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Abstract We develop a mathematical framework and efficient computational
schemes to obtain an approximate solution of partial differential equations (PDEs)
via sampled data. Recently, DeVore and Zuazua revisited the classical problem of
inverse heat conduction, and they investigated how to recover the initial temperature
distribution of a finite body from temperature measurements made at a fixed number
of later times. In this paper, we consider a Laplace equation and a variable coefficient
wave equation. We show that only one sensor employed at a crucial location
at multiple time instances leads to a sequence of approximate solutions, which
converges to the exact solution of these PDEs. This framework can be viewed as
an extension of the novel, dynamical sampling techniques.

Keywords Dynamical system · Evolutionary systems representations · Near-best
approximation · Initial datum

1 Introduction

Efficient data processing is essential in large data applications, whether the phe-
nomenon of interest is sound, heat, electrostatics, electrodynamics, fluid dynamics,
elasticity, or quantum mechanics. The spatial/time distribution of these aspects can
be described similarly in terms of PDEs. When solving a PDE of interest, we need
to know the initial conditions, described by some function [5, 6, 8]. However, in
real-life applications, full knowledge of the initial conditions is often impossible
due to unavailability of a large number of sensors [1, 7]. The way to overcome this
impairing is to exploit the evolutionary nature of the sampling environment, while
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working with a reduced number of sensors, i.e., employ the concept of dynamical
sampling [2–4].

The concept of dynamical sampling is beneficial in setups where the available
sensing devices are limited due to some access constraints. In such an under
sampled case, we use the coarse system of sensors multiple times to compensate
for the lack of samples at a single time instance. Our focus is on developing
methods which efficiently approximate solutions of important PDEs by engaging
the dynamical nature of the setup dictated by the initial conditions. We develop
the theory and algorithms for a new sampling and approximation framework.
This framework combines spatial samples of various states of approximations and
eventually provides an exact reconstruction of the solution. We assume that the
initial state of the solution is in a selected Sobolev class.

Recent results [7] show that only one sensor employed at a crucial location
at multiple time instances leads to a sequence of approximate solutions, which
converges to the exact solution of the heat equation:

ut = uxx,

u(0, t) = u(π, t) = 0,

u(x, 0) = f (x),

under the assumption that the initial condition function f is in a compact class of
Sobolev type. As a result, the sine basis decomposition coefficients of the initial
function have controlled decay. We apply this approach to solve other PDEs, while
using one spatial sensor multiple times for data collection: We use an appropriate
basis decomposition, and work under the assumption that the basis decomposition
coefficients of the initial state function have controlled decay. In other words, we
assume that the initial state of the solution is in a selected Sobolev class.

2 Laplace Equation

We study the problem of solving an initial value problem (IVP) from discrete
measurements made at appropriate instances/locations; thus, the initial conditions
are not known in full detail. We aim to show that with a carefully selected
placement and activation of the sensing devices, the unknown initial conditions can
be completely determined by the discrete set of measurements; thus, the general
solution to the IVP of interest is derived.

Under some initial and boundary conditions, the Laplace equation

uxx + uyy = 0, x ∈ [0, 1], y ≥ 0 (1)

ux(0, y) = ux(1, y) = 0, lim
y→∞ u(x, y) = 0 u(x, 0) = f (x),
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has a general solution

u(x, y) =
∞∑

k=0

ak cos(kπx) e−kπy, where ak = 2
∫ 1

0
f (x) cos(kπx) dx.

(2)
The solution to (1) is the steady state temperature u(x, y) in the semi-infinite

plate 0 ≤ x ≤ 1, y ≥ 0, with the assumption that the left and right sides are insulated
and assume that the solution is bounded. The temperature along the bottom side is
assumed to be a known function f (x).

In case the values f (x) are not fully known at all x ∈ [0, 1], we propose to take
samples uk := u(x0, yk), k ≥ 0, at an array of space-time locations (x0, yk), such
that | cos(kπx0)| ≥ d0k

−1 for some d0 > 0 and for all k integers, k �= 0. For the
condition | cos(kπx0)| ≥ d0k

−1 for some d0 > 0 and for all k integers, we choose
α ∈ (0, 3/2) so that

dist

(
α,

{
1

2k
,
3

2k
, . . . ,

2k + 1

2k

})
≥ c0

k2
, k = 1, 2, . . . ,

with c0 an absolute constant. Then we have

dist

(
αkπ,

{
π

2
,
3π

2
, . . . ,

(2k + 1)π

2

})
≥ c0π

k
, k = 1, 2, . . . ,

We then take x0 = α. We further assume that y1 < y2 < . . .. We work with (ck)k≥0
such that for some r > 0,

∑
c2kk

2r ≤ 1. (3)

The function

F0(z) :=
∞∑

k=0

ckz
−k (4)

is an analytic function in the unit disk D = {z ∈ C : |z| < 1}, which is uniquely
determined by the set of coefficients (ck)k≥0. Furthermore, for the choice of z =
e−πy and ck = ak cos(kπx0), k ≥ 0, we have: F0(e

−πy) = u(x0, y).
Note that the evaluations

F0(zk) = uk, k ≥ 0, (5)

where zk = e−πyk , fully determine the function F0. In case there was another
analytic function on the open disc G0, which satisfied G0(zk) = uk , k ≥ 0, then
we’d have an analytic function F0 − G0 with countably many zeroes in D (since
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(F0 − G0)(zk) = 0, k ≥ 0); thus, F0 − G0 must be the zero function. This implies
that {uk|k = 0, 1, 2, ..} uniquely determines (2).

