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Abstract This paper reviews the state of the art of non-stationary subdivision
schemes, which are iterative procedures for generating smooth objects from discrete
data, by repeated level dependent linear refinements. In particular the paper
emphasises the potentiality of these schemes and the wide perspective they open, in
comparison with stationary schemes based on level-independent linear refinements.
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1 Introduction

Subdivision schemes were created originally to design geometrical models (see [4,
6, 30, 35],) but very soon they were recognised as methods for approximation (see
[5, 36]). They are iterative methods for the generation of sets of points based on
refinement rules that can be easily and efficiently implemented on a computer.

Since the 90s, subdivision schemes attracted many scientists for both the
simplicity of their basic ideas and the mathematical elegance emerging in their
analysis: they are defined by repeatedly applying simple and local refinement rules
which have been extended to refine other objects such as vectors, matrices, manifold
data, sets of points, curves, nets of functions. Therefore, the domain of application
of subdivision is vast and they emerge in different contexts ranging from computer
animation [31] to motion analysis [57].
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The most studied subdivision schemes are linear and stationary (level indepen-
dent). A nice aspect of linear subdivision schemes is that many of their properties
can be translated into algebraic properties of Laurent polynomials. This makes their
analysis easy and efficient. Moreover, since these schemes can be viewed as repeated
multiplication by matrices, many analysis tools are based on linear algebra such as
the “joint spectral radius” of two matrices (see [61]). Linear subdivision schemes
are the subject of this survey paper. First we review the stationary schemes, and
then in more details the non-stationary ones.

Stationary schemes are characterised by repeatedly applying the same simple and
local refinement rule while the non-stationary (or level dependent) schemes apply
a different rule in each level of refinement. Yet, changing rules with the levels is
not a big difference from an implementation point of view, also in consideration
that, realistically, only few subdivision iterations are executed. Contrary, from a
theoretical point of view, non-stationary schemes are certainly more difficult to
analyse. Level-dependent schemes were introduced to augment the class of limit
functions defined through stationary schemes. For example, they allow the definition
of C∞ compactly supported functions like the Rvachev function (see, e.g. [39]) or
exponential B-splines.

This type of limits shows that non-stationary schemes alleviate the limitations of
stationary schemes that the smoothness of their limits of minimal compact support
is bounded by the size of that support.

The non-stationary schemes are essentially different from the stationary ones:
non-stationary schemes are able to generate conic sections, or to deal with level-
dependent tension parameters for modifying the shape of a subdivision limit,
while the stationary ones are not. An example of level-dependent subdivision
schemes is given by Hermite schemes that allow to model curves and surfaces
involving their gradient fields. They are interesting both in geometric modelling
and biological imaging [1, 2, 14, 24, 65]. Additionally, non-stationary subdivision
schemes play a role in the construction of non-stationary wavelet and framelets
whose adaptivity makes them more flexible (see [13, 26, 42, 46, 67]). Last, but not
least, level-dependent rules have the potential to overcome the standard limitations
of subdivision surfaces such as artefacts and low regularity at extraordinary
vertices/faces (see [64] for the limitations).

The paper is organised as follows: Sect. 2 provides a general description of the
subdivision ideas together with classical examples of univariate and bivariate linear
and stationary subdivision schemes. Also, the section presents a short description
of the main subdivision applications and a review of the analysis tools of stationary
linear schemes. Then, in Sect. 3 non-stationary subdivision schemes are discussed
with emphasis on the motivation for their use. Section 4 is devoted to the analysis
tools specific for non-stationary subdivision schemes, while the closing Sect. 5
presents open problems in the non-stationary setting.
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2 Classical Subdivision Schemes

Subdivision schemes are efficient iterative methods for generating limit objects from
discrete sets of data: Given D0—an initial set of data—the procedure iteratively
defines a sequence of denser and denser sets of data {Dk}k≥0

D0 −→
︸︷︷︸

ref. rule

D1 −→
︸︷︷︸

ref. rule

D2 · · · −→
︸︷︷︸

ref. rule

Dk

by suitable refinement rules which can be linear or non-linear, level dependent or
level independent, given by a formula or a geometric construction, just to mention
some possibilities. Whenever limk→∞ Dk exists, in a sense to be explained later, it
is the subdivision limit generated by the scheme.

At the early stage of the study of subdivision schemes, the initial setD0 consisted
mainly of points, but in the last 30 years, subdivision was extended to more abstract
settings, such as vector fields, manifold valued data, matrices, sets, curves or nets
of functions. Examples of different possibilities are shown in the next figures after
three refinement steps of a point subdivision scheme, a net subdivision scheme and
a mesh subdivision scheme, respectively (Figs. 1, 2, 3).
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Fig. 1 Example of refinement of real values with limit a bivariate function
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Fig. 2 Example of refinement of nets of curves with limit a surface
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Fig. 3 Example of refinement of meshes with limit a surface

2.1 Binary, Linear, and Stationary Subdivision Schemes

The classical schemes are binary, linear, and stationary. We start with univariate
schemes refining sequences of real values or of points in R

d . The extension to the
refinement of real values or of points given at the vertices of a regular mesh is the
first step towards the bivariate case, which is of great importance for the generation
of smooth surfaces.

Given a mask consisting of a finite set of real coefficients a = {ai, i ∈ I }, I ⊂
Z, | I | < ∞, the associated linear subdivision operator transforming a sequence p
of points in R into a refined sequence of points in R is

Sa : �(Z) → �(Z) (Sa(p))i :=
∑

j∈Z
ai−2jpj , j ∈ Z. (1)

The refinement rule (1) encompasses two rules, one for the even indices, and one
for the odd indices

(Sa(p))2i :=
∑

j∈Z
a2jpi−j , (Sa(p))2i+1 :=

∑

j∈Z
a2j+1pi−j , j ∈ Z.

In the following, without loss of generality, we assume that I = {0, . . . , N}, for
some N ∈ N.

The subdivision scheme is simply the repeated application of the subdivision
operator starting from an initial sequence of points p[0]:

⎧

⎨

⎩

Input a, p[0]
For k = 0, 1, . . .

p[k+1] := Sap
[k]

(2)

The points in the sequence p[k] = {p[k]
i }i∈Z are attached to the parametrization

{t [k]
i }i∈Z (t [k]

i < t
[k]
i+1, i ∈ Z), namely p

[k]
i is attached to the parameter value t

[k]
i .
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The scheme defined in (2), also denoted by Sa, is called convergent if for any p[0]
there exists a continuous function fp[0] , such that

lim
k→∞ sup

i∈Z
| fp[0](t [k]

i ) − p
[k]
i | = 0, (3)

with fp[0] �≡ 0 for at leat one initial sequence p[0] �≡ 0. The limit is also denoted by
S∞
a (p[0]). In case the limit function fp[0] is a C� function for any p[0] the scheme is

said to be C�-regular.
We will restrict our attention to non singular subdivision schemes, i.e. convergent

schemes such that

S∞(p[0]) ≡ 0 ⇔ p
[0]
i = 0 for all i ∈ Z.

