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Abstract In this paper, we construct and analyse C1 quartic interpolating splines
on type-1 triangulations, approximating regularly distributed data. This is achieved
by defining the associated Bernstein-Bézier coefficients from point values of the
function to be approximated in such a way that C1 regularity is obtained for enough
regular functions as well as the optimal order of approximation. We construct such
interpolating splines by combining a quasi-interpolating spline with one step of an
interpolatory subdivision scheme. Numerical tests confirming the theoretical results
are provided.
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1 Introduction

The use of spline interpolation and quasi-interpolation for the approximation of
functions and data is widely developed in the literature and many approaches
have been proposed. Schemes based on the construction of finite elements, macro-
elements and local stable minimal determining sets for general (refined or not)
triangulations of a polygonal domain have been proposed (see e.g. [16, 17] and
references therein), as well as the definition of such approximating splines in the
space spanned by a family of compactly supported functions (see e.g. [8] and [20]).
In the uniform case, box splines have been also extensively used (see e.g. [5, 10, 24]
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and references therein, and [3, 4, 18, 19]), and a new procedure was introduced
based on the definition of the Bernstein-Bézier (BB-) coefficients of the splines on
each triangle in the partition by using only point values in a neighbourhood of the
triangle. The BB-coefficients are properly defined to produce globally C1 splines
and to achieve the required polynomial reproduction (see e.g. [1, 14, 21, 23] and
[22] for the 3D case).

The C1 quartic scheme exact on cubic polynomials introduced in [23] is a par-
ticular case of a general family derived in [2] that depends on some free parameters.
The BB-coefficients with respect to any triangle of the quasi-interpolating splines
are defined from the values at a large number of points lying in a neighbourhood of
the triangle, so it is quite natural to think about reducing the number of evaluations
needed to compute the BB-coefficients. This issue is dealt with in [2], where it
is proved that only evaluation at vertices and midpoints of edges of triangles are
needed.

In this paper, we follow this approach and combine a quasi-interpolating spline
with one step of the so called modified Butterfly interpolatory subdivision scheme
to construct C1 quartic interpolating splines on regular type-1 triangulations,
whose BB-coefficients are defined uniquely from the values at the vertices of the
triangulation.

The organization of the paper is as follows. In Sect. 2, some results on the
representation of C1-quartic splines on three-directional triangulations are recalled,
as well as the notations to be used in the paper. In Sect. 3 we recall the family
of quasi-interpolation operators studied in [2]. In particular, all of them depend on
some free parameters, so we propose some specific choices for them. In Sect. 4 we
present the construction of a family of interpolating splines, obtained by combining
the quasi-interpolating splines of Sect. 3, with one step of the modified Butterfly
interpolatory subdivision scheme. We also discuss the approximation properties of
the corresponding operators. Finally, in Sect. 5, we propose some numerical tests to
confirm the theoretical results established in the previous sections.

2 Notations and Preliminaries

We consider the type-1 triangulation Δ defined by the directions d1 := (h, h), d2 :=
(h,−h) and d3 := d1 + d2, with h > 0. Its vertices vi,j are linear combinations of
directions d1 and d2 with integer coefficients, i.e. vi,j := id1 + jd2, i, j ∈ Z.
The two-dimensional lattice V := {

vi,j : i, j ∈ Z
}
decomposes the real plane into

parallelograms Pi,j with vertices vi,j , vi,j+1, vi+1,j+1 and vi+1,j (see Fig. 1(left)),
each of which is subdivided into two triangles Ti,j and T̃i,j obtained by connecting
the vertices vi,j and vi+1,j+1, so that

Δ :=
⋃

i,j∈Z

(
Ti,j ∪ T̃i,j

)
.



