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Abstract Interpolation and approximation of functionals with conditionally pos-
itive definite kernels is considered on sets of centers that are not determining
for polynomials. It is shown that polynomial consistence is sufficient in order to
define kernel-based numerical approximation of the functional with usual properties
of optimal recovery. Application examples include generation of sparse kernel-
based numerical differentiation formulas for the Laplacian on a grid and accurate
approximation of a function on an ellipse.
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1 Introduction

Let Ω be a set and P a finite dimensional space of functions on Ω . A function K :
Ω ×Ω → R is said to be a conditionally positive definite kernel with respect to P if
for any finite set X = {x1, . . . , xn} ⊂ Ω the quadratic form

∑n
i,j=1 cicjK(xi, xj )

is positive for all c ∈ Rn \ {0} such that
∑n

i=1 cip(xi) = 0 for all p ∈ P [9].
Given data (xj , fj ), j = 1, . . . , n, with xj ∈ Ω , fj ∈ R, a sum of the form

σ(x) =
n∑

j=1

cjK(x, xj ) + p̃, cj ∈ R, p̃ ∈ P (1)

can be used to solve the interpolation problem

σ(xi) = fi, i = 1, . . . , n. (2)
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Moreover, a solution of (2) satisfying the condition

n∑

j=1

cjp(xj ) = 0 for all p ∈ P, (3)

can always be found [9, p. 117]. This solution is unique if X is a determining set for
P , that is p ∈ P and p|X = 0 implies p = 0.

In meshless finite difference methods, conditionally positive definite kernels with
respect to spaces of polynomials are often used to produce numerical approxima-
tions of linear functionals

λf ≈
n∑

i=1

wif (xi), wi ∈ R, (4)

such as the value λf = Df (x) of a differential operator D applied to a function f

at a point x ∈ Ω . If the interpolant σ = σf satisfying (1)–(3) with fi = f (xi) is
uniquely defined, then the weights wi of (4) can be obtained by the approximation
λf ≈ λσf , which leads to the conditions

n∑

j=1

wjK(xi, xj ) + p̃(xi) = λ′K(xi), i = 1, . . . , n, for some p̃ ∈ P, (5)

n∑

i=1

wip(xi) = λp for all p ∈ P, (6)

where λ′K : Ω → R is the function obtained by applying λ to the first argument of
K . The weights wi are in this case uniquely determined by the conditions (5)–(6).
In particular, by introducing a basis for the space P , we can write both (1)–
(3) and (5)–(6) as systems of linear equations with the same matrix which is
non-singular as soon as X is a determining set for P . Solving this system is
the standard way to obtain the weights wi , see e.g. [7]. It is demonstrated in
[1] that the weights satisfying (5)–(6) for a polyharmonic kernel K significantly
improve the performance of meshless finite difference methods in comparison to the
weights obtained by unconditionally positive definite kernels such as the Gaussian.
In addition, these weights provide optimal recovery of λf from the data f (xi),
i = 1, . . . , n, on spaces of functions of finite smoothness, see e.g. [9, Chapter 13].

An alternative interpretation of (5)–(6) is that the approximation (4) of λf is
required to be exact for all f = σ in the form (1) with coefficients cj satisfying (3).
Indeed, this can be easily shown with the help of the Fredholm alternative for
matrices, see Theorem 1 below. In particular, (6) already expresses exactness of (4)
for all elements of P . In the case when Ω is a domain in Rd and P is a space
of d-variate polynomials, (6) can be used to obtain error bounds for the numerical
differentiation with weights wi , see e.g. [5, 6].
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However, exactness (6) for p ∈ P is sometimes achievable without X being
a determining set for P . We then say that X is P-consistent for λ. The best known
examples are the Gauss quadrature when λf = ∫ b

a
f (x) dx and the five point stencil

for the two-dimensional Laplacian. Moreover, P -consistent sets with n significantly
smaller than the dimension of P often can be used for the numerical discretization
of the Laplace operator on gridded nodes in irregular domains, leading to sparser
differentiation matrices [3].

In this paper we study numerical approximation formulas (4) obtained by
requiring exactness conditions (5)–(6) on “deficient” sets X that are not determining
for P .

