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Abstract Recently, Nitzan and Olsen showed that Balian-Low theorems (BLTs)
hold for discrete Gabor systems defined on Zd . Here we extend these results to
a multivariable setting. Additionally, we show a variety of applications of the
Quantitative BLT, proving in particular nonsymmetric BLTs in both the discrete
and continuous setting for functions with more than one argument. Finally, in direct
analogy of the continuous setting, we show the Quantitative Finite BLT implies the
Finite BLT.
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1 Introduction

Gabor systems are fundamental objects in time-frequency analysis. Given a set Λ ⊂
R
2l and a function g ∈ L2(Rl ), the Gabor system G(g,Λ) is defined as

G(g,Λ) = {g(x − m)e2πin·x}(m,n)∈Λ.

When Λ is taken to be Z
2l , G(g) = G(g,Z2l ) is referred to as the integer

lattice Gabor system generated by g. The Balian-Low theorem (BLT) and its
generalizations are uncertainty principles concerning the generator g of such a
system in the case that G(g,Λ) forms a Riesz basis.

Theorem 1.1 (BLTs) Let g ∈ L2(R) and suppose that the Gabor system G(g) =
G(g,Z2) is a Riesz basis for L2(R).

(i) If 1 < p < ∞ and 1
p

+ 1
q

= 1, then either,
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∫
R

|x|p|g(x)|2dx = ∞ or
∫
R

|ξ |q |̂g(ξ)|2dξ = ∞.

(ii) If g is compactly supported, then

∫
R

|ξ ||̂g(ξ)|2dξ = ∞.

This part also holds with g and ĝ interchanged.

The first theorem, stated independently by Balian [2] and Low [12], was the
symmetric (i.e., p = q = 2) case of the theorem above and originally was stated
only for orthonormal bases. The first proofs contained a common error, and a new,
correct proof came later from Battle [3]. Soon afterwards, Coifman, Daubechies,
and Semmes [8] completed the argument in the original proofs and extended the
result to all Riesz bases. The second part of Theorem 1.1 was originally given by
Benedetto, Czaja, Powell, and Sterbenz [6], while Gautam [9] extended the BLT to
the full range of nonsymmetric (i.e., p �= q) cases above.

The Balian-Low Theorem has been generalized in many ways. For example,
Gröchenig, Han, Heil, and Kutyniok [10] extended the symmetric Balian-Low
theorem to multiple variables.

Theorem 1.2 (Theorem 9, [10]) Let g ∈ L2(Rl ) and consider the Gabor system
G(g,Z2l ) = {g(x − m)e2πin·x}(m,n)∈Z2l . If G(g,Z2l ) is a Riesz basis for L2(Rl ),
then for any 1 ≤ k ≤ l, either

∫
Rl

|xk|2|g(x)|2dx = ∞ or
∫
Rl

|ξk|2 |̂g(ξ)|2dξ = ∞.

Another important generalization is the following Quantitative BLT of Nitzan
and Olsen, which quantitatively bounds the time-frequency localization of a square-
integrable function.

Theorem 1.3 (Theorem 1, [13]) Let g ∈ L2(R) be such that G(g) is a Riesz basis
for L2(R). Then, for any R,L ≥ 1, we have

∫
|x|≥R

|g(x)|2dx +
∫

|ξ |≥L

|̂g(ξ)|2dξ ≥ C

RL
, (1)

where the constant C only depends on the Riesz basis bounds for G(g).

This result has also been extended to Gabor systems in L2(Rl ) in [15]. (See
Theorem 5.1 below.) The Quantitative BLT is a strong result. In particular, a function
satisfying (1) automatically satisfies the conclusions of both parts of Theorem 1.1.
Later, we will use the Quantitative BLT and its higher dimensional analog to show
that nonsymmetric versions of Theorem 1.2 hold for Rl , l ≥ 2.
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In applications Gabor systems are used in signal analysis to give alternate
representations of data with desirable properties. Often it is useful to have window
functions which measure locally in time for efficiency while capturing local
frequency information simultaneously. Uncertainty theorems like the BLT limit
how well localized a window can be in the time and frequency domains. This
led Lammers and Stampe [11] to conjecture that finite versions of the BLT should
hold for discrete Gabor systems. The essence of this question was answered in one
dimension by Nitzan and Olsen [14] who showed that versions of both the BLT and
the quantitative BLT exist for discrete Gabor systems.

In the finite setting, instead of functions in L2(R), complex–valued sequences
defined on Zd = Z/dZ act as the object of study, where d = N2 for some N ∈
N. It is sometimes useful to fix representatives of Zd in connection with the view
of Zd as a discretization of R, and a convenient choice in what follows is Id =
[−d/2, d/2)

⋂
Z = {−� d

2 	, . . . , d − � d
2 	 − 1}. Such sequences b may be thought

of as samples of a continuous function g defined on [−N
2 , N

2 ] at integer multiples
of 1/N so that b(j) = g(j/N) for j ∈ Id .

Let �d
2 denote the set of complex-valued sequences on Zd = Z/dZwith the norm

‖b‖2
�_2d = 1

N

∑
j∈Zd

|b(j)|2. (2)

With this normalization and the sampling view noted above, ‖b‖2
�d
2
approximates

‖g‖2
L2[− N

2 , N
2 ]. We define the discrete Gabor system generated by b, denoted Gd(b),

to be,

Gd(b) = {b(j − nN)e2πi
mj
N }(n,m)∈{0,...,N−1}2 = {b(j − n)e2πi

mj
d }(n,m)∈(NZd )2 .

Here NZd = {Nj : j ∈ Z} mod d so that #(NZd) = N . This definition lines up
with the definition of G(g) above, as shifting g by n corresponds to shifting b by
nN , and modulation of g, g(x)e2πimx , corresponds to a new sequence b(j)e2πimj/N .

To formulate the (symmetric) BLT in a finite setting, it is useful to consider
an equivalent condition to the conclusion of the BLT which is in terms of the
distributional derivatives of g and ĝ, Dg and Dĝ. In particular, the condition

∫
R

|x|2|g(x)|2dx = ∞ or
∫
R

|ξ |2 |̂g(ξ)|2dξ = ∞ (3)

is equivalent to

Dg /∈ L2(R) or Dĝ /∈ L2(R). (4)

For finite generators, b ∈ �d
2 , we instead work with differences,
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Δb = {b(j + 1) − b(j)}j∈Zd
,

and note that NΔb approximates the derivative of g. We normalize the discrete
Fourier transform of b by

Fd(b)(k) = 1

N

∑
j∈Zd

b(j)e−2πi
jk
d ,

so that Fd is an isometry on �d
2 . Then the quantity

‖NΔb‖2
�d
2

+ ‖NΔFd(b)‖2
�d
2

acts as a discrete counterpart to the expressions in Eq. (4). Recall that a sequence
{hn} is a Riesz basis for a separable Hilbert space,H, if and only if it is complete in
H and there exists constants 0 < A ≤ B < ∞ such that

A

(∑
n

|cn|2
)

≤
∥∥∥∥∥
∑
n

cnhn

∥∥∥∥∥H
≤ B

(∑
n

|cn|2
)

, (5)

for any sequence (equivalently, a Riesz basis is the image of an orthonormal basis
under a bounded invertible operator onH). HereA andB are referred to as the lower
and upper Riesz basis bounds, respectively. We say that b generates an A,B-Gabor
Riesz basis if Gd(b) is a basis for �d

2 with Riesz basis bounds A and B.
The following Finite BLT of Nitzan and Olsen shows optimal bounds on the

growth of this quantity for the class of sequences which generate Gabor Riesz bases
with fixed Riesz basis bounds.

