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An Introduction to Virus Infections
and Human Cancer

John T. Schiller and Douglas R. Lowy

1 The Burden of Virus-Induced Cancers

The determination that infection by a specific subset of human viruses is the pri-
mary cause of a substantial fraction of human cancers is one of the most important
achievements in cancer etiology and intervention. It was recently estimated that a
virus infection is the central cause of more than 1,400,000 cancer cases annually,
representing approximated 10% of the worldwide cancer burden (Plummer et al.
2016). The widely accepted human oncoviruses are human papillomaviruses
(HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein–Barr virus
(EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV) (also called human her-
pesvirus 8), human T-cell lymphotropic virus (HTLV-1), and Merkel cell poly-
omavirus (MCPyV). This conclusion is based on the cumulative knowledge from a
large number of experimental, clinical, and epidemiological studies over the last
five decades.

An additional 5% of worldwide cancers, mostly gastric cancer, are attributed to
infection by the bacterium Helicobacter pylori (Plummer et al. 2016). The number
of worldwide incident cases associated with specific virus varies widely, from
640,000 for HPV to 3000 for HTLV (Table 1). Approximately, 85% of the burden
of virus-induced cancers is bourn by individuals in the developing regions of the
world, with profound implications for translating the knowledge of virus-induced
cancers into public health interventions. In addition, some viruses cause more
cancers in one sex than the other. Almost 90% of HPV-induced cancers occur in
females, while approximately, two-thirds of HBV, HCV, and EBV cancer occur in
men (Table 1).
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2 The Human Cancers Caused by Viruses

Many different types of cancers are induced by human oncoviruses, and the fraction
of each cancer type attributed to a viral infection varies widely (Table 2) (Plummer
et al. 2016). HPVs normally infect stratified epithelium and are causally associated
with a number of anogenital carcinomas, including cervical, anal, vulvar, vaginal,
and vulvar, and also carcinomas of other mucosal epithelium, most notably
oropharyngeal. The attributable fraction varies from almost 100% for cervical
carcinomas to 4% for oral cavity and laryngeal cancers. Interestingly, the rates of
HPV-associated oropharyngeal cancers appear to be substantially increasing in
Western Europe and North America, most notably in men (de Martel et al. 2017).

HBV and HCV have a strict tropism for hepatocytes and together are the cause
of three-quarters of hepatocellular carcinomas (Petrick and McGlynn 2019)
(Table 2). EBV normally infects B lymphocytes and epithelial cells and induces
about half of Hodgkin’s lymphoma and Burkitt’s lymphomas (Saha and Robertson
2019). It is also an etiologic factor in most cases of nasopharyngeal carcinoma
(Chen et al. 2019). In addition, EBV-associated gastric cancer is a distinct clini-
copathological entity that is present in *9% of these cancers (Bae and Kim 2016).

Virtually, all Kaposi’s sarcomas are associated with KSHV infection. KSHV is
also strongly associated with multicentric Castleman’s disease and primary effusion
lymphoma, two relatively rare B-cell neoplasms (Katano 2018). HTLV-1 infects
lymphocytes and is a central cause of adult T-cell leukemia and lymphoma (Tagaya
et al. 2019). MCPyV is commonly detected in normal skin and is responsible for
approximately three-quarters of Merkel cell carcinoma, a relatively uncommon skin
cancer (Kervarrec et al. 2019).

3 The Diversity of Human Oncoviruses

Human tumor viruses are highly diverse, including viruses with large double-
stranded DNA genomes (EBV and KSHV), small double-stranded DNA genomes
(HPV, HBV, and MCPyV), positive-sense single-stranded RNA genomes (HCV),
and retroviruses (HTLV-1) (Table 3). Some have enveloped virions, specifically

Table 1 Number of new
cancer cases attributable to
specific viral infections by
gender

Virus Total Females Males

HPV 636,000 570,000 66,000

HBV 420,000 120,000 300,000

HCV 165,000 55,000 110,000

EBV 120,000 40,000 80,000

KSHV 43,000 15,000 29,000

HTLV 2,900 1,200 1,700

Data from (Plummer et al. 2016)
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HBV, HCV, EBV and KSHV and HTLV-1, whereas others have naked icosohedral
virions, specifically HPV and MCPyV. The carcinogenic mechanisms of oncov-
iruses also vary widely, as outlined below. However, in all cases, oncogenesis is an
uncommon consequence of the normal viral life cycle. Virus-induced cancers
almost always arise as monoclonal events from chronic infections, usually many
years after the primary infection, indicating that infection is just one component in a
multi-step process of carcinogenesis. The exceptional case is KSHV-induced
Kaposi’s sarcoma, which can arise as a polyclonal tumor within months of infection
in immunosuppressed individuals (Cesarman et al. 2019) (also see Chap. 13).

Table 2 Prevalence of viruses in virus-associated cancers

Virus Cancer Geographical area Attributable fraction
(%)

HPV Cervix World 100

HPV Penile World 51

HPV Anal World 88

HPV Vulvar World 48a

HPV Vaginal World 78

HPV Oropharynx North America 51

HPV Oropharynx India 22

HPV Laryngeal World 4.6

HBV Liver Developing 59b

HBV Liver Developed 23b

HCV Liver Developing 33b

HCV Liver Developed 20b

EBV Hodgkin’s lymphoma Africa 74

EBV Hodgkin’s lymphoma Asia 56

EBV Hodgkin’s lymphoma Europe 36

EBV Burkitt’s lymphoma Sub-Saharan Africa 100

EBV Burkitt’s lymphoma Other regions 20–30

EBV Nasopharyngeal carcinoma High-incidence
areas

100

EBV Nasopharyngeal carcinoma Low-incidence
areas

80

KSHV Kaposi’s sarcoma World 100

HTLV-1 Adult T-cell leukemia and
Lymphoma

World 100

MCPyV Merkel cell carcinoma North America 70–80c

Data from (Plummer et al. 2016) unless otherwise indicated
aAge 15-54 yrs
bData from (de Martel et al. 2012)
cEstimate from (Tetzlaff and Nagarajan 2018)
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4 Oncogenic Mechanisms

The oncogenic mechanisms of many tumor viruses, as detailed in later chapters,
involve the continued expression of specific viral gene products that regulate
proliferative, anti-apoptotic, and/or immune escape activities through an interaction
with cellular gene targets. Examples of oncoproteins include E6 and E7 of HPVs,
LMP1 of EBV, Tax of HTLV-1, and T antigen of MCPyV (Chaps. 8, and 10
respectively). Although HCV- and HBV-encoded proteins may play a direct role in
hepatocarcinogenesis, these viruses may primarily induce cancer more indirectly, as
a result of persistent infection causing chronic inflammation and tissue injury
(Kanda et al. 2019a, b) (Chaps. 3, 4 and 6). KSHV may act primarily by altering
complex cytokine/chemokine networks (Mesri et al. 2010) (Chap. 13). Virally
encoded microRNAs, especially those of KSHV and EBV, also play a direct role in
carcinogenesis (Wang et al. 2019).

With some viruses, e.g., MCPyV and HPV, malignant progression usually
involves mutation and/or insertion of the viral genome into the host DNA, such that
it can no longer replicate (Vinokurova et al. 2008; Arora et al. 2012). In addition,
the advent of high-throughput sequencing has facilitated the evaluation of the strain
variation and cancer risk. Interesting examples have been uncovered for EBV
(Kanda et al. 2019a, b) and HPV16 (Mirabello et al. 2016), but the molecular
mechanisms that account for these strain differences in carcinogenic potential are
not entirely clear.

HIV infection is a strong risk factor for several cancers, particularly cancers that
are associated with other virus infections (Vangipuram and Tyring 2019). However,
the effect of HIV infection on oncogenesis is thought to be indirect, by inhibiting

Table 3 Basic features of human oncoviruses

Virus Genome Virion
structure

Normal tropism Year isolated
(reference)

EBV Linear 172 kb DS
DNA

Enveloped Epithelium and B
cells

1964 (Epstein
et al. 1964)

HBV Circular 3.2 kb
partial DS DNA

42 nm
enveloped

Hepatocytes 1970 (Dane
et al. 1970)

HTLV-1 Linear 9.0 k nt
positive-sense RNA

Enveloped T and B cells 1980 (Poiesz
et al. 1980)

HPV16 Circular 7.9 kb DS
DNA

55 nm naked
Icosahedron

Stratified
squamous
epithelium

1983 (Dürst
et al. 1983)

HCV Linear 9.6 k nt
positive-sense RNA

Enveloped Hepatocytes 1989 (Choo
et al. 1989)

KSHV Linear 165 kb DS
DNA

Enveloped Oropharyngeal
epithelium

1994 (Chang
et al. 1994)

MCPyV Circular 5.4 kb DS
DNA

40 nm naked
icosahedron

Skin 2008 (Feng
et al. 2008)
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normal host immune functions that would otherwise control or eliminate the
oncovirus infections and/or provide immunosurveillance of emerging tumors.
Supporting this hypothesis is the observation that the rates of the same cancers
increase in patients with other forms of immunosuppression (Grulich and Vajdic
2015). Other types of retroviruses can induce cancers by insertional mutagenesis in
animal models (Fan and Johnson 2011). However, this activity has not been con-
vincingly documented in humans, except in a few patients in experimental gene
transfer trials involving delivery of high doses of recombinant retroviral vectors
(Romano et al. 2009).

4.1 Viral Infection and Cancer: Establishing Causality

Detecting a virus in a cancer does not establish causality. For instance, the cancer
cells might simply be exceptionally susceptible to infection or replication by a
particular virus, a scenario that is currently being exploited experimentally in the
development of oncolytic virotherapies (Russell and Barber 2018). However, the
causal associations between the seven viruses and specific cancers noted above are
now convincingly established. They fulfill most, if not all, of the criteria for
causality proposed by Sir A. Bradford Hill in the early 1970s (Hill 1971). Multiple
epidemiological studies in varying settings have established the strength and con-
sistency of association between infection and cancer for these viruses. Most
strikingly, relative risks of over 100 have been calculated for HPV and KSHV
infection in the development of cervical carcinoma and Kaposi’s sarcoma,
respectively, among the highest observed for a cancer risk factor (Moore and Chang
1998; Bosch et al. 2002). In some instances, establishing a strong association
required identification of especially oncogenic strains, e.g., HPV16 and 18 among
mucosotropic HPVs, or a specific tumor subsets, e.g., oropharyngeal carcinomas
among head and neck cancers. Temporality was established by demonstrating that
infection proceeds cancer, usually by many years. Integration of the viral gene in
the same site in all tumor cells further demonstrated, for some viruses, that the viral
infection was an initiating event.

In some cases, the viruses are consistently detected in well-established cancer
precursor lesions, as is the case for HPV and high-grade cervical intraepithelial
neoplasia (Chap. 8), although in others, such as MCPyV-induced MCC and
HPV-associated oropharyngeal cancer, the precursor lesions have not been clearly
identified. Demonstrating that, for the most part, populations with higher preva-
lences of virus infection also had higher incidences of the associated tumor, e.g.,
HBV and liver cancer, established important dose–response relationships (El-Serag
2012) (Chap. 5). However, these associations are sometimes confounded by high
prevalence of the oncovirus in the general population and variability in the exposure
to other risk factors. A clear example is the high frequency of EBV infection in the
general population, but the induction of EBV-positive Burkitt’s lymphoma pri-
marily in areas with a high incidence of malaria (Moormann and Bailey 2016).
A large number of laboratory studies established biological plausibility for causality
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by characterizing the interaction of viral proteins or other viral products with key
regulators of proliferation and apoptosis and establishing their immortalizing and
transforming activity in vitro and their oncogenic activity in animal models
(Chap. 4, 6, 8, 10, 11, and 13). These studies also support the criterion that the
associations be in agreement with the current understanding of disease pathogen-
esis, in this case the molecular biology of carcinogenesis (Mesri et al. 2014). The
last Hill criterion, that removing the exposure prevents the disease, has been most
convincing demonstrated for HBV and HPV, after introduction of the corre-
sponding vaccine.

4.2 The Importance of Identifying the Viral Etiology
for a Cancer

The identification of a virus as a central cause of a specific cancer can have several
substantial implications. First, it can provide basic insights into carcinogenic pro-
cesses, especially the identification of potential cellular targets for diagnoses and
interventions that are often relevant to both virus-associated and virus-independent
tumors (Mesri et al. 2014). Studies of virally induced carcinogenesis were partic-
ularly illuminating in the past decades when the ability to analyze the complexity of
host cell genomics and proteomics was much more limited than it is today. For
example, the tumor suppressors p53 and pRb were first identified as binding
partners of the small DNA tumor viruses in experimental systems and later shown
to be targets for several human oncoviruses (Pipas 2019). They are also among the
most frequently mutated genes in non-virally induced cancers (Chap. 8).

Second, the presence of the virus can be used in cancer risk assessment and
prevention. One example is the increasing use of HPV DNA testing to screen for
cervix cancer risk. HPV DNA tests are more sensitive for detection of high-grade
premalignant lesions than is the standard Pap test, so intervals between tests can be
increased in women who test negative for high-risk HPV DNA in their cervix
(Rizzo and Feldman 2018). Another example is HCV screening to identify indi-
viduals at high risk of progression to liver cirrhosis and cancer (Chap. 7). HCV
screening is now recommended in the USA for all individuals born between 1945
and 1965 (Smith et al. 2012), although the US Prevention Services Task Force has
recently made a draft recommendation for widening screening ages to everyone
older than 11 years of age (https://www.uspreventiveservicestaskforce.org/Page/
Document/draft-research-plan/hepatitis-c-screening1).

Third, viral gene products provide potential targets for therapeutic drugs or
therapeutic vaccines for the treatment cancers, precancerous lesions, or chronic
infection. There has been substantial research activity in this potentially fruitful
area. Although they have not led to viral-based treatment of malignancies, drug
studies have had considerable success in the development of antivirals to treat
chronic HBV and HCV infection. Pegylated interferon alpha plus a
nucleoside/nucleotide analog is currently being used to suppress HBV replication
(Chap. 5) and thereby liver cirrhosis and risk of hepatocellular carcinoma (Ren and
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Huang 2019). HCV infection can be similarly treated, and a series of direct-acting
antiviral drugs targeting the NS3/4A protease and NS5A and NS5B polymerase
have been developed that, remarkably, increase sustained virologic response rates to
90-98% (Pradat et al. 2018) (Chap. 7). Treatment of KSHV infection/Kaposi sar-
coma centers on reducing the underlying immunosuppression that promotes the
disease. Kaposi’s sarcoma lesions often regress in HIV-infected individuals after
initiation of HAART, but this response is due to reconstitution of the immune
system, rather than to direct activity of the drugs against KSHV (Cesarman et al.
2019). No licensed direct-acting antivirals have been developed for HPVs or MCV,
despite considerable efforts in the case of HPVs.

Fourth, the knowledge of a viral etiology can serve as the basis of cancer
prevention measures. One approach involves behavioral interventions to reduce
susceptibility to infection, e.g., limiting exposure to blood products in the case
HBV and HCV (Chaps. 5 and 7), limiting number of sexual partners in case of
HPV or KSHV, or preventing HTLV-1 transmission by discouraging breast-feeding
by infected mothers (Ruff 1994) (Chap. 12).

Alternatively, the identification of human oncoviruses can be used to develop
effective vaccines to prevent oncovirus infection. This approach has been suc-
cessfully implemented for HBV and HPV. HBV prophylactic vaccines were
introduced more than thirty years ago (Chap. 5). A dramatic reduction in childhood
liver cancers of greater than two-thirds has been documented in Taiwan, a previ-
ously high incidence region (Chang et al. 2016). A substantial reduction in adult
liver cancer is expected in the near future, as individuals who would have otherwise
contracted HBV as infant reach the age of peak cancer incidence. HPV vaccines
targeting HPV16 and 18 have been licensed for more than a decade (Schiller and
Lowy 2012) (Chap. 9). While substantial reductions in the incidences of
HPV-associated cancer are expected in coming years, there has already been a
significant reduction in premalignant cervical disease and evidence of herd
immunity developing in countries with high vaccination rates (de Sanjose et al.
2019).

There are considerable efforts underway to develop prophylactic and/or thera-
peutic vaccines against EBV (van Zyl et al. 2019) and HCV (Bailey et al. 2019)
(Chap. 7). Commercial development of prophylactic vaccines against these viruses
seems possible because there are reasonable non-malignant disease endpoints for
initial licensure, mononucleosis in the case of EBV, and liver cirrhosis in the case of
HCV. However, specific characteristics of their biology have made the develop-
ment of effective vaccines challenging. These include multiple entry receptors and
viral latency in the case of EBV, and genetic instability in the case of HCV. There
has been less effort devoted to developing KSHV and HTLV-1 vaccines because
the numbers of worldwide cancers they induce are lower, and these viruses do not
appear to be a frequent cause of medically important non-malignant disease, in
contrast to EBV and HCV (Schiller and Lowy 2010). They also have proven
susceptible to other interventions, specifically reduction in KSHV-induced Kaposi’s
sarcoma by treating HIV infection and reduction in transmission of HTLV-1 by
discouraging infant breast-feeding by infected mothers (Chap. 12). There has been
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relatively little activity in developing MCV vaccines, perhaps because the natural
history of infection is poorly understood, there are no known premalignant lesions
or other disease to target, and the cancers are relatively rare.

4.3 The Search for Additional Oncoviruses

Are there other human oncoviruses waiting to be discovered? There are suggestions
that viral infections may be associated with several other cancers. For instance, the
incidence of non-melanoma skin cancer increases dramatically after immunosup-
pression, and immunosuppression is associated with clear increases in established
virally associated cancers (Grulich and Vajdic 2015). Other cancers that increase
less dramatically in immunosuppressed patients and have not been firmly linked to
a microbial infection include lung, conjunctival, melanoma, lip, esophageal,
laryngeal carcinomas and multiple myeloma. Some epidemiological studies have
linked the risk of prostate cancer with sexual activity variables, suggesting
involvement of a sexually transmitted infectious agent (Sutcliffe 2010), but its
incidence is not increased in immunocompromized individuals (Grulich and Vajdic
2015). Other virus/cancer associations that warrant further investigations include
hepatitis delta virus, an HBV-dependent single-strand RNA virus that appears to
increase the risk of HCC in HBV-coinfected individuals by threefold (Koh et al.
2019), and BKV in bladder cancer, particularly in immunocompromised patients
(Starrett and Buck 2019).

The technologies of high throughput nucleic acid sequencing of entire cellular
genomes and transcriptomes, as now applied to a wide variety of human tumors,
provide an unprecedented wealth of raw data for the hunt for novel oncoviruses.
The discovery of MCV illustrates how this technology can be employed to identify
novel human oncoviruses (Feng et al. 2008). However, recent studies that screened
for all known viral species have mostly detected established oncoviruses in the
tumor collections (Cantalupo et al. 2018). Nevertheless, the possibility remains that
highly divergent oncoviruses with undetectable homology to currently known
viruses remain to be discovered. However, identification of a viral nucleic acid
sequence in a tumor is only the first step. It takes many additional laboratory,
clinical, and epidemiological studies to establish that a viral infection is a causal
agent in the development of a cancer, as opposed to a passive parasite or simple
contaminant of the tumor. Establishment of causality can be particularly difficult
in situations where the implicated virus is a common infection in the general
population.

It will also be difficult to establish causality if a virus is involved in the initiation
of a tumor but not in its maintenance, with the viral genome being lost during
progression. Commonly referred to as a “hit and run,” it is a plausible but as yet
unproven mechanism for human cancers (Schiller and Buck 2011), although there
are several well-documented examples of this phenomenon in experimental animal
models (Viarisio et al. 2018). Further supporting the possibility of this mechanism
is the recent finding that 8% of cervical cancers that are positive for HPV DNA do
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not express detectable HPV transcripts, functionally equivalent to a hit-and-run
(Banister et al. 2017). It may be informative to more closely examine premalignant
lesions and cancers in immunocompromised patients, where there may be less
selection for eliminating viral gene expression, for further evidence of viruses that
may initiate cancers via this mechanism (Starrett and Buck 2019).

5 Conclusions

The discovery and characterization of oncoviruses have been at the forefront of
biomedical research over the last several decades. It has provided important insights
into basic cell biology and mechanisms of carcinogenesis. In addition, these studies
have generated important public health interventions that have the potential to
prevent a large number of human cancers. This monograph provides clear evidence
that oncoviruses remain a dynamic subject in biomedical science. We expect that
future research will generate new and excites insights into the genesis of cancer and
effective ways to prevent and treat it.
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1 Introduction

The International Agency for Research on Cancer (IARC) has comprehensively
assessed the carcinogenicity of biological agents to humans based on epidemio-
logical and mechanistic evidence (IARC 2012a; Chen et al. 2014a). Seven viruses
including the Epstein–Barr virus (EBV), hepatitis B virus (HBV), hepatitis C virus
(HCV), Kaposi’s sarcoma herpes virus (KSHV), human immunodeficiency virus,
type-1 (HIV-1), human T cell lymphotropic virus, type-1 (HTLV-1), and several
types of human papillomavirus (HPV) have been classified as Group 1 human
carcinogens as shown in Table 1.
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There is sufficient evidence to conclude that EBV causes nasopharyngeal car-
cinoma, Burkitt’s lymphoma, immune suppression-related non-Hodgkin lym-
phoma, extranodal NK/T cell lymphoma (nasal type), and Hodgkin’s lymphoma in
humans. The evidence for EBV-caused gastric carcinoma and lympho-
epithelioma-like carcinoma is limited. HBV and HCV cause hepatocellular carci-
noma with sufficient evidence. The evidence for HCV-caused non-Hodgkin lym-
phoma, especially B-cell lymphoma, is sufficient, while the evidence for
HBV-caused non-Hodgkin lymphoma is limited. There is also limited evidence
to conclude that HBV and HCV cause cholangiocarcinoma. The evidence to con-
clude that HIV-1 causes Kaposi’s sarcoma, non-Hodgkin lymphoma, Hodgkin’s
lymphoma, and cancers of the cervix, anus, and conjunctiva is sufficient. But the
evidence for HIV-1 to cause cancers of the vulva, vagina, penis, non-melanoma
skin cancer, and hepatocellular carcinoma is limited.

There is sufficient evidence to conclude that HPV-16 causes cancers of the
cervix, vulva, vagina, penis, anus, oral cavity, oropharynx, and tonsil; but the
evidence for HPV-16 to cause cancer of the larynx is limited. Cervical cancer is
caused by several other types of HPV including HPV-18, 31, 33, 35, 39, 45, 51, 52,
56, 58, and 59. The evidence for HPV-26, 30, 34, 53, 66, 67, 68, 69, 70, 73, 82, 85,
and 97 to cause cervical cancer is limited. HTLV-1 causes adult T cell leukemia and
lymphoma with sufficient evidence. There is sufficient evidence to conclude KSHV
causes Kaposi’s sarcoma and primary effusion lymphoma, but the evidence for
KSHV to cause multicentric Castleman’s disease is limited. Based on limited
evidence in humans, inadequate evidence in experimental animals, and strong
mechanistic evidence in humans, Merkel-cell virus (MCV) was classified as
probably carcinogenic to humans by IARC (2012b).
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The proportion of cancers caused by infectious agents was recently estimated to
be more than 20% with wide geographical variations (IARC 2012a). The identi-
fication of new cancer sites attributed to these infectious agents means that more
cancers are potentially preventable. This chapter will mainly review the epidemi-
ology of oncogenic viruses and their associated cancers.

Table 1 Cancers caused by Group 1 oncogenic viruses with sufficient and limited evidence
according to the IARC criteria

Virus Cancer sites with sufficient
evidence

Cancer sites with limited
evidence

Epstein–Barr virus (EBV) Nasopharyngeal carcinoma,
Burkitt’s lymphoma,
immune suppression-related
non-Hodgkin lymphoma,
extranodal NK/T cell
lymphoma (nasal type),
Hodgkin’s lymphoma

Gastric carcinoma,
lympho-epithelioma-like
carcinoma

Hepatitis B virus (HBV) Hepatocellular carcinoma Cholangiocarcinoma,
non-Hodgkin lymphoma

Hepatitis C virus (HCV) Hepatocellular carcinoma,
non-Hodgkin lymphoma

Cholangiocarcinoma

Human immunodeficiency
virus, type 1 (HIV-1)

Kaposi’s sarcoma,
non-Hodgkin lymphoma,
Hodgkin’s lymphoma,
cancers of the cervix, anus,
and conjunctiva

Cancers of the vulva, vagina
and penis, non-melanoma
skin cancer, hepatocellular
carcinoma

Human papillomavirus type
16 (HPV-16)

Cancers of the cervix, vulva,
vagina, penis, anus, oral
cavity, oropharynx, and
tonsil

Cancer of the larynx

Human papillomavirus type
18, 31, 33,35, 39, 45, 51, 52,
56, 58, 59 (HPV-18, 31,
33,35, 39, 45, 51, 52, 56, 58,
and 59)

Cancer of the cervix

Human papillomavirus type
26, 30, 34, 53, 66, 67, 68,
69, 70, 73, 82, 85, 97
(HPV-26, 30, 34, 53, 66, 67,
68, 69, 70, 73, 82, 85, and
97)

Cancer of the cervix

Human T cell lymphotrophic
virus, type-1 (HTLV-1)

Adult T cell leukemia and
lymphoma

Kaposi’s sarcoma herpes
virus (KSHV)

Kaposi’s sarcoma, primary
effusion lymphoma

Multicentric Castleman’s
disease
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2 Transmission Routes and Infection Prevalence
of Oncogenic Viruses in the World

The transmission routes and global variation in infection prevalence of oncogenic
viruses are shown in Table 2 and Fig. 1. EBV is one of the most common viruses in
humans, and is highly prevalent throughout the world. Even in remote populations,
more than 90% of adults are infected with EBV (IARC 2012a). It is estimated that
over 5.5 billion people worldwide are infected with EBV. The virus is primarily
transmitted through bodily fluids, particularly saliva, and the age at which primary
infection occurs varies significantly. For example, individuals living in over-
crowded conditions with poor sanitation are first infected at a younger age than
those individuals living in better environments. Two major types of EBV have been

Table 2 Transmission routes and global variations in infection prevalence of oncogenic viruses

Virus Transmission routes Areas of highest and lowest prevalence

EBV Bodily fluids, especially saliva Highly prevalent throughout the world

HBV Highly endemic areas: perinatal or
child-to-child
Low endemic areas: occurs in
adulthood through injection drug use,
among male homosexuals, though
medical procedures and transfusions or
hemodialysis

Highest: sub-saharan Africa, Amazon
basin, China, Korea, Taiwan, and parts
of Southeast Asia
Lowest: North and Central America,
Australia

HCV Injection drug use
Iatrogenic exposure
Less common: perinatal or sexual
transmission

Highest: Egypt, China, Mongolia,
northern Africa, Pakistan, southern
Italy, parts of Japan
Lowest: all other areas

HIV-1 Sexual activity
Blood contact
Mother to child

Highest: Sub-saharan Africa, the
Caribbean, Eastern Europe, Central
Asia
Lowest: Western Europe, parts of East
Asia, Australia, Canada, parts of
Central America

HPV Skin-to-skin or skin-to-mucosa contact
Sexual activity
Less common: perinatal or iatrogenic
transmission

Highest: Caribbean, South America,
eastern Europe, eastern and western
Africa, Australia, Indonesia, and
Mongolia
Lowest: western Europe, western Asia,
USA

HTLV-1 Mother-to-child (such as
breastfeeding)
Sexual activity
Parenteral transmission (such as
transfusions)

Highest: Southwest Japan,
Sub-Saharan Africa, the Caribbean,
South Africa
Lowest: East Asia

KSHV Saliva
Less common: prolonged injection
drug use, transfusions, transplantation

Highest: Sub-Saharan Africa,
Mediterranean region
Lowest: Northern Europe, North
America, Asia
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Fig. 1 Estimated prevalence (per 100) of Group 1 oncogenic viruses in the world. a HBV,
b HCV, c HIV-1, d HPV, e HTLV-1, and f KSHV
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identified and differ in geographical distribution with EBV-2 being more common
in Africa and homosexual men. The role of specific EBV types in the development
of different cancers remains unclear. As EBV infection is ubiquitous, the specific
geographical distribution of EBV-related malignancies including endemic Burkitt’s
lymphoma and nasopharyngeal carcinoma is more likely attributable to the varia-
tion in the distributions of other cofactors, which may activate EBV replication.

HBV infects more than 2.0 billion people worldwide, with more than 350
million individuals chronically infected (IARC 2012a). There is a wide variation of
chronic HBV infection in the world1 as shown in Table 2 and Fig. 1a. Approxi-
mately 45, 43, and 12% of the world population live in areas where the endemicity
of chronic HBV infection is high (seroprevalence of hepatitis B surface antigen
>8%), medium (2–7%), and low (<2%). The prevalence is highest in sub-Saharan
Africa, the Amazon Basin, China, Korea, Taiwan, and several countries in
Southeast Asia. In areas of high endemicity, the lifetime risk of HBV infection is
more than 60%, with most infections acquired from perinatal and child-to-child
transmission, when the risk of chronic infection is greatest. Perinatal (vertical)
transmission is predominant in China, Korea, and Taiwan where the seroprevalence
of HBeAg in pregnant women is high, while child-to-child (horizontal) transmis-
sion is common in sub-Saharan Africa where HBeAg seroprevalence is low in
mothers. In areas of medium endemicity, mixed HBV transmission patterns occur
in infancy, early childhood, adolescence, and adulthood. In areas of low
endemicity, most HBV infections occur in adolescents and young adults through
injection drug use, male homosexuality, health care practice, and regular transfu-
sions or hemodialysis.

In addition to the striking geographical variation in seroprevalence of HBsAg in
the world, the distribution of the eight genotypes of HBV also varies significantly in
different countries (IARC 2012a). Genotype A is prevalent in Europe, Africa, and
North America; genotypes B and C are prevalent in East and Southeast Asia;
Genotype D is predominant in South Asia, the Middle East, and Mediterranean
areas; genotype E is limited to West Africa; genotypes F and G are found in Central
and South America; and genotype H is observed in Central America.

HCV infects around 150 million people in the world showing an estimated
prevalence of 2.2% (IARC 2012a), with a wide variation in different regions as
shown in Table 2 and Fig. 1b. The estimated prevalence of HCV infection (sero-
prevalence of antibodies against HCV) ranges from <0.1% in the United Kingdom
and Scandinavia to 15–20% in Egypt (Alter 2007). A high prevalence of HCV
infection is also observed in Mongolia, northern Africa, Pakistan, China, southern
Italy, and parts of Japan. At least six major genotypes of HCV have been identified,
the geographical distributions of which also vary widely. The response to ribavirin
and interferon therapy is better in patients infected with genotypes 2 or 3 than in
those infected with genotypes 1 or 4; while the response to direct acting agent
therapy is equally good for all genotypes.

1CDC http://wwwnc.cdc.gov/travel/yellowbook/2012/chapter-3-infectious-diseases-related-to-
travel/hepatitis-b.htm.
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Two major transmission routes for HCV have been identified. They are injection
drug use and iatrogenic exposures through transfusion, transplantation, and unsafe
therapeutic injection. While there has been a large reduction in iatrogenic transmis-
sion of HCV since 1990 in developed countries such as Taiwan, Japan and Italy, it
continues to be a common source of transmission in low-resource countries where
disposable needles tend to be reused. In developed countries, however, injection drug
use is the most important transmission route for newly acquired HCV infection.
Transmission of HCV through perinatal, sexual, and accidental needle-stick expo-
sures is less efficient than iatrogenic exposure and injection drug use (Lee et al. 2011).

HIV infects an estimated 34 million people worldwide (IARC 2012a; UNAIDS2

2012). An estimated 0.8% of all adults aged 15–49 years worldwide are living with
HIV, and the burden varies considerably between countries and regions as shown in
Table 2 and Fig. 1c. Sub-Saharan Africa remains the most disproportionally
affected, with a prevalence of 4.9%. Although the prevalence of HIV infection is
nearly 25 times higher in sub-Saharan Africa than it is in Asia, there are still 5
million people in South, Southeast, and East Asia living with HIV infection. After
sub-Saharan Africa, other regions heavily affected by HIV are the Caribbean,
Eastern Europe and Central Asia, where 1.0% of adults were living with HIV in
2011. In 2011 alone, 2.5 million people, including 0.39 million children, were
newly infected with HIV. Since 2001, the annual incidence of HIV infection has
fallen in 33 countries, 22 of them in sub-Saharan Africa. However, the incidence of
HIV infection is once again rising in Eastern Europe and Central Asia, and new
infections are also on the rise in the Middle East and North Africa.

HIV infection is primarily transmitted through three major routes: sexual
intercourse, blood contact, and mother-to-child transmission as shown in Table 2.
The HIV infectivity is determined by the interaction between agent, host, and
environmental factors. The probability of HIV transmission is highest for blood
transfusions, followed by mother-to-child transmission, needle sharing, man-to-man
sexual transmission, and is the lowest for heterosexual sexual transmission.

HPV infection is highly prevalent throughout the world, and most sexually active
individuals will acquire at least one genotype of anogenital HPV infection during
their lifetime (IARC 2012a). In a meta-analysis of 157,879 women with normal
cytology, the estimated oncogenic HPV DNA point prevalence was reported to be as
high as 10%, resulting in an estimate of 600 million infected worldwide (de Sanjose
et al. 2007). The point prevalence of HPV infection among women with normal
cervical cytology was highest in Caribbean, South America, eastern Europe, eastern
and western Africa, Australia, Indonesia, and Mongolia; and lowest in western
Europe, western Asia, and the USA demonstrating a large geographical variation as
shown in Table 2 and Fig. 1d (Bruni et al. 2019). The estimated point prevalences are
highly dynamic, as both incidence and clearance rates are high.

Among 13 known oncogenic HPV types, the most prevalent types include 16,
18, 31, 33, 35, 45, 52, and 58. HPV type 16 is the most common type across all
regions, with prevalence ranging from 2.3 to 3.5%. HPV infections are transmitted

2UNAIDS http://data.unaids.org/pub/epislides/2012/2012_epiupdate_en.pdf.
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through direct skin-to-skin or skin-to-mucosa contact. Anogenital HPV types
spread mainly through sexual transmission through any type of sexual intercourse
in teenagers and young adults. Non-sexual routes, including perinatal and iatrogenic
transmissions, account for a minority of HPV infections. The prevalence (%) of
HPV type 16 and 18 was increased with severity of cervical lesions. The update
prevalence from worldwide metanalysis for women with normal, low-grade lesions
(LSIL/CIN-1), high-grad lesions (HSIL/CIN-2/CIN3-/CIS), and cervical cancer was
4.1, 25.8, 51.9 and 69.4%, respectively (Bruni et al. 2019).

Globally, HTLV-1 infects an estimated 15–20 million people (IARC 2012a).
HTLV-1 infection is characterized by micro-epidemic hotspots surrounded by low
prevalence areas as shown in Table 2 and Fig. 1e (Proietti et al. 2005). The
prevalence of HTLV-1 infection ranges from <0.1% in China, Korea, and Taiwan
to 20% in Kyushu and Okinawa of Japan. Regions of high endemicity include
southwestern Japan, parts of sub-Saharan Africa, the Caribbean Islands, and South
Africa. HTLV-1 is primarily transmitted through vertical transmission, sexual
transmission, and parenteral transmission. While vertical transmission through
breast feeding has a high probability of resulting in mother-to-child infection, in
utero infectivity is low due to limited trafficking of HTLV-1-infected lymphocytes
across the placenta. The efficiency of sexual transmission of HTLV-1 depends on
the proviral load and use of a condom. There has been a significant reduction in
parenteral transmission through transfusions due to the sensitive serological
examination of blood products. Needle sharing associated with injection drug use is
another parenteral route for HTLV-1 transmission.

The prevalence of KSHV has also been shown to have wide geographical
variations as shown in Table 2 and Fig. 2f (Dukers and Rezza 2003). Seropreva-
lence ranges from 2 to 3% in northern Europe to 82% in the Congo (IARC 2012a).
Prevalence is generally low (<10%) in northern Europe, the USA, and Asia, ele-
vated in the Mediterranean region (10–30%), and high in sub-Saharan Africa
(>50%). KSHV is primarily transmitted via saliva. In countries where KSHV
prevalence is high, infection occurs during childhood and increases with age.
KSHV may also be transmitted with low efficiency through prolonged injection
drug use, blood transfusions, and organ transplantation.

3 Global Variation in the Incidence of Virus-Caused
Cancers

Global variations in age-adjusted incidence rates of oncogenic virus-related cancers
are shown in Fig. 2 (Ferlay et al. 2018). The age-adjusted incidence rates of
nasopharyngeal cancer range from <0.1 in low endemic regions to 9.9 per 100,000
in high endemic areas as shown in Fig. 2a. The highest incidence is seen in
southern China, Southeast Asia, and sub-Saharan Africa, and the lowest incidence
is seen in Europe, western Africa, and Central America. Interestingly, in different
cancer registries throughout the world, individuals of Chinese ethnicity have the
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Fig. 2 Age-standardized incidence rate (per 100,000) of virus-caused cancers in the world.
a Nasopharynx, b Burkitt lymphoma c Liver, d Cervix uteri, and e Kaposi’s sarcoma
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Fig. 2 (continued)
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highest incidence of nasopharyngeal cancer. As EBV infection is ubiquitous in
humans, the uniquely high incidence of nasopharyngeal carcinoma among indi-
viduals of Chinese descent suggests that lifestyles or genetic susceptibility may play
an important role in the development of nasopharyngeal cancer.

The age-adjusted incidence rates of Burkitt’s lymphoma are shown in Fig. 2b.
Central Africa, equatorial South America, Papua New Guinea, and Caribbean
countries are endemic for Burkitt’s lymphoma with an incidence rate of 5–35 per
100,000, but the incidence rate of Burkitt lymphoma is relatively low in other
countries. As EBV infection is ubiquitous in humans, the extraordinarily high
endemicity of Burkitt’s lymphoma in Africa suggests local environments or genetic
susceptibility may play an important role in the development of endemic Burkitt
lymphoma. Despite the limited epidemiological evidence in humans, IARC (2012b)
classified malaria caused by infection with p. falciparum in holoendemic areas as
“probably carcinogenic to humans” to cause Burkitt lymphoma.

The age-adjusted incidence rates of liver cancer range from 1.1 to 93.7 per
100,000 as shown in Fig. 2c. The highest incidence is observed in East Asia,
Southeast Asia, Egypt, and sub-Saharan Africa, and the lowest incidence is seen in
Europe, the Middle East, Australia, New Zealand, and Canada. The geographical
variation in liver cancer incidence is consistent with that of the varying sero-
prevalence of HBV and HCV. However, the etiological proportion of liver cancer
varies in different countries and regions. HCV is more prevalent in liver cancer
patients in Japan, North America and Europe; and HBV is more prevalent in those
in Taiwan, Southeast Asia, and China (Chen 2018).

The age-adjusted incidence rates of cervical cancer range from 1.2 to 75.3 per
100,000 as shown in Fig. 2d. The highest incidence is observed in Latin America,
South Asia, and sub-Saharan Africa, and the lowest incidence is seen in Europe,
North America, Australia, New Zealand, and the Middle East. The geographical
variation in cervical cancer incidence is consistent with the varying prevalence of
oncogenic HPV.

The age-adjusted incidence rates of Kaposi’s sarcoma range from <1.0 to 17.4
per 100,000 as shown in Fig. 2e. The highest incidence is observed in sub-Saharan
Africa, while the lowest incidence is seen in Europe, Australia, North America, and
East Asia. The geographical variation in Kaposi’s sarcoma incidence is consistent
with that of the varying prevalence of KSHV.

4 Carcinogenic Mechanisms of Oncogenic Viruses

There are three major mechanisms of carcinogenesis for seven Group 1 oncogenic
viruses as shown in Table 3. They are defined as direct, indirect through chronic
inflammation, and indirect through immune suppression (IARC 2012a). The direct
carcinogens include EBV, HPV, HTLV-1, and KSHV; the indirect carcinogens
through chronic inflammation include HBV and HCV; and the indirect carcinogen
through immune suppression is HIV-1.
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Direct oncogenic viruses have the following characteristics: (1) The entire or
partial viral genome can usually be detected in each cancer cell. (2) The virus can
immortalize after the growth of target cells in vitro. (3) The virus expresses several
oncogenes that interact with cellular proteins to disrupt cell-cycle checkpoints,
inhibit apoptosis, and DNA damage response, cause genomic instability, and induce
cell immortalization, transformation, and migration.

Both HBV and HCV cause hepatocellular carcinoma through chronic inflam-
mation, which leads to the production of chemokines, cytokines, and prostaglandins
secreted by infected cells and/or inflammatory cells. The chronic inflammation also
leads to the production of reactive oxidative species with direct mutagenic effects to
deregulate the immune system and promote angiogenesis, which is essential for the
neovascularization and survival of tumors.

Individuals infected with HIV-1 have a high risk of cancers caused by another
infectious agent. HIV-1 infection, mainly through immunosuppression, leads to
increased replication of oncogenic viruses such as EBV and KSHV. Although
antiretroviral therapy lowers the risk of many cancers associated with HIV-1, risks
remain high worldwide.

5 Lifetime Cumulative Incidence of Virus-Caused Cancers

Some viruses may cause more than one cancer, while some cancers may be caused
by more than one virus. However, only a proportion of persons infected by these
oncogenic viruses will actually develop specific cancers. The probability of
developing specific cancers is determined by the interaction among viral, host, and
environmental factors. Table 4 shows the lifetime cumulative incidence, viral
factor, host factor, and environmental factors of several virus-caused cancers. The
cumulative lifetime (30–75 years old) risk of developing nasopharyngeal carcinoma
was 2.2% for men seropositive for IgA antibodies against EBV VCA or antibodies
against EBV DNase.

Table 3 Established carcinogenic mechanisms of oncogenic viruses

Mechanism Group 1 virus (carcinogenic properties)

Direct EBV (cell proliferation, inhibition of apoptosis, genomic
instability, cell migration)

HPV (immortalization, genomic instability, inhibition of DNA
damage response, anti-apoptotic activity)

HTLV-1 (immortalization and transformation of T cells)

KSHV (cell proliferation, inhibition of apoptosis, genomic
instability, cell migration)

Indirect through chronic
inflammation

HBV (inflammation, liver cirrhosis, liver fibrosis)

HCV (inflammation, liver cirrhosis, liver fibrosis)

Indirect through immune
suppression

HIV-1 (immunosuppression)
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Table 4 Lifetime cumulative incidence and risk predictors of virus-caused cancers

Virus (cancer) Lifetime
incidence

Viral
predictors

Host predictors Environmental
predictor

EBV
(nasopharyngeal
carcinoma)

Men, 2.0% Elevated
serotiter of
EBV
antibodies,
viral load

Male gender;
family
nasopharyngeal
carcinoma history;
genetic
polymorphisms
(CYP2E1, XRCC1,
hOGG1, HLA,
GABBR1
CLPTM1L/TERT)

Cantonese salted
fish; dietary
nitrosamine; wood
dust; formaldehyde;
tobacco; low intake
of plant vitamins,
fresh fish, green tea,
and coffee

HBV
(hepatocellular
carcinoma)

Men, 27.4%;
women, 8.0%

Persistent
infection, viral
load,
genotype,
mutant type,
serum HBsAg
level

Elder age, male
gender, obesity,
diabetes, elevated
serum levels of
androgen, and
ALT; family liver
cancer history,
genetic
polymorphisms
(DNA repair
enzymes, HLA,
xenobiotic
metabolism
enzymes, NTCP,
ADH1B/ALDH2,
telomere length)

Aflatoxins; alcohol;
tobacco; low intake
of vegetable; low
serum level of
carotenoids and
selenium; HCV
co-infection

HCV
(hepatocellular
carcinoma)

Men, 23.7%;
women, 16.7%

Persistent
infection, viral
load,
genotype,
mutant type

Elder age, male
gender, obesity,
diabetes, serum
ALT level, family
liver cancer
history, genetic
polymorphisms
(IFNL3, HLA)

Aflatoxin; alcohol;
HBV or HIV-1
co-infection;
radiation

HPV (cervical
carcinoma)

HPV-16,
34.3%;
HPV-52,
23.3%;
HPV-58,
33.4%; Any
oncogenic
HPV, 20.3%

Persistent
infection, viral
load,
genotype,
variant type

Elder age, number
of pregnancies,
family cervical
cancer history,
serum estrogen
level, genetic
polymorphisms
(DNA repair
enzymes, HLA)

Tobacco;
immunosuppression,
HIV-1 co-infection,
contraceptives use,
nutrients
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Around one-quarter of patients chronically infected with HBV will develop
hepatocellular carcinoma. There is a striking difference in the cumulative lifetime
incidence of hepatocellular carcinoma between men (27.4%) and women (8.0%)
(Huang et al. 2011). The development of HBV-associated hepatocellular carcinoma
has been considered as a multistage hepatocarcinogenesis with multifactorial eti-
ology, and involves the interaction of HBV, other virus such as HCV, chemical
carcinogens, host characteristics, and genetic susceptibility (Chen et al. 1997; Chen
and Chen 2002; Chen and Yang 2011; IARC 2012a; Chen 2018).

Around one-fifth of patients seropositive for antibodies against HCV (anti-HCV)
will develop hepatocellular carcinoma. However, the cumulative lifetime incidence
of hepatocellular carcinoma shows a less significant gender difference, and is
approximately 23.7% for men and 16.7% for women (Huang et al. 2011). The
lifetime cumulative risk of hepatocellular carcinoma among anti-HCV seropositives
with and without detectable serum HCV RNA level was 24.2 and 3.53%, respec-
tively. Many cofactors are involved in the development of hepatocellular carcinoma
in anti-HCV seropositives (Lee et al. 2010, 2014a, b; IARC 2012a).

The cumulative lifetime (30–75 years old) risk of cervical cancer for women
who were infected by HPV16, HPV 52, HPV 58, and any Group 1 oncogenic HPV
was 34.3%, 23.3%, 33.4%, and 20.3%, respectively. Women with persistent
oncogenic HPV infection have a much higher cumulative risk of cervical cancer
than those with only transient infection (Chen et al. 2011b).

6 Viral, Host, and Environmental Predictors
of Virus-Caused Cancers

As only a proportion of persons infected by oncogenic viruses will actually go on to
develop cancers, this strongly suggests the involvement of various risk predictors in
the oncogenic process. For example, carcinogenesis would result from the inter-
action of multiple risk predictors, including viral, host, and environmental factors,
as shown in Table 4. Typical viral predictors include various infection markers such
as viral load, genotypes, variant types, mutant types, and serotiters of various
antigens or antibodies. The host predictors include age, gender, race, anthropo-
metric characteristics, immune status, hormonal level, personal disease history, and
family cancer history. Lastly, environmental factors include chemical carcinogens,
nutrients, ionizing radiation, immunosuppressive drugs, and co-infections of other
infectious agents. The contribution of several additional predictors to the devel-
opment of virus-associated cancers seems to be substantial, but has not yet been
elucidated in detail.

Several predictors for nasopharyngeal carcinoma have been reviewed previously
(Chien and Chen 2003). The viral predictors associated with nasopharyngeal car-
cinoma include the elevated serotiter of antibodies against EBV, including
anti-EBV VCA IgA, anti-EBV DNase, and anti-EBNA1, and the elevated serum
EBV DNA level (viral load) (Chien et al. 2001; Hsu et al. 2009). Host predictors of
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nasopharyngeal carcinoma include male gender, family history of nasopharyngeal
carcinoma, (Hsu et al. 2011), and genetic polymorphisms of CYP2E1, XRCC1,
hOGG1, human leukocyte antigens (HLA), GABBR1, and a novel locus within
CLPTM1L/TERT (Hildesheim et al. 1997, 2002; Cho et al. 2003; Hsu et al. 2012a;
Bei et al. 2016). Environmental predictors include consumption of Cantonese salted
fish, high dietary intake of nitrite and nitrosamine, occupational exposure to wood
dust and formaldehyde, long-term tobacco smoking, and low intake of plant vita-
mins, fresh fish, green tea, and coffee (Ward et al. 2000; Hildesheim et al. 2001;
Hsu et al. 2009, 2012b).

Many studies have examined the risk predictors of HBV-caused hepatocellular
carcinoma. The viral predictors of HBV-caused hepatocellular carcinoma include
positive HBeAg serostatus, elevated serum HBV DNA level (viral load), HBV
genotype and mutant types, and elevated serum HBsAg level (Yang et al. 2002,
2008; Chen et al. 2006, 2009a; Lee et al. 2013). Persistently, high HBV DNA levels
throughout disease progression also indicate a high risk for hepatocellular carci-
noma (Chen et al. 2011a). However, reaching HBV DNA undetectability and
HBsAg seroclearance have been shown to significantly decrease the risk for future
hepatocellular carcinoma (Liu et al. 2014). Host predictors of HBV-caused hepa-
tocellular carcinoma include elder age, male gender, persistently elevated serum
alanine aminotransferase (ALT) level, and family history of hepatocellular carci-
noma (Chen et al. 1991, 2011a; Yu et al. 2000a; Yang et al. 2010; Loomba et al.
2013a). In addition, higher parity (Fwu et al. 2009), obesity and diabetes (Chen
et al. 2008; Loomba et al. 2013b), elevated serum level of androgen and
androgen-related genetic polymorphisms (Yu and Chen 1993; Yu et al. 2000b), and
genetic polymorphisms of xenobiotic metabolism enzymes, DNA repair enzymes,
NTCP (SLC10A1), HLA, and telomere length (Chen et al. 1996a; Yu et al. 1995a,
1999a, 2003; Hu et al. 2016; Zeng et al. 2017) are also important host predictors for
HBV-caused hepatocellular carcinoma. Genetic polymorphism of ADH1B and
ALDH2 are involved in HBV-caused hepatocellular carcinoma through their
mediation of habitual alcohol consumption (Liu et al. 2016). Environmental pre-
dictors of HBV-caused hepatocellular carcinoma include aflatoxin exposure (Chen
et al. 1996b; Wang et al. 1996; Chu et al. 2017), habits of alcohol consumption and
tobacco smoking (Chen et al. 1991; Wang et al. 2003; Loomba et al. 2013b),
inadequate intake of vegetable, carotenoids and selenium (Yu et al. 1995b, 1999a,
b), and co-infection with HCV (Huang et al. 2011). Interestingly, although
co-infection with HCV has been shown to result in a higher risk for HCC, it was a
sub-additive combined effect, and was also associated with later-onset of HCC,
suggesting an antagonistic effect between HBV and HCV (Huang et al. 2011). The
mediation effect of HBV and HCV in relation to hepatocellular carcinoma risk and
mortality has recently been documented (Huang et al. 2016a, b).

Recently, studies have been able to further clarify viral, host, and environmental
predictors of HCV-caused hepatocellular carcinoma. Viral predictors include the
elevated serum level of HCV RNA and HCV genotype 1 (Lee et al. 2010, 2014b;
Huang et al. 2011). Host predictors include older age, obesity, diabetes, elevated
serum ALT level, family history of hepatocellular carcinoma, and genetic
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polymorphisms of INFL3 and HLA (Sun et al. 2003; Chen et al. 2008; Lee et al.
2010, 2015, 2018; IARC 2012a). Environmental predictors include aflatoxin
exposure, alcohol consumption, tobacco smoking, betel chewing, radiation expo-
sure, and co-infection with HBV or HIV-1 (Sun et al. 2003; Huang et al. 2011;
IARC 2012a; Chu et al. 2018).

Viral, host, and environmental factors are associated with oncogenic
HPV-caused cervical cancer. Its viral predictors include the persistent infection,
elevated viral load, HPV genotypes, and variant types (Chen et al. 2011b, c; Chang
et al. 2011; IARC 2012a), while its host predictors include elder age, number of
pregnancies, family history of cervical cancer, serum estrogen level, and genetic
polymorphisms of DNA repair enzymes and HLA (Chen et al. 2011b; Chuang et al.
2012; IARC 2012a). Environmental predictors of oncogenic HPV-caused cervical
cancer include tobacco smoking, immunosuppression, HIV-1 co-infection, use of
oral contraceptives, and inadequate intake of micronutrients (IARC 2012a).

7 Risk Calculators of Virus-Caused Cancers

Given that there are many risk predictors for each virus-caused cancer, it would be
useful to incorporate them into a risk prediction model or calculator that can predict
the cumulative cancer incidence of each cancer. Such risk calculators may provide
clinicians with important information for the triage and identification of patients
who need intensive treatment, versus those who need only routine follow-up.
Moreover, with personalized risk calculations, patients’ follow-up intervals,
surveillance patterns, and referral strategies can be tailored. Risk calculator is an
important clinical tool in the era of precision medicine.

Several risk models/calculators have been developed to predict the cumulative
incidence of hepatocellular carcinoma of patients with chronic hepatitis B and C as
shown in Table 5 (Yang et al. 2014; Chen et al. 2015; Liu et al. 2015), and only a
few calculators were externally validated (Yang et al. 2011, 2016; Lee et al. 2014c;
Poh et al. 2016). Most risk prediction models for HBV-caused HCC incorporated a
wide range of clinical parameters, were hospital-based cohorts, and did not have
satisfactory external validation of the models. In order to perform sufficient external
validation of a robust prediction model, the study groups of the IPM model (Han
and Ahn 2005), GAG-HCC risk score (Yuen et al. 2009), CUHK Clinical Scoring
System (Wong et al. 2010), and REVEAL nomograms (Yang et al. 2010) jointly
established the REACH-B risk score (Yang et al. 2011). The REACH-B risk score
is a 17-point scoring system incorporating gender, age, serum levels of ALT and
HBV DNA, and HBeAg serostatus as its risk predictors. The REACH-B score was
first derived from a large community-based cohort of REVEAL-HBV study, then
externally validated by a composite hospital-based cohort of IPM, GAG-HCC and
CUHK studies. This model was able to predict the 3-, 5-, and 10-year risk of
developing HCC with areas under the receiving operating characteristic curve
(AUROC) of 0.81, 0.80, and 0.77, respectively, for all chronic hepatitis B patients;
and with AUROC of 0.90, 0.78, and 0.81, respectively, for non-cirrhotic patients.
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Table 5 Risk calculators for hepatocellular carcinoma caused by HBV and HCV

Risk score (reference) AUROC (95% confidence
interval) for predicting HCC risk
by follow-up year and cohort

Risk predictors

IPM (Han and Ahn 2005) None reported Gender, Age, Cirrhosis/chronic
hepatitis, Chronic HBV/HCV
infection, AFP level, ALT
level, Alcohol consumption

GAG-HCC Risk score
(Yuen et al. 2009)

5-year: 0.88
10-year: 0.89

Gender, Age, Cirrhosis,
HBV DNA level, HBVcore
promoter mutations

CUHK Clinical scoring
system (Wong et al. 2010)

Internal validation
5-year: 0.76 (0.66–0.86)
10-year: 0.78 (0.71–0.86)

Age, Cirrhosis, HBV DNA
level, Bilirubin level, Albumin
level

REVEAL-HBV
nomograms (Yang et al.
2010)

Internal validation
Model 1
5-year: 83.1
10-year: 82.1
Model 2
5-year: 83.2
10-year: 83.0
Model 3
5-year: 83.2
10-year: 83.0

Gender, Age, ALT level,
Alcohol consumption,
HBV DNA level, HBeAg
serostatus, HBV Genotype,
Family HCC History

REACH-B Score (Yang
et al. 2011)

External validation
(IPM + GAG + HCC/CUHK)
for patients without
cirrhosis/all patients
3-year: 0.90 (0.88–0.92)/0.81
(0.79–0.83)
5-year: 0.78 (0.76–0.81)/0.80
(0.78–0.82)
10-year: 0.81 (0.78–0.83)/0.77
(0.75–0.79)

Gender, Age, ALT level,
HBV DNA level, HBeAg
serostatus

Upgraded
REVEAL-HBV
nomograms
(Lee et al. 2013)

Internal validation
5-year: 0.84
10-year: 0.86
15-year: 0.87

Gender, Age, ALT level,
HBV DNA level, HBeAg
serostatus, HBV Genotype,
Family History of HCC,
HBsAg level

REVEAL-HBV HCC
Risk score (Lin et al. 2013)

Internal validation by risk
model of different combination
of risk predictors (6-year risk)
Risk score I: 0.83
Risk score II: 0.89
Risk score III: 0.91

Gender, Age, ALT level, AFP
level, HBV DNA level,
HBeAg serostatus, AST/ALT
ratio, GGT level, Albumin
level, Alpha-1 globulin level

REVEAL-HCV HCC
Risk Score for
Anti-HCV-positives (Lee
et al. 2014c)

Internal (External) validation
5-year: 0.75 (0.73)
10-year: 0.83
15-year: 0.83

Age, ALT, Cirrhosis,
AST/ALT ratio, HCV RNA
level, HCV genotype

(continued)
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With the establishment of quantitative HBsAg levels as an important seromarker
in the natural history of chronic hepatitis B, the REVEAL-HBV nomograms and
REACH-B risk scores have recently been updated to include this novel risk pre-
dictor with original risk predictors in the prediction models. This upgraded
REVEAL-HBV nomogram for HCC risk prediction also provided excellent pre-
diction accuracy and discriminatory ability, with an internal validation AUROC of
0.84 and 0.86, respectively, for 5- and 10-year HCC risk prediction (Lee et al.
2013). Predictors included in the derivation of the updated nomogram are gender,
age, family history of hepatocellular carcinoma, serum ALT level, HBeAg
serostatus, serum levels of HBV DNA and HBsAg, and HBV genotype. Risk scores
are assigned for various categories of risk predictors as shown in Table 6. For
example, a 60-year-old (risk score = 6) male (risk score = 2) chronic hepatitis B
patient who had a family history of hepatocellular carcinoma (risk score = 2), a
serum ALT level of 90 IU/L (risk score = 2), a HBeAg-seropositive serostatus, a
serum HBV DNA level of 107 copies/mL, a serum HBsAg level of 104 IU/mL, and
a HBV genotype C infection (risk score = 7) has a sum of risk score of 19. The 5-,
10-, and 15-year cumulative risks of hepatocellular carcinoma by the sum of risk
score are shown in the nomogram of Fig. 3. For the male patient with a sum of the
risk score as high as 19, his 5-, 10- and 15-year risk of hepatocellular carcinoma

Table 5 (continued)

Risk score (reference) AUROC (95% confidence
interval) for predicting HCC risk
by follow-up year and cohort

Risk predictors

REVEAL-HCV HCC
Risk score for HCV
RNA-positives (Lee et al.
2014c)

Internal (External) validation
5-year: 0.65 (0.70)
10-year: 0.77
15-year: 0.73

Age, ALT, Cirrhosis,
AST/ALT ratio, HCV RNA
level, HCV genotype

RWS-HCC Risk score
(Poh et al. 2016)

External validation by cohort
REACH-B: 0.77 (0.73–0.81)
GAG-HCC: 0.83 (0.75–0.91)
CUHK: 0.90 (0.86–0.95)

Gender, Age, AFP level,
Cirrhosis

REACH-B IIa Score
(Yang et al. 2016)

External validation by
ERADICATE-B/CUHK cohort
3-year: 0.92 (0.82–1.02)/0.85
(0.75–0.95)
5-year: 0.78 (0.70–0.86)/0.82
(0.70–0.93)
10-year: 0.80 (0.76–0.84)/0.78
(0.70–0.87)

Gender, Age, ALT level,
HBV DNA level, HBeAg
serostatus, HBsAg level

REACH-B IIb Score
(Yang et al. 2016)

External validation by
ERADICATE-B/CUHK cohort
3-year: 0.90 (0.81–1.00)/0.84
(0.76–0.92)
5-year: 0.76 (0.68–0.85)/0.81
(0.71–0.91)
10-year: 0.78 (0.73–0.82)/0.79
(0.72–0.87)

Gender, Age, ALT level,
HBeAg serostatus, HBsAg
level
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will be 35, 80, and 90%. In contrast, a 34-year-old woman with no family history of
hepatocellular carcinoma, a serum ALT level of 10 IU/L, a HBeAg-negative
serostatus, a serum HBV DNA level of 103 copies/mL, and a serum HBsAg level of
50 IU/mL (sum of risk score = 0) has 5-, 10-, and 15-year risk of hepatocellular
carcinoma of 0.0075, 0.025, and 0.065%.

Serum HBsAg level was included in both REACH-B IIa and IIb risk calculators
for the prediction of hepatocellular carcinoma risk in non-cirrhotic patients with
chronic HBV infection. The addition of serum HBsAg level to the REACH-B
scoring system (REACH-B IIa) or the replacement of serum HBV DNA level by
serum HBsAg level (REACH-B IIb) did not alter the accuracy of the scoring
systems when externally validated by ERADICATE-B and CUHK studies (Yang
et al. 2016).

Table 6 Scores assigned to
risk predictors of
HBV-caused hepatocellular
carcinoma

Risk predictor Risk score

Age

30–34 0

35–39 1

40–44 2

45–49 3

50–54 4

55–59 5

60–64 6

Gender

Female 0

Male 2

Family history of hepatocellular carcinoma

No 0

Yes 2

Serum ALT levels (IU/L)

<15 0

15–44 1

� 45 2

HBeAg/HBV DNA (copies/mL)/HBsAg (IU/mL)/Genotype

Negative/<104/<100/any type 0

Negative/<104/100–999/any type 2

Negative/<104/� 1000/any type 2

Negative/104–106/<100/any type 3

Negative/104–106/100–999/any type 3

Negative/104–106/� 1000/any type 4

Negative/� 106/any level/B or B + C 5

Negative/� 106/any level/C 7

Positive/any level/any level/B or B + C 6

Positive/any level/any level/C 7
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Recently, two risk prediction models for HCV-caused hepatocellular carcinoma
were developed and validated as shown in Table 5. The first model utilized age,
serum ALT levels, AST/ALT ratio, and a combination of liver cirrhosis, serum
HCV RNA level, and HCV genotype to predict the risk of hepatocellular carcinoma
among anti-HCV-seropositive patients, while the second model utilized the same
variables to predict the risk among patients with detectable serum HCV RNA levels
(Lee et al. 2014c). Both models were validated in a high-risk cohort of HCV
patients with satisfactory discriminatory ability, showing a 5-year AUROC of 0.73
and 0.70, respectively. These risk prediction models have also been validated using
the United States Veterans Affairs database, and the 5-year predictability was
acceptable with an AUROC of 0.69 (Matsuda et al. 2014).

The development of the risk calculators needs large-scale prospective cohorts,
which have been followed for a long period of time with accurate measurements of
risk predictors. Demographical characteristics, viral infection biomarkers, family
cancer history, lifestyle variables, and polymorphisms of genetic susceptibility may
be incorporated to develop valid and useful cancer risk calculators. Figure 4 shows
a nomogram of predicted 1-, 5- and 10-year risk of nasopharyngeal carcinoma
derived from a long-term prospective study in Taiwan (Chien et al. 2001). Four risk
predictors including family history of nasopharyngeal carcinoma, cumulative
pack-years of cigarette smoking, and serotiter of anti-EBV VCA IgA and anti-EBV
DNase are incorporated in the model. Based on this 22-point risk score, the risk of
nasopharyngeal carcinoma ranges 0.02–5.09% at 1 year, 0.07–13.95% at 5 years,
and 0.14–26.20% at 10 years for male adults in Taiwan. The AUROC was as high
as 97.9, 87.8 and 90.6% for predicting the 1-, 5- and 10-year risk of nasopharyngeal
carcinoma (Hsu et al. 2013).

Fig. 3 Nomogram for
predicted 5-, 10-, and 15-year
risk of hepatocellular
carcinoma by sum of risk
score
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8 Prevention and Early Detection of Virus-Caused Cancers

The most effective strategy to prevent virus-caused cancers is through the pre-
vention of viral infection through vaccination or transmission interruption, and the
antiviral therapy to eliminate oncogenic viruses in human host. Early detection of
specific cancers in oncogenic virus-infected individuals through screening may
lower the risk of invasive cancer and its fatality. Table 7 shows currently available
vaccines or antivirals to prevent or treat patients with oncogenic viral infection.
Vaccines are available for the prevention of HBV-caused hepatocellular carcinoma
and HPV-caused cervical cancer, while antiviral/antiretroviral therapies are avail-
able for the treatment of chronic infection of HBV, HCV, and HIV to prevent
hepatocellular carcinoma and Kaposi’s sarcoma.

Fig. 4 Nomogram for predicted 1-, 5- and 10-year risk of nasopharyngeal carcinoma by risk score

Table 7 Evidence showing the reduction of incidence of virus-caused cancers through the
preventive strategy of vaccination, antiviral/antiretroviral therapy, and early detection

Virus Cancer Preventive strategy

EBV Nasopharyngeal carcinoma Early detection in high-risk group

HBV Hepatocellular carcinoma Vaccination and antiviral therapy

HCV Hepatocellular carcinoma Antiviral therapy

HIV-1 Kaposi’s sarcoma Antiretroviral therapy

HPV Cervical cancer Vaccination and cervical screening

34 C.-J. Chen et al.



EBV infection is almost ubiquitous in humans, but the incidence of nasopha-
ryngeal carcinoma is low. The prevention of nasopharyngeal carcinoma through the
elimination of EBV infection by vaccination or antiviral therapy is not available.
However, many seromarkers including various antibodies against EBV-specific
antigens and EBV DNA may be used to identify high-risk individuals for the early
detection of nasopharyngeal carcinoma. For examples, a novel EBV-based antibody
stratification signature has been identified for early detection of nasopharyngeal
carcinoma (Coghill et al. 2018). The inclusion of 12 array-identified antibodies in
the risk signature resulted in the increase of NPC prediction accuracy of currently
used VCAp18/EBNA1 IgA biomarkers, from 82 to 93% in the general Taiwan
population and from 78 to 89% in genetically high-risk families.

HBV immunization and antiviral therapy for HBV and HCV may significantly
reduce the incidence and mortality of liver cancer (Chen 2018). The national HBV
immunization program in Taiwan, which was implemented in 1984, has success-
fully reduced the incidence of hepatocellular carcinoma in vaccinated birth cohorts
(Chang et al. 1997, 2016). The rate ratio of hepatocellular carcinoma incidence
between immunized and unimmunized birth cohorts was 0.26, 0.34, 0.37, and 0.42,
respectively, for the age group of 6–9, 10–14, 15–19, and 20–26 years. Another
study examining 30-year outcomes of the HBV immunization program in Taiwan
also showed significant declines in the mortality from infant fulminant hepatitis and
chronic liver diseases including cirrhosis, and in the incidence and mortality of
hepatocellular carcinoma in the immunized birth cohorts (Chiang et al. 2013). As
shown in Table 8, the age-gender-adjusted rate ratio decreased 79% for the mor-
tality and 63% for the incidence of hepatocellular carcinoma in immunized birth
cohorts born in 1997–2000 compared to unimmunized birth cohorts born in 1977–
1980. In a cohort study of 3.8 million vaccinated neonates in Taiwan, the risk
predictors of hepatocellular carcinoma in immunized newborns included maternal
HBeAg serostatus and incomplete immunization with hepatitis B immunoglobulin
or vaccine (Chien et al. 2014).

Several antivirals have been approved for chronic viral hepatitis therapy.
Lamivudine was first approved in 1998 for the treatment of chronic HBV infection,
it decreases the hepatocellular carcinoma risk of treated patients significantly with a
disadvantage of developing antiviral-resistant YMDD mutants (Liaw et al. 2004).
Newly developed antivirals for chronic HBV infection have higher genetic barriers
to limit the development of antiviral-resistant strains. A significant decrease in
hepatocellular carcinoma incidence among 973 chronic HBV infection patients
treated with pegylated interferon or any nucleoside/nucleotide analogues was
reported in a USA–Taiwan study, showing treated patients have 77% reduction in
hepatocellular carcinoma incidence compared with 4935 untreated patients after
adjustment for the REACH-B risk score (Lin et al 2016). In another European study
on 1951 adult Caucasian chronic HBV infection patients treated with entecavir or
tenofovir, there was a significant decline in annual hepatocellular carcinoma inci-
dence among cirrhosis patients from 3.22% in the first 5 years to 1.57% in 5–
10 years after enrollment (Papatheodoridis et al. 2017).

Epidemiology of Virus Infection and Human Cancer 35



The interferon-based therapy was the standard for the treatment of chronic HCV
infection before direct acting agents (DAA) was launched in 2013. HCV genotypes
1 and 4 are less responsive to interferon-based treatment than other genotypes.
INFL3 variants were found to be associated with the efficacy of interferon-based
HCV therapy, showing the Asia-Pacific ethnicities have a high frequency of
favorable genotypes. In a study of 4639 patients with chronic HCV infection treated
with pegylated interferon and ribavirin, the sustained viral response (SVR versus
non-SVR) was associated with a significant decline in HCC incidence in cirrhotic
(46% reduction) and non-cirrhotic (63% reduction) patients (Lee et al. 2017).
DAAs are highly effective for all HCV genotypes without ethnic variation, with low
side effects, and convenient with oral intake. In a recent study on 62,354 chronic
HCV-infected patients treated with interferon and/or DAAs, SVR versus non-SVR
was associated with a significant reduction in HCC in patients treated with DAA
only (71% reduction), DAA and interferon (52% reduction), and interferon only
(68% reduction) after adjustment for multiple risk factors (Ioannou 2018).

A nationwide chronic viral hepatitis therapy program was implemented in 2003
to treat patients with chronic hepatitis viral infection in Taiwan. A significant
reduction in the burden of liver cancer through this program has recently been
documented (Chiang et al. 2015). After adjustment for age and gender, there was
36% reduction in the mortality and 24% reduction in the incidence of hepatocellular
carcinoma in 2012–2015 compared with the 4-year period before the program
launch, i.e., 2000–2003, as shown in Table 8.

Table 8 Significant reduction in incidence and mortality of hepatocellular carcinoma through
National Programs on Hepatitis B Immunization and Chronic Viral Hepatitis Therapy in Taiwan

Birth year HCC
mortality

(Ages 5–29 years) HCC
incidence

(Ages 5–29 years)

Hepatitis B immunization program

Rate per 105

person-years
Age-sex-adjusted
rate ratio (95% CI)

Rate per 105

person-years
Age-sex-adjusted
rate ratio (95% CI)

1977–1980 0.81 1.00 (reference) 1.14 1.00 (reference)

1981–1984 0.56 0.70 (0.59–0.83) 0.77 0.73 (0.63–0.85)

1985–1988 0.30 0.43 (0.33–0.55) 0.37 0.48 (0.38–0.60)

1989–1992 0.17 0.27 (0.19–0.39) 0.23 0.37 (0.27–0.51)

1993–1996 0.12 0.21 (0.13–0.34) 0.22 0.43 (0.30–0.62)

1997–2000 0.12 0.21 (0.12–0.38) 0.17 0.37 (0.21–0.62)

Calendar
year

HCC
mortality

(Ages 30–
69 years)

HCC
incidence

(Ages 30–69 years)

Chronic viral hepatitis therapy program

Rate per 105

person-years
Age-sex-adjusted
rate ratio (95%CI)

Rate per 105

person-years
Age-sex-adjusted
rate ratio (95% CI)

2000–2003 36.59 1.00 (reference) 54.12 1.00 (reference)

2004–2007 35.77 0.95 (0.93–0.97) 54.79 0.98 (0.96–0.99)

2008–2011 30.21 0.76 (0.75–0.78) 50.77 0.86 (0.85–0.88)

2012–2015 27.44 0.64 (0.62–0.65) 47.55 0.76 (0.74–0.77)
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Viral hepatitis control has been identified as a sustainable development goal by
the United Nations. The global targets for 2030 set by World Health Organization
include 90% hepatitis B vaccination coverage, 90% prevention of mother-to-child
HBV transmission, 100% blood transfusion and injection safety, 90% diagnosis of
HBV and HCV infections, and 80% treatment of eligible patients (WHO 2017).
Concerted national and international efforts are in urgent need. The diagnosis and
treatment coverage have to be rapidly scaled up through a public health approach to
benefit all. Sustainable financing and innovation are also required for the devel-
opment and delivery of vaccines, diagnostics, and treatments to transform the
global hepatitis response.

