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Abstract When applying finite element method to the Poisson equation on a
domain in R3, we replace some Lagrange nodal basis functions by bubble functions
whose dual functionals are the values of the Laplacian. To compute the coefficients
of these Laplacian basis functions instead of solving a large linear system, we
interpolate the right hand side function in the Poisson equation. The finite element
solution is then the Galerkin projection on a smaller vector space. We construct
a qudratic and a cubic nonconforming interpolated finite elements, and quartic
and higher degree conforming interpolated finite elements on arbitrary tetrahedral
partitions. The main advantage of our method is that the number of unknowns
that require solving a large system of equations on each element is reduced. We
show that the interpolated Galerkin finite element method retains the optimal order
of convergence. Numerical results confirming the theory are provided as well as
comparisons with the standard finite elements.

Keywords Conforming finite element · Conforming finite element · Interpolated
finite element · Tetrahedral grid · Poisson equation

1 Introduction

When solving partial differential equations using finite element method, the full
space Pk of polynomials of degree ≤ k on each element is typically used in order to
achieve the optimal order of approximation. Occasionally, the Pk polynomial space
may be enriched by the so-called bubble functions. This is done for stability or
continuity, while the order of approximation is not increased, cf. [2–4, 6–10, 15–
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18]. The only exception when a proper subspace of Pk is used while retaining the
optimal order of convergence (O(hk) in the H 1-norm) can be found in [12, 13].
In these papers, we constructed a harmonic finite element method for solving the
Laplace equation (1.1),

−Δu = 0, in Ω,

u = f, on ∂Ω,
(1.1)

where Ω is a bounded polygonal domain in R
2. In this method only harmonic

polynomials are used in constructing the finite element space because the exact
solution is harmonic. However, the harmonic finite element method of [12, 13]
cannot be applied (directly) to the Poisson equation,

−Δu = f, in Ω,

u = 0, on ∂Ω,
(1.2)

where Ω is a bounded polyhedral domain in R
3.

Let Th be a tetrahedral grid of size h on a polyhedral domain Ω in R
3. Let

∂K = ∪K∈Th
∂K . When using the standard Lagrange finite elements to solve (1.2),

the solution is given by

uh =
∑

xi∈∂K\∂Ω

uiφi +
∑

xi∈Ω\∂K
ujφj +

∑

xk∈∂Ω

ckφk, (1.3)

where {φi, φj , φk} are the nodal basis functions at element-boundary, element-
interior and domain boundary, respectively, ck are interpolated values on the
boundary, and both ui and uj are obtained from the Galerkin projection by solving
of a linear system of equations.

In [14] an interpolated Galerkin finite element method is proposed for the 2D
Poisson equation. In this paper, we extend this idea to the trivariate setting. The main
idea can be described as follows. We add non-harmonic polynomial basis functions
to the harmonic finite element solution of [12, 13] to obtain a solution to (1.2). That
is, the solution is obtained as

uh =
∑

xi∈∂K\∂Ω

uiφi +
∑

xi∈Ω\∂K
cjφj +

∑

xk∈∂Ω

ckφk, (1.4)

where both cj and ck are interpolated values (of the right hand side function f , or of
the boundary condition), and only ui are obtained from the Galerkin projection. In
these constructions, the linear system of Galerkin projection equations involves only
the unknowns on ∂K \ ∂Ω . The number of unknowns on each element is reduced
from

(
k+3
3

)
to 2k2 + 2, i.e., from O(k3) to O(k2). Compared to the standard finite
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element, the new linear system is smaller (good for a direct solver) and has a better
condition number (by numerical examples in this paper.)

