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Abstract We study the distribution of eigenvalues of varying Toeplitz and Hankel
matrices such as

[
an+k−j

]
j,k

and
[
an+k+j

]
j,k

where an behaves roughly like nβ for
some non-0 complex number β, and n → ∞. This complements earlier work on
these matrices when the coefficients {an} arise from entire functions.
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1 Introduction and Results

The distribution of eigenvalues of Toeplitz matrices
[
ck−j

]
1≤j,k≤n

is a much studied
topic, especially when their entries are trigonometric moments [1, 2, 5, 7, 9, 18, 19,
26, 29, 30]. There is a classic paper of Widom [28] dealing with both finite and
infinite Hankel matrices

[
cj+k

]
. There is a large literature on random Hankel and

Toeplitz matrices, see for example, [3, 10, 12, 13, 21, 22]. Generalizations of Toeplitz
matrix sequences are considered and studied in [7].

Our interest arises from classical function theory and Padé approximation. There
is a connection to complex function theory: Polya [20] proved that if f (z) =∑∞

j=0 aj /z
j can be analytically continued to a function analytic in the complex

plane outside a set of logarithmic capacity τ ≥ 0, then

lim sup
n→∞

∣∣
∣det

[
an−j+k

]
1≤j,k≤n

∣∣
∣
1/n2 ≤ τ .

There are many extensions of this result [4, 16].
In the recent paper [16], we analyzed distribution of the eigenvalues of such

matrices under appropriate hypotheses on
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qj = aj−1aj+1

a2j

.

The motivation comes from Padé approximation for functions such as

f (z) =
∞∑

j=0

zj / (j !)1/α , α > 0, (1.1)

for which (cf. [14, 15])

qj = exp

(
− 1

αj
+ O

(
1

j2

))
.

More generally, we considered series

f (z) =
∞∑

j=0

aj z
j ,

that satisfy

qj = aj−1aj+1

a2j

= exp

(

− 1

ρj

(
1 + o

(
ρ

−1/2
j

)))

,

with appropriate smoothly increasing or decreasing sequences
{
ρj

}
of positive

numbers. We proved, under mild conditions on
{
ρj

}
, the following assertions about

the eigenvalues
{
λnj

}n

j=1 of the normalized matrix 1
an

[
an+k−j

]
1≤j,k≤n

:

1. The eigenvalue of largest modulus satisfies

max
1≤j≤n

∣∣λnj

∣∣ = √
2πρn (1 + o (1)) .

2. The set of all limit points of
{
λnj /

√
2πρn

}
1≤j≤n,n≥1 is [0, 1].

3. The scaled zero counting measures

μn = 1

n

n∑

j=1

(
Re λnj

)
δ
λnj /

√
2πρm

admit the weak convergence

dμn

∗→ |π log t |−1/2 dt (1.2)
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in the sense that for each function f defined and continuous in an open subset of
the plane containing [0, 1],

lim
n→∞

∫
f dμn =

∫ 1

0
f (t) |π log t |−1/2 dt. (1.3)

The hypotheses in [16] treat a broad array of entire functions of zero, finite
positive, or infinite order, and also some power series of finite radius of convergence.
However the hypotheses exclude the case where the coefficients have power growth
or decay. It is the purpose of this paper to study that case. The general sequences
of Toeplitz matrices in [7] differ from our situation in that our sequences of varying
matrices require a different normalization as n → ∞, and a different formulation for
the eigenvalue counting measures. Moreover, in Widom’s paper [28], the matrices
treated have the form

[
cj+k

]
0≤j,k≤n

, whereas in this paper the top left-hand corner
element is am with m growing to ∞, so the results and methods are different. We
consider the Hankel matrices

Hmn = [
am+k+j

]
0≤j,k≤n−1

and Toeplitz matrices

Tmn = [
am+k−j

]
1≤j,k≤n

where an behaves roughly like nβ .
Our approach is also quite different from that in [16], due to the different growth

rates. There we used a similarity transformation on Tmn and showed that the eigen-

values of Tmn/am behaved like those of the matrix Emn = −
[
e
− (j−k)2

2ρn

]

1≤j,k≤n

.

There roughly O
(√

n
)
central bands of the matrix dominate and one can compute

the asymptotics of the trace of Ek
mn for each fixed k = 0, 1, 2, . . . . This approach

fails for the sequences we consider here, as all bands contribute, and indeed we get
a different weak limit from that above.