Theorem 1.4 (Theorem 4.2, [14]) For 0 < A ≤ B < ∞, there exists a constant
cAB > 0, depending only on A and B, such that for any N ≥ 2 and for any b ∈ �d

2
which generates an A,B-Gabor Riesz basis for �d

2 ,

cAB log(N) ≤ ‖NΔb‖2
�d
2

+ ‖NΔFd(b)‖2
�d
2
.

Conversely, there exists a constant CAB such that for any N ≥ 2, there exists b ∈ �d
2

which generates and A,B-Gabor Riesz basis for �d
2 such that

‖NΔb‖2
�d
2

+ ‖NΔFd(b)‖2
�d
2

≤ CAB log(N).

Nitzan and Olsen also show that the continuous BLT, Theorem 1.1, follows from
this discrete version and that the following Finite Quantitative BLT also holds.

Theorem 1.5 (Theorem 5.3, [14]) Let A,B > 0. There exists a constant CAB > 0
such that the following holds. Let N ≥ 200

√
B/A and let b ∈ �d

2 generate an A,B-
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Gabor Riesz basis. Then, for all positive integers 1 ≤ Q,R ≤ (N/16)
√

A/B, we
have

1

N

d−1∑
j=NQ

|b(j)|2 + 1

N

d−1∑
k=NR

|Fdb(k)|2 ≥ CAB

QR
.

1.1 Extension to Several Variables

The first goal of this paper is to extend Theorems 1.4 and 1.5 to several variables,
which we state below in Theorems 1.6 and 1.7.

We consider complex-valued sequences on Zl
d = Zd ×· · ·×Zd for l ≥ 1, and we

denote the set of all such sequences as �
d,l
2 . The view of these sequences as samples

of a continuous g ∈ L2([−N
2 , N

2 ]l), where b(j) = g(j/N) for j = (j1, . . . , jl) ∈ I l
d

leads to the normalization

‖b‖2
�
d,l
2

= 1

Nl

∑
j∈Zl

d

|b(j)|2 = 1

Nl

∑
j∈I l

d

|b(j)|2.

The discrete Fourier transform, Fd,l , on �
d,l
2 , is given by

Fd,l(b)(k) = 1

Nl

∑
j∈Zl

d

b(j)e−2πi
j·k
d .

Under this normalization, Fd,l is an isometry on �
d,l
2 . The Gabor system generated

by b, Gd,l(b) is given by

Gd,l(b) = {b(j − Nn)e2πi
j·m
N }(n,m)∈{0,...,N−1}2l = {b(j − n)e2πi

j·m
d }(n,m)∈(NZd )2l .

For any k ∈ {1, . . . , l}, let Δk : �
d,l
2 → �

d,l
2 be defined by

Δkb(j) = b(j + ek) − b(j),

where {ek}k∈{1,...,l} is the standard orthonormal basis for Rl . Then NΔkb approxi-
mates the partial derivative ∂g

∂xk
.

We have the following generalization of Theorem 1.4.

Theorem 1.6 Fix constants 0 < A ≤ B < ∞. With the same constants cAB and
CAB from Theorem 1.4, for N ≥ 2, 1 ≤ k ≤ l, and for any b ∈ �

d,l
2 which generates

an A,B-Gabor Riesz basis for �
d,l
2 , we have
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cAB log(N) ≤ ‖NΔkb‖2
�
d,l
2

+ ‖NΔkFd,l(b)‖2
�
d,l
2

.

Conversely, for N ≥ 2 and 1 ≤ k ≤ l, there exists b ∈ �
d,l
2 which generates an

A,B-Gabor Riesz basis such that

‖NΔkb‖2
�
d,l
2

+ ‖NΔkFd,l(b)‖2
�
d,l
2

≤ CAB log(N).

We provide a direct proof of Theorem 1.6 in Sect. 3. In Sect. 4, we extend
Theorem 1.5 in the following way. For simplicity of notation, for t > 0, we let
{|jk| ≥ t} denote the set {j ∈ I l

d : |jk| ≥ t}.
Theorem 1.7 Let A,B > 0 and l ∈ N. There exists a constant C > 0 depending
only on A, B, and l, such that the following holds. Let N ≥ 200

√
B/A and let

b ∈ �
d,l
2 generate an A,B-Gabor Riesz basis for �

d,l
2 . Then, for any 1 ≤ k ≤ l and

all integers 1 ≤ Q,R ≤ (N/16)
√

A/B, we have

1

Nl

∑
|jk |≥ NR

2

|b(j)|2 + 1

Nl

∑
|jk |≥ NQ

2

|Fd,lb(j)|2 ≥ C

QR
.

1.2 Finite Nonsymmetric BLTs

In Sect. 5, we prove nonsymmetric versions of the finite BLT. In the process,
we show that symmetric and nonsymmetric versions of the finite BLT follow as
corollaries of the finite quantitative BLT (Theorem 1.7), as long as N is sufficiently
large.

Theorem 1.8 (Nonsymmetric Finite BLT) Let A,B > 0 and 1 < p, q < ∞ be
such that 1

p
+ 1

q
= 1. There exists a constant C > 0, depending only on A,B, p and

q such that the following holds. Let N ≥ 200
√

B/A. Then, for any b ∈ �
d,l
2 which

generates an A,B-Gabor Riesz basis for �
d,l
2 ,

C log(N) ≤ 1

Nl

∑
j∈I l

d

∣∣∣∣jk

N

∣∣∣∣
p

|b(j)|2 + 1

Nl

∑
j∈I l

d

∣∣∣∣jk

N

∣∣∣∣
q

|b(j)|2.

Remark 1 Theorem 1.8 gives a finite dimensional version of the nonsymmetric BLT
for parameters satisfying 1 < p, q < ∞. Thus, it is a finite dimensional analog of
part (i) of Theorem 1.1 in all dimensions. In Sect. 5 we extend this result to the case
where either p or q is ∞, thus giving a finite dimensional analog of part (ii) of
Theorem 1.1 for all dimensions. In the same section, a generalization of this result
is demonstrated for pairs (p, q) such that 1

p
+ 1

q
�= 1. (See Theorem 5.3.)
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Remark 2 It is readily checked that the p = q = 2 version of Theorem 1.8 is
equivalent to Theorem 1.6, so the proof of Theorem 1.8 gives an alternative proof
of Theorem 1.6 for N ≥ 200

√
B/A. In particular, the proof shows that the Finite

Quantitative BLT implies the finite symmetric (and nonsymmetric) BLT.

1.3 Applications of the Continuous Quantitative BLT

In Sect. 5, we also prove several results related to functions of continuous arguments.
We first state the simplest of these results, a generalization of Theorem 1.2 to
nonsymmetric weights.

Theorem 1.9 Let g ∈ L2(Rl ) and suppose that G(g) = G(g,Z2l ) is a Riesz basis
for L2(Rl ). For any 1 ≤ k ≤ ∞, the following must hold.

(i) If 1 < p < ∞ and 1
p

+ 1
q

= 1, then either

∫
Rl

|xk|p|g(x)|2dx = ∞ or
∫
Rl

|ξk|q |̂g(ξ)|2dξ = ∞.

