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Abstract In this survey we describe some modifications of Prony’s method. In
particular, we consider the recovery of general expansions into eigenfunctions of
linear differential operators of first order. We show, how these expansions can be
reconstructed from function samples using generalized shift operators. We derive
an ESPRIT-like algorithm for the generalized recovery method and illustrate, how
the method can be simplified if some frequency parameters are known beforehand.
Furthermore, we present a modification of Prony’s method for sparse approximation
with exponential sums which leads to a non-linear least-squares problem.
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1 Introduction

The recovery and sparse approximation of structured functions is a fundamental
problem in many areas of signal processing and engineering. In particular, exponen-
tial sums and their generalizations play an important role in time series analysis and
in system theory [13, 15], in the theory of annihilating filters, and for the recovery
of signals with finite rate of innovation [3, 10, 26, 35, 37], as well as for linear
prediction methods [17, 34]. For system reduction, Prony’s method is related to
the problem of low-rank approximation of structured matrices (particularly Hankel
matrices) and corresponding nonlinear least-squares problems [18, 36]. There is a
close relation between Prony’s method and Padé approximation [4, 9]. Extended
models have also been studied in [16]. Exponential sums started to become more
important for sparse approximation of smooth functions, see [5, 6, 12, 23], and
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this question is closely related to approximation in Hardy spaces and the theory
of Adamjan, Arov and Krein, see [1, 2, 22].

1.1 The Classical Prony Method

A fundamental problem discussed in many papers is the recovery of exponential
sums of the form

f (x) :=
M∑

j=1

cj e
αj x =

M∑

j=1

cj zx
j , with zj := eαj , (1)

where the coefficients cj ∈ C \ {0} as well as the pairwise different frequency
parameters αj ∈ C or equivalently, zj ∈ C \ {0} are unknown. For simplicity we
assume that the number of terms M is given beforehand. One important question
appears: What information about f is needed in order to solve this recovery problem
uniquely?

The classical Prony method uses the equidistant samples f (0), f (1), . . . ,
f (2M − 1). Indeed, if we suppose that Imαj , j = 1, . . . , M , lies in a predefined
interval of length 2π , as e.g. [−π, π), these 2M samples are sufficient. This can be
seen as follows.

We can view f (x) as the solution of a homogeneous linear difference equation
of order M with constant coefficients and try to identify these constant coefficients
in a first step. We define the characteristic polynomial (Prony polynomial) with the
help of its (yet unknown) zeros zj = eαj , j = 1, . . . , M , and consider its monomial
representation,

p(z) :=
M∏

j=1

(z − eαj ) = zM +
M−1∑

k=0

pk zk.

Then the coefficients pk , k = 0, . . . ,M − 1, and pM = 1 satisfy

M∑

k=0

pkf (k + m) =
M∑

k=0

pk

M∑

j=1

cj z
k+m
j =

M∑

j=1

cj z
m
j

M∑

k=0

pkz
k
j =

M∑

j=1

cj z
m
j p(zj ) = 0

for all m ∈ Z. Thus the coefficients pk of the linear difference equation can be
computed by solving the linear system

M−1∑

k=0

pk f (k + m) = −f (M + m), m = 0, . . . ,M − 1.



Modifications of Prony’s Method 125

Knowing p(z), we can simply compute its zeros zj = eαj , and in a further step the
coefficients cj , j = 1, . . . ,M , by solving the (overdetermined) system

f (�) =
M∑

j=1

cj z�
j , � = 0, . . . , 2M − 1.

In practice there are different numerical algorithms available for this method, which
take care for the inherit numerical instability of this approach, see e.g. [14, 24, 27,
29, 31]. Note that for a given arbitrary vector (fk)

2M−1
k=0 , the interpolation problem

fk =
M∑

j=1

cj zk
j , k = 0, . . . , 2M − 1,

may not be solvable, see e.g. [8]. The characteristic polynomial p(z) of the
homogeneous difference equation

∑M
k=0 pkfk+m = 0, m = 0, . . . ,M − 1, may

have zeros with multiplicity greater than 1, whereas the exponential sum in (1) is
only defined for pairwise different zeros. In this paper, we will exclude the case of
zeros with multiplicity greater than 1. However, the zeros eαj of the characteristic
polynomial p(z) resp. the parameters αj , j = 1, . . . ,M , may be arbitrarily close.
This may lead to highly ill-conditioned system matrices (f (k + m))M−1

k,m=0.

1.2 Content of This Paper

In this paper, we will particularly consider the following questions.

1. How can we generalize Prony’s method in order to recover other expansions
than (1)?

2. What kind of information is needed in order to recover the considered expansion?
3. How can we modify Prony’s method such that we are able to optimally

approximate a given (large) vector of function values in the Euclidean norm by a
sparse exponential sum?

To tackle the first question, we introduce the operator based general Prony
method in [33] and apply it to study expansions of the form

f (x) =
M∑

j=1

cj H(x) eαj G(x), x ∈ [a, b] ⊂ R, (2)

where cj , αj ∈ C, cj �= 0, αj pairwise different, G,H ∈ C∞(R) are predefined
functions, where G is strictly monotone on [a, b], and H is nonzero on [a, b].
This model covers many interesting examples as e.g. shifted Gaussians, generalized
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monomial sums and others. For the expansions (2) we will derive different sets
of samples which are sufficient for the recovery of all model parameters, thus
answering the second question.

In regard to question 3 we will focus on the case of f as in (1) and (2) and show
how the methods can be modified for optimal approximation, and how to treat the
case of noisy measurements.

The outline of the paper is as follows. First we will introduce the idea of the
operator based Prony method by looking at the recovery problem of the classical
exponential sum from different angles. In Sect. 3, we study the recovery of the
more general expansion f of the form (2). We will show that (2) can be viewed
as an expansion into eigenfunctions of a differential operator of first order and
thus, according to the generalized Prony method in [21], can be recovered using
higher order derivative values of f . We will show, how to find a new generalized
shift operator possessing the same eigenfunctions. This leads to a recovery method
that requires only function values of f instead of derivative values. The idea
will be further illustrated with several examples in Sect. 3.3. Section 4 is devoted
to the numerical treatment of the generalized recovery method. We will derive
an ESPRIT-like algorithm for the computation of all unknown parameters in the
expansion (2). This algorithm also applies if the number of terms M in the
expansion (2) is not given beforehand. Furthermore, we show in Sect. 4.3, how the
recovery problem can be simplified if some frequencies αj are known beforehand
(while the corresponding coefficients cj are unknown). Finally, in Sect. 5 we study
the optimal approximation with exponential sums in the Euclidean norm. This leads
to a nonlinear least squares problem which we tackle directly using a Levenberg-
Marquardt iteration. Our approach is essentially different from earlier algorithms,
as e.g. [7, 19, 20, 38].

2 Operator Based View to Prony’s Method

In order to tackle the questions 1 and 2 in Sect. 1.2, we start by reconsidering Prony’s
method. As an introductory example, we study the exponential sum in (1) from a
slightly different viewpoint. For h ∈ R \ {0} let Sh : C∞(R) → C∞(R) be the shift
operator given by Shf := f (· + h). Then, for any α ∈ C, the function eαx is an
eigenfunction of Sh with corresponding eigenvalue eαh, i.e.,

(She
α·)(x) = eα(x+h) = eαh eαx.