This method is similar to, but different from, the standard Lagrange finite element
method with static condensation. In the latter, internal degrees of freedom on each
element remain unknowns and are represented by the element-boundary unknowns.
For example, the Jacobi iterative solutions of condensed equations are identical to
those of original equations with a proper unknown ordering (internal unknowns
first). That is, the static condensation is a method for solving linear systems of
equations arising from the high order finite element discretization, which does
not define a different system. In the new method the coefficients of some degrees
of freedom are no longer unknowns but given directly by the data. For ease of
analysis we use a local integral of the right hand side function f to determine these
coefficients. We can simply use the pointwise values of f instead. The new method
is like the standard Lagrange finite element method when some “boundary values”
are given on every element.

The paper is organized as follows. In Sects. 2 and 3, for arbitrary tetrahedral
partitions, we construct a P2 and a P3 nonconforming interpolated Galerkin
finite elements with one internal Laplacian basis function for each tetrahedron. In
Sect. 4, for arbitrary tetrahedral partitions, we construct quartic and higher degree
conforming interpolated Galerkin finite elements with

(
k−1
3

)
internal Laplacian basis

functions for each tetrahedron. In Sect. 5, we show that the interpolated Galerkin
finite element solution converges at the optimal order. In Sect. 6, numerical tests are
provided to compare the interpolated Galerkin finite elements (P2 to P6) with the
standard ones.

2 The P2 Nonconforming Interpolated Galerkin Finite
Element

Let Th be a quasi-uniform tetrahedral grid of size h on a polyhedral domain Ω in
R
3. On all interior tetrahedra, a P2 nonconforming finite element function must have

continuous moments of degree one. Let K := [x1, x2, x3, x4] be a tetrahedron in Th

with vertices vi , and let (λ1, λ2, λ3, λ4) be the barycentric coordinates associated
with K . That is, λi is a linear function on K assuming value 1 at xi , and vanishing
on the face Fi opposite vertex xi . From [1, 5], we know that there is only one
nonconforming quadratic bubble function per K:

φ0 = c0(2 − 4
4∑

i=1

λ2i ), (2.1)

where the constant c0 is determined by (2.2) below, satisfying three vanishing 1-
moment conditions on every face Fi ofK , and one 0-moment of Laplacian condition
on K:
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∫

Fi

φ0λ
α
j λ

β
k λ

γ

l = 0, i �= j �= k �= l, α + β + γ = 1,

∫

K

Δφ0φ0 dx = 1. (2.2)

For a P2 element on K , there are ten domain points located at the vertices and
mid-edges of K . Let {ψi}10i=1 be the Lagrange basis functions of a conforming P2
element on K , i.e., each ψi assumes value 1 at one domain point and vanishes at the
remaining nine. We define the interpolated Galerkin finite element basis as follows:

φi = ψi − φ0

∫

K

Δψiφ0dx,

∫

K

Δφi dx = 0, i = 1, . . . , 10.

We define the P2 nonconforming interpolated Galerkin finite element space by

Vh = {vh | vh has continuous 1-moments on face triangle,

vh has vanishing 1-moments on boundary triangle,

vh|K =
10∑

i=1

ciφi + u0φ0 on each K ∈ Th}.
(2.3)

The interpolated Galerkin finite element solution for the Poisson equation (1.2) is
defined by

uh =
∑

K∈Th

( 10∑

i=1

ciφi − φ0

∫

K

f (x)φ0dx
)

∈ Vh (2.4)

such that

(∇huh,∇hvh) = (f, vh) ∀vh =
∑

K∈Th

(

10∑

i=1

viφi) ∈ Vh, (2.5)

where ∇h denotes a picewise defined gradient, and the dependency of φi on K is
omitted for brevity of notation.
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3 The P3 Nonconforming Interpolated Galerkin Finite
Element

Let K be a tetrahedron with the associated barycentric coordinates (λ1, λ2, λ3, λ4),
as defined in Sect. 2. Then there is precisely one nonconforming cubic bubble
function on K ,

φ0 = c0

( 4∑

i=1

(5λ3i + 90
λ1λ2λ3λ4

λi

) − 3
)
, (3.1)

satisfying vanishing 1-moment conditions on every face Fi of K , and one 0-moment
of Laplacian condition on K:

∫

Fi

φ0λ
α
j λ

β
k λ

γ

l = 0, i �= j �= k �= l, α + β + γ = 2,

∫

K

Δφ0φ0 dx = 1.