(ii) If g is compactly supported, then

∫
Rl

|ξk||̂g(ξ)|2dξ = ∞.

This part also holds with g and ĝ interchanged.

In addition we are able to show more concrete estimates on the growth of related
quantities, and we also may remove the assumption that 1

p
+ 1

q
= 1.

Theorem 1.10 Suppose 1 ≤ p, q < ∞ and let g ∈ L2(Rl ) be such that G(g) =
G(g,Z2l ) = {e2πin·xg(x −m)}(m,n)∈Z2l is a Riesz basis for L2(Rl ). Let τ = 1

p
+ 1

q
.

Then, there is a constant C depending only on the Riesz basis bounds of G(g) such
that for any 1 ≤ k ≤ l and any 2 ≤ T < ∞, the following inequalities hold.

(i) If τ = 1
p

+ 1
q

< 1, then

C(1 − 2τ−1)

(1 − τ)
T 1−τ ≤

∫
Rl

min(|xk |p, T )|g(x)|2dx +
∫
Rl

min(|ξk |q , T )|̂g(ξ)|2dξ.

(ii) If τ = 1
p

+ 1
q

= 1, then

C log(T ) ≤
∫
Rl

min(|xk|p, T )|g(x)|2dx +
∫
Rl

min(|ξk|q, T )|̂g(ξ)|2dξ.
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(iii) If τ = 1
p

+ 1
q

> 1, then

C

τ − 1
≤

∫
Rl

|xk|p|g(x)|2dx +
∫
Rl

|ξk|q |̂g(ξ)|2dξ.

When the bound 2 ≤ T < ∞ is replaced by 1 < γ ≤ T < ∞, the bound
C(1−2τ−1)

(1−τ)
T 1−τ in part (i) can be replaced by C(1−γ τ−1)

(1−τ)
T 1−τ . In Sect. 5 we extend

this theorem to the case where either p = ∞ or q = ∞.
The first and second inequalities in Theorem 1.10 quantify the growth of

‘localization’ quantities in terms of cutoff weights of the form min(|xk|p, T ). The
log term in the second inequality shows a connection between the continuous BLT
and its finite dimensional versions. The last inequality, on the other hand, shows
that generators of Gabor Riesz bases must satisfy a Heisenberg type uncertainty
principle for every 0 < p ≤ 2. A similar inequality is known to hold for arbitrary
L2(R) functions by a result of Cowling and Price [7]. However, for generators of
Gabor Riesz bases, we have explicit estimates on the dependence of the constant on
τ and the result here is stated for higher dimensions.

2 Preliminaries: The Zak Transform and Quasiperiodic
Functions

The Zak transform is an essential tool for studying lattice Gabor systems. The
discrete Zak transform Zd,l of b ∈ �

d,l
2 for (m,n) ∈ Z

2l
d is given by

Zd,l(b)(m,n) =
∑

j∈{0,...,N−1}l
b(m − N j)e2πi

n·j
N =

∑
j∈NZ

l
d

b(m − j)e2πi
n·j
d .

The following properties show that Zd,l(b) encodes basis properties of Gd,l(b),
while retaining information about ‘smoothness’ (see the remark following Proposi-
tion 2.1) of b and Fd,l(b). Note that Zd,l(b)(m,n) is defined for (m,n) ∈ Z

2l
d and

is d-periodic in each of its 2l variables. However, the Zak transform satisfies even
stronger periodicity conditions. In fact, Zd,l(b) is N-quasiperiodic on Z

2l
d , that is

Zd,l(b)(m + Nek,n) = e2πi
nk
N Zd,l(b)(m,n), (6)

Zd,l(b)(m,n + Nek) = Zd,l(b)(m,n).

Let SN = {0, . . . , N − 1}. Then, the quasi-periodicity conditions above show that
Zd,l(b) is completely determined by its values on S2l

N .
We will use the notation �2(S

2l
N ) to denote the set of sequences W(m,n) defined

on S2l
N with norm given by
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‖W‖2
�2(S

2l
N )

= 1

N2l

∑
(m,n)∈S2l

N

|W(m,n)|2,

where here we keep the variables m and n separate due to the connection with the
Zak transform. The normalization is chosen so that if W is a sampling of a function
h(x, y) on [0, 1]2l , then ‖W‖�2(S

2l
N ) approximates the L2([0, 1]2l ) norm of h.

The Zak transform has many other important properties, some of which we
collect in the next proposition. Arguments for these facts are standard and presented
in [1] and [14], for instance.

Proposition 2.1 Let b ∈ �
d,l
2 .

(i) Zd,l is a unitary mapping from �
d,l
2 onto �2(S

2l
N ).

(ii) A sequence b ∈ �
d,l
2 generates an A,B-Gabor Riesz basis for �

d,l
2 if and only

if Zd,l(b) satisfies

A ≤ |Zd,l(b)(m,n)|2 ≤ B, for (m,n) ∈ Z
2l
d .

(iii) Let b̂ = Fd,l(b). Then,

Zd,l (̂b)(m,n) = e2πi m·n
d Zd,l(b)(−n,m).

(iv) For a, b ∈ �
d,l
2 define (a ∗ b)(k) = 1

Nl

∑
j∈Zl

d
a(k − j)b(j). Then,

Zd,l(a ∗ b)(m,n) = 1

Nl

∑
j∈Zl

d

b(j)Zd,l(a)(m − j,n) = (Zd,l(a) ∗1 b)(m,n),

where ∗1 denotes convolution of b with respect to the first set of variables of
Zd,l(a), m, keeping the second set, n, fixed.

Remark 3 We will be interested in the ‘smoothness’ of b and Zd,l(b) for b ∈ �
d,l
2 .

Since these are functions on discrete sets, smoothness is not well defined, but we
use the term in relation to the size of norms of certain difference operators defined
on �

d,l
2 and �2(S

2l
N ), which mimic norms of partial derivatives of differentiable

functions.

For 1 ≤ k ≤ l and any N -quasiperiodic function on Z
l
d , let Δk, Γk be defined as

follows:

ΔkW(m,n) = W(m + ek,n) − W(m,n),

ΓkW(m,n) = W(m,n + ek) − W(m,n).

For b ∈ �
d,l
2 define αk(b) and βk(b) by
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αk(b) = ‖NΔkb‖2
�
d,l
2

+ ‖NΔkFd,l(b)‖2
�
d,l
2

,

βk(b) = 1

N2l

∑
(m,n)∈S2l

N

|NΔkZd,l(b)(m,n)|2 + 1

N2l

∑
(m,n)∈S2l

N

|NΓkZd,l(b)(m,n)|2.

The following proposition shows that αk(b) and βk(b) are essentially equiva-
lently sized. Proposition 4.1 in [14] proves this for the case l = k = 1, and it is
readily checked that the proof carries over directly to the l > 1 setting.

Proposition 2.2 Let B > 0 and let b ∈ �
d,l
2 be such that |Zd,l(b)(m,n)|2 ≤ B for

all (m,n) ∈ Z
2l
d . Then, for all integers N ≥ 2 and any 1 ≤ k ≤ l, we have

1

2
βk(b) − 8π2B ≤ αk(b) ≤ 2βk(b) + 8π2B.

