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Abstract A direct multiple shooting (MS) method is implemented to solve optimal
control problems (OCP) in the Mayer form. The use of an MS method gives rise to
the so-called ‘continuity conditions’ that must be satisfied together with general alge-
braic equality and inequality constraints. The resulting finite nonlinear optimization
problem is solved by a first-order descent method based on the filter methodology.
In the equivalent tri-objective problem, the descent method aims to minimize the
objective function, the violation of the ‘continuity conditions’ and the violation of
the algebraic constraints simultaneously. The numerical experiments carried out with
different types of benchmark OCP are encouraging.
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24.1 Introduction

An optimal control problem (OCP) is a constrained optimization problem that has a
set of dynamic equations as constraints. Application domains of OCP are varied [1].
There are three types of OCP that differ in the formulation of the functional to be
optimized. For example, an OCP of the Lagrange form has the objective functional
in its pure integral form as shown

T
J*= min 1), u() = / Falt,y(0), u(0)) di

u(r)

s.t.y () =1, y(t),ou(t)), for ¢t € [0, T]
yO) =yo, Y(T) =yr .,

24.1)

where y € R® is the vector of state variables of the dynamic system, u € U C R¢
is the vector of control or input variables and U represents a class of functions
(in particular functions of class C' and piecewise constant) and usually contains
limitations to the control [2]. To convert problem (24.1) into the Mayer form, a new
variable is added to the states vector y, such that y,(t) = f»(¢, y(¢), u(t)) with the
initial condition y,(0) = 0, where s = 5 + 1 represents the total number of state
variables. Thus, problem (24.1) becomes:

ur(rtl)lenu J(y@),u@)) = y,(T)

s.t.y'() =£1(1, y(@), u(t)) (24.2)
yi(®) = fot,y(@),u@)), for 1 €0,T]
y(0) =yo, ys(0) =0, y(T) =yr .

In the OCP we want to find u that minimizes the objective functional J subject to
the dynamic system of ordinary differential equations (ODE). The problem may have
other more complex ‘terminal constraints’ H (T, y(T), u(T)) = 0. Statesy and con-
trol u may also be constrained by algebraic equation constraints s, (t, y(¢), u(t)) =
0, e € E and ‘path constraints’ g;(¢,y(t),u(t)) <0, j € F, where E = {1, 2,
....,myand F ={1,2,...,1}.

Methods for solving OCP like (24.2) can be classified into indirect and direct
methods. Indirect methods use the first-order necessary conditions from Pontryagin’s
maximum principle to reformulate the original problem into a boundary value prob-
lem. On the other hand, direct methods solve the OCP directly [3] transforming the
infinite-dimensional OCP into a finite-dimensional optimization problem that can be
solved by effective and well-established nonlinear programming (NLP) algorithms.
All direct methods discretize the control variables but differ in the way they treat the
state variables [4]. They are also classified as Discretize then Optimize strategies in
contrast to the Optimize then Discretize strategies of the indirect methods [1].

This paper explores the use of a first-order descent method based on the filter
methodology [5, 6] to solve the NLP problem, within a direct method for solving an
OCP in the Mayer form. The use of a direct multiple shooting (MS) method gives rise
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to the so-called ‘continuity conditions’ that must be satisfied. The novelty here is that
a filter methodology is used to minimize the objective function, the violation of the
‘continuity conditions’ and the violation of algebraic constraints simultaneously. The
NLP problem is a tri-objective problem and the first-order descent method generates
a search direction that is either the negative gradient of one of the functions to
be minimized or a convex combination of negative gradients of two functions. To
overcome the drawback of computing first derivatives, the gradients are approximated
by finite differences.

The paper is organized as follows. Section24.2 briefly describes the direct MS
algorithm for solving the OCP in the Mayer form. The herein proposed first-order
descent filter algorithm is discussed in Sect.24.3, the numerical experiments are
shown in Sect.24.4 and we conclude the paper with Sect.24.5.

