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7.1  Introduction

Co-existence of renal dysfunction is common in 
patients with heart failure (HF) and often leads to 
adverse clinical outcomes [1]. The term “cardio- 
renal” was introduced as early as 1913 by Dr. 
Thomas Lewis, who described a unique form of 
paroxysmal dyspnea in the setting of concomi-
tant cardiac and renal dysfunction [2]. The fol-
lowing year, Dr. Alfred Stengel proposed the 
classification of cardio-renal diseases into three 
distinct forms: (1) primary valvular or myocar-

dial disease with secondary renal disease; (2) pri-
mary arterial or arteriolar disease with secondary 
renal and myocardial disease; and (3) primary 
renal disease with secondary myocardial and vas-
cular disease [3].

After a century of medical progress, our con-
temporary classification scheme for cardio-renal 
syndrome (CRS) remains largely descriptive of 
such temporal bi-directional relationships 
between cardiac and renal dysfunction without 
specifying precise mechanistic culprit(s) [4]. 
Nevertheless, there is general agreement that 
adverse interactions between the kidneys and cir-
culatory components promote increased circulat-
ing volume, exacerbate HF symptoms, and 
accelerate subsequent disease progression [5]. In 
contrast, contribution of various non-cardiac fac-
tors that have been proposed some half a century 
ago may still be under-recognized [6]. This chap-
ter will review the classical mediators of cardio- 
renal injury through which acute HF aggravates 
renal dysfunction leading to Type 1 CRS, and 
outline the directions for further investigation 
beyond our current management strategies.

7.2  Definition of Acute (Type 1) 
Cardio-Renal Syndrome

Clinicians have largely considered acute (or 
“Type 1”) CRS as equivalent to the working defi-
nition outlined in a National Institute of Health 
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workshop for acute CRS as “an extreme form of 
cardio-renal dysregulation in which therapy to 
relieve congestive symptoms of HF is limited by 
further decline in renal function.” [7] There are 
several key words in this definition: (1) “dysregu-
lation” refers to the dysfunctional cross-talk 
between the heart and the kidneys to maintain 
salt and water homeostasis; (2) “congestive 
symptoms” refers to the volume overloaded state 
related to HF; and (3) “limited by further decline 
in renal function” refers to the refractoriness to 
standard diuretic regimen (sometimes considered 
as “diuretic resistance”). In simpler terms, the 
intention to treat congestive HF by aggressive 
diuresis was deemed inadequate as a result of 
ineffective renal responses.

It is important to emphasize here that consid-
erations of “abnormal renal function” still relied 
on indirect biomarkers that estimate glomerular 
filtration or function (e.g. clearance of creatinine/
cystatin C, and leakage of albumin/protein) rather 
than biomarkers of tubular function (e.g. clear-
ance of urea or toxins, and handling of electrolyte 
homeostasis). On the other hand, reliable insights 
into renal hemodynamics remained limited. 
Therefore, the precise processes and mechanisms 
in which the kidneys endure injury remain 
unclear in the setting of acute CRS [8].

7.3  Factors Contributing 
to the Development 
of Acute CRS

Contributing factors to the development of acute 
(Type 1) CRS include hemodynamic disturbance, 
neurohormonal activation, and inflammation 
(Fig. 7.1).

Impaired Cardiac Output. In the setting of 
acute HF, reduced cardiac output can lead to 
impaired renal blood flow and perfusion, which 
has long been proposed as the primary driver of 
renal dysfunction and subsequent injury [9]. 
Indeed, acute kidney injury (AKI) is more preva-
lent and severe with impaired cardiac output, 
being reported more than 70% in cardiogenic 
shock [10]. Improvement in serum creatinine lev-
els shortly after implantation of left ventricular 
assist devices also highlights the pathophysiolog-
ical importance of hemodynamic disruption in 
CRS [11]. However, this once-prevailing concept 
of “arterial underfilling” as the single perpetrator 
of CRS cannot be fully explained by clinical 
observations, since the majority of patients pre-
sented with acute HF also have relatively pre-
served cardiac output [12–15]. It is likewise 
important to note that a rise in serum creatinine 
may not be the primary abnormality to reflect 
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Fig. 7.1 Key Contributors to Cardio-Renal Syndrome. 
Despite efforts to establish a hierarchy, there seems to be 
no such hierarchy among cardio-renal connectors. 
Inflammatory reaction, an activated neurohormonal sys-

