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Abstract In solvingmathematical and physical problemswe generally think that the
problem can be condensed to a well-defined equation which then can be solved either
analytically or numerically with the provided input data and, if necessary, applying
initial and boundary conditions to limit the amount of solutions to something which
makes sense and can be accepted as the correct solution. This is the typical practice
in “forward” problem solving. Consequently the solution can be considered as the
inverse of the problem. Indeed, it is not uncommon in Science and also in everyday
life to have the “solution” without knowing what exactly did “cause” it and “how”.
We take an illustrative example from Forensics with a case where a lethal crime is
committed with a dead body (solution), but at the time of arrival to the crime scene
the details to start to investigate are scattered all over the place. The investigators
have the difficult task to mentally reverse the time to get good enough picture of
the crime (problem) to start to trace the criminal and murder weapon (input) and
possibly also the motive (cause). In this Chapter we discuss on how solving of the
Inverse Problems is entering in Chemistry and focus on our own inverse computer
modelling method to create a model (force field) from the results we already have.
We explain how this method, called the Inverse Monte Carlo, can also be used for
systematic hierarchical multi-scale modelling based on successive coarse-graining
from first-principles to meso-scale and even further by super-coarse-graining. We
show several applications of using it and also vision future prospects of hierarchical
multi-scale modelling.
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1 Introduction

1.1 Inverse and Forward Problems

Solving the Inverse Problems and practising “Reverse Engineering” must have
appeared naturally out of curiosity and necessity along with direct problem-solving
we humans have been faced to, first for survival and conformity, successively leading
to civilisation, technology and Sciences. Solving Inverse Problems in Science is first
of all a mathematical problem (Tarantola 2005; Yaman2013), common inmany areas
from Chemistry and Biology to Medicine and Astronomy just to mention a few. In
Medicine doctors regularly need to suggest a diagnosis and treatment to the illness
of the patient, while in Astronomy we may have a mysterious spectrum travelled
from a very distant star. In the first example the inverse problem can be solved more
or less rigorously either by systematically recognising patterns or empirically and
even by guessing, while in the second example there are scientific methods to solve it
backward by analysing the wave lengths giving information about the source (and its
chemical composition) as a cause of the distinct radiation. For many living species in
Nature unconsciously solving of the inverse problem is critically important for their
very existence in catching food or navigating.

To solve forward problems can be easy and quickly done “on the back of an
envelope” but it may also require powerful supercomputers and complex numer-
ical algorithms to provide the correct result. Modelling a multimillion ensemble of
strongly interacting particles to describe biological systems by solving Newton’s
equations is a typical example of the latter. Solving inverse problems can become
often mathematically incredibly difficult simply because they tend to be improperly
posed so that several inputs can give same results as a cause of the forward problem
even when the data appears perfectly correct. For example two (or more) different
sound sources can produce the same overlapping acoustic pattern. Therefore a unique
correspondence is an important requirement for a complete solution of the inverse
problem.

2 Design in Chemistry

2.1 Forward Design

In Chemistry and in particular in Materials Science, one particular word has lately
come very popular and it is “Design”.We now can access andmanipulate the building
blocks of matter using a variety of experimental techniques and since all matter
around us and also inside us is made of molecules, we should be in a good position
to “design” material with specific properties and function. However, since there is
roughly ten orders of magnitude difference between molecular sizes and sizes of
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macroscopic stock material to manufacture products for us humans this design is
not always easy or straight-forward. Would it be easy straight-backward? There are
many ideas now emerging around it,

Solving inverse problems has during the last decades become an important instru-
ment inmany scientific disciplines. In particular they have recently gained popularity
in Chemistry and in Materials Sciences. A recent development is called “Inverse
Design” (Sanchez-Lengeling andAspuru-Guzik 2018). However, before introducing
it let us first discuss the “Forward Design” which has been the common practise
since early attempts to gain metals create explosives and process food and necessi-
ties. Finally stoichiometry allowed quantitative studies and chemical synthesis was
discovered. Chemistry and chemical engineering are based on and develops with
the accumulated and documented knowledge. Chemical intuition of its practiser is
always an important component leading to new knowledge. There is no denying that
the so called “trial-and error” and “cook-and-look” techniques have been common in
many Chemistry laboratories to produce new chemicals and substances with specific
desired properties and functions. Serendipity, the complete opposite to design, did
appear occasionally to help to give the most important results. Thanks to computers
continuously becoming more powerful and numerical search algorithms more effi-
cient together with rapidly growing well-organized and easily accessible molecular
and chemical databases, the “Forward Design” has radically changed its strategy
from cooking molecules in laboratories to mining of existing molecular data using
computers as an important component to shorten the cycle from ideas to products.

2.2 Knowledge-Based Design in Chemistry

During many decades now the chemical research has produced an extensive amount
of new molecules with their specific properties tagged, organized and stored in large
data bases. This data comes both from experiments and theoretical studies. Having
this accumulated knowledge and data publicly open and easily accessible, as well
as its correctness verified before storing it, can prevent us making (same) mistakes
or discovering the wheel again, but most importantly to help us to discover new
knowledge and correlations still hidden there. Along with these big data mines, new
disciplines are developed of how to extract the desired information from it (Infor-
matics, Chemometrics, Machine Learning, etc.), we have new options and methods
to produce novel materials. By starting to search specific type molecules in the
“Molecular Space” containing now virtually all possible molecular structures and by
screening to gradually select a “Chemical Space” containing only a handful of candi-
dates having the chemical properties we are looking for. Pharmaceutical industry has
many decades been using this type of rational design based on virtual screening and
quantitative structure-activity relationship (QSAR) models with carefully designed
descriptors tofindnewcompounds (leads) to becomeefficientmedicineswith optimal
therapeutic effects while showing a minimum amount of side effects. With machine
learning techniques entering Chemistry more andmore simple regression models are
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being substituted with more intelligent methods such as neural networks and others
to find hidden correlations in big data structures and even new “physical” rules.

