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Preface

This book contains book chapters from selected and extended contributions pre-
sented at the EUROGEN 2019 International Conference that took place at the
University of Minho at the historical town of Guimarães in the north of Portugal on
September 12–14, 2019.

EUROGEN 2019 was the 13th of a series of International Conferences previ-
ously held in Las Palmas de Gran Canaria (1995), Trieste (1997), Jyväskylä (1999),
Athens (2001), Barcelona (2003), Munich (2005), Jyväskylä (2007), Kracow
(2009), Capua (2011), Las Palmas de Gran Canaria (2013), Glasgow (2015) and
Madrid (2017) mainly focused on Evolutionary and Deterministic Computing for
Industrial Applications. This conference aims at bringing together specialists from
universities, research institutions and industries developing or applying evolution-
ary and deterministic methods in design optimization and control and emphasizing
industrial and societal applications.

This series of conferences was originally launched by the EC–Strategic/
Prospective Network INGENET in 1998. EUROGEN 2019 is, also, an ECCOMAS
Thematic Conference also co-ordinated by the Special Interest Group (SIG) with
ERCOFTAC (European Research Community on Flow, Turbulence and
Combustion).

The conference included the following topics: metaheuristics and evolutionary
algorithms, multi-objective evolutionary algorithms and constraint handling tech-
niques, adjoint-based including one-shot methods, hybrid optimisation methods,
high-performance computing, goal-oriented optimization for mesh and meshless
methods, game strategies, surrogate models for optimisation, parallel and dis-
tributed evolutionary algorithms, multi-disciplinary optimization methods, design
optimization under uncertainties, multi-criteria decision making and topology
optimization.

v



EUROGEN 2019 beneficiated from the presentation of five keynote invited
speakers: Kyriakos Giannakoglou from the National Technical University of
Athens (NTUA), Greece; Maria João Alves from the University of Coimbra,
Portugal; José Covas from the University of Minho, Portugal; Massimiliano Vasile
from the University of Strathclyde, United Kingdom and Carlos Fonseca from the
University of Coimbra, Portugal.

With a peer review selection procedure, within the 91 papers submitted from 17
countries, 29 were selected to be published in this volume, which has been orga-
nized in taking into account the following eleven (11) mini-symposia:

• Multi-fidelity, surrogate modelling and design exploration of real-world
problems

• Recent Advances in Numerical Optimization and Optimal Control and its
Applications

• Single and Multi-objective Bilevel Optimization
• Adjoint methods for Multi-physics, including Applications
• Design support tools in industrial and scientific applications
• EMO—Evolutionary Multi-Objective Optimization
• Optimization under Uncertainty
• Numerical simulation as a tool in product development for the industry
• Design of polymer processing equipment: numerical simulation and

optimization
• Particle-based simulation
• Game Theory and Optimization: From Theory to Applications.

These above Mini-Symposia (MS) has been classified into two major
components:

– Theoretical and Numerical Methods and Tools for Optimization and Control;
– Engineering Design and Societal Applications.

We express our gratitude to the keynote speakers for accepting our invitation, to
all authors who submitted their research and industrial contributions, to the
International Corresponding Members and to the members of the European
Technical Committee and of the Scientific Programme Committee.

We acknowledge also the support of the School of Engineering of the University
of Minho and the financial support of the NEWEX European Project under grant
734205, a Marie Sklodowska Curie Action, Research and Innovation Staff
Exchange (RISE) project.
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Finally, the editors are indebted to Nathalie Jacobs and Eugenio Onate,
ECCOMAS-Springer Manager and Director of this series continuously involved in
the publication of books linked to EUROGEN and at last thank the Springer
Manager line for assistance and patience in compiling this volume.

Guimaraes, Portugal António Gaspar-Cunha
Barcelona, Spain Jacques Periaux
Kaiserslautern, Germany Nicolas R. Gauger
Athens, Greece Kyriakos C. Giannakoglou
Capua, Italy Domenico Quagliarella
Las Palmas, Spain
March 2020

David Greiner
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Chapter 1
A Bi-Level Optimization Approach
to Define Dynamic Tariffs with Variable
Prices and Periods in the Electricity
Retail Market

Inês Soares, Maria João Alves, and Carlos Henggeler Antunes

Abstract Dynamic time-differentiated pricing structures are expected to become a
common practice in smart grids, bringing benefits for all stakeholders involved: grid
operators, retailers and consumers. The optimization of dynamic time-of-use (ToU)
tariffs by a retailer considering the consumers’ response can be modeled through bi-
level (BL) programming. The retailer first defines the prices for each period and the
consumer then reacts by rescheduling the operation of appliances, in face of prices
and comfort requirements. In this paper, we present twoBLmodels to define dynamic
tariffs, in which the goal is to determine both the price values and the periods inwhich
they hold by considering: (i) variable periods with a maximum number of different
prices and (ii) total freedom to define the periods and the corresponding prices. Both
models are highly difficult to solve, mainly due to the size of the search space of
the upper level (UL) problem, in which the combinations of prices and periods are
determined. We describe the development of hybrid approaches considering a popu-
lation metaheuristic for the UL problem and a mixed-integer linear programming
(MILP) solver to address the lower level (LL) problem, in which the optimal appli-
ance scheduling for the pricing structure is computed. The exploration of the UL
search space is crucial to obtain good solutions within an acceptable computational
effort.
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Keywords Bi-level optimization · Hybrid algorithms · Metaheuristics ·
Mixed-integer linear programming · Dynamic tariffs · Pricing problems ·
Electricity retail market

1.1 Introduction

The problem of optimizing dynamic ToU tariffs involves two decision makers: the
retailer is the leader defining a pricing strategy that maximizes his profit and the
consumers are the follower seeking to satisfy their energy needs at minimal cost.
The retailer decides first, but the consumers’ reaction will affect the retailer’s profit.

BL programming encompasses a leader–follower hierarchical structure, in which
the leader takes into account in his decision process the reaction of the follower. In
the framework of a pricing problem, the optimal decision for the leader’s problem
depends on the follower’s reaction to the possible price structures set by the leader,
i.e. the optimal solution to the consumers’ problem for each instantiation of the
leader’s decision variables (the prices).

BL problems are difficult to solve and even the linear BL problem is NP-hard. The
existence of discrete variables, particularly in the LL problem, further aggravates the
difficulty of solving the BL problem. This is the case of the models we deal with in
this work, which include continuous variables at the UL (prices) and continuous and
binary variables at the LL (to model the operation of the consumer’s appliances).
Thus, it is of utmost importance to consider the structure and features of the BL
model to develop computationally efficient solution approaches.

In the study by Alves et al. [1], the interaction between an electricity retailer and
residential consumers is modeled as a BL programming problem. A metaheuristic to
address the retailer’s problem (maximizing profits) is combined with an exact solver
to deal with the consumer’s problem (minimizing costs). The UL problem is tackled
by a genetic algorithm (GA), in which the decision variables are the prices to be
established in pre-determined periods (ToU tariff). The LL problem is solved by an
exact MILP solver, in which the decision variables are associated with appliance
operation. In that work only shiftable loads were considered: loads for which the
start time of the operation cycle, which cannot be interrupted, should be determined.
The model has been extended by considering also interruptible loads: loads whose
operation can be interrupted and the periods of energy supply should be determined
for a given amount of energy [2].

In the current work, we are particularly interested in addressing the pricing
problem of defining dynamic ToU tariffs when not only the prices are decision
variables of the UL problem, but also the periods in which those prices are applied.
As far as we know, a pricing problem with these features was never studied in the
literature.

In the context of electricity retail markets, several models to study the interaction
between retailers and consumers have been developed recently. Nevertheless, in all
the models found in the literature, the tariff periods are pre-determined and just the
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prices are subject to the decision of the retailer. The studies [3–7] are examples of
pricing problemswith these features. They aremainly focused on determining just the
price for each tariff period, which usually coincideswith the time discretization of the
planning period (e.g., one day) set as one hour. These studies consider loads supplied
with a given amount of energy for service completion, not accounting for actual
appliance operation cycles. This relevant issue has been duly taken into account in
recent works [1, 2, 9], where physical information relatedwith load operation/control
is considered [8], enabling a more accurate representation of the consumer’s energy
management problem and thus transmitting to the retailer a more realistic reaction
of the consumer. However, in these works pre-determined pricing periods are also
considered.

Pricing problem optimization approaches have also been widely developed in
other research areas out of the electricity context (for instance, see the work [10] for
a review). However, similarly to what happens with studies published in the context
of electricity retail markets, those works do not consider the definition of pricing
periods as variables of the problem, but only the prices.

In this work, we formulate the interaction between an electricity retailer and
a cluster of consumers with similar consumption patterns as a BL optimization
model. The maximization of the retailer’s profit is the UL objective function and
the minimization of the consumer’ costs is the LL objective function. At the UL, the
retailer should determine both tariff periods and the corresponding prices: (i) when
a maximum number of different prices for the entire planning period is imposed
(e.g., due to regulatory requirements) and ii) when the retailer has total freedom to
define the tariff periods and the corresponding prices. Both BL problems are highly
challenging due to the size of the UL search space resulting from the combination
of periods and prices. Two hybrid population-based approaches are proposed, each
one combining a metaheuristic—GA or Particle Swarm Optimization (PSO) algo-
rithms—for the UL problem and an exact MILP solver to solve the LL problem for
each instantiation of the UL decision variables. Enhancing the exploration capability
of the UL search space is of great importance to improve the retailer’s profit within
an acceptable computational time. Therefore, two schemes of an adaptive mutation
operator were also designed in both metaheuristics.

The main contributions of this paper are novel models to optimize periods and
prices and two hybrid BL approaches. These approaches make the most of the struc-
ture of the problem to determine dynamic ToU tariffs where both periods and prices
are the decisions in the UL problem.

The manuscript is organized as follows. In Sect. 1.2, the BL formulation to
model the interaction between the retailer and the consumers in the retail electricity
market is presented. Section 1.3 describes two hybrid population-based algorithmic
approaches, combining either a GA or a PSO with a MILP exact solver. The results
are presented and discussed in Sect. 1.4. The conclusions are drawn in Sect. 1.5.
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1.2 Bi-Level Optimization Model

In a BL optimizationmodel, two problems are hierarchically involved. The UL refers
to the leader’s problem and the LL arises as a constraint of the UL problem, referring
to the follower’s problem. In the BLmodel presented in the current work, the retailer
is the leader and the consumer is the follower. The retailer first sets the tariff periods
and the corresponding prices and then the consumer optimizes the operation of the
appliances in face of that tariff structure. The goal of the leader is to maximize
profits, while the follower aims to minimize the electricity bill considering comfort
requirements.

The consumer’s problem encompasses two types of appliances with different
physical features and type of control, in addition to a base (uncontrollable) load:
shiftable appliances (whose operation cycle cannot be interrupted once initiated)
and interruptible loads (for which the energy supply can be interrupted provided
that the required amount of energy is supplied). In the following, the BL model is
described in detail.

The planning period T is discretized into a time unit of length h (hour, minute,
quarter of hour, etc.), such that T = {1, . . . , T }withT being the number of time units.
The UL decision variables are the electricity prices xi (in e/kWh) to be charged by
the retailer to the consumers in each periodPi .ThePi ⊂ T, i ∈ {1, . . . , I }, are pricing
periods in which the planning period T is divided into, such that

⋃I
i=1 Pi = T. The

periods Pi may be constant or variable for the optimization problem. Three cases
may occur: (1) the retailer defines a priori I disjoint periods of prices, each with
dimension Pi (as was considered in our previous studies [1, 2, 9]); (2) the pricing
periods can coincide with the time units t ∈ T (thus, I = T ), thus allowing for total
freedom in establishing the combinations periods-prices; (3) a maximum number I
of different prices for the whole planning period T can be imposed; the I periods Pi
in which each price xi holds also result from the optimization model. In this work,
the second and the third cases are studied (designated as Free BL T and Free BL I,
respectively).

The electricity prices xi set by the retailer are limited to minimum and maximum
values, respectively x and x , (constraints (2) and (3) in the BL model presented
below). An average electricity price x AVG for the whole planning period T is also
imposed (constraint (4)) to account for competition in the electricity retail market,
otherwise the retailer would establish the prices at the maximum value allowed.
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The UL objective function (Eq. 1) in this BL model with pre-defined periods)
relates to the maximization of the retailer’s profit, being defined as the difference
between the revenue with the sale of energy to consumers and the cost of buying
energy in the wholesale market. Coefficients πt are the prices of energy incurred by
the retailer at time t ∈ T.

The LL objective function (Eq. 5) corresponds to the minimization of the elec-
tricity bill (whichmatches the retailer’s revenue), being defined as the sum of the cost
of the energy consumed by controllable and uncontrollable loads and the contracted
power for thewhole planning period T. The retailer definesL levels of power demand,
PCont
l (in kW), l ∈ {1, . . . , L}, and the consumer pays el (in e) for the power level

/ corresponding to the peak.
For each time t of the planning period T, the BL model considers a (non-

controllable) base load bt (in kW), J shiftable appliances, such that each load
j ∈ {1, . . . , J } requires from the grid a power pjt (in kW), and K interruptible
appliances, each requiring from the grid a power qkt (in kW), k ∈ {1, . . . , K }.

For controllable loads, the consumer should specify the comfort time slots in
which each load should operate, according to his preferences and routines, namely
Tj = [

T1 j , T2 j

] ⊆ T for each shiftable load j, j ∈ {1, . . . , J }, and Tk = [
T1k , T2k

] ⊆
T for each interruptible load k, k ∈ {1, . . . , K }. The power requested by each shiftable
load j at stage r ∈ {

1, . . . , d j
}
of its operation cycle is f jr (in kW), being dj the
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duration of the operation cycle. For each interruptible load k, the power requested at
each time is Qk (in kW) and Ek is the total energy required.

The LL decision variables for each shiftable load j are w jr t , which are binary
variables specifying whether appliance j is “on” or “off” at each time t ∈ Tj and
at each stage r of its operation cycle. These binary variables are used to define the
auxiliary continuous variables pjt that appear in the UL and LL objective functions.
The LL decision variables for each interruptible load k are the binary variables vkt ,
which specify whether load k is “on” or “off” at each time t ∈ Tk . The variables vkt
define the auxiliary variables qkt (equal to 0 or Qk), which also appear in objective
functions (1) and (5). Constraints (6)–(13) model the operation of shiftable loads and
the set of constraints (14)–(18) models the operation of interruptible appliances.

Constraints (6) define pjt when shiftable load j ∈ {1, . . . , J } is allowed to operate
(i.e. for t ∈ T j ) and (7) impose p jt = 0 outside the comfort time slot of load j.
Constraints (8) guarantee that, at time t of the planning period, each shiftable load
j is either “off” or “on” at only one stage r of its operation cycle. Constraints (9)
guarantee that if load j is “on” at time t and at stage r < d j of its operation cycle, then
it must also be “on” at time t + 1 and stage r + 1. Constraints (10) ensure that each
load j operates exactly once at stage r and this should occur for t ∈ T j (i.e. when
load j is allowed to operate). Constraints (11) ensure that load j starts its working
cycle within its allowed comfort time slot, i.e. at most at time T2 j − d j + 1, thus
assuring that it never finishes later than T2 j . Therefore, constraints (9–11) ensure that
each shiftable appliance j operates precisely d j consecutive time units, thus forcing
the LL decision variables w jr t to be zero whenever appliance j is “off”.

Constraints (14) define variables qkt when interruptible load k ∈ {1, . . . , K } is
allowed to operate (i.e. for t ∈ T k), and constraints (15) set qkt = 0 outside the
comfort time slot of load k. Constraints (16) ensure that the total amount of energy
required from the grid by interruptible load k within the comfort time slot is Ek .

The LL binary decision variables for the power component are ul, which specify
the peak power level l ∈ {1, . . . , L}, where ul = 1 means that the consumer should
pay for the power price corresponding to the l power level. Constraint (19) ensures
that a single power price should be charged to the consumer in the whole planning
period. Constraints (20) guarantee that the total power required from the grid at each
time t ∈ T should satisfy the operation of all loads.

The BL model just described is for the case 1, in which the I periods Pi are
constant and pre-defined.

Let us denote by Rt = bt + ∑J
j=1 p jt + ∑K

k=1 qkt the total power required by

all loads at time t and S = ∑L
l=1 elul the power cost. Therefore, the UL and LL

objective functions (1) and (5) may be written for short as F = ∑I
i=1

∑
t∈Pi (xi Rt )+

S − ∑T
t=1(πt Rt ) and f = ∑I

i=1

∑
t∈Pi (xi Rt ) + S, respectively.

In the case 2 (Free BL T ), in which a different price can be defined for each time
unit, the UL problem (1)–(4) is replaced by (22)–(24), while keeping the LL problem
as before with the LL objective function being f = ∑T

t=1(xt Rt ) + S.
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max
x

F =
T∑

t=1

(xt Rt ) + S −
T∑

t=1

(πt Rt )

s.t. (22)

x≤ xt ≤ x, t = 1, . . . , T (23)

1

T

T∑

t=1

xt = x AVG (24)

For the case 3 (FreeBL I), the optimization problem sets I prices xi, as in case 1, but
it must also specify each period Pi , which can result as the union of discontinuous
intervals. To formulate this model as a mathematical program, additional binary
variables controlled in the UL problem are required: zit ∈ {0, 1}, i = 1, . . . , I,
t = 1, . . . , T, which specify whether price xi holds or not at time t. The UL problem
of the Free BL I model can be formulated as (25)–(29). The LL problem is the same

as before with the LL objective function being f =
I∑

i=1

T∑

t=1
(zit xi Rt ) + S.

max
x

F =
I∑

i=1

T∑

t=1

(zit xi Rt ) + S −
T∑

t=1

(πt Rt )

s.t. (25)

x≤ xi ≤ x, i = 1, . . . , I (26)

1

T

∑I

i=1

T∑

t=1

zit x i = x AVG (27)

I∑

i=1

zit = 1, t = 1, . . . , T (28)

zit ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T (29)

The constraints (28) ensure that exactly one of the I prices holds at each time t.
Since the UL problem is dealt with a metaheuristic, the binary variables zit and

the constraints (28) are not explicitly considered in the solution approach developed
to tackle this problem. A convenient representation of the solution takes care of these
issues, ensuring that at most I different prices xi are determined, also defining the
intervals of the time associated with each price.
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1.3 Hybrid Approaches

In this work, two BL hybrid approaches are proposed to address the two cases of
the BL model in which Pi are free. The Free BL I problem considers variable tariff
periods with a maximum number I of different prices. In the Free BL T problem, the
number of different prices may be as many as the time units the planning period is
discretized into. The two hybrid BL approaches combine a metaheuristic to explore
the UL solution space (GA and PSO algorithms) with an exact MILP solver (Cplex)
to solve the LL problem. These approaches are presented below for each BL model.

1.3.1 Free BL I

In this section, the problem to define dynamic ToU tariffs with a maximum number
I of different prices for the whole planning period T is addressed. The global
framework of the hybrid algorithm is first presented; then, the characteristics of
the two population-based approaches (GA and PSO) developed for the UL search
are described in detail.

The algorithm uses two structures to encode a solution: a vector of I prices x =
(x1, . . . , xI ) and a vector of T labels � = (�1, . . . , �T ) that indicate the index of the
price (from 1 to I) that holds at each time t = 1, . . . , T .

The algorithm starts by creating an initial population of N prices and N labels,
respectively, xh = (

xh1 , . . . , x
h
I

)
and �h = (

�h1, . . . , �
h
T

)
, h = 1, . . . , N . Together,

these two vectors define each individual ℘h =
(
xh

�h1
, . . . , xh

�hT

)
, which represents the

electricity prices set by the retailer with at most I different price values for the whole

planning period T. Thus, the UL objective function (25) becomes
∑T

t=1

(
xh

�ht
Rt

)
+

S − ∑T
t=1(πt Rt ).

For each feasible electricity price vector ℘h defined at the UL, a LL solution yh

is determined by Cplex (yh denotes the values of all decision variables of the LL
problem). The Pseudocode 1 summarizes the steps of the hybrid Free BL I approach.

In Step 2.1. of the Pseudocode 1, if the price solution ℘h resulting from decoding
the prices xh, h ∈ {1, . . . , N }, using the time information in the label vector �h ,
does not satisfy the UL constraints, then it should be repaired according to the repair
routine described in Soares et al. 2019 [2].

The output of the hybrid BL approach is the solution (℘, y) that gives the highest
retailer’s profit F(℘, y) after performing the G iterations.
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After creating the initial population of prices and labels and evaluating their fitness
F(℘h, yh), a new population is iteratively produced.

In the following, the evolution of the population at each iteration is described for
each population-based algorithm.

1.3.1.1 GA

In each new generation, the GA starts by creating the offspring population: one
parent is selected using binary tournament (decided by the F value) and the other
parent is randomly selected. The parent solutions are then subject to crossover
to generate two descendants, having both solutions the same probability of being
the first or the second parent. If �

′h
and �

′ ′h
are the first and the second parent

solutions of labels, the one-point crossover operator produces the children �
′ch =(

�
′h
1, . . . , �

′h
ς , �

′ ′h
ς+1, . . . , �

′ ′h
T

)
and �

′ ′ch =
(
�

′ ′h
1, . . . , �

′ ′h
ς , �

′h
ς+1, . . . , �

′h
T

)
,

ς ∈ {2, . . . , T − 1}. Being x ′h
and x

′ ′h
the first and second parent solutions of prices,

the children components x
′ch
i and x

′ ′ch
i , i ∈ {1, . . . , I }, respectively, are determined

by using the geometric crossover operator, according to the following expressions:

x
′ch
i = λ1x

′h
i + (1 − λ1)x

′ ′h
i and x

′′ch
i = λ2x

′h
i + (1 − λ2)x

′ ′h
i

where λ1 and λ2 are uniform random numbers in the interval [0, 1].
Then, a mutation operator with a given probability pm is applied to the chil-

dren labels �
′ch and �

′ ′ch . Two kinds of mutation were considered for the labels:
random mutation—in which, each position �

′ch
t and �

′ ′ch
t , t ∈ {1, . . . , T }, can be
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randomly changed to a different value in {1, . . . , I }—and adjacent mutation—in
which a comparison with positions immediately before and after is made and only a
mutation to such values is allowed unless those values are the same (in this case, the
random mutation is applied). Similarly, a mutation operator with a given probability
is applied to both x

′ch and x
′ ′ch : for each position x

′ch
i and x

′ ′ch
i , i ∈ {1, . . . , I } of

x
′ch and x

′ ′ch , respectively, perturbations γ1 and γ2 are randomly generated in the
range

[−δ
(
x − x

)
, δ

(
x − x

)]
and added to x

′ch
i and x

′ ′ch
i , i.e. x

′ch
i ← x

′ch
i + γ1 and

x
′ ′ch
i ← x

′ ′ch
i + γ2 (δ is a pre-defined constant).

Each run of the algorithm is initialized with amutation probability p0m . If the value
of the highest retailer’s profit (Fbest ) does not improve over a predefined number G

′

of consecutive iterations, then the exploration capability is enhanced by increasing
themutation probability to p1m > p0m . The value of themutation probability decreases
back to the previous value, p0m , when Fbest changes above a given threshold value
τ . For that purpose, it has been considered that the change in Fbest does not lead to

a change in the mutation probability if the inequality Fbest q−Fbest q−1

Fbest q < τ is satisfied,
q ∈ {2, . . . ,G}.

If the child price solutions do not satisfy the UL constraints, they must be repaired
using the repair routine.

This process is repeated until N children are generated, which constitute the
offspring population. For each child prices xc

h
with a corresponding child labels

�c
h
, i.e. for each ℘ch , the LL problem is solved to compute the corresponding

optimal LL solution —yc
h
. Then, the UL objective function is evaluated for each

solution
(
℘ch , yc

h
)
:F

(
℘ch , yc

h
)
.

To generate the new population for the next iteration, first the individual with the
best F value, either from the current or the offspring population, is preserved from
one generation to the next. The remaining N − 1 individuals are selected by binary
tournament without replacement between two individuals randomly selected from
the merged current and offspring populations.

1.3.1.2 PSO

After randomly generating the initial population of labels and prices (the swarm
of particles in PSO), the algorithm iteratively moves each particle toward: the best
position visited by each particle—personal best, xbest and �best for prices and labels,
respectively; and the best known position of the entire swarm—global best, gxbest

and g�best for prices and labels, respectively.
In each iteration q ∈ {1, . . . ,G}, the position of each particle is updated according

to its own velocity vector. For that purpose, for each coordinate i ∈ {1, . . . , I } of
each xh and each coordinate t ∈ {1, . . . , T } of each �h , the corresponding velocity
components vi

h and vt h for the next iteration q are given by the following equations:

vi
hq = ηvi

hq−1 + r1C1

(
xbesti − xi

hq−1
)

+ r2C2

(
gxbesti − xi

hq−1
)
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vt h
q = ηvt h

q−1 + r1C1

(
�bestt − �t

hq−1
)

+ r2C2

(
g�best
t − �t

hq−1
)

where η is the inertia weight, C1 and C2 are the cognitive and social parameters, r1
and r2 are random numbers in the interval [0,1]. The new positions of xh and �h are
then given by:

xh
q = xh

q−1 + v hqand �h
q = �h

q−1 + v hq

Each label vector is then repaired to guarantee that any component �t
h, t ∈

{1, . . . , T }, falls into the set {1, . . . , I }. Firstly, if �t
h is out of the bounds, then

it is pushed to the closest bound (minimum 1 or maximum I). Otherwise, the value
of �t

h is rounded to the closest integer.
Similarly to the GA, in the PSO a mutation operator with a given probability is

also applied to each pair of vectors xh and �h (as described in the GA—Sect. 3.1.1).
Additionally, an adaptivemutation to induce some turbulence in the swarm to enhance
the exploration capability is considered (in the same way as in the GA algorithm),
if no improvement of Fbest is verified over a predefined number G

′
of consecutive

iterations.
If the price solutions do not satisfy the UL constraints, then they are repaired

according to the repair routine. Each pair xh and �h is then combined to form the
solution ℘h and the LL problem is solved, computing the corresponding optimal yh ;
then, the UL objective function is evaluated—F

(
℘h, yh

)
. Whenever better solutions

are found in each iteration according to F values, the individual best, xbest and �best ,
and the global best, gxbest and g�best , are updated.

1.3.2 Free BL T

The model designated as Free BL T involves the definition of completely free prices,
i.e. the determination of electricity prices for the whole planning period T without
restrictions for the number of tariff periods and prices. Thus, at most, we can get T
tariff periods with T different prices. The GA and PSO metaheuristics developed for
this model are described below.

The proposed population-based approaches begin by creating an initial population
of N individuals of electricity prices set by the retailer for the entire planning period
T: xh = (

xh1 , . . . , x
h
T

)
, h = 1, . . . , N . A LL solution yh is computed for each xh ,

then evaluated by the UL objective function, F
(
xh, yh

)
. After that, a new population

is iteratively produced until reaching a given number of G iterations. At the end, the
output of each hybrid population-based approach is the final solution (x, y) with the
highest F(x, y) value.

Note that the labels used in the Free BL I model to enforce a maximum number
of different prices are not necessary in the Free BL T model.
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The Pseudocode 2 summarizes the steps of the hybrid Free BL T approach.

According to the step 2.1. of the Pseudocode 2, if a solution xh, h ∈ {1, . . . , N },
does not satisfy the UL constraints of the BL model described in Sect. 1.2, then it
should be repaired using the repair routine.

1.3.2.1 Upper Level Population-Based Search

The creation of a new population at each iteration q ∈ {1, . . . ,G} depends on the
population-based algorithm that is applied, GA or PSO. The steps followed in this
approach are quite similar to those previously described for the Free BL I.

In theFreeBLT, only the electricity prices vectors xh , h ∈ {1, . . . , N }, are updated
in each iteration of the algorithm. The dimension of each solution xh coincides with
the number of time units, xh = (

xh1 , . . . , x
h
T

)
.

The creation of each new solution xh in each iteration q follows the steps of each
metaheuristic approach described in Sects. 3.1.1. and 3.1.2, respectively for the GA
and the PSO.

1.4 Experimental Results and Discussion

In this section, the problem data and the parameters of the two population-based
algorithms developed are described. Also, the results obtained are presented and
analyzed.

In the experiments performed, a planning period of 24 h split in time units of
15 min was considered. This generates a planning period with T = 96 time units,
T = {1, . . . , 96}. Each time unit t ∈ T represents a quarter-hour, i.e. h = 1

4h.
The electricity prices (πt , t ∈ {1, . . . , 96}, in e/kWh) that the retailers pay in

the spot market can be seen in the Supplementary Material of Soares et al. 2019
[2]—Table SM-1. Regarding the electricity prices charged to the consumers by the
retailer, the following minimum and maximum electricity prices were considered in
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the current study: x = 0.08 e/kWh and x = 0.35 e/kWh, respectively. The average
electricity price was set to x AVG = 0.18 e/kWh. Detailed data regarding the power
cost component is displayed in Table SM-3 of Soares et al. 2019 [2]; L = 9 power
levels were considered in this work.

Regarding the consumers’ problem, a total of five controllable appliances were
considered: J = 3 shiftable loads—dishwasher (DW), laundry machine (LM) and
clothes dryer (CD); K = 2 interruptible loads—electric vehicle (EV) and electric
water heater (EWH). The information associated with the controllable loads, the
comfort time slots allowed for the operation of each load and the (non-controllable)
base load is displayed in Tables SM-4 to SM-6 (Supplementary Material of Soares
et al. 2019 [2]). For the dataset we have used, the dimension of the LL problem,
which must be solved for each UL solution, is: 559 binary variables, 141 continuous
variables, 578 inequality constraints and 161 equality constraints.

In both hybrid population-based algorithms,G
′ = 5was considered as the number

of consecutive iterations without improvement of Fbest that leads to change the muta-
tion probability, pm. The probability values adopted for the adaptive mutation were
p0m = 0.05 and p1m = 0.1. The parameter τ = 0.001 was considered as the threshold
value to induce some turbulence in the UL search space and enhance the exploration
capability. In the mutation process, the parameter δ = 0.2 was considered. In the
PSO algorithm, the learning parameters in both cognitive and social components
were kept equal, C1 = C2 = 2, and the inertia parameter was set to η = 0.2.

In the Free BL I model, a limit of I = 6 different electricity prices for the
entire planning period was imposed. Furthermore, it was also imposed that the same
electricity price prevails over two adjacent time units (i.e., for half hour), that is℘1 =
℘2, ℘3 = ℘4, . . . ℘95 = ℘96. This assumption was considered in the implementation
of the algorithm of the Free BL I model.

In the computational experiments, the hybrid BL algorithms were run 10 inde-
pendent times, each involving G = 200 iterations and N = 40 individual. Thus,
a total of 8000 MILP problems were solved. Each instantiation of the LL problem
is solved to optimality in less than 0.13 s. Each complete run took approximately
17 min on average.

All parameters used in the current study were set after experimentation, reflecting
the quality of results obtained vs. the computational effort.

The algorithm was written in R language and all runs were carried out in a
computer with an Intel Xeon Gold 6138 CPU@3.7 GHz and 320 GB RAM.

1.4.1 Results

The twohybrid approaches based onGAandPSOalgorithmswere testedwith the two
BL models: Free BL I (considering two types of mutation—random and adjacent—
for the price label vectors) and Free BL T. The information about the best solutions
in the 10 independent runs, i.e. the statistics of the solutions with the highest value
of F, is displayed in Tables 1.1 and 1.2 for the Free BL I and Free BL T, respectively.
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Table 1.1 Statistics of Fbest in the 10 runs for the Free BL I model

GA PSO

Random
Mutation

Adjacent
Mutation

Random
Mutation

Adjacent
Mutation

Maximum 5.8770 6.0911 5.9855 6.1177

Minimum 5.4291 5.8060 4.6647 5.1509

Average 5.6038 6.0176 5.5925 5.9441

Standard
Deviation

0.1397 0.0989 0.3630 0.2943

Median 5.5852 6.0586 5.6837 6.0705

Table 1.2 Statistics of Fbest

in the 10 runs for the Free BL
T model

GA PSO

Maximum 5.2880 5.8554

Minimum 5.0696 5.7044

Average 5.1589 5.7962

Standard Deviation 0.0610 0.0503

Median 5.1547 5.8051

The maximum, minimum, average, standard deviation and median of Fbest obtained
with the GA and PSO algorithms over the 10 runs are presented.

The information displayed in Table 1.1 for the Free BL I model shows that the
best results are always obtained when the adjacent mutation is applied to the price
labels vectors (values in italics). Furthermore, the PSO approach attained better
(underlined values) maximum and median values of Fbest than the GA. The GA
approach overcomes the PSO in theminimum, average and standard deviation values
of Fbest for the 10 runs.

Regarding the Free BL T model, Table 1.2 shows that the PSO algorithm always
reached the best solutions (underlined values). In addition to obtaining a higher
maximum value of Fbest , the PSO approach further obtained minimum, average and
median values higher than the maximum value obtained with the GA algorithm.

In general, the results obtained for both free BL models reveal that the PSO
algorithm reaches better solutions than those reached by the GA.

Figure 1.1 shows the electricity prices and the power requested by the consumer
during the planning period T in the best solution obtained with the PSO algorithm
for the Free BL I model with the adjacent mutation operator applied to the price label
vectors (solution with profit 6.1177e).

Figure 1.1 shows that four different electricity prices were defined for the entire
planning period, with higher prices for the first half of the planning period T (in
which the amount of electricity required by the consumer is higher, mainly due to
the charging of the electric vehicle). The values of the four electricity prices in this
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Fig. 1.1 Best solution obtained by PSO for the Free BL I model with adjacent mutation in the price
labels vectors

solution are: x1 = 0.2928 e/kWh, x2 = 0.2568 e/kWh, x3 = 0.2504 e/kWh and
x4 = 0.0800 e/kWh.

In general, the results show that the current version of the algorithmic approaches
are not able to provide good quality solutions for the model with higher degrees of
freedom (Free BL T ), mainly due to the difficulties inherent to the exploration of
the UL solution search space resulting from the combinations of periods and prices.
The free BL T model gives the retailer a total freedom of choosing the tariff periods
and the corresponding prices values. Therefore, the current approaches should be
further developed to find good quality solutions in an acceptable computation time.
The feasible solution set of the Free BL I model is included in the feasible solution
set of the Free BL T model. Nevertheless, the solutions obtained for this latter model
are, in general, worse than the ones obtained for the former.

1.5 Conclusions

In this work, two hybrid BL population-based approaches to model the interaction
between a retailer and consumers in the electricity retail market were developed. The
consumer owns shiftable and interruptible loads. One approach is based on a GA
algorithm and the other on PSO to address the retailer’s problem (UL), both calling
an exact MILP solver to solve the consumer’s problem (LL). The goal of the retailer
is to determine optimal dynamic ToU tariffs to be charged to the consumers in order
to maximize his profit. For each instantiation of electricity prices (i.e. the retailer’s
decision variables), the consumer reacts by scheduling his loads to minimize his
electricity bill considering comfort requirements.

Two different models to define dynamic ToU tariffs (defining periods and prices)
were developed. One model considers variable pricing periods with a maximum
number of different prices for the whole planning period while the other model
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considers that a different price can be defined for each time unit. The results obtained
revealed strong difficulties for the algorithmic approaches to achieve high quality
solutions for these models, which seem to be related with the inefficient exploration
of the UL search space. The results also show that such difficulties are even higher for
the Free BL T model, which presents more degrees of freedom and thus the number
of feasible combinations of prices. The results obtained for each model reveal that
the PSO algorithm outperforms the GA.

The capability of exploration of the UL search space is a key feature in solving
the retailer’s problem to obtain good solutions within an acceptable computation
effort. For this purpose, future work will develop new approaches based on global
optimization algorithms for mixed-integer BL programming, namely using optimal-
value-function reformulations to obtain increasingly tighter bounds.

Acknowledgements This work was supported by projects UIDB/00308/2020, UIDB/05037/2020,
ESGRIDS (POCI-01-0145-FEDER-016434) and MAnAGER (POCI-01-0145-FEDER-028040).

References

1. Alves MJ, Antunes CH, Carrasqueira P (2016) A hybrid genetic algorithm for the interaction
of electricity retailers with demand response. In: Squillero G, Burelli P (eds) Applications of
evolutionary computation. Lecture Notes in Computer Science, 9597: 459–474. Springer.

2. Soares I, Alves MJ, Antunes CH (2020) Designing time-of-use tariffs in electricity retail
markets using a bi-level model—Estimating bounds when the lower level problem cannot
be exactly solved. Omega 93. 102027

3. Zugno M, Morales JM, Pinson P et al (2013) A bilevel model for electricity retailers’
participation in a demand response market environment. Energy Econ 36:182–197

4. Meng FL, Zeng XJ (2016) A bilevel optimization approach to demand response management
for the smart grid. In: 2016 IEEE Congress on Evolutionary Computation, pp 287–294

5. Meng FL, Zeng XJ (2013) An optimal real-time pricing algorithm for the smart grid: a bi-level
programming approach. In: 2013 imperial college computing student workshop (ICCSW’13)
- OpenAccess Series in Informatics, pp 81–88

6. Sekizaki S, Nishizaki I, Hayashida T (2016) Electricity retail market model with flexible price
settings and elastic price-based demand responses by consumers in distribution network. Int J
Electr Power Energy Syst 81:371–386

7. Aussel D, Brotcorne L, Lepaul S et al (2020) A trilevel model for best response in energy
demand-side management. Eur J Oper Res 281(2):299–315

8. Soares A, Gomes Á, Antunes CH (2014) Categorization of residential electricity consumption
as a basis for the assessment of the impacts of demand response actions. Renew Sustain Energy
Rev 30:490–503

9. Carrasqueira P, Alves MJ, Antunes CH (2017) Bi-level particle swarm optimization and evolu-
tionary algorithm approaches for residential demand response with different user profiles. Inf
Sci 418–419:405–420

10. Labbé M, Violin A (2016) Bilevel programming and price setting problems. Ann Oper Res
240(1):141–169



Chapter 2
An Evolutionary Algorithm for a Bilevel
Biobjective Location-Routing-Allocation
Problem

Herminia I. Calvete, Carmen Galé, and José A. Iranzo

Abstract In the distribution of goods to final customers, interrelated decisions have
to be made, such as the location of the collection points for the goods, the routes
served from the central warehouse and the allocation of customers to the collection
points. The problem becomes even more complex when several decision makers
are involved and multiple objectives should be taken into consideration. This paper
addresses a vehicle routing problem in which customers are allowed to select the
location in which they want to receive their goods among those made available by
the distribution company. The aim of this company is to minimize the total cost of
serving the routes as well as to satisfy customers. A bilevel biobjective problem with
multiple followers is proposed to model this hierarchical supply chain. The upper
level decisionmaker is the distribution companywhich decides on the locationsmade
available and the routes which are used to serve these locations. Each customer plays
the role of a follower and decides where to collect his/her goods. An evolutionary
algorithm involving the solution of several optimization problems is developed for
approaching the Pareto front, whose performance is assessed in a computational
experiment.

Keywords Vehicle Routing Problem · Customer quality service · Biobjective ·
Bilevel · Evolutionary algorithm · Pareto front
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2.1 Introduction

Companies face a very complex problemwhen aiming to determine how to distribute
commodities to final customers at low cost, with high quality service. This paper
addresses a two echelon supply chain with a distribution company owning a central
warehouse which serves a set of customers. The company, at the upper level of the
hierarchy, designs the distribution network, i.e. it decides on the locations which
are visited and the routes which are used to serve these locations using a set of
homogeneous vehicles available at the central warehouse. Those locations can be
either a depot to which a set of customers needs to travel to pick up their goods, or a
customer who is served directly and receives his/her own goods as well as those of
other customers who come to collect their goods there. In the process of designing
the distribution network the company needs to take into account that customers, who
are at the lower level of the hierarchy, are allowed to select their most convenient
available location. Therefore, this problem involves three interconnected problems
which have to be solved simultaneously: to select the locations to be visited, to
identify which customers go to each location according to their preferences, and
to determine the routes bearing in mind the capacity of the vehicle. The goal of
the distribution company is twofold. On the one hand, as is common in Vehicle
Routing Problems (VRP), it aims to minimize the total cost of serving the routes. On
the other hand, bearing in mind the quality of service, it seeks customer satisfaction.
Both objectives will be treated individually, thus giving rise to a biobjective problem.
Figure 2.1 displays a scheme of the distribution network considered. The large red
square represents the central warehouse, the small green squares refer to the depots,
and the small blue circles represent the customers. There are three routes and the
customers who are not visited by a route are allocated to a visited location (another
customer or a depot) using the black arrows.

Bilevel programming problems have been proposed in the literature to deal with
decision processes involving two decision-makers with a hierarchical structure. They
are formulated as optimization problemswhich involve another optimization problem
in the constraint set. Bilevel programs are nonconvex and difficult to solve. Even the
bilevel optimization problem inwhich all the functions involved are linear isNP-hard.
Dempe [10] provides an updated review on this topic.

Concerning the application of bilevel optimization models reported in the lit-
erature to decentralized supply chain management, Huang and Liu [12] approach
a location allocation problem in which the upper level decides on the distribution
center locations whereas the lower level decides on the allocation of customers, aim-
ing to balance the workload. The algorithm proposed combines enumeration with a
genetic algorithm. Cao and Chen [6] address a capacitated plant selection problem.
The principal firm at the upper level selects the opening of new plants and the closing
of existing plants based on its overall business considerations. At the lower level,
the open plants operate independently to minimize their production and operation
costs. The problem is transformed into a single level model and solved using com-
mercial optimization software. Marinakis and Marinaki [13] reformulate a location
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Fig. 2.1 A scheme of the distribution network

routing problem as a bilevel problem. The upper level decides on the location of
the facilities, whereas the lower level decides which routes serve the customers. The
algorithm proposed to solve the problem combines a genetic algorithm to solve a
capacitated facility location problemwith an expanding neighborhood searchmethod
to solve a VRP. Calvete et al. [5] address a production-distribution planning problem
in which the distribution company at the upper level designs the routes which serve
the customers, whereas the production company at the lower level controls the man-
ufacturing process. An ant colony optimization based approach is developed to solve
this problem which uses ants to construct the routes and exact optimization to solve
the production problem. Calvete et al. [4] model a production-location-distribution
network as a bilevel problem. The purpose is to decide which depots should be
used and how the product should be distributed from manufacturing plants to depots
and from these to customers, aiming to minimize fixed costs plus delivery costs,
and taking into account that the manufacturing plants operate with relative indepen-
dence of the distribution network, aiming to minimize their own operational costs. A
hybrid evolutionary algorithm is developed to solve the problem whose key idea is
to control by an evolutionary algorithm the opening of the depots together with their
product availability, whereas the delivery problem from depots to customers and the
manufacturing problem are exactly solved.

In this paper, a bilevel optimization problem is proposed formodeling the complex
hierarchical location-routing-allocation system described above. From now on this
problem will be denoted by BB-LRA. The first contribution of the paper is to extend
classical location-routing models to allow for a more realistic system in which the
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preferences of the customers are taken into account. The resulting model is a bilevel
biobjective integer optimization problem. The second contribution of the paper is
to propose an evolutionary algorithm to approach the Pareto front. The paper is
organized as follows. Section 2.2 describes the distribution network problem and
formulates the bilevel model. In Sect. 2.3, a metaheuristic approach is developed
based on evolutionary algorithms. In this approach the chromosomes control the
locations which are visited. The allocation of customers is made according to their
preferences. Then, the routes are obtained by solving a VRP. Section 2.4 analyzes
the computational performance of the algorithm and Sect. 2.5 concludes the paper
with some final remarks.

2.2 BB-LRA problem Formulation

Let G = (˜V , A1 ∪ A2) be a graph, where ˜V is the set of nodes and A1 ∪ A2 is the set
of arcs. The set of nodes is defined as ˜V = {0} ∪ V . Node 0 represents the central
warehouse, where a homogeneous fleet of vehicles is available each with capacity
Q. Set V = U ∪ W is the set of locations, where U refers to the set of customers
and W to the set of depots. Let qu represent the demand of the customer u ∈ U .

The arcs in set A1 = {(i, j) : i, j ∈ ˜V , i �= j} are used to link the nodes to con-
struct the routes. We assume that there is a nonnegative cost ci j associated with
each arc (i, j) ∈ A1, representing the cost of connecting nodes i and j . The arcs in
set A2 = {(u, i) : u ∈ U, i ∈ V } are used to connect the customers to nodes in the
routes. There is a nonnegative allocation cost dui associated with each arc (u, i),
referring to the traveling cost due to the customer u going to the node i . We assume
that duu = 0 for all u ∈ U .

The distribution company, acting as the upper level decision maker, determines
the nodes of V which are visited and the set of routes which visit them. These routes
are node-disjoint except for the central warehouse. A route is a simple cycle visiting a
subset of nodes including the central warehouse. A node which is visited by a route is
called a route node. Each customer u ∈ U , playing the role of a lower level decision
maker, selects his/her preferred route node according to his/her preferences. In this
paper, we associate preferences with allocation costs. Thus, he/she selects the route
node iu that minimizes the allocation cost over the route nodes. Since duu = 0, if a
customer u is visited by a route, then he/she is allocated to himself/herself.

In order to formulate the model, we define the following binary variables:

zi =
{

1, if i ∈ V is a route node
0, otherwise

xi j =
{

1, if arc (i, j) ∈ A1 is traversed by a vehicle
0, otherwise

yui =
{

1, if customer u ∈ U is allocated to node i, (u, i) ∈ A2

0, otherwise
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To simplify the notation, we denote {zi , i ∈ V ; xi j , (i, j) ∈ A1; yui , (u, i) ∈ A2}
by (z, x, y). Then, the BB-LRA problem can be formulated as the following bilevel
biobjective integer multi-follower optimization problem with as many followers as
customers:

min
z,x,y

⎛

⎝

∑

(i, j)∈A1

ci j xi j ,
∑

(u,i)∈A2

dui yui

⎞

⎠ (2.1a)

s.t.
∑

(i, j)∈A1

xi j = z j , j ∈ V (2.1b)

∑

(i, j)∈A1

xi j = zi , i ∈ V (2.1c)

∑

i∈V
x0i =

∑

i∈V
xi0 (2.1d)

Q
∑

i∈S

∑

j∈˜V�S

xi j �
∑

i∈S,(u,i)∈A2

qu yui , ∀S ⊆ V (2.1e)

zi ∈ {0, 1}, i ∈ V ; xi j ∈ {0, 1}, (i, j) ∈ A1 (2.1f)

where, for each customer u ∈ U , the variables yui , (u, i) ∈ A2, solve:

min
y

∑

i∈V
dui yui (2.1g)

s.t.
∑

i∈V
yui = 1 (2.1h)

yui � zi , i ∈ V (2.1i)

yui ∈ {0, 1}, i ∈ V (2.1j)

The objective function (2.1a) is a two dimensional vector. The first component
represents the total cost of serving the routes. The second component measures the
total allocation cost incurred by customers, and so reflects global customer satisfac-
tion. Constraints (2.1b) and (2.1c) ensure that exactly one arc enters and leaves each
route node and no arcs go through non-route nodes. Constraint (2.1d) guarantees that
the same number of arcs enters and leaves the central warehouse. Constraints (2.1e)
ensure connectivity of routes as well as capacity requirements. Constraints (2.1f)
state that the variables z and x are binary. The lower level problem associated with
the customer u ∈ U is defined by (2.1g)–(2.1j). The objective function (2.1g) refers
to the allocation cost. Constraints (2.1h) and (2.1i) ensure that the customer u is allo-
cated to a single route node. Constraints (2.1j) state that the variables y are binary.
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Because of the coupling constraints (2.1e), those points (z, x) for which the opti-
mal solution of the lower level problem allocates to a route node a number of cus-
tomers whose total demand exceeds Q should be rejected. This is one of the key
ideas used in the evolutionary algorithm developed in Sect. 2.3.

Moreover, since each follower problem involves only its own variables and the
upper level variables, the followers are independent [3]. Therefore, the |U | lower
level problems can be transformed into a single lower level problem by taking the
sum of the |U | objective functions as the new objective function, and mixing all the
constraints.

Let us denote by [F1(z, x, y), F2(z, x, y)] the objective function (2.1a). Accord-
ing to the theory of multiobjective optimization [11], a feasible solution (z, x, y) of
problem (2.1) is efficient if and only if there is no other feasible solution (z̃, x̃, ỹ)
so that Fα(z̃, x̃, ỹ) � Fα(z, x, y), α = 1, 2 with at least one strict inequality. Let F
be the set of feasible points in the objective space. A point F ∈ F is a nondomi-
nated outcome vector if there exists at least one efficient solution (z, x, y) so that
F = [F1(z, x, y), F2(z, x, y)]. The set of all nondominated outcome vectors is the
Pareto front and, in general, to construct the entire set of Pareto optimal solutions is
impossible due to the complexity of problem (2.1). Therefore, below we propose an
evolutionary algorithm to find a good approximation of the Pareto front.

2.3 EBA: An Evolutionary Biobjective Algorithm for
Solving the BB-LRA Problem

Evolutionary algorithms are stochastic search techniques inspired by natural bio-
logical evolution. Since their introduction, they have been increasingly applied to
find good solutions to complex optimization problems in acceptable computational
times. Affenzeller et al. [1] and Chion et al. [7] are good texts on this topic. Coello [8]
provides a recent review on multiobjective evolutionary algorithms.

The evolutionary biobjective algorithm EBA is a hybrid algorithm which embeds
the optimal allocation of customers and the construction of routes inside an evo-
lutionary algorithm which controls the locations which are visited. As mentioned
above, one of the main ideas underlying the algorithm is that only those selections
of route nodes whose allocated customers allow construction of the routes (due to
the capacity constraint) are of interest. Moreover, having selected the route nodes,
solving the lower level problem is easy since each customer chooses the route node
which causes the least allocation cost. Knowing the route nodes (variables z) and
their allocated customers (variables y) is enough to check if the current set of route
nodes will be able to provide a permissible solution (z, x). If so, the value of the vari-
ables x which provide the best value of the routing cost can be obtained by solving
a VRP. Next we describe in detail the characteristics of the algorithm.
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2.3.1 Chromosome Encoding and Fitness Evaluation

Unlike most of the evolutionary algorithms that encode the feasible solutions of the
incumbent problem,we propose to encode only the variables zwhich control the loca-
tions which can be visited, i.e. the route nodes. Hence, the chromosomes are encoded
as binary |V |-dimensional vectors. Let � = (δ1, . . . , δ|V |) be a chromosome. Then,
for each i ∈ V

δi =
{

1, if i is a route node
0, otherwise

As a result, zi = δi , i ∈ V . Note that a chromosome provides the nodes to which
customers can be allocated, but it does not give any information about either the
routes in which they are included or how the customers are allocated to them.

If
∑

i∈V δi < H , where H is defined as:

H =
⎡

⎢

⎢

⎢

∑

u∈U
qu

Q

⎤

⎥

⎥

⎥

i.e. H is a lower bound on the number of routes (hence, route nodes) which are
needed, then the chromosome is repaired as indicated in Sect. 2.3.2.

Otherwise, in order to associate a bilevel feasible solution of theBB-LRAproblem
with the chromosome � we propose to solve several optimization problems. First,
the value of the variables y is obtained by solving the lower level problems. Bearing
in mind that each customer prefers the route node with the least allocation cost, the
customer u ∈ U is allocated to the route node iu :

iu =
{

u if δu = 1
i if δu = 0, where i = argmin{dui : δi = 1, (u, i) ∈ A2} (2.2)

Thus, yuiu = 1 and yui = 0 for all i ∈ V , i �= iu .
After knowing this allocation, let Qi be the total demand of the customers allo-

cated to route node i , Qi = ∑

u∈U qu yui . If Qi > Q, it is not possible to construct a
route visiting this route node due to the vehicle capacity constraint. Hence, this chro-
mosome should be rejected because it is not able to provide a permissible solution
(z, x). In Sect. 2.3.2 wewill explain two procedures to repair these chromosomes that
will result in two variants of the algorithm. Assume for the time being that Qi � Q
for every route node i . In order to compute the value of the variables x , we solve
a VRP in which each route node i has a demand Qi . Route nodes without allocated
customers are not taken into consideration in this step.
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At the end of this process, the chromosome � has associated a bilevel feasible
solution (z, x, y) of the BB-LRA problem. Note that, for the fixed set of route nodes
provided by the chromosome and their allocated customers, the algorithm solves
a VRP to compute the value of the variables x . Hence, each chromosome has asso-
ciated a bilevel feasible solution which implicitly discards any other bilevel feasible
solutions with the same set of route nodes since they cannot be efficient. In fact, in
the implementation of the algorithm we do not solve the VRP to optimality but apply
a heuristic algorithm. Therefore, only the solutions with a larger routing cost than
the routing cost provided by this algorithm are discarded.

We define the fitness of � as [F1(z, x, y), F2(z, x, y)].

2.3.2 Repairing a Chromosome

Let � be a chromosome for which the number of route nodes is fewer than H . Then,
it is repaired by switching the allele of as many nodes as needed, randomly selected
among the nodes which currently are not route nodes.

Now, let � be a chromosome for which at least one route node has a set of
allocated customers whose total demand exceeds the capacity of the vehicle. Let i
be one of these nodes randomly selected. In order not to reject the chromosome,
we propose two methods for repairing it. The first method, called RM1, selects the
nearest node to i , in terms of the routing cost, which currently is not a route node and
switches its allele from 0 to 1. Since the chromosome has changed, all the customers
are reallocated in accordance with expression (2.2). This process is repeated until
Qi � Q for every route node i in the updated chromosome. The second repairing
method, calledRM2, selects the customer allocated to the route node i with the largest
demand. Let u be this customer. Then, the allele of the chromosome corresponding
to this customer is changed to 1, i.e. it becomes a route node. As above, all the
customers are reallocated according to expression (2.2) and the process is repeated
until Qi � Q for every route node i in the updated chromosome.

After this repairing process has been carried out using onemethod or the other, we
are in a position to compute the value of the variables x as explained in Sect. 2.3.1.

After repairing the chromosome (if necessary) and removing the route nodes
without allocated customers (if any), we are also interested in determining if it is
better either to maintain the original chromosome, or to update the chromosome to
leave only as route nodes the nodes used when solving the VRP. This gives rise to
two more variants of the algorithm. Whether or not to update a chromosome affects
the offspring generated when the crossover and mutation operators are applied to a
population of chromosomes.
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2.3.3 Initial Population

Let Psize be the population size. The initial population is formed by two special chro-
mosomes �1 and �2 and Psize − 2 randomly generated chromosomes. The chromo-
some �1 is obtained by setting the H locations closest to the central warehouse, in
terms of the routing cost, as route nodes. The chromosome �2 is obtained by setting
all the locations as route nodes. The bilevel feasible solution associated with �1

(or the updated chromosome after repairing it, if necessary) gives an idea of the
minimum routing cost, while that associated with �2 provides the least allocation
cost.

Regarding the remaining Psize − 2 chromosomes, for each chromosome a random
number p ∈ [0, 1] is generated. Then, each node is selected to be a route node with
probability p. Unlike fixing a value of the probability p a priori for the chromo-
some as a whole, this way of selecting the route nodes encourages the existence of
chromosomes having a variety in the number of route nodes.

2.3.4 Population Handling: Crossover, Mutation and
Selection

The crossover operator combines parents of the incumbent population to form off-
spring which are potential members of a successor population. We apply the uniform
crossover that randomly selects Psize pairs of parents and generates one offspring
from each pair. Each gene of the offspring is selected from one of the parents with
equal probability. Next, the mutation operator is applied to the offspring. After a
chromosome has been selected, a gene is randomly selected and its allele value is
switched. At the end of this process, if needed, the offspring chromosome is repaired
as indicated in Sect. 2.3.2.

To handle the populations we propose to use the well-known Nondominated Sort-
ing Genetic Algorithm II (NSGA-II) developed by Deb et al. [9] and the Indicator-
Based Evolutionary Algorithm (IBEA) introduced by Zitzler and Kunzli [14], which
results in two more variants of the algorithm.

When applying NSGA-II, the chromosomes of the current population plus off-
spring are ranked into several nondominated fronts in accordance with their fitness
value and assigned a nondomination rank. For each chromosome, a second value
called crowding distance is computed which gives an estimation of the density of
solutions surrounding the solution associatedwith the chromosome in the population.
The next population is obtained by selecting the best Psize individuals in accordance
with the nondomination rank or, in case of a tie, according to the crowding distance.
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Unlike NSGA-II which is based on ranking solutions, other procedure to handling
the population when there are more than one objective is an indicator-based selec-
tion. This general framework allows the use of any performance indicator into the
selection mechanism of a multiobjective evolutionary algorithm. In this paper, we
consider IBEA which is based on a pairwise comparison of solutions by using the
binary additive ε-indicator.

2.4 Computational Experiment

In order to analyze the performance of the EBA, a computational experiment has been
carried out to analyze the influence of three factors: the survivor selection method,
the chromosome updating, and the repairing process.

Since problem (2.1) has not beenpreviously studied in the literature, no benchmark
instances are available. Therefore, we have decided to adapt the set of 45 Class A
instances used as benchmark instances for the Capacitatedm-Ring Star Problem [2].
These instances were generated from the three TSPLIB instances called eil51, eil76
and eil101, as well as a fourth set which consists of the first 26 nodes of eil51.
The location of the central warehouse and customers have been maintained, and
the depots correspond to the Steiner points in those instances. The demand of the
k-th customer is generated as ((k − 1) mod 5) + 1, in accordance with the order
established in the original file. The capacity of the vehicles is three times the capacity
of the rings. The characteristics of the instances are shown in Table 2.1. There are
nine instances with 26 nodes and twelve instances with 51, 76 and 101 nodes.

The numerical experiments have been performed on a PC Intel Core i7-6700
with 3.4 gigahertz, 32.0 gigabyte of RAM and Windows 10 64-bit as the Operating
System. The code has been written in C++, TDM-GCC 4.9.2. In the computational
experiment we have selected the algorithm VRP_RTR developed by C. Goer which
is an implementation of the RTR metaheuristic to generate good solutions to a VRP
instance. This algorithm is available at the VRPH library: https://sites.google.com/
site/vrphlibrary/home.

Each combination of the three factors mentioned above provides a configuration
of the algorithm. They are shown in Table 2.2. In a preliminary study, we studied
the influence of the population size, but it was not significant in the performance
of the algorithm. Therefore we set Psize = 20. Each test instance has been solved
once under each configuration. The termination condition was established in terms
of computing time, 5min for the instances with 26 nodes, 10min for the ones with
51 nodes, 15min for the instances with 76 nodes and 20min for the ones with 101
nodes.

https://sites.google.com/site/vrphlibrary/home
https://sites.google.com/site/vrphlibrary/home
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Table 2.1 Characteristics of the instances

Instance # of
customers

# of
depots

Q Instance # of
customers

# of
depots

Q

P1 12 13 15 P22 18 57 21

P2 12 P23 15

P3 9 P24 12

P4 18 7 21 P25 37 38 42

P5 15 P26 33

P6 12 P27 27

P7 25 0 30 P28 56 19 63

P8 21 P29 48

P9 18 P30 39

P10 12 38 15 P31 75 0 84

P11 12 P32 63

P12 9 P33 51

P13 25 25 30 P34 25 75 30

P14 21 P35 21

P15 18 P36 18

P16 37 13 42 P37 50 50 57

P17 33 P38 42

P18 27 P39 36

P19 50 0 57 P40 75 25 84

P20 42 P41 63

P21 36 P42 51

P43 100 0 114

P44 84

P45 69

Table 2.2 Characteristics of the configurations

Configuration Handling population Chromosome update Chromosome repair

1 NSGA-II No RM1

2 NSGA-II No RM2

3 NSGA-II Yes RM1

4 NSGA-II Yes RM2

5 IBEA No RM1

6 IBEA No RM2

7 IBEA Yes RM1

8 IBEA Yes RM2
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Table 2.3 Results of the benchmark instances for I−
H

Instance Configuration

1 2 3 4 5 6 7 8

P1 0.005 0.000 0.005 0.017 0.017 0.000 0.005 0.017

P2 0.001 0.011 0.003 0.002 0.005 0.004 0.002 0.000

P3 0.000 0.000 0.001 0.016 0.001 0.001 0.001 0.016

P4 0.002 0.003 0.003 0.003 0.002 0.003 0.001 0.001

P5 0.001 0.001 0.001 0.011 0.001 0.000 0.001 0.002

P6 0.003 0.006 0.028 0.021 0.036 0.000 0.001 0.001

P7 0.004 0.004 0.004 0.005 0.002 0.002 0.011 0.003

P8 0.007 0.021 0.008 0.024 0.006 0.006 0.013 0.039

P9 0.021 0.018 0.029 0.019 0.019 0.009 0.024 0.016

P10 0.013 0.007 0.006 0.004 0.007 0.008 0.002 0.003

P11 0.012 0.010 0.017 0.019 0.011 0.010 0.012 0.009

P12 0.010 0.046 0.034 0.005 0.011 0.084 0.026 0.056

P13 0.009 0.013 0.014 0.034 0.010 0.014 0.019 0.048

P14 0.011 0.065 0.022 0.060 0.035 0.037 0.020 0.114

P15 0.024 0.018 0.017 0.106 0.016 0.009 0.006 0.053

P16 0.015 0.020 0.012 0.033 0.010 0.015 0.007 0.040

P17 0.030 0.037 0.026 0.023 0.016 0.010 0.037 0.036

P18 0.025 0.026 0.038 0.061 0.026 0.049 0.042 0.037

P19 0.021 0.020 0.023 0.025 0.011 0.029 0.016 0.030

P20 0.026 0.039 0.035 0.040 0.013 0.027 0.022 0.020

P21 0.030 0.051 0.027 0.104 0.012 0.057 0.023 0.010

P22 0.017 0.028 0.042 0.045 0.007 0.068 0.028 0.056

P23 0.011 0.037 0.024 0.077 0.016 0.054 0.023 0.200

P24 0.003 0.029 0.074 0.082 0.006 0.030 0.071 0.087

P25 0.027 0.044 0.049 0.021 0.017 0.017 0.070 0.065

P26 0.023 0.034 0.032 0.078 0.011 0.013 0.032 0.075

P27 0.021 0.041 0.045 0.053 0.016 0.067 0.036 0.071

P28 0.028 0.076 0.064 0.097 0.009 0.025 0.055 0.059

P29 0.048 0.046 0.062 0.102 0.009 0.038 0.050 0.098

P30 0.024 0.059 0.058 0.106 0.060 0.062 0.047 0.071

P31 0.028 0.040 0.026 0.039 0.006 0.048 0.019 0.044

P32 0.029 0.034 0.027 0.054 0.013 0.034 0.020 0.032

P33 0.025 0.038 0.039 0.068 0.029 0.042 0.034 0.030

P34 0.025 0.025 0.013 0.045 0.004 0.014 0.036 0.058

P35 0.026 0.022 0.023 0.091 0.028 0.028 0.011 0.088

P36 0.020 0.042 0.046 0.097 0.038 0.032 0.051 0.153

P37 0.033 0.028 0.030 0.053 0.013 0.018 0.017 0.069

P38 0.038 0.049 0.038 0.051 0.005 0.042 0.025 0.038

P39 0.029 0.041 0.031 0.106 0.012 0.080 0.015 0.119

P40 0.027 0.032 0.039 0.056 0.008 0.016 0.029 0.095

P41 0.031 0.025 0.025 0.105 0.014 0.012 0.015 0.101

P42 0.038 0.022 0.048 0.112 0.025 0.054 0.035 0.128

P43 0.023 0.028 0.035 0.058 0.008 0.025 0.026 0.056

P44 0.031 0.045 0.027 0.077 0.012 0.034 0.015 0.064

P45 0.029 0.045 0.030 0.090 0.012 0.024 0.012 0.071



2 An Evolutionary Algorithm for a Bilevel Biobjective … 29

Table 2.4 Results of the benchmark instances for I 1
ε+

Instance Configuration

1 2 3 4 5 6 7 8

P1 0.048 0.010 0.048 0.083 0.083 0.005 0.048 0.083

P2 0.019 0.061 0.020 0.020 0.027 0.027 0.020 0.014

P3 0.008 0.008 0.016 0.089 0.008 0.008 0.014 0.089

P4 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.010

P5 0.009 0.010 0.009 0.051 0.009 0.009 0.015 0.018

P6 0.026 0.031 0.120 0.068 0.099 0.010 0.016 0.010

P7 0.012 0.020 0.013 0.018 0.012 0.009 0.054 0.020

P8 0.020 0.073 0.023 0.073 0.026 0.020 0.034 0.108

P9 0.071 0.056 0.089 0.056 0.058 0.022 0.054 0.056

P10 0.064 0.030 0.021 0.020 0.021 0.021 0.011 0.021

P11 0.027 0.027 0.064 0.071 0.022 0.032 0.043 0.033

P12 0.056 0.183 0.142 0.030 0.056 0.244 0.107 0.203

P13 0.026 0.022 0.048 0.118 0.033 0.051 0.051 0.165

P14 0.048 0.231 0.103 0.214 0.155 0.172 0.069 0.317

P15 0.049 0.035 0.035 0.282 0.049 0.023 0.018 0.176

P16 0.025 0.035 0.024 0.095 0.020 0.030 0.013 0.101

P17 0.042 0.090 0.072 0.042 0.042 0.018 0.120 0.102

P18 0.038 0.041 0.100 0.125 0.056 0.134 0.103 0.100

P19 0.028 0.023 0.033 0.028 0.031 0.057 0.036 0.044

P20 0.035 0.091 0.076 0.103 0.071 0.108 0.076 0.063

P21 0.045 0.097 0.031 0.213 0.023 0.121 0.036 0.020

P22 0.035 0.115 0.124 0.128 0.031 0.230 0.071 0.173

P23 0.048 0.075 0.040 0.167 0.023 0.106 0.040 0.335

P24 0.014 0.064 0.236 0.241 0.027 0.155 0.241 0.277

P25 0.034 0.114 0.157 0.066 0.036 0.057 0.214 0.202

P26 0.029 0.057 0.085 0.176 0.039 0.034 0.091 0.179

P27 0.040 0.057 0.110 0.138 0.033 0.082 0.103 0.156

P28 0.036 0.179 0.176 0.240 0.016 0.096 0.165 0.179

P29 0.083 0.076 0.121 0.194 0.023 0.056 0.121 0.210

P30 0.036 0.174 0.174 0.255 0.174 0.197 0.166 0.213

P31 0.030 0.101 0.063 0.081 0.016 0.145 0.063 0.135

P32 0.039 0.037 0.041 0.103 0.023 0.068 0.050 0.089

P33 0.037 0.069 0.108 0.097 0.093 0.097 0.114 0.063

P34 0.051 0.063 0.016 0.152 0.016 0.066 0.142 0.190

P35 0.031 0.073 0.036 0.234 0.086 0.040 0.022 0.231

P36 0.033 0.070 0.127 0.240 0.117 0.073 0.143 0.333

P37 0.045 0.039 0.061 0.131 0.025 0.025 0.038 0.194

P38 0.061 0.130 0.117 0.135 0.015 0.135 0.103 0.128

P39 0.085 0.103 0.085 0.252 0.029 0.219 0.085 0.283

P40 0.031 0.041 0.052 0.133 0.019 0.035 0.085 0.217

P41 0.036 0.030 0.048 0.225 0.027 0.033 0.052 0.236

P42 0.052 0.031 0.120 0.241 0.063 0.122 0.120 0.279

P43 0.033 0.041 0.059 0.126 0.023 0.067 0.072 0.136

P44 0.035 0.075 0.045 0.153 0.045 0.099 0.047 0.155

P45 0.034 0.087 0.034 0.191 0.023 0.081 0.034 0.188
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In order to evaluate the quality of the Pareto front approximations yielded by
the algorithm configurations analyzed, we used the performance assessment tool
suite provided in PISA, http://www.tik.ee.ethz.ch/pisa. For each test instance, we
computed the reference set Z∗

N which is formed by all the nondominated points
available, i.e. the union of the outputs obtained throughout the whole experiment.
We used two indicators which measure the quality of an output set A in comparison
to Z∗

N . The unary hypervolume metric I−
H computes the area of the objective space

that is weakly dominated by Z∗
N and not by A. The binary additive ε-indicator I 1ε+

computes the minimum factor by which A has to be translated in the objective space
to weakly dominate Z∗

N . The closer the indexes to zero, the better the approximation.
Tables 2.3 and 2.4 display the results of the experiment. Both tables are similar,

except for the indicator shown. The first column gives the name of the problem;
the second to ninth columns the corresponding indicator values. For each instance,
the best value is written in bold. Figures 2.2 and 2.3 summarize the information
given by the indicator values by using individual value plots. The x-axis shows the
configurations. For each configuration, the figure displays data corresponding to the
nine or twelve instances included in the instance set defined by the number of nodes.
The blue point is the average. A small variability means that the indicator is less
sensitive to changes in the number of customers and the vehicle capacity. Looking
at the whole figures, we can infer that the configuration influences the value of the
indicators. Moreover, both indicators lead us to the same conclusions. Except for 26
nodes instances, the configuration 5 provides the best values, while the configurations

Fig. 2.2 Value plots for I−
H

http://www.tik.ee.ethz.ch/pisa
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Fig. 2.3 Individual value plots for I 1
ε+

4 and 8 are the worst configurations in all cases. The configuration 5 provides the
smallest average and the spread of data is also smaller.

To confirm that the influence of the configuration on the indicators is statistically
significant, a Friedman test has been applied. This is a nonparametric analysis of a
randomized block experiment which provides an alternative to the two-way analysis
of variance when the assumption of normality is not justified. A p-value equal to zero
has been obtained, thus confirming that the configuration significantly influences the
results, the best one being the configuration 5. As an illustration, Fig. 2.4 shows
the Pareto front provided by this configuration in the first instance of each group
(instances P1, P10, P22, P34).

2.5 Conclusions

This paper addresses a bilevel biobjective multi-follower optimization model to deal
with a hierarchical supply chain in which the distribution company needs to take into
account that customers are free to select the most convenient location for receiving
their goods. This problem can be transformed into a single level biobjective prob-
lem, but its combinatorial nature make it complex enough to require metaheuristic
techniques to be solved.
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Fig. 2.4 Pareto front provided by the configuration 5 for the benchmark instances P1, P10, P22
and P34

An evolutionary algorithm involving the solution of several optimization problems
has been developed for approaching the Pareto front. Each chromosome indicates
which locations can be used for serving the customers. Then, each customer decides
on the onewhere he/she prefers to collect the goods. Based on this information, aVRP
is solved to provide a bilevel feasible solution. Eight variants of the algorithm have
been tested which explore two methods for repairing the chromosomes in case they
are not able to provide a bilevel feasible solution due to the vehicle capacity constraint,
two ways of handling the chromosomes which are repaired, as well as two methods
for selecting the survivors from the current population plus the offspring, NSGA-II
and IBEA. All these variants are analyzed in a computational experiment, obtaining
that the configuration in which IBEA is used for selecting the next population, the
chromosomes are repaired according to RM1, and no updating is carried out is the
best one.
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Chapter 3
Incorporation of Region of Interest in a
Decomposition-Based Multi-objective
Evolutionary Algorithm

Ivan Reinaldo Meneghini, Frederico Gadelha Guimarães,
António Gaspar-Cunha, and Miri Weiss Cohen

Abstract Preference-based Multi-Objective Evolutionary Algorithm (MOEA)
restrict the search to a given region of the Pareto front preferred by the Decision
Maker (DM), called the Region of Interest (ROI). In this paper, a new preference-
guided MOEA is proposed. In this method, we define the ROI as a preference cone
in the objective space. The preferential direction and the aperture of the cone are
parameters that the DM has to provide to define the ROI. Given the preference cone,
we employ a weight vector generation method that is based on a steady-state evolu-
tionary algorithm. The main idea of our method is to evolve a population of weight
vectors towards the characteristics that are desirable for a set of weight vectors in
a decomposition-based MOEA framework. The main advantage is that the DM can
define the number of weight vectors and thus can control the population size. Once
the ROI is defined and the set of weight vectors are generated within the prefer-
ence cone, we start a decomposition-based MOEA using the provided set of weights
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in its initialization. Therefore, this enforces the algorithm to converge to the ROI.
The results show the benefit and adequacy of the preference cone MOEA/D for
preference-guided many-objective optimization.

Keywords MOEA/D, ROI · Multi-Objective Optimization · Weight Vectors

3.1 Introduction

Multi-objective evolutionary algorithms (MOEA) are recognized as suitablemethods
to find high quality approximations to the set of solutions to multi-objective opti-
mization problems [19]. These optimal solutions, known as Pareto optimal solutions,
are characterized by the trade-off relation between the conflicting objectives, such
that some improvement in one objective functionmust lead to deterioration in at least
one of the other objectives. However, as the number of objectives grows, we reach
the field of many-objective optimization problems (MaOPs) [11]. This boundary is
usually defined when the number of objective functions is greater than three or four,
given empirical studies about the downgrading performance of most multi-objective
algorithms when the number of objectives increase, see for instance [2].

Without any prior preference provided by the decision-maker (DM), MOEA are
designed to find an unbiased, well-distributed approximation of the entire Pareto
Front (PF), a task that becomes increasingly harder in MaOPs. This brings a number
of challenges related to converging to such a large set of solutions, visualizing solu-
tions found, performing decision-making with a large number of alternatives [11].
Moreover, a high computational cost of properly sampling of the high-dimensional
Pareto front. For this reason, many preference-based MOEA have been proposed in
the literature [3], designed to converge to a subset of Pareto-optimal solutions located
at a given region of the PF preferred by the DM, usually called Region of Interest
(ROI). These preference-based MOEA are an intermediate approach for incorpo-
rating preferences in multi-objective optimization: a priori information is needed to
define the ROI and, after some desirable solutions are found, the DM can select the
most satisfying one a posteriori or restart the process by adjusting the ROI, hence
following an interactive approach. With this novel approach, one can avoid the main
disadvantages of the a priori methods. Defining the ROI might be easier for the DM
than modelling the preferences into specific parameters of a parameterized single-
objective optimization problem. Furthermore, it can alleviate the high computational
cost and time consumption of full a posteriori methods.

The proposed methodology in this paper is therefore an intermediate approach for
incorporating preferences intomany-objective optimization problems. It is amethod-
ology aligned with the trend of interactive approaches, and follows the framework
of any MOEA based on decomposition.

In the last decade, MOEA based on decomposition/aggregation methods have
attracted the attention of the evolutionary multi-objective optimization community,
with several studies to show their potential and limitations, and to improve their
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performance in constrained multi- and many-objective optimization problems [17].
The decomposition-based MOEA rely on aggregation functions that are based on
different weight vectors. Those weight vectors might represent a weighted aggre-
gation of objectives or a preference direction in objective space depending on the
interpretation and the context of the decomposition method adopted within the algo-
rithm. The key point is that the weight vector generation method is the primary step
in decomposition-based MOEA, affecting the diversity of the Pareto approximation
and overall performance of the algorithm.

In this paper, we define the ROI as a preference cone in the objective space.
The preference cone could be defined by a preferential direction vector v, which
corresponds to the axis of the cone, having the origin or utopian point as the apex,
and the angle τ between the axis and thegenerating lines (generatrix). Thepreferential
direction and the aperture of the cone are the parameters that the DM has to provide
to define the ROI. Given the preference cone, we employ a weight vector generation
method that is based on a steady-state evolutionary algorithm. The main idea of our
method is to evolve a population of weight vectors towards the characteristics that are
desirable for a set of weight vectors in a decomposition-based MOEA framework.
Once the ROI is defined and the set of weight vectors are generated within the
preference cone, we start a decomposition-based MOEA using the provided set of
weights in its initialization. Therefore, this enforces the algorithm to converge to the
preference cone, which in turn represents the ROI to the DM.

3.2 Background

3.2.1 Many-Objective Optimization

A multi-objective optimization problem (MOP) [19] is defined by:

x� = argmin F(x) = ( f1(x), . . . , fM(x))

subject to:

⎧
⎨

⎩

G(x) ≤ 0,
H(x) = 0,
x ∈ �

(3.1)

where x ∈ � are the decision variables in the decision space �. Their image,
y = F(x) given by the function F , is the objective space. The functions G(x) =
(g1(x), . . . , gP(x)) and H(x) = (h1(x), . . . , hQ(x)) define the inequality and equal-
ity constraints respectively. The constraint functions define the feasible set � ⊆ X
and the feasible region in the objective space F(�) ⊆ Y . This paper will consider
only the case where X ⊆ R

N and Y ⊆ R
M . In the application F : X → Y , each

coordinate fi (x) of F(x) = ( f1(x), . . . , fM(x)) is an objective function of the MOP
defined in (3.1).
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The solution of problem (3.1) uses the following relationship betweenR
M vectors:

Let u = (u1, . . . , uM) and v = (v1, . . . , vM) be vectors in R
M . Then u ≺ v if and

only if ui ≤ vi ∀i ∈ {1, . . . , M} and ∃ i ∈ {1, . . . , M} such that ui 	= vi .
If u ≺ v then u (Pareto) dominates v and if neither u ⊀ v nor v ⊀ u then u and v

are said to be non-dominated. In this case, the solution of theMOP (3.1) is defined by
the set P = {x ∈ �; � s ∈ � such that F(s) ≺ F(x)}. This set is called the Pareto-
optimal Set of the MOP (3.1) and its elements are minimal solutions by the partial
order≺. The image F(P) of the points inP in the objective space Y is (in general) an
(M − 1)-dimensional manifold (for continuous problems), called the Pareto Front
(PF).

Obtaining the exact solution of a MOP is a very difficult task. Since the objectives
in a MOP are conflicting and the order relation that establishes the best solution is a
partial order. There is no single solution for a givenMOP, but a set of non-dominated
solutions of large or even infinite cardinality. The general desirable solution of a
MOP consists of an approximation of a subset of P (or F(P)) with the following
important characteristics:

• the approximation set is sufficiently close to a subset of the Pareto Front;
• the approximation set presents maximum coverage of the Pareto Front.

This second item guarantees the existence of feasible solutions in any part of the
Pareto Front. In a hypothetical situation of no preference on the part of the decision
maker, any of these solutions can be chosen arbitrarily.

An efficient way of determining an approximation of the solution of these prob-
lems is through Multi-Objective Evolutionary Algorithms (MOEA) [19]. In this
methodology, in each iteration a set of new candidate solutions is produced from the
current population in order to determine, a set of non-dominated points (from the
objective space sets). The main difference between the types of MOEA is according
to the selection of a newpopulation. These algorithms are categorized as follows [19]:

• Decomposition-based MOEA: In this approach, a set of weight vectors (or direc-
tion vectors) are created along the objective space and associated to the population.
Then, the MOP is decomposed into a number of Single Objective Problems, each
one representing a parameterized scalarizing function. MOEA/D [18] and NSGA-
III [6] are examples of algorithms that use this method.

• Dominance-basedMOEA: In this approach, all the objectives are optimized simul-
taneously and the new individuals in the populations are selected using the domi-
nance relation. NSGA-II [5] and SPEA2 [21] are examples of algorithms that use
this method.

• Indicator-based MOEA: In this approach, all the objectives are optimized simul-
taneously and the new individuals in the populations are selected using a quality
indicator, as the hypervolume. IBEA [20] andHypE [1] are examples of algorithms
which are based on this method.

Usually, if M > 3, the problem (3.1) becomes a MaOP [3]. The increase in the
number of objectives is accompanied by the exponential increase in the number of
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non-dominated solutions, incomparable by the criteria of optimality, Hence, result-
ing, the convergence of the population becomes an extremely difficult task. Another
problem is the generation and the selection of new individuals in the population, since
the high number of non-dominated points in the population causes the selection to
be random due to the lack of similarity parameters or differences between the points.
In addition to the loss of selective pressure, the set of points required to represent
or approximate the Pareto Front becomes very large. This increase in the number
of points capable of representing the real Pareto Front implies in the increase of the
population size used in the evolutionary algorithms, which becomes unnecessarily
large. Finally, visualization of the final solution in the objective space is very limited
in MaOPs.

3.2.2 Introducing Preferences in MOEA

The incorporation of preferences by the DM in MOEA can be determined in a
threefoldmanner: before the search (a priori approach), during the search (interactive
approach) or after the search (a posteriori approach) [3].

Without any prior preference provided by the DM, MOEA methods are designed
to obtain an unbiased, well-distributed approximation of the entire Pareto front, a
task that becomes definitely harder inMaOPs. Preference-basedMOEA are designed
to converge to a subset of Pareto-optimal solutions located at a specific region of the
Pareto Front preferred by the DM, usually called Region of Interest (ROI), which
can be defined in several ways.

For dominance-basedMOEA, a popular method areMOEA based on an Achieve-
ment Scalarizing Function (ASF) [8, 14]. Those MOEA use a reference (or goal)
point Z in the Objective Space, representing the DM preference. Combining the
information of dominance and the reference point, the MOP is transformed into a
single objective problem by the minimization of the scalarizing function using some
distance or norm. A drawback of this method is that the size of the ROI is affected
by the type of norm used as well as the relative position between the reference point
Z and the PF.. In a decomposition-based MOEA, the preferences of the DM can be
articulated through weight vectors [4].

3.3 Methodology

3.3.1 The Preference Cone

The proposed method uses a cone of vectors to define the ROI. A cone is defined as
a geometric shape formed by a set of half-lines (called generatrices) connecting to a
common coordinate point (apex). The base is a defined plane which does not contain
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Fig. 3.1 Axis v, angle τ and
a generatrix of the cone

the apex point (coordinates). A preference cone is defined by a preferential direction
vector v, which corresponds to the axis of the cone. The origin or utopian point serves
as the apex, and the angle τ between v and the generating lines (generatrix). These
elements are illustrated in Fig. 3.1.

The preferential direction vector v indicates the preference of the DM. The coor-
dinates of this vector can be the desired value for each objective or present the relative
importance between each of them. For example, in a problem with three objectives,
if the first objective has double importance value in comparison of the remaining
two, this information translates into the vector v = (2, 1, 1). The aperture angle τ

indicates the extension of the ROI: a small value produces a small region, providing
a localized solution search. Increasing the value of this angle extends the search to
a larger region. Important methods to obtain these parameters are available in the
literature such as the Analytical Hierarchy Process (AHP) [15] and the Stepwise
Weight Assessment Ratio Analysis (SWARA) [10] methods.

Similar to the weight vectors used in Decomposition/Aggregation-based algo-
rithms, the weight vectors of the cone are located in the hypercube [0, 1]M ⊂ R

M .
The generation of weight vectors inside the preference cone is based on a steady-
state evolutionary algorithm. The basic idea is to evolve an initial population W
containing n vectors w1, . . . ,wn in the hypercube [0, 1]M ⊂ R

M at random. Next,
normalize these vectors and calculate the distance matrix di, j between every pair
wi and w j . For each vector wi ∈ W , create a new vector w′

i from wi and calculate
the distance d ′

j between w′
i and w j ∈ W . The new vector w′

i is created by adding
a Gaussian perturbation to wi . After that, remove one vector from W in order to
maximize the shortest distance between the new vectorw′

i and the remaining vectors
w j ∈ W , following an ES(μ + 1, μ) selection scheme. The sum of the distances to
the closest neighbors in W is the fitness function that guides the evolution of the set
of weight vectors. Algorithm 1 presents the summarized structure of the proposed
method. The details of the method are described in the following steps.

Initialization: In this step the initial parameters are defined.

1. Define the number of weight vectors n to be generated.
2. Define the axis v and the angle τ of the cone.
3. Define the p-norm to be used. Let x = (x1, . . . , xM) be a vector in the M-

dimensional vectorial space, its p-norm is given by
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i ter ← 0;
W = {w1, . . .wn} ← Initialize population;
W ← Normalize population(W );
di, j ← Evaluate distance between wi and w j ;
φ(wi ) ← Evaluate fitness function for wi ∈ W ;
while stop criterion is not met do

Choose i from {1, . . . , n} at random;
w′
i ← wi + δ;

d ′
j ← Evaluate distance between w′

i and w j ∈ W ;

ξi ← Evaluate the angle between the new element w′
i and the axis v of the cone;

φ(w′
i ) ← Evaluate fitness function of the new element w′

i ;
Replace the worst w j from W by w′

i ;
di, j ← Update the distance matrix;
i ter ← i ter + 1;

end
Algorithm 1:Weight Vector Generation pseudo code

‖x‖p =
(

M∑

i=1

|xi |p
)1/p

(3.2)

If p = 1, the Manhattan norm is defined, and if p = 2 the Euclidean norm is
described. The following equation is characterized:

y = x
‖x‖p

(3.3)

we define ‖y‖p = 1. By this, ‖y‖2 is a point on a sphere centered at O =
(0, . . . , 0) and unitary radius, while ‖y‖1 is on the plane x1 + . . . + xM = 1.