2 Hankel Matrices

In this section, we state our results for Hankel matrices
[
am+j+k

]
0≤j,k≤n−1 where

the aj grow or decay like jβ . Of course if β is real, these matrices are real and
symmetric, so have real eigenvalues. In the special case, where β < 0 and aj = jβ ,
these matrices are actually positive definite, so have positive eigenvalues. Indeed
this follows directly from the fact that for β < 0 and j ≥ 1.
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jβ = 1

Γ (−β)

∫ 1

0
sj

(
log

1

s

)−β−1

s−1ds.

This identity in turn follows from the standard integral for the gamma function

Γ (−β) =
∫ ∞

0
t−β−1e−t dt

by the substitution s = e−t/j . Our first result allows possibly complex β. As above
we let

Hmn = [
am+j+k

]
0≤j,k≤n−1 . (2.1)

We also let Λ(Hmn/am) denote the collection of all eigenvalues of Hmn/am, and
form the weighted counting measure

μmn = 1

n2

∑

λ∈Λ(Hmn/am)

λ2δλ/n. (2.2)

Thus μmn places mass
(

λ
n

)2
at 1

n
λ for each eigenvalue λ of Hmn/am. This is rather

different from the usual eigenvalue counting measures, but is needed in our situation.
The weighting reflects the fact that eigenvalues of Hmn/am tend to cluster around 0.
For general sequences of Hankel and other matrices, this clustering effect has been
extensively explored—see [6, 8, 23, 27].

Theorem 2.1 Fix k ≥ 1 and R > 0. Assume m = m(n) → ∞ in such a way that
m/n → R as n → ∞. Assume that β ∈ C and given R > 0, we have as n → ∞,
uniformly for 0 ≤ � ≤ Rm,

am+�

am

=
(
1 + �

m

)β

(1 + o (1)) . (2.3)

Then

(I)

lim sup
n→∞

1

n
sup {|λ| : λ ∈ Λ(Hmn/am)}

≤
∫ 1

0
max
0≤y≤1

(
1 + x + y

R

)Reβ

dx. (2.4)

In particular, the supports of
{
μmn

}
n≥1 are contained in a compact set

independent of n.
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(II)

lim sup
n→∞

∣∣μmn

∣∣ (C) ≤
∫ 1

0

∫ 1

0

(
1 + x + y

R

)2Reβ

dx dy. (2.5)

(III) For k ≥ 1,

lim
n→∞

1

nk
T r

([
Hmn

am

]k
)

= ck, (2.6)

where

ck = Rk

∫ 1/R

0

∫ 1/R

0
. . .

∫ 1/R

0
(1 + t1 + t2)

β . . .

(1 + tk−1 + tk)
β (1 + tk + t1)

β dt1dt2 . . . dtk. (2.7)

Consequently for k ≥ 0,

lim
n→∞

∫
λkdμmn (λ) = ck+2. (2.8)

Corollary 2.2 Assume that β is real and all
{
aj

}
are real. Then there is a finite

positive measure ω with compact support on the real line such that for all functions
f continuous on the real line with compact support,

lim
n→∞

∫
f (t) dμmn (t) =

∫
f (t) dω (t) . (2.9)

The measure ω is uniquely determined by the moment conditions

∫
tkdω (t) = ck+2, k ≥ 0.

Remarks

(a) Note that (2.3) is satisfied if an = nβbn, where
bn+�

bn
= 1 + o (1) for 0 ≤ � ≤

Rm. For example this is true if an = nβ (log n)γ (log log n)κ for some γ , κ .
(b) If we do not assume that the

{
aj

}
are real, then we can only prove convergence

for functions f analytic in a ball center 0 of large enough radius, as in
Corollary 3.2 below.

(c) It is obviously of interest to find an explicit form for ω. There is a classic
technique for simplices that provides an explicit value for similar Dirichlet-
Liouville multiple integrals [11, 25], but it does not seem to work for cubes.

(d) Note that our eigenvalue counting measure μmn has a different normalization
and scaling to standard ones, so we cannot apply standard results such as in [7].
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We prove Theorem 2.1 and Corollary 2.2 in Sect. 4.

3 Toeplitz Matrices

As above, we let

Tmn = [
am+k−j

]
1≤j,k≤n

.