2.3 Inverse Design in Chemistry

There are many different strategies to solve inverse problems in Chemistry. Typically
in utilizing the “Inverse Design” we can do the opposite to “Forward Design” and
start by specifying the property or function of the newmaterial we then look for from
the “Chemical Space” and thereafter start to screen the content in “Molecular Space”
with suitable descriptors trying to successively narrow the space to a small number
of molecules having the property and function we look for (Sanchez-Lengeling and
Aspuru-Guzik 2018). This type of search is strongly aided with machine learning
and other techniques of artificial intelligence now increasingly applied in Chem-
istry. The types of materials inversely designed this way so far contain mainly drugs
and organic and inorganic materials for optical and electronic devices, including
batteries (Sanchez-Lengeling and Aspuru-Guzik 2018). Other approaches to design
specific molecules also include so called Variational Particle Number and Alchem-
ical Potentials within density functional theory (von Lilienfeld et al. 2005), Linear
Combination of Atomic Potentials (LCAP) (Wang et al. 2006), which can be imple-
mented in classical and quantum mechanical (DFT, tight-binding DFT and time-
dependent DFT) Hamiltonians to perform many types of property optimizations.
Inverse band-structure problem is solved for finding an atomic configuration with
given electronic and optical properties (Franceschetti and Zunger 1999). Struebing
et al. (2013) suggest an inverse method to find an optimal solvent to maximally speed
up the kinetics for chemical reactions. Inverse methods can be used successfully in
Spectroscopy for example to decompose 2D NMR spectra of mixtures of molecules
utilizing the technique of blind source separation (BSS) (Cherni et al. 2019). Jonas
uses a so called deep imitation learning protocol to solve the chemical structure
from molecular formula and NMR spectrum (Jonas 2019). There are many excellent
reviews on these topics,such as Machine Learning which is strongly entering into
Computational Chemistry and Materials Science via knowledge-based modelling
is excellently reviewed in Ferguson (2018), Butler et al. (2018). Several emergent
methods of Inverse design are reviewed in (Sanchez-Lengeling and Aspuru-Guzik
2018; Noh et al. 2020; Sherman et al. 2020; Hu et al. 2009; Martinez-Luaces 2012;
Hachmann et al. 2018).
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2.4 Solving Inverse Problems in Computer Modelling
and Simulations

Ideas of solving the inverse problems in Computational Chemistry have their roots
in liquid state theories of mid last century (Kunkin and Frisch 1969) and started gain
popularity in the following decades along with the development of more powerful
computers (Rosenfeld and Kahl 1997). In computer simulations the most important
input is the interaction potential or Force Field. It can be constructed conceptually
based on simple models used to describe interatomic or intermolecular interactions,
all having their fundamental origin in how electrons and nuclei in atomic and molec-
ular frameworks feel the presence of each other and the forces they give rise to.
Long before the computers did arrive scientists knew that there was a weak attrac-
tion even between neutral particles (atoms and molecules) at long distances (order
of a few Ångström) which grew stronger at closer distances and became strongly
repulsive at short distances. Lennard-Jones (Jones 1924) and contemporary scientists
proposed very simple mathematical models to describe it. For charged particles there
was Coulomb law describing their mutual strong and long-range interactions. The
assumption of additivity of the interactions and that only two particles did interact
with each other momentarily were assumed and simplified the theoretical work
as effective pair potentials became a common tool to model interacting particles.
When parameterized on experimental information they could contain a certain part
of many-particle character built in thereby improving their quality.

When studying condensed phases of matter the structural information can be
obtained from the pairwise correlations of the neighbouring particles (atoms, ions,
molecules etc.). These correlations can be constructed statistically by sitting phys-
ically on each particle at a time and looking for the neighbouring particles in any
direction radially and adding every hit in a histogram as a function of the mutual
distances.Whennormalized to bulk density these pairwise correlations become radial
distribution functions (RDF) or pair correlation functions giving probabilities to find
particles at specific distances. Very early it was observed by scientists working in
developing liquid theories and so called integral equation models that there was a
correlation between pair correlation functions and pair potentials, Indeed, there is
an explicit expression allowing, in principle, to compute the RDF from known pair
potentials, and approximately it is always possible by particle-based computer simu-
lations. An inverse problem, that is determination of pair potentials if RDF is known
is however not a trivial task. Johnson and March did calculate potential of mean
forces (PMF) from RDFs obtained in early diffraction studies of liquid metals and
iterated them to pair potentials (Johnson and March 1963). An important foundation
was the Uniqueness theorem of Henderson for RDFs and pair potentials for systems
in equilibrium Henderson (Henderson 1974) which was later shown to be true even
formulti-component systems. These theorems however did not say how to obtain one
from the other. In 1979 Swendsen published a Monte Carlo method for statistical
mechanical simulations and renormalization-group analysis of critical properties
applied on the Ising model presenting an effective Hamiltonian and iterative solution
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of the problem to obtain an effective pair potential from nearest-neighbor pairs of
the spins (Swendsen 1979). Inspired by the work of Swendsen, in 1995 Lyubartsev
and Laaksonen suggested a generalized inverse scheme to invert RDFs to effective
pair potentials for arbitrary molecular systems (Lyubartsev and Laaksonen 1995),
later known to be the Inverse Monte Carlo (IMC) or Newtonian Inversion (NI). This
method is discussed in more detail in the next Chapter. Similar structure-based inver-
sionmethods have also been suggested (Soper 1996; Reith et al. 2003) being inspired
by earlier works of Schommers (1983) and Reatto et al. (1986). Also the method of
force-matching based inversion method of Izvekov and Voth should be mentioned
(Izvekov and Voth 2005) which in turn was inspired by the force-matching method
of Ercolessi and Adams (1994). In addition there are many other promising schemes
including Generalized Yvon-Born-Green (YBG) method (Mullinax and Noid 2010;
Cho and Chu 2009), relative entropy (Shell 2008) and configurational temperature
(Mechelke and Habeck 2013).

