
Chapter 16
Solving Multi-objective Optimal Design
and Maintenance for Systems Based
on Calendar Times Using NSGA-II

Andrés Cacereño, Blas Galván, and David Greiner

Abstract Due to technical progress and business competition, design alternatives
and maintenance strategies have to be contemplated to optimize the performance of
physical assets when new facilities are projected and built. That combined optimiza-
tion (Design & Maintenance) is required by all industrial installations to develop
their activity in an increasingly competitive environment. The Design and Mainte-
nance combined optimization process is a complex problem which requires research
and development. The objectives to optimize are Unavailability (due to production
losses) andMaintenance Cost (due to overcharge when it is not optimal). The Design
and Maintenance strategy for a technical system are optimized jointly by modifying
its Functionability Profile, which is closely related to the system’s availability. The
Functionability Profile is generated by applying Monte Carlo Simulation that allows
characterizing the process’ randomness until the failure and to modify that Function-
ability Profile by the optimal Maintenance strategy. An application case is presented,
where several configurations of the elitist Non-dominated SortingGenetic Algorithm
(NSGA-II) are used to optimize the multi-objective problem, successfully finding
non-dominated solutions with optimum performance for the simultaneous Design
and Maintenance strategy combination.
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16.1 Introduction

System Reliability is defined as the probability of being operating under particular
conditions during a certain period [1]. The problem of systems design optimization
based on their Reliability has been dealt by several authors, both in single-objective
[2, 3] and multi-objective [4] cases, as an application of the well-known use of
evolutionary algorithms/metaheuristics to solve complex problems in engineering
design [5, 6]. However, it is still a live problem because of technical advances, the
increase in the complexity of systems and the demand of consumers (among other
aspects) [7].

The parameter which includes the process until the failure and recuperation for
repairable systems is Availability. In repairable systems, information about the prob-
ability of being available at certain time to achieve their functions is given by their
Availability.

System’s Availability can be deduced through its Functionability Profile. An
example of Functionability Profile is shown in Fig. 16.1. The better the system
Reliability is, the better its Availability will be. A priority objective in the industry is
to obtain the maximum availability because if a system is “available”, resources will
be being generated. However, when a system is not “available”, not only resources
are not being generated, but also resources are being consumed until to recover the
“available” state. When the system is not “available”, it is driven into unproductive
phase [8].

Themain reasonswhy a continuous operation system stops are a failure (after that,
a recovery time is required) or a scheduled stop to perform a maintenance activity.
The global improvement of system’s Reliability and Availability is possible through
preventive maintenance [9]. If a preventive maintenance activity is performed,
the unproductive phase will be more controlled than when reparations have to be
performed because of a failure. Therefore, it is interesting to identify the optimum
moment to make a stop to develop a preventive maintenance activity. In an ideal
way, it has to be done before the occurrence of a failure but as near as possible to
maximize the system’s “available” time. The Maintenance Optimization problem
has been studied extensively [10].

Fig. 16.1 Functionability
profile of a component (or
device, or system)
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From the foregoing, it can be deduced that both the system’s optimum design
and maintenance strategy improve its Reliability and Availability. Traditionally, the
problemof improvingReliability by optimizing the system’s design andmaintenance
strategy has been treated separately.

However, there are some works in which they have been jointly studied. In C.P.
de Paula et al. [11] system’s Availability and Cost are optimized through a decision
process in which the number of redundant elements for a system (design) and the
percentage of total resources allocated to maintain it are decided.

In the present paper, we face an unpublished problem, where the multi-objective
optimization problemofminimization of the cost andmaximization of the availability
(or minimization of the unavailability) are handled: a set of optimal balanced solu-
tions between Availability and Cost are provided, on the one hand, from the elements
potentially included in the design, and on the other hand from the identification of
the optimum moment in which the maintenance activity has to be performed. To
obtain that, Functionability Profiles for system’s devices have to be readjusted and,
consequently, the system’s Functionability Profile. Those Functionability Profiles,
which are built and adjusted by using Discrete Events Simulation, are product of
the Design and Maintenance Strategy.

The paper is organized as follows. Section 16.2 resumes the Methodology.
Section 16.3 presents an application case. In Sect. 16.4 results are shown, and finally
Sect. 16.5 introduces conclusions.