tem and hemodynamic disruption become connected dur-
ing the subclinical stage of CRS, starting a vicious cycle 
but staying in a subclinical stage for a period
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underlying hemodynamic derangements, as 
hypochloremia may also be triggered by underly-
ing low cardiac output state [16–18].

Systemic Venous Congestion. Over the past 
decade, there is growing understanding of an 
inverse relationship between central venous pres-
sure (CVP), renal blood flow (RBF), and glomer-
ular filtration rate (GFR) in the setting of HF 
[19]. Like impaired cardiac output, elevated CVP 
can lead to increased renal interstitial hydrostatic 
pressure, resulting in a decreased net filtration 
pressure, and progressive renal dysfunction [20]. 
This can be exacerbated in the setting of acute 
decompensated HF, whereby increased CVP on 
admission as well as insufficient reduction of 
CVP during hospitalization can be stronger 
hemodynamic determinants for the development 
of worsening renal function compared to dimin-
ished cardiac index [21]. Recent mechanistic 
demonstrations with saline loading experiments 
have further confirmed the impact of increasing 
“venous impedance” at the level of the kidney on 
attenuation of diuresis and natriuresis [22, 23]. 
These observations may imply that beyond 
impaired renal perfusion in low cardiac output 
state, the inability to mobilize venous congestion 
despite aggressive diuresis can also trigger acute 
(Type 1) CRS.

Raised Intra-Abdominal Pressure. One of 
the commonly-overlooked contributors of acute 
CRS is extra-cardiac hemodynamic alteration in 
the abdominal cavity [24]. Especially in the set-
ting of overt right-sided HF with significant 
venous congestion or in post-operative/obstruc-
tive settings with ileus or organ swelling, abdom-
inal congestion in the form of splanchnic venous 
and interstitial congestion can manifest via com-
promised capacitive function of the splanchnic 
vasculature and deficient abdominal lymphatic 
flow resulting in interstitial edema [24]. Increased 
intra-abdominal pressure detectable via bladder 
manometry, in extreme cases of abdominal con-
gestion, is correlated with renal dysfunction in 
advanced refractory congestive heart failure [25].

Pre-existing Renal Insufficiency. The most 
common scenario whereby acute (Type 1) CRS 
occurs is due to pre-existing renal dysfunction, 
which may cause worsening pressure and/or vol-

ume overload. Furthermore, chronic uremia can 
induce left ventricular hypertrophy, promote car-
diac fibrosis, and induce systemic oxidant stress 
[26]. Up to one third of patients hospitalized with 
acute decompensated HF have concomitant AKI 
(here referred to rise in biomarkers of glomerular 
filtration accompanying oligouria), and 60% of 
patients with acute HF who did not have AKI on 
admission eventually developed AKI during hos-
pitalization [27]. The co-occurrence of AKI in 
patients with acute HF worsens survival in those 
patients [28]. While we do not fully understand 
the mechanisms leading to increased cardiovas-
cular complications among chronic kidney dis-
ease (CKD) patients, worsening renal function in 
patients with HF is primarily caused by reduced 
renal perfusion pressure following hemodynamic 
derangement as the primary culprit. However, 
when renal dysfunctions become clinically 
noticeable in the setting of HF, over-activation of 
neurohormonal systems and systemic inflamma-
tion occurs concomitantly with progressive dete-
rioration of cardiac function, making it difficult 
to single out the culprit among the cardio-renal 
mediators.

