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Abstract

In recent years, an increasing number of
investigations has demonstrated the therapeu-
tic potential of molecules targeting the
endocannabinoid system. Cannabinoids of
endogenous, phytogenic, and synthetic nature
have been assessed in a wide variety of disease
models ranging from neurological to meta-
bolic disorders. Even though very few
compounds of this type have already reached
the market, numerous preclinical and clinical
studies suggest that cannabinoids are suitable
drugs for the clinical management of diverse
pathologies.

In this chapter, we will provide an overview
of the endocannabinoid system under certain
physiopathological conditions, with a focus on
neurological, oncologic, and metabolic
disorders. Cannabinoids evaluated as potential
therapeutic agents in experimental models
with an emphasis in the most successful chem-
ical entities and their perspectives towards the
clinic will be discussed.
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4.1 Introduction

Components from the plant Cannabis Sativa as
well as synthetic derivatives developed by aca-
demic and industry researchers have been exten-
sively studied as therapeutics in the past few
decades. However, very few have successfully
entered the clinical scenario, thus far. Numerous
ongoing investigations are trying to decipher the
potential of these chemical entities in the treat-
ment of a wide variety of diseases.

A growing number of preclinical studies
published in the last years highlight the therapeu-
tic actions of these compounds in different exper-
imental models. Therefore, medical efforts and
patient hopes are quite high for the development
of cannabinoids as pharmacological agents for
metabolic, neurological, or oncologic diseases
among others. Presumably, in the near future,
this field will greatly benefit patients with other-
wise difficult to treat disorders. It is noteworthy
that in June 2018, the U.S. Food and Drug
Administration approved the non-psychoactive
phytocannabinoid cannabidiol (CBD,
commercialized as Epidiolex®) for the treatment
of seizures in children with Lennox–Gastaut and
Dravet syndromes (Devinsky et al. 2018, 2019).

Cannabinoids are molecules that target the
endocannabinoid system (ECS), which are
involved in the regulation of numerous physio-
logical and pathological processes. These
compounds may bind or modulate one or various
receptors that are part of ECS. Thus far, two
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G-protein-coupled receptors (GPCRs) have been
identified as the two major cannabinoid receptors
CB1 and CB2. CB1 is mostly found in the central
nervous system, while CB2 is predominantly in
the immune system among other organs and
tissues (Matsuda et al. 1990; Herkenham et al.
1991; Demuth and Molleman 2006). Their
endogenous ligands (endocannabinoids) and the
enzymes implicated in their biosynthesis and deg-
radation [(fatty acid amide hydrolase (FAAH) and
monoacylglycerol lipase (MAGL)] are also part
of this intricate system (Mechoulam et al. 1995,
1996; Beltramo et al. 1997; Fu et al. 2011;
Marsicano and Chaouloff 2011). Whether addi-
tional cannabinoid receptors are part of the ECS
still instigates a strong debate (Morales and
Reggio 2017). Recent studies have shown that
several cannabinoid ligands bind to the receptor
GPR55 (Morales and Jagerovic 2016) and
GPR18 (McHugh et al. 2010), supporting the
idea that they may play an important role in
ECS. Moreover, there is extensive evidence
indicating that ECS also interacts with a number
of established non-CB1, non-CB2 GPCRs, ion
channels, and nuclear receptors (Pertwee et al.
2010; Morales et al. 2017; Morales and Reggio
2017).

4.1.1 Cannabinoid Classifications

Cannabinoid classifications have been established
according to their pharmacology, their molecular
structure, or their origin. Attending to the last
criterion, cannabinergic compounds can be clas-
sified as endogenous (endocannabinoids),
phytogenic (phytocannabinoids), and synthetic
compounds.

4.2 Endocannabinoids

Endocannabinoids are endogenous lipidic
molecules that bind to the cannabinoid receptors
mediating retrograde neurotransmission (Wilson
and Nicoll 2001). This family of compounds is
formed by eicosanoids derived from arachidonic
acid and other polyunsaturated fatty acids.

Anandamide (AEA) and 2-arachidonoylglycerol
(2-AG, Fig. 4.1) are the first endocannabinoids
discovered and are most abundant in the human
brain (Basavarajappa 2007). AEA partially
activates both cannabinoid receptors CB1 and
CB2, whereas 2-AG fully activates both of them.
(Di Marzo et al. 1994; Stella et al. 1997). Other
endocannabinoids identified include
2-arachidonoylglyceryl ether (noladin ether,
2-AGE), O-arachidonoyl ethanolamine
(virodhamine), and N-arachidonoyl-dopamine
(NADA) (Fig. 4.1).

