and Chau 2017).
Benitez-Paez et al. (2016) reported that dietary fibre is generally defined by the
EFSA NDA Panel (2010) as non-digestible carbohydrates plus lignin. They are
structurally different components including non-starch polysaccharides, resistant
oligosaccharides (e.g. fructooligosaccharides or FOS, galacto-oligosaccharides or
GOS) and resistant starch. According to de Vries et al. (2019), dietary fibre is made
up of carbohydrate polymers with three or more monomeric units that are neither
digested nor absorbed in the human intestine.

In the European Commission (2019), EU regulation 1169/2011, on the provision
of food information to consumers, defines fibre as “carbohydrate polymers with
three or more monomeric units, which are neither digested nor absorbed in the
human small intestine and belong to the following categories:

— edible carbohydrate polymers naturally occurring in the food as consumed,

— edible carbohydrate polymers which have been obtained from food raw material
by physical, enzymatic or chemical means and which have a beneficial physio-
logical effect demonstrated by generally accepted scientific evidence,

— edible synthetic carbohydrate polymers which have a beneficial physiological
effect demonstrated by generally accepted scientific evidence.”

Similar to the EU, the United States (US) Food and Drug Administration (FDA)
definition (FDA 2016) refers to “non-digestible soluble and insoluble carbohydrates
(with 3 or more monomeric units), and lignin that are intrinsic and intact in plants;
isolated or synthetic non-digestible carbohydrates (with 3 or more monomeric units)
determined by the FDA to have physiological effects that are beneficial to human
health”.

The EU and US definitions differ from that of the Codex Alimentarius (FAO
2009) on the number of monomers that constitute the carbohydrate polymer; while
the EU and US include three or more monomeric units, the Codex definition speci-
fies ten or more, leaving national authorities to decide whether to include as fibre
also carbohydrates with 3—9 monomers.

Dietary fibre is often referred to as non-starch polysaccharides’ fibre or as AOAC
fibre. Non-starch polysaccharides’ fibre only includes polysaccharides of the plant
cell wall components characteristic of plant foods, such as wholegrain cereals, fruits
and vegetables. AOAC fibre comprises the total amount of non-digestible polysac-
charides, and includes e.g. lignin and resistant starches, measured with a set of
methods developed by the AOAC (BNF British Nutrition Foundation 2019). In
effect, AOAC fibre includes non-starch polysaccharides’ fibre, but in addition it also
includes non-digestible carbohydrates (naturally present and isolated from foods
and/or synthesized) that can be added as ingredients to foods.
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Why are most of the carbohydrates non-digestible or non-hydrolysable (and
then called dietary fibre)? Because of the inability of the enzymes found along the
human digestive tract for hydrolyzing saccharides present in the bolus. The human
genome encodes 97 glycoside hydrolases and no polysaccharide lyases, while gut
microbiota have both types of enzymes. Eight of the human glycoside hydrolases
can be directly linked to digestion, and nine of them are possibly digestive, while
the rest act in reactions not associated with food digestion (El Kaoutari et al. 2013).
Just in the mouth, the a-amylase comes into contact with food and finally impreg-
nates the bolus, where it is able only to hydrolyze native and some modified
starches (a-1,4 and a-1,6 bonds) of plants and the multibranched glycogen (a-1,4
and a-1,6 bonds), the readily mobilized storage form of glucose dispersed in the
cytoplasm of animal cells. In the stomach, the high acidic pH kills the bacteria
present in the chyme. Just into the lumen of the duodenum, the chyme is neutral-
ized by the concentrated bicarbonate buffer and attacked by the enzymes, all of
them secreted by the exocrine pancreas’ cells through the hepatopancreatic (Oddi)
sphincter. These enzymes include the pancreatic a-amylase able to hydrolyze gly-
cogen and starches (>100 kDa), producing di-, tri-, and oligosaccharides’ products.
And also all the brush-border membrane enzymes that hydrolyze specific disac-
charides: sucrase-isomaltase, lactase (B-glycosidase) and trehalase for hydrolysis
of sucrose (pB-D-fructofuranosyl a-D-glucopyranoside; a-1,2 bond), lactose (f-D-
galactopyranosyl-(1—4)-D-glucopyranose; B-1,4 bond) and trehalose (a-1,1 bond)
disaccharides, respectively. Uncommon in the American diet, the trehalose is found
in algae, young mushrooms, and other fungi and may cause gastrointestinal dis-
tress if consumed by individuals without adequate quantities of intestinal trehalase
(Goodman 2010). The ability to digest lactose varies across the populations and
lactase activity can decrease with the age (Holscher 2017).

Mouth and pancreatic a-amylases are endosaccharidases specific for internal
a-1,4 glycosidic bonds. They have no effect on a-1,6 glycosidic bonds or on a-1,4
bonds of glucose molecules at the branch points or at the ends. The mentioned com-
plex carbohydrates are broken down into maltose, maltotriose (isomaltose), trisac-
charides, larger oligosaccharides, and oa-limit dextrins (oligosaccharides with
branch points). The maltase, a f-glucoamylase, splits maltoses, while the isomaltase
does it with the isomaltoses. Only monosaccharides (D-glucose, D-fructose) are
then absorbed by the intestinal cells in order to reach the capillary blood of the
enterohepatic cycle (Goodman 2010; Crawley et al. 2014).

Dietary fibre is essentially, constituted by the components of vegetables’ and
fruits’ cell walls consumed by humans and animals in a normal balanced diet, which
include pectins, cellulose, and hemicelluloses such as arabinoxylans and also
(1,3;1,4)-p-D-glucans, which are distributed in the cell walls of the Poaceae family,
whose economically important members are cereals and grasses (Scheller and
Ulvskov 2010). In oat and barley, the f-glucans are specially located in the cell walls
of the endosperm and aleurone (Kurek et al. 2018). B-glucans can contribute up to
70% by weight of the walls in barley, rye, and oats (Fincher and Stone 2004).
Resistant starch is also being considered a dietary fibre, but it is located in the cel-
lular cytoplasm, as part of the starch granules. Based on its digestive rate, starch is
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actually divided in three fractions that comprise rapidly digesting starch, slowly
digesting starch, and resistant starch. Resistant starch includes a wide range of mate-
rials, and it is divided into four types: physical inaccessible starch, ungelatinized
starch granules, retrograded starch, and chemically modified starch (Dai and Chau
2017). Inulin or B-fructans, which like starch are storage carbohydrates present in
the cellular cytoplasm of temperate and cool zone grasses, are composed of five
types of fructans, all with B-linkage: inulin $2-1, levan p2-6, branched p2-1 and 2-6,
inulin neoseries f2-1, and levan neoseries f2-6. Oligomeric fructans (DP 3-9), usu-
ally called oligofructose or FOS, are mostly obtained by inulin hydrolysis or enzy-
matic synthesis from the sucrose obtained from beet or cane (De Vries et al. 2019).
On the other hand, lignin, which constitutes the secondary cell walls and it is then
part of the fibre fraction of the diet, is the chemical exception because it is a phenolic
polymer and not a carbohydrate (Brett and Waldron 1996; Broekaert et al. 2011; Qi
et al. 2018). Lignin is the second most abundant natural polymer after cellulose,
playing an important role in plants, providing rigidity to strengthen the structures of
cell walls and resistance to microbial attack. Chemical structure of lignin consists of
three monolignols’ kinds of phenylpropane units: p-hydroxyphenyl unit (H unit,
from p-coumaryl alcohol), guaiacyl unit (G unit, from coniferyl alcohol), and syrin-
gyl unit (S unit, from sinapyl alcohol). The content of each monolignol in lignin
depends on the plant species. Through radical coupling reactions, the monolignols
are linked together to form lignin, a complex three-dimensional structure (Wang
et al. 2019). Bunzel et al. (2005) determined the insoluble fibre lignins in fruits and
vegetables. They were classified as G-rich lignins (G/S ratio >3; carrot, spinach,
kiwi, curly kale, radish, and asparagus), S-rich lignins (S/G ratio >3; rhubarb), or
balanced lignins (0.3 < G/S ratio < 3; pear, apple, small radish, and kohlrabi).

Gums and mucilages are polysaccharides habitually considered as dietary fibre.
They are derived not only from plant exudates and seeds, but also from seaweeds.
Some of them such as gum arabic, karaya, tragacanth, and carob are obtained as
exudates from trees or shrubs. Guar gum and locust bean gum are extracted from
seeds. Xanthan gum, curdlan and gellan are produced by microbial fermentation
(Huffman 2003; Qi et al. 2018). Other soluble fibres also represented by certain
hydrocolloids habitually used in food formulations such as agar, alginate, and car-
rageenan are obtained from seaweeds, while carboxymethylcellulose and hydroxy-
propylmethyl cellulose are chemical derivatives of cellulose produced for obtaining
water soluble cellulose. Chemically modified starches and xanthan gum are also
used (Qi et al. 2018).

4.1.2 Classification

Based on the chemistry, i.e., in the character of the individual monomers, DP, and
type of linkage (o or B, axial or equatorial), the following form of primary classifica-
tion of dietary carbohydrates is considered (Cummings and Stephen 2007).
Non-digestible carbohydrates with a DP of 2—10 (or 3-9 according to some conven-
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tions), known as oligosaccharides, are also dietary fibre molecules, though they are
often treated differently by the regulatory authorities (Qi et al. 2018). In general,
carbohydrate chains with a number of carbon atoms up to nine are water-soluble.
Many oligosaccharides are naturally found in vegetables. Raffinose, stachyose, and
verbascose are galactooligosaccharides (GOS) found in legumes. They consist of a
terminal sucrose to which one (raffinose), two (stachyose), or three (verbascose)
galactose monomers are linked. Other oligosaccharides such as those derived from
B-glucans, mannan oligosaccharides (MOS), GOS, oligofructans, xylan-
oligosaccharides (XOS), arabinoxilan-oligosaccharides (AXOS), dextrins, and
short pectins can be also found in some specific vegetables like mushrooms
(Gerschenson et al. 2017). Moreover, they can be also liberated into the colon by the
enzymatic battery of the microflora (e.g. endo-p1,4-xylanases and xylosidases) act-
ing on the non-digested dietary fibre polysaccharides (e.g. arabynoxylans)
(Broekaert et al. 2011; El Kaoutari et al. 2013).

Based on the different physiological effects, dietary fibre is classified in soluble
(oligosaccharides of DP < 10, pectins, inulin of lower DP, soluble hemicelluloses,
gums and mucilages) and insoluble (debranched hemicelluloses, cellulose, lignin,
resistant starch) in the aqueous fluids. However, over the years a good amount of
scientific research has shown that solubility is not necessarily the determinant of
physiological effect. Therefore FAO/WHO in 1998 proposed to no longer use this
classification (FAO/WHO 1998). In spite of this observation, the solubility of the
dietary fibre determines the site of the colon where it is fermented and absorbed
(Holscher 2017).

Based on the dietary fibre solubility, soluble fibre can interfere with the absorp-
tion of dietary fat and cholesterol. This, in turn, can help to lower low-density lipo-
protein (LDL) cholesterol levels in the blood. Soluble fibre also slows digestion and
the rate at which carbohydrates and other nutrients are absorbed into the blood-
stream. This can help control the level of plasma glucose by preventing rapid
increase in blood glucose following a meal. On the other hand, insoluble fibre pro-
vides “bulk” for stool formation and speeds up the movement of food and waste
through the digestive system, which can help prevent constipation. Diets higher in
dietary fibre promote intestinal regularity due to the stimulation of intestinal peri-
stalsis. Simultaneous to this important mechanical effect, fibre can reduce the risk
of developing cardiovascular disease, as well (Cadden 1987; FDA 2019).

According to Watson (2019), the FDA classifies dietary fibres into three groups:

1. Non-digestible soluble and insoluble carbohydrates (with three or more mono-
meric units), and lignin that are intrinsic and intact in plants: these don’t need
FDA pre-approval and automatically meet the definition.

2. Isolated or synthetic non-digestible carbohydrates (with three or more mono-
meric units) determined by FDA to have physiological effects that are benefi-
cial to human health. The FDA initially approved six: p-glucan soluble fibre,
psyllium husk, cellulose, guar gum, pectin, locust bean gum, and
hydroxypropylmethylcellulose, but required suppliers of many others to submit
citizen's petitions.



124 L. N. Gerschenson et al.

3. Isolated and synthetic non-digestible carbohydrates. The FDA has already
approved:

* Mixed plant cell wall fibres

* Arabinoxylan

e Alginate

* Inulin and inulin-type fructans

* High amylose starch (resistant starch 2)
* Galactooligosaccharides

» Polydextrose

* Resistant maltodextrin/dextrin

In this scheme, the called mixed plant cell wall fibres imply a broad category that
includes barley fibres, cocoa fibres, sugar cane fibre, apple fibre, sugar beet fibre,
corn hull fibre, potato fibre, oat hull fibre, pea fibre (hull and cotyledon), bamboo
fibre, cottonseed fibre, rice bran and hull fibre, soy fibre (cotyledon and hull), citrus
fibre, and wheat fibre. It is defined by the FDA as “Ingredients that contain two or
more of the following plant cell wall fibres in varying proportions: cellulose, pectin,
lignin, B-glucan, and arabinoxylan”, and mentions that “Examples of mixed plant
cell wall fibres that we intend to consider enforcement discretion for as a dietary
fibre are those obtained from whole or parts of fruits, vegetables, grains, legumes,
pulses, nuts, and other plants that undergo processing methods”.

As explained by Watson (2019), regarding the FDA decisions about which iso-
lated or synthetic non-digestible carbohydrates should be classified as “dietary
fibre” on the Nutrition Facts panel, actually the FDA did not approve or reject any-
thing. The FDA granted and denied certain petitions and made determinations about
whether the 26 non-digestible carbohydrates from the 2016 science review meet the
criteria to be considered a dietary fibre as laid out in this guidance.

4.1.3 Recommended Daily Intake

According to the FDA (2019), the daily intake value recommended for fibre is
25 g, based on a 2000 calorie diet. According to Li and Komarek (2017), the
National Center for Health Statistics (NCHS) conducted a study in adults aged
18 years and above within the 1999-2008 period, to estimate the daily fibre
intake of individuals and compared it with recommended intakes. It was deter-
mined that the mean daily intake of dietary fibre is stagnant at the level of
15-16 g/day per person and, hence, individuals do not meet the recommendation
in the US, considering that the recommended levels for total fibre intake by age
and gender are 38 g/day for men aged 19-50 years, 30 g/day for men older than
50 years, 25 g/day for women aged 19-50 years, and 21 g/day for women older
than 50 years.

Dietary fibre intake in most countries around the world is far below recom-
mended levels. The gap between dietary fibre recommendations and intakes is so
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extreme that the U.S. Dietary Guidelines Advisory Committee listed dietary fibre as
one of five “nutrients of concern” (Miller 2014).

European Commission (2019) recommended amounts of dietary fibre for promo-
tion of adequate laxation and for prevention of chronic diseases such as diabetes
type 2, colorectal cancer, CVD or of overweight and obesity range from 25 to 38 g/
day in adults. In children, recommended amounts vary according to the energy
requirements of the different age groups. Recommended intake values are expressed
in the majority of the cases as adequate intakes of AOAC fibre unless differently
stated. Some public health organizations also recommend fibre intakes on the basis
of energy requirements (grams fibre per Joules or grams per 1000 kcal).

Regarding the role of dietary fibre, recent reviews outline the benefits of ances-
tral diets and high fibre diets to maintain a rich and diverse gut microbiome and
related health benefits. In light of these data, some studies propose that dietary fibre
intake would at least reach 50 g/day, whereas the current recommendations are
around 30 g/day in the adult, as above mentioned (Delzenne et al. 2019).

4.1.4 Nutritional and Functional Properties of Dietary Fibre

In his medical research into the occurrence and distribution of cancer in Africa,
Denis Parsons Burkitt became convinced of the dietary fibre importance and, using
his surgical knowledge, expertise in the geography of diseases and some experimen-
tal work, he showed that lack of fibre was a determinant of bowel cancer risk. Other
conditions including diverticular disease, irritable bowel syndrome, appendicitis,
varicose veins, haemorrhoids, diabetes, obesity, atherosclerosis and dental caries
were added to the Burkitt’s fibre hypothesis, as the non-communicable diseases of
Western culture (Cummings and Engineer 2018).

A diet rich in fibre is usually lower in fat and contains fruit and vegetables. High
intakes of dietary fibre may reduce absorption of some minerals from food as they
can be bound by the fibre in insoluble complexes. However, fermentation of the
fibre in the large intestine can release some of the bound minerals (e.g. calcium)
and, hence, they can be absorbed. The amount of vitamins and minerals lost through
eating a diet rich in fibre is not likely to be significant unless an individual’s diet is
already poor. The health risks of a low fibre diet are potentially much greater than
those of a very high fibre diet (BNF British Nutrition Foundation 2019).

From a labeling perspective, the format and contents of which is set by EU law,
fibre provides 2 kcal/g of energy (BNF British Nutrition Foundation 2019).

European regulations on nutrition and health claims state that a product claiming
to be a “source” of fibre should contain at least 3 g of fibre per 100 g or at least 1.5 g
of fibre per 100 kcal. A product claiming to be “high fibre” should contain at least
6 g of fibre per 100 g or at least 3 g of fibre per 100 kcal (The European Parliament
and the Council of the European Union 2007).

As reported by FAO (2019), even when a great number of scientific investiga-
tions were stimulated by the Burkitt’s hypothesis, it is still early to assign clear
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health claims to dietary fibre. This difficulty derived from the fact that dietary fibre
includes many complex substances, each having unique chemical structure and
physical properties. In this sense, dietary fibre is often intimately associated in the
plant cell structure with other bioactive organic compounds, such as vitamins, iso-
flavons (phytoestrogens), phenolics, etc., which display their own biological activity.

The functional properties of dietary fibre can be strongly associated to the bio-
logical effects, and comprise the hydration properties of the fibre (swelling, water-
holding and water retention capacities), thickening, gelling and antioxidant effects,
as well as, the effect of fibre on gut microbiota. Functional properties depend basi-
cally on the chemical composition of the fibre biopolymers, but physical properties
derived from the matrix microstructure developed after drying and milling can also
influence greatly, for a given chemical composition.

4.1.4.1 Dietary Fibre and Antioxidant (AOX) Effect

In the case of extraction of fibre enriched fractions from vegetables and fruits by-
products and leftovers, this fact can be in part overcome by applying a sequential
process for the extraction with solvents of decreasing polarity, and different pH and
concentrations in the case of solvent mixtures. For example, only water soluble and
ethanol insoluble biopolymers and associated substances like phenolics but not
hydrophobic substances, can be together obtained in the isolated fraction by using
the mentioned solvents (Fry 1986; Marry et al. 2006; Ponce et al. 2010; Raffo et al.
2011). As indicated by Renard et al. (2015), pectins show high affinity in the interac-
tion with polyphenols liberated from the intracellular location during extraction of
the cell wall biopolymers from tissues, after mechanical disruption of cells. The
binding is due to a combination of hydrogen bonds and hydrophobic interactions,
increasing the affinity with the degree of methyl-esterification of the homogalactu-
ronans, and it is favored by increased ionic strength and decreased temperature.
Also, phenolic compounds such as ferulic and coumaric acids (monomer, dimer and
trimmer forms) can be found covalently bound to the arabinan chains of the rham-
nogalacturonan I of pectins, as well as to the L-arabinose lateral substituents of the
xylan backbone in hemicelluloses (Fry 1986; Marry et al. 2006; Scheller and
Ulvskov 2010). In this cases, the polysaccharides can be chemically liberated after
treatment with strong alkali (NaOH, KOH). Saura-Calixto (2011) established that
dietary fibre and antioxidants are two recognized dietary factors in the prevention of
chronic disease. The author indicated that dietary fibre has an essential role in intes-
tinal health and appears to be significantly associated with a lower risk of developing
coronary heart disease, stroke, hypertension, diabetes, and obesity. Regarding
dietary antioxidants, they protect against oxidative damage to DNA, proteins, and
lipids, and have a significant impact on the regulation of gene expression. Intake or
plasma concentration of dietary antioxidants has been associated with the low risk
of chronic disease in healthy diets. It has been suggested (Saura-Calixto 2011)
suggested that even though an abundant scientific literature addresses dietary fibre
and antioxidants separately as nonrelated compounds, probably because of the dif-
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ference between their chemical structures and, hence, physicochemical and biologi-
cal properties, as well as metabolic pathways, dietary fibre and a considerable
amount of dietary antioxidants follow a common and synergistic physiological pro-
cess within the gastrointestinal tract. Most reported dietary antioxidants are a wide
variety of single molecules (vitamin C, tocopherols, carotenoids, low molecular
weight polyphenols, and others) solubilized and totally or partially absorbed in the
upper intestine. However, an appreciable amount of dietary antioxidants, mainly
polyphenolics and some carotenoids, travel through the small intestinal lumen intact
in tandem with the dietary fibre, reaching the colon, where they release the fibre
matrix and produce metabolites and an antioxidant environment by the action of the
enzymatic machinery of the bacterial microbiota. In this way, Broekaert et al. (2011)
reported that arabinoxylan oligosaccharides (AOXs) are more powerful antioxidants
than the free ferulic acid that they contain as esterified group. In addition, ferulate
esterase of the gut microbiota liberates ferulic acid from hemicellulases and oligo-
saccharides into the caeco-colon lumen. Basanta et al. (2016) determined that the
polyphenolic extract obtained from plum isolated fibres, mainly constituted by pen-
tameric proanthocyanidins (170-200 mg/100 g plum fibre), showed a protective
effect against the oxidative stress induced by tert-butylhydroperoxide on a Hek 293
kidney cell line, joined to a low cytotoxicity (50%-cytotoxic concentration > 100 pg/
mL extract). Proanthocyanidins are catabolized in a relevant proportion by the
colonic microbiota before they can be absorbed as the resulting products, which
include free phenolic acids and phenyl-y-valerolactones (Ou and Gu 2014).

4.1.4.2 Dietary Fibre and Hydration Properties

The hydration properties comprise the swelling, water-holding and water retention
capacities and are tightly related to the thickening and gelling effects of dietary fibre.

