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Abstract The concept of nanomaterials that can be designed and administered into
the human body to improve health is of great interest. During the past years there has
been an increasing amount of research on the uses of nanomaterials in diverse areas
of biomedical research including biological sensing, labelling, imaging, cell separa-
tion and therapy. In this chapter, the first evaluation of titanate nanotubes (TiONts)
as potential carriers of therapeutic molecules is presented. TiONts with controlled
parameters have been developed from a hydrothermal synthesis and their biomedical
applications have been explored over the last decade. These nanotubes are elaborated
as stable suspensions of nanocarriers by surface chemistry engineering. They can be
used as transfection agents for cardiomyocytes and we have shown that TiONts can
increase the ionizing effect of radiation therapy in the case of glioblastoma. Further-
more, TiONts’ biodistribution has been evaluated by SPECT/CT in male Swiss nude
mice and TiONts are quickly cleared. More recently, we have demonstrated that
TiONts-docetaxel (DTX) nanohybrids are versatile nanocarriers to limit the systemic
toxicity of taxanes and to improve the selectivity of radiotherapy (RT). Our strategy is
based on the intraprostatic injection of the TiONts-DTX nanohybrids both in place of
brachytherapy and in combination with RT. This is achieved by taking advantage of
the TiONts’ morphology as well as their radiosensitization effect and by associating
them with docetaxel molecules, also recognized for their radiosensitizing poten-
tial. We also grafted the surface of TiONts with gold nanoparticles, for a resulting
combined radiosensitizing effect. The elaboration of nanohybrid materials, intended
for drug delivery systems and based on TiONts coated with chitosan polymer has
also been evaluated. Such nanotubes are combined with transresveratrol derivatives
for their anti-oxidizing and antitumor effects. All the aspects of a potential toxicity
are also considered.
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1 Introduction

The shape of nanoparticles is an essential element to take into account for the inter-
nalization, cytotoxicity, biodistribution and intracellular exchanges of nano-objects
in the organism (Ernsting et al. 2013).

Diffusion phenomena, through the cells’ membrane, have already been observed
by anisotropic nanoparticles, allowing the internalization of these biomaterials in the
cytoplasm in addition to endocytosis (Kostarelos et al. 2007). Besides, it was demon-
strated that anisotropic nanoparticles were characterized by a higher blood circula-
tion time and prolonged retention at tumor sites compared to spherical nanoparticles
(Agarwal et al. 2015). Z. J. Deng et al. have shown that the shape of TiO2 nanopar-
ticles (nanosphere, nanorod and nanotube) plays an important role in the absorption
of proteins on their surface, thus dictating their biokinetics and their behavior in vivo
(Deng et al. 2009).

Intrinsic properties of nanoparticles are also influenced by their shape. It has been
shown thatmagnetic nanoparticles of elongated shape exhibit highermagnetic hyper-
thermia heating capacities than their spherical equivalents (Das et al. 2016). Simi-
larly, gold nanorods have interesting optical properties due to the resonance effects of
the surface plasmon. Finally, excellent properties associated with guided geometry
nanoparticles have opened up exciting opportunities for new material designs and
will potentially revolutionize the current practice in Biology and Medicine (Decuzzi
et al. 2017). Nanoparticles can be built from different materials and can host a
wide range of active components for various biomedical applications, including
chemotherapeutics, proteins, contrast agents, and nucleic acids.

The major elongated nanoparticles used in nanomedicine are: carbon nanotubes
(Bianco et al. 2005), gold nanorods (Awan et al. 2018), ZnO nanorods (Jeong et al.
2020), silver nanorods (Suganya and Devasena 2015), silica nanotubes (Ma et al.
2009), iron oxide nanorods (Singh et al. 2020), apatite nanorods (Ge et al. 2019),
alumina nanotubes (Campos et al. 2016), titanium oxide nanorods (Sun et al. 2016)
and titanate nanotubes (Bavykin andWalsh 2009). Gold nanorods, for instance, have
beendeveloped for biomedical applications focus ondetection, biocatalysis, imaging,
drug delivery, and gene delivery (Wang et al. 2013). ZnO nanorods, as for them, are
suitable in biosensing and biodetection (Hahm 2016).

Titanate nanotubes (TiONts) have been used in hip prostheses and dental implants
(Bavykin andWalsh 2009) and for dopamine detection (Niu et al. 2008). Our group is
a pioneer in the development of TiONt-based nanocarriers (Mirjolet et al. 2013; Papa
et al. 2013). This chapter aims to summarize the chemical challenges and biomedical
opportunities around these fascinating titanate nanotubes.
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2 The Preparation of Titanate Nanotubes and their
Characterization

2.1 Hydrothermal Synthesis of Titanate Nanotubes

TiONts have historically been synthesized by two methods: (i) via hydrothermal
synthesis starting from nanometric and spherical TiO2 precursor (Kasuga et al. 1998;
Papa et al. 2009), which will be described in this chapter, and (ii) via electrochem-
ical anodization of a Ti metal foil substrate (Gong et al. 2001). The parameters of
these reactions (such as temperature, time, pH, agitation, washings, etc.) enable
a precise control of the physicochemical characteristics of the resulting TiONts
such as shapes (Bellat et al. 2015) (tubes, sheets, ribbons), dimensions (inner/outer
diameters; length), size distribution, specific surface and chemical composition.
These parameters can be specifically tuned and optimized to best fit the targeted
bioapplications.

