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Abstract B-spline approximations with uniform isotropic tensor product grids
soon reach computational limits, because the grid size increases exponentially with
the dimensionality. Sparse grids are an established technique to mitigate this curse of
dimensionality, and spatial adaptivity automatically selects only the most significant
grid points. To compensate for missing boundary points of the sparse grids, the
B-spline basis functions so far have been modified according to natural boundary
conditions. However, modified B-splines do not span the polynomial space anymore
and therefore lack a fundamental spline property. Recently we introduced hierarchi-
cal extended not-a-knot B-splines, which guarantee the polynomial basis property.
Now we apply them to a subsurface flow uncertainty quantification benchmark,
where we compare them to common spline bases on sparse grids, to Monte Carlo
and to polynomial chaos expansion. The new basis improves the quality of quantities
of interest, such as approximation error, mean and variance.

Keywords B-splines · Extension · Sparse grid · Uncertainty quantification ·
Stochastic expansion · Polynomial chaos

1 Introduction

Simulating real world processes through computer experiments [17] yields many
benefits. Lower costs compared to real experiments, many executions in parallel
and no risk to humans or the environment, just to name a few. However, computer
experiments are never capable of simulating the real world comprehensively and
always must be a compromise of precision and complexity.

The field of uncertainty quantification deals with the inevitably limited knowl-
edge of the real world, and allows for more realistic assessments of computer
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experiment results. This is done by introducing uncertainty to the input parameters
and observing how the uncertainty propagates through the model and influences the
results [29]. To increase the accuracy of the predictions for the underlying process
more uncertain input parameters can be added, such that the computer experiment
takes more aspects of the real world into account. However, the run-times and
necessary computational resources increase with the complexity of the model.

This problem can be dealt with by creating a surrogate that is a sufficiently
accurate approximation of the original model, but much faster to evaluate. For
several years B-spline basis functions [13] have been used for the creation of
surrogate models. However, the number of grid points of classical uniform isotropic
tensor product grids increases exponentially with the number of input parameters.
This is known as the curse of dimensionality [2]. Sparse Grids [3, 31] are an
established technique to mitigate the curse, in particular when created spatially
adaptive[19]. Sparse Grids have successfully been applied in combination with B-
splines for interpolation, optimization, regression and uncertainty quantification [15,
19, 21, 28]. When further increasing the dimensionality of the parameter space, the
boundary points of sparse grids again introduce exponential growth rates, and thus
must be omitted. The B-spline basis must compensate for this to prevent a dramatic
loss in approximation quality.

So far only a heuristical boundary treatment has been used [19, 28]. The left- and
right-most splines were modified to enforce second zero derivatives at the boundary
of the parameter domain. However, this can be disadvantageous in many cases,
where the objective function does not meet this requirement. In particular, modified
not-a-knot B-splines do not preserve the ability of the original not-a-knot B-spline
basis, including the boundary, to represent polynomials exactly, and therefore lack
one of the most important spline properties.

Recently we have introduced hierarchical extended not-a-knot B-splines for
usage on spatially adaptive sparse grids [20] based on the extension concept [14, 18].
This extended basis follows the premise of preserving the polynomial representation
property. In this work, we apply the new basis for the first time to a subsurface flow
benchmark from the field of uncertainty quantification [12]. With this we are able to
demonstrate that the new basis does not only represent polynomials exactly, but also
improves the approximation of general objective functions and quantities of interest.
We compare our results with a simple Monte Carlo approach and the widely used
polynomial chaos expansion [9, 30].