Dietary fibre such as oligosaccharides, pectins, inulin of lower DP, soluble hemi-
celluloses, gums (alginates, carrageenans) and mucilages are water-soluble, vis-
cous, and highly fermentable by the microorganisms of the intestinal tract. Because
of its water-holding capacity, they delay gastric emptying (Huffman 2003).
Therefore, many mucilages as well as pectins are also used for pharmaceutical pur-
poses such as the mucilages obtained from Plantago ovata like the psyllium muci-
lage and mucilage of llanten, used as laxatives, as well as for protection of the
intestinal epithelium. Wheat bran, cellulose and psyllium may help reduce constipa-
tion and the risk of colon disease because they absorb water, which increases bulk-
ing and promotes regularity. Soluble fibres include viscous fibres such as pectin,
B-glucans, fructans (inulin, fructooligosaccharides), gum, mucilage (Soliman 2019).
The physiological effects of soluble dietary fibres are attributed to their unique
properties: viscosity and gel formation, and fermentability into the colon. Different
dietary fibres might have different viscosities depending on their chemical composi-
tion (types of monomers), macromolecular structure and weight, concentration, pH,
counter-ions, and ionic strength. Viscous soluble dietary fibres are believed to be
more capable of inducing satiety compared to non-viscous soluble dietary fibres,
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and hence delays gastric emptying, slowing digestion and the absorption of nutri-
ents, including D-glucose, and reducing intestinal enzyme diffusion and the forma-
tion of an unstirred water layer. Viscous soluble dietary fibres are not being digested
in the stomach. Instead, they are fermented in the colon and result in a rise in short
chain fatty acids (SCFAs) (Lapasin and Pricl 1995; Salleh et al. 2019).

For healthy effects above described, a functional property like the hydration
capacity (swelling and water holding capacity), inherent to dietary fibres, is involved,
which is strongly associated to the chemical composition of dietary fibres. As a
result of the hydration capacity, dietary fibres are able to immobilize water mole-
cules by hydrogen bonding next to the hydroxyl groups of the polysaccharide mac-
romolecules or low molecular weight carbohydrates and, consequently, to slow
down water flow in the following layers of surrounding water. This behavior is
manifested as viscosity or thickening effect, a very important property of dietary
fibres and, especially, of higher molecular weight carbohydrates. The lower molecu-
lar weight saccharides also retain water molecules around, but the main effect of
them is as osmotically active compounds (Schaller-Povolny et al. 2000). The dietary
fibre has a varying capacity of producing viscous solutions upon dissolution and
swelling in water. This capacity strongly depends on the molecular weight and con-
centration, and it is positively correlated to its solubility (Capuano 2017). Also, it
can be favored by the presence of counterions such as potassium and calcium. Since
the latter is a divalent ion, it produces the electrochemical crosslinking of pectin and
alginate macromolecules, which leads to gelling of the aqueous system (Braccini
and Pérez 2001). Hence, rheological properties of dietary fibres linked to their
hydration capacity are not only related to their utility as additive or ingredient but
also to their intestinal effects. Moreover, the gelation capacity of some soluble
dietary fibres showed health benefits to the consumers and improved the commer-
cial values of related functional food. As reported by Li et al. (2018), the soluble
dietary fibre showed higher swelling and water holding capacities and viscosities
than insoluble dietary fibre. These hydration properties are believed to be responsi-
ble for the delay in, for example, the glucose and cholesterol absorption in the small
intestine and, hence, for the decrease in the blood glucose and cholesterol levels.
The European Food Safety Authority (EFSA) has recognized in 2010 the scientific
validity of nutrition and health claims regarding pectin as a nutritional supplement
in the reduction of the post-prandial glycemic response, maintenance of normal
blood cholesterol levels and the increases in satiety, leading to a reduction in the
energy intake. Therefore, pectins’ producers for food and pharmaceutical formula-
tion were then suddenly confronted with an unexpected outcome, that is the use of
pectin as a healthy additive or ingredient (Ciriminna et al. 2016). Pectin is a major
fruit prebiotic that has been extensively studied and shown to promote a healthy,
anti-inflammatory colonic microbiota ecosystem with greater microflora diversity
than inulin (Dreher 2018).

On the other hand, the EFSA NDA Panel (2010) and the Federal Drug
Administration in 2005, have recognized that the daily intake of 3 g of p-glucans
from oat and barley contributes to maintain normal the cholesterol level in blood
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(Othman et al. 2011). Therefore, the EFSA and FDA authorized the use of health
claims for B-glucan from barley and oat (Kurek et al. 2018).

Swelling capacity is defined as the ratio of the volume occupied by the sample
after immersion in excess of water and equilibration to the actual weight
(Raghavendra et al. 2004). Hence, this parameter indicates how much the powder
fibre matrix swells and its volume increases as water is absorbed. Water-holding
capacity (WHC) is defined by the quantity of water retained by the fibres without
the application of any external force, except for gravity and atmospheric pressure
(Raghavendra et al. 2004). Thus, this parameter also includes the proportion of
water loosely associated to the fibre matrix in addition to the strongly retained water.
The water retention capacity (WRC) is defined as the quantity of water that remains
into the hydrated fibre following the application of an external force (pressure or
centrifugation). Therefore, it is indicating the fraction of water that it is strongly
retained by the fibre polymers.

The maximum amount of water that the fibre can hold is a function of its chemi-
cal, physical and microstructural characteristics (Brett and Waldron 1996;
Raghavendra et al. 2004). Beyond the chemical composition and macromolecular
structure of the fibre (hydroxylation, methylesterification, charged groups, branch-
ing, molecular weight), particle size is hence a main characteristic that can deci-
sively contribute to determine the hydration properties of the dietary fibre in the
powder form (Cadden 1987). For the same chemical composition, the procedure by
which a given particle size range is reached also contribute to determine the surface
properties of the fibre material, that is, wettability or hydrophobicity. Consequently,
the procedure used affect finally the swelling and hydration capacities of fibres as
well as the final dissolution in the case of soluble dietary fibre. The rheological
behavior is finally conditioned by the mentioned facts since it is a function of the
capacity of the fibre biopolymers to interact with the water solvent, modifying its
flow property. Reducing the particle size of wheat bran decreased the water-holding
capacity, due, in part, to the collapse of its fibre matrix. Water absorption properties
of cereal fibres are an important determinant of their reported stool bulking effects
(Cadden 1987). Idrovo Encalada et al. (2019) obtained fibre powders from dis-
carded carrots after elimination of the water soluble simple sugars and freeze-
drying. For the same chemical composition (15% w/w uronic acids, 33% of neutral
sugars, 23-25% of cellulose, 7-10% of lignin and ~0.72% of total starch), the
authors determined that swelling capacity increased significantly with the particle
size of carrot fibre from 26.7 mL of water absorbed after18 h of equilibration per
gram of 53 pm dried fibre, up to 36.3 mL/g for 210 um of average particle size.
Pectins present in the carrot fibres at (=15% uronic acids’ content) were mainly
responsible for the water absorption and swelling capacity. The values of water
holding and water retention capacities determined as the grams of water absorbed
by the dried fibres after 18 h of equilibration per gram of dry fibre, were signifi-
cantly lower for 53 pm carrot fibre than for 105 and 210 pm. On the other hand,
Raghavendra et al. (2004) determined that the reduction in the particle size of coco-
nut grating residue from 1127 to 550 pm, resulted in increased hydration properties,
which was ascribed to the increase in the theoretical surface area and total pore
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volume, as well as to an structural modification. However, below 550 pm, the hydra-
tion properties were found to decrease with decreasing particle size, which can be
associated to the collapse of pores.

As early reported by Cadden (1987), the consumption of dietary fibre of cereals
has been promoted for its prophylactic value in regulating colonic function.
However, the addition of fibre to foods does not guarantee that the foods will become
endowed with desirable physiological effectiveness. The addition of finely ground
wheat bran or cellulose to a low-fibre diet has been reported to cause constipation in
human subjects. Fibre supplements prepared by the food industry as food ingredi-
ents are often finely ground. Unfortunately, studies have shown that the processing
of foods can alter the physical characteristics of the plant fibre and so affect the
degree of microbial degradation and the ability of the fibre to absorb water and/or
other compounds.

For a given chemical composition, the drying process used to obtained powders
enriched in dietary fibre has a great effect on hydration properties of the product
because it affects the microstructural characteristics of the powders obtained (Vetter
and Kunzek 2003). In general, lyophilization generates powders with the highest
active surface for interaction with water and, hence, with absolute re-hydration
capacity. Spray-drying is also a high-quality drying process with respect to the wet-
tability and re-hydration capacity of the powders obtained, and the particle size
range can be managed through the nozzle used. On the other hand, drying in com-
mon chambers under limited convection combined with higher temperatures can
produce powders with lower porosity and, hence, the lowest hydration capacity
(Martinez-Las Heras et al. 2017). Fibres extracted as the ethanol (96% v/v) insolu-
ble residues from persimmon peel and pulp showed that when freeze-dried, these
fibres presented better hydration properties and oil holding capacity than those
obtained after drying under 40 °C-air (7 h to constant weight). Freeze-dried per-
simmon peel and pulp fibres also demonstrated higher values of emulsion stability
than commercial fibres such as those obtained from peach, lemon, orange and apple.
Finally, the antioxidant activity of the smallest sized persimmon peel fibre obtained
by freeze-drying was higher than that for lemon, orange and peach fibres (Martinez-
Las Heras et al. 2017).

Beyond the drying processing used, the fibre powder obtained can be also modi-
fied by other physical methods which can imply the change in the particle size. In
this sense, for a given chemical composition and particle size, the process used for
reducing the particle size can also influence the hydration properties of the dietary
fibre. Powder properties such as flowability and compressibility that pertain to bulk
level of solid state are strongly influenced by changes in characteristics at the particle
level, such as size, size distribution and morphology of particles (aspect ratio)
(Sarrate et al. 2015). Liu et al. (2016) evaluated the effect of regular laboratory mill-
ing, ultra centrifugal rotor milling and ball milling on structural, physicochemical,
and functional properties of the insoluble dietary fibre fraction that remained after
heating the orange peel in water (1:5) for 2 h at 90 °C followed by centrifugation and
freeze-drying. The matrix structure of the insoluble fibre fraction was destroyed but
FTIR structure had no major change after grinding. Ultracentrifugal milling and ball
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milling effectively decreased the average particle size of insoluble dietary fibre frac-
tion (81.40 pm and 19.63 pm, respectively). As particle seize decreased, the bulk
density and lightness of the insoluble dietary fibre fraction increased and a redistri-
bution of fibre components from insoluble to soluble fractions was observed.
Furthermore, the ball milled insoluble fibre exhibited significantly higher capacity to
retard glucose diffusion. Ye et al. (2015) obtained insoluble fibre from orange pom-
ace by elimination of the soluble fibre with 60 °C-water for 1 h of stirring. The
insoluble fibre residue was dried under air at 60 °C for 48 h. The dried insoluble fibre
was then ordinarily grinded (high-speed pulverizer), a sample of this procedure was
then micronized for 8 min, while another sample was submitted to jet grinding.
According to the dy g diameter determined through light scattering, the particle sizes
of the three milled products were respectively 750, 125, and 48.4 pm. As the particle
size decreased, the fibre was enriched in the soluble component (the insoluble fibre
was mostly lost upon intensive grinding), and a slight increase in crystallinity
(52.84-62.20%) occurred. The latter was ascribed to the fact that lignin and hemicel-
luloses, existing in amorphous regions of the powders, were removed as the grinding
was more intense. However, the swelling and water holding capacities were low and
varied significantly but slightly as the particle size decreased, from 7.14 to 6.17 mL/g
for the swelling capacity, and from 7.33 to 5.74 g water/g fibre for the water holding
capacity.

Dubey et al. (2018) determined that milled cellulose showed significantly
enhanced capacity for holding water (3.5-25 mL water/g), swelling (3—26.5 mL/g)
and binding bile acids and sugars. The size reduction also resulted in increased fer-
mentability of cellulose into SCFAs using three human fecal microflora samples.
The increase in production of acetate (2880.60%), propionate (2738.52%), and
butyrate (2865.89%) after fermentation of cellulose for 24 h was significantly
enhanced by size reduction. Ang (1991) found that, depending on the fibre length,
cellulose can retain 3.5-10 times its weight in water. A cellulose powder with at
least 110 pm fibre length significantly increased the viscosity when dispersed in
water at concentrations up to 3% w/v before sedimentation.

De Paepe et al. (2019) determined that modification of wheat bran particle size
and tissue composition affects the colonization and metabolism by human faecal
microbiota. Modification of wheat bran physicochemical properties largely affects
the amount, but not the ratio of produced SCFAs, and that interindividual variability
dictates the functional and composition response from the luminal microbiota to
wheat bran supplementation. The wheat bran-attached microbiome composition
was more affected by wheat bran structure. Micronization of unmodified bran from
1687 pm to 149 pm resulted in a higher SCFAs production after 24 h for all donors,
except donor 7 and 9. This difference between micronized and unmodified bran
disappeared again after 48 h and was not observed at 6 h. This result suggests that
particle size only affects the rate of fermentation, confirming the finding from
Stewart and Slavin (2009) that a reduction in average wheat bran particle size from
1239 pm to 551 pm increased SCFAs’ levels starting from 8 h up till 24 h. The
authors attributed the increased production of SCFAS to an increased surface area,
providing a larger contact area for bacterial enzymes to access the substrate.
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However, others claim that bran porosity more than surface area determines sub-
strate accessibility to enzymes. Secreted extracellular enzymes are able to penetrate
in nanometer size pores, whereas membrane-bound enzyme complexes, which are
suggested to play a major role in the rate limiting primary degradation of wheat
bran, are restricted to micrometer size pores. Changes in porosity may partly offset
the effect of an increased surface area on enzyme accessibility, limiting the effect of
micronization on fermentability.

As a consequence of all above described, swelling, water-holding and water
retention capacities have to be determined after any extractive and modification
procedures performed for extraction of dietary fibre enriched fractions. Intense
shearing during grinding processes such as micronization, changes the insoluble
fibre/soluble fibre weight ratio in the fibre product, with a general decrease. In spite
of it, contrary to that expected, the hydration properties are decreased.

4.1.4.3 Dietary Fibre and Gut Microbiota

By considering the health benefits, Codex states that dietary fibre generally presents
one or more of the following properties: (1) decreased intestinal transit time,
increased stools bulk; (2) fermentation by colonic microbiota; (3) reduced blood
total and/or LDL cholesterol levels; and (4) reduced post-prandial glycemia and/or
insulin levels (Delzenne et al. 2019). The (1) and (2) functions are the essential ones
for the nutritional effect of dietary fibre. These four properties were included in the
EU Directive 2008/100/EC and applied, in recent years, for evaluating the benefits
to health of a wide range of fibre ingredients by Health Canada’s Food Directorate
and the FDA. These two public organisms concluded that, for most current com-
mercially available dietary fibre, sufficient scientific evidence is available for includ-
ing them in the list of compounds that can be officially considered as dietary fibre.
In spite of the common characteristic of being non-digestible in the human small
intestine, the dietary fibre is widely different in composition, structure and the way
by which they feed the bacteria harboring the gut microbiota (Delzenne et al. 2019).
The gastrointestinal microbiota has an important role in human health, and there is
increasing interest in utilizing dietary approaches to modulate the composition and
metabolic function of the microbial communities that colonize the gastrointestinal
tract to improve health, and prevent or treat disease. One dietary strategy for modu-
lating the microbiota is the consumption of dietary prebiotics (Holscher 2017). The
International Scientific Association of Probiotics and Prebiotics defined “dietary
prebiotics” as “a selectively fermented ingredient that results in specific changes in
the composition and/or activity of the gastrointestinal microbiota, thus conferring
benefit(s) upon host health” (Davani-Davari et al. 2019). As indicated by Benitez-
Paez et al. (2016), dietary fibres are major drivers of gut microbiota composition
and function, stimulating the dominance of bacteria able to utilize these substrates
as an energy source. Microbial species interact in vivo to form complicated food
chains, and some of these relationships are centered on the glycan metabolism
(Koropatkin et al. 2012). However, the effects vary depending on both the type of



4 Dietary Fibre 133

fibre and the individual’s microbiota. The primary and secondary metabolic path-
ways mediating specific fibre-induced effects on the metabolic phenotype remain
unclear and, hence, it is not possible to personalize fibre-based interventions. Fibre
is an instrumental dietary component that can be used to remodel gut microbiota
composition and function to potentiate the beneficial effects of healthy diets on
body weight management and metabolism. Experimental models revealed that diet-
microbe interactions contribute to obesity, for example, by increasing lipid absorp-
tion or aggravating adipose tissue inflammation independently of adiposity, in the
context of diets rich in saturated lipids (Benitez-Paez et al. 2016). According to
actual evidence, it can be inferred that consumption of a varied diet with an impor-
tant proportion of vegetables and fruits (cell wall carbohydrates and lignin, antioxi-
dants) and, probably, also algae in some diets, gives rise to a typical gut microbiota
that carries healthy benefits to the host. Conversely, a meat rich diet combined with
low proportion of vegetables and fruits would promote the development of the
microbiota responsible for anaerobic fermentation into the gut and deliver of sul-
phur compounds (Conlon and Bird 2015). The differences in bacterial community
structures of native African populations reflected the diets of the hosts. Western
diets, characterized by higher intakes of dietary animal proteins (as meat, milk and
eggs), may deliver greater amounts of sulphur compounds to the colonic microbi-
ota, thus favoring sulfidogenic hydrogen disposal. On the other hand, methane is the
major hydrogen sink in Native Africans, who have lower intake of animal products
and higher breath methane concentrations than the westernized populations.

The immune defenses along the intestine, including the mucus barrier, help pre-
vent potentially harmful bacteria from causing tissue damage (Conlon and Bird
2015). The microbial metabolism contributes to the host immunity because micro-
bial enzymes mediate the conversion of tryptophan into indole and indole deriva-
tives that shape human host immune responses. The indole 3-aldehyde produced by
the microbiome acts like an activating ligand for human host aryl hydrocarbon
receptors, which are expressed by the immune cells. For example, the binding of
indole induces the IL-22 secretion by innate lymphoid cells, promoting the secre-
tion of antimicrobial peptides that protects the host from pathogenic infection by
Candida albicans. Microbial production of SCFAs (acetate, propionate, butyrate,
succinate and lactate) from dietary fibre also shapes host immunity, contributing to
both innate and adaptive immune system functions (Guthrie et al. 2019).

The maintenance of a diverse and thriving population of beneficial gut bacteria
helps keep harmful bacteria at bay by competing for nutrients and sites of coloniza-
tion. Diet, particularly the use of a range of fibres, may be the best way of maintain-
ing a healthy gut microbiota population (Conlon and Bird 2015).

4.1.4.3.1 Microbiota Enzymes’ Machinery
Symbiotic microorganisms that reside in the human intestine are adept at foraging

glycans, including those in dietary plants (starch, hemicellulose and pectin), animal-
derived cartilage and tissue (glycosaminoglycans and N-linked glycans), and host
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mucus (O-linked glycans). Most gut bacteria can possess multiple enzymes that
have activity against isolated plant polysaccharides, but only a few gut bacteria, are
directly engaged in the breakdown of recalcitrant insoluble substrates, such as those
organized into the plant cell wall structure (Flint et al. 2008). Fluctuations in the
abundance of dietary and endogenous glycans, combined with the immense chemi-
cal variation among these molecules, create a dynamic and heterogeneous environ-
ment in which gut microorganisms proliferate (Koropatkin et al. 2012). Descriptions
of the microbial communities that live on and in the human body have progressed at
a spectacular rate over the past 5 years, fuelled primarily by highly parallel DNA-
sequencing technologies and associated advances in bioinformatics, and by the
expectation that understanding how to manipulate the structure and functions of our
microbiota will allow us to affect health and prevent or treat diseases. Among the
myriad of genes that have been identified in the human gut microbiome, those that
encode carbohydrate-active enzymes are of particular interest, as these enzymes are
required to digest most of our complex repertoire of dietary polysaccharides (El
Kaoutari et al. 2013).

The human gut microbiota is rich at the species level, but somewhat limited in
terms of phylum-level bacterial diversity; furthermore, archaea are mainly repre-
sented by members of the genus Methanobrevibacter. The most commonly repre-
sented bacterial phyla in healthy adults are Firmicutes and Bacteroidetes, with
significant numbers of Actinobacteria and Proteobacteria members also present.
The relative proportions of these phyla sometimes diverge widely, reflecting not
only interpersonal, geographical, lifestyle and temporal variations, and perturba-
tions caused by disease, but also variations in the metagenomic protocols used to
determine the composition of the microbiota. The ability to utilize complex dietary
and host glycans is central to the survival of prominent members of the gut micro-
biota. Plants in the form of fruits, vegetables and cereals are major components of
the human diet that provide dietary fibre (El Kaoutari et al. 2013). The biochemistry
of the various host and dietary glycans that enter the gut is exceptionally diverse.
Dietary fibre comprises many structurally diverse sugar moieties joined together by
glycosidic bonds to form chains and branches. Generally, the more complex the
polysaccharide, the more enzymes are required for its breakdown. Many different
glycosidic linkages may be incorporated into a single polymer, so degradation of
these polymers requires several linkage-specific degradative enzymes.
Polysaccharide chain length or DP and branching of the fibre influence the ability of
bacteria to utilize it as an energy source.

As reported by McKeen et al. (2019), dietary glycans are at the core of immuno-
logical interactions between host cells, microbes, and the mucosal matrix. Multiple
pathways of immunomodulatory action have been identified, leading to the reclas-
sification of functional polysaccharides as secondary metabolites and biological
response modifiers. Flint et al. (2008) indicated that the human genome encodes, at
most, only 17 enzymes for the digestion of food glycans, specifically starch, sucrose
and lactose, as above mentioned. On the other hand, digestion of plant material
occurs through fermentation, in which the chemical energy in a carbon source is
converted into ATP that is used by cells in the anaerobic environment of the intestine
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Fig. 4.1 Anaerobic fermentation reaction taking place in the colon lumen catalyzed by the
enzymes of the microbiota, with production of energy as ATP, short chain fatty acids (SCFAs),
carbon dioxide and hydrogen. These products are afterwards involved in the conversion to methane
and acetate by the methanogen and acetogen microorganisms, respectively. SCFAs are absorbed
by the colonocytes

(Fig. 4.1). The major end products of fermentation at the colon are the SCFAs butyr-
ate, acetate and propionate, which provide approximately 10% of the calories that a
human absorbs (the value varies depending on our diets), and are involved in numer-
ous physiological processes. For example, SCFAs have been associated with a
reduced risk of cardiovascular and inflammatory bowel diseases, and type 2 diabe-
tes. Furthermore, butyrate is a main energy source for colonocytes and has been
associated with a reduced risk of colorectal cancer.

Carbohydrate-active enzymes encoded by the human gut microbiome catalyse
the breakdown of glycoconjugates, oligosaccharides and polysaccharides to fer-
mentable monosaccharides. There are two types of enzyme that cleave glycosidic
bonds between carbohydrates or between a carbohydrate and a non-
carbohydrate moiety:

— Glycoside hydrolases (e.g. bacterial cellulases, mannanases, xyloglucanases,
bacterial xylanases): cleave bonds by the insertion of a water molecule (hydroly-
sis), and they are classified into 130 families.

