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1 Introduction

Edge video analytics (EVA) shows great potential to be applied in artificial
intelligence-driven system design, e.g., autonomous driving and smart city, and
has been an area of intense research in the past few years. Given a video clip
taken from cameras, edge video analytics is the process of extracting features from
images/videos and applying these features to emerging applications, e.g., finding
the criminal from the crowd. Apart from surveillance, it has applications in robotics,
multimedia and forensics. The design and implementation of an efficient EVA model
has always been an essential issue, which has received significant attention from
both the computer vision research community and the computer system research
community due to its wide applicability and utility.

In recent years, the privacy issues in edge video analytics aroused tremendous
attentions. In summary, the privacy issues can be classified into the following
categories: (1) Privacy in video collection. In most video analytics applications,
the video collector (e.g., the camera) does not locally conduct the tasks due to
resource limitation. Generally, the videos will be offloaded to other computation-
powerful servers for model training and task execution. In the video collection and
offloading process, video contents are inevitably at the risk of private information
leakage [12, 28, 30, 33]. (2) Privacy in video storage. It is also a big concern
to determine where should the collectors store their video contents with private
information. Reliable data storage is important for video analysis tasks, especially
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for a video retrieval application. Some studies (e.g., [7] and [28]) applied a trusted
edge server performing video denaturing and providing data storage. (3) Privacy
in video analytics. The privacy issues in video analytics-related applications attract
more and more attentions, such as [14, 15, 18]. The video analytics applications are
generally built on neural network models. Intuitively, some works persist that the
privacy issues are solved as only network parameters are shared. However, network
parameters can be leveraged to reveal private information of video contents. The
privacy issues still cannot be ignored.

Despite the privacy issues mentioned above, the design of a privacy-preserving
edge video analytics system is especially challenging: First, the goals of improving
EVA model accuracy and protecting client privacy are somewhat conflicted with
each other. Commonly, the model performance relies on the accuracy of model
parameters trained on each dataset. A higher EVA model accuracy is always at
the cost of more disclosure of privacy on clients’ video contents. Second, existing
crypto-based privacy-preserving approaches (e.g., homomorphic encryption) are too
compute-intensive, which are not practical to be implemented in the real systems
[14, 15, 18]. A light-weight privacy-preserving EVA model with low complexity is
more desirable. Third, most popular privacy-preserving schemes (e.g., differential
privacy) usually face with serious performance degradation [9, 31]. Besides, it is
also unclear how the EVA model accuracy varies under different privacy conditions.
Last but not the least, the EVA model training condition might change with time.
It is expected to design a flexible EVA model training framework that can be
dynamically tuned to fit all scenes. To solve the privacy issues in EVA systems,
researchers have made significant progress in the past years. However, the above
four key challenges have not been well addressed.

In this chapter, our objective is to address the above mentioned challenges
and achieve both high accuracy and privacy preservation simultaneously. To this
purpose, we propose a light-weight federated learning framework for EVA model
training, which is called FedEVA. The main idea of FedEVA is to perturb clients’
private model parameters with publicly available model parameters using a local
perturbation operation, while the model training algorithms can still be run over
perturbed parameters. There is no need for the coordinator server to recover the
private model parameters. Note that, compared with compute-intensive crypto
operations, both perturbation and model aggregation in our FedEVA framework
are linear operations with low time and space complexity. Thus, FedEVA is light-
weight and highly efficient. In addition, our framework can ensure the same
recommendation accuracy on the perturbed parameters as that on the original
parameters. It is possible for adversaries to capture perturbed model parameters,
but they cannot easily recover the private model parameters of clients due to the
lack of perturbation key. Thus, FedEVA can effectively prevent the leakage of user
privacy.

Overall, our main contributions in this chapter can be summarized as below:

* We propose a light-weight privacy-preserving EVA framework called FedEVA.
By conducting perturbation over private EVA model parameters, our proposed
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framework can prevent the leakage of client personal information. We also verify
that the model accuracy will not be affected by introducing FedEVA into the EVA
model training systems.

e Different from previous crypto-based methods, FedEVA is light-weight and
highly efficient. In the meanwhile, the EVA model training can still work well on
the perturbed parameters. We can also dynamically change the weight parameters
of the FedEVA framework to achieve different degree of privacy preservation,
which improves the scalability and flexibility of a privacy-preserving EVA
system.

e We evaluate our FedEVA framework through large-scale real-world datasets.
The experiment results show that our FedEVA framework achieves a significant
improvement in protecting client privacy compared to baselines, meanwhile the
accuracy and efficiency of the EVA model can still be guaranteed.