The endocannabinoid tone is sustained by
enzymes that synthesize and degrade these
eicosanoids. Due to the physiopathological impli-
cation of this machinery, diverse drug discovery
approaches have explored the modulation of the
endocannabinoid tone. Strategies such as inhibi-
tion of degrading enzymes, positive allosteric
modulation of CB1 and/or CB2, and development
of endocannabinoid mimetics with a lower affin-
ity towards metabolic enzymes have shown
promising results in preclinical models (Pertwee
2005; Di Marzo 2018). Medicinal chemistry
programs have developed synthetic analogs of
endocannabinoids with structural modifications
at key positions following the aforementioned
strategies. Instances of this approach are ACEA
(arachidonyl-20-chloroethylamide) or ACPA
(arachidonylcyclopropylamide, Fig. 4.1), analogs
of AEA with improved CB1 affinity (Hillard et al.
1999). (R)-(+)-Methanandamide (Met-AEA,
Fig. 4.1), a methylated AEA derivative, displays
the same functional profile at the cannabinoid
receptors while being longer-lived because it is
more difficult for FAAH to metabolize.

4.3 Phytocannabinoids

To date, over 120 cannabinoids, termed
“phytocannabinoids”, have been isolated from
the Cannabis plant. These compounds bear a
benzone-1,3-diol or a benzopyran ring and a
hydrophobic alkyl chain. Δ9-tetrahydrocannabi-
nol (Δ9-THC) and cannabidiol (CBD, Fig. 4.1)
are the most abundant cannabinoids in the plant
and the most widely studied. Other
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phytocannabinoids include cannabinol (CBN),
cannabigerol (CBG), and cannabichromene
(CBC) (Fig. 4.1).

Phytocannabinoids exhibit different activities
at the cannabinoid receptors CB1 and CB2

(Morales and Reggio 2017). Δ9-THC has been
consistently shown to activate CB1 and CB2 with
similar potency. Many of the therapeutic effects
as well as the psychotropic outcomes of Cannabis
Sativa are due to this phytocannabinoid. The
non-psychoactive plant derivative CBD has also
shown pharmacological potential in a wide range
of pathologies (Mechoulam et al. 2007). Its func-
tional profile at ECS is quite complex and is
currently being investigated by diverse research
groups (Morales and Reggio 2019) (Fig. 4.2).

Synthetic cannabinoid derivatives have been
developed in the search for improved therapeutics
and often trying to dissociate CB1 and CB2 activ-
ity. Structure-activity relationship studies of
phytocannabinoid analogs have helped to under-
stand the molecular requirements for cannabinoid
activity. Derivatization at pharmacophoric
positions including the alkyl lipophilic chain, the
phenolic, and the pyran ring has resulted in
compounds with a cannabinoid selective profile.
Widely studied synthetic phytocannabinoid
derivatives include CP55,940, HU210, JWH133,
and HU308 (Fig. 4.3). CP55,940 and HU210 are
very potent CB1/CB2 agonists, whereas the deoxy

and the methoxy-Δ9-THC derivatives JWH133
and HU308 are CB2 agonists with significant
selectivity over CB1 (Huffman 2000). The only
structural modification of Δ9-THC that has led to
an approved drug, thus far, is nabilone (Fig. 4.3).

4.4 Synthetic Cannabinoids

The therapeutic relevance of ECS has prompted
the identification of numerous synthetic cannabi-
noid scaffolds. Strategies for the development of
cannabimimetic compounds include the design of
drugs that selectively activate or block CB1 or
CB2, molecules that can act as allosteric
modulators or biased agonists of these receptors,
inhibitors of the metabolic enzymes FAAH or
MAGL, as well as the development of
compounds acting at peripheral cannabinoid
receptors (Morales and Jagerovic 2020). These
synthetic cannabinoids aim to provide optimized
therapeutic effects and pharmacokinetical profile,
while reducing undesirable side actions.

As we will describe in the following sections,
numerous synthetic compounds have been used
as pharmacological tools or therapeutic agents in
different disease models.

The best-known compounds of this synthetic
family involve aminoalkyindoles, such as R-(+)-
WIN55,212–2 (D’Ambra et al. 1992) and
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Fig. 4.1 Structures of endogenous cannabinoids and synthetic endocannabinoid derivatives
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JWH-015 (Fig. 4.4), CB1/CB2 and CB2 agonists,
respectively; arylpyrazoles, such as SR141716A
(rimonabant) (Rinaldi-Carmona et al. 1994) or
AM251 (Fig. 4.4), CB1 antagonist/inverse
agonists; or indole-2-carboxamides such as
ORG27569 (Fig. 4.4), identified as the first CB1

allosteric modulator (Price et al. 2005).
In the following sections, we will describe the

ECS upregulation in diverse pathologies to pro-
vide an overview of the chemical entities
evaluated in experimental disease models. Their
potential for further drug development or their
progress towards the clinic will be also discussed.