We thus see that in order to bound αk(b) as in Theorem 1.6, it is sufficient to bound
βk(b). For b ∈ �d

2 = �
d,1
2 , let β(b) = β1(b), and let

βA,B(N) = inf{β(b)},

where the infimum is taken over all b ∈ �d
2 such that b generates an A,B-Gabor

Riesz basis.

Theorem 2.1 (Theorem 4.2, [14]) There exist constants 0 < cAB ≤ CAB < ∞
such that for all N ≥ 2, we have

cAB log(N) ≤ βA,B(N) ≤ CAB log(N).

To prove the lower bound in this theorem (as is done in [14]), one may examine
the argument of the Zak transform of a sequence b ∈ �d

2 which generates a basis
with Riesz basis bounds A and B over finite dimensional lattice-type structures
in the square {0, . . . , N}2. Due to the N -quasiperiodicity conditions satisfied by
Zd,l(b) this argument is forced to ‘jump’ at some step between neighboring points
along these lattice-type sets (See Lemma 3.1 and 3.4 in [14]). Due to the Riesz
basis assumption and part (iv) of Proposition 2.1, jumps in the argument of Zd,l(b)

correspond directly to jumps in Zd,l(b) (see Corollary 3.6 in [14]). By counting the
number of lattice-type sets which are disjoint, a logarithmic lower bound is given
for the number of jumps in Zd,l(b) corresponding to jumps in the argument, which
gives the lower bound in Theorem 2.1.

The proof of the upper bound involves an explicit construction of the argument
of a unimodular function, W , on S2

N . Since the Zak transform is a unitary, invertible
mapping between �d

2 and �2(S
2
N), there is a corresponding b̃ ∈ �d

2 so that G(b̃) is an
orthonormal basis (which can be scaled to form a Riesz basis with bounds A and B

for any A and B) and such that b̃ satisfies Zd(b̃) = W . For this construction, β(b̃)

can be bounded directly to show the upper bound in the theorem.
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3 Proof of Theorem 1.6

Based on Proposition 2.2, to prove Theorem 1.6 it is sufficient to show that
Theorem 2.1 extends from �d

2 to �
d,l
2 . We show this below, and in particular that

by restricting the Zak transform of a multi-variable sequence to the kth variable
in each component, we can directly use Theorem 2.1 to prove the multi-variable
version of the lower bound. Similarly, we show that by taking suitable products of
the constructed b̃ function mentioned above, we can also extend the logarithmic
upper bound to higher dimensions.

Let

βA,B,k(N, l) = inf{βk(b)},

where the infimum is over all b ∈ �
d,l
2 which generate an A,B-Gabor Riesz basis

for �
d,l
2 .

Theorem 3.1 For the same constants 0 < cAB ≤ CAB < ∞ as Theorem 2.1, for
all N ≥ 2, and for any 1 ≤ k ≤ l, we have

cAB log(N) ≤ βA,B,k(N, l) ≤ CAB log(N).

Proof For notational convenience, we show both the lower and upper bound with
k = 1, but a similar argument applies for any 1 ≤ k ≤ l.

Lower Bound Let b ∈ �
d,l
2 generate an A,B-Gabor Riesz basis for �

d,l
2 .

Let m = (m1,m′) and n = (n1,n′) for fixed (m′,n′) ∈ S
2(l−1)
N and define

T (m1, n1) = Tm′,n′(m1, n1) = Zd,l(b)((m1,m′), (n1,n′)).

Then, T satisfies

T (m1 + N, n1) = Zd,l(b)(m + Ne1,n) = e2πi
n1
N T (m1, n1),

T (m1, n1 + N) = Zd,l(b)(m,n + Ne1) = T (m1, n1),

so T is N -quasiperiodic on Z
2
d (see Eq. 6). By the unitary property of the Zak

transform (Proposition 2.1), there exists a b1 ∈ �d
2 so that T = Zd,1(b1), and since

A ≤ |T (m1, n1)|2 ≤ B for any (m1, n1) ∈ Z
2
d , the same property shows thatGd(b1)

is a Riesz basis for �d
2 with bounds A and B. Thus, Theorem 2.1 shows that

CAB log(N) ≤
∑

(m1,n1)∈S2
N

|Δ1Tm′,n′(m1, n1)|2 +
∑

(m1,n1)∈S2
N

|Γ1Tm′,n′(m1, n1)|2.
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Since the choice of (m′,n′) ∈ S
2(l−1)
N was arbitrary, this bound holds for any such

choice.
Thus, computing β1(b), we find

1

N2(l−1)

∑
(m′,n′)∈S

2(l−1)
N

⎡
⎢⎣ ∑

(m1,n1)∈S2
N

|ΔTm′,n′(m1, n1)|2 +
∑

(m1,n1)∈S2
N

|Γ Tm′,n′(m1, n1)|2
⎤
⎥⎦

≥ CAB log(N),

since the bound holds for each term inside the brackets, and β1(b) is simply an
average of these terms. Taking an infimum over all acceptable b ∈ �

d,l
2 proves the

lower bound.

Upper Bound To prove the upper bound, we adapt the construction used to prove
the one-dimensional upper bound in [14] to higher dimensions. The sequence used
in this construction builds on a continuous construction first given in [5]. Note that
it suffices to prove the result for orthonormal bases, as the result for Riesz bases
follows by scaling the constructed generator by the Riesz basis bounds.

In Section 4.3 of [14], it is shown that there is a constant C > 0 such that for any
N ≥ 2, there exists a b ∈ �d

2 such that Gd(b) is an orthonormal basis for �d
2 and

β(b) =
∑

(m,n)∈S2
N

∣∣ΔZd,1(b)(m, n)
∣∣2 +

∑
(m,n)∈S2

N

∣∣Γ Zd,1(b)(m, n)
∣∣2 ≤ C log(N).

For j ∈ Z
l
d , let bl(j) = b(j1)b(j2) · · · b(jl). Then,

Zd,l(bl)(m,n) = Zd,1(b)(m1, n1) · · · Zd,1(b)(ml, nl).

Since Gd(b) is an orthonormal basis for �d
2 , Zd,l(bl) is unimodular, and therefore,

Gd,l(bl) is an orthonormal basis for �
d,l
2 by Proposition 2.1. We have, β1(bl) is

equal to

1

N2(l−1)

∑
(m′,n′)∈Z2(l−1)

N

⎡
⎢⎣ ∑

(m1,n1)∈S2
N

∣∣ΔZd,1(b)(m1, n1)
∣∣2 +

∑
(m1,n1)∈S2

N

∣∣Γ Zd,1(b)(m1, n1)
∣∣2

⎤
⎥⎦

≤ C log(N).

��
Theorem 1.6 follows by combining Theorem 3.1 with Proposition 2.2.
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4 Proof of Theorem 1.7

In establishing a Finite Quantitative BLT for several variables, we follow a similar
argument used to prove the one variable version (from [14]), but there are some
necessary updates to certain parts of the proof. We include the details here for
completeness.

We start with a straightforward bound on the ‘smoothness’ of Zd,l(b ∗ φ). This
observation is analogous to Lemma 2.6 of [14]. Let ‖φ‖

�
d,l
1

= 1
Nl

∑
j∈Zl

d
|φ(j)|, and

for a, b ∈ �
d,l
2 , recall that (a ∗ b)(k) = 1

Nl

∑
j∈Zl

d
a(k − j)b(j).

