
Chapter 7
Multi-objective Optimization in the Build
Orientation of a 3D CAD Model

Marina A. Matos, Ana Maria A. C. Rocha, Lino A. Costa, and Ana I. Pereira

Abstract Over the years, rapid prototyping technologies have grown and have been
implemented in many 3D model production companies. A variety of different addi-
tive manufacturing (AM) techniques are used in rapid prototyping. AM refers to a
process by which digital 3D design data is used to build up a component in layers
by depositing material. Several high-quality parts are being created in various engi-
neering materials, including metal, ceramics, polymers and their combinations in the
form of composites, hybrids, or functionally classified materials. The orientation of
3D models is very important since it can have a great influence on the surface qual-
ity characteristics, such as process planning, post-processing, processing time and
cost. Thus, the identification of the optimal build orientation for a part is one of the
main issues in AM. The quality measures to optimize the build orientation problem
may include the minimization of the surface roughness, build time, need of supports,
maximize of the part stability in building process or part accuracy, among others.
In this paper, a multi-objective approach was applied to a computer-aided design
model using MATLAB® multi-objective genetic algorithm, aiming to optimize the
support area, the staircase effect and the build time. Preliminary results show the
effectiveness of the proposed approach.
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7.1 Introduction

Additive manufacturing (sometimes called 3D printing) refers to a process by which
3D computer-aided design (CAD) models are used to build 3D objects, by adding
layer-by-layer material. The manufacturing processes in layers are currently used
in several areas to fabricate end-use products in aircraft industry, medical implants,
jewelery, footwear industry, automotive industry and fashion products [1, 2]. Addi-
tive manufacturing technologies have grown over the years due to their effectiveness
in the development of the prototype model in a reduced production time and cost.
Depending on the specific 3D printing technology and the complexity of the 3D
model, it is important to consider support structures and how they may affect the
final result. In this work, a 3D printer using Fused Deposition Modeling (FDM) is
considered. FDM extrudes a melted filament onto a build surface along a predeter-
mined path. As the material is extruded, it cools, forming a solid surface providing
the foundation for the next layer of material to be built upon. This is repeated layer-
by-layer until the object is completed. With FDM printing, each layer is printed as a
set of heated filament threads which adhere to the threads below and around it. Each
thread is printed slightly offset from its previous layer. This allows a model to be
built up to angles of 45◦, allowing prints to expand beyond its previous layers width.
When a feature is printed with an overhang beyond 45◦, it can sag and requires sup-
port material beneath it to hold it up [3, 4]. Thus, the accuracy of the printed object
depends on the orientation of the part on the printer platform, that is, the part must
have the correct orientation in order to improve the quality of the surface. Different
measures can be considered to determine the optimal build orientation taking into
account factors such as staircase effect, model precision, build time, structure sup-
port and model stability [1, 5]. The optimal build orientation of a model helps in the
accuracy of the part, reduces the number of supports generated and the build time of
the parts, and consequently decreases the final costs.

Several approaches have been carried out to determine the orientation of a model
based on single-objective optimization using objective functions such as the build
height, staircase effect, volumetric error, volume of support structures and total con-
tact area of the part with the support structures, surface quality, surface roughness and
build deposition time [6, 7]. Recently, multi-objective approaches have been devel-
oped to determine the optimal object building orientation in the construction of CAD
models, essentially by reducing the multi-objective problem to a single-objective one
using classical scalarization methods [8–13]. A genetic algorithm was used in Brika
et al. [8] for solving a multi-objective build orientation problem. They optimized
several variables, yield and tensile strength, elongation and vickers hardness, for
material properties used, surface roughness, support structure and build time and
cost. The particle swarm optimization algorithm was used in Li et al. [10] to solve a
multi-objective optimization problem in order to get the desired orientations for the
support area, construction time and surface roughness. In the paper of Phatak and
Pande [11] a genetic algorithm was used to optimize a weighted average of five nor-
malized evaluation criteria (build height, staircase error factor, material utilization
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factor, part surface area in contact with support structures and volume of support
structures) based on their relevance to the rapid prototyping process. In Das et al.
[14], the errors related to the staircase effect and the support volume were studied,
using weights to find the best orientation of a spherical model. Cheng et al. [15] for-
mulated a multi-objective optimization problem focused on the surface quality and
production cost of the parts, obtaining solutions for all types of surfaces, whether with
complex geometries or not, or even for curved surfaces. The multi-objetive approach
presented by Byun et al. [16] intend to reduce surface roughness, construction time
and part cost. The goal was to find the ideal orientation of a 3D model by apply-
ing the Technique for Order Preference by Similarity to Ideal Solution and weight
methods. Nezhad et al. [17] proposed an Optimized Pareto Based Part Orientation
algorithm in order to optimize the minimum construction time, the support volume
and surface finish. The applied method does not use weights and optimizes objectives
simultaneously and independently. A multi-objective optimization approach, using
the Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-Objective
Particle Swarm Optimization algorithm, considering as objective functions the sur-
face roughness and the build time, for different models, was developed by Padhye
and Deb [18]. Gurrala and Regalla [19] also applied the NSGA-II algorithm to opti-
mize the strength of the model and its volumetric shrinkage as objective functions.
Through the Pareto front, they concluded that with the shrinkage of the part their
strength increases in the horizontal and vertical directions. A different study address-
ing how an easily removed support structure might be designed using less material
and build time and leaving fewer artifacts on the specimen surface can be seen in
Kuo et al. [20]. There, a cost-based formulation is employed to find a compromise
between cost and surface profile error induced by specimen weight.