— Polysaccharide lyases: cleave complex carbohydrates using an elimination
mechanism, and they are segregated into 22 families.

Bacterial pectinases are found in glycoside hydrolases and polysaccharide lyases
families. An additional category of carbohydrate-active enzymes associated to the
food digestion by microbiota is that of the carbohydrate esterases, which remove
ester substituents from the glycan chains to facilitate the action of glycoside hydro-
lases and polysaccharide lyases (El Kaoutari et al. 2013).
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Some microorganisms in the intestinal tract target dozens of glycans and possess
the corresponding enzymatic tools for depolymerizing each of these molecules into
their component sugars. Gut microorganisms vary widely in the number of different
glycans that they are capable of targeting. As an example, the human gut symbiont
Bacteroides thetaiotaomicron can degrade more than a dozen types of glycan,
whereas some species are restricted to one or a few types (Koropatkin et al. 2012).

From an ecological perspective, species with broad glycan-degrading abilities
can be thought as “generalists” that shift their metabolism from meal to meal,
whereas species with narrower glycan-degrading potential can be considered “spe-
cialists” that focus on one or a few glycans. Specialists run the risk of becoming
extinct in a host if their preferred nutrients wane for too long, so such microorgan-
isms would most probably evolve to degrade ubiquitously abundant dietary glycans
or host-derived mucins. Thus, the gut microbiota grown in hosts that consume veg-
etable, fruit and cereal reach diets has “specialists” species that can be absent in
diets poor in these items. However, when a fully omnivorous diet is achieved after
weaning, the composition of the microbiota stabilizes and experiences fewer tempo-
ral changes. Two bacterial phyla, Firmicutes and Bacteroidetes, are numerically
dominant in the adult microbiota. Microbes of the first phylum are usually the most
abundant, but the ratio of firmicutes to bacteroidetes can change over time and be
influenced by different diets, especially those that promote changes in host adipos-
ity. Actinobacteria is the third phylum that also contributes to the human microbiota,
being in general underestimated due to the molecular approaches used. A predomi-
nantly vegetarian, high-fibre African diet is conducive to the growth of specific
fibre-degrading species, which involve a higher prevalence of bacteroidetes and
actinobacteria than of firmicutes and proteobacteria, while the opposite trend was
observed in European individuals, who consumed a lower fibre diet, more typical of
the Western societies (Koropatkin et al. 2012).

Beyond the influence of certain types of diet in shaping the composition of the
microbiota, supplementing the diet with particular glycans can affect species abun-
dance. Not all species that possess the potential to degrade a given glycan will do so
successfully in vivo. As an example, inulin and shorter FOS selectively increase the
abundance of Bifidobacterium spp., although many Bacteroides spp. are also able to
use these glycans. The microbiota can change rapidly according to the composition
of two following meals in the same day. A rapid shift from a high-fat diet to a high-
carbohydrate diet results in community changes that are observable after just 1 day,
but take several days to stabilize. Bacteroides ovatus has an enzyme machinery that
targets arabinoxylans of maize. Also, enzymes to hydrolyze other hemicelluloses
(equatorial B-1—4 link) such as p-glucans, galactomannan, glucomannan, xylans,
and xyloglucan. Bacteroides thetaiotaomicron has two different groups of enzymes
able to hydrolyze the equatorial-axial $-1—4 link of the galactan lateral chains of
pectins (two enzymes), the arabinan side chains (two groups of six enzymes), the
arabinogalactan side chains, the rhamnogalacturonan I and II, and the homogalactu-
ronan backbone (seven enzymes) of pectins. Also, other groups hydrolyze the
-2—6 fructan link of levan, and the links of starch (Koropatkin et al. 2012).
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Hemicelluloses such as the arabinoxylans of maize contain ferulate as pendant
group and as crosslinker of these macromolecules (ferulate, di or triferulate esters.
After fermentation in the gut by endo-p-1,4-xylanases (endoxylanases) that cleave
f-1,4-glycosyl linkages within the poly-f-1,4-xylose backbone, readily soluble ara-
binoxylans of different DP, containing ferulates, can be produced, which are more
powerful antioxidants than the free ferulic acid. In addition, ferulate esterase of the
gut microbiota liberates ferulic acid from hemicellulases and oligosaccharides into
the caeco-colon lumen (Broekaert et al. 2011).

The phylum Bacteroidetes possess the starch utilization system (Sus) as the effi-
cient strategy for competing for this nutrient. In their outer membrane and the peri-
plasm of these bacteria, the Sus works to sequentially bind starch to the cell surface,
degrades it into oligosaccharides and transports them into the periplasmic space,
where the oligosaccharides are degraded to even simpler sugars like D-glucose, and
imported into the cell. Unique to Bacteroidetes are also the called Sus-like systems
which function by a similar mechanism as Sus but harbor enzymes that are pre-
dicted to target glycans other than starch (Koropatkin et al. 2012).

Insoluble fibres such as cellulose, are generally poorly fermented by human gut
microbes, but their presence in the diet increases gut transit rate and thus reduces the
amount of time available for colonic bacterial fermentation of non-digested food-
stuff (Holscher 2017). The ability to degrade cellulose seems to be essential for the
disruption of most plant cell-wall structures of vegetable tissues, as non-cellulolytic
bacteria have limited ability to solubilize this material. Cellulolytic bacteria are gen-
erally defined by their ability to degrade and grow on highly ordered forms of cel-
lulose. In the human colon, the digestibility of cellulose from dietary fibre is
reportedly far higher than that of the purified crystalline cellulose, and the cellulo-
lytic bacteria that have been isolated from the human gastrointestinal tract have less
activity than their rumen counterparts against more recalcitrant cellulosic substrates.
Cellulolytic bacteria require the ability to degrade matrix polysaccharides, such as
xylans, mannans and pectins, to access cellulose fibrils, although they do not neces-
sarily use the solubilized products, which become available to other members of the
community through cross-feeding. This task is performed by the cellulosome,
which is a discrete, extracellular, multi-component, multi-enzyme complex that is
found in anaerobic cellulolytic bacteria and provides enhanced synergistic activity
among the different resident enzymes to efficiently deconstruct the intractable cel-
lulosic and hemicellulosic substrates of the plant cell wall. Some of the components
of the cellulosome are structural and some are enzymatic. Although the systems that
have been described so far in the abundant Gram-negative Bacteroidetes seem to be
most suitable to the sequestration of soluble polysaccharides, some Bacteroides
species that have been reported in the human colon, particularly the Bacteroides
cellulosilyticus, have activity against insoluble cellulose (Flint et al. 2008).

In addition to the degree of polymerization, the accessibility within the digesting
food particles and solubility of complex carbohydrates impacts the location of their
respective fermentation within the human gastrointestinal tract. Regional variations
in microbial colonization of the colon exist, along its length, simultaneous to the
decrease in transit velocity. Soluble fibres, such as FOS and pectin are metabolized
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by bacteria more proximally in the gastrointestinal tract, ileum and ascending colon,
while the least soluble fibres like cellulose, can be partially fermented in the distal
colon where the slowest transit time and the highest bacterial density exist
(Koropatkin et al. 2012; Holscher 2017). The most soluble easily digestible glycans
are metabolized in the ileum, caecum and ascending colon at decreasing rates, as
their solubility decreases. The brush-epithelium is covered by a thinner mucus, the
transit is faster and lower bacteria density exists. Along the transverse and descend-
ing colon, the velocity of transit is also continuously decreasing while the concen-
tration of bacteria increases simultaneously. Just in the sigmoid colon and rectum
the mucus is thick, the transit is slow, and the highest bacteria density is found, with
colonization of fibre particles and outer mucus layer. Therefore, the least soluble,
indigestible glycans are fermented by bacteria located in the descending and sig-
moid colon (Flint et al. 2008; Koropatkin et al. 2012; Holscher 2017).

4.1.5 Dietary Fibre and Bioactivity

Dietary fibre have gained attention over the past 20 years due to its bioactivity which
means its potential health benefits in reducing the risks of many diseases, such as
diabetes, cancer, cardiovascular diseases, and obesity. These benefits are related, in
many cases, to its functional properties, in addition to their basic nutritional
functions.

4.1.5.1 Dietary Fibre and the Glycemic Response

Diabetes mellitus (DM) is a metabolic disease that occurs when the body does not
produce insulin (Type I diabetes) or the body does not use insulin properly (Type II
diabetes), leading to high glucose concentration in blood (hyperglycemia) (ADA
2019). In 2017, approximately 425 million adults were living with diabetes and it is
estimated that by 2045 this will rise to 629 million (IDF 2017). A healthy diet is key
to manage type II diabetes, the most common type (ADA 2019).

Many prospective cohort studies have shown that a relatively high intake of
dietary fibre (DF) is inversely associated with the risk of diabetes compared with a
low intake (Nie et al. 2019).

DF can act in the small intestine as soluble polymer chains in solution, as insol-
uble macromolecular assemblies, and as swollen, hydrated networks (Eastwood and
Morris 1992). Therefore, DF intake improves postprandial glucose and insulin
response by slowing sugar absorption and causing a bulking effect in the stomach,
and the added satiety results in the reduction of energy intake (Nie et al. 2019). DF
may also be able to decrease gross energy of a food due to its lower energy density
(Lattimer and Haub 2010). Goff et al. (2018) proposed four possible mechanisms
for controlling glycemia:
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1. Delay of gastric emptying (GE): high DF diets results in lower gastric emptying
rates, slower rates of absorption of glucose into the blood and lower insulin
responses, suggesting that GE is the predominant mechanism involved. This
effect is attributed to the viscosity of soluble DF and to attenuation of enzyme
action due to non-specific binding with insoluble DF.

2. Hormonal regulation: DF can affect the release of gastric and intestinal hor-
mones regulating digestion and absorption. In addition, short-chain fatty acids
resulting from DF colonic fermentation also stimulate the release of gut-derived
hormones.

3. Reduced a-amylase activity in the small intestine: this effect can be attributed to
various mechanisms such as the formation of DF-starch complexes where DF
acts as a barrier between starch and enzyme, the adsorption of enzyme to DF
leading to its inhibition, the reduction of water availability for starch hydrolysis
and the slowing of enzyme and substrate diffusion due to increased viscosity,
among others.

4. Delay of sugar absorption: DF might delay the diffusion of sugars in the small
Intestine.

These authors indicated that the rheological behavior of food not necessarily
reflects its rheological behavior in the gut, so digesta viscosity is a more effective
way of measuring glucose levels regulation than solution viscosity.

The chemical composition and structure as well as the molecular weight (MW)
of polysaccharide chains influence the ability of DF to exert physiological func-
tions. There are discrepancies about the effect of the solubility nature of DF and its
beneficial effect in glucose levels regulation. Although it has been generally accepted
arelationship between viscosity and reduction of blood glucose, the exact impact of
viscosity is unclear (Goff et al. 2018). According to Gowd et al. (2019), several
prospective cohort studies associate the intake of insoluble DF with a protective
effect against insulin resistance and DM, while consumption of soluble DF gives
little protection. The positive effects of insoluble DF are attributed to fermentation
and short chain fatty acids production in gut microbiota. Short chain fatty acids
promote the secretion of key hormones to prevent gluconeogenesis in the liver, acti-
vate intestinal gluconeogenesis and improve insulin sensitivity.

Nevertheless, most studies focus on the viscosity effect of soluble DF. In order to
verify whether other fibre characteristics, beyond viscosity, can have an impact on
glycemia and appetite sensations, Paquet et al. (2014) compared the effects of two
juices of similar viscosity but enriched with guar gum/xanthan gum or konjac-
mannan/xanthan gum mixture and a control non-enriched juice on the variation of
glucose, insulin, C-peptide and appetite sensations in 20 healthy men with similar
glucose, insulin and C-peptide concentrations before the consumption of the three
juices. Juices enriched with fibres failed to significantly reduce postprandial glucose,
insulin and C-peptide responses compared to the control beverage, but the beverage
enriched with konjac-mannan/xanthan gum decreased significantly the appetite
score, and increased fullness sensation suggesting that viscosity is not the unique
factor influencing appetite responses.
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Repin et al. (2018) studied the amylolysis of modified tapioca starch in simulated
small intestinal conditions in the presence of each of four dietary fibre types (yellow
mustard mucilage, soluble flaxseed gum, fenugreek gum, and oat gum) at concen-
trations to match for post-digestion viscosity. Studying the progress of amylolysis
by measuring the decline of digesta apparent viscosity over time, they observed that
supplementation of digesta with DF reduced the progress of both the digesta appar-
ent viscosity decline and the changes in digesta reducing sugar content. Authors
attributed these effects to the reduced diffusion of enzyme and/or substrate and con-
cluded that to alter amylolysis to a similar extent, fibres have to be present at
amounts resulting in similar post-digestion viscosity even though their concentra-
tions may not match.

Fabek et al. (2014) investigated the effects that digestive processes in the stom-
ach and small intestine have on the thickening capacity of six soluble DFs (guar
gum, locust bean gum, fenugreek gum, xanthan gum, soluble flaxseed gum, and soy
soluble polysaccharides). They performed a two-stage in vitro digestion, simulating
gastric and small intestinal phases, in order to evaluate changes in viscosity. Gums
were used at defined concentrations to create equi-viscous solutions. Their flow
behavior was analyzed after exposure to simple dilutions, pH changes, and in vitro
digestion. Authors observed minor effects of pH and digestive enzymes on fibre
structure. Xanthan gum retained viscosity more than all other DF types. Later, using
a dialysis system, protein and starch were mixed with gums to study glucose release
in a food model, in vitro. Although all gums lowered glucose concentration, xanthan
gum was the most effective. With these results, the authors concluded that digesta
viscosity of soluble fibres does not depend on their initial viscosity or concentration
but on their ability to resist changes during digestion.

In a later study, Fabek and Goff (2015) examined the effect of adding viscous
soluble DFs on starch digestibility during simulated intestinal digestion. The model
food consisted of tapioca starch (4% w/w), skimmed milk (8.65% w/w) and xanthan
gum (4% w/w), guar gum (3% w/w), soluble flaxseed gum (7% w/w) or soy soluble
polysaccharide (20% w/w). Gum concentrations were chosen to give matching vis-
cosities. Solutions were submitted to a 3-stage in vitro digestion (salivary, gastric,
and small intestinal phases). Light scattering results showed that the particle size of
starch granules decreased through the digestion process. Microscopy showed gran-
ule surface degradation for the control, flax and soy solutions while this effect was
attenuated for granules extracted from the guar gum and xanthan gum solutions,
which had greater viscosities inside the digesta in comparison to the other treat-
ments. The authors observed that including DFs that can retain viscosity during
digestion, reduced starch hydrolysis and suggested that the increase in viscosity
interferes with enzyme diffusion, leading to a reduced amylolysis. In addition, the
authors considered the ability of some gums to allow granules agglomeration, thus
reducing the area exposed to enzymes. Based on these results, authors suggested
that the glucose-lowering ability of viscous DFs might be related to their ability to
reduce the rate at which starch granules are hydrolyzed inside the lumen.

Using p-glucans, Kwong et al. (2013) studied the effect of varying solution vis-
cosity on glycemic responses. For this, they changed solution volume, without
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changing the p-glucan dose or MW. A total of 15 healthy subjects received six 50 g
oral glucose beverages prepared with or without 4 g of high-MW (580,000 g/mol)
or low-MW (145,000 g/mol) B-glucan, with a beverage volume of 250 or 600 ml.
Postprandial plasma glucose concentration was measured over 2 h. The physico-
chemical properties of the beverages were also measured. The high-MW p-glucan
beverage, which was more viscous, achieved greater reductions in plasma glucose
concentrations than the beverage with low-MW f-glucan. At the same MW, the 250
and 600 ml B-glucan beverages differed in viscosity but not in postprandial plasma
glucose concentration. Authors concluded that B-glucan dose and MW are the most
vital characteristics for improving the bioactivity of B-glucan solutions with respect
to glycemic response.

Abirami et al. (2014) used the pulp and peel DF from Citrus hystrix and Citrus
maxima to study their potential role in lowering postprandial serum glucose level
through in vitro assays and observed that these DFs could effectively adsorb glu-
cose, retard glucose diffusion and post-pone the release of glucose from starch to
different extents.

Feinglos et al. (2013) performed a double-blind, placebo-controlled 20-week
clinical study to evaluate the effects of psyllium (two different doses) on fasting
blood glucose and glycosylated hemoglobin in 37 patients being treated for type-2
DM and on a restricted diet. Both doses of psyllium significantly lowered blood
glucose and glycosylated hemoglobin compared to placebo treatment at week 12.
The improvement in glycemic control observed was above that already conferred by
a restricted diet.

To evaluate the effect of oat pB-glucan on postprandial glycemia attenuation,
Regand et al. (2009) prepared muffins, granola, porridge and pasta containing 4 g of
B-glucan and control products with low B-glucan content prepared with wheat flour.
They determined the viscosity and MW of f-glucan in vitro-digestion extracts and
the fasting and postprandial blood glucose concentrations in 12 human subjects in a
period of 4 weeks. Porridge and granola were the most effective in attenuating the
glucose peak in blood glucose response and authors attributed this to the high MW
of their components and to viscosity.

Steinert et al. (2016) assessed the effect of consuming a pre-load of a commer-
cially available oat-bran at different concentrations before a test-meal of white
bread on glycemic responses in 10 healthy humans. They observed a significant
effect of dose on blood glucose reduction suggesting the use of oat bran as nutri-
tional preload strategy in the management of postprandial glycemia.

Kubo et al. (2016) tested the combined effects of wheat albumin, which inhibits
mammalian amylase, and DF, which retards sugars absorption, in a rat model of
type 2 DM. The DF mixture (54.4% of total DF, 39.9% water soluble DF) consisted
of oat, chicory root, guar bean, barley leaves, konjac potato, and seaweed. The bio-
active ingredients were added to a soluble starch solution. Authors observed that the
combined intake of both ingredients suppressed hyperglycemia more effectively
than each separate intake. They also observed an improvement in liver and plasma
lipids contents.
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Regand et al. (2011) studied the effect of oat f-glucan in a granola model food
on starch digestibility and glycemic responses. Blood glucose concentrations were
measured before and after ingesting wheat and oat granolas, with 0.6 and 6.2 g of
[-glucan, respectively, and two starch doses (40 and 60 g). The authors observed a
reduction of in vitro starch digestibility and lower blood glucose levels when
in vitro sample viscosity increased. Moreover, p-glucan was significantly more
active in reducing blood glucose rise when the p-glucan/starch ratio was 0.16
rather than 0.11.

Rohajatien et al. (2018) studied the effect of feeding bitter melon fruit to rats
with and without hyperglycemia in a 4 weeks experiment. At week 4 of experi-
ment, they observed a decrease of 56% blood glucose level in hyperglycemia rats
when compared to week 0, and ascribed these effects to the DF of melons,
mainly pectin.

Huang et al. (2019) compared the in vitro hypoglycemic capacities of orange
pomace and extruded orange pomace powders. The extruded pomace, which had a
higher soluble DF content, was more effective to retard glucose diffusion and inhibit
a-amylase activity than the non-extruded sample and authors suggested that a higher
soluble DF content would lead to higher glucose adsorption and may contribute to
the retarding of a-amylase hydrolysis of the starch molecules.

Cassidy et al. (2018) performed and extensive review on the effects of soluble
DF (B-glucan, guar gum. psyllium, alginate) on postprandial blood glucose
response. They concluded that overall, several soluble DFs have shown beneficial
effects in lowering the postprandial blood glucose response however issues with
palatability have limited their development in the functional food industry.
Authors state that while research is scarce investigating the effect of processing
on many of these soluble DFs, results from clinical studies show that some solu-
ble DFs, mainly p-glucans that have undergone minimal processing can attenuate
the postprandial blood glucose response when consumed with a high carbohy-
drate food or beverage.

Lu et al. (2013) studied the effect of replacing 25%, 15% or 10% wheat flour
with okara powder (a byproduct of tofu or soy milk production process) to make
noodles and bread enriched in DF, mainly insoluble DF, on glycemic response (GI)
in vivo. The results showed that the GI of okara foods was markedly lower than
that of control foods, with values for okara bread, okara steamed bread and okara
noodle of 49, 54 and 52, respectively, referring to glucose (GI = 100). While the
values obtained for control foods were 67 for bread, 86 for steamed bread and 77
for noodle.

It can be concluded that there are different mechanisms by which dietary fibres
can help to control glycemia. The DFs that perform this control more efficiently,
according to literature, are those that can exert the effects summarized in Fig. 4.2.
Nevertheless, more systematic studies are necessary to clarify the effect of fibers
from different sources on short-chain fatty acids production and of these com-
pounds, on glycemia control.



4 Dietary Fibre 143

DIETARY FIBRES
ARE FERMENTED
IN THE GUT AND
PRODUCE SHORT
CHAIN FATTY
ACIDS

DIETARY FIBRES DIETARY FIBRES

INTERACT WITH
GENERATE HIGH STARCH AMYLASE
INTESTINAL
VISCOSITY Lo
AMYLOLYSIS

DIETARY FIBRES
LIMIT GASTRIC
EMPTYING

Fig. 4.2 Effects by which dietary fibres help to control glycemia

4.1.5.2 Dietary Fibre and Obesity

The accumulation of excessive fat in the body causes overweight and obesity, which
lead to chronic health problems such as cardiovascular diseases and type-2 diabetes.

According to Maheshwari et al. (2019), B-glucans from oat and barley reduce
appetite and weight providing satiation along with nutrition. Authors suggest this
could be due to the high viscosity and water binding capacity of p-glucans, which
prolongs the digestion in the gut. Huang et al. (2011) studied the effects of -glucan
from oats, on the activation of gut hormone, satiety, and weight loss in diet-induced
obesity mice. Authors observed that the energy intake and body weight gain were
lower with increasing f-glucan over 6 weeks. A gut-hypothalamic anorexigenic
pathway was activated and the response was in a dose-dependent manner. The
increased satiety appeared to be long-lasting without the development of a tolerance
effect. In this study all diets had the same total fibre content having included insol-
uble DF from wheat in diets with lower B-glucan content and authors suggested that
oat f-glucan may have some advantages over other sources of DF.

Hamden et al. (2018) studied the effect of pectin in high-fat/fructose diet induced
obesity, hyperlipidemia and hyperglycemia. Administration of pectin to rats
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decreased lipase activity improving body weight. Cholesterol and triglycerides also
decreased. In addition, it was observed a decrease in a-amylase activity leading to
lower blood glucose levels.