4.5 Cannabinoids
in Neuromodulation

ECS has a crucial role in mediating and
modulating physiological responses in the central
nervous system (CNS). ECS has been shown to
be involved in synaptic plasticity and homeostatic
processes in the brain. Therefore, it is not
surprising that numerous reports have proved
the dysregulation of cannabinoid receptor expres-
sion under specific neurological disorders
providing a therapeutic scenario for the use of
cannabinoids.

CB1 is one of the most abundant GPCRs in
CNS, its expression is found particularly high in
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the basal ganglia, neocortex, hippocampus, and
cerebellum CNS (Herkenham et al. 1991;
Marsicano and Kuner 2008). The CB1 receptors
are highly present at the presynaptic and axonal
compartments, and thus their function is tightly
associated with synaptic activity (Straiker and
Mackie 2005). The activation of these receptors
has been found to positively affect inwardly
rectifying potassium channel conductance, while
triggering a decrease in the N-type and P/Q-type
voltage-operated calcium channel conductance
and to reduce endocannabinoid production. This
cascade of events leads to a decrease of neuro-
transmitter release at excitatory and inhibitory
synapses conferring to CB1 the ability to modu-
late neurotransmission (Katona et al. 1999;
Blázquez et al. 2011). Numerous investigations
have demonstrated that the CB1 receptors exhibit
neuroprotective effects against excitotoxicity
induced by diverse stimuli (Marsicano et al.
2003). Therefore, multiple pathophysiological
events, ranging from neurodegenerative disorders
to memory deficits, have been associated with
their actions (Kano et al. 2009; Di Marzo et al.
2015).

Moreover, the CB2 receptors, although
initially thought to be peripherally restricted,
have been found in particular brain regions offer-
ing a very promising therapeutic approach in cer-
tain neurological diseases. At a central level, the

expression of these receptors is enhanced upon
inflammation being mainly localized in the
microglia (Fernández-Ruiz et al. 2015). Since
neuroinflammatory alterations are associated
with several neurological pathologies, the CB2

receptor agonists offer a promising therapeutic
approach for the treatment of these disorders
(Roche and Finn 2010; Navarro et al. 2016).

4.5.1 Cannabinoids in Epilepsy

Epilepsy is characterized by an imbalance
between excitatory and inhibitory neurotransmit-
ter release and abnormal neuronal electrical activ-
ity. Even though, antiepileptic drugs have been
shown to limit seizures, over 30% of patients
remain pharmacoresistant (Kwan et al. 2011). In
this scenario, increasing research demonstrates
that the exogenous modulation of ECS offers a
promising and effective option for the treatment
of refractory epilepsy (Rosenberg et al. 2015;
Billakota et al. 2019). Although, the exact molec-
ular mechanisms are still under investigation, the
anticonvulsant potential of cannabinoids is
supported by their neuromodulatory effects and
their ability to inhibit hyperexcitability
(Rosenberg et al. 2015).

Diverse phytocannabinoids, including Δ9-
THC, Δ9-THCA (Δ9-tetrahydrocannabinolic
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acid, Fig. 4.5), Δ9-THCV (Δ9-tetrahydrocan-
nabivarin, Fig. 4.5), CBD, and CBDV
(cannabidivarin, Fig. 4.5), have shown anticon-
vulsant effects in different experimental models
of seizures. Whereas, very few studies have been
reported for the use of Δ9-THCA, Δ9-THCV, and
CBDV, abundant data support the potential use of
Δ9-THC and CBD for the treatment of epilepsy
(Gaston and Friedman 2017).

Most studies have supported the anticonvul-
sant potential of Δ9-THC, however, some
experiments have revealed mixed or no effects
(Rosenberg et al. 2015). Among cannabinoids,
the non-psychoactive phytocannabinoid, CBD is
currently the best hope for the treatment of refrac-
tory epileptic seizures. Its potent anticonvulsant
actions have been widely demonstrated in in vitro
and in vivo human studies leading to CBD’s
approval for the management of seizures in chil-
dren with Lennox–Gastaut and Dravet syndromes
(Devinsky et al. 2018, 2019). Placebo-controlled
clinical trials revealed that CBD is well-tolerated
and does not present side effects on CNS or vital
signs (Bergamaschi et al. 2011; Friedman et al.
2019).

The proposed mechanisms of CBD anti-
epileptogenic actions include the activation of
TRPV1 channels (Bisogno et al. 2001), blockage
of T-type voltage-gated calcium channels
(VGCC) (Ibeas Bih et al. 2015), and modulation
of GPCRs including the cannabinoid receptors
CB1 and CB2 (Wallace et al. 2001, 2002),
GPR55, the adenosine receptors A1 and A2
(Gaston and Friedman 2017), and the serotonin
receptors 5-HT1A and 5-HT2A (Sourbron et al.
2016).

