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Preface

This book presents a collection of energy production and distribution problems iden-
tified by the members of the COST Action TD1207 “Mathematical Optimization in
the Decision Support Systems for Efficient and Robust Energy Networks”. The aim
of the COST Action was to coordinate the efforts of the experts in different fields,
from academia and industry, in developing innovative tools for quantitative decision
making and apply them to the efficient and robust design and management of energy
networks.

At high level, energy systems—and related predictive and prescriptive business
analytic (BA) problems—can be divided into two broad classes: Electrical Energy
Systems (EES) and Energy Commodities Systems (ECS; mainly oil and natural
gas). In the following two tables, a cross categorization about time horizon (Strate-
gic, Tactical and Operational) versus types of optimization problems (Planning,
Production, etc.) is presented for both EES and ECS. Sometimes in medium
(tactical) and long term (strategic), the goals are similar (but not identical). On
the contrary, as in the case of planning, these goals are inherently strategic and
no medium (or short) term activities are considered. Also, some problems can be
seen from different angles and depending on the actual structure of the electricity
or gas system or markets. For instance, in production optimization problems for
electricity markets, the network can be disregarded (or pretty much simplified), but
if its management is considered, power plants cannot be done (unless a static Load
Flow is of interest). Finally, we observe that while many of these problems could
be considered as a single bigger problem, very often in the scientific literature—as
well as in the industry practice—they are decoupled in a top-down or bottom-up
approach depending on the focus, goals, data availability and, ultimately, the ability
of the modellers. As just one example, take a large utility, its long-term gas portfolio
optimization is coupled with fossil fuel power plants usage maybe in an electricity
market environment.

v
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The present work has been envisioned with the following three main goals:

• being a nimble while comprehensive resource of several real-life business prob-
lems with a categorized set of pointers to many relevant prescriptive problems
for energy systems;

• being a balanced mix of scientific and industrial views;
• being so that it will evolve over time in a flexible and dynamic way giving, from

time to time, a more scientific or industrial—or even political in a broad sense—
weighed perspective.

The following tables provide an overview of the issues discussed in the book,
organised separately for Electrical Energy Systems (Table 1) and Energy Commodi-
ties Systems (Table 2). The columns of the tables correspond to the chapters of the
book in order to reveal the meaningful cross categorization.

A general knowledge of the underlying energy markets may be necessary to
understand several of the terms involved in the description of the problems.

Table 1 Electrical Energy Systems

Production and
Demand
Management Network and Storage Maintenance

Finance, Regulations,
Politics and Market
Design

Strategic
Long Term

Energy Generation
Capacity
Expansion
Planning (GEP)
Network
Expansion Planing
(NEP) and
Co-optimized GEP
and NEP
Long-Term Unit
Commitment

An Overview of
Network-Constrained
Optimization Problems
Problems of Network
Expansion Planning
Transmission Network
Expansion Planning
(TNEP)
Distribution Network
Expansion Planning
(DNEP)
Energy Storage System
(EES) Siting and Sizing

Strategic
Maintenance
Transmission
and Distribution
Network
Long-Term
Maintenance

Long Term Electricity
Bilateral Contracts
Multilevel Modeling of
Market Design
Energy Policy Analysis
Demand Response and
Price Optimization

Tactical
Medium
Term

Unit Commitment
(UC)

Energy Storage
Operations
Management

Medium Term
Maintenance
Scheduled
Maintenance

Pricing Problem
Derivative Pricing in
Electricity Markets

Operational
Short Term

Unit Commitment
Under Uncertainty
Balancing Markets
and Non-pro-
grammable
(Renewable)
Power
Coordination

Optimal Power Flow
(OPF)
Security-Constrained
Optimal Power Flow
(OPF)
Optimal Transmission
Switching (OTS)
Optimal Network
Islanding and
Restoration
Operations of Smart
Grids

Nuclear
Reloading
Pattern
Optimization

Combined Gas and
Power Optimization
European Electricity
and Day-Ahead
Markets
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Table 2 Energy Commodities Systems

Production
Finance, Regulationsand Demand

Management Network and Storage Politics and Market Design

Strategic
Long Term

Optimal Oil Wells
Placement

Gas Pipeline Design
District Heating
Network Design
Optimal Design of
Energy Hubs and
CCHP Systems

Evaluation of European Gas
Market Designs
Take or Pay (ToP) Contracts

Operational
Short Term

Optimization of the
Gas-Lift Process
Total Gas Recovery
Maximization
Optimal Scheduling
of Energy Hubs and
CCHP Systems
The Pooling problem

Operational Network
and Storage
Management
Gas Network Flow
Optimization
Optimal Operation of
District Heating
Systems

Gas Balancing Market

Reggio Emilia, Italy Natalia Selini Hadjidimitriou
Pisa, Italy Antonio Frangioni
Berlin, Germany Thorsten Koch
Montréal, QC, Canada Andrea Lodi
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1 Demand Side Management

Demand Side Management (DSM) is usually considered as a process of energy
consumption shifting from peak hours to off-peak times. DSM does not always
reduce total energy consumption, but it helps to meet energy demand and supply.
For example, it balances variable generation from renewables (such as solar and
wind) when energy demand differs from renewable generation [278]. One of the
limitation of electricity power is that generally, electrical energy cannot be stored
because of a large number of economic or physical feasibility limits. Thus, it must
be produced in the quantity needed. It is exactly the main objective of DSM—to
equilibrate production and consumption of energy.

DSM originated after oil crisis in the 1970s. Then, energy demand relied on
forecasts, which were often made with a ruler and double-log paper. In other words,
demand side was largely disconnected from the market. Consumers were mostly
simple users of energy sources. They received electricity from energy grid and paid
for it. Gradually, this situation is changing. After petrol shock in 1973, Demand Side
Optimization has become more important. Most countries tried to develop programs
to reduce dependence on oil and to promote energy efficiency and alternative energy
sources. Nowadays, energy consumers are more proactive. They want to optimize
electricity consumption so as to reduce their expenses.

The process of DSM activities usually follows an integrated approach. DSM
sends signals to end-use systems to shed load depending on system conditions. This
allows for very precise tuning of demand to ensure that it matches supply at every
period, reduces capital expenditures for the utility. Critical system conditions could
be peak times, or in areas with levels of variable renewable energy, during times
when demand must be adjusted upward to avoid over generation or downward to
help with high needs. Consequently, the analysis and optimization on the demand
side focuses on the involvement of the customer and fits to the vision of a customer
centric energy grid. Unfortunately, many common control strategies [141, 142] fail.

According to literature [164], DSM can be divided into three categories:

• Energy efficiency means usage of less power due to more efficient load-intensive
appliances such as water heaters, refrigerators, or washing machines.

• Strategic Load Growth refers to a general increase in energy consumption. Load
growth may involve increased market share of loads which can be served by
fuel switching from fuels to electricity such as heat pumps, induction cooker and
microwave oven.

• Demand Response (DR) identifies the short-term relationship between price and
quantity when the actions and interactions of substitutes and complements are
considered. Currently, the term DR is used in a broad sense, in relation to
electricity end-use, and is attributed to a wide range of control signals such as
prices, resources availability and network security [256]. Figure 1 sums up DSM
categories.



Production and Demand Management 5

Demand Side
Management

Demand
Response

Peak clipping
Valley filling
Load shifting

Flexible load shaping

• Load
conservation

Strategic Load
Growth

Energy
efficiency

•
•
•

•

Fig. 1 Categorization of demand side management (based upon [256])

1.1 Demand Side Management and Demand Response

We define DR as part of DSM similar to [341] and [395], as the “voluntary
changes by end-consumers or producers or at storages of their usual electricity/gas
flow patterns in response to market signals such as time-variable prices, incentive
payments” or beforehand given agreements between customers and third parties.
Such pattern changes are possible due to flexibility on the demand side. Such
flexibility might be provided for example through electrical or thermal storages
where demand is decoupled from generation, but also from other flexible loads,
such as EVs.

In electricity markets, traditional DSM programs are slowly getting replaced
with DR programs. A good example of demand response implications (reducing
electricity peak demand) is the introduction of “Time of Use Tariffs” in France.
Its aim was to apply a fixed rate with different time units depending on hours and
seasons. “Time of Use Tariffs” in France included three parts:

• “Green tariffs” (1956) for large firms or buildings (La Defense): Many prices
options according to season/hour and localisation/use.

• “Off-peak hours” (1965) tariffs for residential market and business- special tariffs
from 10 PM to 6 AM week days and on Sundays.

• “Peak day step back” (EJP) (1982) for residential market was introduced to
decrease consumption at critical times (22 days of 18 h between 1st November
and 31th March). It established high price during this period and low price for the
rest of the year. Currently, EJP replaced by TEMPO (6 price’s levels according
to hour and season).

This program showed good results: “off-peak hours” tariffs reduced peak
consumption by about 20% and customers with “Peak day stepping back” tariffs
reduced their consumption by 50% during peak periods (4% of total residential
consumption) [111].
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More recently, it is possible to exploit temporal flexibility of the gas transport
infrastructure for smart electrical power grid operation. Some of the compressor
units of the gas networks are powered by electricity. The ratio of compression
horsepower used by such compressors to total compression horsepower varies
by countries, i.e., about 5% in the USA having about 1400 compressor stations
[420], over 40% in France having 32 compressor stations [179, 412], and for
UK predominant gas-driven turbines of 24 compressor stations are in process of
being replaced by electricity units [319]. In peak power generation situations, the
dispatchers of gas transmission system operators may start these compressor units
already, in terms of the gas network operation itself, before compression is necessary
to increase pressure. Thereby they load pipes with excessive gas for upcoming
gas demands, without jeopardizing security of operations. Likewise, to a certain
amount they may delay compression in situations with low energy generation. A
third option is to choose between electrical and gas powered compressor units based
on the electrical power situation. Thereby, in addition to Power-to-Gas technologies
inducing synthetic fuels (see Sect. 7), coupling electrical power systems and natural
gas infrastructure introduces new smart grid operation options. However, in order
to ensure security of supply and safe gas network control, such options will need
foresighted decision support systems (see Sect. 5 for more details on optimizing gas
network flows).

1.2 Direct Load Control vs. Indirect Load Control

In general DSM and DR concepts can be distinguished between direct and indirect
load control. Indirect load control implies an incentive, such as a price signal. Such
signal might motivate the consumer to shift its consumption into times of lower
prices. Direct load control rather means an agreement between the customer and
a third party that allows the party to directly control the loads of the customer
based upon the beforehand made agreement [230]. For field installations, the most
promising solution which finds good acceptance in both research and industry is the
automated demand response (OpenADR) protocol which is now a de-facto standard
for DR concepts [325]. Several recent research activities that use mathematical
optimization techniques for DR refer both to direct and indirect load control. These
research topics are related to the optimization and coordination of the operation
supply and demand units throughout a time horizon, e.g., an offline day-ahead
scheduling under considerations of flexibility. The flexibility is achieved through
temporal shifts over a Horizon T. Such problems are very generally known as the
Portfolio Balancing problem.
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Fig. 2 Different time horizon in DSM, based upon [341]

1.3 Demand Side Management in Different Time Horizons
(Short to Long Term)

The classic unit commitment problem is mainly short term, but can be solved also
for medium and long term problems. As shown in Fig. 2, similarly as presented
in [341], we can distinguish Demand Side Management according to its time line.
Spinning Reserve in this context refers to primary and secondary and even tertiary
control, which is usually done by power plants. However, in DSM, loads can be
virtually aggregated and act as a negative spinning reserve for frequency control.
The time horizon is seconds and minutes.

1.4 Integrated Demand Side Management

Nowadays, DSM technologies become increasingly feasible due to the integration
of information and communications technology and the power system, new terms
such as Integrated Demand Side Management (IDSM), or smart grid. Smart grid
gives new opportunities of remote control services that allow the network operator
to switch off high electricity consumption devices (for example, air conditioners, hot
water tanks, heat pumps) for a limited period during peak demand without causing
major issues for the consumer.

For example, French company Voltalis offers to residential customers, the
’Bluepod’ box, a device which switches off electrical heating and space conditioning
appliances. If demand exceeds electricity production, transmission network operator
(Réseau de Transport d’Electricité, RTE) contacts Voltalis, which can withdraw
demand in real time by modulating electricity consumption in many households
via ’Bluepod’ [324].
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1.5 Challenges and Requirements for Demand Side
Management and Demand Response in Optimization

The above mentioned general description of the portfolio balancing problem for city
districts and neighborhoods incorporate several challenges both for the mathemati-
cal method and the overall approach. First, there is usually a high heterogeneity of
participants and devices that must be taken into account. Residential buildings, but
also industrial consumers might take part of the portfolio balancing. The load and
flexibility of such units diversify within their granularity of time, their amplitude
and their criticalness. Second, a city district contains in general a high number
of participants and devices which lead to a computational intensive problem with
an increasing portfolio size. Consequently, a mathematical optimization must be
able to handle a large amount of heterogeneous participants. Third, referring to the
concept of demand response and in particular to direct load control, it is an important
requirement for the method to ensure data privacy. Fourth, the coordination within
city districts usually needs to integrate both local (customer) and global (system)
level objectives. In respect to this challenge the method requires an approach for
both satisfying global and local objectives. Fifth, depending on the kind of installed
devices on the demand side the mathematical optimization method might have to be
able to take care of on/off devices leading to an Integer related problem formulation.

Research Papers and Solver Indirect load control on the demand side is for
example studied in [370] and [309]. In particular [309] is a very recent example
for showing the operation scheduling of Plug-in electric vehicles coordinated by
an aggregator agent. The MILP is solved within GAMS Build 21.1.2. using the
CPLEX 12.5.1 solver [1]. This research satisfies all of the mentioned requirements.
As mentioned in the challenges above a central optimization becomes hard to solve
with an increasing portfolio size. Indirect and direct load control for scheduling
loads on the demand side by using a distributed algorithm is hence an active
field of research. Consequently many research papers, such as [96, 228, 230,
252, 253, 357, 425] propose distributed optimization demand response techniques
for (residential) energy demand side management. Decomposition methods such
as in [228] and [310] use dual decomposition (DD) or the alternating direction
method of multipliers (ADMM) such as in [230, 247]. For both DD and ADMM in
particular challenges and requirements (1)–(4) are taken into account. Kuznetsova
et al. [253] the residential demand side energy management in [310] for example
used the matlab environment in combination with ILOG CPLEX 12.2 to solve the
optimization problems. The ADMM problems were solved using CVX, a package
for specifying and solving convex programs [51, 174]. Looking into integer related
problem formulations authors in [187] propose a column generation approach for
direct load control which is solved using the object-oriented Python Interface of
Gurobi [184]. Research in [253] performs a decentralized robust ILP optimization
for balancing a portfolio within a microgrid. The optimization uses the CPLEX
package within Java. Both [187] and [253] are other examples for satisfying all
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mentioned challenges [230, 341, 370] and the resulting requirements. [249] uses a
MILP formulation for the optimal control of a residential microgrid using the Gurobi
solver as well through the object-oriented interface for Java. Further, authors in [48]
perform a distributed optimization via a multi-agent system using the Java agent
development framework (JADE) [220]. However, each local agent solves its own
local MILP optimization using MOSEK [314].

2 Energy Generation Capacity Expansion Planning (GEP)

One of the major and difficult problems in the energy area that the European Union
(EU) is facing today consists of estimating the timing for clean power generation
technologies and electricity transmission expansion network at a pan-European level
in a long term (e.g., 30 years time horizon). EU has established aggressive pollutant
emission reduction targets: a 20% (resp. 27%) reduction in greenhouse gases with
respect to 1990 levels by 2020 (resp. 2030) and an objective of 80% reduction by
2050 (Eurostat).

Mathematical optimization models and algorithms to address the above chal-
lenges in the electricity open market [68] are essential computerized tools for
helping in the decision making to estimate the following key issues: feasible
type and mix of power generation sources, ranging from less coal, nuclear and
combined cycle gas turbine to more renewable energy sources (RES), namely
hydroelectric, wind, solar, photovoltaic and biomass, among others; and timing for
power generation plant farm site locations and dimensions. The solution should
maximize different types of utility criteria and quantifying the benefits of using
cleaner, safer and efficient (cheaper) energy.

In the past (up until 25 years ago), practically all over the world the energy sector
was a very centralized one, where the electricity generating companies had a limited
decision-making on generation expansion capacity planning . The energy prices
were centrally decided as well as the main geographical areas where to service the
energy demand. So, the maximization of profit functions was out of question and,
then, the main goal was to minimize the net present value (NPV) of the global cost
for the planning of the site, location and capacity of new energy generation sources
in, first, hydropower, second, variety of thermal plants, and also nuclear generation.
In the latter energy source, not too much room was left for the modeling tools to
help in the decision making. On the other hand, the claims of other stakeholders
(mainly, environmentalist ones) were not a strong issue given the strong regulation
of the sector. The modeling could consider uncertainty on the main parameters that,
by definition of the non-open market and, then, its strong regulation, was reduced to
macro-economic and demographic factors that influence the energy demand to serve
and the generation disruption. Additionally, the state-of-the-art on theory, modeling
and algorithms for dealing with mathematical optimization under uncertainty (i.e.,
stochastic optimization) was not as advanced as it is today and, surely, will be in
the future. Additionally, the computer performance was so low (until, say, 10–15
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years ago) that the gigantic models that were needed to provide solutions to help the
decision-making could not be considered.

Today, the situation has drastically changed. The computer performance is very
high, and it seems that its exponential growth will continue at least in the near
future. On the other hand, some stochastic optimization tools could be considered
today as a sort of commodities ready to be used. Additionally, the energy sector is
very different from what it was in the past. It continues being a crucial sector for
the European economy as for the rest of the world. However, its market, without
being fully an open one (something that, by definition, probably it cannot be), it
allows higher freedom to the Generating Company (GenCo) for performing strategic
energy generation capacity expansion planning in a long horizon. First, there is
enough freedom on deciding the amount of power generation from the different
plants/farms and, on the other hand, the energy price is not (fully, at least) decided
by regulation. Second, the GenCo has very much freedom to decide the location,
capacity and timing on new generation sources. Third, the macro-economic and
demographic factors are not the only main factor to influence the demand, but
the competitors’ strategies are a major source of uncertainty. Fourth, the power to
be generated by some new RES, mainly, wind and, in a lesser extent, solar and
photovoltaic sources, is subject to a high uncertainty (that, on the other hand, it is
difficult to formulate). Fifth, given the type of new energy sources, there is more
variety on the location sites and generation capacity, which allows considering
more opportunities for strategic planning. And, sixth, there are other stakeholders
(environmentalists, among others) having different goals (whose directions are not
the same sense as the GenCo) that, in some way, have to be considered in the
decision making, plus some Government and EC directives, etc. All of that induce
to consider multiobjective optimization.

So, the GenCo’s aim has been moved from cost minimization to expected
profit maximization along the time horizon. One of the interesting disciplines
for problem solving is stochastic optimization, where the uncertainty of the main
elements is represented (i.e., quantified) by a finite set of scenarios, ether in a two
stage or a multistage scenario tree. Anyway, the problem modeling and algorithm
development are big challenges, given the gigantic character of the instances of the
problem. As an additional difficulty, big GenCos can influence some of the main
uncertain parameters in the problem; say the energy price, among others. Then, the
probability and value along the time horizon can be influenced by the decision-
maker. In this case, the so-called decision-dependent probabilities [130, 171, 182]
(also called endogenous uncertainty) should be considered. One of the potential
tools consists of using stochastic mixed 0−1 quadratic mechanisms; see [34], to be
added to the modeling schemes presented next.

Multistage stochastic mixed 0−1 optimization modeling for risk management
should be considered. There are different approaches (some of them very recent
ones) for energy generation planning, see [124, 421, 422], among others. The
main parameters in the problem are uncertain and, so, a set of scenarios should
be generated by considering the realization of the following parameters, at least:
availability (and price, in case) of raw material for power generation: gas, fuel,
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water, wind, solar, etc.; electricity demand and prices at focal nodes in the
energy network; operating hours per period of power generation technologies; CO2
emission permits; green Certificates prices for buying and selling in the market, and
allowed bounds; power generation costs of different technologies; electricity loss
of candidate power generation technologies; investment allocation bounding of the
cost for the total power generation.

There is not a unique function-criterion to consider. Rather, it is a multicriteria
problem, since the model considers the maximization of the NPV of the expected
profit of the investment and consumer stakeholders’ goals over the scenarios along
the time horizon, subject to risk reduction of the negative impact of the solution to be
provided by the optimization system in non-wanted scenarios, plus utility objectives
of other stakeholders. Those other objectives include the power share of cleaner,
safer and efficient energy accessible to all consumption nodes, cost investment from
private and public institutions, generation network reliability, EC directives and EU
Governments on environmental issues and others.

One of the difficult problems to deal with is the generation of a set of scenarios
to represent the realization of the uncertainty as structured in a multistage scenario
tree. Hence, a node in the tree for a given stage is related (in a one-to-one
correspondence) to a group of scenarios that up to the stage have the same values
in the uncertain parameters. Then, the solution for those scenarios should be unique
for all stages up to the stage where the node in the tree belongs to, i.e., the so-named
nonanticipativity principle is satisfied.

In the so-called Risk Neutral approach (RN), the function to maximize consists
of the NPV of the expected profit along the time horizon over the scenarios with
the following elements related to a given GenCo in the energy network: revenue
from sale of electricity, revenue from sale (or, alternatively, cost from purchase)
of Green Certificates, penalization of CO2 emissions, variable generation cost of
thermal power plants, variable generation cost of renewable energy source power
plants/farms (wind, solar, photovoltaic, biomass, etc.), periodic debt repayment of
the investment on the new power plants/farms and new hydro power turbines, fixed
power generation cost of available new plants/farms and new hydro power turbines,
etc.

The gigantic character of the problem can be assessed by considering its dynamic
setting (say, 30 years time horizon), the number and dimensions of replicated
networks (i.e., hyper hydro valleys) in the time horizon for some big generator
companies (e.g., EdF has 20+ valleys, some with 50+ elements, see [123], multiple
choices in time and space of location and capacity decisions for the energy
generation system of the given GenCo (current and candidate power generation
plants/farms), and the representative scenario tree to consider for the uncertain
parameters.

The aim of the Risk Neutral type model performs the maximization of the NPV of
the expected profit. The main drawback of this popular strategy is that it ignores the
variability of the profit over the scenarios, in particular the “left” tail of the profits (or
big losses) of the non-wanted scenarios. For the problems with so high variability,
there are some risk averse approaches that, additionally, deal with risk management.



12 M. Diekerhof et al.

Among them, the so-called time-inconsistent stochastic dominance (TSD) measure
reduces the risk of the negative impact of the solution in non-wanted scenarios in
a better way than others under some circumstances. See [9] for a computational
comparison of some risk averse strategies, see also [10].

The TSD measure presented in [120, 126] for stochastic problems as a mixture of
first- and second-order stochastic dominance strategies. It is a multistage extension
of the two-stage strategies introduced in [115, 119], plus the consideration of
hedging the solution against some types of negative impacts in non-wanted scenarios
at selected stages along the given time horizon.

Then, the maximization of the NPV of the expected profit is subject to a scheme
for risk management that consists of appending to the model a set of TSD constraints
for given profiles at a stage subset for each function (including the objective one),
such that a profile is given by the 4-tupla: threshold on the function value; maximum
target shortfall on reaching the threshold that is allowed for each node in the scenario
tree related to any of those stages; bound target on the probability of failure on
reaching the threshold; and bound target on the expected shortfall.

As an alternative, the time consistent strategy proposed in [126] is so-called the
expected stochastic dominance (ESD) measure. In ESD, however, the profiles are
associated with the nodes of a modeler-driven stage subset for each function, where
a profile consists of the 4-tupla: threshold of the function to be satisfied by any
scenario in the group with one-to-one correspondence with the node; maximum
shortfall of the value of the function that is allowed for any of those scenarios;
upper bound target on the expected deficit (shortfall) on reaching the threshold that
is allowed for that group of scenarios; and upper bound on the probability of failing
to satisfy the threshold.

The rationale behind a time-consistent risk averse measure is that the solution
value to be obtained for the successor set of a give node in the scenario tree
for the related time consistent submodel, solved at the stage to whom the node
belongs to, should have the same value as in the original model ’solved’ at the
beginning of the time horizon, [95, 129]. For the time consistent version of CVaR
(Conditional Value−at−Risk), a very popular risk averse measure, see [95] and
references therein.

It is worth to point out that, by construction, the time-consistent version of
risk averse measure does not avoid the risk on non-desired shortfalls on reaching
the thresholds for the given functions at intermediate stages of the (long) time
horizon for the energy generation expansion planning problem. It is a challenge
for problem solving, but both time-consistent and time-inconsistent versions of risk
averse measures should be jointly considered in the same model.

The gigantic but well-structured multicriteria multistage stochastic nonlinear
mixed integer (SMINO) problem with risk management cannot be solved up to
optimality, see [120]. A realistic approach could consist of a combination of
the following elements: sample scenario schemes, iterative algorithms for solving
SMINO by sequential mixed 0-1 linear one; node-based decomposition algorithms;
stochastic mixed 0-1 bilinear optimization solvers; and high performance comput-
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ing. Another issue that needs further research is the scenario reduction due to the
partition of the scenario set into strategic and tactical ones, see [120].

2.1 Optimization Methods

The GEP can be mathematically formulated as a high dimensional, nonlinear,
nonconvex, mix-integer and highly constrained optimization problem with the least
cost of the investment as the optimization criterion. The complexity of the problem
rapidly increases if many practical constraints are taken into account.

Methods to solve the GEP can be generally categorized into two types: traditional
mathematical programming methods and methods based on heuristic techniques.
The traditional mathematical methods include Stochastic Nested Decomposition
(SND), Dynamic Programming (DP), mix-integer programming (MIP) branch and
bound, Benders’ Decomposition, network flow methods, and others. See in [125] a
review of decomposition algorithms for multistage stochastic problem solving. See
also [85, 116, 117, 119, 126, 130, 464, 465].

3 Network Expansion Planing (NEP) and Co-optimized GEP
and NEP

The objectives of electric-power Generation Expansion Planning (GEP) and Net-
work Expansion Planning (NEP) problems are to determine the “optimal” selection
of generation and network technologies (in a broad sense) and the right time
and right place to construct (and/or dismiss) them, while ensuring (1) economic,
(2) reliable, and (3) environmentally acceptable supply according to the predicted
demand. Needless to say, these problems involve amount of money of the order of
magnitude of the tens of billions EURO for large countries.

A typical GEP optimization model has (1) a planning horizon, (2) an economic
(multi)-objective including the present value of the total cost and other components,
(3) a long set of constraints including: capacity limitations, environment regulations,
fuel costs, customer demands, fuel availability (for instance gas pipelines for CCGT)
and mix diversification requirements, and (4) a set of decision variables representing
the operating and expansion options (that depends on the perspective of the actor).
To make the matter even more complicate, in the predominant market based models,
the GEP and NEP problems must also take into account present, and future, market
rules and incentives.

The GEP and NEP co-optimization problems can be defined as follows: co-
optimization is the simultaneous identification of two or more classes of investment
decisions within one optimization strategy. If co-optimization is used by a monop-
olist integrated utility, then its main result is the identification of joint GEP-NEP
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that are lower in cost than would be if GEP and NEP were developed separately.
However, co-optimization can also be used within countries that are market based
and where NEP is performed by one entity (TSO) while GEP is performed by
others (GenCos). Co-optimization can be naturally the “one optimization strategy”
that may consist of a formulation to solve a single optimization problem (e.g.,
for a GenCo in the GEP perspective, maximize expected profit subject to budget
constraints) or it may consist of a formulation to solve an iterative series of optimiza-
tion problems (i.e., sequential yet possibly coordinated generation and transmission
planning). As an illustration , some goals of a GEP-NEP co-optimization are as
follows:

• savings of transmission and generation investment and operating costs
• more efficient decisions concerning generation dismissals and repowering
• more appropriate treatment of intermittent resources
• efficient integration of non-traditional resources such as demand response,

customer-owned generation, other distributed resources, and energy storage
systems

• fuel mix diversification benefits
• improved assessment of the ramifications of environmental regulation and

compliance planning
• reduced risk and attendant effects on resource adequacy and costs.