C1-Quartic Butterfly-Spline Interpolation on Type-1 Triangulations 13

d1

d2

d1 + d2

−d1

−d2

−d1 − d2 vi,j

vi+1,j

vi+1,j+1

vi,j+1vi−1,j

vi−1,j−1

vi,j−1

Ti,j

Ti,j

vi,j

vi+1,j

vi+1,j+1

vi,j+1vi−1,j

vi−1,j−1

vi,j−1

Ti,j

Ti,j

Ti,j−1

Ti−1,j

Ti−1,j−1

Ti−1,j−1

Fig. 1 The triangulation Δ (left) and the hexagon Hi,j (right)

The triangles sharing a vertex vi,j determine an hexagon, denoted by Hi,j (see
Fig. 1(right)).

The approximating splines will be constructed in the space

S1
4 (Δ) :=

{
s ∈ C1

(
R
2
)

: s|T ∈ P4, for all T ∈ Δ
}

,

where P4 stands for the space of bivariate quartic polynomials. Such splines will be
defined by directly setting their BB-coefficients on the triangles of Δ (see e.g. [16]).
The restriction to a triangle T ∈ Δ with vertices v0, v1 and v2 of a spline s ∈ S1

4 (Δ)

can be expressed as

s|T =
∑

i+j+k=4

cT
i,j,kB

T
i,j,k,

where BT
i,j,k := 4!

i!j !k!b
i
0b

j

1b
k
2, i, j, k ≥ 0, i + j + k = 4, are the Bernstein poly-

nomials of degree 4 associated with T and the barycentric coordinates (b0, b1, b2)

w.r.t. T satisfy the equalities (x, y) = b0v0 + b1v1 + b2v2, b0 + b1 + b2 = 1
for (x, y) ∈ T . To alleviate the notation, no reference is made to the triangle with
respect to which the barycentric coordinates are determined.

Each BB-coefficient cT
i,j,k of the quartic polynomial s|T is associated to the

domain point ξ4i,j,k := (iv0 + jv1 + kv2) /4 in T . Let D4 be the subset of the
domain points arising when all triangles in Δ are run. Each vertex gives rise to a
single point in D4. The same is applicable for any domain point on an common
edge to two triangles (see Fig. 2). If quadratic splines are considered instead of
quartic splines, their BB-representations give rise to coefficients associated with the
domain points ξ2i,j,k := (iv0 + jv1 + kv2) /2, from which the subset D2 is defined.
Finally, the subset D1 is the collection of all vertices of the triangulation Δ (see
Fig. 3).
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Fig. 2 The points of D4 relative to Hi,j
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Fig. 3 The points of D2 (left) and D1 (right) relative to Hi,j

Moreover, we define D� := ⋃
i,j D

i,j
� , � = 2, 4 with

• Di,j

4 := {
vi,j

} ∪
{
e
k,m
i,j , k,m ∈ {0, 1} , k + m �= 0

}

∪
{
u

k,m
i,j , z

k,m
i,j , k,m ∈ {−1, 0, 1} , k + m �= 0

}
, where

– e
k,m
i,j is the midpoint of

[
vi,j , vi+k,j+m

]
,

– u
k,m
i,j := 1

4

(
3vi,j + vi+k,j+m

)
,

– z
k,m
i,j := 1

4

(
2vi,j + vi+k,j+m + vr,s

)
, with vr,s the third vertex of

[
vi,j , vi+k,j+m, vr,s

] ∈ Δ counting counterclockwise;

• Di,j

2 :=
{
vi,j , e

1,0
i,j , e

0,1
i,j , e

1,1
i,j

}
.
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3 C1 Quartic Quasi-interpolating Splines on D2

In order to make the paper self-contained, here we briefly recall how the quasi-
interpolating spline Q4,2f ∈ S1

4 (Δ) in [2] is defined. Such a spline is constructed
using the values of f on D2.