Here we set aj = 0 if j < 0. We also let

νmn = 1

n2

∑

λ∈Λ(Tmn/am)

λ2δλ/n. (3.1)

We prove:

Theorem 3.1 Let R ≥ 1. Assume m = m(n) → ∞ in such a way that m/n → R

as n → ∞. Let β ∈ C. Assume that given ε ∈ (0, 1), we have as n → ∞, uniformly
for −m (1 − ε) ≤ � ≤ (R − 1)m,

am+�

am

=
(
1 + �

m

)β

(1 + o (1)) . (3.2)

If R = 1, we assume in addition that Reβ > −1and

lim
ε→0+

⎛

⎝lim sup
n→∞

1

n |an|
[εn]∑

j=1

∣∣aj

∣∣

⎞

⎠ = 0. (3.3)

Then

(I)

lim sup
n→∞

1

n
sup {|λ| : λ ∈ Λ(Tmn/am)} ≤

∫ 1

0
max
0≤y≤1

(
1 + x − y

R

)Reβ

dx.

In particular, the supports of {νmn}n≥1 are contained in a compact set
independent of n.

(II)

lim sup
n→∞

|νmn| (C) ≤
∫ 1

0

∫ 1

0

(
1 + x − y

R

)2Reβ

dx dy.

(III) For k ≥ 1,
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lim
n→∞

1

nk
T r

([
Tmn

am

]k
)

= dk,

where

dk = Rk

∫ 1/R

0

∫ 1/R

0
. . .

∫ 1/R

0
(1 + t1 − t2)

β . . .

(1 + tk−1 − tk)
β (1 + tk − t1)

β dt1dt2 . . . dtk.

Consequently for k ≥ 0,

lim
n→∞

∫
λkdνmn (λ) = dk+2. (3.4)

Corollary 3.2 There is a finite complex measure ω with compact support in
the plane such that for all functions f analytic in the ball center 0, radius
∫ 1
0 max0≤y≤1

(
1 + x−y

R

)Reβ
dx,

lim
n→∞

∫
f (t) dνmn (t) =

∫
f (t) dω (t) . (3.5)

The measure ω admits the moment conditions
∫

tkdω (t) = dk+2, k ≥ 0.

Here in the case R = 1, we assume Reβ > −1.

We note that it is not clear if the complex valued measure ω is uniquely
determined by the moment conditions, as it is supported in the complex plane. We
prove the results of this section in Sect. 5.

4 Proof of Theorem 2.1 and Corollary 2.2

Proof of Theorem 2.1(I) It follows from Gershgorin’s Theorem [17, p. 146] that
every eigenvalue λ of Hmn/am satisfies

|λ|
n

≤ max
0≤j≤n−1

1

n

n−1∑

k=0

∣
∣∣∣
am+k+j

am

∣
∣∣∣ .

Our hypothesis (2.3) gives uniformly for 0 ≤ j , k ≤ n − 1,
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∣∣∣∣
am+k+j

am

∣∣∣∣ =
∣∣∣∣∣

(
1 + k + j

m

)β

(1 + o (1))

∣∣∣∣∣

=
(
1 + k + j

Rn (1 + o (1))

)Reβ

(1 + o (1))

≤ max
1≤�≤n

(
1 + k + �

Rn

)Reβ

(1 + o (1)) ,

so that

|λ|
n

≤ 1

n

n−1∑

k=0

max
0≤y≤1

(
1 + k

Rn
+ y

R

)Reβ

+ o (1)

→
∫ 1

0
max
0≤y≤1

(
1 + x

R
+ y

R

)Reβ

dx

as n → ∞. �
Proof of Theorem 2.1(II) By Schur’s Inequality [17, p. 142],

∣∣μmn

∣∣ (C) = 1

n2

∑

λ∈Λ(Hmn/am)

|λ|2 ≤ 1

n2

n−1∑

j,k=0

∣∣∣∣
am+j+k

am

∣∣∣∣

2

= 1

n2

n−1∑

j,k=0

∣∣∣∣∣

(
1 + j + k

m

)β

(1 + o (1))

∣∣∣∣∣

2

= 1

n2

n−1∑

j,k=0

(
1 + j + k

Rn

)2Reβ

(1 + o (1))

→
∫ 1

0

∫ 1

0

(
1 + x + y

R

)2Reβ

dx dy

as n → ∞. �
Proof of Theorem 2.1(III) Now

1

nk
T r

([
Hmn

am

]k
)

= 1

nk

n−1∑

j1=0

n−1∑

j2=0

· · ·
n−1∑

jk=0

am+j1+j2

am

am+j2+j3

am

. . .
am+jk−1+jk

am

am+jk+j1

am
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= 1

nk

n−1∑

j1=0

n−1∑

j2=0

· · ·
n−1∑

jk=0

(
1 + j1 + j2

m

)β (
1 + j2 + j3

m

)β

. . .