Historically, the practice was to attack the GEP problems first, and then the NEP
ones. This approach was motivated because of (1) the complexity of the coupled
problem(s), (2) the controllability of the traditional power plants with their different
technologies (Nuclear, Coal, Steam Turbine, CCGT, Gas Turbine, Hydro Basin),
and (3) the limited interregional power exchanges. However, by assessing both
simultaneously to provide an integrated plan, it is possible to identifying attractive
solutions that may not otherwise be considered. Doing so it is becoming more
important, due to (1) the increasing penetration of non-programmable renewable
resources, energy storage systems, distributed generation and demand response,
and (2) the need for interregional energy transfers to take advantage of diverse and
remote sources of power. For instance, it can be argued that the newly launched
Price Coupling of Regions (PCR) in EU does not only enable to clear at European
level the Day Ahead Markets in the short term, but it also gives the opportunity to
consider at regional level the GEP-NEP problems in the longer terms. Thus, NEP
are not necessarily the least-cost means of meeting those needs (considering both
economic and environmental costs). Second, siting of new generation, including
renewable sources, is influenced by the availability of transmission, so that different
transmission expansion plans will ultimately result in different patterns and even
mixes of generation investments.

In what follows GEP and NEP are considered as a single unified problem, and
recent approaches are discussed.

First of all, notice that co-optimized GEP and NEP problems posed significant
computational challenges. Computer resources available to planners before, say, 10
years ago were incapable of supporting the solutions of co-optimization models.
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Fortunately, recent advances in computation methods have provided satisfactory
solutions to co-optimized GEP and NEP problems with reasonable computation
times, so now realizing savings by using co-optimization is a real possibility.
Also, observe that in GEP-NEP optimization problems uncertainty is, of course,
ubiquitous.

There are several challenging issues in the co-optimization of GEP and NEP.
First, conflicting objectives: GEP can be driven by prices but the same principle may
not apply to NEP (e.g. [364]). Second, power system constraints such as network
flow limits, load demands, and reliability requirements [294], link the two planning
problems, which introduce an additional dimension of difficulty in finding feasible
and practical planning solutions. Third, one of the main obligations of expansion
planners is to facilitate a fair and competitive market. The planner also has to
take into account uncertainties associated with renewable energy, non-traditional
generation resources such as microgrids, fuel costs, component outages (such as
transmission lines, plants, and transformers), and customer behavior including
demand response. The co-optimization of GEP and TEP becomes much more
challenging when contemplating the full range of uncertainties relevant to expansion
planning. Earlier attempts uses a Benders Decomposition-based approach developed
to separate and coordinate the investment problem and operating subproblems (e.g.
[344]). Reliability issues were assessed in terms of customer interruption functions
in co-optimization models [266], allowing trade-offs between outage, investment,
and operating costs. However, these earlier models were oversimplified and thus
deemed impractical for market-based generation and transmission expansion plan-
ning.

In general, co-optimization is viewed as a bi or tri-level optimization problem
for generation and transmission and iterative schemes have been used to coordinate
the two planning problems. As an example, [29] presented a stochastic bilevel
co-optimization model and transformed it into a single-level mathematical program-
ming with equilibrium constraints. It is shown—as expected—that transmission
expansion decisions significantly affect wind power capacity expansion even though
investment cost in transmission expansion is much lower than that in wind power
capacity. A recent study in [387] presented a co-optimization model that incorpo-
rated transmission congestion costs. It was also shown that distributed generation
could mitigate congestion and defer transmission investments. A follow-up study in
[388] proposed a co-optimization model which accounted for incentives offered to
independent power producers (IPP).

As for data uncertainty, stochastic optimization was applied in [123, 273] to
simulate random outages of system components. It was shown that even simple
co-optimization models could result in significant savings when optimizing trans-
mission and generation assets. Also, it was the main ingredients in order to consider
alternative scenarios of future economic, regulatory, and technology developments.

GEP and NEP co-optimization models include both transmission expansion
planning and generation planning for multiple years/decades and multiple loca-
tions/regions. This leads to computational challenges due to the fact that the details
of power systems can greatly increase the size of the problem. In addition, nonlinear-
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ity, integer variables and uncertainties can add further complications. As discussed
in the Network and Storage chapter, modeling of transmission flows by itself can
be a very difficult non-linear program (the OPF with full AC representation). After
adding investment expansion decisions, the problem becomes an even harder mixed-
integer nonlinear program.

Several simplifications are therefore applied, such as aggregation of input data
and model variables and simplification of dynamics and uncertainties (e.g., [383]).

Approaches to modeling aggregation include Location aggregation (e.g., aggre-
gated region(s) instead of exact locations), and time period aggregation (e.g.,
multiple year instead of daily data) (e.g., [389]).

However, even if model aggregations and simplifications are effective for
reducing computational complexity, models then lose fidelity and accuracy to some
extent. Thus, it is desirable to solve large-scale and complicated problems. At
the present time the two following approaches are probably the most appropriate
ones: (1) trying to linearize everything by means of the many possible approaches
eventually resorting to piecewise linear modeling, and (2) using decomposition
approaches as those well known in the optimization community, say: SND, Benders
Decomposition, Column Generation and Branch-and-Price. Today, there is a very
extensive research on the topic, mainly for stochastic models.

4 Tactical Problems

Tactical problems can be seen as variants of the Unit Commitment (UC), which
requires to optimally operate a set of hydro and thermal generating units, over a
given time horizon in order to satisfy a forecast energy demand at minimum total
cost. The generating units are subject to various technical restrictions, depending on
their type and characteristics. The UC is typically a large-scale, non-convex complex
optimization problem.

The particular optimization problems can be seen from the perspective of the
multiple participants:

• Monopolist systems: here the actors are centralized in a single entity that
manages the production, the transmission and distribution systems. Its main goal
is a least cost schedule in order to supply load while respecting the several
physical constraints. Depending on the power plants mix and level of details,
several fuel unit constraints, hydro units (see below) and network constraints (e.g.
voltage profile across the nodes, maximum active power flow across branches)
are take into account. In increasing order of complexity we have the following
problems:

1. Single centralized entity:

– Load Flow
– Single Bus Economic Dispatch: only active power from units are opti-

mized, status is assumed to be fixed, network is not considered
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– AC/DC Optimal Power Flow: only active power from units are optimized,
status is assumed to be fixed, network is considered only with DC
approximation or full AC equations

– Short Term UC: both status and power of units can change, but network is
not considered

– Security Constrained UC: both status and power of units can change,
network is considered (with DC/AC equations)

As illustrated by Gambella et al. [163] on Canary Islands, within developed
markets, such models are still in use in outlying islands, for instance.

• Market based models:

1. GenCo: Its main goal is to maximize profit from selling energy and balancing
capabilities. Depending on the size and risk profile, GenCos can approach the
maximum profit maximization by considering different models, such as:

– Pure Price Taker
– Supply function equilibrium
– Residual Supply
– Cournot competition
– Bertrand competition
– Other more complicated models could include multi market maximum

profit optimization models. In these models one tries to optimally allocate
energy of power units among the different markets on cascade possi-
bly with different clearing logic while respecting the operating—often
multi-perioda—restrictions of the power units. Also, if zonal prices are
considered by the electricity market, some form of arbitrage could be tried
by GenCos with production plants geographically spread across the system.

2. Market Operators (MO): Its goal is to clear the (hourly) energy market
solving a maximum welfare optimization problem. Depending on the mar-
ket rules MO problems can have different additional peculiarities, such as
portfolio bid (i.e. the GenCos are allowed to bid energy from a portfolio of
generation units), zonal prices (i.e. MO problem includes zonal transmission
constraints that potentially creates different prices for GenCos) and others.
These peculiarities do change the form of the maximum welfare optimization
problem ranging from middle scale Linear Programming to much more
complex Mixed Integer Nonlinear Problems. From the beginning of 2015 the
European Union started the so -called Price Coupling of Regions (PCR), a
unified electricity market at European level that clears energy prices at EU
level including the differences among previous national market rules.

3. Transmission System Operator (TSO): Its goal is to maintain overall system
stability including network. This broad goal is achieved at different time scale,
in the short term this basically amount of solving:

– Residual Demand Offer Based SCUC (i.e. a residual demand SCUC, after
energy market are cleared. This SCUC is based on the offer made by
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GenCos to the TSO). This essentially is the goal of the Balancing Markets
(BM).

– Detailed OPF including full Alternate Current (AC) representation of the
network laws.

– Renewable coordination, since these types of production plants are subject
to uncertainty, TSO in modern systems must take care of these issues
in solving BM. This calls for specialized methodologies for the reserve
requirements satisfaction.

– Optimal Transmission Switching (OTS). Very recently TSO are investigat-
ing the possibility of opening (tripping out) some line of the High Voltage
network in order to alleviate some constraints in the network itself. This
problem must be solved in conjunction with SCUC or OPF and give raise
to very complex optimization problems. (see also the Network and Storage
chapter).

In both monopolist and market-based models of course production power plants
dynamics have to be modeled in a correct way. In the short term, GenCos must
consider these constraints in the most detailed way, some of the most important
ones are sketched next.

• Thermal units: Thermal (including nuclear) power plant are modeled in a
somehow detailed manner. Main constraints and objective function include:

– quadratic cost curves possibly including some important (interdicted) valve
point.

– min and maximum stable production.
– ramp rates and start up rates, possibly depending on the working points for

bigger coal plants.
– complex operating dynamics for Combined Cycle Gas Turbine (CCGT) that

have several Gas Turbine (GT) coupled with Steam Turbine (ST).

• Hydro Units: Also, hydro units are modeled in a somehow detailed manner.
Main constraints include:

– Water-to-Power nonlinear relationships, for thin basin the bi-linear depen-
dency of the basin level, together with the discharge, can be included. This
severely complicates the models.

– Complex cascade dynamics, including delays in the water flows from one
basin to another. These delays can be also of different hours for big cascade
and as a result their consideration strongly couples the decision variables
along the time dimension.

– Additionally a forecast of possible natural inflows must be considered, due to
rain or snow melt in some situations.

• Renewable non-programmable (i.e. wind and solar): These power plants do
not actually have operational constraints but, due to their intermittency, the TSO
(or the monopolist) must carefully forecast their production profile perhaps by
geographical aggregation. In turns the inherent uncertainty in their (forecasted)
schedule calls for stochastic-like approaches.
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5 Unit Commitment (UC)

Unit Commitment (UC) has a research history of more than 50 years. UC
models, being large-scale mixed-integer nonlinear optimization problems solution
approaches, always have been inspired by ideas from different subdisciplines
of optimization, with permanently adjusting “large-scale” to bigger and bigger
numbers. In recent years, the integration of UC into energy optimization models
which, themselves, already are large-scale, e.g., power flow or uncertainty
management in production and trading, became a focal research topic.

A review of the first 25 years up to 1994 in the UC literature is presented in [392].
Some of the identified approaches later became major pathways in algorithmic
unit commitment. On the one hand, some heuristic methods are also consid-
ered, such as Exhaustive Enumeration, Priority Lists, or Simulated Annealing, as
well as mathematically rigorous methods from subdisciplines of optimization as
Dynamic Programming, (Mixed-Integer) Linear Programming, Network Flows, and
Lagrangian Methods. The computationally more demanding rigorous methods, on
the other hand, yield provably optimal solutions or at least lower bounds allowing
for gap estimates between objective function values of the best feasible solution
found so far and lower bounds generated in the course of the algorithm.

Lagrangian Relaxation—As it Was In [392] it was granted a “clear consensus
presently tending toward the Lagrangian Relaxation (LR) over other methodolo-
gies”. Indeed, still today LR offers flexible possibilities for relaxing constraints
complicating the model, however, at the cost of having to solve repeatedly “close
cousins” to the relaxed problem. The key features of LR applied to UC have been
and still are:

• the relaxation of constraints inter-linking units, e.g., load coverage or reserve
requirements, and arrival at single-unit subproblems,

• the dualizations of the relaxed constraints in the objective function by considering
Lagrangian multipliers, so that the resulting problem so-called Lagrangian
Relaxation(LR) is easier to solve than the original one,

• the solution of the convex, non-smooth Lagrangian dual whose objective-
function value calculation benefits from reduction to solving single-unit subprob-
lems and whose optimal value forms a lower bound to the optimal value of the
UC problem, and

• the using of Lagrangian heuristics to obtain “promising” feasible primal solutions
from the results of the dual optimization.

Lagrangian Relaxation—As it Is Fueled by improved bundle-trust subgradient
methods for the Lagrangian dual and by permanent progress in “off-the-shelve”
mixed-integer linear programming (MILP) software, up to the advent of market
deregulation, two basic approaches developed which still today are widely used:

• LR, often in conjunction with SND, DP and heuristic methods for finding
“promising” feasible solutions,
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• direct solution (by branch-and-bound) of MILP formulations of UC by “off-the-
shelve” solvers with linearization techniques for handling nonlinearities.

Lagrangian Relaxation—As it Will Be Rather than the transition to different time
horizons, from short via medium to long-term, the new economic environment in
the course of energy market deregulation poses research necessities and provides
incentive to integrate UC and ED with load flow and uncertainty treatment, [160].
The latter is intended in the widest sense, from handling stochasticity to topics of
mathematical equilibria in the context of power trading and bidding into power
markets. In particular, this means to integrate UC into models which already are
complex themselves.

Power Flow—Integrating UC and AC Load Flow This was considered utopic
throughout the “Early Days”, but now became possible by studying the quadratic
nonconvex AC load flow equations from the viewpoint of SemiDefinite Program-
ming (SDP). In [262] after relaxation of the rank condition, the solution to the dual
of the remaining convex model allows to retrieve a primal solution often meeting
the relaxed rank condition, and thus enabling to solve non-convex power flow
optimization problems to global optimality. In turn, one can construct convergent
solvers for unit commitment with SDP relaxations. See [163] for an example.

Power Flow—DC Model and Ohmic Losses The DC Load Flow Model provides
a linear approximation of its AC counterpart by resorting to linear relations and
avoiding variables in the space of complex numbers, see [153, 154]. The Ohmic
Losses approximation, [376], provides the possibility to include power losses within
the DC-approximation of an AC power system. Precise modeling of power losses
turns out instrumental in congestion management when load dispatches or even
commitments of units have to be revised to increase throughput of the grid under
increased inflows of renewables.

Power Based UC Traditionally UC is modeled with time periods of 1 h and thus
using only the same variable to represent the power and the energy, that is equal to
power by time. However, this approximation could introduce difficulties to map the
solution to an implementable power trajectory when also ramp-rate constraints are
considered [435]. Models and solution algorithms considering separated power and
energy variables are reported e.g. in [312, 433–435].

Polyhedral Methods Despite its success in combinatorial optimization, cutting
plane methods based on polyhedral studies, either applied directly or enhancing
branch-and-bound came to the fore in UC a bit more than 10 years ago, only. At
this time, market deregulation enforced the need of solving UC in a competitive
environment under incomplete information. In this way, solving UC problems
became a subroutine in the treatment of more complex decision problems in
electricity supply.

Today tight formulations are available for minimum-up/down contraints [263],
for ramp constraints [91, 338, 342], for start-up costs [393], for start-up and
shut−down limits [312, 312], for linearizing the convex quadratic power production
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cost [148, 151, 152], am ng others. Complete linear descriptions for all the feasible
solutions of the single-thermal unit commitment problem have been recently
provided in [150, 242]; both formulations are based on the DP algorithm presented
in [149].

Tight formulations for crucial model ingredients and for complete polytopes
arising in UC are also available. In particular, [263] give a best-possible formulation
of minimum up and down times for power-generating units. Rajan and Takriti [358]
give an alternative formulation with additional binary variables. Queyranne and
Wolsey [353] extend this to handle maximum up and down times. Morales−España
et al. [312] provide techniques for handling slow- and quick-start units (startup
and shutdown power trajectories for slow-start units, and startup and shutdown
capabilities for quick-start units).

Demand Side Management The interaction of growing distributed generation,
with increased consumer flexibility and volatility of the input of renewable energy
require a demand side management with unit commitment in a focal role and
without neglecting the remaining determinates of the generation system. The market
is invited to provide incentives for market participants to engage in Demand Side
Management. Vice versa, engagement of market participants must be carried out in
rational manner which, in turn, brings to the fore research at the interface of energy
science and mathematics, with many open problems up to the present day. Last but
not least, uncertainty of crucial model data remains a particular challenge.

6 Unit Commitment Under Uncertainty

In the presence of uncertainty, Unit Commitment (UC) either lives in a non-
competitive or competitive environment. The former concerns the time before, the
latter does it since deregulation of energy markets. Before deregulation, load has
been the dominating entity that is prone to uncertainty [406]. After deregulation,
UC-relevant sources of uncertainty have spread considerably: power input from
renewables, power prices determined by bidding into power exchanges, competi-
tors’ actions at electricity markets. Yet UC is understood in a broader context than
before; it rather is the scheduling of decentralized power supply with its small
generating facilities than commitment of thermal let alone nuclear generation units.
The integration of the production of renewable sources, due to its uncertainty,
must be adequately addressed to avoid affecting the operational reliability of a
power system. Generally, UC is a critical decision process that consists of an
optimization problem to generate the outputs of all the generators to minimize
the system cost. UC decisions are made once a day, 24 or more hours before the
actual operation. The main principle in operating an electrical system is to cover
demand for electricity at all times and under different conditions depending on the
season, weather, and time. The common goal of UC formulations is to minimize
the operating cost, while ensuring sufficient reserve to accommodate real-time
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realization of uncertainty. The main difference between models is the representation
of this uncertainty. The deterministic UC formulation is a traditional solution in
which the net load is modeled using a single forecast for each renewable output,
and the associated uncertainty is managed using ad hoc rules (i.e., the generating
units are committed to meeting the deterministic prediction, and the uncertainty
is managed by imposing reserve requirements [289]). This approach is easy to
implement in practice, but ad hoc rules do not necessarily adequately reflect uncer-
tainty. While the mathematical apparatus is fairly well developed for exogenous
uncertainty, the situation is completely different for endogenous uncertainty, i.e.,
with decision-dependent probability distributions. In case uncertainty is captured
by probability measures, stochastic integer programming offers methodology for
handling UC, both algorithmically and regarding structural understanding, see
[67, 162, 384, 406, 464], among others, different approaches are used to manage the
UC under uncertainty. The UC available approaches in the literature are as follows,
see [231] and others:

6.1 Stochastic UC

Stochastic UC is based on probabilistic scenarios. A finite set of scenarios is
generated with assigned weight for each scenario. The basic idea is to generate a
large number of scenarios where each scenario represents a possible realization of
the underlying uncertain factors. Stochastic UC is generally formulated as a two-
stage problem that determines the generation schedule to minimize the expected cost
over all of the scenarios respecting their probabilities. There is a difference between
commitment and dispatch decisions: the first are the same for all the scenarios,
the second are different for each scenario. The large number of scenarios in the
model requires high computational demand for simulations. Similar scenarios are
aggregated based on, for example, their probability or cost [231]. The structure
of scenarios can be a number of parallel scenarios in a two-stage problem or
a scenario tree in a multistage problem. Monte Carlo simulation [360] is often
used to populate the scenarios based on probability distribution functions learned
from historical data and to generate scenario trees based on stochastic processes.
However, increasing the number of scenarios may lead to small improvements in the
solution quality. Thus, Sample Average Approximation (SAA) [390] can be used to
test the convergence of the solution. Scenario reduction techniques are used in the
literature [109, 401] and [178]. The goal is to reduce the number of scenarios without
sacrificing their accuracy to a large extent. An interesting approach is introduced in
[465] and its UC application is presented in [464].
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6.2 Robust UC

In Robust UC formulations, a deterministic set of uncertainty is used, instead of a
probability distribution on the uncertain data. For example, the two-stage model in
[41] has the first stage which finds the optimal commitment decision, and the second
stage which generates the worst-case dispatch cost under a fixed solution from the
first stage. The range of uncertainty is defined by the upper and lower bounds on
the net load at each time period. In place of minimizing the total expected cost as in
Stochastic UC, Robust UC reduces the worst costs to the minimum for all possible
results of uncertain parameters [455]. These models produce conservative solutions,
but they are better from a computational point of view because they can avoid
incorporating a large number of scenarios. In the power system literature, Robust
UC models have been used to address uncertainties from net electricity injection
[453], wind power availability [225], demand-side management [454].

6.3 Interval UC

Interval UC formulations minimize the cost of covering the most probable load
forecast by ensuring feasibility in the uncertainty range that is delimited with upper
and lower bounds as in robust unit commitment formulations. There are strong
differences between the stochastic optimization approach and the interval one, the
model in the latter can be composed by three scenarios. In particular, the scenarios
are: the central forecast, the upper bounds, and the lower bounds. However, the
interval unit commitment can also be formulated as a two-stage problem where the
optimal solution is found in the first stage and then tested in the second stage for
feasibility. A method is proposed in [403]. To improve the advantages and reduce
disadvantages of the models presented in the previous parts, Hybrid UC models
have been proposed in the last years. Some of these models are unified stochastic
and robust unit commitment formulation [451] as well as stochastic and interval
unit commitment formulations [110]. Zhao and Guan[451] proposes a model able
to achieve low expected total cost while ensuring the system robustness. Dvorkin
et al. [110] proposes a model that applies the stochastic formulation to the initial
hours of the optimization horizon and then switches to the interval formulation for
the remaining hours.

7 Long-Term Unit Commitment

In the long term UC optimization models are applied to define tentative scheduling
of the power plants over typically 1 year horizon in order to assess the producibility
of a fossil fuel power plant and the tentative reservoirs management for hydro
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coupled with the (non programmable) uncertain production of renewable power
plants. While for short time horizons, typically of 1 day or of 1 week, the pure
short term UC problem (but not max profit UC in market related) can also be
considered deterministic, for longer management horizons, a special emphasis must
be put on the uncertain nature of data. In particular, on a yearly or more scale,
reservoir inflows, demand, as well as availability of the plants cannot be considered
deterministic. For instance in winter time customer demand can vary up to one
GW per degree Celsius for big countries such as Italy, UK, France or Germany.
On the other hand a rainy season can fill reservoirs and let the hydro production
plants produce much more w.r.t. a dry season. Another crucial factor is related to
renewables (wind and solar) power plant whose productivity fluctuations can be
high. In the following we give insight to the different goals and constraints of the
long term UC.

The main goal of the long term UC is to decide the production levels of the plants
comprising the mix in such a way that the demand is satisfied at each time step
and the production cost is minimized. The physical model typically considered is a
stochastic or robust dynamical system for which the uncertain parameters are (a) the
electricity consumption, (b) the availability rates of the thermal plants (either due to
optimized scheduled maintenance or faults) and (c) the quantity of inflows received
by the different reservoirs of the hydroelectric power stations. An additional goal
of a long term UC could be a definition for a GenCo (or for the monopolist) of the
gas long term (ToP) contract to be signed. As a reversed engineered problem also
an optimized schedule for maintenance can be deduced.

• Thermal units. Thermal (including nuclear) power plant are modeled in a
simplified manner w.r.t short term UC, main constraints include only min and
maximum stable production and often simplified (e.g. linearized or constant) cost
curves

• Hydro Units. Hydro units are modeled in a simplified fashion w.r.t. short term
UC, for small basin production minimum is relaxed to 0 and very often cascade
are aggregated to single production units

• Renewable non programmable (i.e. wind and solar). These power plants do
not actually have operational constraints but due to their intermittency the UC
modeler should try to have a tentative forecast of their production profile perhaps
by geographical aggregation. More importantly than in the short term cases the
inherent uncertainty in their forecasted schedule in turns calls for stochastic-like
approaches.

• Electricity Demand. Uncertainty in demand global values and profile shape are
the most important data to deal with. Both the global demand and, separately, the
demand profile are important to the solution of a long term UC. On the other hand
this electricity demand uncertainty couples with the uncertainty of the Renewable
non programmable units.
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8 Balancing Markets and Non-programmable (Renewable)
Power Coordination

The market share of renewable energy sources, and among them, intermittent energy
sources, is increasing. These energy sources offer various features in terms of
predictability. Tidal energy is highly predictable. Instantaneous or daily production
of a photovoltaic installation may be somewhat random, but annual and seasonal
productions are fairly predictable. Production of on-shore wind turbine is difficult
to predict, regardless of the time scale.

This raises specific issues in order to ensure proper matching between supply and
demand. In order to meet these issues, a number of solutions can be proposed:

• Diversity: Even though the production of an individual power unit may be hardly
predictable, the overall production of a large number of units is usually much
more predictable. Clustering non-correlated, or preferably, anti-correlated power
units can improve significantly predictability.

• Storage: Energy storage is still expensive, costs are dropping steadily.
• Exchange: European grid markets include power exchange and bilateral con-

tracts. This feature offers a large flexibility for balancing electricity demand and
supply.

• Previsions: Accurate prevision models for production and consumption are a
valuable support for grid management.

• Adapting demand to supply: A large number of electrical devices (thermal
equipment, batteries, etc.) can support some power interruptions or delays in
power supply without compromising the user’s comfort. Adapting demand to
supply, coupled with incentive pricing, may be a more relevant solution than the
other way round.

The problem of balancing a market can be seen as an optimization problem in a
competitive environment with uncertainty in resource availability and demand, or as
a time-varying problem. Following much work on convex variants of time-varying
optimization [39, 40, 88, 192, 394, 409], Liu et al. [271] presented an approach to
the non-convex time-varying optimal power flows in the alternating-current model.
Alternatively, it can be seen as regulation of a non-linear (and possibly time-varying)
system in control theory. Either way, many standard methods fail, as shown by
Fioravanti et al. [141] and Fioravanti et al. [142], and even those listed present only
an initial take on an otherwise very open problem.
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1 Networks and Storage: An Introduction

The traditional view of electric power systems suggested that power cannot be
efficiently stored and that the partially controllable supply and exogenous demand
have to be matched at all times. The networks in electric-power systems are tradi-
tionally divided into the high-voltage “transmission” system and the lower-voltage
“distribution” system. The transformers connecting the low-voltage distribution
system to the high-voltage transmission system are often in so-called distribution
substantions. From the point of view of the distribution system, the substation
provides a source of electric power, and traditionally the only source. From the
point of view of a transmission system, the aggregate demand of customers (in the
traditional un-observable low-voltage distribution system) is “revealed” as voltage
at the substations. The voltage in the transmission system then drives the power
flow within the transmission system, as well as the generation of power at the (so-
called synchronous) generators. This view is now being challenged by the increasing
availability of demand response management, distributed generation, storage, and
generators that cannot easily respond to voltage changes by changing power output.
Still, electric power transmission is of paramount importance, and its physical shape
is changing only very slowly.

1.1 The Physical Reality

Let us elaborate upon the physical reality of power transmission. The electric power
transmission can be implemented using a variety of means, with the most common
one being the overhead power lines. In overhead power lines, pylons are connected
by (most often) multiple high-tension lines, each of which is typically made of
aluminium wires wrapped around a steel core. Possibly, there may be additional
sensors along the line, such as fiber optics for capturing the temperature gradient,
or sensors measuring the magnetic field induced by the current flowing along the
line. One typically utilises the alternating current (AC) in over-head power lines, as
explained below.

As an alternative to overhead power lines, one can use underground and sub-
marine power transmission, albeit at much higher investment costs and sometimes
higher operational costs. First, the investment costs are higher, due to the needs
for excavations, insulation, and power electronics. Underground or under sea, high-
voltage (HV) cables require considerable amounts of insulation (often based on
pressurised oil or polyethylene). Because alternating current allows only for very
short lines (under 50 km), due to the high capacitance of the cable, one often uses
high-voltage direct current (DC), which requires considerable investment in (and
losses at) the power electronics involved in the AC-DC and DC-AC conversion
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(known as rectifiers and inverters, respectively). While the speed of the spread
of HVDC cables beyond the situations, where they are deployed already, cf.
the deployment of underground power transmission and distribution in Denmark
and cables between Germany and Sweden (Baltic Cable), and Norway and the
Netherlands (NorNed), remains unclear, it is clear that these require modelling both
AC and DC transmission as well as the related power electronics, in many countries.