Therefore, the exponential sum in (1) can be seen as a sparse expansion into
eigenfunctions of the shift operator Sh. The eigenvalues eαj h are pairwise different,
if we assume that Imαj ∈ [−π/h, π/h). Now we consider the Prony polynomial
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p(z) :=
M∏

j=1

(z − eαj h) =
M∑

k=0

pk zk

defined by the (unknown) eigenvalues eαj h corresponding to the active eigenfunc-
tions in the expansion f in (1). Then, for any predefined x0 ∈ R we have

M∑

k=0

pkf (x0 + h(k + m)) =
M∑

k=0

pk(S
k+m
h f )(x0) =

M∑

k=0

pk

M∑

j=1

cj (S
k+m
h eαj ·)(x0)

=
M∑

j=1

cj

M∑

k=0

pke
αj (hm+hk) eαj x0

=
M∑

j=1

cj e
αj hmp(eαj h)eαj x0 = 0, (3)

i.e., we can reconstruct p(z) by solving this homogeneous system for m =
0, . . . ,M − 1. We conclude that the exponential sum in (1) can be recovered from
the samples f (h� + x0), � = 0, . . . , 2M − 1. This is a slight generalization of the
original Prony method in Sect. 1.1 as we introduced an arbitrary sampling distance
h ∈ R \ {0} and a starting point x0 ∈ R.

Moreover, we can also replace the samples (Sk+m
h f )(x0) = f (h(k + m) + x0)

in the above computation (3) by any other representation of the form F(Sk+m
h f ),

where F : C∞(R) → C is a linear functional satisfying F(eα·) �= 0 for all α ∈ C,
since

M∑

k=0

pkF (Sk+m
h f ) =

M∑

k=0

pk

M∑

j=1

cjF (Sk+m
h eαj ·) =

M∑

j=1

cj e
αj hmp(eαj h) F (eαj ·) = 0.

Any set of samples of the form F(S�
hf ), � = 0, . . . , 2M − 1, is sufficient to recover

f in (1), and the above set is obtained using the point evaluation functional F =
Fx0 with Fx0f := f (x0) with x0 ∈ R. For further generalizations of the sampling
scheme we refer to [33].

This operator-based view leads us to the generalized Prony method introduced in
[21], which can be applied to recover any sparse expansion into eigenfunctions of a
linear operator.

To illustrate this idea further, let us consider now the differential operator D :
C∞(R) → C∞(R) given by (Df )(x) := f ′(x) with f ′ denoting the first derivative
of f . Due to

(Deα·)(x) = α eαx
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we observe that exponentials eαx are eigenfunctions of D corresponding to the
eigenvalues α ∈ C. Thus, the sum of exponentials in (1) can also be seen as a sparse
expansion into eigenfunctions of the differential operator D. Similarly as before let
now

p̃(z) :=
M∏

j=1

(z − αj ) =
M∑

k=0

p̃k zk

be the characteristic polynomial being defined by the eigenvalues αj corresponding
to the active eigenfunctions of D in (1), where again p̃M = 1 holds. Choosing the
functional Ff := f (x0) for some fixed x0 ∈ R, we find for any integer m ≥ 0

M∑

k=0

p̃kF (Dk+mf ) =
M∑

k=0

p̃kf
(k+m)(x0) =

M∑

k=0

p̃k

M∑

j=1

cjα
k+m
j eαj x0

=
M∑

j=1

cjα
m
j p̃(αj ) e

αj x0 = 0.

Thus we can determine p̃k , k = 0, . . . , M − 1, from
∑M

k=0 p̃kf
(k+m)(x0) = 0 for

m = 0, . . . ,M −1 and p̃M = 1, and recover the zeros αj of p̃ in a first step. The cj

are computed in a second step the same way as in the classical case. We conclude
that also the sample set f (�)(x0), � = 0, . . . , 2M − 1, for any fixed value x0 ∈ R,
is sufficient to recover f . Note that here we do not have any restrictions regarding
Imαj .

This example already shows, that there exist many different sample sets that may
be used to recover the exponential sum. In particular, each sample set of the form
F(A�h), � = 0, . . . , 2M −1, where A : C∞(R) → C∞(R) is a linear operator with
eigenfunctions eαx corresponding to pairwise different eigenvalues α (covering the
range of αj in (1)), and where F is an arbitrary (fixed) linear functional satisfying
F (eα·) �= 0 for all α ∈ C, can be employed for recovery.

However, in practice it is usually much easier to provide function samples of the
form f (x0 +h�) than higher order derivative values f �(x0) for � = 0, . . . , 2M − 1.
Therefore, for more general expansions, for example of the form (2), we will raise
the following question which has also been investigated in [33]: Suppose we already
found a set of samples which is (theoretically) sufficient to recover the expansion
at hand. Is it possible to find other sets of samples which can be more easily
acquired and also admit a unique recovery of the sparse expansion? In terms of
linear operators, we can reformulate this idea: Suppose that we have already found
an operator A, such that a considered expansion f is a sparse expansion into M

eigenfunctions of A (corresponding to pairwise different eigenvalues). Is it possible
to find another operator B that possesses the same eigenfunctions, such that the
samples F̃ (B�)f (with some suitable linear functional F̃ ) can be easier obtained
than F(A�)f for � = 0, . . . , 2M − 1?
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Back to our introductory example for the exponential sum (1). Let the linear
functional F be given as Ff := f (0). Assume that we have found the recovery
of (1) from the samples f (�)(0), � = 0, . . . , 2M − 1 first. This sampling set
corresponds to the linear differential operator A = D with Df = f ′. How can
we find the shift operator B = Sh, knowing just the fact, that (1) can be viewed as a
sparse expansion into eigenfunctions of D? Is there a simple link between the linear
differential operator D and the shift operator Sh?

This is indeed the case. Taking ϕ ∈ C∞(R) with ϕ(x) = ehx , and applying ϕ

(formally) to D, we observe for each exponential eαx , α ∈ C,

ϕ(D)eα· = ehDeα· =
∞∑

�=0

h�

�! D�eα· =
( ∞∑

�=0

h�

�! α�

)
eα· = eαh eα· = She

α·.

Therefore, we have ϕ(D)f = Shf for f in (1). We note that ϕ also maps the
eigenvalues of the differential operator onto the eigenvalues of the shift operator.
This idea to switch from differential operators to other more suitable operators will
be also applied to general sparse expansions in the next section.

3 Recovery of Generalized Exponential Sums

In this section we focus on the recovery of more general sparse expansions. Let
G : R → R be a given function in C∞(R), which is strictly monotone in a given
interval [a, b] ⊂ R, and let H : R → R be in C∞(R) and nonzero in [a, b]. We
consider expansions of the form

f (x) =
M∑

j=1

cj H(x) eαj G(x), x ∈ [a, b] ⊂ R, (4)

with cj ∈ C \ {0} and pairwise different αj ∈ C. Obviously, (1) is a special case
of (4) with G(x) = x and H(x) ≡ 1. In order to recover f , we need to identify the
parameters cj and αj , j = 1, . . . ,M .