(
1 + jk + j1

m

)β

(1 + o (1))

= 1

nk

n−1∑

j1=0

n−1∑

j2=0

· · ·
n−1∑

jk=0

(
1 + j1 + j2

nR (1 + o (1))

)β (
1 + j2 + j3

nR (1 + o (1))

)β

. . .

(
1 + jk + j1

nR (1 + o (1))

)β

(1 + o (1))

= 1

nk

n−1∑

j1=0

n−1∑

j2=0

· · ·
n−1∑

jk=0

(
1 + j1 + j2

nR

)β (
1 + j2 + j3

nR

)β

. . .

(
1 + jk + j1

nR

)β

+ o (1) ,

since each of the nk terms are bounded independently of n and each index ji, 1 ≤
i ≤ k. The sum in the last line is a Riemann sum for the multiple integral

∫ 1

0

∫ 1

0
. . .

∫ 1

0

(
1 + x1 + x2

R

)β

. . .

(
1 + xk−1 + xk

R

)β (
1 + xk + x1

R

)β

dx1dx2 . . . dxk

and so we obtain the result (2.7), after making the substitution xj = Rtj for 1 ≤
j ≤ k. Finally, from (2.2),

∫
λjdμmn (λ) = 1

nj+2 T r

([
Hmn

am

]j+2
)

.

Then (2.8) follows. �
Proof of Corollary 2.2 Firstly as Hmn/am is real and symmetric, all its eigenvalues
are real. It follows that μmn is a positive measure supported on the real line.
Moreover, Theorem 2.1 shows that the supports of all μmn are contained in a
bounded interval independent of n, while their total mass is bounded independent of
n. By Helly’s Theorem (or if you prefer the Banach-Alaoglu Theorem) every subse-
quence of

{
μmn

}
contains another subsequence converging weakly to some positive

measure ω with compact support in the real line. It follows from Theorem 2.1(III)
that for j ≥ 0,
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∫
tj dω (t) = cj+2.

As the Hausdorff moment problem [24] (or moment problem for a bounded interval)
has a unique solution, ω is independent of the subsequence. Then the full sequence{
μmn

}
converges weakly to ω. �

For the largest eigenvalue for this positive case, we prove:

Lemma 4.1 Assume β is real and all
{
aj

}
are real. Let λmax denote the largest

eigenvalue of Hmn/am. Then

lim inf
n→∞

1

n
λmax ≥

∫ 1

0

∫ 1

0

(
1 + x + y

R

)β

dx dy

and

lim sup
n→∞

1

n
λmax ≤

(∫ 1

0

∫ 1

0

(
1 + x + y

R

)2β

dx dy

)1/2

.

Proof As Hmn/am is real symmetric, its largest eigenvalue λmax satisfies

λmax = sup

⎧
⎨

⎩

n−1∑

j,k=0

am+j+k

am

xjxk :
n−1∑

j=0

x2
j = 1

⎫
⎬

⎭
.

Choosing all xj = 1√
n
, we see much as above that

lim inf
n→∞

1

n
λmax ≥ lim

n→∞
1

n2

n−1∑

j,k=0

(
1 + j + k

Rn

)β

(1 + o (1))

=
∫ 1

0

∫ 1

0

(
1 + x + y

R

)β

dx dy.

In the other direction, two applications of the Cauchy-Schwarz inequality give, if∑n−1
j=0 x2

j = 1,

∣∣∣
∣∣∣

n−1∑

j=0

n−1∑

k=0

am+j+k

am

xjxk

∣∣∣
∣∣∣

≤
n−1∑

j=0

∣∣xj

∣∣
(

n−1∑

k=0

(
am+j+k

am

)2
)1/2 (n−1∑

k=0

x2
k

)1/2
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≤
⎛

⎝
n−1∑

j=0

n−1∑

k=0

(
am+j+k

am

)2
⎞

⎠

1/2 ⎛

⎝
n−1∑

j=0

x2
j

⎞

⎠

1/2

,

so much as above,

lim sup
n→∞

1

n
λmax

≤ lim
n→∞

⎛

⎝ 1

n2

n−1∑

j,k=0

(
1 + j + k

Rn

)2β

(1 + o (1))

⎞

⎠

1/2

=
(∫ 1

0

∫ 1

0

(
1 + x + y

R

)2β

dx dy

)1/2

.