Lemma 4.1 Suppose b, φ ∈ �
d,l
2 are such that |Zd,l(b)|2 ≤ B everywhere. Then,

for any integer t ,

|Zd,l(b ∗ φ)(m + tek,n) − Zd,l(b ∗ φ)(m,n)| ≤
√

B|t |
N

‖NΔkφ‖
�
d,l
1

.

Proof From Proposition 2.1, we have

Zd,l(b ∗ φ)(m,n) = 1

Nl

∑
j∈Zl

d

φ(j)Zd,l(b)(m − j,n) = Zd,l(b) ∗1 φ(m,n).

Therefore, we have

|Zd,l(b ∗ φ)(m + tek,n) − Zd,l(b ∗ φ)(m,n)|

≤
t−1∑
s=0

|Zd,l(b ∗ φ)(m + (s + 1)ek,n) − Zd,l(b ∗ φ)(m + sek,n)|

=
t−1∑
s=0

∣∣∣∣∣∣∣
1

Nl

∑
j∈Zl

d

Zd,l(b)(j,n)[φ(m + (s + 1)ek − j) − φ(m + sek − j)]

∣∣∣∣∣∣∣

≤
t−1∑
s=0

√
B

Nl

∑
j∈Zl

d

|Δkφ(m + sek − j)| =
√

B

N
t‖NΔkφ‖

�
d,l
1

.

��
Next we extend the following Lemma 5.2 of [14] to higher dimensions. The

adjustments to this lemma for the higher dimensional setting are minimal, however
we state the one-dimensional and multi-variable versions separately for comparison.

Lemma 4.2 (Lemma 5.2, [14]) Let A,B > 0 and N ≥ 200
√

B/A. There exist
positive constants δ = δ(A) and C = C(A,B) such that the following holds (with
d = N2). Let
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(i) Q,R ∈ Z such that 1 ≤ Q,R ≤ (N/16) · √
A/B,

(ii) φ,ψ ∈ �d
2 such that

∑
n |Δφ(n)| ≤ 10R and

∑
n |Δψ(n)| ≤ 10Q,

(iii) b ∈ �d
2 such that A ≤ |Zd(b)|2 ≤ B.

Then, there exists a set S ⊂ ([0, N − 1] ∩ Z)2 of size |S| ≥ CN2/QR such that all
(u, v) ∈ S satisfy either

|Zd(b)(u, v) − Zd(b ∗ φ)(u, v)| ≥ δ, or (7)

|Zd(Fdb)(u, v) − Zd((Fdb) ∗ ψ)(u, v)| ≥ δ. (8)

Lemma 4.3 Let A,B > 0, 1 ≤ k ≤ l, and N ≥ 200
√

B/A. There exist positive
constants δ = δ(A) and C = C(A,B), such that the following holds. Let

(i) Q,R ∈ Z be such that 1 ≤ Q,R ≤ N
16

√
A
B

(ii) φ,ψ ∈ �
d,l
2 be such that ‖NΔkφ‖

�
d,l
1

≤ 10R and ‖NΔkψ‖
�
d,l
1

≤ 10Q

(iii) b ∈ �
d,l
2 be such that A ≤ |Zd,l(b)|2 ≤ B.

Then, there exists a set S ⊂ ([0, N − 1] ∩Z)2l of size |S| ≥ CN2l/QR such that all
(u, v) ∈ S satisfy either

|Zd,l(b)(u, v) − Zd,l(b ∗ φ)(u, v)| ≥ δ, or (9)

|Zd,l(Fd,lb)(u, v) − Zd,l((Fd,lb) ∗ ψ)(u, v)| ≥ δ. (10)

Proof Without loss of generality, we prove this for k = 1.
As in Lemma 5.2 of [14], let δ1 = 2

√
A sin(π( 14 − 1

200 )). Also, choose K and L

to be the smallest integers satisfying

200
√

BR

9δ1
≤ K ≤ N and

√
B

δ1
max

{
200Q

9
, 80π

}
≤ L ≤ N.

For s, t ∈ Z, let

σ s =
[
sN

K

]
, and ωt =

[
tN

L

]
,

and let Σ = infs{σ s+1 − σ s} ≥ [
N
K

] ≥ N
K
, Ω = inft {ωt+1 − ωt } ≥ N

L
. Then, we

have

ΣΩ ≥ C1
N2

QR
,

where C1 can be chosen to be
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C1 =
[
(
200

√
B

9δ1
+ 1)(

√
B

δ1
max(

200

9
, 80π) + 1)

]−1

.

We recall the following definition from [14]. For (u, v) ∈ ([0,Σ − 1] ∩ Z) ×
([0,Ω − 1] ∩ Z), let

Lat(u, v) = {(u + σ s, v + ωt) : (s, t) ∈ ([0,K − 1] ∩ Z) × ([0, L − 1] ∩ Z)},

and

Lat∗(u, v) = {(N − v − ωt , u + σ s) : (s, t) ∈ ([0,K − 1] ∩Z) × ([0, L − 1] ∩Z)}.

Note that Lat(u, v) and Lat(u′, v′) are disjoint for distinct (u, v) and (u′, v′), and
similarly for Lat∗(u, v). However, it is possible that Lat(u, v)∩Lat∗(u′, v′) �= ∅ for
some (u, v) and (u′, v′).

Now similarly, for any (m′,n′) ∈ ([0, N − 1] ∩ Z)2(l−1), let

Lat(m′,n′)(u, v) = {((m1,m′), (n1,n′)) : (m1, n1) ∈ Lat(u, v)},

and

Lat∗(m′,n′)(u, v) = {((n1, N − n′), (m1,m′)) : (n1,m1) ∈ Lat∗(u, v)}.

Here, by N − n′ we mean (N − n′
1, N − n′

2, . . . , N − n′
l−1). We have that

Lat(m′,n′)(u, v) ∩ Lat(m′′,n′′)(u′, v′) = ∅ unless it holds that ((u,m′), (v,n′)) =
((u′,m′′), (v′,n′′)), and similar properties for Lat∗

(m′,n′)(u, v).

Now, fix (m′,n′) ∈ ([0, N − 1] ∩ Z)2(l−1), and consider

T (m1, n1) = Tm′,n′(m1, n1) = Zd,l(b)((m1,m′), (n1,n′)),

for (m1, n1) ∈ Z
2
d . Note that T is N -quasiperiodic on Z

2
d , and satisfies A ≤ |T |2 ≤

B.
For each (u, v) ∈ ([0,Σ − 1] ∩ Z) × ([0,Ω − 1] ∩ Z), Corollary 3.6 of [14]

guarantees at least one point (s, t) ∈ ([0,K − 1] ∩ Z) × ([0, L − 1] ∩ Z) so that
either

|T (u + σ s+1, v + ωt) − T (u + σ s, v + ωt)| ≥ δ1, or (11)

|T (u + σ s, v + ωt+1) − T (u + σ s, v + ωt)| ≥ δ1. (12)

We now make a claim which will furnish the last part of the proof of the lemma.
��

Claim For u, v, σ s , ωt , m′ and n′ as above,
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(i) If (11) is satisfied, then there exists (a,b) ∈ Lat(m′,n′)(u, v) so that (9) is
satisfied for δ = δ1

20 .
(ii) If (12) is satisfied, then there exists (a,b) ∈ Lat∗

(m′,n′)(u, v) so that (10) is

satisfied for δ = δ1
40

Before proving this claim, we show how to complete the proof of the lemma.