2 Sparse Grids

Full uniform isotropic tensor product grids are one of the most widely used
discretization approaches. However, their amount of grid points increases like
O(h−D), where h is the grid width and D is the dimensionality of the underlying
space. This exponential growth prevents calculations already for moderately high-
dimensional applications.
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Sparse Grids are a discretization scheme designed to mitigate this curse and
enable higher-dimensional approximations. The amount of grid points of non-
boundary regular sparse grids of level l with grid width hl only increases like
O(h−1

l (log2 h−1
l )D−1). At the same time, the L2-interpolation error of interpola-

tions with B-splines of degree n on regular sparse grids of level l still decays
asymptotically like O(hn+1

l (log2 h−1
l )D−1) [26], if the objective function is suffi-

ciently smooth. This is only slightly worse than the full grid error convergence rate
of O(hn+1

l ).
In contrast to the widely used combination technique, also known as Smolyak

scheme [27], we use spatially adaptive sparse grids [19]. These can automatically
be customized for the quantity of interest, resolving locally finer in more important
regions and coarser in less important ones. By doing so the number of grid points is
potentially reduced even further. This is important, because every grid point means
an expensive evaluation of the original model.

The definition of sparse grids is based on arbitrary hierarchical basis functions
ϕl,i of level l and index i. We now introduce sparse grids in this general form, but
later will only use hierarchical spline functions as bases.

2.1 Regular Sparse Grids

Without loss of generality, throughout this work, we restrict ourselves to parameters
in the unit hypercube [0, 1]D . Let Il be the hierarchical index set of level l ∈ N0,

Il :=
{

{0, 1}, l = 0,

{0 < i < 2l | i odd}, else.
(1)

Given univariate hierarchical basis functions ϕl,i of level l ∈ N0 and index i ∈ N0,
we define multivariate basis functions ϕl,i via tensor products,

ϕl,i =
D∏

d=1

ϕld ,id
, l ∈ N

D
0 , i ∈ Il := Il1 × · · · × IlD , (2)

where l and i are multi-indices. Let now Hl := {xl,i = (xl1,i1 , . . . , xlD,iD ) | i ∈
Il} for xld ,id := idhld be the anisotropic grid of level l with grid widths hld :=
2−ld . We define the hierarchical subspaces Wl of level l through the basis functions
corresponding toHl,

Wl := span{ϕl,i | i ∈ Il}. (3)

Regular boundary sparse grids V b
l of level l ∈ N0 in D dimensions are defined as

the direct sum of these hierarchical subspaces,
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(a)

(b)

(c)

Fig. 1 (a) Hierarchical subspace scheme of level l = 3, (b) corresponding regular boundary sparse
grid V b

3 and (c) corresponding regular nonboundary sparse grid V s
3

V b
l :=

⊕
|l′|1≤l

Wl′ , (4)

where |l′|1 := ∑D
d=1 l′d is the discrete �1 norm of l′. Unfortunately the number

of boundary points of a boundary sparse grid grows like O(2D). This growth
is exponential, still preventing discretization for higher dimensional applications.
Therefore the boundary points must be omitted. The D-dimensional nonboundary
sparse grid V s

l of level l ∈ N is defined as

V s
l :=

⊕
|l′|1≤l, l′d≥1∀d∈{1,...,D}

Wl′ . (5)

Figure 1 shows an illustration of the hierarchical subspace scheme, the correspond-
ing regular boundary sparse grid and the corresponding regular nonboundary sparse
grid.

2.2 Spatial Adaptivity

Regular sparse grids uniformly discretize the objective domain, spending too few
grid points in regions of interest and too many grid points in regions of little
significance. Spatially adaptive sparse grids [19] can automatically be adapted to the
objective function. Given an initial sparse grid approximation, each basis function’s
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benefit to the quantity of interest is estimated. Depending on this estimate, the
grid points corresponding to the most significant basis functions are refined. This
approach is more selective than classical dimensional adaptivity [11] and therefore
allows the employment of even fewer grid points.