Many clinical studies demonstrated the efficacy of HPV vaccination in pre-
venting cervical neoplasia, a precursor lesion of cervical cancer. By now, three
HPV vaccines now being marketed in many countries throughout the world, a
bivalent, a quadrivalent, and a nonavalent vaccine. More than 80 countries have
introduced HPV vaccine to protect adolescent girls against cervical cancer.
The HPV immunization program in Australia has effectively lowered the incidence
of cervical neoplasia in vaccinated female cohorts aged 12–26 years, showing a
hazard ratio of 0.53 and 0.73 for cervical high and low-grade lesion, respectively,
among vaccinees received three doses (Brotherton et al. 2015). In a modelling
study, cervical cancer could be eliminated as a public health problem in Australia
within the next 20 years (Hall et al. 2019).

Studies in the USA have also documented the reduced risk of abnormal cervical
cytology result among vaccinated females (hazard ratio 0.64 versus unvaccinated
females), particularly for those who completed three doses (hazard ratio 0.48) and at
age of 11–14 years (hazard ratio 0.36 for 1–2 doses and 0.27 for 3 doses)(Hofstetter
et al. 2016). In Canada, women received full vaccination (� 3 doses) had an
adjusted odds ratio of 0.72 and 0.50 for developing any cervical abnormalities and
high-grade lesions, respectively (Kim et al. 2016). In Scotland, women who
received three doses of vaccine compared with unvaccinated women had a sig-
nificant reduction in diagnoses of cervical intraepithelial neoplasia (CIN) 1, CIN 2,
and CIN 3 with a relative risk of 0.71, 0.50 and 0.45, respectively (Pollock et al.
2014). Another study among young women in Denmark showed that vaccination
with the HPV vaccine is effective in reducing the risk for cervical cancer precursor
lesions, despite having only been available since 2006 in Denmark (Baldur-Felskov
et al. 2014). Screening for HPV infection in cervical cells and pap smears may aid
the early detection of cervical neoplasia and reduce the incidence and mortality of
invasive cervical cancer (Chen et al. 2009b, 2014b).

Many studies have also examined the impact of antiretroviral therapy on the
incidence of Kaposi’s sarcoma in HIV-infected individuals. In a recent review of
studies published between 2009 and 2012, the percent reduction in the
population-level incidence of Kaposi’s sarcoma attributed to antiretroviral therapy
among HIV-infected individuals seen in the period when therapy was available,
compared to the period when it was not available, ranged from 78 to 95% (Semeere
et al. 2012). The reduction in Kaposi’s sarcoma incidence was similarly striking
among multiple clinic-based cohort studies, which saw reductions of 50–90% since
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the availability of antiretroviral therapy. However, these results were mostly seen in
resource-rich settings. Data from resource-limited settings, where the majority of
the burden of Kaposi’s sarcoma lies, were limited. More research on the effec-
tiveness of antiretroviral therapy in resource-limited settings is needed.

9 Future Perspectives

Along with the advancement in precision medicine, more and more proteomic and
genomic biomarkers associated with the development of virus-caused cancers have
been identified. They may be applied to the risk prediction or early detection of
cancers. For example, multiple microRNAs have been combined for the diagnosis
of hepatocellular carcinoma. However, its efficacy and cost-effectiveness for early
diagnosis of hepatocellular carcinoma should be further assessed and compared
with those of other methods including abdominal ultrasonography (Chen and Lee
2011).

More importantly, repeated measurements of biomarkers may further improve
the risk prediction or early detection of virus-caused cancers (Chen 2005). For
example, the trajectory of serum HBV DNA levels has been found to predict
long-term risk of hepatocellular carcinoma effectively (Chen et al. 2011a). A recent
longitudinal study with serial measurements have identified a novel glycomarker,
Wisteria floribunda agglutinin-positive human Mac-2-binding protein (WFA+-
M2BP), for the long- and short-term prediction of hepatocellular carcinoma (Lin
et al. 2018). Patients with increasing changes in serum WFA+-M2BP levels, relative
to their baseline levels, had a significantly increased risk. The efficacy of predicting
hepatocellular carcinoma for WFA+-M2BP was significantly higher while closer to
the disease diagnosis (p = 0.024). The AUROC for the risk calculator including the
predictors of age, sex, ALT, AFP and WFA+-M2BP was as high as 0.91 for
predicting hepatocellular carcinoma occurred within 1 year.

More longitudinal studies with regular follow-up examinations of various
biomarkers are in urgent need to identify good molecular targets for the develop-
ment of preventives, diagnostics, or therapeutics of various virus-caused cancers.
A health economic assessment of these biopharmaceuticals in their clinical
application.
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Mechanisms of Hepatitis B
Virus-Induced Hepatocarcinogenesis

Jiyoung Lee, Kuen-Nan Tsai, and Jing-hsiung James Ou

1 Introduction to Hepatitis B Virus

Hepatitis B virus (HBV) is a hepatotropic virus that can cause severe liver diseases,
including acute and chronic hepatitis, cirrhosis, and hepatocellular carcinoma
(HCC). There are approximately 250 million people worldwide suffering from
chronic HBV infection, resulting in nearly one million deaths annually (Iloeje et al.
2006; Kao and Chen 2002; WHO 2017). Most chronic HBV carriers in endemic
areas such as sub-Saharan Africa and China acquired the virus from their carrier
mothers early in life, although HBV can also be transmitted via other pathways
such as sex or the sharing of injection needles (Milich and Liang 2003; Shin et al.
2016; Ou 1997). Due to the lack of an effective treatment, HBV remains one of the
most serious health problems. The infection by HBV contributed to slightly more
than 50% of HCC cases worldwide in a 2002 study, rendering it the most important
carcinogenic factor of HCC (Parkin 2006). HBV can induce HCC via the induction
of chronic liver inflammation, which can cause oxidative DNA damage, liver injury
and regeneration, and eventual oncogenic transformation of hepatocytes. Factors
like age, gender, duration of infection, alcohol consumption, and the exposure to
carcinogens such as aflatoxin can also increase the risk of HCC for HBV patients.
In this chapter, we will focus on the direct effect of HBV on hepatocytes in the
induction of hepatocarcinogenesis.
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1.1 HBV Genome and Lifecycle

HBV belongs to the Hepadnaviridae family (Liang 2009; Tiollais et al. 1985). It is
an enveloped virus with a partially double-stranded and circular DNA genome of
approximate 3.2 Kb. The HBV genome is remarkably compact and encodes four
overlapping genes named C, P, S, and X. The C gene codes for the 21-kDa core
protein, which forms the viral core particle that displays the core antigenic deter-
minant (i.e., the core antigen, HBcAg) (Tsai et al. 2018), and a related 25-kDa
protein termed the precore protein. The precore protein contains the entire sequence
of the core protein plus an amino-terminal extension of 29 amino acids (i.e., the
“precore sequence”) (Ou 1997; Ou et al. 1986). The first 19 amino acids of the
precore protein serve as a signal peptide that directs the precore protein to the
endoplasmic reticulum (ER) where it is removed by the signal peptidase to generate
the 22-kDa precore protein derivative. This precore protein derivative is subse-
quently cleaved at its carboxy terminus at multiple sites by the furin-like protease in
the Golgi and secreted (Ito et al. 2009). The secreted precore protein derivatives are
known as the e antigen (i.e., HBeAg). HBeAg is not essential for HBV replication
(Chen et al. 1992; Lamberts et al. 1993), but it has immunomodulatory functions
and is important for HBV to establish the persistent infection after the
mother-to-child transmission (Milich and Liang 2003; Ou 1997; Tsai et al. 2018;
Tian et al. 2016). The P gene codes for the viral DNA polymerase, which is also a
reverse transcriptase (Jones and Hu 2013). The S gene codes for the three
co-carboxy-terminal envelope proteins known as large (or preS1), middle
(or preS2), and small (or major) surface antigen (HBsAg) proteins (Ueda et al.
1991). The X gene codes for the X protein (i.e., HBx), which is a regulatory protein
that has diverse functions and can promote hepatocarcinogenesis ((Tang et al. 2006;
Kohara et al. 2011; Ng and Lee 2011), also see below). After the infection of
hepatocytes, the partially double-stranded HBV genome is delivered into the
nucleus where it is repaired to form the covalently closed circular DNA (cccDNA).
The cccDNA serves as the template for viral RNA transcription (Guidotti and
Chisari 2006). The transcription is unidirectional and regulated by two enhancer
elements and four distinct promoters, resulting in the formation of a diverse set of
mRNAs that include the 3.5 Kb precore protein mRNA, the 3.5 Kb core protein
mRNA, the 2.4 Kb preS1 mRNA, the 2.1 Kb preS2 and major S mRNAs, and the
0.7 Kb X mRNA (Locarnini 2004; Moolla et al. 2002). All of the HBV RNA
transcripts are capped, polyadenylated, and terminated at the identical 3’ end. The
core protein mRNA codes for both the core protein and the viral DNA polymerase.
It is also known as the pregenomic RNA (pgRNA) and is packaged by the core
protein to form the core particle, in which the pgRNA is converted to the circular
and partially double-stranded DNA genome by the viral DNA polymerase that is
also packaged. The core particle subsequently interacts with HBsAg embedded in
intracellular membranes to form the mature virion, which is then released
from infected hepatocytes via a pathway that involves multivesicular bodies
(Watanabe et al. 2007; Chou et al. 2015). HBsAg can also be released from cells as
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empty subviral particles, often in vast excess of infectious viral particles (Gavilanes
et al. 1990; Ganem and Prince 2004).

1.2 HBV Genotypes and Clinical Outcomes of Chronic
Hepatitis B

Based on the sequence divergence of greater than 8% over the entire viral genome
or 4% in the S gene, HBV has been classified into eight well-characterized geno-
types A through H (Norder et al. 2004; Stuyver et al. 2000; Arauz-Ruiz et al. 2002;
Shi et al. 2012) and two additional genotypes I and J (Tatematsu et al. 2009; Tran
et al. 2008). These genotypes have distinct ethnic and geographic distributions. For
example, genotype A is prevalent in Sub-Saharan Africa, Western African, and
Northern Europe, genotype D is prevalent in Africa, Europe, India, and the
Mediterranean region, and genotypes B and C are widespread in Asia (Lin and Kao
2011). HBV genotypes have also been shown to display different pathogenicity and
responses to type-I interferon (IFN)-based therapies. Chronic hepatitis B
(CHB) patients infected by genotype A or B virus exhibit higher rates of sero-
clearance of HBeAg and HBV DNA in response to the IFN-a therapy than patients
infected by genotypes C or D virus (Erhardt et al. 2005; Kao et al. 2000; Janssen
et al. 2005). Furthermore, children chronically infected by genotype A HBV were
found to have lower viral load and less severe symptoms than children infected by
genotype D HBV (Oommen et al. 2006; Thakur et al. 2002). It has also been
reported that differences between HBV genotypes A and D correlated with differ-
ences in resistance to the deoxycytidine analog (Zollner et al. 2004) and liver
pathogenesis (Verschuere et al. 2005; Yang et al. 2008). Serologically, genotype C
tends to be related to a higher incidence of HBeAg positivity and higher viral load
than genotype B (Kao 2003). It has also been shown that genotype C is correlated
with more severe liver diseases including cirrhosis and HCC, while genotype B is
correlated with the development of HCC in young patients with noncirrhotic liver.
The biological mechanisms underlying these phenotypic differences among dif-
ferent HBV genotypes, however, remain largely unknown.

1.3 Spliced HBV RNA Variants and HBV Pathogenesis

A series of spliced HBV RNAs (spRNAs), derived from the pgRNA, has been
found in the viral particles of CHB patients and in hepatoma cell lines transfected
with the HBV genomic DNA (Gunther et al. 1997; Wu et al. 1991; Su et al. 1989).
To date, the functions of these spRNAs are still enigmatic because they are not
essential for HBV replication. A recent study examined the distribution of spRNA
variants extracted from an individual with CHB following liver transplantation and
found that the spRNA population altered dynamically over a 15-year period
(Betz-Stablein et al. 2016). This finding suggests a possible relationship between
spRNAs and HBV pathogenesis and/or persistence. This suggestion is supported
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by the study of Pol et al. who found that an spRNA-derived protein suppressed
TNF-a-stimulated signaling and the infiltration of immune cells into the mouse liver
during chronic inflammation (Pol et al. 2015). In addition, the increase of a fraction
of HBV-spliced variants in CHB patients was also found to correlate with an
impaired response to the IFN-a therapy, due to the inhibition of phosphorylation of
IFN-activated signal transducer and activator of transcription (STAT) 1 and the
consequent inhibition of the nuclear translocation of STAT1/STAT2 (Chen et al.
2015). Recent studies also indicated that spRNA-derived proteins could induce
specific T-cell responses in HBV-infected patients (Mancini-Bourgine et al. 2007)
and interfere with the assembly of HBV core particles and the transcription of HBV
RNAs in the cells transfected with HBV DNA (Soussan et al. 2003; Wang et al.
2015). spRNAs also affect host immunity due to their effect on the synthesis of
chemokines in hepatocytes, which may contribute to liver immunopathogenesis and
immune escape of HBV during chronic HBV infection (Duriez et al. 2017). Fur-
thermore, spRNAs can act as a repressor of HBV RNA transcription and affect the
long-term outcomes of CHB diseases and responses to antiviral therapy (Tsai et al.
2015). Overall, the studies on spRNAs indicated that these RNAs might regulate
the crosstalk between HBV and its host cells, contributing to HBV persistence and
pathogenesis.

1.4 HBV Viral Load and HCC

HCC risk factors for CHB patients include the male gender, age, the serum alanine
aminotransferase (ALT) level, the HBeAg level, and the serum HBV DNA level
(i.e., viral load), but not the HBsAg level (Tseng et al. 2012). A serum viral DNA
level of � 10,000 copies/mL is a strong risk predictor for HCC, independent of the
HBeAg status, the ALT level, and liver cirrhosis (Yang et al. 2002; Iloeje et al.
2007; Chen et al. 2006). For HBeAg-negative patients with viral load of <10,000
copies/mL, the serum HBsAg level of � 1,000 IU/mL as well as the ALT level and
age is a strong risk predictor for HCC (Tseng et al. 2012). High viral load is also a
predictor of postoperative recurrence of HCC (Wu et al. 2009; Hung et al. 2008).
These findings indicate an important role of HBV viral load in the development and
recurrence of HCC.

2 Genetic and Epigenetic Modifications Induced by HBV

Genetic and epigenetic alterations have been found in both viral and host genomes
in CHB patients and HBV-related HCC, indicating a critical relationship between
these alterations and HBV-induced HCC.
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2.1 HBV DNA Integration in Host Chromosomes

More than 80% of HBV-associated HCC had integration of HBV DNA in the host
chromosomes (Brechot 2004). The integration of HBV DNA in the host chromo-
somes of HCC was first reported in 1980 (Brechot et al. 1980; Chakraborty et al.
1980; Edman et al. 1980), and the selection of the integration sites in the host
chromosomes was initially thought to be random. However, the studies by whole-
genome sequencing of HCC tissues in recent years had identified recurrent inte-
gration spots. The integration appears to spread over the entire genome in both
tumor and non-tumor tissues, although the integration frequency is higher in tumor
tissues than in their paired non-tumor tissues (Zhao et al. 2016). The integration
sites in tumor tissues tend to enrich in certain promoter regions (Toh et al. 2013).
Recurrent integration within the CpG islands and in the vicinity of the telomere in
tumor samples indicates a possible association between the preferential targeting of
these sites and the alteration of cellular gene regulation (Zhao et al. 2016). The
recurring “hotspot” genes identified in multiple studies include genes encoding the
telomerase reverse transcriptase (TERT), myeloid/lymphoid or mixed-lineage leu-
kemia 3 (MLL3), MLL4, cyclin E1 (CCNE1), the protein tyrosine phosphatase
receptor type D (PTPRD), unc-5 netrin receptor D (UNC5D), neuregulin 3 (NRG3),
catenin delta 2 (CTNND2), the aryl-hydrocarbon receptor repressor (AHRR),
SUMO-specific peptidase 5 (SENP5), Rho-associated coiled-coil containing protein
kinase 1 (ROCK1), tumor protein 53 (TP53), Axin 1 (AXIN1), AT-rich interactive
domain-containing protein 1A (ARID1A), ARID1B, ARID2, catenin beta 1
(CTNNB1), retinoic acid receptor beta (RARB), cyclin A2, fibronectin (FN1), and
angiopoietin 1 (ANGPT1) (Zhao et al. 2016; Ding et al. 2012; Jiang et al. 2012;
Sung et al. 2012; Wan et al. 2013; Fujimoto et al. 2012; Hai et al. 2014; Li et al.
2013). The PCR analysis using primers specific to human Alu repeat sequences and
to HBV DNA to detect viral–host junctions added some more genes to the list:
calcium signaling-related genes, 60S ribosomal protein-like encoding genes,
platelet-derived growth factor (PDGF), and apoptosis-associated genes (Murakami
et al. 2005; Tamori et al. 2005).

The integration of HBV DNA into host chromosomes is not an essential step of
the HBV life cycle, and this integration frequently leads to the fragmentation,
rearrangement, and disruption of the HBV genome. Rather, the integration of
HBV DNA may cause instability of host chromosomes and also enhance the
expression of genes related to cancer development, metastasis and angiogenesis, or
inactivate tumor suppressor genes to eventually lead to the initiation of
carcinogenesis.

As mentioned above, the integration also disrupts the HBV genome, which has a
circular structure. A high frequency of the integration occurs in the HBx coding
sequence, leading to the production of chimeric transcripts that contain both HBV
and host sequences and the expression of C-terminally truncated HBx (Toh et al.
2013; Ou and Rutter 1985; Peng et al. 2005; Ma et al. 2008). C-terminally truncated
HBx has been implicated in the induction of oxidative DNA damage (Jung and Kim
2013), expression of MMP-10 (Sze et al. 2013), upregulation of Wnt-5a (Liu et al.

Mechanisms of Hepatitis B Virus-Induced Hepatocarcinogenesis 51



2008), metastasis (Li et al. 2016), cell proliferation (Ma et al. 2008), and increase of
the CD133-positive cell subset, which possessed cancer stem cell-like properties
(Ng et al. 2016). It may also abrogate the growth-suppressive and apoptotic effects
of full-length HBx ((Xu et al. 2007; Tu et al. 2001), also see below). Furthermore, it
has been shown to promote hepatocellular proliferation, HCC cell invasion, and
metastasis (Sze et al. 2013; Yip et al. 2011). Hybrid transcripts derived from viral
and human genes may also be carcinogenic (Ou and Rutter 1985; Lau et al. 2014).
The HBx-LINE1 hybrid transcript, for example, was detected in *20% of HCC
patients with a close association with poor prognosis. Approximately 40% of the
breakpoints in the HBV genome were located near the 3’-end of the HBx coding
sequence and the 5’-end of the precore protein coding sequence while another peak
of the breakpoints was detected around nt. 300–500 of the major S protein coding
sequence (Zhao et al. 2016). Truncated preS/S proteins had also been detected and
found to have gene transactivation functions (Schluter et al. 1994).

2.2 Epigenetic Modifications

2.2.1 DNA Methylation
The term epigenetics refers to all the changes in the chromatin with no change in the
DNA sequence. DNA methylation, histone modification, and RNA-associated
silencing are three interactive epigenetic changes. Epigenetic changes can be
reversed based on physiological conditions. The HBV DNA is subject to epigenetic
modifications. The study of DNA methylome, an analysis of genome-wide distri-
bution of DNA methylation, revealed that the HBV genome in liver tumors and
cancer cell lines acquired more methylation than in precancerous conditions such as
hepatitis and cirrhosis (Fernandez et al. 2009). The study also demonstrated that the
methylation of the preS1/preS2/S locus progressed from nearly 0% in hepatic cir-
rhosis to 11% in chronic hepatitis and 52% in liver tumors. Approximately
70 * 80% of the CpG dinucleotides in vertebrate DNA is methylated while such
methylation is absent in bacterial DNA (Bachmann and Kopf 2001; Krieg 2002).
B cells distinguish between self-DNA and non-self-DNA by their methylation
status. The HBV cccDNA is hypermethylated, which may prevent it from being
recognized by the innate immune components (Kuss-Duerkop et al. 2018), although
its X gene is hypomethylated to allow the steady expression of HBx, which has
many regulatory functions to support the HBV lifecycle (Fernandez et al. 2009).

The infection by HBV also affects the methylation of cellular genes. These genes
include cell cycle-related genes such as p16INK4A and p21WAF1/CIP1, Ras association
domain family member 1 (RASSF1A), glutathione S-transferase pi 1 (GSTP1), and
cadherin 1 (CDH1) (Rongrui et al. 2014). When compared with non-tumor tissues,
the expression of CD82, a tumor suppressor and general suppressor of metastasis,
was found to be elevated in HCC tissues (Yu et al. 2014). The introduction of
HBV DNA into HepG2 hepatoblastoma cells increased the methylation in the
CD82 promoter and suppressed its transcriptional activity (Yu et al. 2014). The
hypomethylation of CpG islands in the HBx-transgenic mouse liver led to the
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downregulation of E- and N-cadherins, which are important for the epithelial-
to-mesenchymal transition, Smad6 and Kcp, which are components of the
Smad-dependent TGF-b–signaling pathway, and the Wnt-signaling pathway (Lee
et al. 2014). These pathways are well known to participate in tumorigenesis. The
expression of ankyrin-repeat-containing, SH3-domain-containing, and proline-
rich-region containing protein family 1 (ASPP1) and 2 (ASPP2) was downregulated
in HCC cell lines and tissues from HCC patients infected by HBV (Zhao et al.
2010). Particularly, a decrease of ASPP2 in HepG2 hepatoblastoma cells was
attributable to HBx, which enhanced the recruitment of DNA methyltransferase 1
(DNMT1) and DNMT3a to the ASPP2 promoter for its methylation (Zhao et al.
2010).

The HBx-directed recruitment of DNMT3a and DNMT3b to CpG island 1
within the promoter of metastasis-associated protein 1 (MTA1) activated the
expression of MTA1. In this case, CpG island 1 of the MTA1 promoter contains the
binding site of the transcriptional repressor p53. The methylation of CpG island 1
reduced the binding of p53, upregulated MTA1 expression, and thus enhanced the
invasiveness and the metastasis of HCC (Lee et al. 2012). It had also been reported
that HBx-induced upregulation of DNMT3a and DNMT3b led to the methylation of
the SOCS-1 promoter and reduced the expression of SOCS-1, a potential tumor
suppressor (Fu et al. 2016). Other tumor suppressive genes regulated by
HBx-modulated epigenetic events include RASSF1A, procadherin-10 (PCDH10),
insulin-like growth factor-binding protein 3 (IGFBP3), and E-cadherin (Ying et al.
2006; Qiu et al. 2014; Fang et al. 2013; Arzumanyan et al. 2012).

2.2.2 Histone Modifications
Post-translational modifications of histones include methylation, acetylation, and
phosphorylation. Histone acetylation, which is important for gene regulation,
involves the transfer of the acetyl group from acetyl-CoA to the lysine residues in the
N-terminal tail of histones. Histone acetylation allows binding of trans-acting factors
to activate gene expression and is regulated by histone acetyltransferases (HATs)
and histone deacetylases (HDACs). The upregulation of HDACs was observed in
HCC and many other human cancers (Weichert 2009), and the suppressive effect of
these HDACs on the expression of tumor suppressor genes like p21WAF1/CIP1 and
p27KIP−1 was thought to play an important role in carcinogenesis (Xie et al. 2012).
Binding of HBx to methyl-CpG-binding domain protein 2 (MBD2) and transcrip-
tional co-activator CBP/p300 led to upregulation of insulin-like growth factor 2
(IGF-2). HBx facilitated the formation of the MBD2-HBx-CBP/p300 complex,
which promoted hypomethylation and acetylation of histone H4 at the IGF-2 pro-
moter, leading to its transcriptional activation (Liu et al. 2015).

2.3 MicroRNAs in HBV-Induced Hepatocarcinogenesis

MicroRNAs are small non-coding RNA molecules involved in gene silencing.
Modulation of these microRNAs is implicated in the development of
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HBV-associated HCC. HCC patients exhibit a higher oncogenic miR-21 level than
healthy individuals (Guo et al. 2017). In addition to miR-21, the upregulation of
miR-224, miR-545, miR-374a and the miR-17-92 polycistron that expresses
miR-17, 18a, 19a/b, 20a, and 92a (Connolly et al. 2008; Gao et al. 2011; Zhao et al.
2014), and the downregulation of miR-145, miR-199b, Let-7a, and miR-152 were
observed in HBV-related HCC (Gao et al. 2011; Wang et al. 2010; Huang et al.
2010; Xu et al. 2014). The HBx-induced upregulation of miR-21 could enhance cell
proliferation by inhibition of programmed cell death protein-4 (PDCD4) and PTEN
(Damania et al. 2014). It has been proposed that the upregulation of miR-21 by
HBx is via the induction of the IL-6 expression followed by the STAT3 activation
(Li et al. 2014). Acyl-CoA synthetase long-chain family member 1 (ACSL1) is an
important lipid metabolism enzyme in the liver. MiR-205 can directly bind to the
3’-untranslated region (UTR) of the ACSL1 mRNA to regulate its expression (Cui
et al. 2014). Cui et al. found a decrease in the level of miR-205 in HCC and a
deregulated lipid metabolism as a consequence (Cui et al. 2014). A deregulated
lipid metabolism can lead to lipid deposition due to excessive lipid biosynthesis
(Tang et al. 2018). A similar increase in ACSL1 and triglyceride was detected in the
liver tumors of HBx-transgenic mice, implicating HBx in the suppression of
miR-205 (Cui et al. 2014). Wang et al. recently reported that the expression of
miR-98, miR-375, miR-335, miR-199a-5p, and miR-22 was altered by HBV
infection in patients and that the expression of miR-150, miR-342-3p, miR-663,
miR-20b, miR-92a-3p, miR-376c-3p, and miR-92b was altered in HBV-related
HCCs (Wang et al. 2017). The biological significance of the alteration of these
microRNAs in HBV replication and carcinogenesis, however, is unclear.

2.4 Genetic Variations in HBV DNA

HBV DNA polymerase is error-prone and lacks the proofreading function. The
error frequency of the HBV polymerase was estimated to be 6.28 � 10−4 (i.e., one
misincorporation in every 1591 nucleotides synthesized) (Park et al. 2003). All four
genes in the HBV genome may be mutated (Toh et al. 2013). As mentioned above,
the preS1/preS2/S sequence codes for three co-carboxy-terminal envelope proteins
termed large (or preS1), middle (or preS2), and small (or major) HBsAg proteins.
The large HBsAg functions in the initial binding to the receptor on hepatocytes for
HBV to initiate the infection. The function of the middle HBsAg is not clear and its
deletion does not affect the replication and maturation of the virus. The small
HBsAg is the most abundant HBsAg, and the major hydrophilic region
(MHR) located between amino acids 99 and 169 of this protein contains the major
antigenic determinant (amino acids 124-147) known as the “a” determinant. This
antigenic epitope is recognized by neutralizing antibodies, and mutations in this
epitope can escape vaccine-induced immunity (Caligiuri et al. 2016). For example,
the substitution mutation at amino acid 145 from glycine to arginine results in
immune escape of HBV in patients (Zanetti et al. 1988). Genetic variations within
MHR, which reduce the antigenicity of HBsAg and the production of antibody
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against HBsAg (Aragri et al. 2016), may also be associated with the reactivation of
HBV following the immune suppressive therapy (Salpini et al. 2015). In contrast to
the mutations at the “a” antigenic determinant, which are associated with the
immune escape, mutations in the preS sequence, especially the N-terminal deletion
in the preS2 sequence and the C-terminal deletion in the preS1 sequence, are
frequently found in the sera and HCC tissues of HCC patients (up to *60%)
(Pollicino et al. 2014; Fan et al. 2001; Wang et al. 2006).

The large HBsAg protein cannot be secreted and its secretion requires the help
from the major HBsAg (Ou and Rutter 1987; Standring et al. 1986). The deletion in
the preS sequence may disrupt the interaction between the large HBsAg protein and
the major HBsAg protein and lead to its retention in the ER and the induction of ER
stress (Pollicino et al. 2014). The ER stress-induced oxidative DNA damage can
cause genome instability and ultimately lead to the development of HCC (Wang
et al. 2006). Indeed, transgenic mice expressing the large HBsAg with deletions in
the preS sequence or carrying the HBV genome with a deletion in the preS2
sequence had been shown to develop hepatic dysplasia and HCC (Wang et al. 2006;
Na et al. 2011), confirming the role of preS deletions in HBV carcinogenesis. The
development of ground-glass hepatocytes (GGH), which is characterized by
abundant and overloaded ER and a liver pathology found in CHB patients, was also
found to be associated with the accumulation of the mutated large HBsAg protein in
the ER (Su et al. 2014; Chen et al. 2006; Su et al. 2008). The preS mutants had also
been shown to enhance anchorage-independent growth of cells, the expression of
ER chaperones including GRP78 and GRP94, and the induction of DNA repair
gene ogg-1 and inflammatory cytokines (Su et al. 2014; Hung et al. 2004; Hsieh
et al. 2004).

Another HBV mutant that is associated with an increased risk of HCC contains a
novel mutation in the preS1 sequence. This mutation changes amino acid 4 of the
preS1 protein from tryptophan to proline or arginine (W4P/R) and was found to be
associated with severe liver diseases including HCC (Lee et al. 2013).

Naturally occurring nucleotide mutations have been identified in all four HBV
genes (Caligiuri et al. 2016; Akarca and Lok 1995). One notable mutation is a
double-nucleotide mutation of A to T at nucleotide (nt.) 1762 (A1762T) and G to A
mutation at nt. 1764 (G1764A). This double mutation, which resides in the basal
core promoter (BCP) that controls the transcription of the precore protein and the
core protein mRNAs, reduces the precore protein mRNA level and hence the
expression of HBeAg by 70% without affecting the core protein mRNA level
(Buckwold et al. 1996). This mutant is frequently found in HBeAg-negative
patients with chronic hepatitis (Buckwold et al. 1996; Hunt et al. 2000). Further
analysis indicated that this double mutation converted a nuclear receptor-binding
site in the BCP to an HNF1 transcription factor-binding site and enhanced HBV
replication (Buckwold et al. 1996; Li et al. 1999; Locarnini et al. 2003; Parekh et al.
2003; Buckwold et al. 1997). This BCP mutation is often associated with the G to A
mutation at nt. 1896 (G1896A) (Ou 1997). The G1986A mutation converts codon
28 of the precore sequence from TGG to the TAG termination codon and abolishes
the expression of HBeAg (Locarnini et al. 2003; Kosaka et al. 1991; Liang et al.
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1991; Omata et al. 1991). G1896 is located in a highly conserved stem-loop
structure termed the epsilon (e) structure, which is essential for encapsidation ini-
tiation of the pgRNA (Chiang et al. 1992; Bartenschlager and Schaller 1992). The
G1896A mutation is infrequently observed for HBV genotype A, as G1896 base
pairs with C1858, and its mutation to A would destabilize the e structure for
genotype A. In contrast, nt. 1858 is usually T for other HBV genotypes and the
G1896A mutation would instead stabilize the e structure to enhance HBV repli-
cation (Li et al. 1993; Lok et al. 1994; Rodriguez-Frias et al. 1995). Both the BCP
mutation and the G1896A mutation are associated with a high incidence of HCC
(Datta et al. 2012; Croagh et al. 2015; Liu et al. 2006; Kao et al. 2003; Yeh et al.
2010; Iloeje et al. 2012; Lin et al. 2005). Other BCP mutations like T1753C and
C1766T either alone or in combination with other BCP mutations and the G1896A
mutation brought about similar high carcinogenic consequences (Yang et al. 2008;
Kramvis and Kew 1999). These mutations were shown to be associated with the
upregulation of S phase kinase-associated protein 2 (SKP2) and the induction of
proteasome-dependent degradation of p53 (Yan et al. 2015).

3 Role of HBx in HCC

HBx plays an important role in HBV replication and the loss of its expression
significantly impairs HBV replication in HepG2 cells and in mouse models (Xu
et al. 2002; Keasler et al. 2009). HBx protein is found in both the nucleus and the
cytoplasm with distinctive roles in each locale (Hensel et al. 2017). In the nucleus,
HBx stimulates the HBV gene expression and prevents the hypermethylation of the
HBV cccDNA (Belloni et al. 2009). HBx in the cytoplasm influences signaling
pathways and the activation/inactivation of transcription factors (Elmore et al. 1997;
Bouchard et al. 2001). The association of HBx with multiple cellular proteins has
been shown to have significant impacts on gene expression, cellular signaling,
DNA repair, immune response, and cell proliferation.

3.1 HBx and Gene Expression

HBx does not directly bind DNA, but it can interact with multiple transcription
factors to impact the expression of host and viral genes. Its binding partners include
RNA polymerase-binding protein (RBP5), transcriptional factor IIB (TFIIB),
transcriptional factor IIH (TFIIH), cAMP response element-binding protein
(CREB), CREB1-binding protein (CBP)/p300, activating transcription factor 2
(ATF-2), activating protein (AP)-2, and nuclear factor kappa B (NF-jB) (Ali et al.
2014). HBx can also interact with SIRT1 and sequester it from b-catenin, thereby
liberating b-catenin, which then transactivates the expression of cancer-promoting
genes like cyclin-D1 and c-myc (Srisuttee et al. 2012; Polakis 2012). HBx also
interferes with the protein phosphatase 1 (PP1) activity and thereby facilitates the
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CREB recruitment to the HBV cccDNA (Cougot et al. 2012). The regulation of
gene expression by HBx may also involve epigenetic modifications. HBx restricts
the expression of secreted frizzled-related protein SFRP1 and SFRP5 by facilitating
the binding of DNMT1 and DNMT3 to the promoters of these two genes for their
subsequent hypermethylation (Xie et al. 2014). Indeed, the expression of SFRP1
and SFRP5, members of a family of extracellular glycoproteins, is downregulated
in HBV-related HCC (Xie et al. 2014; Liu et al. 2016; Peng et al. 2014). The
epigenetic silencing of SFRPs by HBx led to the transactivation of Wnt target genes
including c-myc and cyclin D1, thus promoting epithelial–mesenchymal transition
(EMT) and hepatocarcinogenesis (Polakis 2012; Xie et al. 2014). HBx also
downregulates the expression of two transcription repression factors, SUZ12 and
ZNF198. SUZ12 is an essential subunit of the polycomb repressor complex 2
(PRC2), and ZNF198 stabilizes the transcription repressive complex composed of
LSD1, Co-REST, and HDAC1. These two transcription repressive complexes are
held together by binding the long non-coding RNA HOTAIR. The effect of HBx on
SUZ12 and ZNF198 results in the global alteration of chromatin landscape and the
derepression of the target genes of PRC2 and LSD1/Co-REST/HDAC1 complexes
such as epithelial cell adhesion molecule (EpCAM) (Zhang et al. 2015, 2016),
which plays an important role in tumorigenesis and metastasis.

3.2 HBx and Cell Signaling

HBx also contributes to hepatocarcinogenesis by influencing cellular proliferation
pathways (Ali et al. 2014). HBx was first reported to stimulate the Ras-Raf-MAP
kinase signaling cascade in 1995 (Doria et al. 1995), and subsequently also reported
to activate Src family kinases and calcium signaling (Bouchard et al. 2001; Klein
and Schneider 1997). HBx could also bind to the C-terminus of the tumor sup-
pressor p53 to inhibit its nuclear translocation and the induction of apoptosis
(Elmore et al. 1997). The HBx-induced MTA1/HDAC1 complex had also been
shown to stabilized hypoxia-inducible factor-1 alpha (HIF-1a) (Yoo et al. 2008).
HIF-1a was highly expressed in HCC patients with poor survival rates (Xie et al.
2008). HBx-induced deacetylation of HIF-1a led to stabilization of this protein that
is known to facilitate tumor metastasis, angiogenesis, and malignant transformation
(Yoo et al. 2008; Liu et al. 2012). The HBx-induced expression of a-fetoprotein
(AFP) and its receptor AFPR also drives Src expression via the activation of
PI3K/mTOR pathway, which then promotes the invasion and metastasis of cancer
cells (Zhu et al. 2015). Studies also indicated that HBx could activate Notch sig-
naling (Gao et al. 2016; Kongkavitoon et al. 2016; Yang et al. 2017), and in one
such study, it was shown that this activation of Notch signaling was due to the
induction of Delta-like 4 (Dll4) by HBx via the activation of MEK1/2, PI3K/AKT,
and NF-jB pathways (Kongkavitoon et al. 2016). These studies suggested a
possible role of the HBx-DII4-Notch axis in promoting hepatocarcinogenesis.
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3.3 HBx and DNA Repair

Cells respond to DNA damage by inactivating cyclin-dependent kinases (CDKs) to
stop the cell cycle progression. Failure in such response can lead to mutagenesis,
genetic instability, and carcinogenesis. It has been shown that HBx can facilitate the
accumulation of DNA damages by interfering with cell cycle control checkpoints
and the DNA repair system. Indeed, the expression of HBx could augment sensi-
tivity to hepatocarcinogen diethylnitrosamine or UV light, which causes DNA
damage (Wang et al. 1995). HBx has also been shown to decrease the expression of
xeroderma pigmentosum complementation group B (XBP) and group D (XBD),
thereby interfering with the DNA helicase activity of transcription factor IIH
(TFIIH), which is required for DNA repair (Wang et al. 1995). HBx can also bind to
the C-terminus of p53 to sequestrate it in the cytoplasm (Kew 2011), and by
competing with XPB/D for binding to the C-terminus of p53, HBx interferes with
the DNA repair pathway (Qadri et al. 2011). The expression of HBx also reduced
the efficacy of transcription-coupled nucleotide excision repair (TCNER), which
would remove adducts on the transcribed strand of active genes, in human lym-
phoblastoid strain TK6 cells (Mathonnet et al. 2004). The expression of HBx in
NH32, the isogenic p53-null counterpart of TK6, revealed that the oppressive effect
of HBx on TCNER was both p53-dependent and p53-independent. Whether HBx
also reduces TCNER in hepatocytes, however, remains to be determined. Inter-
esting structural similarities between HBx and human thymine DNA glycosylase
(TDG), an important protein in base excision repair pathway, was also observed
(Wang et al. 1995). Although TDG did not directly affect HBV replication, it was
proposed that HBx modified or impeded the function of TDG in the DNA repair
process, which then led to accumulation of DNA damages and cellular transfor-
mation (van de Klundert et al. 2012).

Cell cycle arrest elicited by DNA damage allows cells to repair DNA damage
prior to genome replication and cell cycle progression. This prevents DNA damage
from being passed down to offspring cells. The unchecked cell cycle progression
with the accumulation of genetic errors predisposes cells to carcinogenesis.
Cyclin-dependent kinases CDK2 and CDC2 are important regulators of the S phase
and the M phase, respectively, of the cell cycle, and their inhibition will induce cell
cycle arrest (Satyanarayana and Kaldis 2009; Smits et al. 2000). The cyclin
E/CDK2 complex phosphorylates p27KIP1 and p21WAF1/CIP1, which are
cyclin-dependent kinase inhibitors (CKIs), tagging them for degradation for the
promotion of cell cycles (Zhu et al. 2005; Nguyen et al. 1999). HBx had been
shown to stimulate cell cycle progression, forcing the transit through checkpoint
controls and the entry into the S phase, possibly by activating CDK2 and CDC2
(Benn and Schneider 1995). In addition, HBx had also been shown to destabilize
p27KIP1 (Lee and Kim 2009).
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3.4 HBx Mutants

Because the HBx coding sequence overlaps with the BCP, the A1762T and
G1764A double mutation within the BCP also changes amino acids 130 and 131 of
the HBx sequence from lysine–valine (KV) to methionine–isoleucine (MI) and
affects the biological activities of HBx (Ou 1997; Li et al. 1999). In one study, HBx
with the K130M mutation was shown to inhibit the p21 expression by repressing
the Sp1 transcription factor activity (Kwun and Jang 2004). The
BCP/T1753A/T1768A combo mutation also led to the expression of an HBx
mutant that decreased the expression of p53 and enhanced the entry of cells into the
S phase (Yan et al. 2015). These findings indicated that mutations in HBx might
also promote hepatocarcinogenesis via the acceleration of cell cycle progression.
The HBx mutant with the proline to serine mutation at amino acid 38 was also
frequently found in HBV-infected patients with HCC, suggesting that it may be an
independent risk factor for the development of HCC (Muroyama et al. 2006).

4 Conclusions and Future Perspective

In this chapter, we summarize the mechanisms of hepatocarcinogenesis that are
induced by HBV infection (Fig. 1). These mechanisms include the genetic and
epigenetic alterations in the host genome that may be caused by the insertion of the

Fig. 1 Illustration of the oncogenic pathways induced by HBV
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HBV DNA, the modification of histone acetylation or DNA methylation, or the
induction of expression of microRNAs that can sensitize hepatocytes to carcino-
genesis. The HBV DNA genome may also be altered by replication errors or its
integration into the host chromosomes, leading to the production of variant gene
products that include truncated HBx and the large HBsAg protein with deletions in
the preS region. The HBx protein also plays a critical role in hepatocarcinogenesis
induced by HBV, as it can bind to transcription factors to regulate the expression of
oncogenes and tumor suppressor genes. It can also stimulate signaling pathways
involved in cell cycle control and inhibit cellular DNA repair to result in the
accumulation of genetic mutations in hepatocytes. These changes caused by HBV
infection can create a microenvironment favorable to cell proliferation and
predispose hepatocytes to oncogenic transformation. Understanding the detailed
mechanisms of these alterations will facilitate the development of novel therapeutic
interventions for treating HBV-associated HCC.
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Prevention of Hepatitis B Virus
Infection and Liver Cancer

Mei-Hwei Chang

1 Introduction

Hepatocellular carcinoma (HCC) is one of the leading cancer in the world (Parkin
et al. 2001). Because of its high fatality (overall ratio of mortality to incidence of
0.93), liver cancer is one of the five most common causes of death from cancer
worldwide. According to the 2018 global report from World Health Organization
(WHO), liver cancer is the sixth most common cancer and the fourth most common
cause of cancer death (WHO 2018). Persistent infection with hepatitis B virus
(HBV) or hepatitis C virus (HCV) is associated with approximately 90% of HCC.
Evidence from epidemiology, case control study, animal experiments, molecular
biology all support the important oncogenic role, either directly or indirectly, of
HBV and HCV in HCC. As evidenced by the large population infected with HBV
in the developing world, HBV remains the most prevalent oncogenic virus for HCC
in humans. HBV is estimated to cause around 55–70% of HCC worldwide, while
HCV accounts for around 25% of HCC (Bosch and Ribes 2002). Liver cirrhosis is a
common precancerous lesion, accounting for approximately 80% of patients with
HCC, including children (Hsu et al. 1983). This sequel usually results from severe
liver injury caused by chronic HBV or HCV infection.

The World Health Assembly calls for the elimination of viral hepatitis as a
public health threat by 2030 to reduce new infections by 90% and mortality by 65%
compared with the 2015 baseline (WHO 2017). Among the proposed strategies to
eliminate viral hepatitis, prevention is the most important and cost-effective way to
be conducted to achieve the goal.
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2 Disease Burden of HCC

According to the 2018 Cancer, today’s report from the International Agency for
Research on Cancer (IARC), WHO, liver cancer cases accounts for 4.7% of all new
cancer cases and 8.2% of all cancer death cases (IARC, WHO 2018). Approxi-
mately, 257 million people (3.5% of the world population) in year 2015 are living
with HBV infection. Hepatitis B resulted in 887,000 deaths, mostly from compli-
cations (mainly liver cirrhosis and HCC) (WHO 2019). High incidence areas of
HCC are mainly in developing regions, such as Eastern and South-Eastern Asia,
Middle, and Western Africa. The African (6.1%) and Western Pacific regions
(6.2%) had the highest prevalence (WHO 2017). The geographical distribution of
the mortality rates is similar to that observed for incidence.

Even in the same country, different ethnic group may have varied incidence of
HCC. The annual incidence of HCC in Alaskan Eskimo males was 11.2 per
100,000, five times that of white males in the USA (Heyward et al. 1981). The
world geographic distribution of HCC overlaps well with that of the distribution for
chronic HBV infection (Beasley 1982). Regions with a high prevalence of HBV
infection also have high rates of HCC. HBV causes 60–80% of the primary liver
cancer, which accounts for one of the five major cancer deaths particularly in areas
highly prevalent for HBV infection, such as Eastern and South-Eastern Asia, the
Pacific Rim, and the Northen Africa (Bosch and Ribes 2002; IARC, WHO 2018).
The southern parts of Eastern and Central Europe, the Amazon basin, the Middle
East, and the Indian subcontinent are also areas with high prevalence of HBV
infection and HCC (Lavanchy 2004; WHO 2019).

3 Transmission Routes of Hepatitis B Virus Infection

The age and source of primary HBV infection are important factors affecting the
outcome of HBV infection. Maternal serum HBsAg and hepatitis B e antigen
(HBeAg) status affect the outcome of HBV infection in their offspring. In Asia and
many other endemic areas, before the era of universal HBV immunization, perinatal
transmission through HBsAg carrier mothers accounts for 40–50% of HBsAg
carriers. Irrespective of the extent of HBsAg carrier rate in the population, around
85–90% of the infants of HBeAg seropositive carrier mothers became HBsAg
carriers (Stevens et al. 1975). In endemic areas, HBV infection occurs mainly
during infancy and early childhood. In contrast to the infection in adults, HBV
infection during early childhood results in a much higher rate of persistent infection
and long-term serious complications, such as liver cirrhosis and HCC.
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4 Chronic Hepatitis B Virus Infection and Liver Cancer

Liver injury caused by chronic HBV infection is the most important initiation event
of hepatocarcinogenesis (Bruix et al. 2004). The role of HBV in tumor formation
appears to be complex and may involve both direct and indirect mechanisms of
carcinogenesis (Grisham 2001; Villanueva 2007). The outcome of persistent HBV
infection is affected by the interaction of host, viral, and environmental factors
(Table 1).

4.1 Viral (HBV) Risk Factors for HCC

Chronic HBV infection with persistent positive serum HBsAg is the most important
determinant for HCC. A prospective general population study of 22, 707 men in
Taiwan showed that the incidence of HCC among subjects with chronic HBV
infection is much higher than among non-HBsAg carriers during long-term
follow-up. The relative risk is 66. These findings support the hypothesis that HBV
has a primary role in the etiology of HCC (Beasley et al. 1981).

HBeAg is a marker of active HBV replication. Chronic HBV-infected subjects
with prolonged high HBV replication levels or positive HBeAg after 30 years of
age have a higher risk of developing HCC during follow-up. Those HBsAg carriers
with persistent seropositive HBeAg have 3–6 times more risk of developing HCC
than those with negative serum HBeAg (Yang et al. 2002) (Table 1). Higher HBV

Table 1 Summary of Risk Factors for Progression to HCC in HBV-Infected Individuals

Risk factors High risk/Low risk References

Viral factors
1. HBsAg
2. HBeAg in

HBsAg-positive
persons

3. HBV DNA level
4. HBV genotype

Positive/negative = 66/1
Positive/negative = 60/10

High {[>106]/105 * 106/[104 * <105]}/
Low [<104] copies/ml = 11/9/3/1
[C or D]/[A or B]

Beasley et al. (1981)
Yang et al. (2002)

Chen et al. (2006)
Tseng et al. (2012)

Host factors
1. Age
2. Age at HBeAg

seroconversion
3. Gender

4. Family HCC
history

5. Liver cirrhosis
6. Maternal HBsAg

>40/<40 years = 2–12/1

Older (>40 years)/younger (<30
years) = 5/1
Male/female = 2–4/1

Positive/negative = 2–3/1

Yes/no = 12/1
Positive/negative = 30/1

Chen et al. (2008), Tseng
et al. (2012)
Chen et al. (2010)

Ni et al. (1991), Schafer
and Sorrell (1999)
Turati et al. (2012)

Yu et al. (1997)
Chang et al. (2009)

Other factors
Smoking
Habitual Alcohol

Yes/no = 1–2/1
Yes/no = 1–2/1

Yu et al. (1997), Jee et al.
(2004)
Yu et al. (1997), Jee et al.
(2004)
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DNA levels predict higher rates of HCC in those with chronic HBV infection. In
comparison to those with serum HBV DNA level <104 copies/ml, those with
greater serum HBV DNA levels [104 * <105], [105 * 106], or [>106] copies/ml
have a higher risk of HCC [2.7, 8.9, or 10.7] during long-term follow-up (Chen
et al. 2006).

There are at least ten genotypes of HBV identified with geographic variation.
Those with HBV genotype C or D infection has a high risk of developing HCC

than those infected with genotype A or B HBV (Tseng et al. 2012). In Alaska, those
infected with genotype F have a higher risk of HCC than other genotypes
(Livingston et al. 2007).

The presence of pre-S mutants carries a high risk of HCC in HBV carriers and
was proposed to play a potential role in HBV-related hepatocarcinogensis (Wang
et al. 2006). Subjects infected with HBV core promoter mutants were reported to
have a higher risk of developing HCC.

4.2 Host Factors for HCC (Table 1)

Older age (>40 yrs) is a risk factor for HCC development (Tseng et al. 2012; Chen
et al. 2008). It is very likely due to the accumulation of genetic alterations with gain
or loss of genes and liver injury with time during chronic HBV infection. HCC
patients are mostly (around 80%) anti-HBe seropositive at diagnosis (Chien et al.
1981). This implies that HCC occurs after long-term HBV infection and liver
injury, and that the patients have seroconverted to anti-HBe. Chronic HBV-infected
patients with delayed HBeAg seroconversion after age 40 have significantly higher
risk of developing HCC (hazard ratio 5.22), in comparison with patients with
HBeAg seroconversion before age 30 (Chen et al. 2010).

There is a strong male predominance in HBV-related HCC, with a male to
female ratio of 2 * 4:1, even in children (Ni et al. 1991; Schafer and Sorrell 1999),
but the mechanisms are not fully understood. The higher activity of androgen
pathway functions as a tumor-promoting factor in male hepatocarcinogenesis, and
the higher activity of the estrogen pathway functions as a tumor-suppressing factor
in female hepatocarcinogenesis (Yeh and Chen 2012). Male predominance of HCC
occurs even among young children aged 6–9 years, a possible oncogenic activation
of RNA-binding motif on Y chromosome (RBMY) gene may help to explain the
male predominance of HCC in children (Chua et al. 2015).

Liver cirrhosis is a pre-cancer lesion for HCC (Yu et al. 1997). Cirrhotic HBV
carriers have a 3–8% annual rate of developing HCC. Those with positive HCC
family history have a higher risk of HCC in comparison to those without a positive
history of HCC. Familial clustering of HCC suggests the role of genetic predis-
posing factors in addition to the intra-familial transmission of HBV infection
(Chang et al. 1984). In a meta-analysis, the pooled relative risk for family history of
liver cancer was 2.50 (95% CI, 2.06–3.03) (Turati et al. 2012) (Table 1).
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4.3 Maternal Effect

Those with positive maternal serum HBsAg have a 30 times higher risk of
developing HCC than those with negative maternal HBsAg (Chang et al. 2009).
HBeAg is a soluble antigen produced by HBV. It can cross the placenta barrier
from the mother to the infant. Transplacental HBeAg from the mother induces a
specific unresponsiveness of helper T cells to HBeAg and HBcAg in neonates born
to HBeAg-positive HBsAg carrier mothers (Hsu et al. 1992). This may help to
explain why 85–90% of the infants of HBeAg-positive carrier mothers became
persistently infected (Beasley et al. 1977).

4.4 Environmental/Life Style Factors

Smoking, habitual alcohol drinking, and in some regions aflatoxin exposure are
factors which were related to higher risk of HCC (Yu et al. 1997; Jee et al. 2004;
Chen et al. 2008).

5 Strategies of Liver Cancer Prevention

The prognosis of HCC is grave, unless it is detected early and complete resection or
ablation is performed. Even in such cases, de novo recurrence of HCC is always a
problem. Prevention is thus the best way toward the control of HCC. There are
three levels of liver cancer prevention, i.e., primary, secondary, and tertiary pre-
vention of liver cancer (Fig. 1).

Primary prevention by universal infant vaccination to block both
mother-to-infant and horizontal transmission of HBV infection is the most effective
and safe way to prevent HCC. Secondary prevention using antiviral therapy for
chronic hepatitis B is aimed at reducing viral replication, liver injury, and fibrosis,
shown by the normalization of the liver enzymes, HBeAg clearance, and reduction
of HBV DNA levels. Tertiary prevention of HCC using antiviral therapy targeting
the subject of successfully treated HCC patients is aimed to prevent the recurrence
of HCC.

Other strategies to prevent HCC are also proposed, such as blood and injection
safety, prevention of high-risk behavior, changes in environment and/or diet, and
liver transplantation for precancerous lesion (e.g., liver cirrhosis) may also be
helpful to prevent HBV infection and related liver cancer. In addition,
etiology-specific and generic candidate HCC chemoprevention strategies for
high-risk subjects, including statins, antidiabetic drugs, selective molecular targeted
agents, and dietary and nutritional substances were also reported (Jacobson et al.
1997; Egner et al. 2001; Athuluri-Divakar and Hoshida 2018). Some studies
revealed that the use of concomitant medications with statin and nonsteroidal
anti-inflammatory drugs (NSAIDs) or aspirin could reduce the risk of HCC
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recurrence in patients receiving curative HCC resection, regardless of HBV status
(Wu et al. 2012; Lee et al. 2016). However, the effects of those chemoprevention
strategies on reducing the risk of HCC recurrence should be further confirmed.

6 Primary Prevention of Hepatitis B Virus Infection
by Immunization

6.1 Universal Hepatitis B Vaccination in Infancy

Currently, there are mainly tree strategies of universal immunization programs in
the world, depending on the resources and prevalence of HBV infection. (Table 2)
In countries with adequate resources, such as the USA, pregnant women are
screened for HBsAg but not HBeAg. It is recommended that every infant receives
three doses of HBV vaccine. In addition, infants of all HBsAg-positive mothers,
regardless of HBeAg status, also receive HBIG within 24 h after birth (Shepard
et al. 2006). This strategy saves the cost and the procedure of maternal HBeAg
screening but increases the cost of HBIG, which is very expensive.

The first universal hepatitis B vaccination program in the world was launched in
Taiwan since July 1984 (Chen et al. 1987). Pregnant women were screened for both
serum HBsAg and HBeAg. Infants of HBeAg and HBsAg double positive mothers
received HBIG within 24 h after birth (Strategy II).

To save the cost of screening and HBIG, some countries with intermediate/low
prevalence of chronic HBV infection or inadequate resources do not screen

Fig. 1 Strategies for primary, secondary, and tertiary prevention of liver cancer. HBV
immunization is the most effective way. For persons who have been infected by hepatitis virus,
antiviral therapy may delay or reduce the risk of developing HCC in a minor degree. The effect of
other strategies such as chemoprevention and avoidance of risky behavior is still not confirmed and
under investigation. HBV = hepatitis B virus; IFN = interferon; NA = nucleos(t)ide analogue
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pregnant women and all infants receive three doses of HBV vaccines without
HBIG. Using this strategy, the cost of maternal screening and HBIG can be saved.
The efficacy of preventing the infants from chronic infection seems satisfactory
(Poovorawan et al. 1989).

6.2 Effect of HBV Vaccination on the Reduction of HBV
Infection and Related Complications

HBV vaccine has been part of the WHO global immunization resulting in major
declines in acute and chronic HBV infection. Approximately, 90–95% the inci-
dence of chronic HBV infection in children has been reduced in areas where
universal HBV vaccination in infancy has been successfully introduced. After the
universal vaccination program of HBV, the rate of chronic HBV infection was
reduced to approximately one-tenth of that before the vaccination program in the
vaccinated infants worldwide. Fulminant or acute hepatitis also has been reduced.

Serial epidemiologic surveys of serum HBV markers were conducted in Taiwan
(Hsu et al. 1986; Chen et al. 1996; Ni et al. 2001, 2007, 2016). The HBsAg carrier
rate decreased significantly from around 10% before the vaccination program to
0.6–0.7% afterward in vaccinated children younger than 20 years of age. Similar
effect has also been observed in many other countries (Whittle et al. 2002; Jang
et al. 2001), where universal vaccination programs have been successfully con-
ducted. The HBV vaccination program has indeed reduced both the perinatal and
horizontal transmission of HBV worldwide (Da Villa et al. 1995; Whittle et al.
2002). In the reports from Gambia and Korea, universal vaccination programs have
also been quite successful. The hepatitis B carrier rate has fallen from 5 to 10% to

Table 2 Current pregnant women screening and universal infant hepatitis B virus (HBV) im-
munoprophylaxis strategies in different countries and proposed surveillance program for high-risk
children with breakthrough infection linked to the specific strategies

Strategy
type

Pregnant women
screening

Neonatal immunizationa

HBsAg HBeAg HBV
vaccine

HBIG to children of
HBsAg (+)/HBeAg (−)
mothers

HBIG to children of
HBsAg (+)/HBeAg (+)
mothers

I Yes No Yes Yes Yes

IIb Yes Yes Yes No Yes

III No No Yes No No
aExamples of applied countries: Strategy type I: USA, Italy, Korea; Strategy type II: Taiwan,
Singapore; Strategy type III: Thailand
bIn Strategy type II, either simultaneous or sequential HBsAg and HBeAg tests can be applied. All
pregnant women are screened for HBsAg and HBeAg at the same time; or all pregnant women are
screened for HBsAg, while HBeAg is tested only in those positive for HBsAg; the former strategy
is time saving and the latter is budget saving
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less than 1% demonstrating that universal vaccination in infancy is more effective
than selective immunization for high-risk groups (Montesano 2011).

Worldwide in 2015, the estimated prevalence of HBV infection in children under
five years of age was around 1.3%, compared with approximately 4.7% in the
pre-vaccination era (WHO 2019). The low incidence of chronic HBV infection in
children under five years of age at present can be attributed to the widespread use of
hepatitis B vaccine.

6.3 Effect of Liver Cancer Prevention by Immunization
Against Hepatitis B Virus Infection (Table 3)

Current therapies for HCC are not satisfactory. Even with early detection and
therapy for HCC, recurrence or newly developed HCC is often a troublesome
problem during long-term follow-up. Therefore, vaccination is the best way to
prevent HBV infection and HCC.

HCC in children is closely related to HBV infection and the characteristics are
similar to HCC in adults (Chang et al. 1989). In comparison to most other parts of
the world, Taiwan has a high prevalence of HBV infection and HCC in children.
Children with HCC in Taiwan are nearly 100% HBsAg seropositive, and most
(86%) of them are HBeAg negative. Maternal HBsAg of HCC children are mostly

Table 3 Incidence rates of HCC among children 6–19 years old and adults 20–26 years old, born
before versus after universal HBV vaccination program

Age at
diagnosis, year

HBV
vaccination

Year Hepatocellular carcinoma

No. of
HCCs

Incidence rate (per 105

person years)
Rate ratio
(95% CI)

Taiwan Birth year

6–19 No 1963–1984 447 0.57 1.00
(referent)

Yes 1984–2005 114 0.18 0.31

20–26 No
Yes

1956–1984
1984–1991

896
52

1.33
0.56

1.00
(referent)
0.42

Khon Kaen (Thailand) Birth year

>5–18 No Before
1990

15 0.097 1.00
(referent)

Yes After 1990 3 0.024 0.25

Alaska (USA) Diagnostic
year

<20 No 1969–1984 0.7–2.6

Yes 1984–1988 2.9

Yes 1989–2008 0.0–1.4

1. Taiwan-Chang et al. (2016); 2. Thailand-Wichajarn et al. (2008); 3. Alaska- McMahon et al.
(2011)
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(94%) positive. Most (80%) of the non-tumor portion has liver cirrhosis. Integration
of HBV genome into host genome was demonstrated in the HCC tissues in children
(Chang et al. 1991). The histological features of HCC in children are very similar to
that in adults.

The reduction in HBV infection after the launch of universal hepatitis B vac-
cination program in July 1984 in Taiwan has had a dramatic effect on the reduction
of HCC incidence in children. The rate ratio of the annual incidence of HCC in
children and adolescents of 6–19 years old was significantly reduced from 1.00 in
those born before the vaccination program to 0.31 in those born afterward (Chang
et al. 1997; Chang et al. 2000; Chang et al. 2005; Chang et al. 2009). The cancer
prevention effect by the universal HBV vaccine program has been further extended
to young adults of 20–26 years old after 27 years of the vaccination program
(Chang et al. 2016) (Table 3).

Approximately, 90% of the mothers of the HCC children with known serum
HBsAg status were positive for HBsAg. This provides strong evidence of perinatal
transmission of maternal HBV as the main route of HBV transmission in HCC
children born after the immunization era and was not effectively eliminated by the
HBV immunization program (Chang et al 2009).

The incidence of HCC diagnosed during 1985–2007 at Khon Kaen region is
significantly lower in Thai children under 18 years old who receive hepatitis B
vaccine at birth (year of birth after 1990) than unvaccinated children. The
age-standardized incidence rates (ASRs) for liver cancer in children >10 years of
age were significantly reduced from 0.88 per million in non-vaccinated to 0.07 per
million in vaccinated children (Wichajarn et al. 2008).

Alaska Native people experience the highest rates of acute and chronic HBV
infection and HCC in the USA. Universal newborn HBV vaccination coupled with
mass screening and immunization of susceptible Alaska Natives has eliminated
HCC among Alaska Native children. The incidence of HCC in persons <20 years
decreased from 3/100,000 in 1984–1988 to zero in 1995–1999 and no HCC cases
have occurred since 1999 (McMahon et al. 2011).

7 Secondary and Tertiary Prevention of Hepatitis B
Related HCC

Secondary prevention of HCC uses antiviral agents with either type 1 interferon to
induce immune responses or with nucleos(t)ide analogues (NA) to suppress viral
replication. Studies have shown that a finite course of conventional interferon-a
(IFN) therapy may provide long-term benefit for reducing the progression of liver
fibrosis and the development of cirrhosis and HCC (Lin et al. 2007; Miyake et al.
2009; Yang et al. 2009;Wong et al. 2010). Yet significant reduction of HCCwas only
observed in patients with preexisting cirrhosis and HBeAg seroconverters. Some
other meta-analysis revealed inconsistent or no significant reduction of HCC risk after
interferon therapy (Lai and Yuen 2013; Cammà et al. 2001; Miyake et al. 2009).
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Long-term therapy with nucleos(t)ide analogues may reduce disease progression
of chronic hepatitis B, improve fibrosis, and lower the risk of HCC. A multicentered
prospective randomized controlled trial of antiviral therapy using the first genera-
tion NA (lamivudine) was conducted in Asian patients with HBV-related cirrhosis.
HCC was lower (3.9%) in lamivudine-treated patients than in 7.4% of placebo
controls after a median follow-up of 32 months (P = 0.047) (Liaw et al. 2004).
Subsequent meta-analysis confirms that NA treatment reduces but does not elimi-
nate the risk of hepatocellular carcinoma (Thursz et al. 2014).

In patients receiving first-generation NAs with low genetic barrier to drug
resistance, the risk of HCC remained higher in patients with resistance-related
virological breakthrough than those with sustained virological response (Liaw
2013). Recent studies further illustrated the effect of reducing HBV-related HCC by
NAs with high potency and minimal drug resistance [i.e., entecavir (ETV) and
tenofovir desoproxial fumarate (TDF)]. Long-term ETV treatment effect was more
prominent in patients at higher risk of HCC (with cirrhosis, older age and had more
active disease) than younger patients and those without cirrhosis (Hosaka et al.
2013; Su et al. 2016; Wu et al. 2014; Papatheodoridis et al. 2017; Hsu et al. 2018).
Suppression of viral replication in non-cirrhosis may reduce the risk of HCC, but
since the risk of HCC is not as high as in cirrhosis patients, the magnitude of the
risk reduction is less remarkable (Sherman 2013).

For HCC patients who have been treated successfully by surgery, liver trans-
plantation, or local therapy, tertiary prevention of HCC using antiviral therapy
against HBV or HCV may potentially prevent late tumor recurrence (Breitenstein
et al. 2009). Yet further study is needed to confirm its efficacy.

8 Problems to Be Solved in Liver Cancer Prevention

The risk of developing HCC for vaccinated cohorts was significantly associated
with incomplete HBV vaccination and maternal HBsAg or HBeAg seropositivity
(Chang et al. 2005; Chang et al. 2009). Failure to prevent HCC by HBV vaccination
results mostly from unsuccessful control of HBV transmission from highly infec-
tious mothers. To eradicate HBV infection and its related diseases, we have to
overcome the difficulties that hinder the success of universal HBV vaccination.

8.1 Low Coverage Rate of Universal Infant HBV Vaccination

Increasing uptake of HBV vaccine was noted globally year by year. In 2015, global
coverage with the three doses of hepatitis B vaccine in infancy reached 84% (WHO
2017). However, in some countries such as in Southeast Asia and Africa, due to
inadequate resources, failure to attract national government fund delays the inte-
gration of HBV vaccination into the EPI program. Even with integration into the
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EPI program, the coverage rate is still inadequate. One main reason is that the
parents still have to pay for the HBV vaccines in those countries.

In 1992, WHO recommended that all countries with a high burden of
HBV-related diseases should introduce hepatitis B vaccine in their routine infant
immunization programs by 1995 and that all countries do so by 1997 (Kane 1996).
In 1996, an additional target was added, that is, an 80% reduction in the incidence
of new hepatitis B carriers among children worldwide by 2001 (Kane and Brooks
2002). This is particularly urgent in areas where HBV infection and HCC are
prevalent.

How to reduce the cost of the vaccine and to increase funds for HBV vaccination
to help children of endemic areas with poor economic conditions are important
issues to solve for the eradication of HBV infection and its related liver cancer. The
Global Alliance for Vaccines and Immunization (GAVI), established in 1999, has
contributed in helping the developing countries to increase the coverage of HBV
vaccination.

8.2 Poor Compliance Caused by Anxiety to the Adverse
Effects of Vaccination or Ignorance

In countries with adequate resources, the ignorance of the parents/guardians or an
antivaccine mentality drives some of the people to refuse vaccination. Opposition to
vaccination may be reduced by clarification of the vaccine-related side effects.
Clarification of this question may help to eliminate opposition to vaccination, which
hampers the effort of HBV vaccination and, hence, the goal of eradication of HBV
and its related liver diseases (Halsey et al. 1999). Education and propagation of the
benefits of HBV vaccination will enhance the motivation of the public and the
governments to accept HBV vaccination, even in low prevalence areas.

8.3 Breakthrough Infection or Non-responsiveness
in Vacinees

Causes of break through infection or non-responders include high maternal viral
load (Lee et al. 1986), intrauterine infection (Tang et al. 1998; Lin et al. 1987),
surface gene mutants (Hsu et al. 1999; Hsu et al. 2004; Hsu et al. 2010), poor
compliance, genetic hypo-responsiveness, and immune-compromised status.
A positive maternal HBsAg serostatus was found in 89% of the HBsAg seropos-
itive subjects born after the launch of the HBV vaccination program in Taiwan (Ni
YH et al. 2007). Maternal transmission is the primary reason for breakthrough HBV
infection and is the challenge that needs to be addressed in future vaccination
programs. Risk factors of failure include a high level of maternal HBV DNA,
uterine contraction and placental leakage during the process of delivery, and low
level of maternal anti-HBc (Lin et al. 1991; Chang et al. 1996). Mother-to-infant
transmission is the major cause of HBV infection among immunized children.
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Among 2356 Taiwan children born to HBsAg-positive mothers and identified
through prenatal maternal screening, children born to HBeAg-positive mothers are
at greatest risk for chronic HBV infection (9.26%), in spite of HBIG injection <24 h
after birth and full course of HBV vaccination in infancy (Chen et al. 2012).

Intrauterine HBV infection, though infrequent, is a possible reason for vaccine
failure. Although immunoprophylaxis for HBV infection is very successful, still
around 2.4% of infants of HBeAg-positive mothers already had detectable HBsAg
in the serum at birth or shortly after birth (Tang et al. 1998) and persisted to
12 months of age and later. They become HBsAg carriers despite complete
immunoprophylaxis.

The rate of HBsAg gene mutants in HBsAg carriers born after the vaccination
program is increasing with time. The rate of HBV surface gene mutation was 7.8%,
17.8%, 28.1%, and 23.8%, respectively, among those seropositive for HBV DNA,
at before, and 5, 10, and 15 years after the launch of the HBV vaccination program
(Hsu et al. 1999; Hsu et al. 2010). Fortunately, it remained stationary (22.6%) at
20 years after the vaccination program. HBV vaccine covering surface gene mutant
proteins is still not urgently needed for routine HBV immunization at present, but
careful and continuous monitoring for the surface gene mutants is needed.

Vaccine hypo-responsiveness or non-responsiveness may occur in immuno-
compromised host, or in genetically hypo-responders or non-responders to HBV
vaccine. Before receiving immunosuppressant or organ transplantation, hepatitis B
markers and anti-HBs need to be monitored routinely. Hepatitis B vaccination
should be given to those with inadequate anti-HBs levels. A double dose of HBV
vaccine can be given to hypo-responders to enhance the vaccine response. Further
development of a better vaccine is needed for non-responders to conventional HBV
vaccine.

8.4 Problems of Secondary Prevention Using Current
Antiviral Therapy

Current antiviral therapies and immune modulating agents did not reach a high
sustained response rate. It is difficult to eliminate cccDNA even in those with
sustained virologic response; therefore, HBV cannot be eradicated from the hosts in
the majority of treated cases with a high viral relapse rate after discontinuation of
NAs. Although the newer nucleos(t)ide has much lower resistance rates, the
problem of drug resistance still exists after prolonged use. Newer safe therapeutic
agents which can permanently eradiate HBV from the host are needed.

The oncogenic process starts early in patients with chronic HBV infection, even
in childhood (Chang et al. 1991). A cirrhotic (or severely injured) liver may contain
many clones of cells carrying genetic abnormalities and integration of HBV gen-
eome into the host that predispose to cancer. Stopping the oncogenic process, by
suppressing viral replication, at a late stage, such as in cirrhosis, may reduce or
delay, but not eliminate HCC occurrence.
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9 Strategies Toward a Successful Control of HBV-Related
HCC

Primary prevention by universal vaccination is most cost effective toward a suc-
cessful control of HBV infection and its complications. Yet currently, there are
several problems remained to be solved. The most important strategy is to provide
effective primary prevention to every infant for a better control of HBV infection
globally, include further increasing the world coverage rates of HBV vaccine, and
better methods to act against breakthrough HBV infection/vaccine non-
responsiveness. It is extremely important to find ways to reduce the cost of HBV
vaccines and to increase funding for HBV vaccination of children living in
developing countries endemic of HBV infection. It is particularly urgent in areas
where HBV infection and HCC are prevalent.

Increasing efforts are required to eliminate acute and chronic hepatitis B. Due to
the competition of other new vaccines, HBV has not captured sufficient attention
from policymakers, advocacy groups, or the general public. This is a major chal-
lenge for the future (van Herck et al. 2008). It is very important to persuade and
support the policy makers of countries that still have no universal HBV vaccination
program to establish a program and to encourage the countries which already have a
program to increase the coverage rates. A comprehensive public health prevention
program should include prevention, detection, and control of HBV infections and
its related complications, and evaluation of the effectiveness of prevention activities
(Lavanchy 2008).