The hydrothermal synthesis of TiONts is a single step process starting from TiO2

spherical nanoparticles (i.e. rutile, anatase or P25) under highly basic conditions such
as 10 MNaOH (Fig. 1). The hydrothermal treatment (3–4 bar) is maintained over 12
to 72 h and 100 to 180 °C. The formation mechanism of titanate nanotubes is still
a matter of debate. Several phenomena are discussed in literature: the dissolution

Fig. 1 TEM (Transmission electron microscopy) images and BET specific surface area of TiONts
as a function of the reaction temperature (from 150 to 180 °C) at a fixed stirring running for 10min/h
and for 8 h.
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Fig. 2 (a) TEM image of two titanate nanotubes synthesized by static hydrothermal route (no
stirring, T = 150 °C, t = 48 h, [NaOH] = 10 M), (b) zeta potential measurements potential
measurements of TiONts as a function of pH in NaCl (10–2 M).

of the precursor crystallites in bulk followed by the formation of nanosheets which
then curl into nanotubes (Sun and Li 2003; Bavykin et al. 2006). After this, the
reaction mixture is washed by centrifugation cycles, dialyzed or ultrafiltered until
the suspension reaches neutral pH. Finally, the TiONts’ suspension is freeze-dried
and the resulting lyophilized particles are stable for months at room temperature.

2.2 Titanate Nanotubes’ Features and Characterizations

Titanate nanotubes display a large specific surface area (higher than 200m2/g) due to
their hollow andmultilayered assembly (Sallem et al. 2017b) (Fig. 2a). Unlike carbon
nanotubes, their multilayered morphology is not concentric, rather it is arranged
in a spiral fashion. A large number of surface hydroxyls have been estimated by
TGA (thermogravimetric analysis) and verified by XPS (X-ray photoemission spec-
troscopy) surface analyses. The zeta (ζ) potential measurements made on TiONts
indicate a maximum zeta potential value around 20mV and an isoelectric point (IEP)
around pH 3 (Fig. 2b). The TiONts’ surface charge varies with the pH according to
the following equilibria:

TiONts-OH+
2 � TiONts-OH + H+

TiONts-OH � TiONts-O− + H+
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Fig. 3 (a) Colloidal stability of bare TiONts (PBS 0.1 M; pH 7.4) over 150 min following their
absorbance at 600 nm by turbidimetry. (b) Picture of bare TiONts’ suspensions in (i) ultrapure
water and (ii) PBS (0.1 M; pH 7.4) after one hour. (c) Illustration of different pre-functionalization
strategies on the TiONts’ surface by catechol, phosphonate and alkoxysilane derivatives (only one
way of grafting is arbitrarily represented).

3 The Surface Modification of Titanate Nanotubes
(Synthesis and Characterizations)

Bare TiONts are not stable enough in physiological conditions (ca. 50% of TiONts
settled after 20 min and about 80% after one hour, Fig. 3a and b) and require surface
modifications to improve their colloidal stability: to do so alkoxysilanes, phospho-
nates and catechols can be interestingly used to obtain surface-modified TiONts
(Fig. 3c), the description of which will be described in the following paragraphs.

3.1 TiONts’ Modification by Silane Derivatives

TiONts can easily be modified by silane derivatives to yield silica-coated TiONts
with a view to i) stabilize TiONts for further applications and ii) possibly bring new
chemical functions provided that the silane used is terminated with an amine or a
carboxylic acid group for example.

The mostly used alkoxysilane is 3-aminopropyltriethoxysilane (APTES) for
which the silane function reacts with the surface hydroxyls of the TiONts and the
amine function makes it possible in particular to have an electrostatic-type repulsion
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Fig. 4 Chemical structure of
the 3-aminopropyl
triethoxysilane molecule.

at the surface of the TiONts. APTES formula is (CH3CH2O)3-Si-(CH)3 − NH2 (M
= 221 g.mol−1) (Fig. 4). It is commonly used to obtain biocompatible surfaces. This
molecule is mainly used to promote protein adhesion and cell growth on biological
implants (Balasundaram et al. 2006) as well as for biosensing or DNA extraction
(Howarter and Youngblood 2006).

Several steps are necessary when grafting APTES on TiONts and any consid-
eration in the following lines could be theoretically applied to any silane deriva-
tive: other hydrolyzable groups (3-aminopropyltrimethoxysilane or 3-aminopropyl
trichlorosilane); other end groups (3-R-propylalkoxysilane with R = epoxide, Cl–
, N3–, etc.); and various lengths of alkyl chains bearing the chemical function of
interest (ω-R-alkylalkoxysilane). First, a reaction of APTES in aqueous solution
forms a silanol with the hydrolysis of three ethanol molecules (Fig. 5a). Then,
oligomerization of silanols (intermolecular condensation) leads to the formation of
oligosiloxanols with different chain sizes (Fig. 5b). Then, hydrogen bonds appear
between oligosiloxanols and the hydroxyls of the TiONts’ surface (Fig. 5c). Finally,
the last step is the condensation of oligosiloxanols on TiONts with the formation of
covalent bonds (Fig. 5d).

It is important to control the different stages of silanization to obtain a monolayer
of APTES and to be able to optimize the number of amine functions on the surface
of TiONts for subsequent grafting. Indeed, it is possible to create multilayers of
APTES during condensation (Fig. 6) and to affect the final structure of the layer of
aminosilane on the surface of the inorganic substrate. This is notably due to several
parameters such as water content, reaction temperature, concentration, and nature
of the silane (White and Tripp 2000). Among these, temperature, and proportion of
solvent (ratio water/ethanol) are the main parameters which play on the structure
and on the grafting rate of APTES. In fact, an increase in temperature favors the
condensation of the polysiloxane on the TiONts’ surface as well as the reaction
speed,while theproportionof the solvent can affect the competitive reactions between
hydrolysis and oligomerization (Liu et al. 2013).

Recently, N. Millot et al. have developed advanced surface-modified TiONts for
biomedical applications including a first coating of silane derivatives (APTES in the
following examples) prior to further functionalization(s): polymer-coated TiONts
(Papa et al. 2015), TiONts as optical probe thanks to phthalocyanines (Boudon et al.
2014; Paris et al. 2015), docetaxel nanocarriers (Mirjolet et al. 2017; Loiseau et al.
2017), chitosan-coated TiONts (Sallem et al. 2017a), or also TiONts as potential
candidate for drug delivery applications across the brain (Sruthi et al. 2018).
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Fig. 5 Functionalization of TiONts by APTES: (a) hydrolysis of APTES; (b) oligomerization of
silanols; (c) creation of hydrogen bridges then formation of covalent bonds by condensation between
the oligosiloxanols and the surface of TiONts; (d) possible incomplete condensation of silanols on
the surface of TiONts. According to (Pontón et al. 2014), Copyright © 2014 Elsevier.