Let xl,i be a sparse grid point. We define its hierarchical children C(l, i) as all
grid points xl′,i′ , for which there exists r ∈ {1, . . . , D}, s.t.

ld = l′d , id = i′d ∀d ∈ {1, . . . , D} \ {r},
l′r = lr + 1,

i′r ∈ {2ir − 1, 2ir + 1}.
(6)

Let now G be a spatially refined grid,

G := {xl,i | (l, i) ∈ L}, (7)

where L ⊂ {(l, i) | l ∈ N
D
0 , i ∈ Il} is some finite level-index set. Note that this

includes regular sparse grids as a special case. The set of all level-index pairs of
refineable grid points, Lref ⊆ L, is defined as

Lref := {(l, i) ∈ L | C(l, i) 	⊂ G}. (8)

The sparse grid G can now be refined, by iterating the following two steps until a
given threshold for the total number of grid points is exceeded. First identify the
level-index pair of the grid point xl∗,i∗ ∈ Lref and corresponding basis function
ϕl∗,i∗ with most influence on the quantity of interest. Second, add all its hierarchical
children C(l∗, i∗) to the grid.

Many criteria for the identification of (l∗, i∗) exist. In this work we apply the
standard surplus criterion [19]. It is based on the hierarchy of the basis, where larger
interpolation coefficients |αl,i| imply a worse local approximation. Consequently we
use

(l∗, i∗) := argmax(l,i)∈Lref |αl,i|. (9)

3 Basis Functions

Sparse grids are widely used in combination with the popular linear hat func-
tions, i.e. B-splines of degree one. But if the objective function admits a certain
smoothness, an approximation should preserve it or it would otherwise lose valuable
information. Therefore in the last years B-splines have been used increasingly
often on (spatially adaptive) sparse grids [15, 19, 28]. Their local support and
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arbitrary choosable degree result in their well-known approximation quality, while
the underlying sparse grid keeps the number of necessary function evaluations small.

Before we define the new extended not-a-knot B-spline basis we must introduce
the underlying classical not-a-knot B-splines. Furthermore we define modified not-
a-knot B-splines to motivate the new basis. As is common, throughout this paper we
only define and use splines of odd degrees.

3.1 B-Splines

Let ξ := (ξ0, . . . , ξq+n) be a knot-sequence, i.e. a non-decreasing sequence of real
numbers ξk for k ∈ {0, . . . , q + n} and some q ∈ N0. The B-spline bn

k,ξ of index k

and degree n is defined by the Cox-de-Boor recursion [4, 6],

bn
k,ξ (x) =

⎧⎨
⎩

x − ξk

ξk+n − ξk

bn−1
k,ξ (x) + ξk+n+1 − x

ξk+n+1 − ξk+1
bn−1
k+1,ξ (x) n ≥ 1,

χ [ξk,ξk+1](x) n = 0,
(10)

where χ [ξk,ξk+1](x) evaluates to one in the interval [ξk, ξk+1] and zero elsewhere.
Originally, Schoenberg introduced B-splines with an infinite and uniform knot

sequence ξ∞
h = (. . . , ξ∞

h,−1, ξ
∞
h,0, ξ

∞
h,1, . . . ), where ξ∞

h,k = kh for grid width h ∈ R

and index k ∈ Z [23]. The corresponding B-splines bn
k,ξ∞

h
form a basis of Sn

ξ∞
h
, the

spline space of n times continuously differentiable piecewise polynomials on the
knot intervals.

When using a finite knot sequence this desirable basis property is no longer valid,
because the Schoenberg-Whitney conditions [13, 24] do not hold at the left-most
and right-most knot intervals. A common approach to revalidate these conditions
are not-a-knot B-splines [5, 28].

3.2 Not-a-Knot B-Splines

Not-a-knot B-splines are motivated by requiring continuity of the n-th derivatives
at the n−1

2 left-most and n−1
2 right-most knots. This requirement is equivalent to

excluding the according n− 1 knots from the B-spline defining knot sequence ξ but
keeping them in the set of interpolation nodes.

Without loss of generality we restrict ourselves to uniform B-splines of level
l ∈ N0 on the unit interval [0, 1] using the uniform knot sequence ξ

n,u
l :=

(ξ
n,u
l,0 , . . . , ξ

n,u
l,2l+2n

), where ξ
n,u
l,k := (k − n)hl for grid width hl := 2−l . Con-

sequently, we derive ξ
n,nak
l := (ξ

n,nak
l,0 , . . . , ξ

n,nak
l,2l+n+1

), the uniform not-a-knot
sequence of level l and degree n as
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ξ
n,nak
l,k :=

⎧⎪⎪⎨
⎪⎪⎩

ξ
n,u
l,k , k = 0, . . . , n,

ξ
n,u
l,k+(n−1)/2, k = n + 1, . . . , 2l ,

ξ
n,u
l,k+n−1, k = 2l + 1, . . . , 2l + n + 1.