3.1 Expansion into Eigenfunctions of a Linear Differential
Operator

According to our previous considerations in Sect. 2, we want to apply the so-called
generalized Prony method introduced in [21], where we view (4) as an expansion
into eigenfunctions of a linear operator.
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Step 1 First we need to find a linear operator A that possesses the functions
H(x)eαj G(x) as eigenfunctions for any αj ∈ C. For this purpose, let us define the
functions

g(x) := 1

G′(x)
, η(x) := −g(x)

H ′(x)

H(x)
= − H ′(x)

G′(x)H(x)
, (5)

which are well defined on [a, b], since G′ and H have no zeros in [a, b]. Then the
differential operator A : C∞(R) → C∞(R) with

Af (x) := g(x)f ′(x) + η(x)f (x) (6)

satisfies

A
(
H(·)eαj G(·)) (x) = g(x)

(
αjG

′(x)H(x) + H ′(x)
)
eαj G(x) + η(x)H(x) eαj G(x)

= αj H(x) eαj G(x), αj ∈ C,

i.e., the differential operator A indeed possesses the eigenfunctions H(x) eαj G(x)

with corresponding eigenvalues αj ∈ C.

Step 2 To reconstruct f in (4), we can apply a similar procedure as in Sect. 2. Let

p̃(z) :=
M∏

j=1

(z − αj ) =
M∑

k=0

p̃k zk, p̃M = 1, (7)

be the characteristic polynomial defined by the (unknown) eigenvalues αj that
correspond to the active eigenfunctions of the operator A in the expansion (4). Let
F : C∞(R) → C be the point evaluation functional Ff := f (x0) with x0 ∈ [a, b],
such that H(x0) �= 0 and G′(x0) �= 0. Then, for f as in (4) we observe that

M∑

k=0

p̃k F (Am+kf ) =
M∑

k=0

p̃k

M∑

j=1

cj F
(
Ak+m

(
H(·) eαj G(·)))

=
M∑

k=0

p̃k

M∑

j=1

cj αk+m
j F

(
H(·) eαj G(·))

=
M∑

j=1

cj αm
j

(
M∑

k=0

p̃k αk
j

)(
H(x0) e

αj G(x0)
)

= 0 (8)

for all integers m ≥ 0. Thus we can compute the coefficients p̃k , k = 0, . . . ,M − 1,
using the values F(A�f ), � = 0, . . . , 2M − 1. Having determined the polynomial
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p̃(z) in (7), we can compute its zeros αj , and afterwards solve a linear equation
system to reconstruct the complex coefficients cj in (4).

However, the question remains, how to obtain the needed data F(A�f ), � =
0, . . . , 2M − 1. We obtain

F(A0f ) = f (x0), (9)

F(A1f ) = g(x0)f
′(x0) + η(x0)f (x0),

F (A2f ) = g(x0)
2f ′′(x0) + [g(x0)g

′(x0) + 2g(x0)η(x0)]f ′(x0)

+ [g(x0)η
′(x0) + η(x0)

2]f (x0).

Since g and η (and their derivatives) are known beforehand, it is sufficient to provide
the first 2M derivative values of f at one point x0 ∈ [a, b] in order to reconstruct
f . Therefore we can conclude.

Theorem 1 Let G, H ∈ C∞([a, b]), such that G′ and H have no zeros on
[a, b], and let x0 ∈ [a, b] be fixed. Then f in (4) can be viewed as an expansion
into eigenfunctions of the differential operator A as in (6), and can be uniquely
reconstructed from the derivative samples f (�)(x0), � = 0, . . . , 2M − 1.

Proof As seen from the above computations, the operator A of the form (6) indeed
possesses the eigenfunctions H(x) eαj G(x). In order to reconstruct the parameters
αj , we first have to compute the required values F(A�f ) = (A�f )(x0), � =
0, . . . , 2M − 1. For this purpose, we need to determine the lower triangular matrix
L = (λm,�)

2M−1
m,�=0 ∈ R

2M×2M such that

(
F(A�f )

)2M−1

�=0
=

(
(A�f )(x0)

)2M−1

�=0
= L

(
f (�)(x0)

)2M−1

�=0
.

As seen in (9), we have already λ0,0 := 1, λ1,0 := g(x0), λ1,1 := η(x0). Generally,
to obtain the entries of L, we have to consider the elements λm,� as functions in x,
starting with λ0,0(x) ≡ 1. By induction, it follows from

A�f (x) =
�∑

r=0

λ�,r (x) f (r)(x)

that

A�+1f (x) =
�∑

r=0

g(x)
(
λ′

�,r (x) f (r)(x) + λ�,r (x)f (r+1)(x)
)

+ η(x) λ�,r (x) f (r)(x)

=
�∑

r=0

(
g(x) λ′

�,r (x) + η(x) λ�,r (x)
)

f (r)(x) + g(x) λ�,r (x)f (r+1)(x).
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We conclude the recursion

λ�+1,r (x) :=

⎧
⎪⎨

⎪⎩

g(x) λ′
�,r (x) + η(x) λ�,r (x) r = 0,

g(x) (λ′
�,r (x) + λ�,r−1(x)) + η(x) λ�,r (x) r = 1, . . . , �,

g(x) λ�,r−1(x) r = � + 1.

The matrix entries λ�,k := λ�,k(x0) are well-defined by assumption on H and G. In
a second step, we solve the homogeneous equation system (8),

M∑

k=0

p̃k F (Ak+mf ) = 0, m = 0, . . . , M − 1.

Then we can determine the characteristic polynomial p̃ in (7) and extract its zeros
αj . Finally, the coefficients cj can be computed from the linear system

F(A�f ) = (A�f )(x0) =
M∑

j=1

cj (A�(H(·) eαj G(·)))(x0) = H(x0)

M∑

j=1

cjα
�
j e

αj G(x0)

for � = 0, . . . , 2M − 1. 
�
However, the values f (r)(x0), r = 0, . . . , 2M −1, may not be easily accessible, and
we need some extra effort to compute F(A�f ) from the derivatives of f .

3.2 Expansion into Eigenfunctions of a Generalized Shift
Operator

Our goal is to find a different set of sample values for the recovery of f in (4), which
is easier to obtain but also sufficient for a unique reconstruction. Thus we need
to find an operator B which has the same eigenfunctions as A in (6). In addition,
we require that F(B�f ) (with some point evaluation functions F ) can be easily
obtained from function values of f . Similarly as in Sect. 2, we consider the linear
operator B = ϕ(A) = exp(hA) with A in (6) and h ∈ R \ {0}. We observe for f

in (4),

exp(hA)f =
∞∑

�=0

h�

�! A�f =
∞∑

�=0

h�

�!
M∑

j=1

cj A�
(
H(·)eαj G(·))

=
∞∑

�=0

h�

�!
M∑

j=1

cjα
�
j

(
H(·) eαj G(·)) =

M∑

j=1

cj

( ∞∑

�=0

h�

�! α�
j

) (
H(·) eαj G(·))
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=
M∑

j=1

cj e
αj h

(
H(·) eαj G(·)) = H(·)

M∑

j=1

cj e
αj (h+G(·))

= H(·)
M∑

j=1

cj e
αj G(G−1(h+G(·)))

= H(·)
H(G−1(h + G(·)))

M∑

j=1

cjH(G−1(h + G(·))) eαj G(G−1(h+G(·)))

= H(·)
H(G−1(h + G(·))) f

(
G−1(h + G(·))

)
.