The limit obtained starting with the delta-sequence δ = {δ0,i}i∈Z, φa := S∞
a (δ),

usually called the basic limit function of the scheme, is of great importance. Indeed,
by the linearity of the operator Sa we have that

fp[0] =
∑

j∈Z
p

[0]
j φa(· − j). (4)

Thus, the smoothness of the scheme Sa is the smoothness of its basic limit function.
Most classical subdivision schemes are either primal or dual. In the primal

case at each iteration the scheme retains or modifies the ‘old’ points and creates
a ‘new’ point situated in the sequence in between two consecutive ‘old’ ones. In
the dual case, Sa discards all given points after creating two new ones in between
any pair of consecutive ‘old’ points. Algebraically, this is related to the choice of
the parameters to which we attach the points generated by the scheme: the primal
parametrization is such that tki = i 2−k for k ≥ 1 and t

[0]
i = i, i ∈ Z, while in the

dual one t
[k]
i = (i − 1

2 ) 2
−k for k ≥ 1 and t

[0]
i = i, i ∈ Z. To unify the primal and

the dual cases, we here consider the parameter values t
[k]
i = (i + τ) 2−k for k ≥ 1

and t
[0]
i = i, i ∈ Z and call τ the parametric shift of the scheme. Note that in view

of (1) and the parametrizations of the primal and dual cases, the support of φa is
contained in [0, N ] (see e.g. [39]).

The parameterization is important for example when considering reproduction
capabilities of subdivision schemes, discussed next.

A convergent subdivision scheme Sa with parameter shift τ reproduces a function
space V , if for any g ∈ V , the initial sequence

p[0] := {g(j + τ) ∈ R}j∈Z (5)

guarantees that S∞
a (p[0]) ≡ g. Moreover it stepwise reproduces V if at each step k,

the refined sequence p[k] is of the form
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p[k] = {g((j + τ) 2−k)}j∈Z, for all k ≥ 1. (6)

From the above it obviously follows that stepwise-V-reproduction implies V-
reproduction in case convergence is guaranteed.

Reproduction of polynomials of degree less or equal to n, namely corresponding
to V ≡ Πn, is closely related to the approximation order of the subdivision
scheme Sa. The approximation order measures the rate by which the limit functions
generated by Sa (from initial data sampled from a sufficiently smooth function
f ) get closer to f as the sampling density tends to zero. In other words, the
approximation order of Sa is the largest exponent r such that for all f ∈ Cr

‖f − S∞
a (f[0])( ·

h
)‖∞ ≤ c hr , for f[0] = {f (ih)}i∈Z,

with c a constant independent of h.
It is easy to prove that subdivision schemes that reproduces Πn have approximation
order r = n + 1 (see the proof in [37] for the 4-point scheme).

A weaker notion of reproduction is the notion of generation of a function space
V: It guarantees that for any g ∈ V and initial sequence (5)

Sa(p[0]) ∈ V . (7)

The generation of Πn by Sa is a necessary condition for the scheme to be Cn-
regular when φa is L∞-stable (see [39, Theorem 4.16 and (4.20)]), namely when
C1‖b‖L∞ ≤ ‖∑

α∈Z bαφa(· − α)‖L∞ ≤ C2‖b‖L∞ with C1, C2 positive constants
independent of b = {bα}α∈Z.

Extension of the univariate case to dimensions s ≥ 2 is straightforward when the
topology is that of the regular mesh Zs . Here we consider the case d = 2.

Bivariate linear, stationary and binary subdivision operators for regular meshes
are defined similarly to (1) as

Sa : �(Z2) → �(Z2) (Sa(p))α =
∑

β∈Z2

aα−2βpβ, α ∈ Z
2. (8)

In (8) there are four different refinement rules determined by the parity of the indices
α = (α1, α2) ∈ Z

2. Hence, an equivalent form of (8) is

(Sa(p))2α+ε =
∑

β∈Z2

a2β+εpα−β, α ∈ Z
2, ε ∈ Ξ2,

where

Ξ2 = {0, 1}2 = {(0, 0), (0, 1), (1, 0), (1, 1)}, (9)
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is the set of representative indices of a binary scheme. The subdivision limit is still
a linear combination of shifts of its bivariate basic limit function

fp[0] =
∑

β∈Z2

p
[0]
β φa(· − β), for φa := S∞

a (δ), (10)

with δ = {δ0,α, α ∈ Z
2} a bivariate sequence. The notions of convergence,

regularity, generation, reproduction and approximation order are essentially the
same as in the univariate case.

2.2 Examples of Subdivision Schemes

A famous example of univariate subdivision scheme is the Chaikin scheme [6] based
on the simple rules

p
[k+1]
2i = 1

4
p

[k]
i−1 + 3

4
p

[k]
i p

[k+1]
2i+1 = 3

4
p

[k]
i + 1

4
p

[k]
i+1, i ∈ Z, (11)

corresponding to the mask

a = {1
4
,
3

4
,
3

4
,
1

4
}. (12)

Figures 4 and 5 show the application of the rules in (11) to the initial δ-sequence
and the component-wise application of the same rules to 2D initial points. A ‘corner
cutting’ effect is evident.

Fig. 4 Three steps of the subdivision in (11) with initial points (in magenta)

Fig. 5 Application of Chaikin scheme to 2D-initial points
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The Chaikin scheme is a quadratic spline subdivision scheme. Indeed, any
degree-n spline with integer knots and smoothness Cn−1 can be obtained as the
limit of a subdivision scheme based on the rules

p
[k+1]
2i =

∑

j∈Z

1

2n

(

n + 1

2j

)

p
[k]
i−j , p

[k+1]
2i+1 =

∑

j∈Z

1

2n

(

n + 1

2j + 1

)

p
[k]
i−j , i ∈ Z.

(13)
The rules in (13) correspond to the masks

an = { 1

2n

(

n + 1

i

)

, i = 0, . . . , n}, (14)

and reduce for n = 2 to (11) while (14) reduces to (12). For odd n the schemes are
primal and for even n they are dual.
The regularity, polynomial reproduction and approximation order of spline subdivi-
sion schemes are known to be Cn−1, Π0 and r = 1, respectively. Note that, placing
the masks of the primal spline schemes symmetric relative to the origin, namely
a−i = ai, i = 0, · · · , n+1

2 the schemes produce Π1, hence their approximation
order is r = 2.

Important examples of subdivision schemes are interpolatory schemes where, for
all k, p[k] is contained in p[k+1], so that the limit function is interpolating the input
points. In contrast, the other types of schemes are called approximating.

A popular univariate example is the interpolatory 4-point scheme with rules

p
[k+1]
2i = p

[k]
i , p

[k]
2i+1 = − 1

16
p

[k]
i−2+

9

16
p

[k]
i−1+

9

16
p

[k]
i − 1

16
p

[k]
i+1, i ∈ Z, (15)

corresponding to the mask

a = {− 1

16
, 0,

9

16
, 1,

9

16
, 0,− 1

16
}. (16)

The four point scheme reproduces the polynomial space Π3, is C1 and has
approximation order r = 4. It is a special instance of the family of 4-point schemes
with tension parameter (see [37]) corresponding to w = 1

16 and of the family of
the interpolatory 2n + 2-point schemes proposed by Dubuc-Deslauriers in [32]
corresponding to n = 1. The schemes in the latter family (DD-family) have the
refinement rules

p
[k+1]
2i =p

[k]
i , p

[k]
2i+1=

n
∑

j=−n−1

(−1)j (n + 1)

24n+1(2j + 1)

(

2n + 1

n

)(

2n + 1

n + j+1

)

p
[k]
i−j , i ∈ Z,

(17)
with mask
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Fig. 6 Three steps of the scheme with rules (15) with initial points δ (in magenta)

Fig. 7 One application of the 4-point scheme to 2D-initial points

an = { (−1)n(n+1)
24n+1(2n+1)

(2n+1
n

)

, · · · , 0, n+1
24n+1

(2n+1
n

)(2n+1
n

)

, 1,

n+1
24n+1

(2n+1
n

)(2n
n

)

, 0, · · · ,
(−1)n(n+1)
24n+1(2n+1)

(2n+1
n

)}.
(18)

It is easy to conclude from (17), that the scheme is based on n + 1 points
corresponding to the n + 1 consecutive integer parameters on each side of i + 1

2 .
The DD 2(n + 1)-point scheme reproduces the polynomial space Π2n+1 and has

approximation order r = 2n + 2.
Figures 6 and 7 show the application of the rules in (15) to the δ initial sequence

and the component-wise application of the same rules to the same 2D-initial points
as in Fig. 5. The ‘interpolation’ effect is evident.