Our main result (Theorem 2 and Corollary 1) shows that a unique formula
satisfying these conditions exists as soon asX is P -consistent. Another consequence
is that the coefficients cj of the interpolant (1) are uniquely defined for any X

(Corollary 2). Numerical differentiation formulas obtained in this way provide
optimal recovery on native spaces of the kernels. We also discuss computational
methods for the weights of the formula (4) and coefficients of the interpolant (1).
In particular, a null space method can be used for the saddle point problems (5)–(6)
or (1)–(3) even if in the case of deficient sets they do not satisfy restrictions usually
required in the literature [2].

In the last section we describe two types of deficient sets that arise naturally
in applications. First, deficient subsets of a grid may be used for numerical
differentiation of the Laplacian (Sect. 3.1). Second, function values and differential
operators on algebraic surfaces, in this case an ellipse, may be approximated using
data located on the manifold, which are necessarily deficient sets for polynomials in
the ambient space of degree at least the order of the surface (Sect. 3.2). In both cases,
numerical results demonstrate a robust performance of the suggested numerical
methods, and a reasonable approximation quality of the polyharmonic kernels we
employ in the experiments.

2 Approximation on Deficient Sets

We assume that K : Ω × Ω → R is a conditionally positive definite kernel with
respect to a linear space P of functions on Ω , with dimP = m. Let {p1, . . . , pm}
be a basis for P . By writing p̃ = ∑m

j=1 vjpj , vj ∈ R, conditions (5)–(6) give rise
to a linear system with respect to wj and vj , in block matrix form,

[
KX PX

P T
X 0

]

·
[

w

v

]

=
[

a

b

]

, (7)

where

KX = [K(xi, xj )]ni,j=1, PX = [pj (xi)]n,m
i,j=1,
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w = [wj ]nj=1, v = [vj ]mj=1, a = [λ′K(xi)]ni=1, b = [λpj ]mj=1.

Condition (3) in matrix form is

P T
X c = 0, c = [cj ]nj=1,

that is c belongs to the null space N(P T
X ) of P T

X . Since

PXv = [p̃(xi)]ni=1, p̃ =
m∑

j=1

vjpj ,

we see that the condition that X is a determining set for P is equivalent to N(PX) =
0.

We show that the conditions (5)–(6) express the exactness of (4) for the sums σ

conditional on (3), even when X is a deficient set for P , that is N(PX) �= 0. Recall
that this condition is equivalent to R(P T

X ) �= Rm, where R(A) denotes the range of
a matrix A.

Theorem 1 Let X = {x1, . . . , xn} ⊂ Ω . An approximation formula (4) satisfies
the exactness condition λσ = ∑n

i=1 wiσ(xi) for all sums σ in the form (1) with
coefficients cj satisfying (3) if and only if (5)–(6) holds for the weights wi , i =
1, . . . , n.

Proof The exactness condition is

n∑

j=1

cjλ
′K(xj ) + λp =

n∑

j=1

cj

n∑

i=1

wiK(xi, xj ) +
n∑

i=1

wip(xi)

for all c = [cj ]nj=1 satisfying (3) and all p ∈ P . In particular, for c = 0 we
obtain (6), and rewrite the condition as

n∑

j=1

cj

(
λ′K(xj ) −

n∑

i=1

wiK(xi, xj )
)

= 0 for all c ∈ N(P T
X ).

By the Fredholm alternative for matrices this is equivalent to

[
λ′K(xj ) −

n∑

i=1

wiK(xi, xj )
]n

j=1
∈ R(PX),

which is in turn equivalent to (5) in view of the symmetry of the kernel K . �	
Linear systems of the type (7) have been extensively studied under the name of

equilibrium equations [8, Section 4.4.6] or saddle point problems [2] because they
arise in many application areas. Our approach below is a variation of the null space
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techniques described in [2, Section 6]. However, usual assumptions that n ≥ m, KX

is positive semidefinite and PX has full column rank are not satisfied in our case of
interest.

As long as X is a deficient set, R(P T
X ) �= Rm and hence the solvability of

P T
X w = b cannot be guaranteed for all b. Nevertheless, should this last equation

have a solution for w, there is a unique weight vector w satisfying (7).

Theorem 2 There is a unique vector w satisfying (7) if and only if b ∈ R(P T
X ).