24.2 Direct Multiple Shooting Method

In a direct single shooting (SS) method, only the controls are discretized in the NLP
problem [3]. The dynamic system is solved by an ODE solver to get the state values
for the optimization. Thus, simulation and optimization are carried out sequentially.
On a specific grid defined by 0 =1 <t <--- <ty_; <ty =T, where N — 1
is the total number of subintervals, the control u(z) is discretized, namely using
piecewise polynomial approximations. The simplest of all is a piecewise constant,
u(t) =q', for telt, t;i+1] and i =1,..., N — 1 so that u(¢) only depends on
the control parameters q = (q', q°, ..., q"~!) and u(¢) = u(z, q). When the hori-
zon length T is not fixed, the control parameter vector also includes T to define
the optimization variables. The dynamic system is solved by (forward numerical
integration) an ODE solver and the state variables y(#) are considered as dependent
variables y(z, q). The main advantage of a direct SS method is the reduced number
of decision variables (control parameters) in the NLP even for very large dynamic
systems. However, unstable systems may be difficult to handle.

In adirect MS method, discretized controls and state values at the start nodes of the
grid (grid points)—xi eR%i=1,2,..., N —1,known as MS node variables—are
the decision variables for the NLP solver [7]. After the discretization of the controls,
the ODE system is solved on each shooting subinterval [#;, t;;;] independently, but
they need to be linked by the auxiliary variables x,i=1,2,...,N—1. They are the
initial values for the state variables for the N — 1 independent initial value problems
on the subintervals [¢;, #;11]:

fl(t7 y(t)7 ql)

o with y(;) =x!, for t €[t;, t;11],
fa(t.y(®). q) y() L, fi1]

Y (@® =£y@),q) = {

where y € R*. Trajectories y' (¢; X', q') are obtained where the notation “(¢; x', q')”,
for the argument, means that they are dependent on 7 as well as on the specified
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values for the node variables x’ and control parameters. The initial state values x’
should satisfy the ‘continuity conditions’

y (i x,q)=x* i=1,...,N—1, (24.3)

(ensuring continuity of the solution trajectory), the initial value x! = y, and the final
state constraints x¥ =y [4, 8].

We choose to implement a direct MS method since it can cope with differential
and algebraic equations that show unstable dynamical behavior [7]. The main steps
of the direct MS algorithm are shown in Algorithm 1.

Input: 7', N, f(¢,y, u), yo, yr, constraint functions.

Output: Optimal control and state variables.

Define the grid points in the interval [0, T]: 0 =1 < --- <ty—1 <ty =T.

Discretize the control: u(t) = qi for t €[tj, tiy1],i=1,...,N—1.

Define the starting values for the state vector x' for each [f;, tit1,i=1,...,N —1,and xN.
(Invoke the NLP algorithm)

while Stopping conditions are not satisfied do

With qi, i=1,...,N—1,x,i=1,..., N, use an ODE solver to evaluate the state
trajectories in [#;, ti+1], i =1,..., N — 1:

fory () =x', (') (1) = £(z, y' (1), ¢");

Evaluate the ‘continuity conditions’ yi (tiy1; xt, qi) =xtli=1,...,N —1,as well as
x!' =ygand xV =yr;

Evaluate algebraic equality and inequality constraints for# € [t;, t;+1],i = 1,..., N — 1;

Evaluate the objective function;

Generatenewqi,i =1,...,N—1landx',i=1,...,N.

end

Algorithm 1: Direct MS algorithm

24.3 First-Order Descent Filter Method

The herein proposed first-order descent filter method relies on descent directions
for two constraint violation functions (handled separately) and for the objective
function in order to converge towards the optimal solution of the NLP problem.
One of the constraint violation functions emerges from the ‘continuity constraints’
violation (including initial state and final state constraints) and the other comes up
from the state and control algebraic equality and inequality constraints. We assume
that the NLP problem is a non-convex constrained optimization problem (COP). For
practical purposes, we assume that the OCP is in the Mayer form, the ODE system
has initial and boundary state values, state and control variables are constrained by
algebraic equality and inequality constraints, and the explicit 4th. order Runge-Kutta
integration formula is used to solve the dynamic system in each subinterval [#;, ;1]
using 5 points.