Neurohormonal Mediators. The concept of 
neurohormonal system activation because of cir-
culatory perturbations plays a large part in our 
expanded understanding of renal physiology and 
sodium homeostasis [29]. Activated renin- 
angiotensin system (RAS) and the sympathetic 
nervous system (SNS) are prototypical cardio- 
renal mediators that have diverse influences on 
hemodynamic components such as right atrial/
ventricular compliance, venous capacitance, and 
returning volume of venous blood [30]. 
Teleologically, over-activated RAS restores renal 
perfusion pressure by sustaining intraglomerular 
pressure and promoting volume expansion [31]. 
However, while angiotensin restores intraglomer-
ular pressure by constricting efferent arterioles, 
ensuing vasoconstriction of systemic resistance 
vessels results in increased afterload and detri-
mental cardiac function [31]. Excessive urinary 
sodium and chloride loss caused by aggressive 
diuresis may induce renin release that increases 
renal sodium avidity, which is a natural response 
to dehydration [32]. Avid sodium reabsorption 
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and water retention in the presence of an 
 overactive RAS further aggravates HF and sets 
up the vicious cycle of CRS [8, 33, 34].

An over-activated RAS can also worsen renal 
dysfunction through non-hemodynamic mecha-
nism [8]. For example, angiotensin II stimulates 
production of proinflammatory mediators (e.g. 
tumor necrosis factor [TNF]-α, interleukin-6, 
monocyte chemoattractant protein-1, nuclear fac-
tor kappa-light-chain-enhancer of activated B 
cells [NF-κB]) and mobilizes inflammatory cells 
in the glomeruli. Following cell proliferation, 
fibrosis and apoptosis eventually progress in the 
heart and kidneys [35]. Of note, mineralocorti-
coid in concert with angiotensin II stimulates 
macrophages in the kidney to secrete galectin-3, 
a HF biomarker in recent spotlight, which in turn 
induces proliferation of pericytes, deposition of 
collagen, and eventual renal fibrosis [36].

Although its deleterious effects in renal injury 
are less elucidated than in HF [31], the over- 
activated SNS also contributes to the development 
of renal dysfunction [37]. First, efferent sympa-
thetic nerves are activated by ischemia/reperfusion 
injury, a common clinical cause of AKI in various 
clinical settings [38]. Renal ischemia increases 
glomerular expression of tyrosine hydroxylase, a 
rate limiting enzyme of noradrenaline production, 
suggesting morphological alterations of adrener-
gic nerve terminals in glomeruli of ischemic AKI 
[39]. The activated SNS facilitates renal fibrogen-
esis, tubular vasoconstriction, and reduces GFR in 
manners dependent on endothelial dysfunction 
and inflammation, acting jointly with elevated 
angiotensin II and increased oxidative stress [38]. 
Adrenergic receptors and endothelin receptors are 
a superfamily of G protein coupled receptors 
(GPCR). Transverse aortic constriction elevated 
renal GPCR signaling and endothelin expression 
in mice, and then led to deterioration of renal func-
tion. In addition, pharmacologic inhibition of 
GPCR alleviated renal dysfunction [40].

Sympathetic nerve denervation can increase 
basal renal flow, urine flow rate, fractional sodium 
excretions, and GFR in rats after renal ischemia/
reperfusion injury. The denervated rats had less 
congestion in the medullary portion, lower level 
of inflammation, and reduced tubular damage 

than rats with intact sympathetic activity [41, 42]. 
In mice with transverse aortic constriction, sym-
pathetic renal denervation did not only blunt the 
increase in norepinephrine level but also blocked 
reno-cardiac signaling, which was essential for 
cardiac hypertrophy in response to pressure over-
load [43]. Recently, a few small-sized human 
studies reported renal denervation improved car-
diac and renal function [44, 45]. Despite skepti-
cism, observations of renal sympathetic 
over-activity in patients with CRS support con-
tinuing innovative investigational strategies for 
renal sympathetic denervation [31].