4. Define the maximum number of iterations i termax and the number of neighbors
T . The value of T is used in the fitness function computation. After conducting
some test, we ascertained the value T = 2.

After establishing these initial parameters, generate the initial population W at
random and normalized according to (3.3). Finally, calculate the Euclidean distance
matrix di, j between pairs of wi and w j .

Evolutionary cycle:While the stop criteria is false, repeat the following steps below:

1. Choose an arbitrary element wi ∈ W at random.
2. Create a new weight vector

w′
i = wi + δi (3.4)

The perturbation vector δi is obtained as follows:

a. Determine the smallest distance di,min between wi and other vectors w j ∈
W, i 	= j .
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b. Compute thepenaltyα = (1 − t)a + tbwith t = k
i termax ,where k is the current

iteration and i termax is the maximum number of iterations. In our tests we
use a = 1.5 and b = 0.1.

c. Calculate δi = (δi1, . . . , δiM), where δi j is a random variable with normal
distribution of zero mean and standard deviation σi = α × di,min, that is, δi j ∼
N (0, σi ). This choice allows the adaptation of the mutation size according to
the neighborhood of the point. Moreover, it favors exploration in the beginning
and local search towards the end.

d. Normalize the new vector w′
i = (w′

i1, . . . ,w
′
iM) using Eq. (3.3).

3. Calculate the Euclidean distance between w′
i and the remaining vectors w j ∈ W .

4. Calculate the angle ξi between w′
i and the axis of the cone v.

5. Calculate the fitness function φ(w j ), w j ∈ W .
6. Let

wmin = argmin
j

φ(w j ), w j ∈ W (3.5)

If φ(w′
i ) > φ(wmin) replacewmin byw′

i inW and update the distance matrix di, j .
Otherwise discard w′

i .
7. Update the iteration counter.

The fitness function φi (wi ) ofwi ∈ W is given by the sum ST (wi ) of the distances
from wi to its T closest neighbors in W , penalized by the angle ξi between w′

i and
the axis of the cone v. If ξi > τ , thus the vector lies outside the cone and therefore its
fitness function value should be penalized. The fitness function is defined as follows:

φ(wi ) = ST (wi ) − M × max (ξi − τ, 0) (3.6)

3.4 Results and Discussion

This section presents some experiments using the problems (case studies) DTLZ1,
DTLZ2 [7] and WFG1 [9] with 3, 5 and 10 objectives. These problems are often
used by the scientific community and are suitable for this study. They are scalable to
any number of objectives and have PF with leading characteristics. The aim of these
experiments is to compare Dominance-based and Decomposition-Based MOEA in
the exploration of a ROI in the Objective Space, using multi-objective problems.
The Dominance-based algorithm selected is the g-NSGA-II [13] and the MOEA/D
[18] representing the decomposition-based algorithm. For the decomposition-based
algorithm, a cone ofweight vectors is used instead the usualweight vector generation.
As mentioned in [6], the set of weight vectors can represent the preferences of the
DM for the location of the solutions in the objective space.
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Table 3.1 IGD and HV metrics for the problems with 3, 5 and 10 objectives in the v1 direction.
DTLZ1 DTLZ2 WFG1

3 objectives

IGD gNSGAII 2.217e+00(3.570e+00) 3.759e–01(1.237e–03) 1.272e+00(3.184e–02)

MOEA/D 1.354e–01(6.500e–05) 3.681e–01(2.238e–04) 1.300e+00(2.943e–03)

HV gNSGAII 2.536e–02(3.127e–02) 2.775e–01(2.255e–03) 3.058e+01(1.859e+00)

MOEA/D 7.683e–02(8.592e–05) 2.896e–01(2.485e–04) 3.942e+01(6.912e–02)

5 objectives

IGD gNSGAII 5.948e+02(1.444e+02) 1.626e+00(6.276e–01) 2.938e+00(8.431e–01)

MOEA/D 1.480e–01(7.993e–05) 4.828e–01(5.274e–04) 1.621e+00(4.876e–02)

HV gNSGAII 0(0) 2.832e–04(7.921e–04) 1.333e+03(1.229e+03)

MOEA/D 2.800e-02(9.229e–05) 3.546e–01(1.938e–03) 4.881e+03(1.764e+01)

10 objectives

IGD gNSGAII � 7.913e+00(2.663e+00) 6.514e+00(1.777e+00)

MOEA/D 1.828e–01(2.365e–03) 7.574e–01(1.942e–02) 2.708e+00(1.358e–01)

HV gNSGAII � 0(0) 4.142e+08(8.492e+08)

MOEA/D 1.313e–03(5.117e–05) 2.117e–01(3.408e–02) 7.096e+09(8.364e+08)

3.4.1 Experimental Setup

The experiments were performed using the PLATEMO platform [16]. In this work,
the common method of weight vector generations was substituted by the proposed
novel method of generating a cone of weight vectors in the MOEA/D algorithm. All
MOEA/D methods employ the same following parameters:

• Population size: The population size is 300 + 15 × M individuals, where M is the
number of objectives.

• Maximum number of iterations: 500 iterations;
• Genetic operators: SBX recombination (μc = 20) and polynomialmutation (μm =
20);

In the Decomposition Algorithm, other than the cone of vectors that define the
preferences of the DM, other auxiliary weight vector cones were created. This was
done by using the vectors of the canonical basis of the decision space as axis. Each
extra auxiliary cone consists of 15 vectors, restricted to the first orthant, i.e., for
each weight vector in the auxiliary cones w = (w1, . . . ,wM), we define wi ≥ 0 i =
1, . . . , M . These extra cones are required to guide the population to the correct
location indicated by the cone of preferences. Experiments were performed with and
without the extra cones and best results were obtained with the use of the auxiliary
cones. Figure 3.3b illustrates a weight vector cone and a set of auxiliary cones in the
first octant of space R

3. The main cone uses the vector v = (1, 1, 1) as axis. Each
auxiliary cone uses a vector of the canonical bases (i.e. e1 = (1, 0, 0), e2 = (0, 1, 0)
and e3 = (0, 0, 1),) as axis. In all cones, the opening angle of arccos(1/

√
3)/5 radians

was used. This special value will be discussed in the Sect. 3.4.2.
To analyze the performance of the algorithms, the obtained solutions are classified

in three groups according to their convergence in the ROI defined by the preference
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Table 3.2 IGD and HV metrics for the problems with 3, 5 and 10 objectives in the v2 direction.
DTLZ1 DTLZ2 WFG1

3 objectives

IGD gNSGAII 1.688e+01(3.883e+01) 4.154e−01(1.641e−03) 1.662e+00(2.155e−02)

MOEA/D 1.457e−01(6.822e−05) 4.084e−01(1.331e−03) 1.664e+00(3.792e−03)

HV gNSGAII 1.598e−02(2.702e−02) 2.784e−01(2.192e−03) 3.649e+01(1.076e+00)

MOEA/D 7.676e−02(4.079e−05) 2.882e−01(1.566e−03) 3.954e+01(6.408e−02)

5 objectives

IGD gNSGAII 5.840e+02(1.593e+02) 1.825e+00(9.919e−01) 3.287e+00(1.025e+00)

MOEA/D 1.524e−01(1.473e−04) 5.031e−01(3.834e−04) 1.929e+00(2.632e−02)

HV gNSGAII 0(0) 1.922e−05(5.783e−05) 1.254e+03(1.287e+03)

MOEA/D 2.812e−02(9.667e−05) 3.679e−01(1.667e−03) 4.855e+03(8.508e+01)

10 objectives

IGD gNSGAII � 7.724e+00(2.670e+00) 7.002e+00(1.568e+00)

MOEA/D 1.843e−01(2.685e−03) 6.848e−01(3.813e−03) 2.782e+00(6.948e−02)

HV gNSGAII � 0(0) 1.523e+08(5.646e+08)

MOEA/D 1.315e−03(5.233e−05) 4.215e−01(1.012e−02) 7.435e+09(7.131e+08)

Table 3.3 IGD and HV metrics for the problems with 3, 5 and 10 objectives in the v3 direction
DTLZ1 DTLZ2 WFG1

3 objectives

IGD gNSGAII 4.190e–01(7.944e–01) 5.309e–01(1.846e–03) 9.045e–01(1.002e–02)

MOEA/D 1.820e–01(9.186e–05) 5.251e–01(1.507e–03) 9.602e–01(8.225e-02)

HV gNSGAII 5.380e–02(2.732e–02) 2.782e–01(9.709e–04) 4.093e+01(3.744e–01)

MOEA/D 7.150e–02(6.373e–05) 2.824e–01(1.500e–03) 4.002e+01(1.875e+00)

5 objectives

IGD gNSGAII 5.052e+02(1.477e+02) 1.788e+00(8.907e–01) 4.124e+00(1.795e+00)

MOEA/D 1.652e–01(1.527e–04) 5.590e–01(5.380e–04) 1.608e+00(4.128e–02)

HV gNSGAII 0(0) 2.732e–05(1.187e–04) 1.028e+03(1.057e+03)

MOEA/D 2.687e–02(8.523e–05) 3.689e–01(1.858e–03) 4.801e+03(1.573e+02)

10 objectives

IGD gNSGAII � 9.493e+00(2.404e+00) 8.698e+00(8.120e–01)

MOEA/D 1.736e–01(3.873e–04) 7.037e–01(2.822e–03) 2.706e+00(1.346e–01)

HV gNSGAII � 0(0) 2.028e+07(3.188e+07)

MOEA/D 1.549e–03(1.956e–05) 4.315e–01(1.074e–02) 6.605e+09(1.106e+09)

cone. The first group consists of solutions located in the region defined by the pref-
erence cone, ie, the angle θ between the solution p and the axis v of the cone is
less than or equal to the angle τ that define the cone. The second group is composed
of solutions located in the neighborhood of the region defined by the cone. In the
experiments performed, a obtained solution is in the group 2 if the angle θ between
the obtained solution p and the axis v of the cone is greater than τ and smaller than
2τ , i.e., τ < θ < 2τ . All other solutions are classified in group 3. The classification
of solutions into groups aims to verify the ability of each method to obtain solu-
tions that adequately reflect the aspirations of the decision maker. Convergence and
distribution of the solutions obtained will be verified through the usual metrics,
restricted to solutions obtained in the selected groups.
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Table 3.4 IGD and HV metrics for the problems with 3, 5 and 10 objectives in the v4 direction
DTLZ1 DTLZ2 WFG1

3 objectives

IGD gNSGAII 7.918e+00(1.558e+01) 4.331e–01(2.067e–03) 1.641e+00(2.516e–02)

MOEA/D 1.502e–01(8.893e–05) 4.249e–01(1.821e–04) 1.644e+00(4.087e–03)

HV gNSGAII 1.759e–02(2.640e–02) 2.637e–01(1.860e–03) 3.256e+01(1.655e+00)

MOEA/D 7.637e–02(6.880e–05) 2.750e–01(3.371e–04) 3.722e+01(1.164e–01)

5 objectives

IGD gNSGAII 6.379e+02(1.810e+02) 2.592e+00(1.695e+00) 2.714e+00(6.954e–01)

MOEA/D 1.576e–01(1.705e–04) 5.292e–01(8.470-e-04) 1.860e+00(4.701e–02)

HV gNSGAII 0(0) 0(0) 1.724e+03(1.162e+03)

MOEA/D 2.818e–02(1.272e–04) 3.626e–01(1.533e–03) 4.675e+03(3.658e+01)

10 objectives

IGD gNSGAII 8.886e+02(6.025e+01) 8.543e+00(2.488e+00) 4.022e+00(8.363e–01)

MOEA/D 1.737e–01((7.081e–04) 7.022e–01(2.897e–03) 2.740e+00(9.967e–02)

HV gNSGAII 0(0) 0(0) 1.452e+09(1.820e+09)

MOEA/D 1.586e–03(2.086e–05) 4.298e–01(1.136e–02) 7.150e+09(7.259e+08)

For the experiments carried out, we considered only the solutions of group 1 and
2. All solutions p belonging to group 2 are penalized by the factor:

r = (θ − τ)2 + e(1+θ−τ)2 (3.7)

where τ is the angle that defines the preference cone and θ is the angle between the
obtained solution p and the axis v of the preference cone. If p is a solution of group
2, it will be evaluated as r · p. The solutions in group 1 and the penalized solutions in
group 2 are analyzed using the performance metrics Inverted Generational Distance
(IGD) [23] and Hypervolume Indicator (HV) [22].

3.4.2 ROI Definition

For the decomposition algorithms defines the ROI is calculated by an axis v and
an aperture angle τ . Table 3.5 shows four different directions used as axis of the
preference cone.

The chosen directions have the following characteristics:

Table 3.5 Directions used in the experiments

Objectives v1 v2 v3 v4
3 (1, 1, 1) (1, 1, 0.5) (0.1, 1, 1) (2, 1, 1)

5 (1, 1, 1, 1, 1) (1, 1, 1, 1, 0.5) (0.1, 1, 1, 1, 1) (2, 1, 1, 1, 1)

10 (1, 1, . . . , 1) (1, . . . , 1, 0.5) (0.1, 1, . . . , 1) (2, 1, . . . , 1)
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Direction v1: The ROI defined in the direction v1 uses the hyperdiagonal of the
Objective Space. This direction choice seeks to maximize the balance
among objectives.

Direction v2: In direction v2, the last objective is equal to 0.5 and all the remaining
are equal to 1. By choosing these values, the defined ROI will be
further away from the last objective, but is balanced in relation to the
others.

Direction v3: The direction v3 presents a low value in the first coordinate (only 1/10
of the value of the other objectives). As a result, the ROI defined in
this direction will contain few points (or no point) in this region.

Direction v4: In the direction v4, the first coordinate is equal to 2 and all the others
are equal to 1. By this, the defined ROI will be closer to the first
objective and farther from the remaining objectives.

ROI size is defined by angle τ . Suposing that all objectives assume nonnega-
tive values, the objective space is in the first orthant of the space R

M . The angle
between the hyperdiagonal v = (1, . . . , 1) and any vector of the canonical basis
ei = (0, . . . , 0, 1, 0, . . . , 0) is equal to arccos(1/

√
M). This value is used as a refer-

ence to define the aperture angle τ of the cone. For example, in a cone in R
3 where

the hyperdiagonal v = (1, 1, 1) and the vector of the canonical basis e1 = (1, 0, 0)
are opposite generatrices, the angle τ is equal to arccos(1/

√
3)/2. Using a direction

vector v and a τ aperture angle is a simple, intuitive and efficient way to define
ROI. Assuming a PF contained in a hypersphere, the ROI defined in this way always
yields the same proportion in relation to the complete PF, regardless of the hyper-
sphere radius. For all cones, including auxiliary cones, the angle τ is defined as
τ = arccos(1/

√
M)/5, where M is the number of objectives.

For the g-NSGA-II algorithm, the ROI is defined by a reference point G. Since
all problem have the true pareto front well defined, the G point is easy to define: let
G = {g1 . . . gq} be points in the PF located in the ROI defined by the preference cone
and set G the ideal point of G.

Thirty instances of each algorithm were performed for each ROI. Table 3.5
presents the direction vectors that define the ROI used in the experiments and Table
3.6 presents the success rate of each experiment. An experiment was considered
successful if at least one solution of group 1 or 2 was found. Tables 3.1, 3.2, 3.3 and
3.4 present the average and the standard deviation of the IGD and HV metrics of the
tests performed, highlighting the best and the worst result. A � marker is used when
no results from group 1 or 2 were found.
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Table 3.6 Success rate for the problems with 3, 5 and 10 objectives.
3 objectives 5 objectives 10 objectives

DTLZ1 DTLZ2 WFG1 DTLZ1 DTLZ2 WFG1 DTLZ1 DTLZ2 WFG1

v1 gNSGAII 0.60 1.00 1.00 0.57 1.00 1.00 0.00 1.00 1.00

MOEA/D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

v2 gNSGAII 1.00 1.00 1.00 0.90 1.00 1.00 0.00 1.00 1.00

MOEA/D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

v3 gNSGAII 0.87 1.00 1.00 0.70 1.00 1.00 0.00 1.00 1.00

MOEA/D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

v4 gNSGAII 0.73 1.00 1.00 0.93 1.00 1.00 0.07 1.00 1.00

MOEA/D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Fig. 3.2 Obtained solutions (blue dots) for the DTLZ1 problem with 3 objectives in v1 direction

Figure 3.3a presents the obtained solution (blue dots) for the DTLZ2 problem
with 10 objectives in v4 direction and the ROI (red dots) using CAP-vis visualization
tool [12]. The points represented at the beginning of track C of each sector represent
the solutions found in the auxiliary cones. The ROI is entirely localized in sector 1
and it is possible to observe the alignment of the solutions obtained with this region.

3.4.3 Discussion

The decomposition algorithm proposed in this work, using the cone of weight vec-
tors obtained better results than the dominance algorithm using ASF strategy. Figure
3.2 depicts the obtained solutions of a single run for each method in the v1 direc-
tion, highlighting group 1 and group 2 solutions for the DTLZ1 problem. Algorithm
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Fig. 3.3 a obtained solution for the DTLZ2 problem with 10 objectives in v4 direction. b cone and
auxilliary cones of weigh vectors in v1 direction

gNSGAII presented better performance only in the three objective WFG1 problem,
regardless of the ROI analyzed. However, in other problems, this method presented
a high variance of results in most cases. This phenomenon is caused by the preva-
lence of solutions of Group 2 which due to its penalty makes the value of its metric
increased. Moreover, the results obtained reinforce the inadequacy of the algorithms
based on dominance for problems with many objectives.

From the experiments conducted, it can be concluded that different regions of the
objective space present different challenges for the optimizer of the same problem.
As an example, the value of the IGD metric obtained in the region defined by the
direction v3 in the problemWFG1 indicates that in this region the algorithms used can
obtain solutions with better convergence than others directions that were analyzed.

3.5 Conclusions

Due to the fundamental characteristics of many-objective optimization problems,
obtaining a well-distributed and representative approximation of the Pareto Front is a
hard task. Moreover, the analysis of the solutions obtained and the subsequent choice
of a particular solution are challenging. Moreover, defining exactly the preferences
of the DM in an a priori approach is difficult in most practical cases. Researching a
noncommittal approach becomes attractive in such a scenario, in which the search for
solutions in a specific region of the objective space that corresponds to the aspirations
of the DM is a way to make this type of optimization problem less difficult.

This paper presented a new preference-based methodology to perform the search
for solutions in the ROI, defined by a preference cone in the Objective Space. The
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exploration of theROIusing the preference cone presented good convergence anddis-
persion of the solutions, showing that this is an adequatemethodology for preference-
guided many-objective optimization. In addition, this approach of determining the
ROI is more intuitive and is able to reflect the preferences of the decision-maker.
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Chapter 4
Solving Multiobjective Engineering
Design Problems Through a Scalarized
Augmented Lagrangian Algorithm
(SCAL)

Lino Costa, Isabel Espírito Santo, and Pedro Oliveira

Abstract In this paper, a set ofmultiobjective engineering design problems is solved
using a methodology that combines an Augmented Lagrangian technique to deal
with the constraints and the Augmented Weighted Tchebycheff method to tackle the
multiobjective nature of the problems to find the Pareto frontier. In order to compare
and validate the performance of this strategy, the problems were also solved with
gamultiobj fromMATLAB™.We present the algorithm, as well as some results
that seem very promising.

Keywords Engineering optimization · Multi-objective constrained optimization ·
Augmented weighted tchebycheff · Augmented lagrangian · Pattern search

4.1 Introduction

In multiobjective optimization no single optimal solution exists but a set of solutions
that reflect different trade-offs between the different objectives. This problem is
even difficult when constraints are imposed on the search space. Although several
approaches exist for the handling of constraints in the context of multiobjective
optimization, this is still an important issue.

Considering a set of n decision variables and a set of m objective functions, a
multiobjective problem can be formulated as
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minimize: f (x) = ( f1(x), f2(x), . . . , fm(x))T

subject to:
x ∈ � ⊆ R

n
(4.1)

where x is the decision vector,� = {x ∈ R
n : c(x) = 0, g(x) ≥ 0, l ≤ x ≤ u} is the

feasible decision space, f (x) is the objective vector defined in the objective space
R

m , c(x) = 0 are q equality constraints and g(x) ≥ 0 are p inequality constraints.
Inherent to the multiobjective nature of the problem, a solution represents dif-

ferent trade-offs between the different objectives and, therefore, the solution space
is partially ordered. Accordingly, for two solutions a and b, a solution a dominates
solution b (denoted a ≺ b) if

∀i ∈ {1, . . . ,m} : fi (a) ≤ fi (b) ∧ ∃ j ∈ {1, . . . ,m} : f j (a) < f j (b). (4.2)

Hence, the set of non-dominated solutions constitutes the so-called Pareto set (PS),
being its approximation the fundamental task of a multiobjective algorithm:

PS = {x ∈ � | � y ∈ � : y ≺ x}. (4.3)

Real world engineering problems are constrained in many different ways. Solving
constrainedmultiobjective problems constitutes amajor challenge, in particular, with
respect to equality constraints. The presence of these constraints can alter greatly the
Pareto frontier, making its approximation a very challenging problem. In this work,
several engineering constrained multiobjective optimization problems are solved
using a Scalarized Augmented Lagrangian Algorithm (SCAL) [4].

4.2 Augmented Weighted Tchebycheff Methods

In order to approximate the Pareto-optimal set, a scalarizing method is used, the
Augmented Weighted Tchebycheff method, based on the proposal of Steuer and
Choo [15]. This approach can be applied to nonlinear and nonconvex multiobjec-
tive optimization problems, and, at the same time, converge to non-extreme final
solutions.

The Augmented Weighted Tchebycheff method can be formulated as:

min f (x) ≡ max
i=1,...,m

[wi | fi (x) − z�
i |] + ρ

m∑

i=1

| fi (x) − z�
i | (4.4)

where wi are the weighting coefficients for objective i , z�
i are the components of the

ideal point, and ρ is a small positive value [6]. The problem formulated in Eq. 4.4
guarantees that the Pareto-optimal solutions are obtained by considering different
combinations of weights. An approximation to the ideal vector is used as reference
point z� = (z�

1, . . . , z
�
m)T = (min f1, . . . ,min fm)T .
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4.3 Augmented Lagrangian Technique Using the Hooke
and Jeeves Pattern Search Method

In this work, a sequence of simple subproblems, defined by the Augmented
Lagrangian technique, results in a objective function that considers the penalization
of all or some of the constraint violation. Thus, the Augmented Lagrangian objective
function, based on the proposal of [1, 3, 12] depends on a penalty parameter and
multiplier vectors:

�(x;λ, δ,μ) = f (x) + λT c(x) + 1

2μ
‖c(x)‖2 + μ

2

(∥∥∥∥

[
δ + g(x)

μ

]

+

∥∥∥∥
2

− ‖δ‖2
)

(4.5)
where μ is a positive penalty scalar, λ = (λ1, . . . ,λq)

T , δ = (δ1, . . . , δp)
T are the

Lagrange multiplier vectors associated with the equality and inequality constraints,
respectively, and ‖.‖ is the euclidean norm. Hence, function� penalizes equality and
inequality constraints. Simple bounds, l ≤ x ≤ u, are not incorporated but the inner
iterative process returns an approximate solution satisfying the bound constraints.
Thus, theHooke and Jeeves version of the pattern search [10] assures that any solution
x that does not satisfy the bounds is projected, component by component.

The corresponding subproblem is formulated as:

minimize
l≤x≤u

�(x;λ j , δ j ,μ j ) (4.6)

where, for each set of fixedλ j ,δ j andμ j , the solution of subproblem (4.6) provides an
approximation x j to the problem formulated in Eq. (4.4). Details of the approach can
be found in [1]. In order tomaintain the sequence of penalty parameters far away from
zero usual safeguarded schemes are used, so that the solution of subproblem (4.6) is
an easy task.

The following error function evaluates the equality and inequality constraint vio-
lation, and the complementarity conditions:

E(x, δ) = max

{‖c(x)‖∞
1 + ‖x‖ ,

‖[g(x)]+‖∞
1 + ‖δ‖ ,

maxi δi |gi (x)|
1 + ‖δ‖

}
. (4.7)

The Lagrange multipliers λ j and δ j are estimated in this iterative process using the
first-order updating formulae

λ̄
j+1
i = λ

j
i + ci (x j )

μ j
, i = 1, . . . , q (4.8)



54 L. Costa et al.

and

δ̄
j+1
i = max

{
0, δ j

i + gi (x j )

μ j

}
, i = 1, . . . , p (4.9)

where: for all j ∈ N, and for i = 1, . . . , q and l = 1, . . . , p, λ j+1
i is the projection

of λ̄
j+1
i on the interval [λmin,λmax] and δ

j+1
i is the projection of δ̄

j+1
i on the inter-

val [0, δmax], where −∞ < λmin ≤ λmax < ∞ and 0 ≤ δmax < ∞. After the new
approximation x j has been computed, the Lagrange multiplier vector δ associated
with the inequality constraints is updated, in all iterations, since δ j+1 is required
in the error function (4.7) to measure constraint violation and complementarity. We
note that the Lagrange multipliers λi , i = 1, . . . , q are updated only when feasibility
and complementarity are at a satisfactory level, herein defined by the condition

E(x j , δ j+1) ≤ η j (4.10)

for a positive tolerance η j . It is required that {η j } defines a decreasing sequence of
positive values converging to zero, as j → ∞. This is easily achieved by η j+1 = πη j

for 0 < π < 1.
We consider that an iteration j failed to provide an approximation x j with an

appropriate level of feasibility and complementarity if condition (4.10) does not
hold. In this case, the penalty parameter is decreased using μ j+1 = γμ j where 0 <

γ < 1. When condition (4.10) holds, then the iteration is considered satisfactory.
This condition says that the iterate x j is feasible and the complementarity condition
is satisfied within some tolerance η j and, consequently, the algorithm maintains
the penalty parameter value. The sequence of penalty parameters tends to zero if
condition (4.10) is not observed infinitely many times. To prevent that the sequence
{μ j } reaches zero, the following update is used

μ j+1 = max{μmin, γμ j }, (4.11)

where μmin is a sufficiently small positive real value.
Hooke and Jeeves (HJ) searchmethod [10] is used to compute�k sk . The scalar�k

represents the step length and the vector sk determines the direction of the step. The
exploratory moves to produce�k sk and the updating of�k and sk define a particular
pattern search method and their choices are crucial to the success of the algorithm.
Two types of moves, the exploratory move and the pattern move, distinguish this
algorithm from the traditional coordinate search.An exploratorymove is a coordinate
search—a search along the coordinate axes—around a selected approximation, using
a step length �k . Being zk the current approximation, a pattern move is a promising
direction that is defined by zk − zk−1 when the previous iteration was successful and
zk was accepted as the new approximation. Thus, zk + (zk − zk−1) defines a new trial
approximation, around which an exploratory move is performed. Being successful
the new approximation is accepted as zk+1 (please refer to [10, 11] for details).
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The HJ iterative process provides a new approximation x j to the problems (4.4),
x j ← zk+1, when the following stopping condition is satisfied, �k ≤ ε j . If the pro-
cess fails to satisfy this condition in kmax iterations, the last available approximation
is maintained (implementation details are provided in [5]).

4.4 Engineering Design Problems

To test our solver, we selected 10 well-known two objectives engineering design
problems. Table 4.1 summarizes the characteristics of these problems with the num-
ber of decision variables (n), and the number of constraints (m). All decision variables
have simple bounds. Some of these problems have discrete decision variables. How-
ever, we chose to solve the relaxed problem since the main goal was to compare the
SCAL and gamultiobj.

4.4.1 Four-Bar Plane Truss

The objective functions are the structural volume and joint displacement
� (Fig. 4.1) [2]. The simple bounds of this problem are related to member stresses.
The decision variables are the areas of the member cross-sections.

min f1(x) = L
(
2x1 + √

2x2 + √
x3 + x4

)

min f2(x) = FL

E

(
2

x2
+ 2

√
2

x2
− 2

√
2

x3
+ 2

x4

)

Table 4.1 Engineering design problems

Problem n m

Four-bar plane truss 4 0

Cantilever beam 2 2

Disc break 4 5

I-Beam 4 1

Pressure vessel 4 2

Speed reducer 7 11

Two-bar truss 3 3

Welded beam 4 4

Spring 3 7

Gear train 4 0
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Fig. 4.1 Four-bar truss
problem
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A2=x2A3=x3

A4=x4

L

F
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τ
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F

τ
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√
2
F

τ
≤ x2 ≤ 3

F

τ
,

√
2
F

τ
≤ x3 ≤ 3

F

τ
,

F

τ
≤ x4 ≤ 3

F

τ

where F = 10 kN, τ = 10 kN/cm3, L = 200 cm, and E = 2 × 105 kN/cm2.

4.4.2 Cantilever Beam

The objective functions are the weight and deflection [14]. This problem has four
constraints related to maximum stress. The decision variables are the diameter (x1)
and length (x2) (Fig. 4.2).

min f1(x) = ρπ
x1
4x2

min f2(x) = δ

Fig. 4.2 Cantilever problem
P x1

x2
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subject to

σmax ≤ Sy, δ ≤ δmax, 10 ≤ x1 ≤ 50, 200 ≤ x2 ≤ 1000

where σmax = 32Px2
πx31

and δ = 64Px32
3Eπx41

, ρ = 7800 kg/m3, P = 1 kN, E = 207 GPa,

Sy = 300 MPa, and δmax = 5 mm.

4.4.3 Disc Break

The objective functions are themass and the stopping time [9]. This problem has nine
constraints related to the minimum distance between the radii, the maximum length
of the brake, pressure, temperature and torque limitations. The decision variables are
the inner radius of the discs (x1), the outer radius of the discs (x2), the engaging force
(x3), and the number of friction surfaces and length (x4).

min f1(x) = 4.9 × 10−5
(
x22 − x21

)
(x4 − 1)

min f2(x) = 9.82 × 106
(
x22 − x21

)

x3x4
(
x32 − x31

)

subject to

x2 − x1 ≥ 20, 2.5(x4 + 1) ≤ 30,
x3

3.14
(
x22 − x21

) ≤ 0.4,

2.22 × 10−3x3
(
x32 − x31

)
(
x22 − x21

)2 ≤ 1,
2.66 × 10−2x3x4

(
x32 − x31

)

x22 − x21
≥ 900,

55 ≤ x1 ≤ 80, 75 ≤ x2 ≤ 110, 1000 ≤ x3 ≤ 3000, 2 ≤ x4 ≤ 20

4.4.4 I-Beam

The objective functions are the cross-sectional area of the beam and the static deflec-
tion of the I-Beam [8]. This problem has five constraints related to geometry and
strength. The decision variables are the four dimensions of the I-Beam (x1, . . . , x4)
(Fig. 4.3).

min f1(x) = 2x2x4 + x3 (x1 − 2x4)

min f2(x) = PL3

48E I



58 L. Costa et al.

Fig. 4.3 I-Beam problem

Q

P

L

x3

x2

x4

x1

subject to

My

Zy
+ Mz

Zz
≤ σa 10 ≤ x1 ≤ 80, 10 ≤ x2 ≤ 50, 0.9 ≤ x3 ≤ 5, 0.9 ≤ x4 ≤ 5

where
I = 1

12

(
x3 (x1 − 2x4)3 + 2x2x4

(
4x24 + 3x1 (x1 − 2x4)

))
, My = 0.25PL , Mz = 0.25QL ,

Zy = 1

6x1

(
x3 (x1 − x4)

3 + 2x2x4
(
4x24 + 3x1 (x1 − 2x4)

))
,

Zz = 1

6x2

(
(x1 − x4) x33 + 2x4x32

)
, E = 2 × 104 kN/cm2, P = 600kN, L = 200cm,

Q = 50 kN, and σa = 16 kN/cm2.

4.4.5 Pressure Vessel

The objective functions are the total cost and the storage capacity of a cylindrical
vessel capped at both ends by hemispherical heads [13]. This problem has two con-
straints related to the dimensions. The decision variables are the thickness of the
shell (x1), the thickness of the head (x2), the inner radius (x3) and the length of the
cylindrical section not including the head (x4) (Fig. 4.4).

Fig. 4.4 Pressure vessel
problem

Th

R R

Ts

L
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min f1(x) = 0.6224x1x4x3 + 1.7781x2x23 + 3.1661x21 x4 + 19.84x21 x3
max f2(x) = πx23 x4 + 1.333πx33

subject to

0.0193x3 − x1 ≤ 0, 0.00954x3 − x2 ≤ 0
0.0625 ≤ x1 ≤ 5, 0.0625 ≤ x2 ≤ 5, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 240

4.4.6 Speed Reducer

The objective functions are the weight of the gear assembly and the transverse deflec-
tion of the shaft [16]. This problem has 18 constraints related to the bending stress of
the gear teeth, surfaces stress, transverse deflections of the shafts and stresses in the
shafts. The decision variables are the face width (x1), module of teeth (x2), number
of teeth in the pinion (x3), length of the first shaft between bearings (x4), length of
the second shaft between bearings (x5) and the diameter of the first (x6) and second
(x7) shafts respectively (Fig. 4.5).

min f1(x) = 0.7854x1x22
(
3.333x23 + 14.933x3 − 43.0934

)

− 1.508x1
(
x26 + x27

) + 7.477
(
x36 + x37

) + 0.7854
(
x4x26 + x5x27

)

min f2(x) =

√(
745 x4

x2x3

)2 + 1.69 × 107

0.1x36

Shaft 2Shaft 1 Bearings Gears

Length (x5), Diameter (x7)

Width (x1), Module (x2), No. of teeth (x3)

Length (x4), Diameter (x6)

Fig. 4.5 Speed reducer problem
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subject to

1

x1x22 x3
≤ 1

27
,

1

x1x22 x
2
3

≤ 1

397.5
,

x34
x2x3x46

≤ 1

1.93
,

x35
x2x3x47

≤ 1

1.93
,

x2x3 ≤ 40,
x1
x2

≤ 12,
x1
x2

≥ 5, x4 − 1.5x6 ≥ 1.9, x5 − 1.1x7 ≥ 1.9
√(

745x4
x2x3

)2

+ 1.69 × 107

0.1x36
≤ 1300,

√(
745x5
x2x3

)2

+ 1.575 × 108

0.1x37
≤ 1100

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3,
7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5 ≤ x7 ≤ 5.5

4.4.7 Two-Bar Truss

The objective functions are the truss volume and the stress in the longer bar [16].
This problem has 6 constraints related to the truss volume, the stress in the longer
and shorter bar. The decision variables are the length of the longer bar (x1), the length
of the shorter bar (x2), and the vertical distance between the fixation point and the
point where the force is applied (x3) (Fig. 4.6).

min f1(x) = x1
(
16 + x23

)0.5 + x2
(
1 + x23

)0.5

min f2(x) = 20
(
16 + x23

)0.5

x1x3

Fig. 4.6 Two-bar truss
problem

x3
x2x1

C

BA

100 kN

4 m 1 m
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subject to

x1
(
16 + x23

)0.5 + x2
(
1 + x23

)0.5 ≤ 0.1,
20

(
16 + x23

)0.5

x1x3
≤ 100000

80
(
1 + x23

)0.5

x2x3
≤ 100000, 0 ≤ x1 ≤ 25, 0 ≤ x2 ≤ 10, 1 ≤ x3 ≤ 3

4.4.8 Welded Beam

The objective functions are the cost and the end deflection [16]. This problem has
eight constraints related to the shear and bending stress, weld length and buckling
load. The decision variables are the height (x1) and the length (x2) of the welded
joint and the thickness (x3), and the width of the beam (x4) (Fig. 4.7).

min f1(x) = 1.10471x21 x2 + 0.04811x3x4 (14 + x2)
max f2(x) = δ(x)

subject to

τ (x) ≤ τmax, σ(x) ≤ σmax, x1 − x4 ≤ 0, Pc(x) ≥ P, 0.125 ≤ x1 ≤ 5,
0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.125 ≤ x4 ≤ 5

where

τ (x) =
√

(τ ′(x))2 + 2τ ′(x)τ ′′(x)x2
2R

+ (τ ′′(x))2, τ ′(x) = P√
2x1x2

,

τ ′′(x) = M(x)R(x)

J (x)
,

M(x) = P(x)
(
L + x2

2

)
, R(x) =

√
x22
4

+
(
x1 + x3

2

)2

,

J (x) = 2
x1x2√

2

(
x22
12

+
(
x1 + x3

2

)2
)
, σ(x) = 6PL

x4x23
, δ(x) = 4PL3

Ex4x33
,

Pc(x) =
4.013

√
EGx23 x

6
4

36

L2

(
1 − x3

2L

√
E

4G

)
, P = 6000 lb, L = 14 in, δmax = 0.25 in,

E = 30 × 106 psi, G = 12 × 106 psi, τmax = 13600 psi, and σmax = 30000 psi.
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x1

x2

x3

x4

F

Fig. 4.7 Welded beam problem

4.4.9 Spring

The objective functions are the stress developed due to the application of a load
and the volume of the spring [7]. This problem has ten constraints related to the
minimum deflection, shear stress, surge frequency, limits on outside diameter and
on design variables. The decision variables are the number of active coils (x1), the
wire diameter (x2), and mean coil diameter (x3) (Fig. 4.8).

min f1(x) = 0.25π2x22 x3 (x1 + 2)

max f2(x) = 8 K Pmaxx3
πx32)

subject to

1.05x2 (x1 + 2) + Pmax

k
≤ lmax, x2 + x3 ≤ Dmax, C ≥ 3, δp ≤ δpm,

Pmax − P

k
≥ δw, 8 K Pmax

x3
πx32

≤ S, 0.25π2x22 x3 (x1 + 2) ≤ Vmax,

1 ≤ x1 ≤ 32, dmin ≤ x2 ≤ dmax, 1 ≤ x3 ≤ 30

where P = 300 lb, Dmax = 3 in,Vmax = 30 in3, Pmax = 1000 lb, δw = 1.25 in, lmax =
14 in, δpm = 6 in, δmin = 0.2 in, δmax = 0.5 in, S = 189 si, G = 11500000 lb/in2,

C = x3
x2
, k = G x42

8x1x33
, δp = P

k , and K = 4C−1
4∗C−4 + 0.615x2

x3
.

Fig. 4.8 Spring problem

D
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4.4.10 Gear Train

The objective functions are the gear ratio error with reference gear ratio 1
6.931 and

the maximum size of any of the gear [16]. The decision variables are the number of
teeth on each gear (x1, . . . , x4).

min f1(x) =
(

1

6.931
− x1x2

x3x4

)

min f2(x) = max{x1, x2, x3, x4}

subject to

12 ≤ x1 ≤ 60, 12 ≤ x2 ≤ 60, 12 ≤ x3 ≤ 60, 12 ≤ x4 ≤ 60

4.5 Results and Discussion

The problems were coded and run in MATLAB™programming language, version
R2017a. For each problem, 30 independent runs were performed using SCAL (coded
in MATLAB™) and gamultiobj (Global Optimization Toolbox from MAT-
LAB™). Table 4.2 shows the parameters of the augmented Lagrangian used in all
experiments. The objective functions were normalized using the ideal and nadir vec-
tors. The weights were uniformly varied according to a number of subintervals of
30, i.e., (w1,w2) ∈ {(0, 1), (0.03, 0.97), . . . , (1, 0)}. The parameter ρ for the Aug-
mentedWeightedTchebycheffmethodwas 10−8. Themaximumnumber of iterations
kmax for Hooke and Jeeves pattern search was set on 100 iterations. The maximum
number of function evaluations was 20,000. The solutions with a constraint viola-
tion superior to 10−3 were considered infeasible. For a fair comparison, we set the
population size of gamultiobj to 50. The remainder parameters were set to the
default values.

The hypervolume indicator was used to measure the performance of the algo-
rithms [17]. The higher the value of hypervolume, the more preferable an approxi-
mation set is. This measure evaluates algorithm performance in terms of convergence
to the Pareto front as well as the diversity of the approximation along the frontier.

Table 4.3 presents the statistical performance comparison of SCAL and
gamultiobj in terms of the average and standard deviation hypervolumevalues for
30 runs. The p-values of the pairwise comparison of the outcomes of the algorithms

Table 4.2 Augmented Lagrangian parameters.
λmin λmax δmax μ1 μmin γ ε∗ η∗ λ1i , δ

1
i ,∀i η1 jmax π τ

−1012 1012 1012 1 10−12 0.5 10−12 10−6 0 1 300 0.5 0.5
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Table 4.3 Performance of problems in terms of the average and standard deviation values of
Hypervolume

Problem SCAL gamultiobj

Average Std. Dev. Average Std. Dev. p-value

Four-bar plane
truss

3.915× 101 8.283×10−2 3.795×101 6.470×10−1 3.020×10−11

Cantilever
beam

7.517×108 6.315×107 8.001× 108 1.470×107 9.514×10−6

Disc brake 1.443×102 2.764×100 1.454×102 1.230×100 3.112×10−1

I-beam 8.083× 101 1.201×100 7.840×101 2.043×100 1.254×10−7

Pressure
vessel

2.815× 1013 7.928×1011 2.425×1013 2.474×1012 1.957×10−10

Speed reducer 1.141× 106 4.476×103 1.433×105 3.560×105 3.168×10−11

Two-bar truss 7.585× 103 1.899×102 0.000×100 0.000×100 1.212×10−12

Welded beam 8.925×100 1.364×10−1 9.010× 100 1.175×10−1 1.273×10−2

Spring 2.530× 106 3.032×104 2.499×106 3.866×104 6.765×10−5

Gear train 3.285× 101 4.702×10−2 3.224×101 1.630×10−1 3.020×10−11

using a standard two-sided Wilcoxon rank sum test is also indicated (α = 0.05).
Figures 4.9 and 4.10 show the non-dominated feasible solutions obtained by the
two algorithms for 30 runs when solving the considered engineering optimization
problems.

For the four-bar plane truss, the i-beam, the pressure vessel, the speed reducer,
the spring and gear train problems, the obtained hypervolume is significantly better
for SCAL (Table 4.3). This result can be confirmed by Figs. 4.9a, d, 4.10a, b, e, f
where a much better distribution of the non-dominated solutions can be observed.
Also, these solutions dominate a considerable number of the solutions obtained by
gamultiobj. Thus, SCAL performed better in terms of convergence to the Pareto
optimal front. For the speed reducer problem, in Fig. 4.10b, this result is not as clear
as the other ones, but some superiority in terms of the non-dominated solutions can
be observed. For the two-bar truss problem (Fig. 4.10c), gamultiobjwas not able
to find any feasible solution. Thus, SCAL performed better. In the disc brake prob-
lem, there are no significant differences between the solvers. Figure 4.9c shows that
gamultiobj is better in terms of distribution while SCAL is better in terms of con-
vergence. According to Table 4.3, gamultiobj performed significantly better in
terms of hypervolume only for the cantilever and welded beam problems. Despite the
good distribution of the non-dominated solutions obtained by SCAL (Fig. 4.10d) in
the first part of the curve for the welded beam problem, these solutions are dominated
by the ones from gamultiobj.
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Fig. 4.9 Non-dominated feasible solutions obtained by the two algorithms for the 30 runs for
Four-bar plane truss, Cantilever beam, Disc brake and I-beam problems

4.6 Conclusions

In this work, ten two-objective engineering design problems were solved by our
solver, SCAL and the well-established solver from MATLAB™, gamultiobj.

The results obtained show that SCAL is a very promising solver for two-objective
optimization problems. This reinforces the results of our previous work [4], nowwith
engineering design problems.

From the ten problems, SCAL performed significantly better in seven problems
in terms of average hypervolume. gamultiobj performs better in cantilever beam
and welded beam problems. For the disc brake problem, there are no significant
differences in the hypervolume.

In the near future, we intend to include discrete variables in the solver as well as
to improve its performance by using other achievement scalarizing functions.
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Fig. 4.10 Non-dominated feasible solutions obtained by the two algorithms for the 30 runs for
Pressure vessel, Speed reducer, Two-bar truss, Welded beam, Spring and Gear train problems
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Chapter 5
Many-Objective Multidisciplinary
Evolutionary Design for
Hybrid-Wing-Body-Type Flyback
Booster on an Entirely Automated
System

Taiki Hatta, Masataka Sawahara, and Kazuhisa Chiba

Abstract The study aims to create pragmatic geometries of flyback booster on
reusable launch systems with a high degree of freedom efficiently by evolutionary
computations and to present its design candidates based on physics. This article per-
formed a second optimal design that we sophisticated the first trial onmany-objective
multidisciplinary evolutionary design. The result has revealed that the surface dis-
continuity of the body back evaded in the hypersonic range could be beneficial for
improving the lift-drag ratio in the transonic range. We hypothesized that deliber-
ately dug groovesmust be adequate to accomplish flyback boosters generally requires
aerodynamic performance in the low-speed range.

Keywords Many-objective multidisciplinary design optimization · Evolutionary
computation · Scatter plot matrix · Reusable launch vehicle · Flyback booster

5.1 Introduction

National collaborative researchon reusable launch systems (RLSs) is evolving among
several Japanese universities. Our university is in charge of amultidisciplinarymulti-
objective optimal design of the 3D geometry of hybrid-wing-body-type flyback
booster by evolutionary computations. In this paper, we focus on two-stage-to-orbit
(TSTO) reusable launch vehicles (RLVs). We ultimately constituted a full automated
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multidisciplinary optimization system (FAMOS) for originating the reusable flyback
booster. Now we have to describe why we concentrate on these points.

Multi-stage expendable launch vehicles (ELVs) are the primary method for space
transportation in the world. In contrast, RLVs: single-stage-to-orbit (SSTO) and
TSTO was restudied intensively in recent years to alleviate launch costs further.
Generally, to use ELVs always entails considerable costs. ELVs utilize many dis-
posable components to transport payloads, although payloads merely arrive into
orbit. Multi-stage launch systems are also necessary because of a limit to the achiev-
able engine performance. To solve the problem, researches on RLVs become active
recently. SSTO must be the best way of RLS due to its simple concept. To realize
SSTO requires both the lighter body and higher performance engine than up-to-date
ELVs. To accomplish single-stage RLVs should enable weight reduction, but there
are several technical challenges. RLVs have to thoroughly equip takeoff, atmospheric
re-entry, deceleration, and landing functions in awide speed range. In contrast, TSTO
must be a more reasonable approach to fulfill the required conditions. Two advan-
tages exist to adopt TSTO; (1) It can reduce �V (changes of velocity) of each stage;
(2) TSTO enables each stage to share respective roles.

Against this background, some Japanese universities launched a collaborative
research project for developing a space transport system. The testbed called “WInged
REusable Sounding rocket (WIRES)” [7] is one of the projects’ fruits, which Kyushu
Institute of Technology (KIT) has been developing since 2005. Under the KIT’s
initiative, the development of WIRES involves JAXA (Japan Aerospace Exploration
Agency), companies, and several domestic and American universities. A blended-
wing-body-type vehicle anticipates an ideal form because of its high potential of
reusability, operational flexibility, and abort capability. Thus, we reflect the blended-
wing-body-type geometry to deliberate reusable flyback booster using FAMOS.

Aerodynamics and structural dynamics are integral elements in aircraft design.
On the other hand, it is indispensable to examine not only aerodynamics/structural
dynamics but also aerothermodynamics in the RLV design because flyback flight in a
wide range of speeds from subsonic to hypersonic is conceivable. Therefore, it is also
vital for the design of blended-wing-body-type boosters to recognize the high degree
of freedom in expressing geometries, as in aircraft design. Then, we executed the
first attempt of multidisciplinary design optimization (MDO) [25]. The first MDO
noticed that discontinuous grooves produced on the back surface of geometries due
to a glitch in the spline-curve definition. This second MDO trial would correct this
matter because a surface discontinuitymust provoke an abrupt rise in temperature due
to aerodynamic heating in hypersonic conditions. This paper aims to examine how the
modification expands the objective-function space and to reveal how aerodynamic
heating alleviates.
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5.2 Problem Definition

At present, we are promoting research on space transportation systems at several
domestic universities including Kyushu Institute of Technology which designs and
develops fully reusable space transportation WIRES. Try to design the spacecraft
starting from the flight path optimized with WIRES. Originally, although the opti-
mum flight route is also changed according to the change of the geometry, the hurdle
for generating the aerodynamic performance matrix necessary for flight route opti-
mization is high, so the optimization of the flight route is a future subject [25].

The flight path used in this study assumes an injection of 10 t payload into the
orbit from the Tanegashima Space Center and a circular orbit at an altitude of 350km.
Based on this, defining the aerodynamic performance optimization in three points of
transonic, supersonic, and hypersonic speeds. At the defined trans/supersonic design
point, the booster is the point where we want to earn a range for fly back to the launch
field. At the hypersonic (highest Mach number) design point where the booster and
the orbiter are separated, at this point earn the altitude and take a sequence to secure
the range margin.

Before we change the topic to our achievement, it is necessary to describe specific
problem definitions. The fundamental parts of the problem definitions are kept the
same as the previous research [25], and only the geometrical part has been changed
this time. We would like to emphasize that we purposely kept the same problem
definitions to verify the influence of the geometry modification.

5.2.1 Objective Functions: 6

The objective-functions that we defined are the following [25].

1. Aerodynamics
The purposes of these objective functions are to expand the options of landing
points and landing methods by maximizing the lift to drag (L/D).

a. Maximizing L/D (M = 0.65)
b. Maximizing L/D (M = 2.3)
c. Maximizing L/D (M = 6.8)

2. Structure
The purposes of this objective function are to increase the weight of payload and
to decrease the amount of fuel.

d. Minimizing empty weight

3. Aerodynamic heating
These objective functions are to decline the vehicle’s surface temperature for
diminishing thermal damage to a booster; it is a vital function to develop RLVs.
We assume to use carbon fiber reinforced plastics (CFRP) as the material of the
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Fig. 5.1 Left: cross-section positions, right: tail surface. The dotted line describes a fuel tank to be
a fixed size [25]

booster. The maximum temperature allowed for CFRP is 300 ◦C. We have to
use the material for the thermal protection system (TPS) to protect the booster if
the temperature exceeds the limit. The last objective function is to decrease the
TPS area on the surface of a booster for reducing its weight and cost.

e. Minimizing surface maximum temperature (M = 6.8)
f. Minimizing TPS area on body surface area (M = 6.8).

5.2.2 Design Variables: 40

Figure 5.1 shows six cross-sectional shapes generated for the x-axis direction. We
use section numbers 1 and 6 only to satisfy later-described constraint conditions, and
the cross-sectional shape change in evolutionary computations (ECs) is four cross-
sections with 2–5. Since each section utilizes ten design variables, the total of design
variables is 40.

The first MDO trial brought an issue to make a discontinuous connection at a
symmetric plane of bodies because of dz/dy|P1 �= 0 due to available regions of the
control points P3 and P4 to make wing shapes. It suspects to raise aerodynamic
heating around the problem under the hypersonic condition, so influences might not
be negligible for evaluations of the objective functions. Thus, we added an operation
to adjust z|P1 to be dz/dy|P1 = 0 after arranging all the control points (Table 5.1).

5.2.3 Constraints: 5

We define only one constraint on the geometry with five items; provide no constraint
on the objective functions. We discard violation individuals at the stage of individual
generation by theMOEA Framework; repeat creating individuals for population size
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Table 5.1 Definition of design variables [25]

Section
number

Design-
variable S/N
number

Parameter
sense

Symbol (refer
to Fig. 5.2)

Applicable range [-]

lower upper

2© 1, 3, 5, 7, 9 y-direction
increment

Vy1, Vy2, Vy3,
Vy4, Vy5

0 0.073

2, 4, 6, 8, 10 z-direction
increment

Vz1, Vz2, Vz3,
Vz4, Vz5

0 0.087

3© 11, 13, 15, 17,
19

y-direction
increment

Vy1, Vy2, Vy3,
Vy4, Vy5

0 0.073

12, Vz1 0 0.218

14, 16, 18, z-direction
increment

Vz2, Vz3, Vz4 −0.218 0.218

20 Vz5 −0.218 0

4© 21, 23, 25, 27,
29

y-direction
increment

Vy1, Vy2, Vy3,
Vy4, Vy5

0 0.35

22, Vz1 0 0.218

24, 26, 28, z-direction
increment

Vz2, Vz3, Vz4 −0.218 0.218

30 Vz5 −0.218 0

5© 31, 33, 35, 37,
39

y-direction
increment

Vy1, Vy2, Vy3,
Vy4, Vy5

0 0.35

32, Vz1 0 0.218

34, 36, 38, z-direction
increment

Vz2, Vz3, Vz4 −0.218 0.218

40 Vz5 −0.218 0

until they satisfy the constraint. The following items are specific descriptions of
constraints.

1. A body must secure the columnar space for the fuel tank. Figure 5.1 shows the
specific lengths.

2. Wavy geometries on a rear surface usually interfere with surfacemesh generation.
We added the process to avoid this geometrical problem.

3. Each control point connects with a B-spline curve in a single stroke. We added
the process to avoid geometry, which has a crossing curve. The crossing curve
will become the reason of crushed geometry.

4. Wemake the tip cross-section geometry closer to a circular shape to keep a smooth
surface. We avoid a crushed geometry.

5. The cross-section geometry of section number 6© is fixed for the space to equip
rocket nozzles.
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Fig. 5.2 Relationship among design variables Vn and control points Pm at a 2© and b from 3© to
2© [25]

5.3 Full Automated Multidisciplinary Optimization System

We adopt Eclipse1 [1] in the integrated development environment (it is only a devel-
opment environment; it does not affect the operation of the execution of programs).
Then build an optimization system using the MOEA Framework2 environment. ECs
available within the MOEA Framework consist of open-source Java libraries. In the
following, we will proceed with the content in line with the problem definition of
this research, assuming aerodynamic performance evaluation.

When the optimization system is activated, the MOEA Framework generates
population-size individuals. Then, FAMOS processes each individual in parallel
after generating the population. The contents to be processed in parallel are (1)
pre-processing for evaluating objective functions, (2) evaluating objective functions,
and (3) post-processing for computing objective functions. FAMOS generates fold-
ers /G#_Ii/ with generation numbers # and personal identification numbers i ;
evaluates each objective in standalone in it.

What is vital for running the system is a computing environment that performs a
CFD analysis. We construct an integrated development environment on the terminal
at hand, but the CFD analysis throws the job to appropriate computers. Currently, it is
possible to use various information infrastructure systems. However, as there was a
hurdle in uploading mesh and downloading the result, we have an issue regarding the
security of a communication gateway. Hence we decided to close the system in the
laboratory by occupying the system (Intel Xeon E5-26xx series: 9 nodes 156 cores,
the parallel number is twice the number of cores) and implement CFD analyses.

1“Eclipse Foundation” available online at https://www.eclipse.org/ [retrieved 5 Dec. 2018].
2“MOEA Framework” available online at http://moeaframework.org/ [retrieved 5 Dec. 2018].

https://www.eclipse.org/
http://moeaframework.org/
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5.3.1 Pre-process

For an aerodynamic analysis that accurately captures phenomena and requires pre-
cision, it is necessary to define the geometry precisely and to discretize the sur-
face/space of airframes (surface/volume mesh generation). This pre-processing is
the most obstacle part of automation. The pre-process flowchart shown in Fig. 5.3
assembles the following description.

Fig. 5.3 Flowchart of
pre-processing for
computing
objective-function
evaluation. j denotes the
serial number of individuals
in evolutionary computation,
which uses generation
number # and the individual
number i in a generation [25]
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5.3.1.1 After Generating Population by MOEA Framework

The design-variable information is stocked to dv_ j.txt. Based on this, FAMOS
prepares an input file geom_info_ j.set for generating the connection data of
body surface points.

5.3.1.2 Generating Point Sequence of Geometry Surface

We generate a point sequence structurally arranged in the direction of x , y, and z
with the name of j.p3d to express the outline of the body surface. FAMOS forms
point sequence data generated by computer-aided design (CAD) data.

5.3.1.3 Unstructured Point Sequence to Structurally Arrange

The system converts the format of j.p3d to a format for unstructured surface mesh
and stock it as j.uns.

5.3.1.4 Discretizing Surface and Volume by Unstructured Mesh
Method

FAMOS generates a ridge point sequence at the surface region (zone) boundary
described in j.uns; generates an unstructured surface mesh together with the
j.uns information (in other words, it prepares the part where we would gener-
ate ridgelines to be the boundary of the zones). This way provides the symmetry
plane and the outer boundary; the computational space closes. Then, the system gen-
erates an unstructured volume mesh using this surface mesh. FAMOS makes prism
layers on the wall surface (the thickness of the 1st layer of y+ ∼ 1 and at least 41
layers are laminated) to resolve the boundary layer and outputs as j.unv. Finally,
j.fsmesh outputs according to the format of the solver used this time.

5.3.1.5 Generating Body Specification

FAMOS created files of geometry specification data (projected area, span length,
body surface area, body volume, and center of gravity position) for the post-process.
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5.4 Method of Numerical Functions

5.4.1 Optimizer

Since one of the information desired by the multiobjective design optimization is
the executable structure of objective-function space, FAMOS utilizes ECs for the
optimization method to perform a global search. Many ECs become prominent with
steady progress; this study adopts SPEA2 [5] so that we compare the results with
those of the first trial on an equal footing. Moreover, we respectively chose simulated
binary crossover [2] and polynomial mutation [3] for crossover and mutation.

If we can acquire various solutions in a real-world problem, the diversity of
design candidates must expand, and the range of design information procured by
data mining should widen. The prior study [25] indicated that SPEA2, which does
not stipulate search directions, can obtain more distinct individuals than IBEA [6],
which prescribes search directions by hypervolume [4].

The results suppose that to search champions of each objective function should
expedite convergence for a large-scale optimum design problem to be executed only
with small population size and a small number of generations; a two-step search
algorithm should be efficient, which accommodates regions between champions and
gains diversity in nondominated solutions.

5.4.2 Data Mining

This research employed the scatter plot matrix (SPM) [26] for data mining; SPM is
valid to compare the distribution of solutions and the correlation coefficient between
each objective-functions space as a bird’s eye view. SPM declares tradeoffs between
the objective functions. We set the range of values based on the maximum and
minimum value obtained by the optimization results.

5.4.3 Evaluation Methods of Objective Functions

1. Aerodynamics

a. Mesh generations:Wewould assumeblended-wing-body type geometrieswith
high degrees of freedom. We applied the hybrid unstructured mesh automatic
generation software: Mixed-Element mesh Generator in 3D (MEGG3D) [11–
21] for the mesh generation. It laminated prismatic layers on the body surface
within 99% of the boundary layer thickness; at least 41 prism layers constitute.
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Table 5.2 Usage range and density of TPS material [25]

TPS material Range (◦C) Value (kg/m2)

LI-900 300 ≤ T < 1260 144

RCC 1260 ≤ 1986

b. Computational methods:We utilized a cell-vertex finite volumemethod: FaST
Aerodynamic Routines (FaSTAR) [9, 10] developed by Japan Aerospace
Exploration Agency (JAXA) for assessing aerodynamic performances.
i. The governing equation: Compressible Reynolds-averagedNavier-Stokes

equation
ii. A turbulence model: shear stress transport (SST) -2003sust [22]
iii. The numerical flux computations method: Harten-Lax-van Leer-Einfeldt-

Wada (HLLEW) method [23]
iv. The time integrationmethod:Lower/Upper SymmetricGauss-Seidel (LU-

SGS) implicit method [24].

2. Structure:We applied the hypersonic aerospace sizing analysis (HASA) [8] devel-
oped by the National Aeronautics and Space Administration (NASA) for weight
estimation. Since the original HASA assesses a wing and fuselage separately, we
modified it for the blended wing body.

3. Aerodynamic heating: FaSTAR also evaluates the aerodynamic heating. The state
equation analyzed the node temperature on the surface. This study alters the
materials of TPS according to the temperature that the booster reaches. Table 5.2
presents which materials we affix for each temperature range.

5.5 The Modifications of Problem Definitions in This Paper

5.5.1 The Geometrical Problems in the Previous Research

The irregular body surface emerged on the surface in the previous results, as shown
in Fig. 5.4. Also, the wavy geometry seldom generated between the cross-sections
5 and 6. We suspect that these geometrical traits induce sharp surges in temperature
on the surface of the boosters under the hypersonic condition. The correction of
the geometrical definition additionally anticipates expanding the objective-function
space.
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Fig. 5.4 The modificated geometry on the surface between left and right-hand side (images on
upper half) and the modificated dent between the cross section 5© and 6© (images on lower half)

5.5.2 Modification Manner of the Geometrical Subjects

Wedisposed of seven control points for one cross-section of the booster bodyon the x-
z plane; performed theB-spline interpolation to these points.However, the connecting
points of B-spline curves on the x-z planewere still intermittent. Therefore, we added
the process to move the coordinate points on the connecting point of the B-spline
and to make continuous surfaces on the x-z plane.

For the specific description of the process, we have to explain a cubic function
to represent the B-spline curve. A coefficient of the cubic function determines the
gradient of the B-spline curve, so we solve the inverse problem to search for coeffi-
cients that make the gradient of B-spline to zero on the discontinuous surface at the
two control points as P1 and P7 shown in Fig. 5.2 for each cross-section.

Additionally, we have to revise boosters with wavy geometry between cross-
sections 5 and 6. We supplemented a new condition into the fifth constraint to pre-
vent undulating surfaces near the cross-section 6. Figure 5.4 exhibits consequence
examples of these alterations.

5.5.3 SBX Modification

We resolve SBX issues when changing discontinuous surfaces. General SBX uses
two parents; creates two children. The previous study stipulated that both children
have to fulfill the geometrical constraints to add children in SBX. The geometrical
modifications induced it tough to satisfy this rule, so we alleviated it as follows.
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New rule permitted a child who fulfilled the geometrical constraints to retain as a
candidate of next-generation individual, even when another child does not satisfy the
constraints.

5.6 Results and Discussion

We run the FAMOS until 30 generations using a population size of 10 individuals; it
took roughly one month. Figure 5.5 compares the previous and present distributions
of all the solutions in the objective-function space on SPMs. The following subjects
are noticeable results.

1. The present geometrical modifications restrained extremely high temperatures on
the body surface (over 5000K) drastically.

2. The value of L/D declined in all speed ranges, and the objective-functions space
expanded in a negative direction.

5.6.1 Cause of the Extreme High Temperature Area

First, we need to verify the reason for the drop in temperature. We hypothesized that
discontinuous surfaces and wavy geometries provoked temperature boosts. We visu-
alized the surface temperature of a broken area in Fig. 5.6a; the figure indicated that
the irregular surface on the body back did not cause an extremely high temperature.

Fig. 5.5 SPMs of all individuals in the six objective-functions space; a the previous results [25]; b
the present results. The red triangles denote optimum directions. We colored the plots with values
of the objective function1



5 Many-Objective Multidisciplinary Evolutionary Design … 81

Fig. 5.6 The surface temperature distribution of the geometry with the highest body surface tem-
perature (roughly 6200K) obtained by the first MDO; a overall view; b enlarged view of the area
surrounded by the circle in (a)

In contrast, the wavy dent between the cross-section demonstrates the reason for
extremely high temperatures on the surface of the booster. Figure 5.6b indicates the
high temperatures on the edge of the cross-section 6. The pink region inFig. 5.6b is the
most high-temperature area. The individuals with ultimate heats have significantly
diminished by the extra constraint.

5.6.2 The Temperature Restraint on Boosters’ Surface

Apart from boosters with an extremely high temperature (over 5000K) area, we
would focus on the causes of high temperatures (over 2000K) on the surface. Figures
5.7a, b show the four boosters from above, which have the highest temperature in
the range of 2000–2500K in the previous and present results; there is no significant
variation in temperature between the discontinuous and continuous surface. On the
other hand, the area that signifies the temperature around 2000K is all on boosters’
nose. Figure 5.7 indicates the principal factor of high temperature (over 2000K) on
the body surface must result from the intense heat on boosters’ nose.

5.6.3 Negative Expansion of Objective-Functions Space

Figure 5.5 implies L/D declines in all speed range after the optimization; the results
deliver us a hypothesis regarding the discontinuous surface in the prior research. We
presume that the irregular facade prompted the growth of L/D, especially reducing
the drag in previous research. The present research removed the surface discontinuity
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Fig. 5.7 The example of two individuals whose body surface temperature are around 2000K; a
the result from the previous research; b the result from the present study

from all individuals. We suspect that this modification makes the L/D decrease and
causes the objective-function space to expand in a negative direction. To examine
the evidence of the hypothesis is one of the future assignments.

5.7 Conclusions

This study designed a two-stage-to-orbit booster stage as part of a reusable space
transport project in Japan. We implemented a second multidisciplinary many-
objective optimal design using a fully automatic multidisciplinary optimization sys-
tem. We examined the effects of correcting two problems regarding shaping the
definition that emerged in the previous first optimal design, i.e., discontinuity at the
back of bodies and waving at the rear of bodies.

As a result, the discontinuity at the back of bodies did not affect the surface
temperature, while the wavy shape of the tail eliminated the sharp rise in the surface
temperature.Moreover, to correct the discontinuity at the body tail caused a reduction
in the lift-drag ratio over the entire speed range and expanded the objective-function
space in the negative direction. Hypersonic range evades surface discontinuity due
to a dramatic temperature growth, but the consequence has suggested that it could
contribute to raising the lift-drag ratio at low speeds.
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Chapter 6
A Neuroevolutionary Approach
to Feature Selection Using Multiobjective
Evolutionary Algorithms

Renê S. Pinto, M. Fernanda P. Costa, Lino A. Costa,
and António Gaspar-Cunha

Abstract Feature selection plays a central role in predictive analysis where datasets
have hundreds or thousands of variables available. It can also reduce the overall
training time and the computational costs of the classifiers used. However, feature
selection methods can be computationally intensive or dependent of human expertise
to analyze data. This study proposes a neuroevolutionary approach which uses multi-
objective evolutionary algorithms to optimize neural network parameters in order
to find the best network able to identify the most important variables of analyzed
data. Classification is done through a Support Vector Machine (SVM) classifier
where specific parameters are also optimized. The method is applied to datasets with
different number of features and classes.

Keywords Neuroevolutionary ·Multi-objective optimization · Feature selection

6.1 Introduction

In predictive analysis, feature selection is the process of identifying the most impor-
tant, preferably a few, variables or parameters which are relevant in predicting the
outcome. Other motivations can exist, such as: feature set reduction, to reduce
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resource utilization on future data collections; general data reduction, to increase
algorithm speed; or performance improvement, to increase predictive accuracy
[1]. For a n-dimensional dataset there exist 2n possible feature subsets, becoming
impractical to evaluate all possible solutions for a large n, leading to an NP-Hard
combinatorial problem [2].

Several studies have been proposed to tackle feature selection problems. Simul-
taneously, there is research work using multiobjective evolutionary algorithms
(MOEA) applied to different data classifiers. However, according to [3] most of
the approaches for feature selection concerning optimization techniques are based
on a single objective. There are a few studies which use multiobjective optimization
for feature selection problems.

In [4], the authors proposed a framework for SVM based on multiobjective opti-
mization to minimize the risk of the classifier. The same approach is presented in [5]
with the aim of minimizing the number of features of the model. In [6], the authors
used hierarchical MOEA to perform feature selection by generating a set of classi-
fiers and selecting the best set of them. In [7], a MOEA optimization methodology
is proposed to deal with feature selection problems using a SVM classifier. The
proposed approach is applied and validated in a problem of cardiac Single Proton
Emission Computed Tomography (SPECT).

In [8–10] authors apply successfully neuroevolutionary approaches in different
kinds of problems concerning multiobjective optimization.

The present study suggests a neuroevolutionary approach to deal with feature
selection problems. In order to reduce complexity of the optimization, artificial neural
networks (ANNs) are used tomap themost relevant features of analyzed data.MOEA
is applied to optimize and find the best classifier parameters and ANNs which gives
the most relevant features. The methodology is applied in datasets with different
numbers of features, samples and classes. To compare the results, a binary approach,
i.e., without using ANNs, is also applied.

6.2 Methodology

Regarding feature selection problems, that usually leads with thousands of features,
the binary representation can increase drastically the computational costs necessary
to evaluation because the search space increases with the number of features, since
each feature is represented as one single bit in the chromosome of genetic algorithm.
Usually, bit 0 means that the feature should not be considered by the classifier and bit
1 means the opposite, i.e., feature should be considered in the classification process.
Therefore, this study proposes an alternative codification scheme, based on ANNs.
Each chromosome encodes the weights and biases of an ANN instead of considering
all the binary features for classification. The ANN is structured in three layers, where
the InputLayer receives the number of a single feature and the output is the probability
of the input feature being considered by the classifier. The number of inputs is the
number of bits necessary to encode the number of features. For instance, if a dataset
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is composed by samples with 2000 features, 11 bits are required. On the other hand,
the same example using binary representation it will requires a chromosome of at
least 2000 genes to encode each feature. Although this study use a fixed topology
for the ANNs (with 20 neurons in the hidden layer), different topologies can be
used by the MOEA. Figure 6.1 illustrates the ANN considering the topology for the
given example. The chromosome (without classifier parameters) will need only 272
genes to encode all ANN parameters instead of 2000 genes necessary by the binary
chromosome. Figures 6.2 and 6.3 illustrate the structure of chromosome for binary
and neuroevolutionary approaches, respectively.

Fig. 6.1 Neural Network partially represented. Input layer receives a feature number in binary
form (bits b0, b1… b10). Hidden layer has a total of 20 neurons (only four are show on the figure).
Output layer is composed by one single neuron that gives output p, which is the probability of input
feature be relevant (selected) to the classifier

Fig. 6.2 Example of a chromosome for binary representation. The use information of each feature
is encoded in one single bit, parameters for the classifier should be encoded at the end of the
chromosome using binary representation
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Fig. 6.3 Chromosome representation for neuroevolutionary approach. Each gene encodes a real
number which might represent a weight or bias (of the ANN) or a parameter for the classifier

6.2.1 Classifier

It is important to point out that any classifier can be used with the proposed method-
ology. However, in this study a Support Vector Machine classifier was considered
for the experiments.

Support Vector Machines (SVMs) are a set of models with associated learning
algorithms that can be applied to classification and regression. The samples in a
dataset are represented as points in space, so points of different categories can be
separated by a hyper-plane or a set of hyper-planes. Although SVMs are binary linear
classifiers, additional methods, such as kernel methods, can be applied to perform
non-linear classifications. SVMs classifiers had been successfully applied in many
machine learning problems.

The SVM classifier performance heavily depends on the selection of the right
parameters, such as kernel function, kernel coefficients and regularization. In this
study, a SVM non-linear classifier with Radial Basis Function (RBF) was considered
with two different parameters to be optimized: the regularization (C) and the kernel
gamma parameter (γ). This type of classifier was already used by [7] in feature
selection problems with multiobjective optimization.

6.2.2 Performance Measure for Classification

A systematic analysis of performance measurements for classification can be found
in [11]. When dealing with binary classification, i.e., when datasets are composed
by samples of two distinct (non-overlapping) classes, the precision metric of the
classifier can be expressed by equation:

P = TP

TP + FP

where TP is the number of true positives, i.e., the number of samples correctly
classified and FP is the number of false positives, i.e., the number of samples that
belongs to a given class, but were incorrectly assigned to the other class.

For multi-class datasets the precision P can be expressed by the equation:
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P =
∑l

i=1
tpi

tpi+ f pi

l

where tpi is the number of true positives for a given class, fpi is the number of false
positives, i.e., the number of samples of the given class thatwere incorrectly classified
in another class, and l is the total number of possible classes.

6.2.3 Multiobjective Optimization

In feature selection problems there are two main conflicting objectives: the mini-
mization of the number of features used for classification and the maximization
of classifier precision. Thus, multiple solutions with different tradeoffs (number of
features versus precision) can emerge from multiobjective optimization approaches.

The methodology proposed in this study combines the reduction of the search
space (by using ANNs) with the minimization of objectives (number of features
and classification error) into a single approach by using Neuroevolutionary MOEA
(Multiobjective Optimization Evolutionary Algorithm). Figure 6.4 illustrates the
overall algorithm.

The algorithm comprises a multiobjective optimization evolutionary process. It
starts by an initial population of solutions which can be randomly generated. The
ANNs are used in the evaluation phase to provide the features and parameters to
be used by the classifier. The classifier is applied to the dataset considering the
provided parameters and objective functions values are calculated from classification
results. The process continues by sorting the solutions following a fitness criterion
and deciding if convergence is reached or more iterations are needed. Evolution is
promoted by selection and variation procedures.

At the end, a Pareto front composed by a set of non-dominated solutions which
give different tradeoffs between the number of features used for classification and
the precision of the classifier is expected. In this context, two objective functions can
be defined:

f1 = Number of features used for classification.
f2= Classifier error defined as f2 = 1 − P, where P is the classifier precision

expressed between [0.0, 1.0].
By defining f2 as the classifier error, the optimization problem becomes minimize

(at the same time) f1 and f2.
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Fig. 6.4 Algorithm for the proposed approach for feature selection using neuroevolutionary and
multiobjective optimization evolutionary methods

6.3 Experimental Design

To evaluate the proposed approach, eight datasets were chosen from UCI Machine
Learning Repository1 and one well known dataset (colon) was chosen from the
literature in feature selection. All datasets comprise different number of features,
samples and classes. Thus, a multiclass SVM classifier implementation was used in
the experiments. Table 6.1 lists all datasets.

The proposed approach was implemented in MATLAB using the models and
functions provided by the Statistics and Machine Learning Toolbox to perform
SVMmulticlass classification. Themultiobjective optimization algorithmwas imple-
mented based on the SMS-EMOA algorithm [12]. In each generation, one single
offspring is produced. The selection is done using a uniform distribution and vari-
ation is performed by the SBX-Crossover operator, which is designed to work
with real number representations. Since the parameters of the classifier and of the

1Available at https://archive.ics.uci.edu.

https://archive.ics.uci.edu


6 A Neuroevolutionary Approach to Feature Selection … 91

Table 6.1 Datasets used in
the experiments

Dataset Features Samples Classes

Colon 2000 64 2

Ionosphere 34 351 2

Musk-1 166 476 2

Sonar 60 208 2

Semeion 256 1593 10

Yeast 8 1484 10

Libras 90 360 15

Wine1 12 1600 10

Solar 12 1066 7

neural networks are real numbers, this operator is adequate for the neuroevolutionary
approach. The fitness of each solution and replacement strategy are based on Pareto
front and hypervolume measure [13].

To compare the results, a binary approach was also applied to the datasets. The
overall algorithm is the same, except by the evaluation and variation phases, where
each solution is represented by a binary chromosome (Fig. 6.2) and a two point
crossover operator is used instead of the SBX-Crossover.

Concerning the classifier parameters C (regularization) and γ (kernel gamma),
after preliminary experiments with all datasets and based on former studies found in
the literature, the following intervals were defined: [1, 500] for C and [0.01, 10] for
kernel gamma, respectively. To encode these values in the binary representation, 10
bits were used for each parameter. This leads to 210 possible integer values that are
normalized into the respective parameter interval.

All classifications were performed using k-fold cross- validation with k = 10. The
partitions for each dataset were pre-defined and used for both binary and neuroevolu-
tionary approaches. The size of each populationwas set to 150 individuals (solutions)
and the number of maximum generations was set to 300 due to computational time
constraints.

6.4 Results and Discussion

Figures 6.5 and 6.6 show the evolution of the hypervolume for each generation for
binary and neuroevolutionary approaches, respectively. All values were normalized
concerning the origin and the maximum allowed point for all datasets. All curves are
visually similar in both cases, but it can be seen that most of the curves in Fig. 6.6
(neuroevolutionary) converges slightly faster than Fig. 6.5.

Table 6.2 lists the hypervolume of Pareto front of final populations for both repre-
sentations. Better results are highlighted. The neuroevolutionary approach presented
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Fig. 6.5 Hypervolume
evolution for each dataset
using binary representation

Fig. 6.6 Hypervolume
evolution for each dataset
using neuroevolutionary
approach

Table 6.2 Hypervolume for
Pareto front of final
populations for binary and
neuroevolutionary approaches

Dataset Hypervolume

Binary Neuroevolutionary

Colon 0.85 0.86

Ionosphere 0.99 0.99

Musk-1 0.77 0.78

Sonar 0.78 0.99

Semeion 0.05 0.08

Yeast 0.19 0.19

Libras 0.22 0.26

Wine1 0.50 0.46

Solar 0.46 0.46
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better results for 5 of the 9 datasets, 3 datasets presented equal results and only one
dataset (wine1) presented higher hypervolume for binary approach.

To illustrate the results of each optimization, Figs. 6.7 and 6.8 show the initial and
final populations for datasets semion and colon (neuroevolutionary), respectively.
Other datasets were omitted due to space constraints. It can be seen clearly the
evolution of initial population to a set of optimal solutions which gives different
tradeoffs between the number of features ( f1) and the classifier error ( f2).

For all datasets, an optimal solution (located in the knee of the Pareto curve)
was selected from final population. Table 6.3 lists these solutions along with its
classifier parameters, precision and number of features (better precision results are
highlighted). In terms of classifier precision, for five of nine datasets, the neuroevo-
lutionary approach presented better results. For the dataset sonar, neuroevolutionary
reached 100% of precision using only one feature to classification against the binary

Fig. 6.7 Initial and final
populations for dataset
semeion (neuroevolutionary
approach)

Fig. 6.8 Initial and final
populations for dataset
colon (neuroevolutionary
approach)
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Table 6.3 Optimal solutions selected from Pareto front of final population for each dataset
(classifier parameters, precision and number of features are listed)

Dataset Binary Neuroevolutionary

C, γ P f1 C, γ P f1

Colon 324.08, 8.33 0.97 2 45.07, 8.24 0.98 2

Ionosphere 17.08, 0.47 1.00 1 354.72, 9.99 1.00 1

Musk-1 32.19, 9.71 0.82 2 124.01, 18.57 0.84 2

Sonar 90.67, 0.63 0.83 2 72.99, 3.00 1.00 1

Semeion 258.30, 1.58 0.83 17 474.86, 0.89 0.85 22

Yeast 1.00, 0.16 0.59 5 475.85, 1.89 0.58 5

Libras 1.00, 0.33 0.87 7 288.02, 0.20 0.85 6

Wine1 23.90, 0.01 0.72 3 218.43, 0.02 0.75 4

Solar 21.47, 2.52 0.71 3 126.47,3.31 0.71 3

approach, which found 2 features with 83% of precision. For datasets semeion and
wine1, the neuroevolutionary approach presented better classifier precision, but the
number of features was higher than the binary approach. The results for dataset
semeion were 85% of precision (neuro) against 83% (binary) and the number of
features were 22 (neuro) against 17 (binary). For dataset wine1, the results were 75%
of precision (neuro) versus 73% (binary) and 4 features (neuro) versus 3 features
(binary).

Concerning the dataset libras, the neuroevolutionary approach reached 85% of
precision against 87% for binary approach, but only 6 features were used (against
7 features for binary). Datasets ionosphere and solar presented exactly the same
results (precision and number of features) for both approaches. Only the dataset
yeast presented better results for the binary approach: 59% of precision against 58%
for neuroevolutionary, using 5 features in both approaches.

Table 6.4 shows the features that correspond to the optimal solutions obtained
using the neuroevolutionary and binary approaches for the colon dataset. The preci-
sion, number of features and features selected in each solution are indicated. It can
be observed that the number of solutions and the number of features of each solu-
tion using the neuroevolutionary approach are smaller. Feature 1 is present in all
solutions. Feature 513 is selected for 2 neuroevolutionary solutions and 5 binary
solutions. Features 2001, 2003, 2005, 2008, 2010, 2011, 2015, 2019 and 2020 are
present in binary solutions. Solutions B6 to B10 have a precision of 1.000 and are
very similar, sharing a large number of features.
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Table 6.4 Optimal solutions from the final population for dataset colon

Neuroevolutionary Binary

P 0.865 0.971 0.974 0.854 0.971 0.972 0.973 0.974 1.000 1.000 1.000 1.000 1.000

f1 2 3 7 14 15 16 21 22 23 24 24 22 22

Feature N1 N2 N3 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
780

1184

769

773

785

833

837

853

513

1

2001

2003

2005

2008

2010

2011

2015

2019

2020

2002

2013

1740

42

187

498

1955

2007

544

632

1464

1466

1497

2017

883

1483

1687

102

2004
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6.5 Conclusions

This study proposes a neuroevolutionary approach to dealwith feature selection prob-
lems by using multiobjective evolutionary algorithms. Considering n-dimensional
datasets, to perform feature selection using binary representations or exhaustive
search becomes impractical for a large n. In this context, the proposed approach can
drastically reduce the search space by using Artificial Neural Networks to provide
the most important features to classify the data with maximum precision. Since the
number of features and the classification precision are conflicting objectives, by using
multiobjective optimization a set of solutions (Pareto front) with different tradeoffs
between the objectives can be obtained.

The methodology was applied to nine datasets with different number of features,
samples and classes. To compare the results, a binary representationwas also applied.
When comparing the Pareto front of both representations (in terms of hypervolume),
the neuroevolutionary approach presented better (or equal) results for eight of nine
datasets.

For each dataset, an optimal solution was selected from the Pareto front consid-
ering the point closest to the knee of the curve (to give an equal relationship between
classifier precision and the number of features).When comparing these points in both
representations, for seven of nine datasets the neuroevolutionary approach presented
better (or equal) results in terms of classifier precision. Different results were also
achieved for the number of features. Only one dataset presented better results for
binary approach. However, it is important to point out that by using the neuroevo-
lutionary approach, the search space is drastically reduced, since the parameters of
ANN are being evolved instead of the binary representation for each feature.

By including classifier parameters in the optimization, the algorithm was able
to find the best combination of C (regularization) and kernel gamma (of the SVM
Classifier) for each dataset in order to reach better classification precision.

For each dataset, an optimal solution was selected from the Pareto front consid-
ering the point closest to the knee of the curve (to give an equal relationship between
classifier precision and the number of features).When comparing these points in both
representations, for seven of nine datasets the neuroevolutionary approach presented
better (or equal) results in terms of classifier precision. Different results were also
achieved for the number of features. Only one dataset presented better results for
binary approach. A detailed analysis of the results for database colon showed that
the neuroevolutionary approach presented consistency by finding two key features
(1 and 513) in all non-dominated solutions. On the other hand, results for the binary
approach contain these features among a higher number of others to achieve equal
or slightly better classifier precision. Also, it is important to point out that by using
the neuroevolutionary approach, the search space is drastically reduced, since the
parameters of ANN are being evolved instead of the binary representation for each
feature.
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Future works can address different parameters or kernel functions for the SVM
classifier, or even the use of other classifiers to perform the classification. Other ANN
topologies can also be considered.
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Chapter 7
Multi-objective Optimization in the Build
Orientation of a 3D CAD Model

Marina A. Matos, Ana Maria A. C. Rocha, Lino A. Costa, and Ana I. Pereira

Abstract Over the years, rapid prototyping technologies have grown and have been
implemented in many 3D model production companies. A variety of different addi-
tive manufacturing (AM) techniques are used in rapid prototyping. AM refers to a
process by which digital 3D design data is used to build up a component in layers
by depositing material. Several high-quality parts are being created in various engi-
neering materials, including metal, ceramics, polymers and their combinations in the
form of composites, hybrids, or functionally classified materials. The orientation of
3D models is very important since it can have a great influence on the surface qual-
ity characteristics, such as process planning, post-processing, processing time and
cost. Thus, the identification of the optimal build orientation for a part is one of the
main issues in AM. The quality measures to optimize the build orientation problem
may include the minimization of the surface roughness, build time, need of supports,
maximize of the part stability in building process or part accuracy, among others.
In this paper, a multi-objective approach was applied to a computer-aided design
model using MATLAB® multi-objective genetic algorithm, aiming to optimize the
support area, the staircase effect and the build time. Preliminary results show the
effectiveness of the proposed approach.
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7.1 Introduction

Additive manufacturing (sometimes called 3D printing) refers to a process by which
3D computer-aided design (CAD) models are used to build 3D objects, by adding
layer-by-layer material. The manufacturing processes in layers are currently used
in several areas to fabricate end-use products in aircraft industry, medical implants,
jewelery, footwear industry, automotive industry and fashion products [1, 2]. Addi-
tive manufacturing technologies have grown over the years due to their effectiveness
in the development of the prototype model in a reduced production time and cost.
Depending on the specific 3D printing technology and the complexity of the 3D
model, it is important to consider support structures and how they may affect the
final result. In this work, a 3D printer using Fused Deposition Modeling (FDM) is
considered. FDM extrudes a melted filament onto a build surface along a predeter-
mined path. As the material is extruded, it cools, forming a solid surface providing
the foundation for the next layer of material to be built upon. This is repeated layer-
by-layer until the object is completed. With FDM printing, each layer is printed as a
set of heated filament threads which adhere to the threads below and around it. Each
thread is printed slightly offset from its previous layer. This allows a model to be
built up to angles of 45◦, allowing prints to expand beyond its previous layers width.
When a feature is printed with an overhang beyond 45◦, it can sag and requires sup-
port material beneath it to hold it up [3, 4]. Thus, the accuracy of the printed object
depends on the orientation of the part on the printer platform, that is, the part must
have the correct orientation in order to improve the quality of the surface. Different
measures can be considered to determine the optimal build orientation taking into
account factors such as staircase effect, model precision, build time, structure sup-
port and model stability [1, 5]. The optimal build orientation of a model helps in the
accuracy of the part, reduces the number of supports generated and the build time of
the parts, and consequently decreases the final costs.