For cubic finite elements, there are twenty domain points in each K , and twenty
Lagrange basis functions {ψi}20i=1. We define the interpolated Galerkin finite element
basis as follows

φi = ψi − φ0

∫

K

Δψiφ0dx, i = 1, .., 20.

The P3 nonconforming interpolated Galerkin finite element space is defined by

Vh = {vh | vh has continuous 2-moments on face triangle,

vh has vanishing 2-moments on boundary triangle,

vh|K =
20∑

i=1

ciφi + u0φ0 on each K ∈ Th}.
(3.2)

The P3 interpolated Galerkin finite element solution for the Poisson equation (1.2)
is defined by

uh =
∑

K∈Th

( 20∑

i=1

ciφi − φ0

∫

K

f (x)φ0dx
)

∈ Vh (3.3)

such that
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(∇huh,∇hvh) = (f, vh) ∀vh =
∑

K∈Th

(

20∑

i=1

viφi) ∈ Vh. (3.4)

4 The Pk, k ≥ 4, Conforming Interpolated Galerkin Finite
Element

Let K be a tetrahedron with the associated barycentric coordinates (λ1, λ2, λ3, λ4),
as defined in Sect. 2. For k ≥ 4, there are

(
k−1
3

)
domain points strictly interior to

K . We shall refer to them as internal degrees of freedom. In this section, we define
a Pk interpolated Galerkin conforming finite element on general tetrahedral grids,
where the internal degrees of freedom are determined by interpolating the values of
the function f on the right hand side of (1.2).

We first deal with
(
k+3
3

)− (
k−1
3

) = 2k2 + 2 domain points on the boundary of K:

D :=
{
(i1x1 + i2x2 + i3x3 + i4 + x4)/k | 0 ≤ ij ≤ k,

4∑

j=1

ij = k,

4∏

j=1

ij = 0
}
.

(4.1)

The first (2k2 + 2) linear functionals Fl := u(ξ l), ξ l ∈ D, l = 1, . . . , 2k2 + 2, (the
dual basis of the finite element basis) are nodal values at these face Lagrange nodes.
The remaining

(
k−1
3

)
linear functionals are the weighted Laplacian (k−4)-moments

corresponding to the strictly interior domain points. Let B be a basis for Pk−4, and
let

{
Fj (Δu) =

∫

K

pj

4∏

i=1

λiΔu dx | pj ∈ B, j = 2k2 + 3, . . . ,

(
k + 3

3

)}
. (4.2)

Lemma 1 The set of linear functionals in (4.1) and (4.2) uniquely determines a
polynomial of degree ≤ k.

Proof We have a square linear system of equations. Thus, we only need to show the
uniqueness of the solution. Let uh have zero values for all these linear functionals.
Therefore, uh is identically zero on the boundary of K . Then

uh = u4

4∏

i=1

λi for some u4 ∈ Pk−4.

Letting p = u4 in (4.2), we obtain
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0 =
∫

K

u4

4∏

i=1

λiΔu dx = −
∫

K

∇uh · ∇uhdx

and, consequently, ∇uh = 0 on K . Thus, uh is a constant on K . As uh = 0 on ∂K ,
uh = 0.