Proof The necessity of the condition b ∈ R(P T
X ) is obvious. To show the

sufficiency, assume that P T
X w0 = b for some w0 ∈ Rn. Then the solution w must

satisfy P T
X (w − w0) = 0 if it exists, so we look for w in the form

w = w0 + ũ, ũ ∈ N(P T
X ).

Let M be a matrix whose columns form a basis for N(P T
X ). Then ũ = Mu for some

vector u, and we may write (7) equivalently as a linear system with respect to u

and v,

KXMu + PXv = a − KXw0. (8)

Since MT PX = 0, it follows that

MT KXMu = MT (a − KXw0). (9)

Since K is conditionally positive definite, the matrix MT KXM is positive definite,
and hence there is a unique u determined by the last equation. The existence of some
v ∈ Rm such that (8) holds is equivalent to the claim that KXMu − a + KXw0 ∈
R(PX). This claim follows from the Fredholm alternative since (9) implies that
KXMu−a+KXw0 ⊥ N(P T

X ). Thus, u and v satisfying (8) exist, and u is uniquely
determined. Then w = w0 + Mu is a unique vector satisfying (7). �	
Remark 1 Theorem 2 is valid for any linear system (7) with arbitrary matrices A

and B replacing KX and PX, respectively, and arbitrary a, b, as soon as A is definite
on N(BT ), that is xT Ax �= 0 for all x ∈ N(BT )\{0}. Indeed, this condition implies
that MT AM is non-singular and hence the argument in the proof goes through.

As long as the condition b ∈ R(P T
X ) is satisfied, the weight vector w may be

found by any solution method applicable to the system (7), for example via the
pseudoinverse of its matrix when it is singular. Alternatively, we may use the null
space matrix M of the above proof and find w from the linear system

[
MT KX

P T
X

]

w =
[

MT a

b

]

, (10)
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which is in general overdetermined but has full rank because its solutionw is unique.
Indeed, any solution w of (10) satisfied (7) for some v since MT KXw = MT a

implies KXw−a ⊥ N(P T
X ) and thus KXw−a ∈ R(PX). We refer to [2, Section 6]

for the computational methods for the null space matrix M . One obvious possibility
is to employ the right singular vectors of PX, see [8, Eq. (2.5.4)]. Should v be
needed, it can be computed as a solution of the consistent linear system

PXv = a − KXw. (11)

For example we can use

v = P +
X (a − KXw), (12)

where P +
X denotes the Moore-Penrose pseudoinverse of PX, is the unique v with the

smallest 2-norm.
We formulate two immediate consequences of Theorem 2 for the numerical

approximation of functionals and for the interpolation. Note that (1)–(3) can be
written in the form (7) with w replaced by c, a = [fi]ni=1, and b = 0. In particular,
the condition 0 ∈ R(P T

X ) of Theorem 2 is trivially satisfied.

Corollary 1 For any X and λ there is a unique numerical approximation for-
mula (4) satisfying (5)–(6) as soon as (6) is solvable.

Corollary 2 For any data (xj , fj ), j = 1, . . . , n, one or more interpolants σ

satisfying (1)–(3) exist and their coefficients cj , j = 1, . . . , n, are uniquely
determined.

Thanks to Theorem 1 we also obtain the property known for the case of a
determining set X that the approximation λf ≈ ∑n

i=1 wif (xi) can be found by
requiring λf ≈ λσ for any interpolant σ of Corollary 2 with fi = f (xi).

Looking specifically at numerical differentiation, consider the case when Ω =
Rd , λf = Df (x) for a linear differential operator D of order k and x ∈ Rd ,
and P = Pd

q , the space of d-variate polynomials of total order at most q

(that is, total degree at most q − 1) for some q ∈ N. Any kernel K that is
conditionally positive definite with respect to P generates a native semi-Hilbert
space F(K,P ) of functions on Ω with null space P , see e.g. [9]. By inspecting
the arguments in Section 2 and Lemma 6 of [4], we see that thanks to Corollary 1,
the optimal recovery property of the weights wi defined by (5)–(6) remains valid for
deficient sets X = {x1, . . . , xn}. More precisely, the worst case error of numerical
differentiation formulas on the unit ball of Fq(K) := F(K,Pd

q),

E(u) := sup
f ∈Fq (K)

‖f ‖Fq (K)≤1

∣
∣Df (x) −

n∑

i=1

uif (xi)
∣
∣,

can be computed as
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E2(u) = D′D′′K(x, x) −
n∑

i=1

ui

(
D′K(x, xi) + D′′K(xi, x)

)

+
n∑

i,j=1

uiujK(xi, xj ).