Several approaches have been carried out to determine the orientation of a model
based on single-objective optimization using objective functions such as the build
height, staircase effect, volumetric error, volume of support structures and total con-
tact area of the part with the support structures, surface quality, surface roughness and
build deposition time [6, 7]. Recently, multi-objective approaches have been devel-
oped to determine the optimal object building orientation in the construction of CAD
models, essentially by reducing the multi-objective problem to a single-objective one
using classical scalarization methods [8–13]. A genetic algorithm was used in Brika
et al. [8] for solving a multi-objective build orientation problem. They optimized
several variables, yield and tensile strength, elongation and vickers hardness, for
material properties used, surface roughness, support structure and build time and
cost. The particle swarm optimization algorithm was used in Li et al. [10] to solve a
multi-objective optimization problem in order to get the desired orientations for the
support area, construction time and surface roughness. In the paper of Phatak and
Pande [11] a genetic algorithm was used to optimize a weighted average of five nor-
malized evaluation criteria (build height, staircase error factor, material utilization
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factor, part surface area in contact with support structures and volume of support
structures) based on their relevance to the rapid prototyping process. In Das et al.
[14], the errors related to the staircase effect and the support volume were studied,
using weights to find the best orientation of a spherical model. Cheng et al. [15] for-
mulated a multi-objective optimization problem focused on the surface quality and
production cost of the parts, obtaining solutions for all types of surfaces, whether with
complex geometries or not, or even for curved surfaces. The multi-objetive approach
presented by Byun et al. [16] intend to reduce surface roughness, construction time
and part cost. The goal was to find the ideal orientation of a 3D model by apply-
ing the Technique for Order Preference by Similarity to Ideal Solution and weight
methods. Nezhad et al. [17] proposed an Optimized Pareto Based Part Orientation
algorithm in order to optimize the minimum construction time, the support volume
and surface finish. The applied method does not use weights and optimizes objectives
simultaneously and independently. A multi-objective optimization approach, using
the Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-Objective
Particle Swarm Optimization algorithm, considering as objective functions the sur-
face roughness and the build time, for different models, was developed by Padhye
and Deb [18]. Gurrala and Regalla [19] also applied the NSGA-II algorithm to opti-
mize the strength of the model and its volumetric shrinkage as objective functions.
Through the Pareto front, they concluded that with the shrinkage of the part their
strength increases in the horizontal and vertical directions. A different study address-
ing how an easily removed support structure might be designed using less material
and build time and leaving fewer artifacts on the specimen surface can be seen in
Kuo et al. [20]. There, a cost-based formulation is employed to find a compromise
between cost and surface profile error induced by specimen weight.

In this work, the optimization of the final printed object surface is addressed,
based on the minimization of the staircase effect, the area of the object in contact
with the supporting structures and the build time. Here, a multi-objective optimization
approach is proposed to obtain the orientation of the Rear Panel Fixed model taking
into account the compromise between combinations of two measures mentioned
above. We present some preliminary experiments showing the Pareto fronts and
discuss different trade-offs between the objectives.

This article is organized as follows. Section 7.2 introduces the orientation problem,
the quality measures and the multi-objective optimization approach. The numerical
experiments are presented and discussed in Sect. 7.3. Finally, Sect. 7.4 contains the
conclusions of this study and some recommendations for future work.
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7.2 Multi-objective Approach

7.2.1 Optimization Problem

In this study, a multi-objective optimization to determine the orientation of the con-
struction of a 3D CAD model is used. It intends to simultaneously minimize more
than one measure of the quality of the printed object.

The measures involved in this study are the staircase effect, the area of the object
in contact with the support structures and the build time.

Although we intend to study three measures of quality, in this study we will per-
form the multi-objective optimization of the combinations of two objective functions
and three objective functions simultaneously. Thus the multi-objective optimization
problem is given by

min f
(
θx , θy

) = {
f1

(
θx , θy

)
, . . . , fk

(
θx , θy

) }

s.t. 0 ≤ θx ≤ 180
0 ≤ θy ≤ 180

(7.1)

where k is the number of objective functions and θx and θy are the rotation angles
along the x-axis and the y-axis, respectively.

In the following, the quality measures based on staircase effect, support area and
the required build time are described.

7.2.2 Quality Measures

7.2.2.1 Support Area

A measure of the quality of the printed object is the quantity of support area, since it
affects post-processing and surface finish [9]. The support area is defined as the total
area of the downward-facing facets that is equivalent to the total contact area of the
external supports with the object [7, 9].

The support area, SA, is defined by

SA =
∑

i

Ai

∣
∣dT ni

∣
∣ δ (7.2)

where Ai is the area of the triangular face i , d is the unit vector of the direction
of construction, ni is the normal unit vector of the triangular face i and the initial
function is given by δ = 1 if dT ni < 0 and δ = 0 if dT ni > 0 [9]. In this study, we
used the direction vector d = (0, 0, 1), because our 3D printer only moves on the
x-axis and y-axis, since the base platform (z-axis) is fixed.
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7.2.2.2 Staircase Effect

The orientation and layer thickness are the most important factors that affect the
superficial roughness [21]. Kattethota et al. [21] studied the staircase effect (SE) of
a 3D model based on the deviation between the actual and desired surfaces. It means
that the greater the deviation between the two surfaces (real and desired), the greater
the length of the layer and the lower the orientation of the construction of the part.
The staircase effect, SE , is defined by

SE =
∑

i

{ t
tan(θi )

, if tan (θi ) �= 0
0, if tan (θi ) = 0

(7.3)

where t is the layer thickness and θi is the angle between triangle facet i of model
surface and build orientation (d).

7.2.2.3 Build Time

As considered in Jibin [9] the build time encompasses the scanning time and the
preparation time. The scanning time includes solid scanning time, contour scanning
time and support scanning time, where the solid and contour scanning times are
independent of the part building direction and the support scanning time depends on
the volume of supports. The preparation time of the model covers the time required
for the platform to move down during the construction of each layer, the scraping
time of this and other preparation times. Thus, the preparation time depends on the
total number of slices of the solid, which is dependent on the height of the building
direction. Therefore, minimizing this height and consequently the number of layers,
can decrease the construction time of the part [7, 9].

The build time, BT , is given by

BT = max
i

(
dT v1

i , d
T v2

i , d
T v3

i

) − min
i

(
dT v1

i , d
T v2

i , d
T v3

i

)
(7.4)

where d is the direction vector and v1
i , v

2
i , v

3
i are the vertex triangle facets i .

7.2.3 Multi-objective Genetic Algorithm

In this work, the elitist Non-dominated Sorting Genetic Algorithm II (NSGA-II) pro-
posed by Deb [22] is used. This is a multi-objective genetic algorithm that mimics
the natural evolution of the species. Evolution starts from a population of individuals
randomly generated. Each individual represents a potential solution of the multi-
objective optimization problem. In NSGA-II, each individual in the current popula-
tion is evaluated using a Pareto ranking and a crowding measure. First the best rank
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is assigned to all the non-dominated individuals in the current population. Solutions
with the best rank are removed from the current population. Next, the second best
rank is assigned to all the non-dominated solutions in the remaining population.
In this manner, ranks are assigned to all solutions in the current population. The
fittest individuals have a higher probability of being selected to generate new ones
by genetic operators. NSGA-II uses a binary tournament selection based on non-
domination rank and crowding distance to select a set of parent solutions. When two
solutions are selected, the one with the lowest non-domination rank is preferred. Oth-
erwise, if both solutions belong to the same rank, then the solution with the higher
crowding distance is selected. Next, genetic operators such as recombination and
mutation are applied to create an offspring population. Then, the two populations are
merged together to form a combined population that is sorted according to different
non-dominated fronts. If the size of the first non-dominated front is smaller then the
population size, all members of this front are chosen for the new population. The
remaining members of the population are chosen from subsequent non-dominated
fronts in the order of their ranking.

The MATLAB® functiongamultiobj [23] provided in the Global Optimization
Toolbox will be used in order to approximate the Pareto fronts of the multi-objective
problems with each combinations of two objective functions. The gamultiobj
function implements a multi-objective genetic algorithm that is a variant of the eli-
tist NSGA-II [22]. This function provides a set of algorithm options related with
customizing randomization key properties, algorithm properties and termination
criteria.

7.3 Experiments

7.3.1 Model

The 3D CAD model used in this study is a Rear Panel Fixed (see Fig. 7.1a) that has
vents on either side. The size of the model is different from the side panels, but the
side panels for left and right are equal.

Initially, the CAD model is converted into STL (STereoLithography), which is
the default file type used by the most common 3D print file formats (see Fig. 7.1b).

The STL file is an approximation (tessellation) of the CAD model, where the geo-
metric characteristics of the 3D model are depicted. Thus, the model is represented
by a mesh of triangles, describing only the surface geometry of a three-dimensional
object without any representation of color, texture or other common attributes of the
CAD model. It was defined using 3008 triangles, a volume of 46.2 cm3 and 676 slices
for a layer thickness of 0.2 mm (layer thickness used in this work). Figure 7.2a–c
depict the SA, SE and BT objective functions landscapes for the Rear Panel Fixed
model. These objective functions are nonconvex with multiple local optima. More-
over, it can be observed that the minimizers of each objective function are different.
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(a) Rear Panel Fixed
model

(b) Rear Panel Fixed
STL model

Fig. 7.1 Rear Panel Fixed model

(a) SA objective function (b) SE objective function (c) BT objective function

Fig. 7.2 Rear Panel Fixed objective functions

Therefore, these objectives are conflicting each other and there exist different trade-
off solutions that represent different compromises between the objectives.

7.3.2 Implementation Details

Firstly, the combination of two of the quality measures, the support area, the staircase
effect and the build time of the part was considered, and the following three multi-
objective optimization problems were formulated:

• SA versus SE—problem (7.1) with f1 = SA and f2 = SE ;
• SA versus BT—problem (7.1) with f1 = SA and f2 = BT ;
• SE versus BT—problem (7.1) with f1 = SE and f2 = BT .

Secondly, a multi-objective optimization of the three objective functions simulta-
neously is considered, where SA versus SE versus BT denotes solving the problem
(7.1) with f1 = SA, f2 = SE and f3 = BT .

In order to solve the multi-objective optimization problems, the MATLAB®

gamultiobj function was used with default values, thus a population size and a
maximum number of generations of 50 and 400, respectively. By default, the Pareto
fraction is 0.35 and therefore, in each run, 18 non-dominated solutions are found
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(0.35× population size). In addition, 30 independent runs were performed and the
Simplify 3D software [24] (a 3D model printing simulator) was used to represent the
solutions found for the Rear Panel Fixed model.

In the following sections the results for the different combinations of two objec-
tives (SA versus SE , SA versus BT , and SE versus BT problems) as well as the
results for the three objectives (SA versus SE versus BT problem) are presented.

In all figures, the set of non-dominated solutions obtained among the 30 inde-
pendent runs are plotted with a blue dot. From this overall set of solutions, the
non-dominated ones were selected and marked with a red circle. Representative
solutions will be selected to discuss trade-offs between objectives and identify the
characteristics associated with these solutions.

7.3.3 Results for the SA versus SE Problem

Figure 7.3 depicts the Pareto front for SA versus SE problem, where the set of
non-dominated solutions for all runs are plotted with a blue dot.

Table 7.1 presents the representative non-dominated solutions selected from the
Pareto front, that were marked with a red circle in Fig. 7.3.

Solutions A and G are the extremes of the Pareto front, where solution A has the
best SA value and the worst SE value. Conversely, solution G is the worst in terms

Fig. 7.3 Pareto front of the Rear Panel Fixed model for the SA versus SE problem
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Table 7.1 Representative non-dominated solutions for the SA versus SE problem

Solutions θx θy SA SE

A 90.00 0.00 406.45 5168.99

B 90.00 0.01 407.05 3602.96

C 89.99 0.02 412.11 2708.20

D 90.99 0.95 1057.61 2596.88

E 94.44 2.76 1695.75 943.42

F 68.49 160.87 4951.71 372.42

G 180.00 44.95 9078.07 260.39

(a) Solutions A (b) Solution D (c) Solution E

(d) Solution F (e) Solution G

Fig. 7.4 Representative solutions for the SA versus SE problem

of SA and the best in terms of SE . These solutions correspond to the lowest values
of SA and SE that can be observed in Fig. 7.2a, b, respectively.

From Table 7.1, it is possible to observe that solutions A, B, C and D have very
similar orientation angles, although different SA and SE values, verifying a reduc-
tion in the staircase effect and an increase in the support area, in particular in the
solution D. Solutions D and E are visually very similar, as can be seen in Fig. 7.4b,
c, respectively, but the solution E requires more supports. From solutions A to G,
there is a significant change in the orientation of the part.
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7.3.4 Results for the SA versus BT Problem

Figure 7.5 shows the Pareto front for the model Rear Panel Fixed when SA and BT
are the objectives to minimize simultaneously (SA versus BT ). Table 7.2 presents the
orientation angles and objective values for representative non-dominated solutions
selected from the Pareto front. These solutions are shown in Fig. 7.6. It is possible
to see that from point A to point B there is no significant change in terms of BT , but
there is a great increase in the support area. From solutions B to C, the value of SA
increases, while the value of BT decreases. Solution D is one of the extremes of the
Pareto front, being minimum of BT function (as it can also be seen in Fig. 7.2c), but
it is a bad solution in terms of SA.

Fig. 7.5 Pareto front of the Rear Panel Fixed model for the SA versus BT problem

Table 7.2 Representative non-dominated solutions for the SA versus BT problem

Solutions θx θy SA BT

A 90.00 0.00 406.45 113.00

B 122.37 151.85 14457.00 112.98

C 144.87 140.93 19038.00 89.42

D 180.00 135.00 21190.00 43.17
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Fig. 7.6 Representative
solutions for the SA versus
BT problem

(a) Solution A (b) Solution B

(c) Solution C (d) Solution D

7.3.5 Results for the SE versus BT Problem

In Fig. 7.7, the solutions obtained in the objective space when optimizing SE ver-
sus BT problem are presented. Solutions A and F are the extremes of the Pareto
front. There is a significant improvement in the BT value, when comparing solu-
tions B and C, although a negligible decrease in SE . From solutions A to F the
part is placed lying down, as can be seen in Fig. 7.8, decreasing the height of the
part (decreasing BT ). Solutions D, E and F are visually similar as can be seen in
Fig. 7.8d, e, f (Table 7.3).

7.3.6 Results for the SA versus SE versus BT Problem

In this section, the results of the multi-objective optimization of the three objective
functions simultaneously (SA versus SE versus BT problem) are presented. The
problem was optimized using the MATLAB® function gamultiobj with default
values, as described in the Sect. 7.3.2.

Figure 7.9 shows the non-dominated solutions obtained for the Rear Panel Fixed
model. Three solutions regarding the extreme solutions for each objective are rep-
resented by A, B and C, corresponding to the angles (90.00, 0.00), (180.00, 44.95),
(180.00, 135.00), respectively (corresponding to Figs. 7.6a, 7.8a, f, respectively).

In Fig. 7.10 the two-dimensional projections of the Pareto front of the Rear Panel
Fixed model for the SA versus SE versus BT problem are presented. It can be seen
that the number of non-dominated solutions is larger than the one obtained with two
objective combinations.
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Fig. 7.7 Pareto front of the Rear Panel Fixed model for the SE versus BT problem

(a) Solution A (b) Solution B (c) Solution C

(d) Solution D (e) Solution E (f) Solution F

Fig. 7.8 Representative solutions for the SE versus BT problem
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Table 7.3 Representative non-dominated solutions for the SE versus BT problem

Solutions θx θy SE BT

A 180.00 44.95 260.39 201.52

B 81.53 163.10 453.88 168.44

C 114.95 161.23 453.89 124.88

D 164.87 135.55 1002.11 64.24

E 178.93 134.99 1735.08 44.67

F 180.00 135.00 2295.19 43.15

Fig. 7.9 Pareto front of the Rear Panel Fixed model for the SA versus SE versus BT problem

(a) SA and SE (b) SA and BT (c) SE and BT

Fig. 7.10 2D Projections of the Pareto front for the SA versus SE versus BT problem
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7.3.7 Discussion of the Results

The first three combinations of multi-objective optimization problems solved allow
to perceive the extremes and the compromise between objectives. Moreover, there are
solutions that belong to the Pareto optimal set of the problems solved, i.e., their images
belong to the Pareto fronts of the different multi-objective optimization problems.
This is the case of solution (90.00, 0.00) that minimizes SA and appears on the
Pareto fronts of SA versus SE and SA versus BT problems. In addition, the solution
that corresponds to the (180.00, 44.95) orientation was found for the SA versus SE
and SE versus BT problems, optimizing the SE function. It is also verified that
the solution (180.00, 135.00) optimizes BT , as can be seen in the solutions of SA
versus BT and SE versus BT . When BT is one of the objective functions involved
in the multi-objective problem (combinations SA versus BT and SE versus BT ),
some representative solutions put the part lying down, as can be seen in solution D
of Fig. 7.6 and in solutions D, E, and F of Fig. 7.8, as expected because BT function
intends to minimize its height. However, with the combination SA versus SE , as
expected, no solution that position the part lying down exists.

In the multi-objective simultaneous optimization of the three objective functions,
all the solutions obtained with the combinations of two objectives and others that
represent other trade-offs between objective functions were found.

7.4 Conclusions and Future Work

In this paper, the build orientation optimization of a given object - Rear Panel Fixed
model—was addressed based on three quality measures: the total support contact
area, the staircase effect and the build time.

First, a multi-objective optimization approach was proposed for three different
combinations of two objectives: SA versus SE , SA versus BT , and SE versus BT.
Some preliminary experiments were presented for the three different combinations.
The Pareto fronts obtained and the different trade-offs between the objectives were
discussed. It was also verified that some solutions were found repeatedly in different
combinations of objective functions. The results showed the effectiveness of the
proposed approach since it was possible to find different solutions to optimize the
various combinations.

Then, the three objective functions were optimized simultaneously. From the
Pareto front we may conclude that a larger number of solutions was obtained when
comparing to the ones obtained through two objective combinations, as well as, new
trade-off solutions were found. It was observed that, for all problems, the Pareto
fronts have nonconvexities and discontinuities.

In the future, we intend to perform a multi-objective optimization using other
objective functions and test more difficult models.



7 Multi-objective Optimization in the Build Orientation of a 3D CAD Model 113

Acknowledgments This work has been supported and developed under the FIBR3D project -
Hybrid processes based on additive manufacturing of composites with long or short fibers rein-
forced thermoplastic matrix (POCI-01-0145-FEDER-016414), supported by the Lisbon Regional
Operational Programme 2020, under the PORTUGAL 2020 Partnership Agreement, through the
European Regional Development Fund (ERDF). This work has been also supported by FCT—
Fundação para a Ciência e Tecnologia within the R&D Unit Project Scope: UIDB/00319/2020 and
UIDB/05757/2020 and the European project MSCA-RISE-2015, NEWEX, with reference 734205.

References

1. Pandey P, Reddy NV, Dhande S (2007) Part deposition orientation studies in layered manufac-
turing. J Mater Process Technol 185(1–3):125–131

2. Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CC, Shin YC,
Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in
engineering. Comput-Aided Des 69:65–89

3. King WE, Anderson AT, Ferencz R, Hodge N, Kamath C, Khairallah SA, Rubenchik AM
(2015) Laser powder bed fusion additive manufacturing of metals; physics, computational,
and materials challenges. Appl Phys Rev 2(4):041304

4. Turner BN, Gold SA (2015) A review of melt extrusion additive manufacturing processes: II.
materials, dimensional accuracy, and surface roughness. Rapid Prototyping J 21(3):250–261

5. Wang WM, Zanni C, Kobbelt L (2016) Improved surface quality in 3d printing by optimizing
the printing direction. In: Computer graphics forum, vol 35. Wiley Online Library, pp 59–70

6. Pereira S, Vaz A, Vicente L (2018) On the optimal object orientation in additive manufacturing.
Int J Adv Manuf Technol 98(5–8):1685–1694

7. Rocha AMAC, Pereira AI, Vaz AIF (2018) Build orientation optimization problem in additive
manufacturing. In: International conference on computational science and its applications.
Springer, Berlin, pp 669–682

8. Brika SE, Zhao YF, Brochu M, Mezzetta J (2017) Multi-objective build orientation optimization
for powder bed fusion by laser. J Manuf Sci Eng 139(11):111011

9. Jibin Z (2005) Determination of optimal build orientation based on satisfactory degree theory
for RPT. In: Proceedings of the ninth international conference on computer aided design and
computer graphics. CAD-CG ’05, IEEE Computer Society, USA, pp 225–230

10. Li A, Zhang Z, Wang D, Yang J (2010) Optimization method to fabrication orientation of parts
in fused deposition modeling rapid prototyping. In: 2010 international conference on mechanic
automation and control engineering. IEEE, pp 416–419

11. Phatak AM, Pande S (2012) Optimum part orientation in rapid prototyping using genetic
algorithm. J Manuf Syst 31(4):395–402

12. Ga B, Gardan N, Wahu G (2019) Methodology for part building orientation in additive manu-
facturing. Comput-Aided Des Appl 16(1):113–128

13. Matos MA, Rocha AMAC, Costa LA, Pereira AI (2019) A multi-objective approach to solve
the build orientation problem in additive manufacturing. In: International conference on com-
putational science and its applications. Springer, Berlin, pp 261–276

14. Das P, Chandran R, Samant R, Anand S (2015) Optimum part build orientation in additive
manufacturing for minimizing part errors and support structures. Procedia Manuf 1:343–354

15. Cheng W, Fuh J, Nee A, Wong Y, Loh H, Miyazawa T (1995) Multi-objective optimization of
part-building orientation in stereolithography. Rapid Prototyping J 1(4):12–23

16. Byun HS, Lee KH (2006) Determination of optimal build direction in rapid prototyping with
variable slicing. Int J Adv Manuf Technol 28(3–4):307

17. Nezhad AS, Vatani M, Barazandeh F, Rahimi A (2009) Multi objective optimization of part ori-
entation in stereolithography. In: WSEAS international conference. proceedings. mathematics
and computers in science and engineering. WSEAS, p 5



114 M. A. Matos et al.

18. Padhye N, Deb K (2011) Multi-objective optimisation and multi-criteria decision making in
SLS using evolutionary approaches. Rapid Prototyping J 17(6):458–478

19. Gurrala PK, Regalla SP (2014) Multi-objective optimisation of strength and volumetric shrink-
age of FDM parts: a multi-objective optimization scheme is used to optimize the strength and
volumetric shrinkage of FDM parts considering different process parameters. Virtual Phys
Prototyping 9(2):127–138

20. Kuo YH, Cheng CC, Lin YS, San CH (2018) Support structure design in additive manufacturing
based on topology optimization. Struct Multi Optim 57(1):183–195

21. Kattethota G, Henderson M (1998) A visual tool to improve layered manufacturing part quality.
In: Proceedings of solid freeform fabrication symposium, pp 327–334

22. Deb K (2001) Multi-Objective Optimization Using Evolutionary Algorithms, vol 16. Wiley,
New York, NY, USA

23. MATLAB (2019) version 9.6.0.1214997 (R2019a). Natick, Massachusetts, The MathWorks
Inc

24. SIMPLIFY3D, Integrated Software Solutions (2017). Simplify3D LLC., Legal Dept



Chapter 8
The Effects of Crowding Distance
and Mutation in Multimodal
and Multi-objective Optimization
Problems

Mahrokh Javadi, Heiner Zille, and Sanaz Mostaghim

Abstract In this paper, we study the effects of a modified crowding distancemethod
and a Polynomial mutation operator on multimodal multi-objective optimization
algorithms. Our goal is to provide an in-depth analysis on these two modifica-
tions which we apply to NSGA-II: The weighted sum crowding distance and the
neighborhood-based mutation operator. Furthermore, we examine the performance
of the proposed weighted sum crowding distance method under different weight
values to find a trend for the behaviour of the proposed algorithm. We compare the
different variations of the proposed method with state-of-the-art algorithms and the
baseline NSGA-II. The results show that our modifications can improve the func-
tionality of NSGA-II on multimodal multi-objective problems.

Keywords Multi-modality · Multi-modal problems · Multi-objective
Optimization · Evolutionary Algorithms · Non-dominated Sorting Genetic
Algorithm

8.1 Introduction

In real-world applications, there are many problems involving several conflicting
objectives which need to be optimized at the same time. These problems are usually
referred to as Multi-Objective Problems (MOP). In such problems, improving one
of the objectives can have a negative impact on other objectives [1].

Multi-objective optimization problems are mathematically formulated as follows
(we consider minimization problems, without loss of generality):
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minimize f(x) = (f1(x), f2(x), . . . , fM (x))

subject to x ∈ S ⊂ R
D

gi(x) ≤ 0, i = 1, 2, . . . , k

hj(x) = 0, j = 1, 2, . . . , p

where x = (x1, x2, . . . , xD) is a D–dimensional decision vector, (f1, f2, . . . , fM ) a
M –dimensional objective vector and gi(x) and hj(x) are inequality and equality
constraints in decision space. In order to deal with these problems, the concept
of domination can be used. Given two vectors x, y ∈ S, x is said to be domi-
nated by y (denoted by y ≺ x) if and only if ∀j ∈ {1, . . . ,M }, fj(y) ≤ fj(x), and
∃k ∈ {1, . . . ,M }, fk(y) < fk(x) [2]. A solution which is not dominated by any other
solution in the decision space is called a Pareto-optimal solution. The set of such
optimal solutions in decision space is called Pareto-Set (PS), and the corresponding
solutions in objective space are called Pareto-Front (PF) [3]. The goal of multi-
objective optimization algorithms is to find a set of non-dominated solutions with
a good approximation of the PF both in terms of convergence and diversity [1]. By
using the definition of domination, there is no guarantee that finding all of the solu-
tions in the PF leads to finding all solutionswhich actually belong to the PS, since two
solutions in decision space can map to one point in the objective space. This class of
problems is referred to as multimodal multi-objective problems by Liang and Qu [2].
More precisely, in a multimodal problem, there are multiple subsets of the PS which
map to the same objective function values, therefore the PF can be approximated
by just finding one of these subsets of the PS. However, decision makers are often
interested in high diversity both in decision and objective spaces. Hence, it might
be practical to develop algorithms that can find multiple Pareto-optimal solutions in
both decision and objective spaces for such multimodal problems.

In this paper, we modify the concept of crowding distance in both decision and
objective spaces and investigate a neighborhood-based mutation operator. Both these
approaches are based on our preliminary short study [4]. In this paper, we introduce
them and evaluate their performances in both decision and objective spaces using
various performance indicators and perform a detailed comparative study of the
obtained PS and PF. In addition, we examine their effects separately and analyze the
contribution of each of them on the approximation of PS and PF. We also evaluate
the effects of different weight parameter values on the diversity of solutions in both
decision and objective spaces. The remainder of this paper is organized as follows: In
Sect. 8.2 the related works are briefly reviewed. Section 8.3 introduces the proposed
algorithms and the novelty of the work in detail. In Sect. 8.4, the settings of the
experiments are discussed. The results of the experiments and analysis are provided
in Sect. 8.5. Finally conclusions and perspectives are presented in Sect. 8.6.



8 The Effects of Crowding Distance and Mutation in Multimodal … 117

8.2 Related Work

In recent years, there has been an increasing amount of literature focusing on finding
multimodal solutions formulti-objective optimization problems [5–7]. Some of these
works aim to get a better approximation of the PS by increasing the diversity of
solutions in decision space. However, this might not provide a better convergence to
the PS [2].

The Omni-optimizer Algorithm [8] applies a crowding distance approach to the
solutions in the decision space to preserve more solutions in decision space than the
objective space. In this algorithm, the final crowding distance value for each solution
is assigned based on the comparison of the average crowding distances in both
decision and objective spaces: If the crowding distance value of each solution either
in decision or objective space becomes larger than or equal to the average value, the
maximum crowding distance is selected, otherwise the minimum of these two values
is taken as the final crowding distance value. The provided modification was applied
to the well-knownNon-dominated Sorting Genetic Algorithm (NSGA-II) [1]. Zhou et
al. [9] proposed a model resulting in enhanced approximations of both decision and
objective spaces simultaneously. The population is classified into sub-populations in
objective space, and the model increases the diversity of solutions in decision space
by evaluating the diversity of the PS in each sup-population. The obtained solutions
show better convergence to the PS and PF for theMOP in comparison with the Omni-
optimizer algorithm. Liu et al. [10] proposed another approach calledDouble-Niches
Evolutionary Algorithm (DNEA). This algorithm is an extension of the NSGA-II for
multimodal MOPs. The performances of the DNEA are similar to those of the Omni-
optimizer algorithm with the difference that it uses sharing functions required for
fine-tuning the parameters in both decision and objective spaces.

Liang et al. [2] presentedDN-NSGA-II which incorporates a niching algorithm in
decision space. It contains twomodifications of the original NSGA-II: The crowding
distance method is used in decision space instead of objective space, and it creates a
mating pool of solutions with a niching technique. The resulting algorithm was able
to cover more solutions in the PS than the original NSGA-II algorithm.

Yue et al. [6] proposed Multi-objective Particle Swarm Optimization using Ring
topology by applying Special Crowding Distance (MO-Ring-PSO-SCD). In this
work, a ring topology is used to capture more optimal solutions in the decision space
by making robust niches, and a special crowding distance method assists to preserve
solutions in the PS. The results of this algorithm show significant improvement com-
pared to NSGA-II, DN-NSGA-II and Omni-optimizer in terms of approximation of
the PS in decision space.

In a recent work, Liang et al. [5] adopt the concept of a mutation bound process,
which gives a second opportunity to perform mutation if the mutated solutions lie
outside the boundaries of the decision space. They also use both non-dominated
sorting in objective space and the crowding distance technique in decision space.
Their proposed method, called Multimodal Multi-Objective Differential Evolution
(MMODE), was applied to a differential evolution algorithm. The results of this
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algorithm show improvement in terms of diversity of solutions in both decision and
objective spaces.

In the work presented by Liang et al. [7], an improved version of the SMPSO algo-
rithm [11] was proposed. This SMPSO-MMmakes use of creating neighborhoods in
the decision space. Furthermore, they designed a special version of crowding distance
on both decision and objective spaces to keep the obtained optimal solutions. The
experimental results show that the mentioned algorithm could obtain better approxi-
mations of the PS than other state-of-the-art algorithms like theMO-Ring-PSO-SCD.

8.3 Proposed NSGA-II-WSCD-NBM

In this section, we modify the existing NSGA-II [1] with a weighted sum crowding
distance method and a new Polynomial mutation operator in the so called NSGA-II-
WSCD-NBM algorithm.

8.3.1 Weighted-Sum Crowding Distance Method

The classical Crowding Distance (CD) approach is typically used in the objec-
tive space to improve the diversity of the solutions in the objective space [1]. This
approach leads to a better approximation of the PF, but it does not promise to preserve
all the solution in the PS. Therefore, similar to the Omni-optimizer algorithm [8], we
adopt the concept of crowding distance in both spaces to obtain the better approxi-
mation of the PS and PF. Our approach is called Weighted Sum Crowding Distance
(WSCD) as it is calculated as the weighted sum of the crowding distances in objec-
tive and decision space. The WSCDmethod is shown in Algorithm 1. In WSCD, the
calculation of crowding distance in the objective space is similar to the proposed CD
calculations in NSGA-II. The extreme solutions in the objective space are assigned
a large CD values (infinity). The CD values for the rest of the solutions are calcu-
lated by the sum of the normalized distances between the left-side and the right-side
neighbors in the objective space [1].

In the proposed WSCD approach, first the calculation of the crowding distance
in decision space is adopted from the Omni-optimizer from the literature (Lines 1
to 16). The maximum and minimum values for all solutions are calculated (Lines 2
and 3). The crowding distance values in decision space and the WSCD values for
all solutions are first set to zero (Lines 6 and 7). Then the solutions are sorted based
on the decision variable values for each variable (Line 10). The crowding distance
value for the boundary solutions are calculated from the normalized distance values
between the solution and its adjacent neighbors (Lines 11 and 12). The crowding
distance values for the rest of the solutions are calculated by normalizing the distances
between the left-side and right side neighbors for the solutions in decision space (Line
14). The novelty of our work is as follows: The crowding distance values in decision
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Algorithm 1: Weighted Sum Crowding Distance approach.
Input: List S of non-dominated solutions with added Crowding Distance (CDobj) values for

each solution in objective space according to NSGA-II [1] algorithm with s := |S|,
Number of Objectives:M ,
Number of Decision Variables

1 : D
Output: List S with added Weighted Sum Crowding Distance (CDWS ) values for each

solution
2 for i ∈ {1, ..,D} do
3 xi,max = maximum of values for i-th decision variable in S
4 xi,min = minimum of values for i-th decision variable in S
5 end
6 for j ∈ {1, .., s} do
7 S[j].CDdec = 0 //initialize CDdec of j-th solution in S
8 S[j].CDWS = 0 //initialize CDWS of j-th solution in S
9 end

10 for i ∈ {1, ..,D} do
11 S ′ = sort S ascending based on i-th decision variable

12 S ′[1].CDdec += 2 · |S ′[j+1].xi−S ′[j].xi||xi,max−xi,min|
13 S ′[s].CDdec += 2 · |S ′[j].xi−S ′[j−1].xi||xi,max−xi,min|
14 for j ∈ {2, .., s − 1} do
15 S ′[j].CDdec += |S ′[j+1].xi−S ′[j−1].xi||xi,max−xi,min|
16 end
17 end
18 for j ∈ {1, .., s} do
19 S[j].CD.obj = norm(S[j].CDobj) //normalize CDobj of j-th solution using max and min

values of CDobj in S
20 S[j].CD.dec = norm(S[j].CDdec) //normalize CDdec of j-th solution using max and min

values of CDdec in S
21 S[j].CDWS = w1 · S[j].CDdec + w2 · S[j].CDobj;
22 end
23 return S

and objective spaces are normalized in order to make the scores of crowding distance
values comparable for different dimensions in decision and objective space (Lines
18 and 19). Given the importance of having a good diversity of solutions in both
decision and objective spaces, we allocate a final weighted sum crowding distance
value based on the assigned weights w1 and w2 for the crowding distance in the
decision and the objective spaces (Line 21).

8.3.2 Neighborhood Polynomial Mutation

Inmulti-objective evolutionary algorithms, the Polynomialmutation operator is often
used and shown to be effective [12]. Itwas originally proposedbyDeb andGoyal [13].
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In this section, we propose a modification to this operator inspired by the concept of
neighborhood mutation by Qu et al. [14] to make it more applicable on multimodal
optimization problems. The neighborhood-based Polynomial mutation is presented
in Algorithm 2. In this algorithm, a set of neighbors is computed for each solution,
and the mutation operator is applied to each of them.

InAlgorithm2, at first theEuclidean distances between all solutions in the decision
space are computed (Line 3). The neighborhood of each solution is composed out of
the individual itself and itsK nearest neighbors in terms of computed distances (Line
7). Afterwards, for each individual in the population, a Polynomial mutation is used
to mutate the individual and its neighbors (Lines 9 to 26). The mutated offsprings are

Algorithm 2: Neighborhood Polynomial Mutation.
Input: List O of offspring of solutions of current generation with o := |O|,
Neighborhood Size=K
Probability of Mutation=pm,
Distribution Index=ηm
Upper and lower bounds xuk and xlk for each variable k
Output: Mutated Individuals O

1 for i ∈ {1, .., o} do
2 for j ∈ {1, .., o} do
3 Euc(i, j) = ‖O[i].x − O[j].x‖2 //calculate Euclidean distances between solutions
4 end
5 end
6 for i ∈ {1, .., o} do
7 N (i) = list of indices of K + 1 smallest values in Euc(i) //Set the neighborhood of each

solution i as itself and its K nearest neighbors
8 end
9 for i ∈ {1, .., o} do

10 for j ∈ N (i) do
11 for k ∈ {1, ..,D} do
12 b = U (0, 1)
13 if b ≤ pm then

14 δ1 = O[j].xk−xlk
xuk−xlk

15 δ2 = xuk−O[j].xk
xuk−xlk

16 b = U (0, 1)
17 if b ≤ 1/2 then

18 δq = [(2b) + (1 − 2b)(1 − δ1)
ηm+1] 1

ηm+1 − 1
19 else

20 δq = [1 − (2(1 − b)) + 2(b − 0.5)(1 − δ2)
ηm+1] 1

ηm+1

21 end
22 O[j].xk+= δq.(xuk − xlk )
23 end
24 end
25 end
26 end
27 return O
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returned (Line 27). Using this mutation operator implies that a neighboring solution
which appears in the neighborhood of many solutions, has the chance to be mutated
more often than other solutions. In that way, the solutions which are located in
crowded areas in the search space have a higher chance of being mutated. As a
result, this might lead to a better exploration in the decision space.

8.4 Experimental Setting

In order to evaluate the effectiveness of the modifications, we considered various
versions of the proposed algorithm. The NSGA-II with the Neighbourhood-based
Mutation operator (NSGA-II-NBM), theNSGA-IIwith theWeighted SumCrowding
Distance (NSGA-II-WSCD), and NSGA-II with both of the modifications (NSGA-
II-WSCD-NBM). The results are compared with the results of the state-of-the-art
multimodal optimization algorithm Mo-Ring-PSO-SCD [6]. We additionally com-
pare the results with NSGA-II [1] as the baseline. The median and the interquartile
range (IQR) of all the experimental results are calculated over 31 independent runs
for a maximum of 10,000 function evaluations. The population size is set to 100
for all the experiments. The parameters of NSGA-II are set to be similar as in the
literature [1]. We set the distribution index of both crossover ηc and mutation ηm to
be 20. The probability of crossover is set to pc = 1.0, and the probability of mutation
is set to pm = 1/D, where D is the number of decision variables. The neighborhood
size for the neighborhood-based mutation in both the NSGA-II-WSCD-NBM and
NSGA-II-NBM is set to 20. In both WSCD variations, NSGA-II-WSCD-NBM and
NSGA-II-WSCD, the weights are equally divided for crowding distances in decision
and objective spaces as w1 = 0.5 and w2 = 0.5. In the Mo-Ring-PSO-SCD, we use
the same parameter values as in the literature [6]. Therefore, we set C1 = C2 = 2.05
andW = 0.7298.We used codes provided inMatlab-based PlatEmo [15] framework
for the NSGA-II and the codes by the original authors for Mo-Ring-PSO-SCD [6].

8.4.1 Test Problems

We take the state-of-the-art test problems for multimodal multi-objective optimiza-
tion [2, 6] to test our proposed algorithms. We use the SSUF1 and SSUF3 test
problems [2] and MMF3, MMF4, MMF5,and MMF6 problems [6]. The problems
contain different levels of complexity and different numbers of equivalent subsets
of the PS to challenge the functionality of the proposed algorithms. The dimensions
of decision and objective spaces are 2 in all of the problems. Since the problems are
multimodal, one of the most important features of these test problems is that there
are always multiple distinct subsets of the PS in each problem, where each of them
covers the PF completely on its own.
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8.4.2 Performance Measures

Since our primary focus lies in decision space, the Inverted Generational Distance in
decision space (IGDX) [9] is adopted as a metric to measure the effectiveness of the
algorithms. The IGDX performance metric is calculated as the average Euclidean
distance between the set of obtained solutions and the PS in decision space. This
metric demonstrates the diversity and convergence of obtained solutions in relation to
the Pareto-optimal solutions set. A lower IGDX value indicates a better performance.
Let P∗ be a sample of the PS of the problem, and R a set of obtained solutions in
decision space by an algorithm, the IGDX indicator is formulated as:

IGDX (P∗,R) =
∑

v∈P∗ ‖R − v‖2
|P∗| (8.1)

Where ‖R − v‖2 is the minimum Euclidean distance between the sampled point v
and any point in R.

In addition, we calculated the Pareto Set Proximity (PSP) [6] performance indi-
cator to also represent the overlap ratio between the obtained solution set and PS.
This indicator is calculated by the division of the Cover Rate (CV) and the IGDX
value PSP = CR/IGDC.

In this formula the CR value represent the maximum spread of obtained solu-
tions in decision space. A higher CR value shows a better overlap ratio between the
bounding box of the obtained set and the PS.

Additionally, in order to compare the performance of the algorithms with each
other in the objective space, we use the Inverted Generational Distance (IGD)
[16, 17]:

Table 8.1 PSP values of different algorithms. An asterisk (*) indicates statistical significance
compared to the respective best algorithm

NSGA-II-
WSCD-NBM

NSGA-II-
NBM

NSGA-II-
WSCD

Mo-Ring-
PSO-SCD

NSGA-II

SSUF1 15.70245
(5.23527E–1)

13.14347
(1.59755)*

12.50492
(1.24596)*

13.50486
(1.37166)*

9.29939 (1.41609)*

SSUF3 59.21458
(9.79915)

56.24433
(12.59192)

9.36013
(7.80405)*

30.63185
(9.39582)*

9.42434 (8.32393)*

MMF3 67.17031
(5.65764)

66.58847
(9.97048)

14.95064
(11.64698)*

38.33345
(9.46867)*

12.73248(0.0314)*

MMF4 23.97306
(2.88038)

16.89303
(3.19544)*

17.15216
(3.1857)*

21.85007
(2.94561)*

8.20806 (3.14241)*

MMF5 8.72255
(3.8104E–1)

7.66519
(9.6644E–1)*

6.8738
(5.9585–1)*

7.95066
(5.7642E–1)*

4.89867 (1.33815)*

MMF6 10.03783
(6.3865E–1)

9.20888
(9.6738E–1)

7.92392
(8.2706)*

9.24543
(8.2126E–1)*

5.14445
(8.2706E–1)*
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IGD(P∗,R) =
∑

v∈P∗ ‖f(R) − f(v)‖2
|P∗| (8.2)

This indicator is formulated in the same way as the IGDX. The IGD value is
calculated, with the difference that the distances are calculated in the objective space
using a sample of the PF (which can be obtained by evaluating the PS as f(P∗))
and f(R) accordingly. All experiments were run using MATLAB R2018a on a PC
equipped with an Intel Core i7 CPU with 3GHz, a 64-bit Operating System and 16
GB of RAM.

8.5 Analysis of Results

The experimental results (median and IQR) for the comparison of the used algorithms
concerning IGDX, IGD and PSP indicators are shown in Tables 8.1, 8.2 and 8.3
respectively. Smaller IGDX and IGD values and larger PSP values indicate better
performance. In order to test the statistical significance, we take the Mann-Whitney
U statistical test with respect to the best algorithm on each test problem. That is, we
test for each algorithm the hypothesis that the performance of the algorithm and the
performance of the best algorithm on this problem have equal medians. A difference
between the two results is regarded as significant for values of p < 0.01. The best
values are highlighted in bold and significance compared to the best algorithm is
shown by an asterisk (*) in the respective columns.

From the analysis of Tables 8.1 and 8.2 regarding the comparison of IGDX and
PSP values, it can be concluded that the NSGA-II-WSCD-NBM algorithm outper-

Table 8.2 IGDX values of different algorithms. An asterisk (*) indicates statistical significance
compared to the respective best algorithm

NSGA-II-
WSCD-NBM

NSGA-II-
NBM

NSGA-II-
WSCD

Mo-Ring-PSO-
SCD

NSGA-II

SSUF1 0.06321
(1.817E–3)

0.0.07552
(9.316E–3)*

0.07923
(7.412E–3)*

0.0.07235
(7.26E–3)*

0.1051
(151E–2)*

SSUF3 0.01688
(2.885E–3)

0.01771
(3.956E–3)

0.08949
(7.2725E–2)*

0.0.03088
(8.32E–3)*

0.1021
(853E–2)*

MMF3 0.01486
(1.309E–3)

0.015017
(2.318E–3)

0.0.05839
(3.49894E–2)*

0.02478
(5.73E–2)*

0.07854(314E–
2)*

MMF4 0.04163
(4.949E–3)

0.05895
(1.0412E–2)*

0.05793
(1.0978E–2)*

0.04493
(5.78E–3)*

0.11921
(4185E–1)*

MMF5 0.11394
(4.388E–3)

0.12952
(1.7379E–2)*

0.14473
(1.1124E–2)*

0.12442
(8.72E–3)*

0.19475
(3932E–2)*

MMF6 0.09921
(6.021E–3)

0.10812
(1.054E–2)*

0.12406
(1.2611E–2)*

0.10665
(9.2E–3)*

0.18852
(6103E–2)*
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Table 8.3 IGD values of different algorithms. An asterisk (*) indicates statistical significance
compared to the respective best algorithm

NSGA-II-
WSCD-NBM

NSGA-II-
NBM

NSGA-II-
WSCD

Mo-Ring-
PSO-SCD

NSGA-II

SSUF1 5.53E–3
(6.2E–4)*

4.6E–3
(1.2E–4)

5.441E–3
(3.22E–4)*

6.49E–3
(7.6e–4)*

5.32E–3
(2.6E–4)*

SSUF3 1.455E–2
(2.516E–3)

1.4452E-2
(2.497E–3)

1.6955E–2
(1.4602E–2)*

1.877E–2
(5.89E–3)*

1.995E–2
(1.253E–2)

MMF3 1.2298 E–2
(2.12E–3)*

1.098E-2
(2.007E–3)

1.527E–2
(1.3291E–2)*

1,656E–2
(0.00485)*

1.497E–2
(9.72E–3)*

MMF4 5.347E–3
(7.6E–4)*

4.762E-2
(2.4E–4)

5.425E–3
(2.5E-4)*

7.02E–3
(9.2E–4)*

5.17E–3
(1.9E–4)*

MMF5 5.37E–
3(3.9E–4)*

4.6E-3
(1.7E–4)

5.59E–3
(3.2E–4)*

6.52E–
3(5.3E–4)*

5.34E–3
(3.2E–4)*

MMF6 5.43E–3
(4.57E–4)

4.59 E-3
(2.01E–4)

5.49E–3
(2.83E–4)*

6.43E–3
(7.5E–4)*

5.31E–3
(2.6E–4)*

forms the NSGA-II-NBM in four out of six test problems. It also shows its significant
superiority for all the test problems comparedwith the results of the other algorithms.
This means the proposed algorithm provides better approximations of PS in terms
of the both diversity and convergence of the obtained solutions.

To analyze the performance in the objective space, Table 8.3 shows the IGDvalues
for the different algorithms. As can be observed from the results, NSGA-II-NBM
obtains a better IGD value than the others, while both the NSGA-II and NSGA-II-
WSCD-NBM algorithms gained IGD values similar to each other. We can further
observe that the proposed methods significantly outperform the original NSGA-II
and the state-of-the-artMo-Ring-PSO-SCD. In terms of IGDX, the proposedNSGA-
II-WSCD-NBMperforms significantly better than both algorithms from the literature
on all of the six test problems. In the objective space, measured by the IGD indicator,
NSGA-II-NBM outperforms the state-of-the-art in all of the used benchmarks, and
the original NSGA-II on all but one test problem. According to the analysis of the
results, theWSCD variants lead to preserving distinct solutions with the same objec-
tive function values. Therefore the NSGA-II-WSCD shows improvement compared
to NSGA-II in terms of the decision space related metric. In addition, introduc-
ing neighborhood-based mutation helps to discover more Pareto-optimal solutions
during the search by increasing the diversity of solutions.

In order to better understand the similarity between the obtained solutions in both
decision and objective spaces, we present the obtained solutions for the NSGA-II-
WSCD-NBM, NSGA-II-WSCD, NSGA-II-NBM and Mo-Ring-PSO-SCD in
Figs. 8.1 and 8.2. The figures show the runs which achieved the median IGDX
indicator for each of the algorithms. As an example, in Figs. 8.2 we illustrate the
obtained solutions in the decision space for the MMF3 problem of the algorithms.
The same is shown for the objective space. We can observe that all algorithms obtain
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an evenly spread solution set al.ong the PF in the objective space. However, when we
look at the decision space we see differences. As can be seen from the Figs. 8.1 and
8.2, the obtained solutions in decision space for NSGA-II-WSCD-NBM are evenly
distributed along the PS while covering more points in each of the subsets of the PS.
This is because both the NBM and WSCD methods could help the algorithm locate
and maintain the captured optimal solutions in decision space in each generation.

In NSGA-II-NBM, the obtained solutions are mostly located in one of the subsets.
This means that this algorithm could not preserve the solutions in different subsets,
since the crowding distance is only used in objective space. While the solutions in
decision space are distributed in all the equivalent subsets of the PS in the NSGA-
II-WSCD algorithm, we still lack an even spread along these subsets (Figs. 8.1c
and 8.2c). Altogether, we conclude that NSGA-II-WSCD which uses the crowding
distance in the decision space helps to maintain most of the so far found solutions.
However, due to a lack of neighborhood mutation process, it could not find all the
solutions of the PS. The results of the Mo-Ring-NSGA-II shown in Figs. 8.1 and 8.2
also reveal that the PS could not be fully covered by the algorithm and the solutions
are not evenly distributed along the PS.

8.5.1 Influence of the Weight Values in WSCD

In addition to the overall performance of the algorithms, we investigate the impact of
the weights (w) in the WSCD variants. Our preliminary studies show that increasing
the weight value in either the objective or the decision space improves the distribu-
tion of solutions in the corresponding space, while deteriorating the distribution of
solutions in the other space. The results of different w values on the performance of
NSGA-II-WSCD are demonstrated in Fig. 8.3. The horizontal axis shows the differ-
ent weight values used for the crowding distance in decision space (from 1 to 0). The
vertical axis shows the IGDX, IGD and PSP values obtained by different weights.
We see in Figs. 8.3a and 8.3b that the performance of the NSGA-II-WSCD algorithm
is sensitive to the weight vector values on multimodal multi-objective test problems.
However, as we expected, decreasing the share of the value of crowding distance
in decision space, the performances of the NSGA-II-WSCD algorithm on approxi-
mating the PS deteriorates. On the other hand, we obtain a better approximation of
PF by increasing the weight value in objective space. The obtained PSP values in
Fig. 8.3c also support the idea that with decreasing the portion of crowding distance
in decision space the diversity of approximation of obtained PS are deteriorated.

8.5.2 Influence of the Population Size in WSCD

Finally we examine the impact of the population size on the performance of the
NSGA-II-WSCD-NBM algorithm. In most algorithms, increasing the population
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Fig. 8.1 Obtained solutions in decision and objective space for SSUF1 problem
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Fig. 8.2 Obtained solutions in decision and objective space for MMF3 problem
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Fig. 8.3 Achieved a IGDX values, b PSP values and c IGD values by NSGA-II-WSCD using
different weight values for the crowding distance in the decision space

size results in better approximations of optimal solutions [18]. However, increasing
the population size also comeswith an increase in computational costs.Wepreformed
experimentswith different population sizes for theNSGA-II-WSCD-NBMalgorithm
on the six different test problems to evaluate the effects of the population size on
the approximation of the PS and PF. The number of function evaluations is set to
10, 000 and the used population sizes are 100, 200, 300, 400, 500, 600, 700, 800,
900, and 1000. In order to make the trade off between both approximation of optimal
solutions in decision and objective spaces we equally divided the weight values on
both decision and objective spaces.

The results of these experiments are shown in Fig. 8.4, where the median IGDX,
PSP and IGD values of the experiments based on 31 independent runs are shown
on the vertical axis. As expected, we observe in Fig. 8.4a, b that larger population
sizes lead to a higher probability of locating more diverse solutions. Therefore, the
algorithm provides better approximations of the PS with larger population sizes.
However, as we can observe in Fig. 8.4c the rate of improvement regarding the
IGD indicator decreases for larger population sizes. This shows that locating more
solutions in decision space does not guarantee well-distributed solutions in objective
space.
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Fig. 8.4 Achieved a IGDX values, b PSP values and c IGD values by NSGA-II-WSCD using
different population sizes
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8.6 Conclusion

The purpose of the current study is to propose two mechanisms for acquiring bet-
ter approximations of the PS in multimodal multi-objective problems. These two
mechanisms are (1) the WSCD method which combines crowding distance in both
objective and decision spaces, and (2) a neighborhood Polynomial mutation. The two
proposed operators were included in different combinations into the existing NSGA-
II algorithm. In order to examine the performance of the presented combinations of
operators, we compare the algorithms with the original NSGA-II algorithm as well
as a state-of-the-art multimodal algorithm from the literature (Mo-Ring-PSO-SCD)
on six different test problems. The IGDX, PSP and IGD performance indicators
are used to compare the performance of the algorithms in decision and objective
spaces. The results show significant differences between the proposed variants of
the NSGA-II-WSCD-NBM, NSGA-II-WSCD and NSGA-II-NBM algorithms com-
pared to the existing methods in terms of approximations of the PS and PF. The
proposed algorithm NSGA-II-WSCD-NBM is able to outperform the state-of-the-
art Mo-Ring-PSO-SCD and the standard NSGA-II on all of the test problems in
terms of approximating the PS, while at the same time obtaining comparable IGD
values. For future work, we want to compare the proposed NSGA-II-WSCD-NBM
with other state-of-the-art multimodal algorithms like those recently proposed in
the literature [5, 7, 19]. In addition, we will evaluate the potential of the proposed
algorithm on solving more complex test problems and real world examples.
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Chapter 9
Combining Manhattan and Crowding
Distances in Decision Space for
Multimodal Multi-objective
Optimization Problems

Mahrokh Javadi, Cristian Ramirez-Atencia, and Sanaz Mostaghim

Abstract This paper presents a new variant of the Non-dominated Sorting Genetic
Algorithm to solveMultimodalMulti-objective optimization problems.We introduce
a novel method to augment the diversity of solutions in decision space by combining
the Manhattan and crowding distance. In our experiments, we use six test problems
with different levels of complexity to examine the performance of our proposed
algorithm. The results are comparedwithNSGA-II andNSGA-II-WSCDalgorithms.
Using IGDX and IGD performance indicators, we demonstrate the superiority of our
proposed method over the rest of competitors to provide a better approximation of
the Pareto Set (PS) while not getting much worse results in objective space.

Keywords Multimodality · Multi-modal problems · Multi-objective
optimization · Evolutionary algorithms · Solution space diversity

9.1 Introduction

In real world, there are many Multi-objective Optimization Problems (MOP) with
at least two conflicting objectives in nature. This means that improving one of the
objectives leads to deteriorating the value for the other objectives. Without loss of
generality, a multi-objective minimization problems is formulated as follows:
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minimize f(x) = (f1(x), f2(x), . . . , fM (x)) (9.1)

subject to x ∈ S ⊂ R
D

gi(x) ≤ 0, i = 1, 2, . . . ,G

hj(x) = 0, j = 1, 2, . . . ,H

where x = (x1, x2, . . . , xD) is considered as a D–dimensional decision vector and
(f1, f2, . . . , fM ) is a M –dimensional objective vector. gi(x) and hj(x) are inequality
and equality constraint functions in decision space.

In order to deal with these problems, the concept of domination can be used.
Given two vectors x, y ∈ S, x is said to be dominated by y (denoted by y ≺ x) if and
only if ∀j ∈ {1, . . . ,M }, fj(y) ≤ fj(x), and ∃k ∈ {1, . . . ,M }, fk(y) < fk(x) [1].

The solution of multi-objective optimization problems, is a set of non-dominated
solutions called Pareto-Set (PS), which the corresponding set of these solutions in
the objective space is called the Pareto-Front (PF).

InMultimodalMulti-Objective Optimization Problems, there are two ormore dis-
tinct solutions in the PS, which correspond to the same value in the PF. In this area,
most of the available literature deals with multimodal single objective optimization
problems and there is a relatively small number of published research onMultimodal
Multi-objective Optimization Problems (MMOP) [2]. In the current paper, we pro-
pose a new method for this type of problems, which is based on the combination
of the Manhattan Distance and Crowding Distance in decision space (MDCD). The
performance of our proposed method is examined on a number of available multi-
modal multi-objective test functions. We study the influence of the proposed method
on finding a better approximation of optimal solutions in decision space, and the
results are compared with the state-of-the-art algorithms.

The remaining parts of the paper proceed as follows: In Sect. 9.2 the related works
on MMOPs are investigated. The proposed algorithm is presented in Sect. 9.3. In
Sect. 9.4, the setting of the experiments is explained. The experiments and analysis
are presented in Sect. 9.5. In the end, Sect. 9.6 concludes the paper and provides the
future research direction.

9.2 Related Work

In the field of Evolutionary Multi-objective Optimization (EMO), the main concern
is to find a good approximation of PF with a good diversity of solutions in objective
space [3]. However, there is not much literature focusing on increasing the diversity
of solutions in the decision space to handle MMOPs.

One of the first works dealing with MMOPs was proposed by Deb and Tiwari [4]
who introduce the omni-optimizer algorithm. This algorithm is a modified version
of the well-known Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [5].
The aim of this work was dealing with a wider range of optimization problems (i.e:
single ormulti-objective and uni ormultimodal problems). They proposed amodified
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crowding distance by comparing the crowding distance value of each individual with
its average value (in both spaces), and take the larger value of the two distances.

To achieve a better distribution of solutions both in decision and objective spaces,
Zhou et al. [6] proposed a model where the population is classified into sub-
populations in the objective space, and the diversity of solutions is increased in
the decision space by evaluating the diversity of PS in each sub-population. The
obtained solutions show a better convergence to PS and PF for the MOP compared
to the Omni-optimizer algorithm.

The concept of niching in MMOPs is used by Liang et al. [1]. They proposed
Decision-based Niching NSGA-II (DN-NSGA-II), where they applied the crowding
distance technique to the decision space instead of the objective space as a sec-
ondary selection criteria. Even though this algorithm could find more Pareto optimal
solutions than NSGA-II, the solutions are not well distributed in decision space.

Another perspective is found in an algorithm called Multi-objective Particle
Swarm Optimization using Ring topology by applying Special Crowding Distance
(MO-Ring-PSO-SCD) proposed by Yue et al. [7]. They used a ring topology and a
special crowding distance method to locate and maintain more Pareto optimal solu-
tions. This algorithm is able to provide better approximation of PS in comparison
with NSGA-II, DN-NSGA-II and Omni-optimizer algorithms.

Multimodal Multi-Objective Differential Evolution algorithm (MMODE) was
proposed by Liang et al. [8]. The mutation-bound process was introduced to provide
a second opportunity to perform mutation for infeasible solutions (those outside the
boundaries) of the decision space. In their presented algorithm, the crowding distance
method is applied to the solutions in the decision space to maintain the diversity of
solutions.

In a recent study, another contribution is proposed by Liu et al. [2], called
Double-Niches Evolutionary Algorithm (DNEA). The main focus of this method
is the calculation of Euclidean distance in both decision and objective spaces. Then,
a double-niched method is applied to diversify the solutions on both decision and
objective spaces.

In a previous work, we proposed a modified version of NSGA-II algorithm called
Weighted SumCrowdingDistance usingNSGA-II algorithm (NSGA-II-WSCD) [9].
To obtain a good diversity of solutions both in the decision and objective spaces, we
compute the Crowding distance value of solutions by taking the weighted sum value
of crowding distances in both spaces.

9.2.1 Crowding Distance in the NSGA-II Algorithm

The NSGA-II is a population-based algorithm that was introduced by Deb et al. in
2002 [5], and was described as one of the most popular multi-objective algorithms
by a study in 2011 [10].

This algorithm provides a selection process consisting in two steps: first, the
sorting of the population through a fast non-dominated sorting method; second, for
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each front obtained in the previous step, the crowding distance method is applied
in the objective space in order to decide which solutions provide a better diversity.
The algorithm keeps the solutions with lower rank and higher crowding distance in
successive generations. Themaintenance of diversity in crowdingdistance is based on
the selection of solutions in less crowded areas in the objective space. The crowding
distance method used in NSGA-II is presented in Algorithm 1.

In this method, the first step consist on computing the maximum and minimum
values for each objective (Lines 2 and 3) among all the solutions of the front. Then, the
crowding distance values are initialized as zero for every solution (Line 6). Following
that, for each objective function, solutions are sorted according to their fitness values
in that objective function (Line 9), and the first and last individuals (i.e. the extreme
points) are assigned a crowding distance value of infinity (Lines 10 and 11), in order
to keep them for next generation, as they preserve the spread of the front. Then, for
the rest of solutions of the front, the normalized distance between the left-side and
right-side neighbors in that objective function is added to the crowding distance in
each solution (Line 13).

Algorithm 1: Crowding Distance method used in NSGA-II algorithm.
Input: List P of non-dominated solutions with p := |P|,
Number of Objectives M
Output: List P with added Crowding Distance (CD) values for each solution

1 for i ∈ {1, ..,M } do
2 fi,max = maximum of values for i-th objective in P
3 fi,min = minimum of values for i-th objective in P
4 end
5 for j ∈ {1, .., p} do
6 P[j].CD = 0 //initialize CD of j-th solution in P
7 end
8 for i ∈ {1, ..,M } do
9 P′ = sort P ascending based on i-th objective

10 P′[1].CD = ∞
11 P′[p].CD = ∞
12 for j ∈ {2, .., p − 1} do
13 P′[j].CD += P′[j+1].fi−P′[j−1].fi

fi,max−fi,min
14 end
15 end
16 return P

9.3 Proposed NSGA-II-MDCD Algorithm

In this section we propose a modified distance measurement technique that can be
used to obtain a better diversity of solutions in decision space, and therefore make a
better approximation of PS.
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Fig. 9.1 An example of the
computation of MDCD, and
its influence on the diversity
of solutions in the decision
space

In the proposed method, due to the natural capability of grids to represent the
distribution of solutions, we took the Manhattan distance metric (also called p1
metric) as a distance measurement method in the decision space. For each solution,
we calculate the Manhattan distance to all other solutions in the current front. Then,
our global Manhattan distance metric is computed as the summation of all of these
distances between each solution and the rest of solutions:

MDglobal(a) =
∑

p∈P
‖a − p‖ =

∑

p∈P

D∑

i=1

|ai − pi| (9.2)

where P is the current front of solutions, D is the dimension of decision variables,
and ai and pi represent the grid index values of solutions a and p in dimension i.

For a better diversity of solutions, we multiply the obtained global Manhattan
distance metric value with its crowding distance value in decision space (as defined
in [4], this distance only takes into account its nearest neighbor for boundaries).

In Fig. 9.1, an example is used to better illustrate the influence of both Manhattan
and crowding distance on obtaining a good diversity of solutions in decision space.

In Fig. 9.1, the global Manhattan distance values of S1 and S2 are both equal to 20.
Both of the solutions are located far from the rest of the solutions and both make a
good coverage of solutions in decision space. In this example, solution S1 is located in
a more crowded neighborhood area than S2. Therefore, the crowding distance value
for S1 is smaller than for the other solutions. By multiplying both Manhattan and
crowding distance values, S2 gets a larger value than the other solutions. Therefore,
we could guarantee a better diversity of solutions by using both distance metrics.

In Algorithm 2 we present our proposed method (NSGA-II-MDCD). We mod-
ify NSGA-II by changing the crowding distance with our MDCD metric. First we
calculate the global Manhattan distance value (Lines 1 to 12). Then, the crowding
distance value for all solutions in the decision space is calculated (Lines 8 to 21). The
FinalMDCD value for each solution is calculated by multiplying the two distances.



136 M. Javadi et al.

Algorithm2:CombiningManhattanDistance andCrowdingDistance (MDCD)
approach.
Input: Number of Objective functions: M ,
Number of Decision variables : D,
List P of solutions of current front (with GridIndex values for each dimension), of size
p = |P|
Output: List P of solutions of current front with extra property of Combined Manhattan

Distance and Crowding Distance (MDCD) for each solution
1 for j ∈ {1, .., p} do
2 P[j].MDglobal = 0
3 P[j].CDdec = 0
4 P[j].MDCD = 0
5 end
6 for i ∈ {1, .., p} do
7 for j ∈ {1, .., p} do
8 for k ∈ {1, ..,D} do
9 P[i].MDglobal+ = P[i].GridIndex(k) − P[j].GridIndex(k))

10 end
11 end
12 end
13 for i ∈ {1, ..,D} do
14 xi,min = minimum of values for i-th decision variable in P
15 xi,max = maximum of values for i-th decision variable in P
16 end
17 for i ∈ {1, ..,D} do
18 P′ = sort P ascending based on i-th decision variable

19 P′[1].CDdec += 2 · |P′[j+1].xi−P′[j].xi||xi,max−xi,min|
20 P′[p].CDdec += 2 · |P′[j].xi−P′[j−1].xi||xi,max−xi,min|
21 for j ∈ {2, .., p − 1} do
22 P′[j].CDdec += |P′[j+1].xi−P′[j−1].xi||xi,max−xi,min|
23 end
24 end
25 for i ∈ {1, .., p} do
26 P[j].MDCD = P[j].CDdec · P[j].MDglobal
27 end
28 return P

9.4 Experiments

This section is dedicated to investigate the effectiveness of the proposed method
(NSGA-II-MDCD) for obtaining a good approximation of solutions in both decision
and objective spaces. We compare the proposed approach with the state-of-the-art,
NSGA-II-WSCD algorithm and NSGA-II as a base-line algorithm (Table 9.1).
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Table 9.1 Featurs of test problems

Problem name No. of pareto subsets PF shape

SSUF1 2 Concave

SSFU3 2 Concave

MMF3 2 Concave

MMF4 4 Concave

MMF5 4 Convex

MMF6 4 Convex

9.4.1 Test Problems

We took 6 multimodal multi-objective test functions from the literature SSUF1,
SSUF3 [1] and MMF3-MMF6 [7]. These test problems have different shapes and
properties of the PF (concave and convex).

9.4.2 Parameter Settings

In the following we explain the parameter setting used in the comparisons. The
population size is set to 100 andwe used 10,000 function evaluations as a termination
criterion in all the experiments. We calculate the median and interquartile (IQR)
ranges out of 31 independent runs. We used Simulated Binary Crossover (SBX) and
Polynomial Mutation (PM) as variation operators. The distribution index for both
crossover and mutation is set to 20. The recombination probability Pc = 1 and the
mutation probability Pm = 1/D. In a first study, in order to decide the optimal grid
size of MDCD, the performance with different grid sizes is compared, and the best
grid size reported is successively used in the following experiments. For the literature
algorithms used to compare, we used the parameter setting as in the literature where
the WSCD value is obtained by equally division of weights in both decision and
objective spaces. The implementation of these algorithms, as well as NSGA-II, is
provided in the Matlab-based platform PlatEmo [7].

9.4.3 Performance Measures

To assess the performance of the proposed method and the compared algorithms, we
used the Inverted Generational Distance in decision space (IGDX) [6]. The obtained
values demonstrate both the diversity and convergence of solutions in decision space
by calculating the Euclidean distance between the PS and the set of obtained solutions
in decision space. The mathematical definition of IGDX is:



138 M. Javadi et al.

IGDX (P∗,R) =
∑

v∈P∗ ‖R − v‖2
|P∗| (9.3)

Where R and P∗ accordingly are a set of obtained solutions in decision space and
a sample of the PS, and ‖R − v‖2 is the minimum Euclidean distance between the
sampled point v and any point in R.

We also look at the diversity and convergence of the obtained solutions in objective
space, by calculation of Inverted Generational distance (IGD) [11, 12], which is
mathematically formatted in the same way as IGDX as follows:

IGD(P∗,R) =
∑

v∈P∗ ‖f(R) − f(v)‖2
|P∗| (9.4)

where R and P∗ respectively are a set of obtained solutions in objective space and a
sample of the PF.

Moreover, in order to better demonstrate the performance of the proposedmethod,
we used the Pareto Set Proximity (PSP) performance indicator to evaluate the approx-
imation of the obtained solutions in decision space [7]. PSP is computed as follows:

PSP(P∗,R) = CR(P∗,R)
IGDX (P∗,R)

(9.5)

where CR, i.e. the cover rate, is a modification of the Maximum Spread (MS) for
decision space. A high value of the PSP indicator represents a better performance of
the algorithm in terms of diversity in decision space.

9.5 Analysis of Results

First, in order to evaluate the impacts of grid size on the performance of the proposed
algorithm, we conducted a experimental comparison with 1, 5, 10, 15, 20, 25 and
30 grids. To perform this experiment, the population size is fixed to 100, and all
the parameter values are as explained in the subsection of Parameter Settings. The
results of the grid size comparison are presented in Fig. 9.2. As can be seen from
Fig. 9.2a, b, c, when increasing the size of the grids from 1 to 5, the IGDX and
IGD values decrease, while the PSP values increase accordingly. On the other hand,
by increasing the grid sizes from 5 to 30, the IGD and IGDX on most problems
keep their steady states and do not show changes. In some of the problems, some
changes can be appreciated between different sizes, but there is no clear increasing
or decreasing behaviour as the grid size increases.

A simple explanation for these observations is that by increasing the size of the
grids, theManhattan distance between all the solutions in decision space is expanding
accordingly. Therefore, by increasing the value of multiplication of the Manhattan
distance and crowding distance, the same solutions are selected for the selection



9 Combining Manhattan and Crowding Distances … 139

1 5 10 15 20 25 30

Grid Size

0.05

0.1

0.15

0.2

0.25

0.3

0.35
I
G
D
X

SSUF1
SSUF3
MMF3
MMF4
MMF5
MMF6

(a) IGDX values

1 5 10 15 20 25 30

Grid Size

2

4

6

8

10

12

14

16

18

20

P
S
P

SSUF1
SSUF3
MMF3
MMF4
MMF5
MMF6

(b) PSP values

1 5 10 15 20 25 30

Grid Size

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

I
G
D

SSUF1
SSUF3
MMF3
MMF4
MMF5
MMF6

(c) IGD values

Fig. 9.2 Achieved a IGDX values, b PSP values and c IGD values by NSGA-II-MDCD algorithm
with different grid sizes

process for the different grid sizes. Following this results, a grid size of 10 is selected
for the rest of experiments.

Now, the IGDX, IGD and PSP results for the different algorithms compared are
presented in Tables 9.2, 9.3 and 9.4, respectively. The Mann-Whitney U statistical
test is taken to test statistical significance according to the best algorithm on each
test problem, and the significance is assumed for a value of p ≤ 0.05. The values
highlighted in bold represents the best values for each problem, and the asterisks (*)
demonstrate the significance compared to the best algorithm for each test problem.

As can be observed in Tables 9.2 and 9.4, NSGA-II-MDCD performs the best in
terms of IGDX and PSP compared to the rest of the algorithms for four out of six test
problems, which means that the proposed algorithm provides better distribution of
solutions in the decision space. Even though NSGA-II-WSCD algorithm is getting
better results for MMF3 andMMF4 compared to the proposed method, no statistical
significance was observed between these two algorithms. A possible explanation
for this might be that by griding the decision space, in MMF3 and MMF4, as the
optimal solutions are more concentrated in concrete grids, then the NSGA-II-MDCD
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Table 9.2 IGDX values for comparison of different algorithms

NSGA-II-MDCD NSGA-II-WSCD NSGA-II

SSUF1 0.07478 (0.00849) 0.07923 (0.00741)* 0.1051 (0.0151)*

SSFU3 0.08699 (0.072) 0.08949 (0.07273) 0.1021 (0.0853)

MMF3 0.07747 (0.03521) 0.05839 (0.03499) 0.07854(0.0314)

MMF4 0.06053 (0.01059) 0.05793 (0.01098) 0.11921 (0.04185)*

MMF5 0.13723 (0.01042) 0.14473 (0.01112)* 0.19475 (0.03932)*

MMF6 0.11752 (0.00682) 0.12406 (0.01261)* 0.18852 (0.06103)*

Table 9.3 IGD values for comparison of different algorithms

NSGA-II-MDCD NSGA-II-WSCD NSGA-II

SSUF1 0.00662 (0.00053)* 0.00544 (0.00032) 0.00532 (0.00026)

SSFU3 0.02011 (0.02278) 0.01696 (0.0146) 0.01995 (0.01253)

MMF3 0.01805 (0.01474) 0.01527 (0.01329) 0.0149 (0.00972)

MMF4 0.00645 (0.00035)* 0.00542 (0.00025)* 0.00517 (0.00019)

MMF5 0.00655 (0.00034)* 0.00559 (0.00032)* 0.00534 (0.00032)

MMF6 0.00647 (0.0005)* 0.00549 (0.00028)* 0.00531 (0.00026)

Table 9.4 PSP values for comparison of different algorithms

NSGA-II-MDCD NSGA-II-WSCD NSGA-II

SSUF1 13.2156 (1.48997) 12.50492 (1.24596)* 9.29939 (1.41609)*

SSFU3 10.10445 (7.29567) 9.36013 (11.64698) 9.42434 (8.32393)

MMF3 10.69778 (0.03521) 14.95064 (0.03499) 12.73248(0.0314)

MMF4 16.23044 (3.10691) 17.15216 (3.1857) 8.20806 (3.14241)*

MMF5 7.16681 (0.45601) 6.8738 (0.59585)* 4.89867 (1.33815)*

MMF6 8.41297 (0.53495) 7.92392 (1.67318)* 5.14445 (0.82706)*

is getting worse results compared to other problems with optimal solutions involved
in larger number of grids. As we expected from Table 9.3, the IGD value of the
NSGA-II algorithm shows its superiority in comparisonwith the proposed algorithm.
The reason is that the main focus of NSGA-II algorithm is to get a better diversity
of solutions in objective space, while neglecting decision space, therefore a lower
IGD value is expected. According to the further analysis of results we could claim
that NSGA-II-MDCD algorithm provides a better approximation of PS while not
disturbing that much the approximation of PF.

Moreover, the results solutions obtained in the median execution for the three
algorithms over the different data sets are represented in Figs. 9.3, 9.4, 9.5 and
9.6, both in decision and objective spaces. In these figures, the true PS and PF are
represented in blue, so the clustered solutions can be appreciated. As can be seen



9 Combining Manhattan and Crowding Distances … 141

1 1.5 2 2.5 3

x1

-1

-0.5

0

0.5

1
x
2

(a) PS for NSGA-II-MDCD

0 0.2 0.4 0.6 0.8 1

y1

0

0.2

0.4

0.6

0.8

1

y
2

(b) PF for NSGA-II-MDCD

1 1.5 2 2.5 3

x1

-1

-0.5

0

0.5

1

x
2

(c) PS for NSGA-II-WSCD

0 0.2 0.4 0.6 0.8 1

y1

0

0.2

0.4

0.6

0.8

1

y
2

(d) PF for NSGA-II-WSCD

1 1.5 2 2.5 3

x1

-1

-0.5

0

0.5

1

x
2

(e) PS for NSGA-II

0 0.2 0.4 0.6 0.8 1

y1

0

0.2

0.4

0.6

0.8

1

y
2

(f) PF for NSGA-II

Fig. 9.3 Obtained solutions in decision and objective space for SSUF1 problem

from Fig. 9.3, as an instance, the solutions of NSGA-II-MDCD are more evenly
distributed in decision space than the solutions of NSGA-II-WSCD and NSGA-II
algorithms. In objective space, the algorithm is still obtaining a good approximation
of the PF, but some parts of it are less crowded than others in comparison with
NSGA-II.
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Fig. 9.4 Obtained solutions in decision and objective space for SSUF3 problem
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Fig. 9.5 Obtained solutions in decision and objective space for MMF5 problem
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Fig. 9.6 Obtained solutions in decision and objective space for MMF6 problem
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9.6 Conclusions

The goal of this study is to develop a method forMMOPs to provide a better approxi-
mation of solutions in the decision space. It is important to note that the good diversity
of solutions in objective space does not guarantee a good diversity of solutions in
decision space. As a result, we propose a technique to focus on increasing the distri-
bution of solutions in decision space.We combine theManhattan distancemetricwith
crowding distance in decision space to satisfy our goal. Both distance measurement
metrics together help to make a better distribution of solutions in decision space.
The results of our experiments with 6 test problems show the superiority of the pro-
posed method according to the approximation of PS over the NSGA-II-WSCD and
NSGA-II algorithms. Moreover, we investigate the effects of gridding size, where
the results show that the grid size does not change the performance of the proposed
algorithm.

Further studies are required to investigate and develop new techniques providing
the ability of better local search to locate more optimal solutions.
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Chapter 10
An Unsteady Aerodynamic/Aeroacoustic
Optimization Framework Using
Continuous Adjoint

M. Monfaredi, X. S. Trompoukis, K. T. Tsiakas, and K. C. Giannakoglou

Abstract In this paper, an unsteady aerodynamic/aeroacoustic optimization frame-
work is presented. This is based on the continuous adjointmethod to a hybrid acoustic
prediction tool, in which the near-field flow solution results from an unsteady CFD
simulation while the acoustic propagation to far-field makes use of an acoustic anal-
ogy. The CFD simulation is performed using the in-house GPU-enabled URANS
equations’ solver for which a continuous adjoint solver is available. The noise pre-
diction tool and its adjoint are developed based on the permeable version of the
Ffowcs Williams and Hawkings (FW-H) analogy, solved in the frequency domain.
Its implementation is verified w.r.t. the analytical solution of the sound field from a
monopole source in uniform flow. Then, the accuracy of the hybrid solver is verified
by comparing the sound directivity computed by the FW-H analogy with that of a
CFD run, for a 2D pitching airfoil in a subsonic inviscid flow. The accuracy of the
sensitivities computed using the unsteady adjoint solver is verified w.r.t. those com-
puted by finite differences. Finally, the programmed software is used to optimize the
shape of the pitching airfoil, aiming at min. noise with an equality constraint for the
lift.
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10.1 Introduction

During the last decades, there have been tight regulations regarding noise pollution
which underline the importance of an effective noise source mitigation strategy. For
example, based on the Flightpath 2050 report of the European Commission [1], it is
mandated to reduce the perceived noise by 65% from its level in 2000, by the year
2050. This means designers must investigate innovative methods to further improve
the process of designing quieter and more efficient systems. Among the various
existing methods performing numerical optimization, adjoint methods [2, 3], are
advantageous since their computational cost is independent of the number of design
variables.

Although adjoint methods have a strong background in aerodynamic shape opti-
mization [4], they are relatively new in the field of aeroacoustic optimization [5–12].
In [5], a steady continuous adjoint method was presented for the reduction of the
noise perceived by the car driver due to its sidemirror using a turbulence-based surro-
gate objective function.With this model, the omission of the adjoint to the turbulence
model equations would merely lead to zero sensitivities, since the objective depends
only on turbulence. In [6], a discrete adjoint to a hybrid URANS-FW-H solver was
developed for inverse shape design and turbulent blunt trailing edge noise reduction.
Recently, the samemethod has been used to perform shape optimization to reduce the
far-field noise from a pitching airfoil in an inviscid flow [7], a 2D wing-flap in lami-
nar flow [8], a rod-airfoil in turbulent flow [9] and a jet-flap interaction in turbulent
flow [10]. In these works [6–10], discrete adjoint was used with the help of auto-
matic differentiation. Regarding continuous adjoint, the permeable FW-H formula is
solved using a finite element method, leading to the necessary adjoint conditions at
the interface between the Computational Fluid Dynamics (CFD) and Computational
Aeroacoustics (CAA) domains [11]. The continuous adjoint for a hybrid solver for
incompressible flow models and the Kirchhoff integral, for automotive applications,
can also be found in the literature [12]. To the author’s knowledge, the continuous
adjoint method to compressible flows based on the FW-H analogy appears, for the
first time, in this paper.

For the first verification of the method presented in this paper, the CFD model is
restricted to the Euler equations. A hybrid aeroacoustic noise prediction tool is built
on the in-house GPU-enabled flow solver [13, 14], by additionally implementing
the FW-H analogy. For its verification, numerical results are compared with the ana-
lytical solution of a monopole sound source in a flow-stream, and CFD results for
a 2D pitching isolated airfoil. Then, the continuous adjoint method is verified and
used to perform shape optimization, with an aeroacoustic objective function and an
aerodynamic equality constraint.
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10.2 Governing Equations

10.2.1 Flow Equations

The 2D unsteady inviscid flow equations of a compressible fluid are discretized using
a dual-time steppingmethod, being second-order accurate in time. Spatial discretiza-
tion is based on vertex-centered finite volume. Convective fluxes are computed using
the upwind Roe scheme, with second-order accuracy in space. The discretization
of the governing equations in the pitching airfoil case takes the geometrical conser-
vation law into account. Along the far-field boundary, a non-reflecting condition is
applied [15].

10.2.2 Noise Prediction Using the FW-H Analogy

Based on the assumption that sound is perceived as pressure fluctuations, acous-
tic noise can be computed using CFD simulations. However, a purely CFD-based
approach may become very expensive when the acoustic noise at a far-field location
is of interest, because the fine CFD mesh should be extended far away, up to the
receiver’s location. The combination of CFD methods and acoustic analogies rely
upon the computationally cheaper wave equation. Such methods are usually referred
to as hybrid methods and their origin can be traced back to the Lighthill analogy [16];
this was later extended by Curle [17] to account for the presence of stationary solid
surface and Ffowcs Williams and Hawkings to include moving surfaces [18]. In this
paper, the permeable version of FW-H analogy is used. The resulting wave equation,
a.k.a. the FW-H equation, reads:

(
∂2

∂t2
− c2∞

∂2

∂xi∂xi

) (
H( f )p′

C2∞

)
= ∂

∂t
(Qδ( f )) − ∂

∂xi
(Fi δ( f )) + ∂2

∂xi∂x j
(H( f )Ti j ) (10.1)

and for bodies in motion (such as a pitching airfoil in uniform flow), the Galilean
transformation can be used to transform Eq.10.1 into a relative system associated
with the moving body, as follows [19] :

(
∂2

∂t2 + υ∞iυ∞ j
∂2

∂xi ∂x j
+ 2υ∞i

∂2

∂xi ∂t
− c2∞

∂2

∂xi ∂xi

) (
H( f )p′
C2∞

)
(10.2)

= ∂
∂t (Qδ( f )) − ∂

∂xi
(Fiδ( f )) + ∂2

∂xi ∂x j
(H( f )Ti j )

where f is the signed distance from the interface of the CFD and CAA domains, as
shown in Fig. 10.1. This interface will be referred to as the FW-H surface. The FW-H
surface lays inside theCFDdomain though far away from the body in order for this not
to be affected by changes in the body shape to be designed. H is the Heaviside func-
tion, δ is the Dirac delta function and c∞ is the free-stream sound speed. Q(�x, t) =
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Fig. 10.1 Schematic of permeable FW-H surface. The dashed-line shows the interface between the
CFD and CAA domains

(ρυi − ρ∞υ∞i )ni , Fi (�x, t) = (ρ(υi − 2υ∞i ) + ρ∞υ∞iυ∞ j + pδi j − τi j )n j and
Ti j (�x, t) = ρ(υi − υ∞i )(υ j − υ∞ j ) + (p − c2∞ρ)δi j are known as the monopole,
dipole and quadrupole source terms, respectively, defined along the FW-H surface.
ρ = ρ∞ + ρ ′, p = p∞ + p′ andυi = υ∞i + υ ′

i are local density, pressure andveloc-
ity components, respectively, and τi j is the viscous stress tensor. Free-stream quan-
tities are indexed by ∞. �n is the unit normal vector to the FW-H surface pointing
towards the CAA domain. δi j is the Kronecker delta.