We take advantage of the fact that Δ is a uniform triangulation to define the BB-
coefficients of the restriction of the quasi-interpolating Q4,2f to each triangle. For
instance, we write the restriction of Q4,2f to the triangle Ti,j as

Q4,2f|Ti,j
=c

(
vi,j

)
B

Ti,j

4,0,0 + c
(
u
1,1
i,j

)
B

Ti,j

3,1,0 + c
(
u
1,0
i,j

)
B

Ti,j

3,0,1

+ c
(
e
1,1
i,j

)
B

Ti,j

2,2,0 + c
(
z
1,1
i,j

)
B

Ti,j

2,1,1 + c
(
e
1,0
i,j

)
B

Ti,j

2,0,2

+ c
(
u

−1,−1
i+1,j+1

)
B

Ti,j

1,3,0 + c
(
z
0,−1
i+1,j+1j

)
B

Ti,j

1,2,1 + c
(
z
−1,0
i+1,j

)
B

Ti,j

1,1,2

+ c
(
u

−1,0
i+1,j

)
B

Ti,j

1,0,3 + c
(
vi+1,j+1

)
B

Ti,j

0,4,0 + c
(
u
0,−1
i+1,j+1

)
B

Ti,j

0,3,1

+ c
(
e
0,1
i+1,j

)
B

Ti,j

0,2,2 + c
(
u
0,1
i+1,j

)
B

Ti,j

0,1,3 + c
(
vi+1,j

)
B

Ti,j

0,0,4,

where the notation c (p) is used for the BB-coefficient relative to the domain point
p ∈ D4.

Moreover, once defined the BB-coefficients relative to Ti,j , those corresponding
to the other five triangles around the vertex vi,j are defined by translation and/or
rotation.

In order to obtain an interpolatory spline at the vertices, we define c
(
vi,j

) :=
f

(
vi,j

)
.

The domain points p ∈ D4 have been labelled as u, e and z-points. Their BB-
coefficients will be defined as linear combinations of the values of f at 19 points in
D2 (see Fig. 3). As an example,

c
(
u
1,1
ij

)
=γ 0f

(
vij

) + γ 1f
(
e
1,1
i,j

)
+ γ 2f

(
e
1,0
i,j

)
+ γ 3f

(
e
0,1
i,j−1

)
+ γ 4f

(
e
1,1
i−1,j−1

)

+ γ 5f
(
e
1,0
i−1,j

)
+ γ 6f

(
e
0,1
i,j

)
+ γ 7f

(
vi+1,j+1

) + γ 8f
(
e
0,1
i+1,j

)

+ γ 9f
(
vi+1,j

) + γ 10f
(
e
1,1
i,j−1

)
+ γ 11f

(
vi,j−1

) + γ 12f
(
e
1,0
i−1,j−1

)

+ γ 13f
(
vi−1,j−1

) + γ 14f
(
e
0,1
i−1,j−1

)
+ γ 15f

(
vi−1,j

) + γ 16f
(
e
1,1
i−1,j

)

+ γ 17f
(
vi,j+1

) + γ 18f
(
e
1,0
i,j+1

)
.

The coefficients used to define the above linear combination form themask γ ∈ R
19,

and c
(
u
1,1
i,j

)
= fi,j · γ , where the vector fi,j ∈ R

19 contains the values of f (p),
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Fig. 4 Order for enumerate
fi,j , α, β, γ
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μ2μ3

μ4

μ5 μ6

μ7

μ8

μ9μ10μ11

μ12

μ13

μ14

μ15 μ16 μ17

μ18

p ∈ D4 ∩ Hi,j , enumerated as indicated in Fig. 4, as well as γ . The BB-coefficients
associated with the other u-points (u1,0i,j , u

0,−1
i,j , u−1,−1

i,j , u−1,0
i,j , and u

0,1
i,j ) are defined

analogously from the rotated versions of γ .

In the same way, c
(
e
1,1
i,j

)
and c

(
z
1,1
i,j

)
are defined by considering the masks

α and β, respectively. It means c
(
e
1,1
i,j

)
= fi,j · α and c

(
z
1,1
i,j

)
= fi,j · β. The

BB-coefficients c (e) and c (z) relative to an e-point and a z-point, respectively, are
defined from the rotated versions of α and β.