(11)

The definition of ξ
n,nak
l,k is only applicable if l ≥ �log2(n+1). Otherwise we cannot

exclude n − 1 knots from the sequence. Therefore, if l < �log2(n + 1), we use
ξ

n,nak
l,k := ξ

n,u
l,k and Lagrange polynomials

Ll,k(x) :=
∏

0≤m≤2l ,
m	=k

x − ξ
n,u
l,m

ξ
n,u
l,k − ξ

n,u
l,m

, k = 0, . . . , 2l (12)

as basis functions. This ensures a basis for the polynomial space on the first levels.
Finally, the not-a-knot B-spline basis b

n,nak
l,k of degree n, level l and index k is

given by

b
n,nak
l,k (x) :=

⎧⎨
⎩

bn

k,ξ
n,nak
l,k

(x) l ≥ �log2(n + 1),
Ll,k(x) l < �log2(n + 1).

(13)

The knot-sequence ξ
n,nak
l,k still includes the boundary points ξ

n,nak
l,0 = 0 and

ξ
n,nak
l,2l+n+1

= 1. Because the number of boundary points of higher-dimensional
sparse grids dominates the total number of grid points, the boundary points
must be omitted. However, simply excluding the boundary points, and thus the
corresponding B-spline basis functions, impairs the approximation quality at the
boundaries. Therefore an appropriate boundary treatment is necessary.

3.3 Modified Not-a-Knot B-Splines

So far modified not-a-knot B-splines [28] are used to compensate for the missing
boundary points. Motivated by an application with natural boundary conditions, they
were defined to enforce zero second derivatives at the domain’s boundaries. The
resulting basis functions extrapolate towards the boundaries, as can be seen in Fig. 3.
Consequently the modified not-a-knot B-spline b

n,mod
l,k of degree n, level l and index

k is defined as,
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Fig. 2 Schematic visualization of the extension of not-a-knot B-splines of degree n = 3 on a one-
dimensional regular grid of level l = 4. The boundary splines with indices Jl = {0, 16} are added
to the n + 1 next inner splines Il(0) = {1, 2, 3, 4} and Il(16) = {12, 13, 14, 15}, indicated with
arrows

b
n,mod
l,k

(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 l = 1, k = 1,

b
n,nak
l,k

(x) + b
n,nak
l,k−1(x) l ≥ 2, k = 1, n = 1,

b
n,nak
l,k

(x) −
d2

dx2
b
n,nak
l,k (0)

d2

dx2
b
n,nak
l,k−1(0)

b
n,nak
l,k−1(x) l ≥ 2, k ∈ {1, . . . , n+1

2 }, n > 1,

b
n,mod
l,2l−k

(1 − x) l ≥ 2, k ∈ {2l − n+1
2 , . . . , 2l − 1},

b
n,nak
l,k

(x) otherwise.

(14)

Note, that for linear splines of degree n = 1 the second derivatives always vanish.
Therefore the modification is defined as the linear continuation of the left-most and
right-most inner splines.

Some applications require zero second derivatives, and thus are accurately
representable by modified not-a-knot B-splines. However, this condition does not
hold in general and modified not-a-knot B-splines are not capable of representing
arbitrary functions. In particular the standard monomial basis {xm | 0 ≤ m ≤ n}
for the polynomial space Pn has second derivatives unequal to zero for n ≥ 2. The
modified not-a-knot B-spline basis is thus not even capable of exactly representing
polynomials, which is one of the most important properties for spline bases.