For a fixed (m′,n′) there are ΣΩ ≥ C1
N2

QR
distinct choices of (u, v) to consider

and each of them either falls in part (i) or (ii) of the claim. Let S1
(m′,n′) be the set of

(u, v) points which fall into category (i), and similarly let S2
(m′,n′) be the set of (u, v)

points which fall into category (ii). Then, for either i = 1, 2, we must have

|Si
(m′,n′)| ≥ C1N

2

2QR
. (13)

Now, there are N2(l−2) possible choices of (m′,n′). Let S1 be the set of all
(m′,n′) such that (13) is satisfies with i = 1, and let S2 be the set of all (m′,n′) such
that (13) is satisfied with i = 2. So at least one of S1 or S2 must contain N2(l−2)/2
elements.

In the case that S1 contains this many elements (the S2 case is nearly identical and
left to the reader), since Lat(m′,n′)(u, v) are disjoint for distinct ((u,m′), (v,n′)), we
find at least C1N

2l

4QR
= C N2l

QR
distinct points all satisfy (9) if i = 1. The lemma is then

proved conditioning on the claim above. We then establish finally the two part claim.

Proof of Claim For both parts we use properties of the Zak transform detailed in
Proposition 2.1. First we show part (i). Let H(u, v) = Zd,l(b ∗ φ)((u,m′), (v,n′)).
Note that Lemma 4.1 and the assumptions on R and ‖NΔ1φ‖

�
d,l
1

imply that for any

integer t satisfying t ≤ 2N
K
,

|H(u + t, v) − H(u, v)| ≤ 2
√

B
K

‖NΔ1φ‖
�
d,l
1

≤ 20
√

BR
K

≤ 9δ1
10 . (14)

So, if (11) is satisfied, using (14), we have

δ1 ≤ |T (u + σ s+1, v + ωt) − T (u + σ s, v + ωt)|
≤ |T (u + σ s+1, v + ωt) − H(u + σ s+1, v + ωt)|

+9δ1
10

+ |T (u + σ s, v + ωt) − H(u + σ s, v + ωt)|.

Upon rearranging terms, we find

δ1
10 ≤ |T (u + σ s+1, v + ωt)

−H(u + σ s+1, v + ωt)| + |T (u + σ s, v + ωt) − H(u + σ s, v + ωt)|,
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which shows that (9) is satisfied for δ′ = δ1
20 , and for either ((u + σ s+1,m′), (v +

ωt ,n′)) or ((u + σ s,m′), (v + ωt ,n′)). If (u + σ s+1, v + ωt) is not in Lat(u, v), by
the N-quasiperiodicity of T , we may find another point in Lat(u, v) which satisfies
the same bound.

Now we prove part (ii). Letting b̂ = Fd,l(b), we have,

δ1 ≤ |T (u + σ s, v + ωt+1) − T (u + σ s, v + ωt)|
= |Zd,l(b)((u + σ s,m′), (v + ωt+1,n′)) − Zd,l(b)((u + σ s,m′), (v + ωt ,n′))|
= |Zd,l(b̂)((−v − ωt+1,−n′), (u + σ s,m′))

−e−2πi(ωt+1−ωt )(u+σ s)/dZd,l(b̂)((−v − ωt ,−n′), (u + σ s,m′))|
= |Zd,l(b̂)((N − v − ωt+1, N − n′), (u + σ s,m′))

−e−2πi(ωt+1−ωt )(u+σ s)/dZd,l(b̂)((N − v − ωt ,N − n′), (u + σ s,m′))|,

where we have used that Zd,l(b)(m,n) = e2πim·n/dZd,l (̂b)(−n,m) in the second
step, and for the last step we have used N -quasiperiodicity.

Let T̃ (v, u) = Zd,l(b̂)((v,N −n′), (u,m′)), and H̃ (v, u) = Zd,l(b̂∗ψ)((v,N −
n′), (u,m′)). Then,

δ1 ≤ |T̃ (N − v − ωt+1, u + σ s) − e−2πi(ωt+1−ωt )(u+σ s)/d T̃ (N − v − ωt , u + σ s)|
≤ |T̃ (N − v − ωt+1, u + σ s) − T̃ (N − v − ωt , u + σ s)| + δ1

20
.

Combining these, we see that

19

20
δ1 ≤ |T̃ (N − v − ωt+1, u + σ s) − T̃ (N − v − ωt , u + σ s)|.

Arguing as in the first case above, and replacing H by H̃ and T by T̃ , we find
that either ((N − v − ωt+1, N − n′), (u,m′)), or ((N − v − ωt ,N − n′), (u,m′))
satisfy (10), with δ = δ1

40 . Again, using quasi-periodicity, we can guarantee that
there is a point in Lat∗

(m′,n′)(u, v) satisfying (10). ��
Finally, we follow the construction of [14] to create the functions φ and ψ

appearing in the previous lemma (Lemma 4.3) which in turn are used to prove
Theorem 1.7. Let ρ : R → R be the inverse Fourier transform of

ρ̂(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

1, |ξ | ≤ 1/2

2(1 − ξsgn(ξ)), 1/2 ≤ |ξ | ≤ 1

0, |ξ | ≥ 1

.

For f ∈ L2(R) satisfying supt∈R |t2f (t)| < ∞ and supξ∈R |ξ2f̂ (t)| < ∞, let
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PNf (t) =
∞∑

k=−∞
f (t + kN)

and for an N -periodic continuous function h, let

SNh = {h(j/N)}d−1
j=0.

Let ρR(t) = Rρ(Rt). Fix 1 ≤ k ≤ l, and for j ∈ I l
d define the vector j′ =

(j1, . . . , jk−1, jk+1, . . . , jl) ∈ I l−1
d , and let

φR,k(j) = Nl−1δj′,0 (SNPNρR(jk)) .

Now φR,k(j) is equal to (SNPNρR(jk)) when ji = 0 for each i �= k, and is zero
otherwise.

Lemma 4.4 Let φR,k be as above for a positive integer R. Then,

‖NΔkφR,k‖�
d,l
1

≤ 10R.

Proof We have

‖NΔkφR,k‖�
d,l
1

= 1

Nl

∑
j∈I l

d

N |ΔkφR,k(j)| =
∑
jk∈Id

|ΔSNPNρR(jk)|.

Lemma 2.10 and Lemma 5.1 of [14] show that the right hand side is bounded by
10R. ��

We now have sufficient tools to prove the Finite Quantitative BLT, Theorem 1.7.

Proof (Theorem 1.7) For simplicity we show the result for k = 1. Let R and Q be
integers such that 1 ≤ R,Q ≤ (N/16)

√
A/B. Let φ = φR,1 and ψ = φQ,1, and

note that Lemma 4.1 shows that

‖NΔ1φ‖
�
d,l
1

≤ 10R, and ‖NΔ1ψ‖
�
d,l
1

≤ 10Q.