It is known that a quasi-interpolation operator in S1
4 (Δ) can reproduce the space

of cubic polynomials (see e.g. [10, 15]). Therefore, the masks α, β and γ must be
defined to obtain C1-regularity and the exactness on P3 of the quasi-interpolation
operator. In other words, we require that the following constrains are satisfied:

Q4,2f ∈ C1
(
R
2
)

and Q4,2f = f for all f ∈ P3. (1)

In [2] the following result is established.

Proposition 1 The imposition of (1) results in infinitely many solutions depending
on the first three elements β1, β2, β3 of the mask β. The mask α is uniquely
determined from the following values (see Fig. 5):

α0 = α7 = − 1
3 , α1 = 2

3 , α2 = α6 = α8 = α18 = 1
3 , α9 = α17 = − 1

6 ,

αj = 0, j ∈ {3, 4, 5, 10, 11, 12, 13, 14, 15, 16}

The values of the masks β and γ are given in Figs. 6 and 7.

Concerning the error estimates, the following classical result (see e.g. [10, 16])
holds.

Theorem 1 For an arbitrary triangle T in Δ and for a given f ∈ Cm+1
(
R
2
)
,

0 ≤ m ≤ 3,

∥∥Dν
(
f − Q4,2f

)∥∥∞,T
≤ K|ν|hm+1−|ν|

∥∥∥Dm+1f

∥∥∥∞,ΩT

,
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Fig. 5 The BB-coefficient

c
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Fig. 6 The evaluation of the BB-coefficient c
(
z
1,1
i,j

)
requires the mask β, whose values depend

on three free parameters

1 − 2
3 + β1 + β2

− 1
3 + β2 + β3

1
3 − β1 + β3

2
3 − β1 − β2

1
3 − β2 − β3 − 1

3 + β1 − β3

− 11
12 + β1 + β2

4
3 − β1 − 2β2 − β3

− 11
24 + β2 + β3

β1 − β2 − 2β3

11
24 − β1 + β3

− 4
3 + 2β1 + β2 − β3

11
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− 4
3 + β1 + 2β2 + β3

11
24 − β2 − β3

−β1 + β2 + 2β3

− 11
24 + β1 − β3

4
3 − 2β1 − β2 + β3

Fig. 7 The mask γ needed to evaluate c
(
u
1,1
i,j

)
also depends on three free parameters
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for all 0 ≤ |ν| ≤ m, ν := (ν1, ν2), where K|ν| are constants independent on h and
ΩT denotes the union of all triangles T ∈ Δ that intersect T .

Masks β and γ depend on three parameters, so a strategy is needed to choose
them.

The first strategy is reduced to assigning zero values to these parameters. Another
possibility is to set β1 = β2 and β3 = 0, so that the resulting masks have certain
symmetries. Since

∥∥Q4,2
∥∥∞ ≤ max

{‖α‖1 , ‖β‖1 , ‖γ ‖1
}

and ‖α‖1 = 3, it is easy to minimize the upper bound U
(
β1

) :=
max

{
3, ‖β‖1 , ‖γ ‖1

}
to obtain that

∥∥Q4,2
∥∥∞ is bounded by 3 if β1 ∈

[
13
36 ,

41
84

]
.

In the following we will use such a choice for the free parameters, obtaining a
family of quasi-interpolating splines depending on β1 and we denote it by Q

β1
4,2f .

4 C1 Quartic Interpolating Splines on D1

In this section, we discuss the construction of new interpolating splines by applica-
tion of a ‘preprocessing’ to the quasi-interpolating splines Q

β1
4,2f . The idea is, first,

to approximate the function f at the points of type e by one step of a subdivision
algorithm suitable for type-1 triangulated data, and then use the quasi-interpolating
operator Q

β1
4,2. The result is a spline interpolating at the points ofD1 since the quasi-

interpolant Qβ1
4,2 has this property.