�

5 Proof of Theorem 3.1 and Corollary 3.2

Toeplitz matrices are more delicate, as reflected both in the hypotheses and proofs.
In the sequel, we let

φ (ε) = lim sup
n→∞

1

n |an|
[εn]+1∑

j=1

∣∣aj

∣∣ , ε ∈ [0, 1].

If R = 1, our hypothesis (3.3) is that φ (ε) → 0 as ε → 0+.

Proof of Theorem 3.1(I) It follows from Gershgorin’s Theorem that every eigen-
value λ of Tmn/am satisfies

|λ|
n

≤ max
1≤j≤n

1

n

n∑

k=1

∣∣∣
∣
am+k−j

am

∣∣∣
∣ . (5.1)

Assume first R > 1. We can use our asymptotic (3.2) to deduce that

|λ|
n

≤ max
1≤j≤n

1

n

n∑

k=1

∣∣
∣∣∣

(
1 + k − j

m

)β

(1 + o (1))

∣∣
∣∣∣

≤ max
1≤j≤n

1

n

n∑

k=1

(
1 + k − j

m

)Reβ

+ o (1)
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≤ max
1≤j≤n

1

n

n∑

k=1

(
1 + k − j

Rn (1 + o (1))

)Reβ

+ o (1)

≤ 1

n

n∑

k=1

max
0≤y≤1

(
1 + k

Rn
− y

R

)Reβ

+ o (1)

→
∫ 1

0
max
0≤y≤1

(
1 + x − y

R

)Reβ

dx.

Now suppose that R = 1. Choose a subsequence S of integers n and then for n ∈ S ,
choose j = j (n) ∈ [1, n], such that

lim sup
n→∞

(

max
1≤j≤n

1

n

n∑

k=1

∣
∣∣∣
am+k−j

am

∣
∣∣∣

)

= lim
n→∞,n∈S

1

n

n∑

k=1

∣
∣∣∣
am+k−j(n)

am

∣
∣∣∣ . (5.2)

By choosing a further subsequence, which we also denote by S , we may assume
that for some α ∈ [0, 1],

lim
n→∞

j (n)

n
= α.

Fix ε ∈
(
0, 1

2

)
. Observe that if k − j ≥ − (1 − ε) m, we can apply (3.2).

Here as n → ∞, this inequality is asymptotically equivalent to k ≥
(α + ε − 1) n (1 + o (1)). Then for n ∈ S and j = j (n),

1

n

∑

k:1≤k≤n
and k−j≥−(1−ε)m

∣
∣∣∣
am+k−j

am

∣
∣∣∣

≤ 1

n

∑

k≤n:k≥max{1,(α+ε−1)n(1+o(1))}

∣∣∣∣
∣

(
1 + k − j

m

)β

(1 + o (1))

∣∣∣∣
∣

≤ 1

n

∑

k≤n:k≥max{1,(α+ε−1)n(1+o(1))}

(
1 + k − αn (1 + o (1))

n (1 + o (1))

)Reβ

+ o (1)

=
∫ 1

max{0,α+ε−1}
(1 + x − α)Reβ dx + o (1) .

Next, recall that aj = 0 for j < 0. If k − j ≤ − (1 − ε) m, then m + k − j ≤ εm.
Then as m/n → 1 as n → ∞, we have for large enough n and j ≥ 1,
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1

n

∑

k:1≤k≤n
and k−j≤−(1−ε)m

∣∣∣∣
am+k−j

am

∣∣∣∣

≤ 1 + o (1)

m |am|
[εm]+1∑

�=1

|a�| ≤ φ (ε) + o (1) .

Adding the two sums together, we obtain

lim sup
n→∞

(

max
1≤j≤n

1

n

n∑

k=1

∣∣∣∣
am+k−j

am

∣∣∣∣

)

≤
∫ 1

max{0,α+ε−1}
(1 + x − α)Reβ dx + φ (ε) .