Therefore, we define the generalized shift operator

SH,G,hf (x) := H(x)

H(G−1(h + G(x)))
f

(
G−1(h + G(x))

)
, (10)

which depends on the functions H, G, and the step size h ∈ R \ {0}. This shift
operator has also been introduced in [25] and satisfies the properties

SH,G,h2

(
SH,G,h1f

) = SH,G,h1

(
SH,G,h2f

) = SH,G,h1+h2f

for all h1, h2 ∈ R, and

Sk
H,G,hf = SH,G,khf (11)

for k ∈ Z, see Theorem 2.1 in [25]. Observe that the generalized shift operator
in (10) is already well defined for continuous functions H, G, and we don’t need
to assume that G and H are in C∞(R). We only need to ensure that G−1 and 1/H
are well defined within the considered sampling interval. We summarize this in the
following theorem.

Theorem 2 Let G, H be continuous functions on an interval [a, b], such that G is
strictly monotone in [a, b] and H has no zeros in [a, b]. Assume that the pairwise
different parameters αj in the expansion

f (x) =
M∑

j=1

cj H(x) eαj G(x), x ∈ [a, b] ⊂ R, (12)

satisfy Imαj ∈ (−T , T ] and that cj ∈ C\{0}. Then f can be uniquely reconstructed
from the sample values f (G−1(h�+G(x0)+h�)), � = 0, . . . , 2M −1, where x0, h
are taken such that 0 < |h| < π

T
and G(x0 + h�) ∈ [G(a),G(b)] for G(a) < G(b)

or G(x0) + h� ∈ [G(b),G(a)] for G(a) > G(b).
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Proof From the arguments above, we can conclude that H(x) eαj G(x) is an
eigenfunction of the generalized shift operator SH,G,h in (10) associated with the
eigenvalue eαj h, since

SH,G,h(H(·)eαj G(·))= H(·)
H(G−1(h + G(·)))

(
H(G−1(h + G(·)))eαj G(G−1(h+G(·))))

= H(·) eαj (h+G(·)) = eαj h H(·) eαj G(·).

Further, for Imαj ∈ (−T , T ], and 0 < |h| < π
T
, the eigenvalues eαj h corresponding

to active eigenfunctions in (4) are pairwise different, such that we can uniquely
derive the active eigenfunctions H(x)eαj G(x) in (12) from the corresponding active
eigenvalues. We define the Prony polynomial

p(z) :=
M∏

j=1

(z − eαj h) =
M∑

k=0

pk zk with pM = 1, (13)

using the (unknown) eigenvalues eαj h, where pk , k = 0, . . . , M − 1, are the
(unknown) coefficients of the monomial representation of p(z). Then, we conclude

M∑

k=0

pk (Sk+m
H,G,hf )(x0) =

M∑

k=0

pk

M∑

j=1

cj (Sk+m
H,G,hH(·) eαj G(·))(x0)

=
M∑

k=0

pk

M∑

j=1

cj e
αj h(k+m)H(x0) e

αj G(x0)

= H(x0)

M∑

j=1

cj e
αj hm eαj G(x0)

M∑

k=0

pk (eαj h)k

= H(x0)

M∑

j=1

cj e
αj hm eαj G(x0) p(eαj h) = 0 (14)

for all integers m, where by definition

(Sk+m
H,G,hf )(x0) = H(x0)

H(G−1(h(k + m) + G(x0)))
f (G−1(h(k + m) + G(x0))).

Thus, we can compute the coefficients pk , k = 0, . . . , M−1, from the homogeneous
linear system
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M∑

k=0

pk (Sk+m
H,G,hf )(x0) = H(x0)

M∑

k=0

pk

f (G−1(h(k + m) + G(x0)))

H(G−1(h(k + m) + G(x0)))
= 0,

(15)
for m = 0, . . . ,M − 1, and pM = 1, or equivalently from

M−1∑

k=0

pk

f (G−1(h(k + m) + G(x0)))

H(G−1(h(k + m) + G(x0)))
= − f (G−1(h(M + m) + G(x0)))

H(G−1(h(M + m) + G(x0)))
,

(16)
for m = 0, . . . ,M − 1. The conditions on h and x0 in the theorem ensure that
we only use samples of f in [a, b]. The equation system (16) is always uniquely
solvable, since the coefficient matrix is invertible. This can be deduced as follows.
For f in (12),

(
f (G−1(h(k + m) + G(x0)))

H(G−1(h(k + m) + G(x0)))

)M−1

m,k=0
=

⎛

⎝
M∑

j=1

cj e
αj (h(k+m)+G(x0)))

⎞

⎠
M−1

m,k=0

=
(
eαj hm

)M−1,M

m=0,j=1
diag

(
c1e

α1G(x0), . . . , cMeαMG(x0)
) (

eαj hk
)M,M−1

j=1,m=0
. (17)

The first and the last matrix factor are invertible Vandermonde matrices with
pairwise different nodes eαj h, and the diagonal matrix is invertible, since cj �= 0.

Having solved (16), we can reconstruct p(z) and extract all its zeros zj = eαj h.
In a second step we can compute the coefficients cj from the overdetermined system

f (G−1(h� + G(x0)) =
M∑

j=1

cj H(G−1(h� + G(x0))) e
αj (h�+G(x0)), (18)

for � = 0, . . . , 2M − 1. 
�

3.3 Application to Special Expansions

The model (4) covers many special expansions, and we want to illustrate some of
them.

3.3.1 Classical Exponential Sums

Obviously, the model (1) is a special case of (4) with G(x) := x and H(x) := 1. In
this case, we have
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g(x) ≡ 1, η(x) ≡ 0

in (5) such that A in (6) reduces to Af = f ′. The generalized shift operator in (10)
with G−1(x) = x is of the form S1,x,hf (x) = f (h + x) and is therefore just
the usual shift operator Sh in Sect. 2. By Theorem 1, the sample values f (�)(x0),
� = 0, . . . , 2M − 1 are sufficient for recovery of f , where in this case the interval
[a, b] can be chosen arbitrarily in R and thus also x0. Theorem 2 provides the set of
sample values f (x0 + h�) similarly as we had seen already in Sect. 2.

3.3.2 Expansions into Shifted Gaussians

We want to reconstruct expansions of the form

f (x) =
M∑

j=1

cj e
−β(x−αj )2 , (19)

where β ∈ R \ {0} is known beforehand, and we need to find cj ∈ C \ {0} and
pairwise different αj ∈ C, see also [25, 37].

First, we observe that the functions

e−β(x−αj )2 = e−βα2
j e−βx2 e2βαj x,

are of the form H(x) eαj G(x), with

H(x) := e−βα2
j e−βx2 , G(x) := 2βx.

Using the results in Sects. 3.1 and 3.2, (5) yields

g(x) = 1

G′(x)
= 1

2β
, η(x) = −g(x)

H ′(x)

H(x)
= − 1

2β
(−2βx) = x.

Therefore, the operator A defined in (6) simplifies to Af (x) := 1
2β f ′(x) + x f (x)

and

A
(
e−β(·−αj )2

)
(x) =

(
1

2β
(−2β(x − αj )) + x

)
e−β(x−αj )2 = αj e

−β(x−αj )2 .