4.1 The Modified Butterfly Interpolatory Subdivision Scheme

We recall that a bivariate subdivision scheme is an iterative algorithm for refining a
set of points f = {fj , j ∈ Z

2} by repeatedly applying a linear refinement operator
Sa of type

(Saf)i =
∑

j∈Z2

ai−2jfj , i ∈ Z
2. (2)

From (2) we see that, at each step of the recursion, the ‘refined’ points are linear
combinations of the ‘coarse’ points with real coefficients being the subdivision mask
a = {

ai, i ∈ Z
2
}
(for more details, see [6, 7, 11], and reference therein). From (2)

we also see that one step of a subdivision scheme transforms a set of data points
attached to Z2 into a set of data points attached to 1

2Z
2.
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Even though subdivision schemes usually keep refining data till convergence
to a continuous limit, the idea here is to use just one step of the so called
Modified Butterfly Interpolatory Subdivision Scheme (MBISS) for data on type-
1 triangulations. The MBISS is an interpolatory scheme (see [13]) meaning that at
each step the coarse set of points is included into the refined one and new points are
inserted. This translates into the refinement rule (‘duplication’ rule)

p
[k+1]
2i = p

[k]
i , i ∈ Z

2.

Each of the three insertion rules of the MBISS, transforming a sequence from level
k to level k + 1, is involving 10 points lying around the point to be inserted and are
exactly the same for all three possible directions of insertion. They are as follows:

– for the ‘horizontal’ insertion

p
[k+1]
2i+(1,0) = ( 12 − ω)

(
p

[k]
i + p

[k]
i+(0,1)

)
+ ( 18 + 2ω)

(
p

[k]
i−(1,0) + p

[k]
i+(1,1)

)

+ω
(
p

[k]
i−(0,1) + p

[k]
i+(0,1)

)

+(− 1
16 − ω)

(
p

[k]
i+(1,0) + p

[k]
i+(1,2) + p

[k]
i−(1,1) + p

[k]
i−(1,−1)

)
,

(3)
– for the ‘vertical’ insertion

p
[k+1]
2i+(0,1) = ( 12 − ω)

(
p

[k]
i + p

[k]
i+(1,0)

)
+ ( 18 + 2ω)

(
p

[k]
i−(0,1) + p

[k]
i+(1,1)

)

+ω
(
p

[k]
i−(1,0) + p

[k]
i+(2,0)

)

+(− 1
16 − ω)

(
p

[k]
i+(0,1) + p

[k]
i−(1,1) + p

[k]
i+(1,−1) + p

[k]
i+(2,1)

)
,

(4)
– for the ’diagonal’ insertion

p
[k+1]
2i+(1,1) = ( 12 − ω)

(
p

[k]
i + p

[k]
i+(1,1)

)
+ ( 18 + 2ω)

(
p

[k]
i+(1,0) + p

[k]
i+(0,1)

)

+ω
(
p

[k]
i+(2,2) + p

[k]
i−(1,1)

)

+(− 1
16 − ω)

(
p

[k]
i−(0,1) + p

[k]
i+(2,1) + p

[k]
i+(1,2) + p

[k]
i−(1,0)

)
.

(5)

For the MBISS we mention the following properties that are relevant in our
discussion (see [13] for all details).
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Proposition 2 If w ∈
(
− 1

32 ,
1
32

)
, then the MBISS is convergent. Moreover, for w ∈

(
− 1

32 ,
1
32

)
the MBISS step-wise reproduces the space P3 of bivariate polynomials

of degree 3. The latter means that in case the points at one level are sampled from
a polynomial of degree 3, the points at the next level are samples of the same
polynomial at refined grid values.

We remark that, in view of Proposition 2, the MBISS has approximation order 4

for all ω ∈
(
− 1

32 ,
1
32

)
and that for ω = 0 the MBISS reduces to the better known

Butterfly subdivision scheme presented in [12].