16.2 Methodology

16.2.1 Availability and Functionability Profile

Reliability is an intrinsic characteristic to a component (or device, or system,
depending on disaggregation level, from now on device) which is related to the
way in which the device has been designed and built. Maintainability can be intrinsic
to devices when it is related to conditions of design (a piece that is difficult to access
will be more complex to maintain) or extrinsic, for example, when it is related to
availability of spares or to human teamwhohas to perform themaintenance operation.

In Availability, those two parameters (Reliability and Maintainability) are related
to define the way in which the device is able to fulfill the function for which it was
designed during a period. In the present paper, the system’s Availability is charac-
terized by using its Functionability Profile. An example of Functionability Profile is
shown in Fig. 16.1.

Functionability Profiles depend on times to failures (t f 1, t f 2,…, t f n) and recovery
times (..,…, trn). In continuous operation devices, when Functionability Profiles
are set to logical 1, it is considered that devices are operating. Conversely, when
Functionability Profiles are set to logical 0, it is considered that devices are stopped
(they are being maintaining or repairing after the failure). It is possible to deduce
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from Fig. 16.1 that after an operation time (time to failure or time to perform a
scheduled maintenance activity), a recovery time is necessary (time to repair after
failure or time to perform a preventive maintenance activity).

As previouslymentioned,Availability is tightly related to Functionability Profiles.
Availability is characterized through the relation between device’s operation times
and the hoped operation total time for that device. That device will be able to fulfill
its purpose during t f times, so it is possible to characterize Availability A(t) by using
Eq. 16.1.

This approximation to characterize the Availability is called Operational Avail-
ability. Andrews and Moss [12] explain that Availability is an important measure of
performance for repairable devices, which is represented in Eq. 16.2.

A(t) ∼= t f 1 + t f 2 + · · · + t f n
t f 1 + t f 2 + · · · + t f n + tr1 + tr2 + · · · + trn

(16.1)

A(t) = MTT F

MTT F + MTT R
(16.2)

Mean Time To Failure (MTT F) and Mean Time To Repair (MTT R) are distin-
guished in Eq. 16.2. The approach shown in Eq. 16.2 is the base of the approximation
that allows using Eq. 16.1. Availability (A(t)) is a variable with value between 0 and
1. The opposite of Availability is Unavailability (Q(t)), so A(t) + Q(t) = 1 and
Q(t) = 1 − A(t).

A priori, operation and recovery times are not known. They are random variables
so they allow a statistical treatment. If a historic of both times is compiled and a statis-
tical analysis is performed, these variables could be defined as probability density
functions and probability distribution functions through their respective parame-
ters. Functions can arise from a specific typology (exponential, Weibull, normal, for
example). There are several Data Bases in the market (OREDA [13], CCPS [14])
which supply the characteristic parameters for the refereed functions, so operation
and recovery times can be characterized for different failure modes of devices.

The economic Cost is a variable directly associated to recovery times. When
systems are operating, economic income is generated. Conversely, when systems are
recovering, economic cost is generated to return it to its operation state. If we want
to avoid long recovery times, it is necessary to carry out a preventive maintenance
activity ideally before the failure. Because of that stop is scheduled (for reasons such
as human personnel are willing and trained, or spare parts are available) recovery
times will be shorter. Therefore, it is possible to modify Functionability Profiles for
system’s devices by including preventive maintenance activities.
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16.2.2 Building Functionability Profiles

As we want to analyze the system’s Availability, we are going to show how it is
possible to build Functionability Profiles for devices by using Discrete Events Simu-
lation.With this end, information about how to characterize operation times to failure
(TF) and recovery times after failure (TR) is needed. Characteristic parameters about
their probability distribution laws are needed. In this book chapter, all possible
device’s failures are grouped in a unique failure mode. From the characterization
of probability density and probability distribution functions both for operation times
(TF) and recovery times (TR), Functionability Profiles for system’s devices will be
built by generating random times (Discrete Events Simulation). To modify Func-
tionability Profiles, attending to preventive maintenance activities, operation times
to preventive maintenance (TR) and recovery times due to preventive maintenance
(TRP) will be introduced by generating random times. The process is shown below:

1. System’s Life Cycle has to be decided and then, the process continues for all
devices.

2. The device’s Functionability Profile has to be initialized.
3. A time to preventive maintenance (TP) is extracted from the individual of

the population that is being evaluated and a recovery time for preventive
maintenance (TRP) have to be randomly generated, between limits previously
fixed.