3.4 Extended Not-a-Knot B-Splines

The extension of B-splines was originally introduced in the context of WEB-
splines [14] and later generalized for hierarchical subdivision schemes [18].
Recently we have introduced hierarchical extended not-a-knot B-splines for the
usage on sparse grids [20].
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The idea of the extension is to add the omitted splines bj , j ∈ Jl := {0, 2l}
to the remaining splines in such a way, that their contribution to the capability of
representing polynomials is preserved. In a first step, we interpolate {Pm | m ∈
M := {0, . . . , n + 1}} a basis for the polynomial space Pn with the regular not-a-
knot B-spline basis including the boundary splines. Let l ≥ �log2(n + 2), then the
polynomial basis is represented exactly by definition of the not-a-knot B-splines.
This results in interpolation coefficients αm,i , such that

Pm =
2l∑

k=0

αm,kb
n,nak
l,k ∀m ∈ M. (15)

In practice we use the monomials Pm = xm, but the theory is independent of this
particular choice.

In a next step, we identify the closest n + 1 inner indices Il(j) for each index
j ∈ Jl . Now the coefficients αj , j ∈ Jl are represented as linear combinations of
the coefficients αi, i ∈ Il(j), i.e.

αj =
∑

i∈Il (j)

ei,j αi, (16)

where ei,j ∈ R are the extension coefficients. See Fig. 2 for an illustration.
Let Jl(i) := {j ∈ Jl | i ∈ Il(j)} be the dual of Il(j) and P ∈ P

n be an arbitrary
polynomial. Following eq. (15) it holds

P =
∑
m∈M

pmPm =
∑
m∈M

∑
i∈Il

pmαm,ib
n,nak
l,i +

∑
m∈M

∑
j∈Jl

pmαm,j b
n,nak
l,j (17)

for uniquely defined coefficients pm, αm,i, αm,j ∈ R. Exploiting the finiteness of
the sets M , Il and Jl , we interchange the sums,

P =
∑
i∈Il

( ∑
m∈M

pmαm,i

)
b

n,nak
l,i +

∑
j∈Jl

( ∑
m∈M

pmαm,j

)
b

n,nak
l,j . (18)

Because Jl(i) is the dual of Il(j), and by the definition of the extension coefficients
ei,j in eq. (16), it holds

P =
∑
i∈Il

( ∑
m∈M

pmαm,i

)
︸ ︷︷ ︸

=:βi

⎛
⎝b

n,enak
l,i +

∑
j∈Jl(i)

ei,j b
n,nak
l,j

⎞
⎠

︸ ︷︷ ︸
=:bn,e

l,i

(19)

=
∑
i∈Il

βib
n,e
l,i . (20)
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(a) (b) (c)

Fig. 3 (a) Hierarchical not-a-knot B-splines with boundary basis functions, (b) hierarchical
modified not-a-knot B-splines and (c) hierarchical extended not-a-knot B-splines of degree 3 and
levels 0, 1, 2, 3 and 4, respectively. The not-a-knot change in the knot sequence is illustrated with
crosses at xl,1 and xl,2l−1

Consequently the extended not-a-knot B-spline b
n,e
l,i of degree n, level l and index i

is defined through eq. (19)

b
n,e
l,i :=

{
b

n,nak
l,i + ∑

j∈Jl(i)
ei,j b

n,nak
l,j l ≥ �log2(n + 2),

Ll,i(x) l < �log2(n + 2), (21)

where again Lagrange polynomials are employed on lower levels to ensure the
polynomial basis property, as long as there are not enough inner knots for the
extension.

For the usage on sparse grids, all presented B-spline basis functions are applied in
the hierarchical manner introduced in Eq. (3). See Fig. 3 for an illustration. Recently
we showed that the hierarchical extended not-a-knot B-spline basis fulfills the
desired polynomial representation property [20].

4 Expansion Methods

The field of uncertainty quantification generalizes the concept of numerical mod-
eling by introducing nondeterminism, thereby allowing more accurate simulations
of the real world. Instead of real values, parameters are random variables obeying
probability density functions. The uncertainty of the input parameters is then
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propagated through the model resulting in uncertain outputs. In order to estimate
likely outcomes of the model, stochastic values such as mean and standard deviation
can be calculated. Two of the most widely used techniques to calculate these values
are stochastic collocation and polynomial chaos expansion (PCE).