The remainder of this chapter is organized as follows. Section 2 introduces the
historical backgrounds for edge video analytics and standard privacy-preserving
solutions. Section 3 presents the preliminary information. Section 4 proposed
the system model, where the detailed algorithms are shown in Sect.5. Section 6
evaluates the performance of the proposed algorithms. Section 7 concludes this
chapter and outlooks future research directions.

2 Related Works

2.1 Edge Video Analytics

Utilization of edge computing in video analytics can help save cost, bandwidth and
energy. To design an efficient edge computing system for real-time video stream
analytics, characteristics of video contents should also be taken into consideration.
Bilal and Erbad [3] highlighted potentials and prospects of edge computing for
interactive media, and presented some preliminary works on how edge computing
can be used to tackle video analytics challenges. Ran et al. [22] designed a
framework tied together front-end devices with more powerful backend “helpers”
to allow deep learning to be executed locally or remotely in the cloud/edge.
They considered the complex interaction among model accuracy, video quality,
battery constraints, network data usage, and network conditions to determine an
optimal offloading strategy. Wang et al. [29] proposed an adaptive wireless video
transcoding framework based on the edge computing paradigm by deploying edge
transcoding servers close to base stations. It is essential to efficiently extract video
characteristics, and then apply them into edge computing architecture design.
Some special characteristics from video content or edge servers can be further
exploited to enhance the EVA system efficiency. Zhang et al. [34] presented Vigil,
which contributed on frame selection to suppress redundancy. When multiple
cameras capture different views of an object or person of interest to the user query,
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Vigil uploads only the frames that best capture the scene. Chowdhery and Chiang
[6] proposed a model predictive compression algorithm that uses predicted drone
trajectory to select and transmit the most important image frames to the ground
station to maximize the application utility while minimizing the network bandwidth
consumption.

The model training is one of the most important issues for EVA system design,
which has also attracted tremendous attentions. Liu et al. [20] proposed a general
deep neural network (DNN) architecture, and used it in their edge-based video
analytics system. They also implemented a buffer management scheme, which
uses Nvidia CUDA mapped memory feature to simplify the memory movement
between CPU and GPU. Tarasov and Savchenko [25] proposed to apply the multi-
task cascaded convolutional networks to obtain facial regions on each video frame.
Then image features are extracted from each located face using preliminary trained
convolutional neural networks (CNNs). Yaseen et al. [32] focused on tuning hyper-
parameters associated with the deep learning algorithm to construct the video
analytics model. Uddin et al. [27] proposed SIAT, which provided basic distributed
video processing APIs and distributed dynamic feature extraction APIs which
extract prominent information from the video data. In this chapter, we focus on
the privacy-preserving EVA model training framework design.

2.2 Privacy-Preserving Video Analytics

For video analytics applications, a large number of surveillance cameras installed
at different places capture video data for further analytics. The privacy issues have
been focused in the video analytics framework design, which allows users to have
specific control over their sensitive information, preventing from being abused by
third parties.

With the advance of computer version (CV) technologies, it is possible to achieve
a more granular privacy protection in the initial stage of data collection. Wang et al.
[28, 30] developed OpenFace, a mechanism for privacy-preserving data collection,
which denatures captured video data based on user-defined privacy policy. By
applying video denaturing technology, OpenFace can selectively blur faces that
occur in video frames, greatly alleviating the privacy concern. Zarepour et al. [33]
blurred or eliminated the sensitive subjects with image processing technologies.
Jana et al. [12] proposed DARKLY, which is integrated with OpenCV and replace
the raw input feature with opaque references, which cannot be directly dereferenced
by an untrusted application. However, the characteristics of the pictures or videos
may be changed and cannot be applied into the video analytics.