In the bivariate setting, two well known approximating subdivision schemes are
the Doo-Sabin scheme and the Loop scheme. In the regular situation, namely when
the meshes are 2−k

Z
2, k ≥ 0, the first one is a tensor product of the Chaikin scheme

while the second one is associated with the three direction box-splines defined by
the directions (1, 0), (0, 1), (1, 1) repeated twice. The masks of these two schemes
are respectively given in terms of the matrices as

a =

⎛

⎜

⎜

⎝

1
16

3
16

3
16

1
16

3
16

9
16

9
16

3
16

3
16

9
16

9
16

3
16

1
16

3
16

3
16

1
16

⎞

⎟

⎟

⎠

and a =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 1
16

1
8

1
16

0 1
8

3
8

3
8

1
8

1
16

3
8

5
8

3
8

1
16

1
8

3
8

3
8

1
8 0

1
16

1
8

1
16 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (19)

Figures 8 and 9 show the first and the second iteration of the rules based on the
masks in (19) to the initial δ-sequence.

A bivariate interpolatory subdivision scheme related to the four point scheme is
the butterfly scheme. The mask of the butterfly scheme is



48 C. Conti and N. Dyn

Fig. 8 Second and third iteration of Doo-Sabin scheme applied to the bivariate δ

Fig. 9 Second and third iteration of Loop scheme applied to the bivariate δ

a =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 − 1
16 − 1

16 0
0 0 − 1

16 0 2
16 0 − 1

16
0 − 1

16
2
16

8
16

8
16

2
16 − 1

16
0 0 8

16 1 8
16 0 0

− 1
16

2
16

8
16

8
16

2
16 − 1

16 0
− 1

16 0 2
16 0 − 1

16 0 0
0 − 1

16 − 1
16 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (20)

Figure 10 shows the first and the second iteration of the Butterfly scheme applied
to the bivariate δ. More complicated examples of interpolatory subdivision schemes
can be found in [25], for example.

2.3 Main Applications

Subdivision schemes have a vast variety of applications. The most known is
certainly in geometric modelling and computer aided geometric design (CAGD)
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Fig. 10 Second and third iteration of the Butterfly scheme applied to the initial sequence δ

where they are used for the design of smooth curves and smooth surfaces of arbitrary
topology. As already mentioned, other applications include construction of refinable
functions, multiresolution and wavelets, image analysis through the generation of
active contours and active surfaces, computer animation, isogeometric analysis and
multigrid.

In the next two subsections we will briefly sketch the first two domains of
application while application to image analysis is the subject of Sect. 3.3.

2.3.1 Geometric Modelling and CAGD

In the examples of Sect. 2.2 univariate subdivision schemes generate curves from
an initial set of 2D points. Passing from curves to surfaces the setup becomes much
more complicated since the topological relations between the data are richer than in
the curve case (i.e., in the univariate case). In the surface case, a subdivision scheme
deals with refinement ofmeshes consisting of vertices, faces and edges. The vertices
are points in 3D, the edges are pairs of vertices, and the faces are cyclic sets of edges
(see Fig. 11).

Therefore, each subdivision scheme for surface generation in based on two
refinement rules. A topological refinement rule describing the modification of the
connectivity of the mesh with the added vertices and geometric refinement rules that
describe where the new vertices, are located in 3D. In a mesh faces and vertices are
classified by the so-called vertex and face valence: The valence of a face counts
the number of edges that delimit it whereas the valence of a vertex is the number of
edges incident to it. Quadrilateral meshes consist of faces with valence 4 and regular
vertices are of valence 4. In a triangular mesh all faces are triangles, and the regular
vertices have valence 6. In a mesh with most faces and vertices of valence 4, the rest
of the faces and vertices are the irregular ones. Similarly, in a mesh with most faces
triangles and vertices of valence 6, the rest of the faces and vertices are the irregular
ones. A mesh/region is called a regular mesh/region where all vertices and faces are
regular. Non-regular vertices/faces are extraordinary and a mesh containing them is
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Fig. 11 A schematical representation of a mesh

said to be irregular. It is important to note that irregular meshes are necessary for
the generation of surfaces of arbitrary topology.

The presence of an irregular element requires the definition of specific rules
depending on the valence of the irregular element. The Doo-Sabin scheme and
the Loop scheme provide rules for irregular vertices as well as the Catmull-Clark
scheme (a tensor product cubic spline scheme in irregular regions). For details about
subdivision schemes for surfaces we refer to the books [64, 68].

2.3.2 Generation of Refinable Functions and Wavelets

The link between subdivision schemes and wavelets is in the refinability property
of basic limit functions. Indeed, any φa = S∞

a (δ) is refinable namely it satisfies the
refinement equation

φa =
∑

α∈Zs

aαφa(2 · −α), s ∈ {1, 2}, (21)

with {aα}α∈Zs the elements of the mask a. Equation (21) follows from
(Saδ)α = aα, α ∈ Z

s and from (4) and (10) for s = 1, 2, respectively.
Equation (21) is the crucial ingredient to generate multiresolution analysis

and wavelets even if, in most cases, the explicit expression of φa is unknown.
Nevertheless, several numerical procedures are possible for its computation. For
example, in the univariate case (s = 1) using the refinement equation (21) k-times
we easily see that

φa =
∑

i∈Z
a

[k]
i φa(2

k ·−i), where a[0] := a and a[�] := Saa[�−1], � = 1, · · · , k.

Therefore, the computation of φa at the dyadic points j2−k, j ∈ Z is simply the
convolution of the sequence a[k] with values of φa. Note that φa(i) �= 0 only for
i = 1, . . . N − 1 since the support of φa is contained in [0, N ] assuming that a =
{a0, . . . , aN })and φa is continuous. Therefore, for v = [φa(1), . . . , φa(N − 1)], we
have

Av = v, with Ai,j = a2i−j , i, j = 1, . . . , N − 1.
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An alternative method for the computation of φa is the so called cascade algorithm,
involving the repeated application of the operator Ta,

Tag =
∑

α∈Zs

aαg(2 · −α), s ∈ {1, 2}.

Choosing as initial ‘guess’ any continuous compactly supported function ψ0
satisfying

∑

α∈Zs ψ0(x − 1) ≡ 1, the cascade algorithm generates the sequence
{ψk}k≥0 by repeated application of Ta, namely ψk+1 = Taψk, k ≥ 0, and it
converges to φa.

We remark that the operator Ta is adjoint of Sa in the following sense:

∑

α∈Zs

(Sa(p))αf (2 · −α) =
∑

α∈Zs

pα(Ta(f )(· − α),

for any continuous and compactly supported function f and for any finitely
supported sequence p.