In this work, the optimization of the final printed object surface is addressed,
based on the minimization of the staircase effect, the area of the object in contact
with the supporting structures and the build time. Here, a multi-objective optimization
approach is proposed to obtain the orientation of the Rear Panel Fixed model taking
into account the compromise between combinations of two measures mentioned
above. We present some preliminary experiments showing the Pareto fronts and
discuss different trade-offs between the objectives.

This article is organized as follows. Section 7.2 introduces the orientation problem,
the quality measures and the multi-objective optimization approach. The numerical
experiments are presented and discussed in Sect. 7.3. Finally, Sect. 7.4 contains the
conclusions of this study and some recommendations for future work.
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7.2 Multi-objective Approach

7.2.1 Optimization Problem

In this study, a multi-objective optimization to determine the orientation of the con-
struction of a 3D CAD model is used. It intends to simultaneously minimize more
than one measure of the quality of the printed object.

The measures involved in this study are the staircase effect, the area of the object
in contact with the support structures and the build time.

Although we intend to study three measures of quality, in this study we will per-
form the multi-objective optimization of the combinations of two objective functions
and three objective functions simultaneously. Thus the multi-objective optimization
problem is given by

min f
(
θx , θy

) = {
f1

(
θx , θy

)
, . . . , fk

(
θx , θy

) }

s.t. 0 ≤ θx ≤ 180
0 ≤ θy ≤ 180

(7.1)

where k is the number of objective functions and θx and θy are the rotation angles
along the x-axis and the y-axis, respectively.

In the following, the quality measures based on staircase effect, support area and
the required build time are described.

7.2.2 Quality Measures

7.2.2.1 Support Area

A measure of the quality of the printed object is the quantity of support area, since it
affects post-processing and surface finish [9]. The support area is defined as the total
area of the downward-facing facets that is equivalent to the total contact area of the
external supports with the object [7, 9].

The support area, SA, is defined by

SA =
∑

i

Ai

∣
∣dT ni

∣
∣ δ (7.2)

where Ai is the area of the triangular face i , d is the unit vector of the direction
of construction, ni is the normal unit vector of the triangular face i and the initial
function is given by δ = 1 if dT ni < 0 and δ = 0 if dT ni > 0 [9]. In this study, we
used the direction vector d = (0, 0, 1), because our 3D printer only moves on the
x-axis and y-axis, since the base platform (z-axis) is fixed.
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7.2.2.2 Staircase Effect

The orientation and layer thickness are the most important factors that affect the
superficial roughness [21]. Kattethota et al. [21] studied the staircase effect (SE) of
a 3D model based on the deviation between the actual and desired surfaces. It means
that the greater the deviation between the two surfaces (real and desired), the greater
the length of the layer and the lower the orientation of the construction of the part.
The staircase effect, SE , is defined by

SE =
∑

i

{ t
tan(θi )

, if tan (θi ) �= 0
0, if tan (θi ) = 0

(7.3)

where t is the layer thickness and θi is the angle between triangle facet i of model
surface and build orientation (d).