During the data analysis phase, sensitive information may need to be processed
on untrusted platforms due to the limited computing power of edge nodes. During
the analysing stage, crypto technologies can reduce unauthorized data access. Fully
homomorphic encryption allows data analytics being performed on encrypted data
directly, instead of applying an additional decryption operation on the video. Jiang et
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al. [14] used level homomorphic encryption and performed privacy preserving scale-
invariant feature transform on encrypted images. To enable encryption operations
to run on resource constrained nodes, [15] proposed TargetFinder, which applies
homomorphic encryption to search for images that include the target on encrypted
data. Besides, TargetFinder used optimization technologies to reduce computation
overhead of cryptographic primitives on energy and computation-constrained edge
devices. Besides, [18] proposed a novel privacy preserving computing frame-
work, where the terminal devices perform the light-weight permutation-substitution
encryption and edge nodes adopt the homomorphic encryption. The edge-assisted
framework can greatly reduce the computational, communication and storage
burden while ensuring data security.

Federated learning facilitates the collaborative training of models without the
sharing of raw data. By averaging local gradient updates, federated averaging
(FedAvg) proposed by McMahan et al. [21] performs well on federated learning
with non-iid data. However, [2, 17] demonstrated that simply maintaining data
locality during training processes does not provide sufficient privacy guarantees.
Recently, some privacy-preserving frameworks were proposed to hide clients’
contributions during training, balancing the trade-off between privacy loss and
model performance. Bonawitz et al. [4] designed a communication-efficient, failure-
robust protocol for secure aggregation of high-dimensional data.

To obscure an individual’s identity, differential privacy (DP) adds mathematical
noise to a small sample of the individual’s usage pattern. For example, [10] proposed
an algorithm for client sided differential privacy preserving federated optimization.
Wu et al. [31] used noisy differentially-private gradients to minimize the fitness
cost of the federated learning model using stochastic gradient descent. However,
differential privacy might lead to slow convergence on model training, and possibly
low accuracy given a large number of parties with relatively small amounts of data.

It is non-trivial to design a federated learning system capable of preventing
interference over training on the distributed datasets while ensuring the resulting
model also has acceptable predictive accuracy. Some federated learning approaches
use secure multiparty computation (SMC) to accelerate the model convergence rate,
however this might introduce a high burden on the communications between clients.
Moreover, SMC is vulnerable to interference. Truex et al. [26] proposed a scalable
approach to protect against interference threats, which combines differential privacy
with secure multiparty computation. However, it is unclear how to realize the
SMC operations without introducing high computation overhead. To the authors’
best knowledge, it is still a great challenge to balance the tradeoff between the
training performance and the privacy-preserving level. This chapter aims to propose
a privacy-preserving federated learning system without affecting the performance
of video analytics model.
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3 Technical Preliminary

Before presenting the system model and the proposed privacy-preserving edge video
analytics scheme, we first introduce some preliminary knowledge.

3.1 Federated Optimization

Federated learning, as a federated optimization paradigm, makes multiple devices to
jointly learn a global objective model without sharing their local data. The training
data is stored on the local clients or edge devices, which can prevent the leakage of
user privacy. Similar to distributed optimization, federated learning allows clients
or edge devices to compute local updates and a coordinator server makes use of the
gradients sent by user devices to aggregate global model parameters.

Following the pioneer work proposed by McMahan et al. [21], we also assume a
synchronous update scheme that proceeds in rounds of communication. There is a
fixed set of K clients with fixed datasets 91, 2, - - - , Pk where n; = |Z|. At the
beginning of each round, a random fraction C of clients is selected, and the server
sends the current global algorithm state to each of these clients (e.g., the current
model parameters). We only select a fraction of clients for efficiency. Each selected
client then performs local computation based on the global state and its local dataset,
and sends an update to the server. The server then applies these updates to its global
state, and the process repeats (Fig. 1).