Let {φi}dim Pk

i=1 be the basis of Pk dual to the set of linear functions defined by (4.1)
and (4.2). In particular, the first 2k2 + 2 functions φi are dual to (4.1), and the
remaining ones are dual to (4.2) Then, the Pk (k ≥ 4) interpolated Galerkin finite
element space is defined as follows:

Vh = {vh ∈ H 1
0 (Ω) : vh|K =

2k2+2∑

i=1

ciφi +
dimPk∑

j=2k2+3

vjφj on each K ∈ Th},

(4.3)

where each φi and φj depend on K . The interpolated Galerkin finite element
solution for the Poisson equation (1.2) is defined by

uh =
∑

K∈Th

( 2k2+2∑

i=1

ciφi −
dimPk∑

j=2k2+3

Fj (f )φj

)
∈ Vh (4.4)

such that

(∇uh,∇vh) = (f, vh) ∀vh =
∑

K∈Th

(

2k2+2∑

i=1

viφi) ∈ Vh. (4.5)

5 Convergence Theory

We prove convergence for conforming and nonconforming interpolated Galerkin
finite elements separately. The conforming case is considered first.

Theorem 1 Let u and uh be the exact solution of (1.2) and the finite element
solution of (4.5), respectively. Then

‖u − uh‖1 ≤ Chk‖u‖k+1, (5.1)

where ‖ · ‖i is the standard Sobolev Hi(Ω) norm

Proof Testing (1.2) by vh = ∑
K∈Th

∑2k2+2
i=1 viφi ∈ H 1

0 (Ω), we have
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(∇u,∇vh) = (f, vh). (5.2)

Subtracting (4.5) from (5.2),

(∇(u − uh),∇vh) = 0. (5.3)

On one element K , testing (1.2) by vh = φj ∈ H 1
0 (K) for j > 2k2 + 2, using (4.2)

we obtain

(∇(u − uh),∇φj ) = −
∫

K

Δuφjdx +
∫

K

Δuhφjdx

=
∫

K

f φjdx − Fj (f ) = 0.

(5.4)

Combining (5.3) and (5.4) implies

|u − uh|21 = (∇(u − uh),∇(u − Ihu))

≤ |u − uh|1|u − Ihu|1,

where Ih is the interpolation operator to Vh. The following inequalities complete the
proof:

‖u − uh‖1 ≤ C|u − uh|1 ≤ C|u − Ihu|1 ≤ Chk‖u‖k+1.

Next we consider the two nonconforming cases.

Theorem 2 Let u and uh be the exact solution of (1.2) and either the finite element
solution of (2.5) or of (3.4), respectively. Then

|u − uh|1,h ≤ Chk‖u‖k+1, (5.5)

where | · |21,h = (∇h·,∇h·), k = 2 and 3 for (2.5) and (3.4), respectively, and ‖·‖k+1

is the standard Sobolev Hk+1(Ω) norm.

Proof We shall prove the case of k = 2. The proof of the cubic case is similar. Let

ũh = ∑
K∈Th

( ∑10
i=1 ũiφi + ũ0φ0

)
∈ Vh be the Galerkin finite element solution,

i.e.,

(∇hũh,∇hvh) = (f, vh) ∀vh ∈ Vh. (5.6)

Testing (5.6) by vh = φ0 on some K ∈ Th, we get

(∇hũh,∇hφ0) = (f, φ0)K =
∫

K

f (x)φ0 dx,
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(∇hũh,∇hφ0) = −
∫

K

Δũhφ0 dx

= −ũ0

∫

K

Δφ0φ0 dx = −ũ0,

where in the integration by parts, we use the fact ∇ũh · n
¯
is a polynomial of a

smaller (in fact, one less) degree on the boundary of K . That is, uh = ũh, i.e., uh

satisfies (5.6).
Let wh ∈ Vh. Then

|u − uh|1,h ≤ |u − wh|1,h + |uh − wh|1,h = |u − wh|1,h
+ sup

vh∈Vh

(∇h(uh − wh),∇hvh)

|vh|1,h ≤ |u − wh|1,h

+ sup
vh∈Vh

(∇h(u − uh),∇hvh)

|vh|1,h + sup
vh∈Vh

(∇h(u − wh),∇hvh)

|vh|1,h

≤ 2|u − wh|1,h + sup
vh∈Vh

(∇h(u − uh),∇hvh)

|vh|1,h .