Formally let (Ω,F , P ) be a complete probability space with Ω ⊂ R
D being the

D-dimensional sample space of all possible outcomes, F the σ -algebra of events
and P : F → [0, 1] the probability measure. Without loss of generality we assume
Ω ⊆ [0, 1]D . Let X := (X1, . . . , XD) ∈ Ω be a random vector consisting of D

random variables. We assume that the according random variables admit statistically
independent probability density functions 
1, . . . , 
D and thus the random vector is
distributed according to their product distribution � := ∏D

d=1 
d .

4.1 Stochastic Collocation

Stochastic collocation is based on the process of replacing the original objective
function f by a surrogate f̃ , and performing stochastic analysis on the surrogate.
We create the surrogate as a linear combination of B-splines bl,i on an adaptively
created sparse grid G with level-index set L,

f ≈ f̃ :=
∑

(l,i)∈L

αl,ibl,i, (22)

where the coefficients αl,i are computed via interpolation at the sparse grid points.
From this we approximate the mean E(f ) and variance V(f ) of the objective
function using Gauss-Legendre quadrature,

E(f ) ≈ E(f̃ ) =
∫

[0,1]D
f̃ (X)�(X)dX (23)

≈
∑

k

f̃ (xk)�(xk)ωk, (24)

V(f ) ≈ V(f̃ ) = E(f̃ 2) − E(f̃ )2, (25)

where xk are the points and ωk the weights of the quadrature rule. The order of
the quadrature rule is chosen depending on the distribution �. Being piecewise
polynomials, splines are exactly integrated by the Gauss-Legendre quadrature rule
of order (n+1)/2 with respect to a uniform probability density function. Therefore,
if any of the density functions 
d is uniform, the quality of the approximation f̃

directly propagates to the quality of the stochastic values.
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4.2 Polynomial Chaos Expansion

Generalized polynomial chaos is based on the Wiener-Askey scheme [30], where
Hermite, Legendre, Laguerre, Jacobi and generalized Laguerre polynomials are
used to model the effects of uncertainties of normal, uniform, exponential, beta and
gamma distributed random variables respectively. These polynomials are optimal
for the according distribution in the sense, that they are orthogonal with respect to
the according inner product [9].

If other distribution types are required, nonlinear variable transformations like
Rosenblatt [22] and Nataf [7] can be applied, but convergence rates are typically
decreased by this [9]. Alternatively orthogonal polynomials matching the given
distribution can be numerically generated [8]. For a fair comparison, our numerical
examples all obey the distributions from the Wiener-Askey scheme. Note however,
that stochastic collocation with B-splines on sparse grids is not limited in the type
of distribution and can be applied directly for any given distribution.

The actual chaos expansion takes the form

f (X) = γ 0Φ0 +
D∑

d=1

γ dΦ1(Xd) +
D∑

d=1

d∑
t=1

γ d,tΦ2(Xd,Xt ) + . . . , (26)

where Φd are the basis functions from the Wiener-Askey scheme and each
additional set of nested summation introduces an additional order of polynomials.
Usually the order-based indexing is replaced by term-based indexing to simplify the
representation. Consequently,

f (X) =
∞∑
k=0

γ kΨk(X), (27)

where there is a direct correspondence between γ d,t,... and γ k and between
Φt(Xd,Xt , . . . ) and Ψk(X), which are multivariate polynomials.

The PCE coefficients γ k are calculated via spectral projection, taking advantage
of the orthogonality of the polynomials to extract each coefficient,

γ k = 〈f,Ψk〉
〈Ψ 2

k 〉 = 1

〈Ψ 2
k 〉

∫
[0,1]D

f (X)Ψk�(X)dX. (28)

The integral in eq. (28) must be numerically calculated. In high-dimensional settings
usually regular sparse grids based on the combination technique are used [9] and we
too use this approach.