Next, we sample u(x, y) at locations (x0, yk), k ≥ 0, where

y0 > 0, yn = ρny0, n ≥ 1,

for some ρ > 2. The samples have an expansion

uj =
∞∑

k=0

cke
−kπyj =

∞∑

k=0

cke
−kπρj y0, j = 1, 2, . . . . (6)

Notice that by (6) it holds

c0 = un −
∞∑

k=1

cke
−kπρny0,

c1 = un−1e
πρn−1y0 − c0e

πρn−1y0 −
∞∑

k=2

cke
−kπρn−1y0,

c2 = un−2e
2πρn−2y0 − c0e

2πρn−2y0 − c1e
πρn−2y0 −

∞∑

j=3

cj e
−(j−2)πρn−2y0,

. . .

cn = une
nπy0 − c0e

nπy0 − c1e
(n−1)πy0 − . . . −

∞∑

j=n+1

cj e
−(j−n)πy0 .

We take n+1 samples, and aim at approximating the initial value f , and respectively
the solution (2). We define

c̄0 := un,

c̄1 := un−1e
πρn−1y0 − c̄0e

πρn−1y0 ,

c̄2 := un−2e
2πρn−2y0 − c̄0e

2πρn−2y0 − c̄1e
πρn−2y0,

. . .

c̄n := une
nπy0 − c̄0e

nπy0 − c̄1e
(n−1)πy0 − . . . − c̄n−1e

nπy0e−(n−1)πy0 .

For each j = 1, . . . , n, we denote the error in recovering cj by Ej := |c̄j − cj |.
Since ρ > 2, |cj | ≤ j−r ≤ k−r for j > k, and 1

1−e−πρny0
≤ 1

1−e−πy0
, we estimate
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E0 ≤
∞∑

j=1

|cj |e−jπρny0 ≤
∞∑

j=1

e−jπρny0 = e−πρny0

1 − e−jπρny0
≤ e−πρny0

1 − e−πy0
.

Lemma 1 For each j ≥ 0, we have

Ej ≤ 2j e−πρn−j y0

1 − e−πy0
.

Proof We use mathematical induction. The claim is verified for j = 0, 1. Suppose
the claim holds true for all j ≤ k − 1 for some k ≥ 1. Then

Ek

≤ E0e
πρn−ky0k + E1e

πρn−ky0(k−1) + . . . + Ek−1e
πρn−ky0 +

(
1

k + 1

)r
e−πρn−ky0

1 − e−πy0

≤
k−1∑

j=0

2j e−πρn−j y0

1 − e−πy0
eπρn−ky0(k−j) +

(
1

k + 1

)r
e−πρn−ky0

1 − e−πy0

≤ e−πρn−ky0

1 − e−πy0

⎡

⎣
k−1∑

j=0

2j e−πρn−j y0−πρk−j y0−πρn−ky0 +
(

1

k + 1

)r
⎤

⎦

Since ρ > 2,

e−πρn−j y0−πρk−j y0−πρn−ky0 ≤ 1, (7)

which implies that

k−1∑

j=0

2j e−πρn−j y0−πρk−j y0−πρn−ky0 +
(

1

k + 1

)r

≤ 2k.

For the inequality (7)

e−πρn−j y0−πρk−j y0−πρn−ky0 ≤ 1, (8)

since

−πρn−j y0 − πρk−j y0 − πρn−ky0 = −πt0(ρ
k−j − (k − j + 1)),

we need to have, for 0 ≤ j < k,

ρk−j > k − j + 1.
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This implies ρk > k + 1 for k ≥ 1. When k = 1, we have ρ > 2. By the
mathematical induction, we have ρk > k + 1 for k ≥ 1 if ρ > 2.

We define an approximation Fn(x) to f (x) as

Fn(x) :=
m∑

j=0

c̄j

cos jπx0
cos jπx, m := �n

2
	.

Theorem 1 Given any fixed choice of y1 > 0, ρ > 2, let yk := ρky0, k ≥ 1. Then
for f ∈ {∑ ak cos kπx ∈ L2([0, 1]} : ∑∞

k=1 k2r |ak|2 ≤ 1}, whenever

e−πyk ≤ 2−kk−r−1,

we have

lim
n→∞ ‖f − Fn‖ = 0.

Proof By Lemma 1, we have

‖f − Fn‖2 ≤
m∑

j=0

E2
j

| cos jπx0|2 +
∞∑

j=m+1

|aj |2

≤
m∑

j=0

(
j

d0

)2
(
2j e−πρn−j y0

1 − e−πy0

)2

+ m−2r

≤
(

m

d0

)2
(

e−πρmy0

1 − e−πy0

)2 m∑

j=0

22j + m−2r

=
(

m

d0

)2 (
e−πym

1 − e−πy0

)2 m∑

j=0

22j + m−2r

≤
(

3

4d2
0 (1 − e−πy0)2

+ 1

)
m−2r → 0,

as n → ∞.