For 3D problems, integral solutions to the FW-H equation are available in the time
domain. However, in 2D problems, to avoid tail effects, an infinitely long time inte-
gration range must be used. To avoid this, Eq.10.2 is transformed into the frequency
domain using the Fourier transformation as follows:

(
∂2

∂xi ∂xi
+ k2 − 2iM∞i k

∂
∂xi

− M∞i M∞ j
∂2

∂xi ∂x j

) (
H( f ) p̂′) (10.3)

= −iωQ̂δ( f ) + ∂
∂xi

(F̂iδ( f )) − ∂2

∂xi ∂x j
(H( f )T̂i j )

where the hat symbol (ˆ) denotes frequency domain variables and ω is the frequency.
M∞i = υ∞i/c∞ and the wave number is k = ω/c∞. Equation 10.3 is solved by
convolving it with the appropriate Green function. Then, the pressure fluctuation in
the frequency domain, at the receiver’s location, results from:

H( f ) p̂′(�xo, ω) = − ∮
f =0

iωQ̂(�xs, ω)Ĝ(�xo, �xs, ω)ds (10.4)

− ∮
f =0

F̂i (�xs, ω) ∂Ĝ(�xo,�xs ,ω)

∂xs i
ds − ∮

f >0
T̂i j (�xs, ω) ∂2Ĝ(�xo,�xs ,ω)

∂xs i ∂xs j
dV
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where �xo and �xs are the receiver and sources’ (sources are located on the FW-H
surface) positions, respectively. Ĝ(�xo, �xs, ω) is the 2D Green function for subsonic
flows in the frequency domain, which is defined as:

Ĝ(�xo, �xs, ω) = i
4β exp(iM∞kx̄1/β2)H (2)

0

(
k
β2

√
x̄21 + β2 x̄22

)
(10.5)

x̄1 = (xo1 − xs1) cos θ + (xo2 − xs2) sin θ (10.6)

x̄2 = −(xo1 − xs1) sin θ + (xo2 − xs2) cos θ (10.7)

In the above equations, θ is the free-stream flow angle, such that tan θ = υ∞2/υ∞1,
M∞ is the free-streamMachnumber and thePrandtl-Glauert factor isβ = √

1 − M2∞.
H (2)

0 stands for Hankel function of the second kind of zero order.
For the low-speed cases this paper is dealing with, the contribution of quadrupole

terms can be neglected, avoiding thus the computation of a volume integral. The
noise prediction module is combined with the in-house flow solver as follows: first,
an unsteady flow solution is performed in theCFDdomain and, at the end of each time
step, source terms Q and Fi are computed over the FW-H surface. Upon completion
of the unsteady CFD simulation, the mean value of each source is subtracted from
instantaneous values since the mean value corresponds to zero frequency that does
not generate noise. Since it is hard to achieve pure periodic results, aHanningwindow
is applied to the sources to eliminate discontinuity between the first and last points,
followed by a Fourier transform. At the end, pressure fluctuations in the frequency
domain are computed using Eq.10.4.

10.3 Formulation of the Continuous Adjoint Method

In aerodynamic shape optimization, adjoint methods compute the gradient of an
objective function w.r.t. the design variables. The objective functions, such as the lift,
drag etc. are integral quantities defined along the solid boundaries and contribute to
either the adjoint boundary conditions or the adjoint sensitivities. On the other hand,
in aeroacoustic problems, the objective function is defined at the remote receiver’s
location, �xo, and affects neither the adjoint boundary conditions nor the sensitivities;
instead this contributes to the adjoint equations in the form of source terms applied
along the FW-H surface. An objective function J , originally written as a time integral
of p′, can also be expressed in the frequency domain as:

J = ∫
ω

∣∣ p̂′(�xo, ω)
∣∣dω (10.8)
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where p̂′(�xo, ω) is the outcome of Eq.10.4 and
∣∣ p̂′∣∣ =

√
p̂

′2
Re + p̂

′2
Im , where subscripts

Re and Im refer to the real and imaginary parts of complex variables. Here, the
integration range is over the whole frequency domain.

To formulate the continuous adjoint problem, an augmented objective function is
defined as Faug = J + ∫

T

∫



ψn Rnd
dt , where n = 1, 4 and ψn , Rn , 
 and T are
the adjoint variable fields, the residuals of the unsteady Euler equations, the CFD
domain and the solution period, respectively. By differentiating Faug w.r.t. the design
variables bn and setting the multipliers of the variations in the flow variables to zero,
the unsteady adjoint equations are obtained as:

− ∂ψm

∂t − Anmk
∂ψn

∂xk
+ SFW−Hmδ( f ) = 0 (10.9)

where Anmk = δgnk
δUm

. Um and gnk are the conservative flow variables and invis-
cid fluxes, respectively. The adjoint boundary condition along the solid walls is
ψm+1nwm + (ugrid

m nwm )ψ4 = 0, where �nw is the unit normal to the wall and ugrid
m

is the grid velocity at each node on the pitching airfoil. bn are the coordinates of
the control points of the shape parameterization method which is based on Bezier
polynomials.

In Eq.10.9, SFW−Hm is a term that includes contributions from the FW-H analogy
to the adjoint equations. To find this term, Eq.10.8 is differentiated w.r.t. bn , as
follows:

δ J
δbn

= ∫
ω

1| p̂′|
(
p̂′

Re
δ p̂′

Re

δbn

)
dω + ∫

ω

1| p̂′|
(
p̂′

Im
δ p̂′

Im

δbn

)
dω (10.10)

For the sake of simplicity, starting from Eq.10.10, p̂′(�xo, ω), Ĝ(�xo, �xs, ω),
F̂k(�xs, ω) and Q̂(�xs, ω) are shorted to p̂′, Ĝ, F̂k and Q̂, respectively. The real and
imaginary part of the p̂′ can be found based on Eq.10.4. Since the grid does not
change at the FW-H surface location during the optimization, the derivatives of the
Green function and its spatial derivatives as well as those of the surface element ds,
w.r.t. bn are zero. So, the variation of the real and imaginary part of p̂′ w.r.t. bn read:

δ p̂′
Re

δbn
=−

∮
f =0

[(
δ F̂k

δbn

)
Re

(
δĜ

δxsk

)
Re

−
(

δ F̂k

δbn

)
Im

(
δĜ

δxsk

)
Im

]
ds (10.11)

+
∮
f =0

ω

[(
δ Q̂

δbn

)
Re

ĜIm +
(

δ Q̂

δbn

)
Im

ĜRe

]
ds

and
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δ p̂′
Im

δbn
=− ∮

f =0

[(
δ F̂k
δbn

)
Re

(
δĜ
δxsk

)
Im
+

(
δ F̂k
δbn

)
Im

(
δĜ
δxsk

)
Re

]
ds (10.12)

− ∮
f =0

[
ω

((
δ Q̂
δbn

)
Re
ĜRe −

(
δ Q̂
δbn

)
Im
ĜIm

)]
ds

By introducing Eqs. 10.11 and 10.12 in Eq.10.10, the derivatives of J become:

δ J
δbn

= − ∫
ω

∮
f =0

[
1| p̂′|

(
p̂′
Re

(
δĜ
δxsk

)
Re

+ p̂′
Im

(
δĜ
δxsk

)
Im

) (
δ F̂k
δbn

)
Re

]
dsdω (10.13)

− ∫
ω

∮
f =0

[
1| p̂′|

(
p̂′
Im

(
δĜ
δxsk

)
Re

− p̂′
Re

(
δĜ
δxsk

)
Im

) (
δ F̂k
δbn

)
Im

]
dsdω

− ∫
ω

∮
f =0

ω 1| p̂′|
[(

− p̂′
ReĜIm + p̂′

ImĜRe

) (
δ Q̂
δbn

)
Re

]
dsdω

− ∫
ω

∮
f =0

ω 1| p̂′|
[(

p̂′
ReĜRe − p̂′

ImĜIm

) (
δ Q̂
δbn

)
Im

]
dsdω

In Eq.10.13, δ F̂k
δbn

and δ Q̂
δbn

include derivatives of the flow variables w.r.t. the design
variables in the frequency domain. However, these variations should be expressed
in the time domain for them to contribute to the adjoint flow equations. To do so,
the Fourier transformation needs to be included in Eq.10.13, by considering the
subtraction of the time-averaged value of Fk and Q from their instantaneous values,
alongwith amultiplicationwith theHanningwindowH(t) before transforming them
into the frequency domain. Hence, the Fourier transformation for an arbitrary signal
s(t) is performed as follows:

ŝ(ω) = 1

T

∫
T

H(t)
[
s(t) − 1

T

∫
T

s(t)dt
]
e−2iπωt dt (10.14)

Including Eq.10.14 into Eq.10.13 and permuting time and frequency integrals, δ J
δbn

reads:

δ J
δbn

= − 1
T

∫
T

∮
f =0

[
(Ak + Bk)

δFk
δbn

+ (C + D) δQ
δbn

]
dsdt (10.15)

where

Ak = ∫
ω

(
p̂′
Re| p̂′|

(
∂Ĝ
∂xsk

)
Re

+ p̂′
Im| p̂′|

(
∂Ĝ
∂xsk

)
Im

)
(H(t) cos(2πωt) − Hc(ω))dω (10.16)

Bk = ∫
ω

(
p̂′
Re| p̂′|

(
∂Ĝ
∂xsk

)
Im

+ p̂′
Im| p̂′|

(
∂Ĝ
∂xsk

)
Re

)
(H(t) sin(2πωt) − Hs(ω))dω (10.17)

C = ∫
ω

(
p̂′
Im| p̂′| ĜRe − p̂′

Re| p̂′| ĜIm

)
(H(t) cos(2πωt) − Hc(ω))dω (10.18)
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D = ∫
ω

(
p̂′
Im| p̂′| ĜIm − p̂′

Re| p̂′| ĜRe

)
(H(t) sin(2πωt) − Hs(ω))dω (10.19)

Hc(ω) = 1
T

∫
T
H(t)cos(2πωt)dt (10.20)

Hs(ω) = 1
T

∫
T
H(t)sin(2πωt)dt (10.21)

Equation10.15 contains a double time/surface integral over the FW-H surface.
Therefore, in order to eliminate the derivatives of the flow variables w.r.t. bn , this
equation is taken into account as source terms (SFW−Hm in Eq.10.9) at the cells lying
along the FW-H surface, when solving the adjoint equations. Since the in-house code
solves for the conservative variables, Fk and Q must be expressed in terms of these
variables before differentiation, yielding:

δFk
δbn

= δk j (γ − 1)
[

|�υ|2
2

δU1
δbn

− (υ j
δUj+1

δbn
) + δU4

δbn

]
n j (10.22)

+(υk − 2υ∞k)
[

δUj+1

δbn
n j

]
+ (υ j n j )

δUk+1

δbn
− (υ j n j )υk

δU1
δbn

δQ
δbn

= nk
δUk+1

δbn
(10.23)

where k = 1, 2 and j = 1, 2 are the Cartesian directions; γ is the heat capacity ratio.
Since the FW-H surface remains invariant during the optimization, for the FW-H
surface nodes, total and partial derivatives of flow variable are identical or δ

δbn
= ∂

∂bn
.

Using Eqs. 10.22 and 10.23 in Eq.10.15, replacing total with partial derivatives and
canceling all derivatives of the flow variables w.r.t. bn , the SFW−Hm term reads:

SFW−H =

⎡
⎢⎢⎢⎣

{
(γ−1)

2 |υ|2nk − (υi ni )υk
}

(Ak + Bk)

{(1−γ )υ1nk+(υk−2υ∞k)n1}(Ak+Bk)+(υi ni )(A1+B1)+n1(C+D)

{(1−γ )υ2nk+(υk−2υ∞k)n2}(Ak+Bk)+(υi ni )(A2+B2)+n2(C+D)

(γ − 1)nk(Ak + Bk)

⎤
⎥⎥⎥⎦

(10.24)

and the J sensitivities are computed as follows:

δ J
δbn

=− ∫
T

∫



ψi
∂Ui
∂xk

∂
∂t (

δxk
δbn

)d
dt−∫
T

∫



ψi
∂gik
∂xe

∂
∂xk

( δxe
δbn

)d
dt −∫
T

∫
s
ψi gik

δnk
δbn

dsdt

(10.25)

where s is the solid wall which in this case is the airfoil surface.
A single cycle of the CFD-CAA optimization framework is shown in Fig. 10.2.
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Fig. 10.2 A single cycle of the CFD-CAA Optimization. Primal and adjoint workflow in blue and
orange, respectively

10.3.1 Constraint Imposition Methods

In the constrained case, a gradient projection method with an additional correction
term is used to impose an equality constraint on the lift force. Although gradient
projection methods are very effective when the constraint function is linear w.r.t. bn ,
they lack efficiency otherwise. In case of a non-linear constraint, the optimization
is not able to follow the constraint line and gradually deviates from it. To overcome
this, the standard gradient projection method is enhanced with a deferred correction.

Let J be the objective function to beminimized subjected to the constraint L = L1.
The design variables �b are updated using a constant step η. Instead of updating each
design variable by adding

δ�bprojected = −η
[ �∇ J − ( �∇ J · �∇L) �∇L∗

]
(10.26)

where �∇ = δ
δbi

and �∇L∗ = �∇L
| �∇L| , an additional correction is applied as follows:

δ�bcorrected = δ�bprojected − γ �∇L∗ (10.27)

where γ = �L
�∇L· �∇L∗ , and �L is the difference between the current and the threshold

value of the constraint function.

10.4 Verification of the Hybrid CFD/FW-H Solver

This section is focusing on the verification of the coupled CFD-CAA solver, given
that the background CFD tool has adequately been validated in the past [13, 14].
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10.4.1 Monopole in Uniform Flow

In the first case, results of the FW-H integral are compared to a well-known analytical
solution of the sound field generated by a monopole source in a uniform flow. The
stationarymonopole source is located at the origin of the coordinate system and there
is a uniform flow υ∞ along the +x direction. The complex velocity potential of the
case is [19] :

φ(�xo, �xs, ω) = Ai

4β
exp i(ωt + M∞kx̄1/β

2)H (2)
0

(
k

β2

√
x̄21 + β2 x̄22

)
(10.28)

where x̄1 and x̄2 are the same as in Eq.10.6 and 10.7. The perturbation field of flow
variables and variables needed to compute the Fi and Q in the FW-H integral are
obtained from the real parts of p′ = −ρ0(

∂φ

∂t + υ∞1
∂φ

∂x ), u′ = ∇φ and ρ ′ = p′/c02.
In this case,M∞ = 0.6, A = 0.02m2/s andω = 0.162 rad/s. Figure 10.3 compares
the directivity plot at the radius of R = 500m and Fig. 10.4 shows the time history
of p′ at a receiver located at (500m, 0m). The results of the FW-H integral exactly
match the analytical solution. This is a convincing verification of the implementation
of the 2D FW-H formulation, in problems with a uniform mean flow.

10.4.2 Pitching Airfoil in Inviscid Flow

In the second case, a comparison between the hybrid solver and the outcome of a
pure CFD simulation is performed. A RAE2822 isolated airfoil is pitching about the
quarter-chord point in an inviscid flow, with a 2 de.g. amplitude and period equal to
0.114 sec. The free-streamMach number is M∞ = 0.6 and the simulation computes
40 time steps per period. A 2D unstructured grid that extends 50 chords away from
the airfoil is used, with 51000 nodes overall, among which 202 nodes on the airfoil

Fig. 10.3 Monopole source
in uniform flow with
M∞ = 0.6. Comparison of
the directivity plots at
R = 500 m



10 An Unsteady Aerodynamic/Aeroacoustic … 157

Fig. 10.4 Monopole source
in uniform flow with
M∞ = 0.6. Comparison of
the time history of pressure
fluctuation within a period,
for a receiver located at
(500 m, 0 m)

Fig. 10.5 Pitching isolated
air-foil. Comparision of the
directivity plots (p′

rms) at
radius R=9C

contour and 151 nodes on the FW-H surface. The FW-H surface is placed at R =
4C from the airfoil mid-chord (0.5C, 0), where C is the airfoil chord length. The
directivity pattern at R= 9C is plotted in Fig. 10.5 and shows a very good agreement
between results of the unsteady CFD (incl. post-processing of the computed pressure
time-series along a circle with R = 9C) and the application of the FW-H integral on
the flow time-series computed along the FW-H surface.

10.5 Optimization Results

Before proceeding to the aeroacoustic optimization, the computed gradients using
the adjoint solver are verified w.r.t. those obtained by Finite Difference (FD) for
the time-averaged lift force. The case and the computational grid are the same as
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Fig. 10.6 Pitching isolated airfoil. Comparison of the time-averaged lift sensitivities for some
control points, using the proposed adjoint method and FD

Fig. 10.7 Optimization of a
pitching isolated airfoil
(target lift). Evolution of the
time-averaged lift force
during the optimization loop

the pitching RAE2822 isolated airfoil presented in Sect. 10.4.2. The airfoil pressure
and suction sides are parameterized using two Bezier curves, with 20 control points
each, which are free to move in the y direction. Since the first and last control points
are fixed, this case has 36 design variables. Figure 10.6 shows a good agreement
between the gradients of the time-averaged lift force obtained by the two methods.
Then, the so-computed adjoint sensitivities are used to run a shape optimization loop.
Figure 10.7 shows the gradual increase in the lift force from its initial value after 7
optimization cycles, by changing the shape basically at the trailing edge, Fig. 10.8.

Next, the optimization framework is used for aeroacoustic noise reduction. Start-
ing geometry and flow conditions are the same as in the lift maximization problem,
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Fig. 10.8 Optimization of a pitching isolated airfoil (target lift). Shapes of the baseline and opti-
mized airfoils

Fig. 10.9 Lift-constrained aeroacoustic optimization of a pitching isolated airfoil. Comparison of
the noise (J as in Eq.10.8) sensitivities for some control points, using the proposed adjoint method
and FD

by minimizing the objective function of Eq.10.8. In this case, a lift constraint is
additionally imposed using a gradient projection method based on a deferred cor-
rection scheme. The receiver is located at �xo = (0, −20C). To verify the computed
gradients using the adjoint solver, these are compared with those obtained by FD
in Fig. 10.9. It shows a good agreement between the gradients obtained by the two
methods. There are discrepancies at the trailing and leading edge areas; however,
even for those control points, the gradients obtained by the two methods have the
same signs.

Then, the adjoint-based shapeoptimization takes place.As illustrated inFig. 10.10,
after 18 design cycles, the noise objective function, Eq. 10.8, is reduced by more than
60%. This figure also shows that the proposed constraint imposition method with the
deferred correction keeps the time-averaged lift value almost constant, as it changes
about 3% at the end. As expected, the reduction in the objective value results in a
lower amplitude in pressure fluctuations, as shown in Fig. 10.11. Figure 10.12 com-
pares the directivity plot of the baseline and the optimized airfoils at the radius of
R=20C and shows that the reduction in noise is omnidirectional. Figure 10.13 com-
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Fig. 10.10 Lift-constrained aeroacoustic optimization of a pitching isolated airfoil. Convergence
of the objective and constraint functions

Fig. 10.11 Lift-constrained aeroacoustic optimization of a pitching isolated airfoil. Time history
of pressure fluctuation within a period at the receiver’s location
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Fig. 10.12 Lift-constrained
aeroacoustic optimization of
a pitching isolated airfoil.
Comparison of the directivity
plots of the baseline and
optimized airfoils at R=20C

Fig. 10.13 Lift-constrained
aeroacoustic optimization of
a pitching isolated airfoil.
Shapes of the baseline and
optimized airfoils

pares the baseline and the optimized airfoil shapes. It shows that the airfoil’s shape
is changed mainly close to the trailing edge while the rest of it remains almost intact.
This practically reconfirms the important role of the airfoil trailing edge shape on
noise generation.

10.6 Conclusions

The in-house flow/adjoint solver is extended to include an aeroacoustic noise pre-
diction tool and its adjoint counterpart, based on the permeable version of the FW-H
analogy in the frequency domain. The design sensitivities obtained by the continu-
ous adjoint method are verified versus FD, for the noise objective function and the
time-averaged lift for a pitching airfoil. Then, aerodynamic and aeroacoustic shape
optimization is performed and the results show that the objective values are signifi-
cantly improved. The aeroacoustic optimization is subjected to an equality constraint
on the lift. Results of the aeroacoustic optimization highlighted the importance of
the trailing edge shape in airfoil self-noise generation.
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Chapter 11
Discrete Adjoint Approaches for CHT
Applications in OpenFOAM

Markus Towara, Johannes Lotz, and Uwe Naumann

Abstract Conjugate Heat Transfer (CHT) simulations allow the prediction of com-
plex interactions between fluid and solid mediums. Our application is the optimiza-
tion of heat transfer between heat sinks and a cooling fluid, used to extract the
heat from server infrastructure. Adjoint methods allow the optimization of high
dimensional parameter settings, using sensitivity information. Compared to classi-
cal approaches to sensitivity generation, e.g. finite differences, a significant improve-
ment in run time can be achieved, as the complexity of deriving the sensitivity scales
with the output dimension, instead of the input (parameter) dimension. As an initial
prove of concept, our discrete adjoint OpenFOAM framework has been extended
to facilitate the differentiation of the chtMultiRegionSimpleFoam solver. To
combat prohibitive memory loads a traditional and a novel checkpointing approach
are used. We will present results of the heat transfer of a copper heat sink immersed
in water.

Keywords CHT · CFD · Algorithmic Differentiation · OpenFOAM

11.1 Introduction

Conjugate heat transfer (CHT) simulations allow the prediction of complex interac-
tions between solids and fluids. A discussion on the history of CHTmethods can e.g.
be found in [1]. Previous studies with heat transfer using the continuous or adjoint
method include [2–4].
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The paper builds on our previous works [5–7] to introduce Algorithmic Differen-
tiation (AD) into OpenFOAM [8]. AD, specifically employing operating overload-
ing techniques [9], allows to differentiate complex (here C++) codes w.r.t. arbitrary
input variables with great flexibility and accuracy (for a variety of applications of
AD see e.g. [10]).

The outline of this paper is as follows. In Sect. 11.2 we briefly introduce the
CHT problem formulation, as utilized by OpenFOAM. Further, in Sect. 11.3 we
introduce the basic approaches of AD. In Sects. 11.4 and 11.5 we then focus on
the implementation of checkpointing techniques for the CHT problem and how they
differ from our existing implementations for singe domain solvers. Methods for
identifying issues in checkpointing implementations are discussed. In Sect. 11.6
further details, required for obtaining accurate shape sensitivities, are discussed.
Sect. 11.7 will introduce a CHT case of a copper heat sink immersed in water, and
presents sensitivity results. In Sect. 11.8 we present an alternative checkpointing
approach, which does not rely on the manual identification of states and instead
utilizes the primal copy constructors.

11.2 CHT Foundations

TheCHTproblem is characterizedby thediscretization and solutionofmultiplePDEs
on different domains. In the fluid domain, the incompressible Navier-Stokes equa-
tions, including the momentum (11.1), mass (11.2), and energy conservation (11.3)
equations are solved. In OpenFOAMs multiRegionSimpleFoam solver this
is achieved by discretizing the equations using the finite volume method (FVM)
and applying the SIMPLE algorithm, implicitly coupling the pressure to the veloci-
ties [11].

On the solid domain, the energy equation simplifies to the less complex Poisson
equation (11.4), that can be solved to predict the temperature distribution within
the solid. The governing equations are outlined below, for details and how they are
implemented and discretized within OpenFOAM see [12].
Fluid domain:

(u ⊗ ∇)u = ν∇2u − 1

ρ
∇p + b , (11.1)

∇ · u = 0 , (11.2)

∇ · (
ρcpuT

) = ∇ · (k∇T ) + q̇F . (11.3)

Solid domain:

k∇2 T = −q̇S . (11.4)
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Here u denotes velocity, p pressure, ρ fluid density, ν kinematic viscosity, T tem-
perature, cP specific heat capacity, k heat conductivity, q̇F external heat fluxes into
the fluid domain, and q̇S external heat fluxes into the solid domain.

Assuming a negative temperature gradient between solid and fluid, the fluid con-
vects heat energy away from the solid surface, thus effectively cooling the boundary
and interior of the solid domain. The solution of the Navier-Stokes and Poisson equa-
tion are only loosely coupled, that is both equations are discretized and solved for
independently and are only coupled by the shared temperature boundary conditions.
This helps with stability and reduces complexity of individual simulation steps, but
it can lower the overall convergence rate. In our experience, the under-relaxation
factor for the temperature in the solid domain can be chosen close or equal to one,
greatly improving convergence of the solid temperature field.

The interface between solid and fluid regions can either be a conforming mesh,
where both regions share the same patch with identical boundary faces (with flipped
normals) or a non-conforming mesh with incompatible boundary faces. In this case
the values can be interpolated from the fluid to solid patch and vice-versa. Both cases
can be differentiated by AD without modifications, however the interpolation adds
a non-trivial amount of computational work.

11.3 Algorithmic Differentiation

We consider the optimization problem J (x) for J : IRn → IR, where each function
evaluation J (x) comprises the solution of the discrete Navier-Stokes equations and
the coupled heat equations, forming a very large system of parameterized nonlinear
equations. First-order AD assumes J to be at least once continuously differentiable
at all points of interest. For a given implementation of the primal objective y = J (x),
a corresponding (first-order) adjoint code computes

x̄ = J̄ (x, ȳ) ≡ ∇ J T · ȳ,

where x̄ ∈ IRn and ȳ ∈ IR are the adjoints of x and y respectively. Using the adjoint
mode of AD, the gradient can be obtained at a computational cost of O(1) · Cost (J ),

whereCost (J ) denotes the computational cost of a single evaluation of J . The actual
run time factor depends on various parameters, including the mode of differentiation
(continuous vs. discrete adjoint), the expertise of the adjoint code developer, and the
quality of the AD software tool, if one is used. For reference, the computational cost
to compute the same gradient using finite differences or the tangent mode of AD is
O(n) · Cost (J ). For our CHT applications we use the adjoint model, as typically a
very large number of inputs are mapped onto a single output. Conceptually, AD is
based on the fact that the given implementation of the primal objective as a computer
program can be decomposed at run time into a single assignment code.
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for j = n, . . . , n + p

v j = ϕ j (vi )i≺ j ,

where i ≺ j denotes a direct dependence of the variable v j on vi . The result of
each elemental function ϕ j is assigned to a unique auxiliary variable v j . The n
independent inputs xi = vi , for i = 0, . . . , n − 1, are mapped onto the dependent
output y = vn+p. The values of p intermediate variables vk are computed for k =
n, . . . , n + p − 1.

The primal code is augmented with instructions for storing data which is required
for the reversal of the data flow and for the computation of the local partial derivatives
∂ϕ j

∂vi
, for j = n, . . . , n + p and i ≺ j. A data structure commonly referred to as tape

is used for this purpose. This (augmented) forward section of the adjoint code is
succeeded by the reverse section propagating adjoints v̄i for all vi in reverse order,
that is, for i = n + p − 1, . . . , 0 :

for j = n, . . . , n + p + m − 1

v j = ϕ j (vi )i≺ j

}

forward section

for i = n + p − 1, . . . , 0

v̄i =
∑

j :i≺ j

∂ϕ j

∂vi
· v̄ j

⎫
⎪⎬

⎪⎭
reverse section

(11.5)

Note that the v j computed in the forward section are potentially required as arguments
of local partial derivatives within the reverse section. They are read in reverse with
respect to the original order of their evaluation. The additional persistent memory
requirement of the adjoint code becomes O(n + p). The efficient reversal of the
data flow is among the main challenges in adjoint AD. It is responsible for black-
box adjoint AD typically not being applicable to large-scale numerical simulations.
The available persistent memory may simply not be large enough [13]. For our
implementation we use the tape based AD tool dco/c++ [14], which implements
an operator overloading approach of AD, as opposed to source code transformation.

11.4 Checkpointing Considerations

Checkpointing is an important technique to reduce the memory demands of the
adjoint mode of AD by trading memory against run time [9]. Only parts of the
program are adjoined at a time, a previous state is then restored from a checkpoint
and a different part of the program is taped and adjoined. Let xi be the state at
an iteration step i . E.g. for the incompressible laminar Navier-Stokes equations the
state is the combination of velocity, pressure and face flux fields x = (U,p,φ). The
general procedure to adjoin a single iteration step f i , transforming state xi into xi+1

can be formalized as follows.We assume at least one checkpoint at x0 is available.We
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further assume that the adjoints xi+1 are already known from previous applications
of the procedure.

• Restore state x j where j ≤ i and min
c j∈C

(i − j);

• If j < i passively recalculate xi ;
• Register state xi as inputs. If no other statements are executed in this step, this
has the added benefit, that the adjoints x̄i will be located in memory contiguously,
once they are calculated;

• Calculate and tape iteration step i : xi+1 = f i (xi );
• Register state xi+1 as outputs. If no other statements are executed in this step, this
again has the benefit, that the adjoints x̄i+1 can be written tomemory contiguously;

• Restore previously calculated adjoints x̄i+1 into the tape;

• Interpret tape, calculating x̄i =
(

∂ f (xi)
∂xi

)T · x̄i+1 and ᾱ = ᾱ +
(

∂ f (xi)
∂α

)T · x̄i+1;

• Extract calculated adjoints x̄i from tape;
• Reset tape.

This procedure can be repeated until all iteration steps have been adjoined and all
desired adjoints ᾱ have been accumulated.

Compared to the checkpointing procedure already outlined in [5], the complex-
ity is increased for CHT applications in OpenFOAM by the following: Firstly the
mesh is decomposed into multiple regions, corresponding to solid and fluid phases.
Secondly, the CHT implementation and case setup uses boundary conditions not pre-
viously studied in the context of our discrete adjoint implementation. Two of these
offending boundary conditions are outlined below. The fixedFluxPressure
condition for p_rgh inherits from the fixedGradient boundary condition. Thus
the boundary field on patches declared with the fixedFluxPressure are of type
fixedGradientFvPatchField. The fixedGradientFvPatchField
class declares a private datamemberField<Type> gradient_, storing the sur-
face normal (pressure) gradient. This is easily overlooked, as the gradient is private to
the specific implementation of the boundary condition and is not part of the general
fvPatchFieldboundary condition it inherits from.ThefixedFluxPressure
boundary condition iteratively updates the gradient, making the gradient part of
the state. Thus, it needs to be checkpointed. The same principle applies to the
mixedFvPatchField class, that is utilized by theinletOutletboundary con-
dition. The inletOutlet condition locally switches between the fixed value and
fixed gradient boundary condition, depending on flow direction. It is commonly used
to prohibit backflow. Similarly, the mixedFvPatchField class stores a private
scalarField volumeFraction_, which in the context of inletOutlet
switches between a fixed gradient and fixed value. If this field is not checkpointed,
wrong primals are calculated during the repeated passive evaluations.

Table 11.1 lists the quantities that were identified as being part of the state and
need to be checkpointed for the chtMultiRegionSimpleFoam solver using the
kOmegaSST turbulence model. This is basically a complete list of OpenFOAMs
IOobject registry with some additional quantities.
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Our checkpointing interface needs the possibility to advance the iteration state one
step at a time (from a given state). Previously this was achieved by holding references
to all fields (locally) created in the OpenFOAM solversmain() routine in a separate
class structure. This involves a lot of code duplication and additionalwork to adopt the
checkpointing procedure to different solvers. Therefore, we recently switched to an
implementation where the iteration step is captured in an C++11 lambda expression,
which allows to explicitly or implicitly capture the variables local to themain routine.
By wrapping the created lambda function into a std::function<T> structure
it can be passed to the checkpointing interface. Thus, the simulation state can be
advanced whenever necessary by calling the created function. As checkpointing
schemes we support Revolve [15] and a simple equidistant scheme.

As stated earlier, the interpolation between different meshes can add a significant
overhead to the required tape memory. For a static (non-moving) mesh the interpo-
lation coefficients are constant. However, the interpolation is currently recorded in
the tape during each iteration step. The calculation of the adjoints of the interpo-
lation can potentially be handled more efficiently using automatic or manual local
pre-accumulation [9].

11.5 Verifying the Checkpointing Implementation

A robust checkpointing implementation is important, as it also builds the foundation
for our more advanced reverse accumulation [16] and piggybacking [9] solvers. For
the verification of the correctness of the checkpointing implementation and easier
identification of issues, we implemented three different debug modes for our AD
tool dco/c++. Besides allowing to find issues in the current cases, these modes
can also help to prevent future problems. They can identify assignments which not
yet actively influence the numerics, but might become relevant for different activity
paths. The modes are described below and illustrated with brief examples.

Fig. 11.1 Conceptual tape
layout of the stack and
adjoint vector for the
program
v = x1 · x2 · x3; y =
(x2 + x3) · v [7]
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Figure 11.1 shows the conceptual tape layout for a simple example code with
two assignments. For each assignment an entry in the stack is created, storing the
partial derivatives w.r.t. the variables on the right hand side of the assignment, as
well as pointers to the location in the adjoint vectors which need to be incremented
by the product between the partial derivative and the incoming adjoints during the
tape interpretation. Note how edges in the tape always point upwards, propagating
adjoint information backwards through the tape. For a more complete discussion of
the tape implementation see [7, 17].

The debug modes can e.g. be applied to the iteration loop, to check if any part
of the current step depends on any variables outside of the state. If this is the case,
there is dependence on data which might not be correct once the chronological order
of iterations is broken for the recomputation of states. The challenge in essence is to
capture the full state necessary to accurately recompute future states, without storing
unneeded intermediate values. For a complex code, as OpenFOAM, this is not a
trivial task, exemplified by the amount of fields listed in Table 11.1.

Overwrite barrier: After each assignment into a floating point variable previously
known to the tape, its associated tape index increases in order to handle the name
aliasing of the variable. After an overwrite barrier is introduced, variables that
were defined before the barrier are not allowed to be overwritten. An exception
is raised if such a variable is modified. Whenever a variable with global scope is
modified within the iteration, it has to become part of the checkpointed state, else
it will not be restored to its correct value when a previous checkpoint is loaded. By
placing the barrier in front of the iteration it can be used to determine if variables
not part of the current iteration or state are overwritten.

Forward barrier: A window in the adjoint vector is declared, to which no partial
edges are allowed to point. This means that the primal variables corresponding
to these tape positions are not allowed to occur on the right hand side of an
assignment. To allow the adjoint accumulation of global parameters, the corre-
sponding tape entries can be moved to before the window. These parameters must
not be overwritten during the iteration phase. The barrier is enforced during the
(augmented) forward evaluation of the code.

Reverse barrier: As forward barrier, but takes the actual dependencies of the out-
puts into account. This is done by enforcing the barrier during the reverse interpre-
tation phase. This helps to avoid false positives, where the desired cost functional
does not actually depend on the quantity on the left hand side of the assignment.
Thus, no adjoints will ever be propagated along the offending edges, producing a
false positive in forward barrier mode.

The forward and reverse barriers are especially useful to debug issues with the prop-
agation of adjoints, when the correct recomputation of primals has already been
established. On the other hand, the overwrite barrier can be used when the primals
of the recomputed state do not match the expected values. In order to not nega-
tively influence the efficiency of the AD tool, the debugging capability has been
implemented in a separate adjoint data type. The introduction of AD types into the
OpenFOAMcode base has already been discussed in [5] and in detail in [7].Note, that
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Table 11.1 Quantities that need to be checkpointed for the solid and fluid phases. All quantities
are either volScalarFields, volVectorFields or surfaceScalarFields, with the
exception of cumulativeContErr. The checkpoint for cumulativeContErr is not strictly
required, as it is not connected to the parameters, however it will trip the debugging safeguards of
the AD tool

Region Type Name

global scalar cumulativeContErr

fluid volScalarField gh

fluid volScalarField thermo:mu

fluid volScalarField alphat

fluid volScalarField thermo:psi

fluid volScalarField nut

fluid volScalarField yWall

fluid volScalarField p

fluid volScalarField T

fluid volScalarField e

fluid volScalarField rho

fluid volScalarField k

fluid volScalarField omega

fluid volScalarField p_rgh

fluid volScalarField thermo:rho

fluid volScalarField thermo:alpha

fluid volVectorField U

fluid surfaceScalarField phi

fluid surfaceScalarField ghf

solid volScalarField thermo:mu

solid volScalarField betavSolid

solid volScalarField thermo:psi

solid volScalarField thermo:rho

solid volScalarField p

solid volScalarField T

solid volScalarField thermo:alpha

solid volScalarField h

to enforce the barriers no actual calculation and propagation of adjoints has to take
place, only dependency information is needed. Thus, this functionality is removed
for the debugging type, significantly lowering the memory footprint of this type.

In addition to thementioned barriers, another check is implemented in dco/c++,
which prevents edges pointing to positions further in the tape. During normal oper-
ation such edges should never exist and in the context of checkpointing are an
indication that states from a previous iteration have not correctly been identified
and checkpointed.



11 Discrete Adjoint Approaches for CHT Applications in OpenFOAM 171

11.6 Additional Considerations for Shape Optimization

Conceptually, the application of checkpointing remains unchanged from the case
of topology optimization [5]. Compared to topology optimization, the active path
through the pre-processor stage is much more complex. During mesh construction
the parameters, that is the location of the individual points of the mesh (contained
in the OpenFOAM primitive mesh), are used at various locations in the code to con-
struct the CFD mesh representation. This mesh construction phase is only executed
once and can not be restored from a checkpoint easily, therefore it is permanently
included in the tape. Following the pre-processing phase, the tape is switched off
and the usual checkpointed iteration phase begins. After all iteration steps have been
adjoined, the remaining tape of the pre-processor is adjoined, yielding the adjoints
of the parameters.

A naive implementation yields results that are not consistent with black-box
adjoints, indicating that some dependencies are missed. Those missing dependen-
cies have been first identified as the non-orthogonal correction vectors by manually
comparing the tapes of black-box and checkpointed adjoint [7].With the newly intro-
duced debugging facilities the issues can be easily identified using the forward or
reverse barrier technique. The reason the dependencies are missed is the presence
of on demand functions in OpenFOAM. Several data fields in the mesh object are
stored in dynamic memory, and are only constructed once they are first requested by
their access routine.

The following access functions in thefvMesh class create their fields on demand:

• C(): Constructs the cell center vector;
• Cf(): Constructs the face center vector;
• V(): Constructs the cell volume vector;
• Sf(): Constructs the face area vectors;
• magSf(): Constructs the magnitude of face area vectors;
• deltaCoeffs(): Constructs delta coefficients;
• nonOrthDeltaCoeffs(): Constructs the non orthogonal delta coefficients;
• nonOrthCorrectionVectors(): Constructs the non orthogonal correction
vectors.

Most of these functions are first accessed during the pre-processor phase, and
thus the construction of the fields is captured by the tape. However, the non-
orthogonal correction vectors are first constructed when discretizing the gradient
operator in the momentum equations, using the corrected surface-normal gradient
scheme. The first occurrence of this discretization is within the first SIMPLE iter-
ation, at which point the tape has already been switched off by the checkpointing
procedure, to advance the state in passive mode to the first active section. When the
nonOrthCorrectionVectors() access function is subsequently called while
the tape is active, only a reference to the field created earlier is returned. Therefore
the dependence of the correction vectors on the parameters is lost.
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To fix this problem, we explicitly call all on demand generator functions of the
fvMesh instance, after the pre-processing is finished but before the tape is switched
off. This might be redundant for some functions, if the field has already been ini-
tialized. However, as in that case only a reference is returned, which is subsequently
ignored, the run time and memory cost of those additional calls is negligible. The
actual constructors generating the data are private to the fvMesh class, and would
requiremodifications inside the OpenFOAMcode base in order to be accessible from
our solvers. Therefore we simply trigger dummy calls to the accessor routines, which
have the side effect of creating the required data fields. The changes required in order
to obtain a consistent checkpointed shape adjoint are presented in Listing 11.1.

Listing 11.1 Forcing the early on demand construction of thefvMeshfields by calling their access
routines.
void init_mesh(Foam: :fvMesh& mesh){
mesh.Sf ( ) ; mesh.magSf( ) ;
mesh.C( ) ; mesh. deltaCoeffs ( ) ;
mesh.Cf( ) ; mesh.nonOrthDeltaCoeffs ( ) ;
mesh.V() ; mesh.nonOrthCorrectionVectors ( ) ;

}

int main( int argc , char ∗argv[])
{
#include "createTime .H"
#include "createMeshes .H"
#include "createFields .H"

for (fvMesh& solidMesh : solidRegions)
init_mesh(solidMesh) ;

forAll (fvMesh& fluidMesh : fluidRegions)
init_mesh(fluidMesh) ;

ADmode: : global_tape−>switch_to_passive ( ) ;
[ . . . ] / / Continue w. checkpointed CHT algorithm

}

An example for the calculation of shape adjoints using checkpointing is presented
in the following section. The same issues arise and fixes apply when using the check-
pointing interface to implement reverse accumulation or piggybacking.

11.7 CHT Sensitivity Results

Figures 11.2, 11.3 and 11.4 show preliminary results for the calculation of heat
transfer between a heat sink with seven fins with a draft angle of approximately 1.7◦.
Both domains aremeshedwith hex cells byblockmeshwith conforming interfaces.
The solid domain contains 129 360, the fluid domain 321 552 cells. The bottom
patch of the solid domain (with material properties of copper) is held at a constant
temperature of 375K. The fluid (with material properties of water) enters the domain
with a constant velocity of 0.05m/s and temperature of 300K. All exterior walls are
assumed to be adiabatic. The heat transfer between solid and fluid domain is modeled
with OpenFOAMs turbulentTemperatureCoupledBaffleMixedmodel.
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Fig. 11.2 Temperature distribution T on the solid surface with temperature isolines (white). Veloc-
ity magnitude distribution in the fluid domain on a z-normal slice

Fig. 11.3 Sensitivity of the average outlet temperature w.r.t. the temperature on the heated bottom
wall of the solid domain

The flow fields and the temperature on the solid is initialized by running 400
(passive) iteration steps of chtMultiRegionSimpleFoam. At this point the
simulation has mostly converged. We then run 20 additional iteration steps of our
adjointChtMultiRegionCheckpointingSimpleFoam solver to obtain
sensitivities.

Taping one iteration step of the shape sensitivity problem (using efficient symbolic
differentiation of linear solvers) takes roughly 52 GB of tape memory, while one step
of the temperature sensitivity problem takes only 23 GB. The higher demand of the
shape sensitivity is due to the additional complexity caused by the differentiation of
the OpenFOAM mesh representation.



174 M. Towara et al.

Fig. 11.4 Surface sensitivity on the solid to fluid interface

Figure 11.2 shows the temperature distribution on the surface of the solid, as well
as a slice through the fluid domain, showing the velocity distribution. As the cost
function we choose the average temperature on the outlet patch, as calculated by
gAverage(T). The dependence of the average temperature on the temperature
distribution at the heated wall is depicted in Fig. 11.3. Red regions therefore indicate
where the heat energy is best transported from the bottom plate to the fluid.

For the same case, Fig. 11.4 shows the shape sensitivities of the average tem-
perature at the outlet w.r.t. movement of the surface mesh points in surface normal
direction. Red regions indicate where the cross section of the fins should shrink,
making them narrower, blue regions (with negative sign) indicate where the cross
section should be expanded.

11.8 Primal Copy Constructor Checkpointing

As outlined previously, manually identifying the full state required to create accurate
checkpoints is a tedious and error prone process. Assuming that the primal copy
constructors within a code, OpenFOAM in our case, are implemented correctly,
an alternative checkpointing procedure can be implemented, relying solely on the
existing copy constructors and the treatment of elemental (floating point) value copies
by the AD tool.

Normally, an efficient AD tool will identify assignments that can be optimized out
(partial derivatives of one, assignments involving passive right hand sides,...) [18].
To obtain clearly separated windows in the adjoint vector containing only the adjoint
inputs and outputs of a specific iteration we temporarily disable these kinds of opti-
mizations. Now, whenever a floating point variable of active type is overwritten, (to
avoidmemory aliasing), it gets assigned a new (increasing) tape index, corresponding
to an entry in the adjoint vector.

Obviously we can recreate a primal state by overwriting all checkpoint objects
with copies from an earlier point in the iteration history. However, if we overwrite all
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objects we want to checkpoint by themselves, the copy constructors of the individual
data members will also create a contiguous window in the adjoint vector, where all
desired adjoints will be located after interpretation. We identify such a window by
its first index and the number of contained elements.

The modified checkpointing interface has to provide the following functionality:

• Store and restore primal values by copying to/from a temporary object;
• Create a window in the adjoint vector corresponding to the inputs of the state by
fully overwriting object with a copy of itself;

• Create a window in the adjoint vector corresponding to the outputs of the state by
fully copying object to a temporary object;

• Extract adjoint values from the input window of the adjoint vector and store them
in a contiguous vector;

• Restore adjoint values fromcontiguous vector into the outputwindowof the adjoint
vector.

All functionality is implemented purely by using primal operations and by accessing
individual elements of the adjoint vector (without necessarily knowing which object
they belong to). Amemory overhead is introduced by storing a temporary copy of the
object. This copy is required as to not trigger self assignment optimizations within
the copy constructors. Further, the n primal checkpoints are stored as a copies of the
full object, containing active types, instead of just storing the (passive) floating point
values of the object.

Listing 11.2 outlines the implementation of the templatized Checkpoint
Object class, which can hold primal copies of arbitrary objects that implement
a copy constructor. Due to an implementation detail of flow fields in OpenFOAM the
CheckpointObject class has to be overloaded to use the custom operator==
operator instead of operator= to copy flow fields including its boundary values.

Listing 11.2 CheckpointObjectGeometricField
template<typename T>
struct CheckpointObject : public CheckpointObjectBase
{
T& objRef ; / / reference to the object to be checkpointed
std : : vector<T> objCheck; / / primal checkpoints
T objCopy; / / temporary copy

CheckpointObject(T& obj , const int n)
: objRef(obj ) , objCopy(obj ) , objCheck(n, obj) {}

void replaceCheckpoint(const unsigned i ){
objCheck[ i ] = objRef ;

}
void restoreCheckpoint (const unsigned i ){

objRef = objCheck[ i ] ;
}
void copyToTemporary(){
objCopy = objRef ;

}
void copyFromTemporary(){
objRef = objCopy;

}
};
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Listing 11.3 shows how to utilize the CheckpointObject class to mimic
the behaviour of the tape operations register_input() and register_
output() (Fig. 11.5).

Listing 11.3 CheckpointObjectGeometricField
struct CheckpointContainer{
std : : vector<CheckpointObjectBase∗> checkpoints_ ;
label inputStateStartIndex_ ;
label outputStateStartIndex_ ;
std : : vector<double> adjoints_ ;

void registerInputs (){
for (const auto& c : checkpoints_)
c−>copyToTemporary( ) ;

ADmode: : global_tape−>switch_to_active ( ) ;
inputStateStartIndex_ = ADmode: : global_tape−>get_position ( ) . index() + 1;
ADmode: : global_tape−>varied_analysis () = false ;
for (const auto& c : checkpoints_)
c−>copyFromTemporary( ) ;

ADmode: : global_tape−>varied_analysis () = true ;
label p2 = ADmode: : global_tape−>get_position ( ) . index ( ) ;
n_ = p2−p1;

}
void registerOutputs (){
label p1 = ADmode: : global_tape−>get_position ( ) . index ( ) ;
outputStateStartIndex_ = p1+1;
ADmode: : global_tape−>varied_analysis () = false ;
for (const auto& c : checkpoints_)
c−>copyToTemporary( ) ;

ADmode: : global_tape−>varied_analysis () = true ;
label p2 = ADmode: : global_tape−>get_position ( ) . index ( ) ;
n_ = p2−p1;

}
void storeAdjoints (){
adjoints_ . resize (n_) ;
for ( label i=0; i<n_; i++){
adjoints_ [ i ] = ADmode: : global_tape−>_adjoint ( i+inputStateStartIndex_ ) ;

}
void restoreAdjoints (){
for ( label i=0; i<n_; i++)
ADmode: : global_tape−>_adjoint ( i+outputStateStartIndex_) = adjoints_ [ i ] ;

}
};

In Table 11.2 we present the run time and memory consumption for the angled
duct case described in [7]. This is a case without heat transfer, however the presented
checkpointing procedure can be readily converted to our CHT solvers. The case
consists of 32 500 cells (refinement level 50). Timed are 50 iterations with five
checkpoints, which are used to perform the reversal using Revolve. Timings and peak
memory (memory consumption is sampled and thus not completely deterministic)
are averaged over five executions. For the coarse case run time is not influenced
discernibly, for the finer case the run time is even slightly improved. At this point
we don’t have a convincing explanation for the improved run time behavior, as more
data should be copied than before. Possibly the old checkpointing implementation
could be improved for efficiency. In both cases the memory demand is increased
by around 5% for the copy checkpointing. For challenging applications, where the
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Fig. 11.5 Adjoint vector layout created by the calls to registerInputs(), runStep() and
registerOutputs. The adjoints of the input variables are stored in a temporary array and can
be restored into the outputs of a previous iteration

Table 11.2 Run time and memory consumption for the angled duct test case. Coarse case with
32 500 cells and finer case with 119 808 cells

Solver Run time (s) Peak memory (MB)

Regular checkpointing (lvl50) 149.2 1001

Primal copy checkpointing (lvl 50) 146.6 1047

Regular checkpointing (lvl 96) 457.8 3414

Primal copy checkpointing (lvl 96) 441.8 3564

classical checkpointing approach is not straightforward to implement, we deem the
run time penalty to be acceptable for the simplified implementation.

11.9 Summary and Outlook

We demonstrated the applicability of a discrete adjoint framework implemented in
OpenFOAM to complex CHT cases. Emphasis was placed on the correct check-
pointing treatment of the states in the solid and fluid domains. While, utilizing the
presented debugging tools, the manual treatment of the conflicting boundary condi-
tions is possible, it is desirable to obtain a more robust implementation that relies on
the already existing primal copy constructors of OpenFOAM. Such an approach was
briefly presented and will be incorporated into future adjoint solvers. As part of our
ongoing research, we plan to apply our discrete adjoint CHT framework to a variety
of different heat sink geometries.
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Chapter 12
Robustness Measures for Multi-objective
Robust Design

Lisa Kusch and Nicolas R. Gauger

Abstract A significant step to engineering design is to take into account uncertain-
ties and to develop optimal designs that are robust with respect to perturbations.
Furthermore, when multiple optimization objectives are involved it is important to
define suitable descriptions for robustness. We introduce robustness measures for
robust design with multiple objectives that are suitable for considering the effect of
uncertainties in objective space. A direct formulation and a two-phase formulation
based on expected losses in objective space are presented for finding robust opti-
mal solutions. We apply both formulations to the robust design of an airfoil. Fluid
mechanical quantities are optimized under the consideration of aleatory uncertain-
ties. The uncertainties are propagated with the help of the non-intrusive polynomial
chaos approach. The resulting multi-objective optimization problem is solved with
a constraint-based approach, that combines adjoint-based optimization methods and
evolutionary methods evaluated on surrogate models.

Keywords Multi-objective optimization · Robust design · Aerodynamic shape
optimization

12.1 Introduction

Multi-objective optimization and robust design are two well-established fields of
research. Especially, in engineering applications it is important to optimize for dif-
ferent conflicting criteria like for example cost and quality aspects. Here, the aim is
to find a set of solutions that fulfill the concept of Pareto optimality. A feasible design
x is Pareto optimal if it is non-dominated, i.e. there does not exist any feasible design
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x such that fi (x) ≤ fi (x) for every objective function fi with i ∈ {1, . . . , k} and
f j (x) < f j (x) for at least one j ∈ {1, . . . , k}. Here, k denotes the number of objec-
tive functions. The image of the Pareto optimal set in objective space is denoted
as the Pareto optimal front. We distinguish between direct Pareto approaches and
scalarization approaches for multi-objective optimization. Direct Pareto approaches
for multi-objective optimization try to find several Pareto optimal points at once.
This can for example be realized using evolutionary approaches (e.g. NSGA-II [1]).
A drawback of evolutionary approaches is that there is no proof of convergence
and, accordingly, there are no clear stopping criteria. Another disadvantage is the
high number of function evaluations reached to find an agreeable set of solutions,
which is a significant problem if the computational costs for a single evaluation are
already high. In scalarization approaches, for example constraint-based methods, the
problem is transformed into several single-objective optimization problems, that can
be solved efficiently using hybrid methods combining gradient-based optimization
methods and global search methods.

Another significant step towards realistic multi-objective design is to take into
account uncertainties for finding robust optimal solutions. Robust optimal solu-
tions are solutions, that are optimal and robust with respect to perturbations.
Most of the robustness measures for multi-objective optimization are inspired by
single-objective robustness definitions based on statistical quantities. We distinguish
between expectation-based and variance-based measures. Also, the quantities can
either be formulated as objectives or set as additional constraints. Two expectation-
based measures were for example proposed by Deb and Gupta [2] and adapted for
aerodynamic shape optimization [3]. Furthermore, there exist methods specifically
tailored for multi-objective optimization problems. The application to evolutionary
multi-objective optimization enables the use of a probability of dominance or an
expected fitness function [4], or a dominance relation based on worst-case analy-
ses [5]. For a local sensitivity analysis a local sensitivity region [6] can be used in
objective space.

In Sect. 12.2 expected losses are introduced as a new measure for robustness
when considering multiple objectives and two different approaches to robust optimal
design are presented that both result in a multi-objective optimization problem. The
constraint method for solving the multi-objective optimization problems is presented
in Sect. 4.3. The proposed strategy is applied for finding robust optimal solutions in
aerodynamic shape optimization with aleatory uncertainties in Sect. 12.4 followed
by a conclusion and an outlook in Sect. 12.7.

12.2 Robust Design

In single-objective optimization problems a solution is considered to be robust if it is
not very sensitive to uncertainties. Inmulti-objective optimization problems themain
difference to single-objective robust design is that one has to measure a combined
effect of sensitivities for all objective functions. Additionally, the aim is to find a
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set of robust solutions instead of only a single robust solution. From this problem
arises the question of how to define robust Pareto optimal designs. A new robustness
measure and two corresponding formulations of robust optimal design problems are
shown in the following.

12.2.1 Robustness Measures

In the following we introduce a measure for robustness, that can be used in a scalar-
ization approach and account for effects in objective space. The general idea is to
measure the expected distance of an outcome from the deterministic Pareto optimal
front. Using the Pareto optimal front we can state if an outcome of random samples
is better or worse (corresponding to gains and losses in objective space).

Figure 12.1 shows the contours for a fixed probability, that we will refer to as
probability region, for two designs in objective space. Both designs have a similar
deterministic value (black dot). Also, the variances and the expected value (circle)
are similar. Nevertheless, one would prefer the left design over the right one due to
the shape of the probability region. Note that for a minimization problem the points
found in the lower left region are definitely better (gains) and the points in the upper
right region definitely worse (losses) in comparison to the deterministic outcome.
The design on the right has a large region of losses. When comparing both design it
can be noticed that most outcomes of the left design dominate the outcomes of the
right design. Additionally, the fact that the gains outweigh the losses for the right
design shows that a robustness measure should be defined using a loss function based
on the distance to the deterministic value or to the Pareto optimal front.

We propose two approaches to describe robustnesswith the help of losses in objec-
tive space. In both approaches the expected losses are constrained by a prescribed
upper bound. Note that the existence of a solution then depends on the choice of the
upper bound. Before introducing both approaches we present the expectation-based
approach, that is most commonly used. The general multi-objective optimization
without considering any uncertainties, that is often referred to as the deterministic
optimization problem, can be formulated as

Fig. 12.1 Two different
probability regions in
objective space
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min
y,u

F(y, u) (12.1)

s.t. c(y, u) = 0.

Here, the variables y ∈ R
d and u ∈ R

n are the state and design variables that fulfill
the state equation c(y, u) = 0. The minimization of the objective function vector
F : Rd × R

n → R
k with objective functions Fi for i = 1, . . . , k has to be understood

component-wise. For notational convenience we omit any additional constraints or
design variables bounds.

12.2.2 Expectation-Based Approach

For the expectation-based approach the expected value is used as a statistical quantity
and a solution is denoted as robust Pareto optimal, if it is a solution to the problem

min
y,u

Exp(F(y, u, z(ω))) (12.2)

s.t. c(y, u, z(ω)) = 0.

In the above equation z(ω) is a realization of the vector of random input variables
for uncertainties ω ∈ �. The expectation operator is to be understood component-
wise. When additional constraints are present it is common to demand for constraint
satisfaction for every realization z to obtain reliable designs.

12.2.3 Two-Phase Approach

In the two-phase approach we assume that a given set of Pareto optimal points has
been determined for the deterministic optimization problem (12.1) in a first phase.
Additionally we assume to have an approximation of the Pareto optimal front in
objective space, e.g. by means of splines in the two-dimensional case or by the
help of other sophisticated interpolation methods for higher dimension. Note that
the approximation can become non-trivial for disconnected Pareto optimal fronts,
although a distance to the front can still be defined. We denote the representation of
the Pareto optimal front as φ0.

The expected losses can be expressed bymeans of a signed distance function δ, that
can be defined by using a level-set method with zero level set φ0. The corresponding
optimization problem to be solved in the second step is

min
y,u

F(y, u, z̄) (12.3)

s.t. c(y, u, z̄) = 0,

Exp(max(0, δ(F(y, u, z(ω)),φ0)) ≤ δmax .
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The evaluation at z̄ denotes the deterministic case where z is not a random variable
but the value prescribed when not considering any uncertainties. The expected losses
are constrained by an upper bound δmax. The max(0, .)-function ensures that only
losses are considered. For reasons of clarity we will omit to include the dependency
on y and u in the following definitions.

12.2.4 Direct Approach

In the direct approach the deterministic Pareto optimal front is not needed. Instead,
the local distance of the samples to the current deterministic value for z̄ is used
to describe losses. When not considering only losses, this approach is similar to
the constrained expectation-based approach [2]. Different assumptions for the local
estimation of losses can be made. When considering expected possible losses we
may formulate the optimization constraint as

k∑

i=1

Exp(max(0, Fi (z(ω)) − Fi (z̄))) ≤ μ1. (12.4)

Another assumption is to approximate the losses based on a local linear approxi-
mation of the Pareto optimal in the current deterministic outcome. The local front
can then be represented as the zero level set of φ = ∑k

i=1 Fi (z(ω)) − Fi (z̄). The
corresponding optimization constraint is

Exp(max(0,
k∑

i=1

Fi (z(ω)) − Fi (z̄))) ≤ μ2. (12.5)

Other expressions may be based on the expected definite losses or a better local
approximation of the front (for example a convex representation for convex multi-
objective problems).

Note that for gradient-based optimization the problem has to be transformed to
make the constraint functions continuously differentiable. This can be done by either
reformulating the problem with the help of additional variables or by approximating
the maximum function, which is done in the context of the present work.

Figure 12.2 depicts the signed distance functions for the different approaches. In
the two-phase approach the signed distance function is built using for example linear
splines for approximating the Pareto optimal front. The expected possible losses and
the linear approximation are always obtained locally for the respective deterministic
outcome.
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Fig. 12.2 Signed distance
function for two-phase
approach (left), expected
possible losses (middle),
linear approximation (right)

12.2.5 Uncertainty Quantification

There exist different methods to propagate uncertaintiesω in themodel.Wemake use
of a non-intrusive polynomial chaos approach, which is also referred to as pseudo-
spectral approach. In this approach the stochastic objective function is expanded in
terms of polynomials �i that are orthogonal with respect to the probability density
function of the input random variables z(ω) (cp. [7]), such that

f (y, u, z(ω)) =
∞∑

i=0

f̂i (y, u)�i (z(ω)), (12.6)

with f̂i (y, u) = γ−1
i Exp( f (y, u, z(ω))�i (z(ω)) and Exp(�i� j ) = γiδi j .

When applied to find statistical quantities the infinite expansion is truncated with
m being the order of truncation. The Fourier coefficients are approximated by first
using stochastic collocation with quadrature points and then employing a quadrature
rule that is suitable for the used polynomials. The expected value for a normally
distributed z with probability density function ρz , for example, reduces to

Exp( f (y, u, z(ω))) ≈ Exp

( m∑

i=0

fi (y, u)Hi (z(ω))

)
= 0! f0(y, u) (12.7)

=
∞∫

−∞
f (y, u, z)H0(z)ρz(z)dz ≈

n∑

k=1

f (y, u, xk)wk .

Here, it was made use of the orthogonality of the Hermite polynomials H(z) and
that the resulting integral is approximated with a quadrature formula with weights
wk and points xk for k = 1, . . . , n. The non-intrusive polynomial chaos approach
can be used for a moderate number of uncertainties. The computational effort of the
quadrature can be reduced by using sparse grid quadrature rules.
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12.3 Multi-objective Optimization

The formulation of robust Pareto optimal solutions results in a multi-objective opti-
mization problem. We solve it by using a constraint-based approach. The con-
strained single-objective optimization problems are solved using a hybrid optimiza-
tion method.

12.3.1 Constraint-Based Approach

The concept of the ε-constraint method [8] is to optimize one objective function
fs j while imposing inequality constraints on the remaining competing objective
functions. For the robust multi-objective optimization the constraint function is a
statistical quantity. The constraints f ( j)

i as well as the objective function fs j , that
is to be optimized, are varied in the steps of the algorithm to find different Pareto
optimal solutions that are evenly distributed. The resulting minimization problem for
the j-th step of the algorithm applied to the general multi-objective PDE-constrained
optimization problem (12.1) is

min
y,u

fs j (y, u)

s.t. c(y, u) = 0, (12.8)

fi (y, u) ≤ f ( j)
i ∀ i ∈ {1, . . . , k} : i �= s j .

The inequality constraints for the different steps are distributed equidistantly. The
outlines of the front can be found by minimizing the objective functions individually
without imposing additional constraints. It can be shown that all unique solutions
to the resulting single-objective optimization problem (12.8) are globally Pareto
optimal for any upper bound f ( j)

i [9].

12.3.2 Global Optimization Method

The correct choice of the algorithm for solving the single-objective optimization
problems (12.8) that result from the ε-constraint method is very important. In Kusch
et al. [10] a hybrid algorithm is proposed for the single-objective optimization prob-
lems to enhance the chance of finding a global optimum and thus Pareto optimal
points. The hybrid method combines the advantages of evolutionary and gradient-
based methods. In a first step a genetic algorithm is applied on a Kriging surrogate
model to avoid computationally expensive calculations. We make use of the soft-
ware RoDeO [11], that is adjusted to handle the given optimization constraints.
The initial data acquisition is done using Latin Hypercube sampling. The Krig-
ing model is trained in each optimization step using adaptive sampling based on
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the expected improvement method. Furthermore, several designs in the direction of
steepest descent are included in the training set. In the second step of the hybrid algo-
rithm a gradient-based optimization method is applied for the full model. The design
found in the first step is used as a starting point for gradient-based optimization. The
gradients are obtained using a discrete adjoint method based on algorithmic differen-
tiation. The use of accurate derivative from algorithmic differentiation is especially
useful for solving constrained optimization problems.

12.4 Aerodynamic Shape Optimization

We apply the proposed method to an aerodynamic shape optimization problem for a
2D airfoil with a NACA0012 as initial design. The objective is to minimize the drag
coefficient cd and maximize the lift coefficient cl . Additional inequality constraints
are prescribed for the thickness t of the airfoil and the resulting moment cm . The
flow is transonic and inviscid with a Mach number of 0.8 and an angle of attack of
1.25. The scalar-valued uncertainties in the flight conditions are modelled by using
random variables with an assumed probability density function.We assume an uncer-
tain Mach Number, that is normally distributed such that Ma ∼ N (0.8, 0.01). The
associated orthogonal polynomials for non-intrusive polynomial chaos are Hermite
polynomials. The airfoil is parametrized with the help of 38 Hicks-Henne functions.
The underlying steady Euler equations are solvedwith the open-source software SU2
[12] using a Jameson-Schmidt-Turkel scheme. Gradients for the optimization in SU2
are provided by algorithmic differentiation [13].

12.5 Results for the Two-Phase Approach

The two-phase approachwas usedwith a prescribed constraint on the distance δmax =
0.15 in normalized objective space. The expected losses are calculated with the
help of non-intrusive polynomial chaos using Gauss-Hermite quadrature with four
quadrature points xi and weights wi for i = 1, ..., n. The resulting multi-objective
optimization problem

min
y,u

(cd(y, u, z̄),−cl(y, u, z̄))


s.t. c(y, u, z̄) = 0,

cm(y, u, z̄) ≥ 0, (12.9)

t (u) ≥ 0.12,
n∑

i=1
wi (max(0, δ(F(y, u, xi ),φ0)) ≤ δmax

is solved for eight Pareto optimal points using the ε-constraint method.
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Figure 12.3 shows the optimization result in objective function space. The dots
indicate the robust optimal designs evaluated for the Mach number z̄ = 0.8, that
is used in the deterministic optimization. The crosses indicate the expected value.
For reasons of comparison the deterministic values and the expected values of the
multi-objective optimization without considering uncertainties (compare Eq. 12.1)
are shown by the grey-coloured dots and crosses. The corresponding designs are
plotted on the right of the figure. The upper design corresponds to the maximum lift
coefficient and the lower design to the minimum drag coefficient. It can be observed
that the designs are very similar, while the expected values for the robust design
approach are significantly improved.

In Figure 12.4 random samples are shown for a chosen design to depict the prob-
ability region. The grey-coloured region is the probability region for a comparable
design that was obtained using an expectation-based approach [3]. Here, the aim was
to minimize the expected value of the drag coefficient and maximize the expected
value of the lift coefficient. The probability regions differ significantly as the result
obtained by the expectation-based approach leads to higher losses in objective space.
In particular, the probability region based on the expected losses is close to the deter-
ministic Pareto optimal front.

12.6 Results for the Direct Approach

The direct approach can be used if a construction of the Pareto optimal front is
computationally too expensive. Exemplary, it was applied to the given test case by
constraining the expected possible losses presented in Eq. (12.4) with μ1 = 0.15.
The results in objective space are shown in Fig. 12.5.

Fig. 12.3 Pareto optimal front for two-phase approach (robust) and deterministic Pareto optimal
front (opt)
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Fig. 12.4 Sampled probability region for expected losses (robust) and the expectation-based
approach (rob_exp)

Fig. 12.5 Pareto front for direct approach (expected possible losses)

The constraining of expected possible losses leads to designs with better expected
values. InFig. 12.6 the probability region for a specificdesign is compared to the prob-
ability region of the design obtained using the expectation-based approach. Again,
the expectation-based approach leads to higher losses in objective space. The sam-
ples of the probability region of the expectation-based approach are dominated by
the samples for the design obtained using the direct approach.

When comparing the results of the direct approach with the results of the two-
phase approach, it can be seen that the two-phase approach results in designs with
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Fig. 12.6 Sampled
probability region for direct
approach (robust) and the
expectation-based approach
(rob_exp)

a better probability region. Nevertheless, the direct approach is a good compromise
when the additional construction of the deterministic Pareto optimal front is too
expensive. It can be expected that the results of the direct approach can be improved
using a different approximation of the local Pareto optimal front as presented in
Sect. 12.2.4.

12.7 Summary and Outlook

We have presented a new measure for robustness when considering multiple objec-
tives. Two approaches to include expected losses in a robust design formulation are
given. A constraint-based multi-objective optimization approach making use of a
hybrid method is suggested for solving the robust design problem. The approach
is applied for the robust design of an airfoil. The results show that the proposed
method successfully finds robust designs with less losses in objective space com-
pared to expectation-based approaches. The direct approach is computationally more
efficient and the two-phase approach leads to a higher reduction of expected losses,
such that both approaches are of interest for robust optimal design with multiple
objectives.

Future research shall include the application to different test cases. The presented
test case also offers the opportunity for introducing other types of uncertainties. In
previous studies interesting results where obtained for the introduction of uncer-
tainties in the geometry for example due to icing or manufacturing inaccuracies.
Furthermore, the aim is to include objective functions from different disciplines.
One possibility in the field of aerodynamics is to take into account the structural
behaviour.
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Chapter 13
Uncertainty Assessment of an Optimized
ERCOFTAC Pump

R. De Donno, A. Fracassi, A. Ghidoni, and P. M. Congedo

Abstract Centrifugal pumps, being used nowadays for many applications, must be
suited for a wide range of pressure ratios and flow rates. To overcome difficulties
arising from the design and performance prediction of this class of turbomachinery,
many researchers proposed the coupling of CFD codes and optimization algorithms
for a fast and effective design procedure. However, uncertainties are present in most
engineering applications such as turbomachines, and their influence on turboma-
chinery performance should be considered. In this work we apply some advanced
optimization techniques to the blade optimization of an ERCOFTAC-like pump, and
we assess the robustness of the optimal profiles through an uncertainty propaga-
tion study. The main sources of uncertainty are related to the operating conditions,
primarily the rotational speed of the pump shaft that affects also the flow rate.

Keywords Shape optimization · Uncertainty quantification · Surrogate model ·
ERCOFTAC pump
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13.1 Introduction

Centrifugal pumps are used formanyapplicationswith different requirements of pres-
sure ratio and flow rate. Their design and performance prediction are not an easy task,
being influenced bymany free geometric parameters. Experimental approaches based
on the modification of prototypes and/or previous models and numerical approaches
based on CAD/CFD tools have been applied to their design and analysis. However,
the former approach is expensive and time-consuming, while the latter makes avail-
ablemany datawhich are not easily related to the pumpperformance,making difficult
the improvement of the pump. In the last decade, to overcome these problems, the
coupling of CFD codes and optimization algorithms has started to be applyed for the
design of turbomachinery [1–5]. This approach has been also successfully applied
to the pump design [6–8].

An optimization tool allows to find an optimal design thatmaximizes some perfor-
mances in a deterministic sense. However, the performance of turbomachinery can
be highly affected by the presence of uncertainty in every engineering application.
The aim of this study is to assess how the uncertainty affects the pump performances
of the initial and the optimized design, to verify the robustness of the latter. In fact,
the new design could have a better efficiency at nominal condition, but a drop of
performances in the uncertainty range. The purpose of this work is to investigate the
use of an uncertainty propagation approach to assess a deterministic optimization of
a complete centrifugal pump (impeller and diffuser) under uncertain operating condi-
tions. Moreover, a critical assessment of two surrogate based optimization strategies
is also presented.

In this work an optimal blade profile for the ERCOFTAC pump is obtained with
a deterministic optimization through two surrogate based strategies. Then the epis-
temic uncertainties related to the experimental tests are considered for an uncertainty
assessment employing a Polynomial Chaos Expansion. In particular, the main source
of uncertainty is constituted by the rotational speed of the pump shaft and by the losses
in the cooling system, both affecting also the flow rate.

In the following, Sect. 13.2 is devoted to the description of the geometric
parametrization algorithm, Sect. 13.3 describes the CFD solver, while Sects. 13.4
and 13.5 describe the optimization algorithm and the framework for the uncertainty
quantification assessment, respectively. Section 13.6 presents the results.

13.2 Geometric Parameterization

The parametrization algorithm allows to represent the blade geometry of the impeller
and vaned diffuser as a combination of the camber-line and thickness distribu-
tion. 17 design variables are used to parametrize the complete geometry. The inlet
and outlet diameters of both impeller and diffuser are fixed. The algorithm can
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Table 13.1 Main dimensions of the ERCOFTAC pump

Impeller

Inlet blade diameter D1 = 240mm

Outlet diameter D2 = 420mm

Number of blades zi = 7

Diffuser

Inlet vane diameter D3 = 444mm

Outlet vane diameter D4 = 664mm

Number of vanes zd = 12

reproduce the ERCOFTAC blades, but with smooth profiles. The main dimensions
of the ERCOFATC pump are summarized in Table 13.1.

13.2.1 Camber-Line

The camber-lines of the impeller and the diffuser are described through a Bézier
curve. To define the most suitable number of control points, i.e. the order of the
Bézier curve, 3rd, 4th and 5th order curves are considered. The purpose is to use the
minimum number of input variables to represent the camber-line of the ERCOFTAC
pump blades and of profile commonly used to manufacture pump blades, i.e. the
NACA 6-series, the double circular arc (DCA) and the C4 airfoil. These curves
are built leaving two degrees of freedom for each control point inside the curve.
The approximation error has been measured by evaluating the distance (root mean
square distance normalized with the chord length) between the real and parametrized
profiles, and is reported in Table 13.2 for each reference camber-line considered.

Table 13.2 Approximation error [%] for different reference camber-lines and order of the Bezier
curves

3rd 4th 5th

Impeller ERCOFTAC 0.518 0.156 0.065

Vaned diffuser
ERCOFTAC

0.210 0.0558 0.0457

NACA 63 0.853 0.266 0.105

NACA 64 0.440 0.0946 0.0640

NACA 65 0.127 0.0131 0.000993

DCA 0.182 0.0474 0.0104

C4 0.0115 0.00108 1.71E-05
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A fourth order Bézier curve has been chosen for the parameterization, character-
ized by a number of degrees of freedom equal to a third order curve. In fact, during
the optimization the distance of the two internal control points from the leading and
trailing edge is fixed and equal to the corresponding distance for the ERCOFTAC
geometry, while inlet and outlet angles of the blades can change. This choice allows
for a better approximation of the ERCOFTAC camber-lines and for a higher geomet-
rical flexibility than a standard third order curve, even if sharing the same number of
variables. The approximation error is comparable to a third order curve.

In addition to inlet and outlet angles also the stagger angle is considered a variable.

13.2.2 Thickness Function

The thickness function is parametrized in a different way for the impeller and the
diffuser to better fit the thickness function of the ERCOFTAC blades. In both cases
the leading and the trailing edge are described through a Bézier curve and they are
joined with a constant thickness line (see Fig. 13.1).

The control points are set according to the following formulas, where s denotes
the coordinate along the chord and t the coordinate perpendicular to s:

(a) Impeller

(b) Vaned diffuser

Fig. 13.1 Control points for the thickness function parameterization
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• Impeller leading edge

s1_LE = 0 t1_LE = 0

s2_LE = 0 t2_LE = 3kt,i
dr2LE,i

2
+ ŷt,i

s3_LE = xt_LE,i − drLE,i t3_LE = ŷt,i
s4_LE = xt_LE,i t4_LE = ŷt,i

• Impeller trailing edge

s1_T E = ci t1_T E = ŷT E,i

s2_T E = ci + ŷ2_T E,i − ŷT E,i

tan(αT E,i )
t2_T E = ŷ2_T E,i

s3_T E = x3_T E,i t3_T E = ŷ3_T E,i

s4_T E = xt_T E,i + drLE,i t4_T E = ŷt,i
s5_T E = xt_T E,i t5_T E = ŷt,i

• Vaned diffuser leading edge

s1_LE = 0 t1_LE = y1_LE,d

s2_LE = x̂2_LE,d t2_LE = x̂2_LE,d

tan(αLE,d)
+ y1_LE,d

s3_LE = xt_LE,d − drLE,d t3_LE = ŷt,d
s4_LE = xt_LE,d t4_LE = ŷt,d

• Vaned diffuser trailing edge

s1_T E = cd t1_T E = ŷ1_T E,d

s2_T E = cd t2_T E = ŷt,d
s3_T E = xt_T E,d t3_T E = ŷt,d

The definition of the input variables is reported in Table 13.3, where the letter
c is the chord length, the subscripts i and d refer to the impeller and the diffuser,
respectively. The hat symbol defines a fixed value. In particular, ŷt is the maximum
thickness of the blade, which is set equal to the thickness of ERCOFTAC blade to
compare different profiles and to avoid the computation of too thin blades.
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Table 13.3 List of the design variables, description, baseline value, minimum and maximum value
during the optimization

Variable Description Baseline Min value Max value

γimp Stagger angle of the impeller (◦) −111.5 −120 −90

β1 Inlet angle of the impeller (◦) −66.0 −76 −56

β2 Outlet angle of the impeller (◦) −70.9 −75 −60

γdi f Stagger angle of the diffuser (◦) 101.4 90 105

α3 Inlet angle of the diffuser (◦) 72.8 65 85

α4 Outlet angle of the diffuser (◦) 67.8 60 75

xt_LEi Position along the chord of the point of
maximum thickness at leading edge of the
impeller (-)

0.1330 0.1 0.3

drLE,i Difference between xt_LEi and the radius
at leading edge of the impeller (-)

0.06323 0.010 0.064

kt,i Curvature at the point of maximum
thickness at leading edge of the impeller
(-)

−3.2591 −3.26 −1.00

xt_T E,i Position along the chord of the point of
maximum thickness at trailing edge of the
impeller (-)

0.9146 0.80 0.95

x3_T E,i Position along the chord of the third
control point at trailing edge of the
impeller (-)

0.9323 0.92 1.00

αT E,i Slope at trailing edge of the impeller −0.9556 −1.2 −0.5

xt_LE,d Position along the chord of the point of
maximum thickness at leading edge of the
diffuser (-)

0.1424 0.1 0.3

drLE,d Difference between xt_LEd and the radius
at leading edge of the diffuser (-)

0.01008 0.005 0.100

y1_LE,d Thickness at leading edge of the diffuser
(-)

4.0129 2.0 5.0

αLE,d Slope at leading edge of the diffuser (-) 0.004266 0.003 0.075

xt_T E,d Position along the chord of the point of
maximum thickness at trailing edge of the
diffuser (-)

0.999 0.700 0.999

13.2.3 Range of the Input Variables

The ERCOFTAC geometry is considered as the baseline configuration for the opti-
mization process, and the corresponding values of the input variables are found opti-
mizing the position of the control points to minimize the approximation error (root
mean square distance between corresponding points of the real and parametrized
geometry).
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The range of the input variables for the optimization (see Table 13.3) is built ensur-
ing three constraints: (i) input values defining the baseline geometry are included,
(ii) not feasible geometries cannot be generated in the Design of Experiment (DoE),
and (iii) blade angles for inlet and outlet, which are supposed to be close to the
optimum, are included. In particular, the impeller inlet angle is calculated through
velocity diagrams, while a common range for impeller outlet angles has been taken
from literature. The range of diffuser inlet angles is computed from the impeller
outlet angles, applying velocity diagrams, while the range for diffuser outlet angles
is computed starting from the volute outlet velocity, estimated with the Stepanoff
theory [10], and assuming the flow in the volute satisfies the free-vortex theory.

(a) Impeller

(b) Vaned diffuser

Fig. 13.2 Control points of the parameterized ERCOFTAC camber-lines
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(a) Impeller leading edge (b) Impeller trailing edge

(c) Vaned diffuser leading edge (d) Vaned diffuser trailing edge

Fig. 13.3 Control points of the parameterized ERCOFTAC thickness function

The comparison between real and parametrized ERCOFTAC geometry is shown
in Figs. 13.2 and 13.3.

13.3 CFD

The 2D hybrid meshes of the geometries created during the optimization process
are generated with an in-house mesh generator [11]. Only one blade passage is
considered for the impeller and diffuser. The size of the elements adjacent to the
solid walls is equal to a non-dimensional distance y+ ≈ 1, to compute the boundary
layer accurately up to the wall.

The open-source CFD toolbox OpenFOAM [12] is used to compute the flow
field in the pump. The incompressible Reynolds Averaged Navier-Stokes (RANS)
equations coupled with k-ω SST turbulence model [13] are solved. The choice of the
turbulence model is dictated by the SST capability to predict correctly flow-fields
characterized by adverse pressure gradient and/or detachment, i.e. the expected flow-
field of a pump.
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Table 13.4 Operating conditions of the ERCOFTAC pump

Operating conditions

Rotational speed n = 2000 rpm

Flow rate coefficient φ = 4Q
πD2

2U2
= 0.048

Reynolds number Re = 6.5 105

Inlet air reference conditions

Temperature T = 298 K

Air density ρ = 1.2 kg/m3

Table 13.5 Comparison of different approaches to simulate impeller/diffuser interface for the
prediction of η and ψ of the 3D ERCOFTAC pump

CFD approach ψ (-) η (%)

unsteady 0.748 87.3

steady-state + Frozen rotor 0.730 84.4

steady-state + Mixing plane 0.764 87.0

On the basis of previous studies [14, 15], which demonstrate the capability of 2D
simulations to predict fairly well the ERCOFTAC pump flow-field, 2D simulations
have been chosen also for this work to reduce the computational effort.

The operating conditions are summarized in Table 13.4. At the domain inlet the
velocity V1 (computed from φ), the turbulence intensity Tu1 = 5% and specific
dissipation rate ω1 are prescribed, while at the outflow the mean static pressure is
set. Adiabatic wall boundary conditions are applied to all blades.

A steady-state formulation with theMultiple Reference Frame (MRF) approach is
used; the impeller and diffuser are fixedwith respect to each other, but themomentum
equation for the impeller domain is computed in the rotating reference frame. A
mixing-plane interface is applied between the impeller and the diffuser. This approach
avoid the convection of non-physical wakes created by the impeller blades through
the pump, typical problem of the frozen rotor interface. The use of the mixing plane
interface allows the simulation of a single blade passage for both impeller and vaned
diffuser, reducing significantly the computational cost.Mixing plane and frozen rotor
interfaces have been compared in terms of predicted total pressure coefficient ψ and
efficiency η with an unsteady simulation for the 3D ERCOFTAC pump. Table 13.5
summarizes the results, showing a good agreement between the mixing plane and
unsteady simulations, both in terms of η and ψ .

The second-order upwind discretization scheme is applied to the divergence of
the velocity, while the first-order upwind scheme is applied to the turbulent quanti-
ties. The Laplacian terms are evaluated using a linear second-order bounded central
scheme, while a central differencing method approximates the gradient term.
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13.3.1 Performance of the Real and Parametrized
ERCOFTAC Pump

The effect of the geometric parametrization in the prediction of the ERCOFTAC
pump performance is first investigated, comparing the predicted η and ψ with the
real and parametrized geometry. A mesh convergence study has been proposed for
both geometries, using four grids with the number of elements ranging from 25000
to 55000. Finer meshes have been obtained refining uniformly the coarser mesh.
The grid convergence study (see Fig. 13.4) shows some differences in the predicted
results, which can be ascribed to the smooth representation of some geometric details
given by the parametrization algorithm. As suggested by the convergence study, the
grid with 37000 elements ensures a good compromise between computing time and
accuracy of the results, and, therefore, it is chosen for the optimization. For this grid,
the difference in the predicted η and ψ for the real and parametrized geometry is
summarized in Table 13.6.

An in-depth comparison between the two geometries shows as the main differ-
ences are gathered near the leading and trailing edge, where the parameterization
smooths the edges of the original geometry and improve the performances of the
pump.

To reproduce the exact original geometry, the presence of straight edges in the
profile should be enforced. This would lead to a reduction in the performance of the
final optimized geometry. However, being the objective of this work the maximiza-
tion of the pump performance, the parameterization has been not changed and the
parametrized geometry is chosen as baseline to be optimized, instead of the original
one.

Fig. 13.4 Grid convergence study for the real and parametrized ERCOFTAC pump geometry

Table 13.6 Predicted η and ψ for the real and parametrized ERCOFTAC pump geometry, mesh
with about 37000 elements

Geometry ψ (-) η (%)

Real 0.833 90.0

Parametrized 0.891 91.5
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13.4 Optimization Strategy

In a centrifugal pump, the hydraulic efficiency η and the total pressure rise coefficient
ψ have a fundamental role, and, therefore, are chosen as optimization objective and
constraint, respectively. In particular, the optimization algorithmmaximizes η, while
keeping ψ constrained to the considered operating conditions. The efficiency η is
defined as the ratio between useful hydraulic power and the provided power, while
the total pressure rise coefficient is defined as ψ = 2(pout−pin)

ρU2
, where the subscript

out refers to the pump outlet, in to the pump inlet, and 2 to the impeller outlet.
Usually, the pressure head is constrained with a tolerance about ±5%, to keep fixed
theworking condition for the baseline and optimized geometry.However, a numerical
investigation has shown that the maximum efficiency is always reached for the upper
limit of the constraint, meaning that under uncertainty the constraint could not be
guaranteed.Therefore, in the presentworkonly a−5%constraint has been considered
for ψ .

Global optimization algorithms require a high number of evaluations in the search
of optimum, specially with a high number of input variables. To reduce the compu-
tational cost a Surrogate Based Optimization (SBO) [16] is employed.

An initial design of experiments (DoE) with 340 designs distributed over the
whole domain is generated through the Latin Hypercube Sampling (LHS) method.
Each design is analysed exploiting a CFD simulation, and it is excluded if the CFD
calculation does not converge or the solution may not be reliable. A surrogate model
is applied to the DoE. The Kriging (KRG) model [17] is suitable for high non-linear
objective functions [18] and it is often adopted for turbomachinery optimizations.

Two different SBO strategies are considered:

• A Single Objective Genetic Algorithm (SOGA) is used to solve the optimization
problem on the function η and ψ approximated through the surrogate.

• A Global Efficient Optimization (EGO) algorithm [19] is used to search the opti-
mum maximizing the Expected Improvement Function (EIF).