7.2.2.3 Build Time

As considered in Jibin [9] the build time encompasses the scanning time and the
preparation time. The scanning time includes solid scanning time, contour scanning
time and support scanning time, where the solid and contour scanning times are
independent of the part building direction and the support scanning time depends on
the volume of supports. The preparation time of the model covers the time required
for the platform to move down during the construction of each layer, the scraping
time of this and other preparation times. Thus, the preparation time depends on the
total number of slices of the solid, which is dependent on the height of the building
direction. Therefore, minimizing this height and consequently the number of layers,
can decrease the construction time of the part [7, 9].

The build time, BT , is given by

BT = max
i

(
dT v1

i , d
T v2

i , d
T v3

i

) − min
i

(
dT v1

i , d
T v2

i , d
T v3

i

)
(7.4)

where d is the direction vector and v1
i , v

2
i , v

3
i are the vertex triangle facets i .

7.2.3 Multi-objective Genetic Algorithm

In this work, the elitist Non-dominated Sorting Genetic Algorithm II (NSGA-II) pro-
posed by Deb [22] is used. This is a multi-objective genetic algorithm that mimics
the natural evolution of the species. Evolution starts from a population of individuals
randomly generated. Each individual represents a potential solution of the multi-
objective optimization problem. In NSGA-II, each individual in the current popula-
tion is evaluated using a Pareto ranking and a crowding measure. First the best rank
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is assigned to all the non-dominated individuals in the current population. Solutions
with the best rank are removed from the current population. Next, the second best
rank is assigned to all the non-dominated solutions in the remaining population.
In this manner, ranks are assigned to all solutions in the current population. The
fittest individuals have a higher probability of being selected to generate new ones
by genetic operators. NSGA-II uses a binary tournament selection based on non-
domination rank and crowding distance to select a set of parent solutions. When two
solutions are selected, the one with the lowest non-domination rank is preferred. Oth-
erwise, if both solutions belong to the same rank, then the solution with the higher
crowding distance is selected. Next, genetic operators such as recombination and
mutation are applied to create an offspring population. Then, the two populations are
merged together to form a combined population that is sorted according to different
non-dominated fronts. If the size of the first non-dominated front is smaller then the
population size, all members of this front are chosen for the new population. The
remaining members of the population are chosen from subsequent non-dominated
fronts in the order of their ranking.

The MATLAB® functiongamultiobj [23] provided in the Global Optimization
Toolbox will be used in order to approximate the Pareto fronts of the multi-objective
problems with each combinations of two objective functions. The gamultiobj
function implements a multi-objective genetic algorithm that is a variant of the eli-
tist NSGA-II [22]. This function provides a set of algorithm options related with
customizing randomization key properties, algorithm properties and termination
criteria.

7.3 Experiments

7.3.1 Model

The 3D CAD model used in this study is a Rear Panel Fixed (see Fig. 7.1a) that has
vents on either side. The size of the model is different from the side panels, but the
side panels for left and right are equal.

Initially, the CAD model is converted into STL (STereoLithography), which is
the default file type used by the most common 3D print file formats (see Fig. 7.1b).

The STL file is an approximation (tessellation) of the CAD model, where the geo-
metric characteristics of the 3D model are depicted. Thus, the model is represented
by a mesh of triangles, describing only the surface geometry of a three-dimensional
object without any representation of color, texture or other common attributes of the
CAD model. It was defined using 3008 triangles, a volume of 46.2 cm3 and 676 slices
for a layer thickness of 0.2 mm (layer thickness used in this work). Figure 7.2a–c
depict the SA, SE and BT objective functions landscapes for the Rear Panel Fixed
model. These objective functions are nonconvex with multiple local optima. More-
over, it can be observed that the minimizers of each objective function are different.
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(a) Rear Panel Fixed
model

(b) Rear Panel Fixed
STL model

Fig. 7.1 Rear Panel Fixed model

(a) SA objective function (b) SE objective function (c) BT objective function

Fig. 7.2 Rear Panel Fixed objective functions

Therefore, these objectives are conflicting each other and there exist different trade-
off solutions that represent different compromises between the objectives.

7.3.2 Implementation Details

Firstly, the combination of two of the quality measures, the support area, the staircase
effect and the build time of the part was considered, and the following three multi-
objective optimization problems were formulated:

• SA versus SE—problem (7.1) with f1 = SA and f2 = SE ;
• SA versus BT—problem (7.1) with f1 = SA and f2 = BT ;
• SE versus BT—problem (7.1) with f1 = SE and f2 = BT .