(13)

The weight vector w has the optimal recovery property in the sense that it satisfies

E(w) = min
{
E(u) : u ∈ Rn, Dp(x) =

n∑

i=1

uip(xi) for all p ∈ Pd
q

}
(14)

as soon as the mixed partial derivatives of K exist at (x, x) ∈ Rd × Rd up to the
order k in each of both d-dimensional variables, and X is such that there exists a
vector u ∈ Rn with polynomial exactness

Dp(x) =
n∑

i=1

uip(xi) for all p ∈ Pd
q .

We use here D′ and D′′ to indicate when λf = Df (x) acts on the first, respectively,
the second argument of K .

Note that the equality-constrained quadratic minimization problem (14) provides
an alternative way of computing the optimal weight vector on a deficient set. By
Theorem 2 we know that its solution w is unique as soon as the feasible region is
non-empty.

3 Examples

In this section we illustrate Corollaries 1 and 2 on particular examples where
deficient sets X seem useful.

We consider the polyharmonic kernels Ks,d : Rd ×Rd → R, defined for all real
s > 0 by Ks,d(x, y) = ϕs(‖x − y‖2), where

ϕs(r) := (−1)�s/2�+1
{

rs log r, if s is an even integer,
rs, otherwise.

(15)

The kernel Ks,d is conditionally positive definite with respect to Pd
q for all q ≥

�s/2� + 1. We cite [6, 9] and references therein for further information on these
kernels. If m = (s + d)/2 is an integer and q is chosen equal to m, then the native
space Fm(Ks,d) coincides with the Beppo-Levi space BLm(Rd), see [9, Theorem
10.43]. For any q ≥ �s/2� + 1, the space Fq(Ks,d) can be described with the help
of the generalized Fourier transforms as in [9, Theorem 10.21]. By the arguments in
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Sect. 2, formulas (13) and (14) apply to Ks,d as soon as s > 2k, where k is the order
of the differential operator D.

3.1 Numerical Differentiation of Laplacian on a Grid

We are looking for numerical differentiation formulas of the type

Δf (0) ≈
∑

α∈Zd,r

wαf (α), Zd,r := {α ∈ Zd : ‖α‖2 ≤ r}, r > 0, (16)

whereΔ is the LaplacianΔf = ∑d
i=1 ∂2f /∂x2

i . The setZd,r for 0 ≤ r < 1 consists
of the origin only and hence is not useful for the approximation of the Laplacian.
For r = 1 we have Zd,1 = {0,±e1, . . . ± ed}, where ei is the i-th unit vector in Rd ,
and

Δf (0) ≈ −2df (0) +
d∑

i=1

f (ei) +
d∑

i=1

f (−ei) (17)

is the classical numerical differentiation formula exact for all cubic polynomials
f = p ∈ Pd

4 . Hence (6) is solvable for all X = Zd,r , r ≥ 1, if P = Pd
4 .

According to Corollary 1, we have computed the unique weights of the for-
mula (16) satisfying (5)–(6) for the kernel K7,d , P = Pd

4 and X = Zd,r for
all d = 2, . . . , 5 and r = 1,

√
2,

√
3, 2. As a basis for Pd

4 we choose ordinary
monomials. However, the computation is performed using the rescaling of X as
X/r according to the suggestion in [5, Section 6.1]

Table 1 presents information about the size |X| of X, dimensions of the null
spaces of PX and P T

X , the optimal recovery error (14) on F4(K7,d ), the stability
constant of the weight vector ‖w‖1 = ∑n

i=1 |wi |, and the condition number cond

of the system (10) we solved in order to compute the weights for r �= 1. A smaller
optimal recovery error indicates better approximation quality, whereas ‖w‖1 and
cond measure the numerical stability of the formulas. Note that dimN(P T

X ) = 0
for r = 1, which means that (17) is the only solution of (6) in this case, and hence
it provides the optimal recovery on F4(K7,d ). For r = 2 we have dimN(PX) = 0
and it follows that Zd,2 is a determining set for Pd