Letting ε → 0+, and using Dominated Convergence, we obtain

lim sup
n→∞

(

max
1≤j≤n

1

n

n∑

k=1

∣∣∣∣
am+k−j

am

∣∣∣∣

)

≤
∫ 1

max{0,α−1}
(1 + x − α)Reβ dx

≤
∫ 1

0
max
0≤y≤1

(1 + x − y)Reβ dx.

So we obtain the result for R = 1. �
Proof of Theorem 3.1(II) As in the proof of Theorem 2.1(II), Schur’s inequality
gives

|νmn| (C) = 1

n2

∑

λ∈Λ(Tmn/am)

|λ|2 ≤ 1

n2

n−1∑

j,k=0

∣∣∣∣
am+k−j

am

∣∣∣∣

2

.

Suppose first R > 1. Then for large enough n, if 0 ≤ j , k ≤ n − 1,

m + k − j ≥ Rn (1 + o (1)) − n + 1

≥ (R − 1) n + o (n)

≥ R − 1

R
m + o (m) ,

so uniformly for such j, k, (3.2) gives

am+k−j

am

=
(
1 + k − j

Rn

)β

(1 + o (1)) . (5.3)



166 G. Kowalsky and D. S. Lubinsky

Then

|νmn| (C) ≤ 1

n2

n−1∑

j,k=0

∣∣
∣∣
am+k−j

am

∣∣
∣∣

2

≤ 1

n2

n−1∑

j,k=0

(
1 + k − j

Rn

)2Reβ

(1 + o (1))

→
∫ 1

0

∫ 1

0

(
1 + y − x

R

)2Reβ

dx dy

as n → ∞. Next, let R = 1. Much as above, we can see that given ε ∈ (0, 1),

1

n2

∑

0≤j,k≤n−1:k−j≥−(1−ε)m

∣∣∣∣
am+k−j

am

∣∣∣∣

2

may be bounded above by a Riemann sum for the integral

∫ ∫

{(x,y):x,y∈[0,1] and y−x≥−(1−ε)}
(1 + y − x)2Reβ dx dy

multiplied by 1+ o (1). To deal with the tail sum, first observe that as m = m(n) =
m (1 + o (1)),

1

n

3n∑

j=1

∣∣aj

∣∣

|am| ≤ (1 + o (1)) φ

(
1

4

)
+ 1

n

3n∑

j=
[
1
4n

]

∣∣∣∣
aj

an

∣∣∣∣

≤ (1 + o (1)) φ

(
1

4

)
+ 1 + o (1)

n

2n∑

�=
[
1
4n

]
−n

∣∣∣∣
an+�

an

∣∣∣∣

≤ (1 + o (1)) φ

(
1

4

)
+ 1 + o (1)

n

2n∑

�=
[
1
4n

]
−n

∣∣
∣∣1 + �

n

∣∣
∣∣

Reβ

(1 + o (1))

≤ (1 + o (1)) φ

(
1

4

)
+ (1 + o (1))

∫ 2

−3/4
|1 + x|Reβ dx.

It follows that for some C independent of m, n,

1

n

3n∑

j=1

∣
∣aj

∣
∣

|am| ≤ C. (5.4)
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Then

1

n2

∑

0≤j,k≤n−1:k−j≤−(1−ε)m

∣∣∣∣
am+k−j

am

∣∣∣∣

2

≤
(
1

n
sup

1≤�≤2m

∣∣∣∣
a�

am

∣∣∣∣

)(
1

n

[εm]∑

�=1

∣∣∣∣
a�

am

∣∣∣∣

)

≤ Cφ (ε) ,

in view of (5.4). This and the estimate above give

lim sup
n→∞

|νmn| (C)

= lim sup
n→∞

1

n2

∑

λ∈Λ(Tmn/am)

|λ|2

≤
∫ ∫

{(x,y):x,y∈[0,1] and y−x≥−(1−ε)}
(1 + y − x)2Reβ dx dy + Cφ (ε) .