The algorithms available in the software Dakota [20] are used. The EGO algorithm
allows to combine exploitation and exploration, so that both zones with good solu-
tions and zones with lack of information are tested. This approach could be advanta-
geous to find the global optimum, if compared to the SBOwith SOGA that focuses the
research in the zone of good prediction, where the huge number of design variables
could lead to accuracy problems in the definition of the response surface.

The optimum found with one of the previous strategies, is verified with a CFD
simulation and the design is added to the DoE. Then, the surrogates are updated,
iterating until convergence.
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13.5 Uncertainty Quantification Assessment

Even if an optimal design is reached in a deterministic environment, the real perfor-
mance of the optimized pump could be different, due to the presence of uncertainties,
which can be found in most engineering applications.

The purpose of this work is to assess the robustness of the deterministic optimum
for a centrifugal pump under uncertain boundary conditions. The main sources of
uncertainty are the rotational speed and the hydraulic system resistance. In fact, after
a preliminary design, the pump is manufactured and tested in a test rig to verify the
total pressure head and the efficiency. The pump rotates at the operating rotational
speed, and is plugged in a hydraulic system, whose resistance is chosen to provide
the operating mass flow rate. The uncertainties of the rotational speed and system
resistance have been determined analysing experimental data:

• ±5 rpm for the rotational speed;
• ±8% for the system resistance.

An uniform Probability Density Function (PDF) is defined for each uncertainty and
the optimum found by the SBO with SOGA is considered as the deterministic opti-
mum.

To comply with the formulation within the CFD solver, the boundary conditions
must be expressed in terms of rotational speed andflow rate.Given the pump curve for
a fixed rotational speed and the system curve for a fixed hydraulic resistance, the flow
rate is derived by intersecting the two curves. The pumpcurves for the baseline and the
optimumare computed usingCFD (seeFig. 13.5),while the systemcurve is estimated
as �pTot = a · Q2, i.e. a parabola passing through the working point, where the
parameter a is proportional to the system resistance. This formulation allows to

(a) Total pressure head curves of the
baseline and system curves

(b) Total pressure head curves of the optimum and
system curves

Fig. 13.5 Pump curves of the baseline (left) and the optimum (right) and system curves
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apply uncertainty to the system resistance varying the parameter a. Using Fig. 13.5,
the minimum and the maximum value of the flow rate given by the uncertainties
are obtained. To simplify the problem, a uniform PDF for the flow rate between the
previous values is considered, even if this is equivalent to consider awider uncertainty
on the resistance. This simplification is accepted because (i) it ensures higher safety,
and (ii) the error of the uncertainty is small.

To assess the robustness of the optimal design and of the baseline, a Polyno-
mial Chaos Expansion (PCE) [21], which is a well-known technique for propagating
uncertainties at low computational cost, is employed. It is based on a multidimen-
sional orthogonal polynomial approximation in terms of standardized random vari-
ables. A one-to-one correspondence exists between the choice of stochastic variable
and the polynomials. For instance, if a normal/uniform variable is considered, the
corresponding polynomials are Hermite/Legendre polynomials. The random output
R is given by a finite-dimensional series expansion:

R =
P∑

i=0

αi�i (ξ), (13.1)

where �i are the multidimensional orthogonal polynomials. They are derived from
the family of hyper-geometric orthogonal polynomials or Askey scheme [22]. The αi

are deterministic coefficients of the expansion, computed through amultidimensional
integration. A tensor product of Gaussian quadrature rule of fifth order is employed
to obtain the expansion coefficients, for a total of 25 evaluations.

Statistics as mean and standard deviation can be computed analytically from
the expansion. To evaluate the PDF of the output a Monte Carlo sampling can be
performed directly on the polynomial approximation, which is a surrogate model of
the function of interest with respect to the input parameters.

13.6 Results

13.6.1 Deterministic Optimization

The initial DOE is constituted by 340 designs, but only 293 are considered, being
feasible. SBO with a SOGA algorithm and a EGO have been applied to this DoE to
optimize the pump efficiency.

During the optimization process, the convergence can be affected by the presence
of not reliable design. This issue is addressed differently for the two strategies. In
the SOGA optimization a dummy output is returned, characterized by η = 70% and
ψ = 0.7. The efficiency value must be lower than the optimum; this value must
be chosen carefully because too small values can deteriorate the accuracy of the
surrogate model. The value of the pressure coefficient is selected just outside the
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Fig. 13.6 Convergence history of the last set of iterations of the SBO with the SOGA algorithm

Fig. 13.7 Position of the evaluations during the optimization processes. Variable 1 is the stagger
angle, variable 2 is the inlet angle, variable 3 is the outlet angle, of the impeller blades. The stars
show the position of the baseline and the optimum for the two strategies

constraint. After a set of iterations, the designs that are not reliable are removed, and
the process is reinitialized. For the EGO approach a dummy output can not be used,
since it would create instability issues. Therefore, if an unreliable design is found, a
reliable one is evaluated in the neighborhood and replaced.

The SOGA optimization reaches the convergence in about 200 iterations and five
reinitializations, with a maximum efficiency ηS,max = 94.9% and a ψS = 0.889. In
Fig. 13.6 the convergence of the last set of iterations is shown. The EGO converges in
about 220 iterations, reaching the maximum efficiency ηE,max = 94.6% with ψE =
0.890. In Fig. 13.7 the evaluated design for the two strategies are represented in the
input space. It can be noted as the EGO algorithm scouts a larger space than the
SOGA.

In Fig. 13.8 a comparison between the baseline and optimized geometries is
shown. In particular the SOGA optimum presents a more tapered impeller blade, a
lower chord length of the diffuser and a more rounded trailing edge for the diffuser.
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(a) Impeller (b) Vaned diffuser

Fig. 13.8 Comparison between the baseline and the optimized geometry

(a) Pressure field for the parametrized ER-
COFTAC pump

(b) Velocity field for the parametrized ERCOF-
TAC pump

(c) Pressure field for the optimized geometry

(d) Velocity field for the optimized geometry

Fig. 13.9 Comparison of pressure and velocity fields of the baseline and the optimized geometry

These features reduce losses, especially at the trailing edge of the impeller, where the
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Table 13.7 Values of the design variables for the two optima

Variable SBO with SOGA optimum EGO optimum

γimp −107.8 −109.4

β1 −69.9 −68.2

β2 −74.7 −74.2

γdi f 94.3 97.5

α3 75.1 70.6

α4 64.5 64.2

xt_LEi 0.2589 0.1556

drLE,i 0.02725 0.06100

kt,i −3.0502 −3.1344

xt_T E,i 0.8140 0.8417

x3_T E,i 0.9362 0.9244

αT E,i −0.6415 −0.7722

xt_LE,d 0.2156 0.1778

drLE,d 0.01899 0.03139

y1_LE,d 2.0050 2.0556

αLE,d 0.07476 0.007000

xt_T E,d 0.7809 0.9244

speed is lowered, and at the leading edge of the diffuser, where the flow detachment
of the baseline geometry is not present (see Fig. 13.9). In Table 13.7 the design
variables of the two optima are compared.

13.6.2 Uncertainty Quantification Assessment

A PCE is computed for the baseline and the optimum to assess the robustness of the
performances. The mean μ and the standard deviation σ of the total pressure coeffi-
cient and the efficiency are calculated analytically and they are shown in Table 13.8.
Notice that mean values are basically equal to the performances of the related design.
Moreover, the standard deviation of the efficiency is for both the design sufficiently
small to confirm the deterministic improvement of the optimum, even under uncer-
tain operating conditions. The standard deviation of the total pressure coefficient is
equal to the 1.8% of the mean and can not be ignored when constraining the working
point.

The PDF, which are estimated through a Monte Carlo sampling on the polyno-
mial expansion and a Kernel Density Estimation (KDE), are also considered (see
Fig. 13.10). The remarks based on the previous statistics are confirmed: (i) the effi-
ciency of the optimal design is always higher than the baseline efficiency, and (ii)
the two design have the same pressure head PDF. The change in total pressure coef-
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Table 13.8 Mean and standard deviation of the performances PDF of the baseline and the optimum

Geometry μψ (-) σψ (-) μη (%) ση (%)

Baseline 0.889 0.016 91.4 0.2

Optimum 0.888 0.015 94.8 0.2

Fig. 13.10 Comparison of the PDF of the total pressure coefficient (left) and the efficiency (right),
related to the baseline and the optimum

ficient, even if not negligible, does not break the constraint. In addition, the shape of
the PDF for the optimum and the baseline are similar, suggesting that the robustness
of the design performances are not effected by the optimization.

13.7 Conclusions

A framework to assess the robustness of the optimum under uncertainty is presented.
First a deterministic optimization is carried out through two different surrogate-

based optimization strategies: SBO with SOGA and EGO. The SBO with SOGA
reaches an optimal design with an efficiency η = 94.9%, corresponding to an
improvement about 3.4% with respects to the baseline. The EGO scouts a wider
area of the input space, but it does not improve the SOGA result, returning an opti-
mumwith an efficiency η = 94.6%. The two efficiencies are comparable even though
the two design show some differences. This confirms the reability of the SOGA opti-
mum, that is considered in the further study.

Starting from this result, a robustness analysis of the design under uncertainty
is performed. In fact, uncertainty occurs in every field. In this work, the focus is
on the epistemic uncertainty related to the experimental tests, used to verify the
performances of the pump. In particular, the main sources of uncertainty of the test
rig are the rotational speed of the pump and the hydraulic resistance of the system.

A polynomial chaos expansion is employed to assess the influence of the operation
conditions uncertainties on the efficiency and the total pressure coefficient. The two
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objective functions PDF of the baseline and the optimum are compared. From this
analysis the optimum is robust in terms of efficiency and comparable to the baseline in
terms of total pressure head. This validate the result of the deterministic optimization
even if uncertainties on the operation conditions are present.
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Chapter 14
Gradient-Based Aerodynamic Robust
Optimization Using the Adjoint Method
and Gaussian Processes

Christian Sabater and Stefan Görtz

Abstract The use of robust design in aerodynamic shape optimization is increasing
in popularity in order to come up with configurations less sensitive to operational
conditions. However, the addition of uncertainties increases the computational cost
as both design and stochastic spaces must be explored. The objective of this work is
the development of an efficient framework for gradient-based robust design by using
an adjoint formulation and a non-intrusive surrogate-based uncertainty quantification
method. At each optimization iteration, the statistic of both the quantity of interest
and its gradients are efficiently obtained through Gaussian Processes models. The
framework is applied to the aerodynamic shape optimization of a 2D airfoil. With the
presented approach it is possible to reduce both the mean and standard deviation of
the drag compared to the deterministic optimum configuration. The robust solution is
obtained at a reduced run time that is independent of the number of design parameters.

Keywords Robust design · Optimization under uncertainty · Adjoint method ·
Gaussian Processes · Computational fluid dynamics

14.1 Introduction

The use of Robust Optimization in aerodynamic shape optimization is increasing in
popularity in order to come up with designs less sensitive against operational and
geometrical uncertainties [1–4]. In opposition to deterministic optimization, where
the Quantity of Interest, QoI, is a single value to be optimized, in robust optimization
the QoI is a random variable. An statistic of this random variable such as the mean,
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combination of mean and standard deviation or quantile is usually the objective
function.

When dealing with robust optimization involving expensive black box simula-
tions, two problems are commonly present. On the one hand, the complexity of
the optimization increases exponentially with the number of design parameters [5].
On the other hand, at each iteration of the optimization, a complete propagation of
the uncertainty is required in order to come up with an accurate estimation of the
statistic to be minimized [3]. A possible solution to the first problem is the use of
adjoint methods [6]. Then, the gradients of the cost function with respect to all the
design parameters can be efficiently obtained at a computational cost equivalent to
the primal solution. To deal with the problem of uncertainty quantification, the use of
surrogate methods such as Gaussian Processes can prove to be efficient to represent
the stochastic space [7].

The objective of this paper is the development of a gradient-based robust design
framework using the adjoint method and surrogate models and its application to the
aerodynamic shape optimization of 2D airfoils.

14.2 Problem Definition

The problem at hand is the minimization of the drag coefficient CD (the QoI) of the
RAE 2822 airfoil against operational uncertainties.

14.2.1 Deterministic Optimization

For reference, a traditional deterministic optimization is computed. In this case, the
aim is to find the optimum parameters X̄ leading to the airfoil shape that minimizes
the drag coefficient at given operational conditions A.

X̄∗ = argmin
{
CD(X̄ , A)

}
(14.1)

In this case, the optimization is done at constant lift coefficient, CL = 0.79 and
constantMach number,M = 0.734. The lift coefficient constraint is enforced implic-
itly by iteratively varying the angle of attack during the drag evaluation in the RANS
solver.
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14.2.2 Robust Optimization

When uncertainties are present, the drag coefficient becomes a random variable. In
this case, we choose to minimize a linear combination of mean, μCD and standard
deviation σCD of the drag coefficient.

X̄∗ = argmin
{
wμ μCD (X̂ , ξ̂) + wσ σCD (X̂ , ξ̂)

}
(14.2)

The value of the weights, wμ and wσ , are changed in order to come up with
different configurations with more focus either on the mean, on its variability or on
both. From a different combination of weights, a Pareto front can be obtained with
the possible solutions of interest.

14.2.3 Parametrization

The airfoil parametrization followsHicks-Henne deformation functions [8] thatmod-
ify the camber of the airfoil. By modifying the airfoil camber, the thickness distribu-
tion is kept constant to deal with structural considerations. The vertical displacement,
zi of the camber affected by the design variable Xi can be defined as:

zi = Xi sin
(
πxm

)3
where m = log (0.45)

i+1
NX+4

(14.3)

A total of NX = 15 design parameters are selected. The influence of each bump
function in the camber is shown in Fig. 14.1.

Fig. 14.1 Top: Fifteen Hicks-Henne Bump function used for the parametrization. Bottom:
RAE2822 shape and camber line
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14.2.4 Uncertainties

In the robust formulation, the Mach and lift coefficient are uncertain as they are
expected to slightly change during day to day aircraft operations. They are modeled
as symmetric beta distributions. The mean value is centered on the nominal condi-
tions,μM = 0.734,μCL = 0.789, while the standard deviation is set toσM = 0.0045,
σCL = 0.0045. The shape parameters are the same, α1 = α2 = 5, in order to be sym-
metric, resembling truncated normal distributions. The truncation allows for a better
construction of the surrogate for uncertainty quantification, and for a better repre-
sentation of the physical problem. The location β1 and scale β2 parameters are set to
have the required mean μ and standard deviation σ.

Beta(x) =
γ (α1 + α2)

(
x−β1

β2

)(α1−1) (
1 − x−β1

β2

)(α2−1)

γ(α1)γ(α2)
(14.4)

14.3 Methodology

14.3.1 Numerical Solver

To obtain the aerodynamic performance of the airfoil the high-fidelity DLR flow
solver TAU [9] is executed on an HPC cluster system using DLR’s FlowSimulator
Data Manager (FSDM) environment. The Reynolds Average Navier Stokes (RANS)
equations are solved using the Spalart-Allmaras turbulence model. The solution is
converged when the density residual is lower than 1e-8. As shown in Fig. 14.2, the
unstructured mesh of the baseline configuration, the RAE2822 airfoil, has 29,000
grid nodes, and is quasi two-dimensional. This test case has been successfully used
in the past in similar aerodynamic shape optimization problems [3, 10]. A mesh
deformation tool developed by DLR using linear elasticity theory [11] is used to
change the geometry at any given design vector.

14.3.2 Adjoint Method

The adjoint formulation [6] allows to efficiently solve the total derivative of the
QoI with respect to the design parameters X. This is especially useful for high
dimensional problems and few cost functions, in which the gradients can be then
used for gradient-based optimization [12].

Given the minimization problem of the QoI (in this case the drag coefficient)
dependent on the design parameters X , the flow variables W and the mesh variables
Z , under the constraint that the flow residual R is converged,
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Fig. 14.2 Zoom-in of CFD
Mesh of the RAE 2822

min {QoI(X,W, Z)} s.t. R(X,W, Z) = 0 (14.5)

the adjoint equation can be obtained by applying the chain rule to the lagrangian
equation:

dQoI

dX
= ∂QoI

∂Z

∂Z

∂X
+ �T ∂R

∂Z

∂Z

∂X
(14.6)

where the first term is the variation of the QoI w.r.t. the shape parameter keeping the
flow variables, constant. The second term is the variation of the RANS residual w.r.t.
the shape parameter by keeping the flow variables constant. The adjoint variables �

can be obtained from

(
∂R

∂W

)T

� = −∂QoI

∂W
(14.7)

In TAU, the discrete adjoint equations are solved [13]. After obtaining �, it is
possible to evaluate the gradient of the QoI, usually the drag coefficient CD , w.r.t.
the design parameters. When dealing with optimization at constant lift, the gradients
w.r.t. the drag must be corrected [14] :

dCD

dX

∣∣∣∣
CL=CL0

= ∂CD

∂X
− ∂CD

∂α

∂α

∂CL

∂CL

∂X
(14.8)

The adjoint method has been validated wrt. finite differences for the baseline
configuration. Figure 14.3 shows the gradient of the drag coefficient at constant lift
with respect to each of the 15 design parameters for both the adjoint and forward finite
differences. Despite the small differences, mainly due to the use of forward instead
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Fig. 14.3 Comparison of the gradients of the drag obtained with finite differences and the adjoint

of central finite differences, the adjoint formulation is able to accurately obtain the
desired gradients, reducing the run time by 83%.

14.3.3 Surrogate Based Uncertainty Quantification

The main problem of uncertainty quantification is the large number of function
evaluations required to propagate the uncertainty of the input parameters (in this
case operational conditions) to the QoI (drag coefficient) at any given design, X̄ j

[1]. To directly perform Monte Carlo Simulations is prohibitive when using CFD
solvers. A typical approach is then the use of surrogates of the stochastic space for
example, through Polynomial Chaos Expansion or Gaussian Processes.

Gaussian Processes models, GPs (also known as Kriging) have been traditionally
used in aerodynamic shape optimization as surrogate models for global optimization
[15]. However, these have been recently used as non-intrusive approach to perform
uncertainty quantification due to its good capability to globally represent the stochas-
tic space [10, 16].

The main idea of uncertainty quantification in Gaussian Processes is as follows:
at a given configuration, X̄ j , an initial design of experiments (DoE) sampling in the
stochastic space ξ̄ (in this case random operating conditions), is evaluated in the full
order model. Based on this sampling, the GP is built. Then, a large number (NK ) of
Quasi Monte Carlo samples can be cheaply evaluated in the surrogate to obtain the
statistic, such as the mean or standard deviation of the drag, following Eq. 14.9,

μQoI
(
X̄ j

) = 1

NK

NK∑

k=1

Q̂oI
(
X̄ j , ξ̄k

)
σQoI

(
X̄ j

) =

√√√√√
1

NK

NK∑

k=1

[
Q̂oI

(
X̄ j , ξ̄k

) − μQoI

]2

(14.9)
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where Q̂oI
(
X̄ j , ξ̄k

)
is obtained by prediction of the surrogate built in the stochastic

space ξ̄.

14.3.3.1 Statistics of the Gradients

If the deterministic gradients of the QoI with respect to the design parameters at a

given point X̄ j are also available,
dQoI
dXi

∣∣∣
X̄ j ,ξ̄k

, the gradients of the statistics can also be

obtained. In this case a surrogate model needs to be built per each design parameter
Xi . For example, the gradient of the mean value of the QoI with respect to a given

design parameter Xi at any given design point X̄ j ,
dμQoI

dXi

∣∣∣
X̄ j

, can be obtained by

deriving Eq. 14.9 with respect to Xi :

dμQoI

dXi

∣∣∣
X̄ j

= 1

NK

NK∑

k=1

dQ̂oI

dXi

∣∣∣
X̄ j ,ξ̄k

(14.10)

In this case the deterministic gradients dQ̂oI
dXi

∣∣∣
X̄ j ,ξ̄k

are obtained from direct inte-

gration on the given surrogate according to the design parameter Xi .
The gradient of the standard deviation of the QoI respect to each design parameter

has also an analytical expression:

dσQoI

dXi

∣∣∣
X̄ j

= 1

NK σQoI
(
X̄ j

)
NK∑

k=1

(
Q̂oI

(
X̄ j , ξ̄k

) − μQoI
(
X̄ j

))
(
dQ̂oI

dXi

∣∣∣
X̄ j ,ξ̄k

− dμQoI

dXi

∣∣∣
X̄ j ,ξ̄k

)2

(14.11)

Then, the stochastic space needs to be characterized for both the QoI (CD), that
is obtained by the primal solution of the CFD solver, and for each of the different
Nx gradients of the QoI with respect to the design parameters, that are efficiently
obtained by the adjoint method. As shown in Fig. 14.4, NX + 1 different surrogates
are constructed, one to obtain the statistics of the primal solution and NX to obtain
the statistics of each of the gradients.

14.3.3.2 Proposed Approach

To construct the surrogate, samples follow a DoE strategy based on Sobol Sequences
[17]. Sobol Sequences are a low discrepancy, quasi-random sequence that use a base
of two to successively create uniformpartitions of the unit interval [17]. The sampling
is normalized to the distribution of the input uncertainties, ξ.As a result,more samples
will be placed along the mean than in the tails of the input distributions. Locations
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Fig. 14.4 Robust Design Framework using the Adjoint and Gaussian Process: a Gradient Based
Optimization of the mean of the QoI; b Uncertainty Quantification through Gaussian Processes of
the QoI and each of its gradients; c Evaluation of each deterministic solution in full order model

that will be recalled more often when integrating the surrogate with Monte Carlo
will be more accurate than those that have less probability of being evaluated.

The Gaussian Process model consists of Universal Kriging with a Gaussian Ker-
nel (exponent fixed to 2). They hyperparameters of the correlation model are tuned
according to the maximization of the model likelihood through Differential Evo-
lution. The Surrogate-Modelling for Aero-Data Toolbox (SMARTy) developed by
DLR is used for the initial Design of Experiments sampling and for the creation of
the Kriging surrogate [18].

To increase the accuracy of the statistics, after the DoE, an active infill criteria that
deals with sampling evenly in the stochastic space [19] is used. Gaussian Processes
provide the estimation of the surrogate error at any given point in the stochastic
space, ŝ(ξ̄) [15]. Then, new samples are added in the location ξ̄∗

k where the product
of the probability distribution function of the input parameters, PDFX times the error
estimation of the error is maximized. The optimum location is found in the surrogate
through Differential Evolution.

ξ̄∗
k = argmin

ξ

{−PDFX (ξ̄) ŝ(ξ̄)
}

(14.12)

Additional samples are added until convergence on the statistics of the QoI. This
is achieved by assessing the error of the statistic that is integrated in the surrogate,
ŝμ through the Monte Carlo evaluation in both the upper bound, Q̂oI(ξ̄) + ŝ(ξ̄),
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and lower bound, Q̂oI(ξ̄) − ŝ(ξ̄), prediction given by the surrogate. From here, the
upper μU

QoI and lower μL
QoI estimation of the statistic are respectively obtained. The

difference between upper and lower bound (variability in the determination of the
statistics) is associated to the statistical error.

ŝμ = μU
QoI − μL

QoI

2
(14.13)

14.3.4 Optimization Framework

As shown in Figure 14.4, the optimization framework combines the gradients
obtained by the adjoint formulation with the uncertainty quantification using GPs.

A Sequential Least Squares Programming (SQP) gradient based optimizer is used.
At any given design point, X̄ j , the optimizer requires both the statistic and its gradi-
ents w.r.t. the design parameters X̄ . Then, at each iteration, the uncertainty quantifi-
cation is performed in the stochastic space with the help of the surrogate in order to
obtain the statistics of the QoI (mean and standard deviation of the drag coefficient in
this case). A Gaussian Process is also built for each individual dimension in order to
obtain the gradients of the statistics of the QoI w.r.t. the design parameters following
Eqs. 14.10 and 14.11. For example, if the focus is in the mean value, both μQoI and
dμQoI

dX are efficiently obtained at each iteration.
This approach differs from the one in which a global surrogate such as Gradient

Enhanced Kriging [18] is built, whose values and derivates are computed by the pri-
mal and the adjoint. In that case, both the global surrogate accuracy and construction
time would be very sensitive to the number of dimensions, NX . When dealing with
more complex problem with hundreds of dimensions, only the training time of the
global surrogate would make the approach unfeasible. The strength of the proposed
method is that it decouples the dimensionality in the design space from the surrogate
accuracy, as this one is built only in the stochastic space with a reduced number of
samples. In addition, as each surrogate of the gradients is built independently for
each dimension, the training time only increases linearly with the number of design
parameters.

14.4 Results

14.4.1 Deterministic Optimization

Figure 14.5 shows the convergence history of the gradient-based deterministic opti-
mization using the adjoint. The optimization starts with the initial RAE2822 config-
uration. A total of 19 Iterations are required. The optimum configuration decreases
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Fig. 14.5 Convergence
history of deterministic
gradient based optimization

Fig. 14.6 Pressure
coefficient for baseline and
optimum configurations

the drag coefficient by 34.9%, from to 191.3 drag counts to 124.58 drag counts.
According to the pressure coefficient distribution of Fig. 14.6, the optimum airfoil
removes the strong normal shock wave of the original configuration, reducing wave
drag.

14.4.2 Uncertainty Quantification

To study the accuracy of the proposed uncertainty quantification on GPs, the deter-
ministic optimumconfiguration is perturbedunder uncertainty, following the stochas-
tic operating conditions. To obtain the reference statistics (mean and standard devi-
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Fig. 14.7 Convergence history of the error in the statistics according to the number of samples
used to build the surrogate. Error on: a mean; b standard deviation

ation) of this configuration, 10,000 Quasi Monte Carlo Samples are evaluated in the
CFD model. Based on that, it is possible to obtain the accuracy of the statistics pro-
vided by the surrogate for a given number of training samples required to construct
them.

Figure 14.7 a shows the convergence in the absolute error between the reference
mean and the one obtained with the surrogate built from a given number of samples,
for different infill strategies. In general, as the surrogate is built with more and
more samples, the mean value is obtained more accurately. However, when only a
DoE approach is followed, the accuracy of the surrogate is reduced. For a given
computational budget, the use of the infill is preferred. In addition, it is better to start
the infill after a good global exploration by using 10 DoE samples. Finally, an error
smaller than 0.2 drag counts is desired in order to have a stable convergence during
the optimization and provide useful results. According to this, a minimum of 12 to
15 samples are required when the active infill is valid, while if using only a DoE
strategy, the required number of samples increases to 24.

The same conclusions can be obtained for the convergence error of the standard
deviation inFig. 14.7 b.Whendealingwith higher ordermoments such as the standard
deviation the accuracy requirements are more demanding. In this case, the use of the
infill criteria is necessary to come up with a good accuracy of the standard deviation.

14.4.3 Robust Optimization

The robust optimization is repeated six times with different weights for the mean and
standard deviation following the framework introduced in Sect. 14.3. Each optimum
configuration is obtained at a reduced computational cost, requiring from 17 to 24
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Fig. 14.8 Pareto Front of
standard deviation and mean
of drag coefficient for
optimum configurations

iterations of the gradient-based optimizer.At each iteration, 14 to 16CFD samples are
required to accurately obtain the statistics of the drag through the surrogate approach.
Then, a total of 200 to 400 CFD evaluations are required to obtain a optimum robust
configuration.

The Pareto-Optimal solutions in terms of mean and standard deviation of drag are
shown in Fig. 14.8. The deterministic optimum configuration behaves poorly under
uncertainty, and has both higher mean and standard deviation than two of the robust
configurations. From an engineering point of view, the configuration with similar
weights in mean and standard deviation, (wμ = 1,wσ = 1.5) looks appealing. By
slightly increasing the mean value of the drag, its variability can be reduced by
half. There is a clear trade-off between configurations less sensitive to drag, and
configurations with a good average performance. Keeping in mind that the gradient
based method only guarantees local optimality, the framework is able to provide a
set of non-dominated robust solutions in which a designer can choose from. This can
only be achievedwhen the accuracy of the statistics (specially the standard deviation)
and its gradients is high.

The probability distributions and box plots of the stochastic drag for the different
configurations are shown in the violin plot of Fig. 14.9. On top of each distribution,
the mean value is also highlighted in white. The deterministic solution (grey) has a
mean value of 129.6 drag counts and a standard deviation of 4.7 drag counts, while
the robust solutionwith focus on themean value displaces further down the histogram
towards amean value of 128.2 and standard deviation of 3.5 drag counts. However, in
both cases a large tail is present towards higher values of drag.Whenmore importance
is placed in the standard deviation, solutions have a peaky distribution and the tail is
decreased, at an expense of a larger mean value, as previously shown in the Pareto
front.

The different airfoil shapes are shown in Fig. 14.10. All the optimum configura-
tions have an increased curvature near their leading edge compared to the baseline
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Fig. 14.9 Violin plot of drag coefficient for the configurations of interest

Fig. 14.10 Airfoil shapes of the configurations of interest

airfoil. This allows for a better expansion of the flow and elimination of the strong
shockwave over the upper surface. Despite small, there are some differences between
the deterministic and robust airfoils.

The robust airfoils have an increased curvature of around 60–70% of the chord.
This is similar to adding a “shock control bump” device, that is able to smear stronger
shock waves when the Mach and Lift randomly increase w.r.t. nominal conditions.
The curvature or “bump” is larger in the designs when variability must beminimized.

The standard deviation of the pressure field is shown in Fig. 14.11 for the robust
optimum with focus on the mean (wμ = 1,wσ = 0, configuration A) and for the one
with strong focus on the variation, (wμ = 1,wσ = 10, configuration B). For each
configuration, the field has been obtained by superimposing 300 snapshots of the
flow solution computed with Monte Carlo.
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(a) (b)

Fig. 14.11 Standard deviation of the pressure coefficient field for Robust configurations: a Focus
on mean; b Focus on standard deviation

There is a larger longitudinal variation of the shock wave along the airfoil in
configuration A, as the focus was on the mean drag and not on the standard deviation.
In addition, this variation is stronger. In this case, two shock wave patterns can be
present around 40–60% of the chord. Configuration B on the other hand reduces the
displacement of the shock wave and moves it further upstream, around 35–45% of
the chord, due to the stronger curvature previously discussed. However, as the shock
wave is further upstream, the average drag increases.

14.5 Conclusions

A novel gradient-based robust optimization method has been presented and applied
to a test case. The combination of a CFD adjoint code with Gaussian Process can
be used to efficiently obtain the gradients of the mean and standard deviation of the
drag coefficient with respect to the design parameters. This reduces both the number
of optimization iterations and the samples required for uncertainty quantification.

The application to aerodynamic shape optimization shows that the deterministic
optimum under uncertainty behaves poorly. In order to come up with more realistic
configurations, a robust formulation is required. A multi-objective optimization in
which the mean and standard deviation of the drag compete against each other is an
attractive approach for the design of robust configurations. There is a clear trade-off
among configurations with good average performance and those with less variability
against uncertainties.

This method is preferred in optimizations in which the number of design param-
eters is much larger compared to the number of uncertainties. With respect to deter-
ministic gradient-based optimization, the addition of uncertainties increases the com-
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putational time by a factor of 10 to 15. However, as the framework is independent to
the number of design parameters, it is readily available for the robust optimization
of more complex three dimensional configurations.

Under more uncertainties, the use of Gradient Enhanced Kriging, which takes
the gradients of the uncertain parameters to build the surrogate in the stochastic
space, will increase the accuracy of uncertainty quantification. In the future, other
robustness measures such as the quantile will be investigated. The framework will
also be applied to the optimization of 3D wings under a large number of design
parameters, where it will show its full potential.
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Chapter 15
A Multi Layer Evidence Network Model
for the Design Process of Space Systems
Under Epistemic Uncertainty

Gianluca Filippi and Massimiliano Vasile

Abstract The purpose of this paper is to introduce a newmethod for the design pro-
cess of complex systems affected by epistemic uncertainty. In particular, amulti-layer
network is proposed to model the whole design process and describe the transition
between adjacent phases. Each layer represents a design phase with a particular
detail definition, each node a subsystem and each link a sharing of information. The
network is used to quantify and propagate uncertainty through the different layers
(design phases) where, proceeding from phase A to phase F, the detail of the mathe-
matical model is increased. Thus, it can be considered as amulti-fidelity approach for
the design of a complex system affected by epistemic uncertainty. The framework of
Dempster-Shafer Theory of Evidence (DST) is used to model epistemic uncertainty.
The model is then called Multi-Layer Evidence Network Model (ML-ENM).

Keywords Multy-layer evidence network model · Evidence theory · Robust
design

15.1 Introduction

The approaches to the design of engineering systems have been evolving in time at
an equal pace with the development of technology and in particular with the increase
of computational power. Within theDesign by Formula, the first traditional approach
in engineering design, the solution is generated by the engineer without the help of
any tool and it is based only on the feedback given by the physical prototype. In
the Design by Analysis [1] approach, virtual prototype (software analysis based on
numerical methods) gives an important contribution, but still the design process is

G. Filippi (B) · M. Vasile
Aerospace Centre of Excellence, Mechanical and Aerospace Engineering, University of
Strathclyde, James Weir Building, 75, Montrose Street, Glasgow, UK
e-mail: g.filippi@strath.ac.uk

M. Vasile
e-mail: massimiliano.vasile@strath.ac.uk

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
A. Gaspar-Cunha et al. (eds.), Advances in Evolutionary and Deterministic Methods
for Design, Optimization and Control in Engineering and Sciences, Computational Methods
in Applied Sciences 55, https://doi.org/10.1007/978-3-030-57422-2_15

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57422-2_15&domain=pdf
mailto:g.filippi@strath.ac.uk
mailto:massimiliano.vasile@strath.ac.uk
https://doi.org/10.1007/978-3-030-57422-2_15


228 G. Filippi and M. Vasile

based on a reductionist approach where subsystems and components are designed
separately without a particular attention to their interfaces. A system level design,
instead, is handled by the Design by Optimisation [2] with the use of numerical
optimisation algorithms integrated with analysis tools. A fundamental improvement
is given then by the Design for Reliability and Robustness and more in general by
Multi-Disciplinary Optimisation (MDO) under Uncertainty [3, 4] that better model a
real (engineering) systemwhich is inevitably affected byuncertainty and imprecision.
Design Under Uncertainty (DUU) makes designers able to handle higher degree of
complexities but, on the other hand, it is particularly challenging due to its high
computational cost. If one looks at the different types of uncertainty that a system
can be subjected to, twomacro-categories can be identified: aleatory uncertainty and
epistemic uncertainty [5]. Aleatory uncertainty is natural randomness which cannot
be reduced. Epistemic uncertainty is due to the lack of information or incomplete data.
This type of uncertainty is reducible by acquiring more knowledge on the problem.
Considering this, a further step forward have been proposed by the authors with the
Design by Resilience [6]. Our proposed concept of Resilience Engineering extends
and integrates the concepts of Design for Reliability and Design for Robustness and
uses the framework of Dempster-Shafer theory of evidence (DST) [7] to include
epistemic uncertainty.

We are here particularly interested in space systems. They are complex systems
involving multiple interconnected components and disciplines with complex cou-
plings: payload, structure, thermal analysis, attitude, control, etc. A system level
optimal solution cannot be found by optimising the single subsystems independently.
Furthermore, the design and optimisation of space systems have to account for epis-
temic uncertainty, in particular in the early design phase. In fact, knowledge about
systemand requirements is only acquired incrementally, but substantial commitments
are made upfront, essentially in the unknown.

Even if the research field is demonstrating to be very active in proposing new
and promising methodologies for the DUU of complex systems, space industry, on
the other side, has a conservative approach that is based on traditional methods. In
fact, the most common and well-established approach to handle uncertainty in space
systems engineering is to use safety margins and redundancies [8]. These traditional
methods, however, present two critical problems that affect the result of the design
process. There is a lack of an appropriate quantification of uncertainty that brings
to an overestimation or an underestimation of the effect of uncertainty (increase in
costs and development time or occurrence of undesirable events). There is also a lack
of an holistic view on the system performance and evolution.

In this paper, then, we propose a methodological advancement to solve those two
problems with specific application to the design of space systems. The novelty is
given by a mathematical model, in the form of a multi-layer graph, that simulate
the evolution in time of the space system during the design process and is able to
quantify and propagate epistemic uncertainty through the different design phases.
The model, called Multi-layer Evidence Network Model (ML-ENM) is a general-
isation of the Evidence Network Model (ENM) already suggested by the authors.
The ENM formulation was first introduced in Ref. [9]. The method was extended in
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Ref. [10] to make ENM computationally more efficient. Reference [11] introduced
a time-dependent reliability measure in the ENM and finally Ref. [6] introduced
the concept of resilience. The ML-ENM allows to a rigorous and fast propagation
of epistemic uncertainty [6, 9–11] and gives an holistic view to the whole design
process. Each layer represents a different phase in the design process, each node
represents a subsystem or a component at a particular level of granularity and each
link is a sharing of information.

In particular, this paper proposes a method to propagate uncertainty through the
ML-ENM from the last design phase to the first one. Then the system is optimised
for robustness with the min-max algorithm [12, 13]. Evidence Theory is applied to
quantify uncertainty on the optimal solution [6, 9–11]. It is finally shown that the
optimal solution at phaseA is robust against the uncertainty in the next design phases.

15.2 Evidence Framework for Epistemic Uncertainty

As previously stated in Sect. 15.1, the design process of a space system is affected
(particularly in the early phases) by epistemic uncertainty that can not be quantified
by probability distributions. To model this type of uncertainty we propose the use of
DST which is getting an increasing attention and has shown to be useful [7].

Under the assumptions of independence of the sources of information and uncorre-
lation of uncertainties,we candefine the set�of all themutually exclusive and collec-
tively exhaustive elementary events (or hypotheses) � = {

θ1, θ2, . . . , θi , . . . , θ|�|
}
.

The collection of all non empty subsets of � is the Power Set 2� = (�,∪). One can
now assign a probability mass, called basic probability assignment (bpa) to the ele-
ments of 2�. Each element of 2� with a non-zero bpa is called a Focal Element (FE)
and is represented with the symbol γ in the following. The pair 〈�, bpa�〉—where
� � γ and bpa� � bpaγ—is called the Body of Evidence.

We can now define the performance index of the system we want to analyse as:

f (d,u) : D ×U ⊆ R
m+n → R (15.1)

where D is the design space for the decision or design parameters d, of dimension
m, and U = 2� the event space for the uncertain parameters u, of dimension n, that
we call the Uncertain Space.

DST measures the influence of uncertainty on the quantity f , for a fixed design
vector d∗, bymeans of two functions,Belief andPlausibility, that generalise the con-
cept of Probability measure given in classical probability theory. If we are interested
in the amount of evidence associated to the event f (d,u) ∈ � we can define

� = {u ∈ U | f (d,u) ∈ �} (15.2)

as the corresponding set inU and then compute the cumulativeBelief and Plausibility
associated to that event:
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Bel(�) =
∑

γi⊂�,γi∈U
bpa(γi ), (15.3)

Pl(�) =
∑

γi∩� �=0,γi∈U
bpa(γi ). (15.4)

From Eqs. (15.3) and (15.4) we can state that the belief in the realisation of the
event f (x) ∈ � is the sum of the bpa of all the FEs totally included in �, while the
Plausibility is the sum of all the FEs that have a non-null intersection with �. More
details about the DST can be found in Ref. [7].

15.3 Evidence-Based Robust Optimisation

This section explains the approach we use to incorporate epistemic uncertainty in
the optimisation process and to design the system for robustness.

Given the performance index f in (15.1), Evidence-Based Robust Optimisation
aims at finding the decision vector d∗ that maximises the Belief in statement (15.2),
given a body of evidence, and optimises the set �. The concept was introduced by
the authors in Ref. [14] and extended in Ref. [15].

If one is interested in the minimisation of f under the satisfaction of a constraint
function C ≤ νC , Eq. (15.2) translates in the following two sets of uncertain param-
eters:

� = {u ∈ U | f (d,u) ≤ ν} (15.5)

�C = {u ∈ U |C(d,u) ≤ νC} (15.6)

where we want to minimise f and maximise the belief in the statement (15.5) while
maintaining an hard condition on the constraint satisfaction:

maxd∈D Bel( f (d,u) ≤ ν)

minν∈R ν
Bel(C(d,u) ≤ νC) > 1 − ε

(15.7)

Problem (15.7) requires the evaluation of the belief curve for both the functions f
and C and it becomes easily intractable. In fact there is a dependence of the belief to
the design vector d and the thresholds ν and νC thus for each new value of d, ν and
νC the belief has to be revalued. Furthermore the exact belief reconstruction requires
a number of maximisations equal to the number of FEs and this number increases
exponentially with the problem dimension.
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Among all vectors d that solve problem (15.7) the most critical one, d∗, corre-
sponds to the minimum values of ν and νC such that Bel( f (d,u)) is maximum and
Bel(C(d,u) ≤ νC)) = 1.We call the search for d∗, worst-case scenario optimisation
and it can be formulated as the deterministic min-max optimisation problem [3]:

mind∈D maxu∈U f (d,u)

s.t.
∀u ∈ U : C(d,u) ≤ 0.

(15.8)

Solving for the worst-case scenario renders the optimisation problem independent
of the uncertainty quantification method, has a complexity that is independent of the
number of FEs and does not require any particular assumption on the constraint
functions.

15.4 Space Systems Project Life Cycle

Space missions are complex and expensive. The design process, in fact, requires sev-
eral years (up to 15) to find the final optimal configuration. Also it involves different
players who have different goals: end user or costumer, operators, developer and
sponsor. In order to decompose the whole design process in smaller and more man-
ageable pieces, the life cycle of a space mission traditionally proceeds through four
main phases. The concept exploration broadly defines the space mission and its com-
ponents. The detailed development defines more precisely the system’s components
and possibly tests software and hardware. The production and deployment constructs
and launches the system. The operations and support, finally, daily supports the mis-
sion and brings it to its end of life [16]. Depending, then, on the mission’s sponsor
(NASA, ESA, DoD, commercial enterprise, ...), these phases are further divided and
labelled differently. For example, NASA divides the project life cycle in seven incre-
mental pieces [17, 18]. The Pre-Phase A (concept study), the Phase A (concept and
tecnolongy development), the Phase B (Preliminary Design and Technology Com-
pletion), thePhaseC (FinalDesign and Fabrication), thePhaseD (SystemAssembly,
Integration and Test, Launch), the Phase E (Operations and Sustainment) and the
Phase F (Closeout). Phases A, B,…, F are separated by KeyDecision Points (KDPs)
that are events inwhich the authority, based on the progress state, the achieved results,
the requirements and the budget, approve or reject the project with a “go” or “not
go” decision.

15.4.1 Pre-formulation

This phase is not part of the project life-cycle. It is nevertheless of fundamental
importance. Feasibility and desirability are here preferred to optimality. Engineers



232 G. Filippi and M. Vasile

are interested in a broad analysis of risks, cost, feasibility. A variety of possible
scenarios and ideas are analysed.

15.4.2 Formulation

During the formulation, that includes phase A and phase B, the full range of imple-
mentation options are explored and finally a promising design concept is proposed.
The formulation includes the development of the system architecture. Mission and
preliminary design are finalised thanks to trades between conducting safety, techni-
cal, cost, and schedule risk. A the end of the formulation, the project plan is prepared
for the implementation phase.

15.4.3 Implementation

The project implementation consists of phases C, D, E and F. During phase C, there
is the completion of the final system design, the fabrication and the test of compo-
nents, assemblies and subsystems. Phase D, instead, includes the system assembly
integration and test, the pre-launch activities, the launch, on-orbit check out, and
the initial operations. Phase E controls the operation during the mission life-time.
Finally, phase F concludes.

15.5 Multi-layer Evidence Network Model (ML-ENM)

This section introduces the concept of ML-ENM that can be used to quantify and
propagate epistemic uncertainty through the complex system and the different phases
of the whole design process.

ML-ENM generalises the ENM that has been presented in Refs. [6, 9–11]. ENM
is a framework for a decomposition procedure that evaluate Belief and Plausibility
curves with a computational cost that is polynomial and not exponential with the
problem dimension.

Although a network representation for complex systems is a common approach in
MDO, the presented (ML-)ENM gives new and important advantages with respect
to the commonly used Design Structure Matrix (DSM) [19]. In particular, within
(ML-)ENM the correlations between nodes are represented by scalar values that
model in a compact way the influence of many uncertain parameters and weight the
different links. Also (ML-)ENM allows for an easier representation of sub-networks
and clusters.

ML-ENM is a multi-layer network where each layer represents a different phase
in the design process, each node represents a subsystem or a component at a specific
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level of granularity and each link is a sharing of information. As the design process
proceeds from pre-phase A to phase D, an increasing level of detail is needed in the
analysis, the focus is shifted from the subsystem level to the component level, more
precisemathematicalmodels are implemented and the number of nodes increases.On
the other side, studying how real projects evolve, there is a high level of confidence
that between a phase and the following one, unforeseen circumstances require a
modification of the design requirements and goals. Furthermore, different players
collaborate in the project and, usually, a good communication between them is not
an easy task. Based on the results of the single design phase and on the uncertainty
on the whole process’ evolution, the designers take decisions that bring them to the
next phase and that will drive the design process.

Looking at Fig. 15.1, for example, during phaseA three subsystems are considered
and optimised. During phase B the number of considered components is increased.
The point is that the number of sub-divisions and the types of the components in phase
B depend on the designers’ choices and each decision brings the design process to
a different final solution. Also, the number of possible final configurations increases
exponentially with the number of layers and possible choice that can be selected
between each couple of layers.

More formally, a ML-ENM with NL layers is a pair (G, C) where G = {Gα;α ∈
{1, .., NL}} is a family of directed and weighted graphs Gα = (Xα, Eα) and C =
{Eαβ ⊂ Xα × Xβ;α,β ∈ {1, 2, . . . , NL},β = α + 1} is the set of interconnections
between nodes of different layers. The intralayer links in Eα represents the sharing
of information between subsystems and components of the space system (complex
system). The interlayer links in Eαβ model the decision process tree between differ-
ent design phases.

Fig. 15.1 Evolution of the ENM between phase A and B: each node in phase A is decomposed
in two or more nodes in phase B. The number of nodes and the mathematical model associated to
them depend on the designers’ choices. The process is then repeated for the next phases
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Design d and uncertain u vectors are decomposed in two components: d =
[dd ,ds]T and u = [ud ,us]T where the former ([dd ,ud ]T ) are related to the inter-
layer decision process, between a layer and the next one, and the latter ([ds,us]T )
describe the intralayer physical model of the space system at a particular level of
resolution.

At each layer α ∈ {pre-A, B, . . . , F} of the ML-ENM, the performance index
can be defined as:

f α(d,u) =
N∑

i=1

gα
i (dαs

i ,uαs
i ,ϕαs

i (dαs
i ,uαs

i ,dαs
i j ,uαs

i j )), (15.9)

In Eq. (15.9) N is the number of nodes of the network in layer α and ϕα
i (dα,uα

i ,

dαs
i j ,uα

i j ) is the vector of scalar exchange functions ϕα
i j (d

α,uα
i ,dαs

i j ,uα
i j ) that repre-

sent the input/output of the nodes, with j ∈ Jα
i , and Jα

i the set of indexes of nodes
connected to the i-th node of that layer. Equation (15.9) decomposes the uncertain
components us in two categories: the uncoupled components uαs

i that affect only
subsystem i , and the coupled variables uαs

i j shared among subsystem i and one or
more subsystems j .

15.6 Problem Formulation

The ML-ENM has been here applied to the design for robustness of a spacecraft
through the phases A, B and C (pre-phase A is considered in the figures for clarity).
Each node of the ML-ENM is associated to a mathematical function modelling a
subsystem or a component. Their list and the classification between the different
phases is presented in Table 15.1. The quantity of interest is the overall mass of the
satellite and it is given by the sum of the masses of all the subsystems (phase A)
or components (phase B and C). The network can be visualised in Figs. 15.2, 15.3,
15.4 and 15.5: the nodes correspond to the models of the system (node 1 at pre-phase
A), sub-systems (nodes 2–6 at phase A) and components (nodes 7–18 at phase B
and nodes 19-30 at phase C). The links, instead, correspond to their intra-layer and
inter-layer connection. In particular coloured arrows define inter-layer (hierarchical)
dependencies while grey lines indicate intra-layer dependencies. Red lines show the
dependence of nodes at layer A from the node at layer pre-A (pre-A → A), yellow
lines show the dependence of nodes at layer B from nodes at layer A (A → B) and
purple lines of nodes at layer C from layer B (B → C). Each node in a generic layer,
in fact, can be decomposed in two or more nodes in the next layer. Furthermore, the
number of parameters and the complexity increase through the process as Table 15.2
shows. Gray lines instead represent couplings between nodes in the same layer α
through the linking functions ϕα

i as in Eq. 15.9.
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Table 15.1 ML-ENM nodes Node Pre-phase A

1 Spacecraft

Phase A

2 Attitude and Orbit Control (AOCS)

3 Payload

4 Power

5 Thermal

6 Telemetry and Telecommand (TTC)

Phase B

7 Magnetorquers

8 Thrusters

9 Reaction wheels

10 Payload

11 Batteries

12 Harness

13 Power Conditioning and Distribution
Unit (pcdu)

14 Solar array

15 Thermal

16 Antenna

17 Radio Frequency Distribution
Network (rfdn)

18 Transponder

Phase C

19 Magnetorquers

20 Thrusters

21 Reaction wheels

22 Payload

23 Batteries

24 Harness

25 Power Conditioning and Distribution
Unit (pcdu)

26 Solar array

27 Thermal

28 Antenna

29 Radio Frequency Distribution
Network (rfdn)

30 Transponder
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Fig. 15.2 2D representation
of the design process as a
decision tree. The phases (A,
B and C) are indicated with
different colours.
Subsystem’s and
component’s models are
represented as nodes

Fig. 15.3 3D representation
of the design process as a tree

Fig. 15.4 Representation of
the design process as a
graph. Coloured arrows
define inter-layer
dependencies while grey
lines indicate intra-layer
dependencies within the
same design phase
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Fig. 15.5 Circular
representation of the
ML-ENM with both
inter-layer and intra-layer
dependencies

Table 15.2 Model dimention

Phase Path 1 Path 2

dimd dimu dimd dimu

A 6 16 6 17

B 13 35 14 34

C 21 43 21 47

15.7 Method

For the defined ML-ENM, the Body of Evidence presented in Sect. 15.2 can be
populated at the last phase of theML-ENM, here phase C, by a process of knowledge
elicitation. For the proposed application, available data from previous publications
has been used [9].

In this example there are only two possible paths that the design process can
explore from phase A to phase C. They correspond to the choice between node 7
(Magnetorquers) and 8 (Thruster) at phase B. The choice brings, respectively, to
node 19 and 20 at layer C.

For each chosen path the uncertainty structure at phase C is propagated back to
phase A exploiting the inter-layer dependencies A→ B and B→ C. A minimisation
and a maximisation have been run to reconstruct the lower and upper bounds of each
uncertain parameter at layer α that incorporate two or more parameters of the layer
α + 1. In this manner, the reconstructed Body of Evidence at phase A incorporates
the uncertainty that affect the more complex and detailed models at phase B and C.

Then, the system is optimised for robustness at phase A. In particular, the min-
max algorithm is used to evaluate the optimal design vector d∗

A. For more details
about the method please refer to Refs. [12, 13].

For the evaluated optimal design solution d∗
A, the decomposition approach pre-

sented in Refs. [6, 9–11] has been applied to the ML-ENM in order to propagate
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uncertainty through the spacecraft model and reconstruct a good approximation of
the belief curve with a fraction of the computational cost required for the exact one
(Fig. 15.12).

The effect of uncertainty at phases B and C is finally analysed in correspondence
with the robust design solution d∗

A.

15.8 Results

Considering the first path in the ML-ENM (node 7 at phase B and node 19 at phase
C), the worst case optimal solution (d∗

1,u
∗
1) gives a mass of 166.43kg. Figures 15.6,

15.7 and 15.8 show the effect of uncertainty at phases A, B and C for the fixed d∗
1. The

second path (node 8 at phase B and node 20 at phase C) brings to the robust solution
(d∗

2,u
∗
2)with a correspondingmass of 230.12kg. Figures 15.9, 15.10 and 15.11 show

the effect of uncertainty at phases A, B and C for the fixed d∗
2. In particular, Figs. 15.6

and 15.9 concern the system level (the whole mass of the satellite), Figs. 15.7 and
15.10 the sub-systems level and Figs. 15.8 and 15.11 the components level. The

Fig. 15.6 Effect of uncertainty at the system’s level in phases A, B and C for the first considered
path. The design vector is fixed at the optimal solution
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Fig. 15.7 Effect of uncertainty at the sub-system’s level in phasesA, B andC for the first considered
path. The design vector is fixed at the optimal solution

Fig. 15.8 Effect of uncertainty at the component’s level in phases A, B andC for the first considered
path. The design vector is fixed at the optimal solution
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Fig. 15.9 Effect of uncertainty at the system’s level in phases A, B and C for the second considered
path. The design vector is fixed at the optimal solution

Fig. 15.10 Effect of uncertainty at the sub-system’s level in phases A, B and C for the second
considered path. The design vector is fixed at the optimal solution
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Fig. 15.11 Effect of uncertainty at the component’s level in phases A, B and C for the second
considered path. The design vector is fixed at the optimal solution

boxplots have been evaluated with a Monte Carlo simulation over the uncertain
space with 106 function evaluation. For each box a maximisation and a minimisation
have been run in order to be sure that the boxes include all the possible values of the
mass for the given uncertainty structure. These figures show that the spacecraft model
at phase Awith the back-propagation of uncertainty, incorporates for the chosen path
all the uncertainty in phases B and C. The worst case optimal solution d∗ at phase
A, then, results to be robust through the design process.

For d∗
1, finally, the decomposition approach has been applied to theML-ENM and

Fig. 15.12 presents the reconstructed belief curve. The decompositionmethod allows
to a fast andgood evaluationof the belief as demonstrated inRef. [10]. In this problem,
in fact, the exact evaluation of the belief curves require 65536 maximisations (one
for each focal element). Instead, the curve in Fig. 15.12 has been evaluated with 234
maximisations (0.36 %).
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Fig. 15.12 Cumulative Belief curve of the optimal worst case solution at phase A for the first
considered path

15.9 Conclusion

This paper proposes a new approach for the design process of a space system affected
by epistemic uncertainty. The main novelty is given by the use of the ML-ENM to
quantify and propagate uncertainty between different phases of the design process.
ML-ENM is a multi-layer network representation of the complex system where each
layer takes into account the couplings between subsystems (or components) at a
particular design phase. The evolution of the design process is then modelled by the
sequence of layers.

It is here presented a method for the definition of uncertainty at the first phase
(phase A) of the process such that the optimal solution at that phase is robust against
the uncertainty in the following phases.

The method is applied to the design of a space system. The model is optimised
for robustness and finally a decomposition methodology is applied to the network in
order to reduce the computational cost of the epistemic uncertainty propagation and
the belief reconstruction with the use of Evidence Theory.

It has be shown that the optimal design solution at phase A defined in such a way,
is robust against the propagation of uncertainty through the design process.
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Chapter 16
Solving Multi-objective Optimal Design
and Maintenance for Systems Based
on Calendar Times Using NSGA-II

Andrés Cacereño, Blas Galván, and David Greiner

Abstract Due to technical progress and business competition, design alternatives
and maintenance strategies have to be contemplated to optimize the performance of
physical assets when new facilities are projected and built. That combined optimiza-
tion (Design & Maintenance) is required by all industrial installations to develop
their activity in an increasingly competitive environment. The Design and Mainte-
nance combined optimization process is a complex problem which requires research
and development. The objectives to optimize are Unavailability (due to production
losses) andMaintenance Cost (due to overcharge when it is not optimal). The Design
and Maintenance strategy for a technical system are optimized jointly by modifying
its Functionability Profile, which is closely related to the system’s availability. The
Functionability Profile is generated by applying Monte Carlo Simulation that allows
characterizing the process’ randomness until the failure and to modify that Function-
ability Profile by the optimal Maintenance strategy. An application case is presented,
where several configurations of the elitist Non-dominated SortingGenetic Algorithm
(NSGA-II) are used to optimize the multi-objective problem, successfully finding
non-dominated solutions with optimum performance for the simultaneous Design
and Maintenance strategy combination.
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16.1 Introduction

System Reliability is defined as the probability of being operating under particular
conditions during a certain period [1]. The problem of systems design optimization
based on their Reliability has been dealt by several authors, both in single-objective
[2, 3] and multi-objective [4] cases, as an application of the well-known use of
evolutionary algorithms/metaheuristics to solve complex problems in engineering
design [5, 6]. However, it is still a live problem because of technical advances, the
increase in the complexity of systems and the demand of consumers (among other
aspects) [7].

The parameter which includes the process until the failure and recuperation for
repairable systems is Availability. In repairable systems, information about the prob-
ability of being available at certain time to achieve their functions is given by their
Availability.

System’s Availability can be deduced through its Functionability Profile. An
example of Functionability Profile is shown in Fig. 16.1. The better the system
Reliability is, the better its Availability will be. A priority objective in the industry is
to obtain the maximum availability because if a system is “available”, resources will
be being generated. However, when a system is not “available”, not only resources
are not being generated, but also resources are being consumed until to recover the
“available” state. When the system is not “available”, it is driven into unproductive
phase [8].

Themain reasonswhy a continuous operation system stops are a failure (after that,
a recovery time is required) or a scheduled stop to perform a maintenance activity.
The global improvement of system’s Reliability and Availability is possible through
preventive maintenance [9]. If a preventive maintenance activity is performed,
the unproductive phase will be more controlled than when reparations have to be
performed because of a failure. Therefore, it is interesting to identify the optimum
moment to make a stop to develop a preventive maintenance activity. In an ideal
way, it has to be done before the occurrence of a failure but as near as possible to
maximize the system’s “available” time. The Maintenance Optimization problem
has been studied extensively [10].

Fig. 16.1 Functionability
profile of a component (or
device, or system)
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From the foregoing, it can be deduced that both the system’s optimum design
and maintenance strategy improve its Reliability and Availability. Traditionally, the
problemof improvingReliability by optimizing the system’s design andmaintenance
strategy has been treated separately.

However, there are some works in which they have been jointly studied. In C.P.
de Paula et al. [11] system’s Availability and Cost are optimized through a decision
process in which the number of redundant elements for a system (design) and the
percentage of total resources allocated to maintain it are decided.

In the present paper, we face an unpublished problem, where the multi-objective
optimization problemofminimization of the cost andmaximization of the availability
(or minimization of the unavailability) are handled: a set of optimal balanced solu-
tions between Availability and Cost are provided, on the one hand, from the elements
potentially included in the design, and on the other hand from the identification of
the optimum moment in which the maintenance activity has to be performed. To
obtain that, Functionability Profiles for system’s devices have to be readjusted and,
consequently, the system’s Functionability Profile. Those Functionability Profiles,
which are built and adjusted by using Discrete Events Simulation, are product of
the Design and Maintenance Strategy.

The paper is organized as follows. Section 16.2 resumes the Methodology.
Section 16.3 presents an application case. In Sect. 16.4 results are shown, and finally
Sect. 16.5 introduces conclusions.

16.2 Methodology

16.2.1 Availability and Functionability Profile

Reliability is an intrinsic characteristic to a component (or device, or system,
depending on disaggregation level, from now on device) which is related to the
way in which the device has been designed and built. Maintainability can be intrinsic
to devices when it is related to conditions of design (a piece that is difficult to access
will be more complex to maintain) or extrinsic, for example, when it is related to
availability of spares or to human teamwhohas to perform themaintenance operation.

In Availability, those two parameters (Reliability and Maintainability) are related
to define the way in which the device is able to fulfill the function for which it was
designed during a period. In the present paper, the system’s Availability is charac-
terized by using its Functionability Profile. An example of Functionability Profile is
shown in Fig. 16.1.

Functionability Profiles depend on times to failures (t f 1, t f 2,…, t f n) and recovery
times (..,…, trn). In continuous operation devices, when Functionability Profiles
are set to logical 1, it is considered that devices are operating. Conversely, when
Functionability Profiles are set to logical 0, it is considered that devices are stopped
(they are being maintaining or repairing after the failure). It is possible to deduce
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from Fig. 16.1 that after an operation time (time to failure or time to perform a
scheduled maintenance activity), a recovery time is necessary (time to repair after
failure or time to perform a preventive maintenance activity).

As previouslymentioned,Availability is tightly related to Functionability Profiles.
Availability is characterized through the relation between device’s operation times
and the hoped operation total time for that device. That device will be able to fulfill
its purpose during t f times, so it is possible to characterize Availability A(t) by using
Eq. 16.1.

This approximation to characterize the Availability is called Operational Avail-
ability. Andrews and Moss [12] explain that Availability is an important measure of
performance for repairable devices, which is represented in Eq. 16.2.

A(t) ∼= t f 1 + t f 2 + · · · + t f n
t f 1 + t f 2 + · · · + t f n + tr1 + tr2 + · · · + trn

(16.1)

A(t) = MTT F

MTT F + MTT R
(16.2)

Mean Time To Failure (MTT F) and Mean Time To Repair (MTT R) are distin-
guished in Eq. 16.2. The approach shown in Eq. 16.2 is the base of the approximation
that allows using Eq. 16.1. Availability (A(t)) is a variable with value between 0 and
1. The opposite of Availability is Unavailability (Q(t)), so A(t) + Q(t) = 1 and
Q(t) = 1 − A(t).

A priori, operation and recovery times are not known. They are random variables
so they allow a statistical treatment. If a historic of both times is compiled and a statis-
tical analysis is performed, these variables could be defined as probability density
functions and probability distribution functions through their respective parame-
ters. Functions can arise from a specific typology (exponential, Weibull, normal, for
example). There are several Data Bases in the market (OREDA [13], CCPS [14])
which supply the characteristic parameters for the refereed functions, so operation
and recovery times can be characterized for different failure modes of devices.

The economic Cost is a variable directly associated to recovery times. When
systems are operating, economic income is generated. Conversely, when systems are
recovering, economic cost is generated to return it to its operation state. If we want
to avoid long recovery times, it is necessary to carry out a preventive maintenance
activity ideally before the failure. Because of that stop is scheduled (for reasons such
as human personnel are willing and trained, or spare parts are available) recovery
times will be shorter. Therefore, it is possible to modify Functionability Profiles for
system’s devices by including preventive maintenance activities.
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16.2.2 Building Functionability Profiles

As we want to analyze the system’s Availability, we are going to show how it is
possible to build Functionability Profiles for devices by using Discrete Events Simu-
lation.With this end, information about how to characterize operation times to failure
(TF) and recovery times after failure (TR) is needed. Characteristic parameters about
their probability distribution laws are needed. In this book chapter, all possible
device’s failures are grouped in a unique failure mode. From the characterization
of probability density and probability distribution functions both for operation times
(TF) and recovery times (TR), Functionability Profiles for system’s devices will be
built by generating random times (Discrete Events Simulation). To modify Func-
tionability Profiles, attending to preventive maintenance activities, operation times
to preventive maintenance (TR) and recovery times due to preventive maintenance
(TRP) will be introduced by generating random times. The process is shown below:

1. System’s Life Cycle has to be decided and then, the process continues for all
devices.

2. The device’s Functionability Profile has to be initialized.
3. A time to preventive maintenance (TP) is extracted from the individual of

the population that is being evaluated and a recovery time for preventive
maintenance (TRP) have to be randomly generated, between limits previously
fixed.

4. Attending to the device’s distribution probability law, an operation time to
failure (TF) has to be randomly generated, between limits previously fixed.

5. If TP < TF, a preventive maintenance activity is performed before a failure
occurs. In this case, as many logical “ones” as TP units followed by as many
logical “zeros” as TRP units have to be added to the device’s Functionability
Profile.

6. If TP > TF, a failure occurs before a preventive maintenance activity would
be done. In this case, attending to the device’s distribution probability law, a
recovery time after failure (TR) has to be randomly generated, between limits
previously fixed. Then, as many logical “ones” as TF units followed by as many
logical “zeros” as TR units have to be added to the device’s Functionability
Profile.

7. Steps 4 to 6 have to be repeated until the end of the device’s Life Cycle.
8. Steps 2 to 7 have to be repeated until Functionability Profiles have been built

for all devices.
9. After to build Functionability Profiles, attending to the logic due to the serial

(AND) or parallel (OR) distribution for the system’s devices, the system’s
Functionability Profile has to be built.

10. Finally, system’s Availability will be established by using Eq. 16.1, while the
system operation cost is computed by adding partial costs due to recovery times.
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Economic costs due to recovery times after failure and for preventivemaintenance
activities have to be established. With this purpose, a cost will be associated to
unavailable time units. That cost will be bigger for recovery times after failure due to
lack of foresight. The cost has to be computed while device’s Functionability Profiles
are built.

16.2.3 Multi-objective Optimization

Optimization results useful in practically all areas of our life. Our activities have to
be optimized when we want to get the best possible result. However, when we have
to solve complex problems we become aware of the suitability of employing that
methodology. Optimization is very useful specially when the number of potential
solutions is high and getting the best solution is very difficult. However, it will be
possible to obtain sufficiently good solutions [15].

Optimization problems can be minimized or maximized for one or more objec-
tives. In most cases, real world problems present various objectives for optimising
at the same time (frequently in conflict each other). These problems are so-called
“multi-objective” and their solutions arise from a solution set which represent the
best compromise between objectives (Pareto optimal set) [16, 17]. This kind of prob-
lems are described by Eq. 16.3 (considering a minimization problem in this case)
[15].

min
x

f (x) = min
x
[ f1(x), f2(x), . . . , fk(x)] (16.3)

In Optimization problems defined by this way, the k functions have to be opti-
mized at the same time. Classical optimization methods suggest converting the
multi-objective optimization problem to a single-objective optimization problem by
emphasizing one particular Pareto-optimal solution at time.Due to their ability to find
multiple Pareto-optimal solutions in one single simulation run, a number of multi-
objective evolutionary algorithms (MOEAs) were suggested after. In this paper, a
MOEA is used to optimize an application problem. This algorithm is the so-called
Non-dominated Sorting Genetic Algorithm II [18] (NSGA-II). The selection method
in this algorithm is based on the concept of non-dominance.

In this paper, the problem is to optimize the Design and Maintenance strategy
for an industrial system based on two different objectives in conflict, Availability
and Cost. We wish maximum Availability and minimum maintenance Cost. The
more investment in maintenance, the greater system’s Availability will be obtained.
However, this policy implies a higher unwanted cost, being this the conflict between
objectives. Not only maintenance strategy is considered but also the system’s design
is optimized too based on Availability and its influence in Costs due to Maintenance
strategy. The process is discussed below.
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16.3 Application Case

The proposedmethodology has been applied to a fluid injection system from industry,
based on4 as an example. That system is basically formed by cut valves (Vi ) and
impulsion pumps (Pi ) as is shown in Fig. 16.2.

As itwas exposed above, optimization objectives are, on the onehand, tomaximize
the system’s Availability and, on the other hand, to minimize Costs due to system’s
unproductive phases (both because the system is being recovered and because the
system is being maintained). To do that:

• For all system’s devices, the optimum moment to perform a preventive mainte-
nance activity has to be established.

• Including redundant devices as P2 and/or V4 has to be decided by evalu-
ating Design alternatives. Including redundant devices will improve the system’s
Availability but it will worsen its Maintenance Cost.

Population individuals for the Optimization process will be characterized by
its chromosome. Chromosomes will be shaped by real number strings with 0 as
minimum value and 1 as maximum value (decision variables). They will be codified
as [B1B2T1T2T3T4T5T6T7], where the presence of redundant devices, P2 and V4,
is decided by B1 and B2, respectively, and optimum times to perform a preventive
maintenance activity to devices are represented by T1 to T7. Data set for system’s
devices used to the optimization process are shown in Table 16.1.

The Software Platform PlatEMO [19] (programmed in MATLAB) was used to
optimize the problem. The open source platform PlatEMO includes more than 50
multi-objective evolutionary algorithms, more than 100 multi-objective test prob-
lems, along with several widely used performance indicators. In this case, the reli-
ability and maintenance analysis software has been developed and implemented to
solve the problem described above in the platform.

The parameters set used to configure the simulation process is shown inTable 16.2.
The evolutionary multi-objective algorithm used in this paper is the so-called Non-
dominated Sorting Genetic Algorithm II (NSGA-II), a method based on the concept
of non-dominance. The method was configured with several parameters. All cases
were runningfive timeswith a stopping criterionof 5,000,000 evaluations,withSimu-
lated Binary Crossover (SBX), and crossover distribution and mutation distribution
indexes of 20. Two population sizes were analysed with 50 and 100 individuals.
Mutation probabilities were changed between 0.5, 1 and 1.5 genes per chromosome

Fig. 16.2 Application case:
fluid injection system
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Table 16.1 Data set for the
system’s devices

Parameter Quantification Source

Life Cycle 700,800 h –

Recovery Cost 0.5 units Expert judgement

Maintenance Cost Recovery Cost/4 Expert judgement

Pump TF min 1 h Expert judgement

Pump TF max 70,080 h Expert judgement

Pump λ Exponential Law 159.57 · 10−6 h OREDA 2009

Pump TR min 1 h Expert judgement

Pump TR max 24.33 h μ + 4σ

Pump TR μ Normal Law 11 h OREDA 2009

Pump TR σ Normal Law 3.33 h (μ–TRmin)/3

Pump TP min 2,920 h Expert judgement

Pump TP max 8,760 h Expert judgement

Pump TRP min 4 h Expert judgement

Pump TRP max 8 h Expert judgement

Valve TF min 1 h Expert judgement

Valve TF max 70,080 h Expert judgement

Valve λ Exponential Law 44.61 · 10−6 h OREDA 2009

Valve TR min 1 h Expert judgement

Valve TR max 20.83 h μ + 4σ

Valve TR μ Normal Law 9.5 h OREDA 2009

Valve TR σ Normal Law 2.83 h (μ – TRmin)/3

Valve TP min 8,760 h Expert judgement

Valve TP max 35,040 h Expert judgement

Valve TRP min 1 h Expert judgement

Valve TRP max 3 h Expert judgement

Table 16.2 Simulation
configuration parameters

Parameter Configuration

Method NSGA-II

Evaluations 5,000,000

Population 50–100

Crossover probability 1

Crossover distribution index 20

Mutation probability 0.055–0.111–0.166

Mutation distribution index 20

Executions 5



16 Solving Multi-objective Optimal Design … 253

(0.055, 0.111 and 0.166 respectively). Six cases (combination of two population sizes
and 3 mutation rates) were finally evaluated.

16.4 Results

The different configurations for the optimization method were executed five times
each. The Hypervolume [20] (HV) average value evolution (among five execu-
tions and for each configuration) is shown in Fig. 16.3. The higher the number
of evaluations, the higher the improvement of the Hypervolume is observed.

The detail of the last evaluations is shown in Fig. 16.4. It is possible to check that
the parameters configuration with population of 100 individuals and mutation prob-
ability of 0.055 (0.5 gen per chromosome) finally presents the higher Hypervolume
average value.

The values of the main measures obtained for the final evaluations are shown in
Table 16.3. These are the Average, Median, Minimum Value, Maximum Value and
Standard Deviation of the Hypervolumemetric. Firstly, the parameters configuration
with population of 50 individuals and mutation probability of 0.055 (0.5 gen per
chromosome) presents the higher median of the Hypervolume value. Secondly, the
parameters configurationwith population of 100 individuals andmutation probability
of 0.055 (0.5 gen per chromosome) presents the higher average and minimum of the
Hypervolume value. Thirdly, the parameters configuration with population of 100
individuals and mutation probability of 0.111 (1 gen per chromosome) presents the
higher maximum of the Hypervolume value. Finally, the parameters configuration

Fig. 16.3 Hypervolume average value evolution
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Fig. 16.4 Hypervolume average value evolution (detail)

with population of 50 individuals and mutation probability of 0.166 (1.5 gen per
chromosome) presents the lowest standard deviation of the Hypervolume value.

Box plots of the final Hypervolume value distribution for the last evaluation are
shown in Fig. 16.5. It is possible to observe some details described above, related to
average, median, minimum, maximum and the standard deviation of the final Hyper-
volume values. The parameters configuration with population of 50 individuals and
mutation probability of 0.055 presents the highest median of the Hypervolume value.
The parameters configuration presents the higher minimum of the final Hypervolume
value. The parameters configuration with population of 100 individuals and muta-
tion probability of 0.111 presents the highest maximum of the final Hypervolume
value. The parameters configuration with population of 50 individuals and mutation
probability of 0.166 presents the lowest standard deviation of the final Hypervolume
value.

In order to establish if any of the six parameter configurations works better
than others, a statistical significance hypothesis test was conducted. Particularly,
the procedure starts detecting significant differences among the results obtained by
applying theFriedman’s test. It responds the question:“Are there resultswith different
median?” When there are two or more result sets, the null hypothesis (H0) claims
that median are equals (no differences amongmethods). If H0 is rejected, differences
among methods exist, and a post hoc test is run in order to find the concrete pairwise
comparisons which produce differences. In our case, the average rank computed
through the Friedman’s test is shown in Table 16.4.

The parameters configurationwith population of 100 individuals andmutation rate
of 0.055 presents the lowest average rank computed through the Friedman’s test (the
best in this case, as a maximization problem is analyzed -maximum Hypervolume
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Table 16.3 Hypervolume
statistics of the optimization
results

ID Parameter N = 50—Pm = 0.055

1 Average 2.2753

Median 2.2775

Minimum Value 2.2572

Maximum Value 2.2879

Standard Deviation 0.0124

ID Parameter N = 100—Pm = 0.055

2 Average 2.2762

Median 2.2732

Minimum Value 2.2676

Maximum Value 2.2934

Standard Deviation 0.0101

ID Parameter N = 50—Pm = 0.111

3 Average 2.2665

Median 2.2700

Minimum Value 2.2442

Maximum Value 2.2909

Standard Deviation 0.0199

ID Parameter N = 100—Pm = 0.111

4 Average 2.2726

Median 2.2680

Minimum Value 2.2542

Maximum Value 2.2939

Standard Deviation 0.0167

ID Parameter N = 50—Pm = 0.166

5 Average 2.2671

Median 2.2667

Minimum Value 2.2558

Maximum Value 2.2746

Standard Deviation 0.0071

ID Parameter N = 100—Pm = 0.166

6 Average 2.2659

Median 2.2643

Minimum Value 2.2413

Maximum Value 2.2896

Standard Deviation 0.0173
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Fig. 16.5 Box plots of the final hyper volume value distribution

Table 16.4 Average rank
computed through the
Friedman’s test (best in bold
type)

ID NSGA-II Configuration Average Rank

1 N = 50—Pm = 0,055 3.00

2 N = 100—Pm = 0,055 2.60

3 N = 50—Pm = 0,111 4.40

4 N = 100—Pm = 0,111 3.20

5 N = 50—Pm = 0,166 3.60

6 N = 100—Pm = 0,166 4.19

is desired-). However, the p-value computed by Friedman’s test is 0.6212. This p-
value is higher than the level of significance α (0.05) so the null hypothesis “median
are equals” can’t be rejected. This implies it is not possible to establish that any
parameter configuration performs better than any other. In the conditions inwhich the
experimentwas developed, there aren’t significant differences between performances
from different configurations. A procedure for conducting multiple comparisons
involving all possible pairwise comparisons, as, e.g. described by Garcia S. and
Herrera F. in [21], is therefore here not neccesary.

The possible solutions to the problem provided through the last generation of
the evolutionary process of the five accumulated executions for all configurations
are shown in Fig. 16.6. Some optimum solutions belonging to the obtained non-
dominated front are shown in Table 16.5 (these solutions are rounded and numbered
in Fig. 16.6). Unavailability is shown in fraction, Cost is shown in economic units and
the rest of variables represent, for the respective devices, optimum times to perform
a preventive maintenance activity in hours.
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Fig. 16.6 Non dominated solutions (black crosses), and their configuration designs, clustered.
Chosen representative solutions (Table 16.5) are additionally circled and numbered

Table 16.5 Sample of some optimum solutions

ID Unavailability Cost [un] V1 [h] P2 [h] P3 [h] V4 [h] V5 [h] V6 [h] V7 [h]

1 0.0029979 894.20 30,887 � 8,344 � 29,391 24,051 33,860

2 0.0024687 1,066.92 21,430 � 8,718 10,299 28,043 31,234 31,442

3 0.0011928 1,443.00 29,592 8,179 8,597 � 20,005 33,923 29,773

4 0.0008019 1,772.59 34,766 8,386 8,467 29,272 34,531 32,968 31,000

The solution with the lowest Cost (ID1) (894.20 economic units) presents the
biggest Unavailability (0.0029979). These values are followed by periodic optimum
times (hours) measured from the moment in which the Life Cycle starts (time for
performing the preventive maintenance activity (TR) is not included). In that case,
it is possible to observe that periodic optimum times to preventive maintenance for
devices P2 and V4 are not supplied. It is caused because the design alternative did
not consider including such devices. The opposite case shows the biggest Cost (ID4)
(1,722.59 economic units) and the lowest Unavailability (0.0008019). In this case,
periodic optimum times to perform preventivemaintenance activities are supplied for
all devices. It is caused because the design alternative considered including devices
P2 and V4. Other optimum solutions were found between those two solutions (ID2
and ID3). Decisionmakers, attending to their requirements, will have to decidewhich
design is the preferable to choose.
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Moreover, solutions have been clustered in Fig. 16.6 attending to their final design.
Solutions contained by Cluster 1 are the solutions in which non redundant devices
have been included in the design. Solutions contained by Cluster 2 are the solutions
in which a redundant valve has been included in the design. Solutions contained by
Cluster 3 are the solutions inwhich a redundant pumphas been included in the design.
Finally, solutions contained by Cluster 4 are the solutions in which both a redundant
valve and a redundant pump have been included in the design. Final designs for each
Cluster are shown in Fig. 16.6.

16.5 Conclusions

A successful methodology has been presented and demonstrated by a practical
test case where proper non-dominated solutions for minimum unavailability and
cost objectives have been generated. It has been possible by generating function-
ability profiles for several designs of the analyzed technical system, using Discrete
Events Simulation, and varying those functionability profiles with the inclusion of
maintenance activities before the failure. The evolutionary multi-objective algo-
rithm NSGA-II was used to perform the optimization process. This method allowed
obtaining optimum solutions attending to the design andmaintenance strategy for the
technical system. The goal for devices included in the design, was to obtain the sets
of optimum times between maintenance activities with the best unavailability-cost
relations. A system test case with 7 possible devices was used, including pumps and
valves.

A set of different evolutionarymulti-objective algorithm parameters configuration
has been tested with the purpose of determining its effect in the optimization process.
The best non-dominated solutions were archived. A test hypothesis was built with
the objective of determining what parameter configuration presents the best perfor-
mance. It is possible to conclude that significant differences were not found so, in
the conditions defined for the experiment, no parameter configuration worked better
than any other.

As future work, a comparison among several state of the art evolutionary multi-
objective optimizers (EMO) will be performed, including, as stated in e.g. [22], a
representative of each of the different three main paradigms of evolutionary multi-
objective optimizers attending to their selection method.
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Chapter 17
Assessment of Exergy Analysis of CFD
Simulations for the Evaluation of
Aero-Thermo-Propulsive Performance of
Aerial Vehicles

Christelle Wervaecke, Ilias Petropoulos, and Didier Bailly

Abstract The purpose of this paper is to present an exergetic approach which pro-
vides a good complement to classical drag computation in order to assess aerody-
namical performances. Unlike drag methods and, on a more general level, unlike
any force-based analysis, no distinction between drag and thrust is required. Thus
the exergy approach can be applied to a great variety of novel configurations for
which the propulsion system is highly integrated within the airframe such as con-
figurations with boundary layer ingestion for example. It also provides information
about thermal effects which can not be extracted from drag computation. This paper
aims at giving an insight into the exergetic approach and analysing its sensibilities to
numerical parameters such as CFD computation convergence and mesh refinement,
an assessment which is important as a basis for the improvement of the method’s
accuracy.

Keywords Aerial vehicles · CFD simulations · Aeorodynamical performance

17.1 Introduction

Today more than ever, world energy resources seem limited and we have to carefully
manage them. This is the obvious reason why future aerial transport concepts will be
driven by energy efficiency criteria. This is both an economical and an ecological key
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issue. The exergy concept has been introduced so as to translate sources of entropy
generation into power losses. Power, by definition, is the rate at which energy is
consumed. Thus it is an essential information in the question of energetic systems
optimization. Moreover, the exergy concept provides a common comparison metric
which can be of great interest for multidisciplinary optimisation purposes.

Innovation and improvement require understanding. Nowadays Computation
Fluid Dynamics (CFD) has become relevant to predict aerodynamic performances
and the farfield drag decomposition method, proposed by Van Der Vooren and
Destarac [1], has already provided valuable information about aerodynamical phys-
ical phenomena encountered in aircraft aerodynamics. Drag decomposition is now
a common practice for aircraft design. Moreover farfield drag extraction approach
is still a living research topic. For example, extensions for postprocessing unsteady
flow fields have been proposed by Toubin et al. [2] and Gariepy et al. [3] and a
new approach based on a Lamb vector approach is currently under study [4, 5].
However, future commercial aircraft are likely to get highly integrated propulsion
systems. Thereby, application of farfield drag methods will become difficult as those
approaches require a clear separation between thrust and drag.

The need for a tool applicable to very innovative aircraft design or/and highly-
integrated propulsion systems alongwith the research of newmethodologies enabling
aerodynamic engineers to increase their understanding of physical flows have led
the ONERA to develop a new postprocessing tool named FFX [6–8] based on the
exergetic approach. This tool is no more based on a mechanical balance as previous
mentioned approaches but it is based on an energetic balance.

This paper gives attention to theoretical and numerical aspects of exergy analysis
from solutions of the Reynolds-Averaged Navier-Stokes equations. Note that previ-
ous work has been presented at the AIAA AVIATION Forum by Petropoulos [9]. It
was then a first attempt at analysing numerical behavior of our postprocessing tool
and it proposed hints to find way to reduce numerical errors. The work presented in
the current paper gives additional cases and analysis in order to deal with numerical
error in depth and particularly to give a greater focus on 3D cases. It is organised as
follows: the first part addresses the motivations for an exergy approach, the second
part describes the exergy decomposition implemented in the FFX tool and the third
part examines the relationship between CFD parameters such as simulation conver-
gence or mesh refinement and the accuracy of the FFX decomposition in order to
find ways to propose a more robust formulation.

17.2 Why Exergy?

The exergy analysis has been proposed by Arntz [6] as an extension to the energy
analysis method introduced by Drela [10]. It is an analysis which is conducted by the
coupling of the first and second law of thermodynamics and that provides information
about the energy amount that is theorically available. Whereas most previous field
analysis methods have focused on forces information as drag and thrust, the exergy
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analysis focus on the idenfication andquantification of available usefulwork: sources,
sinks and interaction. Thus it provides a very different kind of measurement that
can enhance the physic flow comprehension of the aerodynamic engineer. As the
formulation does not require any separation between drag and thrust, it can be applied
even for high-integrated propulsive system.

To attain the climate global warming targets defined by ACARE (Advisory Coun-
cil for Aeronautics Research in Europe) [11], there is a major focus from aircraft
manufacturers to build more efficient aircraft. Aircraft manufacturers are urged to
search for more efficient solutions and even disruptive technologies to reach the per-
formance improvements required. All the subsystems which constitute the aircraft
along with their mutual influence have to be taken into account in order to resolve
these problems. The energy analysis method, derived from the first law of thermo-
dynamic, is used in the design of aerospace systems. Fundamentally, an aircraft
transforms chemical energy in other forms of energy. Kinetic, potential and mechan-
ical work can be considered as conservative form of energy which can be converted
into other forms without loss. However, heat, chemical and radiation energy can-
not be completely converted in other forms of energy. For example, heat cannot be
completely converted into work even from an idealised reversible cycle. So, exergy
analysis consists in considering energy as the sum of two components: exergy and
anergy. Exergy represents the available mechanical energy while anergy is the part
of energy which cannot be transformed due to irreversible processes.

Furthermore, the exergy approach is based on a balance equation derived from
the first and the second law of thermodynamics. It is possible to locally evaluate
not only the losses associated with each physical phenomenon in the considered
system, but also those associated with phenomena occurring outside it and that can
be considered as a measure of waste. Overall system improvement can be achieved
by reducing losses from internal irreversibilities and generally the total waste of the
system. So exergy appears to be well adapted to improve complex systems where
different energy transformations take place. This methodology enables to study a
complete aircraft as being constituted of subsystems of different nature by using a
common metric.