Inflammatory Mediators. Ample evidence 
has supported the inflammatory process as an 
important pathology of both cardiovascular dis-
ease and CKD. In humans, the circulating level of 
TNF-α was elevated in severe HF with cachexia 
and was associated with adverse clinical status as 
well as RAS system activation [46, 47]. When HF 
with reduced ejection fraction (HFrEF) patients 
had acute decompensation, biomarkers for inflam-
matory response such as high sensitivity 
C-reactive protein, myeloperoxidase, TNF-α, and 
galectin-3 continued to increase even after clini-
cal improvement, which implied a unique role of 
inflammation in the pathophysiology of HF exac-
erbation [48]. In addition, activation of the com-
plement system occurs in HFrEF, where 
dysregulated alternative pathways of the comple-
ment system can worsen the disease severity [49]. 
Increase in interleukin-6 may also be mechanisti-
cally linked with cardio-renal dysregulation [50].

When we induced chronic HF in mice after 
coronary artery ligation, the peripheral fraction 
of pro-inflammatory monocytes/macrophages 
increased with profound splenic remodeling, rep-
resentative of augmented antigen processing. In 
particular, splenectomy resulted in cardiac 
reverse remodeling and attenuated tissue infiltra-
tion of inflammatory cells, while adaptive trans-
fer of splenocytes into naïve mice led to 
resumption of immune-cell mediated injury, 
which suggested the central role of the mononu-
clear cell phagocyte network in chronic inflam-
mation and HF progression [51]. In a similar 
animal model, activated monocytes and 
 macrophages increased in kidney as well as 
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peripheral blood, mRNA expression of inflam-
matory cytokines was augmented, and microvas-
cular endothelial permeability and renal tubular 
cell apoptosis increased through the acute and 
subclinical phases [52]. Further, depletion of 
monocytes or macrophages led to alleviation of 
tubular cell apoptosis and renal fibrosis [52]. 
Meanwhile, pharmacologic therapy targeting 
interleukin-1 inhibition [53] or glucocorticoid 
therapy to promote uricosuria [54] have provided 
some proof- of- concept demonstrations regarding 
the inflammatory hypothesis of acute CRS but 
would require further validation.

Metabolic Contributions. Patients with HF 
had more permeable intestinal walls than healthy 
controls, and more pathogenic bacteria were cul-
tured in stool from HF patients. These findings 
were prominent in patients with severe HF symp-
toms. Particularly higher serum inflammatory 
markers in HF patients alluded to bacterial translo-
cation through intestinal walls, which, in turn, is 
attributable to increased intestinal permeability 
resulting from intra-abdominal venous congestion 
[55, 56]. When we incubated renal tubular cells in 
plasma obtained from CRS septic patients, they 
had higher levels of apoptosis and caspase-3,-8,-9 
expression in plasma with higher endotoxin activ-
ity than in plasma with lower endotoxin activity. 
Plasma inflammatory cytokines were associated 
with high endotoxin activity and assumed to medi-
ate both extrinsic and intrinsic apoptosis of renal 
tubular cells, suggesting the presence of detrimen-
tal humoral factors in cross-talk between distant 
organs [57, 58]. Therefore, it is possible that trans-
location of bacterial endotoxin through intestinal 
walls worsens renal function in HF patients [59]. 
Phagocytic systems can generate catecholamine 
when exposed to bacterial endotoxins, while the 
disconnection of phagocytes from the autonomic 
nervous systems leads to reduced inflammatory 
responses [60]. The autonomic nervous system 
can influence immunity such as toll-like receptor 
ligation. During the inflammatory reflex, cyto-
kines locally released from immune cells can 
transmit signals to the central nervous system 
through activated vagal afferent nerves [61].