3.2 TiONts’ Modification by Phosphonate Derivatives

Phosphonic acids and their derivatives (R-PO(OR′)2; R,R′ = hydrogen, alkyl) have
become increasingly attractive due to their strong affinity for hydroxylated surfaces
(Ries and Cook 1954). They have already proven themselves in biological fields for
biosensors or for medical implants (Mutin et al. 2005). The chemisorption mecha-
nisms of phosphonate agents on inorganic substrates are greatly affected by reaction
conditions such as temperature, pH of the medium, concentration, solvent and type
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Fig. 6 Scheme of APTES multilayers on the inorganic substrate during condensation. According
to (Pujari et al. 2014), Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Fig. 7 (a) Presentation of the two main mechanisms for grafting a phosphonate type agent onto a
metal oxide surface. (b) Illustration of the different conformations between a phosphonate and the
surface of a metal oxide (mono-, bi- and tridentate chelation). According to (Pujari et al. 2014),
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

of oxide (Pujari et al. 2014). The type of interaction between the phosphorus atom
and the hydroxyl oxygen can differ depending on the Lewis strength of the atoms
on the surface of the metal oxide (Fig. 7a). Indeed, in the case of a surface with
high Lewis acidity, the bonds (P-O-M) are even more stable and stronger as the P
atom becomes more electrophilic and induces consecutive heterocondensations with
hydroxyls. Otherwise, hydrogen bonds can form due to a higher affinity with phos-
phonate and hydroxyls on the surface of the metal oxide. In addition, the presence
of three oxygen atoms on the phosphonates makes it possible to induce three modes
of chelation (mono-, bi- and tridentate). The oxygen can then be linked to the same
metal site or to different atoms present on the surface (Fig. 7b) (Guerrero et al. 2013).
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Fig. 8 Chemical structure of
the monophosphonate
6-phosphonohexanoic acid
molecule.

The phosphonates are then interesting, in comparison with the alkoxysilanes,
because they form stable monolayers. In addition, they are less likely to become
detached from the surface of the oxide by self-condensation reactionswhich canbreak
the bonds formed. However, this can happen under high temperature dehydration
conditions (Mutin et al. 2005). Also, the handling conditions (phosphonate coupling
reactions are often optimized in water) and storage (in air at 20 °C) make them more
accessible and less restrictive than aminosilanes or catechols. In addition, phosphonic
acids have remarkable affinities with metal oxides having a high degree of oxidation
such as titanium (Ti4+) (Guerrero et al.2001). Thehydrolytic stabilities ofmonolayers
during the formation of P-O-M bonds are then better than in the case of alkoxysilanes
and are comparable to those of catechols (Daou et al. 2007; Pujari et al. 2014).

Finally, phosphonates can also be bifunctional molecules. On the one hand, the
phosphonate group should have a strong affinitywith the surface of TiONts and on the
other hand, a reactive function is present to generate an electrostatic effect capable of
improving the colloidal stability of the nanotubes and then to graft other molecules.
An example of phosphonates is the monophosphonate 6-phosphonohexanoic acid
(PHA, Fig. 8): the phosphonic side interacts with the metal oxide surface and the
opposite side of the molecule is ended by a carboxylic acid function for further
functionalization.

N. Millot et al. have investigated three different types of phosphonate grafting to
improve the colloidal stability of TiONts: the 6-phosphonohexanoic acid monophos-
phonate (PHA, Fig. 8), the alendronic acid bisphosphonate (ALD, Fig. 9a) or a PEGy-
lated monophosphonate (Fig. 9b). These agents are all heterobifunctional molecules

Fig. 9 Chemical structure of (a) the bisphosphonate alendronic acidmolecule and (b) theω-amino-
PEG-monophosphonate
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and PHA has already been studied in our laboratory on iron oxide nanoparticles
but also during initial investigations on TiONts (Paris et al. 2015; Thomas et al.
2016). PHA has a carboxylic function at one end, while the alendronate and the
PEG (polyethylene glycol) derivative have an amine function in addition to the
phosphonate function.

The influence of a monophosphonate and a bisphosphonate on colloidal stability
under physiological conditions have been compared. The alendronic acid is particu-
larly interesting because it is already used as an anticancer drug (anti-tumor proper-
ties), for the treatment of osteoporosis and for other bone diseases (Benyettou et al.
2011; Motte et al. 2011). Finally, the presence of a long carbon chain, with a phos-
phonate group on one end and an amine function on the other, allows a steric effect
and an electrostatic effect to occur thus improving the colloidal stability with the
phosphonate-type polymer.

As depicted in Fig. 10, it should be noted that alendronic acid has five pKa (pKa1 =
0.8, pKa2 = 2.2, pKa3 = 6.3, pKa4 = 10.9 as regards the pairs of the twophosphonates
POOH/POO– and pKa5 = 12.2 for the NH3

+/NH2 pair, Fig. 9a). In a previous study,
alendronate was grafted to the surface of maghemite nanoparticles at pH 2 via two
Fe–O-P bonds (corresponding to pKa1 and pKa2) (Benyettou et al. 2011). In the same
study, it is shown that at pH 7.4, the negative charge of the obtained nanohybrid is
due to the deprotonation of the OH function of the couple relative to pKa3. In theory,
to promote the grafting of the alendronate via two Fe–O-P bonds, it is preferable to
have pH between 2.2 and 6.3. However, the TiONts’ IEP is ca. 3 (Fig. 2b) (Papa
et al. 2015). Thus, to form Ti–O-P bonds, it is preferable have pH below 3 (Fig. 10).
Note that at pH 7.4, the agglomeration of TiONts is weaker than at acidic pH (the
ζ-potential is −35 mV due to deprotonated hydroxyl groups). It is the same with
PHA and (HO)2–(O= )P–PEG–NH2 for which the pKa of phosphonate are between
2 and 8.5. Finally, the choice of pH must consider the pKa of these three molecules,
their solubility but also, the IEP and the colloidal stability of the TiONts.