Secondly, a multi-objective optimization of the three objective functions simulta-
neously is considered, where SA versus SE versus BT denotes solving the problem
(7.1) with f1 = SA, f2 = SE and f3 = BT .

In order to solve the multi-objective optimization problems, the MATLAB®

gamultiobj function was used with default values, thus a population size and a
maximum number of generations of 50 and 400, respectively. By default, the Pareto
fraction is 0.35 and therefore, in each run, 18 non-dominated solutions are found
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(0.35× population size). In addition, 30 independent runs were performed and the
Simplify 3D software [24] (a 3D model printing simulator) was used to represent the
solutions found for the Rear Panel Fixed model.

In the following sections the results for the different combinations of two objec-
tives (SA versus SE , SA versus BT , and SE versus BT problems) as well as the
results for the three objectives (SA versus SE versus BT problem) are presented.

In all figures, the set of non-dominated solutions obtained among the 30 inde-
pendent runs are plotted with a blue dot. From this overall set of solutions, the
non-dominated ones were selected and marked with a red circle. Representative
solutions will be selected to discuss trade-offs between objectives and identify the
characteristics associated with these solutions.

7.3.3 Results for the SA versus SE Problem

Figure 7.3 depicts the Pareto front for SA versus SE problem, where the set of
non-dominated solutions for all runs are plotted with a blue dot.

Table 7.1 presents the representative non-dominated solutions selected from the
Pareto front, that were marked with a red circle in Fig. 7.3.

Solutions A and G are the extremes of the Pareto front, where solution A has the
best SA value and the worst SE value. Conversely, solution G is the worst in terms

Fig. 7.3 Pareto front of the Rear Panel Fixed model for the SA versus SE problem
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Table 7.1 Representative non-dominated solutions for the SA versus SE problem

Solutions θx θy SA SE

A 90.00 0.00 406.45 5168.99

B 90.00 0.01 407.05 3602.96

C 89.99 0.02 412.11 2708.20

D 90.99 0.95 1057.61 2596.88

E 94.44 2.76 1695.75 943.42

F 68.49 160.87 4951.71 372.42

G 180.00 44.95 9078.07 260.39

(a) Solutions A (b) Solution D (c) Solution E

(d) Solution F (e) Solution G

Fig. 7.4 Representative solutions for the SA versus SE problem

of SA and the best in terms of SE . These solutions correspond to the lowest values
of SA and SE that can be observed in Fig. 7.2a, b, respectively.

From Table 7.1, it is possible to observe that solutions A, B, C and D have very
similar orientation angles, although different SA and SE values, verifying a reduc-
tion in the staircase effect and an increase in the support area, in particular in the
solution D. Solutions D and E are visually very similar, as can be seen in Fig. 7.4b,
c, respectively, but the solution E requires more supports. From solutions A to G,
there is a significant change in the orientation of the part.



108 M. A. Matos et al.

7.3.4 Results for the SA versus BT Problem

Figure 7.5 shows the Pareto front for the model Rear Panel Fixed when SA and BT
are the objectives to minimize simultaneously (SA versus BT ). Table 7.2 presents the
orientation angles and objective values for representative non-dominated solutions
selected from the Pareto front. These solutions are shown in Fig. 7.6. It is possible
to see that from point A to point B there is no significant change in terms of BT , but
there is a great increase in the support area. From solutions B to C, the value of SA
increases, while the value of BT decreases. Solution D is one of the extremes of the
Pareto front, being minimum of BT function (as it can also be seen in Fig. 7.2c), but
it is a bad solution in terms of SA.

Fig. 7.5 Pareto front of the Rear Panel Fixed model for the SA versus BT problem

Table 7.2 Representative non-dominated solutions for the SA versus BT problem

Solutions θx θy SA BT

A 90.00 0.00 406.45 113.00

B 122.37 151.85 14457.00 112.98

C 144.87 140.93 19038.00 89.42

D 180.00 135.00 21190.00 43.17
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Fig. 7.6 Representative
solutions for the SA versus
BT problem

(a) Solution A (b) Solution B

(c) Solution C (d) Solution D

7.3.5 Results for the SE versus BT Problem

In Fig. 7.7, the solutions obtained in the objective space when optimizing SE ver-
sus BT problem are presented. Solutions A and F are the extremes of the Pareto
front. There is a significant improvement in the BT value, when comparing solu-
tions B and C, although a negligible decrease in SE . From solutions A to F the
part is placed lying down, as can be seen in Fig. 7.8, decreasing the height of the
part (decreasing BT ). Solutions D, E and F are visually similar as can be seen in
Fig. 7.8d, e, f (Table 7.3).