As stated in the last section, the decision variables of the COP are the initial
state values at the nodes x' € R*,i = 1,..., N and the control variables q' € R¢,
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i = 1,..., N — 1. Besides possible algebraic constraints on the state and control
variables, the ‘continuity constraints’ (24.3), the initial state and the final state con-
straints must be added to the optimization problem formulation. Thus, our COP has
the following form:

min v (T)

x,iely;q,iel

st gy (:x,q),q) <0, 1€, tip],i€l, jeF
he(y'(t;x', q), q) =0, 1 € [ti, tip1],i € [,e € E (24.4)
Yt x,q)—xt' =0,iel
Xl —Y0=07XN—YT =07

where I ={1,...,N —1} and Iy =1 U{N}. To solve the optimization prob-
lem (24.4), the set of ODE must be solved so that the ‘continuity constraints’
y (tir1: X', q') — x't! = 0, the initial state and the final state constraints, the other
equality and inequality constraints and the objective function are evaluated (see Algo-
rithm 1). Since problem (24.4) has constraints, we seek optimal values for x and q
such that all the constraints are satisfied—a feasible solution of the COP—and the
objective function takes the least value.

24.3.1 Filter Methodology

To check solution feasibility, a measure for the violation of the constraints is adopted.
To implement the herein proposed filter methodology, the constraints are fractionated
into two sets and their violations are computed and handled separately. We denote
the violation of the ‘continuity constraints’, initial state and final state constraints by
the non-negative function:

0, @) =D > Ol tpnx' @) =™+ Y G =)+ Y 6 =)
leL iel leL leL

(24.5)

where L = {1, 2, ..., s}, noting that §(x, q) is zero if the solution (x, q) satisfies
these constraints, and is positive otherwise. These are the constraints that are more
difficult to be satisfied and we need to priority drive the violation 6 to zero as soon
as possible so that the ODE integration runs as close as possible to the exact values
of the state variables.

To evaluate the algebraic equality and inequality constraints violation, a non-
negative function p, also based on the Euclidean norm of vectors, is used

P =YY max (0. g, (X q). )} + Y Y kv X q). ¢,
jeF iel ecE iel

(24.6)
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and similarly, p(x,q) = 0 when the corresponding constraints are satisfied, and
p(x, q) > 0 otherwise. The violation of these constraints is also forced to converge
to zero.

The extension of the filter methodology [5] into the descent algorithm to solve
the COP is equivalent to the reformulation of the problem (24.4) as a tri-objective
optimization problem that aims to minimize both the feasibility measures, defined
by the constraint violation functions 6(x, q) and p(X, q), and the optimality measure
defined by the objective function y;(7):

- min (0(x,q), p(x, q), y5(T)) . (24.7)
x',iely:q,iel

In our filter methodology, a filter % is a finite set of triples (0(x, q), p(X, q), ys(T))

that correspond to points (X, q), none of which is dominated by any of the others in

the filter. A point (X, q) is said to dominate a point (x, q) if and only if the following

conditions are satisfied simultaneously:

0%, @) <0(x,q@), p(X, @ =< p(x,q) and J(T) < y,(T) ,

with at least one inequality being strict. The filter is initialized to .% = {(6, p, y;) :
0 > Omaxs P = Pmax}> Where Oiax, Pmax > 0 are upper bounds on the acceptable con-
straint violations. Let .%; be the filter at iteration k of the algorithm. To avoid the
acceptance of a trial point (X, q) (approximation to the optimal solution), or the cor-
responding triple (8(X, q), p(X, q), ¥s(T')), that is arbitrary close to the boundary of
the filter, the conditions of acceptability to the filter define an envelope around the
filter and are as follows:

or 3(T) < y(T) = (6, q¥) + px®, q)) '

for all points (x), q) that correspond to triples ((x", q), p(x?, q), ys(’)(T))
in the filter .%;. Points with constraint violations that exceed 0,x O ppax are not
acceptable. The constant v € (0, 1) is fixed and the smaller the tighter is the envelope
of acceptability. The above conditions impose a sufficient reduction on one of the
feasibility measures or on the optimality measure for a point to be acceptable. When
the point is acceptable to the filter, the filter is updated and whenever a point is added
to the filter, all the dominated points are removed from it.