One connects multiple power lines at so-called substations. At the most basic,
these can house a large slab of metal (e.g., copper), which is called a “bus”, onto
which the power lines are physically attached and which equalises the voltage
of the connected ends of the connected power lines. More often, one connects
multiple transmission lines to multiple coils (so-called windings) of a transformer.
The transformer can step up or steps down the voltage, in discrete steps, depending
on how the windings are connected. There can be step-up transformers connecting
a power station to the high-voltage transmission network (e.g., 400 kV), step-down
transformers within the transmission network (e.g., to 220 kV and 110 kV), and then
there are step-down transformers connecting the high-voltage transmission system
to the distribution system (e.g., 55 kV). Traditionally, the settings of the transformer
been limited to the step, and fixed for substantial periods of time, although this
is changing (cf. FACTS devices below). Such a transformer would still often be
referred to as a bus in an abstract view of buses connected by branches.

1.2 Models of Electric Power

Let us now elaborate upon the models of electric power. Although in general, the
current and voltage are an arbitrary signal in both alternating and directed current
systems, and one could hence use signal processing throughout, one often assumes
the harmonic currents to simplify the modelling of real-world power systems. There,
voltage, current, and power are sine waves with magnitudes, angular frequency ω,
and π is the phase. (Notice that one can use Fourier transform to approximate any
signal by sinusoids). Then, we have a closed-form solution for integral for the
average power transmitted, which is equal to the product of the current and the
voltage and the cosine of the phase. Together with the usual relationships of:

• ohmic heating (i.e., losses equal to the product of the resistance and the square
of current),

• Kirchhoff’s current laws (e.g., sum of current injected is the sum of currents
ejected, modulo losses),

one can formulate a variety of mathematical models for the harmonic currents, all
of which are non-convex.

A key choice in formulating a mathematical model of harmonic currents is the
choice of sine-waves to represent and the choice between polar and rectangular
representation thereof. Generally speaking, using the rectangular representation,
one can often derive a polynomial optimisation problem (POP), while using the
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polar representation, one obtains a problem with trigonometric constraints. In some
cases, it may also be beneficial to combine both representations, especially when
one considers piece-wise linearisations. The key choices studied so far include:

• polar power and polar voltage [69, 70, e.g.], where power generated at generators
and all voltages (except for a reference bus) are employed

• rectangular power and polar voltage [294, e.g.]
• rectangular power and rectangular voltage [168, 262, e.g.], where power gener-

ated at generators and all voltages (except for a reference bus) are employed
• rectangular current and rectangular voltage [294, 335, e.g.], where currents and

voltages are represented
• rectangular current injection.

We refer to [64] for a survey of the history of these formulations. We note
that one may consider problem with trigonometric constraints and derive the
polynomial optimisation problem [74] using substitutions and one of several well-
known trigonometric identities. This way, one obtains many further polynomial
optimization formulations.

1.3 Approximations

Considering the non-convexity, one often utilises approximations of a widely
varying quality, and widely varying shape, dependent on the choices above. The
simplest approaches assume the problem is convex, while it is clearly not, and apply
gradient methods or Newton method directly to the non-convex problem. In this
case, convergence guarantees can be obtained only for starting points within the
vicinity of a local optima; recently, it has been shown that whether one is close
enough is actually testable [270].

Without a starting point in the vicinity of a local optimum, one often considers
either convex relaxations. or mixed-integer convex approximations (e.g., piece-
wise linearisations), as in much of optimisation and control. In the most simple
relaxation, known as the Direct Current (DC) model (but confusingly applied to AC
systems or systems combining AC and DC transmission), the network structure is
taken into account, including the capacity of the transmission links, but a simplified
version of Kirchhoff laws is used so that the corresponding constraints become
linear. In more sophisticated convex relaxations, one uses semidefinite programming
(SDP) and second-order cone programming (SOCP). One should like to note that
such sophisticated convexifications [168, 279, e.g.] can be made arbitrarily strong,
i.e., with solution arbitrarily close to the solution of the non-convex problem,
albeit at a major expense of computational power. Within mixed-integer convex
approximations, one often considers piece-wise linearisations.
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The most common convexifications include, depending on the choice of the
variables:

• rectangular power and polar voltage can be piece-wise linearised in either
an inexact and well-performing or asymptotically exact and rather less well
performing fashion

• rectangular power and voltage yields very strong semidefinite-programming
relaxations, and convergent hierarchies of semidefinite-programming relaxations

• rectangular current and voltage, which produces weaker convex relaxations, but
may be suitable for the use in optimal transmission switching and network
expansion planning, where the current may be set to zero without consider a
high-degree polynomial

• rectangular current injection, which may again be suitable for the use in optimal
transmission switching and network expansion planning, whenever the degree of
a polynomial is less of a concern than the dimension of the system.

It should be noted that the convex and piece-wise convex approximations are an
active area of research and many rules of thumb above may be invalidated yet.
Finally, one sometimes uses the so called “transportation models”, where network
flows of units of energy are considered.

Let us now consider the time scale for the application of the approximation.
Clearly, the changes to demand and (consequently) voltage are continuous. Some
changes of limits on the power output may be continuous (e.g., wind power at low
winds), while others may be discontinuous (e.g., where there is no momentum,
e.g., when a wind turbine gets disconnected due to high winds). As in much of
optimisation and control, one often considers a discretisation of time and classical
batch-optimization algorithms that compute optimal operations based on a fully-
specified input, valid at one point in time. One should note, however, that with
the increasing volatility, this may seem inadequate. Novel algorithms that capture
the inherent time-varying nature of the problem and leverage on-line optimization
techniques as well as insights from control theory [39, 40, 87, 88, 192, 394, 409, 457]
show a certain promise. One should like to point out that they present only an
initial approaches to an otherwise very open problem, considering their use of crude
convex approximations of the non-convex problem. The use of on-line non-convex
optimisation [271] is nascent.

1.4 Looking Beyond

Going beyond the traditional view of power systems, energy storage [108] is a very
active are of research within electrical engineering and materials engineering. Cur-
rent large-scale implementations are based on pumped hydroelectric energy storage
(PHES), which provides close to 40 GW of capacity in Europe and a similar capacity
in the United States. Pilot projects involve lithium-ion batteries, cf. deployments
in New England and Australia, lead batteries, sodium batteries, (super)capacitors,
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pumped storage underwater reservoirs, spinning rotary machinery (fly-wheels),
compressed air, heavy-goods trains pushed uphill cranes lifting weights in the air
or in a mine shaft, and many other suggestions. It should be noted that the reach of
pumped hydro is limited to areas with the appropriate physical geography, while the
pilot projects have not shown a system that would be clearly commercially feasible
to operate at scale. See Sect. 6 It is hence not clear what shape and form energy
storage would take, eventually.

Finally, in demand response management (DRM), one hopes to “emulate” energy
storage by incentivising customers to amend their consumption in real time. We
refer to Sect. 1 above. Although the first related policies have been proposed decades
ago, large-scale deployments are still rather limited to, e.g., deferrable loads in
industrial refrigeration. Still, DRM excites many, due to its zero losses, and hence
costs bounded from below only by zero. One can construe a “virtual power plant”
(VPP) being formed this way.

2 An Overview of Network-Constrained Optimization
Problems

At a high-level, network-constrained problems of electric power systems can be
characterised by the market environment they consider, and the time horizon.
In vertically integrated systems the strategic electrical network management is
performed in an integrated fashion by the monopolist, whereas in market-based
ones, the responsibilities are split between the operators of the generating capacity
(GenCos), operators of the high-voltage transmission system (TSO), lower-voltage
distribution system (DSO), and possibly market operators and regulators. Long-term
planning problems include:

• Network Expansion Problems: Expand the networks by constructing new
branches and possibly removing old ones. Additionally, the decision of installing
network technologies, together with their siting, can be considered in the
expansion and reinforcement process.

• Energy Storage System (ESS) Siting and Sizing: Deciding the location and the
size of an ESS, e.g. [320].

• Smart Grid Design: The actual design of a smart grid includes the siting and
sizing of technologies that could enhance the observability and controllability
of the system and include: Phasor Measurement Units (PMUs), Wide-Area
Measurement Systems (WAMS), and notably Flexible Alternating Current Trans-
mission Systems (FACTS).

As a sub-problem of a long-term problem, or independently over a shorter time
horizon, one considers a variety of operations problem:

• Load Flow (LF): LF is actually not an optimization problem, but rather a
calculation of the power flowing along an electrical network, once we have fixed



Network and Storage 33

the generation schedule and the load in the substations. While not an optimization
problem, it gives evidence on the networks operating points under different
conditions. LF can also be used integrated in “what if” analyses.

• Optimal Power Flow (OPF): The OPF problem deals with the continuous-valued
decisions within the optimization of the generating cost, and operations of
renewable energy sources (esp. hydropower), considering the electricity grid. In
considering the grid, OPF takes into account the non-linear Kirchhoff laws and
the restrictions on power flow on each branch (transmission line) and voltage
angles. Typically, the generation cost optimization is performed considering all
the units status (on or off) fixed to a feasible status otherwise found. Similarly to
the LF, OPF can also be used in a what-if analysis tool.

• Security Constrained (SC) Problems: Integrated problems, wherein one wants to
consider a detailed set of constraints modelling reliability of the power plants and
the grid, as well as the physics of the grid itself. Typically, the goal is to find a
least cost schedule of production and flows that is also resistant to unpredictable
fault of one of the components (power plant, network branch etc.). The n-1
security problem refers to a single fault. From a methodological standpoint one
could consider n-k models with k faults, and some models in this direction have
been presented. In practice, TSO tend to decouple OPF or unit commitment from
n-k models, solving this latter problem by adding security requirements to an
already quasi-fixed solution from SCUC [44].

In the following sections, we introduce these problems in turn.
One should like to note that the two horizons are not disconnected. It is very

important to consider the operation and scheduling of generation and storage
units already at design phase to determine the most convenient combination of
technology selection and size. This is especially true when dealing with sizing of
energy storage. Long-term storage systems have recently caught much attention
due to their ability to compensate the seasonal intermittency of renewable energy
sources. However, compensating renewable fluctuations at the seasonal scale is
particularly challenging: on the one hand, a few systems, such as hydro storage,
hydrogen storage and large thermal storage can be used to this purpose; on the other
hand, the optimization problem is complicated due to the different periodicities
of the involved operation cycles, i.e., from daily to yearly. This implies long
time horizons with fine resolution which, in its turn, translates into very large
optimization problems. Furthermore, such systems often require the integration
of different energy carriers, including electricity, heat, and water. Exploiting the
interaction between different energy infrastructure, in the so-called multi-energy
systems (MES), allows to improve the technical, economic and environmental
performance of the overall system [290].

To consider another such integrated problem, consider the discrete decisions
(the so-called unit commitment problem) as a sub problem at design phase, which
implies taking into account the expected profiles of electricity and fuel prices,
weather conditions, and electricity and thermal demands along entire years. More-
over, the technical features of conversion and storage units should be accurately
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described. The resulting optimization problem can be described through a mixed
integer nonlinear program (MINLP), which is often simplified in a mixed integer
linear problem (MILP) due to the global optimality guarantees and the effectiveness
of the available commercial solvers (e.g. CPLEX, Gurobi, Mosek, etc.). In this con-
text, integer variables are generally implemented to describe the number of installed
units for a given unit, whereas binary variables are typically used to describe
the on/off status of a certain technology. Furthermore, decomposition approaches
relying on heuristic algorithms for unit selection and sizing have been proposed.
A comprehensive review of MINLP, MILP and decomposition approaches for the
design of MES including storage technologies has been carried out by Elsido
et al. [112]. However, independently of the implemented approach, significant
model simplifications are required to maintain the tractability of the problem. Such
simplifications include limiting the number of considered technologies, restricting
technology installation to a subset of locations, analysing entire years based on
seasonal design days or weeks, or aggregating the hours of each day into a few
periods. Such integrated problems are a major direction for future research.

3 Problems of Network Expansion Planning

Network expansion planning (NEP) is one of the main strategic decisions in power
systems and has a deep, long-lasting impact on the operations of the system.
Relatively recent developments in power systems, such as renewable integration
or regional planning, have increased considerably the complexity and relevance of
this problem.

NEP has multiple criteria, albeit frequently combined into a single objective
function, perhaps by considering the costs of the multiple criteria in a single
monetary objective. The main criteria are usually: costs, environmental impact,
market integration, and certain “exogeneous” factors. Costs are measured by the
attributes such as investment and operating costs of the transmission decisions,
but also operating costs of the system. In the cost criterion, one can also consider
reliability. Environmental impact is determined by attributes such as the amount
of renewable integration or curtailment avoided at system level and impact of the
line construction. Market integration is accounted as the number of hours of market
splitting. Social acceptance is an exogenous criterion and, nowadays, is a major
concern of the current planning process and is the cause of many delays.

Among the current challenges to be addressed for the network expansion
planning we can mention the following ones:

• coordination with GEP, as discussed previously. On the one hand, GEP is a
deregulated business activity, while NEP is mostly regulated. On the other hand,
generation investments can take around 3 years, while network expansion needs
to be anticipated longer periods.
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• renewable integration is one of the major drivers for investing in new transmis-
sion lines. Onshore and offshore wind power, and solar generation are renewable
technologies currently being developed at large scale to meet the low-carbon
electricity generation targets. A large part of this generation is located in remote
areas far from the load centers requiring transmission reinforcements or new
connections. Besides, the intermittent nature of these renewables introduces
operational challenges and, from the network planning point of view, many varied
operation situations should be considered.

• market integration is the current paradigm to achieve a competitive, sustainable
and reliable electric system and the network is a facilitator in this process. The
creation of an European internal market with strong enough interconnection
capacity among the member states increases the scope of the planning process,
from a national activity to a European scale.

A variety of mathematical optimization techniques are used for solving the network
expansion planning.

Classical methods include linear, nonlinear and mixed integer programming
methods. Linear optimization ignores the discrete nature of the investment decisions
but still it can be useful is system is too large to be solved with discrete variables
or a relaxed solution is good enough. A transportation or a direct-current (DC) load
flow fit in this linear formulation. Nonlinear, in particular quadratic, models appear
as a way to represent transmission losses. Finally, mixed integer optimization allows
considering the integer nature of the decisions. If stochasticity in some parameters is
included then models become stochastic and, therefore, decomposition techniques
should be used for large-scale systems. Among them, Benders decomposition,
Lagrangean relaxation and column generation are frequently used.

There is a vast array of academic literature on the subject. References [201, 261,
276] provide a good starting point. In the following two sections, we point to original
research on Sects. 4 and 5.

4 Transmission Network Expansion Planning (TNEP)

Transmission network expansion concerns the expansion of the high-voltage part of
the network. Market integration is the current paradigm to achieve a competitive,
sustainable and reliable electric system and the network is a facilitator in this
process. This is particularly true in the case of the EU. These challenges have
been addressed in a vast array of both projects and papers. Thorough reviews of
the academic literature on this topic can be found in [364, 387, 388].

A wide variety of models and the corresponding mathematical optimization
techniques are used in solving the network expansion planning. Initially, models
can be classified as either linear, non-linear, mixed integer linear (MILP), or non-
linear (MINLP). Linear models, often based on transportation or direct-current (DC)
load-flow, ignore the discrete nature of the investment decisions, but can be useful



36 J. Marecek et al.

as an approximation. Nonlinear models, often quadratic, represent transmission
losses, but still usually ignore the discrete nature of the investment decisions. MILP
approaches allow for the integer nature of the investment decisions to be considered,
but are restricted to an approximation of the non-linearity, either using piece-wise
linearisations, or linearisations including the DC and transportation load-flow. If
stochasticity in some of the parameters is considered, then models may become
challenging to solve, and decomposition techniques are often used for large-scale
instances. Finally, one may consider the full MINLP model: there, both the discrete
and non-linear features of the problem are modelled faithfully, but the problem is
challenging.

Further, one may consider a wide variety of objectives, although a single
objective function is often obtained by combining the multiple criteria into one, e.g.,
by considering the monetary costs associated with each criterion, and minimising
the total monetary costs across all criteria. The main criteria are usually: investment
costs, costs of operations (OPEX), reliability issues, environmental impact, market
integration factors, and rarely, other factors. While investment costs are often
relatively straightforward to estimate, the operational expenses associated may be
harder to estimate, especially considering the long planning horizon often consid-
ered. Similarly, the impact on reliability is often modelled only very approximately.
Environmental impact is often evaluated in terms of the amounts of renewable
integration made possible, or curtailment avoided at system level, in response to
the line construction. Market integration is accounted as number of hours of market
splitting. When the monetary costs of such approaches cannot be approximated,
metaheuristic approaches may provide a sample of the feasible solutions, without
any guarantees of their distance to optimality.

Considering GEP is a deregulated business activity, while NEP is mostly
regulated at both national and super-national levels, one may also introduce market
considerations explicitly. For example, one may consider an equilibrium in a pool-
based market at one level, possibly including spot prices, and the transmission
and generation expansion at another level. Such bi-level and multi-level models
have been attempted, but often increase the complexity to a point, where real-life
applicability is limited, considering the extent of many markets. In particular: Many
super-national markets area already in operations. The eventual creation of a single
European internal market with strong-enough interconnection capacity among the
member states, for instance, increases the scope and complexity of the planning
process.

Further, one may attempt to solve a problem combining the expansion of
transmission (NEP) with the expansion of generation (GEP). Clearly, generation
expansion has bearing upon network expansion, and vice versa. In particular,
renewable integration is one of the major drivers for investing in new transmission
lines. Onshore and offshore wind power, and solar generation are renewable
technologies currently being developed at large scale to meet the low-carbon
electricity generation targets. A large part of this generation is located in remote
areas far from the load centres, and hence requires transmission reinforcements or
new connections. Besides, the intermittent nature of these renewables introduces
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operational challenges and, from the network planning point of view, many varied
operation situations should be considered. In such integrated problems, the size of
the instances grows.

Within linear models, such as transportation or direct-current (DC) load-flow,
general-purpose linear programming optimisation software is often used, based
either on simplex or interior-point (barrier) methods. Often, it turns out to be chal-
lenging to devise a problem-specific method, whose performance improves upon
the general-purpose methods. Still, in case of particularly large-scale instances,
problem-specific decompositions such as column generation are used.

Within nonlinear models, often quadratic, a wide variety of methods is used,
considering the limitations of the general-purpose non-linear programming opti-
misation software. Since 1990, interior-point methods have been most popular.
First-order methods, including gradient and coordinate descent, and their stochastic
variants, had been used prior to this and also very recently, inspired by their
resurgence within machine learning.

Within MILP models, there has been much recent progress in general-purpose
optimisation software based on branch-and-bound-and-cut. Often, modest instances
considering either piece-wise linearisations or uncertainty, can be solved exactly
using the general-purpose software.

Decompositions, such as Benders decomposition, Lagrangian relaxation or
column generation are frequently used.

Within MINLP models, the methods are an active area of research, consider-
ing the limitations of the general-purpose non-linear programming optimisation
software. Marecek et al. [294] surveys three convergent approaches, based on piece-
wise linearisation of certain higher-dimensional surfaces, based on the method
of moments, and based on combining lifting and branching. The preliminary
conclusion is that the combining lifting and branching may be the most promising.

We refer to [201, 239, 261, 276, 364, 387, 388] for detailed surveys. See [294]
for the impact of the impact of the choice of model (AC vs. PWL vs. DC), [389]
for an illustration of the impact of security of transmission constraints, [423] for an
example of the impact of the uncertainty.

Software
Within two-stage approaches, there is a long tradition of work on decomposition
methods [30, 344], although even a monolithic scenario expansion may be tractable
[273, 383, 410], when AC and security of transmission constraints are ignored
and the model of the network [383] is sufficiently coarse. The incorporation of
market considerations [348, 364] complicates matters considerably. Within multi-
stage approaches, there are very well-developed decompositions [5].
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5 Distribution Network Expansion Planning (DNEP)

Network capacities were designed with a wide safety margin, so for a long time
expansion planning in electrical energy systems was concentrated on generation
expansion planning (GEP) with the goal of covering cumulative demand uncertainty
based on averaged historic demand data in monopolistic environment for energy
transmission. These were modelled as stochastic optimization problems with a one
dimensional demand distribution represented by two-stage or multi-stage scenario
trees that were generated by Monte Carlo methods. The models went to the limit of
computational possibilities at any point in time, included binary decision variable,
with a risk neutral approach and, then, only expected values in the objective function
where considered in the time horizon over the scenarios. Very limited use was made
of risk averse measures.

In order to solve the large-scale problems, decomposition methods played a
central role, in particular the following methodologies:

• Two-stage Benders Decomposition (BD) for linear problems [37]. See [24, 275,
424], among many others.

• Multistage Benders Decomposition (BD) methodology for linear problems. See
[45] among others.

• Two-stage Lagrangian Decomposition (LD) heuristic methodology. See [68, 115,
118, 172, 173, 267, 330, 332], among many others. See also [405, 421] for
two surveys on the state-of-the-art of two-stage stochastic unit commitment,
and using LD with bundle methods. See also [113, 371, 422] two-stage LD
approaches with bundle methods applied to energy problems.

• Multistage Clustering Lagrangian Decomposition (MCLD) heuristic methodol-
ogy. See [121, 126, 128, 287], among some others.

• Regularization methods. See [26, 267, 317, 368, 369, 386], among others.
• Progressive Hedging algorithm (PHA) for multistage primal decomposition. See

[363, 438], among others.
• Nested Stochastic Decomposition (NSD). See [8, 86, 122, 127, 181, 246, 323,

345, 346, 367, 391, 463], among others.
• Multistage cluster primal decomposition. See [9, 10, 17, 34, 126, 287, 339, 377,

448], among others.
• Parallelized decomposition algorithms. See [8–10, 16, 26, 38, 269, 317, 339, 367,

377, 448], among others.

Today, new power production possibilities, technological developments and
deregulation bring along several new sources of uncertainty with highly differing
levels of variability. In addition to traditional demand, these are foremost depen-
dencies on wind, market prices, mobile electricity consumers like cars, power
exchanges on international level, local energy producers on distribution network
level and, to a lesser extent, solar radiation. This introduces complex and volatile
load and demand structures that pose a severe challenge for strategic planning
in production and transmission and, on a shorter time scale, in distribution.
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Networks may now be equipped with new infrastructure like Phase Measurement
Units (PMUs) and other information technology in order to improve their cost
efficiency. At the same time these upgraded networks should ensure high standards
in reliability in their daily use and resilience against natural or human caused
disasters. Companies now have teams devoted to the task of generating suitable
planning data.

In optimization models, the emphasis has shifted to high dimensional stochastic
data and to considering risk reduction measures instead of expected values. Compu-
tationally integrated models considering all relevant aspects are out of scope. Even
for simplified models it is often difficult or not known how to provide stochastic
data of sufficient quality [399]. Alternatives are then:

• robust optimization, where distributions are replaced by “easier” uncertainty sets
[36],

• methods, where uncertainties are replaced by a kind of interval arithmetic
equipped with scenario dependent probabilities [447],

• stochastic approaches: where some input data follow probability density function
and some can be represented by fuzzy membership functions [397].

• information gap decision theory that aims at hedging against information errors
[35, 355].

Methods for solving these stochastic optimization problems with binary decision
variables employ the same decomposition approaches listed above, but much more
care needs to be devoted to the properties of the decomposition. For risk averse
measures in multistage models, methods are distinguished regarding their “time
consistency” or “time inconsistency”. So far, stochastic dynamic programming
approaches are the most suitable ones for dealing with the time consistency property
of risk measures, so that the original stochastic problem may be decomposed more
easily via scenario clustering and cluster dependent risk levels.

In power generation optimization models for big companies the following are the
issues of relevance, mainly addressed in the context of market competition:

• when and where to install how much new production capacity, mainly consider-
ing wind generators and thermal plants.

• how to extend or renew hydro plants and where to install what pumping
capacities. Today, solar power is typically handled at the level of distribution
networks.

In contrast, competition is not an issue for transmission and distribution network
operators. Regulations on efficiency, reliability and resilience levels are the driving
force in the following problems:

• when and where to install how much network capacity and information equip-
ment,

• reducing transmission losses,
• reducing distribution losses (technical and detecting non-technical ones).

Challenges today and for the future comprise:
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• The robust approach allows for safe optimization with uncertain data. What
information can be extracted from these robust solutions e.g., on which additional
data would be needed to improve the quality of the model?

• Several risk averse measures have been proposed, each with its advantages and
disadvantages. How to make use of them in the best way?

• How to deal with endogenous uncertainty, i.e., with optimizing big player
decisions that influence the probability distributions that are optimized over?

• How to construct hierarchical decomposition approaches in a consistent way?
• How to make use of high-performance computing (HPC, multi-core or Dis-

tributed) in decomposition approaches?
• How to integrate chance constraints (ICC), e.g., with respect to reliability or

resilience?

General goals for future models include: increasing the level of integration;
bringing models closer to reality by avoiding the excessive linearization of nonlinear
aspects; reducing the gap between methods used in academia and those applied
in practice; making use of new monitoring devices and communication systems;
exploring the chances of cooperation between electric and other energy commodity
systems.

On the software side, general-purpose stochastic optimization software still
seems far away. Planning models are highly problem-dependent and off-the-shelf
packages are not available. Companies use modelling languages like GAMS [398],
AMPL, AIMMS, Python together with standard solvers to develop problem-specific
approaches.

6 Energy Storage System (EES) Siting and Sizing

It is very important to consider the operation and scheduling of generation and
storage units already at design phase to determine the most convenient combination
(i.e., minimum objective function) of technology selection and size. This is espe-
cially true when dealing with selection, sizing and unit commitment of long-term,
or seasonal, energy storage. Long-term storage systems have recently caught much
attention due to their ability to compensate the seasonal intermittency of renewable
energy sources. However, compensating renewable fluctuations at the seasonal
scale is particularly challenging: on the one hand, a few systems, such as hydro
storage, hydrogen storage and large thermal storage can be used to this purpose;
on the other hand, the optimization problem is complicated due to the different
periodicities of the involved operation cycles, i.e. from daily to yearly. This implies
long time horizons with fine resolution which, in its turn, translates into very large
optimization problems. Furthermore, such systems often require the integration
of different energy carriers, e.g., electricity, heat and hydrogen. Exploiting the
interaction between different energy infrastructure, in the so-called multi-energy
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systems (MES), allows to improve the technical, economic and environmental
performance of the overall system [290].

In this framework, including the unit commitment problem already at design
phase implies taking into account the expected profiles of electricity and gas
prices, weather conditions, and electricity and thermal demands along entire
years. Moreover, the technical features of conversion and storage units should
be accurately described. The resulting optimization problem can be described
through a mixed integer nonlinear program (MINLP), which is often simplified
in a mixed integer linear problem (MILP) due to the global optimality guarantees
and the effectiveness of the available commercial solvers (e.g., CPLEX, Gurobi,
Mosek, etc.). In this context, integer variables are generally implemented to describe
the number of installed units for a given unit, whereas binary variables are
typically used to describe the on/off status of a certain technology. Furthermore,
decomposition approaches relying on meta-heuristic algorithms for unit selection
and sizing have been proposed. A comprehensive review of MINLP, MILP and
decomposition approaches for the design of MES including storage technologies has
been carried out by Elsido et al. [112]. However, independently of the implemented
approach, significant model simplifications are required to maintain the tractability
of the problem. Such simplifications include limiting the number of considered
technologies, restricting technology installation to a subset of locations, analyzing
entire years based on seasonal design days or weeks, or aggregating the hours of
each day into a few periods.

7 Optimal Power Flow (OPF)

In the optimal flow problem, the costs of generation and transmission of electric
energy is optimised, taking into account the active and reactive power generation
limits, demand requirements, bus voltage limits, and network flow limits. In the
alternating-current (AC) model, OPF is formulated as a non-convex optimisation
problem (ACOPF) that is generally difficult to solve, due to the non-linear nature
of the power-flow constraints. The problem was first formulated in 1962 and a large
number of optimization algorithms and relaxations have been proposed [308, and
references in] since then.