4.2 C1 Quartic Interpolating Splines

Now we are able to construct the interpolating splines by approximating the values
of f at the e-points of Q

β1
4,2f , by one step of the MBISS. Indeed, according

to (3), (4), and (5), considering the notations used for Q
β1
4,2f , we define f (e

1,1
i,j )

as (see Fig. 8)

f
(
e
1,1
i,j

)
=

(
1
2 − ω

) (
f (vi,j ) + f (vi+1,j+1)

) + ω
(
f (vi−1,j−1) + f (vi+2,j+2)

)

+
(
− 1

16 − ω
) (

f (vi,j−1) + f (vi+2,j+1) + f (vi+1,j+2) + f (vi−1,j )
)

+
(
1
8 + 2ω

) (
f (vi+1,j ) + f (vi,j+1)

)

and similarly for the other e-points.
In this way, by combining the masks α, β and γ of Q

β1
4,2f with the masks of the

MBISS, we obtain new masks α′, β ′ and γ ′ larger than the corresponding masks
α, β and γ but still based on the same number of points (see Figs. 9, 10, 11).
Such masks depend on the parameter β1, coming from the quasi-interpolating

a0
vi,j

a3
vi+1,j

a0
vi+1,j+1

a3
vi,j+1

a2
vi−1,j

a2
vi+1,j+2

a1
vi−1,j−1

a1
vi+2,j+2

a2
vi,j−1

a2
vi+2,j+1

e1,1
i,j

Fig. 8 Edge-point stencil of MBISS, with coefficients a0 = 1
2 − ω, a1 = ω, a2 = − 1

16 − ω,

a3 = 1
8 + 2ω
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Fig. 9 The values in this figure provide the mask α′ used to evaluate c
(
e
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)
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3
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3
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−q 0
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7
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1
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0

− 1
12 + q

1
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1
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0

1
16 − q

Fig. 10 The values in this figure provide the mask β ′ used to evaluate c
(
z
1,1
i,j

)
. The values depend

on the parameter q = 3
16β1 − 5

3ω + 4β1ω

1 − 1
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1
24 − 2q

1
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− 1
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1
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1
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0
− 1

12 + q

11
48 − 3q

Fig. 11 The values in this figure provide the mask γ ′ used to evaluate c
(
u
1,1
i,j

)
. Also in this case

its values depend on q
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spline Q
β1
4,2f and ω coming from the subdivision scheme. Therefore, we denote

the corresponding interpolating splines by I
β1,ω

4,1 f .

We remark that while for the construction of Q
β1
4,2f we assume to know the

values of f onD2, for the construction of I
β1,ω

4,1 f it is sufficient to know the function
f on D1, the vertices of the triangulation.

Thanks to the approximation properties of Q
β1
4,2 and of the MBISS here used, we

have that Iβ1,ω

4,1 f is a quartic spline with C1 smoothness and the associated operator

I
β1,ω

4,1 is exact on cubic polynomials and the error estimates of Theorem 1 hold.
Again, we continue by proposing some strategies in order to fix the free

parameters. If we choose ω = 0, that corresponds to the classical Butterfly
subdivision scheme, we have only one free parameter. Since

∥∥∥I
β1,ω

4,1

∥∥∥∞ ≤ max
{∥∥α′∥∥

1 ,
∥∥β ′∥∥

1 ,
∥∥γ ′∥∥

1

} ≤ 145

96
,

we find that the value of β1 that minimizes the upper bound is β1 = 29
72 .

Another possibility is to consider the parameter q := 3
16β1 − 5

3ω + 4β1ω,
appearing in the masks β ′ and γ ′. If we minimize again the upper bound for

the infinity norm of I
β1,ω

4,1

(∥∥∥I
β1,ω

4,1

∥∥∥∞ ≤ max
{∥∥α′∥∥

1 ,
∥∥β ′∥∥

1 ,
∥∥γ ′∥∥

1

})
we find the

same value 145
96 obtained before, corresponding to the choice q = 29

384 . Hence, we
can choose ω and β1 consequently. Another possible choice is to set q = 1

12 . In this
case the masks β ′ and γ ′ have several zero coefficients in their definition, which is
always convenient.

Obviously, other criteria for the selection of the free parameter can be considered.