Proposition 2.8 of [14], and the fact that Fd(Nδj,0)(k) = 1 for all k ∈ Id , shows
that

Fd,l(φ)(k) = Fd(SNPNρR)(k1)

= (SNPNF(ρR))(k1) = (SNPNρ̂(·/R))(k1), (15)

and since R < N/2, then 0 ≤ φ̂ = Fd,l(φ) ≤ 1. Also, φ̂(k) = 1 for any k which
satisfies k1 ∈ [−RN/2, RN/2], independent of the values of k2, . . . , kl , that is, for
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any k ∈ SNR,1. The same holds for ψ̂ = Fd,l(ψ) with Q replacing R. Applying
Lemma 4.3, we find a constant C such that

CN2l

QR
≤

∑
(m,n)∈�2(S

2l
N )

|Zd,l(b)(m,n) − Zd,l(b ∗ φ)(m,n)|2

+
∑

(m,n)∈�2(S
2l
N )

|Zd,l (̂b)(m,n) − Zd,l (̂b ∗ ψ)(m,n)|2,

where here we have let b̂ = Fd,l(b). Using that Zd,l and Fd,l are both isometries
and the properties of φ and ψ listed above, we have

C

QR
≤ ‖Zd,l(b) − Zd,l(b ∗ φ)‖2

�2(S
2l
N )

+ ‖Zd,l (̂b) − Zd,l (̂b ∗ ψ)‖2
�2(S

2l
N )

= ‖b − b ∗ φ‖2
�
d,l
2

+ ‖b̂ − b̂ ∗ ψ‖2
�
d,l
2

= ‖b̂(1 − φ̂)‖2
�
d,l
2

+ ‖b(1 − ψ̂)‖2
�
d,l
2

≤ 1

Nl

∑
|j1|≥ NR

2

|Fdb(j)|2 + 1

Nl

∑
|j1|≥ NQ

2

|b(j)|2.

��

5 Nonsymmetric Finite BLT and Applications of the
Quantitative BLTs

In this penultimate section, we prove the nonsymmetric finite BLT, Theorem 1.8,
and the uncertainty principles of Theorem 1.10. We show each of these follows from
a version of the Quantitative BLT, however, the details of the proof of Theorem 1.8
are more difficult due to subtleties from discreteness. For this reason, we first
prove Theorem 1.10 which shows the central idea of both proofs without the added
technical difficulty.

First, we state the higher dimensional quantitative BLT of [15]. For notational
simplicity, we write {|xk| ≥ s} to mean {x ∈ R

l : |xk| ≥ s} in situations where the
dependence on l is clear.

Theorem 5.1 (Theorem 1, [15]) Let g ∈ L2(Rl ) be such that the Gabor system
generated by g

G(g) = {e2πin·xg(x − m)}(m,n)∈Z2l
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is a Riesz basis for L2(Rl ). Let R,Q ≥ 1 be real numbers. Then, there is a constant
C which only depends on the Riesz basis bounds ofG(g) such that for any 1 ≤ k ≤ l

∫
|xk |≥R

|g(x)|2dx +
∫

|ξk |≥Q

|̂g(ξ)|2dξ ≥ C

RQ
. (16)

Remark 4 In [15], the conclusion of this theorem is stated where the integrals
in (16) are taken over Rl \ R and R

l \ Q, respectively, where Q and R are finite
volume rectangles in R

d . However, a straightforward limiting argument shows that
the result holds after removing ‘infinite volume’ rectangles, as in the statement
above.

Proof (Theorem 1.10) We will prove this for k = 1 without loss of generality.
Let 1 ≤ S < ∞, and choose R = S1/p and Q = S1/q . Note 1 ≤ R,Q < ∞

for any value of S. Theorem 5.1 then shows that for C only depending on the Riesz
basis bounds of G(f ),

C

Sτ
= C

S
1
p

+ 1
q

≤
∫

|x1|≥S1/p
|g(x)|2dx +

∫
|ξ1|≥S1/q

|̂g(ξ)|2dξ. (17)

In each case, the result follows by integrating both sides of (17) over a particular set
of S values, and then using Tonelli’s Theorem to interchange the order of integration.

Case 1: τ = 1
p

+ 1
q

< 1. We have,

C
(1 − 2τ−1)

1 − τ
T 1−τ = C

∫ T

1
S−τ dS

≤
∫
Rl−1

∫ T

0

∫
|x1|≥S1/p

|g(x1, x
′)|2dx1dSdx′

+
∫
Rl−1

∫ T

0

∫
|ξ1|≥S1/q

|̂g(ξ1, ξ
′)|2dξ1dSdξ ′

≤
∫
Rl

∫ min(|x1|p,T )

0
|g(x)|2dSdx

+
∫
Rl

∫ min(|ξ1|q ,T )

0
|̂g(ξ)|2dSdξ

=
∫
Rl

min(|x1|p, T )|g(x)|2dx+
∫
Rl

min(|ξ1|q, T )|̂g(ξ)|2dξ.

Case 2: τ = 1
p

+ 1
q

= 1. Similarly, we have

C log T = C

∫ T

1
S−1dS
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≤
∫
Rl−1

∫ T

0

∫

|x1|≥S1/p

|g(x1, x
′)|2dx1dSdx′

+
∫
Rl−1

∫ T

0

∫

|ξ1|≥S1/q

|̂g(ξ1, ξ
′)|2dξ1dSdξ ′

≤
∫
Rl

min(|x1|p, T )|g(x)|2dx +
∫
Rl

min(|ξ1|q, T )|̂g(ξ)|2dξ.

Case 3: τ = 1
p

+ 1
q

> 1. Finally, in this case

C

τ − 1
= C

∫ ∞

1
S−τ dS

≤
∫
Rl−1

∫ ∞

0

∫

|x1|≥S1/p

|g(x1, x
′)|2dx1dSdx′

+
∫
Rl−1

∫ ∞

0

∫

|ξ1|≥S1/q

|̂g(ξ1, ξ
′)|2dξ1dSdξ ′

=
∫
Rl

|x1|p|g(x)|2dx +
∫
Rl

|ξ1|q |̂g(ξ)|2dξ.

��
The following result generalizes part (ii) of Theorem 1.1.

Theorem 5.2 Suppose 1 ≤ p < ∞, and g ∈ L2(Rl ) is such that G(g) =
{e2πin·xg(x − m)}(m,n)∈Z2l is a Riesz basis for L2(Rl ) and g is supported in
(−M,M)l . Then, there exists a constantC depending only on the Riesz basis bounds
of G(g) such that for any 1 ≤ k ≤ 1 and any 2 ≤ T ≤ ∞ each of the below hold.

(i) If p > 1, then

C(1 − 21/p−1)

M(1 − 1/p)
≤

∫
Rl

min(|ξk|p, T )|̂g(ξ)|2dξ.

(ii) If p = 1, then

C log(T )

M
≤

∫
Rl

min(|ξk|, T )|̂g(ξ)|2dξ.

(iii) If p < 1, then

C

M(1/p − 1)
≤

∫
Rl

|ξk|p, |̂g(ξ)|2dξ.
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This result also holds when g and ĝ are interchanged.

The proof is nearly identical to that of Theorem 1.10, after noticing that by applying
the quantitative BLT with R = M , the integral related to |g(x)|2 is zero due to
the support assumption. Note that letting T → ∞ in part (ii) gives part (ii) of
Theorem 1.9.

Finally, we focus on the finite nonsymmetric BLT. For 1 ≤ p, q < ∞ and
b ∈ �

d,l
2 , let

α
p,q
k (b) = 1

Nl

∑
j∈Zl

d

∣∣∣∣jk

N

∣∣∣∣
p

|b(j)|2 + 1

Nl

∑
j∈Zl

d

∣∣∣∣jk

N

∣∣∣∣
q

|Fd,lb(j)|2.