17.3 Formulation

In a nutshell, exergy is the energy that is available and that can be transformed to a
useful formof energy.By combining the first and the second laws of thermodynamics,
it handles energy and entropy together and can be defined as:

E = �hi − T�s (17.1)

where the term hi denotes specific total enthalpy, �hi = (hi − hi,∞) and the sub-
script ∞ indicates reference conditions which are usually taken as the atmosphere
free-stream flow. The term s denotes entropy and �s = (s − s∞). FFX provides
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Fig. 17.1 Notations of the exergy decomposition

the exergy-based formulation summarized within the Eq. (17.2) for aeropropulsive
performance assessment developed by A. Arntz during his PhD thesis [6]. More
details of the theoretical development are available in reference [8]. The general
exergy-based formulation can be written as:

Ėprop + Ėq = W �̇ + Ėm + Ėth + Ȧtot (17.2)

Each term of this exergy decomposition will be describedmore specifically hereafter.
Figure 17.1 provides a scheme depicting notations in FFX’s framework. It should be
noted that the method aims at evaluating the time-averaged changes in exergy hence
the introduction of exergy rate terms denoted by Ė . The destroyed exergy has been
called anergy and the rate of anergy, i.e. the unusable part of energy, is denoted by
Ȧ.

The left hand side of Eq. (17.2) represents the total exergy supplied to the flow
by the propulsion system or by heat conduction. The first term Ėprop is defined as
follows:

Ėprop =
∫
Sp

−ρδhiV · n dS + T∞
∫
Sp

ρδsV · n dS (17.3)

It is the rate of exergy supplied by the propulsion system and Sp is the surface
delimiting it. The first part is the power supplied to the flow while the second one
represents thermodynamic losses that have occurred within the propulsion system.
The other term of supplied exergy, Ėq is written as:

Ėq =
∫
SA

−qe f f · n dS +
∫
SA

T∞
T

qe f f · n dS (17.4)

It corresponds to the rate of exergy transfer by heat conduction through the surface of
the airplane. The first term is the heat transferred by conduction and the second one
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is the associated anergy. Both of these integrals are non zero only on non-adiabatic
surfaces.
The right hand side of Eq. (17.2) corresponds to the sum of exergy consumed by
the airplane, exergy remaining in the flow and exergy destroyed through irreversible
processes (which is anergy). First, the term W �̇ is defined as follows:

W �̇ =
∫
So

ρ(u − V∞)V∞V · n + (p − p∞)V∞ · n dS (17.5)

It represents the mechanical exergy part consumed by the airplane. As the exergy
balance equation iswritten assuming a steadyflow, the termW �̇ represents the energy
consumed to maintain a steady path: whether cruise, climb or descent. Considering
an unpropelled configuration (Ėprop and Ėq are both zero), W �̇ matches with the
corresponding drag coefficient when choosing a suitable nondimensionalization. It
should be underlined that the above expression provides no distinction between thrust
and drag.

Among sources of exergy still available in the flow, the term Ėm represents the
rate of mechanical exergy:

Ėm = Ėu + Ėvw + Ėp (17.6)

where

Ėu =
∫
So

1

2
ρu2 V · n dS (17.7)

Ėvw =
∫
So

1

2
ρ(v2 + w2) V · n dS (17.8)

Ėp =
∫
So

(p − p∞) (V − V∞) · n dS (17.9)

It is the sum of the streamwise kinetic energy (Ėu), the transverse kinetic energy
deposition (Ėvw) and a third term described as the exterior pressure-work (Ėp). The
other term of available exergy is the term Ėth which is the rate of thermal exergy:

Ėth =
∫
So

ρδeV · n dS +
∫
So

p∞V · n dS

− T∞
∫
So

ρδsV · n dS
(17.10)

Finally, the term Ȧtot denotes the rate of anergy generation, or equivalently of exergy
destruction, by irreversible phenomena which are viscous dissipation (first term),
thermal conduction (second term) and shockwaves (third term):

Ȧtot = Ȧ� + Ȧ∇T + Ȧw (17.11)
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where

Ȧ� =
∫

ν

T∞
T

�e f f dν (17.12)

Ȧ∇T =
∫

ν

T∞
T 2

Kef f (∇T )2 dν (17.13)

Ȧw = T∞
∫
Sw

ρδsV · n dS (17.14)

Note that all terms of the decomposition (17.2) are nondimensionalized by the coef-
ficient : 1

2ρ∞V∞3Sre f . The term Sre f denotes a reference surface.

17.4 Accuracy Assessment

17.4.1 Implementation

The exergy decomposition has been implemented in ONERA’s in-house postpro-
cessing tool named FFX. The implementation is strongly coupled with the Cassiopée
library [12]. It benefits of its Python/C++ environment and can handle both structured
and unstructured meshes along with cell-centered or vertex-centered solutions. As
the exergy formulation is still under study, it is necessary to maintain a very flexible
implementation framework such as to be able to test and modify rapidly some terms
if required. The Cassiopée platform is appropriate for such investigations. Moreover,
the FFX tool has already been applied by some of ONERA’s industrial partners on
complex configurations see Tailliez [13], Couilleaux [14] and Wiart [15]. The first
results seem quite encouraging.

17.4.2 Sensitivity Analysis

This section deals with academic applications investigated in order to assess the
FFX tool accuracy. All RANS computations were performed with the elsA solver of
ONERA [16].

17.4.2.1 NACA0012 Case

In order to assess the sensitivity of the exergy decomposition to mesh refinement
and CFD computation convergence, this section focuses on a 2D academic test case:
the flow around a NACA0012 airfoil. There is a lot of information for this test case
as it was used as a verification test case for Drag Prediction Workshop 5 (DPW-
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Fig. 17.2 Mach number field around the NACA0012 airfoil

Table 17.1 NACA0012—Size of the 7 nested structured grids

Mesh 1 2 3 4 5 6 7

Ncell 3 584 14 336 57 344 229 376 917 504 3 670 016 14680064

5) and Drag Prediction Workshop 6 (DPW-6) [17]. A sequence of nested grids are
provided on the NASA Turbulence Modeling Resource website [18], the number of
cells ranging from 3 500 to 14.7 106 and each coarser grid is exactly composed of
every-other-point of the next finer grid. The grids have a farfield extent of about 500c.
The reference state conditions are Mach number M = 0.15, the Reynolds number per
chord length is Re = 6 million and the angle of attack is α = 10◦. Figure 17.2 shows
theMach number field around theNACA0012 airfoil andTable 17.1 gives the number
of cells for each grid considered in this study.

Although the flow around a 2Dprofile is a very simple case, it provides a very good
frame to assess a postprocessing tool accuracy as CFD convergence can be reached
(indeed themore complex the case is, themore touchy the convergence becomes) and
mesh refinement is easily achieved.Moreover, a deeper understandingof the exergetic
decomposition terms is much easier for such a case and gives insight into its physical
meanings. As we consider an unpowered configuration, the terms Ėprop and Ėq of
the balance Eq. (17.2) are zero. The term W �̇ , appropriately nondimensionalized,
matches the total drag coefficient. Finally, the amount of exergy still available within
the flow is composed of themechanical and the thermal exergy. These terms decrease
in thewake as the amount of anergy, generated by viscous and thermal phenomena (no
shockwave is formed at these conditions), increases. Figure 17.3 shows the evolution
of the exergy decomposition’s terms with respect to the location of the downstream
limit of the control volume (driven by the xT P parameter) for mesh 5. There is a good
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Fig. 17.3 NACA0012—
Mesh 5. Evolution of the
exergy decomposition’s
terms with respect to the
location of the downstream
limit of the control volume

agreement between the term W �̇ and the farfield drag coefficient cd f f , evaluated
by the ONERA far-field drag code, and exergy and anergy terms behave as expected
(note that it takes a very long distance for the mechanical exergy to vanish). The rate
of mechanical exergy decreases towards zero as the Trefftz plane moves downstream
of the body. Its decomposition shows that after some chords the total mechanical
exergy reduces to the streamwise kinetic energy of the wake. In the same way, the
rate of thermal exergy decreases towards zero. These behaviors are due to irreversible
process occurring in the wake (dissipation). These exergy losses are counterbalanced
by the increase of the total anergy term.

In the first part of this NACA0012 case analysis, the exergetic balance is estimated
several times as the residuals of the CFD computation decrease. The aim is to analyse
whether some terms are more sensitive to CFD convergence and which level of
convergence is required to attain a good exergetic decomposition accuracy. The
downstream limit of the control volume is set up at xT P = 2 for the following results.
The Figures 17.4 and 17.5 provide some results for mesh 3 and mesh 5 (see Table
17.1). The relative error is estimated as the difference between final value, i.e. when
CFD convergence is achieved, and current value for each term of the formulation (in
percentage). The absolute value of each term is also given so as to indicate their order
of magnitude: thermal and mechanical exergy are smaller in absolute value than the
other terms. Figure 17.6 gives the residual for the equation of mass conservation with
respect to the number of iterations. It shows that a residual around ∼ 10−4, ∼ 10−5

are quickly reached. That is why it is the starting point for plots on exergy relative
errors. In Figs. 17.4 and 17.5, nearfield (cdn f ) and farfield (cd f f ) drag coefficients
are also given. They have been computed by the ONERA in-house FFD (Far Field
Drag) tool. It enables to compare exergy balance and drag evaluation requirements
on CFD convergence. When looking for a relative error of 1%, the total anergy term
Ȧtot behaves as well as cd f f or cdn f on both meshes and even reached this threshold
faster than these terms on the coarsest mesh (mesh 3). Smaller levels of relative error
are more quickly reached by cd f f and cdn f afterward. It is not obvious from results
of mesh 3 but for all finer meshes, the thermal exergy term Ėth converges faster than
the other terms whereas the mechanical exergy term Ėm converges a little bit slower.
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(a) Values of the FFX decomposition with
respect to CFD convergence

(b) Relative error in FFX’s terms with
respect to CFD convergence

Fig. 17.4 NACA0012—Results on mesh 3

(a) Values of the FFX decomposition with
respect to CFD convergence

(b) Relative error in FFX’s terms with
respect to CFD convergence

Fig. 17.5 NACA0012 -Results on mesh 5

(a) Convergence of the CFD computation
for mesh 3 and mesh 5.

(b) Numerical error with respect to mesh
refinement.

Fig. 17.6 NACA0012

It should be kept in mind that a relative error of 1%means a difference of 5.3 10−2 pc
(pc means power count where power count is, by analogy with drag count, equal to
a dimensionless exergy coefficient of 0.0001) for the mechanical exergy term and
1.6 10−2 pc for the thermal exergy term whereas it implies a difference of 1.1 pc for
the total anergy term or for the term W �̇ . Plots have to be interpreted cautiously.

The other interesting part of this study is the grid convergence analysis. Are all
terms equally affected by mesh refinement or are there terms that can be estimated
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Fig. 17.7 NACA0012—Values of the FFX’s terms with respect to mesh refinement

with good confidence even on a coarse mesh? Figure 17.7 shows values of the FFX
decomposition with respect to mesh refinement. Plots have been split to give more
clarity in the two different scales: W �̇ and Ȧtot on one hand, Ėm and Ėth on the
other hand. While the two first meshes are quite too coarse to provide reliable values,
specifically for the W �̇ term, mesh 3 and finer meshes give reasonable accuracy.
They are within 1 counts of the finest mesh value for the W �̇ value. Although a
theoretically exact exergy decomposition is not available for this case, mesh 7 is
considered fine enough (with 14,7M of cells) to provide reference values. Figure
17.6 gives the relative differences between the current values and these reference
values (in percentage) for each mesh. The reduction of relative error seems to behave
almost linearly with the number of cells.

The analysis of these cases shows that there is no great difference between far
field drag terms behaviour and exergetic terms behaviour when dealing with CFD
convergences. As ONERA’s far field drag approach has been studied for more than
fifteen years and has been proved to be quite effective, these first results then give
confidence in the exergetic approach.

17.4.2.2 NASA-CRM Case

As it has beenwidely experimentally and numerically studied, the wing-body config-
uration of the Common ResearchModel (CRM) is a good case to assess the accuracy
and sensibility of the FFX post-processing tool. Exergy decomposition has already
been studied on this configuration during the early development of the formulation in
Arntz [19]. At that time, the post-processing FFX tool was a prototype implemented
in a FORTRAN code. Nowadays, it is a Python/C++ tool which is more mature and
does not introduce any correction to account for spurious exergy. What is called spu-
rious exergy is exergy having no physical meaning and only generated by numerical
errors. Instead, it has been decided to investigate more carefully this term in order
to get a better understanding. Figure 17.8a gives an overview of this configuration.
The freestream aerodynamic conditions are Mach number of M = 0.85, CL = 0.5
and Reynolds number Re = 5 106. Note that it is a transonic case which introduces a
shock wave phenomenon in addition to 3D effects compared to the previous subsonic
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(a) Overview of the CRM-NASA configuration (b) Residual on the mass conservation
equation with respect to iteration num-
bers

Fig. 17.8 CRM case

NACA0012 case. Several meshes are available for this configuration at ONERA and
CFD computations and drag analyses have been documented in Hue [20]. These
meshes, carefully generated in the context of the Drag Prediction Workshop, have
good qualities in term of grid spacing, stretc.hing ratio and grid orthogonality. Note
that they have been built in order to meet the drag prediction requirements. It is far
from sure that they are also suitable for exergy evaluation. This is a question that our
study aims at addressing: what is a good quality mesh from an exergy analysis point
of view? Finally they belong to a family of six grids built by coarsening the finest
one, which is a good point for mesh convergence analysis. In order to guarantee a
CFD convergence down to machine precision, computations has been carried on for
a great number of iterations. Figure 17.8b shows the residual of the mass conver-
sation equation with respect to the number of iterations and confirms that machine
precision is achieved.

Table 17.2 gives the value of the FFX’s components for four meshes composed
of 2M, 5M, 17M and 41M of cells. The thermal exergy part is quite well predicted
for every mesh (relative error is less than 5.3% ) but it should be noted that this term
takes small values. Good accuracy is also obtained for the mechanical exergy part
with less than 2.6% relative error even for the coarsest mesh. The amount of total
anergy is less accurately predicted on the coarsest mesh (7.1% of relative error) but
this error decreases as the mesh get finer and is less than 2% on L4. Finally the
term W �̇ still seems to be the most difficult to estimate accurately as the error is
higher on L3 than on L2 and reaches 10% . It is consistent with observations on the
NACA0012 case.

As for the NACA0012 test case, the accuracy of the FFX decomposition with
respect to CFD convergence has been studied on meshes L2 to L4. The Fig. 17.9
only shows the result for mesh L3 but the terms have a very similar behaviour on
all three meshes. The total anergy term provides the fastest convergence and is even
faster than the far-field drag term. The mechanical exergy, which is far from being
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Table 17.2 Contributions to the exergetic balance for different meshes

CRM L’2 L’3 L’4 L’5

Ncells 2 156 544 5 111 808 17 252 352 40 894 464

W �̇ 257.97 256.18 254.63 254.35

Ėm 87.86 89.14 90.77 91.85

Ėth 1.84 1.81 1.86 1.87

Ȧtot 139.05 143.10 147.04 149.40

(a) Values of the FFX decomposition with
respect to CFD convergence

(b) Relative error in FFX’s terms with
respect to CFD convergence

Fig. 17.9 CRM—Results on mesh LP3

a negligible term for this case, shows a very good convergence too. As previously
explained, the thermal exergy part takes too small values to be able really to appraise
its convergence performance. Finally the W �̇ is more demanding in terms of CFD
convergence in order to achieve the same precision as the other terms.

Another aspect that could help improving the post-processing accuracy is the
definition of the control volume, where the exergy balance is calculated. Destarac
[21] and al. have carefully designed control volumes for the far-field drag method.
The objective is to exclude any volume where no physical phenomenon occurs and
only spurious drag can be generated. The Fig. 17.10 gives illustration of the three
definitions of control volume considered in this study. It should be reminded that a
single FFX balance is achieved for a fixed downstream Trefftz plane (defined by the
xT P parameter). All other boundaries of the control volume can be freely defined as
long as they are far enough for the flow to get back to thermodynamic equilibrium.
The first volume (V 1) extends up to the farfield boundary condition in all directions
(except for the xT P plane as explained). The Table 17.3 gives FFX terms for the three
volumes. The second volume (V 2) is defined by limiting the control volume in x,
y and z direction as xmin = zmin = −50 and ymax = zmax = 50. There are very few
differences in the results between V 1 and V 2 and even negligible differences (values
are absolutely the same up to 2 decimal digits) for the anergy terms. It means that,
for this case, there is not a significant amount of spurious anergy generated outside
this box. Finally the volume V 3 is a volume similar to one of the volumes used for
far-field drag analysis. It is built as a viscous volume defined by physical sensors,
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(a) Classical control volume without
restriction (V1)

(b) Restriction in all 3 directions (V2) (c) FFD-like control volume (V3)

Fig. 17.10 Control volumes for the CRML2 case. The control volume is marked by the red contour
region

Table 17.3 FFX balance at xT P = 90 for 3 control volumes: V1 is the classical FFX control
volume, V2 is the control volume with restriction in all directions and V3 is the FFD-like control
volume

Control
volume

W �̇ Ėm Ėth Ȧ� Ȧ∇T

V1 257.97 87.86 1.84 122.72 11.96

V2 258.78 88.25 1.60 122.72 11.96

V3 257.82 466.73 −375.30 122.70 11.96

plus a shock volume also identified thanks to physical sensors. Whereas viscous and
thermal anergy ( Ȧ� and Ȧ∇T ) still have quite the same values for V 3, mechanical
and thermal exergy are badly predicted. This is a direct result of thermodynamic
equilibrium not being is not yet achieved on the boundaries on this control volume.

To sum up, the convergence of the term W �̇ is the trickiest one as it has been
also confirmed for other test cases (not presented here). Moreover, the evaluation of
the anergy terms suffers with greater error as it deals with gradients computation and
integration in a larger domain.

17.5 Conclusion

A new promising post-processing method has been presented based on the exergy
concept. Such an analysis can be used as a basis for the construction of objective
functions for optimization processes. Although it has already been widely studied
from a physical point of view by Arntz [6], there was still a need for an improved
numerical understanding. Indeed, as long as numerical methods are concerned, dis-
cretization of the continuous flow field, truncation error, convergence of iterative
processes imply that the result can not be free from error. So the aim of this paper
was to evaluate the loss of accuracy associated with mesh discretization and imper-
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fect CFD converged solutions and to find strategies to minimize it. Of course each
flow simulation and analysis will have its own distinctive characteristics and no con-
clusion can be drawn which would be universal. However it has been found that the
term W �̇ was the most sensitive and it will be of great interest to look further into
this issue. Comparisons with the farfield approach prove that, in term ofmesh conver-
gence and sensitivity to CFD convergence, the exergy decomposition’s terms show a
quite equivalent behaviour. Finally some attempts at increasing the post-processing
accuracy have been achieved through a reduction of the control volume. Although
no huge differences are obtained for the CRM case presented in this paper, it seems
wise to exclude from the control volume region where the mesh is too coarse to
accurately predict the flow. Indeed these are locations where spurious anergy will
be produced. So the control volume has to be large enough for the flow to return
to thermodynamic equilibrium but small enough to exclude zones where the mesh
become too coarse. Some additional work will be carried on to automatically define
a control volume that meets this requirement.
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Chapter 18
Surrogate-Based Shape Optimization
of Centrifugal Pumps for Automotive
Engine Cooling Systems

R. De Donno, A. Fracassi, G. Noventa, A. Ghidoni, and S. Rebay

Abstract This paper investigates the capability of a surrogate-based optimization
technique for the fast and robust design of centrifugal pumps. The centrifugal pump
considered in this work is designed for automotive cooling system and consists of
an impeller and a volute. A fully three-dimensional geometry parametrization based
on Bézier surfaces for the impeller and the volute is presented. The optimization
strategy is based only on open-source software (with the exception of the mesh
generation process), i.e. Scilab for the geometric parametrization, OpenFOAM for
the CFD simulations and DAKOTA for the optimization. To assess the potential and
robustness of the proposed methodology, the initial geometry was chosen very far
from the optimum design, having an impeller with straight blades. The operating
conditions have been provided by the Italian company Industrie Saleri Italo S.p.A.
and are typical of a Diesel engine.
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18.1 Introduction

Centrifugal pumps are widely used for many applications and, therefore, must be
suited for a wide range of pressure ratios and flow rates. Their design and perfor-
mance prediction is not trivial, being influenced by many free geometric parameters.
Experimental (modification of prototypes and previous models) and numerical tech-
niques have been applied to their design and analysis. However, the former approach
is expensive and time-consuming, while the latter makes available numerical results
which are not easily related to the pump performance.

In the last decade, to overcome the problems shown by the previous techniques,
many researchers proposed the coupling of CFD (Computational Fluid Dynamics)
codes and optimization algorithms for the fast and robust design of turbomachinery
[1–5]. The shape optimization techniques have been also successfully applied to the
pump design [6–8], even if considering some simplifications, such as a 2D geometry,
or the parametrization of a single component (impeller or vaned diffuser or volute).

The novelty of this work is to propose an approach for the optimal design from
scratch of a 3D centrifugal pump for the automotive cooling system, driven by a
surrogate-based optimization technique, where the working point (WP) has to cor-
respond to the best efficiency point (BEP). A detailed three-dimensional geometry
parametrization based on Bézier surfaces for the impeller and the volute has been
defined and presented, which allows to control the complete pump geometry. The
single objective genetic algorithm SOGA, available in the software Dakota [9], is
applied to a surrogate model, built with a Kriging method, in order to find the global
optimum of the objective function, i.e. the hydraulic efficiency η. The efficiency and
pressure ratio of the pump are evaluated through incompressible steady-state RANS
simulations, exploiting the CFD solver available in OpenFOAM [10].

The optimization method has been assessed considering an initial geometry very
far from the optimum design, having straight impeller blades and the shape of the
volute defined by classical empirical correlations [11]. The operating conditions,
defined by the flow rate, impeller rotational speed, and pump pressure ratio, have
been kept constant.

A brief description of a centrifugal pump is given in Sect. 18.2, while Sects. 18.3,
18.4, and 18.5 give a detailed description of the optimization procedure, including
geometry parametrization, flow computation and optimization algorithms. Section
18.6 shows the optimization results and presents the optimized geometries. Finally,
in Sect. 18.7 the conclusions of the work are discussed.

18.2 Centrifugal Pump

Centrifugal pumps are turbomachinery used worldwide for many different applica-
tions. Figure 18.1 shows an example of centrifugal pump for the automotive field,
designed and manufactured by the Italian company Industrie Saleri Italo S.p.A. [12].
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Fig. 18.1 Centrifugal pump assembly for the automotive field produced by Industrie Saleri Italo
S.p.A

The main task of this family of centrifugal pumps is to pump the coolant through
the cooling circuit to control the engine temperature. They have often severe geomet-
ric constraints, due to the ever-smaller engine packages. The pump manufacturers
usually can optimize only the impeller and the volute, since the suction pipes are
usually prescribed by the engine. Furthermore, the vaneless diffuser is usually not
present, because of the small gap in the radial direction, while the vaned diffuser
is not considered because it could decrease the pump performance in off-design
conditions.

The main components of the pump are highlighted in the picture: the pulley of
the pump receives the rotation from the engine by means of a belt connection. The
motion is transferred to the impeller through the bearing; wet and dry parts of the
machine are separated by means of a mechanical seal. The liquid to be pumped
flows through the suction pipe to the impeller that transfers the energy necessary to
transport the fluid and accelerates it in the circumferential direction. The fluid exiting
the impeller is decelerated in the volute, increasing its static pressure.

The parameters used to describe the pump performance are the hydraulic effi-
ciency

η = Q�pt/W, (18.1)
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and the total pressure rise coefficient

ψ = 2(pt4 − pt0)/ρU
2
2 , (18.2)

where Q [m3/s] is the volumetric flow rate, �pt [Pa] the total pressure rise across
the pump,W [W ] the power at the impeller, pt4 the total pressure at the volute outlet,
ρ [kg/m3] the density, U2 [m/s] the peripheral velocity at the impeller outlet, and
pt0 the total pressure at the suction pipe.

18.3 Geometry Parametrization

Automotive centrifugal pumps (see Sect. 18.2) aremade up of twomain components,
i.e. the impeller and the volute, which are parameterized with the open-source soft-
ware Scilab [13]. A total amount of 25 design variables perturb the pump geometry
during the optimization process, 13 for the impeller and 12 for the volute.

18.3.1 Impeller

The impeller geometry considered in this parametrization has an axial inflow and a
radial outflow. During the optimization process, 13 design variables (DVs) perturb
the impeller geometry:

• 3 DVs control the general dimensions of the machine: blades number, impeller
diameter and blade height at the trailing edge

• 4 DVs control the meridional channel. Hub and shroud contours are fully defined
by Bézier curves of sixth order, the design variables perturb the r and z coordinates
of control points h4 and s4 shown in Fig. 18.2

• 6 DVs control the blade camber surface. The camber surface is fully defined
by a Bézier surface of fourth order in radial direction and third order in axial
direction. According to Fig. 18.2 and considering the nomenclature proposed by
Van den Braembussche [1], the six design variables perturb the θ -coordinate of
the following control points:

– one design variable perturbs b11, one perturbs b31 and one perturbs b51 in order
to control the camber line at the span 0%

– one design variable perturbs b14 in order to control the relative position of the
blade camber line at span 100% with respect to span 0%

– one design variable perturbs the control points b12, b22, b32, b42, b52 in order
to control the camber line twisting at span 25%

– one design variable perturbs the control points b13, b23, b33, b43, b53 in order
to control the camber line twisting at span 75%
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Fig. 18.2 Meridional channel definition (left) and blade camber surface definition (right) with
marks on the control points perturbed by the design variables

The Bézier curves order has been set in order to represent properly a large number
of impeller geometries produced by Industrie Saleri. Once the blade camber surface
is defined, a thickness function is applied to determine the blade suction and pressure
side. Any symmetrical 4-digit NACA (National Advisory Committee for Aeronau-
tics) profile can be used, here the NACA0012 is adopted with a modification to the
last coefficient (i.e. to -0.05) to ensure a feasible thickness at the blade trailing edge.

The optimization algorithm necessitates of a baseline geometry for the impeller:
the meridional channel is only defined by the first three DVs controlling the general
dimensions of the machine, while the blades are straight.

18.3.2 Volute

The geometrical parametrization of the volute is based on the approach proposed by
Heinrich and Schwarze [15], 12 design variables perturb the volute geometry during
the optimization process.

The shape of the volute cross-sectional area at the outflow is first defined, using
a Bézier curve of seventh order to take into account large geometric modifications
as shown in Fig. 18.3. Then, the areas decrease linearly until the volute tongue, as
shown in Fig. 18.4. The design variables control the cross sectional area at the outlet,
by perturbing the x and z coordinates of control points v2, v3, v4, v5, v6 and v7
shown in Fig. 18.3. Control points v1 and v8 are not perturbed in order to connect
properly the volute with the impeller.

The optimization algorithm necessitates of a baseline geometry for the volute,
which is built considering the following parameters: the flow rate and pressure head
at the working point, the impeller blade height at the trailing edge and the coordinates
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Fig. 18.3 Volute cross sectional areas definition with marks on the control points perturbed by the
design variables (left) and different shapes of the cross-sectional area at the volute outflow (right)
where the baseline is represented in black and two random geometries in red and green

Fig. 18.4 3D cross-sectional
areas evolution of the volute

of the interface with the impeller. The control points lie on the circle, whose radius
is calculated by means of the Stepanoff’s law [11]:

r∗ = F∗
√

A360◦

π
,

where A360◦ = Q
c3
is the area of the cross section at the end of the volute development,

F∗ a corrective factor equal to 1.3 (the area of the resulting geometry is smaller than
the area calculated with the Stepanoff’s law), Q the pump flow rate, c3 = K3

√
2gH
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the averaged volute velocity, g the gravitational acceleration, H the pump head, and
K3 an experimental design factor varying between 0.15 and 0.5, function of the pump
specific speed. Figure 18.3 (right) shows different shapes of the cross-sectional area
at the volute outflow that can be defined by the geometric parametrization.

18.4 CFD Simulation

The flow-field has been computed using the incompressible steady state solverMRF-
SimpleFoam available in OpenFOAM [10], which solves the RANS (Reynolds Aver-
age Navier Stokes) equations coupled with the SST (Shear Stress Tensor) turbulence
model [16] .

The computational domain inlet has been obtained extruding along the axial direc-
tion the impeller inlet section three times the length of its diameter to avoid possible
disturbance at the inflow due to the blade leading edge. The mesh of the impeller is
generated using the software TurboGrid 18.2 [17], while the mesh of the volute is
generated using the software cfMesh 1.1.1 [18]. The size of the elements adjacent
to the solid walls is equal to a non-dimensional distance y+ ≈ 1, to compute the
boundary layer accurately up to the wall.

At the domain inlet the volumetric flow rate Q, the turbulence intensity Tu1, and
specific dissipation rate ω1 are prescribed, while at the outflow a static pressure p4 is
set. The no-slip condition is applied to the blade walls, hub and shroud. At the wall
kw is set to zero, while ωw is computed by exploiting its asymptotic behavior.

Steady-state simulations are performed using the multiple reference frame (MRF)
approach, which implies no relative meshmotion between the rotating and stationary
parts. In the rotating reference frame, where the relative velocity is computed, the
momentum equation ismodified, addingCoriolis and centrifugal terms. The interface
between moving and fixed domain is treated using the mixing plane approach.

The second order upwind discretization scheme is applied to the divergence of the
velocity,while thefirst order upwind scheme is applied to the turbulent quantities. The
Laplacian terms are evaluated using a linear second order bounded central scheme,
while a central differencing method approximates the gradient term.

18.5 Optimization Strategy

Themaximization of the centrifugal pumps efficiency is a highly non-linear problem,
whereby a highly non-linear approximation model and a global optimization algo-
rithm are required. In the literature, the single (SOGA [19]) ormulti-objective genetic
algorithms (MOGA [5]) are used for turbomachinery shape optimizations, due to
their simplicity and robustness: objective functions derivatives are not requested and
the probability to remain trapped in a local optimum is very low. To overcome the
computational effort requested by genetic algorithms due to the large number of
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evaluations, the use of a surrogate model to approximate and evaluate the objective
functions during the optimization process is mandatory. Studies show that Kriging
(KRG) [20, 21] and artificial neural network (ANN) fit well the performance trend
of the pump.

A preliminary study is performed to assess which surrogate better conforms to
this problem. For this investigation a shape optimization of the impeller blade of
the well known Ercoftac centrifugal pump [22] in a 2D configuration is taken into
account. The Ercoftac pump includes an impeller and a vaned diffuser, but for this
purpose only the impeller is considered for CFD simulations, to avoid the influence
of the interaction rotor-stator on the shape optimization. The blade is shaped through
three input variables, corresponding to three characteristic angles: i) the inlet angle
ii) the outlet angle and iii) the stagger angle. The thickness function is fixed equal
to the original one. The efficiency of the impeller is chosen as the objective function
of the problem. A surrogate based optimization is performed starting from different
number of training points and applying the KRG or the ANN as surrogate. The
CFD evaluations are computed according to the setup shown in Sect. 18.4, without
interface treatment since only the rotating domain is present. Calling n the number
of design variables, at least N = (n+1)(n+2)

2 designs are calculated for the Design
of Experiments (DoE), as suggested in the literature [9]. The surrogates are then
applied to the training points defined by means of the DoE and the following results
are reached:

• Using the KRG, the minimum number of training points that allows to have a
sufficient accuracy of the surrogate is 1.5 times N.

• Using the ANN, with the same number of initial evaluation the surrogate is not
sufficiently accurate to continue the optimization process.

Considering these results and aiming to exploit as low computational resources as
possible, the KRG model is used in the following.

In the centrifugal pump performance, the hydraulic efficiency η and the total
pressure rise �pt have a fundamental role and therefore are chosen as optimization
objective and constraint, respectively. In particular the optimization algorithm maxi-
mizes η, while keeping �pt constrained to the operative point analyzed (Table 18.1)
with a tolerance of ±5% on the pressure head.

A surrogate-based single objective genetic algorithm with a non-linear constraint
is therefore applied. The whole optimization strategy is managed by the Dakota [9]
software and is defined by the following steps.

Table 18.1 Pump working point

Rotational speed n 8700 rpm

Flow rate Q 305 lpm

Pressure head �pt 3.3 bar
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1. Computation of a Design of Experiments (DoE) to create a training points
database. The DoE is generating using the Latin Hypercube Sampling (LHS)
method, which allows to randomly and uniformly distribute the designs over the
whole design space. A database of 500 training points is created for this work.

2. Training points evaluation. The link between geometry and perfomance is eval-
uated by means of CFD simulations, whose setup is described in Sect. 18.4.

3. Surrogatemodels construction (Kriging) for the approximationof pumpefficiency
and head.

4. Search for the maximum of the efficiency by means of the constrained SOGA
applied to the surrogate model. Crossover rate and mutation rate are set equal to
0.8 and 0.1, respectively.

5. Verification of the maximum through CFD simulation.
6. If the convergence criterion is not met, add the maximum to the training points

database and return to step 3. The convergence criterion used in this work stops
the optimization procedure when the percentage error between the CFD results
of three consecutive iterations is less than 0.5% for both η and �pt .

The iterative process described above improves continuously the surrogate accu-
racy and accelerates the optimization convergence.

18.6 Results and Discussion

This section contains the results of the surrogate-based shape optimization method
described in the previous sections. The starting geometry is very far from the optimum
design, having straight impeller blades and the shape of the volute defined by classical
empirical correlations [11]. The working point chosen for testing the procedure is a
typical operative point for six cylinder diesel engines, and is reported in Table 18.1.
The geometric parametrization described in Sect. 18.3 has been adopted to model
the impeller and the volute.

Themeshes, as reported in Sect. 18.4, are generatedwithTurboGrid (impeller) and
cfMesh (volute). The number of elements during the optimization is around 670,000
and 900,000 for the impeller and volute, respectively. The value of the boundary
conditions are reported in Table 18.2, where ν denotes the kinematic viscosity, μt/μ

the ratio between turbulent and molecular eddy viscosity equal to 10, β1 a constant
value equal to 0.075, and y the distance between the wall and the center of the
cell adjacent to the wall. The kinetic energy at the inlet corresponds to a turbulence
intensity Tu1 = 0.5%.

The relation between the objective function η and the nonlinear inequality con-
strained �pt is shown in Fig. 18.5, where the output of the computer experiments
and the evolution of the genetic algorithm assisted by the surrogate model are rep-
resented. After the 500 training points evaluation, the optimization has run further
38 CFD simulations to reach the convergence and find the optimal solution. Then,
Fig. 18.5 highlights the improvement from the initial to the optimal design in terms
of pump efficiency and the convergence charts of the optimization procedure.
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Table 18.2 Boundary conditions

Coolant

T 100 ◦C
ρ 1020 kg/m3

ν 7.8e−7 m2/s

Inflow

Q 0.00508 m3/s

k1
3
2U

2
1 Tu

2
1=0.496 m2/s2

ω0
k1
ν

(
νt
ν

)−1 = 4962 1/s

Outflow

p3 0 m2/s2

Wall

kw 0 m2/s2

ωw
6ν

β1 y2
1/s

Fig. 18.5 CFD results of the surrogate based optimization (left) and optimization convergence
charts (right)

Figure 18.6 (left) shows that the best design has the same number of blades with
respect to the baseline (5) but with an important curvature, and that the impeller outer
diameter has been enlarged. Then, Fig. 18.6 (center) shows that the blade height has
been reduced and that the blade is twisted along the span direction for the best design.
Furthermore, Fig. 18.6 (right) shows that the cross-sectional area at the volute outflow
is bigger with a teardrop shape for the best design.

When comparing the pressure fields, Fig. 18.7 shows that the optimal design has
less losses inside the volute. Furthermore, the sections of Fig. 18.8 show that the best
design has a more uniform pressure distribution in the blade to blade passage as well
as inside the volute.
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Fig. 18.6 Top view (left) and side view (center) of the impellers and section view of the pumps
(right). Comparison between baseline configuration (black wireframe) and best design (red solid
color)

Fig. 18.7 Pressure field of the baseline (left) and best (right) design expressed in Pa/(kg/m3)

Finally, when considering the velocity fields, Fig. 18.9 shows that the best design
has an expected decrease of the flow velocity along the volute, for converting the
kinetic energy in pressure, while the baseline design shows high velocity inside the
volute, suggesting that for this configuration the volute cross-sectional areas are too
small.
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Fig. 18.8 Pressure field of the baseline (left) and best (right) design at span 50% of the impeller
expressed in Pa/(kg/m3)

Fig. 18.9 Velocity field of the baseline (left) and best (right) design at span 50% of the impeller
expressed in m/s
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18.7 Conclusions

A fully automated surrogate-based optimization method has been presented for max-
imizing the efficiency of a centrifugal pump designed for the engine cooling system,
as a tool for the design from scratch of this kind of turbomachine. The robustness
of the method has been assessed optimizing an initial geometry consisting of an
impeller with straight blades and a volute computed according to empirical corre-
lations available in the literature. The working point of typical six cylinders Diesel
engines has been considered. The geometry has been parametrized with Bézier poly-
nomials and 25 design variables have been used for the optimization. The Kriging
surrogate model has been adopted for this work and built on an initial population
of 500 training points, while a single objective genetic algorithm has been set in
order to maximize the pump efficiency coefficient η, while keeping constrained the
pressure rise �pt . The surrogate-based optimization has reached the convergence
in 38 iterations, improving the pump efficiency from 39.93% (baseline) to 82.46%
(optimal design) with a total amount of about 22,000 cpu hours. The results of this
work make the procedure here described a valuable tool for the design of centrifugal
pumps. Future work will be dedicated to include the pressure losses of the real tur-
bomachine in the optimization procedure, considering the gap between the impeller
and volute, the balance holes of the impeller and the engine package constraints of
the suction pipe and the volute. Furthermore, ongoing work is devoted to link the
present optimization strategy to an in-house 0D code, which will provide a prelim-
inary “optimized” design of the complete pump to speed up the convergence of the
method.
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Chapter 19
Towards an Open-Source Framework
for Aero-Structural Design
and Optimization Within the SU2 Suite

Rocco Bombardieri, Ruben Sanchez, Rauno Cavallaro, and Nicolas R. Gauger

Abstract Ongoing efforts to develop a fully open-source framework for the aero-
structural design and optimization of wings, including aerodynamic and structural
geometric nonlinearities, are presented. The framework is self-contained and relies
on the well-established SU2 suite for the computation of the aerodynamic part of
the problem. SU2 is a python-wrapped C++ suite for multiphysics problems, able
to compute accurate adjoint sensitivities by means of Algorithmic Differentiation
techniques. For the structural problem, a C++ library featuring a nonlinear FE beam
is employed. The library is fully wrapped in python and coupled to SU2 by means of
a python orchestrator and a splining module for force and displacement transferring.
The applicability of this approach is demonstrated using a known aeroelastic test
case based on the ONERAM6 wing geometry. The structural solver is differentiated
by means of Algorithmic Differentiation and structural and coupled adjoint-based
sensitivities are evaluated and validated by comparison to Finite Differences for a
variety of cases. The final goal of this research is to provide an integrated infrastruc-
ture for aeroelastic design and optimization of wings by means of coupled adjoint
sensitivities, including challenging cases in which wings are operating in non-linear
aerodynamic regimes, e.g., transonic flows, and subject to large displacements.
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Keywords Aeroelasticity · Aero-structural optimization · SU2 · Computational
fluid dynamics · Adjoint sensitivities · Open-source framework

19.1 Introduction

Current trends in aircraft design aim at reproducing ab-initio and at a tighter level the
multidisciplinarity of the physical problemwith high-fidelity prediction tools. Tradi-
tionally, the conceptual and preliminary development phases do not includeflexibility
effects (aeroelastic) which are typically estimated by empirical relations and avail-
able data from previous designs [1] rather than by incorporating physics-based anal-
ysis. However, when new concepts are to be designed, a transition from experience
and engineering judgment-based methods to more quantitative and physics-based
approaches is required to guarantee a reliable design process.

Coupled aeroelastic analysis has become, therefore, an area of active research
with a number of established computational tools such as FUN3D [2] from NASA,
TAU [3] from DLR or ElsA [4] from ONERA. In the context of Computational
Fluid Dynamics (CFD) frameworks, the open-source suite SU2 [5] has attracted
much attention for multidisciplinary analysis and design in recent years, particularly
due to its adjoint capabilities for complex, non-linear problems [6–11]. SU2 is able
to tackle Fluid-Structure Interaction (FSI) problems via a native, solid mechanics
solver [12], and is also capable of computing coupled adjoint sensitivities of the FSI
problem for multidisciplinary optimization [13, 14].

Aim of this research is to develop an open-source framework for design and
optimization of wings including aerodynamic and structural nonlinearities along
the lines proposed by Sanchez et al. [13]. A nonlinear beam finite element solver,
namely pyBeam, is implemented to incorporate structural deformations while ensur-
ing a good compromise between efficiency and reliability. This effort is a first stage
towards a fully-functional adjoint-based infrastructure for performing gradient-based
optimization of aircraft wing configurations, coupling SU2 with pyBeam.

The structure of the proposed framework, based on a python-wrapped interface
between the different solvers (i.e. CFD solver, beam solver and interpolation solver),
is an ideal solution for a wider infrastructure in which more tools of various fidelity
levels, provided with a standard interface, can be incorporated to perform both analy-
sis and optimization at the different stages of the design process. It will also facilitate
an easy access to high-fidelity multidisciplinary optimization tools for aircraft design
to a potentially large user audience.

First, an overview of the theoretical background of the method is summarized in
Sect. 19.2. Later, preliminary applications of the tool are shown in Sect. 19.3, using
an aeroelastic test-case similar to the one used in a previous work by Bombardieri
et al. [15] which features an ONERA M6 wing surface augmented with a synthetic
structure. Section 19.4 contains some basics of adjoint based optimization featuring
Algorithmic Differentiation (AD) method. Following, for pyBeam, first, and later on
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for the whole FSI solver, sensitivities are evaluated by means of AD and validation
is proposed against a Finite Difference (FD) approach. Finally, the next steps in this
research will be outlined in Sect. 19.5.

19.2 Background

A more-in-detail overview of the FSI framework is presented in this section. The
method features an iterative procedure towards the evaluation of the static equilibrium
of a flexible wing subjected to a given flow (static aeroelasticity).

19.2.1 Structural FEM Solver

The structural solver pyBeam relies on a 6-dof geometrically nonlinear beam
model [16] based on the classic solid mechanics theory:

S (u) = 0 ⇔

⎧
⎪⎨

⎪⎩

∇ · σ + Fs = 0
ε = ε(u)

σ = C : ε

(19.1)

where, in the continuum, σ is the Cauchy stress tensor, Fs are the structural body
forces per unit volume, ε is the strain tensor, u is the displacement vector and C is
the fourth order stiffness tensor.

The structural problem in Eq. 19.1 shows respectively the equilibrium equa-
tion, the strain-displacement equation featuring the geometrical nonlinearity and
the constitutive equation for an elastic material. The formulation follows an Updated
Lagrangian Approach [17], and small strains are identified from the large displace-
ment field using a corotational strategy [17]. The Euler-Bernoulli beam kinematic
assumption is considered.

19.2.2 CFD Solver

We focus on viscous, high-Mach flows around aerodynamic bodies governed by the
compressible Navier-Stokes equations. For this purpose, we use the flow solver avail-
able in the open-source multiphysics suite SU2.1 Following the work of Economon
et al. [18], the governing equations formulated in conservative form including the
energy equation can be written as

1https://su2code.g.ithub.io/.

https://su2code.g.ithub.io/
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F (w) = ∂w
∂t

+ ∇ · Fc(w) − ∇ · Fv(w) − Q(w) = 0 (19.2)

where w = (ρ, ρv, ρE) is the vector of conservative variables, ρ the flow density,
v the flow velocity and E the total energy per unit mass. Q(w) is a generic source
term, Fc(w) and Fv(w) are, respectively, the convective and viscous fluxes, and can
be written as

Fc(w) =
⎛

⎝
ρv

ρv ⊗ v + pI
ρEv + pv

⎞

⎠ (19.3)

Fv(w) =
⎛

⎝
·
τ

τ · v + μ∗Cp∇T

⎞

⎠ (19.4)

where Cp is the specific heat at constant pressure and T is the temperature. The
viscous stress tensor is written as

τ = μtot

(

∇v + ∇vT − 2

3
I(∇ · v)

)

(19.5)

where, based on the Boussinesq hypothesis [19], the total viscosity μtot is modelled
as a sum of a laminar component which satisfies Sutherland’s law [20] and a turbulent
component μturb which is obtained from the solution of a turbulence model. Finally,

μ∗ = μlam

Prl
+ μturb

Prt
(19.6)

where Prl and Prt are the laminar and turbulent Prandtl numbers, respectively.

19.2.3 Splining Method

To transfer information between the non-conformal structural and CFD grids an
in-house Moving Least Square algorithm is implemented [21, 22]. Briefly, given
xs ∈ R

Ns , the position of the structural nodes and xa ∈ R
Na , the position of the aero-

dynamic nodes on the moving boundary, it is possible to build a splining matrix
HMLS = HMLS(xs, xa) ∈ R

Na×Ns such that:

ua = HMLS · us, (19.7)

fs = HT
MLS · fa (19.8)

where ua, fa ∈ R
Na and us, fs ∈ R

Ns are, respectively, the displacements/forces
defined on the aerodynamic/structural mesh. As already stated in the work of Quar-
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anta et al. [23], employing the transpose of the spliningmatrix in Eq. (19.8) is enough
to ensure the energy conservation. The tool has already been successfully applied
to a variety of cases, including the transfer of combined rigid-elastic displacements
and featuring mobile surfaces [24] and the interpolation of information between 1D
(structural) models and 3D (aerodynamic) ones [15].

19.2.4 Fluid Mesh Deformation Solver

Provided the new position of the moving boundary, and assuming large deformations
in the structural domain, it is required to take into account the deformation of the
fluid mesh. This is carried out by the SU2 dedicated mesh deformation solver. In
order to find the new position of the nodes in the fluid domain the mesh deformation
problem can be treated as a pseudo-elastic linear problem [25],

Km · z = f̃ (19.9)

where Km is a fictitious stiffness matrix and the forces f̃ are fictiuous forces which
ensure the boundary displacement ua as for Eq. (19.7).

19.2.5 Coupling Method

A partitioned approach is employed for the FSI solver. This approach, based on the
principle ofmodularity of the different sub-solvers, can be advantageous for practical
applications (especially industry-oriented ones) on realistic test-cases.

Defining the three fields under investigation respectively as structural S , fluid
F and mesh M , the whole FSI system G can be expressed as a function of the
state variables u, w and z, respectively, structural displacements, aerodynamic state
variables and fluid mesh nodes displacements [26]

G (u, w, z) =

⎧
⎪⎨

⎪⎩

S (u, w, z) = 0,

F (w, z) = 0,

M (u, z) = 0,

(19.10)

in which the coupling contributions given by the splining procedure have already
been included. The structural beam solver S (u, w, z) = 0 has been developed for
this work and operates as a C++ library wrapped with python using SWIG [27]. The
displacements of the structure are accessible from a python script which acts as an
orchestrator. They are interpolated into the fluid boundary using Eq. (19.7) and the
spline C++ librarywhich is alsowrapped to be accessed from the python orchestrator.
The fluid boundary displacements are then imposed onto the mesh solver in SU2 via
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its Application Programming Interface (API) [28]. A new value of the aerodynamic
forces on the boundary is obtained after a CFD simulation in SU2 and interpolated
back into the structural beam model using Eq. (19.8).

Due to the nonlinear nature of the FSI problem and given the partitioned approach
used, a Block–Gauss–Seidel (BGS) strategy is adopted in the python orchestrator,
which allows the sequential solution of the three problems within the single FSI
iteration. This corresponds to a linearization of the problem as

⎡

⎣

∂S
∂u 0 0
0 ∂F

∂w 0
∂M
∂u 0 ∂M

∂z

⎤

⎦

⎧
⎨

⎩

�u
�w
�z

⎫
⎬

⎭
= −

⎧
⎨

⎩

S (u, w, z)
F (w, z)
M (u, z)

⎫
⎬

⎭
, (19.11)

in which the upper right part of the problem matrix has been set to 0 [29]. To ensure
the stability of the method, a relaxation parameter α is applied to the boundary
displacements:

u∗
a = αun

a + (1 − α)un−1
a . (19.12)

where n is the current and n − 1 is the previous BGS subiteration. An overview of
the framework layout is given in Figure 19.1.

Spline
Moving Least Square

Python
Orchestrator

C++

Python

SWIG

C++

Python

SWIG

C++

Python

SWIG

CFD Solver - Mesh Deformer
SU2

Structural Solver
pyBeam

Fig. 19.1 Framework layout
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19.3 Application

As a preliminary test case to test the framework, we employ an aeroelastic model
based on the ONERA M6 wing geometry [30]. The structural model is similar to
the one assembled for the purpose of aeroelastic analysis which has been used in a
previous work by Bombardieri et al. [15]. It features a wing-box located at 1/4th of
the chord of the wing and described by beam elements as shown in Fig. 19.2. For
every structural node along the wing box, four nodes have been placed to reproduce
the airfoil leading edge, trailing edge, upper and lower point positions. This solution
has been found to be successful for a correct implementation of the spline algorithm
introduced in Sect. 19.2.3 in order to transfer information between the structural and
the CFD surface meshes [15].

Concerning the fluid part of the problem, for this first application, andwithout loss
of generality, the flow has beenmodeled by the Euler solver of SU2, as a compromise
between computational efficiency and accuracy of the results. TheCFDmesh consists
of 582,752 tetrahedral elements and 108,396 nodes. The wing boundary features
36,454 triangular elements and 18,285 nodes (Fig. 19.2). Among the different options
provided by SU2 to perform the simulation, a 3 level Multi-Grid scheme has been
used together with a 2nd order in space Jameson–Schmidt–Turkel (JST) scheme.

CFD surface mesh

Mass
elementRigid

element

Structural 

Beam
element

Euler Wall

Symmetry
Far-field

x

y

z

CFD domain and boundary conditions

Fig. 19.2 Different meshes for the ONERA M6 test-case (from Bombardieri et al. [15])
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19.3.1 Structural Solver Validation

The solver pyBeam is validated comparing the results with the ones computed
using the nonlinear structural solver of the commercial solver NASTRAN [31] (SOL
106). Two test-cases are considered. In CASE 1 a load is applied to the wing box:
P = (0.8, 0, 0.16) [N ] (Fig. 19.4) in correspondence of the tip. Such load features
a component directed along x (flow direction) and one along z, normal to the wing
plane direction and has been adequately chosen for the structure to exhibit nonlinear
response. Figure 19.3 shows the deformed structure under the applied load. Dis-
placements are compared for the five nodes describing the airfoil at the tip of the
wing (Fig. 19.4). Table 19.1 shows the differences in percentage between pyBeam
and NASTRAN, where a good agreement for all five nodes is found.

For CASE 2 a more realistic load set is employed, interpolating from the aerody-
namic surface to the structural grid the pressure distribution resulting from a CFD
simulation performed at Mach 0.839 and a wing Angle of Attack (AoA) of 3◦.
Table 19.2 shows the differences in percentage between the two solvers for the 5
considered nodes. It can be observed how, for both load cases, differences are neg-
ligible. It is also worth mentioning that, for this last case, the conservation of the
forces interpolated from fluid surface grid to structural mesh has been verified.

Fig. 19.3 Deformed
configuration for CASE 1
validation. In green the
undeformed configuration, in
blue the deformed one

Fig. 19.4 Tip cross section.
The five structural nodes
used for comparison with
NASTRAN and the load
vector for CASE 1

X

Z

Fluid Mesh

Structural Mesh Node 5

Node 2Node 3
Node 4

Node 1

Load CASE 1
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Table 19.1 Comparison between in-house structural solver and NASTRAN for CASE 1

�x (%) �y (%) �z (%)

Node 1 0.24 0.28 0.012

Node 2 0.24 0.32 0.14

Node 3 0.24 0.24 0.09

Node 4 0.25 0.27 0.12

Node 5 0.22 0.30 0.13

Table 19.2 Comparison between in-house structural solver and NASTRAN for CASE 2

�x (%) �y (%) �z (%)

Node 1 0.003 0.003 0.001

Node 2 0.004 0.005 0.002

Node 3 0.001 0.003 0.001

Node 4 0.003 0.002 0.001

Node 5 0.002 0.202 0.001

19.3.2 Primal FSI Solver

Applications of the primal solver are here shown for two cases: asymptotic flow at
Mach 0.839 with AoA 3.06 and 2.5◦. Figure 19.5 shows the converged configura-
tion for the two cases compared with the undeformed one, together with the Mach
distribution over the configuration at AoA 3.06◦.

Undeformed

AoA = 2.5 deg

AoA = 3.06 deg

Fig. 19.5 Application of the primal solver. Undeformed configuration (in brown) is compared with
the converged configuration at AoA of 2.5◦ (in green) and at AoA of 3.06◦ in case of M∞ = 0.839.
For the converged one with AoA of 3.06◦ also the Mach distribution over the surface is shown
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Fig. 19.6 Pressure distribution at section y = 0.6m for the rigid and elastic configuration at AoA
of 2.5◦

Fig. 19.7 Pressure distribution at section y = 0.9m for the rigid and elastic configuration at AoA
of 2.5◦

Figures 19.6 and 19.7 show the comparison of the Cp distribution between the
undeformed configuration and the converged configuration at AoA of 2.5◦ at two
positions along the span (y = 0.6m and y = 0.9m). It can be noticed, at both sec-
tions, differences in Cp distribution, especially in the area interested by the lambda
shock.
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19.4 Adjoint Based Optimization: Sensitivities Evaluation

Let the governing equations in Eq. (19.10) be rewritten in the form of fixed-point
iterators,

G (u, w, z) = 0 ⇔
⎧
⎨

⎩

S(u, w, z) − u = 0 (19.13a)
F(w, z) − w = 0 (19.13b)
M(u) − z = 0 (19.13c)

In previous works by Sanchez et al. [13] it was shown that rewriting the standard FSI
problem into the form of Eq. (19.13) leads to an efficient redefinition of the adjoint
problem in fixed-point form amenable to the use of AD, which provides a seamless
infrastructure to compute coupled sensitivities in unified code-bases.

Defining the objective function J (u, w, z,α) and a set of design variables α, the
Lagrangian operator, L , is defined as:

L (u, ū, w, w̄, z, z̄,α) = J (u, w, z,α) + ūT [S(u, w, z,α) − u]

+w̄T [F(w, z,α) − w] + z̄T [M(u,α) − z] ,
(19.14)

where the Lagrangian multipliers ū, w̄ and z̄ correspond to the adjoints of the state
variables. Imposing the KKT conditions, the sensitivity of the objective function
might be computed

dJ

dα

T

= ∂ J

∂α

T

+ ∂S
∂α

T

ū + ∂F
∂α

T

w̄ + ∂M
∂α

T

z̄, (19.15)

where the adjoint variables are obtained from the fixed-point adjoint equations

ū = ∂ J

∂u
+ ∂S

∂u

T

ū + ∂M
∂u

T

z̄, (19.16a)

w̄ = ∂ J

∂w
+ ∂F

∂w

T

w̄ + ∂S
∂w

T

ū, (19.16b)

z̄ = ∂ J

∂z
+ ∂F

∂z

T

w̄ + ∂S
∂z

T

ū. (19.16c)

Thematrix-vector products in the general form of ∂F
∂x

T
ȳ can be evaluated using the

AD tool CoDiPack [32]. In the case of a python infrastructure with non-conformal
interfaces as the one proposed in this work, the crossed dependencies

∂M
∂u

T

z̄,
∂S
∂w

T

ū,
∂F
∂z

T

w̄,
∂S
∂z

T

ū, (19.17)

must be handled carefully taking into account the interpolation steps.
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Table 19.3 Structural sensitivities of OF J = 0.0590m to the vertical loads applied to the five
nodes of the tip section (Fig. 19.4) calculated using the FD approach and the ADR method, for a
nominal equilibrium condition under the load set of CASE 3

d J/dF1z Relative Error to
FD

d J/dF2z Relative Error to
FD

FD 2.282116112499 – 2.034943501002 –

ADR 2.282121475229 2.3499e-04 % 2.034946975076 1.7072e-04 %

d J/dF3z Relative Error to
FD

d J/dF4z Relative Error to
FD

FD 2.652881587618 – 2.277763717319 –

ADR 2.652889131720 2.8437e-04 % 2.277769271153 2.4383e-04 %

d J/dF5z Relative Error to
FD

FD 2.286468140094 –

ADR 2.286473677823 2.4220e-04 %

19.4.1 Structural Sensitivities

The structural solver pyBeam has been developed to handle AD in a similar manner
as it was done for the aerodynamic solver in SU2 [11] and for the native solid solver
in SU2 [13]. Proof of concept of the structural sensitivities evaluation using the AD
method is presented here.

AD implementation is demonstrated on the ONERAM6 structural model. For the
objective function (OF) J , sensitivity with respect to the chosen design parameter is
calculated both with a classic FD approach and AD reverse (ADR) method [13]. The
objective function is chosen to be the vertical displacement of the tip node (Node 1
in Fig. 19.4). Sensitivities are calculated for a nominal equilibrium condition under
the load set used for validation in CASE 2 presented Sect. 19.3.1.

Comparison of sensitivities with respect to the vertical component of the forces
applied to each node is shown for the five nodes of the tip section as for Fig. 19.4
(Table 19.3) and for the respective nodes at a mid-span section (Table 19.4). Com-
parison with finite differences shows excellent accuracy of the gradients computed
with the adjoint method.

19.4.2 FSI Sensitivities

Finally, for the full FSI framework, proof of concept of AD-based coupled sensi-
tivities evaluation is here presented. The calculation of coupled sensitivities (i.e.
sensitivities of an aerodynamic objective function with respect to a structural design
variable or vice versa) represents a key feature for the framework to be used in the
context of aero-structural optimization.
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Table 19.4 Structural sensitivities of the OF J to the vertical loads applied to the five nodes of the
mid-span section (ordered as in Fig. 19.4) calculated using the FD approach and the ADR method,
for a nominal equilibrium condition under the load set of CASE 3 (J = 0.0590m)

d J/dF1z Relative Error to
FD

d J/dF2z Relative Error to
FD

FD 0.521372402249 – 0.341243158041 –

ADR 0.521372693595 5.5881e-05 % 0.341243293520 3.9702e-05 %

d J/dF3z Relative Error to
FD

d J/dF4z Relative Error to
FD

FD 0.791564714791 – 0.518704634402 –

ADR 0.791566479154 2.2290e-04 % 0.5187052129698 1.1154e-04 %

d J/dF5z Relative Error to
FD

FD 0.524039945244 –

ADR 0.524040172905 4.3444e-05 %

Table 19.5 FSI sensitivities of the OFCD andCL with respect to the YoungModulus E, calculated
using FD approach and the ADR method. Nominal equilibrium condition at M∞ = 0.84, AoA =
3.06 and E = 4.0e + 10 Pa

dCD/dE Relative Error to
FD

dCL/dE Relative Error to
FD

FD 7.175227176e-14 – 1.208098392e-12 –

ADR 7.172713849e-14 0.0350 % 1.208552955e-12 0.0376 %

Sensitivities are evaluated for the presented aeroelastic model, at nominal condi-
tions characterized by asymptotic flow at Mach 0.84 with AoA of 3.06◦ and Young
Modulus of the structure E of 4.0e+10 10Pa. For the lift coefficientCL and drag coef-
ficient CD , AD-based sensitivities with respect to E are compared to FD-based ones
in Table 19.5. Comparison shows, again, excellent agreement between sensitivities
calculated by the two methods.

Figure 19.8 shows the OF CD and CL evaluated by the primal FSI solver and the
relative sensitivities evaluated by the adjoint fixed-point as a function of the iteration
number. Similar convergence trends can be observed which may be linked to the fact
that the adjoint fixed-point method inherits the convergence properties of the primal
one [26]. The convergence of the coupled FSI adjoint problem within the presented
framework will be further studied in coming works.
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Fig. 19.8 Objective functionsCD andCL for the primal FSI problem (left) and relative sensitivities
for the adjoint fixed-point one (right) as a function of iteration number

19.5 Conclusions and Future Works

An ongoing effort is presented for the development of an open-source framework
for the analysis, design and optimization of wing aero-structural problems. This
framework is based on the established open-source CFD solver available within
the multiphysics suite SU2, and an in-house open-source nonlinear beam solver. A
splining algorithm, based on Moving Least Squares, is implemented following the
structural solver architecture and provides conservative interpolation over the non-
conformal FSI interfaces. All the computational solvers are accessible from python
via a SWIG compilation and communicate over the common interface using a fit-
for-purpose python framework.

First, the structural solver is validated taking as a reference NASTRAN’s non-
linear structural solver SOL 106: it is shown how the differences in the predicted
displacements of the test-case structure are negligible for two distinct load cases.
Secondly, a preliminary run of the primal FSI solver is shown featuring an aeroe-
lastic model of the ONERA M6 wing. It is shown how, with asymptotic conditions
of Mach 0.839 with Angles of Attack 2.5 and 3.06◦, the FSI system converges to
equilibrium configurations different from the rigid one.

This work is part of a bigger effort to build a self-contained tool for rapid analysis
and optimization of very flexible wings coupling CFD and nonlinear structural FEM
for the structural part. It has been demonstrated, in previous works, the applicability
of SU2 to aeroelastic analysis [15] and fully-coupled FSI sensitivity analysis with its
native solid mechanics solver [13]. With this aim, a first effort is done in the direction
of the evaluation of FSI coupled sensitivities for the presented framework using
AlgorithmicDifferentiation. First, ADbased structural sensitivities are validated. For
a nominal equilibrium condition of the presented aeroelastic test-case, sensitivities
are calculated for a variety of parameters and comparedwith the same evaluated using
Finite Differences. For all the tests, correlation is found to be satisfactory. Finally,
validation of FSI sensitivities calculation is sought. For a reference asymptotic flow
and nominal structural properties of the presented aeroelastic test case, AD-based
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sensitivities of coefficientsCL andCD with respect to the structure’s YoungModulus
are comparedwith the same values calculated using FiniteDifferences. Again, results
show excellent accuracy in gradient evaluation.

PyBeam organization on GitHub provides the complete set of test cases discussed
above in the repository T estcases_Eurogen_2019.
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Chapter 20
Neuroevolutionary Multiobjective
Optimization of Injection Stretch Blow
Molding Process in the Blowing Phase

Renê S. Pinto, Hugo M. Silva, Fernando M. Duarte, João P. Nunes,
and António Gaspar-Cunha

Abstract Injection stretch blow molding is a very important thermoplastic
processing technique producing hollow containers with mechanical performance.
One of the main challenges in optimizing this process consists in finding the best
thickness profile for each part in order to achieve the desired mechanical properties
with less material use. In a previous study, a new methodology based on a neuroevo-
lutionary multiobjective optimization approach was proposed to enhance the entire
process, which considers that the process is optimized by phases, starting by the
end. In that initial study only the final phase of the process was addressed, where
the best thickness profile for an industrial bottle was found in order to satisfy the
required mechanical properties with less material use. In the present study, the focus
is the second stage of the optimization methodology, concerning the blowing phase
of injection blow molding process. The optimal results obtained in the first phase
are used as the optimal thickness profile for the bottle with the goal to find the best
preform thickness profile which produces the desired bottle. The same procedures
are used and the results show that the methodology was successfully applied to its
second phase.

Keywords Neuroevolutionary · Multi-objective optimization · Plastics
blow-moulding

20.1 Introduction

Injection stretch blow molding is one of the most important processes in the industry
to produce hollow plastic containers, such as bottles, jars and several kind of different
hollow plastic parts. Basically, this thermoplastic processing technique comprises
the following steps: (1) injection of molten raw material into a cavity to produce
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the desired shape of the preform; (ii) heating the preform, typically by radiation, so
that the material acquires deformation capability; (iii) stretch and blowing the heated
preform in order to ensure that the preform reproduces the contours of the mold. The
stretch, made mechanically by the action of a plug, and the blowing, using air under
pressure, can occur sequentially (stretch followed by blowing) or at the same time;
(iv) finally, the part is cooled and removed from the mold.

Since the amount of material used in blow molded products represents a signifi-
cant share of the total manufacture costs, the minimization of material utilization is
required [1]. However, there are several important mechanical properties which are
also dependent on this feature. Numerical approaches can be applied to avoid empir-
ical tests to find the process input variables which gives the best tradeoff between
the material utilization and the desired mechanical properties. Several studies in the
literature present different approaches concerning injection stretch blow molding
design process and optimization [1–6]. One of the major challenges in optimizing
this process is to define the complete thickness profile and shape of the final part and
of the preform in order to achieve desired mechanical properties with less material
utilization.

In [1, 2] a global optimization methodology for injection stretch blow molding
process is presented and detailed. This methodology uses a neuroevolutionary multi-
objective approach and is composed by steps (or phases) that should be performed to
optimize the whole process in order to find the best thickness profile of the final part
and of the preform. In both studies only the first phase of the optimization, which
comprises the final stage of manufacturing process, is addressed. This study focuses
on the second phase of the optimization methodology, which comprises the blowing
of a stretched preform in the manufacturing process. In the previous study, optimal
thickness distributions of the final part were obtained. The main goal of this study is
find the best thickness distributions of the preform that will lead to final parts (after
the blowing phase) with the optimal thickness profiles found on the previous study.

20.2 Global Optimization Methodology

The proposed optimization methodology for the injection stretch blow molding
summarizes the whole process in five main phases: Injection, Stretching, Blowing,
Mold opening and Blow-molded part. The injection phase comprises the melting of
rawmaterial and its injection into a cavity to form the preform. The stretching phase,
that is not always present in the manufacturing process, comprises the stretching of
the preform in order to maximize the amount of material at the bottom of the final
part. The blowing phase comprises the injection of air under pressure to expand the
preform towards the mold, acquiring its shape. Mold opening comprises the phase
where the mold is opening and the final part is pulled out. Finally, Blow-molded
part comprises the last production phase, where the final part is cooled and becomes
ready for packaging.
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After summarizing the five main phases in the blow molding process, the opti-
mization methodology establishes four phases (or steps) for the optimization process
(O1 to O4). However, the optimization starts by the last production phase, i.e., when
the final part is done. The first optimization step (O1) consists in optimizing the
thickness profile of the final part, i.e., to find the best thickness profile of the final
part which provides the desired mechanical properties with less material utilization.
Step O2 consists in optimizing the preform thickness profile after stretching, i.e., to
find the thickness profile of the preform which will produce (after blowing) the final
part with the optimal profile found in step O1. This study concerns on this phase.
The step O3 comprises in the optimization of the preform thickness profile before
stretch, i.e., finding the thickness profile of the preform (before stretch) that will
produce (after stretch) the preform with the optimal profile found in step O2. Finally,
the step O4 also optimizes the preform thickness profile, but injection conditions and
cavity geometry are used as decision variables.

20.2.1 Neuroevolutionary Multiobjective Optimization

One of the insights of the proposed methodology is treat a container’s thickness
distribution as a function of its geometry. In this context, Artificial Neural Networks
(ANNs) are built to compute the wall thickness at any location of the part (based on
the corresponding 3D coordinate). To allow many evaluations throughout the opti-
mization process, simulations are carried out through finite element models (FEMs).
Thus, by using ANNs the search space can be drastically reduced once each FEM
model is composed by a 3D mesh with thousands or even millions of points. In the
evolutionary algorithm, each solution is represented by an ANNwhich gives a thick-
ness distribution profile for a given FEM (3D mesh). The attributes of the ANN are
evolved to find the networks that give optimal distributions. Figure 20.1 illustrates
the ANN representation.

Fig. 20.1 A FEM model (bottle) mesh. Each coordinate of the mesh is an input to the ANN to
calculate the thickness in the corresponding point
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Fig. 20.2 Neuroevolutionary
optimization methodology
workflow

The multiobjective optimization evolutionary algorithm of the methodology is
based on the SMS-EMOA [7]. Figure 20.2 illustrates the basic workflow for the
optimization.

Each population is composed of a set of individuals (solutions), each one repre-
senting an ANN. The weights and biases of the ANN are encoded in a real number
chromosome.Thus, the size of the chromosomedepends of theANNtopology instead
of the size of FEM model mesh. The initial population is generated randomly.

To evaluate a solution, the coordinates of each point of a given mesh are feed into
theANNtodefine the thickness in eachoneof the points, forming the thickness profile
that is considered as the input by the simulation process. In the evolutionary algo-
rithm, selection is performed by a uniform distribution and variation is performed by
the SBX-Crossover operator, which is designed to work with real number represen-
tations. Replacement strategy is based on Pareto front and hypervolume [8] measure.
As a result of the optimization process, there will be a set of optimal solutions where
each of them represents an ANN that gives the wall thickness distribution for the
model mesh. All solutions will provide different tradeoffs between the considered
objectives, such as mass versus mechanical properties, for instance.

20.3 Experimental Design

In the first phase of the optimization methodology an industrial bottle model was
considered in the experiments. The bottle is 45 mm in diameter and 182 mm in
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Fig. 20.3 Bottle model with vertical lines of the mesh highlighted

height, composed by plastic material with mass density of 1.15 g/cm3 and Poison’s
ratio of 0.4. The applied air (blowing) pressure and Young’s module ratio is 0.0027.
Figure 20.3 shows the 3Dmeshmodelwith dimensions indicated. Thevertical lines of
themesh are highlighted to illustrate the points where thewall thickness is calculated.

In the first phase three objective functions were considered to be minimized: f 1,
the total mass of the bottle; f 2, the maximum strain suffered by the bottle and f 3,
which is the maximum difference between the thickness profile of all vertical lines,
measured by RMSE index (root mean square error). This objective measures how
uniform is the thickness distribution, since the same thickness profile for all vertical
lines, i.e., along the bottle, is desirable.

Figures 20.4 and 20.5 show the Pareto front of the final population for the first
phase of the optimization. In Fig. 20.4 it can be seen that all solutions have low
value for RMSE error (all below 0.01), which means that the algorithm was able to
find uniform distributions. In Fig. 20.5 only the objectives f 1 and f 2 are plotted. All
solutions are well distributed along the Pareto curve, providing different tradeoffs
between the total mass (f 1) and the maximum strain (f 2). Five optimal solutions (S1
to S5) are highlighted in the curve. Solutions S2 and S3, which are located in the
knee area, are considered to give the best (balanced) relationship between f 1 and f 2
objectives. Thus, they were considered as the optimal designs to be achieved by the
second optimization phase on this study.

Fig. 20.4 Pareto front for
final population for the first
phase of the optimization
process
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Fig. 20.5 Pareto front of the
first phase with only
objective functions f 1 and f 2
plotted

Figure 20.6 shows the thickness distribution for the optimal solutions S2 and S3.
The x-axis comprises the points located from the bottleneck towards the bottom of
the bottle. Each line (distribution) represents the mean thickness values between all
vertical lines of the mesh (Fig. 20.3). Both distributions presented the same behavior.
Concerning solution S2, all the points presented mean thickness values of 0.30 mm
which decreases faster up to 0.03mmwhen reaches the bottom of the bottle. Solution
S3 had the same behavior, but the mean thickness value was 0.58 mm decreasing
up to 0.06 mm at the bottom. From a physical point of view, these results make
sense. In S2, the bottle wall is thinner, using less material, but it suffers more strain
than solution S3, where the wall is thicker, using more material, but it suffers lower
maximum strain. Tab. 1 lists f 1 (total mass) and f 2 (maximum strain) values for both
solutions (Table 20.1).

Fig. 20.6 Thickness
distribution of optimal
solutions S2 and S3
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Table 20.1 Total mass and
maximum strain values for
solutions S2 and S3

Solution Total Mass (g) Maximum Strain (×10−3)

S2 9.8 9.4

S3 15.2 4.8

Once the optimal thickness distributions for the final part (bottle) were obtained
in the first phase of the optimization, the second phase comprises in find the best
thickness profile of the preform, before the blowing phase, that will produce the
final part (with optimal thickness profile) after blowing procedure. To compare the
thickness distribution of the final part (after blowing) with an optimal thickness
distribution, two objectives were defined for the second phase:

f1 = 1

M

M∑

i=1

|yi − ŷi |
yi

f2 = max
1≤i≤M

|yi − ŷi |
yi

where y1, y2, . . . , yM comprise the mean thickness value for each point along all
vertical lines in the final part (after blowing) and ŷ1, ŷ2, . . . , ŷM comprise the mean
thickness value for the corresponding points in the optimal (or target) distribution,
such as in S2 or S3. Thus, f 1 is the mean error between the distributions and f 2 is
the maximum error.

A preform 3D mesh model was designed to produce the same bottle model used
in the first phase throughout a blow molding simulation using ANSYS Workbench
software. An initial population composed by a set of ANNs that provide preform
thickness profiles were randomly generated and evolved through the optimization
algorithm. The same parameters (number of individuals per population, number of
generations and network topology) from the first phase were used.

Two experiments (Exp1 and Exp2) were carried out: in Exp1 the optimal solution
S2 (from first phase) was considered as the optimal (target) thickness profile to be
reached in the final part (after the blowing procedure). In Exp2, the optimal solution
S3 was considered as the optimal profile.

20.4 Results and Discussion

Figure 20.7 shows the evolution of the hypervolume on each generation for Exp1
and Exp2 (normalized values). It can be seen that both experiments presented higher
hypervolume on its final populations, evidencing the evolution of each population
throughout the optimization process.

Figures 20.8 and 20.9 emphasize the optimization process by showing the initial
and final population for Exp1 and Exp2, respectively.
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Fig. 20.7 Evolution of the
hypervolume on each
generation for Exp1 and
Exp2

Fig. 20.8 Initial and final
population for Exp 1

Fig. 20.9 Initial and final
population for Exp 2
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Figures 20.10 and 20.11 show the Pareto front (all non-dominated solutions) of
final population for Exp1 and Exp2. An optimal solution was manually selected
in each curve taking into account the most balanced relationship between the two
objectives. In Exp1, solutions are spread across the curve while in Exp 2 solutions
are concentrate between 0.055 and 0.06 on the x-axis. Also, a lower number of
non-dominated solutions were found when comparing with Exp1.

Figures 20.12 and 20.13 show the thickness distribution for the optimal solutions
selected fromExp 1 andExp 2. The corresponding target distribution, i.e., the optimal
distribution found in the first phase, is also presented on each graph. Table 20.2 lists
the numerical values for objective functions of both solutions.

Fig. 20.10 Pareto front of Exp 1. Optimal solution S1 is highlighted

Fig. 20.11 Pareto front of Exp 2. Optimal solution S1 is highlighted
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Fig. 20.12 Thickness
distribution of solution S1
from Exp1 (target
distribution is S2 from the
first phase)

Fig. 20.13 Thickness
distribution of solution S1
from Exp2 (target
distribution is S3 from the
first phase)

Table 20.2 Objective
function values for optimal
solutions selected from Exp1
and Exp2

Solution f 1 f 2

S1—Exp1 0.0575 0.0596

S1—Exp2 0.2386 0.2026

Both solutions presented mean error (f 1) of order 0.05. Concerning the precision
generally involved in themanufacturing process, this error is irrelevant, whichmeans
that the thickness profiles found for the preform will produce the final bottle with
the desired thickness distribution after the blowing process.

Concerning the maximum error (f 2), the values obtained were 0.2386 and 0.2026
for Exp1 and Exp2, respectively. Although it represents around 20% of error, it is
important to point out that f 2 is a single point with the highest divergence between
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the resulted and the target thickness. For a mean thickness distribution of 0.3 mm,
20% represents 0.06 mm, which is also very small concerning the manufacturing
process.

20.5 Conclusions

Injection stretch blow molding is a process widely used by the industry to produce
hollowplastic parts. The optimization of this process can heavily decrease production
costs by finding thickness profiles which give the best tradeoffs between different
objectives, such as material utilization and mechanical properties. Previous studies
had proposed a neuroevolutionary multiobjective optimization methodology for this
process. The methodology is divided in four phases (or steps), but only the first step
was previously covered. This study addressed the second phase of the methodology,
which corresponds to the optimization of the blowing phase in the manufacturing
process.

Using the optimal thickness profile of the final part found in the first phase of the
optimization process, the second phase performed the optimization with the goal to
find the preform thickness profile that produces the final part with the optimal profile
after the blowing process. Two optimal profiles from the first phase were considered
and the same procedures for optimization were followed, defining the appropriate
objective functions and FEMmodels for the current phase. The results comprise a set
of solutions that provide different thickness distributions for the preform (through
ANNs) that will produce the final part with the desired optimal profile with a mean
error of 5%, which is irrelevant considering the precision of manufacturing process.
Two optimal preform thickness profiles were selected from the Pareto front and can
be used in the next phase of the optimization process.

Future works should address the other steps of the optimizationmethodology. The
next phase of the optimization should consider the optimal preform profiles found
on this study.
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Chapter 21
Simulation of Vacuum Assisted Resin
Infusion (VARI) Process
for the Production of Composite Material
Parts

Joana M. Malheiro and J. P. Nunes

Abstract The Vacuum Assisted Resin Infusion (VARI) is manufacturing process
used worldwide to produce composite parts having great diversity of dimensions
(from small to very large ones) and geometrical complexity. This manufacturing
process is particularly versatile, to produce small series of high performance struc-
tural parts. In these cases, the simulations of the VARI process is a very useful
tool to define the infusion strategy and to plan and predict the resin flow progress
in order to reduce the material waste and manufacturing cycle time and obtaining
lighter structures, having lower void fraction and higher fibre content andmechanical
performance. The numerical simulation of the VARI process implies the modelling
of different complex phenomena, such as flow in porous media, mechanical defor-
mation, heat exchange and chemical reaction. Therefore, a finite element software
was used to solve a combination of governing equations based on a combination of
pre-defined theoretical assumptions, by considering a moving mesh and appropri-
ated boundary conditions. In this work, results obtained from simulations of VARI
process were used to define the best strategy to be applied in the production of
composite parts with different geometries, sizes and materials and predict the possi-
bility of defects occur. In order to validate the accuracy of simulations, the numerical
results were compared with those experimental ones obtained from the production
of different composite parts where the best processing strategies were implemented.
After analysing and discussing the theoretical and experimental obtained results,
changes were applied to the numerical model to improve simulation accuracy.
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21.1 Introduction

The increase of production rates and from quality ofmanufactured parts is implying a
growing interest by composite manufacturing process simulation and by its stronger
predictive accuracy [1]. Among the industrial manufacturing processes used, resin
infusion appears more and more as the best economical alternative to manufacture
large and/or high mechanical performance parts, with large fibre fractions (wind
turbine blades, structural components, wings of aircrafts, etc.). Composite manufac-
turing processes by resin infusion have been developed for years to bring a cheaper
solution to big parts production. Those processes allow a significant cost reduction
in raw materials storage and mould fabrication, shorter cycle times, less void forma-
tion and avoid the use of trial and error time-consuming procedures to optimise the
process parameters [3]. In recent years, the interest in using out-of-autoclave (OOA)
processing techniques, such as resin infusion ones, has also been renewed because
of the very expensive initial investment required by the traditional methods in auto-
clave, particularly when the composite parts and structures to be produce become
larger and more complex.

Furthermore, the possibility of simulating these liquid resin infusion processes
allows to predict potential defects on the final parts and reduce significantly the time
for setting and optimising their processing parameters [2]. In fact, without using
computer simulations, the success of these resin infusion methods become highly
dependent upon operator skill and experience, particularly in the development of
new manufacturing strategies for complex parts. Process modelling, as a predictive
computational tool, aims to address and improving the reliability andwaste issues that
usually result from traditional trial-and-error approaches. Basic modelling attempts
generally focus on simulating fluid flow through an isotropic porous reinforcement
material. Currently, the more recently developed advanced numerical algorithms are
also beginning to take into account the multiscale and multidisciplinary complexity
of the reinforcement materials, increasing the accuracy of the simulations [4]. In
the case of resin infusion manufacturing with textile reinforcement materials, the
physical draping of the fabric and the subsequent resin flow through the material are
the key stages of the process [4].

In this paper, the accuracy of the results obtained by the simulation of Vacuum
Assisted Resin Infusion (VARI) manufacturing process is assessed. To accomplish
that, the simulation of the infusion of composite parts with different geometries (from
a planar plate to a hull of a boat) was performed and compared to the experimental
results, obtained from the actual production of the same components. The main
limitations of the numerical model are pointed out as well as the considerations and
assumptions necessary to obtain more accurate numerical results.
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21.2 Vacuum Assisted Resin Infusion (VARI)

The Liquid Composite Moulding (LCM) is a generic term for a family of related
processes in composites manufacturing, in which continuous fibres used as rein-
forcement are first placed in a mould, then a polymer matrix (usually thermosetting)
is injected as liquid resin in the cavity [5]. The Vacuum Assisted Resin Infusion
(VARI), in particular, consists in impregnating a dry preform placed onto a rigid
half-mould and under a vacuum bag [1]. Then, the pressure differential between a
vent pipe connected to a vacuum pump (aprox. at 0 bar) and the injection line (at
atmospheric pressure) induces the infusion of the resin along and across the rein-
forcement. After complete impregnation, the part is subjected to a curing process,
usually out of autoclave. For the infusion, several injection ports, injection lines or
a tree of injection channels can be used. It is necessary to select a good configura-
tion of injection ports and vents to avoid dry spots and minimize filling time. The
VARI process eliminates the costs associated with matched metal tooling, reduces
volatiles emission and allows the use of lower resin injection pressures. Also enables
the use of low-cost tooling while still producing high quality composite parts with
complex geometries [6]. Despite the versatility of the VARI process, the reliability
and repeatability issues still is, however, a concern for the widespread adoption of
this manufacturing process by the advanced industry, when well-validated simula-
tions are not used. The efforts to simulate the resin infusion manufacturing process
aim to address the reliability and repeatability concerns in a cost-effective manner
[4]. Numerical simulations of mould filling can be of great help to avoid problems
such as resin rich areas, air bubbles, dry spots, zones of high porosity, as well as the
formation of cracks following cure shrinkage. It is also advantageous to determine
the optimal infusion strategy [5, 6].

21.3 Governing Equations

The resin infusion process is particularly complex to model. In general, the manufac-
turing process is divided into four main phenomena [4, 5]: the physical accommoda-
tion of the reinforcement material lay-up to the mould (draping); the flow of the resin
through the reinforcement material (infusion); the exothermal reaction of the resin
(curing), consequent thermal analysis of heat exchange between the part, mould and
environment and the influence of all these factors on the resin viscosity [4].

Up until a few years ago, many flow models that were still used by industry
lacked enough precision, because they relied on the assumptions of a homoge-
nous, continuum-based approximation of the preform domain and neglect through-
thickness effects, saturation, compaction, and heat transfer. Recently, finite-element
based methods have been developed with increasing sophistication, to take into
account not only the interdependence of the different phenomena that influences
the infusion process but also almost all factors that affect resin flow behaviour. These
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Table 21.1 Governing phonomena and mathematical models used in infusion process simulations
[5]

Phenomena Mathematical model

Rheological Resin flow in a porous medium
Variation of viscosity

Darcy’s law
Constitutive law

Thermal Mould: conduction, loss in surface
Part: conduction, convection, generation
of heat, superficial heat loss

Heat equation, transfer coefficient
(convection-radiance)
Equation of convection-diffusion with
source term, model with one
temperature

Chemical Transport of chemical species, diffusion,
polymerization

Equation of convection-diffusion with
source term, kinetic model
(Kamal-Sourour)

Mechanical Mould deformation Newtonian’s law
Empirical models

last factors are: permeability, pressure, viscosity, temperature and heat exchange,
variability and susceptibility to handling and cutting of reinforcement, presence of
passive apparatus (such as inlets, outlets, flow enhancing materials, etc.), through-
thickness effects (effect negligible in thin composite parts), deformation-dependent
permeability properties, saturation, tool compaction (because the process uses a
flexible film semi-tooling, which deforms simultaneously under the internal mould
depression and in result of resin infiltration), void formation, among others [5].

The main phenomena and respective mathematical models usually considered in
infusion process simulations are summarized in Table 21.1.