24.3.2 The First-Order Descent Filter Algorithm

The proposed first-order descent method is based on using gradient approximations of
the functions, 6, p or yy, of the tri-objective problem (24.7), to define search directions
coupled with a simple line search to compute a step size that gives a simple decrease



24 A Multiple Shooting Descent-Based Filter Method ... 383

on one of the measures 6, p or y;. Since 6 is the most difficult to reduce, priority is
given to searching along the (negative) gradient of § or a (negative) combination of the
gradient of § with the gradient of p or y,. See Algorithm 2. For easy of notation v =
(xll,...,xsl,...,x{v,...,st,qll,...,qcl_,...,qfvfl,...,ch_\’_l)Tisusedtodenote
the vector of the decision variables (v € R"? ,np = Ns + (N — 1)c).

Each component i of the gradient of § with respect to the variable v;, at an iteration

k, is approximated by
Viov®) ~ (0vP +ce)) —0(v0)) /e, i=1,2,....np (24.9)

for a positive and sufficiently small constant ¢, being the vector e; € R"? the i column
of the identity matrix. Similarly for the gradients approximation of p and y;.

To identify the best point computed so far, the below conditions (24.10) are
imposed. Let v**’ be the current best approximation to the optimal solution of prob-
lem (24.7). A trial point, v, will be the best point computed so far (replacing the
current v?¢") if one of the conditions

OF) < OV or 3 (T) < y'*'(T) (24.10)

holds, where ® = 6 + p. At each iteration, the algorithm computes a trial point v,
approximation to the optimal solution, by searching along a direction that is the
negative gradient of , or a negative convex combination of the gradients of 6 and p,
0 and yy, or p and yy, at the current approximation v. The selected direction depends
on information related to the magnitude of # and p, at v. For example, if p(v) is
considered sufficiently small, i.e., 0 < p(v) < n;, while (v) > n; (for a small error
tolerance 77; > 0), then the direction is the negative gradient of 6 at v. The search
for a step size o € (0, 1] goals the reduction of 8 (‘M <« 6’ in Algorithm 2). On the
other hand, if both p and 6 are considered sufficiently small, then the direction is the
negative convex combination of the gradients of # and yy, although the search for o
forces the reduction on 6.

If both # and p are not small yet (situation that occurs during the initial iterations)
the direction is along the negative convex combination of the gradients of € and
p, although the line search forces the reduction on 6. However, if 0 < 6(v) <
but p(v) > 1, then the direction is along the negative convex combination of the
gradients of p and y, and the line search forces the reduction on p. Further details
are shown in the Algorithm 2.

The new trial point is accepted for further improvement if it satisfies the conditions
to be acceptable to the current filter (see conditions (24.8)), although each trial point
is considered as a new approximation to the optimal solution only if it is better
than the previously saved best point, according to (24.10). In this situation, a new
outer iteration—indexed by k in Algorithm 2—is carried out unless the convergence
conditions are satisfied (see (24.11) below). If the trial point is accepted but it does not
satisfy (24.10), 8, p and y, are evaluated at the trial point and a new inner iteration—
indexed by Ir—is carried out. This inner iterative process runs for a maximum of
I t.« iterations.
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Input: N, T, kmax > 0, Itmax > 0,171 >0
Output: Vbest’ ebesr’ pbest’ ysbest
Set k = 0, exit = “false”; Initialize .%;
Set initial v;
Compute § = §(v), p = p(v), ys = y5(T); Update .Z;
Set vbesr =v, gbest — 0’ pbest =p, yxbest = ys;
while k < kimax and exit = “false” do
Setk=k+ 1,1t =0,it,, =0, accept = “true”, stop = “false”;
while /1 < Ity and stop = “false” do
Set It =1t + 1, Fjy = It/Itmax;
Compute Gy ~ VO(v), G, = Vp(v), G,, = Vy,(T) using (24.9);
if accept = “true” then
if 0 < n; and p < n; then
| SetG = (1—Fi)Gg+ Fr,Gy; M < 0,
else
if p <11 and 6 > n; then
| SetG =Gy; M < 0;
else
if 6 <mny and p > n; then
| SetG = (1—F;)Gp+ F1;Gy; M < p;