Uremic Toxins. Deterioration of renal func-
tion leads to accumulation of protein-bound ure-

mic toxins, such as indoxyl sulfate and p-cresyl 
sulfate and a tryptophan metabolite produced by 
gut microbiota, which are excreted by the healthy 
kidney. Exposure to these uremic toxins can 
cause, in part, the loss of kidney function [62–
64]. Uremic toxins originate mainly from protein 
metabolism, food intake, and can be produced by 
gut microbiota. In addition to the rise in produc-
tion, there is an increase in intestinal permeabil-
ity in CKD allowing a greater absorption of those 
uremic toxins. [65] The retention of these sub-
stances has been associated with an inflammatory 
state, progression of CKD, cardiovascular dis-
ease, and risk of death in CKD patients [66–68].

There have been reports that oxidative stress 
can induce cardiac injury, [69] and urinary 
indoxyl sulfate excretion was reported to have a 
positive linear relationship to oxidative stress 
markers in cardiac tissue [70]. Increased levels of 
indoxyl sulfate were also associated with chronic 
inflammation, through indoxyl sulfate-associated 
pro-inflammatory cytokines, such as TNF-α, 
IL-6, and IL-1β, leading to left ventricular hyper-
trophy and cardiac fibrosis [71]. Indoxyl sulfate 
caused cardiac fibrosis and cardiomyocyte hyper-
trophy in salt-sensitive hypertensive rats, accom-
panied by increased oxidative stress marker 
expression, and decreased anti-oxidative protein 
expression in cardiac tissue [72]. Reduction in 
serum indoxyl sulfate levels caused decreased 
myocardial fibrosis in subtotal-nephrectomized 
rats [73]. Indoxyl sulfate entered cardiac fibro-
blasts through OAT1/3, and significantly 
increased collagen synthesis via activating p38, 
p42/44 MAPK, and NFκB pathways [71, 74]. 
Elevated levels of indoxyl sulfate were associated 
with an increased risk of left ventricular diastolic 
dysfunction in humans [75]. Thus, emerging evi-
dences from clinical and experimental studies 
reveal that indoxyl sulfate plays a role in the pro-
gression of cardiovascular disease in CKD 
patients. Although other protein-bound uremic 
toxins possibly also are involved in the pathogen-
esis of cardiovascular disease, investigation of 
the cardiovascular effects of the uremic toxins 
has been limited to a few toxins. Furthermore, a 
demonstration that treating indoxyl sulfate leads 
to improved cardiovascular outcomes is lacking.
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7.4  Preventing Type 1 CRS: 
Identifying Sub-Clinical 
Cardio-Renal Injury

The key to managing acute (Type 1) CRS is to 
prevent cardio-renal injury by recognizing the 
underlying substrates at subclinical stages and 
preventing the development of cardiac and renal 
failure (Fig. 7.2). This concept, while logical, has 
not been fully embraced due to the lack of 
insights into these potential treatable targets.

Biomarkers to Detect Cardio-Renal Injury. 
The Acute Decompensated Heart Failure 
National Registry (ADHERE) reported the prev-
alence of renal insufficiency was about 30% but 
also likely underestimated [76]. With technologi-
cal advances, more sensitive and specific novel 
biomarkers of early organ injuries have been pro-
posed in order to help identify high-risk patients 
before progression to irreversible stages of CRS 
[77, 78]. It is therefore postulated that like car-
diac troponins for acute coronary syndromes, 
early detection with AKI biomarker may identify 
the cohort of patients at higher risk of developing 
Type 1 CRS and then be triaged to appropriate 
interventions. Biomarkers of renal tubular dam-