9.1 Prevention of Breakthrough HBV Infection

Further investigation into the mechanisms of breakthrough HBV infection or
non-responders is crucial for setting effective strategies to prevent breakthrough
infection of HBV. Current HBV vaccine has induced good immune response and
protection against HBV infection in most vaccinees. Yet approximately, 10%
breakthrough infection rate occurs in high-risk infants of HBsAg carrier mothers
with positive HBeAg and/or high viral load.

Nucleos(t)ide analogue treatment during pregnancy was used attempting to
prevent perinatal transmission of HBV infection. A pilot study included 8 highly
viremic (HBV DNA � 1.2 � 109 copies/mL) mothers treated with lamivudine
per day during the last month of pregnancy. At 12 months old, 12.5% in the
lamivudine group and 28% in the control group were still HBsAg and HBV DNA
positive (van Zonneveld et al. 2003). Another clinical trials using lamivudine mg
per day were given from 34 weeks of gestation to four weeks after delivery for
HBsAg seropoitive highly viremic mothers (Xu et al. 2009) demonstrated a
reduction of HBsAg seropositive rate in the infants of the treated group (18%) in
comparison to infants of the control group (39%) at week 52. Another study
recruited mothers with positive HBeAg and HBV DNA >1.0 � 107 copies/ml.
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The incidence of perinatal transmission was lower in the infants that completed
follow-up born to the telbivudine-treated mothers than to the controls (0% vs. 8%;
p = 0.002) (Han et al. 2011).

Tenofovir is considered a preferred choice because of its antiviral potency, more
safety data in pregnant women, and lower rates of resistance. A prospective
well-controlled trial in Taiwan recruiting pregnant women with HBV DNA
� 7.5 log 10 IU/mL has shown a reduction of HBsAg positivity of infants from
10.71 to 1.54% (P = 0.0481), with an odds ratio of 0.10 (P = 0.0434) in the
tenofovir treated group (Chen et al. 2015).

Whether the development of new HBV vaccines against surface antigen gene
mutants, and better vaccines for immune-compromised individuals may further
reduce the incidence of new HBV infections requires further investigation.

9.2 Screening High-Risk Subjects and Provide Secondary
Prevention of HCC

HBsAg carriers are at high risk for HCC. Screening for serum HBsAg is the first
step to early detect the high-risk persons for HBV-related HCC screening. With
limited resources, the priority target subjects to be screened are illustrated in Fig. 2.
They should be screened for HBsAg, and if positive, screening for HCC. Subjects
with an HBsAg carrier mother or HBsAg carrier family member(s) are particularly
at higher risk of chronic HBV infection and HCC. Screening HBsAg among
pregnant women is helpful to give antiviral therapy during third trimester for highly

Fig. 2 Screening for HBsAg and secondary prevention of hepatocellular carcinoma. HBsAg
carriers are at high risk of developing HCC. So the first step is screening to find HBsAg
seropositive persons. *HBsAg carriers are subjects with chronic HBV infection. #Subjects with
positive HBsAg, particularly those with special high risk of HCC, i.e., males >40 years, positive
HCC family history, cirrhosis, high viral load with persistent abnormal ALT levels, are the priority
target groups to receive periodic HCC screening and secondary prevention of HCC
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infectious pregnant women to interrupt mother-to-infant transmission. Furthermore,
those with positive HBsAg can be followed up regularly to screen or secondarily
prevent HCC.

The HCC risk is higher in HBsAg carriers who are males, over 40 years old,
with liver cirrhosis, a family history of HCC, or high HBV DNA
>10,000 copies/mL (Table 1). For those high-risk subjects, periodic (every fix
months) screening of HCC by ultrasonography and alpha-fetoprotein (AFP) is
recommended. For those who are living in areas where ultrasound is not readily
available, periodic screening with AFP should be considered (Bruix and Sherman
2005).

Secondary prevention of HCC can be considered in high HCC risk patients with
chronic HBV infection, such as those with liver cirrhosis, or with high HBV DNA
levels and persistent or intermittent abnormal ALT levels. If the future novel
antiviral agent(s) is safe and could eradiate HBV, it can be given to patients with
chronic HBV infection as early as possible even during childhood (Chang 2013).
Potential new therapies including drugs targeting virus (inhibit viral entry, interfere
RNA or viral assembly/ encapsidation, or HBsAg production or viral secretion), or
targeting host immune system to enhance innate immunity or to restore HBV
specific T cell and B cell responses (Kapoor and Kottilil 2014; Serigado et al. 2017;
Coffin and Lee 2015; Yang and Bertoletti 2016).

10 Implication in Other Cancer Prevention and Future
Prospects

Prevention is the best way to control cancer. Prevention of liver cancer by hepatitis
B vaccination is the first successful example of cancer preventive vaccine in human.
With the universal hepatitis B vaccination program starting from neonates in most
countries in the world, HBV infection and its complications will be further reduced
in this century. It is expected that an effective decline in the incidence of HCC in
adults will be achieved in the near future. Furthermore, the impact of HBV vac-
cination on the control of hepatitis B and its related diseases can be extrapolated to
other infectious agent-related cancers.

Besides vaccination, addition of hepatitis B immunoglobulin immediately after
birth and even antiviral agent during the third trimester of pregnancy to block
mother-to-infant transmission of HBV are existing or possible emerging strategies
to enhance the prevention efficacy of HBV infection and its related liver cancer.
Safe novel antiviral agent with high rate of HBV eradiation is anticipated for better
secondary prevention of HCC in patients with chronic HBV infection.
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The Oncogenic Role of Hepatitis
C Virus

Kazuhiko Koike and Takeya Tsutsumi

1 Introduction

Worldwide, about 170 million people are persistently infected with hepatitis C virus
(HCV), which induces chronic hepatitis, cirrhosis, and eventually hepatocellular
carcinoma (HCC) (Saito et al. 1990). Owing to the recent advances in HCV research,
particularly the identification of the JFH-1 strain (Wakita et al. 2005), the HCV
lifecycle has been elucidated. Accordingly, direct-acting antivirals (DAAs) against
HCVwere developed. DAAs can eliminate HCV efficiently and safely, and almost all
HCV-infected patients achieve a sustained viral response (SVR). However, HCC can
develop even in patients who achieved an SVR, albeit at a lower frequency than in
untreated patients. This post-SVR HCC is an important problem in clinical practice.

As mechanisms of hepatocarcinogenesis by HCV, DNA damage induced by
cytokines and oxidative stress by chronic inflammation, or mutations of genomic
DNA induced by repeated cellular destruction and regeneration, have been con-
sidered. In fact, an elevated level of serum alanine aminotransferase (reflecting
hepatitis activity) and a lower platelet count (reflecting progression of fibrosis) are
predictive of HCC development. However, accumulating in vitro data suggest that
the core protein, which constitutes the HCV particle, affects cell proliferation,
transcription, and apoptosis, suggesting that HCV itself may be carcinogenic
(Koike 2007). Furthermore, we and other groups have reported that transgenic mice
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harboring the HCV core protein gene developed HCC in the absence of hepatic
inflammation (Moriya et al. 1998; Machida et al. 2006; Lerat et al. 2002; Naas et al.
2005). These data indicate that HCV, and particularly its core protein, promote
hepatocarcinogenesis by modulating the gene expression and functions of host cells
involved in processes necessary for malignant transformation, i.e., HCV itself has
oncogenic activity. Also, hepatic steatosis, accumulation of oxidative stress, and
insulin resistance, which are frequent in HCV-infected patients, also occur in HCV
core-transgenic mice, and mitochondrial dysfunction might contribute to these
effects. Therefore, knowledge of the mechanism underlying HCC development in
persistent HCV infection is needed.

2 Hepatitis C Virus and Viral Proteins

HCV is an enveloped RNA virus belonging to the family Flaviviridae, and contains
a positive-sense, single-stranded RNA genome of approximately 9600 nucleotides
(nt) within the nucleocapsid (Houghton et al. 1991). The genome consists of a large
open reading frame (ORF) encoding a polyprotein of approximately 3010 amino
acids (aa) (Fig. 1). The ORF is contiguous to highly conserved untranslated regions
(UTR) at the 5′- and 3′-termini. The complete 5′–UTR consists of 341 nt and acts as
an internal ribosomal entry site. This promotes translation of the RNA genome
using a cap-independent mechanism rather than ribosome scanning from the 5′–end
of a capped molecule.

The polyprotein is processed by cellular and viral proteases to generate the viral
structural and non-structural proteins. The structural proteins, which are encoded by
the NH2-terminal quarter of the genome, include the core protein and the envelope
proteins, E1 and E2. E2 has an alternative form, E2-p7, which is reportedly

C E1 E2 NS2 NS3 NS5A

p22 gp35 gp60  p7 p21 p70 p27

NS5B

p58 p60

NS4B

1 192 384 810 1027 16581712 1973 30102420

protease

p4

helicase RNA polymerase

NTPaseenvelope

a.a.

"ISDR"

structural
genes

core

nonstructural (NS)
genes

NS4A

Fig. 1 Structure of the HCV genome. The HCV genome encodes a polyprotein of 3,010 aa,
which is processed to structural and nonstructural proteins by cellular or viral proteases. One of the
structural proteins, the core protein, has shown a variety of characteristics in vitro and in vivo.
ISDR, interferon sensitivity-determining region
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associated with virion assembly and release (Joyce et al. 2009, Atoom et al. 2014).
NS2, NS3, NS4A, NS4B, NS5A, and NS5B are the non-structural proteins of HCV
coded in the remaining portion of the genome. These include serine protease
(NS3/4A), NTPase/helicase (NS3), and RNA-dependent RNA polymerase (NS5B).

The core protein of HCV occupies residues 1–191 of the precursor polyprotein
and is cleaved between the core and E1 proteins by a host signal peptidase. The
C-terminal membrane anchor of the core protein is further processed by a host
signal-peptide peptidase (Moradpour et al. 2007). The mature core protein is esti-
mated to consist of 177–179 aa and has a high level of homology among HCV
genotypes. The HCV core protein possesses a hydrophilic N-terminal region (do-
main 1; residues 1–117) followed by a hydrophobic region (domain 2) from resi-
dues 118 to 170. Domain 1 is rich in basic residues and is implicated in RNA
binding and homo-oligomerization. The amphipathic helices I and II (residues 119–
136 and 148–164, respectively) in domain 2 are involved in the association of HCV
core protein with lipids (Boulant et al. 2006). In addition, the region spanning
residues 112–152 is associated with the membranes of the endoplasmic reticulum
(ER) and mitochondria (Suzuki et al. 2005). The core protein is also localized to the
nucleus (Miyamoto et al. 2007; Shirakura et al. 2007) and binds to the nuclear
proteasome activator 28c (PA28c)/REGc, resulting in its PA28c-dependent
degradation (Moriishi et al. 2003). Autophagy is involved in the degradation of
organelles and elimination of microorganisms; disruption of autophagy leads to
disorders involving protein deposition. Replication of HCV RNA induces autop-
hagy in a strain-dependent manner, suggesting that HCV harnesses autophagy to
prevent cell death and dysfunction of autophagy is implicated in the
genotype-specific pathogenesis of HCV (Taguwa et al. 2011).

3 Possible Role of HCV in Hepatocarcinogenesis

The mechanism underlying hepatocarcinogenesis in HCV infection is unclear,
despite the fact that nearly 80% of patients with HCC in Japan and 30% of those
worldwide (Perz et al. 2006) are persistently infected with HCV (Kiyosawa et al.
1990; Saito et al. 1990; Yotsuyanagi et al. 2000). These lines of evidence prompted
us to evaluate the role of HCV in hepatocarcinogenesis. HCV–induced inflam-
mation leads to necrosis of hepatocytes; their subsequent regeneration enhances
genetic aberrations in host cells, the accumulation of which leads to HCC. This
hypothesis presupposes indirect involvement of HCV in HCC via hepatic inflam-
mation. This poses the question: can inflammation alone explain the high incidence
(90% over 15 years) or multicentric nature of HCC in HCV-infected patients?

The putative indirect role of HCV must be weighed against the rarity of HCC in
patients with autoimmune hepatitis in which severe inflammation in the liver per-
sists, even after the development of cirrhosis. Therefore, viral proteins may induce
neoplasia. This possibility was evaluated by introducing HCV genes into hepato-
cytes, but the result was negative. This is likely because of the weak carcinogenic
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activity of HCV, which takes a long time to manifest. Indeed, HCC development in
HCV-infected individuals requires 30–40 years. Humanized immunocompromised
mice harboring human hepatocytes support HCV replication, but this does not
induce HCC. Therefore, investigations of the carcinogenetic activity of HCV
in vivo have used transgenic mice.

4 In Vivo Oncogenic Activity of HCV Core Protein in Mice

A major issue regarding the pathogenesis of HCV-associated liver lesions is the
direct pathological effects of HCV proteins. Although several strategies have been
applied, the relationship between HCV proteins and disease phenotype remains
unclear. For this purpose, several lines of mice transgenic for HCV cDNA have
been established (Table 1); some carry the entire coding region of the HCV genome
(Lerat et al. 2002), the core region only (Machida et al. 2006; Moriya et al. 1997),
the envelope region only (Koike et al. 1995; Pasquinelli et al. 1997), the core and
envelope regions (Lerat et al. 2002; Naas et al. 2005), and the core to NS2 regions
(Wakita et al. 1998). Although mRNA from the NS region of HCV cDNA has been
detected in the liver of such transgenic mice (Honda et al. 1999; Lerat et al. 2002),
HCV NS proteins have not. The reason for this is unclear but may be because the
HCV NS proteins are harmful to mouse development. If so, establishment of mouse
strains that produce the HCV proteins at low levels may be feasible.

We have engineered transgenic mouse lines carrying the HCV genome by intro-
ducing cDNA of HCV genotype 1b (Moriya et al. 1997; Moriya et al. 1998). The four
transgenic mouse lines carry the core gene, envelope genes, NS genes, or only NS5A
gene under the same transcriptional regulatory element. Among them, only trans-
genic mice carrying the core gene developed HCC in two independent lineages
(Moriya et al. 1998). The envelope gene-transgenic mice did not develop HCC,
despite high levels of the E1 and E2 proteins (Koike et al. 1995; Koike et al. 1997).
The transgenic mice carrying the NS genes or NS5A gene also did not develop HCC.

The core gene-transgenic mice, early in life, develop hepatic steatosis, a histo-
logic characteristic of chronic hepatitis C, along with lymphoid follicle formation
and bile duct damage (Bach et al. 1992). Thus, the core gene-transgenic mice
recapitulate chronic hepatitis C. Notably, significant hepatic inflammation is not
observed in these mice. Late in life, the core gene-transgenic mice develop HCC.
The development of steatosis and HCC is reproduced in other HCV-transgenic
mouse lines, which harbor the entire HCV genome or its structural genes, including
the core gene (Lerat et al. 2002; Machida et al. 2006; Naas et al. 2005). Therefore,
the HCV core protein per se has oncogenic potential in vivo. In fact, the core
protein modulates intracellular signaling pathways, including mitogen-activated
protein kinase in vivo (Tsutsumi et al. 2002b; Tsutsumi et al. 2003), which pro-
motes the proliferation of hepatocytes. Further investigation of the core-transgenic
mice revealed that the HCV core protein exerts several effects (see below) and may
play a role in hepatocarcinogenesis.
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5 Induction of Oxidative Stress via Mitochondria by HCV

Augmentation of oxidative stress is implicated in the pathogenesis of liver disease
in HCV–infected patients (Farinati et al. 1995). Reactive oxygen species (ROS) are
endogenous oxygen-containing molecules formed as normal products during aer-
obic metabolism. ROS can induce genetic mutations as well as chromosomal
alterations and thus contribute to carcinogenesis (Fujita et al. 2008; Kato et al.
2001). While the HCV core protein is localized predominantly to the cytoplasm in
association with lipid droplets, it is also present in the nucleus and mitochondria
(Moriya et al. 1998). Mitochondria are a major source of ROS and HCV induces
oxidative stress in vivo as well as in vitro by localizing to mitochondria and

Table 1 Consequences to the expression HCV proteins in mice

HCV gene Genotype Promoter Protein
expression

Phenotypes References

Core 1b HBV Similar to
patients

Steatosis, HCC, insulin
resistance, oxidative
stress

Moriya
(1997, 1998)
Moriishi
(2003, 2007)
Shintani
(2004)
Miyamoto
(2007)

Core 1b EF-1a Similar to
patients

Steatosis, adenoma,
HCC, oxidative stress

Machida
(2006)

E1–E2 1b HBV Abundant None in the liver Koike
(1995),
Koike (1997)

Core-E1–
E2

1b Albumin Similar to
patients

Steatosis, HCC,
oxidative stress

Lerat (2003)

Core-E1–
E2

1a CMV Similar to
patients

Steatosis, HCC Naas (2005)

Structural
proteins

1b MHC Low in the
liver

Hepatitis Honda
(1999)

Entire
polyprotein

1b Albumin Only
mRNA
detectable

Steatosis, HCC Lerat (2003)

Entire
polyprotein

1a A1-anti-trypsin Steatosis, intrahepatic T
cell recruitment

Alonzi
(2004)

NS3/4A 1a MUP None (modulation of
immunity)

Frelin (2006)

NS5A 1a apoE None (resistance to
TNF)

Majumder
(2002)

HBV, hepatitis B virus; EF, elongation factor; MUP, major urinary protein; Alb, albumin; CMV,
cytomegalovirus;MHC,major histocompatibility complex;AT, anti-trypsin; apoE, apolipoprotein E
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disrupting their function. Hepatic ROS production is increased in the HCV
core-transgenic mice at an early age, which is compensated for by upregulation of
catalase and reduced synthesis of glutathione. However, in older mice, the com-
pensatory effect is inadequate, leading to ROS accumulation in hepatocytes (Moriya
et al. 2001). NS5A also induces ER stress and increases Ca efflux, leading to
enhanced Ca influx into mitochondria and an increased ROS level (Tardif et al.
2002). Induction of oxidative stress is also observed in vitro in HCV-replicating
cells such as subgenomic-replicon cells and JFH-1 cells (Boudreau et al. 2009). In
addition, oxidative stress is enhanced in the liver of chimeric mice harboring
HCV-infected human hepatocytes (Joyce et al. 2009). Furthermore, patients with
chronic hepatitis C have increased oxidative DNA damage in hepatocytes and
peripheral leukocytes (Fujita et al. 2008; Yen et al. 2012). These data suggest that
HCV directly contributes to hepatocarcinogenesis by inducing oxidative stress,
which triggers DNA damage. Also, the main site of HCV-induced ROS production
is mitochondria. Indeed, proteomic profiling of biopsy specimens from
HCV-infected human livers with advanced fibrosis revealed impairment of both key
mitochondrial processes, including fatty acid oxidation, and the response to
oxidative stress (Diamond et al. 2007). The mechanism underlying the
HCV-induced increased ROS production by mitochondria has been investigated.

HCV core protein is localized to, and induces morphological changes of,
mitochondria. In addition, HCV core protein suppresses the activity of complex I in
the mitochondrial respiratory chain (Korenaga et al. 2005; Piccoli et al. 2007). This
suppression is mediated in part by the direct interaction of HCV core protein with a
mitochondrial protein, prohibitin. Prohibitin is a ubiquitously expressed and highly
conserved protein that plays the predominant role in inhibiting cell-cycle progres-
sion and cellular proliferation by attenuating DNA synthesis (Mishra et al. 2005). It
is localized to the nucleus and interacts with transcription factors vital for cell-cycle
progression. Mitochondrial prohibitin acts as a chaperone by stabilizing newly
synthesized mitochondrial proteins (Nijtmans et al. 2000). By two-dimensional
polyacrylamide gel electrophoresis (2D-PAGE) of mitochondria isolated from
HepG2 cells stably expressing the HCV core protein, prohibitin was found to be
upregulated. We found that the interaction between prohibitin and
mitochondria-encoded subunit II of COX is suppressed in core-expressing cells
(Tsutsumi et al. 2009). This suggests that HCV core protein disrupts the formation
and function of the mitochondrial respiratory chain by interacting with prohibitin
and suppressing its function as a chaperone, leading to increased oxidative stress.
Indeed, suppression of prohibitin function results in increased ROS production and
mice lacking intrahepatic expression of prohibitin exhibits ROS accumulation and
HCC development (Theiss et al. 2007; Ko et al. 2010). HCV core protein is also
associated with mitophagy, mitochondrion-specific autophagy. Under normal
conditions, mitochondria with morphological or functional abnormalities are
rapidly removed by mitophagy, but abnormal mitochondria accumulate in the
presence of the HCV core protein. This suppressive effect may be due to interaction
of the HCV core protein with Parkin, a promoter of mitophagy. Parkin is an E3
ubiquitin ligase predominantly localized to the cytoplasm, but translocates to
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mitochondria in response to their depolarization owing to activation of
PTEN-induced putative kinase 1 (PINK1). In mitochondria, PINK1 ubiquitinates
itself and outer mitochondrial proteins, thereby priming mitophagy. However, in the
presence of HCV core protein, Parkin is retained in the cytoplasm, leading to
suppression of mitophagy (Hara et al. 2014). Other factors associated with mito-
phagy, such as the ‘mitophagy receptors’ Bnip3 and Nix, may also be targeted by
HCV core protein. In any case, the accumulation of abnormal mitochondria caused
by the suppression of mitophagy further increases oxidative stress, which con-
tributes to DNA damage, finally leading to the development of HCC.

6 Effect of HCV on Iron Metabolism

As discussed above, chronic hepatitis C is characterized by increased oxidative
stress. Iron accumulation in the liver aggravates oxidative stress, as indicated by
increased levels of DNA adducts in the liver (Farinati et al. 1995). In addition, iron
accumulates in the liver of HCV core-transgenic mice (Moriya et al. 2010).
Therefore, the contribution of abnormal iron metabolism by HCV to hepatocar-
cinogenesis is focused, and in fact, the risk of HCC development is higher in
HCV-infected patients with elevated hepatic iron accumulation. As a possible
molecular mechanism, HCV core protein modulates the expression of
heme-oxygenase-1 (HO-1), a key factor in iron metabolism. HO-1 catalyzes the
initial and rate-limiting reaction in heme catabolism and cleaves pro-oxidant heme
to biliverdin, which in mammals is converted to bilirubin; both biliverdin and
bilirubin have antioxidant activity (Stocker et al. 1987). HO-1 has been suggested to
be an important antioxidant in the presence of glutathione depletion (Oguro et al.
1998). Thus, HO-1 is an endogenous protective mechanism against oxidative stress,
and particularly iron overload. Also, in cultured cells and transgenic mice, HCV
decreases the expression of hepcidin, a protein that suppresses iron absorption from
the gastrointestinal tract, leading to increased absorption and subsequent accumu-
lation of iron (Nishina et al. 2008; Miura et al. 2008). Therefore, HCV-induced
abnormalities of iron metabolism contribute to ROS accumulation. This notion is
supported by the fact that phlebotomy decreases the incidence of HCC in
HCV-infected patients.

7 Induction of Hepatic Steatosis and Insulin Resistance
by HCV

In patients with chronic hepatitis C, hepatic steatosis and diabetes mellitus are more
frequent comorbidities, as compared to patients with other chronic liver diseases.
The grade of hepatic steatosis correlates with the intrahepatic HCV load, and
hepatic steatosis and insulin resistance are improved by elimination of HCV.
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Furthermore, hepatic steatosis and insulin resistance occur in HCV core-transgenic
mice at an early age in the absence of inflammation, suggesting direct involvement
of HCV. Several mechanisms of intrahepatic lipid accumulation by HCV have been
proposed (Fig. 2)—upregulation of intrahepatic fatty acid synthesis via the acti-
vation of sterol regulatory element binding protein-1 (SREBP1), decreased con-
sumption of fatty acids due to disruption of mitochondrial function, increased
import of fatty acids due to insulin resistance, and reduced export of very
low-density lipoprotein (VLDL) due to downregulation of the activity of micro-
somal triglyceride protein (MTP) (Perlemuter et al. 2002). Hepatic steatosis is
beneficial to HCV because lipid droplets in hepatocytes are indispensable for viral
replication (Miyanari et al. 2007). Insulin resistance is caused by functional sup-
pression of insulin receptor substrate-1, a key factor in the intracellular insulin
signaling pathway, due to upregulation of tumor necrosis factor-a and suppressor of
cytokine signaling (Tsutsumi et al. 2002b; Shintani et al. 2004; Miyoshi et al.
2005).

Uptake ↑

Free fatty acid triglyceride

VLDL ↓

Secretion ↓

β-oxidation ↓

MTP ↓

FAS ↑

HCV-infected hepatocyte

SREBP1 ↑

Mitochondrial dysfunction PPARα

RXRα

LXRα
PA28γ

Insulin resistance insulin ↑

Acetyl-CoA

X X

X

Free fatty acid

Fig. 2 Molecular mechanisms of HCV-induced intrahepatic lipid accumulation. HCV, and
particularly the core protein, affects several pathways associated with lipid metabolism and induces
hepatic steatosis. Underlining indicates cellular proteins or processes affected by HCV. First, the
core protein induces insulin resistance, promoting the peripheral release and hepatic uptake of fatty
acids. Second, the core protein suppresses the activity of MTP, inhibiting the secretion of VLDL
from the liver, resulting in an increased hepatic triglyceride level. Third, the transcription factor,
SREBP-1c, is upregulated by the core protein, resulting in increased production of triglycerides.
Finally, impaired b-oxidation of fatty acids due to mitochondrial dysfunction induced by the core
protein leads to the accumulation of fatty acids. PA28g, proteasome activator 28g; RXRa, retinoid
X receptor; LXRa, liver X receptor; SREBP1, sterol regulatory element binding protein-1; FAS,
fatty acid synthase; PPARa peroxisome proliferator-activated receptor-a; MTP, microsomal
triglyceride transfer protein; VLDL, very low–density lipoprotein
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In patients with chronic hepatitis C, the presence of hepatic steatosis or insulin
resistance is independently associated with a poor response to interferon-based
therapy and progression to fibrosis, and with HCC development in patients with
liver cirrhosis. DNA damage accompanied by lipid-induced chronic inflammation
and ROS production, and insulin-induced cell proliferation, are possible mecha-
nisms of hepatocarcinogenesis. The HCV core protein activates the nuclear
receptors retinoid X receptor-a (RXRa) and peroxisome proliferator-activated
receptor-a (PPARa) (Tsutsumi et al. 2002a). PPARa forms a heterodimer with
RXRa to modulate the expression of genes related to lipid metabolism. The fact
that HCV core-transgenic mice lacking the PPARa gene (core-transgenic/
PPARa-knockout mice) do not develop hepatic steatosis and HCC suggests that
these nuclear receptors play important roles in HCV-induced hepatocarcinogenesis
(Tanaka et al. 2008).

8 Interaction of HCV Core Protein with Host Proteins

HCV proteins, particularly the core protein, are associated with intracellular
signaling, transcription, transformation, apoptosis, and autophagy. However, most
of the data are from in vitro cell-culture studies, and the results differed according to
the cell line or expression system used. Therefore, whether the data reflect the
situation in HCV-infected patients is unclear, so demonstrating the effect of HCV
in vivo is vital, for which transgenic mice are useful.

Proteasome activator 28c (PA28c) interacts with the HCV core protein in vitro in
normal hepatocytes of HCV core-transgenic mice (Moriishi et al. 2003). PA28c is a
well-conserved, proteasome-associated protein that mediates the degradation of host
proteins by binding to, and regulating the activity of, the 20S proteasome, although
the mechanism is unclear. Overexpression of PA28c promotes degradation of the
HCV core protein. In contrast, nuclear accumulation of the HCV core protein occurs
in PA28c-knockout hepatocytes, suggesting degradation by the PA28c-proteasome
system. PA28c-knockout mice have an almost normal phenotype without patho-
logical changes, but core-transgenic/PA28c-knockout mice do not develop hepatic
steatosis, unlike young core-transgenic mice (Moriishi et al. 2007). The HCV core
protein promotes the binding of heterodimers of liver X receptor-a (LXRa) and
RXRa to LXR-responsive element, which activates SREBP1c expression, but this
effect is downregulated in the absence of PA28c. Furthermore, the increased
accumulation of ROS and the insulin resistance in core-transgenic mice are absent in
core-transgenic/PA28c-knockout mice and, surprisingly, core-transgenic/PA28c-
knockout mice do not develop HCC. These findings suggest that PA28c plays an
important role in the induction of HCC by the HCV core protein. Also, functional
activation of PA28c by interaction with the core protein may induce hepatocar-
cinogenesis because PA28c expression is upregulated in several cancers (Chen et al.
2013; Okamura et al. 2003). Given that the development of HCC is prevented in its
absence, PA28c may be a novel therapeutic target.
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9 Conclusion

The results of HCV mouse studies indicate that the HCV core protein has car-
cinogenic activity in vivo; thus, HCV has hepatic oncogenic potential. In transgenic
mice, HCV proteins, particularly the core protein, induce hepatic steatosis, mito-
chondrial dysfunction, insulin resistance, and ROS accumulation, and the interac-
tions of these mechanisms result in HCC development (Fig. 3).

Accumulation of a complete set of cellular genetic aberrations is required for the
development of neoplasia, such as colorectal cancer (Kinzler and Vogelstein 1996).
Mutations in the APC gene (inactivation), in the K-ras gene (activation), and in the
p53 gene (inactivation) accumulate, resulting in the development of colorectal
cancer. This theory, Vogelstein-type carcinogenesis, has been extended to other
cancers. The induction of HCC by HCV core protein suggests an alternative
mechanism of hepatocarcinogenesis. The HCV core protein may enable some of the
steps in hepatocarcinogenesis to be skipped, leading to the development of HCC
even in the absence of the set of genetic aberrations required for carcinogenesis
(Fig. 4). Such non–Vogelstein induction of HCC may explain the unusual events in
HCV carriers (Koike 2005).

Due to the remarkable progress in therapies for HCV infection, almost all
HCV-infected patients achieve an SVR, but some cannot eliminate HCV due to the
progression of liver fibrosis or drug-resistance mutations. Furthermore, HCC can
develop in patients who have achieved an SVR. Therefore, it is important to
develop therapeutic strategies to prevent and cure HCC. For this purpose, the
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Fig. 3 Molecular mechanism of HCV-induced hepatocarcinogenesis. HCV, and particularly its
core protein, impairs several cellular pathways and induces mitochondrial dysfunction, hepatic
steatosis, insulin resistance, and ROS accumulation. The interactions of these mechanisms lead to
hepatocarcinogenesis
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above-mentioned mechanisms of HCV-induced hepatocarcinogenesis are useful,
and compounds targeting mitochondria, nuclear receptors, or PA28c may be
promising candidate anti–hepatocarcinogenic agents.
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Prevention of Hepatitis C Virus
Infection and Liver Cancer

E. J. Lim and J. Torresi

1 Introduction

Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer and the second
leading cause of cancer-related death worldwide (Lafaro et al. 2015). Incidence of
HCC is highest in the less developed countries of Asia and Africa, with China
accounting for over 50% of cases (Petrick et al. 2016). However, the rates of HCC
have been increasing rapidly in America, Europe and Australia (Petrick et al. 2016),
where the majority of HCC cases are attributable to chronic hepatitis C (HCV) in-
fection (Choo et al. 2016). Of the more than 42,000 new cases of HCC in the
United States in 2018 (http://seer.cancer.gov), an estimated 50–60% are related to
HCV (El-Serag and Kanwal 2014). Although a strong association exists between
chronic HCV and the development of HCC, the precise mechanisms by which HCV
infection promotes HCC are uncertain. There is, however, good evidence to suggest
that eradication of the virus in both cirrhotic and noncirrhotic HCV-infected
patients reduces the subsequent risk of developing HCC (Morgan et al. 2013).
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2 Hepatitis C Infection

It is estimated that over 71 million individuals are chronically infected with HCV
worldwide (Blach et al. 2017). HCV is transmitted via infected blood. Currently, in
Western countries, acquisition of HCV occurs primarily through intravenous drug
use and tattoos (Razali et al. 2007), whereas in Asia and Africa, infection mainly
occurs through the use of contaminated blood products and medical instruments. In
contrast to these modes, HCV transmission via sexual and perinatal routes is
infrequent (Razali et al. 2007).

Following infection with HCV, up to 80% of patients are unable to clear the
virus, resulting in chronic infection which may ultimately progress to cirrhosis in
approximately 20% of individuals (Westbrook and Dusheiko 2014). The natural
history of HCV infection is summarized in Fig. 1. The majority of chronically
infected patients remain asymptomatic for many years, thus delaying both the
diagnosis and treatment. It is often not until the development of complications of
cirrhosis such as hepatic decompensation and HCC that these patients present to
medical care, and around 15% of patients with chronic HCV will develop HCC
(Rein et al. 2011).

3 Hepatitis C Virology

HCV belongs to the genus Hepacivirus in the Flaviviridae family (Forns and Bukh
1999). It has a single-stranded linear RNA genome of approximately 9600
nucleotides that encodes a large polyprotein of approximately 3000 amino acids
(Bartenschlager et al. 2011). The structure of the HCV genome and functions of the
various viral proteins are summarized in Fig. 2. HCV exists as six major genotypes
with genotype 1 being the dominant genotype in the United States, Europe and
Australia (Messina et al. 2015). Genotype 2 is primarily found in West Africa,
genotype 3 is more prevalent in India and Southeast Asia, whereas genotype 4 is
more commonly seen in the Middle East and Africa (Gower et al. 2014). Each

Fig. 1 Natural history of
HCV infection. Adapted
from Alter (1995)
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genotype contains multiple subtypes according to viral sequencing, identified with
lower case letters (a, b, c, etc.). The HCV genotype may influence treatment
response, severity of liver disease, and risk of HCC development, but the data are
contradictory. A meta-analysis found that genotype 1b HCV infection was asso-
ciated with a doubling of the risk of HCC development compared to infection with
other genotypes (Raimondi et al. 2009). However, in a more recent cohort study of
100,000 patients, those chronically infected with genotype 3 HCV were found to
have an 80% greater risk of HCC compared with genotype 1 chronic infection
(Kanwal et al. 2014).

Like other RNA viruses, the RNA polymerase protein of HCV lacks proof-
reading ability and as a consequence, replication of the viral genome is error-prone
resulting in a high mutation rate. The result is great genetic heterogeneity that leads
to the evolution of diverse viral quasi-species. This viral diversity interferes with the
development of effective host humoral immune responses against the virus thereby
promoting viral persistence within infected individuals (Forns and Bukh 1999).

4 Hepatitis C and Associated Risk Factors for HCC
Development

HCV is recognized as a major cause of HCC globally. In a large population-based
prospective study, infection with HCV conferred a 20-fold increased risk of
developing HCC compared to HCV-negative individuals (Sun et al. 2003). In
another large prospective cohort study, HCV infection conferred a cumulative
lifetime risk of HCC of 24% in men and 17% in women (Huang et al. 2011). This
strong association between chronic HCV and HCC has been noted since the early
1980s, when the virus was known as non-A, non-B hepatitis (Kiyosawa et al.
1984). Almost all HCV-related HCCs occur in the setting of established cirrhosis,
with cirrhosis itself being a strong independent risk factor for developing HCC
(Tsukuma et al. 1993). Consequently, HCC develops many years (often 2–3

Fig. 2 HCV genome structure and functions of viral proteins. Adapted from Bartenschlager et al.
(2011)
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decades) after initial HCV infection. In the setting of HCV-induced cirrhosis, HCC
develops at an annual rate of 1–5% (Westbrook and Dusheiko 2014), with an
11.5% 4-year risk of HCC (Serfaty et al. 1998), emphasizing the importance of
HCC screening in this population.

However, not all HCV-related HCCs occur in patients with pre-existing cir-
rhosis. In a large prospective study, about 17% of HCV-positive patients with HCC
were not cirrhotic but were noted to have at least an Ishak fibrosis score of 3 or
more on serial liver biopsies (Lok et al. 2009), indicating that even in the absence of
cirrhosis, HCC tends to develop in HCV-infected individuals with established
chronic hepatitis and advanced liver fibrosis. Indeed, 20% of HCV-infected patients
with Metavir fibrosis stage 3 (noncirrhotic) have been noted to develop HCC
(Alkofer et al. 2011). More recently, a small retrospective study noted that 10% of
HCCs developed in HCV-infected patients who only had a Metavir fibrosis stage of
F0 to F2 (Lewis et al. 2013).

Risk factors that may contribute to the progression of HCV-associated liver
disease to cirrhosis and HCC include concurrent alcohol consumption, older age at
the time of infection, male gender, coinfection with HIV or hepatitis B, immuno-
suppression, associated insulin resistance or non-alcoholic steatohepatitis, and a
higher degree of inflammation and fibrosis on liver biopsy (Chen and Morgan 2006).

Significant alcohol intake of >40 g alcohol/day in women and >60 g of
alcohol/day in men for more than 5 years is associated with a 2- to 3-fold increased
risk of cirrhosis and decompensated liver disease in HCV-infected individuals
(Wiley et al. 1998). Furthermore, the risk of developing HCC is doubled in
HCV-infected individuals who consume >60 g of alcohol/day compared to those
consuming <60 g/day (Donato et al. 2002). Also, the presence of chronic HCV
infection has been associated with more advanced liver disease and increased
mortality in alcoholic individuals compared to alcoholic patients with chronic
hepatitis B infection (Mendenhall et al. 1991).

Age of infection is also an independent risk factor for the development of more
severe liver disease in chronic HCV. After controlling for duration of HCV
infection, patients who acquire HCV infection at an older age (>40 years old) are
significantly more likely to progress to advanced liver fibrosis than individuals
infected at a younger age (Poynard et al. 1997). The incidence of HCC is up to 29
times higher for individuals who become infected with HCV after 39 years of age
compared to those infected before the age of 19 years (Pradat et al. 2007).
HCV-infected men have a 2–4 fold higher risk of developing HCC than
HCV-infected women (El-Serag and Kanwal 2014).

In the setting of HIV–HCV coinfection, a low CD4 count is associated with
higher HCV viral loads as well as increased hepatic fibrosis and accelerated pro-
gression to cirrhosis (Di Martino et al. 2001). Other causes of immunosuppression,
such as organ transplantation, have also been associated with more rapid liver
fibrosis progression (Berenguer et al. 2000). Individuals coinfected with HCV and
hepatitis B virus (HBV), also have a higher risk of HCC development (Shi et al.
2005). Kruse et al. showed that individuals with HCV/HBV-coinfection but without
detectable HBV DNA had a risk of HCC equivalent to HCV-monoinfected patients.
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However, in coinfected patients with detectable HBV replication, the risk of HCC
was doubled (Kruse et al. 2014).

Curiously, daily coffee consumption may have a protective effect on
HCV-induced HCC (Wakai et al. 2007). HCV-infected individuals with HCC who
drank at least one cup of coffee a day were noted to have a 69% lower mortality
compared to individuals who did not drink coffee (Kurozawa et al. 2005).

4.1 Hepatitis C Viral Hepatocarcinogenesis

How HCV infection results in the development of HCC is not entirely clear. There
is evidence to suggest that HCV may interact with various intracellular signal
transduction pathways or affect epigenetic changes thereby altering hepatocyte
physiology to directly promote malignant transformation. HCV core protein has
been strongly implicated in hepatocarcinogenesis. Core protein expression has been
noted to promote HCC development in transgenic mice in the absence of hepatic
inflammation or fibrosis indicating that viral proteins themselves may directly have
a carcinogenic effect (Moriya et al. 1998). Core protein is noted to interact with the
mitogen-activated protein (MAP) kinase signalling pathway (Hayashi et al. 2000)
and upregulate mTOR (Tholey and Ahn 2015), thereby promoting cell prolifera-
tion. Core protein has also been shown to inhibit p53 tumour suppressor protein
allowing the proliferation of genetically aberrant hepatocytes (Kao et al. 2004).

The non-structural proteins of HCV have also been implicated in hepatocar-
cinogenesis. NS3 (Ishido and Hotta 1998) and NS5A (Lan et al. 2002) have been
shown to bind to p53, perhaps inhibiting p53-mediated apoptosis of malignant cells.
The NS5A protein was noted to activate the beta-catenin signalling pathway (Park
et al. 2009) and mTOR pathway (Peng et al. 2010) to promote cell proliferation.
While the NS5B protein has been found to downregulate retinoblastoma (Rb) pro-
tein, a key tumour suppressor protein that regulates cellular response to DNA
damage, by targeting Rb for proteasome degradation (Munakata et al. 2005).

Also, it has been shown that the tumour suppressor gene p16INK4A in tumour
tissue resected from the livers of HCV-infected patients with HCCs is hyperme-
thylated, and this results in the inactivation of p16INK4A, a feature not seen in
non-HCV-associated HCCs (Li et al. 2004).

Second, immune-mediated liver inflammation and the promotion of apoptosis of
HCV-infected hepatocytes result in a compensatory stimulation of cell proliferation
to replace dead hepatocytes. The increased cell turn-over permits the accumulation
of genetic mutations within hepatocytes, and this together with the surrounding
inflammatory liver milieu promotes HCC development (Hino et al. 2002; Budhu
and Wang 2006). Indeed, inflammation-mediated hepatocyte apoptosis with com-
pensatory cell proliferation was shown to enhance HCC development in mice (Qiu
et al. 2011), and increased inflammatory activity within the liver parenchyma has
been associated with a poorer prognosis in patients with HCV-associated HCC
(Maki et al. 2007).
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5 Prevention of HCC in Patients with Hepatitis C-Induced
Cirrhosis

The incidence of HCV-related HCC continues to rise worldwide because of the
high number of individuals with chronic HCV infection, the presence of associated
co-morbidities, and the longer survival of patients with advanced liver disease as a
result of improved management of the complications of liver failure. A recent
meta-analysis showed that the successful clearance of HCV in patients with
advanced liver disease was associated with a reduction in the risk of subsequent
HCC development from 17.8 to 4.2%, indicating that despite already having cir-
rhosis, successful antiviral therapy of HCV-infected patients will still reduce the
future risk of HCC (Morgan et al. 2013). However, as the risk of HCC is not
completely eliminated despite achieving viral eradication, ongoing HCC screening
is still indicated in patients with cirrhosis (Aleman et al. 2013). There appears to be
no benefit of therapy on reducing HCC risk if viral eradication was not successful.
A systematic review not only found that SVR was related to a reduced incidence of
liver failure and HCC, but successful viral eradication may lead to cirrhosis
regression (Ng and Saab 2011).

In a meta-analysis of patients with HCV-induced cirrhosis who develop HCC, it
was found that after curative treatment of HCC via local ablative therapy or surgical
resection, successful eradication of HCV with interferon therapy was associated
with a reduced risk of HCC recurrence from 61 to 35% (Singal et al. 2010).
Furthermore, successful treatment with pegylated interferon and ribavirin was
associated with an improved hepatic functional reserve and increased survival (96
vs. 61% at 3 years) in this cohort (Ishikawa et al. 2012). These studies indicate that
antiviral therapy is also useful in the secondary prevention of HCC in HCV-induced
cirrhosis. In patients undergoing liver transplantation for HCV-associated HCC,
interferon therapy for recurrent HCV post-liver transplant was found to decrease
subsequent HCC recurrence from 27 to 4% (Kohli et al. 2012). More recently, the
newer direct-acting antiviral (DAA) drugs have also been shown to be highly
efficacious in clearing HCV post-liver transplantation, with a 98.5% success rate
reported regardless of viral genotype and fibrosis stage (Pyrsopoulos et al. 2018).
DAA regimens have been shown to be highly effective in eradicating post-liver
transplant HCV with minimal side effects and a durable response on long-term
follow-up (Beinhardt et al. 2018).

6 Prevention of Cirrhosis and HCC in Patients
with Hepatitis C-Induced Chronic Hepatitis

The potential long-term benefits of successful antiviral therapy of HCV-infected
patients with chronic hepatitis include the normalization of serum transaminase
levels with resultant reduction in hepatic necroinflammation and fibrosis, the
improvement in health-related quality of life, and the reduction in HCC risk, all of
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which enhance patient survival (Patel et al. 2006). We know that HCC primarily
develops in HCV-infected patients with cirrhosis. In order to reduce the risk of
developing HCV-related HCC, the aim would be to provide treatment to eradicate
HCV prior to the development of cirrhosis. Indeed, studies have shown that suc-
cessful viral clearance with antiviral therapy results in clinical and histological
improvement in the vast majority of patients (Marcellin et al. 1997), with an
associated reduction in the risk of subsequent development of cirrhosis and HCC
(Pradat et al. 2007).

In a large multicentre European study of largely noncirrhotic (89%)
HCV-infected patients, successful viral eradication was associated with the pro-
gression to cirrhosis in only 2.3% of patients with no patients developing HCC,
whereas a failure to achieve viral clearance was associated with progression to
cirrhosis in 20% of patients and development of HCC in 4.2% (Pradat et al. 2007).
In another study of HCV-infected patients, the majority of whom (90%) did not
have cirrhosis, successful viral clearance with interferon therapy was associated
with a 10-fold reduction in the risk of subsequent HCC development from 2.31 to
0.24%/year (Maruoka et al. 2012). The meta-analysis by Morgan et al. concluded
that achieving sustained virological response (SVR), defined as having an unde-
tectable HCV RNA 12 weeks post-completion of antiviral therapy, resulted in a
4.6% absolute reduction in HCC development regardless of fibrosis stage (Morgan
et al. 2013). Indeed, attaining SVR is associated with a 54% reduction in all-cause
mortality in HCV-infected individuals (Backus et al. 2011). In patients with no
evidence of significant hepatic fibrosis, SVR is thought to be associated with an
improvement in liver histology back to normal and a reduction in the risk of HCC
back to population levels. As such, these patients may be discharged from ongoing
surveillance (Westbrook and Dusheiko 2014).

7 Antiviral Treatment of Hepatitis C

A vaccine for the prevention of HCV is not yet available, and therefore the only
effective means to prevent the development of liver cirrhosis and HCC is with
antiviral therapy. The aim of such treatment is to eradicate the virus, resulting in the
clearance of HCV from the body, and thereby halt the progression of liver injury
and fibrosis. On long-term follow-up of patients achieving SVR, more than 99%
remained HCV negative, essentially equating SVR with a cure for HCV infection
(Simmons et al. 2016).

7.1 Pegylated Interferon Alfa and Ribavirin

For many years, the only available treatment for chronic HCV infection was the
combination of pegylated interferon alfa and ribavirin. Interferon alfa induced the
transcription of genes involved in cell cycle regulation, apoptosis, and promotion of
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an antiviral state within hepatocytes (Thomas et al. 2003). Besides the direct effect
against virally-infected host cells, interferon alfa is also involved in modulating the
immune system by enhancing the CD8+ cytotoxic T cell response against infected
cells, as well as promoting the proliferation of B cells to augment the production of
antibodies against HCV (Thomas et al. 2003). Treatment was frequently associated
with a myriad of side effects resulting in patient morbidity (Chevaliez and
Pawlotsky 2007) and despite a prolonged treatment duration of 48 weeks, viral
clearance was only achieved in 52% of patients with genotype 1 HCV (Hadziyannis
et al. 2004). These regimens are no longer recommended for HCV treatment in the
US (Chung et al. 2015) or Europe (Liver 2018).

7.2 Direct-Acting Antiviral Agents

The recent advent of DAA drugs has vastly improved the landscape of antiviral
therapy for chronic HCV and has provided a more effective approach to the
long-term prevention of HCV-associated HCC. Indeed, combinations of these oral
agents are now considered the standard of care for HCV treatment (Chung et al.
2015). These DAAs targets and inhibit specific HCV proteins, including the viral
protease (NS3/4A protein), polymerase (NS5B protein), and the NS5A protein,
thereby disrupting the HCV replication cycle (Poordad and Dieterich 2012). These
DAAs have resulted in significant improvements in achieving SVR, resulting in the
rapid normalization of hepatic inflammation and regression of liver fibrosis (Tada
et al. 2017) (Table 1).

The first DAAs to be released were the protease inhibitors telaprevir (Incivek,
Vertex) and boceprevir (Victrelis, Merck Sharp and Dohme) in 2011. Both were
only effective in patients infected with genotype 1 HCV and were unable to affect
SVR alone. As such, they had to be added to pegylated interferon alfa and ribavirin
treatment (Hezode et al. 2014), thereby increasing the number and severity of side
effects but also augmenting the SVR rates in both treatment naive and
treatment-experienced patients. Telaprevir increased SVR rates from 44 to 75%
compared to standard therapy alone and boceprevir enhanced SVR rates from 38 to
66% compared to pegylated interferon and ribavirin alone. Common side effects of
telaprevir therapy include skin rash, anaemia, and gastrointestinal symptoms, while
common side effects of boceprevir include anaemia and dysgeusia (Jacobson et al.
2011; Poordad et al. 2011).

It soon became apparent that single DAA agents were not only insufficiently
potent to achieve SVR on their own, but single-agent use quickly led to the
development of antiviral resistance due to the rapid selection of drug-resistant HCV
variants (Conteduca et al. 2014). The answer came from utilizing regimens con-
sisting of combinations of DAAs with different mechanisms of action in order to
prevent the development of antiviral resistance (Pawlotsky 2016). Furthermore, by
utilizing multiple DAAs together, treatment duration has generally been shortened
to 12 weeks for most regimens regardless of HCV genotype, degree of hepatic
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fibrosis, or previous antiviral treatment failure (Table 1). These all-oral regimens
are also far better tolerated than interferon-containing regimens.

DAA drugs are relatively safe and well-tolerated and there are few absolute
contraindications to therapy, with the main issue being drug interactions. Hence it is
essential to determine what medications the patient is on, taking into account herbal
and over-the-counter drugs, and check for interactions prior to commencement of
DAA therapy. Drugs with the potential to cause toxicity should be ceased or
switched to another drug in the same class that does not have interaction for the
duration of DAA therapy. The University of Liverpool website (www.hep-
druginteractions.org) is a useful resource for the screening of potential drug inter-
actions with DAAs. Specific DAA regimens are discussed below.

8 Zepatier® (Elbasvir 50 mg + Grazoprevir 100 mg, Merck
& Co.)

Zepatier is a once-daily, single-tablet regimen combining elbasvir and grazoprevir.
This treatment is only effective for genotype 1 and 4 HCV infection (Zeuzem et al.
2015). Elbasvir is a potent inhibitor of the NS5A protein which is crucial for viral
RNA replication and assembly (Coburn et al. 2013). Grazoprevir is a potent inhi-
bitor of the NS3/4A protease, required for the proteolytic cleavage of the viral
polyprotein into the mature proteins which are essential for HCV replication.
Grazoprevir has been shown to be effective against common NS3
resistance-associated substitutions (Summa et al. 2012). Although 12-week treat-
ment with Zepatier is highly efficacious in both treatment naive and
treatment-experienced patients with a reported SVR rate of over 95% (Zeuzem et al.
2015), in certain difficult to treat cohorts such as treatment-experienced patients or
treatment naive patients with pre-existing NS5A resistance-associated substitutions,
the recommendation is to extend therapy to 16 weeks and add weight-based rib-
avirin (Kwo et al. 2017). This is because the presence of NS5A
resistance-associated substitutions may result in resistance to elbasvir, thereby
reducing the efficacy of this regimen. However, Lawitz et al. showed that by
extending treatment duration and adding ribavirin, SVR rates in this cohort was
increased from 91 to 100% (Lawitz et al. 2015). In patients with advanced chronic
renal disease and infected with HCV genotype 1, a 12-week treatment course of
Zepatier has been shown to be safe and produce an SVR of 99% (Bruchfeld et al.
2017). Similarly, in treatment-naive HIV-coinfected patients, Zepatier has been
shown to produce an SVR of 96% (Rockstroh et al. 2015). Zepatier is generally
well-tolerated with only a small proportion of patients experiencing headaches
(17%), fatigue (15%) or nausea (9%) (Zeuzem et al. 2015), however, when com-
bined with ribivirin, these adverse effects were more frequent, together with an
increased rate of anaemia (8%) and other cytopenias (Forns et al. 2015), necessi-
tating ribavirin dose-reduction in affected patients. Zepatier can be used safely in
patients with renal impairment even up to stage 5 chronic kidney disease on
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haemodialysis (Roth et al. 2015), but it is contraindicated in patients with
Child-Pugh B or C cirrhosis as it contains a protease inhibitor (Vermehren et al.
2018).

9 Epclusa® (Sofosbuvir 400 mg + Velpatasvir 100 mg,
Gilead Sciences)

Epclusa is a single-tablet, daily dose regimen consisting of velpatasvir and sofos-
buvir. The nucleoside-analogue sofosbuvir binds to and inhibits the active site of
the HCV NS5B polymerase, the structure of which is highly conserved across all
HCV genotypes (Buhler and Bartenschlager 2012), thus giving sofosbuvir
pan-genotypic efficacy with a high drug resistance barrier (Sofia et al. 2010).
Velpatasvir is a second-generation NS5A inhibitor which also has pan-genotypic
potency, effective even in patients with detected NS5A resistance-associated sub-
stitutions, and has a high barrier to resistance (Cheng et al. 2013). Hence, Epclusa is
the first of the pan-genotypic DAA regimens effective against all 6 HCV genotypes,
with SVR rates of between 97 and 100% achieved after 12 weeks of treatment
regardless of the presence of cirrhosis (99% SVR overall) (Feld et al. 2015).
Epclusa is well-tolerated with no statistically significant difference seen between the
treatment and placebo groups in the commonly reported side effects of headache,
fatigue and nausea, however, cytopaenias were reported in 1% of patients receiving
treatment (Feld et al. 2015). This regimen is approved for use in decompensated
cirrhosis, usually in combination with ribavirin if tolerated (Vermehren et al. 2018),
where the addition of ribavirin to 12-week treatment with Epclusa was noted to
increase the SVR rate in this cohort from 83 to 94% (Curry et al. 2015). Addition of
weight-based ribavirin should also be considered in treatment-experienced geno-
type 3 patients as this cohort is known to have a suboptimal response to Epclusa
alone (Foster et al. 2015). As Sofosbuvir is mainly renally-excreted, its use is
contraindicated in patients with a glomerular filtration rate of <30 ml/min, and
Epclusa is not recommended for patients with severe renal impairment.

10 Vosevi® (Sofosbuvir 400 mg + Velpatasvir
100 mg + Voxilaprevir 100 mg, Gilead Sciences)

This single daily tablet fixed-dose regimen adds voxilaprevir, to the NS5B
inhibitor/NS5A inhibitor combination of Epclusa. Voxilaprevir is a new generation
pan-genotypic reversible inhibitor of the HCV NS3/4A protease with enhanced
activity against the common NS3 resistance-associated substitutions (Taylor et al.
2015). This 12-week regimen was shown to be effective in patients who failed to
respond to prior NS5A inhibitor-containing DAA treatment, achieving SVR in 91–
100% of patients with genotype 1–6 HCV (Bourliere et al. 2017). In
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treatment-experienced patients not previously exposed to an NS5A inhibitor,
Vosevi achieved SVR in 98% of genotype 1–3 patients, whereas Epclusa achieved
SVR in 90% of these patients (Bourliere et al. 2017), indicating that the addition of
a protease inhibitor to Epclusa improved viral clearance in this cohort. Commonly
reported side effects to Vosevi treatment include headache, nausea, diarrhoea and
fatigue, but no treatment cessation resulted from adverse events. Currently, the
triple DAA combination of Vosevi is recommended as salvage therapy after failure
of dual DAA regimens, especially in the setting of previous NS5A inhibitor use,
rather than first-line therapy, with data showing that Vosevi was effective regardless
of the presence of resistance-associated substitutions prior to commencing therapy
obviating the need for pre-treatment resistance testing (Bourliere et al. 2017). With
80% of sofosbuvir being renally-excreted, Vosevi is not recommended in patients
with severe chronic kidney disease. As Vosevi contains a protease inhibitor, its use
is contraindicated in decompensated cirrhosis (Vermehren et al. 2018).

11 Maviret® (Glecaprevir 100 mg + Pibrentasvir 40 mg,
AbbVie)

Maviret is a single-tablet once-daily regimen consisting of glecaprevir and
pibrentasvir effective against all 6 HCV genotypes with reported SVR rates of 95–
99% across all genotypes with 12-week therapy (Asselah et al. 2018; Zeuzem et al.
2018). Glecaprevir is a new generation NS3/4A protease inhibitor which has high
antiviral potency across all HCV genotypes and does not seem to be as prone to the
development of resistance as the previous generation protease inhibitors (Ng et al.
2018). Pibrentasvir is a new generation NS5A inhibitor with potent pan-genotypic
activity and efficacy against the common NS5A resistance-associated substitutions
(Ng et al. 2017). The presence of cirrhosis did not adversely impact treatment
efficacy with Maviret with reported SVR rates of 98–100% in cirrhotic patients with
genotype 1–6 HCV, with no patient developing hepatic decompensation on treat-
ment (Forns et al. 2017; Wyles et al. 2017). However, in treatment-experienced
patients, especially with prior NS5A inhibitor exposure, extension of Maviret
therapy from 12 to 16 weeks may be beneficial. In treatment-experienced genotype
3-infected patients, SVR rates of 91 and 95% were reported for 12 and 16-week
treatment, respectively (Wyles et al. 2017). While NS5A-treatment-experienced
genotype 1-infected patients showed SVR rates for 12 and 16-week treatment of 88
and 94% respectively (Poordad et al. 2018). Maviret has also been shown to pro-
duce high SVR rates in patients infected with genotypes 5 and 6 (Asselah et al.
2019). In this phase, 3b study patients without cirrhosis received 8 weeks of
Maviret while patients with compensated cirrhosis received 12 weeks of treatment.
Patients were either treatment naive or had prior treatment with pegylated interferon
with or without ribavirin or sofosbuvir. Overall, an SVR12 was achieved in 97.6%
of patients(Asselah et al. 2019).
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Maviret treatment is well-tolerated with commonly occurring adverse events of
headache and fatigue not statistically different between the Maviret treatment group
and placebo group (Asselah et al. 2018). Maviret has been shown to be safe in
severe chronic kidney disease as both glecaprevir and pibrentasvir have negligible
renal excretion (Gane et al. 2017). As Maviret contains a protease inhibitor, its use
is contraindicated in decompensated cirrhosis (Vermehren et al. 2018).

12 Risk of HCC Development with DAA Therapy

Initial reports raised concern that HCV eradication via DAA treatment may in fact
increase the risk of developing HCC. Conti et al. found that in their cohort of HCV
cirrhotic patients, the majority of whom did not have a history of previous HCC,
8% were found to have developed HCC within 24 weeks of completing DAA
therapy (Conti et al. 2016). Another small study of HCV-infected individuals
treated with DAA therapy that specifically excluding patients with previous HCC
found a HCC incidence rate of 9% developing within 6 months of DAA therapy
(Ravi et al. 2017). These rates were higher than the 1–5% annual reported rate of
HCC development in cirrhotic patients with untreated HCV (Westbrook and
Dusheiko 2014). The rate of HCC recurrence was also noted to be high after the
DAA treatment of HCV. Reig and colleagues noted in their cohort of HCV cir-
rhotics who had previous curative treatment of HCC, 28% developed evidence of
HCC recurrence within 6 months of DAA treatment completion (Reig et al. 2016).
In patients who received liver transplantation for HCV-associated HCC,
pre-transplant DAA therapy was also associated with an increased rate of HCC
recurrence within the transplanted liver (Yang et al. 2016). This promotion of
tumourogenesis may be due to immune dysregulation caused by DAA therapy
(Meissner et al. 2016), with the rapid viral clearance effected by DAAs perhaps
resulting in impaired immune surveillance of tumour cells (Nault and Colombo
2016). It was noted that this increased risk of HCC development was not seen with
interferon-based treatments (van der Meer et al. 2012), and interferon therapy has
been shown to reduce the risk of HCC recurrence (Singal et al. 2010) purportedly
due to the immune stimulant properties of interferon. However, it must be noted
that due to the propensity of interferon to cause hepatic decompensation,
interferon-based therapy was only used in well-compensated cirrhotics, unlike
DAA therapy which may be used safely in more advanced patients, who are
innately at higher risk of developing HCC.

However, subsequent large studies and meta-analyses have refuted these claims.
In a large retrospective cohort study of 22,500 patients treated with DAAs,
achieving SVR was associated with a significant reduction in HCC risk, with the
annual HCC incidence rate falling from 3.5 to 0.9% compared to patients who did
not achieve SVR (Kanwal et al. 2017). A meta-analysis including over 13,000
patients across 41 studies showed no statistical difference in the rate of HCC
development following SVR with DAA regimens compared to interferon-based
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treatment (Waziry et al. 2017). Furthermore, Tsai et al. noted that in HCV-infected
patients post-curative treatment of HCC, treatment with pegylated interferon and
ribavirin was also associated with a significance rate of HCC recurrence (22.9%)
within 6 months after antiviral therapy (Tsai et al. 2017), indicating the predilection
of HCC to redevelop early regardless of the type of antiviral therapy used. Another
meta-analysis analyzing more than 31,000 HCV-infected individuals showed that
achieving SVR with DAA therapy reduced the risk of HCC at all stages of hepatic
fibrosis (hazard ratio 0.24, p < 0.001) (Morgan et al. 2013). A large retrospective
study involving over 62,000 patients in the US not only showed that DAA therapy
for HCV was not associated with an increased risk of HCC development compared
to interferon-based therapy, but achieving SVR with DAA therapy also decreased
the subsequent risk of HCC by 71%, and subsequent HCC development was related
to advanced disease stage rather than treatment used (Ioannou et al. 2018). To
answer the question of post-liver transplant HCC recurrence, a study of
HCV-infected individuals who received DAA therapy prior to undergoing liver
transplantation for HCC was performed and only 8.5% of patients developed
tumour recurrence at 24 months post-transplant (Donato et al. 2017).

13 Risk of Hepatitis B Reactivation and Flare with DAA
Therapy

In patients infected with both HCV and HBV, the HCV viral replication often
dominates resulting in a low to undetectable HBV viral load (Yu et al. 2015). DAA
therapy for HCV has been found to promote HBV flares by rapidly removing the
suppressive effect of HCV on HBV replication while having no antiviral activity
against HBV. In one study using all-oral DAA therapy in patients coinfected with
HCV and HBV, on-treatment development of hepatitis occurred in 30% of
HBsAg-positive patients, with 10% progressing to liver failure (Wang et al. 2017),
but this did not adversely affect HCV SVR rates. Even in patients with previous
HBV infection (HBcAb positive but HBsAg negative and HBV viral load unde-
tected), DAA treatment for HCV has been associated with on-therapy HBV reac-
tivation resulting in significant hepatitic flares. Reactivation causing fulminant
hepatitis requiring liver transplantation has even been reported (Ende et al. 2015).

The most recent AASLD guidelines (hcvguidelines.org) and EASL guidelines
(Liver 2018) both recommend screening for HBV status with HBsAg, HBsAb and
HBcAb prior to the initiation of DAA therapy. Patients with a detectable HBV viral
load are at risk of a hepatitis flare on DAA treatment and should receive prophy-
lactic HBV nucleoside-analogue therapy which should be continued for a further
12 weeks after cessation of HCV DAA therapy. Patients with previous HBV
infection (HBcAb positive only) should be monitored for the loss of HBsAb or
detection of HBsAg while on DAA therapy, indicating the presence of HBV
reactivation.
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14 Prevention of the Acquisition of HCV in High-Risk
Patients

14.1 Preventative Vaccines

Despite HCV being discovered over 20 years ago, there is currently still no
effective vaccine to prevent HCV infection, and the development of a preventative
vaccine remains an area of intense research. Recent advances in the treatment of
HCV with DAAs have significantly improved SVR rates. However, these treat-
ments will not prevent re-infection particularly in high-risk populations where
re-infection rates of up 30% have been reported (Bate et al. 2010; Sacks-Davis et al.
2013; Midgard et al. 2016).

Simulation models of hepatitis C dynamics in high-risk populations have all
predicted that the introduction of a vaccine, even with modest efficacy, will have a
significant effect on reducing the incidence of HCV. Moreover, vaccination after
successful treatment with DAAs is also predicted to be as effective at reducing HCV
prevalence as vaccinating an equivalent number of people who inject drugs (PWID)
in the community (Scott et al. 2015).

A vaccine producing sterilizing immunity is not required in order to achieve
HCV elimination. In a US study, a vaccine with an efficacy of 80% and a high
vaccination rate of 1% per month targeted to high-risk individuals is predicted to
reduce the incidence of HCV from 13.5 to 2.3% per person-years 30 years after
vaccine introduction. Even a vaccine of modest (65%) efficacy and vaccination
coverage of 0.6% per month would produce a fall in the incidence of chronic HCV
to 2.9% after 30 years (Hahn et al. 2009). A UK study showed that by achieving
annual vaccination rates of 162, 77 and 44 per 1000 people who inject drugs
(PWID) for low (50% protection for 5 years), moderate (70% protection for
10 years), and high (90% protection for 20 years) vaccine efficacies resulted in a
halving of chronic HCV prevalence over a 40 year period (Stone et al. 2016). The
introduction of DAAs is not a reason to overlook the potential benefit of a vaccine.
The introduction of a vaccine of 60–90% efficacy in the era of DAAs is predicted to
significantly reduce HCV prevalence especially in populations with high (50%) to
very high (75%) chronic HCV prevalence (Scott et al. 2015). A preventative
vaccine in a combined approach with DAAs and harm minimization strategies will
be the only way to enable us to fulfill the goal of eliminating HCV as a global
health burden.

We know that individuals who spontaneously clear HCV infection develop a
strong and broadly cross-reactive CD4+ and CD8+ T cell responses against HCV
core and non-structural proteins NS3, NS4 and NS5 (Lauer et al. 2004) as well as
the production of cross-reactive neutralizing antibodies (NAb) (Pestka et al. 2007).
The early induction of broad NAb is associated with control of viraemia and
protection against HCV infection in chimpanzees, humanized uPa-SCID liver
chimeric mice and humans (Dorner et al. 2011; Osburn et al. 2014). A strong NAb
response is essential for a protective HCV vaccine. The importance of both CD4+
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and CD8+ T cell responses in clearance of and protection against HCV has been
borne out by numerous studies (Smyk-Pearson et al. 2006; Bharadwaj et al. 2009;
Schulze Zur Wiesch et al. 2012; Swadling et al. 2014). Strong and broad
HCV-specific T cell responses are important in the spontaneous clearance of HCV
(Smyk-Pearson et al. 2006; Schulze Zur Wiesch et al. 2012). In contrast to per-
sistent infection, spontaneous resolution of HCV infection has been temporally
linked to the appearance of strong, long-lived, polyfunctional CD4+ and CD8+ T
cell responses that are directed against multiple HCV antigens (Lechner et al. 2000).
The role of T cell responses in HCV control is further reinforced by studies showing
persistence of HCV in chimpanzees after viral challenge following the depletion of
both CD4+ and CD8+ T cells (Grakoui et al. 2003).

As such, a preventative HCV vaccine would need to reliably generate all these
responses against the various genotypes and quasi-species of HCV in inoculated
individuals. Few vaccine strategies other than live attenuated viruses or virus-like
particles (VLP) are likely to fulfill these criteria.

14.2 Recombinant Adenoviral and MVA Vaccines for HCV

Several HCV containing vaccine candidates that predominantly result in the pro-
duction of HCV-specific T cell responses have now been described. These have
included recombinant adenoviral and modified vaccinia Ankara (MVA), DNA and
VLP vaccines in various prime-boost approaches (Folgori et al. 2006; Mikkelsen
et al. 2011; Barnes et al. 2012; Swadling et al. 2014; Kumar et al. 2016).

Several studies have now been reported using recombinant adenoviral vectors
encoding the non-structural proteins of HCV to produce live attenuated vaccines
capable of producing CD4+ and CD8+ T-specific responses. These vaccines have
been tested in various animal models and some have also progressed to clinical
trials in humans. In early studies in mice, immunization with a replication-deficient
recombinant adenovirus encoding HCV NS3 protein resulted in the production of
strong HCV-specific T cell responses. This vaccine also resulted in protection
against the recombinant vaccinia virus expressing the HCV NS3 and this protective
response was correlated to CD8+ T-specific responses (Mikkelsen et al. 2011).
A recombinant adenovirus vaccine encoding the NS3 gene of HCV has also been
shown to induce strong CD8+ T cell responses in chimpanzees and this vaccine also
resulted in the protection against challenge with a heterologous virus and the
development of acute hepatitis in chimpanzees (Folgori et al. 2006). These studies
demonstrated that recombinant adenoviral vaccines have the potential to prevent
HCV in humans.

The earlier studies in primates paved the way for studies of recombinant ade-
noviral HCV vaccines in humans. In one of the first studies in healthy human
volunteers, a vaccine consisting of recombinant human adenovirus 6 (Ad6) and
chimpanzee adenovirus 3 (ChAd3) encoding the NS3-5B genes of genotype 1B of
HCV produced CD4+ and CD8+ T cell responses against homologous and
heterologous HCV non-structural proteins (Barnes et al. 2012). The vaccine also
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produced polyfunctional memory CD4+ and CD8+ T cells in the vaccine recipients
(Barnes et al. 2012). In a subsequent study, ChAd3 and MVA vectors encoding the
NS3, NS4, NS5A, and NS5B proteins of HCV genotype 1b were tested in a
prime-boost strategy in human volunteers. Vaccination with the ChAd3 vaccine
followed by boosting with the MVA vaccine produced HCV-specific polyfunc-
tional CD8+ and CD4+ T cell responses against homologous and heterologous
HCV antigens together with long-lived memory T cell responses (Swadling et al.
2014).

A more recent study investigated immune responses in healthy human volun-
teers following vaccination with replication-defective ChAd3 and ChAd6 vectors
followed by boosting with recombinant MVA vaccines delivering both HCV
non-structural and HIV-1 conserved immunogens simultaneously (Hartnell et al.
2018). The co-administration of both HCV and HIV vaccines produced strong and
broad polyfunctional CD4+ and CD8+ T cells responses that were similar to the
responses produced using the different regimens alone. The immune responses were
also maintained for up to 34 weeks after vaccination with HCV non-structural and
HIV-1 conserved immunogens simultaneously. These vaccines, however, do not
produce neutralizing antibody responses which are a central requirement for pro-
tection against HCV.

14.3 Recombinant Protein-Based Vaccines for HCV

The efficacy of an HCV vaccine will reside in its ability to produce broad NAbs
(brNAb) in addition to CD4+ and CD8+ T cell responses. Recombinant protein and
virus-like particle (VLP) based vaccines have been shown to produce brNAb
responses. The vaccination of chimpanzees with recombinant E1 and E2 proteins
produced in mammalian cells has been shown to prevent the development of per-
sistent infection after homologous or heterologous virus challenge. This recombi-
nant HCV E1E2 vaccine adjuvanted with MF59C has also been shown to be safe
and immunogenic in humans resulting in the production of NAb and CD4+ T cell
responses (Frey et al. 2010). Furthermore, immunization of human volunteers with
recombinant gpE1/E2 (HCV genotype 1a) resulted in the production of broad
cross-neutralizing antibody responses (Law et al. 2013). It has also been shown that
vaccination of mice and macaques with a genotype 1a HCV E2 glycoprotein and
retroviral Gag pseudotypic particle vaccine produces high-titre NAb responses
(Garrone et al. 2011).