else
| SetG=(1—F;)Gy+ F1,Gp; M < 0;
end
end
end
else

Set itn() = itn() + l;
if ity < (Itmax — 1) then
| SetG=(1—F;)Gyg+ F;,Gp; M < 0;
else
| SetG = (1 — F;1)Gy, + F1,Gg; M < yg;
end
end
Compute « € (0, 1] such that M (v — aG) < M (v); Set
v=v—aG,0=0F),p=pW),ys = y(T);
if v is acceptable to filter (according to (24.8)) then
Setv=9,0="0,p=p,y =5
Set accept = “true”’; Update .7 ;
if v is the best computed so far (see (24.10)) then
Vhe.s't =V, ebest =0, pbest =p, yﬁ)est = ¥s;
if convergence conditions (24.11) are satisfied then
| Set stop = “true”, exit = “true” (convergence);

end
Set stop = “true”;
end
else
| Setaccept = “false”;
end
end

end

Algorithm 2: Descent-filter algorithm
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The trial point might not be acceptable to the filter, in which case another inner
iteration is tried. If the number of iterations with non acceptable trial points reaches
Itax, the new direction is along the negative convex combination of the gradients of
0 and y, (with a reduction on y; in the line search); otherwise, the negative convex
combination of the gradients of # and p (with a reduction on 6 in the line search) is
tested.

The convergence conditions are said to be satisfied at a new trial point—the best
point computed so far, v*¢s' —if

e(vbest) <m and p(vbest) <m and perror = (|yfest _ yspr‘best|/|y~€)est|) <,
(24.11)
for small error tolerances 1; > 0 and 7, > 0, where the superscript pr.best refers to
the previous best point. The outer iterative process also terminates if the number of
iterations exceeds kyax.

24.4 Numerical Experiments

The new direct MS method based on descent directions and the filter methodology has
been tested with seven OCP. The MATLAB® (MATLARB is a registered trademark
of the MathWorks, Inc.) programming language is used to code the algorithm and
the tested problems. The numerical experiments were carried out on a PC Intel Core
17-7500U with 2.7 GHz, 256 Gb SSD and 16 Gb of memory RAM. The values set to
the parameters are shown in Table24.1.

First, three problems with free terminal time 7 are solved. A simple approach
is to apply the change of variable t = T'7, (with dt = Tdt) which transforms the
problem into a fixed boundary problem on the interval [0, 1] and treats 7" as an
auxiliary variable. When the objective is to minimize 7', an alternative is to add a
new variable to the states vector y € R*~! such that y/(z) = 1, with initial value
¥5(0) = 0.

Problem 24.1 A simple car model (Dubins car) is formulated with three degrees
of freedom where the car is imagined as a rigid body that moves in a plane [2]. The
position of the car is given by (x, y, ) where x and y are the directions and [ is
the angle with the X axis. The problem is to drive in minimum time the car from a
position to the origin:

Table 24.1 Parameter values

Parameter Value Parameter Value
Omax 1E+030(v(©®) n 1E—04
Pmax 1E+03max{p(v®), 1} |m 1E—03
5 1E—-05 kmax 750

€ 1E—-06 Ttmax s
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I;l(ltl)l Jx (@), y@), B@0), u() =T

s.t. X' (1) = cos(B(1))
y'(t) = sin(B(1))
B =u), t€l0,T]
)C(O) = 4, y(O) = 0, B(O) = %, )C(T) = 0, y(T) = O,
lu)| <2, tel0,T].

The results from both strategies to handle T free are shown in Table24.2. The ini-
tial guesses were x(t;) =2, y(t;) =0, 8(t;) = 1,i € Iy and u(t;) = 0,i € I. The
number of points considered in [0, 7] is 11. The table shows the values of J, 6 and
p achieved at iteration k, as well as the number of function evaluations, nf e, and the
time in seconds, ime. Optimal solution reported [2] is J* = 4.32174. The results are
considered quite satisfactory. We show in Fig.24.1a, b the optimal states trajectory
and control respectively, obtained from the run that considers the change of vari-
able + — 7. Figure24.1c displays the optimal control required to achieve identical
states trajectory from the run that adds a new state variable. Slightly different optimal
controls were obtained to reach identical states trajectory.

Problem 24.2 The resource allocation problem (R allocation) goals the assignment
of resources in minimum time [2]:

m(igl Jy@),u@) =T

s.t. Y[ (1) = u1(t)y1(2) y2(t)
y3(t) = ua()y1()y2(t), t€[0,T]
y1(0) =1, »0) =2, y((T)y(T) = 10,
i) =0, y2(0) 20, uy () +uz(t) =1, uy(t) >0, us(t) >0, 1t €[0, 7] .