While we focus on non-convex neural network objectives, the algorithm we
consider is applicable to any finite-sum objective of the form

min  f(w), (1)
w
where
1 n
flw)=- Z fi(@). )
i=1
client edge server coordinator server
i video offloading gradients sharing a A

/ \\‘
( \

/

model retrieval model update

Fig. 1 Federated learning driven edge video analytics model training framework
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For a machine learning problem, we have f;(w) = I(x;, y;; ), where the loss
of the prediction on example (x;, y;) made with model parameters w. Thus, we can
re-write the objective in Eq. (1) as

K
f@) =Y “R), 3)
k=1
where
1
Fi(@)=— Y fi(w). )
" €Dy

The recent video analytics applications of deep learning have almost exclusively
relied on variants of stochastic gradient descent (SGD) for optimization. SGD can be
applied naively to the federated optimization problem, where a single batch gradient
calculation (say on a randomly selected client) is done per round of communication.
This approach is computationally efficient, but requires very large numbers of
rounds of training to produce good models.

3.2 Federated Averaging

Federated Averaging (FedAvg) is the most common algorithm for federated learn-
ing, by optimizing the local objective Fy on client k in each round ¢. T is defined to
indicate the number of total rounds of client-server communications and parameter
updates to produce global model. In FedAvg, when each client locally executes the
procedure of gradient descent on the current model using its local data, we have

Wfy = o — 0V Fi(or, £, Q)

where w; are the current model parameters, 7; is the learning rate, Etk and a)f 4 are
local data used and new parameters, respectively. The global iteration step in the
server is to take an average of the locally updated results and obtain a new global
model, namely,

nk k
o= —ofr (6)
keS;
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Fig. 2 The general eavesdropper attack model

3.3 Attack Model

The attacker takes advantage of unsecured network communications to access data
as it is being sent or received by its user. This chapter mainly focuses on the
eavesdropping attack, also known as the sniffing or snooping attack. As shown in
Fig. 2, an eavesdropper might monitor the information transmitted over a network
by a computer, smartphone, or another connected device. Thus some key features of
the local captured videos are at risk of information disclosure.

4 FedEVA Framework Overview

The focus of the FedEVA framework is to protect the private information (e.g.,
video analytics results) in clients’ video contents from being leaked. We utilize a
helper with publicly available training datasets to guarantee the privacy-preserving
property while not introducing much communication or computation overhead. To
the authors’ best knowledge, this concept is first introduced in this work. We will
present more design details in the following.

The FedEVA framework contains four key components, i.e., the client, the edge
server, the helper and the coordinator server.

* Client. The client is responsible for collecting the video contents and offloading
them to the edge server. As the video source, the client can be the camera, the
cellphone, the laptop, and so on. Generally, the client side does not have much
computation resource for model training.

» Edge server. The edge servers train the EVA model based on the video contents
collected from its connected clients. Generally, the edge server is in the proximity
of its connected clients. We assume that the video offloading process is executed
on a dedicated communication channel, which cannot cause the leakage of
information. This work focuses on the possible leakage of the learned EVA model
parameters from the edge server to the coordinator server.



Privacy-Preserving Edge Video Analytics 179

client edge server coordinator server

video offloading =  gradients sharing

model retrieval E model update

public 5@
gradient \\;Q&)
sharing «\obe

parameter generation -

=

public
dataset helper

model training

Fig. 3 FedEVA: a federated learning driven edge video analytics framework

Helper. The helper is associated with pre-downloaded video datasets. The
implementation of the helper is one of the key contributions of the proposed
FedEVA framework. Since the training results from the helper will be shared to
other edge servers, the helper only runs on the public datasets to prevent the
disclosure of private information.

Coordinator server. The coordinator assists all the edge servers to collabora-
tively train models using FedAvg or FedSGD algorithm.

As shown in Fig. 3, the FedEVA framework contains data or information work-

flow between the modules. We introduce the key procedures as follows.

Video offloading. Due to the limited computation resources, the client does not
locally execute the model training function. Instead, each client periodly offloads
its generated video clips regarded as the model inputs to the nearby edge server
in connection.

Distributed model training. The model training is conducted on the edge server
with image/video inputs collected from clients. In this work, we do not propose a
new model training algorithm, and any model training schemes can be applied to
our FedEVA framework. In our FedEVA framework, the model training process
can be divided into two categories.

— Model training on the private datasets. The private clients are recruited
to help enhance the performance of the trained EVA model. The incentive
mechanisms are out of the scope of this work, which can be found in some
other literatures, e.g., [24].