7.3.6 Results for the SA versus SE versus BT Problem

In this section, the results of the multi-objective optimization of the three objective
functions simultaneously (SA versus SE versus BT problem) are presented. The
problem was optimized using the MATLAB® function gamultiobj with default
values, as described in the Sect. 7.3.2.

Figure 7.9 shows the non-dominated solutions obtained for the Rear Panel Fixed
model. Three solutions regarding the extreme solutions for each objective are rep-
resented by A, B and C, corresponding to the angles (90.00, 0.00), (180.00, 44.95),
(180.00, 135.00), respectively (corresponding to Figs. 7.6a, 7.8a, f, respectively).

In Fig. 7.10 the two-dimensional projections of the Pareto front of the Rear Panel
Fixed model for the SA versus SE versus BT problem are presented. It can be seen
that the number of non-dominated solutions is larger than the one obtained with two
objective combinations.
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Fig. 7.7 Pareto front of the Rear Panel Fixed model for the SE versus BT problem

(a) Solution A (b) Solution B (c) Solution C

(d) Solution D (e) Solution E (f) Solution F

Fig. 7.8 Representative solutions for the SE versus BT problem
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Table 7.3 Representative non-dominated solutions for the SE versus BT problem

Solutions θx θy SE BT

A 180.00 44.95 260.39 201.52

B 81.53 163.10 453.88 168.44

C 114.95 161.23 453.89 124.88

D 164.87 135.55 1002.11 64.24

E 178.93 134.99 1735.08 44.67

F 180.00 135.00 2295.19 43.15

Fig. 7.9 Pareto front of the Rear Panel Fixed model for the SA versus SE versus BT problem

(a) SA and SE (b) SA and BT (c) SE and BT

Fig. 7.10 2D Projections of the Pareto front for the SA versus SE versus BT problem
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7.3.7 Discussion of the Results

The first three combinations of multi-objective optimization problems solved allow
to perceive the extremes and the compromise between objectives. Moreover, there are
solutions that belong to the Pareto optimal set of the problems solved, i.e., their images
belong to the Pareto fronts of the different multi-objective optimization problems.
This is the case of solution (90.00, 0.00) that minimizes SA and appears on the
Pareto fronts of SA versus SE and SA versus BT problems. In addition, the solution
that corresponds to the (180.00, 44.95) orientation was found for the SA versus SE
and SE versus BT problems, optimizing the SE function. It is also verified that
the solution (180.00, 135.00) optimizes BT , as can be seen in the solutions of SA
versus BT and SE versus BT . When BT is one of the objective functions involved
in the multi-objective problem (combinations SA versus BT and SE versus BT ),
some representative solutions put the part lying down, as can be seen in solution D
of Fig. 7.6 and in solutions D, E, and F of Fig. 7.8, as expected because BT function
intends to minimize its height. However, with the combination SA versus SE , as
expected, no solution that position the part lying down exists.

In the multi-objective simultaneous optimization of the three objective functions,
all the solutions obtained with the combinations of two objectives and others that
represent other trade-offs between objective functions were found.

7.4 Conclusions and Future Work

In this paper, the build orientation optimization of a given object - Rear Panel Fixed
model—was addressed based on three quality measures: the total support contact
area, the staircase effect and the build time.

First, a multi-objective optimization approach was proposed for three different
combinations of two objectives: SA versus SE , SA versus BT , and SE versus BT.
Some preliminary experiments were presented for the three different combinations.
The Pareto fronts obtained and the different trade-offs between the objectives were
discussed. It was also verified that some solutions were found repeatedly in different
combinations of objective functions. The results showed the effectiveness of the
proposed approach since it was possible to find different solutions to optimize the
various combinations.

Then, the three objective functions were optimized simultaneously. From the
Pareto front we may conclude that a larger number of solutions was obtained when
comparing to the ones obtained through two objective combinations, as well as, new
trade-off solutions were found. It was observed that, for all problems, the Pareto
fronts have nonconvexities and discontinuities.

In the future, we intend to perform a multi-objective optimization using other
objective functions and test more difficult models.
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