Since u, = 1 — u; the control vector can be reduced to a scalar u; = u € [0, 1].
Using the initial guesses y(#;) =1, y2(;) =0,i € Iy, u(t;) =0,i € [ and N =
11, the results are shown in Table24.2. Optimal solution reported [2] is J* =
0.714118. Figures 24.1d, e show the optimal states y;, y, and control u;, u, respec-
tively, for the case where a change of variable is applied. Figure24.1f shows the
control for the case of handling T free through the adding of a new state variable.
The states trajectory are similar to Fig. 24.1d.

Problem 24.3 Consider an unmanned aerial vehicle (Zermelo) flying in a horizontal
plane with constant speed V, although the heading angle u(¢) (control input) (with
respect to the X axis) can be varied. Winds are assumed to be in the Y direction
with speed w. The objective is to fly from point A= (0, 1) to B= (0, 0) in minimum
time:
I;l(llgl Jx @), y@®),u@) =T
s.t. x'(t) = V cos(u(r))

y'(t) = Vsin(u(t)) + w, t€[0,T]

x(0)=0, yO)=1, x(T)=0, y(T)=0

lu()| <7m/2, t €[0,T].
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Trajectories of state variables for Dubins car (T free, change of variable) Optimal Control for Dubins car (T free, change of variable) Optimal Control for Dubins car (T free, adding new y)

-~ voonal : — veoo

o 02 04 06 08 1 0 o1 02 03 04 05 06 07 08 09 o o5 1 15 2 25 3 35 4
time 7 <[0, 1] time 7 <[0, 1] time, t £[0, T]

() (b (©)

o 02 04 08 08 1 0 01 02 03 04 05 08 07 08 09 o 01 o0z 03 04 05 o8 07
time 7 <[0, 1] time 7 <[0, 1] time, t £[0, T]

d (e) (®

Optimal Control for Zermelo (T free, addi

o 02 04 06 08 1 T o1 02 03 o4 05 os 07 08 09 T os 1 15 2 25 3 35
time 7 <[0, 1] time 7 <[0, 1] time, t £[0, T]

(@ (b @

Fig. 24.1 a States trajectory for Dubins car. b Optimal control for Dubins car. ¢ Optimal control
for Dubins car (when adding new y;). d States trajectory for R allocation. e Optimal control for R
allocation. f Optimal control for R allocation (when adding new y;). g States trajectory for Zermelo.
h Optimal control for Zermelo. i Optimal control for Zermelo (when adding new yy)

For V=1, w=1/+/2 and using the initial guesses x(t;) =0, y(t;,) =1,i € Iy
and u(t;) = 0,i € I, the results are shown in Table24.2 for N = 11. A value near
T = 3.51is exhibited in [9]. The optimal states x, y and control u (from the run based
on the change of variable T — 7) are shown in Fig. 24.1g, hrespectively. Figure 24.1i
presents the optimal control obtained from the run that adds a new variable to the
states vector.

The next three problems are OCP of the Lagrange form and the last problem is
already in the Mayer form.

Problem 24.4 In a continuous stirred-tank chemical reactor (Tank reactor), y, rep-
resents the deviation from the steady-state temperature, y, represents the deviation
from the steady-state concentration and u is the effect of the coolant flow on the
chemical reaction [10]:



24 A Multiple Shooting Descent-Based Filter Method ... 389

T
min J = / 01()* + y2()* + Ru(1)?) dt
u(t 0

S0 = =201(1) +0.25) + (12(0) + 0.5 exp (25
—(y1(®) +0.25)u(?)
¥(0) = 0.5 = 32(1) = (2(0) +0.5) exp (Z50), r € [0,7]
¥1(0) = 0.05, y,(0) = 0.

The optimal solution reported in [10], for T = 0.78 and R = 0.1, is J* = 0.0268.
Using the initial guesses y;(¢;) = 0.05, y>(¢;) =0,i € Iy and u(t;) =0.75,i € I,
with N = 11, the results are shown in Table24.3. The proposed strategy has pro-
duced again a reasonably good solution. Figures24.2a, b show the optimal states
¥1, ¥2 and control u respectively.