4. Attending to the device’s distribution probability law, an operation time to
failure (TF) has to be randomly generated, between limits previously fixed.

5. If TP < TF, a preventive maintenance activity is performed before a failure
occurs. In this case, as many logical “ones” as TP units followed by as many
logical “zeros” as TRP units have to be added to the device’s Functionability
Profile.

6. If TP > TF, a failure occurs before a preventive maintenance activity would
be done. In this case, attending to the device’s distribution probability law, a
recovery time after failure (TR) has to be randomly generated, between limits
previously fixed. Then, as many logical “ones” as TF units followed by as many
logical “zeros” as TR units have to be added to the device’s Functionability
Profile.

7. Steps 4 to 6 have to be repeated until the end of the device’s Life Cycle.
8. Steps 2 to 7 have to be repeated until Functionability Profiles have been built

for all devices.
9. After to build Functionability Profiles, attending to the logic due to the serial

(AND) or parallel (OR) distribution for the system’s devices, the system’s
Functionability Profile has to be built.

10. Finally, system’s Availability will be established by using Eq. 16.1, while the
system operation cost is computed by adding partial costs due to recovery times.
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Economic costs due to recovery times after failure and for preventivemaintenance
activities have to be established. With this purpose, a cost will be associated to
unavailable time units. That cost will be bigger for recovery times after failure due to
lack of foresight. The cost has to be computed while device’s Functionability Profiles
are built.

16.2.3 Multi-objective Optimization

Optimization results useful in practically all areas of our life. Our activities have to
be optimized when we want to get the best possible result. However, when we have
to solve complex problems we become aware of the suitability of employing that
methodology. Optimization is very useful specially when the number of potential
solutions is high and getting the best solution is very difficult. However, it will be
possible to obtain sufficiently good solutions [15].

Optimization problems can be minimized or maximized for one or more objec-
tives. In most cases, real world problems present various objectives for optimising
at the same time (frequently in conflict each other). These problems are so-called
“multi-objective” and their solutions arise from a solution set which represent the
best compromise between objectives (Pareto optimal set) [16, 17]. This kind of prob-
lems are described by Eq. 16.3 (considering a minimization problem in this case)
[15].

min
x

f (x) = min
x
[ f1(x), f2(x), . . . , fk(x)] (16.3)

In Optimization problems defined by this way, the k functions have to be opti-
mized at the same time. Classical optimization methods suggest converting the
multi-objective optimization problem to a single-objective optimization problem by
emphasizing one particular Pareto-optimal solution at time.Due to their ability to find
multiple Pareto-optimal solutions in one single simulation run, a number of multi-
objective evolutionary algorithms (MOEAs) were suggested after. In this paper, a
MOEA is used to optimize an application problem. This algorithm is the so-called
Non-dominated Sorting Genetic Algorithm II [18] (NSGA-II). The selection method
in this algorithm is based on the concept of non-dominance.

In this paper, the problem is to optimize the Design and Maintenance strategy
for an industrial system based on two different objectives in conflict, Availability
and Cost. We wish maximum Availability and minimum maintenance Cost. The
more investment in maintenance, the greater system’s Availability will be obtained.
However, this policy implies a higher unwanted cost, being this the conflict between
objectives. Not only maintenance strategy is considered but also the system’s design
is optimized too based on Availability and its influence in Costs due to Maintenance
strategy. The process is discussed below.
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16.3 Application Case

The proposedmethodology has been applied to a fluid injection system from industry,
based on4 as an example. That system is basically formed by cut valves (Vi ) and
impulsion pumps (Pi ) as is shown in Fig. 16.2.

As itwas exposed above, optimization objectives are, on the onehand, tomaximize
the system’s Availability and, on the other hand, to minimize Costs due to system’s
unproductive phases (both because the system is being recovered and because the
system is being maintained). To do that:

• For all system’s devices, the optimum moment to perform a preventive mainte-
nance activity has to be established.