21.3.1 Flow in Porous Media

In the VARI process, the resin flows through a fibrous reinforcement, which can
be considered as a porous medium. In this case, the flow of resin is governed by
Darcy’s Law, which states that the flow rate of resin per unit area is proportional to the
pressure gradient and inversely proportional to the viscosity of the resin. The constant
of proportionality is the permeability of the porous medium. It is independent from
the fluid, but it depends on the direction of the fibres in each layer of reinforcement.
Also capillary forces of attraction or repulsion, which depend on the resin surface
tension and its ability to adhere to the surface of fibres and that may also affecting
the forehead of flow, by either reducing or increasing the effective pressure at the
resin front. However, these latter effects are generally considered too small and,
therefore, neglected by almost all numerical models. So, assuming that the resin is
an incompressible fluid (generalized Newtonian fluid) that travels at low velocity
trough a porous medium and the permeability of the porous media is 10−3 m2 or less,
the Darcy’s Law may be written as [4, 7]:
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�V = −K

μ
�∇P (21.1)

where, K is the permeability tensor, μ is the viscosity of the resin, V is the Darcy’s
velocity and P is the pressure (overall pressure gradient through the system) [4].

The permeability characterizes the relative facility that a viscous liquid has in
flowing through a porous medium in order to impregnate it. This physical property
of the porous medium (cloth, fabric, fibre mat, etc.) depends on the fibre volume
fraction (degree of compaction), orientation and configuration of fibres and draping
of plies. The permeability of the reinforcement in their principal directions may be
determined experimentally.

21.3.2 Draping (Mechanical Properties)

From a mechanical perspective, draping behaviour has proven to be difficult to repli-
cate accurately. Woven warp and weft yarns exhibit considerable tensile strength
and stiffness but are highly susceptible to reorientation under shear and bending
modes. Therefore, any attempt to model draping must accurately account for the
yarn reorientation that result from shear loading [4]. In order to replicate the mechan-
ical behaviour the characterization of the reinforcement tensile, shear, and bending
properties is mandatory.

21.3.3 Thermal Phenomena

The final impregnated part that will lie in the cavity of the mould, consists of rein-
forcements and resin, which first fills the mould and then becomes progressively
polymerized. Heat transfer phenomena significantly affect mould filling and resin
curing. Indeed, the temperature of the resin governs the reactivity of the polymeriza-
tion reaction. Temperature also has an influence on mould filling, since the viscosity
of the resin depends on temperature. Thermal simulation are therefore delicate to
conduct because of all the related phenomena. Firstly, heat is transferred by conduc-
tion between the fibres and the resin. Secondly, a convective transport of heat occurs
during the filling of the cavity by the resin. Finally, heat is produced by the exothermic
chemical reaction of resin polymerization. Some heat is also created by the viscous
dissipation during the resin flow, but in lower degree than the heat originated by the
chemical reaction of cure. The temperature field is governed by the general equation:

ρCp
∂T

∂t
+ ρr cpr �V · ∇T = �∇ · {k · ∇T } − pr�h

Dα

Dt
(21.2)
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where T denotes temperature, t is the time, ρ is the density, Cp is the specific heat,
k is the heat conduction coefficient tensor, the subscript r designates the resin, Δh
is the total enthalpy of the cure reaction of the resin, α is the degree of resin cure
conversion. This general equation enables to treat the steps of pre-heating, filling and
curing.

21.3.4 Viscosity of the Resin

The viscosity of the resin depends highly on the temperature and degree of cure
conversion, by assuming that viscosity will be infinite when the resin reaches gela-
tion. The dependence of viscosity on these factors can be modelled by a range of
different assumption and respective constitutive laws, such as: constant viscosity
(Newtonian fluid); predefined law considering the viscosity dependence on temper-
ature; predefined law considering the viscosity as function of temperature and resin
curing rate; predefined law considering the viscosity as a function of temperature
and resin strain and curing rate.

21.3.5 Kinetics of Resin Polymerization

The kinetics of polymerization of the resin is usually simulated by the model of
Kamal-Sourour, and is essential to describe the curing reaction of the resin [5]. In
this study, the effect of the resin polymerization will be neglected because the gel
time of the resin is assumed to be sufficiently long for not affecting the resin viscosity,
which is made constant, and that the curing reaction will take place long time after
the infusion process is finished.

21.4 Numerical Method

In this study, the PAM-RTM® finite element software from ESI was used to simulate
the infusion process. It is based on the coupling between the resin flow, governed by
Darcy’s law, and the preform behaviour considered as porous medium undergoing
deformations accordingly to the Terzaghi’s principle. The numerical algorithm also
considers the changing thickness of the laminate and compaction as a function of the
fibre volume content during the infusion [1, 5, 7]. For that, the software decomposes
space and time, being the system divided in three zones in space [2]: Stokes zone
(fast flow zone constituted by the distribution medium and the resin); Darcy zone
(incompressible flow of the resin in the preforms submitted to finite deformations);
and dry preforms zone (zone constituted of non-impregnated preforms submitted to
finite strains). On the other hand, time is divided in four periods that correspond to the
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following changes in boundary conditions or physical problem [2]: pre-filling (initial
compaction of the preforms due to the vacuuming of the system); filling; post-filling
(re-compaction or “rest period” ending by the mechanical equilibrium mandatory to
the dimensional quality of the final part); and curing. Themodel also take into account
the porous medium deformation during the temperature and pressure cycles, and
deals with the influence of the preform deformation on permeability, and therefore
on pressure distribution. Moreover, a thermo-chemical model describes viscosity
changes during the infusion [7]. More details of the algorithm used can be found in
the work of Celle et al. [7] and Dereims et al. [8]. The software allows Dirichlet or
Neuman boundary conditions, and takes into account the effect of gravity, which is
important in large structures and negligible in small parts [5].

21.5 Results and Discussions

The results of the infusion process to manufacture different parts in composite mate-
rials are presented below, where the simulation results are compared to the experi-
mental results. For simulations, it was necessary to characterize properly both resin
and reinforcement materials.

The permeability of the reinforcementmaterials, and its variation of the combining
effects of orientation and configuration of fibres, draping of plies, compression, etc.,
is difficult to measure accurately, but its determination is paramount in the simula-
tion of the VARI process. To overcome this problem, a methodology to determine
and validate numerically this parameter is presented. After numerically validate the
experimental parameters, the simulation of different composite parts are performed
and experimentally verified. To accomplish that, simple geometrieswith simple lami-
nates are firstly validated, then the same is done for geometries and laminates increas-
ingly complex. In the process different assumptions and simplifications are admitted
without compromising the accuracy of the numerical results.

21.5.1 Flat Square Plates

A Brookfield viscometer was used to measure the viscosity of a the polyester resin
Distriton 3501S with 1.5% of hardener (NOROX MCP) along time. Table 21.2
summarises the results obtained from those tests. The resin behaves as a Newto-
nian fluid, with constant viscosity of 469 mPa. s, and allows, approximately, 150 min
of working time. The long gel time allows to perform the infusion without signifi-
cant variations in viscosity, and ensuring that the curing process takes place after the
complete impregnation of the laminate.

The reinforcement properties are presented in Table 21.3. A glass fibre unidirec-
tional stitched fabric was used as reinforcement of a laminate of 300 × 300 mm,
which had only one reinforced layer. The permeability along the two main directions
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Table 21.2 Resin Properties—Polyester resin Distitron 3501 S

Density Viscosity Gel Time Curing time Exothermic Peak

(g/cm3) (mPa . s) (min) (min) (°C)

1.12 469 ≈150 22–32 140–170

Curing Cycle

24 h a 23 °C + 2 h a 100 °C + 1 h a 100 °C

Table 21.3 Reinforcement Properties–Glass fibre fabric

Density (kg/m3) Structure Weight (g/m2) Orientation (°) Thickness (mm)

2600 Unidirectional, stitched 300 0° 1.0

of the glass fibre fabric is, respectively,K1= 1.090E−08m2 andK2= 1.250E−10m2,
assuming that gravity and thickness of the laminate have no effect.

Figures 21.1 and 21.2 compare, at the same moment in time, the experimental
and numerical results obtained when two different types of arrangements were used
for the resin inlet and outlet (with and without runners). As may be seen, good
agreement between the numerical and experimental results is observed. As Fig. 21.3
shows, the resin flow front and the filling time depends on the type of resin inlet. As
this last figure depicts, the filling time is lower when runners are used as resin inlet
(t = 1515 s) than without runners (t = 6520 s), while experimentally the infusion
took the similar values of, approximately, 1476 and 6180 s, respectively. For both
situations, simulations predicted that a volumeof resin of approximately 4.60E-05m3

will be used in the infusion, while experimentally a volume around 5.00E-05 m3 was
used.

Resin flow 
front 

Resin outlet 

Resin intlet 

t= 4513s 

Fig. 21.1 Infusion of a plane laminate without runners at t= 4513 s: experimental (left); simulation
(right)
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Resin flow front

Resin outlet 

Resin intlet Runner

Runner 

t= 795s 

Fig. 21.2 Infusion of a plane laminate with runners at t = 795 s: experimental (left); simulation
(right)

Fig. 21.3 Filling time for infusion with (right) an without (left) runners

21.5.2 Guitar Plate

The same kind of study was performed for a plate with a complex geometry, namely,
a pickguard of a guitar. In this case, the laminate had five layers of carbon fibre
fabric with the following properties: plain (0°/90°); weight per unit area: 195 g/m2;
density: 1770 kg/m3; thickness: 0.30 mm. The single layer of reinforcement presents
the following permeability along its main directions: K1= K2= 8.304E-11 m2. As
matrix was used a polyester resin, with the following properties: viscosity: 0.300 Pa.
s; density: 1200 kg/m3. The properties of the resin were considered constant in time.

Although, this part is actually aflat plate, it presents a complexboundary geometry,
with different curves and cuts. These characteristics will affect the resin flow front
during impregnation because resin flows faster along the reinforcement boundaries.
This was observed independently of the type of arrangement used for the resin inlet
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Fig. 21.4 Flow front at t = 2040 s: experimental (a), simulation (b)

and outlet, and partially explains the difference between the experimental and numer-
ical results (Figs. 21.4 and 21.5 a, b). Thus, by changing the model and assuming that
the permeability was higher at the reinforcement boundaries, both experimental and
numerical results start to approximate as it may be seen in Fig. 21.5a, c. Still, differ-
ences between numerical and experimental resin front outline obtained (Fig. 21.5)
were significant. This is easily explained by the permeability admitted in the simula-
tion, which was determined experimentally for one single layer (following the same
methodology of the previous example) while the laminate is a stack of five layers,
i.e., effects, for example, of draping and compression were not taken into account in
the global permeability of the laminate.

21.5.3 Car Seat Part

The assumptions admitted previously were applied in the production of a compo-
nent from a car seat (Fig. 21.7a). The laminate was manufactured by using the same
carbon fibre fabric, but twice as many layers (10 layers) than those used in the guitar
plate. Since a different laminate is used, it will present necessarily a distinct perme-
ability. Knowing, from the previous example, that the software does not allow to
get an accurate simulation of the real resin flow front advance by using the perme-
ability of the single elemental layer used, the permeability of the ten layer laminate
was determined experimentally and validated numerically as previously described
in point 5.1 and Fig. 21.2. In order to quantify the new permeability, the valida-
tion of the infusion of the laminate was performed (Fig. 21.6), using an epoxy resin
(density:1140 kg/m3) which behaves as a Newtonian fluid during the infusion, with
constant viscosity equal to 0.170 Pa.s. A permeability of K1= K2= 6.827E-12 m2

was determined for the laminate by using this procedure (Fig. 21.6a). Such perme-
ability is considered as the global permeability of the laminate, which means the
effect of compressibility and draping between layers, that are difficult to quantify
and mimic in the simulation, are accounted for. Thus, the following simplifications
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Fig. 21.5 Resin flow front at t= 1840 s: experimental (a), simulation (b), simulation with different
K at boundaries (c)

were assumed to validate the permeability in the simulation: (i) the geometry of the
laminate is a single layer (surface) of 2D triangular elements and, (ii) it presents the
global permeability determined for whole 10-layer laminate. As Fig. 21.6 shows,
a good agreement was found between the experimental and numerical results: the
infusion took ≈1700 s experimentally while the simulation predicted 1783 s; at ≈
883 s the resin flow front advanced approximately the same distance (≈330 mm);
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Fig. 21.6 Resin front: experimental (a) and simulation (b) at t = 883 s

and the quantity of resin estimated in the simulation was 723 g, while experimen-
tally ≈1520 g of resin were necessary, due to passive accessories, for a fibre volume
fraction of 50%.

After validation of laminate properties, the data obtained were used to simulate
the vacuum assisted infusion of a component of a car seat (Fig. 21.7a). The simu-
lation results are presented in Fig. 21.7. During infusion, the resin flows from the
region of maximum pressure, at the entry runner, (1 bar, Fig. 21.7b) toward the
region where pressure is minimum (0 bar, Fig. 21.7b). The distribution of velocity
(Fig. 21.7d) shows that the flow is faster at the concave corners of the geometry
than in plane regions and convex corners, as expected and observed experimentally,
due to the formation of channels in these regions as a consequence of the reinforce-
ment draping on the geometry. The selected entry and exit ports leaded to a steady
progression of the resin flow front along the laminate, and the total impregnation of
the laminate is observed, taking 2133.3 s and ≈2220 s to be numerically (Fig. 21.8c)
and experimentally completed, respectively. The good agreement found between the
simulations and experimental results shows that the adjustments applied, so far, to
the numerical model resulted in a very realistic representation of the infusion of
composite parts.

21.5.4 Sandwich Laminates

Sandwich laminates are used to produce composites requiring both lightweight and
high mechanical performances. In general, they are constituted by a core protected
by a skin on, at least, two sides of its structure (Fig. 21.8). The adhesion between
core and skin is, usually, achieved by the matrix resin, which impregnate both skin
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Fig. 21.7 Simulation results of the infusion process of the part of a car seat (a): pressure distribution
[bar] (b), filling time [s] (c), flow velocity [m/s] (d)
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Fig. 21.8 Sandwich
laminate structure and mesh

and core together. However, in order to get a lightweight composite, the core should
not absorb resin within its structure. The adhesion is obtained by particular mechan-
ical finishing, such as, perforations, grooves, grid-scores, etc., which guarantee the
desired mechanical adhesion (generally designated as biding points).

Thus, along with the simplifications described in the examples above, to simulate
the VARI process of a sandwich laminate other assumptions were considered. By
way of example, the sandwich laminate depicted in Fig. 21.8 is considered: it uses a
perforated PVC foam (core), two plies of biaxial glass fibre fabric on each side (skins)
and a polyester resin. The properties of the reinforcements and resin are summarized
in Tables 21.4 and 21.2, respectively.

The main simplifications used to build the mesh were: (i) the volume of resin
deposited in the surface of the core was neglected and, (ii) it was assumed that only
the binding points are filled with resin. Thus, instead of building a mesh throughout
the volume of the core it was built only at the binding points (in the example, perfo-
rations), which guarantee the connection between the core and skins as Fig. 21.8
illustrates. It is admitted that the perforations of the core have maximum perme-
ability in all directions (K1= K2= 1.257E-05 m2), while the biaxial fabric has K1=
K2= 9.913E-11 m2, which was determined experimentally as previously described
in point 5.1 and Fig. 21.2 by considering a laminate with two biaxial plies.

Table 21.4 Sandwich
Laminate—Reinforcement
Properties

Reinforcements

Material Glass fibre PVC

Density (kg/m3) 2600 100

Structure Biaxial, stitched Foam, perforated

Weight (g/m2) 300/300
(612)

–

Orientation (°) 0°/90° Random

Thickness (mm) 1.00 10.0
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Fig. 21.9 Experimental results: resin front at t = 60 s (a); and numerical results: filling time (b)

Following the same previously mentioned method, the material characterization
was validated by comparing the numerical and experimental results (Fig. 21.9). Illus-
trated in Fig. 21.9 is the numerical filling time (of both skins) and the experimental
advance of the resin front, at the top skin, in the sandwich laminate at t = 60 s,
where good agreement is observed between numerical and experimental results: in
both cases, the resin front travelled a distance of ≈245 mm at the top skin, but at the
bottom skin the resin front had a delay of ≈50 mm; while the actual infusion time
was ≈405 s, numerically was 382 s; and advance of the resin front in the sandwich
structure registered was very similar.

21.5.5 Hull of a Boat

In the production of composite parts by VARI, in addition to an accurate material
characterization, a good definition of the infusion strategy (distribution of resin ports
of entry and exit) ismandatory, especially in complex geometries. It is in the definition
of the infusion strategy that the simulation of the infusion process has a significant
role. Thus, as an example, the steps for the production of a hull boat prototype
(Fig. 21.10), with 3 m length and 1 m width, are described.

Before simulation, some simplifications were assumed for assuring that an
adequate approximation is achieved and, at the same time, considerably reducing
the simulation time. The first approximation was applied to the geometry used to
build the mesh: the thickness of the laminate was neglected and only surfaces were
allowed. However, the properties of the material were defined according to the three-
dimensional material. This simplification allows reducing considerably the number
of elements (which are 2D) in the mesh.
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Fig. 21.10 Geometry of the hull of the vessel prototype

The matrix was considered to be a polyester resin (Table 21.2), with constant
viscosity during infusion, i.e., it has a long gel time and the curing cycle begins only
after the complete impregnation of the laminate. The reinforcement is constituted
by a sandwich laminate similar to the one depicted in Fig. 21.8, with reinforcement
properties described in Table 21.4. However, instead of a three-dimensional structure
(such as the one in Fig. 21.8 and Fig. 21.9), the laminate was considered as an
homogeneous material with a global permeability (K1= K2= 3.744–09 m2), as in
Figs. 21.6 and 21.7.

After defining thematerials parameters, the next stepwas to define the distribution
lines and the entry and exit ports of resin. First, it was stablished that the flow of
resin would occur from the bottom of the geometry (keel) to the top (flange) and, so
a main exit line was considered along the entire length of the flange. Then, different
ports of entry and distribution lines were defined, as Fig. 21.11 shows.

In general, the different infusion strategies revealed not to be adequate to the
impregnation of the geometry (Fig. 21.12): regionswith high probability of formation
of dry zones were detected and not every laminate ended completely impregnated
by the resin. Although these observations apply to all cases, significant differences
were observed, depending on the infusion strategy: using resin entry ports only
(Fig. 21.11c, d), the advance of the resin front is uniform and the filling of the laminate
is homogeneous (Fig. 21.12c, d); using distribution lines (Fig. 21.11a, b), decreases
significantly infusion time but are more likely to form dried regions, particularly at
the bow (Fig. 21.12a, b); the addition of perpendicular distribution lines (Fig. 21.11e,
f), results in a decrease of infusion time, but does not decrease the risk of void/dry
zones formation (Fig. 21.12e, f).

Based on these results, the infusion strategy depicted in Fig. 21.14a was simu-
lated: two distribution lines, ranging from bow to stern, located at the bottom of the
hull, arranged parallel to and close to the keel. The distribution lines are opened
simultaneously, resulting in the advance of the resin front depicted in Fig. 21.14. The
sequence of pictures (Fig. 21.14) show that the laminate was completely impreg-
nated, by a steady resin front. In addition, the flange of the hull is the last region to be
impregnated (where the exit line is placed), indicating that the probability to occur
voids and dry zones is small. Furthermore, the total infusion time was 6121 s (about
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Fig. 21.11 Infusion strategies: a one central line along the keel; b one central line along the keel
and laterla lines on the bottom; c one central entry port on the keel; d two entry ports on the bottom;
e three lines: one along the keel and two perpendicular at the bow and stern; f similar to e but with
two more lines at the centre
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Fig. 21.12 Simulation
results: resin front advance
for each different infusion
strategies illustrated in
Fig. 21.11

102 min), which ensures that the infusion takes place within the working time of the
resin (Table 21.2). In the end, the infusion strategy illustrated in Fig. 21.14 revealed
to be a good strategy to be applied in the production of the hull.

Using the infusion strategy optimized (Fig. 21.14) the hull of the prototype vessel
was produced (Fig. 21.14). Comparing the sequence of pictures fromboth Figs. 21.13
and 21.14, it may be observed that the predicted path followed by the resin front
mimics accurately the resin flow front advance observed experimentally. Moreover,
experimentally, the infusion took about 90 min. This difference is justified by the
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Fig. 21.13 Optimized infusion strategy: resin front advance (filling factor)
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Fig. 21.14 Production of the hull using the infusion strategy illustrated in Fig. 21.13

formation of wrinkles, channels and bridges, in the assembly of the laminate and in
the sealing of the vacuum bag, where the resin moves at a higher speed, compared
to the displacement velocity in the laminate. These effects are not considered in the
simulation where the laminate arrangement is perfect and the resin only moves faster
along boundaries (as in the guitar pickguard) and corners (as in the part of a car seat).
Despite the differences, the simulation results reveled to be accurate.

21.6 Conclusions

The simulation program PAM-RTM® from ESI was used in this work to simulate the
production of composite parts by using the Vacuum Assisted Resin Infusion (VARI)
process. It has shown to be an important tool for predicting the advance of the resin
flow front and possible problems and defects that can result from the infusion process.

The accuracy of results are considerably dependent on the material characteri-
sation, particularly, the permeability of the laminate. In order to better compromise
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the accuracy of results with a reduced simulation time, a global permeability of the
laminate should be determined, which considers the combined effect of draping,
compression, orientation, etc., and which are difficult to measure. To accomplish
that, infusion of the laminate (instead a single layer) to experimentally determine its
permeability is, firstly, performed. Then, a simulation of the laminate may be done
(admitting that it is a single layer, with the properties of the stack of plies), and the
numerical and, finally, the experimental results compared to validate the material
characterization. After validation, the infusion process can be simulated for complex
geometries with the specific laminate, in order to define the best infusion strategy,
predict potential problems and defects, forecast the infusion time, resin quantity,
etc. Lastly, the infusion strategy is implemented in the production of a part, so the
numerical results can be validated. This method was applied to different laminates
(with 1, 5 and 10 plies) and sandwich structures, and used to produce a wide range
of parts: from a guitar pickguard to a hull of a vessel.

In addition to the material characterization, several assumptions and simplifica-
tions were considered in the simulations in order to obtain more realistic results. It
was assumed that the resin behaves like a Newtonian fluid with constant viscosity;
presents a sufficiently long gel time and, that the curing process only starts after
complete impregnation of the laminate. The mesh is built on the geometry admit-
ting, in most of cases, a 3D tetrahedral elements for the laminate characterization, 2D
triangular elements to validate the material properties and to simulate the production
of complex geometries; the boundaries of the geometry, regions with sharp concave
surfaces or corners, laminate transitions, foam cuts and perforations, etc., are regions
with higher velocity flow, compared to that of a laminate. In sandwich structures, it
is assumed that the foam does not absorb resin on its surface and within its core, and
the resin only flows and fills the biding points.

In general, the simulations were in very good agreement with the experimental
results, and the assumptions and simplifications, as in the production of the hull of
the boat, helped to increase the accuracy of the results in one hand and, simplified
and decreased the simulation time on the other hand.
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Chapter 22
Towards CAD-Based Shape
Optimization of Aircraft Engine Nozzles

Simon Bagy, Bijan Mohammadi, Michaël Mèheut, Mathieu Lallia,
and Pascal Coat

Abstract Shape optimization is a powerful method to design efficient aerodynamic
shapes for aircraft and engine configurations at a limited cost. However, perform-
ing an optimization on “real-world” problems, including industrial tools and pro-
cesses, remains challenging. In this paper, an original approach is presented, aiming
at integrating expert knowledge and reducing the dimension of the optimization
search space. Thanks to this method, it becomes possible to perform gradient-free or
gradient-based optimization with an industrial design workflow comprising CAD.
When applied to a nozzle shape optimization problem, this approach leads to encour-
aging performance improvements in both inviscid and viscous cases, for a given level
of fuel consumption. Moreover, the reduced number of parameters enables the use
of response surfaces and a better understanding of the design space.
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22.1 Introduction

Reducing fuel consumption is one of the main challenges tackled by aircraft and
engine manufacturers to keep lowering the environmental footprint of air transport.
In order to achieve the efficiency needed for greener configurations, designers tend
to include more and more innovative technologies in their processes. In this context,
shape optimization is a powerful tool to improve aerodynamic performance and has
already proven its efficiency on cases of growing complexity [1]. Applying such
methods to industrial design processes requires to take into account all software
involved (see Fig. 22.1). In particular, Computer Aided Design (CAD) is mandatory
to manage geometrical models of industrial complexity. But the integration of these
models in an optimization workflow remains a major challenge, due to the great
number of design parameters involved, as well as the fact that most of the CAD
software is used as “black box”. Consequently, this represents a limitation for the
use of optimization in design phases of industrial systems.

To dealwith this problem, a first approach consists in using gradient-free optimiza-
tion methods. However, the cost of these methods quickly increases with the number
of design parameters and becomes prohibitive for several hundreds of variables.

The second possible approach is the use of gradient-based methods. Several solu-
tions have been developed to tackle the issue of gradient computation while includ-
ing a CAD software inside the optimization loop. For instance, Banovic et al. [2]
performed automatic differentiation on a CAD kernel. A second solution has been
investigated by Dannenhoffer et al. [3], who has differentiated the analytic shapes
obtained with a CAD software. Yet, without access to the source code, these methods
cannot be considered. Danenhoffer et al. [3] and Robinson et al. [4] have studied an
alternative solution, using finite-differences to compute the sensitivities of the CAD
model with respect to the design parameters. They have shown that this method can
give accurate sensitivities, but have also highlighted that finite-differences must be
applied carefully on complex geometries.

This paper proposes an innovative method that takes expert-based knowledge into
account and facilitates the use of industrial CAD software and meshing tools in opti-
mization. At first, this method is described in details with its main advantages and
drawbacks. Then, the approach is assessed on a simple nozzle shape optimization
problem. First results are presented with inviscid flow computations. Then, viscous
computations are performed with Reynolds Averaged Navier-Stokes (RANS) equa-
tions.

Fig. 22.1 Example of an industrial aerodynamic design workflow
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22.2 Reduction of the Search Space

22.2.1 Method of Convex Combination Based on Expert
Knowledge

Considering a casewhere the design tool is aCADmodeler, the number of parameters
associated to the geometrical model is N ∼ 102. With this modeler, n target shapes
X{i=1,...,n} are defined in the admissible domain, with n � N (usually, n is comprised
between 2 and 10). These shapes are generated using for instance the designer’s
background knowledge, previous shapes database, litterature, or by taking physical
constraints into account. Therefore, they will be referred as “expert configurations”.
Their number depends on previous optimizations, although it is recommended to
start with a low number (e.g. 3) and to increase their number afterwards.

Then, the convex set is defined as a simplex S based on these configurations:

S =
{

n∑
i=1

λi Xi

∣∣∣∣
n∑

i=1

λi = 1 and λi ≥ 0 ∀i
}

where λi ∈ [0, 1] are the barycentric coordinates.
In this framework, optimizations are not performed on the whole design space,

but only on the convex set. Thus, the dimension of the problem is reduced to n and
the global design variables have been replaced with � = {λ1, . . . ,λn} ∈ [0, 1]n .

22.2.2 Main Advantages and Drawbacks

This approach is particularly interesting for preliminary design: using the expert
configurations to define the design space strongly reduces the risk of getting indus-
trially unfeasible designs. Moreover, the complexity of the shapes defined with a
high number of parameters is not reduced; only the way to drive the exploration has
changed. Mathematically, this method proposes an innovative way to explore a high
dimensional design space. Because the approach is low-dimensional, functional sen-
sitivities can be evaluated using finite differences. It also reduces the computational
cost of gradient-free techniques and enables their use. Finally, thanks to the projec-
tion theorem, the solution of this optimization is supposed to be the projection of
the global solution on the “expert-based” simplex. Starting from this first solution, a
second optimization can be run over the entire search space, with a method adapted
for higher dimension.

The major drawback of this method is that generated shapes are limited by the
expert configurations given for the combination. Further improvements are studied
in order to reduce this limitation and make the method more “exploratory”.
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22.3 Application to the Optimization of Nozzle Shapes

The first application of the convex combinationmethod is a simplified aircraft nacelle
case, inspired from thework ofToubin et al. [5]. The goal of this study is to confirm the
ability of the proposed approach to design innovative nozzle shapes while reducing
the dimension of the optimization problem. This simple test case also enables to
validate the proposed methodology by comparing the results with nozzle theory. For
this first validation, the use of a CAD modeler in the workflow is not mandatory.
It can be replaced with a relevant parameterization able to produce shapes that are
consistent with the nozzle theory. Consequently, the choice has been made to keep
a similar workflow as Toubin et al. [5] and to use the same parameterization tools to
design the nozzle shapes.

22.3.1 Geometry and Setup

The geometry considered is based on an experimental through-flow nacelle (DLR-
F6 [6]) and has an axisymmetric nozzle without central body. Two planes have
been added to define the engine inflow and the injection planes of the nozzle. The
resulting configuration is depicted in Fig. 22.2. Cruise flow conditions are defined at
the far-field borders of the computational domain, for a Mach number of 0.82 and
an altitude of 35,000 feet with zero angle of attack. The boundary condition in the
injection plane is defined so that the nozzle is sonic at the throat, with a stagnation
pressure pi in jection = 62, 739Pa. Defining the nozzle pressure ratio (NPR) as the
stagnation pressure at the injection plane of the nozzle pi in jection divided by the static
pressure at the upstream infinity ps ∞ = 23, 849Pa, this gives N PR = 2.63.

22.3.2 Formulation of the Optimization Problem and
Methods

The goal of this work is to increase the efficiency of the nozzle. This problem can
be considered in several ways, but the choice has been made to maximize thrust for

Fig. 22.2 Front and rear view of the axisymmetric nozzle, with the engine inflow and nozzle
injection planes (blue and red respectively)
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Fig. 22.3 Schematic
drawing of the axisymmetric
nozzle for momentum
conservation

a fixed fuel consumption. Let ρ and V be the density and the velocity respectively,
the momentum conservation in the nozzle (see Fig. 22.3) gives for a steady flow:

∫
S

ρV(V.n)dS =
∫
S

σ.ndS (22.1)

with S = Sinjection + Swall + Sexhaust and σ defined as the sum of the pressure and

viscous stresses σ = −pI + τ .
The surface integrals are developed and the equation becomes:

∫
Sinjection

[
ρV(V.n) − σn

]
dS +

∫
Sexhaust

[
ρV(V.n) − σn

]
dS =

∫
Swall

σ.ndS (22.2)

The left-hand side termsofEq. 22.2 can be associated to the “impulsion”F defined
by Candel [7] (p. 218) expressed in the viscous case. Fixing the fuel consumption
implies that the first term, Fin jection , remains constant. The second term, Fexhaust ,
participates significantly to the thrust of the engine. To maximize Fexhaust , it is
necessary to maximize the right-hand side of the equation.

Finally, the optimization problem is defined as the minimization of a function J :

J =
⎡
⎣ ∫
Swall

−σ.ndS

⎤
⎦ .x (22.3)

In the inviscid case, this term reduces to the integral of pressure stresses at the walls
of the nozzle.

Considering Eq. 22.2, it also appears that increasing the mass flow rate ṁ =∫
Sexhaust

ρV.ndS is favorable to thrust. In this study, the target is to maximize thrust at
a given value of ṁ and an upper constraint ṁ < ṁtarget is defined for the optimizer.

The optimization is performed with Dakota [8], using DOT’s modified method of
feasible descent [9] to explore the constrained design space. A workflow dedicated
to aerodynamic design has been used to perform the optimizations (see Fig. 22.4).
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Fig. 22.4 Optimization workflow steps and associated software

22.3.3 Parameters and Mesh Deformation

The parameterization of this nacelle is based on the deformation of a reference mesh
using SeAnDef (Sequential Analytical Deformation). This in-house code developed
at ONERA applies spline deformations based on control points and has been used in
previous optimization workflows [10].

This study focuses on the optimization of the nozzle shape, located downstream
the injection plane. Consequently, seven control points are defined on the internal
wall, as shown in Fig. 22.5. The point distribution is refined in the vicinity of the
exhaust, because this region is expected to have a critical influence on the flow. The
inlet is considered fixed and the external wall of the nacelle is only influenced by
the radial position of the internal trailing edge point. At each point, the parameter
driving the deformation in the radial direction becomes a design variable, resulting
in 7 degrees of freedom for the optimization.

22.3.4 Mesh and Numerical Setup

The elsA solver [11] (ONERA-Airbus-SAFRAN property) is used for the Compu-
tational Fluid Dynamics (CFD) simulations of the airflow around the nacelle. The
computations take the axial symmetry into account, and 2D planar meshes are used.
In order to meet the requirements for inviscid and viscous computations, two dif-

Fig. 22.5 Setup of control
points (in green) defined for
the mesh deformation
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Table 22.1 Numerical parameters for inviscid and viscous flow computations

Flow model Turbulence model Spatial scheme Pseudo-time stepping
scheme

Euler / Roe Backward Euler and
LUSSOR implicit
phase scalar

RANS Spalart-Allmaras Jameson Backward Euler and
LUSSOR implicit
phase scalar

ferent meshes are generated, of 264 · 103 and 106 · 103 cells respectively. In Euler
computations, strong local deformations of the nozzle shape can lead to numerical
issues in the absence of viscous boundary layer. In order to avoid such phenomenon,
the mesh is refined in the nozzle, leading to a higher overall number of cells than
for RANS computations. Finally, a similarly refined RANS mesh has been created
and has shown that the values and the gradients of the quantities of interest were not
affected by the refinement difference.

The main numerical parameters can be found in Table 22.1.

22.3.5 Post-processing

After aerodynamic computations, the solver provides integrated values at the bound-
ary conditions, used to compute the quantities of interest (mass flow rate, pressure
and friction stresses at the wall for instance).

22.4 Inviscid Optimization of Nozzle Shapes

22.4.1 Nozzle Theory and Expectations

In order to get a first and simple understanding on nozzle flows, an isentropic flow
hypothesis can be considered.

The nozzle is assumed to be sonic at its throat.As explained inCandel [7] (pp. 270–
273), several kinds of flow regimes are possible in this situation, depending on the
NPR. In particular, when the static pressure at the exhaust is equal to the external
static pressure ps ∞, the nozzle flow is called “adapted”. Regarding nozzle efficiency,
this adapted regime represents the ideal case. For a given NPR, i.e. a given level of
stagnation pressure at the entry of the nozzle, the shape has an effect on the static
pressure level in the exhaust plane. In order to reach an adapted nozzle flow, it can
be necessary to have a sonic throat followed by a diverging shape to accelerate the
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flow at a supersonic speed before the exhaust. Such shapes are called “convergent-
divergent” nozzles.

Knowing the stagnation pressure injected at the entry of the nozzle, the section

ratio
Sexhaust
Sthroat

necessary for nozzle adaptation case can be computed. By definition

of the adaptation regime, ps exhaust = ps ∞. In the absence of shocks, the isentropic
flow induces that the stagnation pressure is conserved and pi in jection = pi exhaust .
Then, using the isentropic relations:

Mexhaust =
⎛
⎜⎝ 2

γ − 1

⎡
⎢⎣(

ps exhaust
pi exhaust

)1 − γ

γ − 1

⎤
⎥⎦

⎞
⎟⎠
1

2

(22.4)

With the Mach number at the exhaust, the section ratio between the exhaust and
the sonic throat can be obtained:

Sexhaust
Sthroat

=
(

γ + 1

2

)−
γ + 1

2(γ − 1)

(
1 + γ − 1

2
Mexhaust

2

) γ + 1

2(γ − 1)

Mexhaust
(22.5)

For NPR = 2.63 as defined in Sect. 22.3.1, a Mach number (Mexhaust )ideal =
1.262 is necessary to reach the adaptation. Only a convergent-divergent nozzle is
capable of accelerating the flow to supersonic speed. Therefore, it is expected to
generate such shapes to reach the best nozzle efficiency. Moreover, the associated

section ratio is

(
Sexhaust
Sthroat

)
ideal

= 1.051.

22.4.2 Optimal Shape on the Entire Design Space

A first optimization is launched over the entire design space, with a feasible descent
method and inviscid flow computations (Euler equations). The algorithm starts from
a geometry with the characteristics of the DLR-F6 nacelle (see Fig. 22.2). This
configuration has a simply convergent nozzle and is defined as reference for this
study.

After 5 gradient iterations and 89 evaluations, the optimizer leads to an optimal
convergent-divergent shape that satisfies the mass flow constraint. The evolution of
the area and the Mach number in this nozzle are depicted in Fig. 22.7 (blue). This

shape has an area ratio
Sexhaust
Sthroat

= 1.012, which appears to be smaller than the ratio

calculated a priori with isentropic computations (see comparison in Table 22.2).
Moreover, the throat is located at 95% of the nozzle length.
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This first result validates the workflow and the ability of the optimizer to manage
the constrainedminimizationproblem. It also demonstrates that the process can create
convergent-divergent nozzle, starting from a simply convergent shape. In addition,
it shows that the 2D Euler computations and the objective function are in agreement
with the isentropic nozzle theory.

22.4.3 Optimal Shape on Reduced Design Space

In a second step, the same workflow is used to perform an optimization on the design
space of reduced dimension, using convex combination.

Three convergent-divergent nozzle shapes are generated as “expert” configura-
tions, which characteristics are presented in Table 22.2. The area evolution of these
nozzle shapes can be observed in Fig. 22.6.

Two have a section ratio of 1.051 as expected by the isentropic theory. The third
is inspired from the optimal shape obtained on the entire design space and has larger
throat, i.e. a smaller section ratio. The axial position of the throat is also expected to
have a significant effect on the performance. Hence, two throat positions are defined:
upstream at 73% of the nozzle length and downstream at 86%.

It must be noted that these expert configurations have different throat areas. For
sonic flows, the throat drives the value of the mass flow rate. Thus, the three config-
urations do not have a mass flow value of ṁtarget ; they do not verify the mass flow
constraint.

The optimizer performs a feasible descent on the convex space generated by these
shapes. Starting from the barycenter at� = {0.333; 0.333; 0.333}, it converges after
10 gradient iterations and 66 evaluations. The resulting optimal shape is obtained for
� = {0.814; 0.008; 0.178} and can be observed in Fig. 22.7 (green). It has a sonic
throat located at 76% of the nozzle length, near the upstream position. This shape

Table 22.2 Main geometrical characteristics of the nozzle configurations

Configuration Section ratio Throat location (% of nozzle
length)

Isentropic theory 1.051 /

Reference 1.000 100

Expert shape X1 1.051 73

Expert shape X2 1.051 86

Expert shape X3 1.044 86

Full domain research optimum
(Euler)

1.012 95

Convex combination optimum
(Euler)

1.048 76
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Fig. 22.6 Evolution of the
area through nozzle shapes
defined as “expert”
configurations
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Fig. 22.7 Evolution of the
area and the Mach number
through nozzle shapes
computed with an inviscid
flow model
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allows a progressive increase of the Mach number up to the exhaust. Moreover, the
optimal shape verifies the mass flow constraint with ṁ = ṁtarget , in contrast with
the configurations used for combination. This demonstrates the capability of the
proposed method to reach shapes that validate the constraint, even by combining
configurations that do not.

Finally, in comparison with the previous optimum (see Table 22.3), this config-
uration shows better performance. As both shapes belong to the design space of
dimension 7, this suggests the possible presence of local minima. In this case, and
even more so for targeted high-dimensional applications, the research of a global
optimum is irrelevant due to costly computations and the number of design vari-
ables. However, it appears that the convex combination method can enable to find
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Table 22.3 Comparison of nozzle shapes performance, obtained with Euler computations

Configuration Objective function J/Jre f Constraint ṁ/ṁtarget

Reference 1.0000 0.9995

Expert shape X1 1.0441 0.9887

Expert shape X2 1.1852 0.9738

Expert shape X3 1.0517 0.9940

Full domain research optimum 0.9932 1.0005

Convex combination optimum 0.9775 1.0015

a better optimal solution than local exploration of the full design space. Thereby, it
confirms the interest of using a method that includes “expert” knowledge.

22.4.4 Numerical Design of Experiment and Interpolation

In order to have a full understanding of the exploration performed on the domain
definedwith convex combination, a numerical design of experiment (DOE) is carried
out. The cost of such methods is prohibitive in large dimensions; in this case, it is
made possible by the reduction of the search space dimension.

A convex space generated with three expert configurations can be represented as
a triangular surface, with the vertices of the triangle being the generating shapes. An
uniform seeding of this space is generated with Wootton, Sergent Phan-Tan-Luu’s
(WSP) algorithm [12].A resulting set of 68 designs is evaluated through theworkflow
and gives a discrete representation of the functions of interest (see Fig. 22.8). Despite
its discrete character, a zone of interest can already be identified near the bottom left
hand corner of the triangle.

The post-processed values are then interpolated on a response surface with a
Kriging method [13] and plotted as a continuous response surface. The objective
function map and the constraint isocontours on the reduced search space are depicted
on Fig. 22.8. This interpolated response surface shows the correlation between the
mass flow constraint and the objective function: the constraint isolines are strongly
related to the objective function levels. This also enables to check a posteriori if
the solution found with feasible descent algorithm is in good agreement with the
response map. According to the map, the best feasible solution is obtained with� =
{0.833; 0.000; 0.167}. These coordinates appear to be close to the coordinates of the
optimal solution reached with gradient-based methods. Therefore, this validates the
capability of the gradient-based algorithm to explore the reduced search space under
constraint.
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Fig. 22.8 Set of points (left) and interpolated response surface (right) obtained with a numerical
DOE on inviscid computations

22.5 Viscous Optimization of Nozzle Shapes

Fluid viscosity affects the flow in the near-wall region and mixing layers, both of
which are important parts of nozzle aerodynamics. As a consequence, viscosity can
have a significant influence on nozzle performance and should not be neglected in
design. To take this phenomenon into account, the inviscid flow model is replaced
by RANS flow computations. The objective function comprises viscous stresses
accordingly and all the terms of Eq. 22.3 are considered non-zero.

22.5.1 Optimal Shape on the Entire Design Space

An optimization is performed with a feasible descent algorithm on the full search
domain of dimension 7. Starting from the reference shape, the algorithm reaches
convergence after 5 gradient iterations, totalizing 64 evaluations.

The area and Mach number evolution through the resulting optimal shape are
depicted in Fig. 22.10 (blue) and its geometric characteristics are presented in Table
22.4. It appears that the nozzle cross-sectional area is widely opened along the nozzle
and reduced at the exhaust, presumably in order to respect the mass flow criterion.
This shape enables a reduction of the wall friction and a good conservation of total
pressure along the nozzle, which explains the gain in performance predicted by
the optimizer (see Table 22.5). However, it also appears counter-intuitive regarding
expert knowledge for several reasons. First of all, the nozzle is not convergent-
divergent, on the contrary of nozzle theory prediction and inviscid optimization
results. Then, a closer look to the design parameters shows that they mostly converge
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towards the lower boundary of their definition interval. This explains the strong
deformation of the shape, and denotes an unexpected behavior of the optimizer.
In addition, the obtained nozzle geometry has irregularities between x = 3.5m and
x = 4.5m, that can lead to poor quality flows (and flow separation in the worst case),
which are highly unlikely to be favorable to nozzle performance.

This situation could be due to several reasons, includingwithout being exhaustive:

• an optimization problem that is not well defined to reflect the improvement
expected by the designer

• an inappropriate (too narrow or too large) variation range for the design variables.

At this point, it remains unclear to the authors which of these aspects may be respon-
sible for this behavior. As this work is mainly dedicated to method assessment, it
has been chosen to follow expert intuition and to dismiss this shape. In this situation,
convex combination enables to perform optimization although the optimum found
on the full design space is “unfeasible” from the designer’s point of view. Moreover,
it helps to correct his possible shortcomings in the optimization problem definition.
By considering a well-chosen set of “expert” configurations, it excludes the direction
of undesirable shapes and defines an industrially feasible design space.

22.5.2 Optimal Shape on the Reduced Search Space Defined
with 3 “Expert” Configurations

In order to “remove” undesirable shapes from the nozzle design space, the shapes
considered in Sect. 22.4.3 are re-used for convex combination. The feasible descent
algorithm starts again from the barycenter and converges after 11 gradient compu-
tations and 59 evaluations.

The optimal shape is obtained with � = {0.731; 0.000; 0.269} and the nozzle
area and Mach evolution can be observed in Fig. 22.10 (green). This nozzle has a
throat located at 79% of its length, with an area ratio of 1.044.

Compared to the optimum obtained with inviscid computations and convex-
combination, the throat appears to be located downstream (see characteristics in
Table 22.4). This positionminimizes the losses due towall friction, because it enables
to keep a subsonic flow as long as possible. Therefore, it limits the higher wall friction
induced by the supersonic flow in the divergent. Moreover, the throat area is larger
than in the inviscid case. Since all “expert” configurations have the same exhaust area
(as depicted in Fig. 22.6), the section ratio is smaller on this case. This is an effect
of the viscous boundary layer; the reduced flow speed in the wall region implies that
a greater throat area is needed to pass the mass flow rate ṁtarget .

Table 22.5 indicates that the optimized shape on the reduced space achieves a
significant gain on the objective function compared to the “expert” configurations.
However, this improvement is insufficient to reach a better performance than the
reference nozzle. At this point, the DOE is expected to give information about how
to continue the optimization process.
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22.5.3 Numerical DOE

TheDOEmethods are applied to the viscous case. Since the three configurations used
for combination have remained the same, comparison with inviscid flow is possible.

At first sight, the responsemap displayed in Fig. 22.9 is similar to the inviscid case
of Fig. 22.8. However, the plotted objective function J is different, because of the
additional viscous term inEq. 22.3. This term appears to have a “smoothing” effect on
the performance of the nozzles, but does not change the global trend of the response
surface. In particular, the zone of interest is located in the same area of the map for
both inviscid and viscous flows. Although viscosity modifies the objective function
implicitly, it also affects the mass flow constraint. The location of the feasible-mass
flow isoline (ṁ/ṁtarget = 1) has changed. Again, a strong correlation is observed
between the constraint and the objective function.

According to the response map, the feasible design that minimizes J is found for
� = {0.722; 0.003; 0.274}. These coordinates are similar to the coordinates obtained
at convergenceof the feasible descent algorithm, and confirm that the optimizer is able
to converge in the vicinity of the global optimum of the reduced design space. This
also indicates to the designer that the set of “expert” configurations is not sufficient
to improve significantly the objective function. Consequently, an enrichment of the
“expert database” is suggested to continue the optimization process.

Fig. 22.9 Interpolated
response surface obtained
with a numerical DOE on
RANS computations
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22.5.4 Optimal Shape on the Reduced Search Space Defined
with 4 Expert Configurations

A new configuration is added to the existing set of 3 configurations. In order to
introduce a convergent nozzle, the reference shape is chosen as X4.

Then, the feasible descent algorithm is launched on the space generated by the con-
vex combination of these 4 configurations. The optimal shape found in Sect. 22.5.2
is defined as starting point for the feasible descent. After 2 gradient computations
and a total of 39 evaluations, the algorithm returns an optimal set of coordinates
� = {0.855; 0.000; 0.000; 0.145}.

First of all, these coordinates indicate that the optimizer takes advantage of the
newly introduced expert configuration. The resulting shape is a convergent-divergent
nozzle, with a throat located at 73% of the nozzle length and an area ratio of 1.038
(see Table 22.4). The area and Mach number evolution in this nozzle are depicted
in Fig. 22.10 (red). The higher velocity along the nozzle implies that wall friction
stresses aremore important in this case than in the previous optimal nozzle. However,
this effect is balanced by a favorable pressure resulting force in the divergent, that
is extended. Thanks to this, this nozzle has an improved performance compared to
the optimum obtained with 3 configurations and the reference. This improvement is
smaller than the one obtained with full design space exploration, which is a possible
consequence of the search on a subspace of the design space. However, in a context
where the search of a global optimum is not affordable, the convex-combination
method has the advantage of generating an understood and well-defined optimal
shape.

Finally, the viscous case highlights new aspects of the convex combination
method. By generating shapes as a combination of well-defined designs, it enables
to avoid the generation of undesirable or erratic shapes. Then, it shows that if a set of

Table 22.4 Main geometrical characteristics of the nozzle configurations

Configuration Section ratio Throat location (% of nozzle
length)

Isentropic theory 1.051 /

Reference (X4) 1.000 100

Expert shape X1 1.051 73

Expert shape X2 1.051 86

Expert shape X3 1.044 86

Full domain research optimum
(RANS)

1.000 100

Convex combination optimum
(RANS, 3 expert shapes)

1.044 79

Convex combination optimum
(RANS, 4 expert shapes)

1.038 73
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Fig. 22.10 Evolution of the
area and the Mach number
through nozzle shapes
computed with a viscous
flow model
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Table 22.5 Comparison of nozzle shapes performance, obtained with RANS computations

Configuration Objective function J/Jre f Constraint ṁ/ṁtarget

Reference 1.0000 0.9997

Expert shape X1 1.0900 0.9881

Expert shape X2 1.1981 0.9716

Expert shape X3 1.0830 0.9848

Full domain research optimum
(RANS)

0.9598 1.0000

Convex combination optimum
(RANS, 3 expert shapes)

1.0047 1.0000

Convex combination optimum
(RANS, 4 expert shapes)

0.9977 1.0000

expert configurations is insufficient to reach significant performance improvement,
it can be enriched by new configurations. Moreover, this case demonstrates again the
ability of the method to find optimal shapes in a design space where the objective
function and the constraint have similar evolution.
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22.6 Physical Analysis of the Nozzle Optimization Problem

Themain part of this paper focuses on optimization processes and in order to perform
numerical analyses, tolerances have been defined on the mass flow constraint. How-
ever, discrepancies in the mass flow rate values can alter the predicted performance
level. Consequently, from a physical point of view, nozzles should only be compared
at same mass flow rate.

To compensate themass flow differences and quantify the associated performance
variations, a corrective term can be defined. This term is based on the sensitivity of
the objective function with respect to the design constraint, that is computed from the
gradients of the functions of interest. Consequently, an estimate of the performance
value at same mass flow, called J/Jre f@mtarget , is computed for the optimized
shapes and presented in Table. 22.6.

It appears that small mass flow perturbations can significantly alter the predicted
performance, in comparison with the improvements achieved with optimization.
Again, this reveals the tight link between mass flow and thrust, which are the two
values driving nozzle performance. In order to consider this link and enable efficient
optimizations, the a posteriori analysis of this work advocates for the use of objective
functions integrating the mass flow constraint and penalizing the configurations that
do not respect it.

Table 22.6 Performances of the optimized nozzle shapes, including mass flow correction
estimate

Configuration Objective function
J/Jre f

Constraint ṁ/ṁtarget J/Jre f@ṁtarget

Reference (Euler) 1.0000 0.9995 1.0000

Full domain research
optimum (Euler)

0.9932 1.0005 0.9995

Convex combination
optimum (Euler with 3
expert shapes)

0.9775 1.0015 0.9880

Reference (RANS) 1.0000 0.9997 1.0000

Full domain research
optimum (RANS)

0.9598 1.000 0.9615

Convex combination
optimum (RANS with
4 expert shapes)

0.9977 1.000 0.9994
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22.7 Conclusions

This paper proposes an original approach specially developed to use an industrial
workflow and CAD methods within optimization processes. The method described,
based on the idea to generate designs as a combination of reference shapes appears to
have several advantages. By reducing the dimension of the search space, it enables the
use of gradient-free or finite-difference gradient methods. It also places the industrial
expert knowledge at the heart of the optimization process and reduces the risk of
producing unfeasible shapes.

When applied to the design of a simple nozzle with inviscid flow computations,
this approach shows that an improvement is possible by taking into account expert
knowledge. In addition, reducing the complexity of the search by a reduction of the
dimension of the search space has permitted to find a more efficient shape than by
exploring the full domain. Hence, the convex combination method can help reduc-
ing the risk of being captured by local minima, whose number increases with the
dimension of the space, especially when involving a CAD environment and trigono-
metric manipulations. With three expert configurations, it also gives the opportunity
to draw response surfaces for the quantities of interest. These figures improve the
understanding of the optimizer behavior and more generally of the nozzle shape
problem.

Introducing flow viscosity leads the optimization on the full design space to a
non-acceptable shape for industrial designers. In this case, convex combination with
an adapted choice of expert configurations enables to perform optimization while
remaining in an acceptable design space. After an optimization and a DOE, the
first set of 3 expert configurations appears insufficient to reach an optimum with
significant performance improvements. Consequently, the expert database is enriched
with a new configuration, and thanks to this the optimizer succeeds in finding a new
optimal shape with better efficiency.

In the end, this approach introduces new aspects of design, by mixing expert
knowledge and algorithmic exploration and enabling a further understanding of the
design space.Moreover, this method is adapted to deal with complex industrial cases.
By enriching the database of expert configurations, a wider design space can be
explored, while keeping a low number of variables. Therefore, it is expected to show
interesting results for geometries of higher complexity and number of parameters.
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Chapter 23
A Two-Phase Heuristic Coupled
DIRECT Method for Bound Constrained
Global Optimization

M. Fernanda P. Costa, Edite M. G. P. Fernandes, and Ana Maria A. C. Rocha

Abstract In this paper, we investigate the use of a simple heuristic in the DIRECT
method context, aiming to select a set of the hyperrectangles that have the lowest
function values in each size group. For solving bound constrained global optimiza-
tion problems, the proposed heuristic divides the region where the hyperrectangles
with the lowest function values in each size group lie into three subregions. From
each subregion, different numbers of hyperrectangles are selected depending on the
subregion they lie. Subsequently, from those selected hyperrectangles, the potentially
optimal ones are identified for further division. Furthermore, the two-phase strategy
aims to firstly encourage the global search and secondly enhance the local search.
Global and local phases differ on the number of selected hyperrectangles from each
subregion. The process is repeated until convergence. Numerical experiments carried
out until now show that the proposed two-phase heuristic coupled DIRECT method
is effective in converging to the optimal solution.
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23.1 Introduction

This paper addresses the use of a DIRECT-type method that coupled with a simple
heuristic and a two-phase strategy aims to globally solve non-smooth and non-convex
bound constrained optimization problems. The bound constrained global optimiza-
tion (BCGO) problem can be stated as:

min
x∈�

f (x) , (23.1)

where f : Rn → R is a nonlinear function and � = {x ∈ R
n : −∞ < li ≤ xi ≤

ui < ∞, i = 1, . . . , n} is a bounded feasible region. We assume that the optimal
set X∗ of the problem (23.1) is nonempty and bounded, x∗ is a global minimizer and
f ∗ represents the global optimal value.
When the function f is non-smooth, or its evaluation requires different simula-

tions, and those simulations may add noise to the problem, analytical or numerical
gradient-based methods may fail to solve the problem (23.1). Derivative-free meth-
ods, like the DIRECT method [1, 2], can solve it. The main idea in the DIRECT
method is the partition of the feasible region into an increasing number of each time
smaller hyperrectangles. At each iteration, a set of the most promising hyperrect-
angles are identified for further division. DIRECT needs to store all the informa-
tion about all the generated hyperrectangles. This means that for larger dimensional
problems, computational requirements may prevent DIRECT to find a high quality
solution. DIRECT has strong convergence properties and produces a good coverage
of the feasible region [3]. For the hyperrectangle division, DIRECT uses two crite-
ria: the size of the hyperrectangle to favor the global search feature of the algorithm
and the value of the hyperrectangle, translated by the objective function value at
the center point of the hyperrectangle, to give preference to its local search feature.
DIRECT-type algorithms that are more biased toward local search are proposed in
[4, 5]. They are mostly suitable for small problems with one global minimizer and
a few local minimizers. In [3], the deterministic partition strategy of the DIRECT
method is used, in a multi-start context, to perform local minimizations starting from
the center points of the most promising hyperrectangles. Globally biased searches
are also reinforced in DIRECT by making use of a new technique for selecting the
hyperrectangles to be divided [6–8].

For further details on the original DIRECT and other recent interesting modifica-
tions, we refer the reader to [6–10].

This paper investigates the use of a DIRECT-typemethod coupled with a heuristic
aiming to potentiate the exploration of the most promising regions in the DIRECT
method context. The heuristic categorizes the hyperrectangles with the lowest func-
tion values in each size group into three subregions for further sampling and division.
Additionally, a two-phase strategy aims to cyclically encourage the global search
phase (first phase) and enhance the local search one (second phase). Our proposal
reinforces the global search capabilities of the DIRECT by avoiding the selection of
the hyperrectangles that were mostly divided and choosing all the hyperrectangles
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with largest sizes (first phase). Conversely, when the new algorithm enters the sec-
ond phase, the hyperrectangles with largest sizes are mostly prevented from being
selected and the ones with smallest sizes are all included in the selection.

The paper is organized as follows. Section 23.2 briefly presents the main ideas
of the DIRECT method and Sect. 23.3 describes the heuristic and the two-phase
strategy in the DIRECT method context. Finally, Sect. 23.4 contains the results of
our preliminary numerical experiments andwe conclude the paperwith theSect. 23.5.

23.2 DIRECT Method

The DIRECT (DIviding RECTangles) algorithm has been originally proposed to
solve BCGO problems like (23.1) where f is assumed to be a continuous function,
by producing finer and finer partitions of the hyperrectangles generated from � [1].
The algorithm is a modification of the standard Lipschitzian approach, in which f
must satisfy the Lipschitz condition

| f (x1) − f (x2)| ≤ K‖x1 − x2‖ for all x1, x2 ∈ � ,

where K > 0 is the Lipschitz constant. DIRECT is a derivative-free and deterministic
global optimizer since it is able to explore potentially optimal regions in order to
converge to the global optimum solution, thus avoiding to be trapped in a local
optimum solution. It does not require any derivative information or the value of
the Lipschitz constant [2]. DIRECT views the Lipschitz constant as a weighting
parameter that balances global and local search. These searches are carried out by
exploring some of the hyperrectangles in the current partition of �, in order to
divide them further [5, 11]. First, the method organizes hyperrectangles by groups of
the same size and considers dividing in each group the hyperrectangles that have the
lowest value of the objective function—herein denoted by candidate hyperrectangles.
However, not all of these candidate hyperrectangles are divided. The selection falls
on the hyperrectangles that satisfy the following two criteria that define a potentially
optimal hyperrectangle (POH):

Definition 1 Given the partition {Pi : i ∈ I } of �, let ε be a positive constant and
let fmin be the current best function value. A hyperrectangle j is said to be potentially
optimal if there exists some rate-of-change constant K̂ j > 0 such that

f (c j ) − K̂ j

2
‖u j − l j‖ ≤ f (ci ) − K̂ j

2
‖ui − li‖, ∀i ∈ I (23.2)

f (c j ) − K̂ j

2
‖u j − l j‖ ≤ fmin − ε| fmin| , (23.3)

where c j is the center and ‖u j − l j‖/2 is a measure of the size of hyperrectangle j .
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The use of K̂ j intends to show that it is not the Lipschitz constant but it is just a
rate-of-change constant [1]. Condition in (23.2) aims to check if the lower bound
on the minimum of f on the hyperrectangle j is lower than the lower bounds on
the minima of the other hyperrectangles of the partition Pi (for the hyperrectangle
j to be potentially optimal). Condition (23.3) aims to balance the local and global
search and prevents the algorithm from searching locally a region where very small
improvements are obtained. The parameter ε aims to ensure that a sufficient improve-
ment of f for the hyperrectangle j will be potentially found based on the current fmin

[12, 13]. The value of fmin − ε| fmin| (in contrast to fmin) prevents the hyperrectangle
with the smallest objective function value from being a POH.

DIRECT can be briefly described by Algorithm 1 [1].

Input: f , �.
Output: (xmin, fmin).
Normalize � to be the unit hypercube and compute f (c) where c is the center; Set k = 0,
fmin = f (c), xmin = c;
while Stopping condition is not satisfied do

Define the set Ik of the candidate hyperrectangles; Identify the set Ok ⊆ Ik of POH;
while Ok 
= ∅ do

Select a hyperrectangle j ∈ Ok ; Identify the set L j of dimensions with maximum
size δmax ; Set δ = (1/3)δmax ;
for all i ∈ L j do

Sample f at c j ± δei ; Divide hyperrectangle j into thirds along the dimensions
in L j starting with the dimension with lowest
wi = min{ f (c j + δei ), f (c j − δei )} and continue until the dimension with
highest wi ;

end
Set Ok = Ok \ { j};

end
Update fmin = mini∈Ik f (ci ); Set xmin = argmini∈Ik f (ci ); Set k = k + 1;

end

Algorithm 1: DIRECT algorithm

Identifying the set of POH can be regarded as a problem of finding the extreme
points on the lower right convex hull of a set of points in the plane [1]. A 2D-plot
can be used to identify the set of POH. The horizontal axis corresponds to the size
of the hyperrectangle and the vertical axis corresponds to the f value at the center
of the hyperrectangle. Figures 23.1a, b show the center points of the hyperrectangles
(marked with ‘red’ ‘+’ in the plots) generated up to iteration 4 (after 47 function
evaluations) and iteration 7 (after 159 function evaluations) respectively, of DIRECT
when solving the problem:

min
x∈�

4∑

i=1

|xi | + 1 , (23.4)

where� = {x ∈ R
4 : −2 ≤ xi ≤ 3} [14]. Themark that identifies a candidate hyper-

rectangle is a ‘magenta’ diamond and the mark to identify a POH is a ‘black’ square.
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Fig. 23.1 Points representing hyperrectangles, candidate hyperrectangles and POH, when solving
the problem (23.4) by DIRECT. a Iteration 4. b Iteration 7

The identified POH at iteration 4 were divided and generated smaller hyperrectan-
gles. They are no longer hyperrectangles of that size at iteration 7, although other
hyperrectangles with the same sizes and higher function values are identified as POH.

23.3 Two-Phase Heuristic Coupled DIRECT Method

In this section, we reveal how the DIRECT algorithm is modified to incorporate a
heuristic that aims to divide a promising search region into three subregions. The
implementation of the two-phase strategy aims to drastically reduce the selection of
the mostly divided hyperrectangles and, in contrast, select all the hyperrectangles
that have the lowest function values in each group of the largest sizes, when a global
search phase seems convenient. Conversely, for the local search phase, all the hyper-
rectangles that have the lowest function values in each group of the smallest sizes
are selected and, at the same time, the selection of the largest hyperrectangles are
greatly reduced.

23.3.1 Heuristic

POH either have center points with low function values or are large enough to provide
good and unexplored regions for the global search [14]. Hyperrectangles with the
smallest sizes are the ones that were mostly divided so far. On the other hand, hyper-
rectangles with large sizeswere the least divided. Avoiding the identification of POH
that were mostly divided can enhance the global search capabilities of DIRECT [7].
Conversely, identifying POH that are close to the hyperrectangle which corresponds
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to fmin may improve the local search process in DIRECT. Thus, at any iteration
k, the present heuristic incorporated into the DIRECT method aims to divide the
region of the candidate hyperrectangles (the ones with least function values at each
size group) into three subregions. The leftmost subregion includes hyperrectangles
with indices based on size that are larger than il = �2/3imin (denoting the set by
I 3k ), where imin is the index based on the size of the hyperrectangle that corresponds
to fmin. The rightmost subregion contains the hyperrectangles with indices that are
smaller than iu = �1/3imin (denoting the set by I 1k ). The middle subregion contains
hyperrectangles with indices i that satisfy il ≤ i ≤ iu (denoting the set by I 2k ). (We
remark that the larger the size, the smaller is the index based on size.)

We present inAlgorithm 2 themain steps of the proposed heuristic to be integrated
into the DIRECTmethod, coupled with the two-phase strategy (see details in the next
subsection).

23.3.2 Two-Phase Strategy

Since the balance between global and local information must be provided with cau-
tion so that convergence to the global solution is guaranteed and stagnation in a local
solution is avoided, the two-phase strategy performs a cycling process between a
globally biased set of iterations and locally biased iterations. The first phase (iden-
tified in the algorithm by ‘phase = global’) runs for Gmax iterations and aims to
potentiate the exploration of the hyperrectangles with the largest sizes. Here, all can-
didate hyperrectangles with indices based on size in I 1k are selected. From the middle
region, 50% of the indices in the set I 2k are randomly selected and the corresponding
candidate hyperrectangles are used in the selection. From the leftmost subregion,
10% of the indices in the set I 3k are randomly selected and the corresponding candi-
date hyperrectangles are selected. Thereafter, the set of POHare identified (following
Definition 1) from all these selected hyperrectangles.

The second phase runs for Lmax iterations. Now, all candidate hyperrectangles
that have indices in the set I 3k are selected, 50% of randomly selected indices from
I 2k are used to choose the corresponding candidate hyperrectangles, and 10% of
randomly selected indices from I 1k are used to pick the corresponding candidate
hyperrectangles. Then, based on all these selected hyperrectangles, the set of POH
are identified. This process is repeated until convergence.

Figures 23.2a, b show the centers of the hyperretangles generated by Algorithm 2
up to iteration 4 (after 43 function evaluations) and iteration 7 (after 79 function
evaluations) respectively, when solving the problem (23.4). In each plot, the ‘green’
circles correspond to the selected candidate hyperrectangles from the set I 3, the
‘magenta’ diamonds correspond to the selected candidate hyperrectangles from I 2,
and the ‘blue’ ‘*’ correspond to the selected candidate hyperrectangles from I 1. The
identified POH are marked with the ‘black’ squares. Comparing with the previous
Fig. 23.1a, b obtained from DIRECT, it may be concluded that the heuristic and
the two-phase strategy have reduced the number of selected candidate hyperrectan-
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Input: f , �, Gmax, Lmax.
Output: (xmin, fmin).
Normalize � to be the unit hypercube and compute f (c) where c is the center;
Set k = 0, fmin = f (c), xmin = c; phase=global; kG = 0, kL = 0
while Stopping condition is not satisfied do

Identify the indices based on size il = �2/3imin and iu = �1/3imin and define the sets
of indices I 1k , I

2
k , I

3
k of candidate hyperrectangles;

if phase=global then
Set H1

k = I 1k ; Randomly select 50% of indices in I 2k to define H2
k ; Randomly select

10% of indices in I 3k to define H3
k ; Set kG = kG + 1;

else
Set H3

k = I 3k ; Randomly select 50% of indices in I 2k to define H2
k ; Randomly select

10% of indices in I 1k to define H1
k ; Set kL = kL + 1;

end
Set Hk = H3

k ∪ H2
k ∪ H1

k ; Identify the set Ok ⊆ Hk of POH;
while Ok 
= ∅ do

Select a hyperrectangle j ∈ Ok ; Identify the set L j of dimensions with maximum
size δmax ; Set δ = (1/3)δmax ;
for all i ∈ L j do

Sample f at c j ± δei ; Divide hyperrectangle j into thirds along the dimensions
in L j starting with the dimension with lowest
wi = min{ f (c j + δei ), f (c j − δei )} and continue until the dimension with
highest wi ;

end
Set Ok = Ok \ { j}

end
Update fmin = mini∈Hk f (ci ); Set xmin = argmini∈Hk f (ci );
if phase=global and kG ≥ Gmax then

Set phase=local; kG = 0;
else

if phase=local and kL ≥ Lmax then
Set phase=global; kL = 0;

end
end
Set k = k + 1;

end

Algorithm 2: Two-phase heuristic coupled DIRECT algorithm

gles from which POH are identified, without affecting the convergence to a global
solution.

23.4 Numerical Experiments

Numerical experiments were carried out to analyze the performance of the pre-
sented two-phase heuristic coupled DIRECT method, when compared with other
DIRECT-type methods. TheMATLAB� (MATLAB is a registered trademark of the
MathWorks, Inc.) programming language is used to code the algorithm and the tested
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problems. The parameter ε is set to 1E − 04. Because there are some elements of
randomness in the algorithm, each problem was solved 20 times by the algorithm.

23.4.1 Termination Based on a Budget

First, we want to analyze what would be the most favorable set of Gmax and Lmax to
be used in the Algorithm 2. The following three sets are tested:

• Gmax = 10 and Lmax = 10 giving the Variant V_1;
• Gmax = 10 and Lmax = 5 giving the Variant V_2;
• Gmax = 5 and Lmax = 10 giving the Variant V_3.

The algorithm runs for a budget of 100 function evaluations. This type of stopping
condition is what would be used in practice [4].

The well-known Jones set of benchmark problems [1, 4, 8–11, 14–16] is used to
compare the above defined three variants of the Algorithm 2. The Jones set contains
nine problems: Shekel 5 (S5) with n = 4, Shekel 7 (S7) with n = 4, Shekel 10 (S10)
with n = 4, Hartman 3 (H3) with n = 3, Hartaman 6 (H6) with n = 6, Branin (BR)
with n = 2, Goldstein and Price (GP) with n = 2, Six-HumpCamel (C6) with n = 2,
Schubert (SHU) with n = 2.

Table 23.1 shows the perror value given by

perror ≡ ( fmin − f ∗)
| f ∗| , (23.5)

where fmin is the best obtained function value and f ∗ is the best known global
minimum. Our results are compared to those reported in [4]. The perror value
reported from our algorithm is obtained by using the average value of the solutions
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Fig. 23.2 Points representing hyperrectangles, selected candidate hyperrectangles and POH, when
solving the problem (23.4) by Algorithm 2. a Iteration 4. b Iteration 7
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Table 23.1 Achieved perror for 100 function evaluations, using three variants of Algorithm 2

Variant V_1 Variant V_2 Variant V_3 DIRECT-la

Problem perror perror perror perror

S5 0.12E + 00 0.17E + 00 0.21E + 00 0.59E − 02

S7 0.58E − 02 0.58E − 02 0.62E − 01 0.58E − 02

S10 0.57E − 02 0.57E − 02 0.81E − 01 0.41E − 02

H3 0.66E − 03 0.62E − 03 0.77E − 03 0.85E − 04

H6 0.13E + 00 0.13E + 00 0.13E + 00 0.23E − 01

BR 0.16E − 03 0.19E − 03 0.20E − 03 0.39E − 03

GP 0.27E − 03 0.27E − 03 0.14E − 02 0.27E − 03

C6 0.10E − 01 0.11E − 01 0.63E − 02 0.16E − 01

SHU 0.83E + 00 0.83E + 00 0.83E + 00 0.82E + 00
aResults (locally-biased form) reported in [4]

fmin obtained over the 20 runs. Although the differences in the performance of the
Variants V_1 and V_2 are almost negligible, Variant V_1 is slightly superior, and
both outperform the Variant V_3. We may conclude that adopting a larger maximum
number of global search iterations gives a better advance in the convergence issue.
The comparison with the results in [4] is slightly favorable to the therein locally-
biased form of the DIRECT algorithm since it finds slightly better solutions for S5,
H3 and H6. However, the results for the remaining six test problems are almost
identical to our results.

23.4.2 Termination Based on the Known Global Minimum

We now test the Algorithm 2with a stopping condition that uses the knowledge of the
global minimum f ∗. The algorithm aims to guarantee a solution as close as possible
to the f ∗. Thus, the algorithm stops when

perror ≤ τ , (23.6)

where perror has been defined in (23.5) and τ is a positive small tolerance. It is
assumed that f ∗ 
= 0. However, if condition (23.6) is not satisfied, the algorithm
runs until a specified number of function evaluations is reached. When f ∗ = 0, the
perror becomes fmin.

Based on the previous results, we compare Variant V_1 and Variant V_2 of Algo-
rithm 2 with other DIRECT-type algorithms and some stochastic heuristics. The
nine problems of the Jones set are used. Table 23.2 shows the number of function
evaluations required to achieve a solution with accuracy given by τ = 1E − 04 and
τ = 1E − 06, in the context of the stopping condition (23.6). The results reported
from the two variants of Algorithm 2 correspond to the average value of the required
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Table 23.2 Number of function evaluations required by the algorithms, with τ as shown in each
row
Algorithm τ S5 S7 S10 H3 H6 BR GP C6 SHU

Variant V_1 1E − 04 256 173 171 141 488 145 129 190 2093

1E − 06 329 538 580 1140 6908 258 208 362 2684

Variant V_2 1E − 04 201 170 171 137 454 147 127 179 2409

1E − 06 704 430 480 1027 5587 246 209 317 2567

RDIRECT-ba 1E − 04 159 157 157 173 559 181 175 115 3501

1E − 06 251 325 325 853 1209 287 373 115 4259

DIRECTb 1E − 04 155 145 145 199 571 195 191 145c 2967

1E − 06 255 4879 4939 751 182623 377 305 211 3867

DIRECT-GLd 1E − 04 1227 1141 1151 379 4793 333 223 – 425

mDIRECTe 1E − 04 155 145 145 199 571 259 191 285 3663

DISIMPL-Vf 1E − 04 2454 723 750 261 6799 242 17 337 4509

DISIMPL-Cf 1E − 04 90948 (fail) (fail) 334 25334 292 180 308 518

DTSAPS
g 1E − 04 819 812 828 438 1787 212 230 – 274

(% succ) (75) (65) (52) (100) (83) (100) (100) – (92)

m-AFSAh 1E − 04 1183 1103 1586 1891 2580 475 417 247 –

St-Coord_Di 1E − 04 – – – – – 239 1564 512 –
aResults reported in [9]; bResults reported in [9], for both values of τ ;
cDifferent from result in [1] (285) for τ = 1E − 04; dResults in [8]; – Not available;
eResults in [14] (with a modified update to (23.3)); fResults reported in [10];
gResults reported in [15]; hResults reported in [16]; iResults reported in [17]

number of function evaluations of the 20 runs. The results from the other DIRECT-
type algorithms are taken from their original papers [1, 8–10, 14], unless otherwise
stated. The maximum number of function evaluations is set to 1E + 05.

Firstly, we note that using the stopping condition (23.6) with a higher accuracy
demand (0.01% and 0.0001%), the results favor Variant V_2. (This conclusion is
different from what would be expected after the comparisons in Table 23.1.) In fact,
when τ = 1E − 04, Variant V_2 is better, i.e., reaches the required accuracy with
fewer function evaluations than Variant V_1 on 6 problems (out of 9) and is a tie in
one problem. When a higher accuracy is demanded (τ = 1E − 06), Variant V_2 is
still better on 7 problems.

When we compare the results of both variants of Algorithm 2 with DIRECT
[1] and the solver RDIRECT-b [9], we may conclude that the results for a 0.01%
accuracy is favorable to [9] on four problems, but is favorable to our algorithm on five
problems. On the other hand, for a higher accuracy demand (0.0001%), the overall
balance is six against three. From the comparison with the original DIRECT, we
conclude that our algorithm wins (requires less function evaluations) for a 0.01%
accuracy solution on five problems and wins for a 0.0001% accuracy solution on
six problems. RDIRECT-b is a robust (insensitive to linear scaling of f ) version
of DIRECT with a bilevel strategy to accelerate convergence to a higher accurate
result. The table also shows the results obtained by DIRECT-GL [8], that includes
new strategies for the identification of an extended set of POH, a modified DIRECT
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version that uses an update to the condition (23.3) [14], and those reported in [10] of
the two versions DISIMPL-V and DISIMPL-C of a DIRECT-like method that uses
simplices instead of hyperrectangles. The first evaluates f at 2n vertices and divides
a simplex into two new simplices, the second evaluates f at n! centroid points and
divides a simplex into three new simplices. For a 0.01% accuracy solution, we may
conclude that our algorithm outperforms DIRECT-GL [8] on seven (out of eight
common problems), the modified DIRECT [14] on six (out of nine problems), the
DISIMPL-V [10] on eight (out of nine problems), and the DISIMPL-C [10] also on
eight problems.

Finally, we compare our results with three stochastic algorithms. In the directed
tabu search with the adaptive pattern search in the intensification phase (DTSAPS)
[15], the average number of function evaluations therein reported are related only
to successful trials. For completeness, we also report the corresponding success
rates (shown in the table as “% succ”). The other stochastic algorithm used in the
comparison is the mutation-based artificial fish swarm algorithm (m-AFSA) [16]. It
is a population based algorithm that uses a local search procedure to refine the search
around the best point found so far. Another population-based algorithm is selected
for the comparison. It uses a stochastic version of the coordinate descent method (St-
Coord_D) [17] and the results are from the variant “hscore_w” with success rates of
100%. We may conclude that both variants of the Algorithm 2 outperform the three
selected algorithms. Only for the problem SHU, DTSAPS reaches the solution with
the required accuracy in fewer function evaluations than our variants.

With Fig. 23.3a we aim to illustrate the influence of the heuristic coupledDIRECT
on the selected candidate hyperrectangles and the POH, at iteration 8 of the global
phase, when solving the problem BR, a two-dimensional problem with three global
minima. As previously reported the ‘green’ circles correspond to the selected candi-
date hyperrectangles from the set I 3, the ‘magenta’ diamonds are from I 2, and the
‘blue’ ‘*’ are from I 1. The ‘black’ squares mark the identified POH. Figure 23.3b
displays the progress of fmin as the number of function evaluations increases, when
solving the problemBRbyAlgorithm2withGmax = 10 and Lmax = 10. The value of
fmin rapidly drops (after 20 function evaluations) to a value near the global minimum
(0.398).

Figure 23.4a shows the center points of the hyperrectangles generated at iteration
9 when Algorithm 2 uses Gmax = 10 and Lmax = 10 (corresponding to the Variant
V_1) to solve the problem BR. Figure 23.4b shows the center points at the final
iteration where the reported solution is within 0.01% of the global minimum (shown
by a ‘black’ full circle). Similar information is shown in Fig. 23.5a, b, but now
Gmax = 10 and Lmax = 5 (Variant V_2) are used instead. Finally, Fig. 23.6a, b show
the center points of the generated hyperrectangles when Gmax = 5 and Lmax = 10
(Variant V_3). It can be seen that the points cluster around the three global solutions,
being Variant V_2 the one that concentrates the search the most. After exploring
the feasible region looking for promising regions, the Variant V_2 gathers around
one of the global solutions instead of jumping and gathering around the other global
optima.
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Fig. 23.3 Solving the problem BR by Algorithm 2. a Center points of generated hyperrectangles,
selected candidate hyperrectangles and identified POH. b Progress of fmin
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Fig. 23.4 Generated hyperrectangles when solving the problemBR byVariant V_1 of Algorithm 2.
a Iteration 9 (55 function evaluations). b Final iteration (131 function evaluations)
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Fig. 23.5 Generated hyperrectangles when solving the problemBR byVariant V_2 of Algorithm 2.
a Iteration 9 (51 function evaluations). b Final iteration (137 function evaluations)
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Fig. 23.6 Generated hyperrectangles when solving the problemBR byVariant V_3 of Algorithm 2.
a Iteration 9 (69 function evaluations). b Final iteration (163 function evaluations)

23.4.3 Experiments with Larger Dimensional Problems

Another set of six larger dimensional benchmark problems from the Hedar test set
[18] is also used for comparative purposes: Griewank (GW), Levy (L), Rastrigin
(RG), Sphere (S), Sum squares (SS), Trid (T) (also available in [19]). We note that
the search domain (S. Domain) was modified for some problems in order to avoid
that the global minimum lies in the centroid of the feasible region [8, 9].

First, the problem SS is used to analyze the performance of the Variants V_1
and V_2 of the Algorithm 2, when compared to other DIRECT-type methods, as the
number of variables increases. The maximum number of function evaluations is now
set to 1E + 06 and τ = 1E − 04 in the stopping condition (23.6). See Table 23.3.
The results are compared to those reported in [8], DIRECT, DIRECT-G (DIRECT
with a strategy that globally enhances the set of POH), DIRECT-GL (DIRECT with
strategies that globally and locally enhance the set of POH). Since numerical data
for this problem are not available in [9], a direct comparison is not possible (marked
as ‘–’ in the table). (The authors use performance profiles to compare four DIRECT-
type methods.) Between Variants V_1 and V_2, the latter is more efficient and from
the results it can be concluded that the S. Domain affects the performance of the
algorithm, in particular for the largest problem.

The number of function evaluations achieved by Variants V_1 and V_2 of Algo-
rithm 2 when solving the problems GW, L, RG, S and T for n = 10 are shown in
Table 23.4. Between the two tested variants, V_2 outperforms V_1 since it solves
the largest problems in general with less function evaluations.
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Table 23.3 Number of function evaluations required by Variants V_1 and V_2 to solve problem
SS

Problem S. Domain Variant V_1 Variant V_2 DIRECTa DIRECT-
Ga

DIRECT-
GLa

SS n = 2 [−10, 15]n 84 86 107 143 191

SS n = 5 2546 1765 833 1951 2919

SS n = 10 86122 29861 7795 16523 24763

SS n = 2 [−8, 12.5]n 136 133 – – –

SS n = 5 3209 3135 – – –

SS n = 10 7695 5710 – – –
aResults reported in [8]

Table 23.4 Number of function evaluations of Variants V_1 and V_2 (problems with n = 10)

Problem S. Domain Variant
V_1

Variant
V_2

DIRECTa DIRECT-
Ga

DIRECT-
GLa

GW [−480, 750]10 14475 10389 – – –

L [−10, 10]10 70437 34067 5589 11149 16179

RG [−4.1, 6.4]10 524921 605391 – – –

S [−4.1, 6.4]10 192140 63155 – – –

T [−100, 100]10 77653 27075 > 1E + 06 > 1E + 06 115073
aResults reported in [8]; ‘–’ Not available

23.5 Conclusions

The DIRECT method is coupled with a heuristic aiming to divide the region of
promising hyperrectangles into three subregions for a discerned selection of a reduced
number of hyperrectangles. Furthermore, a two-phase strategy that aims to cyclically
encourage the global search capabilities (first phase) and enhance the local search
(second phase) is implemented.

During the first phase, the heuristic DIRECT avoids the selection of the hyper-
rectangles that were mostly divided and chooses all the hyperrectangles with largest
sizes. Conversely, during the second phase, the hyperrectangles with largest sizes
are mostly avoided and the ones with smallest sizes are all included in the selection.
The numerical experiments carried out until now show that a cycle of a global search
phase of ten iterations and a local search phase of five iterations provides in general
a more efficient process even when solving the largest dimensional problems.
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Chapter 24
AMultiple Shooting Descent-Based Filter
Method for Optimal Control Problems

Gisela C. V. Ramadas, Edite M. G. P. Fernandes, Ana Maria A. C. Rocha,
and M. Fernanda P. Costa

Abstract A direct multiple shooting (MS) method is implemented to solve optimal
control problems (OCP) in the Mayer form. The use of an MS method gives rise to
the so-called ‘continuity conditions’ that must be satisfied together with general alge-
braic equality and inequality constraints. The resulting finite nonlinear optimization
problem is solved by a first-order descent method based on the filter methodology.
In the equivalent tri-objective problem, the descent method aims to minimize the
objective function, the violation of the ‘continuity conditions’ and the violation of
the algebraic constraints simultaneously. The numerical experiments carried out with
different types of benchmark OCP are encouraging.

Keywords Optimal control · Direct multiple shooting · Filter method · Descent
directions
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24.1 Introduction

An optimal control problem (OCP) is a constrained optimization problem that has a
set of dynamic equations as constraints. Application domains of OCP are varied [1].
There are three types of OCP that differ in the formulation of the functional to be
optimized. For example, an OCP of the Lagrange form has the objective functional
in its pure integral form as shown

J ∗ = min
u(t)∈U

J (y(t),u(t)) ≡
∫ T

0
f2(t, y(t),u(t)) dt

s.t. y′(t) = f1(t, y(t),u(t)), for t ∈ [0, T ]
y(0) = y0, y(T ) = yT ,

(24.1)

where y ∈ R
s̄ is the vector of state variables of the dynamic system, u ∈ U ⊂ R

c

is the vector of control or input variables and U represents a class of functions
(in particular functions of class C1 and piecewise constant) and usually contains
limitations to the control [2]. To convert problem (24.1) into theMayer form, a new
variable is added to the states vector y, such that y′

s(t) = f2(t, y(t),u(t)) with the
initial condition ys(0) = 0, where s = s̄ + 1 represents the total number of state
variables. Thus, problem (24.1) becomes:

min
u(t)∈U

J (y(t),u(t)) ≡ ys(T )

s.t. y′(t) = f1(t, y(t),u(t))
y′
s(t) = f2(t, y(t),u(t)), for t ∈ [0, T ]
y(0) = y0, ys(0) = 0, y(T ) = yT .

(24.2)

In the OCP we want to find u that minimizes the objective functional J subject to
the dynamic system of ordinary differential equations (ODE). The problemmay have
othermore complex ‘terminal constraints’ H(T, y(T ),u(T )) = 0. States y and con-
trol u may also be constrained by algebraic equation constraints he(t, y(t),u(t)) =
0, e ∈ E and ‘path constraints’ g j (t, y(t),u(t)) ≤ 0, j ∈ F , where E = {1, 2,
. . . ,m} and F = {1, 2, . . . , l}.