Thus, we can reconstruct f in (19) according to Theorem 1 from the derivative
samples f (�)(x0), � = 0, . . . , 2M −1. Here, x0 can be chosen arbitrarily in R, since
G′(x) = 2β �= 0 and H(x) �= 0 for all x ∈ R, which means that the interval [a, b]
can be chosen arbitrarily in Theorem 1.

Another sampling set is obtained by Theorem 2. The generalized shift operator
SH,G,h in (10) reduces to
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SH,G,hf (x) = e−βx2

e−β((h+2βx)/2β)2
f

(
h + 2βx

2β

)
= eh(x+h/4β) f

(
x + h

2β

)
.

(20)
Then

SH,G,h(e
−β(·−αj )2)(x) = eh(x+h/4β) e−β(x+ h

2β −αj )2

= ehαj e−β(x−αj )2 .

Therefore, the expansion in (19) is an expansion into eigenfunctions of the
generalized shift operator in (20) and can be reconstructed from the equidistant
samples

f

(
x0 + h�

2β

)
, � = 0, . . . , 2M − 1,

where x0 ∈ R can be chosen arbitrarily and 0 < |h| < π
T
, where T is the a priori

known bound satisfying |αj | < T for all j = 1, . . . ,M . Since the interval [a, b]
occurring in Theorem 2 can be taken arbitrarily large, we can always take it such
that

|G(b) − G(a)|
2M

= 2|β|(b − a)

2M
>

π

T
,

and therefore, there is no further condition on the choice of h. We note that the
procedure also applies for β ∈ C \ {0}. In this case we can use the substitution
α̃j = αj2β and take G(x) = x.

Remark 1 In particular, the model (19) includes expansions into modulated shifted
Gaussians

f (x) =
M∑

j=1

cj e
2π ixκj e−β(x−sj )2

with κj ∈ [0, 1) and sj ∈ R which have been considered in [25]. Since

e2π ixκj e−β(x−sj )2 = e−βs2j e−βx2 e−x(2βsj +2π iκj ),

we choose αj := 2βsj + 2π iκj , j = 1, . . . ,M . Then the reconstruction of the αj

is sufficient to find the parameters sj and κj from the real and the imaginary part of
αj , respectively.

Example 1 We illustrate the recovery of expansions into shifted Gaussians and
consider f of the form (19) with M = 10 and β = i. The original parameters in
Table 1 have been obtained by applying a uniform random choice from the intervals
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Table 1 Parameters cj and αj for f (x) in (19) with M = 10, see Fig. 1

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

Re cj −1.754 −1.193 0.174 −1.617 2.066 −1.831 −1.644 −1.976 −1.634 −0.386

Im cj −0.756 1.694 −0.279 −1.261 1.620 1.919 −0.245 −1.556 −0.968 −0.365

αj 0.380 −0.951 0.411 0.845 −1.113 −1.530 −0.813 −0.725 −0.303 −0.031

-15

-10

-5

0

5

10

15
real part

-2 0 2 4 6 8 10 12 14 16 18

-2 0 2 4 6 8 10 12 14 16 18
-15

-10

-5

0

5

10

15
imaginary part

Fig. 1 Real and imaginary part of the signal f (x) consisting of shifted Gaussians as given in
Example 1. The black dots indicate the used signal values. Here the reconstructed signal is shown
in red and cannot be distinguished from the original signal f (x)

(−3, 3) + i(−2, 2) for cj and from (−2, 2) for αj . Since β is complex, we use
G(x) = x and the substitution α̃j = 2iαj . Further, we choose x0 = −1 and h = 1.

Figure 1 represents the outcome of such reconstruction. The numerical treatment
of the generalized Prony method is studied in more detail in Sect. 4. For the
computation of this example we have used Algorithm 1 (see Sect. 4.1) with the
minimal number of 20 samples f (k), k = −1, . . . , 18. The samples are represented
as black dots in Fig. 1. The obtained maximal reconstruction error for the parameters
αj parameters cj are

errα = 1.518622755454592 · 10−11, errc = 5.286537816367291 · 10−10.

3.3.3 Expansions into Functions of the Form exp(αj sin x)

We want to reconstruct expansions of the form
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f (x) =
M∑

j=1

cj e
αj sin x, (21)

where we need to find cj ∈ C \ {0} and pairwise different αj ∈ C. Here, eαj sin x

is of the form H(x) eαj G(x) with H(x) := 1 and G(x) := sin(x). To ensure that
G(x) is strictly monotone, we choose the interval [−π

2 + δ, π
2 − δ] with some small

δ > 0. With g(x) = (G′(x))−1 = (cos(x))−1 and η(x) = 0 the operator A defined
in (6) simplifies to Af (x) = (cos(x))−1f ′(x) and

A(eαj sin(·))(x) = 1

cos(x)
(αj cos(x) eαj sin(x)) = αj e

αj sin(x).

According to Theorem 1 we can therefore reconstruct f in (21) from the derivative
samples f (�)(x0) for some x0 ∈ [−π

2 + δ, π
2 − δ].

Using Theorem 2, we define with H(x) := 1 and G(x) := sin(x) the generalized
shift operator

SH,G,hf (x) = f (G−1(h + G(x)) = f (arcsin(h + sin(x))).

We have to choose x0 and h such that all samples f (arcsin(h� + sin(x0))) that we
require for the reconstruction are well-defined, i.e., sin(x0)+h� ∈ [−π

2 + δ, π
2 − δ]

for � = 0, . . . , 2M − 1. This is for example ensured for x0 = −π
2 + h

2 and 0 < h ≤
π

2M+1 .

Example 2 We illustrate the reconstruction of a function f (x) of the form (21) with
M = 10 and with real parameters cj and αj in Table 2 that have been obtained
by applying a uniform random choice from the intervals (−3, 3) for cj and from
(−π, π) for αj . We choose a sampling distance h = 1

17 and a starting point x0 =
−π

2 + h
2 = −π

2 + 1
34 . The reconstruction is performed using Algorithm 1 in Sect. 4.1.

The reconstruction problem is very ill-posed in this setting, since the measure-
ments all have to be taken from a small interval, see Fig. 2. The possible sampling
distance strongly depends on the length of the interval, where G(x) is strictly
monotone, as well as on the slope of G−1(x). Therefore, we cannot reconstruct the
exact parameters with high precision, however, the reconstructed function is still a
very good approximation of f , see Fig. 2.

Table 2 Parameters cj and αj for f (x) in (21) with M = 10, see Fig. 2

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

cj 2.104 0.363 2.578 1.180 0.497 1.892 2.274 2.933 −2.997 2.192

αj 1.499 0.540 −1.591 1.046 −2.619 0.791 1.011 1.444 2.455 3.030
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Fig. 2 Signal f (x) in (21) consisting of M = 10 terms according to Table 2. The black dots
indicate the used signal values and the reconstructed signal is shown in red

4 Numerical Treatment of the Generalized Prony Method

In this section, we consider some numerical procedures to recover the parameters
αj , cj , j = 1, . . . ,M , in (4) resp. (12).

4.1 The Simple Prony Algorithm

First we summarize the direct algorithm for the recovery of f in (12) from the
function values f (G−1(h� + G(x0))), � = 0, . . . , 2M − 1, according to the proof
of Theorem 2.

Algorithm 1
Input: M ∈ N, h > 0, sampled values f (G−1(h�+G(x0))), � = 0, . . . , 2M −1.