3 The Inverse Monte Carlo Method

3.1 Theoretical Foundations

We will describe here the method of Inverse Monte Carlo (IMC). It is a mathe-
matical method to coarse-grain (CG) the molecular interactions based on structural
information obtained in underlying accurate studies (theoretical or experimental)
of the same molecular system. Also equilibrium thermodynamic information can
be used to obtain the CG model. It has some common features with many of the
methods discussed above. The general idea in all coarse-graining is to produce a
simpler model, or a kind of caricature, of the more accurate model full of details.
Like in watching photos or paintings from a long distance the small details become
less important. The same is true in modelling matter at longer length scales. Also
at longer time scales the fast molecular fluctuations are averaged making molecules
effectively more rigid in one or several conformations (geometries). This type of
simplification is done in coarse-graining where we remove those degrees of freedom
(DoF) from the original detailed potential energy Hamiltonian H(r1, …rn) which
are less-important while we describe the system by keeping only the important DoFs
(R1, R2,…RN ), where N � n.

How to choose the important DoFs is very much a matter of taste (or rather of
experience based on chemical and physical intuition) as in many cases it turns out
not to be very critical. As CG sites one often chooses centre-of-masses (COM) of the
molecular group forming the CG. Generally, the CG coordinates are some functions
of atomistic coordinates:

Ri = θi (r1, ...rn) (1)
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Although in some cases the CG coordinates (Ri) may coincide with coordinates
of certain atoms (rj).

Once a mapping scheme of atomistic coordinates to CG coordinates (1) is chosen,
we can describe a coarse-grained (CG) Hamiltonian:

HCG(R1, ...,RN ) = − 1

β
ln ∫

n∏

i = 1

dri

N∏

j = 1

δ
(
R j − θ j (r1, ..., rn)

)
exp(−βH(r1, ...rn))

(2)

which is an effective N-body CG potential energy function. However, expression
(2) cannot be used directly in CG simulations, therefore we first map or fit it to a pair
potential:

HCG(R1, R2, ..., RN ) ≈
∑

i> j

Ui j
(
Ri j

)
Ri j = ∣∣Ri − R j

∣∣ (3)

Many methods discussed in previous Section fit the Hamiltonian (3) to reproduce
some properties from the underlying simulations with all the DoFs, for example
energy, forces, or some features of structure. In IMC we use ensemble averages and
RDFs as our first choice.

The IMC method is a powerful general method to invert ensemble averages,
and particularly RDFs to effective pair potentials. It completely solves the inverse
problem providing a unique solution. For any multi-component system it produces
the effective pair potentials between selected sites (atoms, center-of-mass, and any
other type of sites) in an inverse process which in forward process (input → model
→ simulation → results) reproduce completely the RDFs used as input and inverted
to produce the effective potentials (model) when same conditions are applied. There
may not be much point in doing the full circle this way but now we can increase the
size of the system a few orders of magnitude and perform a simulation which we
could not afford before when using the original detailed model, typically the all-atom
(AA) model. The reason is not only that we have now much less interaction pairs
already making simulations faster but the effective potentials between heavier sites
are also softer and we can choose a longer time step. Still, the greatest effect using
IMC comes from not needing to use any explicit solvent in the CG simulations. This
will be discussed in more details below.

In the calculation of an RDF or g(r) in a typical particle simulation of N particles
in a volume V the radial particle-particle distances are discretized to histograms Sα

which after normalization to bulk particle density (N/V) show the probabilities to
find the distances of the neighbouring sites between a chosen pair of atoms (or other
type of sites). This histogram or the estimator of the pair-correlations is used in
IMC. By discretizing the CG Hamiltonian (3) to two histograms of which one is the
normalized estimator Sα from the g(r) and the other is an effective CG pair potential
Vα in a table form we will obtain:
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H =
∑

UαSα (4)

where ensemble average of Sα is related to RDF by:

g(rα) = 1

4πr2α�r

V

N 2/2
Sα (5)

Besides RDFs between non-bonded CG sites, other structural properties can be
included into set of Sα, for example distribution of CG bond lengths, angles and
torsion angles. This is very useful when we coarse-grain biomolecules (or other
large molecules such as polymers), for which we create models consisting of CG
sites connected by CG bonds. Bonded and angular potentials of such models are
fitted to reproduce bond and angular distributions originated from the detailed model
within the same IMC framework.