— Model training on the public datasets. The helper proposed in our FedEVA
framework is to help guarantee the privacy-preserving level of the analytics
results from the private clients.
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* Public gradients sharing. In the FedEVA framework, the privacy issues on the
client sides are guaranteed by the setting of “public gradients sharing”. Each
client will receive the identical public gradients from the helper. By adding
different weights to the public gradients, the actual gradient update based on
the private video dataset can thus be guaranteed.

* Model update. In the coordinator server, the perturbed gradients will be summed
to obtained a synchronized EVA model. The “model update” procedure will
continue to update until the EVA model approaches a rather good level of
performance.

The FedEVA framework can be integrated into any edge-based video analytics
system. The model training framework can work well on the perturbed parameters
without recovering the practical parameters from each local user. As modifications
are mostly made at the user side, it is easy to rapidly deploy the FedEVA framework
over the existing edge-based video analytics systems. One limitation is that the
perturbation operation requires the use of model parameters trained on the public
dataset, which may not be always available in certain scenarios. One feasible
solution is to design incentive mechanism to promote some users denoting their
datasets as the public ones.

5 FedEVA Algorithm Design and Analysis

This section will introduce the designed algorithm in our FedEVA framework for
each module. As the client will not need to conduct a lot of operations, we will
present the algorithms designed for the helper, the edge server, and the coordinator
server, respectively.

5.1 Algorithm Design
5.1.1 Algorithm 1: Helper Algorithm

The operation on the helper is similar to that in standard federated learning, as
illustrated in Algorithm 1.

Algorithm 1 Helper algorithm

: HelperUpdate(w): // run on the helper
: B < (split 2’ into batches of size B)
: for batch b € # do

@' <« o —nVi(w; b)

: end for

: return o’ to each edge server

oA S S
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5.1.2 Algorithm 2: Edge Server Algorithm

Different from the operation on the helper, the model parameter update will not be
directly sent to the coordinator server due to the privacy concerns. Instead, the model
update @ will be perturbed with the public update @’ returned from the helper. In
detail, we will define a weight parameter « and perturb the local model update w
with a weighted public update «’, i.e.,

w=w+aw, @)

where ¢ ~ Lap(0, b) can be fit with the Laplace distribution following [8], and
b is the scale parameter. The variance of parameter o is 0> = 2b~2. Note that
the privacy level increases with the value of o. However, the value of o cannot be
increased without limit. A large value of o will make the coordinated model tend to
that trained in the helper. Afterwards, the perturbed model update will be sent to the
coordinator server.

Algorithm 2 Edge server algorithm

: EdgeUpdate(k, w): // run on edge server k
1 B < (split Z into batches of size B)
: for batch b € # do
w < o —nVi(w; b)
end for
: randomly generate a weight « ~ Lap(0, b), and obtain v = v + aw
: return w to the coordinator server

/

NN E W=

5.1.3 Algorithm 3: Coordinator Server Algorithm

The global iteration step in the coordinator server is to take an average of the locally
updated results and obtain a new global model. The model update is as below:

ng k
W] = E —w, - ®)
n +
keS;

5.2 Analysis on Privacy Preservation

To quantify the level of privacy preservation provided by our FedEVA framework,
we consider the existence of malicious attackers (e.g., eavesdroppers). According to
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Algorithm 3 Coordinator server algorithm
1: initialize wq
2: for each round ¢ do
3: ¥ <« (random set of m clients)
for each client k € . in parallel do
a);‘ 1< PrivateUpdate(k, w;)
end for

4
5
6
n
T o1 < ZkeS, ;k“’ﬁl

8: end for

9: return w to the coordinator server

[5, 13], a privacy preservation metric, called Privacy Preserving Distance (PPD), is
defined as below.

Definition 1 (Privacy Preserving Distance (PPD)) is defined as the difference
between the real model parameters and the perturbed model parameters. That is,

M e, =Kl
. .

PPD = ©)
Specifically, a higher PPD is desirable for privacy protection, which can prevent the
attackers from obtaining the original private model parameters.

Based on the distribution of PPDs, we further introduce another privacy preserv-
ing metric, called Privacy Preserving Indicator (PPI) as following.

Definition 2 (Privacy Preserving Indicator (PPI)) For a FedEVA user u, let r,
denote its real model parameter vector andk,, denote the perturbed model parameter
vector. Then, we have the privacy preservation indicator defined as:

10)

M e, — Rl
[p:PI‘ Sep E)
M

where €, denotes a privacy preservation distance threshold.