We can also calculate the Fourier transform φ̂a. Indeed, taking the Fourier
transform of the refinement equation (21) we find

φ̂a(ξ) = Ha(
ξ

2
)φ̂a(

ξ

2
), (22)

where Ha(ξ) = 1
2s

∑

α∈Zs

a�e
2πi �ξ is a trigonometric polynomial, due to the finite

support of the mask a. By repeated application of (22), we arrive at

φ̂a(ξ) =
∞
∏

k=1

Ha(
ξ

2k
). (23)

Orthonormal wavelets are derived from refinable functions whose integer shifts
are orthonormal. Such refinable functions are defined by subdivision schemes
with masks having special properties. These masks are closely related to masks
of interpolating schemes. In particular the mask of the DD family are related to
Daubechies orthonormal wavelets of compact support [27].

2.4 Analysis Tools

In this section we shortly review analysis tools for linear stationary subdivision
schemes. As it can be observed in this section, in spite of the simplicity of the
subdivision idea, analyzing convergence and regularity can be difficult. Indeed,
even if the linearity of the operators allow for the use of linear algebra, e.g. joint
spectral radius or eigen-analysis, these problems can be NP hard. On the contrary,
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the analysis of polynomial reproduction, approximation order and smoothing factors
are based on elementary algebraic tools and are much simpler.

Certainly, an advantage of the uniform framework (i.e. dealing with uniformly
distributed data) characterising ‘classical’ subdivision schemes, is that we can
make use of standard mathematical tools of signal processing (e.g. discrete-time
Fourier transform and z-transform) which simplify all formulations and derivations
considerably. Indeed, a special role is played by the subdivision symbol, the Laurent
polynomial with coefficients the elements of the mask a, i.e.

A(z) =
∑

α∈Zs

aαzα, z ∈ C
s \ {0}, s = {1, 2}. (24)

With the symbols the kth subdivision step reads as

P [k+1](z) = A(z)P [k](z2), where P [k](z) =
∑

α∈Zs

p[k]
α zα, k ≥ 0.

Polynomial generation and reproduction translate into algebraic conditions on the
subdivision symbol and its derivatives at the points of

Ξ ′
s = {e−iπ ε, ε ∈ Ξs} ≡ {−1, 1}s , s ∈ {1, 2}. (25)

With the help of the auxiliary polynomials

q0(z) := 1, qj(z) :=
s

∏

i=1

ji−1
∏

�i=0

(zi − �i), j ∈ N
s
0, s ∈ {1, 2}, (26)

the polynomial generation/reproduction results are stated in the following propo-
sition (see [8] for details). To state the proposition, we introduce the notion of a
non-singular subdivision scheme, which is a scheme that generates zero limits if
and only if the initial data is a zero sequence.

Proposition 1 ([8, Theorem 2.6]) Let Sa be a convergent and non-singular subdi-
vision scheme with mask a and symbol A(z). It generates polynomials of degree up
to n, n ∈ N0, if and only if

A(1s) = 2s ,
(

DjA
)

(ε) = 0 for ε ∈ Ξ ′
s \ 1s , |j| ≤ n , (27)

where Dj is the j-th directional derivative (j ∈ Z
s) and 1s = (1, · · · , 1) ∈ Z

s .
Moreover, for a given parameter shift τ ∈ R

s , it reproduces polynomials of
degree up to k if and only if

(

DjA
)

(1s) = 2sqj(τ ) and
(

DjA
)

(ε) = 0 for ε ∈ Ξ ′
s \ 1s , |j| ≤ n .
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Also, Πn-reproduction implies approximation order n + 1.

We remark that the algebraic conditions (27) are also called sum rules of order n
or zero-conditions (see e.g. [47]) and [18], respectively).

Still of algebraic type is the investigation of existence of ‘difference schemes’ and
‘smoothing factors’ useful for the smoothness analysis of the basic limit functions.
In the univariate setting (s = 1), a symbol contains k smoothing factors if there
exists a Laurent polynomial B(z) such that

A(z) =
(

1 + z

2

)k

B(z).

The regularity of the scheme Sa is at least k, if the scheme associate with the symbol
B(z) is convergent. A scheme Sa is convergent if and only if its symbol has the form
A(z) = (1+z)B(z) and the scheme Sb with symbol B(z) is contractive. A sufficient
condition for that is (see e.g. [39])

max{
∑

i ∈Z
|b2i |,

∑

i ∈Z
|b2i+1|} < 1.

In the bivariate situation, the construction of a difference scheme and the link
between smoothing factors and smoothness of the limit is definitely more involved
(see, [12], for example). To simplify, we can say that the existence of tensor-product
type smoothing factors such as (1+z1)(1+z2), (1+z1)(1+z1z2) or (1+z2)(1+z1z2)

plus contractivity of the difference scheme implies C1-regularity. For details we
refer again to [39].

An apparently different approach to convergence and regularity analysis of
subdivision schemes is given by the so called ‘JSR approach’. Essentially, we
associate to the binary scheme 2s matrices constructed from the subdivision mask
and the reproduced space of polynomials. Then, we compute their joint spectral
radius (JSR) whose magnitude indicates the Hölder regularity of the scheme as
explained. The JSR of a collection of matrices extends the classical notion of
spectral radius of a matrix in the following sense.

Definition 1 Given a finite collection of square matrices M, the JSR is

ρ(M) := lim
m→∞ max

M1,...,Mm∈M

∥

∥

∥

∥

∥

∥

m
∏

j=1

Mj

∥

∥

∥

∥

∥

∥

1/m

.

First introduced by Rota and Strang in 1960 [61], the JSR was almost forgotten,
and then rediscovered in 1992 by Daubechies and Lagarias [28] in the context of
the analysis of refinable functions. In general, unfortunately, even the numerical
approximation of the JSR is a very challenging task making the JSR approach
not always applicable. But, recently, an algorithm for the computation of the JSR
has been proposed in [45] (see also [52], for a different approach) and a Matlab
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code is now available in [51]. We also observe that even if the difference schemes
approach and the JSR approach appear to be intrinsically different, they characterize
the subdivision regularity in terms of the same quantity. As demonstrated in [7] the
two approaches differ only by the numerical schemes they provide for the estimation
of the same quantity.

A completely different approach for estimating the regularity of Sa is by its
Fourier transform. Indeed, the equality (23) can be used to determine the regularity
of the basic limit function φa (i.e. of the subdivision scheme Sa), by estimating the
decay of its Fourier transform. The latter approach is the one used by many authors
(see [27, 34], for example).

Remark 1 The analysis tools presented in this section apply to regular regions or
away from irregular elements. In case of meshes containing irregular vertices/faces a
different approach to the analysis of subdivision scheme is needed. The appropriate
tool to analyze the regularity of the generated limits in the vicinity of an irregular
element involves the so called characteristic map and the spectral analysis of the
local subdivision matrix. For all details we refer the interested reader to [58, 63, 66]
and references therein.

3 Motivation for Non-stationary Subdivision Schemes

From the previous section we easily understand that the subdivision idea can also
be implemented in a level dependent way, that is to say by using different masks at
different iterations. Indeed, at level k, the operator Sa in (2) can be replaced by Sa[k]
leading to the non-stationary variant of subdivision

⎧

⎨

⎩

Input {a[k]}k≥0, p[0]
For k = 0, 1, · · ·

p[k+1] := Sa[k]p[k]
(28)

Compared with the stationary ones, non-stationary subdivision schemes are not
more complicated. Changing coefficients level by level is not a crucial implemen-
tation matter, considering that in practice, only few iterations are executed. Also,
the definition of convergence and regularity as in (3) is not affected by the level
dependence of the rules. Nevertheless, non-stationary subdivision schemes have
different properties and enrich the class of subdivision limit functions. For example,
applied to 2D-points they can generate circles, ellipses, or other conics. Also, they
allow the user to modify the shape of a subdivision limit by the help of level-
dependent tension parameters. In the univariate case, they can generate exponential
B-splines [38], C∞ functions with compact support as the Rvachev-type function
[39], or B-spline like functions with higher smoothness relative to the support size,
[10, 15].
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The algebraic formalism associated with non-stationary schemes is as in the
stationary situation. The only difference is that now we deal with a sequence of
symbols

A[k](z) =
∑

α∈Zs

a[k]
α zα, k ≥ 0, z ∈ C

s \ {0}, s = {1, 2}. (29)

Thus, the k-th subdivision step can be written as

P [k+1](z) = A[k](z)P [k](z2), with P [k](z) =
∑

α∈Zs

p[k]
α zα, k ≥ 0.