Recombinant protein vaccines are also able to produce T cell responses against
multiple antigenic targets. The co-administration of a recombinant HCV core, E1,
E2, and NS3 protein vaccine in mice and African green monkeys has been shown to
induce strong core and NS3 specific T cell responses. Furthermore, immune mice
controlled viremia after challenge with a vaccinia virus expressing HCV structural
proteins (Martinez-Donato et al. 2014).
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14.4 Recombinant Virus-like Particle (VLP) Based Vaccines
for HCV

Hepatitis C virus-like particles (HCV VLPs) have been shown to produce NAb and
T cell responses in a number of animal models (Chua et al. 2012; Beaumont et al.
2013; Kumar et al. 2016; Earnest-Silveira et al. 2016a, b). HCV-specific NAbs
recognize tertiary or quaternary structures (Giang et al. 2012) this makes VLPs
attractive as a potential vaccine for HCV as VLPs present conformational epitopes
in their native state (Garrone et al. 2011; Chua et al. 2012; Beaumont et al. 2013).
HCV VLPs also produce stronger cytotoxic T cell responses in mice compared to
DNA vaccines encoding HCV core, E1 and E2 (Murata et al. 2003).

Insect cell-derived VLPs expressing the core, E1 and E2 structural proteins of
genotype 1a HCV have been shown to produce broad HCV-specific immune
responses (Baumert et al. 1998, 1999; Murata et al. 2003; Steinmann et al. 2004).

Vaccination of mice with insect cell-derived HCV VLPs resulted in
cross-neutralizing antibody responses against the HCV structural proteins (Baumert
et al. 1998). Furthermore, vaccination of HLA-A2.1 transgenic and BALB/c mice
with HCV VLPs produced strong humoral and HCV core-specific CD4+ and CD8+
T cell responses and protection against recombinant vaccinia virus expressing the
HCV structural proteins (Baumert et al. 1998, 1999; Lechmann et al. 2001; Murata
et al. 2003; Steinmann et al. 2004). The importance of CD4+ and CD8+ T cells in
producing protective responses against vaccinia-HCV has also been shown in
adoptive transfer experiments (Murata et al. 2003). In addition, the HCV VLPs
were able to stimulate the maturation of human dendritic cells (Barth et al. 2005).
The immunogenicity of HCV VLPs and the effects of novel adjuvants were further
tested in a nonhuman primate model (Jeong et al. 2004). Baboons were immunized
with HCV VLPs adjuvanted with AS01B developed HCV-specific antibody, CD4+
and CD8+ T cell responses (Jeong et al. 2004). A subsequent study of HCVVLPs in
the chimpanzee showed that this vaccine produced HCV-specific CD4+ and CD8+
T cell responses and prevent progression to persistent infection following the HCV
challenge (Elmowalid et al. 2007).

Genotype 1a HCV VLPs have also been produced in human hepatocyte-derived
cells. These HCV VLPs possess the biochemical, biophysical properties and mor-
phological characteristic of HCV virions (Gastaminza et al. 2010; Catanese et al.
2013; Earnest-Silveira et al. 2016a, b; Collett et al. 2019) and have been shown to
produce NAb and HCV-specific T cell responses in mice (Chua et al. 2012;
Earnest-Silveira et al. 2016a, b). In addition, the HCV VLPs bound neutralizing
human monoclonal antibodies (HuMAbs) targeting conserved antigenic domain B
and D epitopes of the E2 protein (Keck et al. 2004, 2008, 2011; Fauvelle et al. 2016;
Keck et al. 2016). A genotype 3a HCV VLP vaccine has also been shown to produce
broad humoral and cellular immune responses in mice (Kumar et al. 2016). An
advance in the approach of HCV VLP vaccines has been the development of a
quadrivalent genotype 1a/1b/2a/3a HCV VLP vaccine (Earnest-Silveira et al. 2016a,
b). This vaccine has been shown to produce brNAb, memory B cell and T cell
responses in mice and pigs (Christiansen et al. 2018a, b, 2019).
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Vaccination of mice with recombinant retrovirus-based virus-like particles
(retroVLPs) made of Gag of murine leukemia virus and pseudotyped with HCV E1
and E2 envelope glycoproteins produces strong homologous HCV-specific NAb
and T cell responses (Huret et al. 2013). Also, the co-administration of this vaccine
with retroVLPs displaying NS3 has been shown to produce strong HCV NS3 and
E1E2 specific T cell responses (Huret et al. 2013). In a prime-boost immunization
series using retroVLPs and a recombinant serotype 5 adenovirus (rAd5) expressing
HCV-E1/E2 envelope glycoprotein (rAdE1E2) mice were primed with rAdE1E2
followed by boosting with retroVLPs. This approach resulted in stronger
E2-specific antibody responses than retroVLPs alone (Desjardins et al. 2009;
Garrone et al. 2011). The prime-boost strategy also produced cross-neutralizing
HCV NAb against five genotypes of HCV (Garrone et al. 2011).

In an alternative approach, a chimeric HBs-HCV VLP vaccine containing E1–E2
heterodimers of genotype 1a HCV has been shown to produce cross-NAb responses
against heterologous HCV genotypes (Patient et al. 2009; Beaumont et al. 2013,
2016; Beaumont and Roingeard 2015). The immunogenicity of the chimeric
HBs-HCV particles was assessed in rabbits and shown to produce strong HCV E1
and E2 specific antibody responses and HCV neutralizing antibody responses
against HCV genotypes 1a, 1b, 2a and 3 (Beaumont et al. 2013). The immuno-
genicity of the chimeric vaccine and the strength of the HCV E2 responses was not
affected by pre-existing immunity to HBsAg (Beaumont and Roingeard 2015).

Modified HBsAg particles by carrying HCV-specific B and T cell epitopes in the
‘a’ determinant of the HBs protein have also been shown to produce HCV-specific
immune responses in mice (Netter et al. 2001, 2003; Woo et al. 2006; Haqshenas
et al. 2007; Vietheer et al. 2007). Vaccination of mice with a combination of
particles carrying different HCV E2 HVR1 epitopes resulted in a stronger antibody
response than vaccination with the individual particles (Netter et al. 2001). Finally,
the presence of pre-existing anti-HBs antibody has been shown to have no effect on
the production of anti-HVR1 antibody, suggesting that the vaccine could be used in
individuals who have previously been vaccinated against HBV (Netter et al. 2001).

14.5 Public Health Measures

As a safe and effective preventative vaccine remains elusive, strategies to reduce
HCV transmission among individuals at high risk of acquiring the virus should be
employed. In particular, harm reduction measures to reduce unsafe injecting
practices amongst intravenous drug users, such as behavioural interventions, the
access to sterile needles and syringes, and the management of substance abuse, have
been shown to reduce the risk of HCV infection by about 75% (Hagan et al. 2011).
The universal screening of blood donors is also important to prevent transmission
via contaminated blood products, as is adhering to universal precautions and strict
needle-stick protocols within healthcare facilities.
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15 Conclusions

HCV is currently a serious global health concern, chronically infecting about 3% of
the world’s population, leading to chronic hepatitis, cirrhosis, liver failure and
HCC, thereby causing significant morbidity and mortality. Furthermore, HCV
infection is a major cause of HCC in the Western world, with the majority of HCCs
developing in the setting of cirrhosis. The new highly potent DAA combinations are
able to cure HCV in the vast majority of infected patients, regardless of viral
genotype, viral load, or fibrosis stage. Thus, it is imperative to identify at-risk
individuals and provide antiviral therapy prior to the development of established
cirrhosis in order to reduce the risk of subsequent HCC. Even after the development
of cirrhosis, successful HCV clearance is still associated with reduced HCC risk.
Preventative and therapeutic vaccines against HCV remain an area of ongoing
research and hopefully, an effective vaccine will be available in the future.
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High-Risk Human Papillomaviruses
and DNA Repair

Kavi Mehta and Laimonis Laimins

1 Introduction

Papillomaviruses (PVs) are non-enveloped DNA viruses that are the causative
agents of benign and malignant epithelial lesions. In the 1930s, investigators found
that filtered extracts of papillomas from cottontail rabbits could establish new
infections in uninfected rabbits (Zhou et al. 2013; Lowy 2007). While some rabbits
cleared these lesions, others developed squamous cell carcinomas. In the 1940s,
Peyton Rous determined that treating cottontail rabbit papillomavirus lesions with
coal tar resulted in the rapid appearance of carcinomas suggesting that other factors
besides viral infection could influence progression (Zhou et al. 2013; Lowy 2007).
Furthermore, extracts from papillomas of the mouth of rabbits were not able to
produce lesions in genitalia indicating that these viruses exhibited tissue tropism.
Subsequently, bovine papillomavirus 1 was found to induce large lesions in cows
and became a main focus of study for decades due to the ease in harvesting virions
from these lesions and BPV’s ability to transform mouse fibroblasts (Lowy 2007;
Kawai and Akira 2011). Around the turn of the century, it was observed that
cutaneous warts from human hands were not transmissible to the genitalia; how-
ever, it was not until the seventies that it was determined that different papillo-
mavirus types were responsible and exhibited tissue tropism. While some
papillomavirus induced warts remained benign, others had the ability to progress to
squamous cell carcinoma. These findings preceded the realization that cervical
neoplasias not only resembled viral papillomas, but contained high amounts of
human papillomavirus DNAs (HPV) (Zhou et al. 2013; Lowy 2007).
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Genital human papillomaviruses (HPVs) are spread primarily through sexual
contact, and their life cycles are intimately linked to the differentiation of squamous
epithelia. Over 75% of sexually active individuals have been infected with genital
HPVs at some point in their lives (Pivarcsi et al. 2004; Castellsagué 2008). Over
200 types of HPVs have been identified and approximately 40 infect the genital
tract. Of these, 12 are considered high-risk types and include HPV 16, 18, 31, 33,
35, 39, 45, 51, 52, 56, 58, and 59. Low-risk HPV types (e.g., HPV 6 or 11) induce
benign lesions such as genital warts and laryngeal papillomas, while high-risk types
are the etiological agents of cervical cancer, anogenital cancers, as well as many
head and neck squamous cell carcinomas (HNSCCs). High-risk types are respon-
sible for over 7% of all cancers worldwide (Zhou et al. 2013; Lowy 2007; Forman
et al. 2012), and over 99% of cases of cervical cancer are HPV-associated (Lowy
2007; Kawai and Akira 2011; Moody and Laimins 2008). In the US, half of the
approximately 10,000 women diagnosed with cervical cancer each year will die
from this disease (Pivarcsi et al. 2004; Castellsagué 2008; Parkin and Bray 2006).
Recent studies suggest that high-risk HPVs are responsible for over 60% of
oropharyngeal cancers, and this number has been increasing over the last decade
(Chaturvedi 2012; Robinson et al. 2013; Schiffman et al. 2016). Three prophylactic
HPV vaccines have been developed that target both high-risk and low-risk types.
The vaccines consist of multivalent virus-like particles from specific high-risk and
common low-risk HPV types. The bivalent version protects against HPV 16 and 18
infections, the quadrivalent version targets HPV 16, 18, 11, and 6, while the
nanovalent version is directed against HPV 6, 11, 16, 18, 31, 33, 45, 52, and 58.
These vaccines are highly effective in blocking initial infection by HPV, but have
no effect on pre-existing infections (Prue et al. 2017; Lu et al. 2011). There are no
effective treatments outside of surgery or cryotherapy for treating existing HPV
lesions, and therefore, it remains critical to understand the viral life cycle to uncover
how viral infection progresses to malignancy and to identify new therapeutics. One
of the host pathways that HPV hijacks is the DNA damage response (DDR) which
is required for HPV’s differentiation-dependent amplification. Before describing the
DDR and its role in HPV infection, it is first important to discuss the multiple
factors that regulate the viral life cycle.

2 Genome Organization

HPV genomes consist of double-stranded circular DNAs that are approximately
8 kB is size and encode for between 6 and 8 open-reading frames. Viral tran-
scription takes place from a single DNA strand, and early gene expression is
regulated in large part by alternative splicing (Fig. 1). Upon infection, viral gen-
omes establish themselves as nuclear extrachromosomal elements or episomes, and
maintenance of these elements is necessary for viral genome replication and per-
sistence. A region 500–1000 base pairs upstream of the early coding sequences that
is alternatively referred to as the upstream regulatory region (URR), the long
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control region (LCR), or the non-coding region (NCR), regulates early transcription
and contains the viral origin of replication (McBride et al. 2012; Mighty and
Laimins 2013). Early (E for early) transcription precedes productive viral replica-
tion and directs expression of polycistronic messages that encode for E1, E2,
E1^E4, E5, E8^E2C, E6, and E7. The E1 and E2 proteins are DNA binding factors
that bind to sequences in the URR and help to recruit cellular replication factors to
viral origins. E2 also helps regulate early gene expression while E8^E2C acts
primarily as a repressor. E6 and E7 are the two viral oncoproteins that control
cell-cycle progression and allow for cells to remain active in the cell cycle upon
differentiation to allow for genome amplification in suprabasal layers. E1^E4 and
E5 regulate late viral events (Moody and Laimins 2008). Early viral transcripts are
translated using a “leaky scanning,” mechanism where the first open-reading frame
is translated at a high rate while the sequential ORFs are translated at lower rates.
This mechanism contributes to modulation of the levels of viral proteins, so that E6
and E7 are translated at high rates and others such as E5 are translated at very low
levels (Remm et al. 1999). Upon differentiation, E1^E4, E5, L1, and L2 are
expressed from the late viral promoter (p742) located in the E7 ORF (Moody and
Laimins 2008; Beglin et al. 2009). Late viral genes L1 and L2 encode the major and
minor capsid proteins of HPV and are critical for viral entry and egress. In many
HPV-induced cancers, high-risk HPV genomes are found integrated into host
DNAs. Integration leads to disruption of E2 expression which results in increased
expression of the HPV encoded oncogenes E6 and E7.

Keratinocyte differentiation, HPV replication, and oncogenesis: The life
cycle of human papillomavirus is closely linked to epithelial differentiation. Dif-
ferentiated normal keratinocytes are divided into four distinct layers: the stratum
basale, the stratum spinosum, the stratum granulosum, and the stratum corneum.

Fig. 1 Schematic representation of the HPV 31 genome. Circular map of HPV 31 genome
identifying the upstream regulatory region (URR), which is a non-coding region that contains
binding sites for multiple transcription factors and the origin of replication. The genome contains
both an early (p97) and late promoter (p742), along with early and late polyadenylation sites. The
late promoter is activated upon epithelial differentiation. The early genes include, E1, E2, E6, E7,
E1^E4, E5, and E8^E2C. The two late capsid proteins are encoded by the L1 and L2 genes
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The basal layer is made up of cells that have not yet differentiated and remain
proliferative, while the other three layers represent varying degrees of differentia-
tion. Genital HPVs infect cells in the basal layer of the epithelium that become
exposed through microabrasions generated through sexual activity (Fig. 2).
Following entry, the viral genomes migrate to the nucleus where they associate with
PML bodies which may help initiate viral transcription (McBride 2008). Within the
nucleus, the virus rapidly undergoes several rounds of amplification using host
replication machinery, reaching approximately 50 copies per cell. In persistently
infected basal cells, viral genomes are replicated in synchrony with cellular repli-
cation and distributed equally to daughter cells at approximately 50–100 copies per
cell. Evidence from two-dimensional gel electrophoresis suggests that genome
replication during maintenance may occur through the formation of theta-structures
(Flores and Lambert 1997). Cells in the basal layer can remain infected for years as
they evade immune surveillance and provide a repository for production of new
viruses. After cell division, one daughter cell moves away from the basal layer and
begins the process of differentiation. Normal keratinocytes exit the cell cycle upon
differentiation, but viral infection prevents cell-cycle exit, locking cells in G1 ini-
tially, but subsequently pushing cells to re-renter S/G2 where the genomes are
amplified to approximately 1000 copies per cell. Coincident with amplification the
capsid proteins, L1 and L2 are synthesized which self-assemble into icosahedrons
and package viral DNA. Newly synthesized viruses are then released from cells in
the stratum corneum.

Fig. 2 HPV life cycle is intimately linked to epithelial differentiation. HPV infects cells in the
basal layer that are exposed through microwounds and establishes its genomes at low copy number
in these cells while expressing early genes. The HPV copy number in basal cells is maintained
constant through cell division. Upon differentiation, one daughter cell moves away from the basal
layer and begins differentiating leading to activation of the late promoter, amplification of the HPV
genome, and subsequent assembly of progeny virions
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Progression to malignancy often occurs in cells in which viral genomes have
integrated into host chromosomes, and this leads to increased expression of the E6
and E7 oncoproteins. Little is known about what influences integration and how E6
and E7 contribute to this process though both can induce genetic instability in cells.
In many cases of HPV-associated malignancies, HPV integrates at random fragile
sites into the host genome retaining expression of only E6 and E7. Integration may
contribute to genetic instability through the generation of double-stranded breaks
and the activation of the ataxia telangiectasia mutated pathway (ATM) leading to
mutations in the host genome (Kadaja et al. 2009).

3 Viral Oncoproteins

E6 and E7: The E6 and E7 proteins play major roles in manipulating the cell cycle
in HPV-infected cells. Although present in low-risk HPV types, only high-risk E6
and E7 exhibit transformation activity. Although E6 and E7 are able individually to
transform NIH-3T3 mouse fibroblasts, both are required for efficient immortaliza-
tion of keratinocytes (Howley and Lowy 2007).

A major function of high-risk E7 is to bind and inhibit the activity of the
retinoblastoma family of proteins, including pRb, p107, and p130. High-risk E7
proteins are approximately17 kDa in size and contain three conserved domains
(CR1, CR2, and CR3) that share extensive homologies with adenovirus E1A
(Zhang et al. 2006). High-risk E7 binds pRb ten-times more efficiently than the E7
of low-risk types (Münger et al. 1989). The CR1 and CR2 domains are both
implicated in pRb binding and degradation with CR2 containing a conserved
LXCXE motif. CR3 contains two zinc-finger domains that interact with the
C-terminal domain of pRb and may play a role in stabilizing binding (Liu et al.
2006). E7 binds pRb and targets it for ubiquitin-mediated proteosomal degradation
(Boyer et al. 1996). This degradation permits constitutive activation of the tran-
scription factor E2F1 that regulates G1-S transition in both undifferentiated and
differentiated cells (Moody and Laimins 2010). E2F normally associates with the
Rb family members in G1, which represses its activation function and is released
upon phosphorylation of Rb by CDK kinases in a cell-cycle dependent manner. E2F
factors are bound to the promoters of genes that are normally expressed in S-phase,
and release from Rb binding leads to activation of expression. p130 and p107 are
also targets of E7 binding and act similar to Rb (Zhang et al. 2006). Interestingly, E7
also induces genetic instability by causing missegregation of chromosomes in a
manner independent of its pRb binding through the degradation of the
cyclin-dependent kinase inhibitor p21 as well as through alterations in centrosomes
(Duensing and Münger 2003). In addition to its role in pRb family binding and
degradation, E7 regulates E2Fs activity through its interactions with histone
deacetylases (HDACS). HDACS remove acetyl groups from histones, and this
results in heterochromatinization and repression of a DNA locus. E7 binds HDACS
through the CR3, zinc-finger binding domain (Longworth and Laimins 2004).
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As a by-product of altering cell-cycle progression, E7 expression leads to
enhanced levels of p53 that can lead to apoptosis (Demers et al. 1994). To coun-
teract the effects of elevated p53 levels, the high-risk E6 proteins have evolved to
degrade p53. A major role of high-risk E6 in the HPV life cycle is to bind p53 and
recruit it into a complex with the E3-ubiquitin ligase E6 associated protein (E6AP),
which ubiquitinates p53, targeting it for proteosomal degradation. E6 can also bind
the coactivators p300/CBP preventing p53 acetylation which also inhibits its
transcription activation ability (Zimmermann et al. 1999; Gu et al. 1997). Another
major target of p53 is p21, and E6 induced degradation of p53 prevents p21
mediated G1/S or G2/M checkpoint arrest, as well as apoptosis. This allows for
HPV to replicate during an aberrant cell cycle. Recent observations demonstrate
that HPV genomes containing knockout mutations in E6 are deficient in viral
maintenance and knockdown of p53 restores episomal maintenance (Lorenz et al.
2013). Other studies have demonstrated that E6’s role in viral maintenance and cell
proliferation also relies on its PDZ binding motif (Lee and Laimins 2004; Nico-
laides et al. 2011). It has been shown that E6 interacts with several PDZ domain
containing proteins, including Dlg, MAGI-1/2/3, MUPP1, and Scribble all of which
E6 targets for proteosomal degradation (Massimi et al. 2004). These proteins are
thought to organize complexes of proteins that contribute to tumor suppressor
activity. Another critical activity of E6 is the activation of htert, the catalytic subunit
of telomerase. This is important for keratinocyte immortalization through direct
interaction of E6 and E6AP with the htert promoter (Liu et al. 2009). Increased
expression of either htert or c-myc independent of E6 expression readily duplicates
E6’s effects on htert, demonstrating its importance in immortalization (Galloway
et al. 1998),(Liu et al. 2007). Recent studies have outlined a role for high-risk HPV
E6 in regulating chromatin modifiers such as Tip60 and SET7 which inhibit tran-
scriptional regulation by p53 indicating that E6 can control p53 expression at
various stages (Vande Pol and Klingelhutz 2013). The high-risk E6 and E7 are
sufficient to immortalize keratinocytes through the binding and degrading of p53
and pRb and the upregulation of telomerase activity. It is important to note,
however, that in low-risk HPV types, immortalization does not occur due to E6 and
E7’s lower affinities for p53 and Rb, and E6’s inability to activate htert expression
(Van Doorslaer and Burk 2012).

E5: The HPV E5 protein is expressed in both early and late stages of the viral
life cycle and associates with the Golgi apparatus, endoplasmic reticulum, as well as
endosomal and nuclear membranes (Conrad et al. 1993; Hausen zur 2000; Ashrafi
et al. 2005). Expression of E5 in mouse fibroblasts and human keratinocytes results
in EGF-dependent proliferation suggesting that E5 may serve as a regulator of
epidermal growth factor receptor (EGFR) activity, analogous to BPV E5’s regu-
lation of platelet-derived growth factor beta (PDGFR-b) that leads to transformation
(Petti and Dimaio 1994; Straight et al. 1995). Transgenic mice expressing HPV 16
E5 under the control of the K14 promoter develop large tumors suggesting that E5
can act as an oncoprotein (Genther Williams et al. 2005). E5 also enhances the
efficiency of E6 and E7 transformation but exhibits no transformation activity when
expressed by itself (Valle and Banks 1995). Studies in COS cells demonstrate that
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HPV 16 E5 is capable of interacting with a variety of transmembrane receptor
proteins including EGFR and PDGFR-b. Furthermore, E5 is able to stabilize
endosome acidification and cell surface EGFR expression, in turn stabilizing EGFR
at endosomes upon stimulation with ligand (Straight et al. 1995; Hwang et al.
1995). EGFR stabilization may be associated with oncogenic activity due to
enhanced EGFR-mediated mitogenic activity. Interestingly, HPV-31 genomes with
E5 knockouts lose the ability to activate late viral transcription and amplification
suggesting that E5 may contribute to regulation of late viral functions (Fehrmann
et al. 2003; Genther et al. 2003). Recent studies indicate other targets for E5
including the ER-associated lipoprotein A4 that is linked to Akt-mediated prolif-
erative capacity, and Bap-31 an ER-associated membrane complex shuttling pro-
tein, that among other functions shuttles MHC-I proteins through the ER. Both A4
and Bap31 are regulated by E5 leading to enhanced cellular proliferation (Regan
and Laimins 2008; Halavaty et al. 2014).

4 The DNA Damage Response

The host DNA damage response (DDR) has evolved to repair single-stranded DNA
(ssDNA) and double-stranded DNA (dsDNA) breaks as well as inter- and
instra-strand cross-links induced by external damaging agents such as radiation or
replication errors (Fradet-Turcotte et al. 2016). The DDR repairs thousands of
lesions per cell per day and is vitally important for cell-cycle progression as well as
to maintain genetic fidelity (Fradet-Turcotte et al. 2016; Wallace and Galloway
2014). If these lesions are not repaired, cells accumulate damage which leads to
genetic instability that contributes to progression to malignancy. The PI3K-related
protein kinases Ataxia-telengectasia mutated (ATM) and Ataxia-telengectasia Rad3
related (ATR), and DNA-dependent protein kinase (DNA-PK) are activated in
response to different types of DNA breaks resulting in the activation of downstream
signaling pathways. This activation leads to cell-cycle checkpoint arrest, repair, or
apoptosis in the case of damage that cannot be repaired. ATR and ATM cross-talk
as they share many downstream substrates while knockdown or mutation of either
results in aberrant signaling and an impaired checkpoint response. Many cancers
lack appropriate G1 checkpoint control and rely on ATR and ATM to fix DNA
lesions that frequently arise. These pathways are also amplified in many cancers
(Rundle et al. 2017).

The ATM pathway is activated in response to double-stranded breaks (DSBs)
leading to the autophopshorylation of the ATM kinase at serine 1981. The
autophosphorylation of ATM then recruits the MRN complex that is made up of
Nijmegen Breakage Syndrome 1 (NBS1) Rad50 and Mre11 to the DSB. ATM also
phosphorylates the modified histone H2AX at serine 139 known as ɣ-H2AX which
bind to regions surrounding the lesion further amplifying the DDR. ɣ-H2AX in turn
recruits mediator of DNA damage checkpoint protein 1 (MDC1) which is
responsible for recruiting the ubiquitin ligases RNF8 and RNF168 to the DNA
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lesion as well as the non-homologous end-joining (NHEJ) and homologous
recombination (HR) repair factors such as 53BP1 and BRCA1 to the lesion
(Uckelmann and Sixma 2017; Mattiroli et al. 2012; Doil et al. 2009). 53BP1 and
BRCA1 recruitment mediates the choice between which of the two repair pathways
fixes the lesion (Fradet-Turcotte et al. 2016). NHEJ repair is the major repair
mechanism in mammalian cells and occurs without extensive processing and the
presence of the sister chromatid. p53BP1 is recruited to the ends of DSBs along
with the Ku70-Ku80 complex that tethers the ends together (Fradet-Turcotte et al.
2016; Chapman et al. 2012). The ends are then ligated in an error-prone manner by
DNA ligase-IV and X-ray repair cross-complementing protein 4 (XRCC4)
(Chapman et al. 2012; Burma and Chen 2004). This process occurs primarily in the
G1 phase.

Homologous recombination occurs in S/G2 phases as it requires the presence of
the sister chromatid for homology-based repair and strand invasion. In S/G2 phases
BRCA1, CtBP-interacting protein (CtIP) and the MRN complex are recruited to the
DSB following ATM activation to start DNA end resection which is a necessary
step for HR. 5′–3′ end resection by the exonuclease Exo1, Dna2 nuclease, and the
helicase Sgs1 are required for the resection and establishment of ssDNA. This is
followed by the recruitment of HR factors and sister strand invasion (Niu et al.
2010). The ssDNA is then coated with the ssDNA stabilizing heterotrimeric
replication protein A (RPA). BRCA1 recruitment to the DSB promotes recruitment
of BRCA2 through the BRCA1-BRCA2 partner and localizer of BRCA2 (PALB2)
(Rohini Roy JCSNP 2012). This is followed by displacement of RPA from the
ssDNA and recruitment of Rad51 which results in its polymerization and formation
of Rad51 nucleofilaments that search for sister chromatid homology leading to
repair. If the damage is irreparable, apoptosis is induced through the action of
BRCA1 (Fradet-Turcotte et al. 2016; Yuan et al. 1999; Chen et al. 1998).

Although ATM has a major role in DNA repair, it also plays a role in regulating
cell-cycle checkpoints in efforts to maintain integrity. Cell-cycle checkpoints pro-
vide cells with a means to delay replication to allow for repair or apoptosis and are
regulated by an extensive signaling cascade. ATM’s role in cell-cycle checkpoint
control was first realized when it was found that ATM was required for p53 acti-
vation. p53 is the classical tumor suppressor that is important for regulating the
G1/S-phase checkpoint (Derheimer and Kastan 2010). Upon DNA damage, acti-
vated ATM phosphorylates p53, mouse double minute 2 homolog (MDM2), as well
as checkpoint Kinase 2 (CHK2) leading to activation of the kinase inhibitor p21.
This results in the inhibition of cyclin-E/CDK complexes and halts the G1/S
transition. ATM signaling also plays roles in S-phase and intra-S-phase arrest by
activating several proteins including structural maintenance of chromosomes pro-
tein 1 (SMC-1), NBS1, Fanconi anemia group D2 protein (FANCD2), and CHK2.

ATR responds to ssDNA breaks induced by radiation, genotoxic stress, depleted
nucleotide pools, as well as replication stress due to stalled replication forks
(Cimprich and Cortez 2008; Saldivar et al. 2017). ATR is recruited to ssDNA, i.e.,
that has been recognized by RPA with its partner ATR-interacting protein (ATRIP)
which contains an RPA binding domain. This also leads to the further recruitment
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of the proliferating cell nuclear antigen (PCNA) like Rad9-Rad1-Hus1 (9-1-1)
complex that loads onto junctional dsDNA near the RPA-coated DNAs. The 9-1-1-
complex recruits DNA topoisomerase 2-binding protein 1 (TOPBP1) which inter-
acts with ATR and regulates its activation.

ATR activation leads to the phosphorylation of checkpoint protein 1 (CHK1) at
two different sites, which is important for the regulation of cell-cycle checkpoints.
This phosphorylation is mediated by Claspin which interacts with Rad17 part of the
9-1-1 clamp (Cimprich and Cortez 2008). Activation of CHK1 leads to dissociation
from chromatin as well as signaling to the CDC25 phosphatases which prevent cell
entry into mitosis (Smits et al. 2006). ATR also plays a role in coordinating origin
firing and stabilizing stalled replication forks making it essential for cell viability
even from very early embryonic stages (Shechter et al. 2004).

5 The DNA Damage Response and HPV

High-risk HPVs constitutively activate both the ATM and ATR DNA damage
repair pathways, and this is necessary for productive replication in differentiating
cells. The HPV E7 and E1 proteins can independently activate the ATM and ATR
pathways. The E7 protein acts through the innate immune regulator STAT-5 which
in turn activates ATM through its effects on the acetyltranferase Tip60. At the same
time STAT-5 activates ATR through increased expression of the TopBP1 protein.
Tip60 must acetylate ATM prior to its activation by phosphorylation and TopBP1
forms complexes with ATR resulting in its phosphorylation and recruitment to sites
of DNA breaks. One by-product of this activation is the induction of genetic
instability and as well as viral genome integration which may contribute to the
development of virally induced cancers.

High-risk HPVs activate ATM and ATR pathways in both undifferentiated and
differentiated cells. Importantly, small molecule inhibitors of either ATM or ATR
prevent the differentiation-dependent amplification of HPV (Moody and Laimins
2009; Hong et al. 2015; Edwards et al. 2013). Inhibition of ATM or CHK2 prevents
HPV amplification, and this results in reduced levels of Cdc25c which in turn
regulates transition into G2, which is when HPV genome amplification occurs
(Moody and Laimins 2009). HPV genomes are recruited to nuclear replication
centers that contain many members of the DDR including, TopBP1, pATM,
c-H2AX, pCHK1, pCHK2, NBS1, BRCA1, pATR, Rad51, and FANCD2 (Kadaja
et al. 2009; Wallace and Galloway 2014; Satsuka et al. 2015; Spriggs and Laimins
2017). In addition, shRNA knockdown studies have shown that Rad51, BRCA1,
and NBS1 are required for differentiation-dependent amplification (Anacker et al.
2014). Interestingly, FANCD2, ATR and TopBP1, NBS1, and SMC1 are also
required for efficient viral maintenance in undifferentiated cells (Hong et al. 2015;
Spriggs and Laimins 2017; Anacker et al. 2014; Mehta et al. 2015). Many of these
factors have been shown to bind to HPV genomes using ChIP analyses (Anacker
et al. 2014; Gillespie et al. 2012).
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Constitutive activation of the cell cycle by E6 and E7 leads to the depletion of
free nucleotide pools, replication stress, and genomic instability due to the multiple
origin firing and stalled replication forks (Bester et al. 2011). Recent studies indi-
cate that high-risk E6 and E7 induce DNA breaks in both viral and cellular DNAs.
Interestingly, homologous recombination repair factors are then preferentially
recruited to viral DNAs to repair the breaks (Mehta and Laimins 2018). This
preferential recruitment of DDR factors such as RAD51 and BRCA1 results in
rapid repair of breaks and genome amplification that occurs in G2. This is a novel
mechanism that links viral induction of DNA breaks to amplification of viral
genomes as well as genetic instability in host chromsomes.

6 Summary

Human papillomaviruses are the causative agents of many anogenital cancers
including almost all cervical cancers. In addition, over 60% of oropharyngeal
cancers are associated with infection by high-risk HPVs, and the numbers are
increasing rapidly in Western countries. While prophylactic vaccines have been
developed that are highly effective in blocking initial infections, they have no effect

Fig. 3 Schematic of the DNA damage response pathway factors demonstrated to play a role in the
HPV life cycle. The ATM pathway is activated in response to double-stranded breaks while ATR
responds to single-strand DNA breaks. Activation of these pathways leads to checkpoint signaling,
repair, and/or apoptosis. HPV nuclear replication foci contain members of these pathways
including TopBP1, pATM, H2AX, pCHK1, CHK2, NBS1, BRCA1, ATR, Rad51, and FANCD2.
Homologous recombination repair factors, Rad51, BRCA1, and NBS1 are all required for
differentiation-dependent amplification of HPV. FANCD2, ATR, TopBP1, NBS1, and SMC1 are
required for efficient maintenance of viral episomes in undifferentiated cells
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on existing virally caused lesions. The life cycle of high-risk HPVs is dependent
upon differentiation and activation of host DNA repair pathways. This includes
both ATM and ATR pathways whose activation is required for both productive
replication as well as stable maintenance of episomes. HPV proteins activate the
DNA damage repair pathways through induction of DNA breaks in both cellular
and viral DNAs. The preferential repair of breaks in viral genomes results in
productive replication of HPV DNAs while at the same time promoting genetic
instability in host chromosomes (Fig. 3).
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Vaccination Strategies for the Control
and Treatment of HPV Infection
and HPV-Associated Cancer

Emily Farmer, Max A. Cheng, Chien-Fu Hung, and T.-C. Wu

1 Introduction

Human papillomavirus (HPV) is the most common sexually transmitted infection in
the world (World Health Organization 2020; Brianti et al. 2017), affecting more
than 600 million people worldwide (Gaspar et al. 2015). HPV can be transmitted
through skin-to-skin contact or through contact between mucosal membranes
(Brianti et al. 2017). HPV can cause a range of clinical diseases in the body,
escalating in severity from benign warts to metastatic cancer. More than 200 types
of HPV have been identified, which are broadly categorized into high-risk and
low-risk types. Low-risk HPV types, such as HPV6 and 11, do not cause cancer.
Instead, low-risk HPV types can generate genital warts around the anogenital
region, known as condylomata acuminata, as well as benign tumors in the respi-
ratory tract, known as recurrent respiratory papillomatosis or laryngeal papillo-
matosis. High-risk HPV types, including HPV16, 18, 31, 33, 35, 45, 51, 52, 56, 58,
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59, and 68, can cause cancer and are often necessary for oncogenic transformation.
Virtually, all cases of cervical cancer, 95% of cases of anal cancer, 70% of cases of
oropharyngeal cancer, 65% of cases of vaginal cancer, 50% of cases of vulvar
cancer, and 35% of cases of penile cancer are caused by high-risk HPV types.
Specifically, HPV16 and 18 are associated with the majority of these cancers,
including over 70% of all cervical cancers (Roden and Stern 2018), *90% of
anogenital cancers, and up to 75% of oropharyngeal cancers (Elrefaey et al. 2014;
Walboomers et al. 1999; National Cancer Institute 2020).

It is estimated that around 5% of all cancers worldwide are caused by HPV
(de Martel et al. 2012, 2017). Of the aforementioned HPV-associated diseases,
cervical cancer accounts for the largest number of HPV-associated cancer cases (de
Martel et al. 2017). Cervical cancer is the fourth most common cancer in women
worldwide, and the second most common cancer in women living in low- and
middle-income countries (LMICs). In 2018 alone, cervical cancer was responsible
for over *311,000 deaths (World Health Organization 2019; World Cancer
Research Fund 2018). The global prevalence of cervical cancer has decreased since
the 1950s largely due to early detection, improved HPV testing, prophylactic
vaccination, and wider treatment availability; however, more than 85% of cervical
cancer-associated deaths occurred in LMICs where infrastructure and access to
preventions and treatments may be limited (World Health Organization 2018, 2019,
Vaccarella et al. 2013). Additionally, we have seen global rates of HPV-associated
oropharyngeal cancer in men on the rise, especially in North America and Northern
Europe (Gillison et al. 2015). Unlike for cervical cancer in women, no routine
screening tests exist for oropharyngeal cancers, largely due to the inability to detect
precancerous lesions as well as subclinical or early-stage cancer (Roden and Stern
2018; Gillison et al. 2015; American Cancer Society 2018). This information
highlights the need for methods to control HPV, especially oncogenic types.

The identification of HPV as the etiological factor for HPV-associated diseases
has afforded the opportunity to manage these cancers through vaccination (Yang
et al. 2016). Our increased understanding of the molecular biology of HPV has
powered the development of HPV-targeted vaccines. HPV is a small,
non-enveloped, double-stranded DNA virus belonging to the Papillomaviridae
family. The HPV genome is comprised of *8000 base pairs, which encode for
eight major proteins, six early (E) genes and two late (L) genes (Yang et al. 2016;
Graham 2010). Early genes, E1, E2, E4, E5, E6, and E7, contribute to the regu-
latory function of the viral genome, including DNA replication and transcription
(Graham 2010). Late genes, L1 and L2, are known as the major and minor capsid
proteins, respectively. The late genes comprise the viral capsid, which is respon-
sible for viral transmission, spread, and survival (Graham 2010). Upon infection,
the HPV viral genome is integrated into the host genome where it carries out
processes necessary for viral replication and transcription. Specifically, E1 is
involved in viral DNA replication, while E2 is involved in RNA transcription. E4 is
involved in regulating the cytoskeleton network of infected cells, cell cycle arrest,
and virion assembly. E5 is considered an oncogenic protein and is responsible for
cell growth and differentiation as well as immune modulation (Yang et al. 2016;
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Graham 2010). Both E6 and E7 are oncoproteins expressed in transformed cells
(Yang et al. 2016). E6 and E7 are responsible for the carcinogenesis of
HPV-associated lesions and are necessary for the initiation and upkeep of
HPV-associated malignancies. E6 inhibits apoptosis and differentiation through the
degradation of the tumor suppressor gene p53 (Yim and Park 2005). E7 interacts
with the Rb protein, a cell cycle regulator, rendering it inoperable. This interaction
results in the unregulated proliferation of infected cells as well as the transformation
into cancer (Yim and Park 2005). In most cases of HPV-associated cancer, the HPV
viral DNA genome integrates into the host’s genome. The integration process leads
to the deletion of early genes E1, E2, E4, and E5, and late genes L1 and L2. E2 is a
negative transcriptional regulator for E6 and E7. The deletion of E2 leads to the
disruption of normal cell cycle regulation by interacting with p53 and Rb,
respectively. This results in the progression of HPV-associated cervical cancer
(Yang et al. 2016). Further, the deletion of L1 and L2 during the integration process
are what render prophylactic vaccines ineffective against established
HPV-associated diseases (Yang et al. 2016).

HPV types are tissue-trophic and infect keratinocytes, preferentially propagating
in epithelial mucosa (Egawa et al. 2015). Viral expression is associated with the
differentiation of keratinocytes and viral shedding from superficial epithelial layers,
which express L1 and L2 viral capsid proteins (Williams et al. 2011; Roden and Wu
2006). HPV infections are restricted to the basal epithelial cells, which are often
shielded from circulating immune cells during surveillance. Because HPV infection
often does not generate a host immune response, HPV DNA goes undetected,
enabling the virus to continue to amplify, eventually spreading to and infecting
neighboring cells. HPV is also non-lytic and does not generate an inflammatory
response, meaning that individuals who are infected may not know their disease
status. Only after HPV-associated tumor cell has been sufficiently amplified to a
level where it can be detected by immune surveillance cells, does it mount an active
immune response. Unfortunately, this often occurs during the later stages of HPV
transformation, sometimes years after the initial HPV infection (Williams et al.
2011). Prophylactic vaccines have traditionally be used to prevent disease prior to
infection. Current prophylactic HPV vaccines are used to deliver HPV L1 and/or L2
capsid antigens, which self-assemble to form a virus-like particle (VLP). These
vaccines stimulate the immune generation of neutralizing antibodies against VLPs,
which can prevent the acquisition of real HPV infection in healthy individuals.
Unfortunately, neutralizing antibodies against HPV are incapable of controlling or
killing existing HPV-infected and/or transformed cells. Instead, HPV
antigen-specific cytotoxic T cells (CD8+ T cells) and helper T cells (CD4+ T cells)
are necessary for the targeted killing of infected and/or transformed cells (Yang
et al. 2016). Unlike prophylactic HPV vaccines, therapeutic HPV vaccines rely on
T cell-mediated immune responses to target and kill infected cells. This is facilitated
by antigen-presented cells (APCs), such as dendritic cells (DCs). DCs present HPV
antigen through major histocompatibility class I (MHC-I) and class II (MHC-II)
molecules for recognition by HPV antigen-specific CD8+ and CD4+ T cells,
respectively.
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When devising a therapeutic vaccine, the target antigen of choice requires sig-
nificant consideration. Because L1 and L2 are deleted during the integration process
of HPV into the host genome, they are not suitable target antigens for the devel-
opment of therapeutic HPV vaccines. However, HPV oncoproteins E6 and E7
present as ideal targets for the development of therapeutic HPV vaccines. E6 and E7
are only expressed in transformed cells and are necessary for initiating and main-
taining HPV-associated malignancies (Yang et al. 2016). Therefore, therapeutic
HPV vaccines targeting E6 and E7 are safe and can circumvent immune tolerance
against self-antigens (Yang et al. 2016).

2 Current Preventive HPV Vaccines

In the last decade, a total of three prophylactic HPV vaccines have been developed
for commercial use, Cervarix™ (from GlaxoSmithKline), Gardasil®, Gardasil9®
(from Merck). These prophylactic vaccines have provided an opportunity to prevent
the acquisition of HPV infection in unexposed, healthy individuals. All three
vaccines use an L1 VLP vaccine platform, which constitutes the non-infectious
papillomavirus particles without the viral genome (Yang et al. 2016). Cervarix™ is
a bivalent vaccine containing HPV16 and HPV18 VLPs produced in insect cells
(Trichoplusia ni) using a baculovirus expression vector system. Cervarix™ also
incorporates Adjuvant System 04 (comprised of monophosphoryl lipid A and an
aluminum hydroxide salt) (U.S. Food and Drug Administraiton 2018) to enhance
the body’s humoral immune responses after vaccination. Cervarix™ only protects
against oncogenic HPV types HPV16 and HPV18; however, these HPV types are
present in the majority of HPV-associated cancers (Elrefaey et al. 2014; National
Cancer Institute 2019), and GlaxoSmithKline discontinued the marketing of Cer-
varix™ in the United States in 2016. Gardasil® is a recombinant quadrivalent
vaccine prepared from HPV 6, 11, 16, and 18 VLPs. The L1 proteins are produced
in yeast cells (Saccharomyces cerevisiae) and absorbed on an amorphous aluminum
hydroxyphosphate sulfate adjuvant (U.S. Food and Drug Administration 2019). It
provides protection against oncogenic types HPV16 and 18, as well as low-risk
HPV types 6 and 11, which cause common genital warts.

Currently, around 15 oncogenic HPV types have been identified. While Gar-
dasil® and Cervarix™ provide protection against the two most common oncogenic
HPV types, HPV16 and HPV18, neither provide protection against any of the
remaining *13 oncogenic HPV types. To address this disparity in coverage,
Gardasil®9 was developed to provide broader protection against more HPV types
(Zhai and Tumban 2016; Manini and Montomoli 2018). Gardasil®9 is a recombi-
nant nanovalent vaccine prepared from L1 VLPs of HPV6, 11, 16, 18, 31, 33, 45,
52, and 58. Gardasil®9 is produced using the same method as Gardasil® and
contains an amorphous aluminum hydroxyphosphate sulfate adjuvant (U.S. Food
and Drug Administration 2019) to enhance immunogenicity. Importantly, Gar-
dasil®9 expanded existing vaccination coverage against HPV, protecting against the
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seven most common oncogenic HPV types (HPV16, 18, 31, 33, 45, 52, and 58) and
two most common low-risk HPV types (HPV6 and 11) (Zhai and Tumban 2016;
Immunization Action Coalition 2019). Gardasil®9 is currently the only HPV vac-
cine being distributed in the US and is licensed for females and males ages 9–45
(Immunization Action Coalition 2019). In fact, Cervarix™ and Gardasil® are no
longer available for distribution or purchase in the US. Specifically, the sale of
Cervarix™ was discontinued in the US due to low demand, while the sale of
Gardasil® was discontinued in 2018, after the FDA-approved Gardasil®9 (Kaiser
and Family Foundation 2018). However, Cervarix™ and Gardasil® are still widely
used outside the use in both clinical practice and investigational trials.

In clinical testing, the efficacy of Gardasil® was assessed in 20,541 women and
4055 men ages 16–26. Vaccine efficacy, measured as protection from HPV types 6,
11, 16, and 18 after three doses, was evaluated in subjects who were HPV-naïve
prior to the first vaccination dose. The results of this study showed that in both men
and women aged 16–26 who were HPV-naïve, Gardasil® was effective at pre-
venting the development of lesions caused by HPV6, 11, 16, and 18. Moreover,
Gardasil® was shown to have: 98% efficacy against HPV16 and 18-associated
cervical intraepithelial neoplasia grades 2 and 3 (CIN2/3) and adenomacarcinoma
in situ (AIS); 100% efficacy against HPV16 and 18-associated vulvar intraepithelial
neoplasia grades 2 and 3 (VIN2/3) and vaginal intraepithelial neoplasia grades 2–3
(VaIN2/3); 75% efficacy against HPV6, 11, 16, and 18-associated anal intraep-
ithelial neoplasia grades 2–3 (AIN2/3); and 89% and 99% efficacy against HPV6
and 11-associated genital warts in males and females, respectively (Merck & Co.
Inc. 2019).

Because Gardasil®9 was developed to protect against HPV strains not previously
covered by the first generation of Gardasil®, a comparative clinical trial was led by
Merck to empirically evaluate the efficacy of the two vaccines. The clinical study
compared Gardasil® and Gardasil®9 in 14,204 women ages 16–26 worldwide.
A total of 7099 women were randomized to receive Gardasil®9, while 7105 women
were randomized to receive Gardasil®. Vaccine efficacy was evaluated in subjects
who received three doses of vaccination and were HPV-naïve prior to the first
vaccination dose. Compared to Gardasil®, Gardasil®9 demonstrated 97% clinical
efficacy against HPV31, 33, 45, 52, and 58-associated CIN2/3, AIS, VIN2/3, and
VaIN2/3, suggesting that Gardasil®9 provides protection against five more types of
HPV (types 31, 33, 45, 52, and 58) than the first-generation vaccine Gardasil®.
Moreover, since both vaccines are manufactured similarly and comprise four of the
same HPV L1 VLPs the efficacy and effectiveness of Gardasil®9 against HPV6, 11,
16, and 18 were comparable to that of Gardasil® (Merck & Co. Inc. 2019). Notably,
the efficacy of both Gardasil® and Gardasil®9 against oropharyngeal cancer was not
tested in these trials, which could be attributed to the somewhat recent determi-
nation of the etiologic relationship between HPV and oropharyngeal cancer (Guo
et al. 2016). An additional Phase III trial comparing Gardasil® to Gardasil®9 in
14,215 women confirmed the results of the first study, demonstrating that Gar-
dasil®9 protected against 96.7% of CIN2/3, VIN2/3, and VaIN2/3 caused by
HPV31, 33, 45, 52, and 58. Furthermore, the efficacies of Gardasil® and Gardasil®9
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against HPV types 6, 11, 16, and 18 were also shown to be comparable. The
investigators of this study also found that the geometric mean antibody titers
(GMTs) one month after the third vaccine dose of Gardasil®9 were noninferior to
Gardasil® for HPV6, 11, 16, and 18. Additionally, seroconversion for women in the
Gardasil®9 group to all nine HPV types was >99% (Joura et al. 2015). Additional
clinical trials have been developed to evaluate the efficacy of the described pro-
phylactic HPV vaccines (Centers for Disease Control and Prevention 2015).

All three commercially available prophylactic HPV vaccines are administered
intramuscularly in the arm muscle in a two-dose or three-dose regimen, spread out
over the course of 6–12 months, depending on dose schedule (Centers for Disease
Control and Prevention 2015; Merck & Co. Inc. 2017). However, in the last decade,
recommended vaccination series have changed as a result of burgeoning data on
dose recommendations as well as the development of Gardasil®9. Pre-adolescent
girls (ages 9–15) now have the option to receive a two-dose HPV vaccination
regimen at a 6-month or 12-month interval to protect against HPV. While this
two-dose recommendation was first recommended by the World Health Organi-
zation (WHO) in 2015, a three-dose vaccine regimen is recommended for girls and
women 15 years and older (Harper and DeMars 2017). The second scheduled
vaccine dose is typically administered 1–2 months after the first dose, followed by
the third dose 5–10 months later (Centers for Disease Control and Prevention
2015). Due to the novelty of Gardasil®9, there is little data to elucidate the ideal
dose schedule for vaccination. In comparative studies, Gardasil®9 has demonstrated
similar GMTs and seropositivity for anti-HPV6, 11, 16, and 18; however, the
immunogenicity of two or three-dose HPV vaccine regimens are still being studied
(Harper and DeMars 2017). To this end, a comparative phase III clinical trial is
planned to determine the comparative immunogenicity of the two-dose to the
three-dose vaccine schedule (Harper and DeMars 2017) (NCT02834637). Impor-
tantly, this study might not only uncover the optimal vaccination schedule for
Gardasil®9, but it may also help inform future efforts in vaccine development to
minimize necessary vaccine doses. Additional studies have studied the efficacy of a
single dose of prophylactic HPV vaccine, demonstrating that it could provide
similar protection when compared to two- to three-dose vaccination regimens
(Safaeian et al. 2013; Kreimer et al. 2015). Several clinical trials investigating
whether a single dose of HPV vaccine is efficacious in the prevention of HPV
infection were recently completed or are ongoing (NCT03431246, NCT00635830,
and NCT03675256, respectively).

3 Improving Preventive HPV Vaccine Development

The clinical efficacy of available prophylactic HPV vaccines represents a substantial
improvement in the prevention of HPV and HPV-associated diseases for
targeted-types, but problems in coverage and disease burden still remain. 85% of
the burden of HPV and HPV-associated diseases occurs in LMICs, where
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infrastructure and access to HPV prevention, therapies, or treatments are often
limited (World Health Organization 2018; Vaccarella et al. 2013). Furthermore,
many persons living in LMICs face significant barriers to vaccination. The cost of
the vaccine can pose a significant financial barrier at both the individual and
institutional levels. Due to the cost associated with vaccination, many LMICs
choose to fund vaccination for a single age group each year, rather than make the
vaccine available to persons of all recommended age groups (Gallagher et al. 2018;
Bruni et al. 2016). Likewise, the need for multiple doses (2–3 doses) of prophy-
lactic HPV vaccines is a barrier for many, as persons may receive an incomplete
vaccine schedule, which does not afford full immunologic protection. Another
barrier to vaccination involves the physical access and availability of the vaccine.
Many individuals in LMICs do not live in close proximity to a health clinic or a
provider through which they can access and obtain the vaccine. Many LMICs also
lack the infrastructure or capacity to store and distribute such vaccines (i.e., through
cold chains) proving vaccine provision and dissemination a significant challenge.

Another challenge of prophylactic vaccines is limited cross-reactivity to multiple
oncogenic HPV strains. Although individuals vaccinated with Gardasil®9 will be
protected from seven of the most common oncogenic HPV types, including HPV16
and 18, Gardasil®9 still only covers fewer than half of the *15 oncogenic HPV
strains (Merck & Co. Inc. 2017), rendering vaccinated persons susceptible to
subsequent infection. Because vaccination with the current prophylactic vaccine
cannot protect close to 100% of all HPV infections, Pap smear screening or HPV
testing for screening are still required. Although substantial progress has been made
towards developing a more-protective HPV vaccine, continued efforts to improve
prophylactic HPV vaccines are warranted. Broader, or even full-coverage, against
oncogenic HPV types is a desirable attribute in future generations of prophylactic
HPV vaccines that researchers should strive towards. Strategies to developed
improved prophylactic HPV vaccines include, but are not limited to, the develop-
ment of (1) L1-based capsomeres, (2) L2-based vaccines, and (3) chimeric L1–L2
based vaccines. Figure 1 summarizes the various strategies in the current, and the
next generation of preventive HPV vaccines, including the newest multivalent VLP
vaccine, Gardasil®9.

One potential method for creating new prophylactic HPV vaccines involves the
development of L1 capsomere vaccines. Capsomeres are structural subunits, which
self-assemble to form the virus capsid. HPV L1 VLPs are composed of 360 L1
monomers, which assemble into 72 pentavalent capsomeres (DiGiuseppe et al.
2017). L1 capsomeres can be purified from Escherichia coli, offering a
cost-effective alternative to L1 VLP-based vaccines, which are produced in yeast
cells (Schadlich et al. 2009). In preclinical models, L1 capsomere proteins produced
in E. coli, attenuated measles virus, or recombinant Salmonella enterica serotype
Typhi have successfully generated neutralizing antibodies against HPV-L1 and
demonstrated immunogenicity comparable to that of VLPs (Barra et al. 2019).
Thus, L1 capsomere vaccines may represent a potential lower-cost prophylactic
HPV vaccine which provides comparable immunogenicity to existing VLP vacci-
nes and potentially reduce the number of booster vaccinations currently required.
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Another potential approach to creating new prophylactic vaccines involves the use
of the HPV minor capsid protein, L2-based vaccines, instead of L1 VLPs. The
difficulties associated with manufacturing multivalent L1-VLP vaccines, such as
Gardasil®9, limit the number of VLPs and hinder the vaccine’s protective capacity.
Unlike L1, L2 is highly conserved between different HPV types and contains
type-common epitopes. Therefore, the L2 from one HPV strain could potentially
induce broader protection against multiple HPV types through cross-neutralizing
antibodies, even across species (Roden and Stern 2018; Schellenbacher et al. 2017;
Gambhira et al. 2006; Kaliamurthi et al. 2019). Currently, more than three pre-
ventive L2 VLP-based prophylactic HPV vaccines are underway for evaluation in
early phase clinical trials (for review see Schellenbacher et al. 2017). One downside
to L2-based vaccines is low immunogenicity. Antibody levels induced by L2
peptides are significantly inferior to those induced by L1 VLP vaccines. Hence, the
development of L2-based vaccines necessitates strategies to enhance immuno-
genicity and antibody response in vivo (Schellenbacher et al. 2017).

In general, L2-based vaccines are less immunogenic than L1-based vaccines
(Roden and Stern 2018). Additionally, the current gold standard for the detection of
L1-specific antibodies cannot reliably detect an L2-specific immune response
in vivo. To address this challenge, Day et al. created a test to detect L2-directed
neutralizing antibodies with significantly improved sensitivity (Day et al. 2012).
With an improved method of detection now available, several strategies have been
implemented to enhance the immunogenicity of L2, many of which have shown
great potential. For example, in a preclinical study, mice vaccinated with a com-
bination of L2-peptides derived from eight HPV types displayed on the surface of
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Fig. 1 Schematic diagram to depict the current and next generation of preventive HPV vaccines.
a Cervarix™ composed of HPV16 and HPV18 VLPs. b Gardasil® composed of HPV6, HPV11,
HPV16, and HPV18 VLPs. c Gardasil®9 composed of HPV6, HPV11, HPV16, HPV18, HPV31,
HPV33, HP-45, HPV52, and HPV58 VLPs. d L1 capsomer vaccine. e L2 peptide vaccine.
f Concatenated L2 peptide vaccine. g Chimeric L1-L2 VLP vaccine with L2 on the surface
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PP& bacteriophage VLPs were protected from HPV pseudovirus challenge of all
eight HPV types (Caldeira Jdo et al. 2010; Tumban et al. 2011). Other studies have
also been used to enhance L2 immunogenicity, including the application of an
E. coli-based concatenated multitype L2 fusion protein with multitype
cross-neutralizing epitopes (Jagu et al. 2009), the oral administration of HPV16 L2
expressed on the surface of Lactobacillus casei (Yoon et al. 2012), and the
administration of HPV16 L2 protein with bacterial thioredoxin, and T cell stimu-
lator (Rubio et al. 2009). While L2-based vaccines have the potential to confer
greater cross-reactivity, the immunogenicity of L2 proteins remain low. For this
reason, more potent adjuvants and display methods continue to be explored. Cur-
rently, however, no L2-peptide-based prophylactic HPV vaccines have been
approved for clinical trials (Kaliamurthi et al. 2019).

The potent immunogenicity of L1 vaccines and the broad cross-protection
provided by L2 can also potentially be exploited through the combination in the
form of chimeric L1/L2 VLPs. A single copy of the L2 protein is present in each L1
pentavalent capsomere, thus, each HPV virion contains 72 copies of the L2 protein
(Kaliamurthi et al. 2019). L2 plays a critical role in the assembly of L1 into VLPs
and has been demonstrated to facilitate the encapsulation of the viral genome
(Kaliamurthi et al. 2019). Because L2 is less abundant than L1 and is predomi-
nantly found in the interior of the VLP, replacing some L1 immunodominant
epitope regions of the VLP surface with a neutralizing epitope of L2 may generate
stronger immunogenic, cross-protective immune responses against multiple HPV
types. In L1-based vaccine models, the surface expression of the neutralizing epi-
tope of L2 is necessary for the generation of L2 neutralizing antibodies. In a recent
study, Kaliamurthi et al. constructed an L2-based chimeric HPV vaccine (SGD58)
using two selected epitope sequences on the N-terminal region of the L2 sequence
of HPV58 [the fourth most common high-risk HPV type in the world (Zhai and
Tumban 2016)], two Toll-like receptors (TLR) adjuvants (Flagellin and RS09), and
two T helper epitopes (PADRE and TpD) (Kaliamurthi et al. 2019). While this
chimeric vaccine has not been tested in vivo, SGD58 demonstrated immunologic
properties capable of producing both humoral and cellular immune responses
against HPV through immunomics testing in vitro. The SGD58 vaccine also
demonstrated cross-protection against 15 different high-risk HPV types (Kalia-
murthi et al. 2019). Another candidate chimeric L1–L2 based vaccine uses the RG1
epitope, a single L2 epitope. RG1 can be incorporated into the capsid surface DE
loop of HPV16 L1 or HPV18 L1 to create a chimeric L1–L2 based VLP vaccine. In
preclinical studies, RG1-VLPs provided broad protection against heterologous
high-risk HPV types (Schellenbacher et al. 2017; Boxus et al. 2016; Gambhira et al.
2007a, b). Specifically, chimeric RG1-VLP vaccines have demonstrated protection
against challenge of high-risk HPV types 16, 18, 26, 32, 33, 34, 35, 39, 45, 51, 52,
53, 56, 58, 59, 66, 68, 73, and low-risk HPV types 6, 43, and 44 (Schellenbacher
et al. 2013). Currently, chimeric RG1-VLPs are under cGMP production and are
planned for testing in phase I clinical studies. RG1-VLPs offer a promising
next-generation vaccine for wider protection against HPV (Schellenbacher et al.
2013, 2017). In short, the inclusion of the immunodominant neutralizing epitopes of
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L2, such as RG1, into the L1 VLPs offer a promising prophylactic HPV vaccine
capable of inducing broad-spectrum neutralizing antibodies against different HPV
types.

4 Strategies for Therapeutic HPV Vaccine Development

4.1 Introduction to Therapeutic HPV Vaccines

While prophylactic HPV vaccines have been hugely successful in averting HPV
infections, they are incapable of treating or eliminating existing HPV infections or
HPV-associated lesions. Given that HPV is the most common sexually transmitted
infection (STI), virtually anyone who is sexually active is susceptible to HPV
exposure or infection during their lifetime (Yang et al. 2016; Centers for Disease
Control and Prevention 2017). Because HPV infection is the known etiologic factor
for HPV-associated diseases, including nearly all cases of cervical cancer, thera-
peutic HPV vaccines represent an ideal method for the eradication of HPV-infected
cells and HPV-associated tumors. Most individuals who develop an HPV infection
will clear the viral infection naturally through their immune system. However,
individuals who are unable to clear the infection can develop persistent HPV
infections, which may progress into precancerous lesions and eventually, invasive
cancer. The progression of an HPV infection into invasive cancer can take years,
and remain asymptomatic. Due to the latent nature of the HPV virus, regular
screening is recommended to track the progression or regression of the disease. In a
prolonged chronic infection, there is a considerable window for secondary pre-
ventive treatment for infections caught by cytologic screening and HPV DNA
testing. Currently, the US Preventive Services Task Force (USPSTF), American
Cancer Society (ACS), and the American College of Obstetricians and Gynecolo-
gists (ACOG) recommend cytologic screening (Pap smears) every three years in
women aged 21–65 (U.S. Preventive Services Task Force 2012; Centers for Disease
Control and Prevention 2012). In 2014, the FDA approved an HPV screening test
for primary cervical cancer screening. Primary HPV testing, as well as HPV
co-testing (Pap smear and HPV testing), have become widely accepted and utilized
in clinical practice (Cooper and Saraiya 2017). While methods of early detection for
HPV-associated diseases have seen significant improvement, these detection and
screening strategies are still limited or impossible in some settings. Furthermore,
some HPV-associated diseases, such as oropharyngeal cancer, do not have methods
for routine screening (American Cancer Society 2018). Therefore, efficacious
therapeutic HPV vaccines that can selectively target HPV-infected cells during
HPV transformation and carcinogenesis represent an ideal strategy to treat HPV
infection or HPV-associated diseases, as well as prevent the development of
advanced cancer. If therapeutic vaccines are able to eradicate transformed cells
before disease progression, the disease burden of HPV and HPV-associated
malignancies worldwide may see a drastic decline.
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Many different platforms have been used to develop therapeutic HPV vaccines,
which have been tested at various phases in preclinical and clinical trials. Char-
acteristics of an ideal therapeutic vaccine include (1) safety; (2) ability to mount a
potent HPV antigen-specific T cell-mediated immune response; (3) tumor-targeting
specificity; (4) lasting efficacy; (5) cost-effective; and (6) minimal dose require-
ments. The ability of a therapeutic vaccine to elicit antigen-specific T cell-mediated
killing is vital to the vaccine’s efficacy in recognizing and targeting transformed
cells, and evading healthy cells. Reduced production and storage cost is also a
highly desirable trait of any vaccine in order to increase access and availability of
therapeutic vaccines for patients with persistent HPV infections or HPV-associated
cancers worldwide. In addition, the need for fewer doses of the therapeutic HPV
vaccine can potentially improve vaccination compliance and may help reinforce
vaccination receipt in targeted populations. As described earlier, E6 and E7 are
ideal targets for therapeutic HPV vaccines. To this end, several types of therapeutic
HPV vaccines targeting E6 and/or E7 antigens have been developed and undergone
preclinical and clinical studies, including live-vector-based, peptide-based,
protein-based, dendritic cell-based, DNA-based, and combination vaccines.
A graphic representation of how therapeutic HPV vaccines harness the host’s
immune system to fight HPV infection and associated disease is provided in Fig. 2
(adapted from Cheng et al. 2018).
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Fig. 2 Therapeutic HPV vaccination schematic. Therapeutic vaccines activate the adaptive
immune system by targeting E6 and/or E7 antigen(s), producing a cell-mediated immune response
for the control or treatment of HPV infection or HPV-associated disease. Therapeutic HPV
vaccination methods include, live-vector-based vaccines (bacterial vector or viral vector); peptide-
or protein-based vaccines; dendritic cell-based vaccines; and DNA-based vaccines
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4.2 Live Vector-Based Therapeutic HPV Vaccines

Live vector vaccines utilize live bacterial or viral vectors as a vehicle to deliver
recombinant antigens. These live vectors infect the host, replicate in the body, and
spread the antigen in order to mount an immune response. Live vector-based
therapeutic HPV vaccines can deliver E6 and/or E7 antigens to APCs to stimulate
antigen presentation to immune cells through the MHC-I MHC-II pathways. Live
vector-based vaccines are highly immunogenic and capable of mounting robust
humoral and cell-mediated immune responses. One challenge to live vector-based
vaccines is the potential safety risk they pose, particularly to individuals who are
immunocompromised (Yang et al. 2016; da Silva et al. 2014).

4.2.1 Bacterial Vectors
Several bacterial vectors have been explored for the development of therapeutic
HPV vaccines. Among these, Listeria monocytogenes, a facultative gram-positive
intracellular bacterium, has garnered significant attention as a particularly promis-
ing vector for the delivery of HPV antigens (Guirnalda et al. 2012). HPV vaccine
antigens can be expressed through fusion to the pore-forming toxin, listeriolysin O
(LLO). Fused vaccine antigens are then processed and presented through both the
MHC-I and MHC-II pathways. Live L. monocytogenes-based vaccines have been
shown to induce both antigen-specific CD8+ and CD4+ T cell responses (Kim and
Kim 2017; Cory and Chu 2014; Wallecha et al. 2013). In preclinical studies, L.
monocytogenes-based HPV E7 vaccines have been shown to stimulate a potent
E7-specific CD8+ T cell response and were able to slow tumor growth and reduce
tumor burden in both transgenic and wild-type mice (Gunn et al. 2001; Lin et al.
2002; Verch et al. 2004; Hussain and Paterson 2004; Sewell et al. 2004; Souders
et al. 2007). In response to the demonstrated immunogenicity of L. monocytogenes-
based HPV E7 vaccines in preclinical studies, this research has been translated into
clinical studies. For example, the vaccine ADXS11-001 is a live, attenuated L.
monocytogenes bacterial vector in which HPV16 E7 protein is fused to a modified
LLO molecule (Cory and Chu 2014; Miles et al. 2017). In preclinical studies,
ADXS11-001 mounted strong humoral and E7 antigen-specific CD8+ T cell
immune responses. In phase I/II clinical trials, ADXS11-001 has demonstrated
efficacy in women with cervical cancer (Yang et al. 2016; Cory and Chu 2014;
Miles et al. 2017). Currently, two phase II clinical trials are ongoing to assess the
safety and efficacy of ADXS11-001 in patients with HPV-associated head and neck
(NCT02002182) and cervical cancer, respectively (NCT01266460) (Yang et al.
2016) (for review see Miles et al. 2017). Another phase II clinical trial evaluating
the efficacy of ADXS11-001 in patients with anorectal cancer was recently finished
recruitment (NCT02399813). While clinical trial data has not yet been reported,
ADXS11-001 has shown promising antitumor activity in patients with
HPV-associated diseases in multiple studies and was well-tolerated in patients.
These findings, along with the ongoing clinical trial findings may lay the ground-
work for phase III clinical trials and the potential introduction of ADXS11-001 in
the clinic (Guirnalda et al. 2012; Miles et al. 2017). In addition, other attenuated
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bacterial vectors can also be used to deliver antigens of interest to APCs, including
Salmonella (Buttaro and Fruehauf 2010; Le Gouellec et al. 2012), Shingella, and
E. coli (Yang et al. 2016; Buttaro and Fruehauf 2010; Hitzeroth 2018).

4.2.2 Viral Vectors
In addition to bacterial vectors, live viral vector-based HPV vaccines have been
studied in preclinical and clinical studies due to their high immunogenicity. Viral
vectors, including adenoviruses, adeno-associated viruses, alphaviruses, len-
tiviruses, and vaccinia viruses have been used to deliver HPV E6, E7, and E2
antigens (Yang et al. 2016; Kim and Kim 2017; Hung et al. 2008). Of these viral
vectors, vaccinia virus has demonstrated the greatest immunogenic potential in
clinical studies. The vaccinia virus is an enveloped, double-stranded DNA virus in
the Poxviridae family. In particular, vaccinia virus represents a promising viral
vector for vaccine delivery because it has a large genome and is highly infectious
(Yang et al. 2016). In the past two decades, several vaccinia-based therapeutic HPV
vaccines have been studied in clinical trials. The first vaccinia-based vaccine trial
was a phase I/II trial using a recombinant vaccinia virus expressing HPV16 and 18
E6/E7 proteins (TA-HPV) in patients with advanced cervical cancer (Borysiewicz
et al. 1996). Subsequent phase I/II clinical trials have evaluated the safety and
immunogenicity of TA-HPV in patients with early-stage cervical cancer (Kaufmann
et al. 2002), VIN (Davidson et al. 2003), and VaIN (Baldwin et al. 2003). Through
various clinical studies, TA-HPV was found to be safe and successful in mounting a
vaccinia-specific antibody, and HPV antigen-specific CD8+T cell-mediated
response (Borysiewicz et al. 1996; Kaufmann et al. 2002; Davidson et al. 2003;
Baldwin et al. 2003).

Another vaccinia-based therapeutic HPV vaccine MVA-E2, is a modified vac-
cinia Ankara virus (MVA) encoding bovine papillomavirus type 1 (BPV-1) E2
protein (Corona Gutierrez et al. 2004; Vici et al. 2016). In several early phase I/II
clinical trials, MVA-E2 led to significant therapeutic effects in patients with
CIN1/2/3 lesions, including complete regression of precancerous lesions and gen-
eration of robust HPV antigen-specific immune responses (Corona Gutierrez et al.
2004; Garcia-Hernandez et al. 2006)). More recently, MVA-E2 was tested in a
phase III clinical study for the treatment of anogenital HPV-associated intraep-
ithelial lesions (Rosales et al. 2014) in a total of 1176 female and 180 male patients.
Patients received MVA-E2 vaccination at the lesion-site and were then monitored
using colposcopy (females only) and cytology for lesion progression/regression.
After MVA-E2 vaccination, *90% of female study patients and all-male study
patients had complete elimination of intraepithelial lesions. Furthermore, all
patients in the study treated with MVA-E2 developed MVA-E2-specific antibodies,
as well as cell-mediated cytotoxic activity, specifically against HPV-transformed
cells. The MVA-E2 vaccine was found to eliminate CIN1/2/3 lesions as well as
most other anogenital lesions. The results of this study demonstrate the therapeutic
potential of the MVA-E2 vaccine for the treatment of HPV-associated anogenital
intraepithelial lesions in both males and females (Rosales et al. 2014).
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Another MVA-based therapeutic HPV vaccine, TG4001, has been tested in
clinical studies. TG4001 is a suspension of MVATG8042 vector particles.
MVATG8042 vector particles consist of an attenuated recombinant MVA,
encoding modified HPV16 E6 and E7 proteins, and human interleukin-2 (IL-2)
(Yang et al. 2016; ***Brun et al. 2011). In phase II clinical trial, the safety and
efficacy of TG4001 were evaluated in 21 patients with HPV16-associated CIN2/3.
All patients received three weekly subcutaneous injections of TG4001. Regression
of CIN2/3 lesions and clearance of HPV infection were monitored using cytology,
colposcopy, and DNA/mRNA detection. After six months of vaccination, nearly
half the women in the study had a clinical response, showing improvement in their
infection or lesion regression. Out of the ten responders in this study, HPV16 DNA
clearance was observed in eight individuals, HPV16 mRNA clearance in seven
individuals. Further, no recurrence of high-grade lesions was observed for
12 months after treatment (Yang et al. 2016; Kim and Kim 2017; Brun et al. 2011).
Another ongoing phase Ib/II clinical trial is assessing the safety and efficacy of
TG4001 in combination with avelumab in patients with HPV16-associated
oropharyngeal squamous cell carcinoma of the head and neck (NCT03260023).
While live vector-based therapeutic HPV vaccines have shown promising results in
clinical studies, they pose a potential safety risk, especially for individuals who may
be immunocompromised. Due to the possibility of inducing vector-specific neu-
tralizing antibodies and/or having pre-existing vector-specific immunity, live vec-
tors are not able to be repeatedly administered.