Synthetic cannabinoids have also been tested
in preclinical seizures models (Rosenberg et al.
2015). FAAH inhibitors such as URB597 and

AM404 (Fig. 4.6) did not exert significant anti-
convulsant actions in animal models. Likewise,
the CB1 antagonists, including SR141716A and
AM251 (Fig. 4.4), were not successful in the
assessed models. CB1 agonists, such as
WIN55,212–2 (Fig. 4.4) and ACEA (Fig. 4.1),
showed anti-seizure effects, although
proconvulsive effects were reported in a low per-
centage of cases (Rosenberg et al. 2015). In fact,
one study suggested that the CB1 agonists may
exhibit proconvulsant effects at high doses via
TRPV1 activation (Manna and Umathe 2012).

In summary, the activation of ECS exerts anti-
epileptic effects whereas inhibition of the endog-
enous cannabinoid machinery does not prevent
seizures in reported epilepsy models.

4.5.2 Cannabinoids in Alzheimer’s
Disease

Alzheimer’s disease (AD) is a neurodegenerative
disorder that is defined by the progressive deteri-
oration of cognition and memory caused by the
formation of β-amyloid plaques and neurofibril-
lary tangles. Alteration of ECS has been identified
in animal models and human postmortem samples
in the AD brain, especially in the hippocampus
and cerebral cortex brain regions severely
affected by this disease. AD patients experience
a loss of the neuronal CB1 receptors (Ramírez
et al. 2005), while significant upregulation of the
CB2 receptors in microglial cells has been exten-
sively reported (Benito et al. 2003; Aso and
Ferrer 2016; López et al. 2018). Additionally,
increased 2-AG and elevation of FAAH enzymes
have also been associated with the progression of
AD pathogenesis (Benito et al. 2003).
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The enhanced 2-AG levels along with the
increased CB2 receptors expression in microglial
cells have been proposed to exert protective
effects against β-amyloid-induced
neuroinflammation and neuronal injury (Benito
et al. 2003; López et al. 2018). However, the
CB1 receptor downregulation in the hippocampus
and basal ganglia may contribute to the destruc-
tive inflammatory process experienced by the AD
patients (Ramírez et al. 2005). Increased FAAH
activity in astrocytes has been associated with the
formation of more arachidonic acid, which even-
tually leads to pro-inflammatory effects.

The exogenous modulation of ECS has shown
promising results in preclinical AD models. On
the one hand, CB1 activation has been reported to
prevent amyloid β-induced neurotoxicity in vitro
(Milton 2002; Benito et al. 2003; Ramírez et al.
2005) and to improve memory deficits and cogni-
tive impairment in diverse animal models (Van
Der Stelt et al. 2006; Haghani et al. 2012; Aso
et al. 2012). Moreover, the activation of the CB2

receptors has been reported to attenuate the
inflammation associated with AD modulating
Aβ aberrant processing (Aso and Ferrer 2016).
On the other hand, the inhibition of the
endocannabinoid enzymes, FAAH and MAGL,
has also been proposed as a potential therapeutic
strategy for AD (Benito et al. 2012).

Among the cannabinoids tested in AD experi-
mental models, the most promising results come
from the phytocannabinoids Δ9-THC, CBD, or
combinations of both (commercialized as
Sativex®) (Fernández-Ruiz et al. 2015). These
molecules, and the Δ9-THC synthetic derivative
nabilone (Fig. 4.3), have been shown to counter-
act specific pathological hallmarks of AD, such as
tau and β-amyloid aggregation, leading to cogni-
tive and behavioral improvements. The few clini-
cal trials performed so far confirmed the results

observed in the animal models of the disease.1

However, more controlled trials are needed to
evaluate the efficacy of cannabinoids in the man-
agement of the different stages of this neurode-
generative disease.

Synthetic cannabinoids with diverse pharma-
cological profiles have also been tested in AD
preclinical models. For instance, CB2 agonists,
such as the naphthoylindole, JWH-015
(Fig. 4.4), or the phytocannabinoid derivatives,
JWH-133 (Fig. 4.3), and HU-308 (Fig. 4.3), have
been shown to reduce plaque aggregation,
thereby exerting anti-inflammatory effects (Aso
and Ferrer 2016). Likewise, CB1/CB2 mixed
agonists including WIN55,212–2 (Fig. 4.4) and
HU-210 (Fig. 4.3) have been demonstrated to
have the ability to reduce pro-inflammatory
markers and improve cognitive performance in
the AD models (Ramírez et al. 2005; Martín-
Moreno et al. 2011). Although, more studies
need to confirm these effects, endocannabinoid
reuptake inhibitors, such as VDM11 (Fig. 4.7)
or MAGL inhibitors such as JLZ184 (Fig. 4.7),
can decrease amyloid neurotoxicity (Van Der
Stelt et al. 2006; Chen et al. 2012).