The discussion on the use of the corresponding algebraic tools as well as of other
associated tools like the JSR is postponed to Sect. 4. Here, we mention that in case
the non-stationarity is characterized by the cyclic repetition of � different masks
the scheme is actually stationary with 2�-arity rather than 2. Indeed, for any k =
r · �, r > 0 we can consider � steps simultaneously, and obtain

P [k+�](z) = Ã(z)P [k](z2�

), where Ã(z) := A[�−1](z)A[�−2](z2) · · ·A[0](z2�−1
),

implying that Ã(z) is the symbol of an arity-2� scheme that multiply by 2� the
number of points at each step (see e.g.,[20]).

In the non-stationary case, when using the sequence of masks starting not with
a[0] but with any a[m], m > 0, we get different results according to the starting mask
a[m], where m varies from 0 to ∞. The subdivision scheme in this case is

⎧

⎨

⎩

Input {a[k]}k≥0, p[0]
For k = 0, 1, 2, · · ·

p[k+1] := Sa[m+k]p[k]
(30)

From the above we understand that in the level dependent case we have no
longer a unique basic limit function but rather a sequence of basic limit functions
{φm, m ≥ 0} each defined as

φm = lim
k→∞ Sa[k+m] · · · Sa[m]δ, (31)

where δ is the sequence with value 1 at the origin, and zero on Z
s \ {0}. Due

to linearity and uniformity of the operators, the sequence of basic limit functions
satisfies a system of ‘generalized’ refinement equations,

φm =
∑

α∈Zs

a[m]
α φm+1(2 · −α), m ≥ 0. (32)
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The system of generalized refinement equations (32) is the base to the generation of
non-stationary multiresolution and non-stationary wavelets [3, 42].

The next subsections show the capabilities of level-dependent schemes in
applications, e.g., in geometric design and in approximation [49, 50], in biological
imaging [29, 65] and in the generation of non-stationary wavelets [13, 42, 67].

3.1 Reproduction of Conics and Quadrics and Use of Level
Dependent Tension Parameters in CAGD

It is well known that B-spline curves and surfaces are central tools in computer-aided
geometric design but also in computer graphics, due to the properties of B-splines,
which guarantee, for example, that the B-spline curves/surfaces are in the convex
hull of their control polygons/meshes. B-splines, unfortunately, are not capable
to reproduce in an exact way conic sections which are needed very often. This
is why different B-spline generalizations, like NURBS, have been proposed. The
rational nature of NURBS is the reason why it is difficult to integrate or differentiate
them. With NURBS it is possible to exactly represent conic sections but not all
transcendental curves. Therefore, researchers have started to consider ‘generalized
B-splines’ that is bell-shaped functions piecewise defined with segments in other
spaces than rational polynomials. By selecting spaces of trigonometric or hyperbolic
functions, for example, with generalized B-splines it is possible to represent
polynomial curves, conic sections or transcendental curves. What is relevant to this
paper is that several instances of generalized B-splines with integer knots can be see
as limit functions of non-stationary subdivision schemes.

The computation of limit surfaces by a subdivision scheme is much simpler than
the modelling of surfaces with NURBS (B-splines) since, in the latter case, the
complete surface consists of NURB (B-splines) patches with geometric continuity
between the patches. For details on connecting smoothly patches see [55, Chapter
13].

Note that meshes for modelling surfaces of arbitrary topology have irregular
regions, and the refinement rules have to be adapted to the vicinity of irregular
elements.

As an example we can consider the following non-stationary subdivision scheme
generating exponential splines with segments in

span{eθ t , e−θ t , teθ t , te−θ t }, θ ∈ R ∪ iR,

with θ a parameter to be chosen by the user (see [14] and [21]). These exponential
splines are a special instance of L-splines (see [62]). The refinement rules are
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p
[k+1]
2i = 1

2(v[k] + 1)2
p

[k]
i−1 + 4(v[k])2 + 2

2(v[k] + 1)2
p

[k]
i + 1

2(v[k] + 1)2
p

[k]
i+1,

p
[k+1]
2i+1 = 2v[k]

(v[k] + 1)2
p

[k]
i + 2v[k]

(v[k] + 1)2
p

[k]
i+1,

(33)

where the non-stationary parameter v[k] is defined as

v[k] = 1

2

(

e
i θ

2k+1 + e
−i θ

2k+1

)

=
√

1 + v[k−1]
2

, k ≥ 0, v[−1] = cos(θ) > −1.

The effect of the parameter θ on the exponential B-spline shape obtained when
starting the subdivision process from the δ sequence is illustrated in Fig. 12.

We remark that the above scheme is only generating exponential-polynomial
spaces but is not reproducing them. Yet, in [19, 22, 40] and [54], exponential-
polynomials reproducing schemes are provided. In the first two references, these
schemes are shown to generate conics, cardiod, lemniscate, astroid or nephroid as
shown in Fig. 13.

Similarly, bivariate non-stationary schemes reproducing quadrics are defined and
investigated for example in [44, 48, 49, 53]. Since the corresponding refinement
rules, in particular in case of extraordinary points, are non-trivial, we here simply
present some of the pictures from [53] in Fig. 14.
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1

Fig. 12 Basic limit functions for the scheme in (33) with θ ∈ {i, 3i, 5i, 7i} (left) and θ ∈
{3, 2.5, 2, 0} (right) (from lower to taller functions). Initial control polygon represented by a dashed
line

Fig. 13 Subdivision limit curves (full lines) and the initial control polygons (dashed line)
connecting points from a circle, a nephroid a lemniscate and a quadrifolium
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Fig. 14 First line: initial meshes. Second line: results obtained by applying 5 steps of the non-
stationary scheme in [53]

To conclude this section, we shortly discuss how non-stationary tension parame-
ters and level dependent rules can influence the shape of the subdivision limits. Let
us consider the interpolatory non-stationary scheme with the first two odd rules

p
[k+1]
2i+1 = 1

2
p

[k]
i−1 + 1

2
p

[k]
i , k = 0, 1, i ∈ Z, (34)

and then, for k > 1, for ω[k] chosen at random from the interval [ 3
64 ,

1
16 ], the odd

rules are given by

p
[k]
2i+1 = −ω[k]p[k]

i−2+ (
1

2
+ω[k])p[k]

i−1+ (
1

2
+ω[k])p[k]

i −ω[k]p[k]
i+1, k ≥ 2, i ∈ Z.

(35)
As shown in [10] by a JSR approach, the scheme based on (34) and (35) is C1-
convergent with Hölder exponent α ≥ − log2

3
8 ≈ 1.4150 and its basic limit

function is supported in [− 3
2 ,

3
2 ] while in the classical four point case the scheme

is known to be C1-convergent with Hölder exponent 2 − ε for any ε > 0 and the
support is [−3, 3] (see [32]). Figure 15 compares the two basic limit functions.