4.3 Peptide-Based Therapeutic HPV Vaccines

Short peptides derived from HPV antigens can be delivered to DCs for processing
and presentation on MHC-I molecules in order to activate an antigen-specific
immune response. Production of peptide vaccines involves the prior identification
of specific CD8+ cytotoxic and CD4+ helper T cell epitopes of HPV antigens.
Peptide-based vaccines offer several advantages over other therapeutic vaccine
types; they are safe, stable, and easy to produce (Cheng et al. 2018). However,
peptide-based vaccines also suffer from low immunogenicity and MHC restriction,
which ultimately affects their strength and efficacy (Yang et al. 2016; Lin et al.
2010).

Peptide-based vaccines often require lipids or other adjuvants, such as
chemokines, cytokines, or TLR ligands to enhance immunogenicity (Yang et al.
2016). Specific adjuvants that have been previously employed to enhance the
immunogenicity of peptide-based therapeutic HPV vaccines include aluminum
adjuvants (Khong and Overwijk 2016), immunoglobulin G fragment (Qin et al.
2005), streptavidin fused to the extracellular domain of murine 4-1BBL (Sharma
et al. 2009), DC stimulatory cytokine bryostatin (Yan et al. 2010), and TLR ago-
nists (Khong and Overwijk 2016; Daftarian et al. 2006; Wu et al. 2010; Zhang et al.
2010; Zwaveling et al. 2002). Another limitation of peptide-based vaccines is that
they are MHC-specific, which can lead to challenges for large-scale vaccine
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production and treatment of HPV-associated diseases (Yang et al. 2016; Su et al.
2010). One potential strategy to circumvent such a challenge is to employ the use of
overlapping long-peptide vaccines. Numerous HPV16 synthetic long-peptide vac-
cines (e.g., HPV16-SLP) have been studied in clinical trials to evaluate therapeutic
effect against HPV-associated disease. A phase II study in patients with low-grade
abnormalities of the cervix demonstrated that two doses of the HPV16-SLP vaccine
were capable of eliciting a robust HPV16-specific T cell response lasting for more
than one year (de Vos van Steenwijk et al. 2014). In a more recent study, Welters
et al. explored whether HPV16-SLP vaccination could be combined with standard
chemotherapy to enhance immunogenicity in patients with advanced cervical
cancer (Yang et al. 2016; Welters et al. 2016). From this study, HPV16-SLP
vaccination was found to enhance T cell response levels in patients, which
remained unchanged even after six cycles of chemotherapy. While this vaccination
regimen did not demonstrate significant tumor regression, the HPV16-SLP vaccine
was observed to be well-tolerated with minimal adverse effects. As a result of this
study, additional phase I and II clinical trials have been designed to evaluate the
therapeutic potential of HPV16-SLP vaccines in advanced or recurrent cervical
cancer (NCT02128126), as well as in other HPV-associated malignancies
(NCT01923116) (Welters et al. 2016). Another method to enhance therapeutic HPV
vaccine potency is the administration of therapeutic HPV vaccines in combination
with immune checkpoint blockade, which has become popularized in recent years.
Recently, a clinical study investigating the safety of an HPV peptide vaccine
(ISA101) and nivolumab was completed in patients with HPV16+
incurable/recurrent solid tumors. In this study, patients received nivolumab, an
anti-programmed cell death 1 (PD-1) antibody and ISA101 peptide vaccine, a
therapeutic HPV16-SLP vaccine containing nine HPV16 E6 synthetic peptides, and
four HPV16 E7 synthetic peptides in order to determine whether ISA101 amplified
the efficacy of nivolumab in patients with incurable HPV16+ cancer
(NCT02426892). The results of this study showed that, out of 24 patients with
oropharyngeal cancer, eight patients responded, resulting in an overall response rate
of 33% and median overall survival of 17.5 months. Based on the results of this
trial, future studies investigating the efficacy of ISA101 and immune checkpoint
blockade are warranted (Massarelli et al. 2019).

Several additional studies have been conducted to evaluate the immunogenicity
of various peptide-based therapeutic HPV vaccines. In a phase I dose-escalation
study, 31 patients with high-grade squamous intraepithelial lesions (HSIL) received
PepCan, a therapeutic HPV vaccine containing four cGMP-manufactured synthetic
peptides covering HPV16 E6 and Candin® as an adjuvant. No dose-limiting toxi-
cities were observed in this study (Coleman et al. 2016). Varying histologic
regression rates were observed and correlated with increasing vaccination dose
(Coleman et al. 2016). Due to the demonstrated safety of PepCan, a phase II clinical
trial to evaluate the efficacy and safety of PepCan in patients with HSIL is ongoing
(NCT02481414). Similarly, another phase I/II clinical trial is underway investi-
gating the safety and efficacy of PepCan in patients with head and neck cancer
(NCT03821272). In a phase I dose-escalation study of GL-0810, an HPV
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peptide-based vaccine with MontanideTM and granulocyte-macrophage
colony-stimulating factor (GM-CSF) as adjuvants, patients with
recurrent/metastatic squamous cell carcinoma of the head and neck (SCCHN) were
shown to have an immune response of the vaccine, which was also well-tolerated
(Zandberg et al. 2015). In addition, two more phase I clinical trials was designed to
evaluate the safety and immunogenicity of PDS0101, a peptide-based therapeutic
HPV vaccine. One of these trials was recently completed in women with high-risk
HPV infection of CIN1 lesions (NCT02065973), while the other trial, a phase Ib/II
trial in human leukocyte antigen (HLA)-A*02 positive patients with incurable
HPV16-associated oropharyngeal, cervical, and anal cancer, is still ongoing
(NCT02865135) (Yang et al. 2016).

4.4 Protein-Based Vaccines

Protein-based vaccines have also been developed as potential therapeutic vaccines
for HPV-associated cancer. Not only are protein-based vaccines safer than live
vector-based vaccines, but they also contain all HLA-binding epitopes, enabling
protein-based vaccines to circumvent MHC restriction. However, one downside to
protein-based vaccines is that they suffer from low immunogenicity. Additionally,
most protein-based vaccines are presented through the MHC-II pathway resulting in
the generation of antibody rather than antigen-specific cytotoxic T cell immune
response (Su et al. 2010). Strategies to improve the immunogenicity and MHC-I
processing and presentation of protein-based vaccines have been widely studied. To
this end, numerous adjuvants, fusion proteins, and immunostimulating molecules
have been tested, including the liposome-polycation-DNA (LPD) adjuvant (Cui and
Huang 2005), saponin-based ISCOMATRIX (Frazer et al. 2004), and TLR agonist
s (Kang et al. 2011).

One protein-based vaccine which has shown efficacy against HPV-associated
diseases is TA-CIN, a fusion protein-based vaccine consisting of HPV16 E6, E7,
and L2 (van der Burg et al. 2001). In several phase I/II clinical trials, TA-CIN has
been shown to be safe and immunogenic against HPV infection. Additionally, in
previous a phase II clinical trial, TA-CIN was administered in combination with
imiquimod, a topical immunomodulator in patients with high-grade VIN. The
combination treatment was well-tolerated in patients and these “responders” had
increased levels of infiltrating CD4+ and CD8+ T cells both locally and in
HPV-associated lesions (Daayana et al. 2010). Currently, a phase I clinical trial to
determine the safety and feasibility of TA-CIN in patients with HPV16-associated
cervical cancer is ongoing (NCT02405221). Another protein-based therapeutic
HPV vaccine, which targets both HPV16 and 18 has undergone clinical studies
(Van Damme et al. 2016). GTL001, is composed of recombinant HPV16 and 18 E7
proteins fused to catalytically inactive Bordetella pertussis CyaA expressed in
E. coli (Yang et al. 2016; Van Damme et al. 2016). In a phase I clinical trial,
GTL001 demonstrated tolerability and immunogenicity in women with HPV16 or
18 infections with normal cytology (Van Damme et al. 2016). A phase II clinical
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trial assessing the efficacy of GTL001 in women with HPV16 or 18 infections with
normal cytology or atypical squamous cells of undetermined significance
(ASC-US)/LSIL was recently completed; however, results have not yet been
published (NCT01957878). Another phase II clinical trial to test the safety and
efficacy of a different protein-based vaccine was recently completed. This phase IIa
clinical trial was conducted to test the safety and efficacy of TVGV-1 vaccine
construct, a fusion protein consisting of HPV16 E7 protein fused to pseudomonas
aeruginosa exotoxin A (PE) and an endoplasmic reticulum retention signal (KDEL),
to treat patients with cervical HSIL (NCT02576561). Data analysis from this trial is
still ongoing.

4.5 Dendritic Cell-Based Vaccines

DCs are professional APCs that can induce an adaptive immune response by
processing antigens to prime antigen-specific T cells. DCs play an important role in
the regulation of the immune system and are commonly cited as the most efficient
APCs (Yang et al. 2016; Lee et al. 2016). Autologous DCs can be pulsed ex vivo
with peptides, proteins, or DNA-encoding antigens, and then reintroduced into the
patient in order to elicit a cell-mediated immune response (Kim and Kim 2017).
One benefit to DC-based vaccines is that DCs can serve as adjuvants to increase the
strength of antigen-specific immunotherapies (Yang et al. 2016; Santin et al. 2005).
Unfortunately, T cell-mediated apoptosis may limit the lifespan of DCs (Skeate
et al. 2016); therefore, strategies to increase the immunogenicity and efficacy of
DC-based vaccines, as well as prolong the survival of DCs are needed. Strategies
have emerged, including the addition of adjuvants such as cholera toxin (Nurkkala
et al. 2010) and TLR agonists (Chen et al. 2010). DCs have also been transfected
with siRNAs, which target pro-apoptotic molecules to prevent the apoptosis of DCs
(Kim et al. 2009; Peng et al. 2005; Ahn et al. 2015).

Several clinical trials have been developed to evaluate the therapeutic potential
of DC-based therapeutic HPV vaccines. For example, in a phase I dose-escalation
study to evaluate the safety, toxicity, and immunogenicity of DC-based vaccines in
patients with stage IB or IIA cervical cancer, all patients developed CD4+ T cell
and antibody responses to the DC-based vaccine. Furthermore, eight out of ten
patients developed an E7-specific CD8+ T cell response. In their study, Santin et al.
concluded that the HPV E7-loaded DC-based vaccine tested in this study was both
safe and immunogenic (Santin et al. 2008). In another phase I clinical trial, the
toxicity and immunogenicity of a DC-based vaccine was assessed in patients with
HPV-associated, advanced, recurrent cervical cancer. The DC-based vaccine was
shown to be well-tolerated by patients; however, it did not increase lymphocyte
proliferation to a degree of statistical significance (Ramanathan et al. 2014).
Nonetheless, there are several downsides to the use of DC-based vaccines.
DC-based vaccines are technically difficult to manufacture and highly individual-
ized, making them a poor vaccine choice for large-scale production. In addition,
due to a lack of standard vaccine evaluation criteria and varying cell-culture
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techniques, vaccine quality can be inconsistent amongst batches, which is a par-
ticular challenge for large-scale production (Yang et al. 2016; Kim and Kim 2017;
Skeate et al. 2016).

4.6 DNA-Based Vaccines

DNA-based vaccines have emerged as an attractive approach to therapeutic HPV
vaccination as they offer several advantages over the other types of therapeutic
vaccination. Specifically, DNA-based vaccines are safe, stable, and easy to produce
on a large scale. DNA-based vaccination involves intramuscularly injecting a
plasmid encoding the antigens of interest into the host’s cells for uptake and pro-
cessing by APCs. DNA-based vaccines are an especially attractive method for
therapeutic vaccination because they are capable of mounting both cell-mediated
and humoral immune responses against the encoded antigen (Kim and Kim 2017;
Vici et al. 2016). While DNA vaccines have fewer safety risks than other types of
therapeutic HPV vaccines, genomic integration remains a potential issue. However,
no evidence of genomic integration has been observed (Yang et al. 2016; Wang
et al. 2004). Naked DNA is easy to manufacture and can maintain antigen
expression inside target cells for a longer duration than other therapeutic vaccine
types. Unlike vector-based vaccines, DNA-based vaccines do not elicit neutralizing
antibodies; therefore, they can be safely administered multiple times for booster
vaccinations (Yang et al. 2016; Kim and Kim 2017; Vici et al. 2016). While
DNA-based vaccines offer many advantages to therapeutic HPV vaccination, they
have limited immunogenicity as they are unable to amplify and spread to sur-
rounding cells. For this reason, DNA-based vaccines require strategies to improve
antigen delivery to DCs in order to mount a potent immune response. In general,
strategies to enhance therapeutic HPV DNA-based vaccine immunogenicity have
focused on: (1) increasing the uptake of HPV antigen by DCs; (2) improving HPV
antigen expression, processing, and presentation in DCs; and (3) enhancing DC and
T cell interaction (for review see Cheng et al. 2018).

Several strategies have been employed to enhance the number of
antigen-expressing/antigen-loaded DCs after DNA-based vaccination including,
delivery by gene gun, microencapsulation, electroporation, laser, and microsphere-/
nanoparticle-based delivery systems (Kim and Kim 2017). After DNA plasmids
encoding HVP antigens are taken up by DCs, they must be expressed, processed,
and presented. Enhancing antigen expression in transfected DCs, amplifying
translation of HPV mRNA, increasing MHC-I and MHC-II expression in DCs,
enhancing antigen processing through the MHC-II pathway, and increasing
cross-presentation of HPV antigen through the MHC-I pathway are all methods that
have been used to improve HPV antigen expression, processing, and presentation
by DCs. Additionally, several methods to enhance DC and T cell function, survival,
and interaction have also been employed to improve the therapeutic HPV
DNA-based vaccine response. These methods include improving DC function and
survival, boosting DC and T cell interactions, promoting T cell function and
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survival, as well as eliminating immunosuppressive regulatory T cells in the tumor
microenvironment (TME) (for review see Cheng et al. 2018).

Therapeutic HPV DNA-based vaccines have undergone numerous clinical trials
to evaluate safety and efficacy. In addition, DNA-based vaccines have been tested
in conjunction with different adjuvants to improve vaccine potency. An ongoing
phase I clinical study is evaluating the safety, tolerability, and feasibility of
heterologous prime-boost regimen with therapeutic HPV DNA-based vaccine,
pNGVL4a-Sig/E7(detox)/HSP70, and TA-HPV vaccine (NCT00788164). In this
study, patients with HPV16-associated CIN3 will receive pNGVL4a-sig/E7(detox)/
HSP70 DNA vaccine and TA-HPV vaccine boost with or without imiquimod.
Although this study is still ongoing, the preliminary results of this study suggest
that this vaccine regimen can induce a localized immune response, which was
largely responsible for the therapeutic effects observed in target lesions (Yang et al.
2016; Maldonado et al. 2014). Another phase I clinical trial, which assessed the
efficacy and safety of various routes of administration of the pNGVL4a-CRT/E7
(detox) DNA vaccine in patients with HPV16-associated CIN2/3 was recently
completed (NCT00988559). Patients were vaccinated with pNGVL4a-CRT/E7
(detox) either through intradermal, intramuscular, or intralesional injection. In this
study, pNGVL4a-CRT/E7(detox) was shown to be well-tolerated by patients and
elicited the most robust immune response when administered via intralesional
injection (Alvarez et al. 2016). Many other clinical trials studying the efficacy of
various therapeutic HPV DNA-based vaccines have been completed
(NCT02139267) or are currently ongoing, including two early phase clinical studies
evaluating the safety and efficacy of GX-188E DNA vaccine (Kim et al. 2014)
(NCT02596243; NCT03444376) (for review see Yang et al. 2016). Additionally,
more than ten clinical studies evaluating the safety and efficacy of HPV DNA
vaccine VGX-3100 in patients with HPV-associated diseases have been completed
(NCT03499795; NCT03180684; NCT03721978; NCT01188850; NCT03185013;
NCT02163057; NCT00685412; NCT02172911; NCT03606213; NCT03439085)
or are ongoing (NCT03603808). One such study, led by Trimble et al. in collab-
oration with Inovio Pharmaceuticals, found that half of the patients with HPV16/18
CIN2/3 who received VGX-3100 showed histopathological regression of their
disease. This study is the first to demonstrate the therapeutic efficacy of VGX-3100
against HPV16/18-associated CIN2/3 as a potential alternative to surgical treatment
(NCT01304524) (Trimble et al. 2015).

Numerous therapeutic HPV DNA-based vaccines have been developed or are
under development for the control and treatment of HPV infections and
HPV-associated diseases. As aforementioned, there are many benefits to the use of
therapeutic HPV DNA-based vaccines and their adaptation in clinical studies has
become favorable as novel methods to improve their immunogenicity have been
generated and studied. Therapeutic HPV DNA-based vaccines also offer ample
opportunity for the application of combinational treatment regimens to enhance
vaccine potency. As described in Sect. 4.7, such as combinational regiments
include prime-boost vaccination strategies, combination with conventional or
standard-of-care cancer treatments such as chemotherapy and radiotherapy, as well
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as co-administration with different drugs (for review see Cheng et al. 2018). Thus,
therapeutic HPV DNA-based vaccines are highly advantageous in the treatment of
HPV infections and HPV-associated diseases, and continued efforts to develop
more immunogenic DNA vaccines or DNA vaccine regimens are warranted for the
amelioration of the global HPV-associated disease burden.

4.7 Combination Strategies

As briefly stated in Sect. 4.6, therapeutic HPV vaccines can be used in combination
with other therapies to improve vaccine potency and host immune response.
Combinatorial administration of therapeutic HPV vaccines along with established
cancer treatment methods such as chemotherapy and/or radiation therapy may offer
one method to improve the treatment of HPV-associated malignancies. Due to the
growing popularity of HPV DNA-based vaccines, combination regimens of ther-
apeutic HPV DNA-based vaccines have been explored in preclinical and clinical
studies. The continued development of therapeutic HPV DNA-based vaccines
largely relies on vaccine administration in combination with other treatment
strategies to create synergistic effects capable of mounting potent CD8+ T
cell-mediated immune responses (Cheng et al. 2018). For example, chemotherapy
and radiotherapy are known to induce the apoptosis of tumor cells. In turn, this
process releases HPV antigens into circulation where they can be more easily
“seen” and up-taken by DCs traveling through the bloodstream. To this end,
combination regimens of therapeutic HPV DNA-based vaccines in conjunction
with chemotherapy or radiation therapy have been used to improve vaccine
immunogenicity and demonstrated great potential. In preclinical studies, a thera-
peutic HPV DNA-based vaccine with calreticulin (CRT) fused to HPV16 E7
(CRT/E7) was administered in combination with chemotherapeutic agents cisplatin
and bortezomib. This combinatorial approach was shown to generate a strong
E7-specific CD8+ T cell responses in mice bearing an HPV16 E6/E7-expressing
tumors (TC-1 tumor model) (Kim et al. 2014) compared to mice treated with
CRT/E7 DNA vaccine only, or chemotherapy alone (Tseng et al. 2008a, b). Other
chemotherapeutic agents have also been tested in preclinical studies, including
5,6-dimethylxanthenon-4-acetic acid (Peng et al. 2011), epigallocathechin-3-gallate
(Kang et al. 2007), and 4′,5,7-trihydroxyflavone (Chuang et al. 2009) (for review
see Cheng et al. 2018). Another method to enhance therapeutic HPV vaccine
efficacy for the control and treatment of HPV-associated diseases is the combination
of treatment with radiation therapy. In one such study, DNA vaccine with CRT
linked to the modified form of HPV16 E7 antigen (CRT/E7(detox)) was adminis-
tered in combination with radiotherapy in TC-1 tumor-bearing mice. Mice treated
with CRT/E7(detox) and radiotherapy showed a significant increase in the number
of E7-specific CD8+ T cells and had significantly better antitumor effects against
E7-expressing tumors compared to mice treated with CRT/E7(detox) DNA vaccine,
or radiotherapy alone (Tseng et al. 2009). The combination of chemotherapy and/or
radiation therapy with therapeutic HPV vaccines has demonstrated promising
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antitumor results in preclinical studies and may offer significant benefits to patients
with HPV-associated diseases.

Another example of a combinational strategy employed to enhance the potency
of therapeutic HPV vaccines is prime-boost vaccination regimens. In previous
studies, heterologous prime with DNA vaccine followed by boosting with recom-
binant protein has been shown to elicit both potent CD8+ and CD4+ T cell
responses, as well as antibody responses. For example, in an ongoing clinical trial, a
total of 12 patients with HPV16+ CIN2/3 were administered a heterologous
DNA-prime-recombinant vaccinia vector-based boost vaccination regimen target-
ing HPV16 and HPV18 E6/E7 (NCT00788164). This prime-boost vaccination
regimen was found to be safe and tolerable in patients with HPV16+ CIN2/3
lesions. The vaccination regimen included intramuscular prime vaccination with a
DNA vaccine expressing HPV16 E7 (pNGVL4a-Sig/E7(detox)/HSP70), followed
by a boost with TA-HPV, a recombinant vaccinia boost expressing HPV16 and
HPV18 E6 and E7. This prime-boost vaccination strategy was also found to gen-
erate a more potent immune response than DNA vaccination alone (Cheng et al.
2018; Maldonado et al. 2014). Unfortunately, due to the risks associated with live
vaccinia virus, TA-HPV may not be a suitable for administering prime-boost
vaccination regimens in patients who are immune compromised (Peng et al. 2016).
Additional studies have shown the therapeutic efficacy of prime-boost regimens
using different recombinant proteins. For example, in a preclinical study, heterol-
ogous DNA-prime, TA-CIN protein boost was demonstrated to be safe and
well-tolerated in both naïve and tumor-bearing mice (Peng et al. 2016). In this
particular study, Peng et al. showed that heterologous DNA-prime with
pNGVL4aCRTE6E7L2 DNA vaccine and TA-CIN protein boost regimen was
capable of eliciting a more potent antigen-specific response than homologous DNA
or protein vaccination alone. Specifically, the TA-CIN boosting regimen was able
to generate an HPV16 L2, E6, and E7-specific immune response after heterologous
DNA prime, representing the therapeutic efficacy of this regimen.

In addition to preclinical studies, several clinical studies have been conducted to
evaluate the safety and efficacy of therapeutic HPV vaccines are prime-boost
vaccination regimens in human patients. Currently, several ongoing clinical studies
are testing the safety and tolerability of heterologous DNA prime vaccination with
TA-CIN protein boost. Including a phase II clinical trial in patients with HPV16+
Atypical Squamous Cells of Undetermined Significance (ASC-US), which will
evaluate the safety and tolerability of the prime-boost vaccination regimen with IM
injection of pNGVL4a-Sig/E7(detox)/HSP70 DNA vaccine followed by IM
TA-CIN protein boost (NCT03911076). In another phase I ongoing clinical study is
assessing the safety and feasibility of IM administration of pNGVL4aCRTE6E7L2
DNA vaccine prime, TA-CIN protein boost in patients with persistent HPV16+
ASC-US/LSIL (NCT03913117). While these studies are ongoing, the potential
therapeutic strategies of prime-boost vaccination regimens are promising and
warrant further clinical investigation. Table 1 (adapted from Yang et al. 2017) lists
several ongoing clinical trials evaluating the efficacy of various therapeutic HPV
vaccines.
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5 Conclusion

While HPV infections and HPV-associated diseases remain highly prevalent across
the globe, the development of effective, and accessible methods for the control of
HPV infections and HPV-associated diseases continue to pose a significant chal-
lenge for researchers, healthcare providers, and public health workers. The current,
commercially available prophylactic vaccines represent a significant triumph in
HPV research and public health; however, there is still an urgent need to improve
methods for the control of HPV-associated disease. Methods to improve HPV
prevention and the control of HPV-associated diseases include: (1) develop broader
vaccine coverage against oncogenic HPV types; (2) reduce vaccine-related costs;
(3) reduce minimum dose requirements; (4) improve vaccine stability; (5) make
prophylactic HPV vaccines more widely accessible; and (6) employ our current
understanding of the immunology of HPV infections to create successful and
efficacious therapeutic HPV vaccines. Numerous innovative strategies have been
employed in order to develop therapeutic HPV vaccines, including many which
have resulted in phase I, II, and III clinical trials. In order to best identify suitable
therapeutic HPV vaccine candidates for the control of established HPV infections
and HPV-associated lesions or disease, we must continue to devise and implement
clinical studies, and improve upon existing therapeutic strategies that have
demonstrated promising clinical translatability. Additionally, the control of
advanced HPV-associated diseases will likely necessitate further investigation into
the ideal combinatorial approaches using therapeutic HPV vaccines in conjunction
with conventional cancer therapies such as chemotherapy and radiation therapy.
Continued efforts to advance both prophylactic and therapeutic HPV vaccines will
undoubtedly relieve the global burden of HPV and help reduce incidence rates of
HPV infection in millions of people each year around the world.
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Epstein–Barr Virus-Associated
Post-transplant Lymphoproliferative
Disease

Richard F. Ambinder

1 Introduction

Epstein–Barr virus (EBV)-associated post-transplant lymphoproliferative disease
(PTLD) is recognized in solid organ and bone marrow or hematopoietic cell
transplant (hereafter referred to as BMT) recipients. The occurrence of these tumors
is important not only for the life-threatening problems they lead to but also for the
resultant limitations in approaches to therapeutic immunosuppression in the context
of transplant. This chapter begins with a brief overview of EBV and cancer and
EBV biology so as to put EBV-PTLD into context. This is followed by discussion
of EBV DNA monitoring in blood, approaches to treatment and approaches to
prevention.

2 EBV, Cancer, and Aspects of EBV Biology

When Burkitt called attention to a tumor common in young children in Africa, the
distribution of the tumor in equatorial Africa led to interest in the possibility that the
tumor might be virus associated (reviewed in (Balfour et al. 2019)). While efforts to
culture virus from tumor specimens were unsuccessful, tumor cells did grow in
culture, and examination of resultant cell lines by electron microscopy showed the
presence of virions with the morphology of herpesviruses. With time, it was
appreciated that the distribution of EBV was not the distribution of Burkitt lym-
phoma in equatorial Africa, but that EBV was ubiquitous infecting more than 90%
of adults. Further, it was appreciated that the virus is associated with many different
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cancers including lymphoproliferative diseases, carcinomas, and a mesenchymal
tumor (see Table 1). Among these many tumors, some are very consistently
associated with the virus (African BL), nasopharyngeal carcinoma, nasal NK/T cell
lymphoma, post-transplant lymphoproliferative disease), whereas others are vari-
ably associated with the virus (diffuse large B cell lymphoma, classic Hodgkin
lymphoma and gastric carcinoma) (Ambinder and Cesarman 2007). Although the
list of EBV-associated cancers is long, it is important to appreciate that the virus
infects most adults worldwide and is only rare associated with cancer (Young
et al. 2016).

Viral genomes packaged in virions are linear double-stranded DNA molecules
(Young et al. 2016). The viral genome is approximately 171 kb and codes for more
than 80 open-reading frames as well as many non-coding RNAs. B lymphocyte
infection involves an interaction between gp350/220, a viral envelope glycoprotein,
and CD21, a component of the complement receptor. The virion attaches and is
endocytosed. The nucleocapsid is released into the cytoplasm. The viral genome is
transported to the nucleus, where the ends of linear viral genome fuse to form a
closed circle.

There is an initial amplification of episomes (Hammerschmidt and Sugden
2013). Thereafter, the virus will remain latent (not producing virions), and some of
these latently infected cells will proliferate. The numbers of viral episomes per cell
remain approximately stable over many cell divisions. Replication of the viral
genome in these latently infected cells relies on a single viral protein, EBNA1, that
activates the viral origin of replication and allows cellular enzymes including the
cellular DNA polymerase to replicate the episome. In other cells, productive
infection will ensue with activation of lytic viral gene expression and the production
of linear viral genomes in a process that involves many viral replication enzymes
including a viral DNA polymerase. Most of the open-reading frames encoded by
the virus are expressed in the lytic program.

When resting B cells are infected in vitro, some of the B cells become
immortalized growing indefinitely in tissue culture as an EBV lymphoblastoid cell
line (LCL) (Thorley-Lawson 2001). In immunodeficient mice, LCL will grow as
EBV-driven human B cell tumors. There are nine viral proteins that are expressed:
six nuclear antigens and three latency membrane proteins. In genetic experiments,
no single viral protein is sufficient to generate an LCL. Rather coordinated
expression of five viral proteins is required. These are Epstein–Barr nuclear antigen
1 (EBNA1), EBNA2, EBNA3A, EBNA3C, and latency membrane protein 1
(LMP1). EBNA1 is a sequence-specific DNA-binding protein required for the
maintenance of the viral episome. EBNA2 is a transcriptional transactivator that
leads to expression of a variety of cellular and viral genes. LMP1 is a member of the
tumor necrosis factor receptor (TNFR) superfamily. It is an integral membrane
protein and is constitutively activated leading in turn to the activation of NF-kB. In
addition to proteins, the virus expresses many non-coding RNAs. These include
two small polymerase III transcripts, EBER 1 and 2. Although the functions of
these transcripts remain uncertain, their abundance in latency, as high as 107
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Table 1 EBV-associated cancers

Cancer Tissue EBV association Comments

BL B lymphocytes Nearly 100% in equatorial
Africa, *20% elsewhere

The tumor is much
more common in
equatorial Africa, and
it appears to be
associated with
malaria

Hodgkin lymphoma B lineage cells 20–75% in the general
population

The EBV association
is much greater in
Africa, Latin America,
and parts of Asia

PTLD B lymphocytes See text

AIDS primary central
nervous system lymphomas

B lymphocytes Nearly 100% Typically associated
with profound
immunocompromise,
end-stage HIV disease

Other AIDS non-Hodgkin
lymphomas

B cells Varies by histology but
approximately 40% overall

HIV Hodgkin lymphoma B lineage cells Approximately 90%

AIDS primary effusion
lymphoma

B cells Approximately 80% All are coinfected
with KSHV/HHV8

Lymphoma in inherited
immune deficiency disorders

B cells Nearly 100%

Nasal NK/T cell lymphoma NK/T
lymphocytes

Nearly 100% The incidence of the
tumor varies with
geography, much
more common in parts
of Asia

Nasopharyngeal carcinoma Epithelium Nearly 100% Much more common
in certain populations,
particularly southern
Chinese

Gastric carcinoma Epithelium Approximately 10% The incidence of the
tumor varies
substantially with
geography, but the
EBV association is
relatively constant

Leiomyosarcoma Mesenchymal Nearly 100% Occurs only in
profoundly
immunocompromised
populations (HIV,
post-transplant)
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copies/cell by some estimates has made them important in the detection of latent
infection by in situ hybridization (Wu et al. 1990; Ambinder and Mann 1994).

EBV is transmitted person-to-person through saliva and infects B lymphocytes
in the oral mucosa (Cohen 2015). Primary infection in childhood is usually
asymptomatic. In adolescence and adulthood, primary infection is sometimes
associated with the syndrome of infectious mononucleosis (Balfour and Verghese
2013). Some of the latently infected B lymphocytes proliferate, leading to the
spread of infected B cells throughout the B cell compartment. Immune response
follows and ultimately prevents uncontrolled EBV-infected B cell proliferation
(Thorley-Lawson et al. 2013). Cytotoxic T-lymphocyte responses to viral antigens
limit the production of virions and virus-driven B cell proliferation. In healthy
individuals, EBV genomes are harbored in a tiny percentage of resting B cells
(Yang et al. 2000; Thorley-Lawson et al. 2013).

These viral proteins modulate a multitude of complex cellular pathways
involving notch and NF-jB among others. They drive cell proliferation and confer
resistance to apoptosis.

The B cells that harbor EBV after the cellular immune response do not express
the viral proteins that drive the proliferation of LCLs. They are resting memory B
cells that are able to evade immune surveillance in part because they do not express
the antigens commonly targeted by cytotoxic T cells (Hadinoto et al. 2008). Peri-
odic activation of viral lytic gene expression is presumed to lead to intermittent
virion production and viral shedding that occurs throughout the lifetime of the host.

The humoral response to acute infection is the development of IgM and later IgG
responses to virus capsid antigen (VCA). There are also IgG responses to early
antigens and the EBNAs. However, the IgM response to VCA and the early anti-
gens wane, the IgG response to VCA and EBNA. GP350/220 neutralizing anti-
bodies may hinder the spread of infection resulting from virion production and
inhibit superinfection with other strains of virus, but humoral immunity is thought
to have minimal effect on latently infected cells insofar as the target antigens are not
expressed on the surface of latently infected cells. The T cell response to viral
antigens in healthy volunteers is very strong targeting with latency antigens
EBNA3A, EBNA3B, and EBNA3C being targeted as well as lytic antigens.
EBNA1 evades CD8 cytotoxic T cells because the protein contains a cis-acting
repetitive glycine-alanine sequence which inhibits MHC class I presentation in part
by inhibition of translation of the protein or antigen processing (Levitskaya et al.
1995; Apcher et al. 2010).

3 PTLD

PTLD refers to lymphomas that occur following organ or hematopoietic cell
transplantation (Dierickx and Habermann 2018). Many of these lymphomas are
EBV-associated, but the association is not a requirement for the diagnosis of PTLD.
The histologic appearance of PTLD can be quite variable. The World Health
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Organization recognizes non-destructive PTLD, polymorphic PTLD, monomorphic
PTLD, and Hodgkin lymphoma-like PTLD (Swerdlow et al. 2016). Note that some
lymphoma types are not considered post-transplant lymphoma even if they occur in
a patient with a history of transplantation. For example, mantle cell lymphoma or
follicular lymphoma when they occur in a patient after transplantation are not
classified as PTLD. Among PTLD types, the non-destructive and polymorphic
cases are generally not associated with chromosomal translocations and other
cytogenetic abnormalities. Often there is a broad pattern of viral latency gene
expression that resembles the patterns in EBV immortalized LCLs. This expression
pattern is variously referred to as “latency 3” or the “growth program” and includes
expression of EBNA2, 3A, 3B, and 3C (Rowe et al. 1992, Thorley-Lawson and
Gross 2004). In tumors that express the full spectrum of latency genes, these viral
genes appear to be the major force driving proliferation (Vereide and Sugden 2011).
The EBNA3 proteins are especially good targets for EBV-specific cytotoxic T cells
and tumors that express these proteins are almost never seen except in profoundly
immunocompromised patients.

4 Risk Factors

PTLD can occur at any time after transplant but usually occurs within the first year
(Luskin et al. 2015). The earlier a lymphoma occurs, the more likely it is to be
EBV-associated. In one series, PTLD in the first year was 84% EBV-associated,
whereas PTLD occurring later was only 57% EBV-associated (Luskin et al. 2015).
Among the factors associated with increased risk for PTLD in transplant, recipients
are EBV-seronegativity (Caillard et al. 2006; Kasiske et al. 2011; Sampaio et al.
2012). Primary EBV infection in the post-transplant period is a major risk factor.
Many reports have identified age as a risk factor for PTLD but insofar as the
youngest patients are most likely to be seronegative, age, and seronegativity which
are confounded and whether age is an independent risk factor which is not clear.
Pharmacologic immunosuppression compromises the ability of EBV-naïve patients
to establish an immune response.

PTLD in solid organ transplant recipients and BMT recipients differs in several
regards. First in solid organ transplant recipients, most PTLD develops in recipient
B cells (Swerdlow et al. 2017). In allogeneic BMT recipients, most PTLD develops
in donor B cells. In solid organ transplant recipients, the risk of PTLD remains
substantial for many years, whereas in BMT patients, the risk is almost exclusively
within the first six months (Al Hamed et al. 2019). The explanation for this dif-
ference may relate to the duration of immunosuppression. Some solid organ
recipients often continue on immunosuppression indefinitely.

Among solid organ transplant recipients, lung, heart, heart/lung, and gut,
transplants are associated with the highest incidences of PTLD among organ
transplant recipients (Jagadeesh et al. 2019). With the use of calcineurin inhibitors,
there was initially an increase in the incidence of PTLD. When drug level

Epstein–Barr Virus-Associated Post-transplant … 201



monitoring became available, average calcineurin doses fell, and there was a
concomitant decline in the incidence of PTLD. Many reports indicate that T cell
depletion, particularly with monoclonal antibody therapy, targeting CD3 is asso-
ciated with increased risk.

Among BMT recipients, risk factors include age of the patient, the use of
reduced intensity conditioning, degree of HLA mismatch, seropositivity mismatch
between donor and recipient, use of umbilical cord blood, and particular preparative
regimens or graft vs host disease prevention strategies (Al Hamed et al. 2019).
Antithymocyte globulin in particular is associated with a high rate or PTLD
(Brunstein et al. 2006). A variety of T cell depletion strategies have been associated
with PTLD—but approaches that deplete B and T cells such as elutriation are
associated with lower risk of PTLD than approaches that selectively deplete T cells
(Landgren et al. 2009). With the use of post-transplant cyclophosphamide, PTLD is
vanishingly rare—even with elderly recipients, reduced intensity conditioning,
haploidentical or mismatched unrelated donors, or the use of ATG as part of the
preparative regimen (Bolanos-Meade et al. 2012; Kanakry et al. 2013; Kasamon
et al. 2017; Imus et al. 2019). The explanation for the absence of PTLD with
post-transplant cyclophosphamide could relate to improved T cell reconstitution or
to the impact of cyclophosphamide on B cells.

5 Virus Monitoring

Monitoring EBV DNA in whole blood, mononuclear cells, or plasma has been used
to guide immunosuppression or pre-emptive interventions (Table 2) (Ru et al.
2018). It should be noted that although publications commonly refer to “viral load”
and “viremia,” what is being measured are viral genomes. Viral genomes detected
in plasma may be from virions, i.e., infectious virus particles or may be DNA
released from cells that is not packaged in infectious particles. Latently infected
tumor cells that undergo apoptosis release tumor cell DNA but not virion DNA. The
distinction is important because immuno-suppressed patients may have high levels
of virions in plasma but not have tumor, whereas patients with EBV-associated
tumors may have high levels of viral DNA but no virions. When plasma DNA is
compared to whole blood cell DNA, plasma DNA has better sensitivity and
specificity for PTLD (Tsai et al. 2008). In a recent series from Johns Hopkins, EBV
in plasma DNA was more useful than in PBMC DNA for diagnosing
EBV-associated disease including malignancies—but even so the majority of
patients with markedly elevated plasma EBV DNA had no underlying
EBV-associated disease (Kanakry et al. 2016). Measurement of intracellular viral
DNA has a major shortcoming. Treatment with rituximab may clear the blood of
measurable B lymphocytes and measurable intracellular EBV without any impact
on tumor (Yang et al. 2000).
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6 Treatment

The details of treatment are dictated in part by the kind of transplant (hematopoietic
versus solid organ; if solid organ, the organ(s) transplanted), the location and extent
of the disease, the subtype of the disease, and patient comorbidities. General
approaches include withdrawal or reduction of immunosuppression, surgical exci-
sion or radiation, cytotoxic chemotherapy, treatment with monoclonal antibodies,
particularly those targeting CD20 or other cellular antigens, antiviral agents, and
EBV-specific T cells or other adoptive cellular therapies. The details of treatment
are beyond the scope of this chapter. However, there are some general principles to
be noted.

Reduction or withdrawal of immunosuppression is often a component of treat-
ment. In the setting of renal transplant where the transplanted organ can be sacri-
ficed and the patient’s life still saved, this was a mainstay of treatment in the past.
With a variety of alternative treatments, there is an reluctance to risk sacrificing the
transplanted organ, and complete withdrawal of immunosuppression is less com-
monly used. Rituximab, a monoclonal antibody targeting CD20-positive B cells, is
commonly used (Burns et al. 2020). Recently other monoclonal antibodies or
antibody conjugates have been used including brentuximab vedotin to target CD30
or CD38 sometimes expressed in PTLD (Pearse et al. 2019; Chaulagain et al. 2020).
These antibodies may be used alone or in combination with cytotoxic chemother-
apy such as cyclophosphamide, doxorubicin, vincristine, and prednisone (Caillard
and Green 2019).

With regard to reduction or withdrawal of immunosuppression, it should be
noted that there is considerable uncertainty. For example, steroids are commonly
part of immunosuppression and are often tapered or stopped in response to the
development of PTLD. However, steroids are part of many front line lymphoma
treatment regimens. When withdrawal or reduction of immunosuppression fails, it
is common to begin treatment with lymphoma regimens that include prednisone

Table 2 Measuring EBV DNA in blood

Specimen
type

Derivation of the EBV DNA being
measured

Comment

Plasma Virions, DNA released from latently
infected cells including tumor cells
that do not circulate

Viral DNA will often be detected in
plasma even when there are no B
lymphocytes in the circulation such
as in patients treated with rituximab

Lymphocytes Latently infected lymphocytes,
lytically infected lymphocytes

Viral DNA will sometimes not be
detected even when there is tumor
progression

Whole blood All of the above More sensitive than either plasma or
lymphocyte measurement, but less
specific for EBV-associated disease
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(Burns et al. 2020). Similarly, sirolimus and everolimus are widely used to prevent
graft rejection or graft vs host disease and may be stopped or dose-reduced in
response to the development of PTLD. However, these mTOR inhibitors have
activity against some lymphomas, and there is evidence that this class of drugs may
be useful in the treatment of Kaposi sarcoma, another opportunistic neoplasia seen
in the post-transplant setting (Stallone et al. 2005; Krown et al. 2012). Changing
immunosuppressive regimens to include an mTOR inhibitor have been associated
with tumor regression in case reports (Cullis et al. 2006; Nanmoku et al. 2019).
Thus, whether stopping or dose-reducing either steroids or mTOR inhibitors is
helpful in the treatment of PTLD is not known.

There are also EBV-targeted therapies. These include autologous EBV-specific
cytotoxic T cells (Kim et al. 2017), “off the shelf” third party partially
HLA-matched cytotoxic T cells (Prockop et al. 2019), and chemotherapies meant to
induce EBV lytic infection so as to sensitize EBV harboring cells to killing by
ganciclovir (Hui et al. 2016). Although there have been successes reported with
each of these approaches, none are standardly accepted as front line therapies.

Outcomes differ among solid organ transplant recipients as a function of
transplant type (Jagadeesh et al. 2019). Cardiac and lung transplant recipients with
PTLD have the worst five year overall survival.

7 Prevention

There are many approaches to prevention. Avoiding certain immunosuppressive
approaches or regimens that are particularly likely to lead to PTLD is standard.
Thus, CD3 targeted antibody therapies are now rarely used for the prevention of
graft rejection. Similarly, aggressive T cell depletion to prevent graft vs host disease
in hematopoietic transplantation is less commonly used than in the past. As noted
above, the incidence of PTLD in hematopoietic cell transplantation using
post-transplant cyclophosphamide is vanishingly low.

Because EBV-seronegative transplant recipients are at the highest risk for PTLD,
there has been interest in vaccination of seronegative recipients prior to trans-
plantation. There are several vaccine efforts that are ongoing. These have recently
been reviewed (Balfour et al. 2019). Several different strategies have been inves-
tigated that might be relevant for preventing EBV-PTLD. One involves the EBV
gp350 antigen. Antibodies to this antigen are virus neutralizing and might prevent
or reduce the severity of primary infection. An alternative strategy is to immunize
with CD8 T cell epitopes from the immunodominant EBNA proteins in hopes of
generating cellular immunity that might protect against infection. None of these
approaches is very close to approval but both are likely to be especially relevant to
seronegative potential solid organ transplant recipients awaiting transplantation.
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HTLV-1 Replication and Adult T Cell
Leukemia Development

Chou-Zen Giam

1 Introduction

Human T-cell leukemia virus type 1 (HTLV-1) is a complex human delta retrovirus
that infects an estimated 10–20 million people worldwide (Gessain and Cassar
2012). HTLV-1 infection is mostly asymptomatic, and HTLV-1 viral RNAs or
proteins are virtually undetectable in the blood of infected persons. Most infected
cells harbor a single copy of the proviral DNA, and the proviral DNA load (PVL) is
used to quantify the extent of HTLV-1 infection. Via mechanisms not fully
understood, 3–5% of HTLV-1-infected individuals develop an intractable
leukemia/lymphoma of CD4+ T cells known as adult T cell leukemia/lymphoma
(ATLL, and abbreviated as ATL hereafter) after a latency period of 3–6 decades
(Taylor and Matsuoka 2005; Matsuoka and Jeang 2007). HTLV-1 also causes
several inflammatory and immune-mediated diseases, most notably
HTLV-1-associated myelopathy (HAM)/tropical spastic paraparesis (TSP), and to a
lesser extent, HTLV-1 uveitis, infective dermatitis, myositis, arthritis, and more
recently, bronchiecstasis in a large percentage of adults of the indigenous people in
Central Australia (Einsiedel et al. 2016; Gruber 2018). Determinants for ATL and
HAM/TSP development include routes of infection (breastfeeding versus blood
transfusion), HLA subtypes, and proviral DNA loads.

The leukemic cells of ATL are monoclonal and in most cases harbor a single
copy of HTLV-1 proviral DNA at random chromosomal integration sites. Two viral
regulatory proteins, Tax and HBZ, encoded by the sense and “antisense” viral
transcripts, respectively, are thought to drive ATL oncogenesis (Matsuoka and
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Jeang 2007; Matsuoka and Green 2009). Tax is a potent activator of HTLV-1 viral
transcription. It also exerts pleiotropic effect on cell signaling, activating
IKK-NF-jB, JNK, mTOR, and other signaling pathways. Importantly, Tax is a
strong clastogen: Its expression induces DNA double-strand breaks and represses
DNA damage repair (Majone et al. 1993; Giam and Semmes 2016; Marriott and
Semmes 2005). HBZ, in contrast, antagonizes many activities of Tax and promotes
cell proliferation (Ma et al. 2016). While Tax plays an important role in leukemia
development, its expression is frequently lost from ATL cells (in more than 50% of
ATL cases). In contrast, the expression of HBZ is ubiquitous (Kataoka et al. 2015).
The loss of Tax expression from ATL cells suggests that the oncogenic effects of
Tax are likely exerted early during ATL development, with HBZ playing a role in
promoting ATL proliferation (Satou et al. 2006, 2008, 2011; Arnold et al. 2008).

ATL is exceptional among hematological malignancies for its extensive geno-
mic instability, a feature that has been fully borne out by an integrated
whole-genome sequencing (WGS), transcriptomic, and targeted resequencing
analysis of ATL, which has identified on the average 59.5 structural variations/ATL
sample and 7.9 point mutations/106 bases of ATL genome, almost 2–3 times of
those of multiple myeloma (21 chromosomal rearrangements/sample and 2.9 point
mutations/106 bases) (Chapman et al. 2011). The WGS analysis has revealed fre-
quent gain-of-function mutations in PLCG1 (phospholipase Cc1), PKCB (protein
kinase Cb), CARD11, DLG1, VAV1, CD28, IRF4, STAT3, Notch1, etc., in ATL
genomes (Kataoka et al. 2015). Many of the alterations converge on genes involved
in the T/B cell receptor-NF-jB and the CD28 co-stimulatory signaling pathways,
and genes responsible for T cell trafficking and immune surveillance. Interestingly,
many of the ATL significant genes show remarkable functional overlap with the
Tax interactome (Kataoka et al. 2015).

Although the molecular basis for the genomic instability of ATL is not fully
understood, earlier studies have implicated a causal link to Tax, which represses
DNA damage repair (DDR), induces DNA double-strand breaks (DSBs), and dis-
rupts mitotic processes (Majone et al. 1993; Marriott and Semmes 2005; Majone
and Jeang 2000; Semmes et al. 1996). Given its mutagenic/clastogenic effects, Tax
likely acts as an initiator of leukemia development while HBZ serves as a promoter
of ATL cell proliferation. It should also be noted that the full picture of the roles of
Tax and HBZ in leukemogenesis defies simple caricature. By virtue of its ability to
activate multiple signaling pathways, especially IKK-NF-jB, Tax can also promote
proliferation, survival, apoptosis and senescence. Likewise, HBZ has been reported
to induce genomic instability recently. As might be expected, the activities of these
two viral regulatory proteins require interaction with a large assembly of cellular
factors as elaborated below.
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2 HTLV-1 Infection and Replication

2.1 Epidemiology of HTLV-1 Infection

HTLV-1 is endemic in specific regions of the world, including Kyushu and Oki-
nawa in Japan, the Caribbean region, parts of South America, sub-Saharan Africa,
Middle East, Papua New Guinea and Australia. The virus is transmitted mainly by
breastfeeding, and to a lesser extent, via sexual intercourse and exposure to
cell-containing infected blood components through transfusion or needle sharing. In
agreement with the epidemiological findings, HTLV-1 infection in cell culture is
strictly dependent on cell-to-cell contact. Cell-free HTLV-1 infection is virtually
undetectable, and the difference in efficiency between cell-mediated and cell-free
HTLV-1 infection is in the order of 105 to 1 (Mazurov et al. 2010).

2.2 Diagnosis of HTLV-1 Infection

Clinically, HTLV-1 infection is diagnosed by using ELISA or chemiluminescence
microparticle immunoassay (CMIA) to detect the presence of serum/plasma anti-
bodies against inactivated viral lysates or gp21TM and gp46SU proteins. ELISA- or
CMIA-positive blood samples are further tested by western blotting and/or PCR to
confirm and differentiate between HTLV-1 and HTLV-2 infections. Since HTLV-1
mRNA or protein is not detectable in the blood, real-time PCR of the peripheral
blood mononuclear cells (PBMCs) is used to quantify proviral DNA loads (PVLs)
in infected persons. Because most infected cells in PBMCs harbor one copy of the
proviral DNA, PVL serves as an indicator of the abundance of infected cells in the
PBMCs of an infected person and can range from 0.01 to 50% or higher. A higher
PVL reflects the mitotic expansion of infected cells and is associated with devel-
opment of HTLV-1-related diseases including ATL and HAM/TSP.

2.3 HTLV-1 Tropism

HTLV-1 uses a ubiquitous cell surface molecule, glucose transporter 1 (GLUT1), as
the receptor for virus entry (Manel et al. 2003). In addition, neuropilin 1 (NRP1),
the co-receptor of vascular endothelial growth factor (VEGF) receptors, functions
as a co-receptor for HTLV-1 (Lambert et al. 2009). NRP1’s relation to GLUT1
appears to be similar to that of HIV co-receptors: CXCR4 and CCR5 to HIV
receptor CD4. NRP1 forms a complex with GLUT1 and co-localizes with HTLV-1
Env on the cell surface, and its over-expression in deficient cells augments HTLV-1
infection. Heparan sulfate proteoglycans also contribute to viral infection, likely by
serving as a viral attachment factor that facilitates NRP1-GLUT1-gp46SU interac-
tion (Lambert et al. 2009; Jones et al. 2005).
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In vivo, HTLV-1 is found primarily in CD4+ T cells. It also infects CD8+ T
cells, monocytes/macrophages, and dendritic cells (DCs). While infection of T cells
by HTLV-1 requires cell-to-cell contact, it has been shown that DCs exposed to
cell-free HTLV-1 particles not only become productively infected themselves (cis-
infection), but also rapidly transmit the virus to CD4+ T cells (trans-infection)
(Jones et al. 2008; Jain et al. 2009; De Castro-Amarante et al. 2015) (reviewed in
Gross and Thoma-Kress 2016). This may explain the in vivo tropism of HTLV-1.
As GLUT1 is broadly expressed, HTLV-1 infection in cell culture can occur in a
wide variety of cells including T and B lymphocytes, monocytes, endothelial cells,
and fibroblasts.

Cell-to-cell transmission of HTLV-1 occurs through the “virological synapse”
formed in part through LFA1 and ICAM1 (Barnard et al. 2005; Nejmeddine et al.
2005; Igakura et al. 2003). Tax expression and ICAM1 engagement cause the
microtubule polarization associated with the virological synapse. Tax is also
localized to the region of the cell-cell contact formed between an HTLV-1-
producing cell and its target cell, and at the vicinity of the microtubule-organizing
center associated with the cis-Golgi (Nejmeddine et al. 2005, 2009). Interestingly,
HTLV-1 viral particles were found to be stored as carbohydrate-rich, biofilm-like
extracellular structures that rapidly attached to target cells for virus transmission
(Pais-Correia et al. 2010).

2.4 HTLV-1 Genome Organization, Gene Expression,
and Regulation

The genomic organization of HTLV-1 is shown in Fig. 1. In addition to Gag, Pol,
and Env, HTLV-1 encodes six viral accessory proteins, Tax, Rex, p12I, p13II, p30II,
and HTLV-1 basic zipper protein (HBZ) from partially overlapping open reading
frames (ORFs) in both directions of the viral genome. For a more recent review on
p12I, p13II, p30II, the readers are referred to this article (Edwards et al. 2011). P12I,
an ER and Golgi membrane-associated protein, plays a role in enhancing T-cell
activation and signaling. It also counteracts innate and adaptive immune responses
by binding MHC class I heavy chain, targeting it for degradation (Pise-Masison
et al. 2014); and down-regulates ICAM-1 and ICAM-2, thereby mitigating autol-
ogous natural killer cell cytotoxicity for the infected CD4+ T cells (Banerjee et al.
2007). Interestingly, the proteolytic cleavage product of p12I, p8, localizes to the
cell surface where it increases the formation of cellular conduits and facilitates viral
transmission (Van Prooyen et al. 2010; Galli et al. 2019). The p13II is an inner
mitochondria membrane protein with anti-proliferation activity (Hiraragi et al.
2005). It also becomes ubiquitinated in the presence of Tax and translocates to the
nucleus where it disrupts Tax-CBP/p300 interaction and inhibits viral and cellular
transcription (Andresen et al. 2011). Its role in HTLV-1 infection and replication
cycle is not fully defined. The anti-proliferation activity of p13II appears to be
related to its interaction with farnesyl pyrophosphate synthetase (Lefebvre et al.
2002) and increased sensitivity to Ca++-mediated stimulation and enhanced
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C2-ceramide-induced apoptosis of p13II-expressing T lymphocytes (Silic-Benussi
et al. 2004). P30II is a nuclear protein that functions as a post-transcriptional
modulator of viral replication. Data suggest that p30II retains the doubly spliced
Tax/Rex mRNA in the nucleus and thereby down-modulates viral gene expression
and particle production by reducing the levels of Tax and Rex (Edwards et al. 2011;
Nicot et al. 2004). Rex regulates the transport of unspliced and singly spliced
mRNA, while Tax, the viral transcriptional activator, is thought to be one of the
major oncoproteins of HTLV-1. Tax expression is sufficient to effect cellular
transformation in rodent fibroblasts and in primary human lymphocytes, and
expression of Tax through a variety of promoters induces neoplasia in transgenic
mice (discussed below). In promoting viral replication, HTLV-1 Tax interacts with
key regulators of cell signaling pathways, and these interactions ultimately perturb
several basic cellular processes, many or all of which contribute to leukemia
development. The major antisense HBZ mRNA (spliced HBZ, sHBZ) spans the
open sequence between the env and the tax/rex ORFs. A minor unspliced HBZ
transcript (usHBZ) is also made. Both sHBZ and usHBZ mRNAs encode basic
domain–leucine zipper proteins with minor differences in their respective NH2-
termini, and both forms of HBZ have been shown to negatively regulate Tax
trans-activation (Yoshida et al. 2008) (see Sect. 4.1). Importantly, the spliced HBZ
protein and RNA are expressed in all ATL cells and can stimulate cell proliferation
(Matsuoka and Green 2009), and CRISP-Cas9-mediated deletion of HBZ gene
causes ATL cells to cease proliferation (Nakagawa et al. 2018). A schematic
summarizing the roles of Tax, Rex, and HBZ in viral replication is shown in Fig. 2.

Fig. 1 Genomic organization of HTLV-1 proviral DNA and viral mRNA trasnscripts. The open
reading frames for Gag, Pro, Pol, Env, Tax, Rex, p12I, p30II, p13II, and HBZ genes are as
indicated (Courtesy of Dr. Patrick Green)
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2.5 Models for Studying HTLV-1 Infection

2.5.1 HTLV-1 Infection in Cell Culture
HTLV-1 infection in cell culture is achieved by co-cultivation of target cells
including naïve peripheral blood mononuclear cells (PBMCs) and cells of established
cell lines together with HTLV-1-producing cells that have been mitotically inacti-
vated by c-irradiation or DNA damaging agents such as mitomycin C (Anderson
et al. 2004; Derse et al. 2004). MT-2, a human T-cell line chronically produces
HTLV-1 particles and HEK293 cells transfected with an infectious molecular clone
of HTLV-1 have been routinely used as sources of HTLV-1 (Anderson et al. 2004;
Miyoshi et al. 1981). Cell-free infection using VSV G-pseudotyped viral particles
(Derse et al. 2001) or using DCs as an intermediary to transmit viral particles has also
been reported (Jones et al. 2008). As the efficiency of HTLV-1 infection is poor and
the detection of newly infected cells is technically challenging, studies of the out-
come of HTLV-1 infection often involve either reporter cell lines or long-term culture
of infected PBMCs with immortalization/transformation of virus-infected primary

Fig. 2 The balance between Tax and HBZ expression regulates the outcome of HTLV-1
infection. Proviral integration sites and host transcription factors availability determine the levels
of Tax and HBZ expression in infected cells. Most HTLV-1-infected cells express Tax and Rex
strongly. Through the trans-activation and RNA export activities of Tax and Rex, HTLV-1
structural proteins are abundantly expressed and viral particles are produced. In these cells, Tax not
only activates viral transcription, but also constitutively activates NF-jB, triggering cellular
senescence or apoptosis. In a small fraction of HTLV-1-infected cells, Tax expression is low,
intermittent, or silenced. When the levels of Tax/Rex expression are low, LTR trans-activation and
senescence induction by Tax, and viral mRNA nuclear export by Rex are inhibited by HBZ. As
such, no viral structural proteins are expressed and these cells undergo mitotic expansion possibly
driven by both Tax and HBZ
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CD4+ T cells as the experimental end-point (Anderson et al. 2004). The early events
of viral infection, especially in primary T cells, have not been examined in depth. It
has been shown that ATL and HTLV-1-infected cells overexpress CADM1 (cell
adhesion molecule 1)/TSLC1 (tumor suppressor in lung cancer 1) (Sasaki et al.
2005), and CD4+CADM1+ cells carry 65% of proviral copies in the peripheral blood
of infected individuals (Manivannan et al. 2016). This cell surface marker may afford
a means to enrich HTLV-1-infected primary T cells for an in-depth analysis of the
early events of viral replication.

2.5.2 HTLV-1 Infection in Humanized Immune-Deficient Mice
Non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice and
NOD/SCID/IL2Rc-null (NSG) mice engrafted with human peripheral or bone
marrow hematopoietic stem cells have been used in the study of HTLV-1 infection.
Tezuka et al. have established a system where NSG mice engrafted by intra-bone
marrow injection of human CD133 + hematopoietic stem cells were infected by
HTLV-1 via the injection of c-irradiated MT-2 cells (Tezuka et al. 2014). Four to
five months after infection, two of the eight humanized mice developed ATL-like
leukemic conditions including lymphocytosis of CD4+ T cells in the periphery,
initial proliferation of both CD4+ CD25- and CD4+ CD25+ T cells, followed by the
appearance of atypical lymphocytes with lobulated nuclei resembling the
ATL-specific flower cells and dramatic expansion of specific and dominant CD25+
CD4+ T cell clones. This system recapitulated many of the pathological features of
HTLV-1 infection and ATL development and has been used recently to study the
roles of p12II and p8 in HTLV-1 replication and pathogenesis (Galli et al. 2019) and
the nature of the HTLV-1 provirus (Katsuya et al. 2019). A similar system gen-
erated by injecting human umbilical cord stem cells into the livers of neonatal NSG
mice has been used to demonstrate that the envelope glycoproteins of HTLV-1 and
HTLV-2 were responsible for the lymphoproliferation of CD4+ and CD8+ T cells,
respectively (Huey et al. 2018).

2.5.3 HTLV-1 Infection in Rabbits
Of the animal models of HTLV-1 infection, the rabbit model is perhaps the most
amenable to experimentation, although none of the human diseases associated with
HTLV-1 infection could be recapitulated with the model (Panfil et al. 2013; Dodon
et al. 2012). With the rabbit model, Li et al. have shown that the Tax/Rex mRNA
levels in PBMCs peak one week after inoculation of rabbits with c-irradiated
HTLV-1-producing cells (Li et al. 2009). They then rapidly declined to low levels
when the infection progressed beyond the second week. As might be expected,
Gag-Pol mRNA expression is coincident with, but at levels that are approximately
¼ that of the levels of Tax/Rex mRNA, and became mostly undetectable 2–3 weeks
after infection. By contrast, HBZ mRNA levels were low initially, but slowly
increased and stabilized at 4 weeks and beyond. This is followed by a rise in
proviral DNA loads that mostly peaked at 6 weeks after inoculation. These results
suggest that immediately after HTLV-1 infection, there is a strong selective pres-
sure to silence viral gene expression, and only infected cells expressing Tax/Rex
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and HBZ at low and steady levels, respectively, persist. Whether the rapid decline
in Tax/Rex and Gag-Pol expression soon after infection is due solely to the elim-
ination of infected cells by cytotoxic T lymphocytes (CTLs) is unclear. As detailed
below, the senescence/cell cycle arrest triggered by Tax may play a role in selecting
for infected cells that express viral genes minimally or intermittently.

2.6 Clonality of HTLV-1-Infected T Cells

2.6.1 HTLV-1 Clonality and Clone Abundance in Natural
Infection

Longitudinal studies of newly infected seroconverters and asymptomatic carriers
(ACs) have indicated that the clonality of HTLV-1-infected T cells is heterogeneous
and unstable in initial infection (Tanaka et al. 2005). Analyses of pre-diagnostic
PBMCs (3–8 years prior to ATL onset) showed that prior to the onset of ATL, there
was a significant rise in PVLs. In one ATL case for which both leukemic and
pre-diagnostic samples existed, pre-leukemic cells harboring the same integrated
provirus as the leukemic cells could be detected as early as 2, 5, and 8 years prior to
ATL diagnosis, supporting the notion that clonal expansion, selection, and evolu-
tion drive ATL development (Okayama et al. 2004). A US National Cancer Institute
study of HTLV-1 infection in Jamaica followed a group of three children who
acquired HTLV-1 perinatally (Umeki et al. 2009). The study spanned a period of
more than a decade and indicated that HTLV-1 PVLs were variable (102–103

copies/105 PBMCs) in ACs. Some of the infected cell clones persisted for years.
However, proviral integration patterns continued to evolve over time, indicating de
novo viral infection in ACs. Importantly, two unique cell clones in one subject
underwent significant expansion a decade or longer after the initial infection,
causing PVLs to increase more than 40 fold (from 3 � 103–1.3�104 copies/105

PBMCs). While the clonal expansion did not result in HAM/TSP or ATL, lym-
phadenopathy, seborrheic dermatitis, and hyperreflexia were observed in the subject
(Umeki et al. 2009), supporting the notion that a higher PVL correlates with a
greater risk of disease development.

HTLV-1 clones that persist in chronically infected persons show little detectable
Tax mRNA or protein expression in vivo and ex vivo, and silencing of Tax
expression due to 5′ LTR methylation, 5′ LTR deletion, or nonsense mutations
within its coding sequence is correlated with the expansion of malignant T cells
(Takeda et al. 2004; Taniguchi et al. 2005). The 3′ region of the viral genome and
the 3′ LTR, however, remain largely intact and unmethylated, thus favoring HBZ
expression (Taniguchi et al. 2005). In vitro culture of infected but Tax-negative T
cells from donors induces Tax expression, but clones that remain Tax-negative in
culture are more abundant (Niederer and Bangham 2014).

High-throughput DNA sequencing has been used to characterize the chromo-
somal integration sites of HTLV-1 proviral DNA and the clone abundance of each
integrated provirus in ACs, HAM/TSP, and ATL patients (reviewed in Niederer and
Bangham 2014). These studies have revealed in ACs and HAM/TSP patients a
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large number of distinct proviral integration sites (>104) in each host and a large
majority of infected cells harbor a single integrated provirus (Cook et al. 2012).
This contrasts with ATL (91%) where often a predominant and malignant T cell
clone containing a single provirus is detected (Cook et al. 2014). Proviral clones
detected by ligation-mediated polymerase chain reaction (LM-PCR in ACs) ranged
in clone abundance (defined as the number of cells in a given proviral clone per 104

PBMCs) from <0.1 to *100; less abundant clones are undetectable however due to
the technical limitation of LM-PCR. More recently, a study of 98 naturally infected
individuals (24 ACs, 29 HAM/TSPs, 45 ATLs) using a viral DNA capture
sequencing approach has shown that the median clone abundance of a given pro-
virus was lower in ACs (slightly lower than 1) with narrow distribution, higher for
HAM/TSP patients (around 1) also with narrow distribution, but significantly
greater for ATL patients and with broad distribution as might be expected (Katsuya
et al. 2019). Defective proviruses were seen not only in ATL patients where
deletions of 5′ LTR occurred in 26.7% of proviruses, but also across other clinical
conditions of infection albeit to lower extents. The HTLV-1 provirus integrates
frequently in intergenic regions and introns, rarely within exons, and with no
preference in orientation (Katsuya et al. 2019).

2.7 Clonal Abundance of HTLV-1-Infected Cells in Cell
Culture and Humanized Mouse Models

Cells infected by HTLV-1 in cell culture (using transfected 293 cells as the source
of the virus and Jurkat cells as the target) showed an average clone abundance of
less than 1 (Katsuya et al. 2019), likely because many target cells were infected by
more than one provirus, a frequent occurence in cell culture infections. It appears
clonal expansion only occurred in a small number of infected cells despite the
absence of any immune control. Likewise, the clonal abundance of the majority of
HTLV-1-infected T cells in the NSG-humanized mouse model (Tezuka et al. 2014)
hovered around slightly less than 1. Here, again, only a small number of infected
cells underwent clonal expansion (Tezuka et al. 2014; Katsuya et al. 2019). These
results are reminiscent of the infection outcomes of reporter cells in culture where
98–99% of infected cells became senescent or cell cycle arrested, with a small
fraction (1–2%) that express Tax and Rex at lower levels underwent clonal
expansion. Whether the expanded clones in the study by Katsuya et al. (Katsuya
et al. 2019) express Tax and other viral antigens at low levels or intermittently was
not determined. Whether some of the clones with an abundance of 1 or <1 are
arrested in senescence or G1 is also unknown. Notably, the frequencies of defective
proviruses (especially with deletion in the 5′ LTR and other 5′ region of the proviral
DNA) in infections in cell culture and humanized mice were low initially, and
increased over time, suggesting a positive selection for a loss of Tax and viral gene
expression during persistent infection.
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3 HTLV-1 Tax

3.1 Tax Is a Potent Activator of HTLV-1
Transcription/Replication

Tax specifically and potently activates viral transcription via three Tax-responsive
21-bp repeat enhancer elements, each consisting of a cAMP response element
(CRE, which consists of a palindromic consensus sequence: TGACGTCA that
often contains significant degeneracy in the 3′ CA nucleotides) flanked by 5′ G-rich
or 3′ C-rich sequences, referred to as the viral CRE (vCRE) or Tax response
element (TxRE). The CRE core of the TxRE binds the homodimer or heterodimer
of a basic domain–leucine zipper (bZip) transcription factor, CREB (cAMP
response element binding protein), and its close family member, ATF1 (activating
transcription factor 1). Tax by itself does not bind TxRE. Rather, Tax,
CREB/ATF-1, and TxRE form a stable ternary nucleoprotein complex in which
Tax interacts with the basic domain of CREB/ATF-1 (Zhao and Giam 1992) and
via this interaction contacts the flanking G-/C-rich sequences in the minor
groove (Paca Uccaralertkun et al. 1994; Lenzmeier et al. 1999). In this ternary
complex, Tax further recruits transcriptional co-activators/histone acetyl trans-
ferases, CREB-binding protein (CBP)/p300 (Kwok et al. 1996), and p300-CBP
associated factor (P/CAF) (Harrod et al. 1998), and transducers of regulated CREB
(TORCs) (Siu et al. 2006) to establish a nucleosome-free region for potent HTLV-1
viral mRNA transcription (reviewed in (Nyborg et al. 2009)). This mode of action
explains the exquisite DNA sequence specificity and great potency of Tax-mediated
LTR trans-activation. Interestingly, whereas CRE-mediated cellular transcriptional
activation requires the phosphorylation of Ser-133 of CREB by kinases such as
protein kinase A to promote CBP/p300 recruitment (Chrivia et al. 1993), CBP/p300
recruitment and trans-activation of TxRE by Tax can occur independently of cel-
lular signal transduction. Thus, Tax serves as an adaptor that confers both sequence
specificity and signal independence to viral gene expression.

3.2 Tax Hijacks Ubiquitin E3 Ligase RING Finger Protein 8
(RNF8) for Canonical IKK-NF-jB Activation

In addition to activating viral transcription, Tax also exerts pleiotropic influence on
cell signaling. It activates both canonical and noncanonical NF-jB pathways; the
transcriptional activities of AP1, serum response factor (SRF), and nuclear factor of
activated T cells (NFAT); and the kinase activity of IKK, JNK, and the mammalian
target of rapamycin (mTOR), etc. (Matsuoka and Jeang 2007). Tax has been shown
to interact directly or indirectly with many components of the IKK-NF-jB pathway
(Harhaj and Giam 2018; Ho et al. 2015; Rauch and Ratner 2011; Shibata et al.
2017), including NF-jB, NEMO (NF-jB essential modulator): the regulatory
subunit of IKK, protein phosphatase 2A (PP2A), TAX1BP1, etc. In fact, NEMO
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was first isolated as a gene whose loss prevented Tax-induced transformation/foci
formation of Rat-1 fibroblasts (Yamaoka et al. 1998).

For a long time, the interactome of Tax appears extremely complex and defies a
simple explanation. Ho et al. have recently used in vitro reconstitution to demon-
strate that Tax hijacks a E3 ligase, RING finger protein 8 (RNF8), to assemble
K63-linked polyubiquitin chains for canonical IKK and NF-jB activation (Ho et al.
2015). In the presence of Tax, RNF8 and E2 conjugating enzymes, Ubc13/Uev1a or
Ubc13/Uev2, become greatly stimulated in vitro and in vivo, and assemble long
unanchored K63-linked polyubiquitin chains as cytosolic signaling scaffolds for the
activation of TAK1, IKK, and other downstream kinases such as JNK and mTOR
(Ho et al. 2015) (Fig. 3). This mechanism explains the pleiotropic effect of Tax on
multiple cell signaling pathways mentioned above (Summarized in Fig. 4). The
multitude of cellular Tax-binding partners described in the literature could very well
be associated with Tax via the K63-linked, M1-linked, and hybrid polyubiquitin
chains (detailed below) whose formation is greatly stimulated by Tax. It is expected
that many aspects of viral replication will be impacted upon by this mechanism as
well.