• Including redundant devices as P2 and/or V4 has to be decided by evalu-
ating Design alternatives. Including redundant devices will improve the system’s
Availability but it will worsen its Maintenance Cost.

Population individuals for the Optimization process will be characterized by
its chromosome. Chromosomes will be shaped by real number strings with 0 as
minimum value and 1 as maximum value (decision variables). They will be codified
as [B1B2T1T2T3T4T5T6T7], where the presence of redundant devices, P2 and V4,
is decided by B1 and B2, respectively, and optimum times to perform a preventive
maintenance activity to devices are represented by T1 to T7. Data set for system’s
devices used to the optimization process are shown in Table 16.1.

The Software Platform PlatEMO [19] (programmed in MATLAB) was used to
optimize the problem. The open source platform PlatEMO includes more than 50
multi-objective evolutionary algorithms, more than 100 multi-objective test prob-
lems, along with several widely used performance indicators. In this case, the reli-
ability and maintenance analysis software has been developed and implemented to
solve the problem described above in the platform.

The parameters set used to configure the simulation process is shown inTable 16.2.
The evolutionary multi-objective algorithm used in this paper is the so-called Non-
dominated Sorting Genetic Algorithm II (NSGA-II), a method based on the concept
of non-dominance. The method was configured with several parameters. All cases
were runningfive timeswith a stopping criterionof 5,000,000 evaluations,withSimu-
lated Binary Crossover (SBX), and crossover distribution and mutation distribution
indexes of 20. Two population sizes were analysed with 50 and 100 individuals.
Mutation probabilities were changed between 0.5, 1 and 1.5 genes per chromosome

Fig. 16.2 Application case:
fluid injection system
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Table 16.1 Data set for the
system’s devices

Parameter Quantification Source

Life Cycle 700,800 h –

Recovery Cost 0.5 units Expert judgement

Maintenance Cost Recovery Cost/4 Expert judgement

Pump TF min 1 h Expert judgement

Pump TF max 70,080 h Expert judgement

Pump λ Exponential Law 159.57 · 10−6 h OREDA 2009

Pump TR min 1 h Expert judgement

Pump TR max 24.33 h μ + 4σ

Pump TR μ Normal Law 11 h OREDA 2009

Pump TR σ Normal Law 3.33 h (μ–TRmin)/3

Pump TP min 2,920 h Expert judgement

Pump TP max 8,760 h Expert judgement

Pump TRP min 4 h Expert judgement

Pump TRP max 8 h Expert judgement

Valve TF min 1 h Expert judgement

Valve TF max 70,080 h Expert judgement

Valve λ Exponential Law 44.61 · 10−6 h OREDA 2009

Valve TR min 1 h Expert judgement

Valve TR max 20.83 h μ + 4σ

Valve TR μ Normal Law 9.5 h OREDA 2009

Valve TR σ Normal Law 2.83 h (μ – TRmin)/3

Valve TP min 8,760 h Expert judgement

Valve TP max 35,040 h Expert judgement

Valve TRP min 1 h Expert judgement

Valve TRP max 3 h Expert judgement

Table 16.2 Simulation
configuration parameters

Parameter Configuration

Method NSGA-II

Evaluations 5,000,000

Population 50–100

Crossover probability 1

Crossover distribution index 20

Mutation probability 0.055–0.111–0.166

Mutation distribution index 20

Executions 5



16 Solving Multi-objective Optimal Design … 253

(0.055, 0.111 and 0.166 respectively). Six cases (combination of two population sizes
and 3 mutation rates) were finally evaluated.

16.4 Results

The different configurations for the optimization method were executed five times
each. The Hypervolume [20] (HV) average value evolution (among five execu-
tions and for each configuration) is shown in Fig. 16.3. The higher the number
of evaluations, the higher the improvement of the Hypervolume is observed.

The detail of the last evaluations is shown in Fig. 16.4. It is possible to check that
the parameters configuration with population of 100 individuals and mutation prob-
ability of 0.055 (0.5 gen per chromosome) finally presents the higher Hypervolume
average value.