The last example shows that with a non-stationary interpolatory scheme it is
possible to obtain a C1 basic limit function of smaller support than in the stationary
interpolatory case.
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Fig. 15 Basic limit function of the 4-point scheme (red, dashed line), and of the scheme (34)–(35)
(blue, solid line)

3.2 Non-stationary Wavelets and Non-stationary Interpolatory
Subdivision Schemes

The construction of stationary orthonormal wavelets of compact support is closely
related to the DD-family of subdivision schemes. Such a Daubechies wavelet is
generated by the integer shifts of a refinable function, which is the basic limit
function of a subdivision scheme. The mask of this scheme is derived from the mask
of a corresponding DD-scheme, by taking an ‘almost square root’ of the symbol of
the DD-scheme. This is possible since the symbols of the DD-schemes are non-
negative on the unit circle (when z is replaced by exp(iθ), 0 ≤ θ < 2π ) [27]. This
construction has two analogues in the non-stationary setting.

The first analogoue is derived from interpolatory schemes that reproduce spaces
of exponential polynomials of finite dimension. In [40] non-stationary interpolatory
schemes reproducing spaces of 2n exponentials are shown to converge and their
smoothness is shown to be at least as that of the stationary DD-scheme repro-
ducing all polynomials of degree less than 2n. In [67] non-stationary wavelets
are constructed from non-stationary interpolatory subdivision schemes by a similar
procedure as in the stationary case, without a proof that this is indeed possible. These
wavelets were already used in the analysis of signals that are better approximated
by exponentials rather than by polynomials, such as signals that have their energy
concentrated around specific frequencies. For example in neurophysiology, such
wavelets are well-suited for the analysis of exponential pulses, corresponding to
different neurons. Proofs that the above construction is possible are given in [42].
Also given, are proofs showing that the smoothness of the non-stationary wavelets
related to spaces of real exponential polynomials is at least that of the corresponding
stationary wavelets.

The second analogue is derived from non-stationary interpolatory subdivision
schemes with masks of growing support. A simple example is the sequence of masks
of the DD-schemes (17), with n the subdivision level (see Sect. 4.3). Following the
construction in the stationary case, the basic limit function of the non-stationary
scheme with masks ‘almost square root’ of the masks of the DD-schemes, is the
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‘father’ wavelet. These wavelets, which are C∞ compactly supported, are suitable
for representing very smooth functions [13].

3.3 Image Segmentation: Active Contours and Active Surfaces

This section describes the use of non-stationary subdivision schemes in biological
imaging and relies on the work done by the group of M. Unser at EPFL, Switzerland.
Active contours or snakes, are tools for the segmentation of biomedical images. They
consist of an initial curve that progresses towards the boundary of the object of
interest guided by the minimization of an appropriate energy term. Relevant to our
discussion is that subdivision schemes can also be used to describe a contour by the
iterative application of refinement rules staring from an initial finite set of control
points. The discrete nature of the initial representation is convenient in practice.
It implicitly yields a continuously defined model whose properties depend on the
used subdivision scheme: its approximation order, its capability of reproducing
circular, elliptical, or polynomial shapes, its interpolating or approximating nature.
In particular, the capability of modelling ‘roundish’ objects is facilitated by non-
stationary schemes.

Therefore, as an alternative to the traditional approaches, in [2] subdivision
schemes are used to model a curve driven by a small set of ‘master’ points, called
control points, and a set of ‘slave’ points (generated by a specific subdivision
scheme) that describe the curve. The advantages of the use of subdivision schemes
are their simplicity of implementation and their multiresolution nature, so that the
contour of a shape can be represented at varying resolutions and result into a snake
be optimized in a coarse-to-fine fashion.

Based on similar ideas is the use of subdivision for the generation of active
surfaces, also called 3D deformable models used for the extraction of volumetric
structures. They consist of deformable surfaces that, starting from an initial
user-provided configuration, evolve toward the boundary of the 3D object. The
deformation can be manual or automatic. Certainly, a reasonable deformable model
must depend on a small number of control points (to reduce the complexity of
the deformation and to improves robustness), and must reproduce or approximate
ellipsoids. In [1] the authors propose a 3D deformable model obtained by applying
a tailored non-stationary subdivision scheme to a suitable coarse mesh with few
control points. The approach presents several advantages: First, surfaces of arbitrary
topological type can be handled; second, by simple modifications of the control
points, easy and localized interactions can be achieved; third, the implementation is
easy and cheap in virtue of the discrete nature of the scheme.
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4 Analysis Tools for Non-stationary Subdivision Schemes

In this section we consider analysis tools of non-stationary schemes and highlight
similarities and differences with the stationary case.

4.1 Masks of Fixed Support

First we consider analysis tools of non-stationary schemes for the case that all the
masks {a[k]}k≥0 have bounded support {0, ..., N} for some positive integer N , which
is the more common and studied situation. In this case the methods of analysis are
related to the analysis of stationary cases via the notion of asymptotic similarity
and asymptotic equivalence. We start by introducing the notion of asymptotic
equivalence (see [38]).

Definition 2 Let � ∈ N. The non-stationary schemes {Sa[k] }k≥0 and {Sb[k] }k≥0 are
said asymptotically equivalent of order � if they satisfy

∞
∑

k=0

2k�‖Sa[k] − Sb[k]‖∞ < ∞, (36)

where ‖Sa[k]‖∞ := maxε∈Ξs

{∑

α∈Zs |a[k](2α + ε)|} and Ξs := {0, 1}s .
Under an additional technical assumption on the schemes {Sa[k] }k≥0 and

{Sb[k] }k≥0, the regularity of {Sa[k] }k≥0 can be deduced from the known regularity
of the asymptotically equivalent scheme {Sb[k] }k≥0 with the method in [38]. Yet,
in [38] only the convergence of non-stationary schemes is derived by asymptotic
equivalence of order � = 0 to a stationary scheme. The asymptotic equivalence of
order � ≥ 1 is too strong for analyzing smoothness. For that the notion of smoothing
factors is introduced there.

Definition 3 Let the Laurent polynomials {A[k](z)}k≥0 be of the form

A[k](z) = 1

2
(1 + rkzλ)B[k](z), k ≥ K ≥ 0, λ ∈ N

s
0. (37)

The factors { 12 (1 + rkzλ)}k≥K are termed ‘smoothing factors’ if

rk = 2η2−k

(1 + εk) with η ∈ R and
∞
∑

k=K

|εk|2k < ∞.

Theorem 1 ([38, Theorem 10]) In the notation of Definition 3, if {B[k](z)}k≥0
corresponds to a Cm(Rs) non-stationary subdivision scheme then the basic limit
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functions of the non-stationary scheme with symbols {A[k](z)}k≥0 and their direc-
tional derivative in direction λ are also Cm smooth in Rs .

A direct consequence of Theorem 1 (see the remark below the statement of [38,
Theorem 10]) is:

Corollary 1 Let {A[k](z) = ∏s
i=1

1
2 (1+ rk,izλ

i )B(z)}k≥0 with s smoothing factors.
If the stationary scheme corresponding to B(z) is Cm(Rs) and if λ1, · · · , λs are
linearly independent vectors, then the basic limit functions of the non-stationary
scheme corresponding to {A[k](z)}k≥0 is Cm+1 smooth in Rs .