Fig. 3 Tax hijacks RNF8 and LUBAC to activate TAK1 and IKK, and multiple downstream
signaling pathways. Tax interacts with and stimulates RNF8 and LUBAC to assemble hybrid
K63-linked and M1-linked (linear) polyubiquitin chains as signaling scaffolds for recruiting TAK1
and IKK. TAK1 undergoes autophosphorylation and auto-activation, and phosphorylates and
activates mitogen-activated kinase kinases (MKKs) and IKK, and downstream p38
mitogen-activated protein kinase, c-Jun kinase (JNK), canonical NF-jB. and mammalian target
of rapamycin (mTOR) pathways. LUBAC can also be recruited to K63-linked polyubiquitin
chains directly via the ubiquitin-binding domain of its subunit HOIP
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3.3 Aberrant Activation of RNF8 by Tax

During interphase, RNF8 is localized in the nucleus where it becomes recruited to
DNA double-strand breaks (DSBs) to initiate K63 polyubiquitylation of linker
histone H1 that signals the recruitment of another K63 E3 ligase, RNF168. The
chromatin-bound RNF168 in turn propagates the ubiquitylation of histones H2A,
culminating in the assembly of a signaling scaffold upon which multiple DNA
repair factors including RNF168 itself, RAP80, 53BP1, RAD18, RNF169, BRCA1,
etc., congregate to form the microscopically visible DNA damage foci for the repair
of DSBs. Tax is known to shuttle between nuclear and cytoplasmic compartments.
In Tax-expressing cells, the abundance of RNF8 in the cytosol is increased. While
the activation of cytosolic RNF8 by Tax leads to the assembly of cytosolic K63
polyubiquitin chains and activation of TAK1, IKK-NF-jB, and other kinases, the
impact of Tax on nuclear RNF8 remains to be fully characterized. RNF8 is
responsible for initiating the assembly of DNA damage foci. Interestingly, recent
data have indicated that RNF8 is critical for the formation of the nuclear Tax
speckle structures known to sequester DDR factors and repress DNA damage
response (Zhi et al. 2020; Giam and Semmes 2016; Haoudi et al. 2003). Other
functions of RNF8 include cytokinesis, protection of telomere integrity, inhibition
of NOTCH1 signaling, etc. While Tax is known to affect many of these cellular
processes, whether such effects of Tax are mediated through RNF8 and K63-linked
polyubiquitin chains remains unknown.

3.4 Tax Promotes the Assembly of K63/M1-Linked Hybrid
Polyubiquitin Chains

TAK1 and IKK (IKK1-IKK2 or IKKa-IKKb) holoenzyme complexes contain
regulatory subunits: TAK1 binding protein 2/3 (TAB2/3) and NEMO, respectively,

Fig. 4 Pleiotropic effect of Tax explained. Aberrant activation of RNF8 and LUBAC by Tax
leads to the assembly of K63-pUb and K63-M1-hybrid pUb chains in the cytosol, and K63-pUb
chains in the nucleus. The K63-M1-hybrid pUb chains trigger a cascade of kinase activation and
phosphorylation, culminating in constitutive IKK/NF-jB activation, increased HTLV-1 replica-
tion, and senescence/apoptosis or cell survival/proliferation (upper pathway, Zhi 2020). The
nuclear K63-pUb chains and Tax form microscopically visible Tax speckle structures that
sequester DDR factors such as BRCA1, DNA-PK, and MDC1, disrupting DDR and inhibit DNA
damage repair (lower pathway, Zhi 2020)
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that facilitate their recruitment to polyubiquitin chains. TAB2/3 preferentially binds
K63-linked polyubiquitin chains through a conserved zinc finger domain. In con-
trast, NEMO through its UBAN (UBD in ABIN proteins and NEMO) domain binds
linear polyubiquitin chains with 100-fold higher affinity than K63 chains. Shibata
et al. (Shibata et al. 2017) have recently demonstrated that Tax also interacts with
and recruits the linear ubiquitin assembly complex (LUBAC) E3 ligase complex
and together with a K63-specific E3 ligase, i.e., RNF8, generates K63/M1-linked
hybrid polyubiquitin chains. It is important to note that K63/M1-linked hybrid
polyubiquitin chains are generated during IL-1 and other immune signaling path-
ways as a mechanism to colocalize TAK1 and NEMO-containing IKK complexes
(Emmerich et al. 2013; Emmerich et al. 2016). Upon recruitment of TAK1 and IKK
to the hybrid polyubiquitin chains, TAK1 becomes activated by autophosphoryla-
tion, and then phosphorylates and activates IKK. While it has been proposed that
the K63/M1 hybrid polyubiquitin chains bind to NEMO and promote IKK
oligomerization, autophosphorylation, and activation (Shibata et al. 2017), pre-
vailing evidence supports a key role of TAK1 in IKK phosphorylation and acti-
vation by Tax, in keeping with immune activation of the IKK-NF-jB pathway. It
should also be noted that the assembly of K63-linked polyubiquitin chains is a
prerequisite for the recruitment of LUBAC, and the LUBAC catalytic subunit,
heme-oxidized IRP2 ubiquitin ligase 1 interacting protein (HOIP), specifically
interacts with K63-linked polyubiquitin chains (Emmerich et al. 2013; Haas et al.
2009) (see Fig. 3).

In addition to NEMO, several M1-linear polyubiquitin chain-binding proteins
have been identified including ABIN 1–3 (A20-binding inhibitor of NF-jB 1–3),
the selective autophagy receptor: Optineurin, HOIL-1L chain, and A20 (Nakazawa
et al. 2016). Several of them are involved in down-regulating IKK-NF-jB, but it is
unclear whether any of them plays a role in Tax-induced IKK activation.

It should be pointed out that a recent report suggests that Tax itself may be a
ubiquitin E3 ligase that together with a group of E2 enzymes including UbcH7,
UbcH5b, UbcH5c, and UbcH2 assembles mixed-linkage polyubiquitin chains for
IKK activation in a Ubc13- and TAK1-independent manner (Wang et al. 2016).
This conclusion contrasts with published results from multiple laboratories (Ho
et al. 2012, 2015; Wu and Sun 2007; Shembade et al. 2007; Shibata et al. 2011;
Hayakawa 2012) and goes against the established mechanism of receptor-mediated
IKK activation. Importantly, no RING finger or HECT domain commonly seen in
E3 ligases has been found in Tax.

Finally, to maintain persistent NF-jB activation, Tax not only causes constitu-
tive IKK activation and IjBa degradation, but also utilizes multiple mechanisms to
counteract negative feedback regulators of IKK-NF-jB. These mechanisms include
inhibition of the protein phosphatase, PP2A, and A20 and have been summarized in
a recent review (Harhaj and Giam 2018).
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3.5 Tax-Mediated Activation of NIK and IKK1

Tax activates both the canonical and the noncanonical NF-jB pathways (Senftleben
et al. 2001; Xiao et al. 2001). Activation of the noncanonical NF-jB2 pathway in
lymphoid organs by cytokines requires the NF-jB-inducing kinase, NIK, which
activates downstream NEMO-free IKK1 (i.e., IKKa) to induce phosphorylation,
ubiquitination, and processing of p100 (Tao and Ghosh 2012). The proteolytic
conversion of p100 to p52 de-represses p52/RelB and up-regulates specific NF-jB
target genes (Sun 2012). Under physiological conditions, newly synthesized NIK is
targeted by TRAF3, which recruits NIK to the TRAF2:TRAF3:cIAP1:cIAP2
(TRAF-cIAP) E3 ligase complex for continuous K48 ubiquitination and protea-
somal degradation. Upon engagement of specific receptors by ligands such as
lymphotoxin b and B cell activating factor (BAFF), the TRAF-cIAP E3 ligase
complex becomes recruited to the receptor. The dissociation of TRAF-cIAP com-
plex stabilizes NIK. Furthermore, upon TRAF-cIAP complex binding to the
receptor, the K63 ubiquitin ligase activity of TRAF2 is activated, leading to K63
polyubiquitylation and activation of cIAP1/2, which targets TRAF3 for K48
polyubiquitylation and degradation, again leading to NIK stabilization and

Fig. 5 A model for HTLV-1 infection and leukemogenesis. HTLV-1 is transmitted by cell-to-cell
contact. The expression levels of Tax and HBZ modulate the outcomes of infection. Robust viral
replication stimulated by Tax is accompanied by cellular senescence. In infected cells where Tax
expression is low, intermittent or silenced, HBZ inhibits Tax and Rex and viral replication and
facilitates oligoclonal expansion of T cells that are “latently” infected. Cytotoxic T lymphocyte
(CTL) killing controls virus replication, resulting in an asymptomatic carrier state.
HTLV-1-infected cells develop Tax/NF-jB-induced DNA damage, senescence/apoptosis and
genomic instability. Genetic and epigenetic changes selected early during infection help sustain
Tax expression and NF-jB activation, and set the stage for the development of Tax-independent
NF-jB activation later. Loss of Tax expression is positively selected because Tax is a major CTL
target and a potent clastogen that induces DNA damage and cellular senescence. The mitogenic
activities of HBZ and HBZ mRNA maintain the ATL tumor phenotype and sustain its proliferation
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activation (Sun 2012). Interestingly, NIK stability is also closely linked to the
canonical NF-jB pathway. NEMO knockout or loss-of-function NEMO mutations
lead to NIK stabilization and basal noncanonical NF-jB activation. Tax activates
noncanonical NF-jB by promoting RelB and NF-jB2 p100 expression and by
activating IKKa to signal proteolytic maturation of p100 into NF-jB2 p52. While it
is known that noncanonical NF-jB activation by Tax is NIK-dependent, the exact
mechanism remains to be elucidated.

3.6 The Biological Consequences of Tax-Mediated NF-jB
Activation

3.6.1 Cell Transformation
The mitogenic effect of Tax (Kelly et al. 1992) correlates with its ability to activate
multiple signaling pathways including IKK/NF-jB, JNK, mTOR, and cell cycle
progression. Early studies have indicated that Tax could directly transform rat
fibroblasts in vitro (Tanaka et al. 1990; Yamaoka et al. 1992; Pozzatti et al. 1990).
Primary human T lymphocytes could be immortalized/transformed to grow con-
tinuously by a Herpesvirus saimiri vector carrying the tax gene (Grassmann et al.
1989). The transforming activity of Tax is NF-jB-dependent (Yamaoka et al. 1996;
Matsumoto et al. 1997). Indeed, a flat revertant of Tax-transformed rat fibroblast
cell line R5 lacked NEMO and was instrumental for the complementation cloning
of the NEMO gene (Yamaoka et al. 1998). Tax activates telomerase (hTERT)
expression via the NF-jB pathway (Sinha-Datta et al. 2004). In tax-transgenic and
humanized mouse models, T cell immortalization and tumor development occur
after tax transgene expression and viral infection (Tezuka et al. 2014; Hasegawa
et al. 2006; Nerenberg et al. 1987; Grossman et al. 1995). However, with only a few
exceptions (Yamaoka et al. 1992), constitutive expression of Tax in cultured cell
lines is difficult to achieve, suggesting that in order for Tax to drive cell
immortalization/transformation and oncogenesis, specific cellular alterations are
needed or alternative viral factor(s) (such as HBZ) is (are) involved.

3.6.2 Functional Inactivation of P53
ATL and HTLV-1-transformed cell lines often retain the wild-type TP53 gene;
however, p53 is functionally impaired (Cereseto et al. 1996). This functional
impairment is Tax-induced and NF-jB-dependent (Pise-Masison et al. 2000) and
has been attributed to the formation of a p65/RelA-p53 complex that is functionally
inactive in promoting the transcription of p53-regulated genes including MDM2
(Pise-Masison et al. 2000; Jeong et al. 2004). It should be noted that although Tax
impairs p53 functionally, TP53 mutations develop at a higher frequency in the
aggressive acute and lymphomatous subtypes of ATL where Tax expression is
often lost.
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3.6.3 Apoptosis Induction and Inhibition
Tax is known to cause or prevent apoptosis in an NF-jB-dependent manner in a
variety of lymphoid and non-lymphoid cell lines and experimental settings
(Chlichlia et al. 1995; Hall et al. 1998; Haoudi and Semmes 2003; Rivera-Walsh
et al. 2001; Yamada et al. 1994; Tsukahara et al. 1999; Takahashi et al. 2013; El
Sabban et al. 2000; De La et al. 2003). Intermittent tax expression in MT-1, an ATL
cell line, has been shown recently to induce anti-apoptotic proteins such as CFLAR,
GADD45B, TRAF1, and TNFAIP3 that increase cell survival (Mahgoub et al.
2018). These seemingly conflicting activities of Tax are likely due to the different
level and duration of NF-jB activation by Tax and the cellular backgrounds in
which Tax is expressed.

3.6.4 Senescence Induction
Contrary to the notion that HTLV-1 infection leads to cell proliferation, most
HTLV-1-infected lymphoid or non-lymphoid cells in culture cease proliferation
immediately after infection (Liu et al. 2008; Philip et al. 2014; Zahoor et al. 2014).
Similarly, CD34+ hematopoietic progenitor cells infected by HTLV-1 have also
been shown to undergo G1 arrest (Tripp et al. 2005). The infected cells express
high levels of cyclin-dependent kinase inhibitors: p21CIP1/WAF1 (p21) and p27KIP1

(p27), develop DNA damage and mitotic abnormalities accompanied by cytokinesis
failure, and arrest in senescence (Kuo and Giam 2006; Yang et al. 2011). This is
due to Tax-mediated hyperactivation of NF-jB (Zhi et al. 2011). Indeed, when
NF-jB is blocked by DN-IjBa, a degradation-resistant mutant of IjBa that con-
stitutively inhibits NF-jB, Tax-induced senescence is prevented, and cells
expressing DN-IjBa continue to proliferate after HTLV-1 infection (Philip et al.
2014; Zahoor et al. 2014). As such, cell lines chronically infected by HTLV-1 and
express all viral proteins and mRNAs can be readily established upon NF-jB
inhibition (Philip et al. 2014; Zahoor et al. 2014).

The increase in p21 and p27 levels during Tax-induced senescence is caused by
p53-independent transcriptional up-regulation and stabilization of p21 mRNA
(Cereseto et al. 1996; Kuo and Giam 2006; Zhi et al. 2011; De La et al. 2000), and
stabilization of p27 protein as a result of Skp2 degradation associated with the
prematurely activated anaphase promoting complex (Kuo and Giam 2006; Zhang
et al. 2009). The physiological significance of HTLV-1/Tax-induced senescence is
unclear at present. Senescent cells are known to develop a “senescence-associated
secretory phenotype” (SASP) that turns them into proinflammatory cells that secrete
inflammatory cytokines, chemokines, proteases, etc., that attract and activate innate
immune cells. Whether senescence and SASP contribute to the spread of HTLV-1
remains to be seen.

3.7 Tax Expression and Outcomes of HTLV-1 Infection

The senescence and apoptosis responses induced by Tax are causally linked to
NF-jB activation. Notably, Tax-induced DNA damage has also been associated
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with NF-jB activation (Baydoun et al. 2012). Both senescence and apoptosis may
represent cellular responses to NF-jB-hyperactivation-associated DNA damage that
develops during productive HTLV-1 infection. In this sense, HTLV-1-infected cells
are not only eliminated by CTL killing, the cellular mechanism (DNA damage
response?) that guards against NF-jB hyperactivation may also restrict cells that are
productively infected by HTLV-1 (Philip et al. 2014). In the latter scenario, only
infected cells with minimal to no viral (sense) gene expression are able to persist
and expand. Indeed, a large majority of HTLV-1-infected cells in cell culture be-
came senescent or cell-cycle arrested. Only a small fraction (1–2%) managed to
continue to proliferate. The latter expressed low levels of Tax, Rex, and HBZ, but
not viral structural proteins, and the activities of both Tax and Rex were inhibited
by HBZ (Philip et al. 2014). Whether this outcome occurs in human infection is
unknown. Finally, a recent study has indicated that Tax expression in MT-1, an
ATL cell line, occurs transiently and sporadically. The short burst of Tax expres-
sion induces anti-apoptotic factors that facilitate MT-1 cell survival (Mahgoub et al.
2018). Together, these results suggest that only HTLV-1-infected cells with no,
low, or intermittent Tax expression are able to persist in infected individuals. The
expansion of infected cells in vivo likely depends on a variety of factors: (1) low or
transitory expression of Tax; (2) the anti-apoptotic activities induced by bouts of
Tax expression; (3) the growth-promoting activity of HBZ; (4) down-regulation of
NF-jB; (5) somatic mutations that mitigate or overcome senescence; or (6) a
combination of some or all of the above. As MT-1, an ATL cell line, expresses Tax
intermittently, this pattern of Tax expression is clearly associated with leukemia
development. Other ATL cells that have lost Tax expression completely or those
that express Tax and other viral proteins at low levels may have evolved different
strategies to grow and expand. The outcomes of HTLV-1 infection are summarized
in Fig. 5.

4 HTLV-1 HBZ

4.1 HTLV-1 HBZ: Gene Expression and Viral Persistence

HBZ gene is located at the 3′ end of the viral genome. Its mRNA is synthesized
from the minus or antisense strand of the viral genome and is of the opposite
polarity of the major HTLV-1 viral transcript. The transcription of HBZ is regulated
by three SP1 binding sites in a TATA-less promoter located in the 3′ LTR of the
proviral DNA (Yoshida et al. 2008). The major HBZ mRNA is spliced once and
encodes a protein of 206 a. a. residues with a molecular size of 25 kDa. The spliced
HBZ (sHBZ) transcript is predominant in ATL cells. It and its protein product are
commonly referred to as HBZ. The minor unspliced HBZ mRNA transcript
encodes a protein that is slightly larger than HBZ in size and contains a stretch of
seven additional NH2-terminal amino acid residues: MVNFVSV has a much shorter
half-life compared to HBZ and much lower in abundance. Tax has been reported to
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up-regulate HBZ expression, and this up-regulation is influenced by the proviral
integration sites (Landry et al. 2009). HBZ is ubiquitously expressed in ATL cells.
It antagonizes several of the activities of Tax including LTR trans-activation and
NF-jB activation (Zhao et al. 2009) and plays a critical role in the persistence of
HTLV-1 infection. Importantly, both HBZ protein and RNA have been shown to
promote T cell proliferation (Satou et al. 2006).

For details of the domain organization and activities of HBZ, readers are referred
to several excellent reviews (Matsuoka and Green 2009; Barbeau et al. 2013;
Mesnard et al. 2006; Matsuoka and Mesnard 2020; Gazon et al. 2017). HBZ is a
basic domain–leucine zipper protein. Via its leucine zipper domain, HBZ interacts
with and modulates the DNA binding or transcriptional activities of CREB-2, JunB,
and c-Jun (AP-1) (Basbous et al. 2003). It binds the KIX domain of CBP/p300 and
inhibits its HAT activity, thereby blocking Tax-driven viral mRNA expression
(Lemasson et al. 2007; Clerc et al. 2008). HBZ also down-regulates the nuclear
export of full-length and singly spliced HTLV-1 mRNAs by Rex to inhibit the
production Gag, Gag-Pol, and Env proteins (Philip et al. 2014). HBZ has also been
reported to dampen NF-jB activity by preventing NF-jB binding to DNA and
induce p65/RelA degradation, mitigating the senescence response triggered by
Tax-mediated NF-jB hyperactivation. These activities of HBZ promote latent
HTLV-1 infection and facilitate the persistence of infected cells (Fig. 2).

4.2 HBZ Promotes T Cell Proliferation

Soon after HBZ was found to be ubiquitously expressed in ATL cells, both HBZ
mRNA and protein were shown to stimulate T cell proliferation. Importantly, CD4+
T lymphocyte-specific expression of HBZ transgene in mice induces T-cell lym-
phoma and systemic inflammation (Satou et al. 2011). HBZ interacts with JunD and
activates JunD-mediated transcription (Gazon et al. 2012). By forming a ternary
complex with JunD and Sp1, HBZ activates its own expression and the expression
of hTERT (Kuhlmann et al. 2007). The transcriptional activity of JunD is repressed
by a tumor suppressor known as menin, which binds JunD directly. Interestingly,
HBZ interacts with the JunD-menin complex to form a ternary complex that recruits
the p300 co-activator/histone acetyl transferase to promote hTERT expression
(Kuhlmann et al. 2007). Most recently, HBZ has been shown to assemble onto a
transcriptional super-enhancer to transactivate the expression of a basic leucine
zipper ATF/AP1-like transcription factor, BATF3, which then forms a complex
with IRF4 to promote ATL cell proliferation (Nakagawa et al. 2018). Indeed,
CRISPR-Cas9-medIted ablation of HBZ inhibited ATL cell growth (Nakagawa
et al. 2018). These results clearly demonstrate the growth-promoting and oncogenic
properties of HBZ and explain why HBZ is persistently expressed in ATL cells.
Whether the same mechanism underlies the pleiotropic effect of HBZ remains to be
seen.

It has been reported that HBZ protein can induce apoptosis, but HBZ mRNA
prevents it, in part via up-regulation of the survivin gene (Kawatsuki et al. 2016).
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HBZ protein has also been reported to target the Rb/E2F1 complex to activate the
transcription of genes under E2F1 control that are critical for DNA replication and
cell cycle progression (Kawatsuki et al. 2016). The activation of E2F-regulated
genes by HBZ induces both T cell proliferation and apoptosis. HBZ transgene also
stimulates the expression of Foxp3 in mouse CD4+ T cells. This may explain in
part why some ATL cells are Foxp3+ (Yamamoto-Taguchi et al. 2013). Other
activities of HBZ include the induction of a co-inhibitory immune receptor mole-
cule, TIGIT (T cell immunoglobulin and ITIM domain), to facilitate IL-10 pro-
duction, possibly to suppress anti-viral immune responses (Yasuma et al. 2016).
HBZ also down-regulates DICER expression by diverting JunD from DICER
promoter and thereby impairs the expression of some miRNAs (Gazon et al. 2016).
Finally, the expression of HBZ in CD4+ T-cells correlates with the expression of
OncomiRs, which have been associated with a wide range of oncogenic activities
(Vernin et al. 2014). How HBZ mRNA promotes cell proliferation also awaits
further investigations.

5 HTLV-1 and ATL

ATL develops mostly in individuals that become HTLV-1-infected during
early childhood. High PVL is a risk factor for progression to ATL. The clinical
manifestations of ATL include leukemia, lymphadenopathy, hepatosplenomegaly,
hypercalcemia, and leukemia infiltration of the skin, central nervous system, and
gastrointestinal tract. ATLs are clinically classified as acute, lymphomatous,
chronic, and smoldering types based on criteria defined by Shimoyama
(1991), including abnormal T lymphocytes level, site of infiltration, lactate dehy-
drogenase value, and hypercalcemia. Smoldering ATL likely represents the early
stage of the disease that often can progress to acute ATL (Tsukasaki et al. 2009).
The prognosis for ATL is poor. A recent Japanese study of 1594 ATL patients
indicated that the median survival of acute, lymphoma, chronic, and smoldering
ATL subtypes was 8.3, 10.6, 31.5, and 55.0 months, respectively (Katsuya et al.
2015).

5.1 Tax and HBZ in Cellular Transformation
and Tumorigenesis

As described above (Sect. 3.6.1), Tax expression is sufficient to induce transfor-
mation in rodent fibroblasts and in primary human lymphocytes, and the trans-
forming activity of Tax is associated with NF-jB activation and activation of other
signaling pathways (Yamaoka et al. 1996; Matsumoto et al. 1997; Yoshita et al.
2012). Expression of Tax via a variety of enhancer/promoter cassettes including
HTLV-1 LTR (Nerenberg et al. 1987), granzyme B promoter (Grossman et al.
1995), Lck proximal promoter (Hasegawa et al. 2006), and Lck distal promoter
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(Ohsugi et al. 2007) induces neoplasia and/or inflammatory diseases in transgenic
mice. The tumors induced, respectively, are neurofibroma/mesenchymal tumors
(Nerenberg et al. 1987; Hinrichs et al. 1987), large granular lymphocytic leukemia
(Grossman et al. 1995), lymphoma of immature T cells (Hasegawa et al. 2006), and
diffuse large T-cell leukemia/lymphoma with leukemia cells of mature CD4+, CD8
+, and CD4+CD8+ types (Ohsugi et al. 2007). A significant fraction of the
LTR-Tax founder mice developed thymic atrophy and growth retardation and died
prematurely (Nerenberg et al. 1987). Whether the latter phenotype is related to the
senescence/apoptosis effects of Tax is unknown.

Transgenic expression of HBZ in CD4+ T cells using a murine CD4-specific
promoter/enhancer induced T-cell lymphomas and systemic inflammation in mice
(Satou et al. 2011). Tax-HBZ double transgenic mice that expressed both proteins
in CD4+ cells had similar phenotypes as HBZ transgenic, with enhanced prolif-
eration of memory T cells and Foxp3+ Treg cells. Curiously, in this model, mice
expressing the Tax transgene alone did not develop diseases (Zhao et al. 2014). In
aggregate, these results support the notion that both Tax and HBZ are oncogenic
through their abilities to promote the activation of IKK/NF-jB and other signaling
pathways, destabilize the genome, and stimulate cell proliferation.

5.2 Genomic Instability in ATL

5.2.1 Overview
The ubiquitous expression of HBZ in ATL and its roles in viral persistence, growth
stimulation, and tumor development have led some to propose it as the sole
HTLV-1viral oncogene. A critical review of the current literature suggests that the
full picture is far more complex, as is often the case with most human cancers. It has
been estimated that at least five genetic alterations are involved in driving ATL
development during its long clinical course (Watanabe 2017). Several striking
features of ATL revealed by the comprehensive whole-genome sequence analysis
(WGS) (Kataoka et al. 2015) are directly linked to Tax, including (1) the extensive
instability of ATL genomes; (2) the constitutive activation of NF-jB in ATL; and
(3) the functional similarity/overlap between the pathways/molecules that Tax
perturb and the genetic alterations that occur in ATL, with both converging on
signaling molecules in the T/B CR-NF-jB and the CD-28 co-stimulatory pathways
(Kataoka et al. 2015). Of note, each ATL genome on the average contains 59.5
structural alterations that involve the breaking and joining of DNA, almost three
times that of the multiple myeloma genome (21 structural variations/genome). This
is likely associated with the clastogenic effect of Tax.

5.2.2 Recurrent Mutations in ATL
The major recurrent mutations detected in ATL (Kataoka et al. 2015, 2018; Kogure
and Kataoka 2017) are listed in Table 1. They can be classified as
(1) gain-of-function (GOF) activating mutations that cause the activation of T/B CR
signaling and constitutive NF-jB activation (CD237, VAV1, PLCG1, PKCB,
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CARD11, NIK, and CTLA4-CD28 and ICOS-CD28 fusions) (Fig. 6); loss-of-
function (LOF) mutations that inactivate negative feedback regulators of NF-jB
(TNFAIP3/A20, NFKBIA/IjBa, TRAF3, and CBLB); (2) loss-of-function muta-
tions that inactivate tumor suppressor genes including those that safeguard genomic
integrity (TP53) or regulate cell cycle control (p16INKa/CDKN2A): apoptosis
mediator: FAS and WWOX; (3) GOF mutations including gene amplification, base
substitutions, and indels that lead to over-expression/stabilization/activation of
transcription factors IRF4, STAT3, and NOTCH1 that are involved in cell growth
and proliferation or loss-of-function mutations in a E3 ligase (FBXW7) that targets
NOTCH1 degradation; (4) not surprisingly, EP300 (p300), the gene that encodes
the transcriptional co-activator of Tax-CREB-and Tax-NF-jB-mediated transcrip-
tion and HLA-B and B2M, two genes that encode class 1 MHC components, are
inactivated, likely selected to reduce viral replication and evade immune detection
of HTLV-1 infection and/or ATL.

5.3 Loss of Tax Expression and Acquisition
of Tax-Independent NF-jB Activation in ATL Cells

As HTLV-1 causes ATL in vivo and transforms T cell in culture, it was initially
thought that HTLV-1 promotes T cell proliferation (Matsuoka and Jeang 2007).
Because HTLV-1 Tax activates viral transcription and potently stimulates
IKK-NF-jB and other signaling pathways, it has been proposed that these activi-
ties, especially IKK-NF-jB activation, drive HTLV-1-infected T cells to prolif-
erate and expand, ultimately resulting in ATL. However, Tax expression is silenced
in >50% of ATL cells via mechanisms including nonsense or frameshift mutations

Fig. 6 Genes encoding mediators of the T cell receptor (TCR) signaling pathway are frequently
mutationally activated in ATL. ATL genomes harbor frequent gain-of-function mutations in genes
boxed in red. Other frequently mutated significant ATL genes are listed in Table 1. Details on
TCR signaling can be found in these references (Katzav 2015; Charvet et al. 2006; Joshi and
Koretzky 2013; Chen and Flies 2013). Vav1: a guanine nucleotide exchange factor that activates
PI3 kinase and PLCc1. PLCc1: phospholipase G c1. It converts PIP2 into diacylglycerol (DG),
which activates PKC and Ras-MEK-ERK; and inositide triphosphate (IP3), which signals Ca++

mobilization and NF-AT activation. PKCb: protein kinase C b, which activates Ras-MEK-ERK
and IKK/cNF-jB pathways
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(10%), 5′ LTR deletions (20–30%) or hypermethylation of CpG sites in 5′ LTR
(10–20%). In these ATL cells, constitutive NF-jB activation is Tax-independent
and driven by gain-of-function (GOF) and loss-of-function (LOF) somatic muta-
tions in theT/B cell receptor-NF-jB signaling and the CD28 co-stimulatory path-
ways that are selected during the long disease course of ATL (see Sect. 5.2.2 above
for details.) Interestingly, PKCB and CARD11 mutations frequently occurred
together and acted synergistically to stimulate NF-jB.

5.4 ATL Cells Evolve Adaptive Changes to Accommodate
Constitutive NF-jB Activation

As NF-jB hyperactivation by Tax induces DNA damage and senescence or
apoptosis, and NF-jB is constitutively activated in ATL, it is expected that ATL
cells must have evolved from infected cells that have developed genetic/epigenetic
changes that facilitate adaptation to constitutively activated NF-jB during viral
infection. Indeed, while most HTLV-1-negative T cell lines became growth-
arrested/senescent immediately upon tax transduction, Tax-negative ATL cell lines
are resistant to Tax senescence and continue to proliferate upon re-introduction of
tax and restoration of tax expression (Shudofsky and Giam 2019). Whether this
resistance phenotype is due to HBZ or other adaptive cellular alterations is of
significant interest. Based on present data, senescence mitigation likely involves
(1) down-regulation of NF-jB; (2) down-regulation of mediators of DNA damage
response; (3) down-regulation/functional inactivation of tumor suppressors that
mediate G1 arrest/senescence; and (iv) up-regulation of drivers of cell proliferation.
In this vein, clonal expansion of HTLV-1-infected cells readily occurred after
NF-jB inhibition by a super-repressor, DN-IjBa (Zhi et al. 2011); and upon
shutdown of NF-jB activities cell lines that are chronically infected by HTLV-1
can be readily established (Philip et al. 2014; Zahoor et al. 2014). Similarly,
heterologous expression of the Kaposi’s sarcoma herpesvirus (KSHV) viral cyclin
(vCyclin), which gives rise to a Cdk6/vCyclin complex that resists p21/p27 inhi-
bition and targets p27 for degradation, prevents Tax-induced senescence and pro-
motes proliferation of Tax-expressing cells (Zhi et al. 2014). Some of the recurrent
mutations detected in ATL genomes that cause CDKN2 and EP300 inactivation,
and gain-of-function mutations that activate transcription factors IRF4, NOTCH1,
and STAT3 may have effects similar to KSHV vCyclin in antagonizing the
senescence effect of constitutively active NF-jB.

5.5 Epigenetic Changes in ATL Cells

Gene expression profile of ATL cells is markedly different from that of normal CD4
+ T cells. This is due not only to the genetic mutations that accumulate in ATL
described above, but also to the extensive epigenetic changes caused by DNA
methylation and histone modification (Watanabe 2017; Kogure and Kataoka 2017).
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5.5.1 Aberrant DNA Methylation
Widespread CpG island hypermethylation has been detected in one-third of ATL
cases. Genes encoding MHC class I molecules and Cys2-His2 (C2H2) zinc finger
proteins are often hypermethylated and silenced in ATL. Loss of MHC class I
expression is likely selected to facilitate immune evasion of infected and ATL cells.
Many of the C2H2 zinc-finger proteins contain a KRAB (Krupple-associated box)
domain thought to interact with a cofactor known as KAP1/TRIM28 to silence
transcription of both endogenous and exogenous retroviruses. How hypermethy-
lation of the C2H2 genes impacts HTLV-1 gene expression and ATL development
remains to be determined.

5.5.2 Aberrant Histone Modifications
A recent epigenome and transcriptome analysis of primary ATL cells by Toshiki
Watanabe and co-workers has indicated that polycomb repressive complex (PRC) 2
components including the histone H3K27 methylase and EZH2 are highly
expressed in ATL (Fujikawa et al. 2016). This results in increased trimethylation of
H3K27 (H3K27m3) and reprogramming of over half of the genes in ATL, with
progressive down-regulation of gene expression as the severity of the disease
increases from indolent to aggressive ATL. Indeed, simultaneous silencing of
EZH1 and EZH2 reduces H3K27m3 levels and induces ATL cell growth arrest
(Fujikawa et al. 2016).

6 Concluding Remarks

HTLV-1 is unique among retroviruses in that it has evolved a bimodal replicative
strategy similar to c-herpesviruses such as EBV and KSHV. In the “lytic replica-
tion” mode, HTLV-1 uses Tax and Rex as early proteins to drive produtive viral
replication, resulting in cytopathic effects including cell cycle arrest, senescence or
apotosis in infected cellsand viral spread (Fig. 5). In the “latency” mode where Tax
and Rex expressions are low or silenced, the HBZ protein and RNA antagonize Tax
and Rex functions and facilitate the mitotic expansion of infected cells to produce a
reservoir of latently infected cells for viral persistence and future transmission. The
fate of the infected cells is determined by the chromosomal environment of the
integrated proviral DNA, the physiological state of the infected cells, and the host
immune response.

What can the replicative strategy of HTLV-1 and the activities of Tax and HBZ
inform on carcinogenesis in general and ATL development in particular? The path
of chemical carcinogenesis has been conceptually divided into four stages: tumor
initiation, tumor promotion, malignant conversion, and tumor progression. Car-
cinogenic changes are initiated by genetic and epigenetic changes that occur in
cells. The selective clonal expansion of initiated cells then provides a large pool of
pre-cancerous cells that have the potential for further genetic evolution, eventually
leading to malignant conversion and tumor progression. As a potent mutagen and a
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powerful mitogen, respectively, Tax and HBZ can be thought of as initiator and
promoter of ATL development. It should be noted however that Tax and HBZ are
evolved to regulate viral replication, spread and transmission, not leukemia
development, and as discussed in this chapter, many of their activities do not fall
neatly into the simple classification of the conventional carcinogenesis model.

The mutagenic/clastogenic property of Tax and its pleiotropic effect on cell
signaling are connected to the hijacking of RNF8 and constitutive activation of the
TAK1-IKK-NF-jB pathway. The fact that many genetic alterations in ATL cells
reside in signaling molecules in the T/

B CR-NF-jB and the CD-28 co-stimulatory
pathways that lead to constitutive NF-jB activation strongly suggests a link
between Tax and the development of these mutations. It is conceivable that
senescence induction by Tax during HTLV-1 infection selects for cells with
genetic/epigenetic changes that facilitate adaptation to Tax and constitutively active
NF-jB, setting the stage for the establishment of somatic mutations that drive
Tax-independent NF-jB activation. How Tax/constitutive NF-jB activation indu-
ces senescence is unknown and how ATL cells maintain chronic NF-jB activation
without triggering a senescence response also remains to be elucidated.

It should be pointed out that constitutive IKK/NF-jB activation is a common
feature of HTLV-unrelated T/B cell malignancies including Sézary syndrome (SS),
mycosis fungoides (MF), diffuse large B cell lymphoma (DLBCL), multiple
myeloma (MM), chronic lymphocytic leukemia (CLL), and lymphoproliferative
disorders associated with Epstein–Barr virus and Kaposi sarcoma herpes virus
(KSHV) infections (Chapman et al. 2011; Ungewickell et al. 2015; Wang et al.
2015; Pasqualucci et al. 2011). Many of these leukemias/lymphomas contain
similar GOF and LOF mutations in the same genes (e.g., CARD11, IRF4,
NOTCH1, p53, CDKN2A, etc.) Thus, a clear understanding of how HTLV-1
interacts with these genetic changes will impact our understanding of how B- and
T-cell leukemia/lymphoma develop and uncover treatment targets and therapeutic
strategies hitherto unrecognized.
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Novel Functions and Virus–Host
Interactions Implicated
in Pathogenesis and Replication
of Human Herpesvirus 8

Young Bong Choi, Emily Cousins, and John Nicholas

1 Introduction

Human herpesvirus 8 (HHV-8) is classified as a c2-herpesvirus and is related to
Epstein–Barr virus (EBV), a c1-herpesvirus. One important aspect of the
c-herpesviruses is their association with neoplasia, either naturally or in animal
model systems. HHV-8 is associated with B-cell-derived primary effusion lym-
phoma (PEL) and multicentric Castleman’s disease (MCD), endothelial-derived
Kaposi’s sarcoma (KS), and KSHV inflammatory cytokine syndrome (KICS)
(Arvanitakis et al. 1996; Carbone et al. 2000; Chang and Moore 1996; Gaidano
et al. 1997; Goncalves et al. 2017a). EBV is also associated with a number of B-cell
malignancies, such as Burkitt’s lymphoma, Hodgkin’s lymphoma, and posttrans-
plant lymphoproliferative disease, in addition to epithelial nasopharyngeal and
gastric carcinomas, T-cell lymphoma, and muscle tumors (Kawa 2000; Okano
2000; Young and Murray 2003). Despite the similarities between these viruses and
their associated malignancies, the particular protein functions and activities
involved in key aspects of virus biology and neoplastic transformation appear to be
quite distinct. Indeed, HHV-8 specifies a number of proteins for which counterparts
had not previously been identified in EBV, other herpesviruses, or even viruses in
general, and these proteins are believed to play vital functions in virus biology and
to be involved centrally in viral pathogenesis.

One such gene is viral interleukin-6 (vIL-6), which was immediately upon its
discovery implicated as a candidate contributor to HHV-8 pathogenesis (Chang and
Moore 1996; Neipel et al. 1997a; Nicholas et al. 1997). Previous reports had

Y. B. Choi (&) � E. Cousins � J. Nicholas
Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins,
Department of Oncology, Johns Hopkins University School of Medicine,
1650 Orleans Street, Baltimore, MD 21287, USA
e-mail: ychoi15@jhmi.edu

© Springer Nature Switzerland AG 2021
T.-C. Wu et al. (eds.), Viruses and Human Cancer, Recent Results
in Cancer Research 217, https://doi.org/10.1007/978-3-030-57362-1_11

245

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57362-1_11&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57362-1_11&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57362-1_11&amp;domain=pdf
mailto:ychoi15@jhmi.edu
https://doi.org/10.1007/978-3-030-57362-1_11


indicated that IL-6 was produced by and supported the growth of KS cells, pro-
moted inflammation and angiogenesis typical of KS, served as an important B-cell
growth factor, and was found at elevated levels in the sera of MCD (Burger et al.
1994; Ishiyama et al. 1994; Miles et al. 1990; Roth 1991; Yoshizaki et al. 1989;
Polizzotto et al. 2012). Similarly, the discovery of viral chemokines, vCCLs 1-3,
and the demonstration of their pro-angiogenic activities in experimental systems
suggested that these proteins may also contribute to disease, in addition to their
suspected roles in immune evasion during HHV-8 productive replication (Boshoff
et al. 1997; Stine et al. 2000). The chemokine receptor homolog, vGPCR, was
found to induce angiogenic cellular cytokines of the type produced in and suspected
to promote the growth of KS lesions (Cannon et al. 2003; Pati et al. 2001; Schwarz
and Murphy 2001). The constitutively active membrane receptors encoded by
HHV-8 open reading frames (ORFs) K1 and K15 could function similarly
(Brinkmann et al. 2007; Samaniego et al. 2001; Wang et al. 2006). vGPCR and K1
also acted as oncogenes, promoting cell transformation and inducing tumorigenesis
in animal models (Bais et al. 1998; Lee et al. 1998a; Yang et al. 2000). However,
like the v-cytokines, vGPCR and K1 are expressed predominantly or exclusively
during productive, lytic replication; therefore, any contributions to malignant
pathogenesis are likely to be mediated through paracrine signaling. There is ample
evidence that cytokine-mediated paracrine signal transduction plays a role in KS,
and B-cell growth can also be influenced via this route, as discussed below. Apart
from the likely involvement of these viral proteins in HHV-8-associated patho-
genesis, the roles of some of these “unique” viral products in virus biology are only
beginning to be appreciated. For example, the pro-survival signaling induced by
vCCLs and vGPCR and the anti-apoptotic activities of vIRF-1 have been demon-
strated to enhance productive replication. Therefore, functions that serve normal
virus biology, such as inhibiting infection-induced apoptosis, may have the “side
effect” of promoting virus-associated neoplasia. This concept is familiar to viral
oncologists, but the precise mechanisms deployed by HHV-8 are novel. Classical
oncogene and tumor suppressor activities are mediated in an autocrine fashion, and
viral genes expressed during latency are potential contributors to malignant disease.
Chief among these for HHV-8 is the latency-associated nuclear antigen (LANA)
which specifies essential replication and genome segregation activities in dividing
cells and impacts several host pathways to promote cell survival and proliferation
(Verma et al. 2007). These activities of LANA have obvious connections to pro-
cesses involved in malignant transformation. Likewise, the viral homolog of cel-
lular FLICE-inhibitory protein, vFLIP, is both latently expressed and crucially
important for maintaining cell viability. vFLIP acts predominantly via induction of
NF-jB activity and associated anti-apoptotic mechanisms rather than via inhibition
of receptor-mediated caspase activation (Chugh et al. 2005; Guasparri et al. 2004).
Latency genes v-cyclin (ORF72) and microRNAs (miRNAs) have also been
implicated in viral pathogenesis (Gottwein et al. 2011; Liang et al. 2011a; Qin et al.
2017; Verschuren et al. 2004a). In addition to these latency products, vIL-6,
vIRF-1, vIRF-3, K1, and K15, while expressed maximally during productive
replication, have also been detected in latently infected cells (of some types) and
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may contribute in a direct, autocrine fashion to viral neoplasia. The interplay
between lytic and latent activities is likely to be important for KS, in which
cytokine dysregulation is believed to drive the disease, and this interplay may also
be significant in PEL and MCD. These issues and details of the molecular biology
of virus–host interactions involving these various HHV-8-encoded factors are the
topic of this review.

2 HHV-8 Latency Products and Autocrine Activities

2.1 Latency-Associated Nuclear Antigen (LANA)

LANA is specified by ORF73 of HHV-8, and homologs are encoded by other
c2-herpesviruses. The basic functions of these proteins are to serve as a latency
origin-binding protein and to tether viral genomes to host chromosomes for
appropriate segregation to daughter cell nuclei during cell division (Barbera et al.
2006; Verma et al. 2007). These activities are equivalent to those of EBNA1 of c1
subfamily Epstein–Barr virus (Lindner and Sugden 2007). However, LANA has
further activities that are likely to play roles in viral pathogenesis in addition to
contributing to the maintenance of HHV-8 latency.

One such property reported for LANA is its association with and inhibition of
the cell cycle checkpoint protein and tumor suppressor p53 (Friborg et al. 1999).
However, while the presence of wild-type p53 in most PEL cell lines suggests that
inactivation of p53 could be biologically relevant, the susceptibility of PEL cells to
p53 activation indicates that LANA is not fully able to inhibit the tumor suppressor
(Chen et al. 2010; Petre et al. 2007). LANA also interacts with retinoblastoma
protein (Rb) to mediate activation of E2F-responsive targets and can transform rat
embryo fibroblasts in combination with transduced H-Ras (Radkov et al. 2000).
Additionally, LANA was found to suppress cyclin-dependent kinase inhibitor
p16INK4a-mediated cell cycle arrest and to induce E2F-mediated S-phase entry in
lymphoid cells (An et al. 2005). However, as in the case of p53, the actual relevance
of this experimental finding has been questioned because Rb function appears to be
fully intact in PEL cells (Platt et al. 2002). Moreover, LANA was recently reported
to interfere directly with the spindle assembly checkpoint by inducing the degra-
dation of Bub1, which is a histone H2A kinase that mediates recruitment of a
guardian of centromeric cohesin, Shugoshin-1, to kinetochores (Sun et al. 2014;
Lang et al. 2018). Thus, LANA-induced chromosome instability and aneuploidy
likely contribute to HHV-8-associated tumorigenesis.

LANA also interacts with glycogen synthase kinase 3 beta (GSK3b), a kinase
that targets various proteins involved in cell cycle regulation. GSK3b targets
include the pro-mitogenic transcriptional regulator b-catenin and proto-oncoprotein
c-Myc; phosphorylation of these proteins by GSK3b promotes their proteolytic
degradation (Karim et al. 2004; Sears et al. 2000). b-catenin, in combination with
the transcription factor TCF, induces expression of various genes, including c-myc,
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c-jun, and cyclin D1; these genes are involved in cell cycle promotion and are
dysregulated in oncogenesis. LANA binding of GSK3b leads to nuclear seques-
tration and inactivation of the kinase, removing its negative regulation of b-catenin
and promoting cell proliferation (Fujimuro and Hayward 2003; Fujimuro et al.
2003; Liu et al. 2007a). c-Myc residue T-58, the target of GSK3b phosphorylation,
was found to be hypophosphorylated in PEL cells, and this under-phosphorylation
and consequent stabilization of c-Myc were dependent on LANA expression
(Bubman et al. 2007). In addition, LANA interacts directly with c-Myc and induces
ERK-mediated activation of c-Myc via phosphorylation of residue S-62 (Liu et al.
2007b). LANA binding of c-Myc and activation of ERK activity occur indepen-
dently of LANA interaction with GSK3b. Thus, through these various interactions,
LANA can activate proliferative pathways of likely significance to both HHV-8
latency and pathogenesis.

LANA has been reported to induce and interact with angiogenin (ANG), a
mediator of angiogenesis, which itself upregulates LANA expression and appears to
play a role in the establishment of latency and promotion of cell viability (Paudel
et al. 2012; Sadagopan et al. 2011). Furthermore, the interaction of LANA and ANG
with annexin A2 has been identified in both HHV-8 latently infected telomerase
immortalized endothelial (TIME) cells and BCBL-1 PEL cells. Based on the results
from confocal microscopy analyses, it appears that these proteins colocalize and can
form complexes together in addition to establishing separate ANG-LANA and
ANG-annexin A2 interactions (Paudel et al. 2012). Annexin A2 is involved in the
regulation of cell proliferation, apoptosis, and cytoskeletal reorganization, among
other activities (Shim et al. 2007; Thomas and Augustin 2009). Suppression of
annexin A2 or ANG expression in PEL cells was found to increase cell death, and
depletion of annexin A2 led to decreased expression of ANG and LANA (Paudel
et al. 2012; Sadagopan et al. 2011). Thus, there appears to be an integrated and
functionally important relationship between LANA, ANG, and annexin A2 that
promotes the viability of latently infected cells. Furthermore, the increased level of
ANG in HHV-8-infected cells may contribute to KS pathogenesis via induction of
endothelial cell activation, migration, and angiogenesis (Sadagopan et al. 2009).
While the mechanisms involved in LANA, ANG, and annexin A2 mutual regulation
and functional interactions remain to be elucidated, ANG interaction with and
destabilization of p53 may be significant with respect to pro-survival effects of
LANA mediated via ANG (Sadagopan et al. 2012). Furthermore, LANA has been
shown to upregulate the expression of epidermal growth factor like domain 7
(EGFL7) by sequestering the transcriptional repressor Daxx away from the EGFL7
promoter, thereby promoting angiogenesis in both a paracrine and autocrine manner
(Thakker et al. 2018). In addition to the direct LANA-cellular protein interactions
outlined above, LANA can also mediate transcriptional regulation of cellular genes
via more general mechanisms. One such mechanism involves regulation of tran-
scriptionally suppressive DNA methylation. LANA interacts with DNA methyl-
transferase DNMT3a, leading to its recruitment to and methylation of
LANA-targeted promoters (Shamay et al. 2006). LANA also associates with his-
tone methyltransferase SUV39H1 and transcriptional histone deacetylase-associated
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corepressors mSin3, SAP30, and CIR; these interactions implicate additional
mechanisms of direct, promoter-specific repression by LANA (Krithivas et al. 2000;
Sakakibara et al. 2004). These mechanisms are believed to be important for the
suppression of both viral lytic and cellular gene programs for the general purpose of
promoting viral latency and long-term cell viability (Verma et al. 2007).
LANA-targeted epigenetic repression of specific cellular genes that are silenced in
various cancers could contribute to HHV-8-associated malignancies in addition to
viral latency (Shamay et al. 2006; Ziech et al. 2010). For example, LANA together
with DNMT3a strongly represses the expression of heart-cadherin (H-cadherin, also
termed CDH13), a tumor suppressor that is frequently silenced in many different
cancers (Berx and van Roy 2009), by inducing hypermethylation of the CDH13
promoter in endothelial and PEL cells (Shamay et al. 2006; Journo et al. 2018).

Intriguingly, in addition to its role in latency, LANA has been reported to play a
role, in the cytoplasm, during lytic replication, where it appears to antagonize
cGAS and the Rad50-Mre11-CARD9 complex innate immune DNA sensors (that
activate IRF3 and NF-jB signaling, respectively), thus leading to the promotion of
virus replication (Mariggio et al. 2017; Garrigues et al. 2017; Zhang et al. 2016a).
These novel findings suggest that LANA is indispensable for both latency and lytic
replication.

2.2 Viral FLICE-Inhibitory Protein (vFLIP)

HHV-8-encoded Fas-associated death domain-like IL-1b-converting enzyme
(FLICE) inhibitory protein (vFLIP) is specified by ORF K13, and the protein is
often referred to simply as K13. vFLIP/K13 is related structurally to death effector
domain (DED)-containing and death receptor-interacting vFLIPs of other viruses,
such as molluscum contagiosum virus MC159L, rhesus monkey rhadinovirus
RRV-vFLIP, and equine herpesvirus2 E8; these vFLIPs are protective against
Fas/CD95- and TNF receptor-induced apoptosis (Bertin et al. 1997; Hu et al. 1997;
Thome et al. 1997; Ritthipichai et al. 2012). HHV-8 vFLIP/K13 also mediates the
protection of mouse lymphoma and rat pheochromocytoma cell lines from Fas- and
TNFa-induced apoptosis (Belanger et al. 2001; Djerbi et al. 1999). However, the
unique ability of HHV-8 vFLIP/K13 to induce NF-jB signaling and its inability to
effectively suppress Fas-induced apoptosis suggest that vFLIP/K13 functions pri-
marily through activation of NF-jB rather than via death receptor/caspase inhibi-
tion (Chugh et al. 2005; Chaudhary et al. 1999; Matta and Chaudhary 2004).
vFLIP/K13 activates the canonical and non-canonical NF-jB pathways by inter-
acting directly with the inhibitory j-kinase (IKK) complexes (IKKa:
IKKb ± IKKc/Nemo) to stimulate kinase activity, leading to disruption of IjB
interaction with p50/p65(RelA)-subunit NF-jB and to protease-mediated release of
RelB/p52 (active form) from RelB/p100 (Field et al. 2003; Liu et al. 2002; Matta
et al. 2007). Thus, vFLIP/K13 is able to activate NF-jB independently of upstream
receptor-associated mechanisms involving signaling adaptors and kinases such as
TNF receptor-associated factors (TRAFs) and receptor-interacting serine/threonine
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protein kinases (RIPKs); in doing so, vFLIP/K13 can avoid activation of c-Jun
N-terminal kinase (JNK) stress signaling (Matta et al. 2007). While it has been
reported that the vFLIP/K13 interaction with TRAF2 is required for vFLIP/K13
binding to IKKc in BC-3 PEL cells (Guasparri et al. 2006), TRAF2-dependent
interaction between vFLIP/K13 and IKKc and activation of JNK/AP1 signaling by
vFLIP/K13 were not evident in subsequent studies (Matta et al. 2007).

NF-jB activation by vFLIP/K13 is significant in that NF-jB is a suppressor of
lytic reactivation in latently infected PEL cells, and vFLIP/K13 and NF-jB promote
survival of these cells (Guasparri et al. 2004; Brown et al. 2003; Godfrey et al.
2005; Grossmann and Ganem 2008; Keller et al. 2000; Zhao et al. 2007). These
effects have clear implications for the maintenance of long-term latency and for the
potential contribution of vFLIP/K13 to HHV-8 malignancies. In addition to these
biological effects, NF-jB signaling also induces pro-inflammatory and angiogenic
cytokines, such as IL-6 and IL-8. These cytokines are produced by KS lesions and
are predicted to promote KS pathogenesis and to mediate vFLIP/K13-induced
cellular proliferation and transformation in experimental systems (An et al. 2003;
Grossmann et al. 2006; Sun et al. 2006; Ballon et al. 2015). Additionally,
vFLIP/K13-activated NF-jB activation downregulates the expression of glucose
transporters GLUT1 and GLUT3 to suppress aerobic glycolysis and promote cell
viability (Zhu et al. 2016). Reduced levels of the glucose transporters or aerobic
glycolysis are often detected in HHV-8-infected cells in KS lesions and in several
HHV-8-infected PEL cell lines (Zhu et al. 2016), suggesting the ability of HHV-8
to regulate a key metabolic pathway to adapt to stress conditions such as nutrient
starvation. Furthermore, vFLIP/K13 inhibits the expression of C-X-C chemokine
receptor type 4 (CXCR4) by induction of microRNA (miR)-146a via NF-jB
activation (Punj et al. 2010). As CXCR4 plays an important role in developing
vascular endothelial cells (Tachibana et al. 1998), downregulation of CXCR4 by
vFLIP/K13 may contribute to KS development by promoting premature release of
HHV-8-infected endothelial progenitor cells into the circulation. In addition to
NF-jB activation, vFLIP/K13 was shown to inhibit autophagy and associated cell
death induced by starvation or rapamycin in an HHV-8-infected PEL cell line (Lee
et al. 2009a). Together, these findings suggest that vFLIP/K13 contributes to both
viral latency maintenance and to PEL and KS pathogenesis through the constitutive
activation of pro-survival signals, protection of infected cells from stress-induced
cell death, and induction of antilytic NF-jB signaling.

Intriguingly, vFLIP/K13 protein levels remain very low during active infection,
and it is often difficult to efficiently express the protein in recombinant vectors. This
is probably due to its suboptimal codon usage which consequently causes mRNA
instability and inefficient translation (Bellare et al. 2015). The inefficient codon
usage may have evolved to prevent hyperactivation of NF-jB, which would lead to
dysregulated expression of inflammatory cytokines, a strong immune targeting of
infected cells, and a thorough blockade of lytic reactivation. vFLIP/K13 usurps host
cell chaperone and signaling proteins to enhance its protein stability. Specifically,
vFLIP/K13 interacts with HSP90, and HSP90 inhibitors induce vFLIP/K13
degradation and inhibit vFLIP/K13-induced NF-jB, leading to apoptosis and tumor
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growth inhibition in a mouse model (Gopalakrishnan et al. 2013; Nayar et al. 2013).
Furthermore, a recent report demonstrated that vFLIP/K13 localizes to peroxisomes
where it is stabilized by the MAVS/TRAF signaling complex via K63-linked
polyubiquitination, and MAVS-mediated vFLIP/K13 stabilization is important for
protecting virus-infected cells from autophagy-associated cell death (Choi et al.
2018). These studies suggest that targeted destabilization of vFLIP/K13 via inhi-
bition of its polyubiquitination through its MAVS/TRAF interaction may be an
effective treatment strategy for HHV-8-associated tumors.

2.3 Kaposins

The K12 transcription unit comprises the K12 ORF and two sets of GC-rich repeat
units (DR1, DR2) positioned upstream of K12 (Sadler et al. 1999). Three proteins,
kaposins A, B, and C, are produced from this locus by virtue of alternative tran-
scriptional and translational initiation. Kaposin A, corresponding to the K12 trans-
lation product, is initiated from a conventional AUG codon in a transcript originating
proximal to K12. Kaposins B and C initiate from CUG codons in different reading
frames in transcripts containing the upstream repeat elements. Kaposin B is trans-
lated from DR1 and DR2 in “frame 1,” while frame 2-translated kaposin C contains
DR1/2-translated sequences fused to K12. A larger, spliced transcript initiating 5 kb
upstream of K12 has also been identified, and this sequence has the potential to
encode non-AUG-initiated protein(s) with novel N-terminal sequences derived from
codons upstream of DR2 (Li et al. 2002a; Pearce et al. 2005). K12-locus transcripts
are found in high abundance in latently infected cells but are induced during lytic
replication (Sadler et al. 1999; Li et al. 2002a; Staskus et al. 1997; Sturzl et al. 1997;
Zhong et al. 1996). The relative expression of kaposins A, B, and C in different cell
types and tissues varies. For example, kaposins A and C are predominant in primary
PEL cells, whereas kaposin B is most abundant in the BCBL-1 PEL cell line (Li et al.
2002a). While there have been no functional studies of kaposin C, activities of
kaposins A and B have been reported.

As the direct product of ORF K12, kaposin A was the first identified and studied
protein from this locus. In transfection experiments, the 6 kDa protein was found to
transform immortalized rat-3 and NIH3T3 cells, forming cell colony foci in culture
and tumors in athymic mice (Muralidhar et al. 1998). Transformation was depen-
dent on cytohesin-1, a guanine nucleotide exchange factor, which binds to kaposin
A (Kliche et al. 2001). This interaction promotes membrane recruitment and
activity of cytohesin-1, which acts on membrane-associated target GTPases such as
ARF1 (Kliche et al. 2001). Increased activities of kinases, such as cdc2, PKC, ERK,
and CAM kinase II, have been detected in kaposin A-transduced cells, but the
underlying mechanisms have not been established (Muralidhar et al. 2000). Studies
using gene arrays and signaling assays have implicated activation of MEK/ERK,
PI3K/AKT, and STAT3 pathways by kaposin A (Chen et al. 2009a). Initial
immunofluorescence studies indicated possible Golgi localization of kaposin A
(Muralidhar et al. 2000). However, subsequent confocal fluorescence microscopy,
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cell fractionation, and flow cytometry analyses detected mostly perinuclear kaposin
A with some plasma membrane localization also detectable (Tomkowicz et al.
2002, 2005). A LXXLL motif resembling ligand-interacting regions of nuclear
receptors was required for immortalized cell transformation, and mutation of this
motif led to greatly diminished nuclear association and newly acquired cytoplasmic
localization of kaposin A (Tomkowicz et al. 2005). However, both wild-type and
motif-mutated kaposin A were equally capable of activating an AP1 reporter,
indicating that transformation occurs via a mechanism distinct from AP1 activation.
Kaposin A was also found to interact with a variant of GTP-binding protein
septin-4, a protein which localizes to mitochondria and promotes apoptosis (Lin
et al. 2007; Mandel-Gutfreund et al. 2011). Co-expression of kaposin A with the
septin-4 variant led to suppression of septin-4 variant-induced apoptosis in trans-
fected cells (Lin et al. 2007). Therefore, inhibition of septin-4 function may be one
mechanism by which kaposin A can influence malignant pathogenesis by pro-
moting cell survival. Normally, this activity would be expected to serve virus
latency. This mechanism would be biologically significant if septin-4 was expressed
and functional in HHV-8 latently infected cell types.

Kaposin B, translated from the DR repeats and K12, interacts via DR2-encoded
sequences with the stress-responsive kinase MK2 and enhances its activity
(McCormick and Ganem 2005). Kaposin B binds the “C-lobe” region of MK2, a
region also targeted by p38 kinase. Kaposin B binding of the C-lobe, like its
phosphorylation by p38, prevents inhibitory intramolecular association of C-lobe
and C-tail sequences of MK2, which results in activation of the kinase. A single
DR1 together with a single DR2 repeat, but neither element alone, is sufficient to
mediate MK2 activation (McCormick and Ganem 2006). MK2 activity leads to
stabilization of high turnover mRNAs containing AU-rich elements (AREs), and
many of these mRNAs specify cytokines, such as pro-inflammatory and angiogenic
IL-6. In addition to MK2 activation, kaposin B activates the small GTPase RhoA in
endothelial cells to induce actin stress fiber formation, increased cell motility, and
angiogenesis (Corcoran et al. 2015). Thus, kaposin B has the potential to influence
KS pathogenesis. Kaposin B is predicted to function in the maintenance of latently
infected cell populations and/or expansion of latent cell pools through pro-survival
and mitogenic activities of induced cellular proteins. Importantly, kaposin B sta-
bilizes the mRNA encoding PROX1, the “master regulator” of lymphatic
endothelial cell differentiation. PROX1 is targeted by ARE-binding protein HuR,
and kaposin B-activated p38 kinase promotes nucleo-cytoplasmic export of HuR
(Yoo et al. 2010). Reprogramming of blood endothelial cells to cells expressing
lymphatic markers is induced by HHV-8 infection and is believed to be a key
process in KS development (Pyakurel et al. 2006; Wang et al. 2004). Stabilization
of PROX1 mRNA by kaposin B is likely to represent an important mechanism by
which blood-to-lymphatic endothelial reprogramming is induced by HHV-8.
Therefore, in addition to kaposin A, kaposin B is likely to contribute significantly to
HHV-8-associated disease.
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2.4 Viral Cyclin (v-Cyclin)

Viral cyclin (v-cyclin) shares 54% homology and 32% identity with the sequences
of human cyclin D2 (Chang et al. 1996; Li et al. 1997). The oncogenic potential of
v-cyclin was first shown in experiments in which its expression in p53-ablated mice
was able to induce tumors (Verschuren et al. 2002, 2004b). Furthermore, a more
recent study using an HHV-8 mutant virus defective in the v-cyclin gene demon-
strated that v-cyclin promotes proliferation of HHV-8-infected rat primary cells by
regulating cell cycle progression and the G1/S transition in the context of
contact-inhibited cell culture conditions; the deletion of v-cyclin also decreased
tumor incidence in athymic nude mice injected with HHV-8-transformed cells
(Jones et al. 2014). The oncogenic function of v-cyclin is believed to be mediated
primarily by its activation of cyclin-dependent kinases (CDKs) including CDK6.
The kinases in turn phosphorylate and inhibit CDK inhibitors such as p21/Cip and
p27/Kip by inducing their cytoplasmic sequestration or degradation (Jones et al.
2014; Mann et al. 1999; Ellis et al. 1999; Sarek et al. 2006; Jarviluoma et al. 2006).

2.5 Viral Interleukin-6 (vIL-6) in PEL

Viral IL-6 (vIL-6) shares approximately 25% sequence identity with its cellular
counterpart, human IL-6 (hIL-6); this viral cytokine was independently discovered
by multiple groups (Neipel et al. 1997a; Nicholas et al. 1997; Moore et al. 1996).
Although sequence identity between human and viral homologs is low, the
cytokines adopt equivalent 4-a-helical bundle structures and have similar receptor
interactions and signaling activities (Boulanger et al. 2003; Chow et al. 2001;
Heinrich et al. 2003; Kishimoto et al. 1995). Signaling by hIL-6 requires interaction
with gp130 signal transducer and gp80 receptor subunits, which leads to Janus
kinase (JAK) activation and phosphorylation, dimerization, and nuclear transloca-
tion of STATs 1 and 3 (Heinrich et al. 1998). Several groups have shown that vIL-6
utilizes the same signaling components employed by human IL-6 but that it does
not require gp80 for active complex formation and can signal through tetrameric
(gp1302:vIL-62) or hexameric (gp1302:gp802:vIL-62) complexes (Chow et al. 2001;
Aoki et al. 2001; Chen and Nicholas 2006; Boulanger et al. 2004). Ultimately, both
cytokines share functional characteristics, such as the ability to sustain the growth
of IL-6-dependent cell lines (Nicholas et al. 1997; Burger et al. 1998). vIL-6,
however, is distinct in its ability to signal not only through gp130 complexes
located on the plasma membrane but also intracellularly within the endoplasmic
reticulum (ER), via gp80-devoid tetrameric complexes; vIL-6, unlike hIL-6, is
secreted inefficiently and localizes in large part to the ER. These unique properties
of the viral homolog are likely to be involved in the maintenance of viral latency
and important for HHV-8 pathogenicity.

Several studies have shown that vIL-6 is critical for the growth of PEL cells. The
viral cytokine, in addition to IL-10, was detected in PEL cell culture media and both
were found to support PEL cell proliferation (Aoki and Tosato 1999; Jones et al.
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1999). The detection of vIL-6 in these cultures was initially assumed to be the result
of spontaneous lytic reactivation, either full or abortive, in a small proportion of
cells because vIL-6 expression is induced during productive replication. However,
vIL-6 is now known to be expressed at low levels in latent PEL cells (Chandriani
and Ganem 2010; Chen et al. 2009b). Depletion of vIL-6 in these cells induces
apoptosis and slows the rate of cell growth (Chen et al. 2009b). Similar growth
effects were observed with intracellularly delivered single-chain antibody and
peptide-conjugated phosphorodiamidate morpholino oligomers (PPMO) directed to
vIL-6 and its transcript (Kovaleva et al. 2006; Zhang et al. 2008). Fully ER-retained
vIL-6 (cloned to include an ER-targeting KDEL motif) is capable of rescuing the
growth effects mediated by vIL-6 depletion (Chen et al. 2009b). These data indicate
a prominent role of vIL-6 intracellular, autocrine signaling in support of the growth
and survival of latently infected PEL cells.

The mechanisms through which vIL-6 acts in the ER to promote growth and
viability of PEL cells are not entirely clear, but evidence suggests that a novel
interaction with the ER membrane protein vitamin K epoxide reductase complex
subunit 1 variant 2 (VKORC1v2) is critical. VKORC1v2 was identified as a
novel-binding partner of vIL-6 and was found to be required for PEL cell survival
(Chen et al. 2012). Depletion of VKORC1v2 yielded similar growth effects to those
observed in vIL-6-depleted cell cultures. Furthermore, a small peptide inhibitor
capable of disrupting the VKORC1v2:vIL-6 interaction recapitulated growth and
apoptosis effects observed upon vIL-6 or VKORC1v2 depletion, confirming the
biological relevance of the vIL-6:VKORC1v2 interaction (Chen et al. 2012).
Subsequent studies revealed some aspects of the molecular mechanisms underlying
the activities of this viral cytokine through VKORC1v2. First, vIL-6 together with
VKORC1v2 promoted ER-associated degradation (ERAD) of pro-apoptotic pro-
tease cathepsin D through association with the ERAD machinery (Chen and
Nicholas 2015). Second, vIL-6 and VKORC1v2 interacted with calnexin cycle
components including UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1)
and glucosidase II (GlucII) to promote proper folding of nascent protein (Chen et al.
2017). Lastly, vIL-6 increased the expression of insulin-like growth factor 2
receptor (IGF2R) by inhibiting VKORC1v2-mediated ER-associated degradation of
IGF2R (Li et al. 2018). IGF2R is a multifunctional protein related to lysosomal
biogenesis and the regulation of growth and development (El-Shewy and Luttrell
2009), and its depletion in PEL cells resulted in cell death and reduced virus
replication (Li et al. 2018). Therefore, vIL-6/VKORC1v2-associated activities are
likely to contribute to virus biology and pathogenesis via the promotion of both
latently infected cell viability and productive replication.

Increased levels of phosphorylated (active) STAT3 have been detected in several
PEL cell lines (Aoki et al. 2003). STAT3 is activated upon vIL-6 signaling through
gp130 complexes. Depletion of STAT3 in PEL cells leads to an increase in
apoptosis and a decrease in the levels of survivin, which has been demonstrated to
be critical for PEL cell viability (Aoki et al. 2003). Survivin is a member of the
inhibitors of apoptosis (IAP) family of proteins and has been shown to inhibit
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apoptosis in several cancer cell lines (Ambrosini et al. 1997). These results are
significant because they link anti-apoptotic activities of survivin to STAT3 sig-
naling and potentially to vIL-6. It is noteworthy that gp130 depletion in PEL cells
leads to diminished growth and increased apoptosis in culture (Cousins and
Nicholas 2013). In addition to vIL-6:gp130 signaling, STAT3 can also be activated
by VEGF (Bartoli et al. 2000). Importantly, vIL-6 has been found to induce VEGF
in experimentally transduced cell lines and to play a significant role in PEL growth
and dissemination in a xenograft model (Aoki and Tosato 1999; Aoki et al. 1999).
Therefore, vIL-6 is involved in a complex set of activities in PEL cells and is not
only capable of initiating pro-growth and survival signaling through the ER com-
partment (Fig. 1) but may also contribute to PEL pathogenesis through activation of
STAT3/survivin and VEGF signaling. In addition to latency, vIL-6/gp130/STAT3
signaling was shown to be important for HHV-8 productive replication in PEL and
endothelial cells (Cousins et al. 2014).

2.6 Viral Interferon Regulatory Factor-3 (vIRF-3) in PEL

HHV-8 specifies four viral interferon (IFN) regulatory factor homologs, vIRFs 1-4
(Cunningham et al. 2003; Lee et al. 2009b), which serve to counter the effects of
cellular IRFs and to inhibit innate responses of the cell to virus infection and
productive replication (see below). While all of the vIRFs are expressed during lytic
replication, consistent with their presumed primary functions in evasion of antiviral
host cell defenses, vIRF-3 is expressed as a bona fide latent product in PEL cells
(Jenner et al. 2001; Paulose-Murphy et al. 2001; Rivas et al. 2001). As such, vIRF-3
has been referred to by some investigators as latency-associated nuclear antigen-2
(LANA2), despite its partial localization to the cytoplasm and the absence of
demonstrable latent expression in any other cell type examined (Munoz-Fontela
et al. 2005). Nonetheless, in the context of PEL/B-cells, vIRF-3 has the potential to
impact cellular pathways that may be of biological relevance to viral latency and
virus-associated pathogenesis. In common with other vIRFs, vIRF-3 can inhibit
cellular IRF function. vIRF-3 does so by interfering with the transcriptional
activities of IRFs 3, 5, and 7 in addition to inhibiting PKR, a pro-apoptotic kinase
that is activated by IFN and dsRNA (Esteban et al. 2003; Joo et al. 2007; Lubyova
and Pitha 2000; Wies et al. 2009). Importantly, vIRF-3 has also been found to
interact directly with tumor suppressors including p53 and the pocket proteins pRb,
p107, and p130 to inhibit their anti-tumor function and to induce c-Myc-directed
transcription by recruiting the F-box of Skp2 protein, a key component of the Skp,
cullin, F-box (SCF) ubiquitin ligase complex, to c-Myc-regulated promoters and
stabilizing c-Myc (Rivas et al. 2001; Lubyova et al. 2007; Baresova et al. 2012,
2014; Marcos-Villar et al. 2014; Laura et al. 2015). Recently, vIRF-3 has been
found to bind directly to ubiquitin-specific protease 7 (USP7, also called HAUSP),
a hydrolase that deubiquitinates and stabilizes target proteins such as MDM2 and
p53 (Li et al. 2002b, 2004). This interaction of vIRF-3 has been demonstrated to
promote latently infected PEL cell viability and also to inhibit productive
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Fig. 1 ER-localized interactions and activities of vIL-6 in latently infected PEL cells. In the
context of PEL latency, vIL-6 is expressed at low but functional levels and is largely sequestrated
in the ER compartment. Latently expressed vIL-6 supports PEL cell growth and viability. In
vIL-6-depleted PEL cells, these activities can be complemented by ER-restricted (KDEL-tagged)
transduced vIL-6, demonstrating sufficiency of ER-localized vIL-6 activity. The vIL-6 signal
transducer, gp130, and a novel splice-variant protein, vitamin K epoxide reductase complex
subunit 1 variant 2 (VKORC1v2), each binds vIL-6 within the ER, and depletion of each inhibits
PEL cell growth and viability. Available evidence indicates that vIL-6 activity via each of these
ER receptors occurs independently. While gp130-mediated activation of STAT and MAPK
signaling has been detected in PEL cells, gp130 signaling (in contrast to effects on growth and
survival) is not affected by VKORC1v2 depletion or by peptide-mediated disruption of the vIL-6:
VKORC1v2 interaction. vIL6 regulates VKORC1v2-mediated ER-associated protein degradation
(ERAD) either to promote the degradation of a precursor form (pCatD) of cathepsin D, a
pro-apoptotic protease, or to inhibit the degradation of insulin-like growth factor 2 receptor
(IGF2R), which is involved in promoting PEL cell viability. ERAD components: ER lectins
(XTP3B and OS9) and ER translocon proteins (HRD1, Derlin, and Sel1L)
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replication (Xiang et al. 2018). vIRF-3 can also interact with and inhibit FOXO3a, a
transcription factor targeting pro-apoptotic genes (Munoz-Fontela et al. 2007).
These activities indicate that vIRF-3 plays a significant role in promoting cell
survival and proliferation in the context of PEL and potentially in general B-cell
latency. Indeed, vIRF-3 has been demonstrated to be critically important for PEL
cell viability in culture, as its depletion triggers apoptosis (Wies et al. 2008).
Pro-survival effects of vIRF-3 may in part be the result of its inhibition of
PML-mediated repression of survivin (Marcos-Villar et al. 2009). Furthermore,
vIRF-3 has been reported to repress CIITA transcription factor-directed expression
of IFN-c and class II major histocompatibility complex in PEL cells (Schmidt et al.
2011). This immune evasion activity of vIRF-3 is likely to be vital for the long-term
survival of these cells in vivo. Therefore, vIRF-3 activities are likely to be important
for latency persistence in at least some cell types (where vIRF-3 is latently
expressed) and are probably significant contributors to PEL malignancy.