5 Numerical Results

The performance of the operators defined in this paper are tested on two functions
defined on the unit square. They are Franke’s function

f1 (x) = 0.75e

(
− (9x1−2)2

4 − (9x2−2)2

4

)

+ 0.75e

(
− (9x1+1)2

49 − 9x2+1
10

)

+0.5e

(
− (9x1−7)2

4 − (9x2−3)2

4

)

− 0.2e
(−(9x1−4)2−(9x2−7)2

)
,

and the radial function

f2 (x) = 0.1

(
1 + cos

(
12π cos

(
π

√
x2
1 + x2

2

)))
.

The latter is a highly oscillating function.
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In order to estimate the maximal error (ME) as a function depending on a
parameter h (MEh), the error |f − Qf | is evaluated at M points in a finite subset
G = {(

g1,i , g2,j
) : (i, j) ∈ J

} ⊂ [0, 1]2. Moreover, the root mean square error
(RMSE) is estimated as

RMSEh :=
√∑

(i,j)∈J

(
f

(
g1,i , g2,j

) − Qf
(
g1,i , g2,j

))2

M
.

Regarding the value of M , the splines Qf have been evaluated by the de Casteljau’s
algorithm [16, p. 25] on 300 points in each of the triangles of the partition associated
with the value h. Once computed MEh and RSMEh, the numerical convergence
orders are evaluated according to the expression NCO := log2

MEh

MEh/2
.

As said before, f2 is a highly oscillating function, therefore the initial value of h

must be smaller than the one used for f1.
Table 1 shows the values MEh, RMSHh and NCOh relative to I

β1,ω

4,1 f with

β1 = 29
72 and ω = 0. In Table 2 we report the results corresponding to the choice

q = 1
12 .

Table 1 Numerical results relative to I
β1,ω

4,1 f with β1 = 29
72 and ω = 0

Test function f1 Test function f2

h MEh NCO RMSEh MEh NCO RMSEh

1/4 3.44 × 10−1 - 8.44 × 10−2

1/8 9.43 × 10−2 1.87 2.48 × 10−2

1/16 2.89 × 10−2 1.71 3.12 × 10−3

1/32 2.76 × 10−3 3.39 2.50 × 10−4

1/64 1.81 × 10−4 3.94 1.60 × 10−5 1.05 × 10−1 - 1.69 × 10−2

1/128 1.16 × 10−5 3.97 9.97 × 10−7 1.11 × 10−2 3.24 1.57 × 10−3

1/256 7.22 × 10−7 4.00 6.22 × 10−8 6.88 × 10−4 4.01 1.00 × 10−4

1/512 4.51 × 10−8 4.00 3.89 × 10−9 4.27 × 10−5 4.01 6.22 × 10−6

Table 2 Numerical results relative to I
β1,ω

4,1 f with q = 1
12

Test function f1 Test function f2

h MEh NCO RMSEh MEh NCO RMSEh

1/4 3.46 × 10−1 - 8.54 × 10−2

1/8 8.97 × 10−2 1.95 2.36 × 10−2

1/16 2.77 × 10−2 1.70 2.96 × 10−3

1/32 2.63 × 10−3 3.40 2.38 × 10−4

1/64 1.77 × 10−4 3.89 1.57 × 10−5 1.00 × 10−1 - 1.63 × 10−2

1/128 1.15 × 10−5 3.95 9.91 × 10−7 9.82 × 10−3 3.35 1.48 × 10−3

1/256 7.21 × 10−7 4.00 6.22 × 10−8 6.61 × 10−4 3.89 9.78 × 10−5

1/512 4.51 × 10−8 4.00 3.89 × 10−9 4.23 × 10−5 3.97 6.18 × 10−6
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Table 3 Numerical results relative to Q
β1
4,2f with β1 = 2