3 Variable Coefficient Wave Equation

In this section, we consider the following generalization of the wave equation:

uxx + (1 + t)2utt + 1

1 + t
ut = 0, t ≥ 0, (9)
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where x ∈ [0, π ] and t ≥ 0. A simple calculation shows that the solution of this
equation is

u(x, t) =
∑

k≥1

ak sin(kx)
1

(1 + t)k
,

where (ak)
∞
k=1 are the Fourier sine coefficients of f (x) = u(x, 0). Thus if the initial

function is f (x) = u(x, 0) is given, then we can obtain u = u(x, t). In case f (x)

is not known at all x ∈ [0, π ], we use later time samples, which are available at one
fixed location x0 and at time instances

t1 < t2 < . . . < ts < . . .

to recover the initial datum f , and consequently u. To do this, we first choose x0
using a similar argument as in Sect. 2 so that we have | sin(kx0)| ≥ d0k

−1 for some
d0 > 0 and for all k ≥ 1.

We note that the samples satisfy

us := u(x0, ts) =
∑

k≥1

ak sin(kx0)
1

(1 + ts)k
=

∑

k≥1

ck

1

(1 + ts)k
, (10)

where ck := ak sin(kx0). We further assume that we have
∑

k c2kk
2r ≤ 1. We

will impose conditions on the time instances employed so we can construct an
approximation of the initial datum and thus recover u(x, t). As we will see, the
choice for t1 = ρ >

√
2, tk ≥ ρ2k−1 −1 when k ≥ 2, will provide good convergence

rate. We set the algorithm as follows:

c̄1 = un(1 + tn),

and for 2 ≤ k ≤ n we set

c̄k = un−k(1 + tn−k+1)
k −

k−1∑

j=1

c̄j

(1 + tn−k+1)
k

(1 + tn−k+1)j
.

Lemma 2 For every n ≥ 1 and 1 ≤ k ≤ n, we have

Ek := |ck − c̄k| ≤ 2k−1A0
1

1 + tn−k+1
, (11)

where A0 = 2−r 1
1−(1+t1)

−1 .

Proof First, we note that for the choice of tk it holds:
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1

1 + tn−j+1

(1 + tn−k)
k+1

(1 + tn−k)j
≤ 1

1 + tn−k

when j ≤ k. (12)

Then

E1 ≤
∑

k>1

|cj | 1 + tn

(1 + tn)j
≤ 2−r

∑

k>1

(1 + tn)
−(j−1)

= 2−r (1 + tn)
−1 1

1 − (1 + tn)−1 ≤ 2−r (1 + tn)
−1 1

1 − (1 + t1)−1 .

Suppose for every j ≤ k it holds Ej ≤ 2j−1A0
1

1+tn−j+1
. Then

Ek+1 ≤
∑

j<k+1

Ej

(1 + tn−k)
k+1

(1 + tn−k)j
+

∑

j>k+1

|cj | (1 + tn−k)
k+1

(1 + tn−k)j

≤
∑

j<k+1

2j−1A0
1

1 + tn−j+1

(1 + tn−k)
k+1

(1 + tn−k)j
+

∑

j>1

|cj | 1

(1 + tn−k)j
.

By (12), it holds

Ek+1 ≤
∑

j<k+1

2j−1A0
1

1 + tn−k

+ 1

(k + 1)r
1

1 + tn−k

1

1 − (1 + tn−k+1)−1

≤
∑

j<k+1

2j−1A0
1

1 + tn−k

+ 1

(k + 1)r
1

1 + tn−k

A0 ≤ 2kA0
1

1 + tn−k

.

To simplify our calculations, we assume we always take n = 2m samples, and
define

Fn :=
m∑

k=1

c̄kfk. (13)

Theorem 2 Let t1 = ρ >
√
2 and tk ≥ ρ2k−1 − 1 when k ≥ 2. Then, whenever

f ∈ {∑ ak sin kx ∈ L2(R) : ∑∞
k=1 k2r |ak|2 ≤ 1}, we have

lim
n→∞ ‖f − Fn‖ = 0.

Proof By the decay assumption on (ck)k≥1, we obtain
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‖f − Fn‖22 ≤
m∑

k=1

|ck − c̄k|2 +
∑

k>m

|ck|2 ≤
m∑

k=1

2k−1A0
1

1 + tn−k+1
+ 1

m2r
.

Since tn−k+1 − 1 = ρ2n−k
, for k = 1, 2, . . . , m we have

2k−1

1 + tn−k+1
= 2k−1

ρ2n−k
≤ 2k−1

ρ2m .

Thus

‖f − Fn‖2 ≤ A0
1

ρ2m

m∑

k=1

2k−1 + 1

m2r = 2mA0

ρ2m + 1

m2r ≤ C

m2r .
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