Drew et al. (2018) studied the effects of seven DFs (p-glucan, pectin, inulin,
inulin acetate ester, inulin propionate ester, inulin butyrate ester or a combination of
inulin propionate ester and inulin butyrate ester) in obesity prevention. During
8 weeks, mice were fed either high-fat, low-fat or high-fat/DF-supplemented diets.
Results showed that all of the DFs prevented weight gain and produced similar
responses in body composition and host gene expression in cecum and liver. While
cecal bacterial profiles differed with each specific dietary fibre, authors observed
collective outcomes in the expression of certain host genes and established common
gene expression differences in the host. This implies that bacterial composition per
se may not be causal in protecting against weight gain. In conclusion, diverse DFs
prevented weight gain on a high-fat diet, despite giving rise to different cecal bacte-
ria profiles.

Du et al. (2010) investigated the association of total DF, cereal DF, and fruit and
vegetable DF with changes in weight and waist circumference in a 6.5-year follow-
up study with 89,432 European participants. DF consumption was inversely associ-
ated with subsequent weight and waist circumference change. A 10-g/day total DF
intake was associated with a reduction in body weight of 39 g/year and a reduction
in waist circumference of 0.08 cm/year. When evaluating the effect of the fibre
source, they observed that a 10-g/day cereal DF intake reduced body weight in 77 g/
year and waist circumference in 0.1 cm/year, while fruit and vegetable DF was not
associated with weight change but had a similar association with waist circumfer-
ence. Authors concluded that there is a beneficial effect of DF intake, particularly
cereal DF, in preventing body weight gain.

Bozzetto et al. (2018) reviewed epidemiological and observational studies con-
cerning the effect of DFs on obesity-associated cardiovascular events. They found
evidence from epidemiological studies that consuming more than 20 g DF/day is
associated with body weight loss in the long term. From observational studies,
authors also found an inverse association with DF intake and a percent body fat.

Samout et al. (2016) performed a study on rats evaluating the effect of apple
pectin supplementation on obesity. Results showed that treatment with the aque-
ous extract of pectin decreased the weights of the rats. In addition, high-fat diet
treatment induced severe liver and kidney damage as determined by several bio-
markers in blood but when high-fat diet-treated rats were also fed pectin, all those
biomarkers were restored to almost normal values. The apple pectin extract
reduced lipid peroxidation and enhanced the expression of intracellular endoge-
nous antioxidants.

Zhan et al. (2019) studied the effect of citrus pectin in mice that were first
exposed to a typical environmental pollutant, p,p’-dichlorodiphenyldichloroethylene
(p,p’-DDE), in order to induce obesity. Pectin was supplied during and after inter-
ruption of p,p’-DDE exposure. They analyzed the body and fat weight gain, plasma
lipid profile and insulin resistance of mice and analyzed gut microbiota composition
and the levels of short-chain fatty acids. Results showed that pectin supplementation
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reversed body and fat weight gain, dyslipidemia, hyperglycemia and insulin resis-
tance and authors ascribed this to the regulating gut microbiota effect of pectin.

Bray et al. (2018) compared the effects of a high-fat cellulose diet (60% fat +
10% cellulose), a high-fat pectin diet (60% fat + 10% pectin), a low-fat cellulose
diet (10% fat + 10% cellulose), and a low-fat pectin diet (10% fat + 10% pectin) on
mice for 12 weeks. In high-fat diets pectin prevented additional weight gain while
for low-fat diets, it was determined a weight loss of 22.2 and 25.4%, for cellulose
and pectin, respectively. Both low-fat diets and high-fat pectin diet reduced fasting
blood glucose, improved glucose tolerance and decreased fatty liver when com-
pared to high-fat cellulose diet. Authors concluded that pectin could moderate some
obesity-related morbidities in the presence of high fat.

Choi et al. (2016) isolated a pectic polysaccharide composed of rhamnogalactu-
ronan I with arabinan and arabinogalactan chains from Morus alba. This polysac-
charide was able to inhibit the proliferation of pre-adipocyte cells in a dose-dependent
manner to 91, 75, 68 and 54% viabilities at sample concentrations of 50, 100, 200
and 500 pg/ml, respectively, compared to untreated control cells. Authors suggested
that this polysaccharide is able to reduce the number of fat cells and the mass of
adipose tissue and could be used for the treatment or prevention of obesity disorders.

It can be concluded that research supports a beneficial role of higher intake of DF
in the prevention of obesity. According to Du et al. (2010) the mechanisms by which
this role is developed are: (1) reduced digestion rate which stimulates the release of
gut hormones promoting satiety, (2) increased viscosity in the case of soluble DF,
(3) low energy density, (4) reduced postprandial blood glucose response, and (5) its
acting as a mechanical barrier to the enzymatic digestion of other macronutrients
such as fat and starch in the small intestine. More recent studies ascribed also the
prevention of obesity to the regulation of gut microbiota by certain dietary fibres.

4.1.5.3 Dietary Fibre and Cancer

Almost 50 years ago, Burkitt (1971) observed lower rates of colorectal cancer
among Africans who consumed a diet high in fibre. Ever since, most of the research
on DF and cancer prevention has focused on colorectal cancer. Increased DF intake
may lead to a dilution of fecal carcinogens, reduced transit time, and bacterial fer-
mentation producing short-chain fatty acids with anti-carcinogenic properties
(Kunzmann et al. 2015). Evidence from case-control studies also suggests that DF
may be inversely related to breast cancer risk and this could be associated with the
inhibition of intestinal reabsorption of estrogens by DF and the subsequent increased
fecal excretion of estrogens (Aune et al. 2012).

Many investigations on DF and cancer have focused on pectin. Zhang et al.
(2015) suggested that the antitumor capacity of pectin and its effect in colon cancer
prevention is correlated with pectin probiotic activity. On the other hand, there is
growing evidence that the arabinogalactan/galactan content of pectins provides a
natural source of ligands to inhibit the biological functions of galectin-3 (Gal-3)
(Morris et al. 2013). Elevated levels of Gal-3 in the serum have been linked to the
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development of several different cancers as well as cancer metastasis (Zhang et al.
2015). It is important to remark that modification of pectin generates homogalactu-
ronans and fragments containing rhamnogalacturonan I, which are pectin-derived
products rather than pectins (Morris et al. 2013). Most researches performed on
pectin and cancer prevention are based on pectin-derived fragments, which are more
accessible to galectins. Moreover, pectin modification to degrade the polymer and
to decrease its degree of esterification may produce antitumor activity by interven-
tion in ligand recognition by Gal-3 (Zhang et al. 2015).

Bergman et al. (2010) compared the effects of citrus pectins with different
degrees of esterification (DE: 30%, 60% and 90%) on the proliferative capacity of
four malignant cell lines (2 human colon carcinoma cell lines, 1 human erythroleu-
kemia cell line, and 1 Burkitt lymphoma cell line). Pectins with DE 30% or 60% at
increasing doses caused a dose-dependent inhibition of colon carcinoma and leuke-
mia cells but neither pectin affected Burkitt lymphoma cells. Authors concluded
that as the cells that were affected by pectin express galectin receptors, while those
cells that were not affected are deficient of this receptors, probably the antiprolifera-
tive effect of citrus pectin is due to its ability to inhibit galectin function.

Citrus pectin when modified by high-pH and temperature is rich in galactosyl, a
ligand for Gal-3. Liu et al. (2008) studied the effect of modified citrus pectin in the
inhibition of the expression of Gal-3 in liver metastasis of colon cancer. The study
was performed with 75 mice injected with colon cancer cells. Liver metastasis of
colon cancer was observed after 3 weeks. Mice were fed pectin through drinking
water at concentrations of 0.0%, 1.0%, 2.5% and 5.0% (w/v) and the percentage of
liver metastasis was 100%, 80%, 73.3% and 60%, respectively. The concentration
of serum Gal-3 in pectin treated mice was significantly higher than that in the nega-
tive control group. Authors concluded that Gal-3 expression increases in liver
metastasis and can be inhibited by modified citrus pectin.

Xue et al. (2019) studied the effects of ginseng pectin derivatives on Gal-3-
mediated T cell activation and apoptosis. They isolated two fractions from ginseng
roots, which were enriched in rhamnogalacturonan I: WGPA-UD was composed of
GalA (24.6%), Rha (10.8%), Gal (30.8%), and Ara (20.6%), while RG-I-4 was
composed of GalA (33.8%), Rha (21.8%), Gal (19.5%), and Ara (9.2%). Authors
also prepared modified citrus pectin (85% GalA, 1.6% Rha, 9.3% Gal and 4% Ara)
and purified potato galactan (11.3% GalA, 6.1% Rha, 70% Gal and 10.0% Ara).
Both ginseng fractions inhibited apoptosis, but not activation, whereas potato galac-
tan promoted activation, but not apoptosis, and citrus pectin affected both of these
activities, indicating that these substances selectively act on different cell processes,
even though they all bind Gal-3. Later, to investigate the anti-tumor activity of these
samples they performed a study in mice where samples (10 mg/kg body weight)
were administered daily following tumor cell inoculation. Authors observed that
only ginseng samples WGPA-UD and RG-I-4 could inhibit tumor growth by 29%
and 45%, respectively and demonstrated that ginseng pectins could selectively
inhibit Gal-3-induced T-cell apoptosis, while not affecting T-cell activation.

Cobs-Rosas et al. (2015) studied the effect of pectins extracted from defatted
rapeseed cake on cancer MCF-7 (human breast adenocarcinoma) and Caco-2
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(human colorectal adenocarcinoma) lines. All the pectins extracted exhibited anti-
proliferative activity, being more effective on MCF-7 cells than Caco-2.

Cheng et al. (2011) studied the anticancer activity of structurally different gin-
seng polysaccharides: homogalacturonan- rich pectins, arabinogalactans with
rhamnogalacturonan I domains, and one fraction containing glucan and arabinoga-
lactan. The homogalacturonan rich fraction inhibited a human colorectal adenocar-
cinoma cell (HT-29) cell proliferation and induced apoptosis accompanied by the
activation of caspase-3.

According to Wang et al. (2003), a pectic polysaccharide from Centella asiatica
(L.) Urban could increase the immunological activity of T and B cells, being modu-
lated by the carboxyl and acetyl groups of pectin.

Prado et al. (2019) extracted pectin fractions from papaya with ammonium oxa-
late and at different ripening-time points in order to relate changes in pectin struc-
ture with Gal-3 inhibition. Only one fraction, the less soluble one, was able to bind
Gal-3 and diminished the proliferation of colon cancer cell lines. This fraction
derived from an intermediate point of papaya ripening and had similar GalA content
and degree of esterification from those of other ripening time points but it showed a
lower MW peak and more exposed ramifications.

Fan et al. (2017) studied the effect of combining fish oil (containing polyunsatu-
rated fatty acids) with fermentable DF in the prevention of colon cancer. Mice were
fed diets containing 15% fat and 6% fibre by weight. The diets differed in the source
of lipid (corn oil versus fish oil) and source of fibre (cellulose, which is poorly fer-
mentable, versus highly fermentable pectin). The four dietary groups were corn oil/
cellulose, corn oil/pectin, fish oil/cellulose, and fish oil/pectin. After 4 weeks of diet,
authors observed that the combination of fish oil (containing ®-3 polyunsaturated
fatty acids) and fermentable pectin (leading to butyrate production) acted coordi-
nately to protect against colon cancer due, in part, to an enhancement of apoptosis
across all stages (initiation, promotion, and progression) of colon tumorigenesis.
Authors suggested that fish oil alters colonocyte mitochondrial membrane composi-
tion and function, creating a permissive environment for apoptosis induced by DF
fermentation products

Triff et al. (2018) also investigated the effect of combining fish oil and ferment-
able DF in colon cancer. These authors suggested that the short-chain fatty acids
produced by DF fermentation act as chemoprotectives and the polyunsaturated fatty
acids in fish oil act as ligands for tumor suppressive nuclear receptors. They treated
rats with a colon carcinogen and fed them diets containing fish oil, fermentable DF,
a combination of fish oil and pectin, or control diet (with no fish oil or pectin). The
fish oil/pectin diet generated unique epigenetic modifications and was the only one
to induce the expression of chemoprotective genes.

Oh et al. (2019) performed a meta-analysis of prospective studies that included
studies on fibre intake and outcomes including colorectal adenoma and colorectal
cancer. Publications considered reported all DF sources (cereal/grain, vegetable,
fruit, and legume) although for adenoma studies, there were no report on legume
DF. From 4632 publications, 10 prospective studies (6 for colorectal cancer and 4
for adenoma) were included in the dose-response meta-analysis. They concluded
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that although all DF sources may provide some benefits, the effect in colorectal
cancer prevention is strongest for DF from cereals/grains.

It can be concluded that DF performs specific bioactive effects against certain
cancers. According to literature, these effects are influenced by DF source and the
high activity of pectin and its degradation products is remarkable.

4.1.5.4 Dietary Fibre and Cardiovascular Disease

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the
United States and Europe.

The cardiovascular system is subject to life-style induced changes as well as
natural deterioration due to the aging process. The vascular endothelium is a regula-
tor of vascular homeostasis and endothelial disfunction contributes to the expres-
sion of CVD. A dysfunctional endothelium results in blood pressure desregulation
and increased atherogenicity. Arterial disfunction, characterized by oxidative stress
and inflammation-mediated endothelial disfunction and arterial stiffening, is the
primary risk factor for cardiovascular diseases. Age, stress and dietary pattern have
a significant role in modulating endothelial disfunction (Edirisingle and Burton-
Freeman 2014).

Dietary fibre has been reported extensively as having a beneficial effect to pre-
vent mortality due to CVD (Threapleton et al. 2013; Tang et al. 2018, Soliman
2019). Erkkila and Lichtestein (2006) informed that an increase in fibre intake
reduces diet caloric density while soluble fibre exerts a beneficial effect on lipid and
glucose metabolism but, according to the authors, data on its effect in arterial
inflammation and coagulation are limited. Salas-Salvado et al. (2006) informed that
dietary fibre decreases CVD risk independently of fibre type and concluded that,
probably, this trend is associated not only to dietary fibre but also to numerous bio-
active compounds (i.e. antioxidants) that are present in food rich in dietary fibre.
Pita Lottenberg et al. (2010) stated that the immune and metabolic systems are
closely related and act in an interdependent way. Inflammatory processes are associ-
ated with excessive fat tissue which has a pro-inflammatory activity which can help
the development of other chronic diseases. Chronic diseases such as cardiovascular
ones are associated with inflammatory processes due to the effect of low density
lipoproteins that induce inflammation of the arteries endothelium. Inflammatory
process markers are, for example, C-reactive protein, Interleukin-6 and leukocyte
count. Casas et al. (2018) evaluated the effect of some constituents of the diet on
CVD. They informed that there are different mediators of coronary artery diseases:
C-reactive protein, interleukin IL-1, IL-18, IL-1f, IL-18, monocyte chemoattractant
protein MCP-1 and tumor necrosis factor TNF-a, among others. These mediators
are considered potential inflammation biomarkers and their expression may corre-
late with coronary artery diseases severity. And that these markers suffer a decrease
when polyphenols are present in the diet. It must be remembered that polyphenolic
compounds are present, in general, jointly with dietary fibre in fruit and vegetables.
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The relationship between carbohydrate and dietary fibre intake and the risk of
cardiovascular disease mortality in japanese was reported by Miyazawa et al.
(2019). The study followed 8925 participants (3916 men and 5009 women) aged
30-79 years without CVD at baseline who participated in the National Nutrition
Survey in Japan, concluding that higher intake of DF was associated significantly
with a lower risk of CVD mortality in men and lower risk of stroke mortality in
women. They also concluded that intake of carbohydrates, available carbohydrate
and starch were not associated with the risk of CVD mortality in men or women.

Threapleton et al. (2013) reported that there are different mechanisms by which
the DF can exert a protective effect on risk of CVD. Fibres with thickening effect
can affect absorption of glucose and lipids in the small intestine, attenuating their
postprandial rise and helping to maintain higher levels of satiety contributing to less
weight gain. These authors also remarked that, additionally, soluble fibre is fer-
mented in the large intestine giving origin to short chain fatty acids which reduce
circulating levels of cholesterol. This constitutes a new point of view for the link
between CVD risk and dietary fibre and it centers on the effect of dietary fibre on
human gut microbiota.

McRae (2017) reported a review of meta-analyses concerning the dietary fibre
beneficial effect for CVD prevention. The author concluded that dietary fibre pro-
duces a decrease in mortality and that this trend might be ascribed to: (a) reduced
LDL cholesterol which originates in reduced cholesterol and fatty acid absorption,
increased fecal bile acid excretion, bacterial fermentation that produces propionic
acid that inhibits HMG- CoA reductase; (b) reduced blood pressure which origi-
nates in reduced glucose absorption and decreased insulin secretion; (c) reduced
inflammation due to nuclear factor-xB inhibition by polyphenols leading to reduced
C-reactive protein, tumor necroses factor o and interleukin-G.

Brunt et al. (2019) investigated the potential mediation of age-related changes in
the gut microbiome on arterial dysfunction. For this purpose, they suppressed gut
microbiota in young and old mice with a mixture of broad-spectrum, poorly
absorbed antibiotics in drinking water for 3—4 weeks. They concluded that ageing
alters the abundance of microbial taxa associated with gut dysbiosis and that, in old
mice, the antibiotic treatment reverses arterial rigidity and attenuates vascular
inflammation and oxidative stress.

Bartolomaeus et al. (2019) investigated the effect of short chain fatty acids, in
particular, propionic acid, on cardiac damage mediated by hypertension and athero-
sclerosis. For this purpose, they developed a mice animal model. The hypertension
was induced by means of infusion with Angiotensin II (1.44 mg/kg) for 14 days and,
to accelerate the development of atherosclerosis, the mice were infused with
0.72 mg/kg of Angiotensin II for 28 days. To study the effect of propionate, mice
received this compound (200 mM) in the drinking water ad libitum during the
experiment. They studied the cardiac damage through histology, echocardiography,
electrophysiology, immunofluorescence and flow citometry. As hypertensive stim-
uli like Angiotensin II, promotes the activation of T cells and macrophages, they
also evaluated the mode of action of propionate through the study of the regulatory
T cell depletion using antibodies. They concluded that propionate significantly
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Fig. 4.3 Influence of dietary fibres on cardiovascular disease risk

attenuated cardiac hypertrophy, fibrosis, vascular dysfunction and hypertension
showing the immune-modulatory effect of short chain fatty acids and their impor-
tance in cardiovascular health. These fatty acids are generated in the colon by means
of the fermentation of dietary fibre present in the diet.

The different effects of dietary fibre on cardiovascular disease risk, according to
bibliography, are summarized in Fig. 4.3.

It can be concluded that there is a close relationship between dietary fibre intake
and the decrease in factors associated with cardiovascular disease, showing the pos-
itive effect of this nutrient in human health. Although, more information is needed
in relation to the exact mechanism of action, it can be emphasized that the link
between dietary fibre consumption and microbial flora of the gastrointestinal tract,
immunity and cardiovascular disease, emerges as a promising working hypothesis
that must be more deeply studied.

4.1.6 Conclusions

Research performed over the past 20 years showed that dietary fibre produces health
benefits in reducing the risks of diabetes, obesity, cancer and cardiovascular disease.
These benefits are related, in many cases, to their hydration, thickening, gelling,
antioxidant properties and to their effect on gut microbiota.

Investigations in this area had been extensive but elucidation of the mechanisms
involved in this bioactivity is not yet conclusive. However, the emergence of new
hypotheses such as the linking of dietary fibre with gastrointestinal flora and immu-
nity, illuminates the path of future studies to be carried out to clarify these
mechanisms.
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Chapter 5
Lipids

Ibrahim Guillermo Castro-Torres, Victor Alberto Castro-Torres,
Minerva Hernandez-Lozano, and Marcos Fernando Ocaifia-Sanchez

Abstract Chapter 6 provides information on substances of lipid origin that have
had important effects for the treatment or prevention of diseases such as cancer,
diabetes mellitus, cardiovascular disorders, obesity, among others. Information
associated with metabolites of plant origin, as well as lipids of animal origin, food
lipids, that have demonstrated hypoglycemic, anti-inflammatory, antiproliferative,
hypocholesterolemic, antihyperlipidemic and antihypertensive effects is presented.
The chapter also discusses topics dealing with the chemical structures of the reported
lipids, their origin, synthesis, preclinical studies, in vitro, in situ, clinical studies,
detailing dosage, method of administration, biochemical, molecular, genetic stud-
ies, and mechanisms of action.

Keywords Lipids - Diseases - Health - Food - Fatty acid

5.1 Introduction

Lipids are hydrophobic substances essential for living; currently, much is known
about these molecules (Finkelstein et al. 2014). One of their classic functions is to
form part of the plasma membrane of any type of cell, including agents such as
viruses (Shepherd 2004). This chapter discusses the therapeutic properties of lipids
as well as the type of food where they are found, whether they are of plant, animal,
mineral origin. The lipid group includes fatty acids, phospholipids, waxes, sphingo-
lipids, cerebrosides, gangliosides, terpenoids, and steroids, among others.
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5.2 Lipids and Cholesterol Diseases

The diseases associated with the high concentration of cholesterol are varied, for
example, hypercholesterolemia, atherosclerosis, dyslipidemia, gallstones, among
others (Platt et al. 2014). These diseases have been treated with drugs that lower the
plasma cholesterol concentration, such as statins and ezetimibe (Taylor et al. 2013;
Thongtang et al. 2012); however, some lipids can also inhibit intestinal cholesterol
absorption, generating significant therapeutic effects and we can find them in differ-
ent foods.

5.2.1 Hypercholesterolemia

Beta-sitosterol is a plant sterol that, biochemically, is classified within sterols or
steroids, which are non-saponifiable lipids (Ulbricht 2016). It has been shown to
have significant effects on the treatment of hypercholesterolemia for a long time.
Some clinical trials date back to the 1990s when a group of patients was treated with
beta-sitosterol at a dose of 12 g/day, demonstrating a significant decrease in the
plasma concentration of total cholesterol and LDL cholesterol (Zdk et al. 1990).
[-sitosterol, as well as other plant sterols, have extensive reports as hypocholester-
olemic agents. Still, its food formulation is complicated due to insolubility in water
and, despite being lipids, it does not have a high solubility in oils. Its chemical
properties prevent the existence of a variety of functional foods enriched with ste-
rols. A widely used technique to formulate them is the use of emulsions (Yuan et al.
2019). This type of physicochemical system has been tested in experimental ani-
mals. Beta-sitosterol has been esterified with fatty acids (e.g, oleic and linoleic) and
has been formulated in microemulsions to be administered in mice with hypercho-
lesterolemia. The mice were fed a high-fat diet for 70 days. Once they presented
hypercholesterolemia, they were treated with a b-sitosterol microemulsion esteri-
fied with linoleic acid at different concentrations. The dose with the highest
cholesterol-lowering effects was 700 mg/kg/day (Yuan et al. 2019). The authors car-
ried out the microemulsions using standardized methods from their laboratory and
suggest that this type of formulations may be a guideline for making industrial
products or functional foods.