It has been extensively demonstrated that the
pleiotropic activity of cannabinoids can target
several crucial processes associated with
AD. This includes neuroinflammation,
β-amyloid and tau aberrant processing,
excitotoxicity, or oxidative stress. In a multifac-
torial disease, such as AD, this offers a promising
strategy. Hopefully, results from more clinical
trials will shed additional light into this research
such that AD patients worldwide can soon benefit
from cannabinoid therapy.
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1 Clinical trials: THC in Alzheimer Disease -
ClinicalTrials.gov. https://clinicaltrials.gov/ct2/results?
cond¼Alzheimer+Disease&term¼THC&cntry¼&
state¼&city¼&dist¼. Accessed 7 Oct 2019.
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4.5.3 Cannabinoids in Parkinson’s
Disease

Parkinson’s disease (PD) is a long-term degener-
ative disorder that mainly affects motor coordi-
nation, although non-motor symptoms also
appear with the progression of the disease. One
of the main pathological hallmarks of PD is cell
death in the basal ganglia, especially of dopami-
nergic neurons.

As in the previously mentioned neurological
disorders, ECS has been shown to be abnormally
regulated in this pathology. For instance, the
upregulation of the CB1 receptors has been
shown in the basal ganglia of experimental
models of PD (Stampanoni Bassi et al. 2017).
Moreover, a loss of the neuronal CB2 receptors
was detected in the postmortem tissues of PD
patients due to the degeneration of nigrostriatal
dopaminergic neurons (García et al. 2015).

Pharmacological cannabinoid strategies to
manage PD include activation of CB2, to control
inflammatory events, and blockage of CB1

receptors, to improve akinesia and reduce motor
inhibition. Since one of the main characteristics
of PD is high oxidative stress, the experiments
reported so far in the PD models have been
focused on the use of antioxidant phytocan-
nabinoids. The evaluation of Δ9-THC (Lastres-
Becker et al. 2005), CBD (Lastres-Becker et al.
2005; García-Arencibia et al. 2007; García et al.
2011), and Δ9-THCV (García et al. 2011) in
animal models revealed their ability to reduce
parkinsonian motor symptoms. In fact, clinical
trials to assess the potential of CBD, nabilone,

or Cannabis oils in the PD motor and non-motor
symptoms are currently ongoing.2

Synthetic cannabinoids such as the potent
CB1/CB2 receptor agonists WIN55,212–2 (Price
et al. 2009; More and Choi 2015) and CP55,940
(Jimenez-Del-Rio et al. 2008) or the AEA syn-
thetic derivative AM404 (García-Arencibia et al.
2007) have been shown to provide
neuroprotection in the PD models.

Even though further clinical research is
required, the knowledge gained in this field and
ongoing clinical efforts point towards a
cannabinoid-based neuroprotection for the treat-
ment of PD.

As thoroughly reviewed by others,
cannabinoids have been shown to impact many
other neurological disease models, such as multi-
ple sclerosis (MS), traumatic brain injury (TBI) or
amyotrophic lateral sclerosis (ALS), as well as
mental disorders including schizophrenia, anxi-
ety, or depression (Kendall and Yudowski 2017;
Aymerich et al. 2018; Ibarra-Lecue et al. 2018;
Friedman et al. 2019). Moreover, symptoms
associated with these diseases can also be treated
with cannabinoid-based medicines, for instance,
Sativex® is used for the symptomatic relief of
pain and spasticity in adults suffering from MS
(Giacoppo et al. 2017).

Even though much more research needs to be
conducted, the modulation of ECS is a great ther-
apeutic opportunity for the treatment of several
neuropsychiatric and neurodegenerative
disorders.
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2 Clinical trials: cannabinoids in Parkinson Disease-
ClinicalTrials.gov. https://clinicaltrials.gov/ct2/results?
cond¼Parkinson+Disease&term¼cannabis&cntry¼&
state¼&city¼&dist¼. Accessed 3 Oct 2019.
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4.6 Cannabinoids in Cancer

The ability of Cannabis to prevent nausea and
vomiting, stimulate appetite, and reduce pain
has been widely demonstrated. Therefore,
cannabinoids have been successfully used in the
treatment of specific cancer chemotherapy side
effects (Abrams and Guzman 2015).

A few decades ago, dronabinol (Marinol®)
and nabilone (Cesamet®) were approved to treat
emesis and nausea induced by antitumor agents
(Tramèr et al. 2001). However, they are only
prescribed in certain countries upon failure of
conventional anti-emetics (Sharkey et al. 2014).