Letting ε → 0+ and using our hypothesis (3.3) gives the result. �
Proof of Theorem 3.1(III)

Step 1 Suppose first R > 1. Then for large enough n, we have (5.3) and also

sup
1≤j,�≤n

∣∣∣∣
am+j−�

am

∣∣∣∣ = O (1) . (5.5)

Then

1

nk
T r

([
Tmn

am

]k
)

= 1

nk

n∑

j1=1

n∑

j2=1

· · ·
n∑

jk=1

am+j2−j1

am

am+j3−j2

am

. . .
am+jk−jk−1

am

am+j1−jk

am

= 1

nk

n∑

j1=1

n∑

j2=1

· · ·
n∑

jk=1

(
1 + j2 − j1

m

)β (
1 + j3 − j2

m

)β

. . .

(
1 + j1 − jk

m

)β

(1 + o (1))

= 1

nk

n∑

j1=1

n∑

j2=1

· · ·
n∑

jk=1

(
1 + j2 − j1

Rn (1 + o (1))

)β (
1 + j3 − j2

Rn (1 + o (1))

)β

. . .
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(
1 + j1 − jk

Rn (1 + o (1))

)β

(1 + o (1))

= 1

nk

n∑

j1=1

n∑

j2=1

· · ·
n∑

jk=1

(
1 + j2 − j1

Rn

)β (
1 + j3 − j2

Rn

)β

. . .

(
1 + j1 − jk

Rn

)β

+ o (1) .

The sum in the last line is a Riemann sum for the multiple integral

∫ 1

0

∫ 1

0
. . .

∫ 1

0

(
1 + x2 − x1

R

)β (
1 + x3 − x2

R

)β

. . .

(
1 + x1 − xk

R

)β

dx1dx2 . . . dxk

and so we obtain the result, after making the substitution xj = Rtj for 1 ≤ j ≤ k.
Step 2 Now we turn to the more delicate case where R = 1 and Reβ > −1.

Fix ε > 0. We observe that if k − j ≥ −m(1 − ε), then we have (5.3). Then
identifying jk+1 = j1,

1

nk

n∑

1≤j1,j2,...,jk≤n
all ji+1−ji≥−m(1−ε)

am+j2−j1

am

am+j3−j2

am

. . .
am+jk−jk−1

am

am+j1−jk

am

= 1

nk

n∑

1≤j1,j2,...,jk≤n
all ji+1−ji≥−m(1−ε)

(
1 + j2 − j1

m

)β (
1 + j3 − j2

m

)β

. . . (5.6)

(
1 + j1 − jk

m

)β

(1 + o (1))

= 1

nk

n∑

1≤j1,j2,...,jk≤n
all ji+1−ji≥−m(1−ε)

(
1 + j2 − j1

n

)β (
1 + j3 − j2

n

)β

. . .

(
1 + j1 − jk

n

)β

+ o (1)

=
∫

. . .

∫

S
(1 + x2 − x1)

β (1 + x3 − x2)
β . . .

(1 + x1 − xk)
β dx1dx2 . . . dxk + o (1)

where S = {
(x1, x2, . . . , xk) ∈ [0, 1]k : xj+1 − xj ≥ − (1 − ε) for each j

}
.

Here we identify xk+1 = x1. To treat the remaining terms in the sum where
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at least one ji+1 − ji ≤ −m (1 − ε), we proceed as follows: necessarily
ji+1 ≤ n − m + εm ≤ 2εm, for large enough n, while 1 ≤ m + ji+1 − ji ≤ εm,
so

1

n

∑

ji :ji+1−ji≤−m(1−ε)

∣
∣∣∣
am+ji+1−ji

am

∣
∣∣∣ ≤ 1 + o (1)

n

1

|am|
[εm]∑

�=1

|a�| ≤ (1 + o (1)) φ (ε) .

Then

1

nk

n∑

1≤j1,j2,...,jk≤n
for some i, ji+1−ji≥−m(1−ε)

∣∣∣∣
am+j2−j1

am

am+j3−j2

am

. . .
am+jk−jk−1

am

am+j1−jk

am

∣∣∣∣

≤ Ck−1 (1 + o (1)) φ (ε) ,

recall (5.4). We now combine this with (5.6) and then let ε → 0+ to get the
result. Also (3.4) follows from (3.1). �

Proof of Corollary 3.2 Since {νmn} have support in a compact set independent of
n and total mass bounded independent of n, we can choose weakly convergent
subsequences with limit ω. (One can think of applying Helly’s Theorem to the
decomposition of μmn into first real and imaginary parts and then positive and
negative parts of each of those.) All weak limits of subsequences have the same
moments

{
dj+2

}
j≥0. We have that if f is a polynomial,

lim
n→∞

∫
P (t) dνmn (t) =

∫
P (t) dω (t) .