age, such as neutrophil gelatinase-associated 
lipocalin (NGAL), kidney injury molecule 1 
(KIM1), interleukin-18 (IL-18), liver-type fatty 
acid binding protein (L-FABP), and tissue inhibi-
tor of metalloproteinase 2 plus insulin-like 
growth factor-binding protein 7 (TIMP2- 
IGFBP7), have all been investigated for this pur-
pose [79]. However [80], circulating NGAL (a 
protein of the lipocalin superfamily) was not 
superior to creatinine for the prediction of wors-
ening renal function (WRF) or adverse in- hospital 
outcomes [81, 82]. In contrast, few if any acute 
HF patients who experienced WRF had elevated 
urinary NGAL levels, and even if levels were 
high they did not track with poor outcomes 
despite having pre-existing renal insufficiency 
[83, 84]. Despite early optimism, few studies 
have demonstrated the ability of urinary kidney 
injury biomarkers to provide any prognostic 
insights or therapeutic directives [84–86].

Weight Loss. Obese individuals, even without 
frank diabetes mellitus, are at risk of CRS devel-
opment. Obesity per se can induce long-standing 
glomerular hyperfiltration and obesity-related 
glomerulopathy, evidenced by focal segmental 
glomerular sclerosis, foot process effacement, 

Substrate

Subclinical
Stage

Overt
Stage

Irreversible
Stage

Epigenetic/Fetal programming
Incomplete nephrogenesis
Insulin resistance/Metablic
syndrome

Substrate for CRS

Subclinical renal
dysfunction

Subclinical cardiac
dysfunction

Cardiac
failure

Renal
failure CRS

Hemodynamic disruption
RAS ↑,
SNA ↑,
Gyt endotoxin
Inflammation
Oxidative stress

Anemia
Pulmonary
hypertension/congestion
Hepatic dysfunction

Diuretics resistance
Refractory congestion
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Fig. 7.2 Conceptual Framework of Acute (Type 1) 
Cardio-Renal Syndrome. Once overt cardio-renal syn-
drome ensues, it seems very difficult to reverse the natural 
course of disease. Therefore, early detection of patients at 
risk of cardio-renal syndrome may be a better therapeutic 

strategy. At the subclinical period of cardio-renal syn-
drome, there are substrates for renal dysfunction in, par-
ticularly, patients with heart failure. Medical resources 
may be concentrated on these patients to prevent further 
deterioration of renal function
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and glomerulomegaly [87–90]. In an animal 
model of HFpEF and insulin resistance, glycos-
uria/proteinuria and microvascular fibrosis were 
highly analogous to the earliest change of the 
human cardio-renal syndrome, suggesting the 
presence of CRS substrate in humans as well 
[91]. Indeed, phenomapping of HFpEF subtypes 
has identified a “natriuretic peptide deficient” 
subtype that likely promotes fluid retention [92]. 
Intensive lifestyle intervention reduced the inci-
dence of CKD after long-term follow-up, through 
reductions in bodyweight, HbA1c, and systolic 
blood pressure [93–95]. An enhanced metabolic 
profile via weight reduction in patients with 
obesity- associated cardio-renal disease draws 
attention for a novel therapeutic option [96, 97].

7.5  Managing Type 1 CRS

The latest consensus statement in diuretic use 
highlighted this goal-targeted strategy (Fig. 7.3), 
with the introduction of assessing urine output or 

urine sodium excretion following initial dosing 
of loop diuretics to assess diuretic efficacy [98]. 
This is based on observations that urine sodium 
excretion is diminished in acute HF requiring 
pharmacologic augmentation, and that insuffi-
cient natriuresis either due to abnormal drug 
delivery at the site of action and/or inadequate 
urine excretion due to renal sodium avidity may 
contribute to poor diuretic responses and adverse 
long-term outcomes [99, 100].