While in standard simulations (direct forward problem)we have interaction poten-
tialUα as input, and we can evaluate <Sα> and RDF as output, in the coarse graining
by IMCwe solve the inverse task: from averages <Sα> (determined in atomistic simu-
lations) we determine CG potentials. Solution of this non-linear inverse problem can
be reached iteratively by the Newton-Raphson method, and by this reason the IMC
approach is also referred as “Newton Inversion”. Let us determine Jacobian of S(U)
dependence:

J = ∂〈Sα〉
∂Uγ

(6)

as well as use the “vector” notations for the sets of potentials and RDFs:

{〈Sα〉} ≡ 	S; {Uα} ≡ 	U

Jacobian (6) expresses how changes of potential affect RDFs:

Δ	S = ĴΔ 	U (7)

From the statistical-mechanical relationships this Jacobian can be computed by
doing direct simulations with potential U:

∂〈Sα〉
∂Uγ

= −β
(〈
SαSγ

〉 − 〈Sα〉〈Sγ

〉)
(8)

Now we have everything to solve the inverse problem. We start simulation from a
trial potential which can be the mean force potentialUα = −kBT ln〈Sα〉 or just zero.
We compute from these simulation RDFs and 〈Sα〉 and determine deviations from
the reference RDFs 〈Sre fα 〉 obtained in atomistic simulations:

	ΔS = 	S − 	Sre f (9)
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Now we can compute which change in the potential is required to get the desired
change in corresponding RDF:

Δ 	U = Ĵ−1Δ	S (10)

We update the interaction potential 	U → 	U + Δ 	U and repeat the procedure
to compute a new corrected estimator. The iterative procedure is repeated until the
estimators become identical (within statistical error of the simulations) to those in
the original input g(r), also giving back the final RDFs obtained in the fine-grain
simulation serving as reference. After convergence, we obtain the CG effective pair
potentials which contain all the atomistic details to reproduce the microscopic struc-
ture found in the all-atom simulations, considering only the sites chosen to the CG
model. It is like to visualize the AA simulation but leaving out the atomistic details
and also the solvent. IMC fully includes the cross-correlations between the pair
interactions, making the effective pair potentials more accurate in comparison with
interactions obtained from using other similar methods. This is one of the properties
making IMC a superior inverse method.

3.2 Using the Inverse Monte Carlo Method

In practical computations, and in particular for large molecules, direct use of expres-
sions (8)–(10) may lead to non-convergence since the method is based on linear
extrapolation (7) of a generally non-linear relationship. A simple way to regularize
the procedure is to go by “small steps” to remain always in the linear regime and
to multiply the change of RDF (9) (and respective change of potential (10)) by a
damping factor 0 < λ < 1.

What really makes IMC superior compared to other corresponding methods
producing effective CG pair potentials is that even the solvent molecules can be
considered as uninteresting DoFs. Therefore in using IMC CG pair potentials in
simulations no explicit solvent is needed. The solvent is not implicitly there in the
simulation cell as a continuum like in common implicit solventmodels andmost often
characterized by the dielectric constant of the bulk solvent. The solvent is in the effec-
tive IMC CG potentials and contain specific atom-atom interactions for example to
displayH-bonds and solvation and hydration structures as in the underlying atomistic
simulations. This is an extremely important feature as in all molecular simulations
containing explicit solvent (most often water) it is the moving of the solvent around
in the simulation cell which consumes major part of the computing time. In other
words the IMCCGpair potentials are solvent-mediated containing the solvent in their
functional forms. When used for example in simulations of biomolecular systems
in water solution with ions and salt, all types of interaction forces are still there
(hydrophobic, hydrophilic, H-bonds, steric, etc.). Self-assembly and other typical
biological processes can be described accurately without explicit water molecules
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as the water is still there in the effective potentials. The IMC potentials both supply
the specific solute-solvent interactions and provide the collective effect of water to
hydrophobicity and hydrophilicity as in AA simulations. Indeed, the IMCCG poten-
tials for soft meso-scale particles while containing the atomistic interactions are so
accurate that they can be coarse-grained again. This super-coarse graining allows us
to perform reliable CG simulations of truly large systems like chromatin as will be
described below.

The IMC CG pair potentials are produced in a tabulated form and their functional
form can be very different from that of standard potentials like Lennard-Jones used
often as empirically parameterized CG potentials. This is because it does have all
types of intermolecular interactions together. Also, as it is solvent-mediated it has an
oscillatory form at short distances reflecting the structure of solvation and hydration
layers while this behaviour weakens and disappears at longer distances.

At long distances the IMCCG potential becomes overlapping with Coulombs law
for charged particles as might be expected. Indeed, the Coulomb potential can be
separated from the overall IMC CG potential and treated separately so that Ewald
summation can be used in CG simulations. This divides in a natural way the CG
potential to a specific short-range potential and long-range potential. Separating
short-range and long-range Coulombic in CG simulations was also shown to produce
more reliable overall results (Wang et al. 2013). Also, by making use of the inherent
temperature dependency of the dielectric constant (Mirzoev and Lyubartsev 2011)
the results obtained from IMC CG simulations can be made much less sensitive to
temperature changes. In principle, the simulations with IMCCG potentials should be
carried out at or close to the conditions applied in the underlying detailed simulations
to calculate the RDFs as will be discussed below.

Intramolecular IMC CG potentials may also substantially deviate from the
harmonic potentials bonded interactions are known to give rise to. However, in some
cases they are close enough to harmonic so harmonic springs can be used, at least
initially. In constructing IMCCGforcefield it is not necessary to follow the concept of
dividing interactions for bond-stretching, angle-bending and rotation around bonds
as in common atomistic force fields, as these can be substituted by a matrix of
bead-bead interactions. IMC converges rapidly for systems with small molecules
but for large biomolecular systems constructing converged potentials can become
time-consuming and to do the inversion process manually becomes in practise out
of question for biomolecular systems. Auxiliary tools are needed.