The dispersion state of TiONts, after the different graftings of PHA, ALD and of
polymer (HO)2-(O = )P-PEG-NH2 has been analyzed by TEM (Fig. 11). In these

Fig. 10 Different acid–base forms of monophosphonates (PHA and (HO)2-(O = )P-PEG-NH2)
and bisphosphonate (ALD) depending on the pH range.
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Fig. 11 TEM images showing the dispersion state of different functionalized-TiONts by phospho-
nate derivatives: (a) TiONts-PHA, (b) TiONts-alendronate and (c) TiONts-PEG-NH2.

pictures, the grafts for the TiONts-ALD and the TiONts-PHA seem to favor the
individualization of the nanohybrids, unlike naked nanotubes which are organized
in bundles (Papa et al. 2009; Boudon et al. 2014) even if they sometimes form a few
small agglomerates. This attests that the surface modification of TiONts by ALD and
PHA greatly improves their dispersion. However, it is the TiONts-PEG-NH2 which
show better dispersion on the observation grid while they have been found to be less
stable by UV–visible spectroscopy. They exhibit a homogeneous dispersion over
the entire surface, without agglomerate: it is therefore the polymer chains which
contribute sterically to this individualization. This remarkable state of dispersion
(better than with the TiONts/APTES/PEG system) allows synthetic by-products to
be visualized, such as nanoribbons, but in negligible amount compared to the number
of nanotubes.

Fig. 12 Illustration of the state (a) of protonation and (b) conformation of catechols (LDOPA)
dependent on pH, on a surface of titanium dioxide (Lee et al. 2012), Reprinted (adapted) with
permission from Langmuir 2012, 28, 50, 17,322–17,330 Copyright © 2012 American Chemical
Society.
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3.3 TiONts’ Modification by Catechols

The applications of nanopowders in suspension are often limited by the insufficient
colloidal stability of nanoparticles. Catechols have good properties as stabilizers
(Amstad et al. 2009, 2011a) to remedy this; they also exhibit antioxidant activity (Lee
et al. 2003). Catechols generally form a charged monolayer on the surface of metal
oxide, which stabilizes nanoparticles to absorb light or to lead to reversible redox
reactions and they present as well an interesting potential barrier for photovoltaic
and biomedical applications (Pujari et al. 2014). Catechol derivatives are used as
dispersants for various oxides, in particular with titanium and iron oxides (Amstad
et al. 2011a; Bahri et al. 2011). Despite similar chemical properties between different
catechols, the affinities on these oxides vary considerably. Catechols can formweakly
reversible or strong bonds, depending on their affinity with the cations of the oxides
(Amstad et al. 2011b). The grafting mechanism of catechols on oxides is relatively
close to that of phosphonates (Sect. 3.2). Briefly, a mono- or bidentate complex can
form with one or two oxygen from the catechols and the metal atoms from the oxide,
as is the case with titanium.

Moreover, pH is a key parameter in the grafting and conformation of catechols
on the surface of metal oxide. In addition to being the main oxidation factor for
catechols, the protonation state of the different groups depends on pH (Fig. 12a).
Thus, concentration and pH of the reaction medium influence the grafting capacity
of catechols (pKa of the catechols’ hydroxyls have a value of between 8.5 and 10),
as well as the conformation of the molecule on the surface of the oxide (Fig. 12b).

A study related to the grafting of L-3,4-dihydroxyphenylalanine (LDOPA) on
TiO2, has shown that pH 6 favors a stretched conformation and an orientation perpen-
dicular to the surface of nanoparticles (which has also been observed with a high
concentration of catechol during grafting) unlike pH 2 for which the molecule seems
to be lying on the surface of TiO2 (Fig. 12b) (Lee et al. 2012). It is therefore preferable
to have a pH around 6 on a TiO2 surface to optimize the grafting of catechols and lead
to available reactive functions. Furthermore, excessive basic pH promotes the oxida-
tion of catechols (Bahri et al. 2011): the choice of pH is therefore essential to obtain an
optimal conformation of the molecule while limiting its oxidation for future grafting.
The grafting of three hydrophilic catechols has been carried out to modify the surface
of TiONts: L-3,4-dihydroxyphenylalanine (LDOPA), 3,4-dihydroxyhydrocinnamic
acid (DHCA) and nitrodopamine (NDOPA) (Fig. 13). These molecules have one or
many reactive functions in addition to the catechol group so that colloidal stability

Fig. 13 (a) L-3,4-dihydroxyphenylalanine (LDOPA), (b) 3,4-dihydroxyhydrocinnamic acid
(DHCA) and (c) nitrodopamine (NDOPA) molecules.
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Fig. 14 Diagram of each acid–base form of catechol molecules (LDOPA, DHCA, NDOPA)
according to the pH range.

is improved by electrostatic repulsion (-COOH, -NH2, -NO2). These same functions
allow subsequent grafting of molecules such as polymers, therapeutic or chelating
agents. In addition, the hydroxyls of catechols have a very strong affinity with
titanium oxides (Amstad et al. 2009).

The grafting of DHCA and LDOPA catechols can be carried out under pH 6
because it leads to a fairly good dispersion of TiONts in water (value far from the
IEP of bare TiONts), a pH close to the pKa of both catechol hydroxyls (to promote
grafting) and allows the oxidation of catechols to be limited as it occurs at strongly
acidic or basic pH (LDOPA: pKaCOOH = 2.3, pKaNH2 = 9.7, pKaOH = 8.7 and 13.4;
DHCA: pKaCOOH = 4.2, pKaOH = 9.2 and 11.7; NDOPA: pKaNH2 = 8.7, pKaNO2 =
6.7, pKaOH = 6.5 and 10.3) (Amstad et al. 2011a; Togashi et al. 2012; Thomas et al.
2015) (Fig. 14).