The directed-current optimal power flow (DCOPF) is a popular approximation
based on the linear programming problem, which is obtained through the lineari-
sation of the power flow equations. While DCOPF is useful in a wide variety
of applications, a solution of DCOPF may not satisfy the non-linear power flow
equations and hence the resulting solution may be infeasible and may be of limited
utility.

Numerous heuristic algorithms were proposed for the OPF, including Newton-
Raphson, Lagrangian relaxation, and primal-dual interior point methods. Although
some of these algorithms can handle large-scale networks most them can only
compute stationary point usually without assurance on the quality of the solution.
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That is because most of the algorithms rely on first-order (Karush-Kuhn-Tucker)
necessary conditions of optimality, which cannot even guarantee a locally optimal
solution, in the non-convex problem, without considering the presence in the basin
of attraction of a global optimum [270].

Alternatively, the OPF can be formulated as a non-convex quadratically con-
strained quadratic program, or more generally polynomial optimisation problem
(POP). There, convex relaxations within second-order cone (SOCP) programming
and semidefinite programming (SDP) can be applied. In contrast to the other
proposed approaches, convex relaxations make it possible to check if a solution
is globally optimal. If the solution is not optimal, the relaxations provide a lower
bound and hence a bound on how far any feasible solution is from optimality.
In particular, [27] proposed the first semidefinite programming relaxation for the
ACOPF for general networks. Its strengthened versions [295] make it possible to
find globally optimal solutions for several well-known instances. More recently,
the moments and sum-of-square decomposition have been used [168, 250] to
build hierarchies of improving SDP relaxations for a polynomial programming
formulation of ACOPF. To overcome the computational complexity of using SDP
and polynomial programming, sparsity has been exploited [168, 281] to simplify the
SDP relaxation of the OPF. A number of challenges remain:

• To further improve the scalability of SDP relaxations, Alternating Direction
Method of Multipliers (ADMM)-based computation can be used to solve sparse,
large-scale SDPs [281].

• Alternatively, cheaper hierarchies are being investigated based on LP and SOCP
relaxations. In the future, a combination of hierarchies mixing constraints from
different cones may be envisioned.

• Another issue to address is development of techniques to certify infeasibility of
optimal power flow instances.

• From an industrial point of view, dealing with incomplete data is one of the issues
models and tools have to address. Aggregations of industrial data may lead to
physically non-meaningful models, since some section of the power network are
not represented in the data.

8 Security-Constrained Optimal Power Flow (OPF)

The security constrained optimal power flow (SCOPF) is an extension of the
standard OPF which takes into account line outages that have an effect on the line
flows. The SCOPF problem is modelled as a nonconvex mixed-integer non-linear,
large-scale optimization problem, with both continuous and discrete variables. The
optimization problem determines a generation dispatch with lowest costs while
respecting the constraints, both under normal operating conditions and for specified
disturbances, such as outages or equipment failures. A number of issues make the
SCOPF much more challenging than the OPF problem: the significantly larger
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problem size, the need to handle discrete variables describing control actions (e.g.
the start up of generating units and network switching) and the variety of corrective
control strategies in the post-contingency states.

Similar to OPF problems, different solution approaches have been proposed
to solve the SCOPF problem such as linear programming approximations and
heuristics in addition to non-linear-programming based methods. For example, to
obtain feasible solutions, [180] propose to adjust the generation levels with the
commitment states obtained in the dual solution of the Langrangian relaxation [211].

9 Optimal Transmission Switching (OTS)

The Optimal Transmission Switching deals with changing the transmission network
topology in order to improve voltage profiles, increase transfer capacity, and reduce
the market power of some market participants. The topology is changed, primarily
by the deliberate outage of some specific transmission lines. Further, one may also
consider, the use of phase shifters (which change the angle difference between
two adjacent buses) and other Flexible Alternating Current Transmission System
(FACTS) devices (which can, among others, increase/decrease the impedance of
two adjacent buses). The change in topology can be done by one or combination of
the following actions:

• Deliberate outage of some specific transmission lines
• Adding phase shifters (these devices can change the angle difference between

two connected buses)
• Adding Flexible Alternating Current Transmission System (FACTS) devices

(these devices can increase/decrease the impedance of two connected buses in
the system)

• Adding reactive series impedance (these devices can increase the impedance of
two connected buses in the system) [400]

The idea of topology dispatch has been studied for several decades [170, 196,
299, 334], although it has gained much attention recently thanks to [143, 196], who
have demonstrated how it can provide the electricity market with greater efficiency
and competition. This idea was further developed in [197, 198, 373, 429] by not
only considering the normal operation but also the N-1 contingencies and financial
transmission rights (FTR) and Flexible Alternating Current Transmission System
(FACTS) devices. The unit commitment problem constrained by transmission
system is solved in [428].

Much of this early modelling work has been performed using linear programming
(LP) approximations of the alternating-current power flow and can be applied
to large-scale transmission systems. The present best LP formulations have been
presented by Kocuk et al. [244] and Fattahi et al. [137].

Much recent work considers non-linear relaxations, in order to model the
alternating-current transmission constraints without piece-wise linearisation. Jabr
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[219] proposes an SOCP relaxation and [245] extends it. Marecek et al. [294]
have experimented with the sparse variant of the method of moments for two
formulations, lift-and-branch-and-bound using SDP relaxations, and certain piece-
wise linearisations. Capitanescu and Wehenkel [65] and Sahraei−Ardakani et al.
[372] study of heuristics based on non-linear optimisation. Generally, convergent
methods considering the line-use decision within the alternating current model
[219, 245, 294] have turned out to be challenging.

For mixed-integer linear-programming (MILP) models, there has been much
recent progress in general-purpose optimisation software based on branch-and-
bound-and-cut. Often, modest instances considering either piece-wise linearisa-
tions or uncertainty, can be solved exactly using the general-purpose software.
Decompositions, such as Benders decomposition, Lagrangian relaxation, or column
generation [428, 429] are frequently used beyond that.

For mixed-integer non-linear programming (MINLP) models, the methods are
an active area of research [65, 83, 219, 245, 294, 372], considering the limitations
of the general-purpose non-linear programming optimisation software. Marecek et
al. [294] surveys three convergent approaches, based on piece-wise linearisation of
certain higher-dimensional surfaces, based on the method of moments, and based on
combining lifting and branching. The preliminary conclusion is that the combining
lifting and branching may be the most promising.

See also Transmission expansion planning, which is structurally very closely
related, although the uncertainty is often modelled differently. Note also one would
often [429] like to expand the network knowing that one can perform switching
later.

10 Optimal Network Islanding and Restoration

The power systems are usually subject to disturbances which may lead to loss of
synchronization between groups of generators and possibly blackouts.

The system islanding refers to the condition, in which some areas of the
transmission or distribution system are disconnected from the main grid, however
the power supply continues in that region by local generating facilities. It may
happen automatically, after some transmission lines are tripped by local relays to
isolate the faulted region. The role of system operator is to optimally maintain the
balance between the generation and demand in each island. The main idea is to
reduce the total amount of load shedding to maintain such a balance and avoiding
the blackout.

There are two types of islanding:

• Intentional Islanding: It is done to determine optimal splitting points (or
called splitting strategies) to split the entire interconnected transmission network
into islands ensuring generation/load balance and satisfaction of transmission
capacity constraints when islanding operation of system is unavoidable [402]. It
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is considered as an emergency response for isolating failures that might propagate
and lead to major disturbances [340].

• Unplanned Islanding: This is an unplanned condition which should be avoided
[136]. The islanding detection techniques are applied to reduce the risk of this
event. This phenomenon is due to line tripping, equipment failure, human errors
and so on [268].

Studies [442] have shown that by intentionally splitting the system into islands
wide-area blackouts could have been prevented for several large disturbance events,
e.g., [419]. The objective would be to isolate the faulty part of the network in
order to limit the spread of a cascading failure. Intentional islanding is therefore
attracting an increasing amount of attention. Islands should be designed such that
they are balanced in load and generation and have stable steady-state operating
points that satisfy voltage and line limits. Further the action of splitting should not
cause transient instability. Since this problem potentially involves a 0-1 decision for
every line in the network the search space grows exponentially with the size of the
network leading to a considerable computational challenge.

Most approaches in the literature deal with finding a pre-determined islanding
strategy that could be implemented in case of a network fault irrespective of where
the fault occurs. The simplest example of this is forming islands by only requiring
that load and generation are balanced. In [232], a three-phase ordered binary
decision diagram (OBDD) method is proposed that determines a set of islanding
strategies. The approach uses a reduced graph-theoretical model of the network
to minimize the search space for islanding; power flow analyses are subsequently
executed on islands to exclude strategies that violate operating constraints, e.g., line
limits.

An alternative strategy that aims to avoid transient problems is to split the
network into electromechanically stable islands, commonly by splitting so that
generators with coherent oscillatory modes are grouped. If the system can be
split along boundaries of coherent generator groups while not causing excessive
imbalance between load and generation, then the system is less likely to lose
stability. Typically, these strategies additionally consider load-generation balance
and other constraints; algorithms include exhaustive search [445], minimal-flow
minimal-cutset determination using breadth-/depth-first search [436], and graph
simplification and partitioning [441]. The authors of [226] note that splitting
based simply on slow coherency is not always effective under complex oscillatory
conditions, and propose a framework that, iteratively, identifies the controlling
group of machines and the contingencies that most severely impact system stability,
and uses a heuristic method to search for a splitting strategy that maintains a
desired margin. Wang et al. [437] employed a power-flow tracing algorithm to
first determine the domain of each generator, i.e., the set of load buses that
‘belong’ to each generator. Subsequently, the network is coarsely split along domain
intersections before refinement of boundaries to minimize imbalances.

While several useful strategies exist for determining pre-planned islanding
decisions, little attention has been paid to islanding in response to particular
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contingencies. If, for example, a line failure occurs and subsequent cascading
failures are likely, it may be desirable to isolate a small part of the network—the
impacted area—from the rest. A method that does not take the impacted area into
account when designing islands may leave this area within an arbitrary large section
of the network, all of which may become insecure as a result.

In [414] (for DC network constraints) and [415] (extended to AC constraints)
the authors propose an optimization-based approach to system islanding and load
shedding. Given some uncertain set of buses and/or lines, solving an optimization
determines (1) the optimal set of lines to cut, (2) how to adjust the outputs of
generators, and (3) which loads to shed. The authors assume that this is done
intentionally under central control and not left to automatic safety devices. A key
feature of the method is that any islands created satisfy power flow equations and
operating constraints. Therefore, if a transiently stable path is followed from a pre-
islanding state to the post-islanding operating point, the islanded network will be
balanced and with minimal disruption to load.

The optimal network restoration is called to a class of actions taken by network
operator to bring back the power system into its normal condition following a
complete or partial collapse. Intentional system islanding can be one of these actions
[73, 365], but generally the methods are only partially developed.

From a mathematical perspective the islanding MILP problem has similarities
with the transmission switching problem [199] (cf. Sect. 9), in that the decision
variable includes which lines to disconnect, while power flow constraints must be
satisfied following any disconnection. Similar decision variables are also involved
in transmission expansion planning [294] (cf. Sect. 4). All three approaches—
expansion planning, transmission switching, and islanding—may be seen as net-
work topology optimization problems with added power flow constraints.

11 Operations of Smart Grids

The smart grid paradigm improves upon the controllability and control of existing
power systems. With the increased penetration of distributed production (solar,
wind), energy storage (pumped storage, batteries, compressed air storage, and plug-
in hybrid electric vehicles), transmission switching and controllable elements called
FACTS (see below), power flows can be and need to be dynamically adjusted
in order to improve reliability and efficiency. Also, a partial load shifting from
peak hours to off peak hours is possible. Such opportunities also increase the
complexity of the design and operations of the power system. A broad class of
novel optimization problems hence emerges, with the focus varying power system
to power system.

In power systems, where peak demand occurs in one season, while the peak
generation from renewables occurs in another season [169], the focus has largely
been on the improvements to the efficiency of power generation and reliability
of power transmission under stress due to peak demand or peak generation
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from renewables. The improvements are made possible by the so called flexible
alternating current transmission system (FACTS) devices [260], which are now
routinely installed at generators, at the interconnection of one national transmission
system (TS) with others, and elsewhere, such that the national transmission system
operators (TSO) gain more control over the power flows in their TS [84, 359].
FACTS devices intended for steady-state operations include:

• load tap changer (LTC), thyristor-controlled load tap changers, which make it
possibly to vary the tap ratio rapidly

• phase-shifters (PS), e.g. thyristor-controlled phase shifters, which make it possi-
bly to vary the phase angle rapidly

• series capacitor (SC), e.g., thyristor-controlled series capacitor coupled in par-
allel with a thyristor-controlled reactor (TCR), makes it possible to smooth the
output of the reactor with varying reactance

• interphase power controller (IPC), which makes it possible to control reactive
and active power independently

• static VAR compensator (SVC), which is a source or sink of reactive power
• static compensator (STATCOM), which allows to control either the nodal voltage

magnitude or the reactive power injected at the bus.

The availability of such devices underlies the corrective actions available in response
to stress. To summarize the book-length treatment of [3]:

• when voltages are too low, one supplies reactive power (using STATCOM, SVC)
• when the voltages are too high, reactive power is absorbed (using STATCOM,

SVC)
• when thermal limits are exceeded, load is reduced (using SC, IPC),
• when loop flows appear, series reactance is adjusted (using IPC, SC, PS),
• when power flow direction is reversed, phase angles are adjusted (using IPC, SC,

PS).

It is hence believed that wider availability of FACTS devices will lead to an
increased stability of power systems. The non-convex optimization problems
combining efficiency and reliability objectives, decisions as to FACTS settings, and
constraints of the alternating-current power flows remain a major challenge.

Especially in power systems, where peak demand and peak renewable generation
occur within the same season, there is an additional focus on energy storage and
demand response management. One report [351] estimates that the potential demand
response capability was about 20,500 megawatts (MW) in the US, or 3% of total
peak demand. This is obtained by combining a variety of readily deferrable loads,
comprising:

• pumped energy storage, which has been introduced into a number of power
systems since 1950s, and remains an important feature to the present day

• large industrial customers, e.g., in refrigeration, and gas networks operations,
who are being converted to flexible contracts, allowing for load shedding
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• charging of electric cars which could become a major load, eventually while
many other loads may become deferrable, should the regulatory environment
change such that retail prices vary over time and load control switches (e.g.,
remotely controlled relays or relays relying on price data, such as learning
thermostats connected to domestic air conditioning) become widespread.

While many other loads may become deferrable, should the regulatory envi-
ronment change such that retail prices vary over time and load control switches
(e.g., remotely controlled relays or relays relying on price data, such as learn-
ing thermostats connected to domestic air conditioning) become widespread. In
some regions, such as California, where the photo-voltaic generation facilities
are widespread and the peak demand is due to the use of air conditioning, the
resulting savings can be considerable. Notice, however, that a number of challenges
remain. First, there is the issue of information provision: in many markets with
dynamic pricing, customers do not have access to data on current prices. The
immediate announcement of prices may lead to swings in the demand, whereas no
announcement may make it impossible to reach the best possible efficiency. Second,
the regulatory framework has to be compatible with the free markets. Third, if the
decision making is to remain centralised, one needs to model the behaviour of the
users. Because of the numerous difficulties of doing so, a number of mechanism
design studies and distributed decision-making schemes have been proposed.

Overall, smart grids require both changes to the power systems’ infrastructure,
as well as changes to their control mechanisms, which require the generation,
distribution, transmission, and consumption to be modelled jointly. Although much
innovative thinking is required, any progress on solving the underlying problems
(mainly LF, OPF, ONI and OTS) is still relevant.

12 Energy Storage Operations Management

12.1 Storage Systems

The increased awareness of the environmental impact and of the carbon footprint of
all energy sources have motivated the recent widespread adoption of Renewable
Energy Sources (RES). However, the intrinsic intermittent and not-schedulable
nature of such naturally generated energy introduces a new source of uncertainty
in the operation and planning of electric power systems. This poses a critical threat
to the power grid since its stability relies on the balance between energy production
and demand [251]. Therefore, as the installed capacity of RES keeps increasing, the
need to compensate the fluctuations caused by non-dispatchable energy sources has
become one of the most compelling drivers of research in the power-grid scientific
community.

There are many ways to mitigate the variability of power generation from RES.
On the one side, there have been many efforts in improving the accuracy of power
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generation forecasts from renewable sources. Most notably, recent efforts in this
direction can be found in [21] and [443], and in the book [311]. Another possibility
to handle the intermittent nature of RES is to use conventional (i.e., dispatchable)
power plants as back-up to improve the resiliency and the flexibility of the overall
mix of power plants in the power grid. Obviously, this solution brings back the
pollution issues, associated with the usage of conventional power plants [283]
and [439]. A further opportunity can be provided by hydro power plants, as they
can respond quickly and absorb some of the energy fluctuations; however, hydro
resources are limited by their availability and their unsuitability to handle frequent
charge-discharge cycles.

According to the previous discussion, there is a general consensus that Energy
Storage Systems (ESSs) may provide a viable way to systematically support power
generation from RES, as they represent a cost-effective, flexible and quick tool
to smooth and regularize intermittent power generation [32]. The next sections
describe the main technologies employed to build storage devices, their main
applications in power grids, and the main mathematical methods that are used to
solve grid-related optimization problems when storage devices are also explicitly
taken into account.

12.2 Technology

The physical characteristics of a storage system must be adapted to the particular
service of interest. For instance, an ESS that has to provide primary frequency
regulation will present different characteristics from one that is desired to provide
the local supply to a private house. Accordingly, storage techniques can be divided
into four categories [215]:

• Low power applications (e.g., transducers, private houses)
• Medium power applications (e.g., individual electrical systems, town supply)
• Peak levelling and network connection applications
• Power-quality applications

For the first two categories, we consider small-scale systems in which energy
can be stored in the form of a flywheel (kinetic energy), fuel cells (hydrogen), or
supercapacitors. The last two categories are instead large-scale applications and
the most used technologies rely on storing the energy in the form of gravitational
energy (e.g., hydraulic systems), thermal energy or compressed air. Finally, note
that Electric Vehicles (EVs, either in terms of Fully Electric Vehicles or Plug-in
Hybrid Vehicles) have been recently assimilated to ESS, due to their ability to
behave as a battery when the vehicle is idly connected to the grid. Given the special
characteristics of EVs (whose main purpose is clearly to serve as mobile vehicles,
and not to serve as batteries), a specific and more detailed discussion about their
usage is given here (add a link to the wiki entry to electric vehicles).
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For a more detailed discussion on storage technology and their technical
characteristics, we refer to [32, 215] and to the more recent [79, 459].

12.3 Benefits

The use of ESSs, due to their versatility and flexibility, can lead to a number of
advantages for the power grid, both from a technical and an economic perspective.
In what follows we list the main services that storage technology can bring. For a
more detailed discussion the interested reader can refer to [32, 175, 215, 459], and
especially to [459, Section 3].

• Ancillary services: ESSs can help regulate the active power supplied by non-
dispatchable generation and provide primary frequency and voltage control,
therefore improving the transient response of the power grid. This would
remove the need to keep expensive dispatchable back-up power generation and
would greatly facilitate the penetration of wind and solar power. Examples of
technologies in the ESS for ancillary services segment are pumped storage
for longer duration applications such as load following, reserve capacity and
spinning reserves, or flywheels for high-power, short-duration applications such
as frequency regulation.

• Energy arbitrage: ESSs would allow to purchase inexpensive electric energy,
available during periods when prices or system marginal costs are low, to charge
the storage system so that the stored energy can be used as a substitute for the
expensive primary power used in peak-load power stations. Alternatively, ESSs
could store excess energy production, which otherwise would be lost, from RES.
A typical example would be Pumped storage. The principle is that during periods
when demand is low, these stations use electricity to pump the water from the
lower reservoir to the upper reservoir. When demand is very high, the water
flows out of the upper reservoir and activates the turbines to generate high-value
electricity for peak hours.

• Network savings: Power consumption during the day is characterized by high
fluctuations, meaning that the minimum level of consumption is usually much
lower than the maximum daily peak (especially during summer and winter).
This leads to over sizing the production units and transmission lines, and the
necessary equipment, that are tailored to absorb the peak demand. On the other
hand, the usage of local supply in the form of ESS, would help compensating
load variations and would make possible to operate transmission and distribution
networks with lighter designs, closer to the average daily consumption rather
than to the peak demand.

Due to the aforementioned diverse applications, the mathematical problems
associated with ESSs that are of utmost interest for the power grid, correspond to
their optimal siting (i.e., finding the most convenient location where to install them)
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and sizing within the power grid [459]. The next section reviews the most used
techniques to address such problems.

12.4 Models

Different models, with different levels of accuracy, have been developed in the
literature to model the functioning of storage devices. The level of detail usually
depends on the particular application of interest, and in general on the level of detail
with which other power grid devices have been modelled. When accurate models of
the batteries are not required, in some cases simple first order linear equation may be
used, [77, 139, 140, e.g.]. Such simple models can be used when one is not interested
in the point-wise behaviour of the system (as the low-level electrical behaviour of
the ESS is neglected) but, for example, when the aim of the study focuses on the
effects of the transient behaviour of a power grid [139, 140]. More sophisticated
and realistic models can be found in [336, 337], where many other low-level details
of a storage unit are also taken into account (e.g., life cycle, ageing, dc link, specific
technology).

While simultaneous determination of the optimal location and size of ESS is
known to be a non-deterministic polynomial-time hard problem [459], yet different
strategies have been adopted to tackle it. This includes the use of Monte Carlo
simulations, more analytic approaches (like dynamic programming, mixed integer-
linear programming and second-order cone programming), and certain heuristic
methods.
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1 Strategic Maintenance

Like any device or system, all electricity devices require periodical maintenance.
Maintenance in electricity systems is a source of large costs; in the EU the
maintenance costs amount to between 4 and 8% of the total sales turnover.
In vertically integrated systems the strategic maintenance of power plants’ and
network’s components is performed in an integrated fashion by the monopolist,
whereas in those market based, these problems are responsibility of the GenCos
and of the Transmission System Operator (TSO) respectively.

The maintenance activities are indeed complex even to classify. For instance if
we define Preventive Maintenance in an abstract way as a general process carried
out at predetermined intervals or according to prescribed criteria and intended to
reduce the probability of failure or the degradation of the functioning of an item, we
can distinguish:
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• Scheduled maintenance: Preventive maintenance carried out in accordance with
an established time schedule or established number of units of use. The mainte-
nance is planned in advance.

• Condition based maintenance: Preventive maintenance based on performance
and/or parameter monitoring and the subsequent actions. An example of con-
dition based maintenance is when condition monitoring systems (CMS) are used
to control the condition of the component or system, and thereby preventive
maintenance is possible to perform.

• Opportunistic maintenance: Opportunistic maintenance refers to the situation
in which preventive maintenance is carried out at opportunities. A typical
example is when one component is out for maintenance and it is decided to
take out another component for maintenance before failure. Such a decision
would be based on a rational decision, e.g. by saving cost by performing several
maintenance activities at the same time.

Basically the long term perspective coincides with a year frequency, and with
this horizon in mind the maintenance refers to scheduled maintenance. In details the
main goal of the maintenance processes in electrical systems are:

• Power plants long term maintenance, e.g. determining a schedule of plant outages
aiming at minimizing various costs. The outage schedule must satisfy several
constraints in order to comply with limitations on resources which are necessary
to perform refueling and maintenance operations. When speaking about power
plants we—of course—refer to any kind of power plant including wind, solar
and hydro units.

• Transmission and Distribution network long term maintenance, e.g. determining
a schedule of branches, transformers and other devices outages. Also in this case
these outages must satisfy several security constraints and opportunity costs.

2 Transmission and Distribution Network Long-Term
Maintenance

Considering the Transmission and Distribution Network long term Maintenance
(TDNM), it is necessary to ensure that tripping out a branch for maintenance does
not impact the network reliability and security. The TMS constraints are therefore
globally the same as those for power plants, after all the system is unique (e.g., time
windows for maintenance tasks, resource requirements, demand satisfaction, etc).
Of course the equipment in this case are the network′s ones. It seems that TDNM
has received less attention than power plant maintenance at least in the scientific
literature. The network can be modeled as either a transportation model (i.e. without
imposing Kirchhoff’s law) or a more complex but more realistic DC power model or
even with a full AC representation for some critical areas. The TSO has to coordinate
the submitted schedules; the cheapest transmission lines and generators might be
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overloaded. If TDNM is not solved jointly with power plant maintenance, network
constraints can be introduced once power plant maintenance is solved. Alternatively
one can obviously see another example of a big single problem that the TSO might
solve in a single process with iterative approaches like those described before.

For both classes of problems, we refer to [156] for an extensive review of the
subject in the scientific literature.

3 Medium Term Maintenance

The medium term perspective covers periods from one to 3 months ahead. The main
goals of the medium term maintenance processes in electrical systems are the same
as the long term goals (see the final part of Sect. 1 on Strategic Maintenance). The
shorter term maintenance problems are sub-problems of the long term problem and
some decomposition approach is needed to coordinate the decisions on the different
time scales. A simple approach is to respect the broad outline of the long term
schedule and refine and adjust it as more information becomes available in the
shorter term. Optimization oriented coordination approaches between different time
horizon have also been proposed, see e.g. [298].

When dealing with shorter term problems it becomes of interest to consider
condition based and opportunistic maintenance, i.e. when planning the maintenance
schedule to use estimates of the condition of the equipment and the likelihood of it
breaking down in the following months, and to allow modifications of the planned
maintenance action and its duration once the maintenance of the equipment has
begun and its true condition is revealed. Usually the condition of equipment is not
directly observable, and in some cases there may be lot of uncertainty about this
(e.g it may not be known how often a transformer has been overloaded since its last
maintenance). Consequently the condition of the equipment and its prognosis, i.e. its
expected time to failure, are highly stochastic and have to be quantified statistically
from historic data for similar equipment [135]. The problem of making the best
replace, repair or maintain decisions taking into account the uncertain condition
of the equipment is a stochastic optimization problem. This problem is of interest
both for the maintenance of single pieces of equipment (i.e. the self scheduling
maintenance problem) and also for the whole system, where also unpredictability
in demand has to be considered.

Dynamic programming is an appropriate technique for finding optimal solutions
to both the stochastic and deterministic self scheduling maintenance problems. If
the full system maintenance problem is decomposed into self scheduling problems
for all single items of equipment, then what is needed is estimates of the cost to the
whole electricity system of removing the equipment for maintenance or replacement
and the cost of unexpected breakdown. If the whole maintenance process is centrally
managed then Lagrangian methods analogous to those used historically for unit
commitment are appropriate. In a decentralized system estimates of the costs
for planned and unplanned unavailability need to be taken into account when
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negotiating the contracts between the individual equipment owners and the system
operator.

4 Scheduled Maintenance

Froger et al. [156] provide an extensive survey on scheduled maintenance topics
and research in the electricity industry. In a nutshell, maintenance scheduling has
to decide which parts of the generating units or the transmission infrastructure to
shut down during time windows with reduced energy demand at an acceptable
failure risk so that profit losses/costs are minimal. In principle this requires to
combine integer maintenance decisions with complex physical models on technical
restrictions (ramping, power flow, etc.) as well as with stochastic models for the
development of supply (e.g. due to wind and solar energy), demand and prices.
Further restrictions include the necessary equipment and personnel. Because each
single component is mathematically already a challenge, the main body of literature
can be found in engineering journals while so far there is very limited coverage by
mathematical journals.

In the past, solution techniques only considered a coarse discretization of the
time horizon (weekly time steps) and the problem was decomposed into single
production units (fossil fuel power plants, hydro-electric units,. . . ). Stochastic
aspects were considered at the unit level with scenario modeling for hydro inputs
and marginal costs. For the optimization over a single unit, Dynamic Programming
is a simple and efficient approach.