In [41], the condition of asymptotical equivalence is weaken, in the univariate
case, by requiring that the j -th derivatives of the symbols of the non-stationary
scheme {Sa[k] }k≥0 satisfy

|DjA[k](−1)| ≤ C2−(�+1−j)k, j = 0, . . . , �, � ≥ 0, C ≥ 0. (38)

Moreover, they assume that the non-stationary scheme is asymptotically equivalent
(of order 0) to some stationary scheme. The conditions in (38) are a generalization
of the so-called sum rules in (27). In the stationary case, sum rules are known to be
necessary for smoothness of subdivision (see e.g [5]), and also sufficient if the basic
limit function of the scheme is L∞-stable (see e.g. [39]).
In the spirit of (38) approximate sum rules are defined in [9]. They are a
generalization of the notion of sum rules.

Definition 4 Let � ≥ 0. The sequence of symbols {A[k](z)}k≥0 satisfies approxi-
mate sum rules of order � + 1, if

μk := |A[k](1s) − 2s | and δk := max|η|≤�
max

ε∈Ξ ′\{1s }
|2−k|η|DηA[k](ε)| (39)

satisfy

∞
∑

k=0

μk < ∞ and
∞
∑

k=0

mk� δk < ∞ . (40)

Note that if the sequences {μk}k≥0 and {δk}k≥0 (called sum rule defects) are
zero sequences, the corresponding non-stationary symbols satisfy sum rules of order
� + 1.

We continue by introducing a weaker relation than asymptotical equivalence
termed asymptotic similarity (generalization of the one given in [16]) relating the
properties of non-stationary subdivision schemes to the corresponding properties of
certain stationary schemes.

Definition 5 ([9]) For the mask sequence {a[k]}k≥0 we denote by L the set of masks
which are accumulation points of this sequence,
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a ∈ L, if ∃{kn, n ∈ N} such that lim
n→∞ a[kn] = a .

Definition 6 Two non-stationary schemes {Sa[k] }k≥0 and {Sb[k] }k≥0 are called
asymptotically similar, if the corresponding sets of accumulation points coincide.

We already observed in Sect. 2.4 that in the stationary case, the rate of convergence
of the corresponding subdivision scheme Sa and the Hölder regularity of the
subdivision limits, can be given in terms of the joint spectral radius of the collection
of certain matrices derived from the subdivision mask a and linked to the order of
sum rules satisfied by the associated symbol A(z) (see also [52, 60]).

In the non-stationary setting the joint spectral radius has no straightforward gen-
eralization and is not directly applicable. Hence, in [9] a link between the stationary
and non-stationary settings is established based on the sets of accumulation points
L of {a[k]}k≥0, and sufficient conditions for C�-convergence and Hölder regularity
of non-stationary schemes are provided. As in the level independent case, each
mask in the set L determines a set of transition matrices. The restrictions of all
these transition matrices to a certain finite dimensional difference subspace (denoted
by V�) is denoted by TL|V�

. Theorem 2 states that C�-convergence and Hölder
regularity of non-stationary schemes is obtained via the joint spectral radius ρL
of the collection of matrices TL|V�

.

Theorem 2 ([9, Theorem 2]) Let � ∈ N and let {δk}k≥0 be defined in (39). Assume
that the symbols of {Sa(k)}k≥0 satisfy approximate sum rules of order � + 1 and
that ρL := ρ

(

TL|V�

)

< 2−�. Then the non-stationary scheme {Sa[k] }k≥0 is C�-
convergent and the Hölder exponent α of its limit functions satisfies

α ≥ min
{

− log2 ρL , − lim sup
k→∞

log2 δk

k

}

.

In the univariate case more results are available. In [23] and also in [14],
the link between approximate sum rules, generation/reproduction of exponential
polynomials and approximation order is investigated, in the univariate case. In
fact, the authors show that the property of reproducing N exponential polynomials
implies approximate sum rules of order N and even approximation order N if
asymptotic similarity to a convergent stationary scheme is assumed. Moreover,
under asymptotic similarity to a convergent stationary scheme and reproduction of
one exponential polynomial, the property of generating N exponential polynomials
implies approximate sum rules of order N . The property of generating exponential
polynomials guarantees the existence of difference operators exactly as in the
stationary case. Moreover, approximate sum rules of order N and asymptotic
similarity to a stationary CN−1 subdivision scheme provide sufficient conditions
for CN−1 regularity of non-stationary subdivision schemes.

These results are stated in the next theorems where for Λ ⊂ C and Γ (Λ) =
{ν(λ) : λ ∈ Λ} ⊂ N0, the space EPΓ (Λ),Λ, is defined as
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EPΓ (Λ),Λ := {xj eλ x : j = 0, . . . , ν(λ) − 1, λ ∈ Λ, ν(λ) ∈ Γ (Λ)}, (41)

and denoted as EPΓ,Λ, for short. Obviously, its dimension is

dim
(

EPΓ,Λ

) =
∑

λ∈Λ

ν(λ).

Theorem 3 ([23, Theorem 10]) Let {A[k](z)}k≥0 be the Laurent polynomials
associated with a univariate non-stationary scheme which reproduces a space of
univariate exponential polynomials EPΓ,Λ. If dim

(

EPΓ,Λ

) = N , then, for any
� = 0, · · · , N − 1, we have

|A[k](1) − 2| = O(2−kN ),

∣

∣

∣

∣

d�

dz�
A[k](−1)

∣

∣

∣

∣
= O(2−k(N−�)), k → ∞.

(42)

Theorem 4 ([23, Theorem 13]) Let {A[k](z)}k≥0 be the Laurent polynomials asso-
ciated with a non-stationary subdivision scheme which generates the exponential
polynomials space EPΓ,Λ of dimension N , and reproduces one f ∈ EPΓ,Λ.
Moreover, let limk→∞ a[k] = a with Sa a convergent stationary subdivision scheme.
Then, for any � = 0, · · · , N − 1, we have

|A[k](1)−2| = O(2−k),

∣

∣

∣

∣

d�

dz�
A[k](−1)

∣

∣

∣

∣
= O(2−k(N−�)), k → ∞. (43)

Theorem 5 ([14, Theorem 4.3]) Assume that a convergent non-stationary scheme
reproduces the exponential polynomials in the N -dimensional space EPΓ,Λ.
Assume further that limk→∞ a[k] = a with Sa a convergent stationary scheme.
Then, for any initial data of the form f[0] := {f (2−mi)}i∈Z for an integer m ≥ 0
with f ∈ W

γ∞(R), γ ∈ N, the approximation error is bounded by

‖gf[0] − f ‖∞ ≤ cf 2
−min(γ ,N)m , (44)

with cf > 0 denoting a constant depending on f but not on m.

Extension of Theorems 3, 4 to the multivariate setting is still to be done. Some
extension of Theorem 5 is in [53].

To conclude we recall the conditions non-stationary schemes need to satisfy
to generate and reproduce (in the sense of (7) and (6)) exponential-polynomial
functions, that is functions in the space

EPΓ,Λ := {xγ eλ·x : γ ∈ Γ, λ ∈ Λ}, Γ ⊂ N
s
0, Λ ⊂ C

s .

In fact, both generation and reproduction of exponential-polynomials can still be
characterised in terms of algebraic conditions involving the parameter values
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{t[k]
α = 2−k(α + τ ), }α∈Zs , with τ = (τ 1, τ 2) in case s = 2.

The conditions are in terms of the symbols {A[k](z)}k≥0 evaluated at

Vk={(v1, . . . , vs)
T : vj=εj e

−(2−(k+1)λj ), λ=(λ1, . . . , λs) ∈ Λ, ε ∈ {−1, 1}s },

and are collected in the following Theorem (taken from [11]) with the notation vτ =
v

τ 1
1 · · · vτs

s for γ = (γ 1, . . . , γ s ∈ N
s
0. There a non-singular scheme is a scheme

generating limits identically equal to zero, only from zero initial data.’