Catechol-based stabilizers can be grafted on TiONts: their presence can be proven
by several characterization techniques such as FTIR (Fourier Transform InfraRed
spectroscopy), XPS, TGA.However, DHCA and LDOPA can transform into quinone
at high pH and via oxidation or reduction reactions, limiting their grafting. pH 6
seems the most suitable to avoid these phenomena, but to the detriment of a high
grafting yield, due to a lower deprotonation of the hydroxyls of the catechol (Fig. 14).
For all these reasons, NDOPA has aroused interest (Patil et al. 2018; Albu et al.
2019) as the use of this molecule allowed the oxidation process to be limited thanks
to the close location of NO2 and NH2 groups. Furthermore, the grafting rate of
NDOPA on TiONts can be improved in selecting the synthesis pH close to the pKa
of both hydroxyls of LDOPA and DHCA. These can be proven by TGA with a
more significant weight loss for TiONts-NDOPA. In addition, the characterizations
carried out by IR and XPS showed a greater rate of formation of the Ti–O-catechol
bond. Although, N. Millot et al. (Loiseau 2017) showed that grafting the NDOPA
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Fig. 15 ζ-potential curves as a function of pH in NaCl (10–2 M) of bare TiONts and different
functionalized-TiONts (the vertical dashed line corresponds to the physiological pH). In inset,
turbidimetric study: colloidal stability of functionalized-TiONts’ suspensions (PBS 0.1 M; pH 7.4)
over 150 min following their absorbance at 600 nm as a function of time.

Fig. 16 Surface modification of TiONts by chitosan showing the interaction between the TiONts’
negatively-charged surface and positively-charged ammoniums of the chitosan polymer. The large
number of dipolar interaction lead to stable chitosan-coated TiONts.

molecules on TiONts did not significantly improve the colloidal stability of TiONts-
NDOPA under physiological conditions. It should be noted that TiONts with their
elongated morphology and rather large size are often more difficult to stabilize than
small spherical nanoparticles. Regardless, catechol-based coatings have proven their
effectiveness in many cases such as substrates (Saiz-Poseu et al. 2019; Cheng et al.
2019) and nanoparticles (TiO2, Fe3O4, etc.) (Benyettou et al. 2009;Motte et al. 2011;
Guenin et al. 2014; Thapa et al. 2018; Mohammadi et al. 2020).

To conclude, catechol derivatives are great stabilizers in most situations and offer
new possibilities of further graftings thanks to their amine or carboxylic acidmoieties
on them. When the criteria of colloidal stability are eventually not met, silanes and
phosphonate pathways are excellent alternatives. Other options consist of additional
polymer graftings such as polyethyleneglycol (PEG) or polysaccharide (chitosan for
instance) derivatives as described in the following section.
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Fig. 17 Survival fraction curves obtained from (a) SNB-19 and (b) U87MG both under the effect
of X-Ray exposure without and with TiONts incubation (1μg/mL). The radiosensitivity parameters
obtained by a linear quadratic model (α: initial slope, β: degree of downward curvature and SF2:
survival fraction at 2 Gy). According to (Mirjolet et al. 2013), Reprinted (adapted) with permission
from Radiother. Oncol. 2013, 108, 136–142 Copyright © 2013 Elsevier Ireland Ltd. All rights
reserved.

3.4 Other TiONts’ Surface Modifications

PEGylated chains grafted on nanoparticle (NP) surfaces lead to a charge shielding
phenomenon (Maurizi et al. 2015), which enables to reduce the hepatic capture. Only
a few studies are reporting the effect of PEGylated chain density and length on the
biological behavior of TiONts and not much more on other metal oxide NPs (Gref
et al. 2000; Gratton et al. 2008; Jokerst et al. 2011; Wu et al. 2020). It has been
reported that higher PEG density and chain lengths improve the colloidal stability,
reduce nonspecific adsorption of proteins and hence minimize the NP detection by
the immune system, as well as their uptake by cells (Mosqueira et al. 2001; Cruje
and Chithrani 2014). That is why the influence of different PEGylated chain lengths
(HS-PEGn-COOH; n = 3,000; 5,000; 10,000) on the colloidal stability of TiONts
and on the PEGn density and conformation has been investigated by N. Millot et al.
(Loiseau et al. 2021).

ζ-potential measurements prove (Fig. 15) the presence of PEGn on the TiONts-
APTES-surface via an important charge shielding for the different PEGylated chain
lengths (the longer the chain, the most important the shielding). Colloidal stability
was also investigated under physiological conditions (PBS 0.1M; pH 7.4) by turbidi-
metric analyses (inset in Fig. 15) and correlated with TEM observations (Loiseau
et al. 2021). The absorbance measurements as a function of time demonstrated a
better colloidal stability for TiONts-APTES-PEGn suspensions than in bare TiONts
and TiONts-APTES without PEG. TGA results correlated with FT-IR and XPS
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analyses, prove the effective synthesis of TiONts-APTES-PEGn nanohybrids. In
particular, TGA analyses lead to 0.09 PEG3,000/nm2; 0.05 PEG5,000/nm2 and 0.03
PEG10,000/nm2. These results reflect a relatively dense PEGn brush conformation.

Chitosan (CT) has been also used to enhance the biocompatibility of hydrother-
mally synthesized nanotubes in a biological medium as a substitute for polyethylene
glycol that is generally used for biocompatibility. CT grafting was carried out using
two different approaches; the first one was made by forming covalent bonds using
two intermediate molecules, and the second one is based on electrostatic interactions
between CT and TiONts (Fig. 16) (Sallem et al. 2017a). The type of linkage on the
surface of TiONts was proven to influence the colloidal stability of the elaborated
nanohybrids, which were studied in different media (Sallem et al. 2017a).