Interestingly, a recent study showed that vIRF-3 is also required for KS
pathogenesis. vIRF-3 is readily detected in approximately 42% of KS lesions from
various organs, and it serves as a pro-angiogenic factor that promotes sprouting
formation of lymphatic endothelial cells (Lee et al. 2018). This lymphangiogenesis
was proposed to be mediated by vIRF-3 inhibition of phosphorylation and
nucleo-cytoplasmic shuttling of histone deacetylase 5 (HDAC5), ultimately
resulting in the retention of HDAC5 in the nucleus and epigenetic repression of
antiangiogenic gene expression (Lee et al. 2018).

2.7 MicroRNAs (miRNAs)

MicroRNAs (miRNAs) are * 22 nucleotide (nt) non-coding RNAs that regulate
the expression of mRNAs via cleavage or by inhibiting translation. miRNAs are
encoded as primary miRNAs (pri-miRNAs), synthesized by RNA polymerase II,
and processed to pre-miRNAs (stem–loop structures) by the RNase III domain of
DROSHA prior to nuclear export by exportin 5 (Lee et al. 2003a; Lund et al. 2004).
In the cytoplasm, pre-miRNAs are cleaved into 21–24 nt double-stranded RNAs by
an RNase III domain of DICER, and one strand of the miRNA duplex is then
incorporated into RISC (RNA-induced silencing complex) (Lee et al. 2003a; Bartel
2004). The incorporated miRNA guides the loaded RISC to the mRNA target
(Schwarz et al. 2003). Generally, the mRNA target is degraded if the miRNA is
perfectly complementary to the targeted sequence. Alternatively, binding of a
miRNA lacking perfect complementarity inhibits translation of the mRNA (Zeng
et al. 2003).

While miRNAs have been detected in all metazoans, virus-encoded miRNAs
were discovered relatively recently (Pfeffer et al. 2004). To date, 12 pre-miRNAs
(termed miR-K1 to miR-K12) and 25 mature miRNAs from the HHV-8 genome
have been identified. A total of ten of the 12 pre-miRNAs are located between
latently expressed ORFs 71 and K12 in the HHV-8 genome; miR-K10 is located
within ORF K12, and miR-K12 is within the 3′ UTR of K12 (Pfeffer et al. 2005;
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Samols et al. 2005). All 12 of the HHV-8 miRNAs are orientated “in sense” with
ORFs 71 to K12 and are expressed during latency (Cai et al. 2005). Most of the
miRNAs can be detected during latent infection (Cai et al. 2005; Umbach and
Cullen 2010). Bioinformatic approaches have utilized miRNA seed sequences (nt
2-7/8 of the miRNA) to search for miRNA gene targets (Gottwein and Cullen 2010;
Lu et al. 2010b; Nachmani et al. 2009; Qin et al. 2010a), but these approaches yield
large numbers of potential candidates. Additionally, targets with less than perfect
seed sequence complementarity may be overlooked, and experimental validation of
identified candidates is necessary to assess authenticity. Functional approaches
involving transduction of recombinant viruses containing single or a combination of
HHV-8 miRNAs and monitoring potential changes in mRNA levels via microarray
have also been utilized (Ziegelbauer et al. 2009). In addition, methods based on
immunoprecipitation of RISC and/or associated argonaute proteins and subsequent
high-throughput sequencing of co-precipitated miRNAs have been employed
(Gottwein et al. 2011; Dolken et al. 2010; Haecker et al. 2012; Gay et al. 2018).
These methods have identified multiple mRNA targets within the host cell. From
these data, the virally encoded miRNAs have been deduced to (1) promote
angiogenesis and cell migration, (2) modulate programmed cell death and cell
cycle, (3) alter a variety of cell signaling pathways that are involved in the regu-
lation of cell growth, differentiation, innate immunity and inflammation, and
(4) maintain latency. These targets and pathways are summarized in Table 1 and are
discussed further below.

HHV-8 employs many strategies to remain undetected by the host immune
response, and viral miRNAs are believed to play a vital role. HHV-8 miRNAs play
significant roles in cell growth, angiogenesis, and cell migration, which are con-
sidered important factors in KS pathogenesis. Transforming growth factor beta
(TGF-b) signaling can be downregulated via the direct targeting of SMAD5 by
miR-K11(Liu et al. 2012); downregulation of TGF-b signaling induces cell pro-
liferation. It has been noted that HHV-8+ B-cell lines have decreased levels of
miR-155, the cellular homolog of miR-K11 that represses SMAD2 protein
expression and thereby modulates the cellular response to TGF-b (Louafi et al.
2010); miR-K11 may compensate for the limited levels of miR-155 in these cells
(Skalsky et al. 2007). Inhibition of miR-K11 was found to derepress TGF-b sig-
naling in HHV-8+ B-cells (Liu et al. 2012). TGF-b signaling can be modulated by
thrombospondin 1 (THBS1), a target of HHV-8 miRNAs miR-K1, miR-K3,
miR-K6, and miR-K11 (Samols et al. 2007). THBS1 is an antiangiogenic factor,
and its downregulation leads to repressed TGF-b signaling (Samols et al. 2005). In
addition, miR-K3 represses the expression of GPCR kinase 2 (GRK2) to induce the
expression of the chemokine receptor CXCR2, thereby promoting migration and
invasion of endothelial cells (Hu et al. 2015; Li et al. 2016a). miR-K2 and miR-K5
are known to downregulate protein levels of the tumor suppressor protein tropo-
myosin 1 (TPM1) and thereby prevent anoikis, programmed cell death that occurs
after detachment of endothelial cells, and enhance tube formation of endothelial
cells (Kieffer-Kwon et al. 2015). Thus, multiple viral microRNAs are capable of
altering growth signaling and increasing angiogenesis to support the establishment
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Table 1 HHV-8-encoded microRNAs and their activities

Viral
microRNA

Target Activity/function References

Angiogenesis miR-K1, 3,
6, 11

THBS1 Cell adhesion, migration,
and angiogenesis

Samols et al. (2007)

miR-K3 GRK2 Migration, invasion, and
angiogenesis

Hu et al. (2015), Li
et al. (2016a)

miR-K2, 5 TPM1 Enhanced tube formation
of endothelial cells

Kieffer-Kwon et al.
(2015)

miR-K6 BCR Increases Rac-1-mediated
angiogenesis

Ramalingam et al.
(2015)

miR-K6-3p SH3BGR STAT3 activation,
cell migration and
angiogenesis

Li et al. (2016b)

miR-K6-5p CD82 Invasion and angiogenesis Li et al. (2017)

Apoptosis miR-K1, 3,
4-3p

CASP3 Inhibition of apoptosis Dolken et al. (2010)

miR-K5, 9,
10

BCLAF1 Inhibition of apoptosis Ziegelbauer et al.
(2009)

miR-K9 GADD45B Inhibition of apoptosis Liu et al. (2017)

miR-K10a TWEAKR Reduced caspase
activation

Abend et al. (2010)

miR-K10a/b TGF-b
receptor II

Inhibition of apoptosis Lei et al. (2012)

Cell cycle miR-K1 p21 Inhibition of cell cycle
arrest

Gottwein and Cullen
(2010)

miR-K9 GADD45B Inhibition of cell cycle
arrest

Liu et al. (2017)

Cell growth
Differentiation

miR-K1 IjBa Activation of
NF-jB/IL-6/STAT3
signaling

Chen et al. (2016)

miR-K6, 8,
10, 11, 12

Not known Activation of the STAT3
pathway to upregulate
ASS1 expression

Li et al. (2019)

miR-K6, 11 MAF Endothelial cell
reprogramming

Hansen et al. (2010)

miR-K11 SMAD5 Suppression of TGF-b
signaling

Liu et al. (2012)

BACH-1 Regulation of B-cell
development Induction of
heme oxygenase-1 (HO-1)

Skalsky et al. (2007),
Gottwein et al. (2007),
Botto et al. (2015)

C/EBPb Expansion of infected
B-cells

Boss et al. (2011)

Innate
immunity
Inflammation

miR-K3, 7 C/EBPb Induction of IL-6 and
IL-10 expression

Qin et al. (2010b)

miR-K5
miR-K12-7

MYD88 Inhibition of IL-1
signaling

Abend et al. (2012)

(continued)
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of HHV-8-associated neoplasia. Additionally, viral miRNAs can alter the tran-
scriptomes of endothelial cells and assist in cellular reprogramming. Both
blood-vessel endothelial cell (BEC) and lymphatic endothelial cell (LEC) expres-
sion markers are found in KS tissue, and the tissue can be reprogrammed toward the
LEC or BEC fate under the appropriate stimuli. Specifically, miR-K6 and miR-K11
target the cellular transcription factor musculoaponeurotic fibrosarcoma oncogene
homolog (MAF) (Hansen et al. 2010), which is found in LECs but not in BECs.
Silencing of MAF by the microRNAs increases expression of BEC marker genes
within the KS tissue. Furthermore, miR-K6 is known to target other factors,
including breakpoint cluster region protein (BCR), SH3BGR, and CD82 to promote
angiogenesis and cell migration (Ramalingam et al. 2015; Li et al. 2016b; Li et al.
2017).

HHV-8 miRNAs are also involved in counteracting pro-apoptotic pathways
induced by the host cell upon viral infection. Caspase 3 is a target of multiple viral
miRNAs (miR-K1, miR-K3, and miR-K4-3p), and its inhibition desensitizes
HHV-8-infected cells to caspase-induced apoptosis (Dolken et al. 2010). Similarly,
miR-K10a suppresses TWEAK receptor (TWEAKR) expression, which limits

Table 1 (continued)

Viral
microRNA

Target Activity/function References

miR-K7 MICB Evasion from NK cell
killing

Nachmani et al. (2009)

miR-K9 IRAK1 Inhibition of the
TLR/IL-1R signaling

Abend et al. (2012)

miR-K11 IKKe Attenuation of IFN
signaling

Liang et al. (2011b)

Latency
maintenance

miR-K1 IjBa Activation of NF-jB,
Inhibition of lytic
replication

Lei et al. (2010)

miR-K3 NF-I/B RTA repression Lu et al. (2010b)

GRK2 Activation of
CXCR2/AKT

Li et al. (2016a)

miR-K4-5p RBL2 Epigenetic
reprogramming via
DNMT1/3

Lu et al. (2010a)

miR-K5, 9,
10a/b

BCLAF1 Inhibition of lytic
replication

Ziegelbauer et al.
(2009)

miR-K7-5p,
9

RTA Inhibition of lytic
replication

Bellare and Ganem
(2009), Lin et al.
(2011)

miR-K11 MYB RTA repression Plaisance-Bonstaff
et al. (2014)
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TWEAK-induced caspase activation and apoptosis (Abend et al. 2010). TWEAKR
inactivation also reduces production of pro-inflammatory cytokines IL-8/CXCL8
and MCP-1/CCL2 (Abend et al. 2010). miR-K10a also inhibits TGF-b-induced
apoptosis by targeting TGF-b-type II receptor (Lei et al. 2012). BCLAF1, a tran-
scriptional repressor, can be targeted by several of the HHV-8 miRNAs (miR-K5,
miR-K9, and miR-K10), leading to decreased etoposide-induced apoptosis in PEL
cells (Ziegelbauer et al. 2009). miR-K9 is known also to target growth arrest DNA
damage-inducible gene 45 beta (GADD45B) to protect cells from cell cycle arrest
and apoptosis induced by DNA damage (Liu et al. 2017). Finally, miR-K11, a
homolog of cellular miR-155, alters expression of BACH1, which leads to a variety
of phenotypic changes including upregulation of HMOX1 (increased cell survival),
upregulation of xCT (increased permissiveness to infection in macrophages and
endothelial cells), and protection against apoptosis mediated by reactive nitrogen
species (Qin et al. 2010a; Skalsky et al. 2007; Gottwein et al. 2007).

In addition, HHV-8 miRNAs play a role in modulating innate immune responses
and inflammation. miR-K7 targets MICB, a viral infection-induced cell surface
marker that functions to induce natural killer (NK) cell recognition and killing via
engagement with the NK-expressed NKG2D receptor (Nachmani et al. 2009; Glas
et al. 2000). MICB targeting by virus-encoded miRNAs is conserved in human
cytomegalovirus and EBV infection (Nachmani et al. 2009; Stern-Ginossar et al.
2007, 2008). miR-K3 and miR-K7 reduce the expression of the C/EBPb p20
(LIP) isoform, which functions as a negative transcriptional regulator, to increase
the expression of IL-6 and IL-10 in macrophages (Qin et al. 2010b). These
anti-inflammatory cytokines are more frequently found in patients with KS, PEL,
and MCD (Jones et al. 1999; Aoki et al. 2000; Oksenhendler et al. 2000; Drexler
et al. 1999) and inhibit innate immune responses (Cirone et al. 2008). Conversely,
IL-1 pro-inflammatory cytokine receptor signaling is inhibited by targeting of
adaptor proteins MYD88 and IRAK1 by miR-K5 and miR-K9, respectively (Abend
et al. 2012). Thus, regulation of anti- and pro-inflammatory cytokines by HHV-8
miRNAs may favor HHV-8 immune escape. Furthermore, miR-K11 reduces IFN
expression by targeting I-jB kinase epsilon (IKKe) and inhibiting IKKe-mediated
IRF3/IRF7 phosphorylation (Liang et al. 2011b). miR-K11 targeting of IKKe is
also known to contribute to maintenance of HHV-8 latency.

In addition to immune evasion, HHV-8 miRNAs are involved in development or
proliferation of HHV-8-infected cells, related directly to the oncogenic potential of
HHV-8. For example, miR-K11, an ortholog of miR-155 that is involved in B-cell
development (Li et al. 2013), downregulates the expression of C/EBPb, a tran-
scriptional repressor of IL-6 that is coupled to B-cell lymphoproliferative diseases
(Alonzi et al. 1997), and induces splenic B-cell expansion in a mouse model
(Gottwein et al. 2007; Boss et al. 2011). In addition, miR-K11 represses the
expression of BACH1, a transcriptional repressor of heme oxygenase-1 (HO-1),
and induces sustained expression of HO-1 during latency, thereby promoting cell
proliferation (Botto et al. 2015). miR-K1 is known to target the NF-jB inhibitor
IjBa to induce NF-jB-dependent expression of IL-6, in turn leading to STAT3
activation (Chen et al. 2016). Furthermore, a recent study demonstrated that
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numerous HHV-8 miRNAs including miR-K6 to -K12 upregulate the expression of
argininosuccinate synthase 1 (ASS1), a key enzyme in the citrulline–nitric oxide
(NO) cycle; the NO product then activates STAT3, but the direct targets of the
miRNAs have not been identified (Li et al. 2019). The study further demonstrated
that miRNA-induced ASS1/STAT3 activation contributes to cell proliferation and
transformation.

Several HHV-8 miRNAs target RTA, thereby functioning to maintain viral
latency and inhibit viral replication. Several research groups have identified
miR-K3, miR-K5, miR-K9, and miR-K11 as directly or indirectly targeting RTA
expression (Lu et al. 2010a; Bellare and Ganem 2009; Lin et al. 2011;
Plaisance-Bonstaff et al. 2014; Lu et al. 2010b). miR-K3 also is involved in the
inhibition of virus replication by activating the CXCR2/AKT signaling axis via
GRK2 suppression (Li et al. 2016a). Viral replication is also limited through the
inhibition of the NF-jB inhibitor IjBa by miR-K1; upregulation of NF-jB sig-
naling abrogates lytic replication of HHV-8 (Lei et al. 2010). By reducing virion
production, the virus is able to limit the host immune response. RBL2
(retinoblastoma-like protein 2) has been identified as a target of miR-K4-5p (Lu
et al. 2010a). RBL2 is an inhibitor of specific DNA methyltransferases (DNMT3a
and 3b). Epigenetic changes have been observed following inhibition of RBL2, and
the consequences of these alterations may contribute to latency maintenance (Lu
et al. 2010a).

3 Novel Virus–Host Interactions via Lytic Activities

3.1 Viral Interleukin-6 (vIL-6)

In contrast to its direct autocrine role in PEL pathogenesis, vIL-6 is believed to
contribute to KS and MCD predominantly via paracrine signaling. Newly infected
cells and those undergoing lytic replication express vIL-6 as an early gene product,
and vIL-6 is rapidly induced following RTA expression in these cells (Sun et al.
1999). The majority of HHV-8-infected cells in the KS lesion remains latently
infected, but small subsets of cells are lytically active. This minority of cells
expresses lytic proteins, including vIL-6, vGPCR, and K1; these proteins ultimately
enhance the expression of cellular inflammatory and angiogenic cytokines (Mesri
et al. 2010). For example, vIL-6 can induce expression of VEGF (Aoki and Tosato
1999), considered to be a key contributor to KS development. VEGF, cytokines
such as IL-6 and IL-10, and bFGF are secreted from lytically active cells and can
promote proliferation and/or viability of nearby latently infected and uninfected
cells in a paracrine fashion. The secreted proteins modulate survival of
HHV-8-infected cells, angiogenesis (predominantly through VEGF), and recruit-
ment of uninfected cells to the lesion. Inflammatory cytokines (including IL-6) and
angiogenic factors have been proposed to play a role in the initial development of
KS (Ensoli and Sturzl 1998). Additionally, vIL-6 modulates innate immune
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responses by regulating the expression of chemokines. For example, vIL-6
enhances basal and IL-1b-induced CCL2 expression and inhibits IL-1b-induced
CXCL8 expression to block the infiltration of neutrophils during acute infection of
B-cells (Fielding et al. 2005).

In MCD patients, levels of IL-6 are substantially higher in affected lymph nodes
when compared to unaffected nodes of the same patient (Yoshizaki et al. 1989).
Additionally, disease severity correlates with IL-6 levels, and when affected lymph
nodes are resected, IL-6 levels decrease (Yoshizaki et al. 1989). Similarly, cell lines
derived from HIV-positive KS patients express IL-6, and KS tissue produces
increased amounts of IL-6 compared to normal tissue (Miles et al. 1990). IL-6
antisense oligonucleotides were found to suppress the growth of KS cells from
HIV-positive patients as well as the production of IL-6, and addition of exogenous,
recombinant IL-6 was able to restore growth and proliferation of these cells (Miles
et al. 1990). An additional study observed substantially elevated levels of IL-6
produced by malignant plasma cells from MCD patients though not from other
B-cell tumors (Burger et al. 1994). At the time of these discoveries, the mechanism
of disease-associated IL-6 dysregulation was not understood. More recent reports
have demonstrated that vIL-6 can induce the expression of IL-6 and VEGF in some
cell types (Aoki et al. 1999; Mori et al. 2000). It is likely that vIL-6 also contributes
directly to MCD. Relative to MCD, but pathologically distinct, is KSHV inflam-
matory cytokine syndrome (KICS) (Polizzotto et al. 2012; Goncalves et al. 2017b).
Patients with KICS exhibit elevated HHV-8 viral loads and cytokines including
vIL-6, IL-6, and IL-10 in peripheral blood (Polizzotto et al. 2012). Thus, it is likely
that vIL-6 may also contribute to KICS pathogenesis by inducing cellular cytokines
and promoting lytic replication, although the role of vIL-6 in KICS development
remains to be determined.

3.2 Viral CC-Chemokine Ligands (vCCLs)

The three HHV-8 chemokines, vCCL-1, vCCL-2, and vCCL-3
(previously/alternatively referred to vMIP-I, vMIP-II, and vMIP-III, respectively),
are encoded by ORFs K6, K4, and K4.1, respectively (Nicholas et al. 1997; Moore
et al. 1996; Neipel et al. 1997b; Russo et al. 1996). All are expressed early during
the lytic cycle (Jenner et al. 2001; Paulose-Murphy et al. 2001). vCCL-1 and
vCCL-2 are most closely related structurally to cellular chemokines CCL3 and
CCL4, while vCCL-3 shares significant primary sequence similarity with a number
of CC-chemokines. However, the properties of the v-chemokines are distinct from
those of their cellular counterparts. With respect to receptor usage, vCCL-1 is an
agonist for CCR8; vCCL-2 signals through CCR3, CCR8, and ACKR3 (formerly
known as CXCR7); and vCCL-3 functionally targets CCR4 and XCR1 (Boshoff
et al. 1997; Stine et al. 2000; Dairaghi et al. 1999; Luttichau 2008; Luttichau et al.
2007; Nakano et al. 2003; Szpakowska et al. 2016). In addition, vCCL-2 binds
several CCR- and CXCR-type chemokine receptors and CX3CR1 as a neutral
(non-signaling) ligand and effectively inhibits cellular chemokine activity through
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these receptors (Dairaghi et al. 1999; Chen et al. 1998; Crump et al. 2001; Kledal
et al. 1997; Luttichau et al. 2001). The nature of the v-chemokine-targeted receptors
suggests that the v-chemokines may mediate immune evasion via Th2 polarization
and blocking of leukocyte trafficking, as has been demonstrated for vCCL-2 in
in vivo experiments (Chen et al. 1998; Weber et al. 2001).

Apart from these immune evasion properties, each of the HHV-8 v-chemokines
has been demonstrated to promote angiogenesis, in part via induction of VEGF
(Boshoff et al. 1997; Stine et al. 2000; Liu et al. 2001). Like vIL-6, HHV-8 vCCLs
have the potential to promote KS pathogenesis via paracrine signaling and may also
play roles in PEL, where VEGF has been implicated as an important factor based on
data from murine studies (Aoki and Tosato 1999; Ensoli and Sturzl 1998; Haddad
et al. 2008). Additional contributions of vCCL-1 and vCCL-2 to pathogenesis may
include pro-survival signaling via CCR8, demonstrated in uninfected and
HHV-8-infected endothelial cells (Choi and Nicholas 2008). vCCL-1 and vCCL-2
were also found to promote survival of PEL and murine cell lines (Liu et al. 2001;
Louahed et al. 2003). Unlike most (non-secreted) viral proteins, the v-chemokines
have the potential to function in a paracrine manner. Therefore, these chemokines
may promote cell survival of latently infected and uninfected cells surrounding
those supporting lytic replication, thus contributing to viral pathogenesis.
Nonetheless, an important aspect of the pro-survival activities of vCCL-1 and
vCCL-2 is the positive contribution to productive replication via autocrine sig-
naling. The endogenously produced v-chemokines inhibit lytic cycle-induced
apoptosis and increase virus yields in HHV-8-infected endothelial cultures (Choi
and Nicholas 2008). This activity involves CCR8 signaling-dependent suppression
of lytic cycle stress-induced pro-apoptotic protein Bim, a powerful inhibitor of
productive viral replication.

3.3 Viral G Protein-Coupled Receptor (vGPCR)

While not unique to HHV-8, the vGPCR encoded by this virus is structurally and
functionally diverged from other c2-herpesvirus vGPCRs and is strongly implicated
as a paracrine contributor to KS development (Cannon 2007; Nicholas 2005;
Rosenkilde et al. 2001; Verzijl et al. 2004). HHV-8 vGPCR is unusual in its
promiscuous functional association with three classes of Ga proteins (i, q, and 13)
in addition to its direct association with and activation of the signaling protein
SHP2 (Couty et al. 2001; Liu et al. 2004; Philpott et al. 2011; Shepard et al. 2001).
Initial reports that vGPCR can function as a classical “autocrine” oncogene in
in vitro and in vivo experimental systems employing vGPCR-transduced cell lines
implied that vGPCR may be expressed as a latent protein (enabling it to contribute
directly to HHV-8 oncogenesis) (Bais et al. 1998). However, no evidence of
vGPCR latent expression has been forthcoming. Nonetheless, vGPCR can induce
KS-like tumors in receptor-transduced mice, and this phenotype is supported
despite only a minority of cells expressing vGPCR (Yang et al. 2000; Montaner
et al. 2003). This result can be explained by angiogenic, mitogenic, and
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inflammatory cellular cytokine induction via vGPCR signaling, leading to local
endothelial activation, proliferation, and tumorigenesis (Montaner et al. 2004). As
stated above, cytokine dysregulation is considered to be the principle driver of KS
disease. vGPCR is known to induce the expression of key factors, such as VEGF,
bFGF, CXCL8, IL-6, and CCL2 (also termed MCP-1) that are found in KS lesions
and believed to promote and be required for KS development and progression, via
the activation of multiple signaling pathways to induce activation of transcription
factors including AP-1, NF-jB, CREB, NFAT, and C/EBPb (Cannon et al. 2003;
Pati et al. 2001; Schwarz and Murphy 2001; Bais et al. 1998; Choi and Nicholas
2010; Cannon and Cesarman 2004). Thus, vGPCR produced in a small minority of
spontaneously reactivating endothelial cells may induce levels of cellular cytokines
sufficient to promote KS. It should be noted that in animal models,
vGPCR-expressing cells are able to cooperate with cells expressing latency genes
v-cyclin and/or vFLIP to increase the frequency of KS achieved with inoculated
vGPCR+ cells alone (Montaner et al. 2003). This supports the notion that both
autocrine latent and paracrine lytic activities can function together in
HHV-8-associated neoplasia.

In addition, a genetic study using a vGPCR-deleted HHV-8 genome and
shRNA-mediated depletion demonstrated that vGPCR supports virus-productive
replication via MAPK pathway activation in infected cells (Sandford et al. 2009).
The pro-replication activity of vGPCR is mediated specifically via the Gaq-ERK
pathway, indicating direct autocrine effects of vGPCR signaling in the support of
lytic replication. Consistent with this, MAPK signaling was identified as important
for murine c-herpesvirus 68 (MHV-68) vGPCR-mediated pro-replication activity
(Lee et al. 2003b).

3.4 Viral Interferon Regulatory Factors (vIRFs)

HHV-8 vIRFs 1-4 are specified by the genomic region encompassing ORFs K9 to
K11; an equivalent locus (encoding 8 vIRFs) has been identified only in the closely
related rhesus rhadinovirus (Moore et al. 1996; Cunningham et al. 2003; Alexander
et al. 2000; Searles et al. 1999). All four of the vIRFs are expressed during lytic
replication, but vIRF-1, vIRF-2, and vIRF-3 are also expressed, to varying degrees,
during PEL latency (Cunningham et al. 2003; Rivas et al. 2001; Pozharskaya et al.
2004; Burysek and Pitha 2001). Additionally, vIRF-1 transcripts have been detected
in KS cells using reverse transcription polymerase chain reaction techniques
(Dittmer 2003). As outlined above (Sect. 2.6), vIRF-3 is required for PEL cell
viability (Wies et al. 2008). In addition, vIRF-1 depletion influences PEL cell
growth in culture (Xiang et al. 2018; Hwang and Choi 2016).

The vIRFs appear to function primarily to evade host cell defenses against de
novo infection and virus-productive replication, which trigger cellular IRF and IFN
signaling cascades leading to cell cycle arrest and pro-apoptotic signaling (Lee et al.
2009b; Offermann 2007). The vIRFs counter these cellular signals in several ways.
IRF5 and IRF7 functional dimerization and promoter association are antagonized
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by direct binding of vIRF-3 to these cellular factors, and vIRF-3 also inhibits IRF3
activity (Joo et al. 2007; Wies et al. 2009). vIRF-1 mediates transcriptional
repression of IRF-targeted genes by blocking IRF-directed promoter recruitment of
p300/CBP via competitive binding to the transcriptional coactivators (Burysek et al.
1999a; Li et al. 2000; Lin et al. 2001; Seo et al. 2000; Zimring et al. 1998).
Transcriptional repression of IRF1-, IRF3-, and ISGF3-targeted genes is mediated
by vIRF-2, in part by activation of caspase 3-mediated destabilization of IRF3
(Areste et al. 2009; Burysek et al. 1999b; Fuld et al. 2006). vIRF-2 has recently
been shown also to inhibit FOXO3A-mediated apoptosis via activation of the
PI3K/AKT pathway (Kim et al. 2016). In addition, vIRF-2 and vIRF-3 directly
target and/or inhibit dsRNA-activated PKR kinase activity; this suppresses PKR
promotion of protein translation and inhibits IFN signaling (Esteban et al. 2003;
Burysek and Pitha 2001). Interestingly, vIRF-3 associates with and stabilizes the
pro-angiogenic transcription factor HIF-1a (Shin et al. 2008), and this could serve
not only to promote endothelial cell survival but may also contribute to KS and PEL
pathogenesis via induction of cytokines such as VEGF. vIRF-4 binds to CSL, the
target of Notch, but the significance of this interaction is unclear (Heinzelmann
et al. 2010).

While each of the cellular IRFs contains a well-conserved DNA-binding domain
(DBD) of about 120 amino acids containing a unique tryptophan pentad repeat,
HHV-8 vIRFs share limited homology with the DBD of cellular IRFs and lack
some of the conserved and functionally important tryptophan residues (Takaoka
et al. 2008; Jacobs and Damania 2011). Thus, it was predicted that this incomplete
conservation may render vIRFs incapable of binding to cellular or viral DNA.
However, some studies have demonstrated that vIRF-1 and vIRF-2 have the ability
to bind to DNA (Park et al. 2007). In vitro pull-down assay of the 24-mer random
oligonucleotide pool with purified recombinant vIRF-1 protein revealed that vIRF-1
binds directly to DNA elements with the consensus sequence, 5’-
GCGTCNNGACGC-3’, a similar sequence of which is found in the K3-viral
dihydrofolate reductase-vIL-6 promoter region in the HHV-8 genome. Furthermore,
the crystal structure of the vIRF-1 DBD in complex with DNA was solved (Hew
et al. 2013). The structural study also found, however, that the full-length vIRF-1
does not bind to DNA, indicating that vIRF-1 may require activation to release the
DBD from inhibitory intramolecular interaction. Therefore, further studies are
required to assess how vIRF-1 is activated for DNA binding and what cellular or
viral DNA elements are the in vivo targets of vIRF-1. Moreover, a recent
genome-wide study using the ChIP-seq method demonstrated that vIRF-2 binds to
the promoters of cellular genes including PIK3C3, HMGCR (encoding
HMG-coenzyme A), and HMGCL (encoding HMG-CoA lyase) and regulates their
expression (Hu et al. 2016). However, the functional significance of vIRF-2 as a
transcription factor in infected cells is unclear. Structural and mutational studies of
vIRF-1 and vIRF-2 demonstrated that the arginine residues in the putative
DNA-binding helix of the DBD region are essential for binding to DNA and/or
gene expression (Hew et al. 2013; Hu et al. 2016). Similarly, it has also been
reported that vIRF-4 binds to its own promoter and those of vIRF-1 and PAN in the
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HHV-8 genome via the arginine residues in its putative DNA-binding helix to
enhance the expression of the lytic genes in collaboration with RTA (Xi et al.
2012).

vIRFs 1, 3, and 4 have been shown to inhibit p53 activity via (1) direct binding
to the tumor suppressor (vIRF-1 and vIRF-3), (2) interaction with
p53-phosphorylating and p53-activating ATM kinase (vIRF-1), or (3) stabilization
of MDM2 (vIRF-4), which promotes ubiquitination and proteasomal degradation of
p53 (Lee et al. 2009c; Nakamura et al. 2001; Seo et al. 2001; Shin et al. 2006).
Inhibitory interactions of vIRF-4 with deubiquitinase USP7 have been reported to
be involved in p53 destabilization (Lee et al. 2011). In addition, vIRF-1 has been
reported to interact directly with USP7, and this can affect decreased levels of p53
in transfected cells and contributes to enhanced viability of PEL cells (Chavoshi
et al. 2016; Xiang et al. 2018). Therefore, p53 represents a major vIRF target that is
likely to be regulated by the vIRFs to promote cell survival and productive
replication.

vIRF-1 associates with and inhibits the activities of other cellular proteins
involved in innate cellular responses to infection and the promotion of apoptosis.
These targets include retinoic acid/IFN-induced protein GRIM19 and TGFb
receptor-activated transcription factors SMAD3 (tumor suppressor) and SMAD4
(co-SMAD) (Angell et al. 2000; Ma et al. 2007; Seo et al. 2002, 2005). vIRF-1 also
binds directly to members of the so-called BH3-only protein (BOP) family (Choi
et al. 2012; Choi and Nicholas 2010). BOPs are Bcl-2-related proteins that function
to promote apoptosis either via inhibitory interactions with pro-survival members of
the Bcl-2 family or by direct activation of apoptotic executioners Bax and Bak
(Kuwana et al. 2005; Willis and Adams 2005). A region of vIRF-1 comprising
residues 170-184 (BOP-binding domain, BBD) interacts with BOP BH3 domains,
required for pro-apoptotic activities of these proteins, thereby mediating direct
inhibition, demonstrated for tBid, through interference with BH3-mediated inter-
actions and, for Bim, inactivation also through nuclear sequestration (Choi et al.
2012; Choi and Nicholas 2010). vIRF-1 BBD, a predicted amphipathic a-helix,
resembles the Bid BH3-inhibitory BH3-B domain and represents only the second
example of a BH3-B-type BH3-inhibitory domain, and therefore, a novel viral
mechanism of apoptotic inhibition. BBD-mediated interactions with BOPs are
functionally important, as indicated by the following findings: (1) BBD-mutated
vIRF-1 is less active than wild-type vIRF-1 in promoting productive replication and
inhibiting apoptosis in lytically infected endothelial cells; (2) vIRF-1:
BOP-disrupting BBD peptide causes significant inhibition of virus production in
these cells; and (3) depletion of vIRF-1-targeted BOPs Bim or Bid leads to sub-
stantial increases in replicative titers (Choi et al. 2012; Choi and Nicholas 2010).
Intriguingly, vIRF-1 localizes, in part, to mitochondria by targeting to the
detergent-resistant microdomains on the outer mitochondrial membranes via its
N-terminal proline-rich domain upon virus replication (Hwang and Choi 2016).
This mitochondrial targeting of vIRF-1 is functionally important for downregula-
tion of IFN expression and apoptosis induced by MAVS and for activation of
NIX-mediated mitophagy (Vo et al. 2019), thereby promoting virus replication. The
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proposed functions of mitochondria-targeted vIRF-1 are depicted in Fig. 2. In
addition, vIRF-1 has been found to inhibit IFN-b expression induced by the acti-
vation of the cGAS-STING DNA-sensing pathway (Ma et al. 2015). This study
demonstrated that vIRF-1 interacts with STING and hinders TBK1-mediated
phosphorylation of STING, possibly on the ER membranes. Taken together, vIRF-1
appears to downregulate antiviral innate immune and apoptotic responses in mul-
tiple cellular compartments including the nucleus, mitochondria, and ER.

In summary, a wealth of published data indicates that the HHV-8 vIRFs rep-
resent an effective panel of anti-apoptotic proteins that promote productive repli-
cation via interactions with an important group of cellular proteins involved in host
cell defenses against infection (summarized in Fig. 3).

3.5 Viral BCL-2 (vBcl-2)

In common with other c-herpesviruses, HHV-8 specifies a homolog of cellular
BCL-2 proteins, vBcl-2, encoded by ORF16. While the overall amino acid
sequence identity between vBcl-2 and cellular BCL-2 family members is low (15–
20%), vBcl-2 contains significantly conserved sequences in both the BH1 and BH2
domains, and its structure within the BH3 and BH4 domains in solution is
homologous to other BCL-2 family members (Cheng et al. 1997; Sarid et al. 1997;
Huang et al. 2002). Interestingly, a profiling study of binding to the BH3 domains
of BH3-only proteins suggested that vBcl-2 more closely resembles MCL-1 than
BCL-2, interacting selectively with the BH3 domains of BIM, BID, NOXA, BIK,
PUMA, and BMF (Flanagan and Letai 2008). vBcl-2 was also shown to interact
with Aven, which interferes with the ability of pro-apoptotic protein APAF-1 to

Fig. 2 Summary of the proposed roles of mitochondria-targeted vIRF-1 in the regulation of
host antiviral responses. Upon virus lytic reactivation, mitochondria-mediated antiviral responses
including BH3-only proteins (BOPs such as Bim and Bid)-activated apoptosis and
MAVS-mediated innate immune signaling are inhibited by vIRF-1. In addition, vIRF-1 activates
NIX-mediated mitophagy to remove the mitochondria involved in antiviral responses or damaged
during virus replication

268 Y. B. Choi et al.



self-associate and activate caspase-9 (Chau et al. 2000). These structural features
contribute to the anti-apoptotic activity of vBcl-2. Furthermore, like BCL-2, vBcl-2
inhibits Beclin-1-mediated autophagy by binding directly to Beclin-1 via the BH3
binding groove of vBcl-2 (Pattingre et al. 2005; Liang et al. 2006). Nonetheless, it
is not clear that these anti-apoptotic and anti-autophagic activities of vBcl-2 are
required for virus replication and production. Recent studies using recombinant
HHV-8 viruses showed that rather than vBcl-2 biological activity through apoptosis
and autophagy regulation, the pro-replication activity of vBcl-2 is dependent on a
glutamate residue (E14), which is not involved in the anti-apoptotic or
anti-autophagic activities of vBcl-2 (Liang et al. 2015; Gelgor et al. 2015). Fur-
thermore, a recent report demonstrated that vBcl-2 promotes virus assembly and
replication by interacting with the ORF55-encoded tegument protein via vBcl-2
residues 11-20, encompassing E14 (Liang et al. 2018). These results suggest that
vBcl-2 can promote virus replication independently of its anti-apoptotic and
anti-autophagic activities. Intriguingly, the N-terminal 17 amino acids of vBcl-2

Fig. 3 Summary of vIRF interactions with cellular proteins. The particular vIRFs interacting
with each target are indicated by the numbering within the open red (inhibitory), blue
(stimulatory), and gray (unknown function) circles, and the effects of each interaction are indicated
by red line (inhibitory) and blue arrow (stimulatory); the gray line indicates vIRF–USP7
interactions only, as the associated functions are uncertain. The activities of vIRF interactions are
grouped into five general and overlapping biological categories, as indicated by the shells and
color coding. The vIRF:protein interactions and their significance are discussed fully in the text
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have been found to be required for translocation of vBcl-2 to the nucleus and for
virus replication (Gallo et al. 2017), implicating a novel, yet unknown, function of
vBcl-2 within the nucleus in HHV-8 biology.

3.6 K7-Encoded Viral Inhibitor of Apoptosis (vIAP)

In addition to vBcl-2, HHV-8 encodes another BH-like domain-containing
anti-apoptotic protein that is a homolog of cellular survivin DEx3 (Wang et al.
2002). This HHV-8 protein is referred to as K7 (corresponding to the encoding
ORF) or viral inhibitor of apoptosis (vIAP). K7/vIAP is a membrane-associated
protein that contains a putative mitochondrial-targeting signal and localizes to
mitochondria, ER, and possibly other membranes as well (Wang et al. 2002; Feng
et al. 2002). It has been reported that K7/vIAP binds to cellular Bcl-2 via its
C-terminal BH2-like domain and to activated (proteolytically cleaved) caspase 3 via
its baculovirus IAP repeat (BIR) domain, bridging the two proteins and inhibiting
caspase 3 proteolytic activity (Wang et al. 2002). Interaction with and inhibition of
terminal caspase 3 in the apoptotic cascade are analogous to the activities of cellular
IAPs, which include survivin, XIAP, and cIAPs 1 and 2. However, the interaction
between K7/vIAP and Bcl-2 is a property not reported for its cellular counterparts.
The functional and biological significance of this interaction remains to be deter-
mined. Nonetheless, K7/vIAP is able to inhibit pro-apoptotic signaling in trans-
fected cells treated with agents such as Fas antibody and TNF-a, indicating its
potential to act as a promoter of lytic replication via its pro-survival activity during
lytic cycle-induced stress (Wang et al. 2002). K7/vIAP also interacts with
calcium-modulating cyclophilin ligand (CAML), which regulates intracellular cal-
cium ion concentrations (Feng et al. 2002; Bram and Crabtree 1994). The functional
significance of this interaction is evident from the ability of wild type but not
CAML binding-refractory K7/vIAP to inhibit chemically induced mitochondrial
depolarization (i.e., apoptotic triggering) in transfected cells (Feng et al. 2002).
Thus, in addition to its inhibitory binding to caspase 3, K7/vIAP appears to mediate
apoptotic inhibition via its CAML interaction. K7/vIAP also interacts with the
cellular protein protein-linking integrin-associated protein and cytoskeleton-1, also
called ubiquilin (PLIC1), which associates with ubiquitin-conjugated proteins to
inhibit their proteasomal degradation (Feng et al. 2004; Kleijnen et al. 2000; Wang
et al. 2012). K7/vIAP appears to antagonize PLIC1 activity, thereby destabilizing
ubiquitinated proteins, as demonstrated for p53 and NF-jB-inhibitory IjB (Feng
et al. 2004). Together, the inhibitory interactions between K7/vIAP and cellular
proteins PLIC1, caspase 3/Bcl-2, and CAML may promote cell survival during lytic
replication. However, whether the K7/vIAP activities contribute to virus production
is not clear because deletion of the K7/vIAP gene in the HHV-8 genome (BAC16)
had little or no effect on viral lytic replication and virus production in infected cells
(Liang et al. 2015, 2013).
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4 Terminal Membrane Proteins

The human c-herpesviruses EBV and HHV-8 and simian c-herpesviruses including
herpesvirus saimiri (HVS), herpesvirus ateles (HVA), and rhesus monkey rhadi-
novirus (RRV) all contain genes, located adjacent to the terminal-repeat region of
their genomes, encoding membrane-bound proteins interacting with a variety of
cellular signaling molecules. Due to their localization in the viral genome, the
proteins are often called “terminal membrane proteins” (Brinkmann and Schulz
2006).

4.1 K1/Variable ITAM-Containing Protein (VIP)

The K1 ORF of HHV-8 is located at the left end of the genome and is collinear with
other c-herpesvirus genes encoding signaling membrane proteins. These include
saimiri transformation-associated protein (STP) of HVS, latency membrane
protein-1 (LMP-1) of EBV, and the K1-homologous R1 receptor of RRV (Albrecht
et al. 1992; Damania et al. 1999; Kaye et al. 1993; Lagunoff and Ganem 1997;
Murthy et al. 1989). The K1 protein is a type I transmembrane signaling protein
containing a functional immunoreceptor tyrosine-based activation motif (ITAM) in
its cytoplasmic C-tail (Lagunoff et al. 2001; Lee et al. 1998b). Sequencing of K1 in
different HHV-8 isolates identified an unusual degree of amino acid sequence
variability in the extracellular regions of the encoded proteins (Zong et al. 1999;
Nicholas et al. 1998), hence the naming of the K1 protein as variable
ITAM-containing protein (VIP). While the functional significance of this variability
has not been established, the K1 locus has served as a basis of epidemiological
studies of HHV-8 strain distribution and infectivity (Hayward and Zong 2007;
Mbulaiteye et al. 2006; Whitby et al. 2004). Based initially on the genomic position
of K1 and subsequently on the constitutive signaling and transforming properties of
K1/VIP, the protein was implicated as a potential contributor to HHV-8 patho-
genesis. K1/VIP, like RRV R1, was able to substitute functionally for the posi-
tionally equivalent ORF1/STP of HVS in in vivo tumorigenesis assays and to
promote cell growth and transformation in isolation (Lee et al. 1998a; Prakash et al.
2002). K1/VIP activation of the AKT pathway and consequent activation of mTOR
(associated with cell growth) and the inactivation of pro-apoptotic GSK3, BAD,
and forkhead transcription factors have been implicated in these activities (Wang
et al. 2006; Tomlinson and Damania 2004). However, as K1 appears to be
expressed primarily or exclusively during lytic replication (Jenner et al. 2001;
Paulose-Murphy et al. 2001; Lagunoff and Ganem 1997; Nakamura et al. 2003), its
potential role in KS, PEL, and MCD may be restricted to paracrine effects of
K1/VIP-induced cellular cytokines (see below) rather than direct effects suggested
by initial functional analyses. While immunodetection of K1/VIP in KS and MCD
tissues has been reported, this has not been associated with latently infected cells
(Wang et al. 2006; Lee et al. 2003c). It should be noted, however, that in situ
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detection of K1 transcripts in some KS cells lacking detectable lytic marker (major
capsid protein) mRNA expression suggests the possibility that K1/VIP may be
expressed in at least some latently infected KS cells (Wang et al. 2006).

K1/VIP recruits and activates Src family kinases, PI3K, and PLCc to mediate
signal transduction via several pathways by ligand-independent, constitutive sig-
naling (Samaniego et al. 2001; Lagunoff et al. 2001; Lee et al. 1998b; Tomlinson
and Damania 2004; Lee et al. 2005). It has been suggested that K1/VIP may
contribute to HHV-8-associated disease, especially KS, by induction of cellular
cytokines. K1/VIP-induced cytokines include pro-inflammatory IL-1b, IL-6, and
GM-CSF and angiogenic factors VEGF, CXCL8, and bFGF (Samaniego et al.
2001; Wang et al. 2006; Prakash et al. 2002; Lee et al. 2005). Contributions of the
HHV-8 receptor to pathogenesis via cellular cytokine induction could theoretically
occur during lytic replication or during latency. In KS, PEL, and MCD, small
proportions of cells support lytic reactivation, enabling lytically expressed proteins,
like K1, to exert paracrine influence on surrounding latently infected and uninfected
cells (Aoki et al. 2003; Aoki and Tosato 2003; Ensoli et al. 2001).

In addition to the paracrine function of K1/VIP, recent genetic studies using the
recombinant HHV-8 genome mutants defective in the K1/VIP gene suggest that
autocrine function may contribute to HHV-8 pathogenesis via promoting cell sur-
vival under metabolic stress conditions. For example, deletion of K1/VIP rendered
infected cells sensitive to nutrient deprivation (Anders et al. 2016). This study
further revealed that K1/VIP interacts with the c1-subunit of AMPK in subcellular
membrane compartments at perinuclear regions and that this interaction is impor-
tant for the ability of K1/VIP to enhance cell survival. Another genetic study
demonstrated that cells infected with K1/VIP-null HHV-8 displayed reduced AKT
activation and produced lower viral titers than cells infected with wild-type virus
(Zhang et al. 2016b), indicating a positive role of K1/VIP in virus replication.
Taken together, K1/VIP may contribute to HHV-8 pathogenesis in both paracrine
and autocrine fashions.

4.2 K15-Encoded Membrane Protein

The K15-encoded protein in its full-length form is a twelve-transmembrane
domain-containing signaling receptor. Like K1, K15 may play a role in patho-
genesis via cytokine dysregulation, and it could conceivably contribute to malig-
nant disease through pro-survival signaling during latency. Transcripts from the
K15 locus are expressed predominantly during the lytic cycle, but some K15
products have been detected in resting (latent) PEL cultures (Choi et al. 2000;
Glenn et al. 1999; Sharp et al. 2002). The issue is complex because the K15 primary
transcript contains eight exons and can be differentially spliced; the resulting
mRNAs and encoded proteins may be expressed differently based on cell type and
whether the virus is in the latent or productive phase. All forms of K15 contain
C-terminal protein sequences with functional signaling motifs (see below), but the
protein isoforms differ in their complement of transmembrane domains. K15
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transcripts and a 23-kDa protein isoform have been detected during latency in PEL
cells, but K15 mRNA levels are induced considerably upon lytic reactivation (Choi
et al. 2000; Glenn et al. 1999; Sharp et al. 2002; Tsai et al. 2009).

Full-length K15 protein has been detected in HHV-8 bacmid-containing
HEK293 cells, though only after lytic induction with butyrate treatment (Brink-
mann et al. 2007). However, the full-length protein has not been observed in cells
naturally infected with HHV-8. The ability of immediate early, lytic trigger protein
RTA to activate transcription from the K15 promoter is consistent with predomi-
nant lytic expression of K15 (Wong and Damania 2006). Nonetheless, uncertainty
remains regarding the expression characteristics of K15 transcripts and proteins and
whether K15 receptor signaling could contribute to latency and HHV-8 neoplasia in
an autocrine manner.

Signaling motifs in the cytoplasmic tail of all K15 isoforms and in both M and P
allelic types include two SH2- and single SH3- and TRAF-binding sites (Brink-
mann et al. 2003; Choi et al. 2000; Glenn et al. 1999; Poole et al. 1999). SH2
binding-mediated interactions with Src family kinases occur via the Y481EEV
motif, which is the primary site of K15 phosphorylation (Brinkmann et al. 2003;
Choi et al. 2000). This, together with the SH3-binding sequence (PPLP), leads to
inhibition of B-cell receptor (BCR) signaling. PPLP–motif interactions with inter-
sectin 2 (endocytic adaptor protein) and with Src kinases (such as Lyn and Hck) are
important for this activity (Lim et al. 2007; Pietrek et al. 2010). BCR inhibition by
the K15 receptor parallels that of the collinearly encoded LMP-2 of EBV, and each
is likely to promote latency by inhibiting lytic cycle reactivation promoted by BCR
signaling. The Y481EEV motif has been implicated in the activation of NF-jB and
mitogen-activated protein kinases (MAPKs) ERK and JNK, which occurs after
Y481 phosphorylation (Brinkmann and Schulz 2006; Choi et al. 2000; Pietrek et al.
2010). Interaction of the K15 receptor with TRAFs 1, 2, and 3 is likely to contribute
to NF-jB and MAPK signaling (Brinkmann and Schulz 2006; Glenn et al. 1999).
The second tyrosine-containing motif, Y432ASI, is not detectably phosphorylated,
and its significance is uncertain. However, its interaction with apoptotic regulatory
protein HAX-1 and the ER and mitochondrial colocalization of HAX-1 with K15
suggests that the viral receptor may function to promote cell survival via this motif
(Sharp et al. 2002).

Examination of the downstream effects of K15 signaling has provided insight
into possible functions of the receptor in HHV-8 biology and its potential contri-
butions to viral pathogenesis. In addition to suspected anti-apoptotic activity via
interaction with HAX-1, K15 can induce the expression of several anti-apoptotic
genes, including A20, Bcl-2A1, Birc2, and Birc3 (Brinkmann et al. 2007). Induction
of these genes may help promote cell survival during the lytic cycle, further
enhancing productive replication. If K15 is expressed during latency, its
pro-survival signaling could contribute to prolonged latent cell viability and
maintenance of latency pools in vivo and to viral pathogenesis. On the other hand,
the observed induction of cellular cytokines in K15-transduced cells suggests a
mechanism by which K15 can affect surrounding cells (latently infected and
uninfected) by paracrine signaling from lytically infected cells. K15-expressing
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latently infected cells could exert similar effects on the microenvironment.
Cytokines induced by K15 receptor signaling include IL-6, CCL2, CXCL3, and
CXCL8; each of these possesses angiogenic activity and has been implicated in KS
pathogenesis (Brinkmann et al. 2007; Ensoli and Sturzl 1998; Caselli et al. 2007). It
is intriguing that K15 also induces expression of genes representing downstream
targets of angiogenic VEGF signaling. This would clearly implicate K15 as an
autocrine contributor to pathogenesis should the receptor be expressed during
latency, but such activity of K15 could also contribute to productive replication.
Angiogenic targets of K15 include Dscr-1 and Cox-2 (Brinkmann et al. 2007). It is
notable that Cox-2 has been reported to be induced during de novo and subsequent
latent infection of endothelial cells by HHV-8, and Cox-2 is important for the
production of several inflammatory and angiogenic factors (Sharma-Walia et al.
2010). K15 promotes cell motility by inducing the expression of miR-21 and
miR-31 via its SH2-binding motif (Tsai et al. 2009). Additionally, recent reports
indicate that K15 interacts with the class II PI3K-C2a in the perinuclear region of
HHV-8-infected endothelial cells and activates its downstream targets PLCc1 and
ERK1/2, thereby promoting lytic replication and virus production (Abere et al.
2018). As PI3K-C2a is localized mainly in the trans-Golgi network (TGN) (Domin
et al. 2000), K15 is likely to also localize to the TGN. In fact, small isoforms (23 to
24 kDa) of K15 are detected predominantly in the TGN of latent PEL cells (Smith
et al. 2017). Furthermore, levels of the small isoforms diminish during lytic
replication in PEL cells, while the full length (45 kDa) K15 accumulates and is
dispersed to peripheral areas during lytic replication, reflecting the alternative roles
of K15 in the latent and lytic cycles. In short, pro-survival and paracrine-mediated
pro-angiogenic roles of K15 in HHV-8 lytic replication and pathogenesis seem
likely, and there is potential for autocrine activity via pro-survival signaling con-
tributing to latency and neoplasia.

5 Summary

The discovery and study of HHV-8 have provided the opportunity to identify
unique virus-specified activities encoded by proteins either not previously known
among viruses or those not previously investigated or characterized in depth in
other viral systems. HHV-8 has also provided a model for the identification and
characterization of viral miRNAs, a new area of research that has yielded unique
and important insights into viral manipulation of host cell processes as part of
normal virus biology and potentially in viral pathogenesis. The properties of the
characterized protein and miRNA players in these processes have been described in
detail, and several key points emerge. First, the notion that only autocrine, latent
viral activities are relevant to virus-associated neoplasia needs revision, certainly in
the case of KS and possibly for PEL and MCD. Paracrine factors (viral and/or
cellular) produced during lytic replication can contribute to pro-proliferative,
pro-survival, and other functions of pathogenic relevance. The latent and lytic viral
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proteins implicated in HHV-8 pathogenesis and their potential autocrine and
paracrine contributions to disease are summarized in Fig. 4. Secondly, “lytic” and
“latent” classifications for viral products are not as distinct as once thought. For
example, vIL-6, vIRF-1, vIRF-2, vIRF-3, K1, and K15 are clearly expressed

Fig. 4 Overview of potential contributions of HHV-8 proteins to virus-associated neoplasia.
The general activities related to HHV-8 malignant pathogenesis are indicated: cell survival (Sur),
cell proliferation (Pro), angiogenesis (Ang), and virus replication (Rep). Both latent and lytic
proteins have the potential to contribute to disease in an autocrine (also intracrine) and/or paracrine
manner. The viral chemokine receptor, vGPCR, and the terminal membrane proteins, K1 and K15,
activate cell signaling and contribute to neoplasia via induction of mitogenic, pro-survival, and
angiogenic secreted cellular factors. The viral cytokines (lytic) are secreted and can act by both
autocrine and paracrine mechanisms to influence cell growth and survival. These activities can
promote virus replication (by autocrine signaling) in addition to contributing to viral pathogenesis
(via paracrine signaling). Latent expression of vIL-6 in PEL cells is likely to contribute to
pathogenesis, mainly via intracrine signaling (refer to Fig. 1 and the text for details). vIRF-3 is also
expressed during latency in PEL cells and, like vIL-6, promotes PEL cell viability. The latency
proteins have the potential to contribute to HHV-8-associated malignancies by direct autocrine
effects on cell proliferation and survival by mechanisms typical of oncogenes and tumor suppressors
(see text). Kaposin A and vFLIP have the potential to function as promoters of cell survival
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maximally during productive replication, but there is evidence for their expression
during latency as well in some cell types. Furthermore, it is notable that latently
expressed vIL-6, vIRF-2, and vIRF-3 are of demonstrable importance for PEL cell
growth and viability. A third key point is that the virally encoded chemokines
vCCL-1 and vCCL-2, while secreted during productive replication and thought to
function to promote virus production via paracrine effects on the microenvironment
(most notably to evade host immune responses), can also act directly on the cells in
which they are produced to enhance virus production via anti-apoptotic signaling.
Such direct pro-replication activity has also been demonstrated for vGPCR. For the
v-chemokines and vGPCR, it is possible that induced cellular cytokines may serve
similar and/or additional activities to promote virus replication in an autocrine
fashion as well as having broader effects on the host microenvironment. Finally,
several of the HHV-8 proteins have multiple interactions with a broad range of host
factors in the originally and additionally reported subcellular compartments, a point
summarized in Table 2 and exemplified by LANA and vIRF-1. Thus, viral proteins
can have extraordinarily multifaceted activities via numerous protein interactions,
and detailed characterization of these interactions and their functional effects is
important for understanding their individual and combined contributions to virus
biology and pathogenesis. Such characterization can potentially provide the basis
for the development of new antiviral and therapeutic drugs designed to interfere
with specific virus–host interactions of critical importance for viral replication or

Table 2 Virus–host protein interactions and their activities

Protein Class Target(s) Activity/function References

LANA Apoptosis
Proliferation
Epigenetic

p53 Pro-survival Friborg et al.
(1999)

Angiogenin/annexin
A2

Pro-survival Paudel et al.
(2012)

pRb Pro-mitogenic Radkov et al.
(2000)

GSK3b Pro-mitogenic Fujimuro and
Hayward (2003)

c-Myc Pro-mitogenic Liu et al.
(2007b)

Histones H2A/B Viral genome–
chromosome tethering

Barbera et al.
(2006)

Bub1 Chromosome
instability

Lang et al.
(2018)

DNMT3a Transcriptional
repression

Shamay et al.
(2006)

SUV39H1 Transcriptional
repression

Sakakibara et al.
(2004)

mSin3/SAP30/CIR Transcriptional
repression

Krithivas et al.
(2000)

(continued)
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Table 2 (continued)

Protein Class Target(s) Activity/function References

Cytoplasmic
LANA

Innate
immune

cGAS IFN signaling
inhibition
Promotion of lytic
replication

Zhang et al.
(2016a)

Rad50-Mre11-CARD9 NF-jB inhibition
Promotion of lytic
replication

Mariggio et al.
(2017)

vFLIP/K13 Apoptosis
Autophagy
Signaling

IKKa/b NF-jB activation
Survival
Repression of lytic
replication

Matta et al.
(2007)

Procaspase-8 Inhibition of caspase
activation
Pro-survival

Belanger et al.
(2001)

Peroxisomal MAVS NF-jB activation
vFLIP stabilization

Choi et al.
(2018)

ATG3 Anti-autophagy Lee et al.
(2009a)

Kaposin A Apoptosis
Signaling

Cytohesin-1 MAPK activation
Promotion of cell
adhesion

Kliche et al.
(2001)

Septin 4 variant Pro-survival Lin et al. (2007)

Kaposin B Cytokine
production

MK2 kinase Stabilization of
ARE-containing
mRNAs (e.g., IL-6
and PROX1)
Reprogramming of
endothelial cells

McCormick and
Ganem (2005,
Corcoran et al.
(2015)

vIL-6 Ligand
Cytokine

gp130/gp80 Pro-mitogenic
Pro-survival
Pro-inflammatory
Pro-angiogenic
Promotion of virus
replication

Chow et al.
(2001),
Boulanger et al.
(2004), Chen
et al. 2009b),
Cousins et al.
(2014)

VKORC1v2 Pro-mitogenic
Pro-survival

Chen et al.
(2012), Chen
and Nicholas
(2015), Li et al.
(2018)

vCCL-1 Ligand
Chemokine

CCR8 Agonist
Th2 polarization
Pro-survival
Pro-angiogenic
Promotion of virus
replication

Dairaghi et al.
(1999), Choi
and Nicholas
(2008)

(continued)
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Table 2 (continued)

Protein Class Target(s) Activity/function References

vCCL-2 Ligand
Chemokine

CCR3, CCR8 Agonist
Th2 polarization
Pro-survival
Pro-angiogenic
Promotion of virus
replication

Boshoff et al.
(1997), Nakano
et al. (2003),
Choi and
Nicholas (2008)

CCR5, CCR2,
CCR10, CXCR4,
CX3CR1, XCR1

Antagonist
Pro-survival
Promotion of virus
replication

Boshoff et al.
(1997),
Luttichau et al.
(2007), Chen
et al. (1998),
Kledal et al.
(1997),
Luttichau et al.
(2001)

vCCL-3 Ligand
Chemokine

CCR4, XCR1 Agonist
Th2 polarization
Pro-angiogenic

Stine et al.
(2000),
Luttichau et al.
(2007)

vGPCR Signaling
receptor

Ga (i, q, 12/13) Pro-survival/mitogenic
Promotion of virus
replication

Couty et al.
(2001), Liu
et al. (2004),
Shepard et al.
(2001),
Sandford et al.
(2009)

SHP2 Pro-angiogenic (Philpott et al.
(2011)

vIRF-1 Innate
response
Apoptosis

IRF1, IRF3, p300 IFN signaling
inhibition

Burysek et al.
1999a), Li et al.
(2000), Lin
et al. (2001)

MAVS IFN signaling
inhibition
Promotion of virus
replication

Hwang and
Choi (2016)

STING IFN signaling
inhibition

Ma et al. (2015)

p53, ATM Pro-survival Nakamura et al.
(2001, Seo et al.
(2001), Shin
et al. (2006)

GRIM19 Pro-survival Seo et al. (2002)

BOPs (BIM and BID) Pro-survival
Promotion of virus
replication

Choi et al.
(2012), Choi
and Nicholas
(2010)

(continued)
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Table 2 (continued)

Protein Class Target(s) Activity/function References

USP7 Pro-survival
Promotion of virus
replication

Xiang et al.
(2018),
Chavoshi et al.
(2016)

NIX Mitophagy activation
Promotion of virus
replication

Vo et al. (2019)

SMAD3, SMAD4 TGFb signaling
inhibition

Seo et al. (2005)

vIRF-2 Innate
response

ISGF-3 IFN signaling
inhibition

Mutocheluh
et al. (2011)

IRF1, IRF2, p65, p300 IFN signaling
inhibition

Burysek et al.
1999b), Fuld
et al. (2006)

PKR IFN signaling
inhibition

Burysek and
Pitha (2001)

vIRF-3 Innate
response
Apoptosis
Angiogenesis

IRF3, IRF5, IRF7 IFN signaling
inhibition

Joo et al.
(2007),
Lubyova and
Pitha (2000),
Wies et al.
(2009)

14-3-3r, FOXO3a Inhibition of cell cycle
arrest

Munoz-Fontela
et al. (2007)

p53 Pro-survival Rivas et al.
(2001)

CASP3, CASP7 Pro-survival Wies et al.
(2008)

PKR Pro-survival Esteban et al.
(2003)

USP7 Pro-survival Xiang et al.
(2018)

HIF-1a, Pro-angiogenic Shin et al.
(2008)

HDAC5 Pro-angiogenic Lee et al. (2018)

vIRF-4 Innate
response
Apoptosis

MDM2 Pro-survival (via p53
destabilization)

Lee et al.
(2009c)

USP7 Pro-survival (via p53
destabilization)

Lee et al. (2011)

CSL/CBF1 Unknown Heinzelmann
et al. (2010)

K7/vIAP Apoptosis Bcl-2/Caspase-3 Pro-survival Wang et al.
(2002)

CAML Pro-survival Feng et al.
(2002)

(continued)
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pathogenesis. This chapter has attempted to provide an overview of the various
novel HHV-8–host interactions and related activities that contribute to these pro-
cesses and that could perhaps be targeted in this way. The interactions described
also illustrate the breadth and complexity of virus–host interactions and suggest that
similar activities and mechanisms may be operative in other viral systems.
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Merkel Cell Polyomavirus and Human
Merkel Cell Carcinoma

Wei Liu and Jianxin You

1 Introduction

Merkel cell polyomavirus (MCPyV) is a member of the Polyomaviridae. It was first
identified in Merkel cell carcinoma (MCC) using digital transcriptome subtraction
methodology (Feng et al. 2008). MCPyV is also the first polyomavirus proven to be
associated with human cancer. MCPyV-associated MCC typically presents as a
type of neuroendocrine cancer. In 1972, it was first described by Dr. Cyril Toker,
who named it “trabecular carcinoma of the skin” (Toker 1972). MCC is one of the
most aggressive skin cancers, with disease-associated mortality of nearly 46%
(Becker 2010; Harms 2017; Agelli et al. 2010), which exceeds the mortality rate of
melanoma. It kills more patients than some well-known cancers such as cutaneous
T-cell lymphoma and chronic myelogenous leukemia (Lemos and Nghiem 2007;
Bhatia et al. 2011).

About 80% of MCC cases can be directly linked to MCPyV infection (Feng
et al. 2008; Sihto et al. 2009). Immunosuppression caused by aging (Fitzgerald
et al. 2015; Bichakjian et al. 2007), HIV infection (Engels et al. 2002), and organ
transplant (Clarke et al. 2015) has been shown to stimulate the development of
MCPyV-positive MCC. Sunlight exposure and ultraviolet (UV) radiation are also
important risk factors for MCC development (Lunder and Stern 1998; Heath et al.
2008).

Epidemiological surveys for MCPyV seropositivity (Tolstov et al. 2009; Kean
et al. 2009) and sequencing analyses (Foulongne et al. 2012) have shown that
MCPyV is an abundant virus frequently shed from healthy human skin, suggesting
that MCPyV infection is widespread in the general population (Schowalter et al.
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2010). Most of the primary MCPyV infection occurs during early childhood. Once
acquired, the virus becomes a permanent component of the skin flora (Chen et al.
2011). Integration of MCPyV genome into the host genome has been shown to
occur before the clonal expansion of the tumor, in which continued expression of
the viral oncogenes drives MCC tumor growth. These findings provide key evi-
dence to support the oncogenic role of MCPyV in MCC tumor development (Feng
et al. 2008; Shuda et al. 2008). The incidence of MCC has tripled over the past
twenty years (Hodgson 2005; Stang et al. 2018) and increased by >95% in the US
since 2000 (Paulson et al. 2017). With the high prevalence of MCPyV infection and
the increasing amount of MCC diagnosis (Hodgson 2005), there is a growing
concern for MCC (Hodgson 2005). Understanding MCPyV biology and its onco-
genic mechanism will provide insights for developing novel prevention and treat-
ment strategies for MCC. In this chapter, we present the recent advancement in
MCPyV virology and associated MCC tumors.

2 The Life Cycle of MCPyV

2.1 MCPyV Genome Structure

MCPyV is a small, non-enveloped, icosahedral, double-stranded circular DNA
virus (Feng et al. 2008). The 5.4 kb viral genome encodes seven gene products
under the control of early and late promoters (Fig. 1). A non-coding regulatory
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VP2

57K T antigen

ALTO antigen

Origin
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pA site L1

MCPyV
5387 bp

Fig. 1 MCPyV genome. This schematic diagram shows the non-coding regulatory region
(NCRR), early genes, late genes, and a microRNA (miR-M1) encoded by the MCPyV genome.
Alternate LT ORF (ALTO), Early gene poly A site (pA site E), Late gene poly A site 1 (pA site
L1), and Late gene poly A site 2 (pA site L2)
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region (NCRR) divides the genome into early and late regions (Gjoerup and Chang
2010). NCRR contains the viral origin (Ori) of replication and bidirectional pro-
moters for viral transcription (Harrison et al. 2011; Kwun et al. 2009).

The MCPyV early region encodes large tumor antigen (LT antigen), small tumor
antigen (sT antigen), 57-kilodalton tumor antigen (57KT antigen), and alternate
LT ORF (ALTO) (Feng et al. 2008; Schowalter et al. 2010; Carter et al. 2013).
Among these early proteins, LT antigen is the largest viral coding protein. It is
encoded by T antigen exon 1, exon 2, intron 2 and exon 3 (Shuda et al. 2008). LT
antigen not only regulates the viral genome replication but also controls the host
cell cycle progression. The N-terminus of the protein contains a conserved region
1 (CR1), a DnaJ domain (for binding heat-shock proteins), and a LxCxE
motif that is responsible for binding retinoblastoma protein (RB), which regulates
the cell cycle (Feng et al. 2008; Shuda et al. 2008). The C-terminal region of
LT antigen contains an Origin Binding Domain (OBD), which binds the MCPyV
Ori GAGGC pentameric sequences (Harrison et al. 2011; Kwun et al. 2009), and
a helicase domain, which unwinds double-strand MCPyV DNA to initiate repli-
cation (Li et al. 2013). The MCPyV sT antigen is encoded by T antigen exon 1 and
intron 1 (Shuda et al. 2008). Therefore, it shares the LT N-terminal CR1 and
DnaJ domains but carries a unique C-terminal protein phosphatase 2A (PP2A)
binding site (Kwun et al. 2015) as well as two highly conserved iron-sulfur clusters,
[2Fe–2S] and [4Fe–4S] (Tsang et al. 2016). The MCPyV 57KT antigen is encoded
by T antigen exon 1, exon 2 and exon 3 (Cheng et al. 2013). Therefore, it does not
have an OBD domain and a complete helicase domain. The MCPyV ALTO protein
is translated from an overprinting ORF that is +1 frameshifted relative to the T
antigen exon 2 (Carter et al. 2013). In contrast to LT and sT antigens, the function
of 57KT antigen and ALTO remains poorly understood.

The MCPyV late region encodes structural proteins VP1 and VP2 (Fig. 1)
(Schowalter et al. 2010; Schowalter and Buck 2013), which are the major and
minor subunits of the viral capsid, respectively. VP1 and VP2 form the capsids that
encapsidate the MCPyV genome (Schowalter and Buck 2013; Schowalter et al.
2011). The major capsid protein VP1 is indispensable and sufficient for producing
pseudovirions, whereas the minor protein VP2 confers specificity in host cell tar-
geting (Schowalter and Buck 2013). MCPyV minor capsid protein VP3 is not
detectable in either MCPyV-infected cells or native MCPyV virions. Phylogenetic
analysis suggests that MCPyV belongs to a unique clade of polyomaviruses that
does not encode the conserved VP3 N-terminus (Schowalter and Buck 2013).

Besides the early and late genes, MCPyV also encodes a microRNA, miR-M1
(Seo et al. 2009) (Fig. 1), which has been shown to down-regulate the expression of
LT. miR-M1 also appears to be important for long-term MCPyV episome main-
tenance in cell culture as well as for persistent infection in vivo (Theiss et al. 2015).
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2.2 MCPyV Entry into Host Cells

The particle size of MCPyV virions is about 50 nM. The viral capsid is composed
of VP1 and VP2 at a ratio of 5:2. Like most polyomaviruses, the major capsid
protein VP1 determines antigenicity and receptor specificity. The entry of MCPyV
virions into the host cell is mediated by VP1 binding to cellular receptors. Although
VP2 knockout does not affect virion assembly, viral DNA packaging, or cell
attachment, it reduces native MCPyV infectivity by more than 100-fold (Schowalter
and Buck 2013).