Loop Diuretics. Escalation of intravenous 
(IV) loop diuretic has been the mainstay of 
decongestion in HF, and often the key adjustment 
in Type 1 CRS since most patients remain diuretic 
responsive. The key determination remains 
whether loop diuretic dosing is insufficient or 
whether diuretic resistance is inevitable. Effective 
diuresis with good urine output despite a rise in 
serum creatinine or “worsening renal function” 
should not be classified as CRS.  In fact, these 
patients actually have favorable long-term out-
comes [101]. The Diuretic Optimal Strategy 
Evaluation in Acute Heart Failure (DOSE-AHF) 
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study attempted to address the question of 
whether higher-dose or continuous administra-
tion is superior than standard-dose or bolus 
administration [102]. While the overall findings 
were largely neutral except for a statistically sig-
nificant subjective assessment of well-being in 
the high-dose arm, a recent post-hoc analysis 
suggested that when adjusted for total amount of 
diuretic use, the high-dose strategy may have 
provided benefits [103].

Part of the challenge has been the inability of 
the kidneys to excrete loop diuretics to their sites 
of activity (luminal Na-K-Cl cotransporter at the 
ascending limb of the Loop of Henle). Indeed, 
diminished urine sodium per urine furosemide 
levels in patients with advanced HF receiving IV 
loop diuretics has been associated with impaired 
diuresis and natriuresis and poor long-term out-
comes [100]. Hence, increasing loop diuretic 
dosing can be an effective strategy, although 
doses above the ceiling dose are only moderately 
effective (despite relatively predictable dose- 
response curves). Other strategies include 
increasing frequency of administration (includ-
ing continuous dosing) or add other types of 
diuretics for synergistic effects to achieve maxi-
mal urinary sodium excretion.

Other Diuretic Drugs. In the stepped phar-
macologic uptitration arm of the Cardiorenal 
Rescue Study in Acute Decompensated Heart 
Failure (CARRESS-HF) study [104], patients 
who experienced worsening renal function were 
treated with a goal-directed escalation of diuretic 
drugs including continuous loop diuretic infusion 
and addition of thiazide diuretics (sequential 
tubular blockade strategy) [105]. In the majority 
of cases, urine output goals of 3–5 L negative per 
day can be achieved.

While there was early enthusiasm on miner-
alocorticoid receptor antagonist to attenuate dis-
tal sodium reabsorption, such strategy was 
deemed not incremental to standard therapy in a 
prospective trial [106]. An ongoing multicenter 
study testing the role of acetazolamide to aug-
ment proximal sodium excretion by attenuating 
tubular renin release is ongoing [107, 108].

Inotropic and Vasoactive Drugs. The typical 
inotropes used in cardiac intensive care units 

include dobutamine and milrinone (or to a lesser 
extend oral digoxin loading), and they are effec-
tive in restoring hemodynamics in the “cold and 
wet” patients under hemodynamic guidance. 
However, prospective data supporting their use is 
limited [109, 110]. Vasodilators may improve 
hemodynamic derangements, although overzeal-
ous use can lead to hypotension and worsening 
renal function [111]. In the setting of vasoplegia, 
norepinephrine (and to a lesser degree dopamine) 
may be also be used as it has beta adrenergic 
activity. Less popular now, is the use of dopamine 
as an inotrope and pressor especially with no 
added benefit to the renal vasculature as previ-
ously thought [112].

Ultrafiltration/Aquapheresis. Ultrafiltration 
provides mechanical removal of isotonic fluid 
independent of the kidneys, thus providing effec-
tive and consistent salt and volume removal. 
Although early studies were promising, subse-
quent randomized controlled trials have more 
mixed results [104, 113, 114]. Interestingly, 
ultrafiltration may even exacerbate hyponatremia 
as the effluent is relatively more hypertonic 
[115]. This can exacerbate the cycle of renal vas-
cular constriction and neurohormonal activation 
if the settings are too aggressive. Peritoneal dial-
ysis has also been employed as an alternative 
treatment strategy [116].