4 Theranostic Applications of Titanate Nanotubes

Regarding theranostic applications, a key feature of TiONts is their shape. Indeed,
beyond composition and surface chemistry (a custom-engineered one according to
the application), nanomaterial shapehas a tremendous impact onnanoparticle-plasma
protein interaction (Nel et al. 2009), margination (Blanco et al. 2015), biodistribution
(Blanco et al. 2015) and cellular internalization pathways (Gratton et al. 2008).
Thus, one can benefit from these unique tubular nanobiomaterials (i) to increase
drug, nucleic acid, protein or imaging agent delivery, as well as (ii) to improve the
retention of the therapeutic or imaging modality at pathological site (Loiseau et al.
2017). This section explores the use of TiONts in the context of transfection, drug
delivery, and radiotherapy monitored with medical imaging (theranostic).

4.1 TiONts as New Transfection Agents

The rationale behind using TiONts as a transfection agent was that neonatal
cardiomyocytes (CM) are a highly challenging target for nucleic acid delivery (Papa
et al. 2013). High transfection efficiencies are only achieved with the use of viral
vectors as a mean of nucleic acid delivery (i.e. transduction). Conventional non-viral
methods include liposomal delivery (Hunton et al. 2002; Lan et al. 2009) (such as
Lipofectamine) and electroporation (Louch et al. 2011).However, liposomal delivery
only achieves limited expression in this challenging CM model and electroporation
represents a technical challenge in vivo. Because the internalization of tubular nano-
materials is often greater than their spherical counterparts (Gratton et al. 2008), there
is thus potential to utilize this superior internalization of TiONts within CM. This
could fill the current technological gap in non-viral nucleic acid delivery vehicles
that achieve safe delivery but lack efficiency. Such a solution could provide non-viral
methods that potentially address safety risks with viral techniques, in the context of
clinical translation.
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For this application, the negative charge of TiONts following their synthesis and
purification to pH 6 (ζ = −34.5mV)was reversed using polyethyleneimine (PEI,Mn
~ 1,800 g.mol−1) in order to complex the negatively charged plasmid DNA (linear
pmaxGFP™) at the tube surface, as well as provide the TiONts’ suspension with
greater stability and dispersion (ζ = +39.0 mV for both 1:1 and 1:10 TiONt:PEI
w:w ratios) (Papa et al. 2013). TiONt-PEI-DNA complexes were formed in serum-
free cell media to ensure no interference with plasma protein adsorption on the tube
surface (i.e. protein corona) and the resulting net charge at the complex surface was
−21.0 mV and +25.0 mV for 1:1 and 1:10 TiONt:PEI, respectively. These zeta
potential values, coupled with a study of nanohybrid saturation of DNA via gel
electrophoresis, confirmed that the two carriers had opposite net charge and that the
1:1 TiONt-PEI-DNA was saturated in nucleic acids, compared to the 1:10 TiONt-
PEI-DNA complex (that could potentially still increase its loading capacity). The
positively charged 1:10 TiONt-PEI-DNA complex failed to achieve transfection,
presumably due to a transient cytotoxicity observed solely for the high PEI load
formulation as seen with LDH assays. In contrast and interestingly, the negatively
charged complex lead to a successful transfection (i.e. 33% of CM population was
GFP positive) 24-h following a 5-h incubation/transfection of the purified complexes
with CM.

Compared to classical non-viral spherical nanoparticles, TiONts offer a new
opportunity to mitigate the risks and challenges associated with the use of viral
carriers for clinical translation.

4.2 TiONts as New Radiosensitizers

One of the major challenges in radiation oncology is to get therapeutic effects in
increasing the ionizing one while minimizing the administered doses whereas the
dramatic side effects on healthy surrounding tissue should be minimized. TiONts
are good candidates to induce a radiosensitizing effect (Mirjolet et al. 2013, 2017;
Loiseau et al. 2019) – even though titanium has a low atomic number (Z = 22)
(Maezawa et al. 1996; Takakura 1996) – along with an absence of cytotoxicity (see
Sect. 5) (Mirjolet et al. 2013; Papa et al. 2013; Loiseau et al. 2017). N. Millot
et al. studied the incubation of glioblastoma cell lines (SNB-19 and U87MG) with
TiONts and under irradiation (Fig. 17). The resulting clonogenic assays showed that
radiosensitization is effective by TiONts at both low and high doseswith a decrease in
the SF2 parameter for both SNB-19 and U87MG cells. The latter is confirmed by an
increase and decrease of α and β parameters, respectively. Biological consequences
could be explained by a decrease of DNA repair efficiency after irradiation and
amplification of G2/M cell-cycle arrest (Boudon et al. 2014). Due to their shape,
TiONts have the capability to be internalized in cells better than their spherical
counterparts TiO2 (Papa et al. 2013). Moreover, after intratumoral injection, the
oblong-shaped TiONts are maintained several days inside the tumor (more than 80%



168 J. Boudon et al.

after 96 h by SPECT/CT imaging (Mirjolet et al. 2017) and more than 40% after
20 days by gamma counting (Loiseau et al. 2019)).

Thus, these nanomaterials are very interesting as therapeutic platform (intrinsic
radiosensitizing properties, delivery of chemotherapeutic and radiotherapeutic agents
in tumor sites). To promote TiONts to the theranostic level, superparamagnetic
nanoparticles (iron oxide nanoparticles for example) can be associated to get
detectable via MRI (magnetic resonance imaging) (Papa et al. 2011) while still
benefiting from their radiosensitizing and shape properties.