Problem 24.5 In the point mass maximum travel example (masstravel), the force
u(t) that moves a mass to the longest distance is to be found (with 7 = 10 fixed):

T
max J E/ v(t)dt
u(t) 0

s.t.s'(t) = v(r)
V() = ult) — ko — kiv(t) — kav()?, t €[0,T]
s(0)=0, v(0O) =0, v(T)=0
lu()| < g+ k3v(t)2, tel0,T].

The results, for kg = 0.1, ky =0.2, ko =1, ks =1 and N =11, are shown in
Table 24.3. The initial guesses were s (t;) = 1, v(t;) = 2,i € Iyandu(t;) =5,i € 1.
When transforming the above form into the Mayer form, the objective function value
is just s(7") (thus no new state variable was added to the states vector). To con-
firm convergence, the problem is also solved with n; = 1E—10, n, = 1E—06 in

Table 24.3 Results obtained for the Problems 24.4, 24.5, 24.6 and 24.7

k J 0 P nfe Time
Tank reactor 1 0.0046 1.12E—-02 0.0000E+00
176 0.0357 9.9503E—-05 | 0.0000E+400 | 16320 18.0
Masstravel 1 3.2633 6.9821E+01 | 1.6000E+-02
69 6.0311 7.9855E—-05 | 0.0000E400 | 4830 53
1288 6.0256 9.2528E—11 | 0.0000E400 | 8963 9.7
Trajectory 1 0.6457 1.6043E+401 | 1.0424E4-01
56 0.2691 9.3978E—05 | 0.0000E400 | 3922 44
3078 0.2635 8.8477E—11 | 0.0000E+00 | 21494 22.5
Obstacle 1 0.0000 2.4395E400 | 0.0000E+-00
341 2.3257 9.2300E—-05 |2.5452E—05 | 26208 27.1
7508 2.4616 1.3062E—08 | 4.8821E—10 | 52702 53.7
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(24.11)—identified with ¥ in Table 24.3. Figures 24.2¢, d contain the states and con-
trol respectively.

Problem 24.6 (trajectory) Find u(¢) that minimizes J (with T = 3 fixed) [4],

T
min J E/ (Y () + u*(t)) dt

0
sty =4 y®)y@) +u(), t€[0,T]
y(0) = 0.05, y(T) =0,
ly®l <1, lu@®)| <1, tel0,T].

The obtained results for N = 11, with the initial guesses y(;) = 1,i € Iy and
u(t;) = 0,i € I,aredisplayedin Table 24.3. Results withn; = 1E—10,7, = 1E—06
in (24.11) are also included. The Fig.24.2e, f present the states and control respec-
tively.

Problem 24.7 The obstacle problem (obstacle) can be reformulated as [3] (T =
2.9):

min J = 5y (T) + yo(T)?

u(t

sty (1) = (1)
¥y (@) = u(t) — 0.1(1 4+ 2y (1)) y2 (1)
yi(0) =1, »(0) =1,
1 -9 (1) — 1)? — (20042 <,
—08—y,(t) <0, |u()| <1, t€[0,T]

Using the initial guesses y;(#;) =0, y2(¢;) =0,i € Iy, u(t;) =0,i € [ and N =
11, the results are shown in Table 24.3. This problem is also solved withn; = 1 E—10,
1, = 1E—06 in (24.11) to analyze the convergence issue. Figures 24.2g, h show the
states y;, y, and control u respectively.

24.5 Conclusions

A first-order descent method based on a filter methodology is proposed to solve
a finite-dimensional nonlinear optimization problem that arises from the use of a
direct multiple shooting method for OCP. The implemented filter method relies on
three measures. The two feasibility measures are handled separately in order to
give priority to the minimization of the ‘continuity constraints’ violation over the
algebraic equality and inequality constraints violation and the objective function.
This priority is patent by the use of search directions that are along either the negative
of the gradient of the ‘continuity constraints’ violation function or a negative convex
combination of that gradient and the gradient of the other constraints violation, or
the objective function. Numerical derivatives are implemented in order to avoid
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computing the first derivatives of the involved functions. The numerical experiments
carried out until now have shown that the presented strategy is worth pursuing.

Issues related to the extension of the proposed method to solving retarded OCP
with constant delays in the state variables and in the control are now under investi-
gation and will be the subject of a future paper.
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