3.3 MagiC

There is a software packageMagiC (Mirzoev and Lyubartsev 2013) developed which
performs the structure-based coarse-graining of IMC described above for arbitrary
molecular systems andmodelswhich has been recently updated to version 3 (Mirzoev
et al. 2019). Magic is an essential tool and integral part of IMC to perform system-
atic coarse-graining. It can take the input from several common simulation packages
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while it producesCGpotentials to be run onmany coarse-grained simulation program
packages like the GPU-Accelerated LArge-scale MOlecular Simulation Toolkit
(GALAMOST) (Zhu et al. 2013), the Large-scale Atomic/Molecular Massively
Parallel Simulator LAMMPS (Plimpton 1995) and the GROningen MAchine for
Chemical Simulations Gromacs (Van Der Spoel et al. 2005). MagiC software has
many additional functions from diagnostics to visualisation.

3.4 Applications of Inverse Monte Carlo

Themethod of InverseMonteCarlowas presented inmid-90’s (Lyubartsev andLaak-
sonen 1995) and had to be soon applied on demanding systems to verify its power.
25 years ago a fairly “demanding” system was already to study NaCl in water even
with the access to national supercomputers. We did study this solution at different
salt concentrations. The number of molecules did range from 256 to 2000 with up to
20 ion pairs included. The simulations did cover a few nanoseconds (Lyubartsev and
Laaksonen 1996). One reason why these were demanding simulations was that we
did need very well converged RDFs for many different concentrations to accurately
invert them to effective solvent-mediated Na-Cl Na-Na and Cl-Cl ion-ion potentials
(Lyubartsev and Laaksonen 1997). We then did apply them to compute both the
osmotic and activity coefficients for the hydrated ions. To obtain reliable results we
did need 200 ion pairs. Systems of this size would not have been feasible to simulate
using all-atom models with the computer power available for us at that moment. The
water-mediatedCG ion-ion potentials gave excellent results within the entire concen-
tration range from 0.001 to 5M.We did then perform a detailedMD simulation study
about alkali metal ion (Li+, Na+, K+, and Cs+) condensation around double helix
DNA in water solution (Lyubartsev and Laaksonen 1998) from which we obtained
ion-DNA RDFs to invert them in IMC to effective CG potentials (Lyubartsev and
Laaksonen 1999). Now already having water-mediated ion-ion CG potentials (we
did compute them also for Li+, K+ and Cs+) we now had a complete set of CG
potentials to perform simulations of a large double strand DNA chain in water in a
box of 100 × 100 × 68 Å3. Using our water-mediated CG potentials we could find
the order Cs+>Li+>Na+≈K+ for counter ion binding to DNA in agreement with
several independent experimental studies.

We did also perform Car-Parrinello simulations for liquid water to compute effec-
tive water mediated CG potentials from first-principles MD simulations (Lyubartsev
and Laaksonen 2000). In this way we calculated a new atomistic water interaction
potential from RDFs obtained in simulations with elec-tronic degrees of freedom.
We then did calculate hydration of Li+ ions from Car-Parrinello (Lyubartsev et al.
2001). In this way we could show that IMC was a true multi-scale modelling method
where we could start from first-principles simulations and inverting the RDFs we
would obtain AA interaction potentials and when using them in simulations (after
increasing the size of the cell two orders of magnitude) we could construct a meso-
scale effective pair potentials. This would allow us to hierarchically connect three
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Fig. 1 RDFs from AA simulations and IMC inverted solvent-mediated CG potentials

scales: quantum, classical and mesoscale and start the whole multiscale modelling
without any empirical information (Lyubartsev et al. 2009). We have previously
summarized our work in (Lyubartsev et al. 2010; Lyubartsev et al. 2015) where there
are more examples of the application of IMC. Much of the work done on biological
systems is about nucleic acids.

In Fig. 1 we can see three different solvent-separated IMC CG effective pair
potentials and the corresponding reference RDFs from which they are calculated.
In all cases water is the solvent. Notice the oscillating nature of the potentials due
to the presence of solvent built in them. In the top panel on the left we have RDFs
from CPMD simulations of liquid water, classical simulations of SPC water and
experimental water RDFs. On the right side are the corresponding inverted RDFs as
pair potentials. For SPC we obtain back the SPC water model used in simulations
to produce the RDFs. Note that although the RDFs are fairly similar the effective
potentials from CPMD show much steeper repulsion compared to SPC model while
at the long distance the models coincide as they should at Coulomb regime. Also
the CPMD simulations of Li+ in water gave much steeper repulsion in the effective
IMC ion water-oxygen potentials (not shown here, see Ref. (Lyubartsev et al. 2001)
compared to common ion-water potentials models reflecting the exponential decay
of repulsion based on Quantum Mechanical description. It could be fitted perfectly
to Veff (r) = A exp(-Br) with A = 37,380 kJ/mol and B = 3.63 Å−1 indicating that
Buckingham type of potential is to prefer. In fact, in the Lennard–Jones potential the
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Fig. 2 Possible topologies (top) and twist and writhe oc minicircles of DNA (bottom) from Ref.
(Naômé et al. 2014)

exponential decay of repulsion is approximated with the 1/r12 dependence making
the calculations very much easier. In the middle panel are the water-mediated pair
potentials calculated from the ion-ion RDFs, obtained in the aqueous solution of
NaCl. Observe the distinct contact and water-separated potential wells in the Na+

- Cl− potentials and the additional hydration shells after them at longer distances
seen as oscillations. At long distances they coincide with Coulombs law (dotted
line) as can be seen in the figure. At the bottom there the IMC potentials for DPPC
phospholipids obtained from AA simulations of randomly placed lipids in the water
box. These IMC CG lipid models reproduce accurately all phases and morphologies
these amphiphilic systems can form in water depending on the applied conditions.
For more details see references (Lyubartsev and Laaksonen 1997; Lyubartsev et al.
2009, 2010). In Fig. 2 we apply IMC on DNA mini-circles up to 500 base pairs.
In top two typical topologies are shown to coarse-grain DNA. Mechanical energies
for linear and circular DNA are shown in bottom. For details see Ref. (Naômé et al.
2014, 2015).
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3.5 Transferability of IMC CG Potentials