4 . For r = √
2,

√
3 we obtain

examples of optimal recovery weights on deficient sets, with dimN(PX) being the
dimension of the affine space of weight vectors satisfying the polynomial exactness
condition (6). These new weights seem to provide a meaningful choice for the two
intermediate sets between the classical polynomial stencil on Zd,1, and the standard
polyharmonic weights on the determining set Zd,2. Indeed, as expected, the optimal
recovery error E(w) reduces when |X| increases, whereas the stability constant and
condition numbers tend to increase.
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Table 1 Numerical
differentiation of Laplacian
on a grid: |X| is the
cardinality of X,
dN = dimN(PX),
dNt = dimN(P T

X ), E(w) is
given by (13), and cond is the
condition number of the
matrix of (10)

r |X| dN dNt E(w) ‖w‖1 cond

d = 2, X = Z2,r , dimP2
4 = 10

1 5 5 0 13.4 8.0 –√
2 9 2 1 10.6 13.5 2.0e+02√
3 9 2 1 10.6 13.5 2.0e+02

2 13 0 3 7.4 11.8 3.9e+02

d = 3, X = Z3,r , dimP3
4 = 20

1 7 13 0 17.2 12.0 –√
2 19 4 3 12.3 22.7 3.8e+02√
3 27 3 10 12.4 24.8 2.5e+03

2 33 0 13 9.0 30.1 5.1e+03

d = 4, X = Z4,r , dimP4
4 = 35

1 9 26 0 20.8 16.0 –√
2 33 8 6 14.0 31.8 5.7e+02√
3 65 4 34 13.9 39.7 6.9e+03

2 89 0 54 10.4 40.5 3.1e+04

d = 5, X = Z5,r , dimP5
4 = 56

1 11 45 0 24.2 20.0 –√
2 51 15 10 15.6 40.9 7.7e+02√
3 131 5 80 15.4 56.4 1.3e+04

2 221 0 165 11.7 55.0 9.0e+04

3.2 Interpolation of Data on Ellipse

In this example we compute the kernel interpolant (1) satisfying (3) and σ(xi) =
f (xi), i = 1, . . . , n, for the test function f : R2 → R given by

f (x, y) = sin(πx) sin(πy).

We use the polyharmonic kernels Ks,2 and P = P2
q for the pairs

(s, q) = (5, 3), (7, 4), (9, 5),

and choose sets X with n = |X| = 5 · 2i , i = 0, 1, . . . 6, on the ellipse E with
half-axes a = 1 and b = 0.75 centered at the origin. The sets are obtained by
first choosing parameter values ti = ih, i = 0, . . . , n − 1, where h = 2π/n,
then adding to each ti a random number εi with uniform distribution in the interval
[−0.3h, 0.3h], and selecting xi = (

a cos(ti + εi), b sin(ti + εi)
)
. The first two sets

used in our experiments are shown in Fig. 1.
Since X ⊂ E and there exists a nontrivial quadratic polynomial p ∈ P2

3 that
vanishes on E ,

p(x, y) = x2/a2 + y2/b2 − 1,
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Fig. 1 Interpolation of data on ellipse: The sets X with |X| = 5 (left) and 10 (right)

all sets X are deficient for P2
q , q ≥ 3. Nevertheless, according to Corollary 2,

the coefficients cj of the interpolant σ in (1) are uniquely determined and can be
computed by solving the system (10). A polynomial p̃ of (1), p̃ = v1p1 + · · · +
vmpm, can be computed by solving (11). We will use the pseudoinverse as in (12),
but in fact the polynomial p̃ is uniquely determined on the ellipse E as soon as n ≥
2q −1. Indeed, if both p̃1, p̃2 ∈ P2

q satisfy (11), and p̃1− p̃2 = u1p1+· · ·+umpm,
then PXu = 0, which implies (p̃1 − p̃2)|X = 0. Hence x1, . . . , xn are intersection
points of the ellipse and the zero curve of p̃1− p̃2, an algebraic curve of order q −1.
By Bezout theorem, this curve must contain E as soon as n > 2(q − 1), which
implies p̃1|E = p̃2|E .