The values of the main measures obtained for the final evaluations are shown in
Table 16.3. These are the Average, Median, Minimum Value, Maximum Value and
Standard Deviation of the Hypervolumemetric. Firstly, the parameters configuration
with population of 50 individuals and mutation probability of 0.055 (0.5 gen per
chromosome) presents the higher median of the Hypervolume value. Secondly, the
parameters configurationwith population of 100 individuals andmutation probability
of 0.055 (0.5 gen per chromosome) presents the higher average and minimum of the
Hypervolume value. Thirdly, the parameters configuration with population of 100
individuals and mutation probability of 0.111 (1 gen per chromosome) presents the
higher maximum of the Hypervolume value. Finally, the parameters configuration

Fig. 16.3 Hypervolume average value evolution
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Fig. 16.4 Hypervolume average value evolution (detail)

with population of 50 individuals and mutation probability of 0.166 (1.5 gen per
chromosome) presents the lowest standard deviation of the Hypervolume value.

Box plots of the final Hypervolume value distribution for the last evaluation are
shown in Fig. 16.5. It is possible to observe some details described above, related to
average, median, minimum, maximum and the standard deviation of the final Hyper-
volume values. The parameters configuration with population of 50 individuals and
mutation probability of 0.055 presents the highest median of the Hypervolume value.
The parameters configuration presents the higher minimum of the final Hypervolume
value. The parameters configuration with population of 100 individuals and muta-
tion probability of 0.111 presents the highest maximum of the final Hypervolume
value. The parameters configuration with population of 50 individuals and mutation
probability of 0.166 presents the lowest standard deviation of the final Hypervolume
value.

In order to establish if any of the six parameter configurations works better
than others, a statistical significance hypothesis test was conducted. Particularly,
the procedure starts detecting significant differences among the results obtained by
applying theFriedman’s test. It responds the question:“Are there resultswith different
median?” When there are two or more result sets, the null hypothesis (H0) claims
that median are equals (no differences amongmethods). If H0 is rejected, differences
among methods exist, and a post hoc test is run in order to find the concrete pairwise
comparisons which produce differences. In our case, the average rank computed
through the Friedman’s test is shown in Table 16.4.

The parameters configurationwith population of 100 individuals andmutation rate
of 0.055 presents the lowest average rank computed through the Friedman’s test (the
best in this case, as a maximization problem is analyzed -maximum Hypervolume
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Table 16.3 Hypervolume
statistics of the optimization
results

ID Parameter N = 50—Pm = 0.055

1 Average 2.2753

Median 2.2775

Minimum Value 2.2572

Maximum Value 2.2879

Standard Deviation 0.0124

ID Parameter N = 100—Pm = 0.055

2 Average 2.2762

Median 2.2732

Minimum Value 2.2676

Maximum Value 2.2934

Standard Deviation 0.0101

ID Parameter N = 50—Pm = 0.111

3 Average 2.2665

Median 2.2700

Minimum Value 2.2442

Maximum Value 2.2909

Standard Deviation 0.0199

ID Parameter N = 100—Pm = 0.111

4 Average 2.2726

Median 2.2680

Minimum Value 2.2542

Maximum Value 2.2939

Standard Deviation 0.0167

ID Parameter N = 50—Pm = 0.166

5 Average 2.2671

Median 2.2667

Minimum Value 2.2558

Maximum Value 2.2746

Standard Deviation 0.0071

ID Parameter N = 100—Pm = 0.166

6 Average 2.2659

Median 2.2643

Minimum Value 2.2413

Maximum Value 2.2896

Standard Deviation 0.0173
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Fig. 16.5 Box plots of the final hyper volume value distribution

Table 16.4 Average rank
computed through the
Friedman’s test (best in bold
type)

ID NSGA-II Configuration Average Rank

1 N = 50—Pm = 0,055 3.00

2 N = 100—Pm = 0,055 2.60

3 N = 50—Pm = 0,111 4.40

4 N = 100—Pm = 0,111 3.20

5 N = 50—Pm = 0,166 3.60

6 N = 100—Pm = 0,166 4.19

is desired-). However, the p-value computed by Friedman’s test is 0.6212. This p-
value is higher than the level of significance α (0.05) so the null hypothesis “median
are equals” can’t be rejected. This implies it is not possible to establish that any
parameter configuration performs better than any other. In the conditions inwhich the
experimentwas developed, there aren’t significant differences between performances
from different configurations. A procedure for conducting multiple comparisons
involving all possible pairwise comparisons, as, e.g. described by Garcia S. and
Herrera F. in [21], is therefore here not neccesary.