Once the expansion coefficients have been calculated, the desired stochastic
quantities follow directly, because of the orthogonality of the polynomials,

E(f ) = γ 0, (29)
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V(f ) =
∞∑
k=0

γ k2〈Ψ 2
k 〉�. (30)

In practice the expansion representation of the variance must be truncated, thus PCE
tends to underestimate the variance.

5 Numerical Results

We will measure the interpolation error between an objective function f : Ω → R

and a surrogate f̃ : Ω → R with the normalized root-mean-square error (NRMSE).
For R ∈ N given samples {xr ∈ Ω | r = 1, . . . , R}, the NRMSE is defined as

1

fmax − fmin

√∑R
r=1(f (xr ) − f̃ (xr ))2

R
, (31)

where fmax := maxr=1,...,R f (xr ) and fmin := minr=1,...,R f (xr ). In our examples
we used R = 100000. Mean and variance errors are measured relatively,

εE = |E(f ) − E(f̃ )|
E(f )

, εV = |V(f ) − V(f̃ )|
V(f )

. (32)

All results in this chapter, except for polynomial chaos expansion, were calculated
with our software SG++ [19], a general toolbox for regular and spatially adaptive
sparse grids. It is available open-source for usage and comparison [25]. Our spatial
adaptivity algorithm was set up to refine up to 25 points in each refinement step,
starting with a regular sparse grid of level 0 for not-a-knot B-splines on boundary
sparse grids and level 1 otherwise.

In practice the extension coefficients must be calculated only once. This allows an
efficient implementation of the new basis. The precalculated extension coefficients
we used are listed in Table 1.

Table 1 Extension coefficients ei,j for the degrees n ∈ {1, 3, 5} based on Pm = xm,m ∈ M . Only
the coefficients for the extension at the left boundary are shown, i.e. j = 0. The right boundary is
treated symmetrically. For degree 5 and level 3, the left and right extensions overlap, resulting in a
special case

n [e1,0, . . . , en+1,0]
1 [2,−1]
3 [5,−10, 10,−4]
5

{
[8,−28, 42,−35, 20,−6] l = 3,

[8,−28, 56,−70, 56,−21] l > 3
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Fig. 4 Normalized root mean square error for the interpolation of f (x) = exp(x) with not-a-knot
B-splines with and without boundary points, modified not-a-knot B-splines and extended not-a-
knot B-splines on regular sparse grids for degrees n ∈ {1, 3, 5}

5.1 Exponential Objective Function

We first verify the improved convergence rates of extended not-a-knot B-splines
in a simple setup, which illustrates why the new basis functions were necessary.
We interpolate the one-dimensional exponential function with the common spline
functions used in sparse grid context and measure the NRMSE, see Fig. 4.

The not-a-knot B-splines without boundary points or any boundary treatment
converge very slowly, clearly showing the need for appropriate boundary treatment.
The modified not-a-knot B-splines converge faster but are still far away from the
optimal convergence rates ofO(h−(n+1)). Only not-a-knot B-splines with boundary
points and extended not-a-knot B-splines reach the optimal convergence rates.

In this one-dimensional example the additional costs of the two boundary points
are negligible. However, in higher-dimensions 2D boundary points of a level 0
sparse grid can already exceed the computational limits, leaving extended not-a-
knot B-splines as the only viable alternative.



Stochastic Collocation with Hierarchical Extended B-Splines on Sparse Grids 233

Table 2 The input variables and according distributions for the borehole model

Variable Distribution Description

rw N(μ = 0.1, σ = 0.0161812) Radius of borehole

r Lognormal(μ = 7.71, σ = 1.0056) Radius of influence

Tu Uniform[63070, 115600] Upper aquifer transmissivity

Hu Uniform[990, 1110] Upper aquifer potentiometric head

Tl Uniform[63.1, 116] Lower aquifer transmissivity

Hl Uniform[700, 820] Lower aquifer potentiometric head

L Uniform[1120, 1680] Borehole length

Kw Uniform[9855, 12045] Borehole hydraulic conductivity

5.2 Borehole Model

The next example is a real world application, modeled in 1983 by Harper and Gupta
for the office of nuclear waste isolation [12]. Since then, it has been used many
times for testing new approximation methods, e.g. in [16, 32]. A borehole is drilled
through an aquifer above a nuclear waste repository, through the repository, and to
an aquifer below. The input parameter ranges are defined in Table 2, the response
Q ∈ R is the flow in m3/yr and is given by