An important issue with the IMC CG potentials, and for that matter with most other
CG potentials based on underlying fine-grain simulations, is that they describe the
system at a specific thermodynamic state and the CG potentials automatically inherit
the same condition and therefore should be used accordingly. It means that the effec-
tive potentials cannot be used to cover large intervals in temperature, concentrations,
densities etc. But can they be used to study the same type of systems exhibiting
very different topologies at same conditions? In our studies of multi-scale modelling
of human telomeric quadruplexes (Rebic et al. 2015, 2017) we did construct the
IMC potentials from AA MD simulations for the topomer, a [3 + 1] hybrid with a
26-nucleobase sequence d[AAAGGG(TTAGGG)3AA] with K+ counter ions stabi-
lizing the Hoogsteen structure (PDB id 2HY9). We later used successfully the same
IMC potentials to model another quadruplex topology (PDB id 1KF1) also known
to form from the human telomeric DNA sequence d[AGGG(TTAGGG)3] differing
from 2HY9 in its loop topology and its G-strand relative orientation. The results
are encouraging suggesting a certain degree of transferability in simulating quadru-
plexes with different topologies. Since the IMC potentials are normally not fit to any
simple mathematical functions any general transferability is out of question due to
their inherent complexity and difficulties to construct combination rules (Fig. 3).

Fig. 3 IMCCGmodel for 2HY9 topology can be used in CG simulations of 1KF1. For more details
see Refs. (Rebic et al. 2015, 2017)
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3.6 IMC Effective Potentials and Dynamical Properties

An important issue in creating and using effective potentials based on structural
information only is their capability to predict dynamical properties inCGsimulations.
It is reasonable to expect that CG potentials, being softer than AA potentials, create
an energy surface where soft mesoscopic particles, even if heavier, move too fast
compared to AA simulations or experiments. As no dynamical information goes
in to the process in inverting the solely structural information to is also difficult to
estimate the effect of its absence to dynamics of the particles. Also, even the fact
that no explicit solvent is needed; making the simulations fast, the lack of friction
normally generated by the solvent molecules affects the overall internal motion of
the solute molecules. In our study of mini-circles of DNA (90–500 bp) at different
salt concentrations using IMC CG potentials (Naômé et al. 2014, 2015), we did
also study the dynamical properties for linear 18-mers of DNA in water solution
with ions. We did observe that the counter-ions did diffuse roughly 220 times faster
than in AA MD simulations while end-to-end fluctuations of DNA were 4.5 times
faster and its total twist fluctuations 21 times faster than in AA MD simulations.
Using Langevin dynamics gave us the opportunity to adjust the friction coefficient
to give reasonable results for the dynamics. For example, using a friction coefficient
35 ps-1, which is comparable to the collision frequency of water molecules, brings
the diffusion of the counter-ions close to the experimental values. In general as the
degree of coarse-graining is different for DNA and for ions their dynamics differ
so no general scaling factor is difficult to establish. Even if it is difficult to obtain
quantitatively correct dynamics the relative trends can be reproduced normally well.
Scaling CG potentials to reproduce experimental or AA-simulation results is needed
otherwise.

3.7 Fine Graining

The opposite to coarse-graining is fine-graining (FG) or back-mapping, which is
far from trivial as it requires inserting (re-inventing) the degrees-of-freedom which
were deleted in coarse-graining. FG is not simple because the problem is under-
determined. For polymeric systems, including biopolymers like nucleic acids, it is
somewhat easier because the back-bone geometry and the topology of themonomeric
units are known, this way providing several geometric constraints. For DNA there
are the sequence information, the distance constraints for Watson-Crick base-pairs,
the grooves and stacking to guide the FG. Common strategy is to start by a random
placement, followed with a relaxation without adding any constraints. Thereafter
check the chiralities, and first after that to start to apply the constraints. We have
followed this strategy in (Lyubartsev et al. 2015; Naômé et al. 2014). Some software
packages already have features for performing back-mapping, such as newer versions
of Gromacs.
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3.8 Bottom-Up Meets Top-Down

At the same time as multi-scale modelling based on the successive coarse-graining
is a “from-bottom-up” technique to reach the mesoscale beyond, many sophisticated
“from-top-down” experimental methods such as 3D imaging, microscopies, single-
molecule manipulation and force measurements can come down to the meso-scale
and even under. This means that these two approaches (bottom-up and top-down)
can be made to meet at the mesoscale. A probable future scenario is mapping of
images and forces from experiments on mesoscopic simulation models so that we
start have good quality meso-scale force fields for CG simulations (as the AA force
fields we have today) with experimental origin which also can be cross-fertilized
with theoretical CG force fields inverted from underlying accurate FG simulations
to make them more detailed. For example, AFM can supply vertical and lateral
force-distance data which can be used to create a force field between particles and
surfaces which is currently completely missing in modelling. All this would also
allow us to improve the resolution of these experimental techniques all the way to
the atomistic level by applying fine-graining techniques discussed in the previous
section. Once atomistic level is reached quantum calculations can be performed to
explore any possible reactive parts of the system. “Top-down meets bottom-up” will
be a common theme in many integrative studies with multi-instrument experimental
andmulti-scale modelling is performed for the insight, discovery and design of novel
products.

3.9 Advanced Use of IMC

We give here two more recent examples of multi-scale modelling based on hierar-
chical coarse-graining using the Inverse Monte Carlo method. The first deals with
the important topic of bio-toxicity of nanomaterials and the second example is about
super-coarse-graining of genetic materials.