Given a specific €, the value of I, indicates the per-rating distortion probability
between the perturbed model parameter vector and the original model parameter
vector. A lower ), indicates a better privacy preservation degree, and vice versa.

The private model parameters are perturbed by individual users before transmit-
ting them to the coordinator server. Thus, only perturbed model parametersk,, can be
captured by attackers. For a local FedEVA user u, the privacy preservation indicator
can be rewritten as:

Ip,MZPr{||rLt_f'u||255p}- (11)
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Note that the perturbed model parameter vector is not only related to real model
parameters r,, but also related to the model parameters trained on the public dataset.

To prove the privacy level of our FedEVA framework, we compare it with the
standard differential privacy (DP) scheme whose noise w is drawn from Laplace

distribution, i.e., Lap(0, App) = 2A - eXp (_T) where App = l'u

presented
by Dwork and Roth [8]. We obtain the following proposition.
Proposition 1 For a local FedEVA user u, when the adding noise o follows the

Laplace distribution a ~ Lap(0, Ly), we can achieve

IFedEVA = PP Yue, (12)

App __ _Ary

where ho = 1 = Gl

Proof Starting from the Algorithm 3, we have
Ity — Full2 = leel[1]]2.

Therefore, we have

IFedEVA — PI‘{|05| < 14 } p( 6 ) 13
P =il *oll I (13)
Similarly, for e-DP, we have
IPP = Pr{jw| <€) =1 —exp  ——2 (14)
P ADP

Combining (13) and (14), we obtain

FedEVA _ yDP
Ip,u - IPu

€p €p
) =exp (——) .
Aol |12 ADP

Hence to ensure same privacy level, we set Ao = App

exp(—

6 Performance Evaluation

In this section, we conduct field measurements to evaluate the performance of the
proposed FedEVA scheme.
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6.1 Experiment Settings

We reform the YOLOv3-tiny model [23] into the federated learning setting based
on an open source implementation! and train the model on the COCO dataset [19].
To evaluate the performance of the FedEVA scheme, we compare it with other state-
of-the-art algorithms.

¢ Central YOLOv3-tiny algorithm. YOLO is a real-time object detection algo-
rithm that has been widely applied in video analytics.

¢ Standard FedAvg algorithm. FegAvg is a classical algorithm in FL which
allows many clients to train a model collaboratively without sharing private data
between clients or with the server, which can provide a certain level of privacy.

¢ FedAvg+LDP algorithm. Differential privacy (DP) describes the patterns of the
dataset while withholding information about individuals in the dataset. Local
DP (LDP) adds noise to each client’s update before sharing with the server, and
guarantees much stronger protection to clients’ privacy.

We set the batch size as 8 and use multi-scale training. Following [16], we use
Adam optimizer and gradient accumulations. In other words, the model is updated
every two batches. The standard YOLOvV3-tiny model is trained based on [23]. In
the FL setting, we equally partition the COCO dataset into N = 10 parts and give
each client one part. We carry out experiments on both IID and non-IID data, where
the IID assumption is typically made by distributed optimization algorithms and the
non-IID data is assumed by the federated optimization algorithms. On the IID case,
we randomly shuffle the data before assigning to clients. On the non-IID case, we
sort all data in the order of image type, which is accessible in the COCO dataset.
After that, the data of the same type are aggregated together and each client will
only have a few types of data.

In each global epoch, all clients participate the training process by receiving the
model from the server and training it locally. We set local epoch E = 1. In FedAvg,
all clients’ updates are averaged with the weight of their data count. In FedEVA, one
client is presumed as the public edge server; while other nine clients are private edge
servers. The value of « in FedEVA is generated by Laplace distribution Lap(0, b),
where b = 0.15. In local DP setting, to guarantee the privacy, we clip the update
with C = 30, which was introduced by Abadi et al. [1].

We achieve (200, 10~%)-DP using Laplace mechanism. Holohan et al. [11]

proved if b > e—logcm’ Lap(0, b) satisfies (e, §)-DP. In our experiment, we have

b = m 2~ 0.15 so that we can compare FedEVA and FL+LDP fairly.