Q = 2πTu(Hu − Hl)

ln(r/rw)
(
1 + 2LTu

ln(r/rw)r2wKw
+ Tu

Tl

) . (33)

In terms of calculating mean and variance we compare our method to the
polynomial chaos expansion implementation of the DAKOTA library [1] and Monte
Carlo. We compare calculated means and variances to a reference solution computed
with extended not-a-knot B-splines of degree 5 on a spatially adaptive sparse grid
with 35,000 grid points. We verified this reference solution by calculating another
reference solution using DAKOTA’s polynomial chaos expansion based on a sparse
grid of level 5 with 34,290 grid points. The difference between both results for mean
and variance is smaller than 10−11.

Figure 5 shows the NRMSE, the relative mean error and relative variance errors
for all introduced B-splines on regular and spatially adaptive sparse grids, simple
Monte Carlo and polynomial chaos expansion. For this problem B-splines of degree
n = 5 performed best and the plots show only these results. However, the free
choice of the B-spline degree makes the approach very flexible and allows to react
to local features of general objective functions. While higher degree approximations
are in general better for smooth functions, they can start to oscillate, making lower
degrees advantageous.

B-splines without boundary points or any boundary treatment barely converge,
again demonstrating the urgent need for compensation, when omitting the boundary
points. For B-splines with boundary points the errors do converge, but slower than
for modified or extended not-a-knot B-splines, which can resolve the inner domain
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Fig. 5 Normalized root mean square error for the approximation of the borehole model and
calculation of its mean and variance with not-a-knot B-splines with and without boundary points,
modified not-a-knot B-splines and extended not-a-knot B-splines of degree 5 on regular and
adaptive sparse grids, polynomial chaos expansion and Monte Carlo

much finer. Of these two, the extended not-a-knot B-splines perform significantly
better. In all cases spatial adaptivity increases the convergence rate significantly
over regular Sparse Grids.

The polynomial chaos expansion’s NRMSE is worse than that of modified and
extended not-a-knot B-splines. That is because the underlying global polynomials
cannot react to local features, as the spline bases can. However, its approximation of
the mean is best among all shown methods. This can be explained by Eq. (29). The
mean of a polynomial chaos approximation is directly given by its first coefficient
γ 0 and independent of all other terms. So the mean of a polynomial chaos approx-
imation can be disproportionately better than its overall approximation quality. The
variance approximation on the other hand, which is calculated according to Eq. (30),
theoretically relies on all, infinitely many, coefficients. In practice the sum must
be truncated. Consequently the polynomial chaos expansion tends to underestimate
the variance and it can be seen, that the extended not-a-knot B-splines on spatially
adaptive sparse grids approximate the variance better.

As expected the simple Monte Carlo approach is easily outperformed by almost
all other techniques.
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6 Conclusions and Outlook

In this article we have demonstrated the need for proper boundary treatment when
creating surrogates with B-splines on sparse grids for moderately high-dimensional
problems. We have shown that modified not-a-knot B-splines are not sufficient
if the objective function does not have second zero derivatives at the boundary.
Our recently introduced extended not-a-knot B-splines performed significantly
better in a real world uncertainty quantification benchmark. Not only the overall
approximation is improved but also the derived stochastic quantities of interest. The
results of our newmethod are comparable to, and for some quantities of interest even
outperform, widely used polynomial chaos expansion. This makes the technique an
interesting alternative, in particular for objective functions with local features that
often can hardly be resolved by global polynomial approaches.

For this work we used the standard surplus-based refinement criterion. However,
other refinement criteria based on means or variances have successfully been used in
the context of uncertainty quantification and sparse grids [10]. These might improve
our techniques results even further.
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