3.10 Safety of Nanomaterials—Multiscale Modelling Using
IMC

Nanomaterials ranging from carbon nanotubes and graphene structures to metal
and metal oxide nanoparticles and quantum dots provide a virtually endless line
of bioengineering applications, as well as offer use in modern nanomedicine as
potential carriers for targeted drug delivery. On the other hand, the nanotoxic hazard
associatedwith the penetration of small nanoparticles in biological tissues is a vividly
debated subject. Concern is raised on both direct and potential long-term hazard to
human health caused by nanomaterials since the immune system, developed during
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Fig. 4 Time sequence of CG simulation snapshots illustrating the interaction of a complex of
negatively charged hydrophobic nanoparticle (2 nm radius) and Human Serum Albumin (HSA)
protein with DMPC lipid bilayer. Reprinted from Hender et al., “Multiscale Modelling of Bionano
Interface”, in Modelling the Toxicity of Nanoparticles, L. Tran et al. (eds.), Advances in Experi-
mental Medicine and Biology, Vol. 947, 2017, https://doi.org/10.1007/978-3-319-47754-1_7, with
permission from Springer International Publishing

millions years of evolution, is not familiar with engineered nanoparticles. Existing
methodologies of in-vivo toxicological evaluation require long time, are expensive
and also connected with ethical concerns. This is why in-silicomethods of prediction
of toxic effects are of high demand (see Fig. 4). It is however extremely challenging
task to model what is really happening from the first contact of a nanoparticle with
biological matter on the molecular level to the effects of the nanomaterial on the
whole organism.

Here we come to the point when hierarchical multiscale modelling, starting from
atomistic description of the interface between nanomaterial surface and biomolecules
(Brandt and Lyubartsev 2015) and proceeding to several levels of coarse-graining,
handshakes with system biology, and in particular the Adverse Outcomes Pathways
(AOP) concept (Halappanavar et al. 2020). An AOP relates the first biological effect
of a nanoparticle taken up by an organism (called the Molecular Initiating Event),
through a series of “Key Events” (measurable changes at organelle, cell, organ level),
with an adverse outcome for the whole organism (and even for populations). First
attempt to use multiscale simulations to predict some molecular initiating events in
AOP, such as protein corona formations around a nanoparticle or membrane rupture
using multiscale simulations have been recently published (Lopez et al. 2017; Power
et al. 2019).

Necessity of validated tools for evaluation of potential toxic effects has led to
appearance of “Safe by Design” concept (Schwarz-Plaschg et al. 2017) in design of
nanomaterials. Toxicological safety should be considered as a compulsory property
of all newly developed materials, alongside with the functional properties for which
the material is developed. While performing the “Inverse Design”, it is imperative to
include the toxicological chain relating properties of molecular bio-nano interface
with adverse outcomes, into the search in Chemical Space for specific materials
satisfying these properties.

https://doi.org/10.1007/978-3-319-47754-1_7
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3.11 Super Coarse-Graining Using Inverse Monte Carlo

To apply hierarchical multi-scale methods there is hardly anything more suitable
than the genome material which is strictly hierarchically built in consecutive orders
(primary sequences, secondary, tertiary, quaternary, etc.) from underlying structures.
The hierarchical order for modelling is: [DNA + histones] − [beads and strings of
nucleosome core particles (NCP)] − [fibres of packed nucleosomes] − [chromatin
loops] − [chromatin domains] − [extended and condensed chromosome]. Also, in
terms of number of base-pairs there are six orders of magnitude from NCP to chro-
mosome (102 to 108). We have in our previous studies demonstrated the importance
of the electrostatic interactions and the power and accuracy of the IMC method by
simulating these hierarchical building blocks in physiologically relevant conditions
and with varied ion concentrations and observed the same condensation behaviour
as in experiments while obtaining stable structures (Korolev et al. 2004; Korolev
et al. 2006; Korolev et al. 2010). The CG simulation methodology developed by us
is so detailed that even the coarse-grained model of nucleosome core particles can
be coarse-grained while maintaining their molecular properties (Fig. 5).

We did simulate a clustering of 5000 NCPs obtaining an excellent agreement with
small angle X-ray scattering spectra for a corresponding system (Fan et al. 2013; Sun
et al. 2019). Also, we simulated large amount of DNA oligonucleotides (up to 400
oligonucleotides each of 100 base pairs of DNA) in presence of CoHex3+ ions

Fig. 5 Systematic hierarchical multi-sacle modeling from DNA to chromatin where higher order
coarse-graining (super coarse-graining) is used. 98 beads corresponds a sysytem of 11million atoms
in corresponding all-atom simulation Ref. (Fan et al. 2010)
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and found aggregation of DNA’s in ordered hexagonal structures (Sun et al. 2019).
Furthermore, using super coarse grained DNAmodel which represent DNA as beads
in a chain with interaction potential derived by IMC from atomistic simulations
including effects of ions and water, we simulated a very long (40,000 base pairs)
DNA and found that it, in presence of CoHex3+ ions, form toroidal structures which
were also observed in electron microscopy studies (Sun et al. 2019) (Fig. 6).