1. Solve the linear system (16) to find the vector p = (p0, . . . , pM−1)
T .

2. Compute all zeros zj ∈ C, j = 1, . . . , M , of p(z) =
M−1∑
k=0

pk zk + zM .

3. Extract the coefficients αj := 1
h
log zj from zj = eαj h, j = 1, . . . .M .

4. Solve the system (18) to compute c1, . . . , cM ∈ C.

Output: αj ∈ R + i[−π
h

, π
h
), cj ∈ C, j = 1, . . . , M .

The assumptions of Theorem 2 imply that the coefficient matrix of the linear
system (16) is the invertible Hankel matrix,
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HM :=
(

f (G−1(h(k + m) + G(x0)))

H(G−1(h(k + m) + G(x0)))

)M−1

k,m=0
.

However, the factorization (17) indicates that HM may have very high condition
number that particularly depends on the condition number of the Vandermonde

matrix
(
eαj hm

)M−1,M
m=0,j=1.

4.2 ESPRIT for the Generalized Prony Method

We are interested in a more stable implementation of the recovery method and
present a modification of the ESPRIT method, see [24, 28, 29, 31] for the classical
exponential sum. We assume that the number of terms M in (4) is not given
beforehand, but L is a known upper bound of M . In the following, we use the
notation AK,N for a rectangular matrix in C

K×N and AK for a square matrix in
C

K×K , i.e., the subscripts indicate the matrix dimension.
Let

f� := f (G−1(h� + G(x0)))

H(G−1(h� + G(x0)))
, � = 0, . . . , 2N − 1, (22)

be given and well defined, where N ≥ L ≥ M . We consider first the rectangular
Hankel matrix

H2N−L,L+1 := (f�+m)
2N−L−1,L
�,m=0 ∈ C

(2N−L)×(L+1).

For exact data, (14) implies that rank H2N−L,L+1 = M . We therefore compute the
singular value decomposition of H2N−L,L+1,

H2N−L,L+1 = U2N−L D2N−L,L+1WL+1, (23)

with unitary square matrices U2N−L, WL+1 and a rectangular diagonal matrix
D2N−L,L+1 containing the singular values of H2N−L,L+1. We determine the
numerical rank M of H2N−L,L+1 by inspecting its singular values σ̃ 1 ≥ σ̃ 2 ≥
. . . ≥ σ̃ L+1 ≥ 0. We find M as the number of singular values being larger than a
predefined bound ε. Usually, we can find a clear gap between σ̃M and the further
singular values σ̃M+1, . . . , σ̃ L+1, which are close to zero. We redefine the Hankel
matrix and considerH2N−M,M+1 := (f�+m)

2N−M−1,M
�,m=0 ∈ C

(2N−M)×(M+1) with the
corresponding SVD

H2N−M,M+1 = U2N−M D2N−M,M+1WM+1, (24)
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with unitary matrices U2N−M andWM+1. For exact data, H2N−M,M+1 has rank M ,
and DT

2N−M,M+1 = (diag(σ 1, . . . , σM, 0), 0) ∈ R
(M+1)×(2N−M) with σ 1 ≥ σ 2 ≥

. . . ≥ σM > 0.
We introduce the sub-matrices H2N−M,M(0) and H2N−M,M(1) given by

H2N−M,M+1=
(
H2N−M,M(0), (f�+M)2N−M−1

�=0

)
=

(
(f�)

2N−M−1
�=0 ,H2N−M,M(1)

)
,

i.e., we obtain H2N−M,M(0) be removing the last column of H2N−M,M+1 and
H2N−M,M(1) by removing the first column ofH2N−M,M+1. Recalling (16) we have
for exact data

H2N−M,M(0)p = − (f�+M)2N−M−1
�=0 , (25)

where p = (p0, . . . , pM−1)
T contains the coefficients of the Prony polynomial

in (13). Let now

CM(p) :=

⎛

⎜⎜⎜⎜⎜⎝

0 0 . . . 0 −p0

1 0 . . . 0 −p1

0 1 . . . 0 −p2
...

...
...

...

0 0 . . . 1 −pM−1

⎞

⎟⎟⎟⎟⎟⎠
∈ C

M×M

be the (unknown) companion matrix of p having the M zeros of p(z) in (13) as
eigenvalues. By (25) it follows that

H2N−M,M(0)CM(p) = H2N−M,M(1). (26)

This observation leads to the following algorithm. According to (24) we find the
factorizations

H2N−M,M(0) = U2N−M D2N−M,M+1WM+1,M(0),

H2N−M,M(1) = U2N−M D2N−M,M+1WM+1,M(1),

where WM+1,M(0) is obtained by removing the last column of WM+1 and
WM+1,M(1) by removing its first column. Now, (26) implies

D2N−M,M+1WM+1,M(0)CM(p) = D2N−M,M+1WM+1,M(1).

Multiplication with the generalized inverse

D†
2N−M,M+1 =

(
diag (

1

σ 1
, . . .

1

σM

, 0), 0
)

∈ R
(M+1)×(2N−M),
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finally yields

WM(0)CM(p) = WM(1),

where the square matrices WM(0) and WM(1) are obtained from WM+1,M(0) and
WM+1,M(1), respectively, by removing the last row. Thus, the eigenvalues ofCM(p)

are equal to the eigenvalues of

WM(0)−1WM(1),

where WM(0) is invertible since CM(p) is invertible. (We can assume here that
zj �= 0 since zj = eαj .) We therefore obtain the following new algorithm.

Algorithm 2 (ESPRIT for the generalized Prony method)
Input: L,N ∈ N, L ≤ N , L upper bound for the number M of terms in (12),
sample values f�, � = 0, . . . , 2N − 1 as given in (22), G(x0).

1. Compute the SVD of the rectangular Hankel matrix H2N−L,L+1 as in (23).
Determine the numerical rank M of H2N−L,L+1, and compute the SVD of
H2N−M,M+1 = U2N−M D2N−M,M+1WM+1.

2. Build the restricted matrix WM(0) by removing the last column and the last row
of WM+1 and WM(1) by removing the first column and the last row of WM+1.
Compute the eigenvalues zj , j = 0, . . . ,M , ofWM(0)−1WM(1).

3. Extract the coefficients αj := 1
h
log zj from zj = eαj h, j = 1, . . . , M .

4. Solve the overdetermined system

f� =
M∑

j=1

cj z
G(x0)/h
j z�

j , � = 0, . . . , 2N − 1,

to compute c1, . . . , cM ∈ C.

Output: M , αj ∈ R + i[−π
h

, π
h
), cj ∈ C, j = 1, . . . ,M .

Example 3 We compare the performance of the classical Prony method in Algo-
rithm 1 with the ESPRIT method in Algorithm 2 and focus on the reconstruction
of the frequency parameters for f of the form (21). In our numerical example we
choose M = 5, x0 = −π

2 + 1
34 , h = 1

17 and the parameter vectors α = (αj )
M
j=1,

c = (cj )
M
j=1 as

α = (
π

2
,
iπ

4
, 0.4 + i,−0.5,−1)T and c = (0.5, 2,−3, 0.4i,−0.2)T .