5.2.2 Cholesterol in Metabolic Syndrome

Another of the beneficial effects of p-sitosterol has been reported in the metabolic
syndrome, which is characterized by altering the concentration of lipids, carbohy-
drates, producing visceral obesity, and alterations in blood pressure (Desai et al.
2016). Associated with lipids, cholesterol accumulates excessively in cell
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membranes in this syndrome. This effect disrupts the activity of cholecystokinin, an
essential hormone in the gastrointestinal system (Desai et al. 2016). This hormone
has its type 1 receptor, abbreviated as CCK1R. A group of American researchers
analyzed the effect of p-sitosterol on cholecystokinin receptors in experimental ani-
mals, which expressed the human receptors, the study was carried out on the cells
of the mice. B-sitosterol, at doses of 100 and 10 mM, was shown to improve CCK1R
signaling in cells that had elevated cholesterol in their membrane, without affecting
the binding between the receptor and its hormone (Desai et al. 2016). This suggests
that this lipid could be used to treat one of the metabolic syndrome disorders, which
would be visceral obesity since there is an accumulation of adipose tissue and
excess cholesterol in cell membranes.

5.2.3 Cholesterol Gallstones

Other lipids that have shown effects for the treatment of cholesterol diseases are
the so-called polyunsaturated fatty acids (PUFA) (Jang et al. 2019). These lipids
have been evaluated concomitantly with ursodeoxycholic acid for the treatment
of cholesterol gallstones. In this disease, there is an overproduction of mucin in
the gallbladder, which generates bile sludge and, later, the gallstone. C57BL/6
mice fed a lithogenic diet and treated with ursodeoxycholic acid and PUFA at
doses of 12.5 mg/kg/day and 51 mg/kg/day, demonstrating significant effects on
gallstone dissolution; the most significant results were those that combined
PUFAs and ursodeoxycholic acid because they decreased the expression of mucin
genes, associated with the overproduction of bile sludge. Also, these fatty acids
increased the concentration of phospholipids and bile salts in the bile, allowing
mixed micelles to assemble that transport excess cholesterol in bile and gall-
stones (Jang et al. 2019).

In this way, it can be considered that functional foods rich in fatty acids of this
type could serve as healthy foods in lithiasis people.

Cholesterol-associated diseases have statin-based therapy; however, these drugs
produce critical adverse reactions. Statin hepatotoxicity and myotoxicity have
been demonstrated in many studies, but remain the leading-edge drugs for the
treatment of hypercholesterolemia (Adhyaru and Jacobson 2018). The develop-
ment of functional foods rich in fatty acids, plant sterols, or other types of lipids,
could replace statin therapy, supporting a healthy life in terms of eating, sleeping
well, reducing stress, exercising. In the case of gallstones, we find a disease that
has no pharmacological treatment, only surgical treatment (Portincasa et al. 2016).
A diet rich in fatty acids, which have proven effective in dissolving gallstones,
would be appropriate to manage this disease, which is one of the most frequent in
the gastrointestinal system.
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5.3 Biological Activity in Cancer

In recent years, the development of anticancer agents has shifted from non-specific
drugs to cytotoxic drugs, which act towards dysregulated signaling pathways in
cancer cells. Among these discoveries, tyrosine kinase inhibitor molecules have
been found, which are overexpressed in tumors and have become a pharmacological
target for these therapeutic agents (Heinrich et al. 2003).

These new drugs are well tolerated and have fewer adverse effects than the more
widely used cytotoxic agents, there is a continuing need to develop new specific
molecules that are well tolerated and provide more options in cancer chemotherapy,
either as single agents or in combination with other drugs, and that can be used to
develop new regimens cancer treatments. Cancer is a disease that weakens the
body's immune system. Most of the people who fail due to this disease contracted
other types of in-hospital infections that became opportunistic and evicted the body,
due to their immunosuppressed state; For this reason, there is an emerging need to
search for new therapies based on lipid compounds, which do not produce such
severe immunosuppression effects.

There is reported evidence that many lipids and lipid analogs are critical regula-
tors of oncogenesis. This information has arisen from investigations that have been
carried out in tumor cells or experimental animals after dietary conditioning and the
use of tumor cell xenografts. Exploration of such molecules in cancer therapy is at
an early stage of research; however, many of them show considerable promise as
future cancer therapies. When considering which lipid-based molecules could be
developed, it is essential to solving particular problems that arise with lipid-based
medications.

5.3.1 Prostaglandins and Ceramides

Although the biological properties of individual molecules seem promising, rela-
tively few have managed to go through the drug development process due to chemi-
cal instability, rapid metabolism, and in some cases, the incidence of side effects.
For example, several synthetic prostaglandin (PG) analogs have previously been
developed as potential antiulcer, antihypertensive, and fertility control agents
(Collins and Djuric 1993). Knowledge of the mechanisms of action through which
lipids and their metabolites regulate tumorigenic processes requires background
information on the growth and spread of cancer cells. Cancer has multiple stages, in
which cells develop the capacity for unregulated proliferation, become resistant to
proapoptotic stress that kills normal cells, and acquires the ability to migrate to
other adjacent and distant tissues to establish secondary metastases (Murray
et al. 2015).

Another example of functional lipids are ceramides, which can be found in many
foods such as rice and wheat. Besides, they are metabolites of many medicinal



5 Lipids 163

plants and are called phytoceramides (Canals et al. 2018). Ceramides are recog-
nized for their signaling role in regulating cell proliferation, differentiation, and
death. Hydrolysis of sphingomyelin produces a ceramide. This reaction is catalyzed
by sphingomyelinases, whereas de novo synthesis is mediated by multiple cerami-
des synthases that produce endogenous ceramides, which have various types of fatty
acids attached; the longest chain ceramides are proapoptotic. Accumulation of
ceramide in cells occurs after treatment with anticancer agents or saturated fatty
acids, such as palmitic acid (Merrill and Jones 1990). Direct addition of ceramide
C2, at a concentration of 1 pM, has been shown to alter the mitochondrial trans-
membrane potential, forming channels, or targeting Bcl-2 proteins (B-cell lym-
phoma 2) (Garcia-Ruiz et al. 1997). These proapoptotic actions of ceramide are
mediated by many molecules (Chen et al. 2008). Ceramide can be cleaved by
ceramidase, which terminates the apoptotic actions of long-chain ceramides and is
overexpressed in cancer cells (Seelan et al. 2000).

5.3.2 Fatty Acids

There are some lipids that inhibit the activity of enzymes dedicated to promoting
tumorigenesis. Inhibition of COX-2 enzyme activity is an attractive strategy for
preventing tumorigenesis and has been shown to be effective in colon, lung, and
prostate cancer cells in in vitro assays (Kamijo et al. 2001; Nagatsuka et al. 2002)
and models of xenografts in mice. Recently, it was discovered that a group of novel
ins-3 monounsaturated fatty acids inhibited the proliferation and migration of breast
cancer cells that overexpressed COX-2. In this study, monounsaturated fatty acid
analogs with variations in the chain were synthesized (Fig. 5.1), which were evalu-
ated in breast cancer cells, MDA-MB-468, which overexpressed COX-2. These
fatty acids inhibited cell proliferation, activated the apoptotic pathway, decreased
PGE2 production, as well as reduced cell invasion (Cui et al. 2012). These fatty
acids, called MUFAs, managed to demonstrate high activity in this experimental
model, and this study establishes a relationship between the activity of these fatty
acids, depending on the length of their chain, therefore, converts them to longer
chain MUFAs. In promising anti-inflammatory agents, as well as can be part of a
new species of anticancer.

Fig. 5.1 Long-chain n-3
synthetic monounsaturated
fatty acids active in breast
cancer cells that
overexpress the COX-2
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5.3.3 Alkylphospholipids

On the other hand, there are the so-called Alkyl phospholipids (ALPs), which have
shown antitumor activity (Berdel et al. 1981). Edelfosine has considered the first
synthetic analog of ALPs evaluated as a possible anticancer agent, along with ilmo-
phosine, which has a thioether residue instead of the methoxyl substituent (Fig. 5.2).

It is essential to mention that these phospholipids have been modified to improve
their therapeutic activity against cancer. As seen in the figure below, structural mod-
ification to remove the glyceryl nucleus produced an alkylphosphocholine analog
miltefosine and replacement of the choline moiety with a piperidine system pro-
duced periphosine (Fig. 5.3). The development of other molecules has been reported,
for example, erucylphosphocholine and it’s analog erufosine, which possess a
22-carbon fatty acid chain and a ® — 9-cis double bond. These structural develop-
ments have improved the selectivity of the agents for cancer cells over healthy cells
and have enhanced their metabolic stability (Mollinedo et al. 1997; Ruiter et al.
1999; Gajate et al. 2004).

ALPs cause a number of antitumor actions in cells (Fig. 5.4), including interfer-
ence with membrane lipid raft function, impaired PI3K/Akt survival signaling, inhi-
bition of phosphatidylcholine synthesis, generation of ROS, and activation of
endoplasmic reticulum stress (Gajate et al. 2012). That is why there is substantial
evidence that these fatty acids have multiple potential pathways in their mechanism
of action. ALPs decrease the viability of tumor cells in several ways. They promote
cell cycle arrest in the G2/M phase by inducing the CDK inhibitor p21Cipl and
inhibit proliferative signaling of ERK and PI3K/Akt, possibly interfering with Raf-1
membrane association, leading to decreased Raf-1 kinase activity (Samadder and
Arthur 1999; Elrod et al. 2007; Kumar et al. 2009).

In addition to what has already been mentioned, ALPs are well tolerated in pre-
clinical studies. However, the clinical use of ALPs of synthetic origin has been
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Fig. 5.2 Chemical structures of ilmofosine and edelfosine
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Fig. 5.3 Alkyl phospholipid structures that have been chemically modified to improve their anti-
cancer properties

restricted due to their hemolytic potential and gastrointestinal toxicity, as well as
other vital toxicities including fever, myalgia, arthritis, and pain (Berdel et al. 1987).

In addition to ALP treatment, concomitant therapies of these lipids with antican-
cer agents have been developed. The use of these combinations as forms of cancer
treatments has been promising. In recent studies, periphosine increased the antineo-
plastic effect of lenalidomide and dexamethasone in multiple myelomas (Jakubowiak
etal. 2012); also, studies with promising activity of the combination of capecitabine
with peripheosine for metastatic colorectal cancer have been reported (Bendell et al.
2011). Other recent preclinical studies have identified more combinations of drugs
containing peripheosine, for example, the mixture with the cyclin dependent kinase
inhibitor SNS-032, which has shown a potential value in the treatment of human
acute myeloid leukemia cells, within the effects cell death was increased if we com-
pared the effect of the substances separately, probably due to a decrease in PI3K/
Akt survival signaling by periphosine (Meng et al. 2013). The combination of peri-
phosine with the mTOR inhibitor CCI-779 caused cell cycle arrest and inhibited
growth in various human cancer cell lines (Pitter et al. 2011). These preclinical
results suggest that inhibition of the PI3K/Akt/mTOR pathway at two points in the
cascade may produce more optimal effects.

In addition to combinatorial therapies between ALPs and anticancer drugs, com-
binations between these molecules and radiation therapy have been developed. One
of the first in vitro assays that showed radiosensitization potential was miltefosine
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Fig. 5.4 ALPs decrease the viability of cancer cells by disrupting lipid rafts in the plasma and
mitochondrial membrane, modulating the distribution of Raf death receptors, and affecting phos-
phatidylcholine synthesis. The production of reactive oxygen species and the stress of the endo-
plasmic reticulum promote apoptotic cell death. Disruption of the PI3K/Akt survival pathway and
proliferative ERK signaling may also contribute to decreased cell viability produced by ALPs

on cell lines that excreted the activated Ras oncogene (Bruyneel et al. 1993).
Subsequently, Berkovic et al., demonstrated that miltefosine and edelfosine affected
clonogenic survival after radiation in squamous cell carcinoma KB (Berkovic 1998).
Periphosine has been shown to improve cytotoxicity through radiation in both short
and long-term trials. The most recent studies have demonstrated the increase in
radiation-induced apoptosis and the elimination of clonogenic tumor cells by erucil-
phosphocholine (ErPC) in malignant glioma (Handrick et al. 2006). Although the
cytotoxic mechanisms of action remain unclear, immunohistochemical analyzes of
tumor tissue after treatment revealed a prominent apoptotic response, mediated by
caspase 3 activity. Similar results were observed in a xenograft model of human
prostate carcinoma, in which the combinatorial therapy of peripheosine and radia-
tion, had a significantly more potent effect on tumor growth, unlike treatment with
a single substance (Gao et al. 2011).

5.3.4 Omega Fatty Acids

Another class of lipids found in many foods and that have shown therapeutic effects
are omega polyunsaturated fatty acids, particularly those in group 6 (®-6 PUFAS).
Although all -6 PUFAs can be consumed in the daily diet, the precursors of -6 are
more abundant in seeds and vegetable oils; therefore, it is considered the primary
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dietary source of all -6. Research on these fatty acids shows that PUFAs have some
participation in the diet as inhibitors of cell proliferation, for example, in the Caco-2
colon cancer cell line (Dommels et al. 2003). At the same time, a high intake of
these compounds also shows a protective effect against the development of cancer
(Horrobin and Ziboh 1997). In addition to found activity found in these molecules,
as well as in their derivatives, the family of polyunsaturated fatty acids has an
important antitumor event.

Linoleic acid can be desaturated and converted to gamma-linolenic acid (GLA),
which is associated with anticancer activities in vitro and in vivo models. For exam-
ple, GLA inhibited cell growth of the human neuroblastoma lines GOTO, SK N-DZ,
NKP, and NCG, a rat C6 glioma cell line, and the LLC-WRC256 rat carcinosar-
coma cell line (Fujiwara et al. 1989; Colquhoun and Schumacher 2001). More inter-
estingly, GLA-induced cytotoxicity was shown to exhibit high selectivity towards
cancer cells without affecting the growth of non-cancer cells in ZR-75-1 human
breast cancer lines, A549 lung cancer cells, and prostate PC-35 (Das 1992). Also,
GLA has been shown to be cytotoxic to the 36B10 rat malignant astrocytoma cell
line, without affecting normal astrocytes. And the radiation sensitivity of astrocy-
toma cells was improved, but not of normal astrocytes (Begin et al. 1986). In an
experimental rat model for C6 glioma, the infusion of GLA was shown to increase
the frequency of apoptosis and a decrease in tumor mass, without influencing neural
tissue and normal vasculature (Vartak et al. 1998). Therefore, it is suggested that
GLA is a possible anticancer therapeutic agent due to its high selectivity, as well as
the ease of consuming it in daily food.

There is evidence that specific metabolites of ®-3 PUFAs exert antitumor actions
on their own. An example of these is eicosanoid derivatives, which have decreased
pro-inflammatory, proliferative, invasive, and pro-angiogenic responses compared
to those formed from w-6 PUFAs (Abou-el-Ela et al. 1989; Rose and Connolly
2000; Hardman 2002). The antiangiogenic activities of eicosapentaenoic acid (EPA)
in human endothelial cells, including decreased invasion and endothelial tube for-
mation, have been attributed to prostaglandin E3 (PGE3), derived from COX-2, and
possibly to other metabolites; PGE3 directly suppressed the induction of the pro-
angiogenic mediator angiopoietin-2 by vascular endothelial growth factor (VEGF).
The mechanisms by which specific metabolites of PUFA-3 regulate angiogenesis
and other associated processes have not been fully explained, but are related to the
alteration in the signaling pathway for prostanoid receptors; therefore, eicosanoids
derived from EPA -3 activate prostanoid receptors less efficiently than those
derived from arachidonic acid w-6 (Wada et al. 2007). Also, epoxides obtained
through CYP-mediated metabolism of PUFA-3 have been shown to exert growth
suppression and anticancer effects. These EPA epoxides decreased cell proliferation
in endothelial tissues and activated apoptosis, leading to cell cycle arrest by activa-
tion of MAPK p38, which suppresses growth through down-regulation of cyclin D1
(Cui et al. 2011). Another study on epoxides demonstrated that they exert anticancer
effects by suppressing VEGF-mediated angiogenesis, which resulted in decreased
growth of the primary tumor and metastasis in vitro (Zhang et al. 2013). Figure 5.5
shows the structures of the epoxides evaluated in the said experiment.



168 1. G. Castro-Torres et al.

—\ =\ = OH — N OH
o o
19,20-EDP 14,15-EET

Fig.5.5 Chemical structures of 19,20-epoxydocosapentaenoic acid and 14,15-epoxyeicosatrienoic
acid with in vitro antiangiogenic activity

Some metabolites dependent on the 5-lipoxygenase (LOX) pathway have also
presented antitumor activity, including 15-Hydroxyeicosatetraenoic acid and
resolvins with antiproliferative capacity, and which are derived from arachidonic acid
(Haeggstrom and Funk 2011). Among the resolvins that have anti-inflammatory
activity, as well as inducing apoptosis when administered orally or intravenously, we
find those derived from epoxidation reactions. These complex eicosanoids come
from the biotransformation of DHA into 17S-hydroxy-DHA by the action of 15-LOX,
then it is transformed into 7S hydroperoxy, 17S-hydroxy-DHA by 5-LOX and finally
into resolvin D1, after epoxidation, which could involve CYP-mediated metabolism.
Similarly, 4S-hydroperoxy, 17S-hydroxy-DHA is another product generated by LOX
from 17S-hydroxy-DHA, which also undergoes epoxidation to produce resolvins D3
and D4. These resolvins exhibit anti-inflammatory properties in vivo when adminis-
tered intravenously or orally (Dangi et al. 2009).

Some ®-3 PUFAs epoxides have become a different group of potential anticancer
agents. A series of synthetic C20-C22 long-chain saturated fatty acid ep-3 epoxides
(Fig. 5.6) have been evaluated for their antiproliferative and proapoptotic actions in
human breast cancer cells. In these experiments, it was discovered that these
epoxyeicosapentaenoic fatty acids are active on the MDA-MB-231 cell line, which
increases caspase-3 activity and leads to downregulation of cyclin D1 and cell cycle
arrest in the phase G1 (Dyari et al. 2014). These fatty acid epoxides were developed
from naturally occurring 17,1-3 17,18-epoxy-EPA by removing additional olefinic
bonds, due to the oxidation potential of isomeric epoxides, which stimulate prolif-
eration and inhibit apoptosis. Synthetic -3 fatty acid epoxides impaired the viabil-
ity of MDA-MB-231 cells and, to a lesser extent, MDA-MB-468, MCF-7, and
T-47D cells; however, epoxides are unlikely to be suitable for in vivo application,
due to their low stability, since epoxide hydrolase converts them to inactive diols
(Inceoglu et al. 2008).

5.3.5 InVitro and In Vivo Studies

Bhupender and coworkers synthesized acylamide derivatives from doxorubicin
fatty acids (Fig. 5.7) and evaluated their anticancer activities in vitro. One of the
synthesized molecules showed antileukemia activity, comparable to cytarabine.
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Fig. 5.7 Structures of fatty acyl amide derivatives of doxorubicin

These effects were associated with the chemical modification of the structure
(Bhupender et al. 2011).

These researchers also synthesized fatty acyl ester derivatives (Fig. 5.8) of cyta-
rabine and evaluated them as antileukemic agents, finding that some of them inhib-
ited the growth of CCRF-CEM cells (Bhupender et al. 2010). On the other hand, Liu
et al., reported the synthesis and antitumor evaluation of cytarabine N4 fatty acyl
amino acid derivatives, to improve lipophilicity and bioavailability of cytarabine,
where the antitumor activity determined in HL-600 cells and HeLLa demonstrated
that the derivatives were more active in HeLa cells than cytarabine, while most of
them shown cytarabine-like activity in HL-60 cells. The length of the fatty acids in
the derivatives seemed to have an impact on the observed business (Liu et al. 2009)
(Fig. 5.9).

Zhang Chun-hong and his working group synthesized new panaxadiol fatty acid
esters and evaluated them to determine their antitumor activity in Vero cells, finding
a better antitumor effect compared to the 5-Fluorouracil control (Zhang et al. 2007).
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Fig. 5.9 Structure of new
panaxadiol fatty acid ester

The antitumor activity of these panaxadiol derivatives is more reliable than the ref-
erence drug; Fig. 5.5 shows the chemical structures of the synthesized compounds,
where the length of the fatty acid alkyl chain was modified, and the activities of each
one were compared.

Jubie et al., have reported two works reporting on some new heterocyclic fatty
acid conjugates and their anticancer evaluation in human lung carcinoma cell lines.
These compounds demonstrated cytotoxicity on these cell lines (Jubie et al. 2013).
The compounds of Fig. 5.10 possess a fatty acid chain substituted with
1,3,4-oxadiazole, which showed maximum cytotoxic activity. Furthermore, it was
observed that the presence of toxophoric bonds -N = C-O- in the nucleus 1,3,4 oxa-
diazole might be responsible for the antitumor activity. This working group con-
cluded that these compounds are good bioisterosters of amide and ester
functionalities, with a substantial improvement in the biological activity of hydro-
gen bonding interactions with different objectives responsible for tumor develop-
ment. The operation of these 1,2,4-triazole substituted fatty acid analogues depends
on the length of the fatty acid chain and is therefore directly related to their antitu-
mor activity (Jubie et al. 2013).

The chemical structures of the ceramides (Fig. 5.11) have allowed them to
exert proapoptotic effects. A correlation has been found between the activation of
apoptosis and its intracellular levels. The investigations have been able to continue
because methods have been developed for the detection of ceramides, enzymatic
inhibitors have been discovered to block the synthesis of ceramides and genera-
tors of ceramides have been identified that induce apoptosis (Lin et al. 2006). It
has been investigated that ceramide can intervene, both in the intrinsic and extrin-
sic apoptotic pathway. Likewise, the concentration of this lipid is influenced by
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Fig. 5.10 Structures of

novel 1,3,4-oxadiazole-2-
thiol and 1,2,4-triazole-3-
thiol fatty acid analogues

Fig. 5.11 Chemical
structure of ceramide

stimuli, such as the deprivation of nutrients, cellular stress, the effect of drugs,
heat, radiation or hypoxia, which is reflected in the cascade activation of caspases
and dysfunction. In multiple organelles leading to apoptosis (Morales et al. 2007).