Methods for solving OCP like (24.2) can be classified into indirect and direct
methods. Indirect methods use the first-order necessary conditions fromPontryagin’s
maximum principle to reformulate the original problem into a boundary value prob-
lem. On the other hand, direct methods solve the OCP directly [3] transforming the
infinite-dimensional OCP into a finite-dimensional optimization problem that can be
solved by effective and well-established nonlinear programming (NLP) algorithms.
All direct methods discretize the control variables but differ in the way they treat the
state variables [4]. They are also classified as Discretize then Optimize strategies in
contrast to the Optimize then Discretize strategies of the indirect methods [1].

This paper explores the use of a first-order descent method based on the filter
methodology [5, 6] to solve the NLP problem, within a direct method for solving an
OCP in theMayer form. The use of a direct multiple shooting (MS)method gives rise
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to the so-called ‘continuity conditions’ that must be satisfied. The novelty here is that
a filter methodology is used to minimize the objective function, the violation of the
‘continuity conditions’ and the violation of algebraic constraints simultaneously. The
NLP problem is a tri-objective problem and the first-order descent method generates
a search direction that is either the negative gradient of one of the functions to
be minimized or a convex combination of negative gradients of two functions. To
overcome the drawbackof computingfirst derivatives, the gradients are approximated
by finite differences.

The paper is organized as follows. Section24.2 briefly describes the direct MS
algorithm for solving the OCP in the Mayer form. The herein proposed first-order
descent filter algorithm is discussed in Sect. 24.3, the numerical experiments are
shown in Sect. 24.4 and we conclude the paper with Sect. 24.5.

24.2 Direct Multiple Shooting Method

In a direct single shooting (SS) method, only the controls are discretized in the NLP
problem [3]. The dynamic system is solved by an ODE solver to get the state values
for the optimization. Thus, simulation and optimization are carried out sequentially.
On a specific grid defined by 0 = t1 < t2 < · · · < tN−1 < tN = T , where N − 1
is the total number of subintervals, the control u(t) is discretized, namely using
piecewise polynomial approximations. The simplest of all is a piecewise constant,
u(t) = qi , for t ∈ [ti , ti+1] and i = 1, . . . , N − 1 so that u(t) only depends on
the control parameters q = (q1,q2, . . . ,qN−1) and u(t) = u(t,q). When the hori-
zon length T is not fixed, the control parameter vector also includes T to define
the optimization variables. The dynamic system is solved by (forward numerical
integration) an ODE solver and the state variables y(t) are considered as dependent
variables y(t,q). The main advantage of a direct SS method is the reduced number
of decision variables (control parameters) in the NLP even for very large dynamic
systems. However, unstable systems may be difficult to handle.

In a directMSmethod, discretized controls and state values at the start nodes of the
grid (grid points)—xi ∈ R

s , i = 1, 2, . . . , N − 1, known asMS node variables—are
the decision variables for the NLP solver [7]. After the discretization of the controls,
the ODE system is solved on each shooting subinterval [ti , ti+1] independently, but
they need to be linked by the auxiliary variables xi , i = 1, 2, . . . , N − 1. They are the
initial values for the state variables for the N − 1 independent initial value problems
on the subintervals [ti , ti+1]:

y′(t) = f(t, y(t),qi ) ≡
{
f1(t, y(t),qi )
f2(t, y(t),qi )

with y(ti ) = xi , for t ∈ [ti , ti+1] ,

where y ∈ R
s . Trajectories yi (t; xi ,qi ) are obtained where the notation “(t; xi ,qi )”,

for the argument, means that they are dependent on t as well as on the specified
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values for the node variables xi and control parameters. The initial state values xi

should satisfy the ‘continuity conditions’

yi (ti+1; xi ,qi ) = xi+1, i = 1, . . . , N − 1 , (24.3)

(ensuring continuity of the solution trajectory), the initial value x1 = y0 and the final
state constraints xN = yT [4, 8].

We choose to implement a direct MS method since it can cope with differential
and algebraic equations that show unstable dynamical behavior [7]. The main steps
of the direct MS algorithm are shown in Algorithm1.

Input: T , N , f(t, y,u), y0, yT , constraint functions.
Output: Optimal control and state variables.
Define the grid points in the interval [0, T ]: 0 = t1 < · · · < tN−1 < tN = T .
Discretize the control: u(t) = qi for t ∈ [ti , ti+1], i = 1, . . . , N − 1.
Define the starting values for the state vector xi for each [ti , ti+1], i = 1, . . . , N − 1, and xN .
(Invoke the NLP algorithm)
while Stopping conditions are not satisfied do

With qi , i = 1, . . . , N − 1, xi , i = 1, . . . , N , use an ODE solver to evaluate the state
trajectories in [ti , ti+1], i = 1, . . . , N − 1:

for yi (ti ) = xi , (yi )′(t) = f(t, yi (t),qi );
Evaluate the ‘continuity conditions’ yi (ti+1; xi ,qi ) = xi+1, i = 1, . . . , N − 1, as well as
x1 = y0 and xN = yT ;

Evaluate algebraic equality and inequality constraints for t ∈ [ti , ti+1], i = 1, . . . , N − 1;
Evaluate the objective function;
Generate new qi , i = 1, . . . , N − 1 and xi , i = 1, . . . , N .

end

Algorithm 1: Direct MS algorithm

24.3 First-Order Descent Filter Method

The herein proposed first-order descent filter method relies on descent directions
for two constraint violation functions (handled separately) and for the objective
function in order to converge towards the optimal solution of the NLP problem.
One of the constraint violation functions emerges from the ‘continuity constraints’
violation (including initial state and final state constraints) and the other comes up
from the state and control algebraic equality and inequality constraints. We assume
that the NLP problem is a non-convex constrained optimization problem (COP). For
practical purposes, we assume that the OCP is in the Mayer form, the ODE system
has initial and boundary state values, state and control variables are constrained by
algebraic equality and inequality constraints, and the explicit 4th. order Runge-Kutta
integration formula is used to solve the dynamic system in each subinterval [ti , ti+1]
using 5 points.

As stated in the last section, the decision variables of the COP are the initial
state values at the nodes xi ∈ R

s , i = 1, . . . , N and the control variables qi ∈ R
c,



24 A Multiple Shooting Descent-Based Filter Method … 381

i = 1, . . . , N − 1. Besides possible algebraic constraints on the state and control
variables, the ‘continuity constraints’ (24.3), the initial state and the final state con-
straints must be added to the optimization problem formulation. Thus, our COP has
the following form:

min
xi , i∈IN ;qi , i∈I

ys(T )

s.t. g j (yi (t; xi ,qi ),qi ) ≤ 0, t ∈ [ti , ti+1], i ∈ I, j ∈ F
he(yi (t; xi ,qi ),qi ) = 0, t ∈ [ti , ti+1], i ∈ I, e ∈ E
yi (ti+1; xi ,qi ) − xi+1 = 0, i ∈ I
x1 − y0 = 0, xN − yT = 0 ,

(24.4)

where I = {1, . . . , N − 1} and IN = I ∪ {N }. To solve the optimization prob-
lem (24.4), the set of ODE must be solved so that the ‘continuity constraints’
yi (ti+1; xi ,qi ) − xi+1 = 0, the initial state and the final state constraints, the other
equality and inequality constraints and the objective function are evaluated (seeAlgo-
rithm 1). Since problem (24.4) has constraints, we seek optimal values for x and q
such that all the constraints are satisfied—a feasible solution of the COP—and the
objective function takes the least value.

24.3.1 Filter Methodology

To check solution feasibility, a measure for the violation of the constraints is adopted.
To implement the herein proposed filtermethodology, the constraints are fractionated
into two sets and their violations are computed and handled separately. We denote
the violation of the ‘continuity constraints’, initial state and final state constraints by
the non-negative function:

θ(x,q) =
∑
l∈L

∑
i∈I

(yil (ti+1; xi ,qi ) − xi+1
l )2 +

∑
l∈L

(x1l − yl0)
2 +

∑
l∈L

(xN
l − ylT )

2 ,

(24.5)

where L = {1, 2, . . . , s}, noting that θ(x,q) is zero if the solution (x,q) satisfies
these constraints, and is positive otherwise. These are the constraints that are more
difficult to be satisfied and we need to priority drive the violation θ to zero as soon
as possible so that the ODE integration runs as close as possible to the exact values
of the state variables.

To evaluate the algebraic equality and inequality constraints violation, a non-
negative function p, also based on the Euclidean norm of vectors, is used

p(x,q) =
∑
j∈F

∑
i∈I

max
{
0, g j (yi (t; xi ,qi ),qi )

}2 +
∑
e∈E

∑
i∈I

he(yi (t; xi ,qi ),qi )2,
(24.6)
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and similarly, p(x,q) = 0 when the corresponding constraints are satisfied, and
p(x,q) > 0 otherwise. The violation of these constraints is also forced to converge
to zero.

The extension of the filter methodology [5] into the descent algorithm to solve
the COP is equivalent to the reformulation of the problem (24.4) as a tri-objective
optimization problem that aims to minimize both the feasibility measures, defined
by the constraint violation functions θ(x,q) and p(x,q), and the optimality measure
defined by the objective function ys(T ):

min
xi , i∈IN ;qi , i∈I

(θ(x,q), p(x,q), ys(T )) . (24.7)

In our filter methodology, a filter F is a finite set of triples (θ(x,q), p(x,q), ys(T ))

that correspond to points (x,q), none of which is dominated by any of the others in
the filter. A point (x̂, q̂) is said to dominate a point (x,q) if and only if the following
conditions are satisfied simultaneously:

θ(x̂, q̂) ≤ θ(x,q), p(x̂, q̂) ≤ p(x,q) and ŷs(T ) ≤ ys(T ) ,

with at least one inequality being strict. The filter is initialized to F = {(θ, p, ys) :
θ ≥ θmax, p ≥ pmax}, where θmax, pmax > 0 are upper bounds on the acceptable con-
straint violations. Let Fk be the filter at iteration k of the algorithm. To avoid the
acceptance of a trial point (x̄, q̄) (approximation to the optimal solution), or the cor-
responding triple (θ(x̄, q̄), p(x̄, q̄), ȳs(T )), that is arbitrary close to the boundary of
the filter, the conditions of acceptability to the filter define an envelope around the
filter and are as follows:

θ(x̄, q̄) ≤ (1 − γ)θ(x(l),q(l)) or p(x̄, q̄) < (1 − γ)p(x(l),q(l))

or ȳs(T ) ≤ y(l)
s (T ) − γ

(
θ(x(l),q(l)) + p(x(l),q(l))

) (24.8)

for all points (x(l),q(l)) that correspond to triples (θ(x(l),q(l)), p(x(l),q(l)), y(l)
s (T ))

in the filter Fk . Points with constraint violations that exceed θmax or pmax are not
acceptable. The constant γ ∈ (0, 1) is fixed and the smaller the tighter is the envelope
of acceptability. The above conditions impose a sufficient reduction on one of the
feasibility measures or on the optimality measure for a point to be acceptable. When
the point is acceptable to the filter, the filter is updated and whenever a point is added
to the filter, all the dominated points are removed from it.

24.3.2 The First-Order Descent Filter Algorithm

Theproposedfirst-order descentmethod is based onusing gradient approximations of
the functions, θ, p or ys , of the tri-objective problem (24.7), to define search directions
coupled with a simple line search to compute a step size that gives a simple decrease
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on one of the measures θ, p or ys . Since θ is the most difficult to reduce, priority is
given to searching along the (negative) gradient of θ or a (negative) combination of the
gradient of θ with the gradient of p or ys . See Algorithm 2. For easy of notation v =(
x11 , . . . , x

1
s , . . . , x

N
1 , . . . , xN

s , q1
1 , . . . , q

1
c , . . . , q

N−1
1 , . . . , qN−1

c

)T
is used to denote

the vector of the decision variables (v ∈ R
nD , nD = Ns + (N − 1)c).

Each component i of the gradient of θwith respect to the variable vi , at an iteration
k, is approximated by

∇iθ(v(k)) ≈ (
θ(v(k) + εei ) − θ(v(k))

)
/ε , i = 1, 2, . . . , nD (24.9)

for a positive and sufficiently small constant ε, being the vector ei ∈ R
nD the i column

of the identity matrix. Similarly for the gradients approximation of p and ys .
To identify the best point computed so far, the below conditions (24.10) are

imposed. Let vbest be the current best approximation to the optimal solution of prob-
lem (24.7). A trial point, v̄, will be the best point computed so far (replacing the
current vbest ) if one of the conditions

Θ(v̄) < Θ(vbest ) or ȳs(T ) < ybests (T ) (24.10)

holds, where Θ = θ + p. At each iteration, the algorithm computes a trial point v̄,
approximation to the optimal solution, by searching along a direction that is the
negative gradient of θ, or a negative convex combination of the gradients of θ and p,
θ and ys , or p and ys , at the current approximation v. The selected direction depends
on information related to the magnitude of θ and p, at v. For example, if p(v) is
considered sufficiently small, i.e., 0 ≤ p(v) ≤ η1, while θ(v) > η1 (for a small error
tolerance η1 > 0), then the direction is the negative gradient of θ at v. The search
for a step size α ∈ (0, 1] goals the reduction of θ (‘M ← θ’ in Algorithm 2). On the
other hand, if both p and θ are considered sufficiently small, then the direction is the
negative convex combination of the gradients of θ and ys , although the search for α
forces the reduction on θ.

If both θ and p are not small yet (situation that occurs during the initial iterations)
the direction is along the negative convex combination of the gradients of θ and
p, although the line search forces the reduction on θ. However, if 0 ≤ θ(v) ≤ η1
but p(v) > η1, then the direction is along the negative convex combination of the
gradients of p and ys and the line search forces the reduction on p. Further details
are shown in the Algorithm 2.

The new trial point is accepted for further improvement if it satisfies the conditions
to be acceptable to the current filter (see conditions (24.8)), although each trial point
is considered as a new approximation to the optimal solution only if it is better
than the previously saved best point, according to (24.10). In this situation, a new
outer iteration—indexed by k in Algorithm 2—is carried out unless the convergence
conditions are satisfied (see (24.11) below). If the trial point is accepted but it does not
satisfy (24.10), θ, p and ys are evaluated at the trial point and a new inner iteration—
indexed by I t—is carried out. This inner iterative process runs for a maximum of
I tmax iterations.



384 G. C. V. Ramadas et al.

Input: N , T , kmax > 0, I tmax > 0, η1 > 0
Output: vbest , θbest , pbest , ybests
Set k = 0, exit = “false”; Initialize F ;
Set initial v;
Compute θ = θ(v), p = p(v), ys = ys(T ); Update F ;
Set vbest = v, θbest = θ, pbest = p, ybests = ys ;
while k < kmax and exit = “false” do

Set k = k + 1, I t = 0, i tno = 0, accept = “true”, stop = “false”;
while I t < I tmax and stop = “false” do

Set I t = I t + 1, FI t = I t/I tmax;
Compute Gθ ≈ ∇θ(v), Gp ≈ ∇ p(v), Gys ≈ ∇ ys(T ) using (24.9);
if accept = “true” then

if θ ≤ η1 and p ≤ η1 then
Set G = (1 − FI t )Gθ + FI tGys ; M ← θ;

else
if p ≤ η1 and θ > η1 then

Set G = Gθ; M ← θ;
else

if θ ≤ η1 and p > η1 then
Set G = (1 − FI t )Gp + FI tGys ; M ← p;

else
Set G = (1 − FI t )Gθ + FI tGp; M ← θ;

end
end

end
else

Set i tno = i tno + 1;
if i tno < (I tmax − 1) then

Set G = (1 − FI t )Gθ + FI tGp; M ← θ;
else

Set G = (1 − FI t )Gys + FI tGθ; M ← ys ;
end

end
Compute α ∈ (0, 1] such that M(v − αG) < M(v); Set
v̄ = v − αG, θ̄ = θ(v̄), p̄ = p(v̄), ȳs = ȳs(T );

if v̄ is acceptable to filter (according to (24.8)) then
Set v = v̄, θ = θ̄, p = p̄, ys = ȳs ;
Set accept = “true”; Update F ;
if v̄ is the best computed so far (see (24.10)) then

vbest = v̄, θbest = θ̄, pbest = p̄, ybests = ȳs ;
if convergence conditions (24.11) are satisfied then

Set stop = “true”, exit = “true” (convergence);
end
Set stop = “true”;

end
else

Set accept = “false”;
end

end
end

Algorithm 2: Descent-filter algorithm
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The trial point might not be acceptable to the filter, in which case another inner
iteration is tried. If the number of iterations with non acceptable trial points reaches
I tmax, the new direction is along the negative convex combination of the gradients of
θ and ys (with a reduction on ys in the line search); otherwise, the negative convex
combination of the gradients of θ and p (with a reduction on θ in the line search) is
tested.

The convergence conditions are said to be satisfied at a new trial point—the best
point computed so far, vbest ,—if

θ(vbest ) < η1 and p(vbest ) < η1 and perror = (∣∣ybests − y pr.best
s

∣∣/∣∣ybests

∣∣) < η2,
(24.11)

for small error tolerances η1 > 0 and η2 > 0, where the superscript pr.best refers to
the previous best point. The outer iterative process also terminates if the number of
iterations exceeds kmax.

24.4 Numerical Experiments

The newdirectMSmethod based on descent directions and the filtermethodology has
been tested with seven OCP. The MATLAB� (MATLAB is a registered trademark
of the MathWorks, Inc.) programming language is used to code the algorithm and
the tested problems. The numerical experiments were carried out on a PC Intel Core
i7–7500U with 2.7GHz, 256Gb SSD and 16Gb of memory RAM. The values set to
the parameters are shown in Table24.1.

First, three problems with free terminal time T are solved. A simple approach
is to apply the change of variable t = T τ , (with dt = Tdτ ) which transforms the
problem into a fixed boundary problem on the interval [0, 1] and treats T as an
auxiliary variable. When the objective is to minimize T , an alternative is to add a
new variable to the states vector y ∈ R

s−1 such that y′
s(t) = 1, with initial value

ys(0) = 0.

Problem 24.1 A simple car model (Dubins car) is formulated with three degrees
of freedom where the car is imagined as a rigid body that moves in a plane [2]. The
position of the car is given by (x, y,β) where x and y are the directions and β is
the angle with the X axis. The problem is to drive in minimum time the car from a
position to the origin:

Table 24.1 Parameter values

Parameter Value Parameter Value

θmax 1E+03 θ(v(0)) η1 1E−04

pmax 1E+03max{p(v(0)), 1} η2 1E−03

γ 1E−05 kmax 750

ε 1E−06 I tmax s
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min
u(t)

J (x(t), y(t),β(t), u(t)) ≡ T

s.t. x ′(t) = cos(β(t))
y′(t) = sin(β(t))
β′(t) = u(t), t ∈ [0, T ]
x(0) = 4, y(0) = 0, β(0) = π

2 , x(T ) = 0, y(T ) = 0,
|u(t)| ≤ 2, t ∈ [0, T ] .

The results from both strategies to handle T free are shown in Table24.2. The ini-
tial guesses were x(ti ) = 2, y(ti ) = 0, β(ti ) = 1, i ∈ IN and u(ti ) = 0, i ∈ I . The
number of points considered in [0, T ] is 11. The table shows the values of J , θ and
p achieved at iteration k, as well as the number of function evaluations, n f e, and the
time in seconds, t ime. Optimal solution reported [2] is J ∗ = 4.32174. The results are
considered quite satisfactory. We show in Fig. 24.1a, b the optimal states trajectory
and control respectively, obtained from the run that considers the change of vari-
able t → τ . Figure24.1c displays the optimal control required to achieve identical
states trajectory from the run that adds a new state variable. Slightly different optimal
controls were obtained to reach identical states trajectory.

Problem 24.2 The resource allocation problem (R allocation) goals the assignment
of resources in minimum time [2]:

min
u(t)

J (y(t),u(t)) ≡ T

s.t. y′
1(t) = u1(t)y1(t)y2(t)
y′
2(t) = u2(t)y1(t)y2(t), t ∈ [0, T ]
y1(0) = 1, y2(0) = 2, y1(T )y2(T ) = 10,
y1(t) ≥ 0, y2(t) ≥ 0, u1(t) + u2(t) = 1, u1(t) ≥ 0, u2(t) ≥ 0, t ∈ [0, T ] .

Since u2 = 1 − u1 the control vector can be reduced to a scalar u1 ≡ u ∈ [0, 1].
Using the initial guesses y1(ti ) = 1, y2(ti ) = 0, i ∈ IN , u(ti ) = 0, i ∈ I and N =
11, the results are shown in Table24.2. Optimal solution reported [2] is J ∗ =
0.714118. Figures24.1d, e show the optimal states y1, y2 and control u1, u2 respec-
tively, for the case where a change of variable is applied. Figure24.1f shows the
control for the case of handling T free through the adding of a new state variable.
The states trajectory are similar to Fig. 24.1d.

Problem 24.3 Consider an unmanned aerial vehicle (Zermelo) flying in a horizontal
plane with constant speed V , although the heading angle u(t) (control input) (with
respect to the X axis) can be varied. Winds are assumed to be in the Y direction
with speedw. The objective is to fly from point A= (0, 1) to B= (0, 0) in minimum
time:

min
u(t)

J (x(t), y(t), u(t)) ≡ T

s.t. x ′(t) = V cos(u(t))
y′(t) = V sin(u(t)) + w, t ∈ [0, T ]
x(0) = 0, y(0) = 1, x(T ) = 0, y(T ) = 0
|u(t)| ≤ π/2, t ∈ [0, T ] .
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Fig. 24.1 a States trajectory for Dubins car. b Optimal control for Dubins car. c Optimal control
for Dubins car (when adding new ys ). d States trajectory for R allocation. e Optimal control for R
allocation. f Optimal control forR allocation (when adding new ys ). g States trajectory for Zermelo.
h Optimal control for Zermelo. i Optimal control for Zermelo (when adding new ys )

For V = 1, w = 1/
√
2 and using the initial guesses x(ti ) = 0, y(ti ) = 1, i ∈ IN

and u(ti ) = 0, i ∈ I , the results are shown in Table24.2 for N = 11. A value near
T = 3.5 is exhibited in [9]. The optimal states x, y and control u (from the run based
on the change of variable T → τ ) are shown in Fig. 24.1g, h respectively. Figure24.1i
presents the optimal control obtained from the run that adds a new variable to the
states vector.

The next three problems are OCP of the Lagrange form and the last problem is
already in the Mayer form.

Problem 24.4 In a continuous stirred-tank chemical reactor (Tank reactor), y1 rep-
resents the deviation from the steady-state temperature, y2 represents the deviation
from the steady-state concentration and u is the effect of the coolant flow on the
chemical reaction [10]:
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min
u(t)

J ≡
∫ T

0
(y1(t)

2 + y2(t)
2 + Ru(t)2) dt

s.t. y′
1(t) = −2(y1(t) + 0.25) + (y2(t) + 0.5) exp

(
25y1(t)
y1(t)+2

)
−(y1(t) + 0.25)u(t)

y′
2(t) = 0.5 − y2(t) − (y2(t) + 0.5) exp

(
25y1(t)
y1(t)+2

)
, t ∈ [0, T ]

y1(0) = 0.05, y2(0) = 0 .

The optimal solution reported in [10], for T = 0.78 and R = 0.1, is J ∗ = 0.0268.
Using the initial guesses y1(ti ) = 0.05, y2(ti ) = 0, i ∈ IN and u(ti ) = 0.75, i ∈ I ,
with N = 11, the results are shown in Table24.3. The proposed strategy has pro-
duced again a reasonably good solution. Figures24.2a, b show the optimal states
y1, y2 and control u respectively.

Problem 24.5 In the point mass maximum travel example (masstravel), the force
u(t) that moves a mass to the longest distance is to be found (with T = 10 fixed):

max
u(t)

J ≡
∫ T

0
v(t) dt

s.t. s ′(t) = v(t)
v′(t) = u(t) − k0 − k1v(t) − k2v(t)2, t ∈ [0, T ]
s(0) = 0, v(0) = 0, v(T ) = 0
|u(t)| ≤ g + k3v(t)2, t ∈ [0, T ] .

The results, for k0 = 0.1, k1 = 0.2, k2 = 1, k3 = 1 and N = 11, are shown in
Table24.3.The initial guesseswere s(ti ) = 1, v(ti ) = 2, i ∈ IN andu(ti ) = 5, i ∈ I .
When transforming the above form into theMayer form, the objective function value
is just s(T ) (thus no new state variable was added to the states vector). To con-
firm convergence, the problem is also solved with η1 = 1E−10, η2 = 1E−06 in

Table 24.3 Results obtained for the Problems24.4, 24.5, 24.6 and 24.7
k J θ p n f e Time

Tank reactor 1 0.0046 1.12E−02 0.0000E+00

176 0.0357 9.9503E−05 0.0000E+00 16320 18.0

Masstravel 1 3.2633 6.9821E+01 1.6000E+02

69 6.0311 7.9855E−05 0.0000E+00 4830 5.3

128§ 6.0256 9.2528E−11 0.0000E+00 8963 9.7

Trajectory 1 0.6457 1.6043E+01 1.0424E+01

56 0.2691 9.3978E−05 0.0000E+00 3922 4.4

307§ 0.2635 8.8477E−11 0.0000E+00 21494 22.5

Obstacle 1 0.0000 2.4395E+00 0.0000E+00

341 2.3257 9.2300E−05 2.5452E−05 26208 27.1

750§ 2.4616 1.3062E−08 4.8821E−10 52702 53.7
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Fig. 24.2 States trajectory and optimal control. a States for problem Tank reactor. b Control for
problem Tank reactor. c States for problem masstravel. d Control for problem masstravel. e States
for problem trajectory. f Control for problem trajectory. g States for problem obstacle. h Control
for problem obstacle



24 A Multiple Shooting Descent-Based Filter Method … 391

(24.11)—identified with § in Table24.3. Figures24.2c, d contain the states and con-
trol respectively.

Problem 24.6 (trajectory) Find u(t) that minimizes J (with T = 3 fixed) [4],

min
u(t)

J ≡
∫ T

0
(y2(t) + u2(t)) dt

s.t. y′(t) = (1 + y(t))y(t) + u(t), t ∈ [0, T ]
y(0) = 0.05, y(T ) = 0,
|y(t)| ≤ 1, |u(t)| ≤ 1, t ∈ [0, T ] .

The obtained results for N = 11, with the initial guesses y(ti ) = 1, i ∈ IN and
u(ti ) = 0, i ∈ I , are displayed inTable24.3.Resultswithη1 = 1E−10,η2 = 1E−06
in (24.11) are also included. The Fig. 24.2e, f present the states and control respec-
tively.

Problem 24.7 The obstacle problem (obstacle) can be reformulated as [3] (T =
2.9):

min
u(t)

J ≡ 5y1(T )2 + y2(T )2

s.t. y′
1(t) = y2(t)
y′
2(t) = u(t) − 0.1(1 + 2y1(t)2)y2(t)
y1(0) = 1, y2(0) = 1,
1 − 9(y1(t) − 1)2 − (

y2(t)−0.4
0.3 )2 ≤ 0,

−0.8 − y2(t) ≤ 0, |u(t)| ≤ 1, t ∈ [0, T ]

Using the initial guesses y1(ti ) = 0, y2(ti ) = 0, i ∈ IN , u(ti ) = 0, i ∈ I and N =
11, the results are shown inTable24.3. This problem is also solvedwith η1 = 1E−10,
η2 = 1E−06 in (24.11) to analyze the convergence issue. Figures24.2g, h show the
states y1, y2 and control u respectively.

24.5 Conclusions

A first-order descent method based on a filter methodology is proposed to solve
a finite-dimensional nonlinear optimization problem that arises from the use of a
direct multiple shooting method for OCP. The implemented filter method relies on
three measures. The two feasibility measures are handled separately in order to
give priority to the minimization of the ‘continuity constraints’ violation over the
algebraic equality and inequality constraints violation and the objective function.
This priority is patent by the use of search directions that are along either the negative
of the gradient of the ‘continuity constraints’ violation function or a negative convex
combination of that gradient and the gradient of the other constraints violation, or
the objective function. Numerical derivatives are implemented in order to avoid
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computing the first derivatives of the involved functions. The numerical experiments
carried out until now have shown that the presented strategy is worth pursuing.

Issues related to the extension of the proposed method to solving retarded OCP
with constant delays in the state variables and in the control are now under investi-
gation and will be the subject of a future paper.
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Chapter 25
Irrigation Planning with Fine Meshes

Sofia O. Lopes, M. Fernanda P. Costa, Rui M. S. Pereira, M. T. Malheiro,
and Fernando A. C. C. Fontes

Abstract In this work, we study a mathematical model for a smart irrigation sys-
tem, formulated as an optimal control problem and discretized and transcribed into
a nonlinear programming problem using a fine mesh. In order to solve the resulting
optimization problem, one needs to use Optimization solvers. Hence, we imple-
mented the proposed mathematical model in AMPL and solved it using the IPOPT
solver on the NEOS server (https://neos-server.org/neos/index.html). We also tested
the model creating several scenarios. The numerical results shows that the mathe-
matical model produces qualitatively good responses. Moreover the execution times
are made in few seconds.
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25.1 Introduction

Climate change is happening [1]. Global warming, extremeweather events, floodings
and drought periods are expected even more frequently in the near future. There is
strong evidence that Mankind is, to say the least “one of the main actors” promoting
this profound change of weather on Earth.

The continuous growth of the world population is exerting a lot of pressure on the
planet, which is no longer able to provide the necessary demands.

Water is probably one of the most important resources that will be evermore dis-
puted by many countries. In the past, wars have arisen because of gold, oil, diamonds
or other similar luxury goods. Water may become a luxury good very soon. Agricul-
ture is responsible for using most of the planet’s existing freshwater. Many regions
of the world are already suffering from longer and profound droughts. To produce
the increasing demanded food, agriculture must be efficient [2] without exhausting
the soils or planet’s reserves of freshwater.

The countrieswhich face droughts like Portugal need to develop irrigation systems
able to keep the crops safe saving as much water as possible. But most irrigation
systems are of the type ON-OFF control. This means they will be activated with a
level independent of crop’s needs. Sometimes they irrigate toomuch (wastingwater),
and sometimes they use too little water (causing unnecessary stress on the crop).

To overcome this drawback, we developed a mathematical model based on Opti-
mal Control Theory which will be able to track the water needs of the crop and
provide only the necessary water to fulfil those needs.

As mentioned in [3], Optimal Control Theory emerged as a field of research in
the 1950s in response to problems concerning the aerospace exploitation of the solar
system [4]. Nowadays, optimal control is a recognized tool, known by its efficacy,
applied in different areas, such as robotics [5], biological systems [6], agriculture
problems [7], among many others. The goal of Optimal Control is to find a control
law for a given system such that a certain optimality criterion is achieved.

Optimal control problems (OCP) are constrained problems that have a set of
constraints defined by dynamic systems of ordinary differential equations.

In an OCP, it is possible to use different tools to solve the problem, to characterize
it, to study the sensitivity of its variables, to study the stability of the problem and to
apply predictive control to re-plan it [7–9].

Themathematical model presented here was firstly implemented and solved using
a direct method available in MATLAB� (MATLAB is a registered trademark of the
MathWorks, Inc.) and produces an optimal irrigation plan for a number of days (no
more than 10), based on the weather forecast, moisture sensors in site and a set of
parameters describing the type of soil, crop, irrigation and location. The optimal
solution found showed that the proposed mathematical model is qualitatively correct
[10, 11].

We will present a rebuilt model that copes with hourly data and also includes
restrictions on when to irrigate the crop during the day. This new model was
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written in AMPL [12] and solved in the NEOS platform (https://neos-server.org/
neos/index.html) using IPOPT solver [13]. Several scenarios are presented. Results
are qualitatively good.

This paper is organized as follows. Section 25.2 is devoted to present the base
mathematical model used and to explain its main features. Sect. 25.3 is dedicated to
validation of the proposed model on a set of examples. Finally, Sect. 25.4 presents
conclusions and future work.

25.2 Mathematical Model

Based on the mathematical model presented in Lopes et al. [14], we rebuilt it in such
a way that rainfall forecast was obtained hourly and with access to the soil moisture
at any time, via a moisture sensor applied on site. The fact that part of the data is now
obtained on an hourly basis increases the number of variables of the optimization
problem, by a factor of 24 (N = 24 is the number of hours of the irrigation plan
as described in the proposed mathematical model—see Eq. (25.1)). Due to this, the
problem becomes a large-scale optimization one, with 456 decision variables and
673 constraints. We note that, the size of the problem is defined by the number of
variables plus the number of constraints. Problems that have sizes at least 1000 are
considered large-scale problems [15].

Therefore, when an hourly basis is used problem (25.1) is large-scale one. Solving
it using some of the optimization methods available in the fmincon solver from
MATLAB�, is prohibitive due to memory requirements and CPU time.

The cost function to be minimized is the amount of water used in the irrigation
system, defined by the sum of the control variables u, subject to the dynamic equation
in which the variation of the moisture of the soil (the trajectory variables x) has to
satisfy the water balance equation, and subject to the inequality constraints, namely,
the amount of water that come from the tap can not be negative and the moisture of
the soil must satisfy the hydric needs, xmin , of the crop. The last constraint allows us
to prescribe the time of the day when the irrigation is released. In this case, we do not
allow irrigation between a certain period of time, [t ime1, t ime2]. This is important
in the summer, such that the irrigation plan takes place when temperatures are not
too high. Thus, the proposed new model is defined as follows:

minxi ,ui h
N∑

i=1

ui

s.t.: xi+1 = xi + h f (ti , xi , ui , xi+1), i = 1, . . . , N

xi ≥ xmin

0 ≤ ui ≤ Usup, i = 1, . . . , N

x1 = x0,

(25.1)

https://neos-server.org/neos/index.html
https://neos-server.org/neos/index.html
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where Usup represents the maximum irrigation possible. An extra constraint can be
added to the model, in order to allow the farmer to irrigate the crops at a desirable
time of the day:

Usup = 0, time1 ≤ mod(i, 24) ≤ t ime2 (25.2)

wheremod(i, 24) gives the remainder of the integer division of i by 24. The function
f present in the dynamic of the OCP is given by

f (t, xl , ul , xr ) = KI × ul + KR × r f all(t) − KC × evtp0(t) − loss(t, xl , xr ),

with the term of losses defined by [16],

loss(t, xl , xr ) =
{
k(t)xl if xr ≤ xFC
xr − xFC + k(t)xl if xr > xFC .

The parameter h represents the time step, N is the number of time steps of the
irrigation planning (24×number of days of the plan), KI is the coefficient associated
to the type of irrigation, KR is a parameter associated to the rainfall (r f all), KC is the
coefficient associated to the type of crop, evtp0 is the reference evapotranspiration
and x0 is the moisture of the soil at initial time. Notice that k(t) depends on the type
of soil and xFC is the humidity of soil at available water capacity. More details about
the model can be found in [14]. The fact that we nowmay have hourly data will allow
us to have amore accurate solution.Weather data and soil moisture were taken from a
database [17] in ISEP (Instituto Superior de Engenharia do Porto), evapotranspiration
was calculated using Penman–Monteith model [18], crop and soil coefficients were
obtained in the Raposo’s book [19].

25.3 Results and Validation

In this section we focus on validating the proposed model. It was implemented firstly
in MATLAB�, considering a daily basis. When a daily basis is considered, problem
(25.1) is a small-scale one. To solve it, the fmincon solver of MATLAB� with the
optimization ‘active-set’ algorithm was used. Furthermore, we used the fmincon
solver with the other options by default. The optimization algorithm was able to
obtain the optimal solution and the execution time took few minutes.

However, if the problem is a large-scale one, CPU times andmemory requirements
will become an issue if ‘active-set’ algorithm is chosen. We note that, the ‘active-
set’ algorithm is no longer recommended since it is not a large-scale algorithm.
The ‘active-set’ algorithm requires the storage of full matrices and use dense linear
algebra. The storage of full matrices needs a significant amount of memory, and the
dense linear algebra may require a long time to execute.
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Hence, we opted to use the ‘interior-point’ algorithm which is a large-scale one,
instead of the ‘active-set’ algorithm, in the fmincon solver. However, when we tried
to solve one of this large-scale problems the obtained optimal solution was reported
as may be inaccurate and the execution times took about 50min.

Because of it (future evolutions of the model will be more and more complex),
the model was written in AMPL language [12] and solved in NEOS Platform using
the IPOPT solver [13] with its options by default. CPU time was much improved.
Next, we present some scenarios and analyze the respective results relative to the
validation of the proposed model.

25.3.1 Case 1—Irrigation Plan for a Set of Rainy Days in
April

Here, we consider a simulation using real weather data from a set of days in April.
Rainfall was heavy. No restrictions on the time for irrigation were considered in this
scenario 1. Furthermore, we also assumed uniform rainfall during the whole days of
the irrigation plan, and we considered a grass field in Oporto (Portugal).

The optimal solution of the problem (25.1) for scenario 1, namely, irrigation plan,
moisture in the soil and the hydric needs of the crop, is shown in Fig. 25.1.
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Fig. 25.1 Results for scenario 1—set of rainy days in April in the region of Oporto, Portugal.
Coarse grid in time with time step = 1day
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Fig. 25.2 Results for scenario 1—set of rainy days in April in the region of Oporto, Portugal. Finer
grid in time with time step = 1h

As expected, no irrigation is needed, since the moisture in the soil was well above
the hydric needs of the crop. Water consumption for this scenario was 0mm, since
the control was not activated.

Next, we assumed hourly non-real data rainfall and it was considered uniform
along the day. This meant that the number of variables increased by a factor of 24.
When solving this problem using the fmincon solver of MATLAB�, the programme
took about 50min to obtain the optimal solution. In the NEOS platform with the
IPOPT solver, just took a few seconds. Results are shown in Fig. 25.2.

As expected, results are very similar. No irrigation is needed. The trajectory is
different since we are using smaller time step. Herein the trajectory is potentially
more accurate. In future, if we have real data this would reflect better the weather
variations along the day. Nowadays, it is not rare to have a weather station in site
and moisture sensors which are able to capture hourly data and transmit it to a server
where they can be collected. Water consumption for this scenario was 0mm since
the control was not activated.

In scenario 2, all the rain of each day was considered to take place in a couple of
hours, generating a greater rainfall in that short period of time. The temperature was
modelled in each day by a parabola with the maximum value at 12h and minimums
at time 0h and 23:59 and an average value equal to the average temperature of that
day. The optimal solution of the problem (25.1) considering scenario 2 is shown in
Fig. 25.3.
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Fig. 25.3 Results for scenario 2—set of winter rainy days in the region of Oporto, Portugal. Finer
grid in time with time step = 1h. The rainfall occurs in just a couple of hours and the temperature
is defined in each day by a parabola

As expected, results are no longer the same. The concentration of the rainfall in
a couple of hours may produce a situation where the soil moisture sudden increases.
Water consumption for scenario 2 was 0mm, since the control was not activated.

25.3.2 Case 2—Irrigation Plan for a Set of Dry Days
in August

25.3.2.1 For a Crop of Grass

Here, we consider a simulation using real weather data from a set of days in August.
Rainfall was scarce (rain only took place on the 9th day and was very scarce). No
restrictions on the time for irrigationwere considered in the scenario 3a. Furthermore,
we considered a grass field in Oporto (Portugal), and we assumed that we had only
daily data. The optimal solution of the problem (25.1) for scenario 3a—the irrigation
plan, moisture in the soil and the hydric needs of the crop—is depicted in Fig. 25.4.

As expected, irrigation is always needed, since the moisture in the soil was always
near the hydric needs of the crop. If irrigation does not take place at any time step,
the crop enters in stress. Water consumption for this example was 30.5768mm.
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Fig. 25.4 Results for scenario 3a—set of dry August days in the region of Oporto, Portugal. Coarse
grid in time with time step = 1day

In scenario 4a, hourly datawas assumed to be available. It was generated assuming
uniform rainfall during the whole days. Results can be seen in Fig. 25.5.

The control is composed by a series of step functions since for every 24h, we
consider uniform rainfall with average equal to the rainfall average of that day.
Notice that this is not verified in Case 1, since no irrigation was needed. Results
are potentially more accurate and if we had real data, this would better reflect the
weather variations along a day.Water consumption for scenario 4a was 30.5492mm.
The total amount of irrigation is similar, but slightly smaller. This is due to the fact
that the time steps are smaller.

In the next scenario, scenario 5a, we suppose that the rainfall in each day takes
place in a couple of hours of that day and that the temperature was modelled (in each
day) by a parabola with the maximum value at 12h and minimums at 0h and 23:59,
and an average value equal to the average temperature of that day. The results for
scenario 5a are shown in Fig. 25.6.

As expected, results are no longer the same. The concentration of the rainfall in
a couple of hours of each day did not produce similar results as in Fig. 25.3 for
scenario 2 (peaks in the trajectory), because in scenario 5a, rainfall was very scarce.
The effect of considering parabolic arcs to model the daily temperature can be seen
in Fig. 25.6. The consumption increases a bit (31.291mm) due to the fact that rainfall
was concentrated in a couple of hours for each day and the temperature along the
day was given by a parabola.
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Fig. 25.5 Results for scenario 4a—set of dry August days in the region of Oporto, Portugal. Finer
grid in time with time step = 1h
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Fig. 25.6 Results for scenario 5a—set of August days in the region of Oporto, Portugal. Finer grid
in time with time step = 1h. The rainfall occurs in just a couple of hours and the temperature is
defined in each day by a parabola
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25.3.2.2 For a Crop of Mint

Next, using the same weather data for scenario 3a (note rain only took place on
the 9th day and was very scarce), we consider that the crop is no longer grass, but
now mint. This scenario is denoted by scenario 3b. The reference evapotranspiration
coefficient is now 1.15 instead of 0.95. The optimal solution of problem (25.1) for
scenario 3b is shown in Fig. 25.7. The water consumption is now 34.99mm instead
of 30.58mm.

As expected water consumption increases relatively to scenario 3a, since evapo-
transpiration of the new crop is much higher.

Next, for the crop of mint, we consider the same weather data of the scenario 4a.
This scenario is denoted by scenario 4b. In this scenario, hourly data was assumed
to be available. It was generated assuming uniform rainfall during the whole days.
The optimal solution of the problem (25.1) for scenario 4b is shown in Fig. 25.8.

The control is composed by a series of step functions since for every 24h, we
consider uniform rainfall with average equal to the rainfall average of that day.
Water consumption was 34.84mm. The total amount of irrigation is similar, but a
slightly smaller. This is due to the fact that the time steps are smaller.

In next scenario, scenario 5b, the sameweather data of scenario 5awas considered.
We suppose that the rainfall in each day takes place in a couple of hours of that day
and that the temperature wasmodelled (in each day) by a parabola with themaximum

time
1 2 3 4 5 6 7 8 9

-5

0

5

10

15

20

Control
Trajectory
Crop Hydric Needs

Fig. 25.7 Results for scenario 3b—set of dry August days in the region of Oporto, Portugal. Crop
is mint instead of grass
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Fig. 25.8 Results for scenario 4b—set of dry August days in the region of Oporto, Portugal. Finer
grid in time with time step = 1h. Crop is mint instead of grass

value at 12h andminimums at 0h and 23:59, and an average value equal to the average
temperature of that day. The optimal solution of the problem (25.1) for scenario 5b
is shown in Fig. 25.9.

The consumption increases a bit (35.54mm) due to the rainfall to be concentrated
in a couple of hours for each day. As we can see from these last three scenarios, if
the crop has a greater evapotranspiration, it consumes more water, as expected.

25.3.3 Case 3—Imposing a Constraint for the Daily Period
of Irrigation

Here we will study the effect of imposing the constraint on when the irrigation takes
place on the crop field (scenario 6a). We will consider the data from scenario 5a with
a finer grid and uniform distribution of rainfall along every hour of each day. We
will also consider irrigation cannot take place between 11h and 19h. We note that,
due to the high temperatures in the summer, the mathematical model must be able
to prevent that the crop does not dye. The optimal solution of the problem (25.1) for
the scenario 6a is shown in Fig. 25.10.

Since irrigation has to stop during the hottest hours of the day, when it restarts it
will produce a peak to compensate. You can also observe that after every peak there
is a slight increase in the trajectory. The total amount of irrigation was 30.6097mm.
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Fig. 25.9 Results for scenario 5b—set of August days in the region of Oporto, Portugal. Finer grid
in time with time step = 1h. The rainfall occurs in just a couple of hours and the temperature is
defined in each day by a parabola. The crop is mint
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Fig. 25.10 Results for scenario 6a—including the constraint of not irrigating between 11h and 19h
of each day. Finer grid in time with time step = 1h
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Fig. 25.11 Results for scenario 6b—including the constraint of not irrigating between 11h and
19h of each day. Finer grid in time with time step = 1h. The crop is mint

The same procedure applies if the crop is mint (scenario 6b). We consider the
data from scenario 5b with a finer grid and uniform distribution of rainfall along
every hour of each day. We also consider irrigation cannot take place between 11h
and 19h. The optimal solution of the problem (25.1) for the scenario 6b is shown in
Fig. 25.11.

Since irrigation has to stop during the hottest hours of the day, when it restarts it
will produce a peak to compensate. You can also observe that after every peak there
is a slight increase in the trajectory. The total amount of irrigation was 34.91mm.
As expected the same pattern appears, the difference is due to the fact that evapo-
transpiration of mint to be greater than the one of grass.

25.4 Conclusions and Future Work

We designed a mathematical model based on Optimal Control Theory which, given
a set of data (weather data, soil moisture, evapotranspiration, a set crop and soil coef-
ficients), is able to produce an irrigation plan for the crop for a given number of days.
We used data from a grass field in ISEP (Instituto de Engenharia do Porto) and col-
lected in a local database [17]. Other parameters were consulted in the bibliography
[18, 19].
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We verified that the proposed mathematical model is able to produce solutions
that correspond to the reality needs.

The inclusion of hourly data allows to consider scenarios where, for instance,
rainfall is uniform or the opposite, and the rainfall can be concentrated in a couple of
hours. We presented simulations in the previous section and results are qualitatively
good. We note that, more accurate data with smaller time steps will potentially
produce a smoother solution, with less consumption. It will also allow to take into
account extreme events that occur in a matter of minutes/hours.

The inclusion of as constraint on when irrigation can take place during the day
makes the model more realistic and allows us to avoid unnecessary damage to the
crop. The numerical results allowus to conclude that themodel produces qualitatively
good responses.

In future, other tests will be done to adjust some parameters of the model and
validate it in crop field. Other features still need to be tackled, such as: to see the
effects of different types of soils; different types of crops; to consider a slope in the
crop field that will produce losses due to runoff; to introduce new constraints that
might enrich the model.

The final goal of the study is to produce a prototype of smart irrigation which step
by step will help farmers to produce sustainable agriculture. The data needs to be
collected in site automatically using a mini-weather station and uploaded to a server.
A web page installed in that server collects some parameters which the farmer needs
to provide accordingly to the type of soil, type of irrigation used, type of crop, number
of days considered in the plan, etc. Once the data-file is completed, the user starts
a simulation using our model and finally, obtains the Irrigation plan. The irrigation
system needs to be properly designed but, if so, with a file providing the needs of
water of the crop field at every time step, it can automatically start the irrigation
when needed, guaranteeing the crop is safe and the waste of water is minimum.
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Chapter 26
Optimal Path and Path-Following
Control in Airborne Wind Energy
Systems

Manuel C. R. M. Fernandes, Luís Tiago Paiva, and Fernando A. C. C. Fontes

Abstract An Airborne Wind Energy System (AWES) is a concept to convert wind
energy into electricity, which comprises a tethered aircraft connected to a ground
station. These systems are capable of harvesting high altitude winds, which are more
frequent and more consistent. Among AWES, there are Pumping Kite Generators
(PKG) that involve a rigid or flexible kite connected to a motor/generator placed on
the ground through a light–weight tether. Such PKG produces electrical power in
a cyclical two–phased motion with a traction phase and a retraction phase. During
the traction phase, the aim is to maximize power production. This goal is achieved
by controlling the kite such that it performs an almost crosswind motion, keeping
a low elevation angle in order to maximize the tether tension. During the retraction
phase, the tether tension force is minimized by steering the kite while the tether is
reeled–in. Such strategy assures that the cyclical two–phased motion has a positive
electrical balance at the end of the overall cycle. In a first stage, we solve an optimal
control problem to compute the optimal plan for the kite trajectory during the traction
phase, maximizing power production. Such trajectory is then used to define a time–
independent geometrical path, which in turn is used as the reference path for the
path–following control procedure that is developed in a second stage, and for which
results are also presented.

Keywords Airborne wind energy · Optimal control · Heading angle steering ·
Path-following
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26.1 Introduction

In the last decades there has been a fast growth of the investment and technical
development of renewable energy systems, both within companies and academia.
Among the renewable energy sources, wind is an important large scale alternative
and it is still mostly unexplored.Wind is mainly harvested on–shore at low heights by
wind turbines mounted on towers with a few dozenmeters (50−200m), nevertheless
most of the existing wind energy is available at high altitudes and offshore.

AirborneWind Energy Systems (AWES) aim at exploiting stronger andmore con-
sistent high–altitude winds. Recent solutions range from lighter than air concepts,
airfoils with electrical generation on the aircraft, or on the ground, developed or cur-
rently being developed [1]. One of the most promising technologies are the Pumping
Kite Generators (PKG) [2, 3]. These systems use a tethered kite—a flexible or rigid
wing—that is connected to a winch drum coupled to a motor/generator placed on the
ground.

PKG produce electrical power in a cyclical two–phased motion with a traction
phase and a retraction phase. During the traction phase, the power production is
maximized as the kite is controlled such that it performs an almost crosswindmotion,
keeping a low elevation angle in order tomaximize the tether tension.Whenwe reach
the maximum tether length, the system enters in the retraction phase, where the kite
is controlled such that the tether tension is minimized while the tether is reeled–in.
Such strategy assures that, at the end of the cycle, the two–phasedmotion has positive
electrical balance. Such systems exploit crosswind kite power as described by Loyd
in 1980 [4]. The power harvesting potential of PKG is supported by two important
factors:

1. wind speeds increase with height,
2. the aerodynamic lift (Flift) is proportional to the square of the apparent wind

velocity,

Flift = 1

2
cL(α)Av2a . (26.1)

Therefore, the maximum mechanical power extracted from this renewable resource
is obtained when the kite flies at high speeds in a crosswind direction. This operation
principle can be applied in other fluids, such as water, as explored in [5]. Economical
studies involving multiple PKG in a wind farm layout are already available [6, 7].

Since power harvesting capabilities are highly dependent on the flight trajectory
and consequently on the control systems that steer the kite, the search for control
systems optimality is of key importance for the development of such a technology.
We address theOptimal Control Problem (OCP) ofmaximizing the powerwithdrawn
from the wind during the traction phase using direct methods. For this purpose, we
use a 3D model of the kite dynamics, considering all the forces acting on it, [8].
Then, we use the numerical results to describe an optimal path which is used as
a reference for a path–following control strategy. According to such strategy, the
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Table 26.1 Nomenclature

A Wing reference area of kite (m2) RGL Rotation matrix from G to L

at Tether reel–out acceleration (m s−2) RLG Rotation matrix from L to G

cD Aerodynamic drag coefficient r Tether length (m)

cL Aerodynamic lift coefficient ρ Air density (kgm−3)

E Energy produced (Ws) T Tether tension (N)

Faer Aerodynamic force (N) va Apparent wind velocity (m s−1)

Fdrag Drag force (N) vw Wind velocity (m s−1)

Fcent Centrifugal force (N) vt Tether reel–out velocity (m s−1)

Fcor Coriolis force (N) u Control vector

Flift Aerodynamic lift force (N) x State vector

Finert Inertial forces (N) α Angle of attack (rad)

Fth Tether force (N) φ Azimuthal angle (rad)

g Gravitational acceleration (m s−2) β Elevation angle (rad)

m Mass (kg) ψ Roll angle (rad)

P Power produced (W) γ Reference tracking angle (rad)

p Kite position (m) τ Local tangent plane

trajectory controller acts on the roll angle to change the kite heading direction in
order to follow a reference point in the established optimal path (see [9, 10] for other
path–following control approaches).

This paper is organized as follows. In Sect. 26.2, we describe a model for the
kite power system. The nomenclature used is given in Table26.1. In Sect. 26.3, we
define the OCP for maximizing power production in the traction phase. In Sect. 26.4,
we address the path definition and path–following control method. In Sect. 26.6, we
outline the future work that is under development.

26.2 3D Kite Model

We consider three coordinate systems to model the kite:

Global G: An inertial Cartesian coordinate system (x, y, z) with the origin on
the ground at the point of attachment of the tether and where x is
aligned according to the wind direction vw = (vw, 0, 0), on the basis of
(ex , ey, ez).
We consider that the kite is positioned in a point p with coordinates
(x, y, z).

Local L: A non–inertial spherical coordinate system (r,φ,β) on the basis of
(er , eφ, eβ) (Fig. 26.1).
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Fig. 26.1 The global and
local coordinate systems
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Fig. 26.2 The body
coordinate system e1

e2

e3

Body B: A non–inertial Cartesian coordinate system attached to the kite body
on the basis of (e1, e2, e3) where e1 coincides with the kite longitudinal
axis pointing forward, e2 in the kite transversal axis, points to the left
wing tip, and e3 in the kite vertical axis is pointing upwards (Fig. 26.2).

Considering the kite mass-point position

p =
⎡
⎣
x
y
z

⎤
⎦ =

⎡
⎣
r cos(β) cos(φ)

r cos(β) sin(φ)

r sin(β)

⎤
⎦ ,

the rotation matrix from L coordinate system to G is

RLG = [
er eφ eβ

]

=
⎡
⎣
cos(β) cos(φ) −sin(φ) −sin(β) cos(φ)

cos(β) sin(φ) cos(φ) −sin(β) sin(φ)

sin(β) 0 cos(β)

⎤
⎦ ,

and the rotation matrix from G coordinate system to L is RGL = R−1
LG = R�

LG.
We consider the apparent wind velocity va = vw − ṗ and assume that its radial

component va,r is always strictly positive and that the kite body longitudinal axis
is at all times aligned with the apparent wind velocity, that is e1 = −va/‖va‖. Let
ψ be the roll angle measuring rotation around the e1 axis. We consider that ẽ2 = e2
is initially (for ψ = 0) in the plane τ , tangent to a sphere centred at the origin of
G (containing the axis eφ and eβ). We have that ẽ2 ⊥ er , and ẽ2 ⊥ e1. We can then

define ẽ2 = er × e1
‖er × e1‖ . Finally, we consider that the kite body rotates anti-clockwise
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around the e1 axis and we assume that the roll angle ψ can be controlled directly.
Since the kite has some mass, the roll angle cannot be selected arbitrarily at each
instant and we would have to control the angular acceleration and consequently alter
the angular velocity and roll angle. However, since the translational movement of the
kite is much slower than its rotation in the defined operational range, we can consider,
as a simplification, that ψ is a directly actuated control variable. Using Rodrigues’
formula to rotate ẽ2 by ψ around e1, we obtain

e2 = ẽ2 cosψ + (e1 × ẽ2) sinψ + e1(e1 · ẽ2)(1 − cosψ) (26.2)

and finally, we define e3 forming a right-handed coordinate system e3 = e1 × e2.
The total force acting on the kite can be decomposed as

mp̈ = Fth + Fgrav + Faer(α), (26.3)

where each force is computed as follows:

Fth = −T er =
⎡
⎣

−T
0
0

⎤
⎦

L

,

Fgrav = −mg ez =
⎡
⎣

0
0

−mg

⎤
⎦

G

=
⎡
⎣

−mg sin β
0

−mg cosβ

⎤
⎦

L

,

Faer(α) = 1

2
ρA‖va‖2(cL(α)e3 − cD(α)e1).

In the local coordinate system

p̈ =
⎡
⎣

r̈
r φ̈cos(β)

r β̈

⎤
⎦

L

+
⎡
⎣

−r β̇2 − r φ̇2 cos2(β)

2ṙ φ̇cos(β) − 2r φ̇β̇sin(β)

2ṙ β̇ + r φ̇2cos(β)sin(β)

⎤
⎦

L︸ ︷︷ ︸
− 1

m Finert

(26.4)

where the second term corresponds to − 1
mF

inert with Finert representing the inertial
forces (centrifugal and Coriolis). Now, we can write

m

⎡
⎣

r̈
r φ̈cos(β)

r β̈

⎤
⎦ = Fth + Fgrav + Faer(α) + Finert (26.5)

We assume that the tether acceleration r̈ is directly controlled by at . Denoting by
T the tension on the tether at the ground station, we have T = Fr − mat . Defining
the state x = (

r,φ,β, ṙ , φ̇, β̇
)
and the control u = (at ,α,ψ), the dynamics of the

system can be stated as
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ẋ(t) = f (x(t),u(t)) = d

dt

⎡
⎢⎢⎢⎢⎢⎢⎣

r
φ
β
ṙ
φ̇

β̇

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṙ
φ̇

β̇
at
1

mr cos(β)
Fφ

1

mr
Fβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26.6)

26.3 Optimal Control Problem

We consider the problem of optimizing power production during the traction phase
(see e.g., [11–13] for a reference on optimal control and on the corresponding numer-
ical methods). The instant power production is given by P(t) = ṙ T and the energy
in the interval [t0, t f ] is

E(t f ) =
t f∫

t0

P(t) dt . (26.7)

We address the production cycle problem (P) that has a free terminal state, which
is achieved when the tether is at the maximum length. Considering t ∈ [t0, t f ], the
problem (P) can be stated as:

Maximize

t f∫

t0

ṙ T dt (26.8)

subject to dynamic constraints

ẋ(t) = f(x,u) æ t ∈ [t0, t f ]

input constraints

amin ≤ at (t) ≤ amax a.e. t ∈ [t0, t f ]
αmin ≤ α(t) ≤ αmax a.e. t ∈ [t0, t f ]
ψmin ≤ ψ(t) ≤ ψmax a.e. t ∈ [t0, t f ]

the left end–point constraint

x(t0) = x0 = (r0, φ0, β0, ṙ0, φ̇0, β̇0)
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and bounded–state constraints

rmin ≤ r(t) ≤ rmax ∀t ∈ [t0, t f ]
φmin ≤ φ(t) ≤ φmax ∀t ∈ [t0, t f ]
βmin ≤ β(t) ≤ βmax ∀t ∈ [t0, t f ]

26.4 Path–Following Control

26.4.1 Flight Path Specification

From the Optimal trajectory obtained in Sect. 26.3, we parametrize a path in the
(φ,β) space that will be followed cyclically by the kite during the reel-out phase.
The resulting trajectories tend to vary with different parametrizations of the problem,
such as differentwind speeds andkite characteristics.However, theyusually followan
almost sinusoidal evolution of φ and β. The main frequencies of these variations can
be obtained by a Fourier Transform and the ratio between both principal frequencies
allows us to define a Lissajous curve for a time independent path. An example of the
expected path can be the lemniscate curve:

{
φ = φ0 + Δφ cos(t)

β = β0 + Δβ sin(2t).
(26.9)

In this case we are considering a Gerono lemniscate which is also a Lissajous figure
with frequency ratio 1:2. This path is independent of the tether length r , that will
vary during the traction phase, since it is only defined in the (φ,β) space. Its plot on
a plane is given in Fig. 26.3.

Fig. 26.3 A possible
figure-of-eight Path in the
(φ,β) space
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26.4.2 Heading Angle Dynamics and Control

Heading angle dynamics and control are based on the proposed method in [14]. We
aim to control the heading direction of the kite, through the roll angle, in order to
follow a predefined path in the (φ,β) space. During the traction phase, the kite is
expected to follow the desired path at high speed and, since the speed of the kite
is typically much greater than the wind speed vw or the reel-out speed ṙ , we may
assume that the apparent wind velocity va and thus the longitudinal axis e1 are in the
plane τ . Therefore, the angle between e2 and τ is similar to the roll angle. As shown
in Fig. 26.4, the aerodynamic lift vector, aligned with e3, has a radial component and
a component in τ , denoted by turning lift, which is responsible for the kite lateral
acceleration defined as

a� = 1

m
Flift sin(ψ). (26.10)

The controller proposed here is detailed in [14] and consists in a modification
of the nonlinear guidance logic described in [15, 16]. The methods use a reference
target approach to control the heading direction of the kite. Given the mass–point
position of the kite p(φ,β), we determine the closest point in the desired path Q,
defining the cross–track distance between them as d. Then, a reference target point
R is defined as the point distancing L from Q in a forward direction along the path
and a vector L1 is defined as the vector from the kite position p to the reference point
R (see Fig. 26.5). Finally, we compute the angle η between the kite velocity ṗ andL1

that serves as a reference to the desired heading direction, so that the kite trajectory
follows R. We act on the roll angle ψ in order to control the angle η towards zero.
A simple proportional controller, ψ(t) = Kη(t) can be shown to be an adequate

�Flift Vertical Lift

Turning Lift

�e3 �e2
ψ

ψ

Fig. 26.4 Lift decomposition of a wing during a turn [14]
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L1

ṗ

η

d

Fig. 26.5 Path to be followed and signals involved [14]

steering command, see [17, 18]. As in [15], our command is based on computing the
needed lateral acceleration, which is the required centripetal acceleration for the kite
to follow a circular trajectory from the current position towards the reference point.
This sideways acceleration is given by

as = 2
V 2

L1
sin(η). (26.11)

From Eqs. (26.10) and (26.11), we obtain

ψ = arcsin

(
2m

V 2 sin(η)

FliftL1

)
. (26.12)

Since the range for the possible values of the roll angle is limited (ψ ∈ [−ψmax,

ψmax]), the control with saturation is given by

ψ = min

{
ψmax,max

{
−ψmax, arcsin

(
2m

V 2 sin(η)

FliftL1

)}}
. (26.13)

26.5 Numerical Results

All simulations were carried out using the dynamical model (26.6) implemented in
Simulink. We consider the parameters of simulation for the kite power system (KPS)
with a small aircraftwith 0.7kg and 0.28m2 ofwing area. TheOCPproblem, reported
inSect. 26.3, is solvedusingdirectmethods, namely using ICLOCS (ImperialCollege
of London Optimal Control Software) interface coupled with IPOPT (Interior Point
OPTimizer) solver. Then, the obtained solution is used to describe geometrically the
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Fig. 26.6 Kite trajectory, figure–of–eight shape, for fixed tether length

Fig. 26.7 Variation of φ and β over time during a figure–of–eight shape, for fixed tether length

desired optimal path. Finally, simulation and testing of the guidance control strategy
for path-following, using the computed optimal path as a reference, is carried out as
described in Sect. 26.4.

The controller drives the system to follow a pre-defined figure–of–eight shape
path.

Firstly, we consider the case of a fixed tether length. This case is typical in a fly–
gen AWES, i.e. a system with on–board generation. In Fig. 26.6, the blue line is the
path to follow while the solid red line is the kite trajectory. As it can be seen, when
applying our controller, the kite trajectory closely follows the desired pre–defined
path, even when we simulate several cycles. Figure26.7 shows the evolution of φ
and β angles over time and Fig. 26.8 displays a closer look of part of the simulation
in which the reference point evolution is also presented.
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Fig. 26.8 Detail of path-following control: the red line represents the variation of φ and β of the
kite position and the blue dots are relative to the reference points

Fig. 26.9 Kite trajectory during a complete cycle

In a second case, we consider a varying tether length and a complete cycle com-
prising production and retraction phases. This case is typical of a ground–gen system,
i.e. a system with ground–based generation. In Fig. 26.9, once again, the blue line is
the path to follow while the red line is the kite trajectory. As it can be seen, when
applying our controller during different cycle phases, the kite trajectory successfully
follows the desired pre–defined path andwhen the tether reaches its maximum length
the kite is reeled–in after being driven to the zenith position. Figure26.10 depicts the
evolution of φ and β angles over time during this simulation. In both simulations,
the results confirm the performance of such controller for the kite to follow closely
the pre–defined path.



420 M. C. R. M. Fernandes et al.

Fig. 26.10 Variation of φ and β over time for a complete cycle

26.6 Conclusion and Future Work

In this paper, we have performed an open-loopOCP in order to find the trajectory that
would maximize power production and then applied a non-linear guidance control to
follow a desired path. In the future, we will aim at closing the loop in order to apply
real time optimization based control strategies, such as Model Predictive Control
(MPC), both for a new path-following strategy but also to constantly re-define the
best path to follow, applying Economical MPC methods.
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Chapter 27
Temperature Time Series Forecasting
in the Optimal Challenges in Irrigation
(TO CHAIR)

A. Manuela Gonçalves, Cláudia Costa, Marco Costa, Sofia O. Lopes,
and Rui Pereira

Abstract Predicting and forecasting weather time series has always been a difficult
field of research analysis with a very slow progress rate over the years. The main
challenge in this project—The Optimal Challenges in Irrigation (TO CHAIR)—is
to study how to manage irrigation problems as an optimal control problem: the
daily irrigation problem of minimizing water consumption. For that it is necessary
to estimate and forecast weather variables in real time in each monitoring area of
irrigation. These time series present strong trends and high-frequency seasonality.
How to best model and forecast these patterns has been a long-standing issue in time
series analysis. This study presents a comparison of the forecasting performance of
TBATS (Trigonometric Seasonal, Box-Cox Transformation, ARMA errors, Trend
and Seasonal Components) and regression with correlated errors models. These
methods are chosen due to their ability to model trend and seasonal fluctuations
present inweather data, particularly in dealingwith time serieswith complex seasonal
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patterns (multiple seasonal patterns). The forecasting performance is demonstrated
through a case study of weather time series: minimum air temperature.

Keywords Irrigation · Temperature · Time series · Modeling · Forecasting ·
TBATS · Regression with correlated errors

27.1 Introduction

In a world where climate change and increasing social conflicts are a reality, a proper
management of the existing scarce resources is vital. Thus, we will try to find the best
technical solutions to improve the efficiency of their use in response to environmental
concerns. Most irrigation systems on sale in the market are based on control with
no prediction techniques. The excess of water in the soil, which is frequently a
result of these techniques, is responsible for significant water waste. Understanding
the behaviour of humidity in the soil by mathematical/statistical modeling allows,
among others, an efficient planning of water use via irrigation systems [1].

According to IPMA, the Portuguese Institute for the Ocean and Atmosphere
(September 30, 2017), about 81% of Portugal’s mainland was in severe drought,
7.4% in extreme drought, 10.7% in moderate drought and 0.8% in weak drought.
2017 was an extremely dry year and, considering the data from January 1st, 2017 to
December 27th, 2017, it will be among the 4 driest years since 1931 (all occurred
after 2000), and the average annual total precipitation will be about 60% of what
is deemed normal. The period from April to December, with persistently negative
precipitation abnormalites, will be deemed the driest of the last 87 years. In the
media, several news mention the various problems that Portugal has to face, such as
producing animal feed, supplying water to the population and, very important, the
lack ofwater for agriculture purposes.Water resources aremainly used in agriculture:
about 70% of freshwater is used in agriculture. Consequently, there is much that can
be done to save water, and this is of the utmost importance for our planet. Therefore,
the main challenge in project The Optimal Challenges in Irrigation (TO CHAIR)
is to study how to manage irrigation problems as an optimal control problem: the
daily irrigation problem of minimizing water consumption. For that it is necessary to
estimate and forecast weather variables (like minimum air temperature) in real time
in each irrigation area, in order to determine, in particular, the evapotranspiration
(related to the irrigation planning problem). Our data source are the records of the
variable minimum air temperature observed in a farm located in Vila Real County,
in northern Portugal, in the field of agriculture irrigation, registered in the period
from January 23rd, 2015 to August 11th, 2018 on a daily basis. The main goal is
to forecast these environmental variables at a location (in this case, at the farm),
where there are historical observations but current measurements are not available
(including various steps for forecasting (i.e., 7 days)).
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27.2 Methodology

A time series is an ordered sequence of values of a variable at equally spaced time
intervals, in this case daily minimum air temperature at a weather station. Time series
forecasting is an important area in which past observations of the same variable are
collected and analyzed to develop amodel describing the underlying relationship. The
model is then used to extrapolate the time series into the future. Forecasting methods
are a key tool in decision-making processes in many areas, such as economics, agri-
culture, management or environment. There are several approaches to modeling time
series, but we decided to study and to compare the accuracy of the TBATSmodel and
the regression with correlated errors model for forecasting weather/meteorological
time series, because both models can increase the chance of capturing the proprieties
and the dynamics in the data and improving accurate forecasts. Both methods have
the ability to deal with time series with high-frequency seasonality.

The time series analysis (of both processes) was carried out using the statis-
tical software R programming language and specialized packages for modeling and
forecasting [2].

27.2.1 TBATS

TBATS model is a time series model for series demonstrating multiple/complex
seasonality. The TBATS model was introduced by De Livera, Hyndman and Snyder
(2011, JASA). TBATS is an abbreviation denoting its salient types: T for trigono-
metric regressors to model multiple seasonality, B for Box-Cox transformations, A
for ARMA errors (autoregressive moving average), T for trend and S for seasonality
[3, 4]. The model including a Box-Cox transformation (the notation y(w)

t is used to
represent Box-Cox transformed observations with the parameter w, where yt is the
observation at time t), ARMA errors, and T seasonal patterns is as follows:

y(w)
t =

{ yw
t −1
w

,w �= 0
log yt , w = 0

y(w)
t = �t−1 + φbt−1 +

T∑
i=1

S(i)
t−mi

+ dt (27.1)

�t = �t−1 + φbt−1 + αdt

bt = (1 − φ)b + φbt−1 + βdt

s(i)
t = s(i)

t−mi
+ γi dt (27.2)
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dt =
p∑

i=1

ϕi dt−i +
q∑

i=1

θiεt−i + εt

where m1, . . . ,mT denote the seasonal periods, �t is the local level in period t , b is
the long-run trend, bt is the short-run trend in period t , s

(i)
t represents the i th seasonal

component at time t , dt denotes an ARMA (p, q) process and εt is a Gaussian white
noise process with zero mean and constant variance σ 2. The smoothing parameters
are given by α, β and γi for i = 1, . . . , T . φ is the damping parameter representing
the damped trend (the damping factor is included in the level and measurement
equations as well as the trend equation).

To introduce the trigonometric representation of seasonal components based on
Fourier series (trigonometric representation of seasonal components based onFourier
series), [5, 6], the s(i)

t can be rewritten as follows:

s(i)
t =

ki∑
j=1

S(i)
j,t

s(i)
j,t = s(i)

j,t−1 cos λ
(i)
j + s(i)

j,t−1 sin λ
(i)
j + γ

(i)
1 dt

S∗(i)
j,t = −s j,t−1 sin λ

(i)
j + s∗(i)

j,t−1 cos λ
(i)
j + γ

(i)
2 dt

where γ
(i)
1 and γ

(i)
2 are smoothing parameters and λ

(i)
j = 2π j/mi . The stochastic

level of the i th seasonal component is represented by s(i)
j,t , and the stochastic growth

in the level of the i th seasonal component that is needed to describe the change in the
seasonal component over time by S∗(i)

j,t . The number of harmonics required for the i th
seasonal component is denoted by ki . The approach is equivalent to index seasonal
approaches when ki = mi/2 for even values of mi , and when ki = (mi − 1)/2 for
odd values of mi . It is anticipated that most seasonal components will require fewer
harmonics, thus reducing the number of parameters to be estimated. A deterministic
representation of the seasonal components can be obtained by setting the smoothing
parameters equal to zero.

Anewclass of innovations state spacemodels is obtained by replacing the seasonal
component s(i)

t in Eqs. (27.1) and (27.2) by the trigonometric seasonal formulation,
and the measurement equation by

y(w)
t = �t−1 + φbt−1 +

∑t

i=1
S(i)
t−1 + dt

This class is designated by TBATS, the initial T connoting “trigonometric”. To
providemoredetails about their structure, this identifier is supplementedwith relevant
arguments to give the designation

TBATS (ω, φ, p, q, {m1, k1}{m2, k2}, . . . , {mT , kT })
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A TBATSmodel requires the estimation of 2(k1 + k2 + . . . + kT ) initial seasonal
values.

27.2.2 Regression Model with Correlated Errors

An important approach in forecasting time series, particularly meteorological time
series, involves fitting regression models (RM) to time series including trend and
seasonality components. The RM models are originally based on linear modeling,
but they also allow parameters such as trend and season to be added to the data. In this
study, the trend parameter will be fitted with polynomial function, and the season
parameter will be estimated with Fourier series. But for the RM to be validated,
the error terms must be a sequence of uncorrelated and Gaussian (with mean 0 and
variance constant).

Also, one of the most popular ways of time series modeling is autoregressive inte-
grated moving average (ARIMA) modeling introduced by Box and Jenkins in 1960s
to forecast time series [7]. An ARIMA(p, d, q) model can account for temporal
dependence in several ways. Firstly, the time series is d-differenced to render it
stationary. If d = 0, the observations are modeled directly, and if d = 1, the differ-
ences between consecutive observations aremodeled. Secondly, the time dependence
of the stationary process {Yt } is modeled by including p autoregressive models.
Thirdly, q are moving average terms, in addition to any time-varying covariates. It
takes the observation of previous errors. Finally, by combining these three models,
we get the ARIMA model. Thus, the general form of the ARIMA models is given
by:

yt = c +
p∑

i=1

ϕiyt−i +
q∑

j=1

θjεt−j

where yt is a stationary stochastic process, c is the constant that determines the
level of the time series, εt is the error or white noise disturbance term, ϕi means
autoregressive coefficient and θ j is the moving average coefficient. For a seasonal
time series, these steps can be repeated according to the period of the cycle, whatever
time interval.

A regressionmodel (RM)with correlated errors inwhich are incorporated external
regressors in the form of Fourier terms (to account for the seasonal behavior) are
added to an ARIMA (p, d, q) model [8]. These models are regression models (RM)
which include a correction for autocorrelated errors, [9, 10]. Hence, we can add
ARIMA terms to the regression model to eliminate the autocorrelation. To do this,
we re-fit the regression model as an ARIMA (p, d, q) model with regressors, and
specify the appropriate AR (p) or MA (q) terms to fit the pattern of autocorrelation
we observed in the original residuals.
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So, in this regression model we apply the Fourier series to model seasonal pattern
by using Fourier terms with short-term time series dynamics allowed in the error,
and we consider the following model:

yt = c +
K∑

k=1

[
αksin

2πkt

m
+ βkcos

2πkt

m

]
+ et (27.3)

where et is an ARIMA process, αk and βk are Fourier coefficients and m is a length
of period. The value of K is chosen by minimizing forecast error measures [11].

27.2.3 Forecast Error Measures

Let’s denote the actual observation for time period t by yt and the estimated or
forecasted value for the same period by ŷt , and n is the total number of observations.
The most commonly used forecast error measures are the mean error (ME), the root
mean squared error (RMSE), and the mean absolute error (MAE). They are defined
by the following formulas, respectively:

ME = 1

n

n∑
t=1

(
yt − ŷt

)

RMSE =
√√√√1

n

n∑
t=1

(
yt − ŷt

)2

MAE = 1

n

n∑
t=1

|yt − ŷt |

When comparing the performance of forecast methods on a single dataset, the
MAE is interesting for it is easy to understand, but the RMSE is more valuable
because it is more sensitive than other measures to the occasional large error (the
squaring process gives disproportionate weight to very large errors).

TheMASEwas proposed byHyndman andKoehler (2006) for comparing forecast
accuracies. The MASE is given by the formula:

MASE = MAE

Q

where Q is a scaling statistic. For a seasonal time series, a scaling statistic can be
defined using the seasonal naïve forecasts:
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Q = 1

n − m

n∑
j=m+1

∣∣y j − y j−m

∣∣

where the seasonal naïve method accounts for seasonality by setting each prediction
to be equal to the last observed value of the same season.

When comparing forecastingmethods, themethodwith lowestME,RMSE,MAE,
or MASE is the preferred one. Frequently, different accuracy measures will lead to
different results as to which forecast method is the best, [12, 13].

27.3 Minimum Air Temperature Forecasting

27.3.1 Data

In the present study, we focus on a minimum temperature dataset. Figure 27.1 shows
the time series distribution in the total observed period: between January 23rd, 2015
to August 11th, 2018 (1327 days). The graphical representation clearly shows that
time series exhibits seasonal behaviour, as is expected due to the environmental
nature of the data. The daily data exhibits a strong annual seasonality (a period of
365 days, because we have excluded the days 29th of February during the period
under observation) with extreme values in cold seasons. Moreover, the variation
seems to be also larger in cold seasons than in warm ones.

Table 27.1 presents descriptive of statistics for the minimum temperature time
series during the observed period by month. As expected, the minimum temper-
ature is higher in the summer months and presents lower values in the winter
months. Themonthly standard deviations (SD) indicate a larger variability during the
months of November, December, January and February. Minimum air temperature
is characterised by a symmetric distribution (presenting values near zero) by month.

Fig. 27.1 Daily time series ofminimum air temperature distribution in the farm during the observed
period
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Table 27.1 Descriptive statistics of the daily Minimum Air Temperature distribution by month

Months Range Mean SD Skewness Nº Days

January −4.90–11.60 3.03 4.02 0.14 102

February −4.60–−10.40 2.89 3.39 0.06 112

March −1.30–10.50 4.20 2.61 0.08 124

April 0.30–13.10 6.71 2.50 0.02 120

May 1.40–16.40 9.34 2.82 0.20 124

June 5.40–18.90 12.36 2.99 0.17 120

July 8.70–18.30 13.95 2.29 0.12 124

August 7.60–21.40 13.83 2.71 0.22 124

September 4.70–20.00 11.06 2.93 0.54 101

October 3.00–15.80 0.20 2.86 0.06 93

November −2.10–12.10 4.80 3.62 0.27 90

December −2.00–10.20 3.29 3.57 -0.07 93

Fig. 27.2 Box-plots of the daily distribution ofMinimumAirTemperature bymonth in the observed
period

Figure 27.2 presents box-plots of daily minimum temperature by month. The
box-plots are able to identify some moderate outliers in some months (April, May,
August, and September).

27.4 Results

The results obtained from the application of TBATS and RM with correlated errors
methods are reported in this section. Themethods considered in this study are applied
to two sets: training data (in-sample data) and testing data (out-of-sample data) in
order to testify the accuracy of the proposed forecastingmodels. The selected training
period was from January 23rd, 2015 to January 22nd, 2018 (first 1095 observations)
and was used in order to fit the models to data, and the test period with the last 232
observations (period between January 23rd, 2018 to August 11th, 2018) was used
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to forecast. This approach gives the ability to compare the effectiveness of different
methods of prediction.

27.4.1 TBATS

The minimum air temperature data are observed daily and show a strong annual
seasonal pattern, so the length of seasonality of the time series is m1 = 365. The
time series exhibits an upward additive trend and an additive seasonal pattern, that
is, a pattern for which the variation does change with the level of the time series.

As a second step, an ARMA model was fitted to the residuals with (p, q) combi-
nations, and it was discovered that the TBATS (1, 1, 0, 4, {365, 3}) model minimizes
the AIC. AIC is known as the Akaike’s information criteria. The estimated parame-
ters for the TBATS model are shown in Table 27.2. No Box-Cox transformation is
necessary for this time series (so, w = 1). The estimated values of 0 for β and 1 for
φ imply a purely deterministic growth rate with no damping effect. The model also
implies that the irregular component of the series is correlated and can be described
by an ARMA (0,4) process, and that a strong transformation is not necessary to
handle nonlinearities in the series.

In the final model, σ = 2.3109 and the AIC is 9533.843.
In Fig. 27.3 are represented the original values of the air minimum temperature,

the estimates in the modeling period (training period), the forecasts in the forecasting
period (testing period) and the forecast intervals for a confidence level of 90% and
95% by applying the TBATS model.

Table 27.2 Estimated parameters for application of the TBATS method

Parameters estimates

w φ α β γ1 γ2 θ1 θ2 θ3 θ4

1 1 0.0133 0 −1.4580e–05 −4.6799e–05 0.6868 0.3734 0.2035 0.0339

Fig. 27.3 Observed estimates and forecasts (with 90 and 95% confidence bounds) for minimum
temperature time series using TBATS model
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Fig. 27.4 Residuals time series, autocorrelation function and histogram of residuals (TBATS
model)

The model validation was assessed by means of the residuals analysis (Fig. 27.4).
The independency assumptionwas assessed by estimating the autocorrelation and the
partial autocorrelation functions of residuals and the assumption that the residuals are
identically normally distributed was also verified (by performing the Kolmogorov-
Smirnov test).

27.4.2 Regression Model with Correlated Errors

In this study, we use the regression model in the basic form yt = bt + st + et , where
bt and st represent the trend and the seasonal components of the time series at time t ,
respectively.We apply the Fourier series tomodel the seasonal component (Eq. 27.3).
The value of K can be chosen by minimizing predictions errors (minimizing AIC).

We consider the model with data having a long seasonal period (365 for daily
data, i.e.,m = 365). To choose the best RM, we ran the model by varying K, and the
smallest forecast errors was when K = 2.

The analysis of residuals indicates the existence of a temporal correlation structure
in the residuals. The minimum of AIC where et is an ARIMA (p, d, q) process, in
this case an ARIMA (2, 0, 0), i.e., an AR (2) process.

Table 27.3 presents the estimated parameters and the respective standard errors,
for the RM with AR (2) errors.

In the final model, σ = 2.3130 and the AIC is 4953.53.
In Fig. 27.5 are represented the original values of the air minimum temperature,

the estimates in the modeling period (training period), the forecasts in the forecasting
period (testing period) and the forecast intervals for a confidence level of 90 and 95%
by applying the regression model with correlated errors (AR(2)).
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Table 27.3 Estimated parameters for the application of the RM with correlated errors, and the
correspondent standard errors

Parameters estimates

c φ1 φ2 α1 α2 β1 β2

7.9060 0.6903 −0.0911 −5.5754 0.4597 −0.0691 0.1797

Standard error of parameters estimates

se (c) se(φ1) se(φ2) se(α1) se(α2) se(β1) se(β2)

0.1737 0.0301 0.0301 0.2452 0.2450 0.2458 0.2455

Fig. 27.5 Observed, estimates and forecasts (with 90 and 95% confidence bounds) by using RM
with correlated errors

The regression model with correlated errors model validation was assessed by
means of the residuals analysis (by applying the same assumptions made in the
model validation of TBATS), Fig. 27.6.

Fig. 27.6 Residuals time series, autocorrelation function and histogram of residuals (RM with
correlated errors)
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Table 27.4 Forecasting performance evaluation of TBATS and RM with correlated errors of
minimum temperature time series

Model ME RMSE MAE MASE

TBATS 0.0334 2.3110 1.8339 0.9040 Training period

RM with AR(2) −0.0010 2.3056 1.8376 0.9059 Training period

TBATS 0.1766 2.9284 2.3395 1.1533 Testing period

RM with AR(2) 0.0229 2.8688 2.3006 1.1342 Testing period

27.4.3 Models Performance

The residuals performance in both processes modeling is consistent with the white
noise process as seen in Figs. 27.4 and 27.6, so we can conclude the validity and
adequacy of the two fitted models.

Table 27.4 shows the result of the accuracy measures calculated for training and
testing periods for the twomethods applied to the time series under study. The perfor-
mance comparisons of the competingmodels (TBATSandRMwith correlated errors)
were evaluated using ME, RMSE, MAE, and MASE. The results obtained showed
that the regression model with correlated errors, which requires fewer parameters to
be estimated, is more accurate than TBATS, and performs better for all period times
(training and test periods).

From the two models performed, we selected the most adequate model which has
the lowest forecast error when comparing predicted data using a suitable test set:
regression model with correlated errors. Therefore, RM with correlated errors can
more efficiently capture the dynamic behaviour of the weather property, minimum
air temperature, compared to TBATS.

27.5 Conclusions

In this study, we have shown that both TBATS and RM with correlated errors (for
forecasting time series with complex seasonal patterns) can efficiently capture the
behaviour of air temperature in the studied site. The obtained results show that
the application of TBATS and RM with correlated errors methods to the minimum
air temperature provides valuable insights into the studied data structures and their
components, being a good basis for accurate estimations and forecasts. However we
have to further explore the features of the two models, and we need to investigate
more.

Our preliminary findings show that, in this case (minimum air temperature at
this farm) RMwith correlated errors is better than the TBATS model for forecasting,
becausewithin the scope of TOCHAIR project we intend to obtain accurate forecasts
of this weather variable for the following 7 days in the farm in order to solve the
irrigation problems.
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