The first term is the bounded by the interpolation error, i.e., the right hand side
of (5.5). We estimate the second term. Let [vh] denote the jump on an (internal)
triangle e of Th, after choosing an orientation for e. Then

(∇h(u − uh),∇hvh) =
∑

K∈Th

∫

∂

K
∂u

∂n
¯

vhdS =
∑

e∈∂Th

∫

e

∂u

∂n
¯

[vh]dS

=
∑

e∈∂Th

∫

e

(∂u

∂n
¯

− Πe

∂u

∂n
¯

)
(vh|e+ − Πevh|e+ − vh|e− + Πevh|e−)dS

=
⎛

⎝
∑

e∈∂Th

∫

e

(∂u

∂n
¯

− Πe

∂u

∂n
¯

)2
dS

⎞

⎠
1/2 ⎛

⎝
∑

e∈∂Th

∫

e±
(vh − Πevh)

2dS

⎞

⎠
1/2

,

where Πe is the L2 projection onto the space of bivariate linear polynomials P1(e).
By the trace inequality, we continue above estimation,

(∇h(u − uh),∇hvh) ≤ C

⎛

⎝
∑

e∈∂Th

∫

e

(∂u

∂n
¯

− ∂Ihu

∂n
¯

)2
dS

⎞

⎠
1/2

·
⎛

⎝
∑

K∈Th

(
1

h
‖vh − Ehvh‖2L2(K)

+ h‖∇(vh − Ehvh)‖2L2(K)
)

⎞

⎠
1/2
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≤ C

⎛

⎝
∑

K∈Th

(
1

h
‖∇(u − Ihu)‖2

L2(K)
+ h‖D2(u − Ihu)‖2

L2(K)
)

⎞

⎠
1/2

h1/2|vh|1,h

≤ C

⎛

⎝
∑

K∈Th

(h2k−1|u|2
Hk+1(K)

⎞

⎠
1/2

h1/2|vh|1,h ≤ Chk|u|k+1|vh|1,h,

where Ih is the standard interpolation operator to Vh, see [11], and Ehvh ∈ Pk(K)

is a stable extension of (moments of) Πevh inside K . The proof is complete.

6 Numerical Tests

Let the domain of the boundary value problem (1.2) be Ω = [0, 1]3, and let f (x) =
3π2 sinπx sinπy sinπz. The exact solution is u(x, y) = sinπx sinπy sinπz. In all
numerical tests on Pk interpolated Galerkin finite element methods in this section,
we choose a family of uniform grids shown in Fig. 1.

We solve problem (1.2) first by the P2 interpolated Galerkin conforming finite
element method defined in (2.3), and by the P2 nonconforming finite element
method, on same grids. The errors and the orders of convergence are listed in
Table 1. We have one order of superconvergence for the interpolated Galerkin finite
element method (2.5), in bothH 1 semi-norm andL2 norm.We note that the standard
P2 conforming finite element method has one order of superconvergence in both H 1

semi-norm and L2 norm. But the nonconforming P2 element has the optimal order
of convergence only.

Next we solve the same problem by the interpolated Galerkin P3 finite element
method (3.4) and by the P3 nonconforming finite element method. The errors and
the orders of convergence are listed in Table 2. Both methods converge in the optimal
order.

Fig. 1 The first three levels of grids
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Table 1 The error eh = Ihu − uh and the order of convergence, by the P2 interpolated Galerkin
finite element (2.3) and by the P2 nonconforming finite element

‖eh‖0 hn |eh|1 hn ‖eh‖0 hn |eh|1 hn

Grid P2 interpolated element P2 nonconforming element

3 0.3298E−02 3.2 0.5367E−01 2.3 0.3769E−02 2.9 0.1079E+00 1.8

4 0.2538E−03 3.7 0.8380E−02 2.7 0.4439E−03 3.1 0.2751E−01 2.0

5 0.1704E−04 3.9 0.1150E−02 2.9 0.5315E−04 3.1 0.6861E−02 2.0

6 0.1089E−05 4.0 0.1493E−03 2.9 0.6542E−05 3.0 0.1712E−02 2.0

7 0.6859E−07 4.0 0.1898E−04 3.0 0.8141E−06 3.0 0.4276E−03 2.0

Table 2 The error eh = Ihu − uh and the order of convergence, by the P3 interpolated Galerkin
finite element (3.2) and by the P3 nonconforming finite element