To give a finite dimensional analog of part (ii) of Theorem 1.1, it will be convenient
to define α

p,∞
k (b) and α

∞,q
k (b) as

α
p,∞
k (b) = 1

Nl

∑
j∈Zl

d

∣∣∣∣jk

N

∣∣∣∣
p

|b(j)|2, α
∞,q
k (b) = 1

Nl

∑
j∈Zl

d

∣∣∣∣jk

N

∣∣∣∣
q

|Fd,lb(j)|2.

Theorem 5.3 Let A,B > 0 and 1 ≤ p, q < ∞ and let τ = 1
p

+ 1
q
. Assume

b ∈ �
d,l
2 generates an A,B-Gabor Riesz basis for �

d,l
2 . There exists a constant

C > 0, depending only on A,B, p and q such that the following holds. Let N ≥
200

√
B/A.

(i) If τ = 1
p

+ 1
q

< 1,

C
N1−τ

1 − τ
≤ α

p,q
k (b).

(ii) If τ = 1
p

+ 1
q

= 1,

C log(N) ≤ α
p,q
k (b.)

(iii) If τ = 1
p

+ 1
q

> 1,

C
1 − (200/16)1−τ

τ − 1
≤ α

p,q
k (b).

Also, if Fd,l(b) is supported in the set (−γ NN/2, γ NN/2) ∩ Z where γ N =
�(N/16)

√
A/B	, then parts (i), (ii), and (iii) hold with τ = 1

p
and αp,q(b) replaced

by αp,∞(b). Similarly, if b is supported in the set (−γ NN/2, γ NN/2) ∩ Z then
parts (i), (ii), and (iii) hold with τ = 1

q
and αp,q(b) replaced by α∞,q (b).
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We start with a lemma giving a bound on a typical sum arising in the proof which
follows. Similar to above, {b > |jk| ≥ a} will be used to denote {j ∈ I l

d : b > |jk| ≥
a}.
Lemma 5.1 Let 1 ≤ ν < ∞, N > 200ν, c = 1/(16ν), and γ N = �cN	. If
0 < α ≤ 1, then for any b ∈ �

d,l
2 , we have

γ N∑
S=1

∑
|jk |≥NSα/2

|b(j)|2 ≤ 21/α
∑
j∈Zd

∣∣∣∣jk

N

∣∣∣∣
1/α

|b(j)|2,

where Cα only depends on α.

Note, we will apply this lemma with ν = √
B/A where A and B are Riesz basis

bounds of Gd,l(b) for some b ∈ �
d,l
2 . However, this lemma holds regardless of

whether Gd,l(b) is basis for �
d,l
2 .

Proof Rearranging terms, we have

γ N∑
S=1

∑
|jk |≥NSα/2

|b(j)|2 =
γ N−1∑
m=1

m
∑

N(m+1)α
2 >|jk |≥ Nmα

2

|b(j)|2 + γ N

∑
|jk |≥ N ·γα

N
2

|b(j)|2.(18)

Note that for some m, if jk satisfies |jk| ≥ Nmα

2 , then m ≤ 21/α
∣∣∣ jk

N

∣∣∣1/α . Then,
from (18), we find

γ N∑
S=1

∑
|jk |≥NSα/2

|b(j)|2 ≤ 21/α
γ N−1∑
m=1

∑
N(m+1)α

2 >|jk |≥ Nmα

2

∣∣∣∣jk

N

∣∣∣∣
1/α

|b(j)|2

+ 21/α
∑

|jk |≥ Nγα
N

2

∣∣∣∣jk

N

∣∣∣∣
1/α

|b(j)|2

≤ 21/α
∑
j∈I l

d

∣∣∣∣jk

N

∣∣∣∣
1/α

|b(j)|2.

��
Proof (Theorem 5.3) We prove the result for k = 1. We treat the case where p and
q are both finite and the case where one of these is infinite separately. Below, we
take τ = 1

p
+ 1

q
.

Case 1: 1 ≤ p, q < ∞. Let S be an integer satisfying 1 ≤ S ≤ γ N where
γ N = �(N/16)

√
A/B	, and R = �S1/p�, Q = �S1/q� if 1 < p, q < ∞, R = S

if p = 1, and Q = S if q = 1. Note that these choices force 1 ≤ R,Q ≤ γ N .
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Then, for a constant C only depending on A and B, Theorem 1.7 gives

C/4

Sτ
≤ C

RQ
≤ 1

Nl

∑
|jk |≥ NS1/p

2

|b(j)|2 + 1

Nl

∑
|jk |≥ NS1/q

2

|Fd,lb(j)|2.

Summing over the values of S in {1, . . . , γ N } and applying Lemma 5.1 with
τ = √

B/A, to find

C

4

γ N∑
S=1

S−τ ≤ 1

Nl

γ N∑
S=1

∑
|jk |≥ NS1/p

2

|b(j)|2+ 1

Nl

γ N∑
S=1

∑
|jk |≥ NS1/q

2

|Fd,lb(j)|2≤C′αp.q
k (b)

where C′ is a constant only depending on p and q. Updating the constant C, (it
now depends on A, B, p, q)

C

γ N∑
S=1

S−τ ≤ α
p,q
k (b,N, l).

The proof of Case 1 follows by noting that

γ N∑
S=1

S−τ ≥

⎧⎪⎪⎨
⎪⎪⎩

Cτ,A,B
N1−τ

1−τ
0 < τ < 1

Cτ,A,B log(N) τ = 1
(1−(200/16)1−τ )

1−τ
τ > 1

, (19)

where the constants Cτ,A,B depend only on τ , A, and B.
Case 2: One of p or q is ∞. We can assume without loss of generality that

q = ∞ and 1 ≤ p < ∞. With this in mind, assume b generates an A,B-
Gabor Riesz basis for �

d,l
2 , and further suppose Fd,l(b) is supported in the set

(−γ NN/2, γ NN/2) ∩ Z. Then, Theorem 1.7 applied with Q = γ N , gives

C

Rγ N

≤ 1

Nl

∑
|jk |≥ NR

2

|b(j)|2,

where the second sum does not appear due to the support condition on Fd,l(b).
As in part (i), let 1 ≤ S ≤ γ N and R = �S1/α� if 1 < p < ∞ and R = S if
p = 1. Summing over values of S, and applying Lemma 5.1 we find

C

2γ N

γ N∑
S=1

S−τ ≤ 1

Nl

γ N∑
S=1

∑
|jk |≥ NS1/p

2

|b(j)|2 ≤ 2pα
p,∞
k (b),
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and the result follows by combining the constants and another application of
Eq. (19). ��

6 Further Questions

Upon investigation, similar arguments applied in the one-dimensional Finite BLT
apply for several variable analogs. It is interesting to consider the question of
whether there are sequences which have the ‘best’ localization properties, those for
which the αk norm is minimized over the set of all A,B-Gabor Riesz bases. There is
a conjecture [11] of Lammers and Stampe which addresses this question and is still
open to the authors’ knowledge. Also of interest is whether uncertainty principles
for different continuous basis systems (e.g. [4]) may be discretized to give similar
finite dimensional results.

Another remaining question is related to Theorem 1.9. In [10], a more general
version of Theorem 1.2 was shown to hold when G(g,Z2l ) is replaced by G(g, S)

for any symplectic lattice S ⊂ R
2l . It is not clear to the authors whether Theorem 1.9

also holds in this setting.
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