Extensive research has demonstrated the palli-
ative potential of cannabinoids for cancer
patients. For instance, Δ9-THC acts as an appetite
stimulant increasing food intake in rodents. Clin-
ical trials confirmed this orexigenic effect in the
management of cancer anorexia (Jatoi et al. 2002;
Berry and Mechoulam 2002; Walsh et al. 2003).
Moreover, the ability of cannabinoids in reducing
chemotherapy-induced pain has also been
reported. Δ9-THC and synthetic analogs have
shown to act as potent analgesic drugs in diverse
clinical trials highlighting their beneficial role in
the treatment of cancer pain (Campbell et al.
2001; Iversen and Chapman 2002; Mantyh et al.
2002). Actually, Sativex® can be currently pre-
scribed in certain countries to reduce pain in
adults with advanced tumors (Pertwee 2009;
Fallon et al. 2017).

Preclinical data indicate that peripheral
neuropathies associated with cancer treatment
can also be ameliorated upon cannabinoid admin-
istration (Guindon et al. 2014). Synthetic agonists
such as the aminoalkylindole WIN55,212–2,
diminishes mechanical and cold allodynia in
rodent models of paclitaxel (Pascual et al. 2005),
vincristine (Rahn et al. 2007), and cisplatin-
evoked neuropathy (Vera et al. 2007). Moreover,
CBD is able to reduce doxorubicin-induced
cardiomyopathies (Hao et al. 2015) and
cisplatin-induced nephrotoxicity (Pan et al.
2009).

Besides their palliative potential, cannabinoids
have exhibited antitumor effects in numerous

in vitro and in vivo experimental models of can-
cer (Guzmán 2003; Chakravarti et al. 2014;
Velasco et al. 2016). Since the early 2000s, a
growing body of research has evidenced the
potential of cannabinoids in the reduction of
tumor growth and progression in diverse cancer
models (Galve-Roperh et al. 2000; Guzmán et al.
2002; Guzmán 2003; Carracedo et al. 2006;
Sarfaraz et al. 2008; Velasco et al. 2012).

ECS alterations have also been detected in
cancer physiopathology. Abnormal expression
of the ECS components in neoplasms compared
with healthy tissues has been detected (Guzmán
2003; Caffarel et al. 2006; Malfitano et al. 2011;
Velasco et al. 2012). These data can be tumor
type-specific and therefore, studies need to deter-
mine how ECS is regulated in each cancer type
(Malfitano et al. 2011; Velasco et al. 2016). In
specific cancer types, such as glioblastoma
(Schley et al. 2009) or specific breast tumors
(Qamri et al. 2009; Caffarel et al. 2010), increased
CB2 receptor levels have been shown. Other
tumors, including gastric carcinoma (Miyato
et al. 2009) or rhabdomyosarcoma (Oesch et al.
2009) are characterized by the overexpression of
the CB1 receptor. Upregulated expression of both
CB1 and CB2 has also been detected in acute
myeloid leukemia (Joseph et al. 2004) malignant
astrocytomas (Stella 2010), pancreatic cancer
(Carracedo et al. 2006), and hepatocellular carci-
noma (Giuliano et al. 2009) among others. Levels
of endocannabinoids, AEA and 2-AG, have also
been shown to differ between cancer cells and
their normal counterparts in specific tumors
(Bifulco et al. 2006). Upregulation of the putative
cannabinoid receptor, GPR55, has also been
observed in cells of diverse cancer types includ-
ing breast adenocarcinoma, squamous skin cell
carcinoma, or gliomas (Oka et al. 2010; Andradas
et al. 2011; Leyva-Illades and Demorrow 2013;
Pérez-Gómez et al. 2013). GPR55 expression has
been shown to correlate with proliferation and
thus, it has been proposed as a novel oncology
biomarker with a potential prognostic value
(Henstridge et al. 2011). Expression of GPR55-
CB2 heterodimers has also been reported in
human tumors (Moreno et al. 2014; Balenga
et al. 2014).
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Even if further research is required to clarify
the intricate role of this complex system in the
course of oncological processes, there is no doubt
that cannabinoids are useful drugs for the man-
agement of cancer and related symptoms.