‖eh‖0 hn |eh|1 hn ‖eh‖0 hn |eh|1 hn

Grid P3 interpolated element P3 nonconforming element

3 0.3943E−03 4.0 0.1453E−01 2.7 0.3957E−03 4.0 0.1464E−01 2.7

4 0.2320E−04 4.1 0.1995E−02 2.9 0.2341E−04 4.1 0.2004E−02 2.9

5 0.1423E−05 4.0 0.2589E−03 2.9 0.1439E−05 4.0 0.2598E−03 2.9

6 0.8854E−07 4.0 0.3283E−04 3.0 0.8964E−07 4.0 0.3293E−04 3.0

Table 3 Comparison of P4 interpolated Galerkin and conforming Lagrange finite elements

P4 interpolated element P4 Lagrange element

Grid ‖eh‖0 hn |eh|1 hn ‖eh‖0 hn |eh|1 hn

3 0.5624E−04 4.8 0.2450E−02 3.8 0.5577E−04 4.8 0.2471E−02 3.8

4 0.1794E−05 5.0 0.1587E−03 3.9 0.1789E−05 5.0 0.1592E−03 4.0

5 0.5592E−07 5.0 0.1000E−04 4.0 0.5587E−07 5.0 0.1002E−04 4.0

# unknowns 225471 250047

# iterations 927 3050

CPU 95.5 308.6

Finally, we solve the problem by the interpolated Galerkin P4, P5, and P6 finite
element methods, (4.3) with k = 4, 5, 6, and by the P4, P5, and P6 conforming finite
element methods. The errors and the orders of convergence are listed in Tables 3,
4, and 5. The optimal order of convergence is achieved in every case. Also in the
table, we list the number of unknowns, the number of conjugate iterations used in
solving the resulting linear system of equations, and the computing time, on the last
level computation. The number of unknowns for the P6 element is only about 2/3
of that of the P6 Lagrange element. The number of iterations for the P6 interpolated
element is less than 1/16 of that of the Lagrange element. The conditioning of the
system of the new element is much better while giving also a slightly better solution.
For the P6 elements, the new method uses less than 1/10 of the computer time than
that of the standard finite element.
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Table 4 Comparison of P5 interpolated Galerkin and conforming Lagrange finite elements

P5 interpolated element P5 Lagrange element

Grid ‖eh‖0 hn |eh|1 hn ‖eh‖0 hn |eh|1 hn

2 0.3343E−03 5.7 0.9230E−02 4.7 0.3402E−03 5.7 0.9354E−02 4.7

3 0.5719E−05 5.9 0.3282E−03 4.8 0.5739E−05 5.9 0.3295E−03 4.8

4 0.8999E−07 6.0 0.1065E−04 4.9 0.8967E−07 6.0 0.1068E−04 4.9

# unknowns 47031 59319

# iterations 877 7080

CPU 31.1 267.0

Table 5 Comparison of P6 interpolated Galerkin and conforming Lagrange finite elements

P6 interpolated element P6 Lagrange element

Grid ‖eh‖0 hn |eh|1 hn ‖eh‖0 hn |eh|1 hn

1 0.2234E−02 0.0 0.5041E−01 0.3098E−02 0.0 0.6026E−01

2 0.5798E−04 5.3 0.2134E−02 4.6 0.5866E−04 5.7 0.2153E−02 4.8

3 0.5037E−06 6.8 0.3700E−04 5.8 0.5046E−06 6.9 0.3713E−04 5.9

# unknowns 8327 12167

# iterations 876 14335

CPU 18.0 181.5
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