The possible solutions to the problem provided through the last generation of
the evolutionary process of the five accumulated executions for all configurations
are shown in Fig. 16.6. Some optimum solutions belonging to the obtained non-
dominated front are shown in Table 16.5 (these solutions are rounded and numbered
in Fig. 16.6). Unavailability is shown in fraction, Cost is shown in economic units and
the rest of variables represent, for the respective devices, optimum times to perform
a preventive maintenance activity in hours.
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Fig. 16.6 Non dominated solutions (black crosses), and their configuration designs, clustered.
Chosen representative solutions (Table 16.5) are additionally circled and numbered

Table 16.5 Sample of some optimum solutions

ID Unavailability Cost [un] V1 [h] P2 [h] P3 [h] V4 [h] V5 [h] V6 [h] V7 [h]

1 0.0029979 894.20 30,887 � 8,344 � 29,391 24,051 33,860

2 0.0024687 1,066.92 21,430 � 8,718 10,299 28,043 31,234 31,442

3 0.0011928 1,443.00 29,592 8,179 8,597 � 20,005 33,923 29,773

4 0.0008019 1,772.59 34,766 8,386 8,467 29,272 34,531 32,968 31,000

The solution with the lowest Cost (ID1) (894.20 economic units) presents the
biggest Unavailability (0.0029979). These values are followed by periodic optimum
times (hours) measured from the moment in which the Life Cycle starts (time for
performing the preventive maintenance activity (TR) is not included). In that case,
it is possible to observe that periodic optimum times to preventive maintenance for
devices P2 and V4 are not supplied. It is caused because the design alternative did
not consider including such devices. The opposite case shows the biggest Cost (ID4)
(1,722.59 economic units) and the lowest Unavailability (0.0008019). In this case,
periodic optimum times to perform preventivemaintenance activities are supplied for
all devices. It is caused because the design alternative considered including devices
P2 and V4. Other optimum solutions were found between those two solutions (ID2
and ID3). Decisionmakers, attending to their requirements, will have to decidewhich
design is the preferable to choose.
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Moreover, solutions have been clustered in Fig. 16.6 attending to their final design.
Solutions contained by Cluster 1 are the solutions in which non redundant devices
have been included in the design. Solutions contained by Cluster 2 are the solutions
in which a redundant valve has been included in the design. Solutions contained by
Cluster 3 are the solutions inwhich a redundant pumphas been included in the design.
Finally, solutions contained by Cluster 4 are the solutions in which both a redundant
valve and a redundant pump have been included in the design. Final designs for each
Cluster are shown in Fig. 16.6.

16.5 Conclusions

A successful methodology has been presented and demonstrated by a practical
test case where proper non-dominated solutions for minimum unavailability and
cost objectives have been generated. It has been possible by generating function-
ability profiles for several designs of the analyzed technical system, using Discrete
Events Simulation, and varying those functionability profiles with the inclusion of
maintenance activities before the failure. The evolutionary multi-objective algo-
rithm NSGA-II was used to perform the optimization process. This method allowed
obtaining optimum solutions attending to the design andmaintenance strategy for the
technical system. The goal for devices included in the design, was to obtain the sets
of optimum times between maintenance activities with the best unavailability-cost
relations. A system test case with 7 possible devices was used, including pumps and
valves.

A set of different evolutionarymulti-objective algorithm parameters configuration
has been tested with the purpose of determining its effect in the optimization process.
The best non-dominated solutions were archived. A test hypothesis was built with
the objective of determining what parameter configuration presents the best perfor-
mance. It is possible to conclude that significant differences were not found so, in
the conditions defined for the experiment, no parameter configuration worked better
than any other.

As future work, a comparison among several state of the art evolutionary multi-
objective optimizers (EMO) will be performed, including, as stated in e.g. [22], a
representative of each of the different three main paradigms of evolutionary multi-
objective optimizers attending to their selection method.
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