As in previously described diseases, thus far,
preclinical and clinical studies on cannabinoids as
antitumor agents have been mainly focused on
understanding the mechanism of action of Δ9-
THC and CBD (Pellati et al. 2018; Hinz and
Ramer 2019). Δ9-THC has shown antiproli-
ferative effects in diverse cancer types including
glioblastoma, prostate, breast, colon, pancreatic,
lymphoma, or lung among others (Fowler 2015;
Fraguas-Sánchez et al. 2016). Mechanisms of this
antitumor action include the CB receptor-
dependent and independent pathways (Powles
et al. 2005). Moreover, CBD has been widely
proved to reduce tumor growth via proapoptotic
actions in numerous cancer cell lines (Hinz and
Ramer 2019). The anticancer effects of CBD have
been suggested to be mediated by several targets,
including COX-2, 5-LOX, PPARγ, TRPV2,
mTOR, and the p38 MAPK pathway (Ligresti
2006; Hinz and Ramer 2019). Clinical trials are
trying to unravel the antitumor potential of
phytocannabinoids (such as Δ9-THC) alone or
in combination with benchmark chemotherapeu-
tic agents in different types of cancer. Guzmán
et al. developed the first clinical trial to further
explore the antitumor actions of cannabinoids in
cancer patients. This pilot trial investigated the
effects of Δ9-THC on nine patients with recurrent
glioblastoma multiforme. The preliminary results
attained from this study suggest a reduction in
tumor growth upon Δ9-THC administration
(Guzmán et al. 2006). Ongoing clinical trials are
trying to decipher the potential antitumor role of
cannabinoids.3

Even if phytocannabinoids are in the forefront
towards the clinic, many other cannabinoids with
antitumor properties have been reported in the
literature (Morales and Jagerovic 2019). For

instance, the well-known aminoalkylindole
WIN55,212–2 is able to decrease cell prolifera-
tion and migration in models of different cancer
types, hepatocellular carcinoma (Xu et al. 2015),
neuroblastoma (Müller et al. 2017), myeloma
(Barbado et al. 2017), renal carcinoma (Khan
et al. 2018), prostate (Morell et al. 2016), or
gastric cancer (Xian et al. 2016) among them.

Moreover, it is worth highlighting the antican-
cer potential of cannabinoid quinones. Oxidized
derivatives of phytocannabinoids cannabidiol
(HU-331, Fig. 4.8), Δ8-THC (HU-336, Fig. 4.8)
and cannabinol (HU-345, Fig. 4.8) were effective
in reducing tumor growth in mice cancer models
(Kogan et al. 2004). However, their biological
activity was attributed to their quinone structure
independently of their cannabinoid character,
since they do not modulate the cannabinoid
receptors (Kogan et al. 2006, 2007). Para- and
ortho- quinones of chromenopyrazoles were also
reported as antitumor agents (Morales et al. 2013,
2015). These compounds were able to reduce
cancer proliferation through mechanisms that
involve the cannabinoid receptors. For instance,
para-quinones PM49 (Fig. 4.8) was able to
reduce prostate cancer in vitro and in vivo
(Morales et al. 2013). 1,4-naphthoquinone
derivatives, such as 3a (Fig. 4.8), have also been
reported to inhibit tumor proliferation. GPR55
has been proposed as the target through which
they exhibit their antitumor effects (Badolato
et al. 2019).

Currently, the use of cannabinoids is limited to
the management of chemotherapy-induced side
effects. Nevertheless, the aforementioned preclin-
ical data clearly evidence the antitumor potential
of cannabinoids. Hopefully, further clinical data
can soon confirm the therapeutic potential of
cannabinoids in the treatment of cancer.

4.7 Cannabinoids in Metabolic
Disorders

ECS has been recognized to play a crucial role in
the regulation of metabolic events, particularly in
energy balance, food intake, and lipid metabolism
(Scherma et al. 2014; Williams et al. 2015). This

3Clinical trials: cannabinoids in Cancer-ClinicalTrials.
gov. https://clinicaltrials.gov/ct2/results?cond¼Cancer&
term¼cannabinoid&cntry¼&state¼&city¼&dist¼
Accessed 29 June 2020.
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system has shown dysregulation in metabolic
pathologies including obesity. For instance, the
increased levels of circulating endocannabinoids
(Blüher et al. 2006; Matias et al. 2006) and
upregulation of the CB1 receptors have been
observed in obese rodents and human obesity
(Murdolo et al. 2007; Pagano et al. 2007). In
this disorder, ECS dysregulation has been
reported, not only in CNS but also at the periph-
eral level, in diverse organs including the pan-
creas, liver, and adipose tissues.

It is well-known that ECS activation induces
orexigenic effects (Rossi et al. 2018), therefore,
the inhibition of the CB1 receptors has been con-
sidered as a potential strategy for the management
of obesity and metabolic syndrome. In fact, the
CB1 antagonist/inverse agonist rimonabant
(SR141716A, Fig. 4.4, commercialized as
Acomplia®), was approved in certain European
countries in 2006 for the management of obesity
(Després et al. 2006). The anti-obesity effects of
this drug were accompanied by the undesired
effects such as depression, anxiety, headache,
and suicidal thoughts forcing its withdrawal
from the clinic, a couple of years later. Numerous
research projects from academia and the pharma-
ceutical industry were centered on the develop-
ment of CB1 receptor antagonists, however, the
psychiatric side effects of rimonabant led to a
significant decrease in the continuation of this
approach (Serrano et al. 2012; Silvestri and Di
Marzo 2012; Sharma et al. 2015; Yadav and
Murumkar 2018; Amato et al. 2019).