Due to the resistance of traditional cancer therapies, studies on ceramide metabo-
lism show promising pharmacological treatments and alternatives.

The focus on the development of ceramide as an anticancer potential has led
researchers to the design of analogs of this sphingolipid to give a new approach to
cancer therapy; however, it is known that ceramide cannot cross cell membranes.
Therefore its application as a therapeutic agent is limited (Kolesnick and Hannun
1999). From this point, it is where analogues of this sphingolipid are developed,
which increase both its corrective action and the ability to cross cell membranes.
The first indications of modifications to ceramide as proapoptotic agents occurred
with the replacement of one of the fatty acid chains by a shorter acyl group, result-
ing in the derivatives called C2 and C6 (Fig. 5.12), which inhibited proliferation in
tumor cells (Kolesnick and Hannun 1999). On the other hand, investigating the
functionality of ceramide, other derivatives with anticancer activity have been
obtained (Fig. 5.13), mainly the derivative that contains the phenyl ring together
with those that have a sphingoid residue or an allyl fluoride and the derivative dihy-
droceramide Fluorides, which induced apoptosis in Molt-4 and K-422 leukemine
cell lines (De Jonghe et al. 1999). Within this same exchange of functional
groups to ceramide, the compounds derived from wuracil, thiouracil, and
5,6-dimethylthiouracil (Fig. 5.14) were analyzed in the CCRF-CEM leukemia cell
line, finding that the presence of pyrimidine rings is essential for apoptosis-inducing
activity, these sphingolipid derivatives have also been shown to increase caspase-3
activity as well as cytochrome C release (Ghafourifar et al. 1999).

In conclusion, a large number of lipid-derived compounds with anticancer activ-
ity have been developed, constituting new lines of research for alternative cancer
therapies. As reviewed, the influence of functional groups within a molecule of lipid
origin can have various effects on human cancer lines. The development of these
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Fig. 5.13 Ceramide derivatives; with a phenyl ring, ceramide allyl fluoride and fluorinated
dihydroceramide

Fig. 5.14 Derivatives of ceramide of the uracil and thiouracil type

new molecules broadens the panorama in the search for more significant activity
against cancer, but less toxic effects. Likewise, it is used that lipid molecules are
endogenous and that the body can easily recognize them, reducing the reactions that
may occur within a future therapy based on these compounds.

5.4 Effects on the Cardiovascular System

One of the most prevalent conditions that produce cardiovascular damage is athero-
sclerosis; this disease has a strong relationship with lipid metabolism (Torres et al.
2015); however, the events it triggers are associated with heart disease and blood
pressure problems, due to the formation of atheroma plaque. Among the lipids that
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have shown essential effects against atherosclerosis, we find short-chain fatty acids,
for example, butyric acid (Ohira et al. 2017).

5.4.1 Atherosclerosis and Cardiovascular Risk

This acid is also found referred to as butyrate, and it has reported significant anti-
inflammatory, apoptotic and antioxidant properties in different experimental mod-
els; These properties are related to the development of atherosclerosis, since, within
its pathophysiology, there are numerous inflammatory and oxidative processes
(Aguilar et al. 2014). In a study carried out in ApoE konckout mice, the effect of
butyrate was evaluated, which was added to 1% in the rodent diet for 10 weeks; the
study was complemented using endothelial cell lines, which were treated with
0.5 mM butyrate, after being stimulated with oxidized LDL. The effects of butyrate
were surprising since the appearance of atheroma plaque was reduced in 50% of the
treated mice, macrophage migration was inhibited by decreasing the production of
monocyte chemoattractant protein 1, cell adhesion protein 1 vascular and 72 kDa
type IV collagenase (Aguilar et al. 2016); thanks to the fact that the output of this
last protein was reduced, the collagen deposits in the atheroma plaques increased,
forming a kind of protection factor. The authors concluded that butyrate could delay
the formation of atherosclerosis, stabilizing atheroma plaque, and lowering platelet
glycoprotein 4 in macrophages, leaving important points to investigate a future ther-
apeutic target (Aguilar et al. 2016). It is imperative to recognize the role of this acid
in some functional foods that may be part of the atherosclerotic patient’s diet.

5.4.2 Omega-3 and Coronary Disease

Omega-3 fatty acids also have essential reports in coronary diseases, for example,
eicosapentaenoic acid (Brinton and Mason 2017). This lipid has been administered
in hypercholesterolemic patients, who also receive statin therapy. The effects found
are translated to the decrease of coronary events in the patients (Alfaddagh et al.
2017). A clinical study evaluated the effect of eicosapentaenoic and docosahexae-
noic acids on coronary heart disease caused by atherosclerosis. These acids were
administered at doses of 2 and 4 g per day. The results were significant since many
parameters associated with the formation of atheroma plaque were reduced, and
antioxidant and anti-inflammatory mechanisms of action were revealed (Nakao
et al. 2018).

Different reviews have shown that omega fatty acids are effective in preventing
coronary events caused by atherosclerosis (Abdelhamid et al. 2018); however, there
is little evidence on the effect of lipids on other diseases of the cardiovascular sys-
tem. Fatty acids can be obtained from foods rich in unsaturated fats; other studies
have evaluated supplements enriched with fatty acids; that is, they are already pre-
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sented under some pharmaceutical form or special presentation. More specific stud-
ies estimate fatty acids reactively in different models in vivo, in vitro, even in
clinical trials.

Some authors have recommended functional foods fortified with phytosterols as
a primary source to prevent cardiovascular diseases, mainly those associated with
high cholesterol levels, including prestigious health institutions that have supported
this initiative (Kohler et al. 2017). Foods rich in phytosterols have been shown to be
effective in lowering the plasma concentration of total cholesterol and LDL choles-
terol, being critical factors in avoiding cardiovascular risk (Patch et al. 2006).

One of the disadvantages of phytosterols is their poor solubility in water, so they
must use different systems to be administered or used as ingredients in functional
foods. Some tests that have been done with these lipids consisting of lecithin emul-
sifications, others include the use of margarine to be administered. These lipids have
had essential effects in preventing acute myocardial infarctions (Ortega et al. 2006).

5.5 Effects on Inflammation

Inflammation can be conceptualized as a primary way in which the body reacts to
harmful stimuli such as irritation, toxic compounds, infection, or irradiation; the
vital signs are warmth, redness, pain, and swelling. The aim of this process is
removing injurious stimuli and favors the healing process (Chen et al. 2018).
However, some specialist suggests that it shifts the metabolic balance towards
catabolism; being a pathological process, not a defensive reaction (Stankov 2012).
The inflammatory process underlies primary hyperalgesia (a painful response to a
stimulus that is usually not painful), contributing to peripheral sensitization in nerve
damage, especially if accompanied by tissue damage (American Chronic Pain
Association 2018). Acute inflammation is generally self-limited allows that cellular
and molecular events efficiently minimize impending injury or infection. However,
if it fails to resolve, chronic inflammation can appear, contributing to a variety of
diseases (Chen et al. 2018). During inflammation are promoted leukocyte migration
from blood to the damaged tissues and the generation of pro-inflammatory chemo-
kines, cytokines, and lipids mediators, which are fundamental to start and maintain
the phenomenon (Shapiro and Fazio 2016).

5.5.1 Lipids as an Inflammation Mediator

Lipids are the second energy fuel and the main component of cell membranes.
There are also recognized as a protagonic role as regulators of intracellular and
intercellular processes in maintaining tissue homeostasis and inflammation so have
been named "bioactive lipids" (Chiurchit and Maccarrone 2018). These lipids
originate from host essential fatty acids, which could be regulated by diet and by
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synthetic optimized mimetics of these molecules as nutritional supplements (Serhan
etal. 2014). These molecules generated from omega-6 or omega-3 essential polyun-
saturated fatty acids precursors, are esterified into membrane lipids and act activat-
ing specific G protein-coupled receptors (GPRs). A bioactive lipid classification by
their biosynthesis and function is classical eicosanoids, specialized pro-resolving
mediators (SPMs), sphingolipids/lysoglycerophospholipids, and endocannabinoids
(eCBs) (Chiurchiu and Maccarrone 2018).

Classic eicosanoid includes leukotrienes (LTs) and prostaglandins (PGs) that
arise from the oxidation of arachidonic acid (AA) and related (PUFA) by cyclooxy-
genase (COX), lipoxygenase (LOX), cytochrome P450 (CYP) enzymes and via
non-enzymatic free radical mechanisms (Rogerio et al. 2015). Cells are specialized
in produce certain kinds of eicosanoid, but concentration changes accord with phys-
iological conditions of the tissues in which they in (Dennis and Norris 2015). In
situations of tissue damage or injury, innate immune cells, like granulocytes, mono-
cytes, and macrophages, are conducted, and it is produced by classical eicosanoids.
The result is an acute inflammation, characterized by when so-called “cardinal
signs”: heat, swelling, redness, pain, and loss of function (Nathan 2002). Therefore,
classical eicosanoids are involved in the initiating steps that permit leukocytes and
specifically neutrophils to leave, via diapedesis, postcapillary venules (Serhan et al.
2014), are enhancers of innate and adaptive immune activation and thus involved in
many inflammatory diseases; despite (PGD2) and (PGE2) possess anti-inflammatory
effects (Dennis and Norris 2015).

Specialized pro-resolving mediators (SPMs) participate in reducing inflamma-
tion and facilitate the restoration of tissue contributing to homeostasis through
removal, relief, recovery, regeneration, and remission, a process called to as “reso-
lution of inflammation”. They are produced by the very same immune cells recruited
in the inflammatory zone to selflimiting and minimized the noxious stimulus
(Chiurchiu and Maccarrone 2018). The SPMs are originated from omega-6 AA and
omega-3 PUFAs docosahexaenoic acid (DHA), docosapentaenoicacid (DPA) and
eicosapentaenoic acid (EPA), through the same enzymes that produces classical
eicosanoids: COXs, LOXs, and P450 (CYP). At the same time, SPMs have been
subdivided into six kind: AA-derived lipoxins LXs (LXA4 and LXB4); EPA-derived
E-series resolvins (RVE1-3); DHA-derived D-series resolvins (RvD1-6); protectins
and neuroprotectins (PD1/NPD1 and PDX) and their sulfido-conjugates (PCTRs);
maresins and their conjugates (MaR1, MaR2 and MCTR1-3) and, the DPA-
associated 13-series resolvins (RvT1-4) (Serhan et al. 2014). The receptors that
mediate SPMs activity are five: formyl peptide receptor 2 or ALX (FPR2), GPR32
or DRV, chemerin receptor 23 or ChemR23 (ERV), leukotriene B4 receptor 1
(BLT1) and GPR18 (DRV2), differentially expressed in tissues and with a broad
affinity for each lipid mediator (Chiurchitt and Maccarrone 2018). Recent evidence
shows that impaired metabolism and SPMs function are associated with persistent
inflammation reaching chronicity, such as rheumatoid arthritis, cystic fibrosis, neu-
rological diseases, and atopic dermatitis (Rincén et al. 2015).

Lysoglycerophospholipids and sphingolipids are other classes of bioactive lipids
distributed in the plasma membranes that show a tremendous molecular diversity
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due to their linkage with molecules such as serine, choline, ethanolamine, inositol
or and other fatty acids (e.g., phosphoinositides and ceramides) responsible for the
outcome of inflammation (Serhan 2014). These modulate a great variety of cellular
processes that are relevant for tissue adaption to inflammatory events. Some of them
included lysophosphaditylcholine (LPC), lysophosphatidilinositol (LPI), and their
byproduct lysophosphatidic acid (LPA) involved in relevant aspects of tissue biol-
ogy, such as plasma membrane shaping, cell growth and death, and inflammatory
cascades (Chiurchiti and Maccarrone 2018). It is speculated that its sustained effects
are linked with a variety of chronic inflammatory diseases, for instance, obesity and
diabetes, chronic obstructive pulmonary disease, cancer, atherosclerosis, inflamma-
tory bowel disease, neuroinflammatory disorders, and rheumatic artritis (Serhan
et al. 2014; Rogerio et al. 2015). For example, sphingolipids as ceramide and its
byproducts ceramide 1-phosphate (C1P) and sphingosine 1-phosphate (S1P) par-
ticipate in numerous inflammatory processes and are responsible for controlling
intracellular traffic and signaling, cell growth, adhesion, vascularization, survival,
and apoptosis. Excessive ceramide signaling conditions adipose tissue inflamma-
tion and insulin resistance, which occurs in metabolic syndrome and type 2 diabetes
by inducing hyperactive immune cells such as macrophages and B cells (Chiurchiu
and Maccarrone 2018).

Endocannabinoids (eCBs) are endogenously bioactive lipids produced by
mammals capable of binding to and activate the same receptors as the main psy-
choactive component of marijuana A9-tetrahydrocannabinol, named type CBI
and CB2. Two of them are anandamide (N-arachidonoyl ethanolamine or AEA)
and 2-arachidonoylglycerol (2-AG), which also comprise -AG-ether,
O-arachidonoylethanolamine, and palmitoylethanolamide (PEA) (Bruni et al.
2018). According to the inflammatory state from tissue, eCBs also interact with
peroxisome proliferator-activated receptors (PPARs) and members of the transient
receptor potential (TRP) channels, GPR55 (Chiurchiu and Maccarrone 2018).
Consequently, modulation of the eCB system through various therapeutic and
nutritional strategies allows reducing the inflammatory processes in which cyto-
kines are released, infiltrate leukocytes and reactive species are produced, as neu-
rodegenerative diseases (Witkamp and Meijerink 2014; Balvers et al. 2013)

5.5.2 Bioactive Lipids in Preclinical Trial

Rheumatoid arthritis is an autoimmune affection of onset around the age of forty,
characterized by severe joint inflammation, deformation, pain, and movement limi-
tation. In vitro tests, omega-3 polyunsaturated fatty acid eicosapentaenoic acid
(20,5, EPA) reduces gene expression, particularly cyclooxygenase (COX-2), which
participates in inflammatory processes leading to the production of leukotriene B4
(LTBA4) and prostaglandins E2 (PGE2). Linolenic acid (18,3, ALA) was also tested
on these models, although it was found to have less potency than EPA (Hurst et al.
2010). Moreover, PUFAs have been evaluated by their anti-inflammatory properties
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linking the neuro-immune modulating features to its biological effects. It has been
explored the supplementation with 20 g/kg of fish oil (FO) finding than this treat-
ment attenuated the stress-induced neuroinflammation and promoted dysregulation
the of neurotransmission system, with NLRP3 and NF- kB decrement in certain rat
brain areas (Tang et al. 2018). On the other hand, omega-3 PUFA treatment amelio-
rated DOX-induced oxidative stress in the prefrontal cortex and hippocampus,
showing than this supplementation attenuated neuroinflammation. Some research
suggests than apoptosis induced by stress, oxidative, and neurotransmitter system
abnormalities and pro-inflammatory cytokines, may contribute to the physiopathol-
ogy of depression (Wu et al. 2016). Furthermore, PUFAs also have been demon-
strated as a potential treatment against neurobiological side-effects associated with
depression. The omega-3 PUFAs can effectively protect against chemotherapeutic
agents like Doxorubicin (DOX) in a dose of 1.5 g/kg over three weeks, and the
results shows than the PUFAs supplementation significantly mitigated the behav-
ioral changes induced by the neurotoxicity of DOX, and also alleviated the induced
neural apoptosis and the induced depressive-like behaviors in rats. The fish oil (FO)
has a rich content of PUFAs (EPA 34%, DHA 24%), and it has been proved than the
treatment with 1.5 g/kg ameliorated depressive-like behaviors induced by lipopoly-
saccharide (LPS) repeated administration through modulation of reactive oxygen
species (ROS). The improvement of serotonin, dopamine, and glutamate neuro-
transmission system was observed, conferring neuro-immune modulating features
to PUFA (Dang et al. 2018).

Many preclinical studies are showing that cannabinoids can be beneficial in
treating pain and inflammation, among other clinical conditions (Bruni et al. 2018).
For example, through a triple trial, the anti-inflammatory and antinociceptive effi-
cacy of cannabidiol (CBD) was measured by inhibiting zymosan-induced swelling
of the mouse leg and to relieve zymosan-induced pain. In the same study, CBD also
sharply reduced in vivo TNF production evaluated by an ELISA kit. Hence the
author concluded that cannabinoids are involved in the inhibition of chronic inflam-
mation symptoms (Gallily et al. 2018).

5.5.3 Bioactive Lipids in Clinical Trials

Few clinical trials have explored the beneficial effects of PUFAs on illnesses. Fish
oil-derived PUFA supplementation is recommended for the relief of symptoms in
many inflammatory diseases. The main reason for this is that omega-3 EPA and
DHA promote the inhibition of the enzyme COX-1 (more than the COX2), reducing
the products of arachidonic acid metabolism, as does the lowest dose of acetylsali-
cylic acid, an NSAID (Dennis and Norris 2015). In the case of rheumatoid arthritis,
stearidonic acid (18, 4 or SDA) and its EPA and DHA derivatives, present in seed
oils such as chia, can play an essential role in human metabolism in its prevention
or treatment, because it has been demonstrated at a clinical level that reduces inflam-
matory symptoms (Miles and Calder 2012). Patients with hepatic diseases like non-
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alcoholic steatohepatitis (NASH) treated with a diet richer in omega-3 PUFAs (64%
alpha-linolenic ALA, 16% eicosapentaenoic EPA, and 21% docohexanoic DHA
acids) show positive changes evaluated by the NASH activity score (NAS) in plasma
biochemical markers of inflammation, lipid metabolism and liver function (Nogueira
et al. 2016). Atopic dermatitis is a skin disease that is mainly characterized by its
dryness, which leads to its scaling and irritation and causes annoying symptoms
such as itching. In these patients, there is a reduction in the activity of the
A6-desaturase, necessary to convert the ALA of the diet into SDA and EPA, so
including an SDA supplement would be required for the treatment of the disease.
On the other hand, echium oil, rich in SDA, has shown for years, local utility in
some types of dermatitis, inhibiting up to 60% the release of pro-inflammatory pros-
taglandins (PGE2) with respect to untreated control tissues (Coupland et al. 1996;
Guil-Guerrero 2007). Added to this, pro-inflammatory mediators LTB4 and PGE2
are present in the sebaceous glands of the skin being associated with acne. Blocking
them with PUFAs (SDA or EPA) can, therefore, reduce acne lesions, constituting a
therapeutic alternative (Alestas et al. 2006).

Although major depression is not an inflammatory disorder, it is well known that
chronic inflammation (infection, for example), increased the rate of major depres-
sive disorder and reduced the responsiveness of antidepressants and to psychother-
apy. In this sense, the fish oil (FO) biological effects have been evaluated against the
major depressive disorder (MDD) in humans being by proton magnetic resonance
spectroscopy in the bilateral dorsolateral prefrontal cortex (DLPFC) an anterior cin-
gulate cortex and of teenagers. It is found that 16.2 g/day correlating positively with
a low score depressive symptom, with a trend in the small dose group, although
further studies are needed to evaluate these changes in a larger controlled trial
(McNamara et al. 2016) and if it can also be reduced in patients suffering from joint
pain or inflammation.

5.5.4 Pharmacodynamic and Pharmacokinetic of Bioactive
Lipids.

The Wageningen University & Research, a partnership between Wageningen
University and Wageningen Research Foundation is interested a novel mechanisms
underlying the anti-inflammatory activity of omega-3 fatty acids, that involve the
formation, biological activity and kinetics of fatty acid amides as DHEA
(N-docosahexaenoylethanolamine). This research focuses on immune-modulating
properties of these PUFAs using peripherical blood mononuclear cells (PBMCs),
macrophages, microglial cells, and mice model of colitis. To elucidate the mecha-
nism of action and kinetics properties of these compounds in gastrointestinal- and
neurological disorders in mice and human tissue after being submitted to
inflammatory conditions or by diet modifications are used spectroscopy techniques
(LC-MS/MS). Consequently, is possible to develop novel nutritional and/or phar-
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macological intervention strategies (Witkamp and Meijerink 2014; Balvers
et al. 2013).

In the case of cannabinoids, they are metabolized by liver and gut enzymes, suf-
fering a first-pass hepatic metabolism; likewise, they have specific pharmacokinetic
requirements, demonstrate reduced gastrointestinal permeability, and cause irrita-
tion. Also, cannabinoids show low oral bioavailability to treat inflammation, so
other routes of administration such as transdermal, intranasal, and transmucosal
must be used. Due to its hydrophobic nature, they may be susceptible to choice for
nanoparticulate pharmaceutical systems, with the advantage of being administered
by multiple routes (Bruni et al. 2018).

5.5.5 Functional Food Based on Bioactive Lipids

The functional foods are a beneficial effect on health more than necessary nutrients,
promoting a reduction of risk of disease. The role of dietary lipids in wellbeing as
protectors or potential therapeutic targets has been explored in last year (Rey et al.
2019). Humans can synthesize many fatty acids but are unable to desaturate long-
chain fatty acids at either C3 or C6 from the methyl end, making them essential, as
the PUFAs (Ballabio and Restani 2012). The importance of the dietary lipids has
few considered in nutritional researches, even less in the technology of functional
food (Meyner and Genot 2017) Besides this limiting aspect, lipid oxidation (rancid-
ity) is the primary process involved in reducing shelf-life food. It modifies the nutri-
tional value, texture, color, taste, and aroma leading to taste and flavors unacceptable
(Lima et al. 2013). The oxidation of PUFAs and other bioactive lipids is associated
with several mechanisms; one of them is the phenomenon of unsaturated lipid per-
oxidation that runs in parallel with oxidative stress (Nowak 2013). Therefore, essen-
tial unsaturated lipids contained in fishmeal and meat show severe trouble in food
stability. In the case of chicken meat, has been tested the dietary supplement with
conjugated linoleic acid, reducing the concentrations of malondialdehyde (MDA), a
final product of oxidative degradation of fats (Narciso-Gaytan et al. 2011).

The oral drug fingolimod was developed as a first-line treatment for multiple
sclerosis (an inflammatory disease), due to its ability to down-regulate SIPR1 and
to sequester highly pathogenic T cells within the lymph nodes, avoiding brain
myelin injuries. Fingolimod is responsible for reducing blood-brain barrier dys-
function, diminishing the production of sphingolipids from reactive astrocytes, as
ceramides (Van Doorn et al. 2010).