The Laplace function we use is shown in Fig. 4. We generate 10® random numbers
with respect to Lap (0, 0.15) and count the number of points falling in every interval.
The experiment results are compared with two performance metrics, including:

Thttps://github.com/eriklindernoren/PyTorch- YOLOV3.
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Fig. 4 PDF of Laplace function Lap(0, 0.15)

* Model accuracy. We use the mean Average Precision (mAP) as the metric to
evaluate the EVA model accuracy.

* Privacy level. We use the privacy preserving distance (PPD) in Proposition 1 as
the metric for evaluating the privacy level. A larger PPD indicates a better privacy
level, and vice versa. We assume the central training model is noise-free, i.e., the
actual model.

We train YOLO model for 60 epochs and evaluate the model after each epoch.

6.2 Experiment Results

The experiments are conducted under both IID case and non-IID case.

6.2.1 IID Case

Figure 5 compares the mAP during training process with different FL. models
and central training. The x-axis represents the epoch number, while the y-axis
represents the mAP of the aggregated model in each epoch. Note that the mAP
metric of FedAvg+LDP scheme is 0 during 60 epochs, i.e., the FedAvg+LDP scheme
diverges in the EVA model training. From this experiment, we can observe the mAP
performance of all distributed versions of the YOLO algorithm is worse than that
of the central version. We also find that the mAP metric of our FedEVA scheme
is similar to that with the standard FedAvg scheme. This experiment indicates the
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Fig. 6 Comparison of privacy level on the IID COCO dataset

effectiveness of our FedEVA scheme, which greatly outperforms the FedAvg+LDP
scheme under our experimental settings.

Figure 6 compares the privacy level of FedAvg, FedEVA, and FedAvg+LDP.
The x-axis represents the epoch number, while the y-axis represents the privacy
level. Specifically, the privacy level of the central version of YOLO is zero, i.e.,
the privacy issue is not considered in the standard version. By comparison, our
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FedEVA scheme outperforms the standard FedAvg scheme, which implies that the
design in this chapter can achieve a better privacy preservation degree. Although
the FedAvg+DLP scheme guarantees a stronger privacy protection, the EVA model
training performance under the FedAvg+DLP scheme is invalid.

6.2.2 Non-IID Case

Figure 7 compares the mAP during training process with different FL. models and
central training on the non-IID dataset. The x-axis represents the epoch number,
while the y-axis represents the mAP of the aggregated model in each epoch. Note
that the mAP metric of FedAvg+LDP is 0 during 60 epochs. From this experiment,
we can observe the mAP performance of FedEVA is still similar to that of standard
FedAvg, though both FedEVA and FedAvg perform worse on the non-I1ID dataset
than that on the IID dataset. This experiment indicates our FedEVA scheme is as
robust as FedAvg and outperforms FedAvg+LDP under the non-IID case.

Figure 8 compares the privacy level of FedAvg, FedEVA, and FedAvg+LDP
versus the training epoch. The x-axis represents the epoch number, while the y-axis
represents the privacy level. As the privacy issue is not considered in the standard
version, the privacy level of the central version of YOLO is zero in default. Again,
although the FedAvg+DLP scheme guarantees a stronger privacy protection, the
performance of EVA model training under the FedAvg+DLP scheme is invalid.
By comparison, the FedEVA scheme achieves a similar privacy level as that in the
standard FedAvg scheme, however, our FedEVA scheme achieves much stronger
protection on clients’ privacy.
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—4— FedEVA
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Fig. 7 Comparison of mAP on the non-1ID COCO dataset
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Fig. 8 Comparison of privacy level on the non-1ID COCO dataset

7 Conclusions

This chapter proposed a federated learning driven privacy-preserving edge video
analytics model training system, named as FedEVA. By locally perturbing the
private rating, the model parameters can still guarantee the model training accuracy,
while preventing eavesdroppers from tapping clients’ video contents information.
The key idea lies in that the design of the perturbation method will not change the
model training and updating structure. Besides, we also verify with experiments
that our FedEVA framework outperforms the standard FedAvg scheme in the degree
of privacy preservation. The FedEVA framework is practical and efficient as the
perturbation operation is a linear operation with low time and space complexity.
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