Nowadays, models are using a finer discretization (daily time steps). Technical
coupling constraints between the different production units are incorporated (for
e.g. limited resources to perform certain operations). The main solution methods
are local search heuristics, decomposition approaches (Benders’, Dantzig-Wolfe
and Lagrangean Relaxation) and occasional Mixed Integer Programming (MIP) or
Model Predictive Control (MPC) models.

In practice MIP approaches require small time windows for the schedule of
maintenance. Local search approaches are less restrictive but don’t provide proofs
of optimality. A flurry of approaches for this problem have been developed in the
2010 ROADEF Challenge. There is much room for future work in mathematical
methodology. Stochastic models should cover aspects like demands, renewable
productions, delays in maintenance operations and availability of power plants
(failures, efficiency,. . . ). A highly desirable aim is to achieve stability of the
computed schedule with respect to small modifications in the input. In deregulated
markets, game theoretic aspects enter because an independent system operator must
approve time windows in view of the proposals of several competitors.
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5 Nuclear Reloading Pattern Optimization

In a nuclear reactor there are fuel rods of different ages. At the end of each fuel cycle,
the oldest rods are moved to a spent fuel pool and are replaced by fresh rods. At this
point, it is possible to make reallocate rods in the core leading to a combinatorial
problem. This problem may be modeled as a Mixed Integer Nonlinear Problem
(MINLP); see, e.g. [354]. The model includes dependent variables that describe
physical properties such as neutron flux, burn-up, and yield. The neutron transport
equations are converted to a set of algebraic equations using Green’s functional
theory, giving rise to a stationary description of the neutron flux in the core. The
fuel burn-up is approximated by discretizing the differential equation; see e.g. [416]
for details.

More physically accurate models are solved with Meta-heuristics search meth-
ods. There for each given reloading pattern the neutron flux etc. are calculated by
the numerical solution of the relevant differential equation.

There is a symmetric problem to optimize the unloading process of fuel rods.
The operations to determine are the placements of rods in the spent fuel pool and to
optimize the manipulations of rods in the pool by automated handling systems.
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1 Overview

In order to find decisions in finance, regulations, politics including long term
strategies for the electricity system and strategic planning on the industrial side,
a holistic view on the overall energy system and markets is required at different
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levels of detail. These include mainly aggregated regional views of:

• power production units (differentiated according to technologies)
• electricity networks (ACDC)
• weather predictions and renewable feed-in
• demand forecasts (industry, trade sector, households)

and in different representations of markets (long term, spot, intraday, balancing) and
participants producers (including productions of renewables)

• network operators
• consumers including demand side management
• policy and regulations
• traders and aggregators

The aim of a system modelling approach is to investigate the development of
the system with respect to different time levels and corresponding questions (see
Tables 1, 2 and 3).

Table 1 Strategic problems (10–50 years)

For policy makers For producers

Development of long term pathways to
energy transition

The perspective of long term market and general
technology development

Defining long term targets of the
electricity system depending on e.g.
climate, emission and renewable targets

The effects of support schemes on the profitability
of (renewable) production

Sensitivity analysis and system security
aspects

The influence of political regulations and targets
on the energy system

Investiagtions of different policy designs
on their impact on the system

long term strategic portfolio effects

Table 2 Tactical problems

For policy makers and regulators For producers
For traders and
industries

System security and reserve
capacities

Influence of regulations and
market rules on dispatch

Medium term portfolio
effects including long
term bilateral contracts

Influence on the political debate
and market design issues

Table 3 Operational problems

Network operators and regulators Producers

Influence of balancing uncertainties in
renewable feed-in and demand

Predictions of market development and revenues
depending on weather and demand forecasts

Support of optimal dispatch decisions

Assesment of uncertainies and risks
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2 Long Term Electricity Bilateral Contracts

Electricity markets offer a way to trade on a hourlydaily basis quantities of
electricity at a given price. The short term producer’s maximum profit problem
has been discussed in another section. However for risk management reasons the
producers may want to stipulate longer term bilateral contracts with third parts, i.e.
(large) consumers. The problem of defining the amount and the price of such over
the counter transactions can be seen as an simulation/optimization one. It is also a
simulation problem since the long term horizon calls for the estimation of the future
conditions of the spot market that remains an alternative. Although rare, a producer,
especially a small one, may in fact want to go spot for all its capacity. The final goal
is indeed maximizing the profit while maintaining a certain—quantity and price—
risk.

2.1 Modeling and Algorithmic Considerations

From a modelling standpoint, the bilateral contract definition involves the price risk
profile and the future conditions of the spot market. Moreover, the bilateral contracts
are typically equipped with hourly profile (or blocks of hours) of demand from the
counterpart. Therefore, the inclusion of some simplified technical constrains of the
power plants must be considered (at least maximum capacity and ramp constraints).
All in all, given a certain demand profile requested, the problem can define as
variables price and quantity and try to optimize a custom objective function that
takes into account the revenues, the costs, and the risk reduction, with respect to
pure spot trading along the considered horizon.

3 Multilevel Modeling of Market Design

3.1 Redispatch-Based Electricity Trading

Many European countries have implemented a system of spot market trading of
electricity that is redispatch-based [131]. Electricity is traded at power exchanges
like the EEX in Leipzig, Germany. During these auctions, no or only a certain
part of the technical and physical constraints of electricity transport through the
transmission network are respected. For instance, in Germany, only a market
clearing is imposed that yields the balance of traded production and consumption.
As a result of this drastic simplification, spot market results do not have to be
feasible with respect to actual transport through the transmission network. If this
turns out to be the case, traded quantities have to be redispatched such that the
resulting quantities can actually be transported. Different systems of redispatch rules
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are implemented in Europe, e.g., cost-based redispatch in Austria, Switzerland, and
Germany or market-based redispatch in Belgium, Finland, France, or Sweden [176].
However, and independent of the actual redispatch system, this market design of
spot market trading and redispatch yields a two-stage model that involves different
agents and stakeholders like

• producers owning conventional power plants or facilities for producing power
from renewables like sun or wind;

• consumers like municipal utilities or large industrial enterprises; and
• transmission system operators (TSO) that control and maintain the transmission

network and organize the redispatch.

It is shown in the literature that this system of electricity market design may
yield significant decreases in total social welfare; see [176, 205] and the references
therein. Thus, the natural question arises if and how different markets can be
designed that yield improved welfare outcomes. This question is currently an active
field of research and involves the investigation of alternative systems like the
introduction of zonal pricing [177, 205] or nodal pricing [205, 229].

From a mathematical point of view, the study of different market designs may
introduce the regulator or state as an additional agent that decides on certain
questions like, e.g., the specification of the actual price zones in zonal pricing or the
specification or regionally differentiated network fees. Since the regulator or state
anticipates the influence of his decisions on the actions of all other agents, such a
rigorous mathematical modeling has important implications on the overall model,
since the decisions of the regulating agent couples all other levels of the system,
yielding a (typically mixed-integer) multilevel optimization [97].

These models are extremely hard to solve [98, 165, 427]. Hence, there is a
political and social need to develop new mathematical theory and algorithms for
solving realistic instances of these models.

4 Energy Policy Analysis

Energy planning requires the study of the interactions between the economy (at
national or regional levels), the energy sector and the related impacts on the
environment. Many countries do not hold indigenous energy resources becoming
highly dependent on primary energy imports. In such cases, an increase of energy
consumption which greatly relies on fossil fuels is frequently interweaved with
economic growth, also leading to the exhaustion of finite resources and to Green-
house Gas (GHG) emissions. To sum up, negative effects on economic growth and
social welfare might be prompted as an outcome of energy and environmental
policies. Henceforth, other evaluation facets besides economic concerns such as
environmental and social welfare impacts should be explicitly considered in the
appraisal of the merits of energy plans and policies to address energy problems in a
societal perspective [22].
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Thus, the assessment of the trade-offs between economic growth, energy
demand/supply, as well as their corresponding environmental and social effects
is particularly relevant for energy planners and decision-makers (DM) through the
use of reliable tools for supporting the process of energy policy decision-making. In
this context, the use of multiobjective programming models and methods combined
with Input-Output (IO) analysis can be particularly appropriate for assisting in the
process of Economy-Energy-Environmental (E3) policy design [333].

IO analysis is a top-down approach which can be intertwined with environmental
satellite accounts provided by national statistical offices, allowing broad impact
coverage of all sectors directly and indirectly involved with the energy sector.
Furthermore, IO has influenced the outset of linear programming (LP) [430] and
it may be considered as a simple particular case of LP [107]. The combined use
of the IO methodology with LP models allows attaining value-added information,
which would not be possible to achieve with the isolated use of both techniques.
Inter/intra-sector relations entrenched in IO analysis allow obtaining the production
possibility frontier. LP models enable selecting the level of activities which optimize
a given objective function, satisfying the production sector relations imposed by
IO analysis. Additionally, IO MOLP models allow assessing different efficient
possibilities of production (i.e. output levels for each activity sector for which there
is no other feasible solution that allows improving the value of a given objective
function without worsening the value of, at least, other objective function) that can
be reconciled with the competing axes of evaluation intrinsically at stake [333].

4.1 Strategic Problems

LP formulations of IO systems have been a normal part of standard texts since the
1960s [411]. The first IO LP models developed only addressed the economic system,
but after the first oil crisis energy-environmental planning models started to play a
prominent role.

IO analysis allows establishing an overarching framework to model the inter-
actions between the whole economy and the energy sector, thus identifying the
energy required for the provision of goods and services in an economy and
also quantifying the corresponding pollutant emissions. Several indicators (either
modelled as constraints or as objective functions) are obtainable with the application
of IO LP/MOLP models specifically devoted to energy planning:

Economic

• Gross Domestic Product (GDP);
• Gross Regional Product (GRP);
• Gross Value of Production (GVP);
• Output levels;
• Private consumption;
• Balance of payments;
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• Foreign-trade-balance;
• Gross value added;
• Public deficit;
• Production capacity;
• Exports and imports;
• Cost of the energy system;
• Employment;

Energy

• Energy imports;
• Energy use;
• Storage capacity;
• Security stocks for hydrocarbons;
• Wastes with energetic use;
• Efficient energy use;

Environmental

• GHG emissions (based on CO2, N2O and CH4 emissions);
• Acidifying substance emissions (based on SO2, NOx and NH3 emissions);
• Environmental discharges not related to fuel combustion;
• Wastes produced.

4.2 Integrated Energy Planning Models

Integrated energy planning (IEP) strives to account for the relevant strategic ele-
ments of the energy value-chain at a national level/regional level. IEP is intrinsically
a multiobjective problem and when sustained by IO MOLP modelling tools, distinct
alternative energy pathways can be assessed which can be consistent with different
policy options. The solutions obtained help DMs to assess how energy requirements
can be reduced without harming economic growth and socioeconomic development,
allowing to understand the relationship (trade-off) between energy supply/demand
and economic development/growth and corresponding environmental impacts.

IO MOLP models support IEP and provide help in the design of energy policies,
namely guiding:

• the proposal of balanced energy policy configurations;
• the selection of appropriate technologies to meet energy demand;
• the suggestion of strategies to appraise the impacts of energy supply short-

ages/disruptions in an integrated manner;
• the development of procedures to assess the effects of nuclear power plant

accidents, trade embargoes, and international conflicts, among others;
• reallocation of production problems;
• biomass production optimization;
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• energy import resilience;
• energy-economic recovery resilience of an economy;
• energy efficiency planning.

4.3 Regional Energy Planning

Since the national energy supply/demand structure cannot reflect regional character-
istics, regional energy planning is particularly relevant because it allows capturing
each region’s specifics, before being articulated with national energy planning.

IEP Models
Balanced regional policy configurations can be obtained by means of IO MOLP
models. With the foregoing in mind, [315] presented a macro-level energy model
aimed at minimizing the total cost of the energy system and its application to energy
planning for three states in India (Gujarat, Kerala and Rajasthan). The methodology
considers a reference energy system, an expanded IO table with disaggregated
energy sectors and an LP model combined with a scenario analysis approach.

Cho [78] developed a model which includes the minimization of energy con-
sumption and pollution, and the maximization of employment, being subject to
the restriction of the range of outputs for twelve individual sectors considered,
regarding the total output level of the Chungbuk economy. The impact multipliers
(employment, pollution and energy consumption) are calculated and then combined
with decision variables to form the objective functions of the MOLP model. The
results of the model are able to illustrate how the regional production structure
should be reorganized in order to become a more balanced one.

Assessment of Energy Shortage Impacts
The assessment of energy shortage impacts has been formulated as an LP problem in
[265], where an energy flow matrix for Hawaii is built and the 1977 Hawaii IO table
is used to evaluate each sector’s direct energy intensity and total energy intensities.

The authors calculate shadow prices for different levels of gasoline availability
with the use of an LP model and show that the solution thus obtained provides an
efficient distribution of energy resources to various industry sectors during energy
shortages.

IEP Models Under Dynamic Assumptions
Leontief [264] suggested the dynamic IO model where a new matrix describing
the capital resources is considered, aimed at distinguishing different technological
structures in different time frames. With this modelling formulation it is possible
to account for the growth potential of an economy, since the final demand vector
of the static IO model is replaced by a stock’s coefficient matrix that is then
multiplied by the anticipated increase of the output level between the present
year and the following year. This new set of differential equations represents the
dynamic relations of the IO model, allowing for the description and analysis of the



66 H. Helmberg et al.

economic growth process [264]. Based on this type of approach [462] applied an
LP dynamic IO model considering the case of renewable energy industries, as well
as the environmental policy instrument of emission taxes. In addition to exploring
the relationships among Beijing’s renewable energy, economy and environment, the
model analyses the future trends of the economy and GHG intensity from 2010
to 2025. The objective function is the maximization of the total GRP from 2010
to 2025, being subject to constraints regarding material flow balance, value flow
balance, electricity supply-demand balance, investment-savings balance and GHG
emissions.

James et al. [221] suggested the combination of the IO model with a dynamic
energy technology optimization model to compute the change in total energy
demand and technological mix. The authors were able to identify through the use of
the model part of the economic repercussions of technological change and inter-fuel
substitution.

4.4 National Energy Planning

IEP models at the national level, explicitly incorporating the interactions of the
energy system with the economy have been developed based on IO MOLP.

IEP Models
Hsu et al. [209] use the bicriterion NISE method for assessing the trade-offs between
GDP and energy use in Taiwan. The solutions obtained represent simulated sce-
narios of aggressive, moderate and conservative policy alternatives. The evaluation
of the outcomes is mainly centred on the economic performances resulting from
the different policy alternatives and the energy requirements for supporting that
performances.

The impacts of the electricity power industry can also be assessed by coupling
IO with goal programming models. A goal programming model has been suggested
in [18] to analyse the trade-offs among economic (generation cost minimization)
and environmental (CO2 emissions minimization) objectives for the year 2000 in
Japan’s electricity power industry, which allows discussing the nature of the trade-
off curve and the extent of power generation by source.

Antunes et al. [23] consider the TRIMAP interactive environment to analyse the
interactions of the energy system with the economy in Portugal. Another version of
this model with six objective functions (maximization of GDP, private consumption,
self-power generation and employment, and minimization of energy imports and
CO2 emissions) was proposed in [327] and solutions were obtained using the
interactive STEM method. In [328] an interactive procedure to obtain solutions
is employed based on a min-max scalarizing function associated with reference
points, which are displaced according to the DM’s preferences expressed through
average annual growth rates. The objective functions considered in the model
are: minimisation of acidification potential, maximisation of self-power generation,
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maximisation of employment, maximisation of GDP, and minimisation of energy
imports.

Kravtsov and Pashkevich [248] suggested a three-objective LP model aimed
at maximizing the GDP, minimizing the use of fuel and energy resources, and
maximizing the foreign-trade balance. Solutions were computed using a weighted
sum approach, with information on Belarus over the 1996–2000 period.

Hristu-Varsakelis et al. [208] optimized production in the Greek economy, under
constraints relating to energy use, final demand, GHG emissions and solid waste.
The effects on the maximum attainable GVP when imposing various pollution
abatement targets were considered using empirical data. The results obtained quan-
tify those effects as well as the magnitude of economic sacrifices required to achieve
environmental goals, in a series of policy scenarios of practical importance. Because
air pollution and solid waste are not produced independently of one another, the
settings in which it is meaningful to institute a separate policy for mitigating each
pollutant versus those in which only one pollutant needs to be actively addressed
are identified. The scenarios considered represent a range of options that could be
available to policy makers, depending on the country’s international commitments
and the effects on economic and environmental variables.

San Cristóbal [375] proposed an IO MOLP model combined with goal program-
ming to assess economic goals (output levels), social goals (labour requirements),
energy goals (reduction of coal requirements by 5%), environmental goals (reduc-
tion of total emissions of GHG and waste emissions by 10%). Solutions are obtained
by considering the minimization of the total deviations from the goals.

de Carvalho et al. [92] proposed a hybrid IO MOLP model applied to the
Brazilian economic system aimed at assessing the trade-offs associated with the
maximization of GDP and the minimization of the total energy consumption and
GHG emissions, considering the timeframe of 2017. The TRIMAP interactive envi-
ronment was employed to grasp the trade-offs between these objective functions.

Assessment of Economic or Political Crises
The quantitative effects of economic or political crises can be assessed with IO
MOLP models. Examples of such crises are nuclear power plant accidents, trade
embargoes, and international conflicts. Kananen et al. [234] showed how a visual,
interactive, dynamic MOLP decision support system can be effectively used with
this aim in the Finnish economy. The IO MOLP model considers as objectives
the maximization of private consumption, trade deficit and employment, and the
minimization of the overall energy consumption.

Models Devoted to Reallocation of Production Problems
The reallocation of production problem can be formulated as a constrained opti-
mization problem. Taking Greece as a case study, Hristu-Varsakelis et al. [207]
considered the reallocation problem on a sector-by-sector basis, in order to meet
overall demand constraints and GHG Kyoto emissions targets. The authors take
into account the Greek environmental IO matrix for 2005, the amount of energy
utilized and pollution reduction options. The model is aimed at maximizing total
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GVP subject to upper bounds on energy use and pollution, lower and upper bounds
on production, and lower bounds on the GVP of every activity sector.

Models Devoted to Biomass Production Optimization
IO MOLP models can be adjusted to include several alternative technologies. In
this case, the LP formulation is able to handle the representation of alternative tech-
nologies [430]. This hybrid approach of linking detailed models with aggregated,
economy-wide models is the current focus of research in Life Cycle Assessment
(LCA). Following this approach, de Carvalho et al. [92] developed a hybrid
IO framework coupled with LCA based estimates for two sugarcane cultivation
systems, two first-generation and eight second-generation technology systems for
bioethanol production scenarios. The integrated- or country-based assessment of
the whole economic system has accompanied the process design and process-
based analysis, supporting the identification of direct and indirect effects that can
counterweight the benefits. The consideration of direct and indirect effects on
the whole economic system is critical in policies and technological choices for
prospective bioethanol production, since positive direct effects of first-generation
and second-generation plants can be offset by indirect impacts on other sectors.

Energy Import Resilience
Energy import shortages may occur in various importing sectors and most of
the times cannot be foreseen in advance. Models aimed at addressing energy
import resilience can be used to simulate the impact of specified energy import
losses on the sectoral production levels, and consequently, the final supply-demand
balance. In this context, He et al. [194] developed an IO LP model that focuses
on the connection between energy imports, industrial production technologies and
capacities. The main value added rests on the possibility offered by the proposed
model of appraising the worst-case scenario impact over a family of import loss
scenarios. The impact of an energy import loss on the economy is the amount of
final demand of goods that cannot be balanced by the given supply and production
in the short run. An energy import resilience indicator is then defined, which
essentially assesses the highest level of energy import loss possible to the economy.
The methodological framework is also extended in order to encompass production
capacity designs that allow reaching the maximum possible energy import resilience
of a given IO structure.

Energy-Economic Recovery Resilience of an Economy
He et al. [195] proposed an IO LP to appraise the energy-economic recovery
resilience of an economy by studying the interactions between energy produc-
tion disruption, impacts on sectoral production and demands, and post-disruption
recovery exertions. The developed model evaluates the minimum level of recovery
investments necessary to reinstate production levels so that total economic impacts
are tolerable over a specified post-disruption extent. It is presumed that disruptions
are uncertain and can take place at different sectors and possibly simultaneously.
The optimization model is then solved using a cutting plane method which involves
computing a small sequence of mixed integer programming problems of reasonable
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dimensions. Taking China’s 2012 IO data as a case study, the study illustrates the
model’s ability to unravel vital inter-sectoral dependencies at different disruption
levels. With this type of approach DMs become acquainted with relevant informa-
tion regarding the appraisal and enhancement of the energy-economic resilience in
a comprehensive manner.

IEP Under Uncertainty
The accurate specification of the coefficients of optimization models is a challenging
endeavour in most real world problems since sometimes there is not enough
information available. Moreover, the technical coefficients of the IO matrix may be
subject to a considerable level of uncertainty. Uncertainty handling in the outline of
IO analysis may be essentially based on three different approaches: the probabilistic
approach, in which the probabilistic distribution functions associated with all the
coefficients are presumably well known (e.g. [411, 440]); the interval approach
(unknown but bounded coefficients), where the upper and lower bounds of the
coefficients are considered without being associated with a structure of possibilities
or probabilities (e.g. [223, 224]); and the fuzzy (or possibilistic) approach, in
which membership functions are assigned to all uncertain coefficients (e.g. [62]).
Therefore, IO LP/IO MOLP models explicitly handling uncertainty of the model
coefficients have arisen in scientific literature.

Borges and Antunes [56] proposed an IO MOLP model with fuzzy coefficients in
the objective functions and fuzzy right hand sides of the constraints for E3 planning
in Portugal. Interactive techniques were used to perform the decomposition of the
parametric (weight) diagram into indifference solutions corresponding to basic non-
dominated solutions.

Oliveira and Antunes [329] and Oliveira Henriques and Antunes [331] have
considered all IO MOLP model coefficients as intervals, then conveying information
regarding the robustness of non-dominated solutions (that is, solutions that achieve
desired levels for the objective functions across a set of plausible scenarios) under
a more optimistic or pessimistic DM’s stance. With the introduction of (direct
and indirect) employment multipliers, this IO structure has been used to extend
the interval MOLP to assess the trade-offs between economic growth (GDP),
social welfare (employment), and electricity generation based on renewable energy
sources [332].

Models Devoted to Biomass Production Optimization
Case studies based on electricity generation from biomass and ethanol production
can be assessed to illustrate how the model determines optimal production levels
of feedstock within each region, as well as optimal levels of trade between
regions and imports from external sources. With this purpose, [407] presented a
multi-regional fuzzy IO model to optimize biomass production and trade under
resource availability and environmental footprint constraints. Uncertainty was only
considered on the upper or lower bounds of the constraints.
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Models Devoted to Energy Efficiency Planning
The introduction of a bottom-up approach into an IO MOLP model enables
extending its application to the assessment of energy efficiency measures. This
methodological framework combined with mathematical interval programming
tools was followed in [333] to account for investment options aimed at improving
the thermal properties of the building envelope (e.g., the insulation of external walls
and roof, and the replacement of window frames and window glazing) in Portugal.
The objective functions are the maximization of GDP, the building renovation
investment, and the overall level of employment, being subject to several economic
and environmental constraints.

Challenges of IEP Planning with MOLP IO Models
The main difficulty found in the studies carried out with these models rests on the
availability of statistical information. In fact, the application of the IO approach
in the framework of electricity generation can be a complex and challenging task
since published IO tables do not allow assessing the environmental impacts that
are likely generated from an increase in the demand for electricity generation
from renewable energy and/or from conventional energy, but only the impact of
an increase in demand for electricity in general. Published IO tables consider a
single aggregated electricity sector, where generation, transmission, distribution
and supply activities related to the production and use of electricity are included.
Therefore, it is important to disentangle the different possible ways to tackle the
disaggregation of the electricity sector.

Despite the typical limitations found when considering this type of approach,
the power of IO analysis rests upon its capacity of depicting the technology of
a country or region with enough accuracy to allow performing a real empirical
study. In addition, IO analysis is a flexible tool that can be applied to a wide
variety of problems, which can be used to modelling complex systems of economic
and physical interrelations. In reality, IO analysis enables assessing any type of
environmental burden caused by changes in the output of economic sectors once
reliable data is used.

A broad range of (economic, social, energy and environmental) indicators
according to coefficient scenarios and output levels attained for the activity sectors
(industries) might thus be obtained with IO LP/MOLP models, which provide a
useful planning and prospective analysis tool.

A major drawback usually mentioned in scientific literature relates to the static
nature of the IO traditional matrix. However, the IO MOLP framework has evolved,
explicitly encompassing the uncertainty handling of the model’s coefficients,
helping to overcome this particular limitation. This modelling approach could,
nevertheless, benefit from the development of a dynamic, multi-period variant,
relying on the integration of time-dependent technical parameters to account for
technological learning curves and yield improvements, as well as incorporate game
theoretical principles to accurately reflect the typical multi-agent’s nature of the
problem.
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Another possibility for further enriching this modelling framework would be
the development of tools for obtaining solutions considering the interaction with
multiple planners/DMs with potentially conflicting views. The involvement of
distinct stake-holders would bring new insights into the decision-making process
at all stages, from model’s definition to the evaluation of solutions.

5 Demand Response and Price Optimization

One of the main research objectives in Demand Response (DR) is the design and
implementation of technologies and mechanisms to lower the electricity consump-
tion via energy efficiency measures, and to improve the electricity consumption via
demand shifting. Increasing energy efficiency requires a reduction of energy demand
peaks by shifting part of the energy consumption in off-peak hours. This can be done
via DR mechanisms and load control.

Demand shifting can provide a number of advantages to the energy system
[94]:

• Load management can improve system security by allowing a demand reduction
in emergency situations.

• In periods of peak loads even a limited reduction in demand can lead to
significant reductions in electricity prices on the market.

• If users receive information about prices, energy consumption becomes more
closely related to the energy cost, thus increasing market efficiency: the demand
is moved from periods of high load (typically associated with high prices) to
periods of low load.

• Load management can limit the need for expensive and polluting power genera-
tors, leading to better environmental conditions.

Potential benefits and implementation schemes for DR mechanisms are well
documented in the literature. DR programs can be defined as methods to induce
deviations from the usual consumption pattern in response to stimuli, such as
dynamic prices, incentives for load reductions, tax exemptions, or subsidies. They
can be divided in two main groups: price-based and incentive-based mechanisms
[6, 7] and [341].

Price-based demand response is related to the changes in energy consumption by
customers in response to the variations in their purchase prices. This group includes
DR mechanisms like Time-of-Use (ToU) pricing, Real Time Pricing (RTP) and
Critical-Peak Pricing (CPP) rates. If the price varies significantly, customers can
respond to the price structure with changes in their pattern of energy use. They can
reduce their energy costs by adjusting the time of the energy usage by increasing
consumption in periods of lower prices and reducing consumption when prices are
higher. ToU mechanisms define different prices for electricity usage during different
periods: the tariffs reflect the average cost of generating and delivering power during
those periods. For RTP the price of electricity is defined for shorter periods of time,
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usually 1 h, again reflecting the changes in the wholesale price of electricity. In
RTP customers usually have the information about prices. CPP is a hybrid ToU RTP
program. This mechanism is based on the real time cost of energy in peak price
periods, and has various methods of implementation.

Incentive-based demand response consists in programs with fixed or time varying
incentives for customers in addition to their electricity tariffs. Incentive-Based
programs (IB) include Direct Load Control (DLC), Interruptible/ Curtailable service
(I/C), Emergency Demand Response program (EDR), Capacity market Program
(CAP), Demand Bidding (DB) and Ancillary Service (AS) programs. Classical IB
programs include DLC and I/C programs. Market-Based IB programs include EDR,
DB, CAP, and the AS programs. In classical IBP, customers receive participation
payments (e.g. discount rate) for their participation in the programs. In Market-
Based programs, participants receive money for the amount of their load reduction
during critical conditions. In IC programs, participants are asked to reduce their
load to fixed values and participants who do not respond can pay penalties based
on the program conditions. DB are programs in which consumers are encouraged
to change their energy consumption pattern and decline their peak load in return
for financial rewards and to avoid penalties. In EDR programs, customers are paid
incentives for load reductions during emergency conditions.