Finally, in relation to cannabinoids, regulation is stringent, particularly for phy-
toremediation and other herbal products such as marijuana, because it is required
prior to its commercialization, the performance of strict and well-controlled pre-
clinical and clinical trials, which clearly demonstrate therapeutic efficacy against
pain and inflammation, the therapeutic interval and low risk for patients (Nathan
2002; Rincén et al. 2015).
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The inflammatory process is related to four main lipids: classical eicosanoids,
specialized pro-resolving mediators (SPMs), lysoglycerophospholipids /sphingo-
lipids, and endocannabinoids that play significant roles in inflammation, and dys-
regulation of one or more of them may lead to inflammation-associated disorder.
Most of these bioactive lipids and several elements of their intricate metabolism and
signaling are differentially dysregulated in many chronic inflammatory diseases, so
the study of the role they play as part of the diet will allow the design of new thera-
peutic strategies based on robust and safe functional food. In the case of cannabi-
noids, alternatives to systemic oral delivery as nanoparticle techniques should be
considered once the therapeutic doses have been correctly established to treat
inflammatory disorders without risk to the patient and in accordance with the legis-
lation of each country.

5.6 Therapeutic Activity in Obesity

The World Health Organization (WHO) defines obesity as abnormal or excessive fat
accumulation that presents significant risk factors for several chronic diseases, like
diabetes, cardiovascular diseases and cancer (World Health Organization (WHO)
2018) Obesity has been increasing worldwide in the last 40 years; in 2016 there
were about 650 million adults, about 41 million children under 5 years old and more
than 340 million children and adolescents from 5 to 19 years old with this condition.
Currently, there are some strategies to reduce the incidence of obesity, but the tradi-
tional treatment and public health interventions are proving inadequate control of
the global epidemic in this condition (Afzal 2017). There are multiple approaches
and strategies used to treat obesity, including lifestyle modifications (healthy dietary,
increasing exercise, behavioral therapy), pharmacotherapy, and surgery (mainly
bariatric), the latter being the most risking of the interventions (Wyatt 2013).

Obesity, due to its metabolic complexity, acts as a stressful agent, both adipocyte
metabolism and the organs responsible for the metabolism process, including liver,
muscle, and pancreas, resulting in insulin resistance and type II diabetes mellitus
(DM 1I). The obesity and the progressive expansion of adipocytes lead to the
decreased blood supply to these lipid cells ending in hypoxia. These events have
been related to the necrosis of macrophages and their infiltration into the fat tissue,
allowing an overproduction of active metabolites called adipocytokines, such as
glycerol, plasminogen activator inhibitor-1 (PAI-1), C-reactive protein (CRP), and
pro-inflammatory mediators, including tumor necrosis factor-alpha and interleukin-
6 (TNF-a and IL-6), and free fatty acids. These changes initially lead to an inflam-
matory process in adipose tissue; then, it expands to a systemic inflammation
associated with the development of various obesity-related diseases (Figueiredo
et al. 2017a).

In this context, some substances play an essential role in mediating inflammation
and related disorders. Some studies have shown that omega-3 polyunsaturated fatty
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acids (PUFA®3) have significant biological effects, which can contribute to the
treatment of obesity and metabolic disorders related (de Mello et al. 2018).

This has led to the search for more treatments to reduce this epidemic, such as
the use of substances with a high content of polyunsaturated fatty acids, or the con-
sumption of these acids directly.

5.6.1 Polyunsaturated Fatty Acids (PUFAs)

Fatty acids are the main components of membrane lipids, typically contain 12 to
24 carbon atoms forming hydrocarbon chains. Based on the presence and number
of double bonds, maybe of the type: saturated fatty acid (no double bonds), mono-
unsaturated (one double bond), and polyunsaturated (with two or more double
bonds). Polyunsaturated fatty acids (PUFA) include two series: omega-6 (w6) and
omega-3 (w3), depending on which is the first carbon double bond (Fig. 5.15). The
exogenous conversion of these fatty acids form compounds which are precursors
of biologically relevant mediators, such as arachidonic acid (ARA), docosahexae-
noic acid (DHA) and eicosapentaenoic (EPA) (Wiktorowska-Owczarek et al. 2015).

The increased consumption of omega-6 contributes to inflammation, oxidative
stress, endothelial dysfunction, and atherosclerosis since arachidonic acid is metab-
olized in pro-inflammatory eicosanoids. Furthermore, EPA and DHA have an anti-
inflammatory ability due to the reduction of the adhesion molecules VCAM-1 and
ICAM-1 as well as MCP-1 chemokines, metalloproteinases matrix, and pro-
inflammatory cytokines. Therefore, by decreasing the omega-6/3 ratio, the inflam-
matory response can be reduced (DiNicolantonio and O'Keefe 2018).

PUFA®6 intake does not inhibit the antiinflamtoria ability of omega-3; even this
combination (at low ratio omega-6/3) is associated with lower levels of inflamma-
tion. This was demonstrated in the study Health Professionals Follow-Up Study

A)

OH

B)

— — — — — — OH

Fig. 5.15 Examples of structures of different polyunsaturated fatty acids. (a) Arachidonic acid,
omega-6; (b) eicosapentaenoic acid, omega-3; (¢) docosahexaenoic acid, omega 3
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(HPFS), which was a prospective cohort investigation of 51,529 professional men
health USA, between 40 and 75 years, with the baseline in 1986. Also, we con-
ducted the Nurses' Health Study II, a prospective cohort of 116,671 nurses between
25 and 42 years, with the baseline in 1989. After applying a number of exclusion
criteria, the sample for such research was 859 subjects (405 men and 454 women).
The participants were determined in serum sTNF-R1, sTNF-R2, IL-6, CRP, all
markers of pro-inflammatory cytokines. With multiple regression analysis, it was
observed that there is a statistically significant inverse association between dietary
PUFA®3 and plasma levels of soluble TNF-receptor 1 and 2. These relationships
depend on the intake of PUFA®6, suggesting that at low levels of PUFA®3 intake,
the PUFAwG are associated with high levels of inflammatory markers; however, at
higher levels of omega-3 together with the consumption of omega-6, the combina-
tion of both types of fatty acids is associated with lower levels of inflammation
(Pischon et al. 2003).

On the other hand, Mantzioris et al. in 2000 developed a study with healthy male
volunteers, who were provided with enriched a-linolenic acid (ALA) food (cooking
oil, margarine, salad dressing, and mayonnaise), eicosapentaenoic and docosa-
hexaenoic acid (sausage and salt sauce), and food rich in naturally PUFA®3 as lin-
seed meal and fish. Subjects added to these foods diet for four weeks, whereby the
fatty acid intake, plasma cell fatty acids and eicosanoid production, and monocyte-
derived cytokines were measured. On average, volunteers consumed 1.8 g/day of
EPA + DHA, while the daily intake of ALA was 9 g/day. With this, EPA was
increased on average three times in plasma, platelets and mononuclear cell phos-
pholipids. There was also a significant decrease in PGE2, IL-1b, and TXB2 synthe-
sis, pro-inflammatory cytokines related to the development of obesity, and another
metabolic syndrome (Izaola et al. 2015).

5.6.2 Fish Oil

Currently, there are dietary supplements in the market based on fish oil (FO), which
contain PUFA®3, EPA, and DHA (Mantzioris et al. 2000).

A study in two groups of male C57BL/6 administered with fish oil (low dose =
1.2%, high dose = 2.4%), showed that subjects delivered with this oil gain less
weight compared to those without, and intake of this substance reduces fat accumu-
lation and induces the expression of uncoupling protein 1 (UCP1) in mitochondrial
brown adipose tissue (BAT). Also, it increases oxygen consumption and rectal tem-
perature, as well as upregulation of B3 adrenergic receptors (f3AR) and UCPI, in
white adipose tissue (WAT) and in interscapular brown adipose tissue; added to this,
the urinary excretion of catecholamines and norepinephrine is enhanced. Everything
described indicates that it promotes thermogenesis (Mason and Sherratt 2017). BAT
is an essential factor in the regulation of energy homeostasis. It's controlled by the
sympathetic nervous system and mitochondrial uncoupling protein 1 (UCP1). That
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is why it can provide novel strategies for the treatment of obesity in humans (Kim
et al. 2015).

In another study, male C57BL/6 mice were administered with a low-fat diet
(LFD) and high-fat diet (HFD), as well as being supplemented with fish oil (0%, 3%
or 9%), all treatments were for 6 months. Mice were measured bone structure, body
composition, and serum cytokines bone-related. The animals fed with HFD
increased serum TNF-a, leptin, and tartrate-resistant acid phosphatase (TRAP).
Similarly, serum osteocalcin fell and bone-specific alkaline phosphatase. Moreover,
the intake of fish oil decreased fat mass, serum TRAP, and expression of TNF-« in
adipose tissue. The bone content of long-chain PUFA®3 increased, and the PUFA®6
decreased, with the elevation of FO content in the diet. Therefore, the increased FO
in the diet may decrease adiposity and thus mitigate bone deterioration induced by
HFD, possibly by reducing inflammation and bone resorption (Contreras et al. 2016).

Furthermore, in a double-blind, placebo-control trial, supplements derived
PUFA®3 fish oil at a dose of 2.4 g/day for 6 months was administered. This treat-
ment decreased the levels of triglycerides (TG) and increased HDL-C levels in
patients with type 2 diabetes with abdominal obesity. However, there were no
changes in total cholesterol, LDL-C, LDL-C index /HDL-C, body composition, and
glucose compared to subjects administered placebo (Cao et al. 2020).

5.6.3 Linseed Oil

Flaxseed is one of the oldest cultivated grains in all civilizations; It is used today
primarily as a nutritional supplement, especially its oil. Linseed oil is an essential
source of PUFA®3, in which the a-linolenic acid (ALA) represents approximately
50% of these (Wang et al. 2017).

A study with rats Wistar (Rattus norvegicus) fed diets based on linseed oil and
sesame oil (independent groups and a third with both oils) for 60 days was per-
formed. Bodyweight (throughout the experiment, twice a week), adiposity index,
triglycerides, total cholesterol, LDL, HDL, non-HDL, and glucose in serum were
evaluated at the end of the experiment. The diets enriched with flaxseed and sesame
oils were rich in PUFA®3, being higher in linseed. The adiposity index was lower
in animals with diets supplemented with linseed oil. Also, this group showed lower
levels of total cholesterol, triglycerides, and showed less weight gain. This demon-
strated that diets supplemented with flaxseed oil improve the biochemical and mor-
phometric parameters of experimental animals, explaining that the presence of
sources of PUFA®3 benefits the quality of food (Goyal et al. 2014).

Another study was carried out in C57BL/6 male mice, where they were divided
into different groups: fed with a low-fat diet (LFD), high-fat diet (HFD), and two
groups with the same diets supplemented with flaxseed oil, plus a control group. All
diets lasted 16 weeks. The animals were weighed twice weekly, as well as the reg-
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istration of food consumption. With these data, the caloric intake of each group was
calculated, and adipose tissue biopsies were taken for histological analysis. HFD
mice develop obesity with insulin resistance, a fact that was attenuated by supple-
mentation with linseed oil; even with medium doses of this, the metabolic activation
of macrophages in adipose tissue (ATM) is blocked, so insulin signaling in adipose
tissue was improved (Figueiredo et al. 2017b).

5.6.4 Bile Acid and Derivatives

Bile acids come from cholesterol metabolism. In their chemical structure, they pre-
serve the core nucleus of cholesterol; therefore, they are considered substances with
lipid properties (Thakare et al. 2018; Marin et al. 2015). Bile acids are synthesized
in the liver and are responsible for forming bile salts, which are the body's natural
emulsifiers (Macierzanka et al. 2019). The body synthesizes cholic acid and cheno-
deoxycholic acid abundantly; however, there are other bile acids such as deoxycho-
lic and ursodeoxycholic (Chiang 2009). The latter has been used for decades for the
treatment of cholestasis and cholesterol gallstones (Guarino et al. 2013).

Ursodeoxycholic acid (UDCA) is a secondary bile acid derivative metabolism
(Fig. 5.16) that has been proposed as a potent treatment for inflammatory bowel
disease (Yu et al. 2017).

A study conducted in male C57BL/6, were divided into three groups fed with a
regular diet, high-fat diet (HFD), and HFD supplemented with UDCA 0.5% w/w,
for 8 weeks. It showed that mice fed with HFD + UDCA had less body weight gain
compared to other animals. Similarly, the glucose level was decreased in this group

HO

Fig. 5.16 Chemical structure of ursodeoxycholic acid
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compared to only HFD were fed (He et al. 2018; Zhang et al. 2019). This research
is opening new search strategies for potential obesity treatments, with this molecule.

Taking supplements and enriched with polyunsaturated fatty acids, with a higher
proportion of omega-3 to omega-6 food, can induce obesity reduction due to the
decrease of pro-inflammatory cytokines as well as preventing other metabolic dis-
orders. However, it is necessary to emphasize that adequate dietary management
regarding these PUFAs should be considered, as well as the consumption of fiber,
unprocessed sugar, and exercise since their inadequate use can lead to other prob-
lems such as hypertension.

Bile acids have also been shown to be protective factors against obesity and lipid
accumulation. In a study of transgenic mice, which overexpressed the limiting
enzyme in the synthesis of bile acids, cholesterol 7a-hydroxylase, it was shown that
taurokenodeoxycholic, taurodeoxycholic, taurocolic and tauro-f-murolic bile acids
decreased plasma lipid concentration, such as lysophosphatidylcholines, phosphati-
dylcholines, sphingomyelins, and ceramides. These effects occurred in mice that
were fed a high-fat diet and suggest anti-obesity results (Qi et al. 2015).

Another bile acid that has shown significant effects against obesity is chenode-
oxycholic acid. This acid was evaluated in an in vitro model, using 3 T3-L1 adipo-
cytes, which were exposed to high concentrations of glucose and different doses of
the acid. Adipocytes demonstrated oxidative capacities, probably of fatty acids, a
significant effect in the treatment of obesity (Teodoro et al. 2016).

The use of bile acids also represents a significant challenge for the pharmaceuti-
cal and food industries, since they are substances derived from cholesterol and can-
not be solubilized in water, they also tend to form emulsions, which are very
complicated systems to use in some food. Furthermore, the high concentration of
bile acids can be toxic to cells, so its use and consumption should be moderate.
Some bile acids produced by other animals have been used in capsule form to treat
problems of obesity, cholesterol, diabetes, bile, but their biological impact on health
must be considered.

The information presented in the chapter highlights the effects of some lipids
against cancer, which is a chronic degenerative disease, to a lesser extent we
report effects on the cardiovascular system, obesity, inflammation and cholesterol
diseases. Whatever the disease, what is sought in the future is to find adequate
means to be able to ingest or administer lipids. If we consider the core part of the
theme of this book, we are faced with many disadvantages, because lipids are dif-
ficult to manipulate for the pharmaceutical and food industries. Its null or poor
solubility in water prevents them from making formulations that can be adminis-
tered orally, without presenting problems. Associated with the latter, emulsions
can be formulated to be ingested, but these types of preparations are unpleasant to
the eye, since they coexist two phases that are immiscible with each other, but that
can coexist thanks to a surfactant agent. The emulsions can be administered intra-
muscularly, which would be an alternative for lipid treatment. The food industry
also faces many difficulties when formulating products for human consumption,
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which use lipids as active ingredients. These substances can be dissolved with
similar ones that could harm the body, especially if you have a disease associated
with cholesterol, triglycerides, dyslipidemias. Therefore, they must also invest a
lot of inputs in creating the right vehicles to formulate food with healthy lipids.
All these factors constitute constant research, which has left different products on
the market, such as emulsions, capsules, ointments. The development of a func-
tional food becomes more complex because every food needs to have a pleasing
presentation for the client, in terms of smell, color, flavor, texture, and appearance.
The information collected will allow taking different bibliographic sources in
order to amplify a particular topic that readers choose.
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Chapter 6 )
Marine Bioactives Check or

Reza Tahergorabi and Mehdi Abdollahi

Abstract Marine organisms are a rich source of bioactive compounds. Bioactive
compounds are compounds with health-promoting effects. Consumption of these
compounds may lower the risk of diseases such as heart diseases, cancer, diabetes,
osteoporosis, and other complications. Recently, marine bioactives have attracted
much attention due to their enormous health benefits. This book chapter provides a
succinct review of the recent studies about marine bioactives including proteins,
peptides, amino acids, fatty acids, sterols, polysaccharides, oligosaccharides, phe-
nolic compounds, photosynthetic pigments, vitamins, and minerals. It also discusses
the bioactives derived from marine bacteria as well as different techniques used for
marine bioactives recovery.

Keywords Marine organisms - Bioactives - Health - Seafood

6.1 Introduction

More than 70% of the earth is covered by the seas, oceans and aquatic environ-
ments. Many living creatures including aquatic plants and animals exist in these
environments with potential health benefits that have not been discovered yet. Many
studies have been conducted so far to explore the world under the water and to find
a cure for many diseases that the world population is dealing with. However, we are
yet far from exploring these valuable resources of the aquatic world. Earlier studies
with Greenlandic Inuit or Eskimos indicated that having a great number of seafoods
in the diet increases well-being and health (Bang et al. 1986; Rangel-Huerta and Gil
2018). This was probably the milestone of a series of studies on the effect of sea-
food consumption on human body. Since that time, scientists found that marine
organisms including plant and animals contain bioactive compounds which may
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promote health in human being. According to these studies, marine organisms may
provide bioactive compounds with different activities including anticoagulant,
calcium-binding, anti-obesity, and anti-diabetic, antioxidant, anti-hypertensive,
anti-HIV and anti-proliferative activities (Bleakley and Hayes 2017; De Jesus
Raposo et al. 2013; Abdul et al. 2016). Thus, this chapter discusses the bioactive
compounds of different types of marine organism. It also reviews their applications
in health, cosmetic and food industries.

6.2 Marine Proteins

Proteins have a fundamental, physiological and nutritional role in the human body
as major structural components of all cells. They also act as hormones, enzymes,
and antibodies and have a critical role as carries in both cell walls and blood. On top
of that, proteins e.g. collagen provide structural support in connective tissues, cells,
and skin. As a food component, proteins have essential nutritional roles by provid-
ing energy and amino acids which are vital for growth and maintenance in our body.
Foods from marine resources are generally recognized as a great source of proteins
containing all the essential amino acids close to the proportion suitable for human
beings (Hamed et al. 2015). Marine animal-based foods contain relatively higher
proportion of protein on a wet weight basis (average 17.3%) than meats from ter-
restrial animals (13.8%), despite having a higher moisture content than most ter-
restrial meats (Tacon and Metian 2013). Marine animals muscle usually contains
lower amount of stroma proteins (e.g. collagen and elastin) than red meat which
ranges from 1 to 3% in finfish up to 10% in shark and ray fish. Myofibrillar protein
content in marine animals ranges between 65 and 75% and it ranges between 20 and
35% for sarcoplasmic proteins (Venugopal 2008). Marine invertebrates e.g. oyster,
mussel, clam, and squid exceptionally have another type of protein in their strained
muscles called paramyosin which ranges between 3 and 19%. Proteins from marine
animals have high digestibility and biological value as well as having essential
amino acids especially lysine much higher than proteins from plant foods (Wang
et al. 2018). These proteins are also rich in amino acids e.g. methionine and lysine
which are limited in terrestrial meat proteins (Tacon and Metian 2013; Khalili
Tilami and Sampels 2018).

Beyond their nutritional value, recent studies have shown that proteins from
marine foods and their hydrolysates can also exert health effects on the human body.
For many years, health effects of seafoods consumption such as dyslipidemia and
heart diseases have been attributed to high content of mega-3 fatty acids found in
their oil. However, most recent studies have shown that marine proteins may also
play a key role in beneficial health effects of marine foods. Various physiological
health effects and bioactivities such as mitigating effects on obesity, metabolic syn-
drome, inflammation, type II diabetes (insulin sensitivity or glucose tolerance), car-
diac risk factors (high blood pressure and triacylglycerol levels), osteoporosis, and
reduced circulating concentrations of lipids have been reported for marine proteins
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in either animal models or human trials which are summarized in Table 6.1 and
briefly reviewed in the following.

6.2.1 Antiobesity Properties of Marine Proteins

Obesity which is morphologically seen as overweight and extra body fat accumula-
tion is as worldwide health issue. This excessive body weight has shown strong
association with heart disease risk factors e.g. insulin resistance, type-2 diabetes,
dyslipidemia, metabolic syndrome, and high blood pressure. Several studied have
shown that sole inclusion of fish protein in diet can effectively protect against
obesity-related disorders especially formation of adipose tissue mass in animal
models as summarized in Table 6.1. For example, a diet with a mixture of several
marine protein sources (ling, rosefish, cod, wolfish and muscle from a scallop)
could reduce fat mass in rats compared with the diets containing a mixture of
chicken, pork, and beef as main protein source (Holm et al. 2016). However, the
effects of preventing obesity were more evident in cod protein containing diets.
Proteins from other fish including salmon, herring, bonito, and mackerel were also
added to high fat diet and their effects on rats were compared with diets with casein.
Despite equal energy intake among all groups, it was an only salmon protein-
containing diet that significantly reduced weight gain (Pilon et al. 2011). These two
studies suggest that beneficial physiological effects of marine proteins are highly
governed by their sources. The latter study also found that consumption of salmon
diet also increased circulating calcitonin levels in the rats which might have also
played role in reduction of weight gain in the studied rats. Salmon calcitonin is a
widely studied bioactive peptide in fish protein with 32 amino acids with blood
calcium lowering activity 40-50 times more potent than human calcitonin (Aadland
etal. 2015). It has been clinically used for more than 30 years for treatment of meta-
bolic bone disease e.g. osteoporosis, paget disease, and bone metastases by inhibit-
ing osteoclast activity (Pilon et al. 2011).

6.2.2 Hypolipidemic Properties of Marine Proteins

Another reported health benefit for marine food proteins is related to their effects on
lipid metabolism which is also related to coronary artery disease. Animal studies
have shown that defatted protein from Alaska Pollak could decrease serum choles-
terol in rats through the inhibition of cholesterol and bile acid absorption and the
enhancement of cholesterol catabolism in the liver (Hosomi et al. 2009). Also, simi-
lar beneficial effects have been observed in both rabbits fed with cod protein com-
pared to casein and milk proteins and in rat fed with herring and salmon protein
hydrolysates (Bergeron and Jacques 1989; Drotningsvik et al. 2016). When protein
from crab, scallop, cod, and chicken was tested on obesity-prone mice, a significant
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Table 6.1 Bioactive properties of fish proteins studied in animal models

Studied
bioactivity Protein source | Study condition Main results Reference
Anti-obesity Bonito, herring, | Male Wistar rats Lower weight gain and | Pilon et al.
mackerel, or 4 weeks reduced fat (2011)
salmon accumulation in
salmon protein fed
mice
Ling, rosefish, | Healthy male mice | Less fat mass Holm et al.
cod, wolffish, 12 weeks accumulation, (2016)

and scallop

decreased feed intake
and diminished weight
gain

Cod, crab, and
scallop

Obesity-prone
male mice, high
sucrose and
high-fat diet

Scallop-fed mice
gained less body and
fat mass

Tastesen et al.
(2014)

Hypolipidemic | Shrimp, squid | Male rats, 19 days | Decreased hepatic Tanaka et al.
and octopus cholesterol (1998)
defatted protein
Alaska pollock | Male Wistar rats Decreased cholesterol | Hosomi et al.