For Algorithm 1 we have only used the first N = 10 samples. For the ESPRIT
Algorithm 2 we have used N = 15, i.e., 30 sample values, and have fixed an upper
bound L = 10. For the rank approximation we have applied a bound ε = 10−8. For
comparison we also tested Algorithm 2 with an upper bound of L = 13. In Table 3,
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Table 3 Reconstructed parameters αj in Example 3 provided by Algorithms 1 and 2

j Exact αj αj (Algorithm 1) αj (Algorithm 2, L = 10) αj (Algorithm 2, L = 13)

j = 1 π
2 1.57121 + 6.0886 · 10−5i 1.57079 − 2.3198 · 10−8i 1.57079 − 2.5066i · 10−8

j = 2 iπ
4 0.00231 + 0.7928i 2.00492 · 10−6 + 0.7854i 2.00522 · 10−6 + 0.7854i

j = 3 0.4 + i 0.40168 + 0.9982i 0.4000 + 1i 0.4000 + 1i

j = 4 −0.5 −0.49944 − 0.0013i −0.5 − 4.3008 · 10−7i −0.5 − 4.5298 · 10−7i

j = 5 −1 −1.00019 − 0.0042i −1.0 − 1.1763−6i −1.0 − 1.16642 · 10−6i

we present the results of parameter reconstruction using Algorithms 1 and 2. The
reconstruction of the frequency values using Algorithm 2 is in the case for L = 10
as well as in the case L = 13 much more accurate than the reconstruction using
Algorithm 1. For both upper bounds L the reconstruction error is of the same order.
Lemma 3.1 in [30] suggests that a sufficiently large choice of L ≈ N is a good
choice.

Remark 2 The Hankel matrices occurring in the considered reconstruction prob-
lems can have a very high condition number. However, there are stable algorithms
available to compute the SVD for such Hankel matrices, particularly for the square
case, see e.g. [11].

4.3 Simplification in Case of Partially Known Frequency
Parameters

In some applications, one or more of the parameters αj , or equivalently zj =
eαj h in the expansion (12), may be already known beforehand. However, if the
corresponding coefficients cj are unknown, we cannot just eliminate the term
cj H(x) eαj G(x) from the sum in (12) to get new measurements of the simplified
sum from the original measurements. However, we can use the following approach.
Recall that the vector p = (p0, . . . , pM)T of coefficients of the Prony polynomial

p(z) =
M∑

k=0

pkz
k =

M∏

j=1

(z − zj )

satisfies by (15) and (16)

H2N−M,M+1 p = 0,

where the Hankel matrix H2N−M,M+1 is constructed from f� in (22) as in the
previous section. Assume that z1 is already known beforehand, and let
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q(z) :=
M∏

j=2

(z − zj ) =
M−1∑

k=0

qkz
k,

with the coefficient vector q := (q0, . . . , qM−1)
T . Then p(z) = (z−z1)q(z) implies

for the coefficient vectors

p =

⎛

⎜⎜⎜⎝

0
q0
...

qM−1

⎞

⎟⎟⎟⎠ − z1

⎛

⎜⎜⎜⎝

q0
...

qM−1

0

⎞

⎟⎟⎟⎠

and thus

H2N−M,M+1p = (
H2N−M,M(1) − z1H2N−M,M(0)

)
q = 0,

with H2N−M,M(0) and H2N−M,M(1) denoting the submatrices of H2N−M,M+1,
where either the last column or the first column is removed. Therefore, we easily
find the new Hankel matrix

H̃2N−M,M = H2N−M,M(1) − z1H2N−M,M(0)

for the reduced problem. Observe from (22), that the new components of the matrix
H2N−M,M(1) − z1H2N−M,M(0) are of the form

f̃� = f�+1 − z1f� =
M∑

j=1

cj e
αj (h(�+1)+G(x0)) − eα1h

M∑

j=1

cj e
αj (h�+G(x0))

=
M∑

j=2

cj (e
αj h − eα1h)eαj (h�+G(x0)),

i.e., the coefficients cj , j = 2, . . . , M , are changed to c̃j = cj (eαj h − eα1h).

Thus, we can use the samples f̃� to recover the shorter sum
M∑

j=2
c̃j eαj G(x). Once

we have computed the remaining αj , j = 2, . . . ,M we obtain the coefficients cj ,
j = 1, . . . ,M , by solving the linear system (18).
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5 Modified Prony Method for Sparse Approximation

In this section, we want to consider the question, how to approximate a given data
vector y = (yk)

N
k=0 ∈ C

N+1 withN ≥ 2M−1 by a new vector f = (fk)
N
k=0 ∈ C

N+1

whose elements are structured as

fk =
M∑

j=1

cj zk
j ,

i.e., f only depends on the parameter vectors c = (cj )
M
j=1 and z = (zj )

M
j=1. In

this setting, the length N of the data vector y is usually much larger than M , i.e.,
N � M , while M is assumed to be small, say M < 30. We assume that for the
given data y the corresponding Hankel matrix H := (yk+m)

N−M−1,M−1
k=0,m=0 has full

rank, i.e., that the given data cannot be exactly represented by an exponential sum
with less than M terms, as it can be also seen from the factorization (17). Further,
we assume that cj ∈ C \ {0} and that zj ∈ C \ {0} are pairwise distinct.

5.1 The Nonlinear Least-Squares Problem

We want to solve the minimization problem

argmin
c,z∈CM

∥∥∥∥∥∥∥
y −

⎛

⎝
M∑

j=1

cj zk
j

⎞

⎠
N

k=0

∥∥∥∥∥∥∥
2

. (27)

This problem occurs in two different scenarios. The first one is the problem of
parameter estimation in case of noisy data. Assume that we have noisy samples
yk = f (k) + εk , k = 0, . . . , N , of f (x) = ∑M

j=1 cj z
x
j , where εk are i.i.d.

random variables with εk ∈ N(0, σ 2). In the second scenario we consider the sparse
nonlinear approximation problem to find a function f (x) = ∑M

j=1 cj z
x
j , which

minimizes
∑N

�=0 |y� − f (�)|2. With the Vandermonde matrix

Vz :=

⎛

⎜⎜⎜⎜⎜⎝

1 1 . . . 1
z1 z2 . . . zM

z21 z22 . . . z2M
...

...
...

zN
1 zN

2 . . . zN
M

⎞

⎟⎟⎟⎟⎟⎠
∈ C

(N+1)×M

we have f = Vz c, and the problem (27) can be reformulated as
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argmin
c,z∈CM

‖y − Vzc‖2.

For given z, the linear least squares problem argmin
c∈CM

‖y − Vzc‖2 can be directly

solved, and we obtain c = V+
z y = [V∗

zVz]−1V∗
zy, since Vz has full rank M .

Thus (27) can be simplified to

argmin
z∈CM

‖y − VzV+
z y‖22 = argmin

z∈CM

‖(I − Pz)y‖22

= argmin
z∈CM

(y∗y − y∗Pzy) = argmax
z∈CM

y∗Pzy,

where Pz := VzV+
z is the projection matrix satisfying Pz = P∗

z = P2
z , PzVz = Vz

as well as V+
z Pz = V+

z . Hence, similarly as for Prony’s method, we can concentrate
on finding the parameters zj in z first.