DR mechanisms and load control in the electricity market represent an important
area of research at international level, and the market liberalization is opening new
perspectives. This calls for the development of methodologies and tools that energy
providers can use to define specific business models and pricing schemes.

Every actor in the electricity market has different objectives. For example,
retailers and generators aim to maximize their own profit by reducing their costs. In
contrast, customers would like their electricity bills as low as possible [425]. Game
theoretical methods can also be used to capture the conflicting economic interests of
the retailer and their consumers. Authors in [466] propose optimization models for
the maximization of the expected market profits for the retailer and the minimization
of the electricity cost for the consumer.

One implementation approach of DR mechanisms in the electricity market
consists in defining economically and environmentally sustainable energy pricing
schemes. In this field, optimization approaches to define dynamic prices have been
proposed, and they focus on the definition of dayahead prices for a period of 24 h and
for a single customer (or a single group of homogeneous customers). In [446], the
response of a non-linear mathematical model is analyzed for the calculation of the
optimal prices for electricity assuming default customers under different scenarios
over a 24 h period. Yusta et al. [446] defines a model of an electric energy service
provider in the environment of the deregulated electricity market. This problem
studies the impact on the profits of several factors, such as the price strategy, the
discount on tariffs and the elasticity of customer demand functions always over a
24 h period.

Consumers may decide to modify their load profile to reduce their electricity
costs. For this reason, it is important to analyze the effect that the market structure
has on the elasticity demand for electricity. Kirschen et al. [240] proposes an elastic
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model to characterize the demand-response behavior and load management with
ToU programs and it describes how the consumers behavior can be modeled using
a matrix of self and cross-elasticities. Aalami et al. [1] and [2] take into account
also other schemes, and rely on the elastic model proposed in [240] to model the
demand-response behavior. Torriti [413] assesses the impacts of ToU tariffs on a
dataset of residential users in terms of changes in electricity demand, price savings,
peak load shifting and peak electricity demand at sub-station level.

Response of the customers to the DR programs affects the daily load curve.
Therefore, the Load Duration Curve (LDC) changes due to the responsiveness of the
customers over a year and even the participation of the customers in DR programs
can have considerable effects on the LDC [374]: the effects of DR need to be
investigated over the daily time horizon. De Filippo et al. [93] has adapted elasticity
model mentioned above to ToU based prices and considered scenarios over a 24 h
period to better identify trends and assess how the characteristics of the market and
the customers affect the consumption annual profiles.

Consumption and cost awareness has an important role for the effectiveness of
demand response schemes for pricing optimization. Tanaka et al. [408] describes
a system architecture for monitoring the electricity consumption and displaying
consumption profiles to increase awareness. Ito [217] and Borenstein [55] study how
customers respond to price changes, and which price indicators are more relevant in
this respect.

6 Pricing Problem

Together with long term bilateral contracts, other—possibly additional—ways of
managing various risks can be considered by a producer. Indeed he can also buy
or sell financial instruments, such as derivatives. The simplest form of derivatives
are the call and the put which may be specialized for the electricity commodity.
They typically give the right (but not the obligation) to sell or buy a certain amount
of energy at a given price. The price of this option is the strike price. Other, more
sophisticated, options do exist, for instance a combination of both usually named as
collar or other such as swing options. In choosing these options, two fundamental
problems arise:

• From the selling side, the pricing, i.e. how much is the value of the instrument.
• From the buying side, the portfolio optimization, i.e. given a set of proposed

derivatives, decide which one to buy and if/when to exercise them.

The pricing problem can be solved in a closed form with the well-known Black and
Sholes (B&S) approach that has been criticized by various authors. However in the
context of the electricity market more advanced pricing models may be useful. A
recent and interesting approach is based on robust optimization models. Indeed,
as the classical B&S approach, the option pricing problem aims to replicate an
option with a portfolio of underlying (available) securities in each possible scenario,
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and therefore the robust valuation scheme proposed by some authors is natural and
conceptually sound. Therefore one can use manageable robust optimisation linear
programming problems, based on a dynamic hedging strategy with a portfolio of
electricity futures contracts and cash (risk-free asset). The model can be used to find
a risk-free bid (buyer’s) price of the swing option.

7 Derivative Pricing in Electricity Markets

In portfolio theory, the most commonly used model for estimating the value of
an option is the Black and Scholes model [49]. This model is based upon the
assumptions of modern portfolio theory, where prices reflect all the available
information. The Black and Scholes model gives the value of an option as a function
of the spot price and the volatility of the underlying asset, the strike price, the
time and the risk free rate. It is suitable for European options, while the estimation
of an American option will require in addition to estimate the likelihood of early
exercise (generally resulting from discontinuity events such as dividend distribution
or bankruptcy).

Option pricing in energy markets raises specific issues, due to difficult storage
and the existence of spot price models [204, 257]. For this reason, the time of
exercise is a much more crucial parameter than in financial markets, and can be
negotiated between the parties. Therefore, European and American options shall
be treated separately. European options can be priced by predicting a spot price
and using an approach similar to the Black and Scholes model. For American
options, the Black and Scholes equation becomes an inequality whose solution can
be approximated by robust optimization models [99, 134].

The ongoing transition from centralized architecture to interoperable grids
managed by competing operators is expected to boost inter-grid transactions. The
expected cost reduction in storage solution will offer to operators a more and more
viable alternative to the sale of production surplus. These parameters must be taken
into account in a model for derivative pricing.

8 Combined Gas and Power Optimization

Short-term scheduling of a combined natural gas and electric power system may
be formulated as a two-stage optimization model and solved using mixed integer
stochastic programming [210]. More stages could be considered and approached
using the multi-stage stochastic programming. Benders decomposition [37] may be
used to solve a nonlinear optimization problem.

A related problem is integration of the natural gas and electricity networks in
terms of power and gas optimal dispatch [418]. A mathematical model of the
problem may be formulated as a minimization of the integrated gas-electricity
system operation cost with constraints involving the power system and natural
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gas pipeline equations and capacities. The problem may be solved using a hybrid
approach combining evolutionary strategies and the Interior point method.

Another related problem is tri-multi-generation [76]. Various models exist for
optimizing energy costs, annual costs and CO2 emissions. Optimization methods
include linear programming, branch and bound, evolutionary algorithms for single-
and multi-objective optimization.

9 European Electricity and Day-Ahead Markets

Besides long-term bilateral contracts, a large part of the production of electricity is
traded in day-ahead markets where prices and exchanges of energy are determined
for each time slot of the following day, typically an hour. Intraday and balancing
markets are then meant to ensure security of supply and to balance positions taken
in the day-ahead market which could not be maintained.

Pan-European Market
In Europe, the past decade has seen the emergence of a Pan-European day-ahead
electricity market in the frame of the Price Coupling of Regions project (PCR),
which is cleared using a common algorithm called Euphemia, handling peculiarities
of the different kinds of bidding products proposed by national power exchanges. In
a classical microeconomic setting, using supply and demand bid curves submitted
by participants, a (convex) optimization problem for which strong duality holds,
and aimed at maximizing welfare, yields a market equilibrium. The optimal dual
variables then correspond to equilibrium market prices: one for each time slot and
each bidding zone.

Non-convexity
These day-ahead markets are non-convex in the sense that participants are allowed
to describe operational constraints such as minimum power output levels, and
economic constraints such as start-up costs which must be recovered if a unit is
started, rendering the primal welfare maximizing problem non-convex, mainly due
to the introduction of binary variables.

Near-equilibrium
It can then easily be shown that most of the time, no market equilibrium with
uniform prices could exist, where the use of uniform prices means that every bid
of a given bidding zone and time slot is cleared at the same common market
clearing price. The general approach throughout Europe is to use uniform prices,
but to allow some non-convex bids to be paradoxically rejected in the sense that
they would be profitable for the computed prices but are none the less rejected,
ensuring the existence of feasible solutions, while enforcing all other market
equilibrium conditions. This is classically modelled as a Mathematical Program
with Equilibrium Constraints (MPEC), and handled by advanced branch-and-cut
algorithms (such as Euphemia), see [280, 282, 297].



Part II
Energy Commodities Systems



Production and Demand Management

C. D’Ambrosio, F. Lacalandra, J. Lellep, K. Vuik, A. Bischi, T. Parriani,
E. Martelli, E. de Klerk, A. Marandi, and L. Schewe

1 Optimal Oil Wells Placement

The optimal oil wells placement problem, a crucial problem in reservoir engineer-
ing, consists in determining the optimum number, type, design, and location of oil
wells to optimize the hydrocarbon production and the drilling costs.
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In industry, the decision to drill a well or not and its location is taken by reservoir
engineers trusting their professional expertise. These decisions strongly relate to
the understanding of the impact of different influencing engineering and geological
parameters. However, such influence is very complex (nonlinear) and changing over
time, thus a deep understanding of such phenomena requires more than human
experience. Satisfying solutions could be provided by practitioners, but optimization
methods can lead to improved configurations.

From a mathematical modeling viewpoint, the number of water injector and
producer wells and the number of branches could be represented by integer
variables. In addition, continuous variables as wells and branches design in the
reservoir, the length of the branches, etc can be considered. The functions to
optimize are generally computed from the outputs of a reservoir fluid flow simulator,
costly in computational time: the outputs to optimize are the quantities of produced
oil and water, and the quantities of injected water, needed for the production).

The two most widely considered objective functions are:

• maximize the quantity of produced oil;
• maximize the revenue of a wells configuration with Net Present Value (NPV)

function. This function combines oil revenue, water management (water injection
and separation), and drilling costs.

In both cases, given a wells location, the objective function value is provided by a
numerical simulator. As we do not have access an analytic formula of the objective
function, the problem is modeled as a Black-Box optimization problem. Hence,
we have no information about the continuity, differentiability, or convexity of the
objective function.

Constraints are generally physical ones, ensuring the practical realizability of
the solution and the correct behavior of the simulator. A useful constraint is also the
water cut constraint that consists in applying some reactive control on each producer
to avoid producing much water which impacts negatively on the NPV. Such reactive
control shuts off producers when the water cut, i.e., the ratio between the water
rate produced and the sum of water and oil rates produced, is higher than a given
threshold. It is also possible to add constraints during the production, e.g., produce
a minimal quantity of oil for instance.

Thus, the oil well placement problem can be modeled as a Black-Box MINLP
problem, a very challenging problem both from a theoretical and a computational
viewpoint. Note also that, as no convexity assumption holds, one should perform
some kind of global search to avoid being trapped in local minima.

In practice, nowadays well placement optimization is an iterative procedure that
can be divided into the following procedures:

• Using engineering judgment, guess initial well(s) location.
• Use an optimization algorithm based on user-defined decision variables to

suggest possible improved well location(s).
• Apply a reservoir response model to report to the optimization algorithm the

performance of the proposed well locations.
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• Include the effect of uncertainty in reservoir properties, economic factors, etc,
which can be an optional step.

• Calculate the objective function (e.g. quantity of produced oil or NPV).
• Repeat steps 2–5 until stopping criteria (set by user) are met.

The approaches to problems 1–5, may differ in the optimization algorithm, reser-
voir response modeling technique, and available decision variables and constraints.

2 Optimization of the Gas-Lift Process

In the gas industry the key problem is the optimal gaslift with minimum energy
consumption. The mathematical complexity of this optimization problem is con-
nected with the matter that the corresponding control problem is of non-regular
structure, boundary conditions of this problem include the control parameters. The
gaslift method is of special importance at the initial period after the flowing of the
oil fields [13, 14, 303]. The motion in the gaslift process is known to obey the
hyperbolic nonlinear partial differential equations. Therefore, at gaslift operation of
the borehole cavity the problem of optimization with boundary control is of special
interest. However, with the original formulation of the problem of optimal control
one encounters certain difficulties. The averagings of the hyperbolic equation
describing the time profile of motion by the gaslift method are given here [13, 303].
It rearranges a partial derivative equation in the nonlinear ordinary differential
equations. The strategy of constructing the objective quadratic functional with the
use of the weight coefficients lies in minimizing the volume of the gas injected in
the annular space and maximizing the desired volume of the Gas-Liquid Mixture
(GLM) at the end of the lifter. In this case, the aim lies in solving the corresponding
optimization problem where the volume of the injected gas which is used as the
initial data and plays the role of the control action. The impossibility of using the
standard methods to construct the corresponding controllers is a disadvantage of
this approach. Yet, since at certain time intervals the boundary control is constant,
the numerical data obtained can be readily compared with the production data.
Using the method of time averaging, the partial derivative equations of motion of
gas and GLM motion proposed in [13] are rearranged in the ordinary differential
equations. The problem of optimal boundary control with the quadratic functional
is formulated on the basis of the above considerations. The results obtained can
be used to control the gaslift borehole cavity at oil extraction. For solution of the
considered problem of boundary controls, the gradient method [303] is modified by
describing the corresponding Euler-Lagrange equations [61].
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3 Total Gas Recovery Maximization

In the short term operation, the most important problem is related to the total gas
recovery maximization. In order to withdraw as much natural gas from a reservoir as
possible, one option is to use waterflooding. This leads to the problem of finding an
optimal water injection rate with respect to different objectives, such as the maximal
ultimate recovery, or the total revenues. Indeed there are several objective functions
due to different aspects of the problem.

Modeling and algorithmic considerations:
Consider two wells drilled on the surface of the gas reservoir, one for gas

recovery and one for water injection. Therefore, let r(t) denote the withdrawal rate
of gas which is bounded by the maximum rate of gas extraction rm(t). Through the
water injection, well water is injected into the reservoir at the nonnegative rate s(t).
This model assumes a constant g which is the ratio of gas entrapped behind the
injected water to the volume of water at any time. The model aims at maximizing
the ultimate gas recovery and can be posed in a nonlinear form. Some researchers
discuss several other objective functions. For example, the objective function to
maximize the present worth value of the net revenues for internal rate of return.

The application of concepts from systems and control theory to oil and gas
production is the unifying idea behind the current research theme Production
Systems and Subsurface Characterisation and Flow.

Past In the previous years, research and development was focused on three main
areas:

1. The innovation of concepts for the hydrocarbons production process. This
includes the application of smart wells, advanced, geophysical monitoring
techniques, downhole treatment, the separation and conversion of substances
and the injection of residuals (waste) [318, 432]. Closed-loop ’measurement and
control’ concepts from system theory will play an important role;

2. The development of an integrated ’real-time’ dynamic simulation, inversion and
validation environment for reservoir, well and processing facilities [233]. This
environment will be used to test and evaluate newly developed technology from
our groups and other sources. This environment is used as a learning environment
and for work process analysis and optimisation;

3. Laboratory of innovation. The analysis and testing of methods, techniques
and work processes to accelerate the process of innovation in the energy and
production sector.

Present Currently, the application of concepts from systems and control theory to
oil and gas production is the unifying idea behind the research themes production
systems and subsurface characterisation and flow. By means of modelling, moni-
toring and control, the production systems theme aims at stabilising and optimising
production in order to achieve production targets, which are being expected from an
operator through long term contracts [145, 227].
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Future: Smart Wells and Smart Fields Smart well technology involves down-
hole measurement and control of well bore and reservoir flow. Drilling and
completion techniques have advanced significantly over the last years and allow for
the drilling of complex multi-lateral and extended reach wells, and the installation
of down-hole inflow control valves, measurement devices for flow, pressure and
temperature, and processing facilities such as hydro-cyclones in the well bore.
Smart fields technology, also referred to as ’e-field’ or ’digital oilfield’ technology
involves the use of reservoir and production system models in a closed-loop fashion
[146]. The measurements may originate from sensors in smart wells, but could also
involve simple surface measurements from conventional wells, or originate from
other sources such as time-lapse seismics. Research in smart fields is now focused
on the development of concepts and algorithms to improve hydrocarbon production
though the use of systems and control theory. Future research will address the
reservoir management aspects on time scales from months to many years, and in
particular the development of techniques for closed-loop reservoir management. We
are also developing methods to speed up the modelling and simulation part an order
of magnitude [206]. For this reason we combine fast and robust iterative methods
for large linear systems with Model Order Reduction insights originating from
Optimal Control research. This combination has already led to very good results
[102]. Various groups from the Delft University of Technology, Padua University
and EPFL Lausanne collaborate in order to develop a new generation of simulators.

4 Optimal Scheduling of Energy Hubs and CCHP Systems

The future development of electric and thermal energy generation, transport and
distribution relies on the exploitation of both conventional and renewable energy
sources via a wide variety of energy conversion technologies; on the top of
that electric and thermal energy storage could be utilized in order to match the
demand with response exploiting more effectively the possible synergies between
the installed units.

In this context Combined Heat and Power (hereafter CHP) power plants and
engines are particularly attractive due to the higher efficiency when compared
to conventional units generating only one energy commodity. CHP units can be
classified into two main categories:

• one-degree-of-freedom units feature a single independent operating variable, the
load (defined as the current fuel input rate divided by the maximum one), which
controls the two energy outputs (e.g., electric and thermal power). As a result,
for a certain power plant or engine load, it is not possible to vary the share of the
two energy outputs according to customer needs. Examples of one-degree-of-
freedom CHP units are internal combustion engines and gas turbines with waste
heat boiler, backpressure steam cycles, and combined cycles with back-pressure
steam turbine.
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• Two-degree-of-freedom units feature two independent operating variables, the
load and another one (such as a steam extraction valve) adjusting the share of
the two energy outputs. Although these systems are more complex and typically
more costly, the second control variable increase the operational flexibility of
the unit. Examples are steam cycles with extraction condensing steam turbine
(a steam extraction valve controls the steam bled from the turbine and used to
provide heat to the customer).

It is worth noting that also more sophisticated units featuring three independent
variables exist (e.g. CHP natural gas combined cycle with post firing and extraction-
condensing steam turbine). Moreover, looking at the energy outputs, some units can
be configured so as to cogenerate cooling power in addition to electricity and heat.
Such units are called Combined, Cooling, Heat and Power (CCHP). Examples are
units made by an internal combustion engine, a waste heat boiler and an absorption
chiller (converting heat into chilling power).

Systems featuring several CCHP or CHP units may be integrated with other units
such as boilers, heat pumps, and energy storage systems within so-called Energy
Hubs. The sizes may range from few hundreds of kW for buildings to hundreds of
MW for industrial users and or district heating networks.

Three main types of challenging optimization problems arise when dealing with
such integrated systems:

• short-term scheduling, also called unit commitment,
• long-term operation planning,
• design or retrofit of the energy hub.

The short-term unit commitment problem can be stated as follows:
Given:

• the considered time horizon (e.g., 1 day, 2 days, 1 week) and an appropriate
discretization into time periods (e.g., 1 h, 15 min),

• forecast of electricity demand profile,
• forecast of heating and cooling demand profile,
• forecast of ambient temperature,
• forecast of time-dependent price of electricity (sold and purchased),
• performance maps of the installed units,
• operational limitations (start-up rate, ramp-up, etc.) of units,
• efficiency and Maximum capacity of storage systems;

optimize the following independent variables:

• on/off of units,
• load of units,
• share among heat and power (only for two-degree-of-freedom units),
• energy storage level (hence charge/discharge rate) in each time period (for each

energy storage system);
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so as to minimize the operating costs (fuel + operation and maintenance +
electricity purchase) minus the revenues from electricity sale for the given time
horizon while fulfilling the following constraints:

• energy balance constraints for each time interval, e.g. electric energy, thermal
energy, etc.,

• start-up constraints for each time unit, for each unit,
• ramp-up constraints for each time unit, for each unit,
• performance maps relating the independent control variables of the units with

their energy outputs (e.g. output thermal power as a function of the load),
• a number of case-specific side constraints, e.g. maximum number of daily turns-

on/off, for each unit; precedence constraints between units; minimum time unit
permanence in on/off states, for each unit etc.

All constraints, except the performance maps of the units, can be easily formu-
lated as linear equalities or inequalities. Performance maps of units are generally
nonlinear and often not convex functions yielding to a nonconvex Mixed Integer
NonLinear Program.

Due to the large number of variables, both integer and continuous, commercially
available global MINLP solvers are not capable of finding the global optimum
within reasonable time limits [404]. Besides genetic algorithms [236] or Tabu search
[291] from late nineties or other solutions going from Lagrangian relaxation [57] to
heuristic algorithms based on engineering practice for simple problems [46], the
most effective approaches are based on the linearization of performance maps so
as to obtain a Mixed Integer Linear Program (MILP) [307]. This allows to use
efficient MILP solvers, such as Cplex [214] and Gurobi [184], and have better
guarantees on the quality of the returned solution [404]. The performance maps of
the machines can be linearized using either the convex hull representation [254] or
classic piecewise linear approximations [89] of 1D [456] and 2D functions [46]; the
latter kept into account also daily storage facing an large increase of computational
effort, ranging from two to three orders of magnitude.

The so described problem assumes that forecasts of energy demands and prices
are accurate and their uncertainty is limited. If data uncertainty needs to be
considered, the short-term scheduling problem can be extended and reformulated
either as a two-stage stochastic program [15, 66] or a robust optimization problem
with recourse [313, 467].

As an additional challenge, when determining the optimal scheduling of CHP
units, it is necessary to take into account of the European Union regulation for high
efficiency CHP units [104]. If a CHP unit achieves throughout the whole year a
primary energy saving index above a threshold value, incentives are granted. Being
a yearly-basis constraint, it poses the need of considering the whole operating year
as time horizon when determining the optimal scheduling of CHP units. The same
requirement concerns energy hubs featuring seasonal storage systems [161] capable
of efficiently storing energy for several months. Since tackling the scheduling
problem for the whole year as a single MILP is impracticable, metaheuristics based
on time decomposition to reach near optimal solutions in a reasonable amount of
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time have been proposed. Bischi et al. [47] proposed a rolling horizon algorithm in
which the time horizon is partitioned into weeks. The extension of the MILP model
from 1 day to 7 days may imply an increase of computational time from few sec
for a single day to tens of minutes for the week (with MILP gap below 0.1%) but
it allows to better manage the thermal storage system accounting for the weekly
periodicity of the users’ demand. Within the rolling-horizon algorithm, the weekly
MILP subproblems are solved in sequence from the current week till the end of the
year. The yearly-basis constraints related to the CHP incentives are included in each
weekly MILP subproblem by estimating the energy consumption and production
of the future weeks of the year with the corresponding typical operating weeks
(previously determined and optimized). If the yearly basis CHP incentive constraints
are not met, the rolling horizon algorithm is repeated considering a higher (less
optimistic) energy consumption for the future weeks. Thanks to the decomposition
of the operating year into weekly subproblems, the computational time required to
optimize the whole year of operation with a tight relative MILP gap (0.1%) ranges
from 1 day to 3 days, making the algorithm an effective scheduling and control tool
for energy hubs featuring CHP units.

Finally it is worth pointing out that, due to growing industrial interest in the
optimal operation of complex energy systems for providing cooling, heating and
power (e.g., energy service companies, multi-utilities managing district heating
networks as well as power plant operators), several tools are already available on
the market [42].

5 The Pooling problem

The pooling problem arises in the chemical process and petroleum industries. It is a
generalization of a minimum cost network flow problem where products possess
different specifications (e.g. sulphur concentration). In a pooling problem, flow
streams from different sources are mixed in intermediate tanks (pools) and blended
again in the terminal points. At the pools and terminals, the quality of a mixture is
given as the volume (weight) average of the qualities of the flow streams that go into
them.

There are three types of tanks: inputs or sources, which are the tanks to store the
raw materials, pools, to blend incoming flow streams and make new compositions,
and outputs or terminals, to store the final products. According to the links among
different tanks, pooling problems can be classified into three classes:

• Standard pooling problem: in this class there is no flow stream among the pools.
It means that the flow streams are in the form of input-output, input-pool and
pool-output.

• Generalized pooling problem: here, flow streams between the pools are allowed.
• Extended pooling problem: here, the problem is to maximize the profit (minimize

the cost) on a standard pooling problem network while complying with con-
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straints on nonlinearly blending fuel qualities such as those in the Environmental
Protection Agency (EPA) Title 40 Code of Federal Regulations Part 80.45.

There are many equivalent mathematical formulations for the pooling problem,
such as P-, Q-, PQ- and HYB- formulations, and all of them may be formulated
as nonconvex (bilinear) problems, and consequently the problem can possibly have
many local optima. More information about different formulations may be found in
[183].

Despite the strong NP-hardness of a pooling problem in general, proved in [11],
and even for problems with a unique pool, proved in [12], or with single-flow restric-
tion, proved in [190], there are classes of pooling problems for which algorithms
with polynomial running time exist; see e.g. [28, 53, 189, 191]. Furthermore, much
progress in solving small to moderate size instances to global optimality has been
made since 1978, when Haverly in [193] described the P-formulation and solved
small standard pooling problems using recursive linear programming. A common
approach is to construct good lower and upper bounds for use in a branch-and-
bound framework; see e.g. [147]. To have tighter lower bounds, different methods
have been proposed in the literature including Lagrangian approaches [4], (piece-
wise) linear relaxations [100, 101, 305], modification of polynomial optimization
hierarchies [292], and convex nonlinear relaxations [274]. The first software that is
developed specifically to solve pooling problems is called APOGEE [305], where
the authors make use of an iterative piecewise linear relaxation, of which it is proved
in [100] that the first iteration may result in a lower bound far from the optimal value.

Due to the high-complexity, different pooling problem instances have been
collected in libraries such as [158], which are used as the test bed to assess the
performance of newly developed solvers and algorithms for nonlinear optimization
problems; see, e.g., [293, 304, 306].

Two interesting generalizations of the pooling problem are:

• more general networks where other types of units than pools are also present, e.g.
units that extract pollutants. Mathematically, this generalisation falls within the
framework of so-called wastewater management networks; see e.g. [235].

• treating the network topology as a decision variable, as done in [305].
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Natural gas is considered by many to be the most important energy source for the
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design and optimal operation such in [255]. Needless to say these problems involve
amount of money of the order of magnitude of the tens of billions EUR and often
these problems can be a multi-countries problem. From the economic side, the
natural gas consumption is expected to continue to grow linearly to approximately
153 trillion cubic feet in 2030, which is an average growth rate of about 1.6%
per year. Because of the properties of natural gas, pipelines were the only way to
transport it from the production sites to the demanding places, before the concept
of Liquefied Natural Gas (LNG). The transportation of natural gas via pipelines
remains still very economical.

From an optimization standpoint, the gas pipeline design problems can be divided
in the following main sub problems:

1. how to setup the pipeline network, i.e. its topology;
2. how to determine the optimal diameter of the pipelines;
3. how to allocate compressor stations in the pipeline network;

Typically, the mathematical programming formulations of these optimization
problems contain many nonlinear/nonconvex and even nonsmooth constraints and
objective functions because of the underlying physics of the gas flows that need
to be considered. The classic constraints are the so-called Weymouth panhandle
equations, which are a potential-type set of constraints and relate the pressure and
flow rate through a pipeline.

As in many other situations, problems 1–3 are a single problem but a divide
et impera principium is applied. Therefore the problems 1 and 2 are somehow
determined via simulations and normally there are—in the first but also in the
second problem—many economic drivers, and also political drivers when many
countries are involved. From a technical point of view, problem 3, the allocation of
the compressor stations, is probably the most challenging. Because of the high setup
cost and high maintenance cost, it is desirable to have the best network design with
the lowest cost. This problem concerns many variables: the number of compressor
stations which is an integer variable, the pipeline length between two compressor
stations, and the suction and discharge gas pressures at compressor stations. This
problem is computationally very challenging since it includes not only nonlinear
functions in both objective and constraints but, in addition, also integer variables.