Thus, σ |E is well defined as soon as |X| ≥ 5 for q = 3, |X| ≥ 7 for q = 4
and |X| ≥ 9 for q = 5. We are using σ(x) as an approximation of f (x) for x ∈ E .
Moreover, we also approximate the surface gradient

∇Ef (x) := ∇f (x) − ∇f (x)T ν(x) · ν(x), x ∈ E,

where ν(x) is the unit outer normal to E at x. The surface gradient ∇Ef (x)

can either be approximated by ∇Eσ(x), or by using a numerical differentiation
formula (4), with the same result. For each X, except of |X| = 5 for q = 4, 5,
we evaluated the maximum error of the function and surface gradient,

max = max
x∈E

|f (x) − σ(x)|,
maxg = max

x∈E
‖∇Ef (x) − ∇Eσ(x)‖2,

by sampling the parameter t of the ellipse
(
a cos t, b sin t

)
, t ∈ [0, 2π), equidistantly

with the step h/20. The results are presented in Table 2, where we also included
the condition number cond of the system (10). Note that we translate and scale X

using its center of gravity z, and perform the computations with Ks,2 and ordinary
monomials on the set Y = (X − z)/max{‖xi − z‖2 : i = 1, . . . , n}, in order
to improve the condition numbers. The results in the table demonstrate a fast
convergence of the interpolant σ and its surface gradient to f and ∇Ef . Note
that although the condition numbers become high when the set X fills the ellipse



Conditionally Positive Definite Kernels on Deficient Sets 37

Ta
bl
e
2

In
te
rp
ol
at
io
n
of

a
te
st
fu
nc
tio

n
on

an
el
lip

se
us
in
g
th
e
ke
rn
el

K
s,
2
an
d

P
=

P
2 q
:|X

|is
th
e
ca
rd
in
al
ity

of
X
,m

a
x
an
d

m
a
x
g
ar
e
th
e
m
ax
im

um
er
ro
rs

of
th
e
fu
nc
tio

n
or

th
e
su
rf
ac
e
gr
ad
ie
nt
,r
es
pe
ct
iv
el
y,
an
d

c
o
n
d
is
th
e
co
nd
iti
on

nu
m
be
r
of

th
e
m
at
ri
x
of

(1
0)

s
=

5,
q

=
3

s
=

7,
q

=
4

s
=

9,
q

=
5

|X
|

m
a
x

m
a
x
g

c
o
n
d

m
a
x

m
a
x
g

c
o
n
d

m
a
x

m
a
x
g

c
o
n
d

5
8.
3e

−0
1

2.
5e
+
00

4.
7e
+
00

–
–

–
–

–
–

10
2.
5e

−0
1

9.
9e

−0
1

3.
0e
+
02

1.
8e

−0
1

7.
9e

−0
1

1.
9e
+
02

1.
6e

−0
1

6.
9e

−0
1

2.
3e
+
02

20
2.
9e

−0
3

2.
0e

−0
2

2.
3e
+
04

1.
6e

−0
3

1.
1e

−0
2

9.
8e
+
04

1.
6e

−0
3

1.
5e

−0
2

2.
0e
+
05

40
4.
6e

−0
5

6.
9e

−0
4

2.
5e
+
06

2.
2e

−0
6

3.
6e

−0
5

5.
3e
+
07

6.
1e

−0
7

1.
4e

−0
5

6.
3e
+
08

80
1.
0e

−0
6

3.
1e

−0
5

2.
4e
+
08

1.
4e

−0
8

3.
5e

−0
7

2.
3e
+
10

4.
2e

−1
0

1.
5e

−0
8

1.
2e
+
12

16
0

2.
2e

−0
8

1.
2e

−0
6

1.
2e
+
10

7.
5e

−1
1

4.
2e

−0
9

4.
8e
+
12

8.
1e

−1
2

1.
8e

−0
9

4.
6e
+
15

32
0

2.
7e

−1
0

3.
1e

−0
8

9.
2e
+
11

1.
0e

−1
2

2.
2e

−1
0

2.
9e
+
15

9.
1e

−1
2

4.
9e

−1
0

5.
8e
+
17



38 O. Davydov

more densely, they are moderate in comparison to significantly worse conditioned
matrices arising if infinitely smooth kernels such as the Gaussian KG,ε(x − y) =
exp(−ε‖x − y‖22), ε > 0, are employed, see also discussions in [7, Section 5.1.5].
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