4 weeks in serum and liver (2009)
Cod + scallop Female mice, Lower serum levels of | Jensen et al.
13 weeks leptin and LDL (2016)
cholesterol
Blue whiting Male obese rats Lower serum and liver | Drotningsvik
water-soluble 5 weeks cholesterol et al. (2018)
protein
Herring and Obese rats Reduced serum HDL | Drotningsvik
salmon 4 weeks and LDL-cholesterol, | et al. (2016)
by-products and higher serum TAG,
protein MUFA and n-3: n-6
hydrolysate PUFA ratio
Antidiabetic Cod High fat diet fed Fully prevented the Lavigne et al.
rats development of insulin | (2001)
4 weeks resistance in rats
Bonito, herring, | Male Wistar rats Improved insulin Pilon et al.
mackerel, or 4 weeks sensitivity (2011)
salmon
Bonito Type-2 diabetes Improved T2DM- Ochiai et al.

mellitus rats
6 weeks

induced bone frailty

(2015)

(continued)
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Table 6.1 (continued)
Studied
bioactivity Protein source | Study condition Main results Reference
Anti- Fish Spontaneously significant reduction of | Ait-Yahia
hypertensive hypertensive rats | blood pressure et al. (2003,
(SHR) for 8 weeks 2005)
sardine Male Wistar rats decrease of diastolic Khelladi et al.
3 weeks blood pressure and (2018)
heart rates
sardine Obese rats Lowered blood Affane et al.
by-products 4 weeks pressure (2018)
Anti- Cod protein Bupivacaine- Promoting growth and | Dort et al.
inflammatory injured skeletal regeneration of skeletal | (2012)
muscle rats muscle after trauma
4 weeks
Shrimp protein | Bupivacaine- Facilitated resolution | Dort et al.
hydrolysate injured skeletal of inflammation after | (2016)
muscle rats muscle injury
4 weeks
Bonito, herring, | Male Wistar rats Reduced expression of | Pilon et al.
mackerel, or 4 weeks both tumor necrosis (2011)
salmon factor—a and
interleukin-6

reduction in lipid metabolization was found in scallop fed mice (Tastesen et al.
2014). Scallop protein could significantly reduce plasma triacylglyceride, non-
esterified fatty acids, glycerol and hydroxybutyrate in mice. Most of the mentioned
studies have used fillet or muscle of marine animals as a source of protein in their
studies. However, a more recent study by Drotningsvik et al. (2018) have evaluated
anti-obesity effects of water soluble proteins from a pelagic fish called blue whiting.
Obese rats fed with a diet containing the water soluble proteins (1/3 of protein in
their diet) from blue whiting had lower levels of serum and liver cholesterol com-
pared to rats fed with 100% of casein in their diet. This was most likely related to
lower hepatic cholesterol synthesis in the rats fed with the water soluble proteins.

In line with the above mentioned animal studies, a randomized control trial com-
paring the effects of consuming protein from cod, pollock, saithe, and scallops with
lean meat: chicken, beef, turkey, pork, egg, and low-fat milk in a Norwegian group
found a reduction in both fasting and postprandial circulating triglycerides concen-
trations in the participants (Aadland et al. 2015). Also, cod protein supplementation
to thirty-four overweight adults for 8 weeks could help lipid metabolism in the
participants and reduce LDL cholesterol (Vikoren et al. 2013).
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6.2.3 Antidiabetic Properties of Marine Proteins

Type 2 diabetes is another health issue associated with obesity and related to sugar
metabolism in the body. In this disorder, the human body becomes resistant to the
effect of insulin or loses the capacity to produce insulin. Some studies have shown
that seafood and even fish protein can reduce insulin resistance and thereby increase
capacity to store glucose as glycogen and minimize the risk of type 2 diabetes
(Nkondjock and Receveur 2003). For instance, feeding rats with a high-fat, high-
sucrose diet containing cod protein (having 91% protein and 0.19% lipid) as protein
source completely hindered the development of insulin resistance and glucose intol-
erance in the animals (Lavigne et al. 2001). Control rats fed with the same diet but
containing soy protein isolate and casein as protein sources showed improvement in
fasting glucose tolerance and peripheral insulin sensitivity (Lavigne et al. 2000).
Nevertheless, insulin resistance was detected in the rats fed with soy protein and
casein. The author showed that the ability of cod protein in preventing insulin resis-
tance caused by obesity in those rats could be partly related to the direct effect of
amino acids in the cod protein on insulin-stimulated glucose uptake in skeletal mus-
cle cells (Lavigne et al. 2001). In line with the previous studies, feeding rats with
diet containing salmon protein also promoted their insulin sensitivity (Pilon et al.
2011). Ochiai et al. (2015) showed that defatted protein produced from dried bonito
fish (Katsuwonus pelamis) could effectively diminish the bone frailty caused by
insulin resistance and type 2 diabetes mellitus in young rats (Ochiai et al. 2015).
This study could confirm that fish protein can also be a marine bioactive that can
potentially help in mitigating bone frailty independent from the effects found for
poly unsaturated fatty acids.

A more recent randomized double-blind study on 93 overweight adults evaluated
the effect of protein from herring and salmon protein hydrolysate as well as cod
protein on glucose regulation and markers of insulin sensitivity in the participants
(Hovland et al. 2019). The participants received the fish proteins (2.5 g/day) as well
as a mixture of casein and whey (as control) as tablet. They did not report fat content
in the proteins. The study showed that consumption of the low dosage of cod protein
or herring protein hydrolysates could promote glucose regulation in overweight
adults. However, they did not find any significant effect for salmon protein hydrol-
syate (Hovland et al. 2019).

6.2.4 Antihypertensive Properties of Marine Proteins

Blood pressure or hypertension is another important risk factor for cardiovascular
disease which is the largest cause of death globally (Vasdev and Stuckless 2010).
Normal blood pressure should be 120/80 mmHg and elevation of one or both param-
eters causes heart workload increase and results in a condition called hypertension
(Jensen and Mahre 2016). The beneficial effects of marine proteins on hypertension



6 Marine Bioactives 201

have been studied in both animal models and less frequently in clinical trials. For
example, a 20% replacement of intact fish protein in the diet of spontaneously
hypertensive rats (SHR) for 8 weeks significantly reduced blood pressure in the
animals compared to those eating the casein protein (Ait-Yahia et al. 2003; Ait
Yahia et al. 2005). A more recent study showed that a diet containing 20% of sardine
protein and 2% of lemon zest induced a significant decrease of diastolic blood pres-
sure and heart rate values in rendered diabetic and hypertensive rats compared with
casein containing diet (Khelladi et al. 2018). Also, purified protein from sardine
by-products could induce lowered blood pressure in obese rats compared with
casein (Affane et al. 2018). Although studies on the effects of intact marine proteins
are rare, a large number of studies have shown that total protein hydrolysates from
different marine sources such as salmon (Enari et al. 2008), cod (Jensen et al. 2014),
cobia (Yang et al. 2013) and jellyfish (Liu et al. 2012) have significant blood pres-
sure reducing effect on SHR. Also, evaluations on chronic effect of total protein
hydrolysates from some marine sources such as seabream (Fahmi et al. 2004) and
jellyfish (Liu et al. 2012) on SHR have shown a significant reduction of blood pres-
sure even comparable to that of captopril. When it comes to human studies the
results are not easily judged. For example, a randomized trial with 33 medicated
patients with coronary heart disease showed that cod protein as main protein source
in diet could reduce both systolic and diastolic blood pressure in the patients (Erkkild
et al. 2008). However, supplementation of salmon protein hydrolysate capsules to
overweight adults for 2 months had no effect on blood pressure of the patients
(Enari et al. 2008).

6.2.5 Anti-Inflammation Properties of Marine Proteins

Inflammation is normally considered as a regular reaction of our immune system to
harmful stimuli which has a critical role in our life. However, inflammation disorder
can cause a vast variety of diseases such as cancer, atherosclerosis, and ischemic
heart disease, colitis, Crohn's disease and so on. Anti-inflammatory effects of
omega-3 containing fish oil are widely agreed but recent studies have shown that
fish proteins and most probably their hydrolysate may have anti-inflammatory
effects.

For example, defatted cod protein added to the diet of rats with artificially injured
muscle promoted resolution of inflammation in their muscles compared to casein
and defatted peanut protein. The cod protein could significantly reduce density of
neutrophils and ED1+ macrophages at day 14 and 24 post injury in the injured
muscles of the rats (Dort et al. 2012). Addition of defatted peanut protein to the diet
of the rats with injured muscles had no anti-inflammatory effect and even reduced
their muscle mass recovery (Dort et al. 2012). The authors later showed that the
anti-inflammatory effect observed for cod protein is related to its high levels of
arginine, glycine, lysine and taurine by supplementing casein with a mixture of
those amino acid in similar amount to their levels in cod protein (Dort et al. 2016).



202 R. Tahergorabi and M. Abdollahi

In a later study, Dort et al. (2016) reported similar anti-inflammatory effects for
shrimp protein hydrolysate in rats with artificially injured muscle. Anti-inflammatory
activity was also reported for proteins from four different fish species including
bonito, salmon and herring and mackerel. Proteins from the named fish could miti-
gate expression of both tumor necrosis factor—a and interleukin-6 in visceral adi-
pose tissue of rat compared with casein (Pilon et al. 2011).

6.2.6 Brain Health Effects of Marine Proteins

Age-related diseases such as dementia and Alzheimer’s disease that are progressive
disorders causing brain cell death and loss of memory are also growing in the aging
population around the world. Beneficial effects of fish consumption against the cog-
nitive related disease have been widely studied but it has been mainly related to the
function of omega-3 fatty acids (Kiihn 2014). However, a recent study has shown
that parvalbumin which is recognized as most common allergen in fish can cause
cross-reactions with human amyloidogenic proteins and inhibits amyloid formation
of a-synuclein which is mostly associated with neurodegenerative disorders such as
Alzheimer’s and Parkinson’s (Werner et al. 2018). The authors suggested that ben-
eficial effects of fish on brain health might be also partly explained by its protein
function. However, further studies are needed to make a concrete conclusion in
this regard.

6.2.7 Marine Algae Proteins and Their Bioactivity

Proteins from marine plants i.e. seaweed and microalgae are also an emerging type
of marine proteins that have gained massive attention recently as more sustainable
and marine origin vegetarian protein alternatives. Proteins in seaweed are a struc-
tural component of their cell wall and have physiological roles as enzymes and pig-
ments (Pimentel et al. 2019). Protein contents in seaweeds can reach up to 47% dry
weight in Rhodophyceae (red seaweeds) and 9-26% dry weight in Chlorophytes
(green seaweeds), followed by the lowest at about 3—15% in Phaeophytes (brown
seaweeds). However, protein content of seaweeds varies substantially by change in
season and geographical locations and environmental conditions (Okolie et al. 2018).
Two typical proteins found in seaweeds with bioactive properties are lectin and
phycobiliproteins. As glycoproteins with high specificity binding with carbohy-
drate, lectins have found a wider range of application e.g. in blood grouping, anti-
viral (including human immunodeficiency virus type 1(HIV-1)), cancer biomarkers,
and targets for drug delivery (Bleakley and Hayes 2017). Lectins from algal sources
have also shown other bioactive properties such as antinociceptive, antibacterial,
antiviral, antiadhesion, cytotoxic, and mitogenic properties (Okolie et al. 2018).
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Phycobiliproteins are photosynthetic proteins that have critical role in light cap-
turing in red seaweeds. They are water-soluble and inherently fluorescent which
makes them a useful biomaterial for application in some immunological methods
(Pal and Suresh 2016). Phycobiliproteins are also used as natural colorants in the
food and cosmetic industry. In addition, these proteins have shown a wide range of
bioactive properties such as hepatoprotective anti-inflammatory activities, antitu-
mor, antioxidant, antiviral and neuroprotective properties (Bleakley and Hayes
2017). These multifunctional bioactivities of phycobiliproteins have led to their
application in treatment of some disease e.g. arteriosclerosis, serum lipid reduction,
and lipase inhibition (Okolie et al. 2018).

Protein hydrolysates and peptides generated by enzymatic hydrolysis of proteins
from a wide range of seaweeds have also shown several bioactive properties such as
antioxidant (Heo and Jeon 2008; Wang et al. 2010), antihypertensive (Athukorala
and Jeon 2005; Cian et al. 2012), antiproliferative (Athukorala et al. 2006) and anti-
diabetic (Harnedy et al. 2015) properties. However, results are mainly limited to
in vitro studies which call for more research on animal models and human trials for
a better understanding of their application potentials. This has also made seaweeds
as one of the fastest-growing research fields for recovery of marine origin bioactive
compounds.

Altogether, recent studies have shown that health benefit effects of marine foods
go beyond their omega-3 PUFAs and their protein can play a significant role in their
bioactivity. However, more human studies in clinical and intervention trials on pure
and especially defatted marine proteins are needed to support bioactivities found
in vitro models and animal models. Also, effects of processing, storage and cooking
methods on the bioactivity of marine proteins need to be considered in future stud-
ies and recommendations.

6.3 Marine Peptides

Peptides are short chains of amino acids connected with peptide bonds with usually
between 3 to 20 amino acids (Jo et al. 2017). Bioactive peptides may naturally exist
in marine organisms to perform some physiological roles in their body or be gener-
ated artificially by enzymatic hydrolysis of marine proteins. The enzymatic hydro-
lysis method has gained great attention in the food industry and it has been used for
extraction of bioactive peptides from a wide range of marine resources such as fish,
crustaceans, mollusks, algae, and microorganisms, especially during the last two
decades. Different types of marine animals such as fish, shrimp, lobster, crab, mus-
sel, clam, jellyfish, sea cucumber, sea urchin, squid, oyster, sponges, rotifers and
etc. have been used for production of bioactive peptides using enzymatic hydrolysis
(Proksch et al. 2010; Bordbar et al. 2011; Ngo et al. 2012; Harnedy and FitzGerald
2012; Jo et al. 2017). In addition, seafood industry has already lost more than 50%
of its biomass as by-product e.g. fish head, frame, tail, bone, skin, viscera, blood and
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shells which have been targeted as a great substrate for production of marine bioac-
tive peptides (Atef and Mahdi Ojagh 2017; Ishak and Sarbon 2018).

Bioactive peptides are inactive within the parent protein structure but as soon as
they are released using the hydrolysis, they show various bioactive properties
depending on their amino acid composition and sequence (Ngo et al. 2012). Thanks
to the almost endless number of variations that can happen in amino acid composi-
tion and sequence, marine bioactive peptides have shown several types of bioactiv-
ity including antihypertensive, antiproliferative, anticancer, antioxidant,
antimicrobial, anti-inflammation, anticoagulant and opioid agonists or antagonists
properties (Proksch et al. 2010; Bordbar et al. 2011; Ngo et al. 2012; Harnedy and
FitzGerald 2012; Samarakoon and Jeon 2012; Jo et al. 2017). In the light of these
explanations, bioactive peptides may be able to potentially improve human health
and reduce disease risk as nutraceuticals and pharmaceuticals. In parallel, promo-
tion in consumers’ awareness about the association between food and health has led
increase in demand for functional foods (Jo et al. 2017). Thus, bioactive peptides
produced from marine organisms, representing more than 50% of our global biodi-
versity, can be a great source of bioactive compounds to be used as nutraceuticals
and functional foods (Kim and Wijesekara 2010; Suleria et al. 2015). Thus, in the
following, an overview of most recent bioactive peptides produced from different
marine resources as well as seafood processing by-products and their bioactive
properties is presented.

6.3.1 Marine Peptides with Antioxidant Activity

Antioxidants play an important role in our body by reducing negative effects from
the excessive generation of reactive oxygen species (ROS) such as superoxide anion
(0?) and hydroxyl (OH'") radicals. However, imbalance between generation of
ROS and ability of endogenous antioxidants in human body in their detoxification
can cause oxidative stress. This imbalance has been associated with several chronic
health issues such as heart disease, stroke, high blood pressure, cancer, inflamma-
tory disease and aging (Valko et al. 2007). Bioactive peptides with ability to scav-
enge free radicals and ROS or stopping lipid peroxidation by interrupting the radical
chain reaction have been extracted from protein hydrolysate of different marine ani-
mals and plants. These peptides are normally called antioxidant peptides and have
been isolated from fish and shrimp muscle and their processing by-products e.g.
head (Yang et al. 2011; Chi et al. 2015a), frame (Je et al. 2005, 2007), skin (Zhang
et al. 2012), bone (Baehaki et al. 2015), swim bladder (Zhao et al. 2018), viscera
(Villamil et al. 2017), and shrimp peeling by-products (Ambigaipalan and Shahidi
2017). For example Chi et al. (2015b) extracted three antioxidant peptides from tuna
head by-products with sequence of Trp-Glu-Gly-Pro- Lys (WEGPK), Gly-Pro-Pro
(GPP), and Gly-Val-Pro-Leu-Thr (GVPLT), with molecular weights of 615.69,
269.33, and 485.59 Da, respectively. The antioxidant activity of the isolated peptide
was most likely related to high concentration of hydrophobic and/or aromatic amino



6 Marine Bioactives 205

acid residues in their sequence. However, the mechanism of their antioxidant activ-
ity was different where GPP indicated highest in vitro radical scavenging activity
(ICs = 1.9-2.4) but WEGPK inhibited the peroxidation of linoleic acid. Also, a
peptide (Lys-Thr-Phe-Cys-Gly-Arg-His) with molecular weight of 86.1 kDa pro-
duced from croaker (Otolithes ruber) muscle with enzymatic hydrolysis could pro-
mote the endogenous cellular antioxidant enzymes in Wistar rats (Nazeer et al.
2012). The peptide elevated the activities of catalase (CAT), glutathione-S-
transferase (GST) and superoxide dismutase (SOD) in the animals.

Other marine animals including crab (Yoon et al. 2013), squid (Sudhakar and
Nazeer 2015), oyster (Umayaparvathi et al. 2014; Zhang et al. 2019a), mussel
(Wang et al. 2013), clam (Chi et al. 2015a), jellyfish (Zhuang et al. 2009a), and sea
cucumber (Zhou et al. 2012) have been used for production of antioxidant peptides.
For example, Sudhakar and Nazeer (2015) could separate a 679.5 Da peptide from
cuttlefish (Sepia brevimana ) by enzymatic hydrolysis with the sequence of Ile/Leu-
Asn-Ile/Leu-Cys-Cys-Asn with a remarkable inhibition of linoleic acid auto-
oxidation in a model system.

Marine algae are also considered as a rich source for isolation of antioxidant
peptides due to their highly unstable living conditions in ocean experiencing
extraordinary low light intensities and high oxygen concentrations (Samarakoon
and Jeon 2012). For example, a peptide with sequence of Glu-Leu-Trp-Lys-Thr-Phe
recovered from enzymatic hydrolysis of Gracilariopsis lemaneiformis proteins with
a-chymotrypsin showed a significant free radical scavenging activity with an ECs,
value of 1.514 mg/ mL (Zhang et al. 2019b). The authors suggested low molecular
weight and hydrophobic and/or aromatic amino acids in the sequence of the purified
peptides as main reason for its relatively good antioxidant activity.

6.3.2 Marine Peptides with Antihypertensive Properties

Peptides produced form marine organisms have been widely investingated as bio-
actives with antihypertensive properties. Antihypertensive peptides can modulate
physiological regulation of blood pressure by inhibiting the activity of angioten-
sin-I converting enzyme (ACE) (Abdelhedi and Nasri 2019). ACE can regulate
blood pressure by converting angiotensin-I to angiotensin-II. The later is a potent
vasoconstrictor and also inactivates the vasodilator bradykinin (Li et al. 2004).
Side effects created by treatment of blood pressure with synthetic ACE inhibitors
such as captopril, enalapril, alcacepril have made interest in finding natural alter-
natives including bioactive peptides (Kim and Wijesekara 2010). From a mecha-
nistic point of view, synthetic drugs inhibit ACE by blocking its action while ACE
inhibitory peptides react with ACE and prevent its attachment to Angiotensin I
(Ngo et al. 2012). However, the mechanism of action has not been well understood
for some bioactive peptides. Numerous studies have shown antihypertensive activ-
ity of marine-derived bioactive peptides in both in vitro and in vivo. Bioactive frac-
tions obtained by enzymatic hydrolysis of cobia head with papain showed an ACE
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inhibitory ICs, of 0.24 mg/ml which was intensified after incubation with gastroin-
testinal enzymes (Yang et al. 2013). Oral administration of the bioactive peptides
to SHR in a dosage of 150-1200 mg/kg body weight could reduce systolic blood
pressure in a dose-dependent manner in the rats. Similar blood pressure-lowering
effect was found in SHR fed with bioactive peptides from jellyfish Rhopilema
esculentum (ICsy = 1.28 mg/ml) (Liu et al. 2012), oyster (ICs, = 66 pmol/L) (Wang
et al. 2008), sea bream scale collagen (ICsy = 0.57 mg/ml) (Fahmi et al. 2004), yel-
lowfin sole (Limanda aspera) frame (ICs, = 28.7 pg/ml) (Jung et al. 2006), bigeye
tuna dark muscle (Thunnus obesus) (ICso=26.6 pM), chum salmon (Oncorhynchus
keta) skin (ICso = 18.7 pM) (Wang et al. 2008).

The antihypertensive effect of marine bioactive peptides has been also reported
in some human studies. For example, daily administration of 3 g of a 3 kDa perme-
ate of protein hydrolysate from dried bonito could significantly reduce systolic
blood pressure in borderline and mildly hypertensive human subjects (Fujita et al.
2001). Also, 300 and 500 mg daily uptake of protein hydrolysate from a seaweed
(Undaria pinnatifida) showed the same effect in mildly hypertensive subject groups
consuming its jelly after 8 weeks (Kajimoto et al. 2002). Similarly, a daily intake of
1.6 g oligopeptide from Nori (Porphyra yezoensis) resulted in a significa