4.2.1 TiONts-DTX for the Treatment of Primary Tumor

Combining the ability of radiosensitization and concurrent chemotherapy is of great
interest in an effort to improve current management of advanced prostate cancer.
Thus, the combination between docetaxel (DTX), an anti-mitotic chemotherapy
taxane-type drug, and TiONts has been investigated (Mirjolet et al. 2017; Loiseau
et al. 2017, 2019). The idea is to increase the drug intracellular concentration by
maintaining the tubes within the tumor, avoiding repeated injections that can result
in chemotherapy resistance, several side effects for patients (Larsen et al. 2000; Parhi
et al. 2012). A grafting strategy of TiONts carrying DTX has been developed by A.
Loiseau et al. (Loiseau et al. 2017) and biological assays showed a satisfactory cyto-
toxic activity of the TiONt-DTX nanohydrid against two prostate cancer cell lines
(PC-3 (Mirjolet et al. 2017) (Fig. 18a) and 22RV1 (Loiseau et al. 2017) for which
IC50 is around 360–390 nM) when compared to that of free DTX (IC50: 2–4 nM).
Thereafter, the RT efficacy of these nanohybrids was also evaluated in vivo after
intratumoral injection in PC-3 xenografted prostate tumors into Swiss nude mice
(Mirjolet et al. 2017; Loiseau et al. 2017). The treatment with TiONts-DTX was

Fig. 18 (a) MTS cytotoxicity assay on PC-3 human prostate cancer cell lines after incubation
of DTX, modified-DTX, TiONts-PEG3000 and TiONts-PEG3000-DTX, Reprinted (adapted) with
permission from Loiseau et al. 2017, Copyright © 2012American Chemical Society. (b) Evaluation
of therapeutic effect of vehicle, free DTX, free TiONts, and TiONts-DTX, associated or not with
radiotherapy (RT) administered with three daily fractions of 4 Gy, 24 h after intratumoral injection
into PC-3 xenografted tumors.
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significantly more effective than that with free DTX. Interestingly, mice treated with
TiONts-DTX, without RT, exhibited a trend toward tumor growth delay compared
with mice receiving free DTX (40 days vs. 30 days). Finally, tumor growth was
significantly slowed down by TiONts-DTX associated with RT (three daily fractions
of 4 Gy), compared with free DTX in the same conditions (73 days vs. 56 days to
reach a tumor volume of 1,000 mm3, respectively) (Fig. 18b). These results suggest
that TiONts-DTX noticeably improved RT efficacy and might enhance treatments of
high-risk localized prostate cancers.

4.2.2 TiONts-AuNPs-DTX as Radiosensitizing Agents

The radiosensitizing effect of these nanohybrids has been further improved (when
compared to the results presented in Sect. 4.2.1) by grafting gold nanoparticles
(Au@DTDTPA NPs) on TiONts. These Au@DTDTPA NPs are biologically well-
tolerated and present a low toxicity (Miladi et al. 2014; Schuemann et al. 2016),
they can improve the efficiency of radiation therapy by two-fold after intratumoral
injection in animals (Miladi et al. 2014; Butterworth et al. 2016). However, their
potential is probably under-exploited because of their fast renal clearance (Alric
et al. 2013). Consequently, the association of Au@DTDTPANPs with TiONts-DTX
is expected to overcome this limitation bymaintaining themon tumor sites after injec-
tion: the resulting TiONts-AuNPs-DTX nanohybrids were elaborated step-by-step
by A. Loiseau et al. (Loiseau et al. 2019). In vitro assays on a PC-3 human prostate
cancer cell lineswere performed (Fig. 19a) (Loiseau et al. 2019): Au@DTDTPANPs
and TiONts-AuNPs-PEG3000 did not present any cytotoxicity while TiONts-AuNPs-
PEG3000-DTX exhibited a greater cytotoxic activity compared to that observed for
TiONts-DTX (IC50: 82 nM vs. 360 nM, respectively).

Fig. 19 (a) MTS cytotoxicity assay on PC-3 human prostate cancer cell lines after incubation of
DTX, Au@DTDTPA NPs, TiONts-AuNPs-PEG3000 and TiONts-AuNPs-PEG3000-DTX. (b) Eval-
uation of therapeutic effect of control, TiONts-DTX and TiONts-AuNPs-PEG3000-DTX, associated
or not with radiotherapy (RT) administered with three daily fractions of 4 Gy, 24 h after intratumoral
injection into PC-3 xenografted tumors. Adapted from (Loiseau et al. 2019).
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Fig. 20 Scheme of the grafting of the stilbene compound on the surface of TiONts via a spacer.

Finally, the synergistic combinationbetweenTiONts,DTXandAuNPs in the same
entity with RT showed a better therapeutic efficacy by fulfilling their role as carriers
and concentrating the radiotherapeutic and chemotherapeutic agents (Fig. 19b).
Indeed, tumor growth was significantly slowed down (p = 0.035) by the treat-
ment of TiONts-AuNPs-PEG3000-DTX + RT (55 days to reach a tumor volume
of 1,000 mm3), compared with TiONts-DTX + RT (50 days) in the same condi-
tions. The elaborated design asserts TiONt-based nanohybrids to be an attractive,
and versatile platform for the treatment of prostate cancer.

4.3 TiONts as New Nanocarriers

In 2016, T. Baati et al. have shown the effectiveness of a TiONt-based nanocarrier
against glioblastomamultiformwith a controlled administration of genistein (biolog-
ically active flavonoid) in glioblastoma cells (Baati et al. 2016). This study showed
that these TiONts have a drug loading efficiency of 51.2 wt.% and allows a controlled
release of the therapeutic agent. F. Sallem et al. have developed the nanocarrier
of a therapeutic molecule: a stilbene phenol, 4′-hydroxy-4-(3-aminopropoxy)-trans-
stilbene (HAPtS),which is a trans-resveratrol derivative.Trans-resveratrol is a natural
stilbenic polyphenol, known to prevent or slow down number of diseases including
cardiovascular ones (Hung et al. 2000) and cancer (Baur and Sinclair 2006) because
of its anti-inflammatory (Xiao et al. 2013), antiviral, antitumor and antifungal prop-
erties (Pirola and Froejdoe 2008). Despite all the interesting biological properties
of trans-resveratrol, its low bioavailability and solubility (Lu et al. 2009), its rapid
metabolism and its rapid elimination in the urine remain its major limitations. The
grafting of this molecule on TiONts’ surface can circumvent these limitations.