Fig. 6 DNA aggregation and toroid formation induced by CoHex3+ ions simulated by the super
coarse-grained DNA model. A: Final configuration of DNA aggregation in a simulation with 400
DNAoligonucleotides of 100 base pairs each.B: Cross-section of one of theDNAcondensed particle
shown in A. C and D: Formation of toroidal structures in the super coarse-grained simulations of a
10,200 base pairs DNA. C: Energy profile and snapshots (normalised per DNA base pair) from one
of the simulations. D: Structure of the DNA toroid. Cartoon on the right-hand side shows cross-
section through the toroid where the red dots illustrate DNA double helices near the cutting plane.
The zoom-in illustrated in B and D show the DNA packing within the aggregates with green lines
highlighting hexagonal arrangement of the DNA molecules. Reprinted from Sun et al. (2019) with
permission from Oxford University Press
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4 Future Prospects

4.1 Chromosome Modelling

The hierarchical multiscale modelling of chromatin can be extended to reach what
can be still considered as a grey-zone and to study the organization of the chromo-
somes inside the cell nucleus. This is a highly challenging “Bottom-up meets the
Top-Down” project and is recognized as such by many colleagues (Langowski and
Heermann 2007; Ozer et al. 2015; Moller and Pablo 2020; Bendandi et al. 2020;
Caudai et al. 2019). In doing so modelling is not enough but we need to use a more
integrative approach where we combine competences from other areas including
bioinformatics (Ozer et al. 2015) and advanced instrumentation (Moller and Pablo
2020). Successively we also need to complement the purely physics and particle
based methods by adding knowledge and rule-based models in the toolbox. We need
experimental information about topologically associated domains (TAD) to insert in
the models (Caudai et al. 2019).

We also will to study the role (structure and function) of nuclear lamina
in the organisation of the chromosome, including the nuclear envelope proteins
lamins (globular regulators of chromatin) bound to the lamina and other inner
membrane proteins interacting with the chromosome (Dittmer and Misteli 2011;
Ho and Lammerding 2012; Nora et al. 2013). Mutations in polymerizing lamins
(laminopathies) are connected to a diversity of genetic human diseases (currently 17
are known) giving indication of their close role in cellular functions being impor-
tant modulators in transcriptional regulation while affecting chromatin structure and
organization. We will apply our multi-scale methodology to these higher-order poly-
meric proteins with alpha-helical rod-domains and study their roles as regulators of
chromatin.

The function of the genes is not only what is encoded linearly in the sequences
but it is now known that the topological organization of the DNA in chromatin
and how it interacts with the nuclear environment are important in transcriptional
regulation. Also, chromatin may have different structures inside the cell nucleus
depending of the cell cycle. Chromosome Conformation Capture (3C) and its many
extensions and other related methods have become highly valuable to decipher the
spatial organisation of chromatin although they do not give information about the
dynamical processes (Emmett et al. 2015; Lieberman-Aiden et al. 2009). Local DNA
contacts are important in communications between the enhancers and promoters
and these take place in TADs which in turn shape the chromosome landscape. 3C
methods are used to quantify the number of interaction between the chromosome
positions. Among the most popular of the 3C methods currently is the Hi-C (Reddy
and Feinberg 2013) which can also combined with other methods, for example three-
dimensional fluorescence in situ hybridization (3D-FISH) (https://www.ncbi.nlm.
nih.gov/geo/). This method gives a picture and behaviour of packed chromosome as
fractal globule. The Hi-C (extension of 3C methods) is becoming more accurate due
to better regression-based correction schemes.

https://www.ncbi.nlm.nih.gov/geo/
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4.2 Genome-Wide Modeling

Hi-C maps (available for example from Gene Expression Omnibus (Ibrahim et al.
2013) can be converted into a matrix of average pairwise distances that can be used
as restraints in many simulation models. This is analogous to when NOE distances
are added to all-atom force fields in determination of protein structures using NMR.
This allows for the first time a genome-wide modelling for example by using Brow-
nian Dynamics simulations. Currently restraint-base modelling has been performed
for chromatin using (1) rule-based spatial modelling (Doyle et al. 2014; Imakaev
et al. 2015; Serra et al. 2015), (2) polymer models (Gruenert et al. 2010; Carstens
et al. 2016) and (3) bead models (Szałaj et al. 2016). The resolution of the used
models depends on the resolution in the genome data sets. However it is increasing
continuously. As an example of a bead model with resolution of 50kbp requires 3330
beads to represent the X chromosome (Szałaj et al. 2016). The parameterization of
the bead models is very much ad hoc with input from experiments, while we wish
to be able to use super-coarse-graining based on underlying molecular information.
Genome-wide modelling is becoming a very vital area. To become more acquainted
we suggest following excellent reviews for multi-scale modelling and other new
approaches (Molitor et al. 2017; Xia 2018; Sewitz et al. 2017; Bsascom and Schlick
2017).

5 Final Remarks

In this Chapter we introduce and discuss “Inverse Problem” in Chemistry and focus
on its applications in Computational Chemistry where we can produce models for
interactingmolecular systems (interaction potentials and force fields) backward from
the already obtained simulation results. We demonstrate that by proceeding system-
atically and hierarchically this inverse procedure can be made through hierarchical
coarse-graining to a powerful and accurate multiscale modelling methodology called
the Inverse Monte Carlo (IMC) alternatively Newtonian Inversion, which can be
used all the way from first-principles quantum mechanics to meso-scale and beyond
meaning in such a way that no empirical information would be needed. We do not do
this yet routinely as computers need to become much faster for first-principles simu-
lations of biological material as an example. We start normally from all-atom clas-
sical simulations. We discuss both the benefits and limitations of the IMC methods
while illustrating some important applications, especially applications where the
method is clearly superior to other similar methods in its accuracy. We show exam-
ples of higher-order coarse-graining (super-coarse-graining). We then discuss future
aspects of the method and introduce the area of genome-wide modelling where we
expect to make an impact with IMC combined informatics and knowledge/rule-
based methods including machine learning and closely carried out with several
sophisticated experimental techniques currently used in genome research.
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