5

Test function f1 Test function f2

h MEh NCO RMSEh MEh NCO RMSEh

1/4 1.69 × 10−1 - 4.25 × 10−2

1/8 4.48 × 10−2 1.92 8.06 × 10−3

1/16 7.90 × 10−3 2.50 7.40 × 10−4

1/32 4.92 × 10−4 4.01 4.52 × 10−5

1/64 2.96 × 10−5 4.05 2.64 × 10−6 4.04 × 10−2 - 4.83 × 10−3

1/128 1.82 × 10−6 4.02 1.61 × 10−7 2.39 × 10−3 4.08 2.91 × 10−4

1/256 1.13 × 10−7 4.01 1.00 × 10−8 1.25 × 10−4 4.26 1.67 × 10−5

1/512 7.05 × 10−9 4.00 6.26 × 10−10 7.31 × 10−6 4.10 1.01 × 10−6

Table 4 Numerical results for the quasi-interpolation operator given in [23]

Test function f1 Test function f2

h MEh NCO RMSEh MEh NCO RMSEh

1/4 7.27 × 10−2 - 1.78 × 10−2

1/8 1.56 × 10−2 2.22 1.76 × 10−3

1/16 1.28 × 10−3 3.61 1.37 × 10−4 4.02 × 10−1 - 8.54 × 10−2

1/32 1.02 × 10−4 3.64 1.14 × 10−5 8.86 × 10−2 2.18 1.06 × 10−2

1/64 1.06 × 10−5 3.27 8.37 × 10−7 7.66 × 10−3 3.53 8.05 × 10−4

1/128 7.70 × 10−7 3.79 5.54 × 10−8 4.51 × 10−4 4.08 6.74 × 10−5

1/256 4.97 × 10−8 3.95 3.52 × 10−9 3.73 × 10−5 3.60 5.20 × 10−6

1/512 3.13 × 10−9 3.99 2.21 × 10−10 2.79 × 10−6 3.74 3.47 × 10−7

Finally, for the sake of comparison, in Table 3 we report the results obtained by

using the quasi-interpolating spline Q
β1
4,2f with β1 = 2

5 ∈
[
13
36 ,

41
84

]
and in Table 4

we report the results obtained by the quasi-interpolating spline proposed in [23] (see
Table 5 and Table 3 in [2]).

The results are in accordance with the theoretical order of convergence. We
remark that the approximating splines Q

β1
4,2f and the one proposed in [23] produce

results similar to those obtained by I
β1,ω

4,1 f for the two different selections of the

parameters. However, the efficiency of I
β1,ω

4,1 is higher than that of Q
β1
4,2 and the

operator proposed in [23] in terms of the number of evaluation points.
Moreover, Fig. 12 shows the interpolating splines I

β1,ω

4,1 f1, I
β1,ω

4,1 f2 and gives
nice surfaces. They are comparable with those obtained in [2] and in [23] (see the
figures there reported).

The approximation schemes here proposed have been developed to consider
functions defined on the real plane, but the test functions f1 and f2 are defined on
the unit square. To deal with triangles having a non interior vertex, the triangulation
is extended as well as f1 and f2.
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Fig. 12 The quartic C1 splines I
β1,ω

4,1 f1 with h = 1/64 (left) and I
β1,ω

4,1 f2 (right) with h = 1/256.

Their masks correspond to the values provided by β1 = 29
72 , ω = 0

6 Conclusions

In this paper, we have constructed and analysed C1 quartic interpolating splines on
type-1 triangulations, approximating regularly distributed data. A characteristic of
the proposed methodology is that the Bernstein-Bézier coefficients in each triangle
of the constructed quasi-interpolants are directly defined as appropriate linear
combinations of point values at domain points that lie in a neighbourhood of the
triangle to achieve C1 regularity and approximation order four for enough regular
functions. We have constructed such interpolating splines by combining a quasi-
interpolating spline with one step of an interpolatory subdivision scheme. Numerical
tests confirming the theoretical results have been provided for the proposed spline
scheme.

We remark that, the approximation schemes constructed in this paper and based
on regularly distributed point values can be used in two-stage methods, as in [9], by
firstly computing a polynomial approximant on each triangle and then by sampling
the necessary data values from the approximant on each triangle. Finally, in order to
apply the approximation schemes here proposed to compact domains, it is possible
to construct special rules near the boundary (see [21]) or extend the triangulation.
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