Hypertonic Saline. Considerations of electro-
lyte depletion leading to renal sodium avidity has 
implied potential benefits of hypertonic saline 
(HSS) infusions during aggressive IV diuretics. 
This was suggested a decade ago in early Italian 
series, in which low-volume, intermittent, 1.4–
4.6% sodium chloride (depending on serum 
sodium levels) coupled with high-dose loop 
diuretics can produce effective diuresis and pre-
vent decline in renal function [117–119]. Recent 
reports using 1.7% salt supplementation (500 mg) 
with lower doses of IV diuretics also demon-
strated improved diuretic efficiencies, especially 
in those with elevated urinary BUN/creatinine 
levels [120, 121]. Real-world experience have 
also supported such a potential strategy in selected 
patients [122]. However, nephroprotection was 
not observed in patients with baseline creatinine 
over >2.2  mg/dL [123]. This was confirmed by 
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preliminary results from a randomized, double-
blind study of 50 patients with acute heart failure 
and renal insufficiency (creatinine >2  mg/dL, 
BUN >60 mg/dL) that demonstrated a non-signif-
icant increase in diuresis with HSS but also BUN 
elevation from baseline [124]. Hence, further 
investigations are warranted.

Mechanical Circulatory Assist Support. 
With the advent of temporary mechanical support 
such as the Impella® devices, a bridge-to- decision 
strategy can be instituted as demonstrated in ani-
mal models that improve renal blood flow [125]. 
After a test period to see if there is myocardial 
recovery, a durable left ventricular assist device 
(LVAD) may be considered [126]. Renal recovery 
following LVAD maybe transient [127], and renal 
function may deteriorate again after early 
improvement [11]. However if there is right ven-
tricular dysfunction, orthotopic heart transplanta-
tion is the only durable solution. Implantable 
ventricular assist devices are rarely performed in 
patients reaching end-stage kidney diseases due to 
their high mortality rates and are not recom-
mended by clinical guidelines [126, 128].

Temporary Renal Support Device 
Therapies. Recently, a handful of intriguing 
hemodynamic support devices have emerged tar-
geting venous congestion and/or renal hemody-
namics support. Examples include transcatheter 
intra-aortic pump [129], transcatheter renal 
venous decongestion system, innovative fluid/
diuretic management systems (RenalGuard) 
[130]. Other examples of volume removal strate-
gies include implantable pump or device designed 
to continuously remove excess abdominal fluid 
or direct sodium removal [131, 132], and catheter- 
based enhancement of lymphatic drainage [133]. 
The majority are in early clinical development.

7.6  Conclusions

Acute (Type 1) CRS is associated with an acute 
cardiogenic disturbance leading to acute worsen-
ing of renal function. However this cascade also 
forms a feedback loop further perpetuating car-
diac dysfunction, hormonal dysregulation, and 
treatment resistance. Once ADHF is recognized, 

treatment must be initiated quickly to break the 
cycle but despite medical therapy, short term and 
long term aftereffects can make treatment a chal-
lenge. Ultimately changes in traditional renal 
biomarkers may not accurately reflect the state of 
the renal system while new insight into electro-
lyte metabolism may more accurately predict 
clinical outcomes.

While increases in serum creatinine have been 
closely tied to renal function, long term predictors 
of mortality and rehospitalization have not been 
closely linked. The response of the kidney in light 
of an acute cardiac insult should be largely viewed 
as appropriate and natural in the physiologic set-
ting. However, the clinician should note that 
breaking the renal cycle will ultimately lead to a 
decongested patient with a chronic illness rather 
than an acute hospitalization.

Once developed, CRS becomes a serious med-
ical and economic burden. Although hemody-
namic derangement, an over-activated 
neurohormonal system, and systemic inflamma-
tion have been recognized as major players in 
CRS pathophysiology, there are also other cardio- 
renal mediators contributing to the development 
of CRS. The intricate network of these mediators 
makes their pathophysiologic hierarchy opaque. 
Investigators may need to divert their attention 
from overt cardio-renal connector in clinical 
CRS, to more fundamental substrates during a 
period of subclinical CRS as a part of an early 
detection and prevention strategy.
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