In the case of transmission networks, existing infrastructure is already available,
but needs to be expanded to increase the capacity. To this end, new pipelines are
often built in parallel to existing ones, effectively increasing the diameter. On the
other hand, for the exploitation of new gas fields or off-shore transportation, pipeline
systems are designed from scratch with no predetermined topology. Capacity
planning and rollout has a time horizon of several years. Accordingly, some
optimization models consider multiple stages of network expansion. Many of the
planning problems are formulated as mixed-integer non-linear programs (MINLP)
with integer variables and nonconvex constraints. To solve these models directly,
solvers apply outer approximation and spatial branching. Alternatively, the problem
functions can be approximated piecewise linearly, yielding a mixed-integer linear
program (MILP) formulation. A survey paper concerned with water networks is
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also relevant here [90]. Specialized algorithms make use of the fact that certain
subproblems with fixed integer variables have a convex reformulation, which can be
solved efficiently and used for pruning [212, 356].

The design of pipeline topologies from scratch is solved with a decomposition,
where first a topology is fixed heuristically, and improved by local search. The
pipeline diameters are then solved separately [366].

In the case that the network has a tree topology, Dynamic Programming has been
applied, both for the choice of suitable pipe diameters [366] as well as compression
ratios [58].

Another important aspect is how to treat varying demand scenarios. A finite
number of different scenarios can be tackled using decomposition techniques [385].
When the network has a tree topology, also robust variants can be reduced to finitely
many scenarios [362].

2 District Heating Network Design

In the current energy market context, District Heating (DH) has an important role,
especially in countries with cold climate. DH often leverages on Combined Heat
and Power (CHP) units, capable to reduce the consumption of primary energy
to fulfill a given electric and thermal request, as well as on existing significant
sources of heat generated by industrial processes or waste-to-energy heat generation.
Additionally, heating networks will need to increase their flexibility in operation due
to an increasing mix of renewable sources, both heat sources or green electricity
utilized by heat pumps, distributed generation and smart consumers as well as DH
operational temperature reduction and heat storage integration [277, 426].

From a management standpoint, the design of the district heating network is
a strategic business issue, since it requires large investments due to the cost of
materials and civil works for the realization of the network. Proper strategic design
of the network (i.e. definition of the most convenient backbone pipelines to lay
down) and tactical targeting of most promising potential customers both aims at
maximizing the Net Present Value (NPV) of the investment.

Finding the extension plan for an existing (or eventually empty) DH network that
maximizes the NPV at a given time horizon is a challenging optimization problem
that can be stated as follows. Given:

• A time horizon (e.g., 15 years)
• A set of power plants, with specific operational limitations (maximum pressure,

maximum flow rate,. . . );
• An existing distribution network, with information on the physical properties of

the pipes (length, diameter,. . . );
• A set of customers already connected to the network with known heat demand;
• A set of potential new pipes that can be laid down;
• A set of potential new customers that can be reached;
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find:

1. The subset of potential new customers that should be reached;
2. Which new pipelines should be installed;
3. The diameter of the new pipes

that maximize the NPV.
Research on modelling approaches for representing the behavior of the thermo-

hydraulic network through sets of non-linear equations can be found in the literature
(see for example [52] and [343]). Solving systems of non-linear equations is difficult
and computationally expensive. For this reason, aggregation techniques of the
network elements are often used to model large district heating networks, at the
expense of some accuracy [258, 259, 272, 450, 452] and [272].

In [25], an integer-programming model is proposed for the optimal selection of
the type of heat exchangers to be installed at the users’ premises in order to optimize
the return temperature at the plant. The authors achieve good system efficiency at a
reasonable cost.

Bordin et al. [54] present a mathematical model to support DH system planning
by identifying the most advantageous subset of new users that should be connected
to an existing network, while satisfying steady state conditions of the thermo-
hydraulic system. Bettinelli et al. [42] extend the model proposed by Bordin et al.
[54] with the selection of the diameter for the new pipes and a richer economic
model that takes into account

• Production cost and selling revenues;
• Cost for installing and activating new network links;
• Cost for connecting new customers to the network;
• Amortization;
• Taxes;
• Budget constraints.

Moreover, while the investment on the backbone pipelines is done on the first
year, new customers are not connected immediately, but following an estimated
acquisition curve (e.g., 25% the first year, 15%, the second year, . . . ). Hence, the
corresponding costs and revenues have to be scaled accordingly.

The thermos-hydraulic model must ensure the proper operation of the extended
network. The following constraints are to be imposed:

• Flow conservation at the nodes of the network;
• Minimum and maximum pressures at the nodes;
• Plants operation limit: maximum pressure on the feed line, minimum pressure on

the return line, minimum and maximum flow rate;
• Pressure drop along the links;
• Maximum water speed and pressure drop per meter.



Network and Storage 93

Continuous variables model pressures at nodes and flow rate on the links and
binary variables model decisions on the connection of new customers, on the
installation of new links, on the diameter choice and on flow direction on the links.
The latter are necessary since DH networks contain cycles: the potential network
usually corresponds to the street network. Thus, it is not possible to know the flow
direction on the links a priori (at least not for all of them) and such decision must be
included into the model. The pressure drop along a pipe is a non-linear function that
depends on the flow rate and on the diameter of the pipe. This can be approximated
using a piecewise linear function that translates into a set of linear constraints. The
higher the number of segments in the piecewise linear function, the smaller will be
the approximation error. At the same time, the number of constraints grows (there
is one piecewise-linear function for each combination of pipe and diameter) and the
solving time increases. To keep the number of segments small, while obtaining a
good accuracy, breakpoints of the piecewise linear function can be concentrated in
the most probable range of flow rate.

DH networks can be quite large (hundreds of existing and potential users,
thousands of links) making it difficult to solve the full MILP directly. Solution
methods developed in [42] approach the problem in three steps.

1. Solve the linear relaxation of the MILP model and use it to select water direction
in all the pipes. Then, solve to integrality the MILP model, with the directions
fixed, obtaining a first heuristic solution.

2. In the solution found at step 1, the conflict points, which are the nodes of the
network where different water direction meet, are detected. The flow direction
is released for the nodes close to conflict points, and the MILP model is solved
again, obtaining a second heuristic solution.

3. The full MILP, initialized with the best solution found in the previous steps, is
solved until either optimality or the time limit is reached.

The company Optit S.r.l. has developed a decision support system, in collabo-
ration with the University of Bologna, based on the modelling mentioned above
that has been successfully used in two of largest multi-utility companies operating
in the Italian DH market. The application leverages on open source Geographical
Information System (GIS) to allow a simple user interface and a number of plug-in
tools to manage the specific optimization issue.

3 Optimal Design of Energy Hubs and CCHP Systems

The optimal design of energy hubs and combined cooling, heating and power
(CCHP) systems consists in determining the energy technologies (i.e., power
generation units and energy storage systems) to be installed and their sizes which
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minimize a certain cost function (e.g., the total annual cost given by annualized
capital and operating expenditures) while providing electricity, heating and cooling
power to a set of users. In the presence of multiple users and possible installation
sites, it is necessary to determine the units to be installed in each site and the required
energy network connections between sites.

The problem turns out to be a very challenging nonconvex MINLP [112] with
a large number of binary variables, because it has to include not only the design
variables (units selection and sizes) but also the operation variables and constraints
for the whole system lifetime. Due to the variable energy demand profiles and
electricity prices, the loads of the installed units must be continuously adjusted so as
to meet the demands and maximize the revenues. Thus, when designing the system,
the part-load performance and the operational flexibility (e.g. ramp constraints)
must be evaluated for the set of expected operating conditions. As a result, in most
formulations (see review in [112]), the design optimization problem includes also
the operational/scheduling problem with a considerable increase of problem size
and complexity.

The design problem is more complex than the scheduling problem not only
because of the larger number of variables and constraints (design + scheduling
variables) but also for the nonlinearity of the functions relating to units’ sizes
with energy efficiency (larger units feature higher energy efficiency [112]), and
investment costs. The approaches proposed to tackle the resulting nonconvex
MINLP problem can be classified in two main families:

1. linearization of all nonlinear functions so as to obtain a single large scale linear
problem (MILP) [444] and [161].

2. decomposition of the problem into a design level (upper level or master problem)
and a scheduling level (lower level) [138, 218] and [112].

At the upper level the selection and sizing of the units is optimized by either
solving a simplified (and linear) design and operational problem [218] or using
evolutionary algorithms [112, 138]. At the lower level, for each fixed design
solution, the operational scheduling problem is solved.

In order to limit the size of the problem, it is possible to reduce the number
of expected operating periods (i.e., days or weeks) by considering only the most
representative ones (i.e., “typical days” [138] or “typical weeks” [112]). Starting
from historical data of the users’ energy demand, data clustering algorithms, such as
the k-means algorithm [155, 188], can be effectively used to group similar operating
periods (i.e., daysweeks with similar profiles of energy demands) into clusters and
select a few representative demand profiles to be included in the design problem.

4 Operational Network and Storage Management

Originally natural gas was treated as a byproduct of crude oil or coal mining and
was spared. The flares in the mining field were usually natural gas. Not until the
introduction of pipelines did the natural gas become one of the major sources of
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energy. The earliest gas pipelines were constructed in the 1890s and they were
not as efficient as those that we are using nowadays. The modern gas pipelines
did not come into being until the second quarter of twentieth century. Because
of the properties of natural gas, pipelines were the only way to transport it from
the production sites to the demanding places, before the concept of Liquefied
Natural Gas (LNG). The transportation of natural gas via pipelines remains still very
economical, but it is highly impractical across oceans. Although the LNG market is
burgeoning in high speed now, pipeline network remains the main transportation
system for natural gas.

From the operational stand point, the main objective for the optimization model
is to ensure optimal routing and mixing of natural gas. The objective for the model
is to deliver the nominated volumes in the different import terminals within a time
period. This objective can be reached in several ways, and in order to influence the
operation of the network some penalties are introduced in the objective function.
This is done to influence the impact of the following goals:

• Maintain planned production from the producers, where this is physically
possible.

• Deliver natural gas which meets quality requirements in terms of energy content.
• Deliver within the pressure requirements of the contract.
• Minimize the use of energy needed in order to deliver the natural gas to the

customers by minimizing the pressure variables.

The goal of the network and storage operation is to route the gas flow through
the network in order to meet demand in accordance with contractual obligations
(volume, quality and pressure). A set of constraints are therefore to be satisfied, the
following list describes them:

• Production capacity: total flow out of a production node cannot exceed the
planned production of the field in that node;

• Demand: the total flow into a node with customers for natural gas must not exceed
the demand of that node;

• Mass balance for each node: this constraint ensures the mass balance in the
transportation network;

• Pressure constraints for pipelines: this is probably the most important and
complex constraint, since it calls for the satisfaction of the equation to describe
the nonlinear relationship between flow in a pipeline as a function of input
and output pressure. Normally this is done by using the Weymouth equation.
This equation can be linearized through Taylor series expansion around a point
representing fixed pressure into the pipeline and fixed pressure out of the pipeline
respectively. Some physical pipelines between nodes where the distances are
very limited can be modeled without pressure drops by the Weymouth equation
simplifying part of the modeling of bidirectional pipelines.

• Modeling bidirectional pipelines: Sometimes a bidirectional flow must be
ensured, so specialized constraints with binary variables must be inserted to
model this to make sure that there only flows gas in one direction in the pipeline.
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• Gas quality and blending: Gas quality is a complicating element because we have
to keep track of the quality in every node and pipeline, and this depends on the
flow. Where two flows meet, the gas quality out of the node to the downstream
pipelines depends on flow and quality from all the pipelines going into the node

Apart from the pure network operation and optimization, also the storage must
be taken into account in the whole operational problem. Indeed as a consequence of
the liberalization process in the natural gas industry, the natural gas markets have
become more dynamic. The spot markets and the possibility to trade gas in forward
markets have increased the importance of gas storage. The main problem of the
storage management is related to the simple fact that one wants to take advantage
of the strong seasonal pattern in prices. Since the primary use of natural gas is
for heating and production of electricity, the fundamental price determinant in the
markets is the weather.

However, modelling the storage in a realistic way is not as simple as it may
seem, in fact the maximum in—and outflow rates of the storage varies with the
current storage level. The maximal injection rate is a strictly decreasing convex
function of the storage level. Likewise the outflow rate can be given as a strictly
increasing convex function of the storage level. Other concepts such as Cushion gas
and Working gas must be considered in order to model the storage in a correct way.

All the variants of the network and storage operational problem can be complex
MILP or MINLP, with typically non convex continuous relationships.

5 Gas Network Flow Optimization

A gas network has a number of entry and exit points. Shippers independently
contract the right to use the network on these points. Only at the time of actual
use, the combination of entries and exits is known. One of the questions is, if all
possible future transport use by the shippers can be met.

Past In the past the situation of gas transport was merely static. So it was possible to
take a long period (years) and use expert knowledge to generate severe realizations
(these are called shipping variants) that should be considered to check whether a
new contract can be honoured.

Present Currently a method is used, based on simplified models, to generate a
limited set of shipping variants which should be considered when a new situation
occurs. Since the changes in law and new energy sources lead to many more
different situations such a method should be fast, robust, structured, objective, based
on simple principles and generates a small set of shipping variants. The proposed
method satisfies most of the requirements and reproduces known shipping variants
obtained by expert knowledge.

Future Although the method works well for the current situation it is important
to base the method on a firm mathematical basis. Furthermore it would be nice to
reduce the number of shipping variants even more.
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Open questions are:

• Which physical quantities, metrics and techniques should be used to find those
transport conditions that determine the size of the infrastructure?

• Which techniques are available to sufficiently reduce the obtained set in order
to find an exhaustive subset whose elements are mutually exclusive, given a
required accuracy?

• What mathematical optimisation tools can be used to maximise the load and
minimise the number of scenarios, given that all transport paths from entry to
exit need to be covered?

For the problem a variety of optimization methods have been used: From linear
programs to mixed-integer nonlinear programs. The choice of method depends first
and foremost on the chosen model for the pressure drop in pipes and whether one
uses a time-dependent model or not. Among the easy cases are the following: If
the network is topologically simple, say a so-called gun barrel or tree-like network,
then dynamic programming approaches are the state-of-the-art (see [71]). If one
chooses to use a stationary model, then it can be reasonable to use an algebraic
solution of a simplified system, a special case of these is known as the so-called
Weymouth equation. The problem then is a mixed-integer nonlinear program which
can be tackled directly with off-the-shelf MINLP solvers for small networks or
using specialized methods for larger networks (see e.g. [213, 243]). Popular choices
for methods include using piecewise linear approximations/linearizations to obtain
MILP models [166, 167, 296], MPEC-based models (see [31, 380]). Neglecting the
discrete decisions leads to NLP models which can be solved to local optimality
(see [382]). But also these equations can be simplified even further. A possibility
is to locally linearize them around a working point, an approach that is very
successful in practice (see [203]). If one opts to use the full Euler equations in the
instationary setting one obtains a mixed-integer PDAE-constrained optimal control
problem that is intractable for current methods except for very simple networks.
Another approach with high physical accuracy is to use a (sub)gradient-based
approach on top of an accurate simulation tool (see [222] and [431]). In order to
reduce the high degree of nonlinearity that results from the gas dynamics, different
approaches simplify the full Euler equations to the isothermal case, i.e. assuming
constant temperature of gas. Additionally, the usage of different discretization
schemes for the underlying isothermal Euler equations results in different transient
gas flow models. For example, [106] use a piecewise-linear representation of the
nonlinearities leading to MILP models. Alternatively, [460] and [288] neglect the
discrete nature of the active elements and solve the resulting NLP models. [63]
present a new discretization scheme that admits to keep the algebraic structure of
the stationary Weymouth equation which is used to obtain globally optimal solutions
of the MINLP model.
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6 Optimal Operation of District Heating Systems

Future power systems with a large penetration of fluctuating renewable energy
production from wind and solar power generation call for demand flexibility. In
Denmark, for instance, on average 44% of the power load in 2017 was covered
by wind power production, and during several hours the wind production was
well above 100% of the electricity load, which was possible partly because of the
flexibility of the widely used DH systems.

Heating and cooling represent a huge part of the total energy consumption.
According to 2014 Eurostat figures, in the EU around 30% of the primary energy is
used to produce heat, and 40% is used for electricity, including electricity for heat
production [241]. The dynamics and inertia of thermal systems and the low-cost
storage capabilities for hot water, imply that DH systems are capable of playing an
important role in the future intelligent and integrated energy system. As mentioned
above, in Denmark DH systems already play a very important role in the integration
of the fluctuating renewable energy production and for providing energy balancing
services to the power grid.

Historically DH systems are often considered as single systems, but this is
rather due to the historic emphasis on energy supply as subsystems of different
supply sources (e.g., gas, coal, and electricity). However, today they act as a key
element for integrating the different energy systems, and they provide some of the
needed flexibility to the power system [300]. DH systems also provide an eminent
possibility of using excess heat from e.g. industrial production and cooling in super
markets.

This section briefly describes the operational optimization problems involved in
various parts of DH systems, and some methodologies and tools for solving these
problems will be indicated. For operational convenience we will split the discussion
into a number of subsystems, which can provide flexibility to the overall DH system.
Each subsystem leads to an optimization problem and calls for adequate related
methodologies for providing the optimal operation. The optimal operation of the
following subsystems are considered:

• DH plant, including production and storage facilities.
• DH network with the pipes and pumps.
• DH users, which might also consist of secondary distribution networks.
• DH connected heat pumps and boilers.

In general, DH systems often consist of a spectrum of different possibilities
for heat production. For example, thermal solar plants are becoming increasingly
popular nowadays. However, the solar energy production is often hard to predict,
and hence this calls for methods like probabilistic forecasting and optimization
under uncertainty [311]. Here methods like stochastic programming and stochastic
control theory are obvious for solving the operation problem in near real time.
Therefore, the operation of the total DH system can be considered as a set of nested
stochastic programming and control problems, which are presented in more detail
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in the remainder of this section. In the following description only district heating
will be considered, but almost the same principles can be used for district cooling.

Operation of DH Plants The portfolio of production units in a DH system,
comprising of combined heat and power (CHP) plants and heat-only units, can
be used to react to current state of the energy system and thus increase efficiency
and reduce imbalances. In periods with high generation of intermittent renewable
power resources, the generation can be shifted to heat-only units, which maybe
even consume power (e.g. heat pumps) to lower the imbalance in the grid, while
fulfilling the heat demand. In periods with less power production from wind and
photovoltaic, CHP plants can provide power to the market while producing heat.
Thus, the coupling of the operation of the district heating system to the electricity
markets is important [277]. The key to reducing costs in the operational production
is by considering all production units as a portfolio to make use of the flexibility.
By optimizing the entire portfolio, the interplay between the units can be used to
further reduce costs and increase income from the market. During the optimization
several restrictions have to be considered, such as the capacities of the producing
units and connected thermal storages as well as technical characteristics of the units
(e.g. start up/shut down times and costs).

In recent years, the production of heat from the installed small CHP plants has
slightly decreased in favor of heat-only units such as boilers and heat pumps, due
to the reduction of the electricity prices. The design of today’s electricity market
forces CHP producers to present power production offers 1 day before the actual
energy delivery. Consequently, forecast uncertainties in prices and heat demand
must be considered for an optimal planning of DH systems. Furthermore, the above
mentioned increase in solar thermal production introduces an additional source of
uncertainty from the heat production side.

To efficiently operate this mixture of heat production units while reducing
the operational costs, several optimization techniques such as MILP, Lagrangian
relaxation, heuristics, or fuzzy linear programming have been proposed. However,
the use of MILP prevails over the other methods due to the easy implementation
of these programs in available commercial solvers. In addition, the formulation of
two-stage stochastic and robust MILP problems allows the integration of uncertainty
in the optimization problem yielding in better operation plans for CHP plants
[103, 467]. The use of two-stage stochastic programs to optimize the heat production
of different heat-only, storage and CHP units translates into more flexibility in the
real-time operation [322]. Finally, stochastic programming has been proven to be
an effective tool to make use of DH networks to integrate the uncertain production
from renewable energy sources [200].

Operation of DH Networks The problem of determining the optimal operation
of DH network relates to finding the optimal combination of flow and temperature
profiles that provide the minimal operational cost. Pumping costs are, however, often
an order of magnitude smaller than the costs related to the heat loss induced by
having a too high supply temperature profile in the network [378]. Consequently, a
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reasonable control strategy for DH networks is to keep the supply temperature from
the district heating plant as low as possible. This is in particular the case, if the heat
production takes place at a CHP plant [284, 285].

The control of the temperature is subject to some constraints. For instance,
the total heat requirement for all consumers must be supplied at any time and
location, such that each individual consumer is guaranteed some minimum supply
temperature. A lower supply temperature leads typically to large savings, since this
implies lower heat losses from the transmission and distribution networks as well as
lower production costs.

As described in [285], the optimal operational problem can be formulated as a
stochastic problem which can be solved using dynamic programming. Furthermore,
given probabilistic forecasts for the heat load, cf. [321], and stochastic models for
the dynamics in the network, the problem can be described as a problem which can
be solved using stochastic control theory.

A DH system is an example of a non-stationary system, implying that model
parameters have to be time varying, e.g., the time-delay from the plants to the end-
users is unknown and time-varying. Therefore, the methods used in conventional
predictive control theory have to be modified [347]. The modified controllers
have been incorporated in a software package, PRESS (HeatTO), developed at
the Technical University of Denmark. PRESS (HeatTO) has been applied and
tested, e.g. at Vestkraft in Esbjerg, Denmark, and significant savings have been
documented [284].

Operation of DH End-Users The end-users in DH system can provide flexibility
by storing energy in the thermal mass of the buildings or in a local water tank.
In [186] it is shown how nested stochastic control problems can be defined such that
the thermal mass of buildings can provide services to the future smart grid. This is
further explained in [286].

Furthermore, in order to avoid, e.g., costly upgrades of the existing network in
large cities, it will be more and more important to control the maximum energy used
within a certain interval. This can be obtained by a control that directs the maximum
flow towards specific end-users or districts.

Dynamic tariffs provide another option for enabling flexibility in DH networks.
For instance, to reduce the peak consumption in the morning, an extra price or
penalty can be utilized during peak hours.

Operation of Heat Pumps and Boilers It is suggested in e.g. [286] that dynamic
electricity prices can be used to control the electricity consumption and hence
to enable the needed flexibility for integrating large shares of fluctuating and
intermittent renewable power generation.

Time-varying price signals are an example of a penalty signal that can be linked
to the optimization and control problem in order to arrive at a cost optimal solution
by demand response. Another example are real-time marginal CO2 signals that can
be used as a penalty signal linked to the optimization problem. Then the optimal
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solution will minimize the CO2 emission associated with the optimal control or
operation.

Different penalty signals will lead to different optimal solutions for the problem
and the choice depends on the context or societal ambition. Three of the most
obvious penalty signals are the following:

• Real time CO2. If the real time (marginal) CO2 emissions related to the actual
electricity production is used as penalty, then the optimal control will minimize
the total carbon emission related to the power consumption. Hence, the heat
production provided by the heat pump or boiler will be emission efficient.

• Real time price. If a real time price is used as penalty, the objective is obviously
to minimize the total cost. Hence, the optimal operation is cost efficient.

• Constant. If a constant penalty is used, then the controllers would simply
minimize the total energy consumption. The optimal control will the provide
a systems which is energy efficient.

It is clear that a DH system with controllers defined by an objective of minimizing
the total emission would in general lead to an increased use of energy. However, this
may happen during periods with, e.g., a large amount of wind power production and
where the alternative would be to stop some wind turbines.

7 Gas Networks in Energy Systems Sector Integration

Transition of energy systems from fossil to renewable energy sources took a boost
after 21st Conference of the Parties (COP21) in 2015, where participants of United
Nations Framework Convention on Climate Change signed the Paris Agreement.
They committed to reduce greenhouse gas emissions gradually until 2050 [417]. The
aimed reductions in greenhouse gas emission in 2030 and 2050 are known as COP21
goals. To reach these goals there are several potential pathways and increasing the
share of renewable energy sources (RES) in electricity production is one of them
[361]. Regarding the share of electricity in final energy consumption and share of
electricity production in greenhouse gas emissions [133, 216] as well as varying
nature of RES, a holistic view to the energy production and transmission systems
together with energy consuming sectors is required to reduce the greenhouse gas
emission as aimed while maintaining the security of supply of energy. This brings
the sector coupling notion into the scene.

The concept of sector coupling is defined by the International Renewable Energy
Agency [326] as co-production, combined use, conversion and substitution of
different energy supply and demand forms—electricity, heat and fuels. The readers
are referred to [361] and [60] for extended literature review on sector coupling.
As seen from the studies in the literature, the main challenge in modelling sector
coupling is the computational complexity induced by integrating several models of
sectors included in the study. Hence, the studies in the literature either include a
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smaller number of sectors, i.e., electricity and gas, or reduce the spatio-temporal
span of the study, i.e., including only a single country or a restricted region [60, 81].

In a very recent study commissioned by European Parliament [132] sector
coupling is separated in two groups.

• “end-user sector coupling” involves the electrification of energy demand while
reinforcing the interaction between electricity supply and end-use [316].

• “cross-vector coupling” involves the integrated use of different energy infrastruc-
tures and vectors, in particular integration of electricity, heat and gas.

In this section, we focus on how other energy vectors are integrated into gas
infrastructure in different scenarios for cross-vector sector coupling on the supply
side. Gas networks’ interaction with energy systems are twofolds.

• Gas networks as gas provider for gas-powered plants (GPPs): Gas networks
main function is to transport gas from suppliers to the final consumers that
include industry, household users as well as gas-fired power plants (GPPs).
Hence, the main interaction between the gas networks and energy system is
through the supply of gas to the GPPs that produce electricity. However, with
the increase in share of RES that are stochastic in nature, in electricity production
GPPs—as more agile electricity production facilities—have been used to balance
the demand for electricity with a potential of resulting in a rapid and larger
scale fluctuation in gas network demand then it used to be. This brought the
question whether the gas demand required to produce electricity especially at
peak demand times can be met from the gas suppliers, i.e., indigenous production
sites, LNG facilities or other countries that the gas is imported, given the
existing gas network infrastructure. State-of-the-art academic studies focusing
on this question focus on very limited scales such as 5–10-node small networks
designed for research or simplified small networks, i.e., 79-node UK network
[20, 72, 80, 144, 302, 449]. On the other hand, Beulertz et al. [43], propose a
flexible modeling framework including integration of other energy vectors to gas
infrastructure, which is going to be tested by a case study aiming at investigating
a multi-modal European energy concept. They use a stationary gas model to
evaluate the feasibility of the optimal multi-model energy mix found in the case
study using a multi-modal investment model, European unit commitment model
and electricity grid model. In this context, gas networks serve as a flexibility
option to the electricity network by their ability to store gas in pipelines and
underground gas storage facilities connected to the gas network. The electric-
powered compressor stations in gas network that use electricity to compress gas
to increase the pressure of gas in the pipes of the network are other means of
interaction in the context of security of supply of gas to GPPs (See Sect. 11).

• Power-to-gas: Power-to-gas (P2G) is an emerging technology that provides
flexibility to energy system by converting surplus electricity produced by RES
to hydrogen or synthetic methane, and feed it into the gas network. On the other
hand, gas power stations convert gas into electricity in peak demand situations
with not enough RES available. Thus, P2G lies in the interface of gas and
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Fig. 1 Interaction of gas network and energy system through P2G

electricity network, where the amount of gas fed into the gas network is limited
by the network’s technical capacity and properties of the gas fed into the network.
Interaction of gas network and energy system through P2G is presented in Fig. 1.

The main challenge for integrating other energy vectors into gas network models
arise from the physical nature of gas and electricity. Gas flows in pipelines according
to thermodynamic laws making it slow to move in the network with a velocity about
20 km/h, that is the speed of a bicycle. Hence, a demand in a gas network cannot
be met instantaneously and the duration depends on the amount of the demand as
well as the amount of gas in the network at a particular time. In addition, physical
models for both gas networks (see Sect. 5) and electricity networks (see Sect. 7)
possess non-linear natures that make them difficult to solve. For example, Clegg and
Mancarella report about 140 min run time for optimal power flow model and about
100 min for transient gas network optimization model for monthly modeling of an
equivalent 29-busbar system and a 79-node gas network [80]. Hence, the studies
that evaluate the integration of gas networks and electricity networks use different
approaches regarding the system scenarios and modeling approaches, as well as
various spatio-temporal resolutions [20, 43, 72, 75, 80–82, 144, 202, 302, 449, 461].