Note that the same limit holds for the full sequence of integers because all weak
limits ω have the same power moments. As such polynomials are dense in the class
of functions analytic in any ball, the result follows. �
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9. Grenander, U., Szegő, G.: Toeplitz Forms. Chelsea, New York (1958)
10. Hammond, C., Miller, S.J.: Distribution of eigenvalues for the ensemble of real symmetric

Toeplitz matrices. J. Theor. Probab. 18, 537–566 (2005)
11. Jose Caro, F., Nagar, D.: Evaluation of matrix Liouville-Dirichlet integrals using Laplace

transform. Integral Transforms Spec. Funct. 17, 245–255 (2006)
12. Krasovsky, I.: Aspects of Toeplitz determinants. In: Lenz, D., Sobieczky, F., Woss, W. (eds.)

Boundaries and Spectra of Random Walks. Progress in Probability. Birkhauser, Basel (2011)
13. Liu, D.-Z., Sun, X., Wang, Z.-D.: Fluctuation of eigenvalues for random Toeplitz and related

matrices. Electron. J. Probability 17, paper no. 95, 22 pp. (2012)
14. Lubinsky, D.S.: Uniform convergence of rows of the Padé table for functions with smooth

Maclaurin series coefficients. Constr. Approx. 3, 307–330 (1987)
15. Lubinsky, D.S.: Padé tables of entire functions of very slow and smooth growth II. Constr.

Approx. 4, 321–339 (1988)
16. Lubinsky, D.S.: Universality of distribution of eigenvalues of Toeplitz matrices with smooth

entries. Manuscript
17. Marcus, M., Minc, H.: A Survey of Matrix Theory and Matrix Inequalities. Dover, New York

(1965)
18. Mascarenhas, H., Silbermann, B.: Sequences of variable-coefficient Toeplitz matrices and their

singular values. J. Funct. Anal. 270, 1479–1500 (2016)
19. Mejlbo, L., Schmidt, P.: On the eigenvalues of generalized Topelitz matrices. Math. Scand. 10,

5–16 (1962)
20. Polya, G.: Über gewisse notwendige Determinantenkriterein fur die Forsetzbarkeit einer

Potenzreihe. Math. Ann. 99, 687–706 (1928)
21. Sen, A., Virag, B.: Absolute continuity of the limiting eigenvalue distribution of the random

Toeplitz matrix. Elect. Commun. Probab. 16, 606–711 (2011)
22. Sen, A., Virag, B.: The top eigenvalue of the random Toeplitz matrix and the sine kernel., Ann.

Probab. 41, 4050–4079 (2013)
23. Serra-Capizzano, S., Bertaccini, D., Golub, G.: How to deduce a proper eigenvalue cluster from

a proper singular value cluster in the nonnormal case. SIAM J. Matrix Anal. Appl. 27, 82–86
(2005)

24. Shohat, J., Tamarkin, J.: The problem of moments. American Mathematical Society, Rhode
Island (1943)

25. Sivazlian, B.D.: On a multivariate extension of the beta and gamma distributions. SIAM J.
Appl. Math. 41, 205–209 (1981)

26. Tilli, P.: Some results on complex Toeplitz eigenvalues. J. Math. Anal. Appl. 239, 390–401
(1999)

27. Tyrtyshnikov, E.: How bad are Hankel matrices?. Numer. Math. 67, 261–269 (1994)
28. H. Widom, Hankel matrices. Trans. Amer. Math. Soc. 121, 1–35 (1966)
29. Zabroda, O., Simonenko, I.: Asymptotic invertibility and the collective asymptotic spectral

behavior of generalized one-dimensional discrete convolutions. Funct. Anal. Appl. 38, 65–66
(2004)

30. Zamarashkin, N., Tyrtyshnikov, E.: Distribution of eigenvalues and singular values of Toeplitz
matrices under weakened conditions on the generating function. Math. Sbornik 188, 1191–
1201 (1997)


	On Eigenvalue Distribution of Varying Hankel and Toeplitz Matrices with Entries of Power Growth or Decay
	1 Introduction and Results
	2 Hankel Matrices
	3 Toeplitz Matrices
	4 Proof of Theorem 2.1 and Corollary 2.2
	5 Proof of Theorem 3.1 and Corollary 3.2
	References