Theorem 6 ([11, Theorem 4.7]) A non-singular subdivision scheme {Sa[k] }k≥0
reproduces EPΓ,Λ if and only if there exists a parameter τ ∈ R

s such that for
all v ∈ Vk , k ≥ 0, γ ∈ Γ ⊂ N0,

vγ DγA[k](v) =
{

2 · vτ qγ (τ ), for all v corresponding to ε = 1s ,

0, otherwise,
(45)

where qγ is the polynomial of degree |γ |, γ ∈ N
s
0, given by

q0(z) := 1, qj(z1, . . . , zs) :=
s

∏

i=1

γ i−1
∏

�i=0

(zi − �i), γ = (γ 1, . . . , γ s). (46)

4.2 Non-stationary Schemes with Extraordinary Vertices/Faces

The analysis of a level-dependent subdivision scheme in the neighborhood of an
irregular vertex/face is very challenging. The main difficulties are due to the fact
that any approach based on the spectral analysis of the subdivision matrix and on the
study of the characteristic map is not applicable. Indeed, no general tools to analyze
non-stationary subdivision schemes at irregular vertices/faces were available till
very recently. The only contributions to this analysis are the very recent paper [17]
and the work of Jena et al. in [48], where a specific scheme is considered. In [17]
a general procedure to check if a non-stationary subdivision scheme is convergent
in the neighborhood of an extraordinary vertex/face is given. Moreover, sufficient
conditions for the limit surface to be tangent plane continuous at the limit point
of an extraordinary vertex/face are also given in that paper. Below we report both
results.

We recall that the problem of extraordinary points occurs in the generation of
surfaces that is in the case s = 2 and that we can restrict our analysis to meshes with
a single extraordinary element surrounded by ordinary vertices (see [63]).

At each step, in the neighborhood of an irregular vertex/face, a subdivision
algorithm relating the vertices of the k-th level mesh with those of the next level
k + 1, can be conveniently encoded in the rows of a local subdivision matrix Mk
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whose dimension depends on the valency of the vertex. If the scheme is level-
independent each step of the subdivision algorithm can be conveniently encoded in
the rows of one local subdivision matrix M . The dimension of this matrix depends
on the valency of the extraordinary vertex, too.

Theorem 7 ([17, Theorem 4.1]) Let S be a non-singular, non-stationary subdivi-
sion scheme whose action in an irregular region is described by a matrix sequence
{Mk}k≥0. Let S be also rotationally symmetric. Moreover, let S̄ be a rotationally
symmetric, stationary subdivision scheme associated with the matrix M in the same
irregular region. If,

(i) S̄ is convergent both in regular and irregular regions,
(ii) S is asymptotically equivalent to S̄ in regular region,
(iii) in the irregular regions, for all k ≥ 0, the matrices Mk and M satisfy

‖Mk − M‖∞ ≤ C
σk with C a constant (0 < C < ∞) and σ > 1,

then, for all initial data the non-stationary subdivision scheme S is convergent, both
in regular regions and in the irregular one.

To understand the next result we recall from [17] that the iterated refinement of a
surface subdivision scheme in the neighborhood of an irregular element generates a
sequence of surface rings {Rk}k≥1 corresponding to regular points which covers all
of the surface except for the ‘central’ point which is the limit of the extraordinary
vertex or face.

Theorem 8 ([17, Theorem 4.2]) Let S be as in Theorem 7. Assume in the regular
patch ring Rk+1 the action of S is described by a vector Φk+1(u, v) consisting of
all the basic limit functions of S whose support intersect Rk+1. Moreover, let S̄ be
as in Theorem 7 associated with a matrix M in the same irregular region. Under the
conditions:

(i) S̄ is C1-convergent in regular regions and its symbol A(z) contains the factor
(1 + z1)(1 + z2);

(ii) in regular regions S is defined by the symbols {A(k)(z)}k≥0 where eachA(k)(z)
contains the factor (1 + z1)(1 + z2);

(iii) in regular regions S is asymptotically equivalent of order 1 to S̄;
(iv) the eigenvalues of M are λ0 = 1, 0 < λ1 < 1, and the rest have absolute value

less than λ1;
(v) in the irregular regions, for all k ≥ 0, the matrices Mk and M satisfy, ‖Mk −

M‖∞ ≤ C
σk with C some constant (0 < C < ∞) and σ > 1

λ1
> 1;

(vi) the entries of Φk+1(u, v) sum up to 1;

the surface generated by S is normal continuous.
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4.3 Masks of Growing Support

This section is devoted to a short description of non-stationary univariate sub-
division schemes based on masks with growing supports. This is an important
example of the potential strength of non-stationary schemes, since it allows for the
generation of basic limit functions with high regularity and small support. For details
concerning the analysis of these types of schemes and some of their applications we
refer the reader to [13] and [33]. The analysis of smoothness of the schemes in these
papers is based on the growing number of smoothing factors in their symbols and on
Fourier analysis. The application is the generation of C∞ multiresolution analysis
with high approximation order and the generation of C∞ compactly supported
wavelets [13, 43].

The most famous example of a subdivision scheme of this type is given by the
one based on the masks in (14) with n the subdivision level. As shown in [33], the
basic limit function φ0 is the Rvachev’s up-function which is C∞ and supported on
[0, 2], [56]. The first three steps of this scheme are depicted in the next Fig. 16.

A similar example of C∞ compactly-supported basic limit functions can be
obtained if each A[k](z) is a product of k smoothing factors (see Definition 3). In
this example the support is also [0, 2].

Another nice example is given by the interpolatory non-stationary scheme based
on the masks (18) again with n the subdivision level (see [13, 33, 43]). The basic
limit function φ0 is a function which is C∞ and supported in [−3, 3]. The first three
steps of this scheme are shown in Fig. 17.

Fig. 16 Three steps of the scheme with masks (14) with n the subdivision level (initial points in
magenta)

Fig. 17 Three steps of the scheme with masks (18) with n the subdivision level (initial points in
magenta)
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5 Open Problems in Non-stationary Subdivision

This closing section provides a short overview of open problems—specifically for
non-stationary subdivision schemes—that are important to consider in the near
future. Yet, due to space reasons, it will not be a detailed description as the one
in the recent paper [59] related to the stationary case. Topics are listed in order of
difficulty, with respect to the authors’ point of view.

– Bivariate results: from Sect. 4.1 it is evident that many results on conver-
gence/regularity and approximation order are available in the univariate case
only. Their extension to the bivariate setting is important. Also, construction of
bivariate non-stationary interpolatory subdivision schemes and wavelets based
on them is a topic that deserves further study;

– Applications: exponential reproducing non-stationary schemes could be used
more extensively in image processing and highly smooth wavelets, as in [13],
could be applied to real-world problems where the analysed functions are of high
smoothness;

– Artefacts and unexpected behaviour of subdivision curves/surfaces: it would be
important to better investigate the use of non-stationary tension parameters to
tune and control subdivision surfaces;

– New tools for analysis of non-stationary schemes: we believe that to escape from
the notions of asymptotic similarity or asymptotic equivalence would give a great
impulse to non-stationary schemes;

– Increase the smoothness at extraordinary vertices of subdivision surfaces: we
suppose that the possibility of changing the rule coefficients with the iterations
can be crucial to overcome the limitation of stationary schemes that are limited
to C1-smoothness at extraordinary vertices. The key idea for increasing the
smoothness, is to allow the involvement of more and more points, i.e. the use
of masks of growing support (see Sect. 4.3).
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