The gas and electricity systems currently operate independent from each other
and how the gas and electricity systems work depends on technological and
operational developments in both sectors as well as the individual regulatory
developments [316]. The studies that evaluate integrating electricity network models
to gas networks use scenarios of different integration levels, which vary from
scenarios involving separate operation representing current status-quo to fully
coordinated operation, to evaluate the integration of gas networks and electricity
networks.
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• Separated operation of systems: They solve electricity network model and gas
network model separately and use demand results from electricity network with
gas network to find out whether a feasible solution exists in the gas network
[43, 461].

• Interconnected gas network and electricity network systems: The electricity and
gas network models are solved using iterative or sequential algorithms, in such a
way that they use each other’s results to fix/improve their solutions [20, 43, 80–
82, 461].

• Integrated gas network and electricity network systems: They use a single model
for finding a cost optimal operational setting for both gas and electricity models
[20, 72, 144, 302, 316, 449].

From the modeling point of view, the integration is studied using detailed physical
models of gas networks and electricity networks, or simple economic or energy flow
model for at least one of the networks, i.e., simple economic model for electricity
network and a detailed physical model for gas network [75], or vice versa [202].

In the studies where physical models are used for both systems, the gas network
is modeled using either a stationary gas network flow model [43, 81, 82], or as
transient network flow model on very limited scales such as 5–10-node small
networks designed for research or simplified small networks, i.e., 79-node UK
network [20, 72, 80, 144, 302, 449]. Although the former is practically less data
demanding and computationally less expensive, it does not account for intra-day
flexibility of the gas network [243], which is important to evaluate the feasibility of
gas network operation subject to the fluctuations in gas demand caused by GPPs.
In order to account for intra-day flexibility of gas networks, stationary models are
augmented with linepack analysis [81].

ENTSO-G and ENTSO-E address P2G as a promising technology for inte-
grating wind and photovoltaic production into the overall energy system, that is
complementing other technologies like integration using the power grid, electric
power storages and power to thermal storage [114]. For this matter, the EC and
the European Council support the approach of implementing P2G facilities from
the system perspective after a first assessment [114]. So that P2G is studied in the
interface between gas and electricity networks in the context of integrating other
energy vectors to gas networks.

Studies evaluating the potential of P2G technologies and pathways generally
focus on the following three practicalities [352].

• Production: Efficient production of technologies and processes from electricity
to gas are studied [33, 379].

• Distribution and transmission: There are some concerns about hydrogen injection
in natural gas grid since hydrogen embrittlement can lead propagation of cracks
in the iron and steel pipelines, hydrogen leakage is riskier than natural gas
leakage, etc. [301]. However, it is generally agreed that low concentration of
hydrogen in the natural gas grid has no serious safety issues. On the other
hand, converting gas network to hydrogen networks and operation of hydrogen
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networks that are separate from natural gas networks are also studied [105, 185,
396].

• End use: Household appliances or industrial machinery should be made suitable
to using hydrogen blended gas. Heat pumps and transport vehicles using Hydro-
gen only are another potential use of Hydrogen generated by P2G [352, 379].

For extensive review of P2G studies in the literature, the readers are referred
to [50, 185, 352]. [19, 43, 50, 80, 82, 349, 350] are examples for studies that
model P2G when evaluating the feasibility of gas network and electricity network
interconnection.

General practice in studies in literature that model P2G in the interface of gas
and electricity networks is to assume that the gas network has an appropriate level
of allowed hydrogen volumetric share in the gas network. This level imposes limits
to amount of gas fed into the gas network by P2G affecting the dispatching of
electricity production schedules in the electricity network side. Thus, restrictions
to the application of P2G are implied to electricity grid models, although the level
of allowed hydrogen into the gas grid changes among countries such that UK allows
1% whereas the limit in The Netherlands is 12% [352]. These restrictions imposed
by limited transport capacities of the gas network and allowable amount of hydrogen
are calculated by gas network models as linepack of the pipelines that depends on
the volumetric gas flow and in gas network model the effect of hydrogen is not
considered [349, 350, 352]. The reader, who is interested in effects of blended
hydrogen in gas pipelines, is referred to [185] for energetic aspects of hydrogen
through pipelines and percentwise mixing of hydrogen into a natural-gas bulk.
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1 Evaluation of European Gas Market Designs

The Entry–Exit System. The liberalization of the European gas markets started
in the 1990s and lead to the current situation in which European transmission
system operators (TSOs) typically operate under the so-called Entry–Exit system
(Directive 1998/30/EC, Directive 2003/55/EC, Directive 2009/73/EC). The timing
of this system is as follows: The TSOs have to publish so-called technical capacities
at every entry or exit point of the their network. Afterward, gas traders can book
capacities that are bounded above by the corresponding technical capacity. The
booking is a capacity right that ensures that the trader can inject (as an entry
customer) or withdraw (as an exit customer) balanced amounts of gas up to the
booked capacity. The latter process is called nomination and the TSOs have to be
able to transport all possible nomination situation as they are (via the bookings)
conformal to the published technical capacities.

The current entry–exit system can be addressed by mathematical modeling in
various ways. From the perspective of the evaluation of this market design one is
faced with multilevel models that are made up of the following levels:

1. Computation of technical capacities by the TSO,
2. Booking by gas traders,
3. Nomination by gas traders,
4. Transport by the TSO.
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For the ease of presentation we refrained from discussing secondary intra-day
markets [237, 238].

The first mathematical challenge is the robustness that the TSO has to address
when computing the technical capacities in level 1: All balanced nominations
that are restricted by the bookings that themselves have to be in line with the
technical capacities have to transportable by the TSO. Feasibility of transport
depends on the physical model of gas flow and of the chosen models of technical
entities of gas transport networks like compressor, control valve stations, filters,
measurement devices, etc. The former is typically modeled by systems of nonlinear
and hyperbolic partial differential equations (the Euler equations, cf., e.g., [59]) on
a graph. The latter are mainly modeled by algebraic but highly nonlinear discrete-
continuous equality and inequality systems. Details and further references can be
found, e.g., in [157, 381]. Assuming the TSO’s goal of cost-minimal transport of
nominations, the levels 1 and 4 alone already lead to adjustable robust mixed-integer
nonlinear optimization problems that are subject to hyperbolic partial differential
equations on a graph.

Since the acting agents (TSO and gas traders) in this market game typically
have different objectives one is readily confronted with multilevel optimization or
complementarity problems in levels 2 and 3 that are intermediate levels in the overall
equilibrium problem.

Possible further directions of research are the following. Although the mathemat-
ical model described so far is extremely challenging and far beyond the border of
what can be solved with the current state of mathematical theory and algorithmic
technology, there are still a lot of possible extensions of this setting. One possible
extension is the consideration of uncertainty in the given setting; cf., e.g. [159, 458].
Typically, the exact gas demand is unknown before booking and nomination. Thus,
both stochastic and robust optimization techniques may be employed to address this
issue.

2 Take or Pay (ToP) Contracts

Take or Pay (ToP) contracts are a very common contract types in the oil as well
as in the gas industry. In their simplest form they state that, once signed, a certain
amount of commodity can be used or otherwise lost while already paid. Typically,
these ToP contracts were historically used when new oil and, lately, gas pipelines
were to be constructed in order to give some economic certainty to the pipelines
constructor. However these type of contracts have evolved over time including
several flexible clauses whose –optimal– usage from the buyer perspective, have
rendered the operational portfolio problem, quite complex.

For instance, in a ToP a monthly amount and a total annual amount can be
specified, therefore at least X% of the monthly amount has to be bought every month
and at least Y% of the contracted annual amount for the year has to be bought.
Hence, there might be some gas excess based on contracts of this type. Moreover
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some other clauses can be present, such as those named Make-Up. Such additional
flexibility enables the buyer to “recover” some quantity after the ToP horizon have
passed and the quantity has not been used. Of course the exercise of Make-Up clause
can be at some cost, and typically have maximum amount of quantity. In real life
Gas or oil contracts the set of clauses can be in the order of tens and interact with
each other. The minimum or maximum amount of quantity applied to each clause
can be a complicating factor. Indeed all the ToP contracts management deals with
uncertainty from the demand that the buyer has to face.

From a modelling point of view, the portfolio management of ToP contracts
with swing-like options such as Make-Up and others, is a complex, large scale,
optimization problem with integer variables and a lot of source of uncertainty that
cannot be neglected in modern models. The uncertainty, in turn, are of different
types and produce either volume as well as price risks. For instance, price risk can
be taken into account if the buyer consider alternatives of buying spot volumes on
the market in future times.

3 Gas Balancing Market

In the short term, for natural gas there are other problems that can be considered.
Here we discuss the newly designed balancing market in some Countries, i.e.
natural gas markets where one typically wants to adjust its daily positions long
or short. From an operational point of view we remark that, natural gas flows in
the transmission system from one point to another on the network by virtue of the
differential in pressure existing between those two points. Therefore also a short
term balancing market must take into account the physical rules and cannot be a
set of simple financial transactions. Moreover, by definition, it must include the gas
TSO. In a daily balancing setting, for instance, at the end of each day (so called Gas
Day), for any residual deviation between gas injections and withdrawals, shippers
incur imbalance charges for the imbalanced volumes accumulated throughout the
day in a given balancing zone, and not timely compensated. Because of this they
may want to get closer to the balance, and this can be achieved by selling or
buying some amount of gas with daily frequency. The gas balancing markets are
typically built around the concept of uniform price as in the electric setting. However
the clearing, and the consequent price, is typically unique in the day. Therefore
the shippers are required to bid or offer a certain quantity at a certain price. The
market is cleared accordingly with classic uniform price settings (i.e. intersecting
the aggregated demand and the offer curve) and consequently the price is set and
the transactions are cleared.

From the shipper point of view there are many possible alternatives of optimizing
the bid/offer strategy, depending on the usage of the natural gas (e.g. residen-
tial, industrial or power production), the cost of imbalance, and the rest of the
medium/long term alternatives of the portfolio they are managing. Therefore the
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balancing market can be views as another option to extract value in the gas value
chain Modeling and algorithmic considerations:

From the modeling point of view, the optimal balancing market can be posed
as a mixed integer optimization problems with uncertainty in the strategy of the
competitor, and –as previously noted– other alternatives can be incorporated from
existing contracts. Depending on the integration level with other contracts, and
depending on the usage of the natural gas, the problem can be a small or medium
size stochastic or robust MILP that can be solved with off the shelf tools.
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143. E.B. Fisher, R.P. OŃeill, M.C. Ferris, Optimal transmission switching. IEEE Trans. Power
Syst. 23(3), 1346–1355 (2008)

144. E. Fokken, S. Göttlich, O. Kolb, Optimal Control of Compressor Stations in a Coupled Gas-
to-Power Network (Birkhäuser, Cham, 2020)

145. R.M. Fonseca, O. Leeuwenburgh, P.M.J. Van den Hof, J.D. Jansen, Ensemble-based hierarchi-
cal multi-objective production optimization of smart wells. Comput. Geosci. 18(3), 449–461
(2014)

146. R.R.-M. Fonseca, B. Chen, J.D. Jansen, A. Reynolds, A stochastic simplex approximate
gradient (stosag) for optimization under uncertainty. Int. J. Numer. Methods Eng. 109, 1756–
1776 (2017)

147. L.R. Foulds, D. Haugland, K. Jörnsten, A bilinear approach to the pooling problem.
Optimization 24(1), 165–180 (1992)

148. A. Frangioni, C. Gentile, Perspective cuts for a class of convex 0–1 mixed integer programs.
Math. Program. 106(2), 225–236 (2006)



118 References

149. A. Frangioni, C. Gentile, Solving nonlinear single-unit commitment problems with ramping
constraints. Oper. Res. 54(4), 767–775 (2006)

150. A. Frangioni, C. Gentile, New MIP formulations for the single-unit commitment problems
with ramping constraints, in IASI Annual Research Reports (2015)

151. A. Frangioni, C. Gentile, F. Lacalandra, Tighter approximated milp formulations for unit
commitment problems. IEEE Trans. Power Syst. 24(1), 105–113 (2009)

152. A. Frangioni, F. Furini, C. Gentile, Approximated perspective relaxations: a project and lift
approach. Comput. Optim. Appl. 63(3), 705–735 (2016)

153. S. Frank, I. Steponavice, S. Rebennack, A primer on optimal power flow: a bibliographic
survey – I formulations and deterministic methods. Energy Syst. 3 (2012)

154. S. Frank, I. Steponavice, S. Rebennack, A primer on optimal power flow: A bibliographic
survey – II non-deterministic and hybrid methods. Energy Syst. 3 (2012)

155. M. Freschini, M. Rossi, A. Gambarotta, M. Morini, E. Martelli, M. Zatti, M. Gabba, k-milp: a
novel clustering approach to select typical and extreme days for multi-energy systems design
optimization. Energy 181, 1051–1063 (2019)

156. A. Froger, M. Gendreau, J.E. Mendoza, E. Pinson, L.-M. Rousseau, Maintenance scheduling
in the electricity industry: a literature review. Eur. J. Oper. Res. 251(3), 695–706 (2016)

157. A. Fügenschuh, B. Geißler, R. Gollmer, A. Morsi, M.E. Pfetsch, J. Rövekamp, M. Schmidt,
K. Spreckelsen, M.C. Steinbach, Physical and Technical Fundamentals of Gas Networks.
SIAM-MOS Series on Optimization Edition (2015)

158. F. Furini, E. Traversi, P. Belotti, A. Frangioni, A. Gleixner, N. Gould, L. Liberti, A. Lodi,
R. Misener, H. Mittelmann, N. V. Sahinidis, S. Vigerske, A. Wiegele, QPLIB: a library of
quadratic programming instances. Math. Program. Comput. 11(2), 237–265 (2019)

159. S.A. Gabriel, J. Zhuang, R. Egging, Solving stochastic complementarity problems in energy
market modeling using scenario reduction. Eur. J. Oper. Res. 197(3), 1028–1040 (2009)

160. S.A. Gabriel, A.J. Conejo, J.D. Fuller, B.F. Hobbs, C. Ruiz, Complementarity Modeling in
Energy Markets (Springer, Berlin, 2013)

161. P. Gabrielli, M. Gazzani, E. Martelli, M. Mazzotti, Optimal design of multi-energy systems
with seasonal storage. Appl. Energy 219, 408–424 (2018)

162. D. Gade, G. Hackebeil, S.M. Ryan, J.P. Watson, R.J.B. Wets, D.L. Woodruff, Obtaining lower
bounds from the progressive hedging algorithm for stochastic mixed-integer programs. Math.
Program. 157(1), 47–67 (2016)

163. C. Gambella, J. Marecek, M. Mevissen, J.M.F. Ortega, S.P. Djukic, M. Pezic, Transmission-
constrained unit commitment. Preprint. arXiv:1806.09408 (2018)

164. A.A. Garcia, Demand side integration (2011)
165. M.R. Garey, D.S. Johnson, Computers and Intractability; A Guide to the Theory of NP-

Completeness (W.H. Freeman & Co., New York, 1990)
166. B. Geißler, A. Martin, A. Morsi, L. Schewe, Chapter 6: The MILP-Relaxation Approach,

pp. 103–122
167. B. Geißler, A. Morsi, L. Schewe, M. Schmidt, Solving power-constrained gas transporta-

tion problems using an mip-based alternating direction method. Comput. Chem. Eng.
82(Supplement C), 303–317 (2015)

168. B. Ghaddar, J. Marecek, M. Mevissen, Optimal power flow as a polynomial optimization
problem. IEEE Trans. Power Syst. 31(1), 539–546 (2016)

169. V. Giordano, A. Meletiou, C.F. Covrig, A. Mengolini, M. Ardelean, G. Fulli, M.S. Jiménez,
C. Filiou, Smart grid projects in Europe: lessons learned and current developments. JRC
Report (2013)

170. H. Glavitsch, Switching as means of control in the power system. Int. J. Elect. Power Energy
Syst. 7(2), 92–100 (1985)

171. V. Goel, I. Grossmann, A class of stochastic programs with decision dependent uncertainty.
Math. Program. 108, 355–294 (2006)

172. R. Gollmer, F. Neise, R. Schultz, Stochastic programs with first-order dominance constraints
induced by mixed-integer linear recourse. SIAM J. Optim. 19(2), 552–571 (2008)



References 119

173. R. Gollmer, U. Gotzes, R. Schultz, A note on second-order stochastic dominance constraints
induced by mixed-integer linear recourse. Math. Program. 126(1), 179–190 (2011)

174. M. Grant, S. Boyd, Matlab Software for Disciplined Convex Programming, Version 2.0 Beta
(2017)

175. Grid energy storage. Technical report, Department of Energy (2013)
176. V. Grimm, A. Martin, M. Schmidt, M. Weibelzahl, G. Zöttl, Transmission and generation

investment in electricity markets: the effects of market splitting and network fee regimes. Eur.
J. Oper. Res. 254(2), 493–509 (2016)

177. V. Grimm, K. Thomas, L. Frauke, M. Schmidt, Z. Gregor, Optimal price zones of electricity
markets: a mixed-integer multilevel model and global solution approaches. Optim. Methods
Softw. 34(2), 406–436 (2017)

178. N. Growe-Kuska, H. Heitsch, W. Romisch, Scenario reduction and scenario tree construction
for power management problems, in 2003 IEEE Bologna Power Tech Conference Proceed-
ings, vol. 3 (IEEE, Piscataway, 2003), 7 pp.

179. GRTgaz France. Our Network. http://www.grtgaz.com/en/our-company/our-network.html.
Accessed 09 Feb 2019

180. X. Guan, S. Guo, and Q. Zhai, The conditions for obtaining feasible solutions to security-
constrained unit commitment problems. IEEE Trans. Power Syst. 20(4), 1746–1756 (2005)

181. V. Guigues, SDDP for some interstage dependent risk-averse problems and application to
hydro-thermal planning. Comput. Optim. Appl. 57(1), 167–203 (2014)

182. V. Gupta, I.E. Grossmann, Solution strategies for multistage stochastic programming with
endogenous uncertainties. Comput. Chem. Eng. 35, 2235–2247 (2011)

183. A. Gupte, S. Ahmed, S.S. Dey, M.S. Cheon, Relaxations and discretizations for the pooling
problem. J. Global Optim. 67(3), 631–669 (2017)

184. Gurobi optimization (2015)
185. D. Haeseldonckx, W. D’haeseleer, The use of the natural-gas pipeline infrastructure for

hydrogen transport in a changing market structure. Int. J. Hydrogen Energy 32(10–11), 1381–
1386 (2007)

186. R. Halvgaard, N.K. Poulsen, H. Madsen, J. B. Jørgensen, Economic model predictive control
for building climate control in a smart grid, in 2012 IEEE PES Innovative Smart Grid
Technologies (ISGT) (2012), pp. 1–6

187. H. Harb, J.-N. Paprott, P. Matthes, T. Schütz, R. Streblow, and D. Müller, Decentralized
scheduling strategy of heating systems for balancing the residual load. Build. Environ. 86,
132–140 (2015)

188. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining,
Inference, and Prediction (Springer, Berlin, 2009)

189. D. Haugland, The computational complexity of the pooling problem. J. Global Optim. 64(2),
199–215 (2016)

190. D. Haugland, Pooling problems with single-flow constraints, in Proceedings of the 9th
International Network Optimization Conference (INOC), Avignon (2019)

191. D. Haugland, E.M.T. Hendrix, Pooling problems with polynomial-time algorithms. J. Optim.
Theory Appl. 170(2), 591–615 (2016)

192. A. Hauswirth, A. Zanardi, S. Bolognani, Florian Dörfler, G. Hug, Online optimization in
closed loop on the power flow manifold, in Proceedings of the IEEE PowerTech conference,
Manchester (2017)

193. C.A. Haverly, Studies of the behavior of recursion for the pooling problem. SIGMAP Bull.
(25), 19–28 (1978)

194. P. He, T. Sheng Ng, B. Su, Energy import resilience with input–output linear programming
models. Energy Eco. 50(Supplement C), 215–226 (2015)

195. P. He, T. Sheng Ng, B. Su, Energy-economic recovery resilience with input-output linear
programming models. Energy Eco. 68(Supplement C), 177–191 (2017)

196. K.W. Hedman, R.P. O’Neill, E.B. Fisher, S.S. Oren, Optimal transmission switching with
contingency analysis. IEEE Trans. Power Syst. 24(3), 1577–1586 (2009)

http://www.grtgaz.com/en/our-company/our-network.html


120 References

197. K.W. Hedman, M.C. Ferris, R.P O’Neill, E.B Fisher, S.S. Oren, Co-optimization of generation
unit commitment and transmission switching with N-1 reliability. IEEE Trans. Power Syst.
25(2), 1052–1063 (2010)

198. K.W. Hedman, S.S. Oren, R.P. O’Neill, Optimal transmission switching: economic efficiency
and market implications. J. Regul. Eco. 40(2), 111–140 (2011)

199. K.W. Hedman, S.S. Oren, R.P. O’Neill, A review of transmission switching and network
topology optimization, in IEEE Power and Energy Society General Meeting (2011)

200. A. Hellmers, M. Zugno, A. Skajaa, J.M. Morales, Operational strategies for a portfolio of
wind farms and CHP plants in a two-price balancing market. IEEE Trans. Power Syst. 31(3),
2182–2191 (2016)

201. R. Hemmati, R. Hooshmand, A. Khodabakhshian, Comprehensive review of gen-eration and
transmission expansion planning. IET Gen. Trans. Distrib. 7, 955–964 (2013)

202. P. Higgins J. Devlin, K. Li, A. Foley, A multi vector energy analysis for interconnected power
and gas systems. Appl. Energy 192, 315–328 (2017)

203. T.V.D. Hoeven, Math in gas and the art of linearization. Ph.D. Thesis (2004)
204. W. Hogan, Electricity Market Design: energy trading and market manipulation, in 7th Annual

Nodal Trader Conference (2014)
205. P. Holmberg, E. Lazarczyk, Congestion management in electricity networks: Nodal, zonal and

discriminatory pricing. Working Paper Series 915, Research Institute of Industrial Economics
(2012)

206. M. HosseinMehr, M. Cusini, C. Vuik, H. Hajibeygi, Algebraic dynamic multilevel method for
embedded discrete fracture model (F-ADM). J. Comput. Phys. 373, 324–245 (2018)

207. D. Hristu-Varsakelis, S. Karagianni, M. Pempetzoglou, A. Sfetsos, Optimizing production
with energy and ghg emission constraints in Greece: an input–output analysis. Energy
Policy 38(3), 1566–1577 (2010). Security, Prosperity and Community – Towards a Common
European Energy Policy? Special Section with Regular Papers

208. D. Hristu-Varsakelis, S. Karagianni, M. Pempetzoglou, A. Sfetsos, Optimizing production in
the greek economy: exploring the interaction between greenhouse gas emissions and solid
waste via input–output analysis. Eco. Syst. Res. 24(1), 57–75 (2012)

209. G.J.Y. Hsu, P. Leung, C.T.K. Ching, A multiobjective programming and interindustry model
for energy-economic planning in Taiwan. Energy Syst. Policy 11(3) (1978)

210. D. Hu, Short-Term Scheduling of a Combined Natural Gas and Electric Power System with
Wind Energy (Iowa State University, Ames, 2015)

211. B. Hu, L. Wu, Robust SCUC considering continuous/discrete uncertainties and quick-start
units: a two-stage robust optimization with mixed-integer recourse. IEEE Trans. Power Syst.
31(2), 1407–1419 (2016)

212. J. Humpola, Gas Network Optimization by MINLP. Ph.D. Thesis (2014)
213. J. Humpola, A. Fügenschuh, B. Hiller, T. Koch, T. Lehmann, R. Lenz, R. Schwarz,

J. Schweiger, The specialized minlp approach, in Evaluating Gas Network Capacities,
chapter 7. SIAM-MOS Series on Optimization (2015), pp. 123–143

214. Ibm ilog cplex optimizer
215. H. Ibrahim, A. Ilinca, J. Perron, Energy storage systems-characteristics and comparisons.

Renew. Sustain. Energy Rev. 12(5), 1221–1250 (2008)
216. IRENA. Global Energy Transformation: A Roadmap to 2050 (2019 edition). Abu Dhabi

(2019)
217. K. Ito, Do consumers respond to marginal or average price? evidence from nonlinear

electricity pricing. Am. Eco. Rev. 104(2), 537–563 (2014)
218. R.R. Iyer, I.E. Grossmann, Synthesis and operational planning of utility systems for multi-

period operation. Comput. Chem. Eng. 22(7), 979–993 (1998)
219. R.A. Jabr, Optimization of AC transmission system planning. IEEE Trans. Power Syst. 28(3),

2779–2787 (2013)
220. Jade Site Telecom Italia SpA. Java agent development framework (2016)



References 121

221. D.E. James, A.R. deL. Musgrove, K.J. Stocks, Integration of an economic input-output model
and a linear programming technological model for energy systems analysis. Energy Eco. 8(2),
99–112 (1986)
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317. J.M. Mulvey, A. Ruszczyński, A new scenario decomposition method for large-scale stochas-
tic optimization. Oper. Res. 43(3), 477–490 (1995)

318. R. Nabben, C. Vuik, A comparison of deflation and coarse grid correction applied to porous
media flow. SIAM J. Numer. Anal. 42(4), 1631–1647 (2004)

319. National Grid, Winter Review and Consultation. Technical Report (2018)
320. M. Nick, R. Cherkaoui, M. Paolone, Optimal siting and sizing of distributed energy storage

systems via alternating direction method of multipliers. Int. J. Elect. Power Energy Syst. 72,
33–39 (2015)

321. H.A. Nielsen, H. Madsen, Modelling the heat consumption in district heating systems using
a grey-box approach. Energy Build. 38(1), 63–71 (2006)

322. M.G. Nielsen, J.M. Morales, M. Zugno, T.E. Pedersen, H. Madsen, Economic valuation of
heat pumps and electric boilers in the Danish energy system. Appl. Energy 167, 189–200
(2016)

323. M.P. Nowak, W. Römisch, Stochastic lagrangian relaxation applied to power scheduling in a
hydro-thermal system under uncertainty. Annal. Oper. Res. 100(1), 251–272 (2000)

324. OECD, Oecd economic surveys: France 2011 (2011)
325. OpenADR Alliance (2016)
326. IRENA OECD/IEA, REN21. Renewable Energy Policies in a Time of Transition. Technical

report, IRENA, OECD/IEA and REN21 (2018)
327. C. Oliveira, C.H. Antunes, An input-output model for decision support in energy-economy

planning – a multiobjective interactive approach. Syst. Anal. Model. Simul. 42(5), 769–790
(2002)

328. C. Oliveira, C.H. Antunes, A multiple objective model to deal with economy–energy–
environment interactions. Eur. J. Oper. Res. 153(2), 370–385 (2004). Management of the
Future MCDA: Dynamic and Ethical Contributions

329. C. Oliveira, C.H. Antunes, A multi-objective multi-sectoral economy–energy–environment
model: application to Portugal. Energy 36(5), 2856–2866 (2011)

330. W. Oliveira, C. Sagastizábal, S. Scheimberg, Inexact bundle methods for two-stage stochastic
programming. SIAM J. Optim. 21(2), 517–544 (2011)

331. C. Oliveira Henriques, C.H. Antunes, Interactions of economic growth, energy consumption
and the environment in the context of the crisis – a study with uncertain data. Energy 48(1),
415–422 (2012). 6th Dubrovnik Conference on Sustainable Development of Energy Water
and Environmental Systems, SDEWES 2011

332. F. Oliveira, V. Gupta, S. Hamacher, I.E. Grossmann, A lagrangean decomposition approach
for oil supply chain investment planning under uncertainty with risk considerations. Comput.
Chem. Eng. 50(Supplement C), 184–195 (2013)

333. C. Oliveira, D. Coelho, C.H. Antunes, Coupling input–output analysis with multiobjective
linear programming models for the study of economy–energy–environment–social (E3S)
trade-offs: a review. Annal. Oper. Res. 247(2), 471–502 (2016)
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