Let now r(z) := Pzy ∈ C
N+1. Then the optimization problem is equivalent to

argmax
z∈CM

‖r(z)‖22 = argmax
z∈CM

‖Pzy‖22. (28)

To derive an iterative algorithm for solving (28), we first determine the Jacobian Jz
of r(z) = (r�(z))N�=0.

Theorem 3 The Jacobian matrix Jz ∈ C
(N+1)×M of r(z) in (28) is given by

Jz :=
(

∂r�(z)
∂zj

)N,M

�=0,j=1

= (IN+1 − Pz)V′
z diag(V

+
z y) + (V+

z )∗ diag
(
(V′

z)
∗(IN+1 − Pz)y

)
, (29)

where IN+1 denotes the identity matrix of size N + 1,

V′
z :=

⎛

⎜⎜⎜⎜⎜⎝

0 0 . . . 0
1 1 . . . 1
2z1 2z2 . . . 2zM

...
...

...

NzN−1
1 NzN−1

2 . . . NzN−1
M

⎞

⎟⎟⎟⎟⎟⎠
∈ C

(N+1)×M,

and diag(q) denotes the diagonal matrix of size M × M for a vector q ∈ C
M . In

particular,

∇‖r(z)‖22 = 2J∗
z r(z) = diag((V′

z)
T (IN+1 − Pz)y)V+

z y. (30)

Proof First, observe that ∂
∂zj

Vz is a rank-1 matrix of the form
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∂

∂zj

Vz = z′
j e

∗
j ∈ C

(N+1)×M, j = 1, . . . ,M,

where z′
j = (0, 1, 2zj , 3z2j , . . . , NzN−1

j )T and ej is the j th unit vector of length M .
Then we obtain

∂

∂zj

r(z) = ∂

∂zj

(Pzy) = ∂

∂zj

(
Vz[V∗

zVz]−1V∗
zy

)

= (z′
j e

∗
j )V

+
z y − (V+

z )∗
[
(z′

j e
∗
j )

∗Vz + V∗
z(z

′
j e

∗
j )

]
V+
z y + (V+

z )∗(z′
j e

∗
j )

∗y

= (V+
z y)j z

′
j − ((z′

j )
∗Pzy)(V+

z )∗ej − (V+
z y)jPzz′

j + ((z′
j )

∗y)(V+
z )∗ej

= (V+
z y)j (IN+1 − Pz)z′

j + ((z′
j )

∗(IN+1 − Pz)y)(V+
z )∗ej

= (V+
z y)j (IN+1 − Pz)V′

zej + ((z′
j )

∗(IN+1 − Pz)y)(V+
z )∗ej ,

where (V+
z y)j denotes the j th component of V+

z y. From this observation, we
immediately find Jz in (29). Further, this formula implies

J∗
zr(z)=

(
diagV+

z y
)
(V′

z)
∗(IN+1−Pz)Pzy+

(
diag((V′

z)
∗(IN+1−Pz)y)

)∗
V+
z Pzy

= diag
(
(V′

z)
T (IN+1 − Pz)y

)
V+
z y.


�
Corollary 1 Let y ∈ C

N+1 be given and assume that (yk+m)
N−M+1,M−1
k=0,m=0 has full

rank M . Then, a vector z ∈ C
M solving (28) necessarily satisfies

(V′
z)

∗(IN+1 − Pz)y = 0.

Proof If z solves (28), then ∇‖r(z)‖22 = 0. Now, the assertion follows from (30)
using the information that c = V+

z y has no vanishing components. 
�
Remark 3

1. The necessary condition in Corollary 1 can be used to build an iterative algorithm
for updating the vector z where we start with z(0) obtained from the ESPRIT
Algorithm 2. We then search for z(j+1) by solving

(V′
z(j+1) )

∗(IN+1 − Pz(j) )y = 0,

i.e., by computing the zeros of the polynomial with coefficient vector

diag(0, 1, 2, . . . , N) (IN+1 − Pz(j) )y
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and taking the subset of M zeros which is closest to the previous set z(j). We will
further elaborate on this approach in the future.

2. This approach is different from most ideas to solve (27) in the literature, see
e.g. [7, 19, 20] and the recent survey [38]. In that papers, one first transfers the
problem of finding z ∈ C

M into the problem of finding the vector p = (pk)
M
k=0 ∈

C
M+1 with ‖p‖2 = 1, such that p(zj ) = ∑M

k=0 pkz
k
j = 0 for all j = 1, . . . , M ,

thereby imitating the idea of Prony’s method. Introducing the matrix

XT
p =

⎛

⎜⎜⎜⎝

p0 p1 . . . pM

p0 p1 . . . pM

. . .
. . .

p0 p1 . . . pM

⎞

⎟⎟⎟⎠ ∈ C
(N−M+1)×(N+1)

that satisfies XT
p Vz = 0, we obtain a projection matrix

Pp := XpX
+
p = Xp[XT

p Xp]−1XT
p = (IN+1 − Pz),

and (28) can be rephrased as

argmin
p∈CM+1
‖p‖2=1

‖Ppy‖22 = argmin
p∈CM+1
‖p‖2=1

y∗Xp[XT
p Xp]−1XT

p y.

5.2 Gauß-Newton and Levenberg-Marquardt Iteration

Another approach than given in Remark 3 to solve the non-linear least squares
problem (28) is the following. We approximate r(z + δ) using its first order Taylor
expansion r(z) + Jzδ. Now, instead of maximizing ‖r(z + δ)‖22 we consider

argmax
δ∈CM

‖r(z) + Jzδ‖22 = argmax
δ∈CM

(‖r(z)‖22 + (r(z)∗Jz δ + δ∗J∗
z r(z) + δ∗J∗

z Jz δ)

which yields

2Re(J∗
z r(z)) + 2J∗

z Jz δ = 0.

Thus, starting with the vector z(0) obtained from Algorithm 2, the j th step of the
Gauß-Newton iteration is of the form

(J∗
z(j)Jz(j) )δ(j) = −Re (J∗

z(j)r(z
(j)))
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to get the improved vector z(j+1) = z(j)+δ(j). Since (IN+1−Pz(j) )ymay already be
close to the zero vector, the matrix (J∗

z(j)Jz(j) ) is usually ill-conditioned. Therefore,
we regularize by changing the matrix in each step to (J∗

z(j)Jz(j) ) + λj IM and obtain
the Levenberg-Marquardt iteration

((J∗
z(j)Jz(j) ) + λj IM) δ(j) = −Re (J∗

z(j)r(z
(j))).

In this algorithm, we need to fix the parameters λj , which are usually taken very
small. If we arrive at a (local) maximum, then the right-hand side in the Levenberg-
Marquardt iteration vanishes, and we obtain δ(j) = 0.

Remark 4

1. The considered non-linear least squares problem is also closely related to
structured low-rank approximation, see [18, 36]. Further, instead of the Euclidean
norm, one can consider the maximum norm, see [6, 12] or the 1-norm, see [32].

2. Some questions remain. How good is the approximation with exponential sums,
if (y�)

N
�=0 is known to be a sampling sequence of a function in a given smoothness

space, and what is the convergence rate with respect to the number of terms M?
The authors are not aware of a complete answer to this question. However, in
[6] it has been shown that the function 1/x can be approximated by an M-term
exponential sum with an error O(exp(c

√
M). Also the results in [5] and [23]

indicate that we can hope for an exponential decay of the approximation error
for a larger class of functions.
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