After pre-functionalization with 3-chloropropyltriethoxysilane (CPTES), the stil-
benic phenol (HAPtS) was successfully grafted onto TiONts-CPTES surface using a
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condensation reaction betweenHAPtS andCPTES through nucleophilic substitution.
The resulting grafting rate was of about 72.5 mg/g of TiONts (Sallem 2017).

5 Biosafety and Nanotoxicity of TiONts

This section intends to discuss the internalization pathways of TiONts, as well as
summarize some of the subsequent key aspects of TiONts’ cytotoxicity profile that
have been discovered thus far (Maurizi et al. 2018).

In early studies, TiONts have been detected inside vacuoles of SNB-19 and
U87MG cells suggesting an internalization via endocytosis/macropinocytosis. In
parallel, TiONts were also seen penetrating the plasma membrane, suggesting
their diffusion through the lipidic bilayer (Mirjolet et al. 2013). Further studies
have confirmed this diffusion phenomena as TiONts were still detected within
murine microglial BV-2 cells despite their incubation with the endocytosis inhibitor
amiloride (Sruthi et al. 2018). These observations are in agreement with what has
been described regarding the internalization pathways of carbon nanotubes (Raffa
et al. 2009). Once they cross the plasma membrane, nanoparticles can potentially
induce cellular stress, or even cell death, depending on multiple physicochemical
factors that modulate their (cyto)toxicity or safety profile (i.e. chemical composition,
nanoparticle surface engineering, intracellular concentration). Thus, each TiONts’
formulation (depending on the specific synthesis parameters, see Sect. 2) needs to be
assessed within the relevant physiological in vitro or in vivo models. For example,
Magrez et al. demonstrated that titanate-based nanofilaments have different levels of
cytotoxicity in regards to H596 lung carcinoma cells, depending on their chemical
composition (Magrez et al. 2009). Specifically, the post-synthesis acidic treatment
used (to substitute Na+ by H+) generated a composition that was more cytotoxic to
H596 cells when compared to non-acid treated filament counterparts (Magrez et al.
2009). This illustrates the complexity and multifaceted behavior of these biomate-
rials. As previously said, Papa et al. evaluated the cytotoxicity of bare (and non-
acid treated) TiONts, TiONts-PEI as well as their spherical counterpart P25 TiO2 in
regards to neonatal cardiomyocytes via MTT assay (Papa et al. 2013). No apparent
cytotoxicity was detected within the range of concentrations tested (up to 10μg/mL)
at 24 h (Papa et al. 2013). In addition, up to 100 μg/mL TiONts did not induce
significant cytotoxicity towards SNB-19 and U87MG cell lines at 72 h, as measured
by cell proliferation assay (Mirjolet et al. 2013). Overall, the mechanism of diffusion
of the TiONts across the cell membrane does not appear to affect cell viability in
multiple cell lines, despite inducing transient lipid bilayer disruption.

Microglial activation and associated oxidative burst are major challenges in drug
delivery applications across the brain (Bussy et al. 2015). In this context, TiONts-
APTES have been evaluated in vitro using murine microglial BV-2 cells (Sruthi et al.
2018). TiONts-APTES exposure (from 5 μg/mL up to 80 μg/mL of TiONts-APTES
up to 24 h) lead to an increased ROS (Reactive Oxygen Species) production and
transient mitochondrial hyperpolarization. Furthermore, the TiONts-APTES showed
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Fig. 21 Percentage of (a) embryo survival and (b) hatching of zebrafish eggs as a function of
TiONts-CT concentration. The number of repetitions is three (n = 3) and 60 embryos are used in
each repetition (therefore 180 animals in total).

good biocompatibility on BV-2 cells as revealed by the plasma membrane integrity,
lysosomal membrane integrity, morphology, and viability analysis.

The toxicity assessment on the zebrafish embryo model is a very recent and inter-
esting method for the in vivo screening of nanoparticles. This test analyzes toxicity
in a much more complex system than cultured cells. It is a less expensive test than
large-scale biocompatibility studies in mice or rats (Rizzo et al. 2013). Zebrafish
embryos are transparent and develop outside their mother, making it easy to follow
and understand the cellular mechanism using a simple light microscope. TiONts-
chitosan nanohybrid developed in Sect. 3.4 have been evaluated with concentra-
tions varying from 1 to 100 μg/mL. The survival, hatching and development of
zebrafish were monitored for 96 h. The survival of zebrafish must be close to 100%,
hatching greater than 90% (between 24 and 48 h) and the larval malformations close
to 0% conclude on the non-toxicity of nanohybrids. The survival and hatching of
zebrafish are not affected by the presence of nanohybrids for the entire concentration
range studied from 1 to 100 μg/mL (Fig. 21). No lethality or morphological change
was observed even for the highest concentrations. This confirms the non-toxicity of
TiONts modified by chitosan.

In these models, TiONts show a good safety profile within the relevant concen-
trations and doses tested. Nonetheless, further studies including the interaction of
TiONts with immune cells, blood cells and plasma proteins, will allow a better
understanding of the biological behavior and fate of these bioengineered materials.

6 Conclusions

The aim of this chapter was to illustrate the potential of titanate nanotubes as new
potent tools for nanomedicine. The difficulties encountered during their synthesis as
well as the different strategies for their necessary surface modification have been
illustrated, always via a step-by-step approach. Several bioapplications of these
engineered TiONts have been outlined: nanocarriers of plasmid DNA or of trans-
resveratrol derivatives, radiosensitizers etc. TiONts have also shown a good safety
profile in all the bioassays developed to evaluate their potential toxicity. Finally, these
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functionalized TiONts appear as promising versatile tools in the biomedical field to
fight some diseases such as cancer. In this context and for these elongated inorganic
nanoparticles, intratumoral injection seems to be a relevant way of administration.
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