Other pharmacological strategies targeting
ECS, but without severe psychiatric side effects,
have been attempted. Peripherally restricted CB1

antagonists, such as URB447 and AM6545
(Fig. 4.9), have shown promising results in the
control of fat intake and obesity (DiPatrizio et al.
2011; Argueta and DiPatrizio 2017).

Moreover, molecules acting preferentially via
the CB2 receptors have shown efficacy in a rat
model of alcoholic hepatic steatosis by decreasing
the liver/body weight ratio and hepatic triglycer-
ide content (Lotersztajn et al. 2008, 2011). The
inhibitors of the enzymes involved in the degra-
dation of endocannabinoids, such as FAAH
inhibitors, has also shown potential for the regu-
lation of energy balance (Balsevich et al. 2018).
However, this approach should be taken with
caution, since the FAAH inhibitor BIA 10–2474
(Fig. 4.9) caused severe neurotoxicity in a phase I
clinical trial probably due to off-target effects
(Van Esbroeck et al. 2017).

Despite the clinical failures obtained so far,
ECS still represents a very promising pharmaco-
logical target to treat metabolic disorders.

4.8 Conclusions

It has been widely demonstrated that compounds
targeting ECS, particularly CB1 and/or CB2, have
therapeutic potential for the clinical management
of numerous diseases. These include neurological
disorders, metabolic pathologies, cancer, or
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Fig. 4.8 Structures of quinones related to cannabinoids with reported antitumor potential
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symptoms such as inflammatory and neuropathic
pain. However, just a few of these diseases can be
treated with cannabinoid-based medicines cur-
rently (Table 4.1).

Even though CB1/CB2 agonists are in the fore-
front of clinical research for neuroprotection or
cancer treatment, there is an increasing interest in
exploiting novel pharmacological approaches
(Picone and Kendall 2015). CB2 selective
agonists or peripherally restricted CB1/CB2

agonists exhibit a promising therapeutic potential
for treating various pathologies, while avoiding

the adverse psychotropic effects related to the
modulation of CB1 in the brain (Dhopeshwarkar
and Mackie 2014). CB1 and/or CB2 antagonists
or inverse agonists, as well as, allosteric cannabi-
noid ligands are also emerging and may prove
useful in the treatment of certain diseases (Picone
and Kendall 2015; Vemuri and Makriyannis
2015). Biased cannabinoid agonists can also
fine-tune the therapeutic effects, while
minimizing side effects associated with other
receptor pathways (Morales et al. 2018;
Al-zoubi et al. 2019). Even though
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Fig. 4.9 Structures of CB1 antagonists URB447 and AM6545 and FAAH inhibitor BIA 10–2474

Table 4.1 Representative cannabinoids that have been reported to exhibit therapeutic potential in specific diseases

Molecule Disease Development stage References

Δ9-THC Epilepsy Preclinical (Rosenberg et al. 2015)
AD Clinical (Fernández-Ruiz et al. 2015)

See footnote 1
PD Clinical See footnote 2
Cancer Clinical (Guzmán et al. 2006)

Δ9-THCA Epilepsy Preclinical (Gaston and Friedman 2017)
Δ9-THCV Epilepsy Preclinical (Hill et al. 2010)

PD Preclinical (García et al. 2011)
CBD Epilepsy In the marketa (Devinsky et al. 2018, 2019)

AD Preclinicalb (Martín-Moreno et al. 2011)
PD Clinical See footnote 2
Cancer Clinical (Ligresti 2006; Hinz and Ramer 2019)

CBDV Epilepsy Preclinical (Hill et al. 2012)
Nabilone PD Clinical See footnote 2

Cancer In the marketc (Sharkey et al. 2014)
WIN55,212–2 AD Preclinical (Martín-Moreno et al. 2011)

PD Preclinical (Price et al. 2009; More and Choi 2015)
SR141716A Obesity Withdrawn from the marketd (Després et al. 2006)
AM404 PD Preclinical (García-Arencibia et al. 2007)
BIA 10–2474 Obesity Failed in clinical trials (Van Esbroeck et al. 2017)
aApproved as Epidiolex®
bClinical trials currently recruiting
cApproved as Cesamet®
dCommercialized as Acomplia®
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phytocannabinoids are way closer to the bedside,
some of the aforementioned synthetic
cannabinoids may provide advantages in the
treatment of specific pathologies. Nonetheless,
more preclinical and especially clinical research
needs to be done in this field.
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