MCPyV enters into its target cells through a gradual and asynchronous motion.
The initial attachment receptors for MCPyV VP1 are sulfated glycosaminoglycans
(GAGs), specifically the N-sulfated and/or 6-O-sulfated forms of heparan sulfate
(Schowalter et al. 2011). It has been shown by X-ray structure analysis that a
shallow binding site on the apical surface of the VP1 capsomer recognizes the linear
sialylated disaccharide Neu5Ac-a2,3-Gal, which is present in ganglioside GT1b
containing sialic acids on both arms (Erickson et al. 2009). The study also revealed
VP1’s interaction with the Neu5Ac motif of GD1a, 3SLN, and DSL oligosaccha-
rides (Neu et al. 2012). This finding indicates that, during MCPyV infectious entry,
sialylated glycans serve as post-attachment co-receptors after MCPyV primary
attachment through GAGs. MCPyV penetrates cells through caveolar/lipid
raft-mediated endocytosis (Becker et al. 2019). The virus internalizes in small
endocytic pits, which deliver the virus to endosomes (Becker et al. 2019). From
there, the virus moves to the endoplasmic reticulum by taking advantage of
microtubule transport, acidification of endosomes, and a functional redox envi-
ronment. The virus was found to gain a membrane envelope within endosomes, a
phenomenon that has not been observed for other viruses (Becker et al. 2019).

2.3 MCPyV Replication

Both MCPyV LT and sT antigens play an important role in replicating viral DNA.
After binding to the viral replication Ori through its OBD domain, LT unwinds the
Ori using its helicase domain to initiate viral DNA replication (Kwun et al. 2009;
Diaz et al. 2014). Several LT phosphorylation sites have been discovered through
mass spectrometry analysis (Diaz et al. 2014). Mutagenesis and functional analysis
revealed that phosphorylation of LT at these sites dynamically regulates viral
replication by controlling Ori recognition, adjusting LT-Ori affinity, as well as
initiating viral DNA unwinding (Diaz et al. 2014). As discussed below, MCPyV LT
contributes to viral genome replication by recruiting cellular proteins as well.
MCPyV sT is also required for efficient viral DNA replication. It does so mostly
through increasing LT protein stability (Kwun et al. 2013). It was discovered that
LT is normally targeted for proteasomal degradation by the cellular SCFFbw7 E3
ligase. sT can bind and inhibit this E3 ligase to prevent LT degradation (Kwun et al.
2013).
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Several host proteins involved in MCPyV replication have been discovered.
Vam6p, a vacuolar sorting protein associated with MCPyV LT, is the first cellular
factor shown to have an effect on MCPyV replication (Feng et al. 2011). Mutation
of the Vam6p binding site on LT enhances MCPyV replication, whereas overex-
pression of exogenous Vam6p reduces MCPyV virion production by more than
90% (Feng et al. 2011). These studies suggest that Vam6p can inhibit MCPyV
replication through its interaction with LT antigen (Feng et al. 2011). Bromodomain
protein 4 (BRD4) is another cellular protein that interacts with MCPyV LT antigen
and plays a vital role in viral DNA replication. BRD4 colocalizes with the MCPyV
LT/replication origin complexes (MCPyV replication center) in the nucleus and
recruits replication factor C (RFC) to the viral replication sites (Wang et al. 2012).
BRD4 knockdown inhibits MCPyV replication, which can be rescued by adding
purified recombinant BRD4 protein in vitro. Human DNA damage response
(DDR) factors are important for MCPyV DNA replication as well. Components of
the Ataxia telangiectasia-mutated (ATM)- and Ataxia-telangiectasia-mutated and
Rad3-related (ATR)-mediated DDR pathways accumulate in MCPyV replication
centers inside the cells infected with recombinant MCPyV virions (Li et al. 2013).
This DDR factor recruitment does not happen when a replication-defective LT
mutant or an MCPyV Ori mutant was introduced instead of their wild-type coun-
terparts (Li et al. 2013). Components of promyelocytic leukemia nuclear bodies
(PML-NB) are another set of host factors that control MCPyV DNA replication.
Notably, MCPyV replication was increased in cells depleted of Sp100, one of the
key factors of PML-NBs. This observation suggests that Sp100 is a negative reg-
ulator of MCPyV DNA replication (Neumann et al. 2016).

2.4 Assembly and Release

The assembly and release processes of MCPyV are largely unexplored. Based on
VP1 protein localization during virus infection (Schowalter et al. 2011; Liu et al.
2016), it has been suggested that the virus packages in the nucleus and induces cell
lysis events so that it can be released from the infected cells (Liu et al. 2016).

2.5 MCPyV Host Cellular Tropism

Although the MCPyV binding factors, such as heparan sulfate and sialic acid that
mediates viral attachment and entry, are ubiquitously expressed, MCPyV infects
and replicates poorly in the majority of cell lines tested in a number of studies
(Schowalter et al. 2011; Neu et al. 2012). The cells naturally infected by MCPyV
have not been discovered until very recently. Several lines of evidence implicate the
skin as the major site of MCPyV productive infection in humans. First, multiple
deep sequencing studies have detected persistent and asymptomatic infection of
MCPyV in adult skin (Foulongne et al. 2012; Schowalter et al. 2010). In addition,
cell culture experiments suggest that the cell types conducive for MCPyV
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replication are either epithelial or fibroblast in origin (Kwun et al. 2009; Feng et al.
2011; Wang et al. 2012). Finally, MCC is a tumor derived from the dermis and the
presumed cells of origin for MCC, Merkel cells, reside in the epidermis. Following
this line of reasoning, different types of cells in human skin were surveyed for
MCPyV infectability. It was discovered that among all of the skin cell types tested,
only human dermal fibroblasts (HDFs) could support robust MCPyV propagation
(Liu et al. 2016). It was also found that epidermal growth factor (EGF) and basic
fibroblast growth factor (bFGF) are essential to support MCPyV infection in HDFs,
likely by inducing cellular factors to promote a cellular environment beneficial to
MCPyV infection (Liu et al. 2016). Interestingly, in human skin, EGF and FGF are
typically stimulated during the wounding and healing process (Quan et al. 2009),
suggesting that wounding of human skin may spur MCPyV infection. It was further
discovered that the expression of matrix metalloproteinases (MMPs), which can be
stimulated by the Wnt/b-catenin signaling pathway, is important for MCPyV
infection of HDFs (Liu et al. 2016). Several MCC risk factors, including UV
exposure and aging, can upregulate MMPs (Quan et al. 2009; Cho et al. 2009;
Fisher et al. 1996; Gill and Parks 2008; Quan and Fisher 2015; Varani et al. 2006),
suggesting they may promote MCPyV infection to stimulate MCC development.

Despite the discovery of productive MCPyV replication in HDFs, much remains
to be elucidated with respect to MCPyV natural infection and host cellular tropism.
For instance, both MCPyV attachment receptors, sialic acid and heparan sulfate are
ubiquitously expressed. It is unclear how MCPyV is able to effectively enter HDFs
but not many other cell types (Schowalter et al. 2012). MCPyV DNA has also been
detected in respiratory, urine, and blood samples (Spurgeon and Lambert 2013).
Therefore, the range of tissues in which MCPyV establishes persistent infection
remains unclear.

2.6 MCPyV Species Tropism

Mechanistic studies aiming to fully clarify the oncogenic mechanisms of MCPyV
have been hampered by the lack of MCPyV infection animal models. To overcome
this hurdle, recombinant MCPyV virions and several MCPyV chimeric viruses
were used to test the infectivity of dermal fibroblasts isolated from a variety of
model animals, including chimpanzee (Pan troglodytes), mouse (Mus musculus),
rabbit (Oryctolagus cuniculus), rat (Rattus norvegicus), rhesus macaque (Macaca
mulatta), common woolly monkey (Lagothrix lagotricha), patas monkey (Ery-
throcebus patas), red-chested mustached tamarin (Saguinus labiatus) and tree
shrew (Tupaia belangeri). Interestingly, among all of the cells tested, only chim-
panzee dermal fibroblasts supported strong MCPyV gene expression and viral
replication, and they did so to a much greater extent when compared to HDFs.
Therefore, among all of the tested small mammals and non-human primates,
chimpanzee represents the only animal type that can support native MCPyV
infection (Liu et al. 2018). Since chimpanzee is not available to be used as an
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animal model for MCPyV research, additional studies are needed to establish more
suitable animal models. Chimeric viruses that can overcome species-specific
restriction should be constructed to support these studies.

3 The MCPyV Tumorigenic Mechanisms

MCPyV DNA is frequently integrated into MCC genome (Feng et al. 2008; Liu
et al. 2016; Krump and You 2018). The MCPyV genome in MCC tumor cells is
invariably truncated by the integration event such that it is replication-incompetent,
yet the cell growth-promoting functions of viral genes called tumor antigens are
preserved (Shuda et al. 2008). MCPyV-positive MCCs typically express intact sT
and a tumor-specific truncation mutant of LT that preserves the N-terminal half of
LT, referred to as LTT (tumor-derived LT) antigen (Feng et al. 2008; Shuda
et al. 2008; Sastre-Garau et al. 2009; Borchert et al. 2014; Houben et al. 2012).
MCPyV-positive MCCs harbor very few genetic mutations (Harms et al. 2015; Goh
et al. 2016), suggesting that the expression of these viral oncogenes is sufficient to
drive tumor development. Indeed, sT and LTT have demonstrated robust oncogenic
potential to promote tumorigenesis (Spurgeon and Lambert 2013; Grundhoff and
Fischer 2015; Wendzicki et al. 2015; Shuda et al. 2011; Verhaegen et al. 2014).
MCPyV-positive MCC cells are addicted to sT/LTT oncogenes and require their
continued expression from integrated viral genome to survive (Houben et al. 2010;
Shuda et al. 2014). Knockdown of sT/LTT antigens induces growth arrest and cell
death in MCPyV-positive MCC cells (Houben et al. 2010; Shuda et al. 2014) and
leads to tumor regression in xeno-transplantation (Houben et al. 2012). These key
findings demonstrated the important impact of viral oncogene expression in the
development of MCPyV-associated MCCs.

A common characteristic of MCPyV genomes integrated into the MCC genome
is the selection for mutations in the LT antigen coding sequence that introduce
premature stop codons, which delete the LT C-terminal helicase domains (Shuda
et al. 2008). The resulting tumor-specific LTT antigen retains the CR1, DnaJ, and
RB-binding motifs, allowing the LTT molecules to efficiently disrupt the host cell
cycle (Shuda et al. 2008). Phosphorylation of serine 220 of MCPyV LTT is
required this viral oncogene to inactivate RB in MCC cells (Schrama et al. 2016).
This RB-inhibiting function of MCPyV LTT antigen has also been shown to
stimulate cell proliferation by upregulating cyclin E and CDK2 (Richards et al.
2015).

Unlike MCPyV LT, intact MCPyV sT is consistently expressed in
MCPyV-positive MCC tumors. Nearly no mutations have been detected in the
sT-coding regions integrated into MCC genome (Shuda et al. 2008; Starrett 2017),
corroborating a key functional role for this viral oncogene in the development of
MCPyV-positive tumors. MCPyV sT has been shown to transform immortalized rat
fibroblasts in cell culture (Shuda et al. 2011). Its transforming activity has also been
demonstrated in transgenic mouse models (Verhaegen et al. 2017; Verhaegen et al.
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2015; Shuda et al. 2015). In line with these observations, co-expression of MCPyV
sT antigen with Atonal bHLH transcription factor 1 (ATOH1) induces cell aggre-
gates with morphology and marker expression pattern mimicking MCC (Verhaegen
et al. 2017). The oncogenic activity of MCPyV sT antigen is mostly supported by
its ability to induce hyperphosphorylated, and thus inactivated, 4E-BP1, causing
dysfunction of cap-dependent translation to stimulate cell proliferation and trans-
formation (Shuda et al. 2011; Velasquez et al. 2016; Shuda et al. 2015; Sun et al.
2011). As described above, MCPyV sT antigen can inhibit the E3 ubiquitin ligase
SCFFbw7. This sT function prevents the proteasomal degradation of MCPyV LT
antigen as well as several important cellular proliferative proteins, such as c-Myc
and cyclin E, which are normally targeted by SCFFbw7 (Kwun et al. 2013). From a
large-scale co-immunoprecipitation and proteomic study, MCPyV sT antigen was
found to be associated with the MYCL-EP400 complex, which together bind
promoters of specific cellular genes to stimulate their expression and cellular
transformation (Cheng et al. 2017). In line with this finding, a transcriptome
analysis of normal human fibroblasts with inducible expression of MCPyV sT
revealed its ability to dynamically change cellular gene expression (Berrios et al.
2016). sT expression leads to upregulation of glycolytic genes, including the
monocarboxylate lactate transporter SLC16A1 (MCT1) (Berrios et al. 2016).
Additional functional analysis suggested that these gene expression changes lead to
elevated aerobic glycolysis, which may also contribute to the MCPyV-dependent
cellular transformation (Berrios et al. 2016). In addition, MCPyV sT modulates
cellular microtubule network, motility, and migration through upregulation of
microtubule- and actin-associated proteins as well as the cellular sheddases, A
disintegrin and metalloproteinase (ADAM) 10 and 17. Together, these cellular
factors contribute to sT-induced cell dissociation and motility, a feature that may
support MCPyV-mediated cellular transformation and metastasis (Nwogu et al.
2018; Stakaityte 2018; Knight et al. 2015).

Clonal integration of MCPyV DNA into the host genome is a key causative
factor for MCC development (Houben et al. 2009; Chang and Moore 2012).
However, the molecular mechanism that contributes to viral integration remains
poorly understood. As described above, both LTT and sT expressed from the
integrated viral genome demonstrate strong potential for modulating cellular pro-
teins to drive cell proliferation. The function of these viral oncogenes offers a strong
growth advantage for selecting the precancerous cells with the integrated viral
genome expressing these viral oncogenes. Another selective pressure may be
presented by the loss of viral DNA replication activity caused by the deletion of the
LT C-terminal OBD and helicase domains after the integration of the viral DNA
into the host genome. As continuous LT-mediated replication from the integrated
viral Ori could result in replication fork collisions and double-strand breaks in the
host DNA, disrupting the OBD and helicase domains of LT antigen would relieve
this genotoxic stress. Finally, other functional activities of the LT antigen
C-terminal domain may also need to be negatively selected during tumorigenesis.
For example, expression of the C-terminal helicase-containing region of
MCPyV LT induces a host cellular DNA damage response, leading to p53
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activation, upregulation of its downstream target genes, and cell cycle arrest (Li
et al. 2013). Compared to the N-terminal MCPyV LT region normally preserved
and expressed in MCC tumors, full-length MCPyV LT shows a significantly
decreased potential to support cellular proliferation, focus formation, and
anchorage-independent cell growth (Li et al. 2013). It was further discovered that
activated ATM phosphorylates the MCPyV LT C-terminal residue serine 816,
which functions to promote apoptosis (Li et al. 2015). In line with these observa-
tions, an additional study showed that expression of the MCPyV LT antigen
C-terminal 100 residues was sufficient to cause growth inhibition in many different
cell types (Cheng et al. 2013). Together, the growth-inhibitory activities of the
MCPyV LT C-terminal domain revealed in these studies suggest that the truncation
mutations that remove the MCPyV LT C-terminal region found in MCC is not only
needed to prevent replication of the integrated viral genome but also essential for
overcoming the anti-tumorigenic properties intrinsic to the MCPyV LT C-terminus
(Li et al. 2013; Cheng et al. 2013; Li et al. 2015). MCPyV viral genome integration,
therefore, promotes MCC tumorigenesis by overcoming the obstacles to oncoge-
nesis presented by replicative stress, DNA damage responses, and cell cycle arrest.

Several recent studies have attempted to establish transgenic mouse models for
MCPyV oncogenes. Although expression of MCPyV sT and LT can induce
hyperplasia and benign lesions in the epidermis of the transgenic mice, they failed
to induce lesions that fully recapitulate MCC pathogenesis (Verhaegen et al. 2014;
Spurgeon et al. 2015). Therefore, better MCPyV animal models are needed to
investigate MCPyV-induced MCC development in vivo.

4 Therapeutic Strategy Targeting MCPyV Infection

An FDA-approved MEK inhibitor, Trametinib, inhibits MCPyV infection in cul-
tured HDFs, making it the first drug capable of blocking the viral infection (Liu
et al. 2016). Trametinib could potently reduce the MCPyV viral load in immuno-
compromised patients. Therefore, it has the potential of preventing the development
of MCC tumors in these individuals (Liu et al. 2016).

5 Human Merkel Cell Carcinoma

5.1 MCC Histopathologic Features

MCC is a rare and aggressive cutaneous malignancy of neuroendocrine origin.
Based on its histopathologic patterns, it was first named by Dr. Toker as “trabecular
carcinoma of the skin” (Toker 1972). Additional names for MCC include the Toker
tumor, primary cutaneous neuroendocrine tumor, primary small cell carcinoma of
the skin, and malignant trichodiscoma (Schwartz and Lambert 2005). It is the
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second most common cause of skin cancer death after melanoma (Albores-Saavedra
et al. 2010). Because of the similarity in histopathologic patterns, MCC was
sometimes misdiagnosed as the malignant small blue cell tumors (Xue and Tha-
kuria 2019). The advent of immunohistochemistry staining for Cytokeratin 20
(CK20) has greatly improved the diagnostic accuracy of MCC (Fig. 2) (Scott and
Helm 1999).

5.2 Origin of MCC

The origin of tumors remains a central question for MCC research. Historically,
MCC tumors were thought to arise from Merkel cells, which are mechanoreceptor
cells located in the basal layer of the epidermis and also in hair follicles of the skin
(Winkelmann and Breathnach 1973) that share the immunohistochemical marker
CK20 with MCC tumors (Table 1). However, Merkel cells are known to be derived
from the epidermal lineage (Morrison et al. 2009; Van Keymeulen et al. 2009),
whereas MCCs mostly develop within the dermis and subcuitis (Calder and Smoller
2010). In addition, Merkel cells are post-mitotic and have lost the proliferative

Fig. 2 Cytokeratin 20 (CK20) staining of MCC. Perinuclear dot-like cytokeratin 20 staining
(Green). Nuclei (Blue)
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activity, thus are less likely to develop into tumorigenic MCC cells (Vaigot et al.
1987; Moll et al. 1996). These evidence suggest that Merkel cells are not likely to
be the cells of origin for MCC.

Identification of HDFs as the target cells of productive MCPyV infection (Liu
et al. 2016) is in line with the clinical observation that most MCCs develop in the
dermis (Calder and Smoller 2010). It also suggests that MCPyV infection of HDFs
in the dermis may ultimately give rise to MCC tumors. For example, it is possible
that over-amplification of MCPyV in HDFs may stimulate viral genome integration
into the host DNA to induce cellular transformation. Alternatively, MCPyV actively
replicating in HDFs located at the boundary between epidermis and dermis may
release viral particles that inadvertently infect bystander Merkel cells or their pre-
cursor cells present in the immediate vicinity within the basal layer of the epider-
mis. The dead-end replication environment present in Merkel cells may favor viral
integration and cellular transformation.

Recent studies also showed that MCC tumors express Paired box gene 5 (PAX5)
and terminal deoxynucleotidyl transferase (TdT), which, under physiological con-
ditions, are specifically expressed in pro/pre-B and pre-B cells (https://pubmed.
ncbi.nlm.nih.gov/23576560/). Based on this finding, it was speculated that MCC
tumors might originate from pro-B/pre-B cells, although this theory remains to be
examined experimentally.

5.3 MCPyV-Positive and -Negative MCCs

The majority of MCC tumors are associated with MCPyV infection, while the
remaining can be attributed to UV-induced mutation (Harms et al. 2015; Goh et al.
2016; Starrett 2017; Cohen et al. 2016). In the Northern hemisphere, approximately
80% of MCC tumors carry monoclonally integrated MCPyV genome (Feng et al.
2008; Sihto et al. 2009). However, the percentage of MCPyV-positive MCC is sig-
nificantly lower in other geographic areas such as Australia (*30%) (Garneski et al.
2009). The fact that MCPyV-positive MCC tumors typically carry an integrated
viral genome is reminiscent of papillomavirus-induced cancers (Feng et al. 2008).

Table 1 Prospective cells of origin for MCC and the markers and key characteristics they shared
with MCC (Liu et al. 2016)

Markers/characteristics

Merkel cell carcinoma CK20+, NSE+, PAX5+, NFP+, TdT+, TTF-1−, LCA−, S100−

Human dermal fibroblasts Major skin cell types that support productive MCPyV infection,
transcription, and replication

Merkel cells CK20+, electron microscope morphology

Pro/pre-B and pre-B cells PAX5+, TdT+

CK20: cytokeratin 20; NSE: neuron-specific enolase; NFP: neurofilament protein; PAX5: Paired
box gene 5; TdT: terminal deoxynucleotidyl transferase; LCA: leukocyte common antigen; TTF-1:
thyroid transcription factor 1
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However, unlike papillomavirus-associated malignancies, MCPyV-positive MCC
tumors grow swiftly with no clear precancerous stage. MCPyV-positiveMCC tumors
are believed to be derived from monoclonal expansion and have a very low mutation
burden (Harms et al. 2015; Goh et al. 2016; Starrett et al. 2017; Cohen et al. 2016).
These findings suggest that MCPyV-inducedMCC tumors may develop rapidly after
MCPyV genome integration.

Whole-genome sequencing has begun to shed light on the differences in the
causes of MCPyV-positive and -negative MCC tumors. These genetic studies
revealed that UV radiation is the primary cause of MCPyV-negative MCC tumors,
which accounts for about 20% of all MCC cases (Harms et al. 2015; Goh et al.
2016; Starrett 2017; Cohen et al. 2016). Compared to MCPyV-positive MCCs,
MCPyV-negative tumors revealed a prominent UV-mediated DNA damage sig-
nature and displayed a dramatically higher mutation burden (Harms et al. 2015;
Goh et al. 2016; Starrett et al. 2017; Cohen et al. 2016). Common cancer activating
mutations often observed in MCPyV-negative MCC tumors include mutations in
RB1, p53, PIK3CA as well as key components of the host DNA damage response,
Notch signaling, and chromatin remodeling pathways (Harms et al. 2015; Goh et al.
2016; Starrett 2017; Cohen et al. 2016). Much lower levels of cancer-promoting
mutations were observed in MCPyV-positive MCC tumors, supporting that the
MCPyV sT and LTT oncogenes expressed from the integrated viral genomes are
the predominant oncogenic drivers for these tumors (Harms et al. 2015; Goh et al.
2016; Starrett et al. 2017; Cohen et al. 2016).

6 Current Therapeutic Strategies for MCC

6.1 Surgery and Radiation Therapy

Early-stage, localized MCC tumors are mostly treated with wide-section surgery
and radiation. However, MCC frequently undergoes metastasis, which increases the
chance that tumors may be developed in body sites that are harder to reach and fully
eradicated with radiotherapy (Bichakjian et al. 2007; Allen et al. 1999). Therefore,
chemotherapy has been applied to treat advanced-stage MCCs. Despite the early
MCC response to chemotherapy, the duration of the response is usually short-lived
and many tumors often develop chemoresistance (Brummer et al. 2016; Saini and
Miles 2015; Cassler et al. 2016). Because chemotherapy also has an immunosup-
pressive effect, which counteracts the cellular immune response to MCC tumors, it
offers little overall survival benefit for MCC tumors. Currently, there are very few
feasible options for patients with advanced MCCs (Cassler et al. 2016).

6.2 Immunotherapy

MCPyV antigens or ultraviolet-mutation-associated neoantigens expressed in MCC
tumors represent ideal targets for anti-tumor immunotherapy. Robust intratumoral
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CD8+ T-cell infiltration has been associated with 100% MCC-specific survival,
independent of tumor stage (Paulson et al. 2011). This strong correlation between
immune function and prognosis reveals the potential for using immunotherapies to
treat metastatic MCCs.

6.2.1 Immune Checkpoint Inhibitor Therapy
Targeting the programmed cell death receptor 1/programmed cell death ligand 1
(PD-1/PD-L1) checkpoint has become an attractive treatment option for MCC
(Mantripragada and Birnbaum 2015). Both MCPyV-positive and -negative MCCs
have been treated with anti-PD-L1 (Kaufman et al. 2016) or anti-PD-1 therapy
(Nghiem et al. 2016). In one of the studies, 88 patients with advanced MCCs were
treated with the anti-PD-L1 antibody and followed for at least 12 months. An
objective response rate of 33.0% was confirmed with 11.4% of the patients showing
durable and complete responses. A one-year progression-free survival (PFS) rate of
30% and overall survival (OS) rates of 52% were achieved (Kaufman et al. 2018).
In another study with a median follow-up time of 14.9 months (Nghiem 2019), the
treatment of 50 patients with the anti-PD-1 antibody, pembrolizumab, resulted in a
56% objective response rate (ORR), including 24% of the patients showing com-
plete response and 32% partial response. Since these studies, the anti-PD-L1
antibody Avelumab and the anti-PD-1 antibody pembrolizumab have been
approved by FDA as new treatments for metastatic MCC. Several clinical trials are
ongoing to assess the safety and efficacy of anti-PD-1 and anti-PD-L1
immuno-checkpoint therapies for MCC. These early studies using PD-1/PD-L1
immune checkpoint blockade therapies showed promising results but a significant
portion of MCC patients does not respond to the treatment (Nghiem et al. 2016;
Becker et al. 2017; Terheyden and Becker 2017; Winkler et al. 2017; D’Angelo
2018).

6.2.2 Adoptive Cell Transfer Therapy
MCPyV-encoded T antigens are continuously expressed in MCC to support tumor
growth; therefore, they represent an appealing target for viral oncoprotein-directed
T-cell therapy. Tumor-infiltrating CD8+ T cells are associated with improved
survival of MCC patients. However, CD8+ T-cell infiltration is present in less than
18% of MCC tumors (Miller et al. 2017), suggesting that MCC may benefit from
adoptive T-cell transfer therapy. In several recent studies, naturally processed
epitopes of MCPyV LT antigen were identified and the T antigen-specific T-cell
receptors (TCRs) isolated (Miller et al. 2017; Iyer et al. 2011; Lyngaa et al. 2014).
These studies also revealed that intratumoral infiltration of MCPyV-specific T cells
is associated with significantly improved MCC-specific survival, demonstrating the
therapeutic benefit of MCPyV-specific T cells (Miller et al. 2017). Indeed,
tumor-bearing animals treated with engineered T cells expressing MCPyV T
antigen-specific TCR leads to tumor regression (Gavvovidis et al. 2018). Recently,
Chapuis group treated two patients with advanced MCC tumors with
autologous MCPyV-specific CD8+ T cells followed by immune checkpoint
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inhibitors (Paulson et al. 2018). In both cases, significant tumor regressions were
associated with increased CD8+ T-cell infiltration into the regressing tumors
(Paulson et al. 2018). However, tumors relapsed and escaped T-cell treatment
during the late stage. Single-cell RNA sequencing suggests that treatment failure
could be caused by HLA-loss (Paulson et al. 2018). Therefore, genetically engi-
neered T cells with chimeric antigen receptor (CAR), which can recognize cancer
cells in an HLA-independent manner, is an alternative approach for overcoming the
problem of HLA-loss during MCC treatment.

6.3 DNA Cancer Vaccine

One of the earliest therapeutic approaches explored for treating MCC tumors is
an MCPyV DNA vaccine. MCPyV LTT and sT consistently expressed in MCC
are attractive foreign antigen targets for vaccine development. In 2012, the Hung
laboratory developed a DNA vaccine to specifically target the MCPyV LTT region.
When tested in mice injected with the B16/LT murine melanoma cell line stably
expressing LTT, this vaccine showed protection against the LTT-expressing tumors
in vivo (Zeng et al. 2012). These anti-tumor effects of the DNA vaccine appear to
be mediated by CD4 + T-cell stimulation, natural killer cells and CD8+ T cells
(Zeng et al. 2012). Because CD8+ T cells are associated with a better outcome, the
Hung group went on to produce another DNA vaccine specifically designed to
promote MCPyV LT-specific CD8+ T-cell responses. This vaccine encodes LTT
antigen fused to a damage-associated molecular pattern protein, calreticulin (CRT),
which has the ability to induce CD8+ T cells when fused to other foreign antigens
(Zeng et al. 2012; Gomez et al. 2012). This new vaccine, named CRT/LT, showed
prolonged survival after tumor challenge in the B16/LT mice model compared to
mice vaccinated with the previous MCPyV LT vaccine. It was further demonstrated
that this better performance was mediated by the induction of MCPyV LT-specific
CD8+ T cells (Gomez et al. 2012). Another MCPyV DNA vaccine developed in
the Hung group targeted the sT antigen, which is the main driver of MCC onco-
genesis. The DNA vaccine pcDNA3-MCC/sT generated a significant number of sT
antigenic peptide-specific CD8+ T cells and demonstrated markedly enhanced
protection and treatment, leading to increased survival and decreased tumor volume
in vivo (Gomez et al. 2013). These encouraging preliminary results provide a great
platform for the development of MCPyV-targeted vaccines for MCC treatment.

6.4 Targeted Therapies

Targeted therapies are necessary for patients with advanced-stage MCCs that don’t
respond well to immunotherapy. Currently, multiple types of targeted therapies
have been evaluated in MCC cell lines as well as in xenograft models, with some of
them entering early phase clinical trials. Anti-apoptosis gene BCL-2 is frequently
unregulated in MCC and has become a major target for MCC therapies (Verhaegen
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et al. 2014). BCL-2 antisense oligonucleotides have been shown to inhibit tumor
growth in MCC xenograft models (Schlagbauer-Wadl et al. 2000). However, they
were not able to induce an objective response in a phase II trial (Shah et al. 2009).
On the other hand, ABT-263, a small-molecule inhibitor of the BCL-2 family
members (BCL-2, BCL-XL and BCL-W) could effectively induce apoptosis in
most of the MCC cell lines tested (Verhaegen et al. 2014). MCC cell lines are also
responsive to inhibitors of PI3K and mTOR pathways (Chteinberg et al. 2018;
Kannan et al. 2016; Lin et al. 2015; Nardi et al. 2012; Hafner et al. 2012). In
addition, most of the MCPyV-positive MCCs maintain wild-type p53 (Park et al.
2019). Not surprisingly, inhibitors of MDM2 (Mouse double minute 2 homolog or
HDM2), which targets p53 for degradation, have been found to be effective in
triggering p53-dependent apoptosis and cell cycle arrest in the majority of
MCPyV-positive MCC tumors tested (Houben et al. 2013). A clinical trial is
ongoing to evaluate a novel MDM2 small molecular inhibitor, KRT-232, for the
effectiveness in treating patients with wild-type p53 MCC tumors but have failed
anti-PD-1 or PD-L1 immunotherapy (NCT03787602). Since somatostatin receptors
are highly expressed in MCC tumors, somatostatin analogues have been explored
for their potential to be used in MCC molecular imaging and treatment (Orlova
et al. 2018; Sollini et al. 2016; Buder et al. 2014). PEN-221, an inhibitor of
somatostatin receptor 2 (SSTR2), is being evaluated in a clinical trial to target MCC
and other advanced cancers with highly expressed SSTR2 (NCT02936323).
Finally, antiapoptotic factor survivin is highly up-regulated in MCPyV-positive
MCCs when compared to MCPyV-negative MCCs (Arora et al. 2012). Consistent
with the fact that survivin expression is essential to support the survival of these
tumor cells, YM155, a small-molecule inhibitor of survivin, has yielded promising
results in inhibiting the growth of MCPyV-positive MCC cell lines both in cell
culture and in xenograft models (Arora et al. 2012; Dresang et al. 2013).

7 Remaining Questions and Future Perspectives

MCPyV offers a unique opportunity to explore the oncogenic mechanism of a DNA
tumor virus. Although the small viral genome of 5.4 kb DNA encodes just seven
gene products, MCPyV successfully infects the skin of most humans and can
establish long-lasting infections (Tolstov et al. 2009; Schowalter et al. 2010). While
most of the MCPyV infections remain asymptomatic throughout the life of the
infected hosts, in rare cases, it can cause extremely lethal skin cancer, MCC (Feng
et al. 2008; Gjoerup and Chang 2010; Liu et al. 2016).

Despite recent advancements, much remain to be learned about MCPyV and its
role in the development of MCC tumors. For instance, the cells of origin for MCC
are currently unknown and the mechanisms by which MCPyV infection leads to
cancer also remain enigmatic. MCPyV maintains persistent and latent infection in
more than 80% of the general population (Tolstov et al. 2009; Foulongne et al.
2012; Schowalter et al. 2010) but tends to cause MCC in immunocompromised
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individuals (Heath et al. 2008). This observation suggests that the virus has evolved
to exist in a dynamic state of mutual antagonism with the host cells and that
changes to host immune status for which MCPyV is not adapted can result in
cellular transformation and malignancy. However, the mechanism by which
MCPyV escapes host immune eradication and establishes persistent infection
remains unexplored. Few studies have examined the immunomodulatory effects of
MCPyV-encoded proteins, and none have done so in the context of natural MCPyV
infection. It is also unclear how changes to host conditions, such as the decline of
immune competency, increase the chance of MCPyV-associated tumorigenesis.
Although the uncontrolled proliferation of MCPyV may make viral genome inte-
gration more likely, the events that precede MCPyV integration into the host
genome have not been elucidated.

Until recently, it was impossible to study biologically relevant host responses to
MCPyV as the host cell of MCPyV was unknown. The discovery of HDFs as the
host cells supporting productive MCPyV infection allows the development of a
physiologically relevant in vitro model system (Liu et al. 2016), thus offering many
new opportunities to explore the virus-host interactions in the setting of productive
infection. No effective chemotherapies for metastatic MCC are currently available.
Recent MCC immunotherapy successes suggest that overcoming MCC immune
non-responsiveness is likely to yield improved patient outcomes. The continued
discovery of the host restriction mechanisms that normally prevent MCPyV
infection and viral oncogenesis could unveil more effective strategies for preventing
and treating MCPyV-associated human cancers.
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Chapter XX Antiviral Treatment
and Cancer Control

Wei-Liang Shih, Chi-Tai Fang, and Pei-Jer Chen

1 Introduction

Hepatitis B virus (HBV), hepatitis C virus (HCV), human papilloma virus (HPV),
Epstein-Barr virus (EBV), human T-cell lymphotropic virus type 1 (HTLV-1),
Kaposi’s sarcoma-associated herpesvirus (KSHV), and Merkel cell polyomavirus
(MCV) are the seven viruses that are currently known to cause chronic infection
and associated with specific cancers in human (Moore and Chang 2010). In total,
viruses contributed to the development of 10–15% human cancer cases worldwide.
Although only a small proportion of infected individuals actually develop cancers,
the clinical prognosis is usually very poor.

Viral factors have long been proposed to play important roles in carcinogenesis.
Advances in molecular technologies now allow to rapid and accurate quantification
of viral load, a marker of virus replication activity in human body. Accumulated
data show that viral load and cancer risk often parallels for virus-associated cancers,
such as HBV and HCV for hepatocellular carcinoma (HCC) and EBV for
nasopharyngeal carcinoma (NPC). In light of the importance of virus replication
activity in the carcinogenesis of virus-associated cancers, antiviral therapy that can
suppress or eliminate viruses could be one important strategy for cancer prevention.
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Currently, antiviral therapy has been applied on these seven viruses-associated
cancers (Table 1), and clinical benefits have been proven for antiviral therapy for
HBV and HCV.

In this chapter, we reviewed and updated the current evidences on the correlation
between viral load and clinical outcomes (e.g., cancer risk and survival), and the
current understandings on the effect of antiviral treatments for cancer-associated
viruses.

Table 1 Human cancer viruses, associated cancers, and their specific antiviral therapies

Virusa Cancer typeb Antiviral therapyc

HBV HCC Interferons (interferon-a and pegylated
interferon-a2a)

Nucleos(t)ide analogues (lamivudine, adefovir, entecavir,
telbivudine, tenofovir disoproxil
fumarate, and tenofovir
alafenamide)

HCV HCC Peglyated interferon plus
ribavirin

Direct antiviral agents
(protease inhibitor)

(Boceprevir, telaprevir,
sofosbuvir/velpatasvir,
glecaprevie/pibrentasvir)

KSHV AIDS-KS Antiviral herpes virus drug (Ganciclovir and valganciclovir)

HAART, PI-based

HAART, NNRTI-based

HIV-negative
KS

HIV-protease inhibitor (Indinavir)

HTLV-1 ATL (acute,
chronic, and
smoldering
forms)

Interferon-a plus
zidovudine/zalcitabine alone
or combined with
chemotherapy

EBV PTLD, NPC,
HL

Immunotherapy (EBV-specific cytotoxic T-cells)

EBV-associate
lymphoma

Virus-directed (Lytic replication inducer plus
acyclovir/ganciclovir)

HPV Cervical cancer Therapeutic HPV vaccine

RNA interference-based
therapy

(Antisense oligonucleotides,
ribozymes, and siRNAs)

MCV MCC Interferon (Interferon-a and interferon-b)
aHBV hepatitis B virus, HCV hepatitis C virus, EBV Epstein-Barr virus, HPV human papilloma
virus, HTLV-1 human T-cell lymphotorpic virus type 1, KSHV Kaposi’s sarcoma-associated
herpesvirus, MCV Merkel cell polyomavirus
bHCC hepatocellular carcinoma, AIDS-KS AIDS-Kaposi’s sarcoma, ATL adult T-cell lymphoma,
PTLD post-transplant lymphoproliferative disorder, NPC nasopharyngeal carcinoma, HL
Hodgkin’s lymphoma, MCC Merkel cell carcinoma
cHAART highly active antiretroviral treatment
PI protease inhibitor, NNRTI nonnucleoside reverse transcriptase inhibitor
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2 Hepatitis B Virus and Hepatitis C Virus

Chronic HBV and HCV infections are major etiological factors in 80% of HCC
cases and responsible for 96% of all hepatitis mortality worldwide (WHO Global
hepatitis 2017; Yang et al. 2019). Universal HBV vaccination on newborns in
Taiwan since 1985 has led to a 70% reduction in HBV-related HCC in children or
teenagers (Chang et al. 2009). Nevertheless, millions of individuals who already
chronically infected by HBV are still under the risk of developing HCC. Unfor-
tunately, no effective vaccine is available for preventing HCV infection now. The
proportion of HCV-related HCC has progressively increased, especially in the
developed countries (El-Serag 2012) and global burden of HCV-related HCC has
increased by 56.7% from 1990 to 2015 (Global Burden of Disease Liver Cancer
Collaboration 2017). For these people persistently infected by either HBV or HCV,
antiviral therapies target on HBV and HCV can be an effective strategy to reduce
risk of HCC. In Taiwan, the national viral hepatitis therapy program launched in
2003 has provided the significant reduction in respect of the incidence and mortality
of HCC, chronic liver diseases, and cirrhosis (Chiang et al. 2015).

2.1 Anti-HBV Therapies

HBV replication is the key force to drive the progression of HBV-related diseases
(Liaw 2006). HBeAg is a well-known HBV replication marker (Chen et al. 2009;
Fang et al. 2003). Epidemiologic studies also consistently show the elevated HBV
viral load, which represented a higher HBV replication activity, is associated with
high HCC risk, worse progression, and poor survival (Chen et al. 2009). Reduc-
ing HBV DNA to undetectable level or induction of HBeAg seroconversion has
been the main therapeutic endpoints (Feld et al. 2009).

Conventional interferon-a, pegylated interferon-a2a, and nucleos(t)ide ana-
logues (NUCs), including lamivudine, adefovir, entecavir, telbivudine, tenofovir
disoproxil fumarate (TDF) are currently approved treatments for chronic HBV
infection. Treatment with newer NUCs, including entecavir, telbivudine, and TDF
could suppress HBV DNA by average 6.2–6.9 and 4.6–5.2 log10 IU/mL in
HBeAg-positive (Marcellin et al. 2008; Lai et al. 2007; Chang et al. 2006) and
HBeAg-negative patients (Marcellin et al. 2008; Lai et al. 2007, 2006), respec-
tively. Undetectable level of HBV DNA can be achieved in 60–80% of
HBeAg-positive patients (Marcellin et al. 2008; Lai et al. 2007; Chang et al. 2006;
Dienstag 2009) and 88–95% of HBeAg-negative patients (Marcellin et al. 2008; Lai
et al. 2007, 2006; Dienstag 2009). Tenofovir alafenamide (TAF), a most recent
approved prodrug of tenofoviir, had similar virological responses but with fewer
bone and renal adverse effects (Chan et al. 2016; Buti et al. 2016). Treatment with
lamivudine and adefovir yields less reduction of HBV DNA and lower proportion
of undetectable HBV DNA in both HBeAg-positive and HBeAg-negative patients.
In addition, HBeAg seroconversion was observed in 12–23% of NUCs-treated
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patients (Marcellin et al. 2008; Lai et al. 2007; Chang et al. 2006; Dienstag 2009;
Terrault et al. 2018). After one-year course of NUCs treatment, sustained viro-
logical response was maintained in relatively small proportion of initial responders
(Dienstag 2009). Thus, NUCs were usually used as a long-term therapy. No optimal
duration of NUCs therapy is available now, but extending treatment for at least
more six months after HBeAg seroconversion to consolidate the sustained response
is currently an acceptable practice. For treatment-naïve patients with chronic hep-
atitis B, long-term NUCs therapy did have the benefits in prevention or delay of the
occurrence of hepatic decompensation, HCC, and liver-related death (Wei and Kao
2017). However, the risk of untoward side effects in long-term NUCs-treated
patients with compensated cirrhosis remained an issue to be concerned.

Although NUCs are highly potent and safe, emergence of drug resistance after
prolonged use of NUCs is a major concern. It has been reported that patients with
lamivudine resistance had higher HCC risk than NUCs naïve patients (Pap-
atheodoridis et al. 2010). Lamivudine resistance would accumulate rapidly to 15–
25% by 12 months and to 60–65% by four years of treatment (Papatheodoridis
et al. 2008). Resistance to adefovir and telbivudine can also reach 25–30% after
long-term treatment (Dienstag 2009). Only treatment with entecavir, TDF, and TAF
showed negligible resistance (European Association for the Study of the Liver
2017). Thus, due to better resistance profile, excellent safety profile and superior
efficacy, entecavir, TDF, and TAF have now been suggested as the first-line NUCs
therapy (Dienstag 2009; Terrault et al. 2018; European Association for the Study of
the Liver 2017).

In contrast to NUCs, interferon-based therapy was less used for HBV infection
due to side effects and poor tolerability. Nevertheless, recent studies have provided
more supportive evidence for its role in anti-HBV therapy. Treatment of
HBeAg-positive patients with pegylated interferon for 48–56 weeks achieved
undetectable HBV DNA in 10–25% of patients and <2–4.5 log10 copies/mL mean
reduction of HBV DNA (Lau et al. 2005; Janssen et al. 2005). HBeAg loss and
HBeAg seroconversion were durable in 81 and 70% of initial responders with or
without concomitant lamivudine therapy, respectively, for a mean of three years
follow-up after treatment (Buster et al. 2008). In addition to the benefit of
HBV DNA reduction, HBeAg-negative patients with pegylated interferon-based
treatment (with or without lamivudine) had higher proportion of undetectable
HBV DNA (*20%) after 24 weeks of follow-up (Marcellin et al. 2004) and 46%
of these initial responders had the sustained response in suppression of HBV DNA
to undetectable level at three years follow-up after end of treatment (Marcellin et al.
2009). Although pegylated interferon resulted in virological response in a less
proportion of patients than NUCs therapy, it seemed to have higher probability to
achieve sustained off-therapy response. Due to this advantage and the fixed duration
of treatment, pegylated interferon still has a therapeutic role in selected patients.

The long-term effect of anti-HBV therapy with NUCs and interferon on survival
and incidence of HCC has also been investigated. For interferon-based therapy, two
early studies reported that sustained virological responders showed significantly
better survival and lower risk of developing HCC (van Zonneveld et al. 2004;
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Niederau et al. 1996). Compared with nontreated patients, interferon-treated
patients had lower HCC incidence with RR of 0.23–0.66 (Table 2). For NUCs, two
early large randomized control trials of treatment for chronic HBV infected patients
with advanced liver diseases shown that lamivudine could reduce risk of disease
progression including developing HCC in treated patients and in patients with
persistent viral suppression (Liaw et al. 2004; Di Marco et al. 2004). Several
meta-analyses consistently concluded that NUCs treatment was associated with a
lower HCC incidence (Table 2). In a recent multicenter cohort study, long-term
entecavir therapy in chronic hepatitis B patients with cirrhosis showed a 60%, 86%,
and 85% reduction in HCC risk, liver-related mortality, and all-cause mortality,
respectively (Su et al. 2016).

2.2 Anti-HCV Therapies

For HCV, although there is still no vaccine available, current effective anti-HCV
therapies have provided great improvement in clinical outcomes for HCV patients.

Interferon-based treatments resulted in sustained virological response (SVR) in
about 50% of HCV patients with genotype 1 and 80% of HCV patients with
genotypes 2 and 3 (Munir et al. 2010). The achievement of SVR is durable
(Hofmann and Zeuzem 2011) and highly associated with good overall clinical
outcome, including decreased risk of HCC and improvement of overall and
recurrence-free survival (Table 2) and liver-related deaths (Masuzaki et al. 2010).
In addition, pegylated interferon combined with ribavirin increased SVR to about
40% in HCV genotype 1b patients with high viral load (Masuzaki et al. 2010).

However, direct acting antiviral (DAA) agents have revolutionized the current
standard of care for HCV patients because of the dramatic improvement in SVR,
short treatment duration, and overall good tolerability (Sandmann et al. 2019). For
typical and pangenotypic combination DAA regimens (ex. sofosbuvir/velpatasvir,
glecaprevie/pibrentasvir), the SVR rates were all more than 95% (European
Association for the Study of the Liver 2018). The treatment duration of most
regimens was 8–12 weeks and some have to extend to 16 weeks depending on
HCV genotype, presence of cirrhosis, fibrosis stage, and prior treatment experience
(European Association for the Study of the Liver 2018). Most HCV patients tolerate
well with current DAA regimens, even a combination use of ribavirin for patients
with decompensated liver cirrhosis (European Association for the Study of the
Liver 2018). However, HCV patients with prior or present HCC showed lower SVR
rate after DAA therapy (Table 2). In regard to the effect of DAA therapy, several
large studies had showed that DAA-induced SVR was associated with the reduction
of HCC incidence (Ioannou et al. 2018; Calvaruso et al. 2018) and did not increase
risk of HCC recurrence (ANRS collaborative study group on hepatocellular car-
cinoma 2016; Singal et al. 2019). No difference was observed in HCC incidence or
recurrence between DAA and interferon therapies in patients with or without cir-
rhosis based on current studies results (Ioannou et al. 2018; Waziry et al. 2017;
Kobayashi et al. 2017). DAA therapy also provided more benefit for HCV patients
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with cirrhosis in terms of higher overall survival (hazard ratio = 0.39, compared
with DAA-untreated patients) (Cabibbo et al. 2019). Many recent studies further
demonstrated that typical and pangenotypic DAA therapy also resulted in high SVR
(>95%), safety, and efficacy for HCV patients with moderate to severe renal
impairment (Lawitz et al. 2020) and liver or kidney transplant (Reau et al. 2018;
Agarwal et al. 2018). However, potential drug–drug interaction between DAAs and
concomitant medications should be an important issue to be considered in the era of
DAA therapy.

3 HBV-HCV Coinfection

Treatment of HBV-HCV coinfection is important in endemic area because of its
fairly high prevalence due to shared routes of transmission and increased risk for
liver diseases, including HCC.

Both interferon-based and DAA therapy for HBV-HCV coinfection have the risk
of HBV reactivation. However, HBV activation may occur more frequently and
easier during DAA therapy because its treatment target is HCV only. This had been
issued a warning by the US Food and Drug Administration (FDA) and will be an
important concern when DAA therapy gradually became the main option for HCV
treatment. Recently, clinical trial and meta-analyses demonstrated that treatment of
HBV-HCV coinfected patients with DAA regimens resulted in transient HBV DNA
increase and higher HBV activation rate (Liu et al. 2018; Mucke et al. 2018; Jiang
et al. 2018).

Before initiation of therapy, determination of replicative status of HBV and
HCV is required. For HBsAg-positive HCV patients, DAA therapy was recom-
mended as that for monoinfected HCV patients and anti-HBV treatment should be
started concurrently with (or before) DAA therapy (Terrault et al. 2018; European
Association for the Study of the Liver 2018). The effect of DAA therapy in SVR
was not impaired on the condition of HBV coinfection (Liu et al. 2018). In regard to
HCV patients with HBsAg-negative and anti-HBc-positive, close monitoring of
alanine transaminase (ALT), HBsAg, and HBV DNA should be performed during
DAA therapy. When increased or abnormal ALT is observed and the following
HBsAg or HBV DNA is detectable, HBV treatment should be started (Terrault et al.
2018; European Association for the Study of the Liver 2018). In addition, a recent
meta-analysis reported that the risk of HBV reactivation in HCV patients with
HBsAg-positive during DAA therapy could be reduced by preemptive anti-HBV
therapy (Jiang et al. 2018).

In regard to the long-term efficacy, the decreased risk of HCC, liver-related
mortality, and all-cause mortality has been reported in dually infected patients with
the interferon-based (interferon plus ribavirin) treatment by a large population-based
study (Liu et al. 2014). The risk reduction of HCC, liver-related mortality, and
all-cause mortality were 35%, 62%, and 59%, respectively. However, the long-term
efficacy of DAA therapy for dually infected patients still needs to be studied.
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4 HBV-HIV Coinfection and HCV-HIV Coinfection

Coinfection of HBV-HIV and HCV-HIV usually hastens the development of liver
diseases, including fibrosis and HCC. Generally speaking, monotherapy of interfer-
ons, pegylated interferons, lamivudine, adefovir, entecavir, and telbivudine has
yielded much less satisfactory responses in HBV-HIV coinfected patients (Lacombe
and Rockstroh 2012). Since highly active antiretroviral treatment (HAART) (also
referred as combination antiretroviral therapy, cART) has dramatically improved
therapeutic and long-term outcomes, all HBV-HIV coinfection patients should
receive tenofovir (TDF or TAF)-based HAART regardless of the number of CD4 cell
(Terrault et al. 2018; European Association for the Study of the Liver 2017). Gen-
erally, HAART containing tenofovir plus lamivudine/emtricitabine is the preferred
regimen. However, intermittent use must be avoided because of the high risk of viral
breakthrough-induced deleterious consequences.

For lamivudine-treated patients, adding TDF/TAF (preferred) or entecavir is
recommended. Currently, data of TAF using in HBV-HIV-coinfected patients are
limited. A recent trial showed that switching from TDF-based to TAF-based reg-
imen maintained or achieved HIV and HBV suppression in 91.7% of 72
HBV-HIV-coinfected patients with improved renal and bone safety (Gallant et al.
2016). Besides, lamivudine-containing HAART has been shown to be able to
suppress HBV replication in HBeAg-negative HBV-HIV coinfected patients (Fang
et al. 2003). Although the above guidelines have been proposed, more solid evi-
dences are still needed to make evidence-based therapeutic decisions.

In regard to treatment of HCV-HIV coinfected patients, HCV treatment has a
priority because of reduced risk due to HCV clearance (AASLD-IDSA HCV
Guidance Panel 2018). Interferon-based therapy (pegylated interferon with rib-
avirin) provided the SVR rates in 27–50% (higher for genotype 2 and 3, lower for
genotype 1 and 4) and regimens would be different according to HCV genotypes
and virological response (Lacombe and Rockstroh 2012). In the era of DAA
therapy, treatment recommendations for HCV-HIV coinfection were similar with
those for HCV monoinfection (AASLD-IDSA HCV Guidance Panel 2018). Recent
clinical trials showed that the SVR rates of pangenotypic regimens in HCV-HIV
coinfection patients were similar with those to HCV-monoinfected patients
regardless of HCV genotypes (Rockstroh et al. 2018; Wyles et al. 2017). Never-
theless, potential drug–drug interactions between antiretroviral drugs and DAA
should be carefully considered (European Association for the Study of the Liver
2018; AASLD-IDSA HCV Guidance Panel 2018). In addition, based on results
from clinical studies, HAART may offer positive impact on control of prognosis of
liver damage in HCV-HIV coinfected patients and most of first-line HAART have
good fitness in these patients (Jones and Nunez 2011).

Currently, the evaluation of treatment effect on clinical outcomes (e.g., HCC) in
HBV-HIV and HCV-HIV coinfected patients remained limited. An observational
study from sub-Saharan Africa observed that TDF-based HAART provided a
positive effect for HBV-HIV coinfected patients to have similar mortality with
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HIV-monoinfected patients, whereas HBV-HIV coinfected patients had higher
mortality than HIV-monoinfected patients on the treatment of nonTDF-based
HAART (Hawkins et al. 2013). A retrospective cohort study showed low
liver-related mortality in HBV-HIV coinfected patients with TDF-based HAART;
however, the liver-related deaths were mainly due to HCC (Huang and Nunez
2015). A recent prospective European cohort study observed the relatively stable
(rate ratio per addition year = 0.95, 95% CI = 0.85 − 1.06) and steadily increasing
(rate ratio per addition year = 1.14, 95% CI = 1.07 − 1.21) HCC incidence pattern
in HBV-HIV coinfected patients with and without TDF-based HAART, respec-
tively (Wandeler et al. 2019). In regard to HCV-HIV coinfection, two recent studies
from Spain evaluated the effect of DAA treatment on HCC risk. DAA treatment of
HCV-HIV coinfected patients with cirrhosis (>90% with ART therapy) resulted in a
significant reduction of HCC risk than those with non-DAA regimens and lower
HCC risk was observed in patients achieving SVR (Merchante et al. 2018).
Compared HCV-HIV coinfected and cirrhotic patients with DAA regimen and
those with IFN-based regimen, there was no statistical difference in incidence rate
(Merchante et al. 2018) and recurrence (Merchante et al. 2018) of HCC after the
achievement of SVR. These findings were based on small sample size and more
studies with large sample size from different population will be needed.

5 Kaposi’s Sarcoma-Associated Herpesvirus (KSHV)

KSHV, also known as human herpesvirus 8 (HHV-8), is a necessary factor for
Kaposi’s sarcoma (KS)—the most common malignancy in HIV patients who
became immunocompromised. Elevated KSHV viral load was observed more fre-
quently in KS patients than in asymptomatic KSHV-infected patients and was
associated with a higher risk of AIDS-KS (Gantt and Casper 2011; Sunil et al.
2010). There is still no effective vaccine for KSHV. Nevertheless, several studies
showed that antiherpes virus drugs, such as ganciclovir and valganciclovir, not only
reduced KSHV viral load but also prevented AIDS-KS (Gantt and Casper 2011;
Coen et al. 2014). Another antiviral drug, foscarnet, also presented the effect in
reduction of KS incidence (Gantt and Casper 2011; Coen et al. 2014). Though these
small studies still need further confirmation (Gantt and Casper 2011), it will be
interesting to examine the clinical effects of these promising agents in combination
with DNA synthesis blockers or lytic replication inducer in future clinical trials with
large samples.

The replication of KSHV strongly depends on HIV-induced immunodeficiency
(Mesri et al. 2010). Early use of highly active antiretroviral treatment (HAART) (also
referred as combination antiretroviral therapy, cART) can restore host immunity and
decreased the incidence and mortality of AIDS-KS in HAART-treated patients (Mesri
et al. 2010; Bower et al. 2006). Compared with that in pre-HAART era, KS incidence
in HAART era dropped by sixfold (Sunil et al. 2010). Even in resource-limited
regions, early use of HAART can result in reduced KS incidence (Casper 2011).
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Large US and Europe cohort studies presented that KS incidence in HIV-positive
patients had a similar changing pattern, which showed the highest incidence at the
first six months after the initiation of HAART use and then a steep decrease thereafter
to bottom line (Yanik et al. 2013; Cancer Project Working Group for the Collabo-
ration of Observational HIV Epidemiological Research Europe (COHERE) study in
EuroCoord 2016). In the individual patients level, HAART is also significantly
associated with control of KSHV viraemia (Bourboulia et al. 2004). However, for late
presenters who already developed KS at the time of initial diagnosis, HAART alone
induces complete remission in only half of these patients (Nguyen et al. 2008). For
AIDS-KS patients which did not reach complete remission with HAART alone,
co-administration of HAART and chemotherapy could improve the response rate to
81.5% (Bower et al. 2006). The combination of HAART and chemotherapy also
provided a high survival for advanced KS (Bower et al. 2014). More recently, results
from clinical trial showed that immediate HAART initiation for early HIV-infected
patients could reduce the risk of KS (Borges et al. 2016). HAART regimens can be
classified to protease inhibitor (PI)-based and nonnucleoside reverse transcriptase
inhibitor (NNRTI)-based. No difference of KS incidence rate between these two types
of regimens was observed in small observational studies, but PI-based HAART
seemed to have better efficacy because of more complete KS remission (Gantt and
Casper 2011). In addition, more relapse was reported when switching therapy from
PI-based to NNRTI-based HAART (Gantt and Casper 2011). A recent retrospective
analysis of 25,529 HIV-infected male veterans exhibited that longer boosted PIs use
produced a significant decrease of KS incidence (Kowalkowski et al. 2015). Nev-
ertheless, whether PI-based HAART does have a therapeutic advantage for KSHV or
not, this superiority still requires more convincing evidence to support and its
potential effect in increasing the risk of non-AIDS-defining malignancies with
cumulative exposure to PI-based therapy in HIV-positive patients should be moni-
tored (Borges 2017). Controlled trials with large sample size and optimized HAART
regimens are urgently needed.

For KS in HIV-negative patients, a 28-patient trial study showed that treatment
with individual ART (indinavir)-induced tumor regression and stabilization of
disease progression in some patients (Monini et al. 2009). In addition to KS, KSHV
was also linked to primary effusion lymphoma (PEL) and multicentric Castleman’s
disease (MCD) (Chang et al. 2006), which are rare malignancies with very poor
prognosis. Recently, few studies provided that treatment with HAART alone or
with other therapy (e.g., monoclonal antibodies) for PEL and MCD may prolong
resolution of symptoms (Sunil et al. 2010; Uldrick et al. 2011).

6 Human T-Cell Lymphotropic Virus Type 1 (HTLV-1)

HTLV-1 is the etiologic agent of adult T-cell leukemia-lymphoma (ATL) (Poiesz
et al. 1980). An update estimation reported there were 5–10 million
HTLV-1-infected individuals worldwide (Gessain and Cassar 2012). Although the
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lifetime risk to develop ATL in HTLV-1 infected people is only 3–5% after long
latent period (approximately 30–50 years) (Ishitsuka and Tamura 2014; Hermine
et al. 2018), the prognosis for ATL patients is very poor. Median survivals of acute
and lymphomatous ATLs are less one year (Goncalves et al. 2010).

Compared with asymptomatic carriers, ATL patients had significantly higher
level of HTLV-1 proviral DNA and antibody titer (Manns et al. 1999). The quantity
of HTLV-1 proviral DNA is a predictive factor for the development of ATL and is
correlated with clinical outcomes (Okayama et al. 2004; Iwanaga et al. 2010; Etoh
et al. 1999; Hodson et al. 2013). Based on the accumulated data, antiviral therapy
now is one of treatment options for ATL (Ishitsuka and Tamura 2014; Hermine
et al. 2018; Tsukasaki et al. 2009). Treatment of ATL with antiviral drugs was
investigated in the early 1980s in Japan, but encouraged advance was obtained from
two trials which combined interferon-a and zidovudine (AZT) in treating ATL
patients reported in 1995 (Hermine et al. 1995; Gill et al. 1995). These two studies
described impressive high response rate (more than 50%) and mild toxic effects and
the survival time was prolonged to more than one year. After that, many small
studies (all less than 30 patients) using interferon-a and AZT/zalcitabine were
performed in France (Hermine et al. 2002), United Kingdom (Matutes et al. 2001),
Martinique (French West Indies) (Besson et al. 2002), and United States (Ratner
et al. 2009). Overall, these studies showed consistent efficacy of antiviral therapy.
Recently, a worldwide meta-analysis with 254 ATL patients treated with
interferon-a and AZT combination and/or with chemotherapy provided further
evidence that combination of interferon-a and AZT treatment resulted in high
response and significantly prolonged survival (Bazarbachi et al. 2010). However,
the survival advantage was limited to acute, chronic, and smoldering subtypes. For
lymphomatous ATL, chemotherapy seemed to be more effective than antiviral
therapy. In a subsequent retrospective study, the use of interferon-a/AZT with
chemotherapy showed benefit of improved survival in acute ATL as well as in
lymphomatous ATL (Hodson et al. 2011). Besides, treatment with combination of
interferon-a/AZT and arsenic trioxide also resulted in promising outcome on seven
patients with relapsed/refractory acute or lymphomatous ATL (Hermine et al.
2004), and another Phase II study using ten chronic ATL patients showed 100%
response to the treatment (Kchour et al. 2009). Although these were preliminary
observations, the feasibility of this regimen has been considered.

Improvement of treatment response and survival resulted from antiviral drugs
was an important advance in treating ATL. Studies also showed a reduction of
HTLV-1 proviral DNA load in ATL patients after antiviral therapy, and the
decrease was correlated with the response of treatment (Kchour et al. 2009, 2007).
However, all these results came from studies with small sample size and a
prospective evaluation of the efficacy of antiviral therapy will be needed.
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7 Epstein-Barr Virus (EBV)

As the first identified carcinogenic virus, EBV has been linked to many malig-
nancies, including Burkitt’s lymphoma, Hodgkin’s lymphoma (HL), immune-
suppressed B-cell lymphoma, post-transplant lymphoproliferative disorder (PTLD),
gastric carcinoma and NPC (Kutok and Wang 2006; Kimura and Kwong 2019).
The quantification of EBV viral load has been used in the diagnosis and man-
agement of EBV-associated diseases, such as PTLD and NPC and in evaluating the
treatment response (Kimura and Kwong 2019). The World Health Organization
International Standard for EBV quantification was released recently (Fryer et al.
2016), which would accelerate the establishment of the guidelines for diagnosis and
management of EBV-associated diseases. Despite of different and complex
etiopathological and clinical features, the clinical significance of EBV viral load
varies across all types of EBV-associated malignancies (Kimura and Kwong 2019;
Kimura et al. 2008).

Immunotherapy which uses adoptive EBV-specific cytotoxic T-cells (EBV-
CTLs) to kill infected cells through the reconstitution of cellular immunity has been
used to treat PTLD (Rooney et al. 1995; Bollard et al. 2012), NPC (Chua et al.
2001), and HL (Bollard et al. 2004). In addition to EBV DNA reduction and
stabilization of viral load (Rooney et al. 1995; Gustafsson et al. 2000), application
of the T-cell-based therapy in PTLD also exhibited beneficial consequences in
prevention of development for PTLD and prolonged activity of infused CTLs
against viral reactivation for up to nine years (Heslop et al. 2010). Immunotherapy
was considered for the treatment of NPC and HL because of expression of type II
latency antigens (EBNA1, LMP1, and LMP2), which were the targets of
EBV-CTLs (Dasari et al. 2019). Mainly focused on refractory/relapse/metastatic
NPC patients, some encouraging immunotherapeutic results came from achieve-
ment of complete remission (Louis et al. 2010; Straathof et al. 2005), lack of
significant toxicity, the control of disease progression (Comoli et al. 2005), and
increase in overall survival (Smith et al. 2012). An adenoviral vector (AdE1-
LMPpoly) was applied to further increase the immunogenicity and antigen speci-
ficity of EBV-CTLs for NPC treatment (Smith et al. 2012, 2017). For relapsed HL
patients, complete/partial remission, decrease of EBV DNA in PBMC and stable
disease progression were observed (Bollard et al. 2004). A trial by administering
adenoviral vector-based EBV-CTLs in high-risk or multiple-relapse HL patients
showed the induction of durable complete responses without significant toxicity
(Bollard et al. 2014). Current data on immunotherapy for the treatment of
EBV-associated malignancies were limited by the small numbers of patients and the
short-lasting effects and are still under investigation (Dasari et al. 2019; Merlo et al.
2011).

Virus-directed approaches, which use the EBV viral genome in tumor cells as
the target, could be divided into two groups. One group includes designs of inhi-
bition of EBV oncoprotein expression, inducing loss of EBV episome, and pro-
duction of cellular toxins in EBV-infected tumors (Israel and Kenney 2003; Ghosh
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et al. 2012). The other approach focuses on EBV lytic cycle and includes two
strategies, including inhibition of the EBV lytic cycle by anti-EBV natural com-
pounds and the combination therapy which combined the induction of EBV lytic
replication and then followed by use of cytotoxic drugs, e.g., acyclovir and gan-
ciclovir (Israel and Kenney 2003; Ghosh et al. 2012; Li et al. 2018). Phase I/II
clinical trials for EBV-associated lymphoma found that combination of arginine
butyrate (one kind of HDAC inhibitor) and ganciclovir obtained noticeable clinical
response in some refractory patients (Perrine et al. 2007; Faller et al. 2001). For
lytic replication inducer, many chemical agents such as phorbol esters, DNA methyl
transferase inhibitor (ex. 5-Azacytidine), and HDAC inhibitors have been devel-
oped and evaluated in in vitro and animal studies (Li et al. 2018). Taken together,
studies of antiviral therapies on EBV-associated malignancies provided some
encouraging and promising results to pave the way for future large and long-term
studies.

8 Human Papillomavirus (HPV)

Of more than 200 identified HPV genotypes, 13 high-risk HPV genotypes have
been defined as carcinogenic or probably carcinogenic (Roden and Stern 2018;
Bzhalava et al. 2015). The causative role of HPV-16 and HPV-18 in the cervical
cancer is the most well documented. Viral load of HPV in general did not correlate
well with disease severity, duration of infection, clearance of disease, or prognosis
of disease (Boulet et al. 2008; Woodman et al. 2007), probably due to the extremely
large variation in oncogenic potential among different HPV genotypes (Josefsson
et al. 2000). For the highest risk genotype HPV-16, nevertheless, high viral load
appears to be associated with prevalent cervical cancer precursors and may be used
to predict the development of incident disease and persistence of infection (Josef-
sson et al. 2000; Xi et al. 2011; Gravitt et al. 2007).

Prophylactic HPV vaccines are currently available for preventing HPV infection.
Although the systematic review and meta-analysis showed strong effectiveness of
prophylactic HPV vaccination in decreasing HPV infection and cervical intraep-
ithelial neoplasia grade 2 + (CIN2 +) (Drolet et al. 2019), its population-level
impact on control of cervical and other HPV-associated cancers still needs to be
evaluated in next decades (Bonanni et al. 2015). In addition, prophylactic HPV
vaccines had no efficacy for established HPV infections and associated lesions (Ma
et al. 2012). Therapeutic HPV vaccines and RNA interference (RNAi)-based
therapies are two emerging antiviral strategies for treating HPV infection and
HPV-induced cervical cancer.

Therapeutic HPV vaccines, including proteins/peptides-based, DNA-based, and
live attenuated bacteria/viral vectors vaccines, were majorly designed to induce
cell-mediated immune response by targeting E6 and E7 oncoproteins and most of
the developing vaccines were in Phase I/II stage (Yang et al. 2016; Clark and
Trimble 2020; Bharti et al. 2018; Chabeda et al. 2018). Based on the results of
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Phase I/II trials, HPV-specific cytotoxic T lymphocyte (CTL) response, HPV DNA
clearance, and disease regression were observed in some patients and most side
effects were local mild to moderate (Yang et al. 2016; Bharti et al. 2018). A viral
vector-based vaccine (MVA E2), which had completed Phase III trial with 1356
patients demonstrated high remission rate (89–100%) of anogenital intraepithelial
lesions and high HPV DNA clearance (83%), was observed in patients with
treatment (Rosales et al. 2014). In addition, there are two candidate vaccines (a
DNA vaccine and a bacterial vector-based vaccine) in on-going Phase III trials
(Chabeda et al. 2018). These encouraging progress had shown the potential for the
promising therapeutic HPV vaccines in the near future.

RNAi-based therapies used antisense oligonucleotides, ribozymes, and
small-interfering RNAs (siRNAs) to inhibit expression of HPV E6 and E7 genes at
post-transcriptional level (Jung et al. 2015). Current studies provided that RNAi
therapies-induced apoptosis, reduction of growth rate and cell death in cervical
cancer cell and mouse models (Zhou et al. 2012; Benitez-Hess et al. 2011; Jonson
et al. 2008; Sima et al. 2007) and also could increase sensitivity of cancer cells to
some chemotherapy, such as cisplain, to exhibit the synergistic therapeutic effect,
which provided the possibility for RNAi-based combination therapeutics (Putral
et al. 2005; Koivusalo et al. 2005; Jung et al. 2012). Nevertheless, most of these
beneficial results came from pre-clinical studies and Phase I trials, so that practical
implication in the clinical setting and the long-term potential as treatment are still
unclear. Furthermore, problems of target selection, delivery efficiency, and stability
of the RNA molecule itself when using antisense molecules or ribozymes still need
to be overcome.

9 Merkel Cell Polyomavirus (MCV)

MCV is a polyomavirus newly discovered in 2008 and associated with human
cancer (Feng et al. 2008; MacDonald and You 2017). As a widespread viral
infection, MCV can be detected in 25–64% healthy individuals (Tolstov et al. 2009;
Kean et al. 2009; Carter et al. 2009) and can be found in many normal tissues such
as esophagus, liver, colon, lung, and bladder (Loyo et al. 2010). MCV is a causal
factor of Merkel cell carcinoma (MCC), a rare but aggressive and lethal neuroen-
docrine skin cancer (Feng et al. 2008). MCC had a significantly higher MCV viral
load than other tissues (Loyo et al. 2010). Given the high association of MCV with
MCC, antiviral therapy may be a new approach to treat MCC beyond the current
surgical excision, lymph node surgery, radiation therapy, and chemotherapy
(Schrama et al. 2012). Although early limited studies showed the opportunities of
antiviral drugs, such as interferon-a and interferon-b (Krasagakis et al. 2008;
Biver-Dalle et al. 2011; Nakajima et al. 2009; Willmes et al. 2012), no further
advances in antiviral therapy was reported in recent years. Due to limited data, more
study is needed to evaluate the effect of antiviral therapy on MCC.
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10 Conclusion and Future Perspective

The tremendous advances in antiviral therapy against oncogenic viruses, particu-
larly HBV and HCV, have revolutionized the concepts and practice of cancer
prevention. Primary prevention of HCC in chronically HBV- and/or HCV-infected
patients is now a realistic goal, along with significant life- and cost- savings (Kim
et al. 2007; Toy et al. 2008). The widespread use of HAART also dramatically
reduces the incidence of KS in HIV-infected patients. For other oncogenic viruses,
there is still a lack of convenient effective antiviral pharmacologic agents that can
be used for primary prevention. Nevertheless, antiviral therapy can effectively
prolong patients’ survival in some types of HTLV-1-induced ATL and has become
one of the treatment options. Further studies on experimental antiviral therapy and
technology may yield promising results in adjuvant therapy for EBV, HPV, and
MCV-associated malignancies.

Furthermore, to facilitate the development of new preventive or therapeutic
approaches and agents, future researches are needed to continually improve our
understanding in biological mechanism of viral-related carcinogenesis, and the
relationship between dynamics of virus and natural history of diseases. These
efforts could add to our arsenal against these viruses and yield a more
favorable/satisfactory and clinical outcomes in the future.
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